RECORDS

OF THE

SOUTH AUSTRALIAN MUSEUM

Vol, VII, No. 1

Published by The Museum Board, and edited by the Museum Director (Herbert M. Hale)

RESULTS OF THE HARVARD-ADELAIDE UNIVERSITIES ANTHROPOLOGICAL EXPEDITION, 1938-1939

TASMANOID TRIBES IN NORTH QUEENSLAND

By Norman B. Tindale and Joseph B. Birdsell

Abstract

Summary During 1938-39 field-work was carried out for fourteen months under the joint auspices of the Division of Anthropology, Harvard University, and the Board for Anthropological Research at the University of Adelaide. This work, sponsored by the Carnegie Corporation of New York whose generous grants have made possible the field work and the elaboration of the data, has been assisted further by contributions from the South Australian Government and the University of Adelaide.

RESULTS of the HARVARD-ADELAIDE UNIVERSITIES ANTHROPOLOGICAL EXPEDITION, 1938-1939

TASMANOID TRIBES in NORTH QUEENSLAND

Bx NORMAN B. TINDALE AND JOSKPH B. BIRDSELL.

Plates i-iv.
During 1988-89 field-work was carried out for fourteen months ander the joint anspices of the Division of Anthropology, Harvard University, and the Board for Anthropological Research at the University of Adelaide. This work, sponsored by the Carnegie Corporation of New York whose generous grants have made possible the field work and the elaboration of the data, has heen assisted further by contributions from the South Australian Government and the University of Adelaide.

Tntronuenton.

The expedition traversed 16,000 miles; 2,458 full and mixed blood peoples in Australia were studied, and their soeial backgrounds and present status examined. Several papers have been published and others are in comrse of preparation.

Certain matters of inmediate thenretical interest regarding the Anstralian full bloods are disenssed in the present contribution. While early speculations regarding the origins of the Anstralian aborigines generally have postulated two waves of different pthnic type, reaching and populating the mainland of the Continent, and this idea has never heen completely abandomed-recent anthropometric work among the living ahorigines of Central Australia has tended to snpport another hypothesis that this interesting race is very homogeneons. A corollary to the latter statement is that the Tasmanians left Little or no distinguishable imprint upon the continental peoples, and according to Wood Jones (1934), may have reached their historic location as the result of a lengthy sea voyage, or voyages, originating in the islands to the north-anst of Australia.

Principal measured series of Australian aborigines in Austratia have been obtained hitherto from Central and Northern Australia, and no mass of data has been available for the Eastern coastal areas, which are cut off from the rest of Australia by the Great Dividing Range, and divided into pockets by the mountainoas terrain of the coastal ranges. That the eastem and south-eastern coast may have been a refuge area has been recognised by cultural anthropologists, but littlo information bas been available abont physical types.

Our studies demonstrate that in the eastern coastal and mountain region near Cairns is an area where exist several smalt tribes of a people characterized by a high invidence of relatively and absolutely small stature, crisp early hair, and a tendeney toward yellowish-brown skin colow: Sll of the tribes appears to be mixed in greater or lesser degree with the Anstralian aboriginal type, but preserve in their mixed eondition charscters recoguizable as belonging to the Tasmanian aborigines. This may prove to be a thurdamental discovery in Australian anthropology.

Our field observations have led to the further conclusion that the Australian aborigines are not derived from a single ethnic group, but result from the blending in varying proportions, of three diserete ethnic elements, which tentatively may be called "Southem," "Northern," and "Tasmanoid."

For the purposes of this paper, it is not intended fully to deseribe and define the three types-but to record briefly the existence of a Tasmanoid group on the mainland, paying most attevtion to their oectrrence on the Atherton Plateantegion of Northern Queensland. Full deseriptions and analyses of the three ethnic groups are being prepared for publication; these are based on the statistical examination of the data on apporimately one thousand full-blooded aborigines, sludied in Queensland, New South Wales, Vietoria, South Ausiralia, and the sonthern half of Wpstern Australia, ineluding full series of each of the three types. With the exception of South Anstralia, no valin series on the Living bave yet been published from these arcas.

Bel ween these three primary ethne strains, intermixture has fone continued on a generons seale, but it is still possible, in neripberal areas, to find bloes of tribes, where the majority of the individuals approximate in their traits to the prototypes.

No correlation between language and physical type is postulates ; informafion ohtainad about languge and enlture in the area poiut, to a marked period of isolation of some of the peoples in the Atherom rain jumeles. One of thr languages, Barbaram, seems to be of such a relatively isolated type, that it may be regarded as having been linked with the Tasmanoid people of the Atherton Tableland for a relatively long period of time.

The Atherton Tableland and the coastal region inland from Caims was first opened for white settlement abont 1880, and after 1890 began to carry a large settled white population engaged in dairy-awd-general-farming on the plateau. and sugar-cane farming on the coast. Although large areas remain of melegred, rough mountain terrain, in large moasure the uatives bave been led to abaindon their nomadic habits and their dependence on hunting. Many of them bave been compulsorily segvegated on mission and goverminent settlements at Yarabah, Monamona, and Palm Island. A few of them, whon liave only been brought in from the dense jungle areas above Cardwell within the past sis years, are still unable to speak any but their native tongne. These late arrivals claim that at least one family is still living in a completely wild nomadic condition in the rain Jungles of the Cardwell hinterland. Several photographs taken by Mr. A, Atkirson in the early days of white settlement indicate the former appearance of these people. In one instance a child appearing in an old photograph, now an old man, was one of the subjects of our anthropometric studies.

The first detailed acconts of the life of people of the rain jungles of Queensland were those of the naturatist and traveller Lumholtz (1889), whose explorations were principally made on the IIerbert River and in the area to the south; his published voeabularies show sver 70 per cent. of Warekamai words, and the others are principally of Wammgu and Nowegi origin. His main observations alid not therefore extend to the relatively unmixed pygmoid groups. Nevertheless his statements indicate be appreciated the disereteness of the rain forest lolk and had observed the great variability in stature evident in the peripheral tribes; his aceounts have not hitherto been treated with the respect dres to them.

Distribution of the Tasmanoid Tribes.

The distribution of the tribes as given, is perforce that of a period before tribal disruption and decay had set in with the growth of white setflement.

There is a central bloe of a dozen small tribes of the Thamanoid people ocompying all area one hundred miles wide (trom Cape Gratton in the east to Lappa function in the west) and 180 miles long (from the headwaters of the Annan River in the north to near Oardwell and Fiavenshoc in the south).

Ngatjan [yatjen]-belonging to the country from Atherton to Russell River. Mamu ['Marmu]-from the coast at Russell River south to Murdering Point. Wanjuru ['Wanjura] -mouth of Russell River.
Tjapukai ['Tjarpukai]-on the broken table-top country from Marceba and Kuranda to Port Douglas.
Barbaram ['Ba:berem]-Great Dividing Range from north of Mareeba nearly to Mount Garnet.
Idindji ['Tdindji]-from MaTanda and Lake Barrine to Gordon Vale,
Kongkandji |Konkandji]-Cape Grafton, and Peninsula.
Buluwai ['Buluwai] - in the mountain serubs south of Kuranda.
Djiru ['Djirui]-at Clump Point.
Djirubal ['Djirubal]-Herberton to Ravenshoe and down the Wild River to beyond Tirrabella Station,
Gulngai ['Gulnai]-Murway and Tully Rivers.
Keranai ['Keramai] - At Kirrama and south of the inland serubs of Murray River.
The details of the tribal boundaries are shown by Tindale (1940) on a map in a previous paper of this series. Population statisties have been gathered indicating the former presence of a population of about one thousaud five hundred of these people. Grouped in a half-circle, and enclosing the area, except along the sea front, are other more mixed peoples, who include some pygmoids. They form a transitional type between the mulens of Tasnanoid tribes and the more normal Australian ones.

In this gromp belong the:
Bandjin ['Bandjin]-Hinchinbrook Lsland,
Newegi ['Newegi]-Seaview Rauge above Inglram and southwards.
Agwamin [E'wamin]-head waters of Einasleigh and Copperfleld Rivers.
Wakaman ['Wakamen]-Chillagoe to Mt. Surprise on the western side of the Great Dividing Range.
Muluridji ['Muluridji]-uorth of Mareeba on the head waters of the Mitchell River.
Djankin I'Djankun]-head waters of Walsh River as far west as Almaden and Chillagoe.
Irukandji ['Trukandji]-on the coast north of Cairns as far as Port Dotylas.
A second bett of tribes, the members of which are, in their characters, essentially Australian aborigines of types met with in inland Queensland, touches the coast in the north vear Cooktown, and, running down the western side of The Great Dividing Range, meets the coast at Townsville, thus eompletely enclosing the apparent refuge area and its transitional belt. Outliers of the Tasmanoid groups seem to oecur, and in this category may perhaps be placed the Wulpura [Wulpure] about whom insnfficient data is yet available; traces of probable mixed pygroid tribes appear in more southern constal districts as far as New South Wales.

Within the relatively large Atherton jungle area the people thus tend to differ in various degrees from the Australian noms in physical characteristics. In points of their material culture, lingusties, and siocial organization there are suggestions that, alfhough isolated for a long period in their specialized rain jungle envirorment, contact with other Anstralian tribes has led to their absorption of much which is eulturally that of the surroming Austadians. There are indications that the additions which have been made to their findamental culture are those characteristic of people who now inhabit southern Anstralia rather than those of the present iuhahitants of north-cental and northern Queensland.

Environment.

Much of the area ocenpied by the Queensland Tasmanoids is noted for its high, ind relatively uniform, rainfall, and a great deal of it is covered in dense tropical jungle, interspersed with belts of Shvannah forest in which species of Eucalyphus dominate. The rain jungles, more correctly shelter jungles, are locally known as "scrubs" and oceasionally as "brushes." Strictily spesking they are not dain furests. Tall trees, of which some of the dominant members are Agathis, Fious, Elindersin, and Podocarpus, form a high canopy of Foliage, shitting sunlight from the vine and palm-stem entangled foor of the jungle,

The shelter jungles and the intervening belis of Eucalyptus savannals extend from the coast at sea level to a hoight of almost five thousand feet on the summits of Bartle Freve and Bellenden Ker. The general elevation of Atherton Platean is two thousand feet, while that of the Herberton Plateain is nearly a thousand

- higher, and thesc are or were covered with broad belts of jimgle intorsperserd with savannah.

The mean temperatnre of the coldest month at Ravenshoc (2,957 feet) is 60°, while at sea level it is 70°, Rainfall varies from 50 inches at Δ therton to 143 inches at Innisfail. The heavier rains nceut in summer deluges, and there is a relatively dry winter period of about two monthis, when the average fall is below $1-5$ inches per month.

As in Malaya and the Philippine Islands, the jnngles and mountain plateaux constitute a special environment, and in conjunction with the rugged ranges which enclose the region they have boen eminently suitad as refuge areas. On their inland side, the jungles are backed by high, often sterile, granitic momtains of the Dividing Range from which deeply entrenched rivers ran westwards towards the Gulf of Carpentaria. In the rugged country abont this Dividing Range, rainfall is less heavy, and fle rain jungles have contracted.

Soil seems to play a dominant part in the formation of the varions bypes of forost. Sheltered areas, especially those covered with rich bassaltic soils, have produced dense forests, whereas in the poorer, granitic areas the jungle is much impoverished. Nsually there is a complete overhead canopy, and it is chiefly in the drier patches on relatively barren soils that the open parkland intervenes. Some of the open savannah is believed to be the result of man's activities and to have been cansed by the fires of past generations of the native inhabitants.

Peystcal Charactertbitos.

A historical resume of the problem of Australian and Tasmanian origins is to be given elsewhere. Howitt (1898) detailed early opinions and theories and Davidson (1937) has recently presented a nseful summary of current trends of thought on pleysical and editural relationships.

It is of some importance to consider the scope and geographical range of previously published work on the anthropometry of the living Australian aborigines. With the exception of several very small series from New Sonth Wales, publications have been limited to the substantial series by Campbell, Gray, and Hackett (1936), based upon data collected by a number of University of Adelaide expeditions, over a period of years; by Barston (1918) ; and by Warner, published hy Howell (1937). These three major contributions are limited to data collected from Contral Australia and North Australis respectively.

At first sight this coverage may seem ample, but in reality these series are Nrawn from roughly but one-seventh of the continent, and do not include those regions which might be interpreted as the most impertant refuge areas, loealities
it which any lower lagers of ethnie stratigraphy, should they oecur, wond most reasonably be expected to survive. It has been our good fortme that the major aim of the present expedition, the study of Australian hybrids, Jed to extensive attention beiug paid to the peripheral areas which hitherto had bean neglected. A thohsand full-bloods, of both sexes, have been expmined aufhropometrically, and over seven hundred blood gronped, both for the $\mathrm{A}-\mathrm{B}$ series and the $\mathrm{M}-\mathrm{N}$ series of agyldinogens (Birdsell and Boyd, 1940). Approximately fom hmdred of these measured are from Queensland, the remainder spread oves Spw South Wales, Viotoria, Sonth Anstralis, and Westem Anstralia.

In genemal, it may be said that the Tasmanoid hoe of tribes now reported from the Atherton ares, represents a distinctly aberant type of Ausiralian aboriginal, which althoug undoubtedly mixed, is nome the less relatively homogeneons within the given area, and as a physical type, is distinct from the surrounding peoples. Those traits in which they deviate from the Australian worms, as for date established by published material, all trend in one direction toward the characteristies of the extinct Tasmanans.

Before deseribing in a general way the traits in which this aberrancy is noted, it should be stated that, although little anthropometrie work has heen published from Queensland, for a number of yeats writers have commented upon the "frizaly" hait of some of the uatives of coastal North Queensland. Lumholtz (1889) explained this abervaut hair form as originating in Melanesian conlacts, and the problem was thus easily dismissed. From evidence at anr disposal, it seems some relatively reeent Melanesian influence can be detected in the natives of the northern part of Cape Fork Pminsula; the tribes in the Cairns regious show nome of this. There is ample data to indicate that the historic importation of Melanesians to work the canefields has no bearing upon this problem, and the authors conelude, from the study of knowm F_{1} and F_{g} gencration MelmesianAustraliau hybrids, that late prehistoric Melanesian contacts may likewise be roled out as a major factor in this area.

The Tasmanoids in the Atherton Tableland area, when compared with the sturounding tribes, show significaut diminutions in statare and hody weight. Their extremities are notably gracile. Although straight and low wave hair torms ure prescot, there is a relatively high ineidence of exisp deep-wave, aud crisp ently hair. No true frizaly hair is present. The nasal stmotare is aberrant in eertain features, and the region of the upper integumental lip is usually relatively long and convex. Skin colour tends to be somewhat light, and reddish and yellowish tones are more common than among the surrounding peoples. Tenth show some interesting differences that cannot here be described jn detail. The preliminary results of blood grouping tend to sulbstantiate the distinctness of the bloc of tribes. In the anthons' views, these people may be classed us originally similar to the Tasmanans, althongh through infiltration by and admixhme with a principally "Southern" type of Australian aborigmal, they are now modiffed to a status which ruders them distinct from either, hat lying olearly between the noms of the two ancestural types. It is for this reasou we linve chusen to call them "Tasnangids."

The analyses of the data appear to substantiate the above statements, snd it semse elear that the ancestors of the Tasmanians were at one time well established upon the Australian mainland. 'Txaces of their characteristics may ressonally be anticipated to survive in other marginal areas on the continent. Eridence in hand in indicalives of this, and we sonclude that the negritic Tasmanians represent part of an early wave of peoples who entered the continental area. Under the impset of suceeding waves of people of different ethnie type, they have been modified. While the virtually pure type survived
in Tasmania intil historic times, on the test of the continent they were largely submerged, physically and eulturally, by later arrivals.

It this hypothesis be correct, it is obvious that the Australian aboriginal no longer may be considered as a pure race of unusual homogeneity, but a wellblended group of at least dihybrid and probably trithybrid origin.

Cultural Relationsitipg.

It is not intended to claborate bere the cultural data gathered about these people. 1 fow general indications may be given.

The socinl organization of the Atherton Tasmanoids seems to Lave been influencel by both dual people along the const and by fonr-class patrilineal people with named moieties from the plains in the west. Both these types of organization sppur to be accretions of relatisely recent date.

The Thapmai and Idindji have patribineal moiety systems with the ferms [Kurabana] and |Turaminjal; in the Kongkandji, these become ['Korabana] and [Koraktulu]. These dual systems seem to be the oldest ones surviving in the area, and have links with similar organizational types known in more southern parts of coastal Qucensland. Barbaram, which linguistically seems to be one of the most characteristio of the tribes, has a four-class patrilineal organzation elearly derived from tribes to the west. This has named moieties which are names of totems :

Kuritala (eagle) moiety: Tjikundji and Tjilandji subclasses.
Karak (night bird) moiety : Kupundji and Karpandji subelasses,
Marriage in Barbaram is normally by exchange of sisters, and the marriage is arranged throngh the mother and inother's mother. Wife's mother and father's sister are both avoided, and the prohithition extends up in each case to the mothers of these individuals. A man also refrains from speech with his son's wile and sister's daughter.

Barbaram folk were formerly, according to traditiou, a people withont intiation ceremonies. Their youths, according to this belief, were taken by the Wakaman people, who live to the south-west and by them subjected to rites which included the cutting of sears (eicatrices) on the chest. Circnmeision is. of course, unknown in this part of Queensland.

The rites, which were in more recent times also carried out by the Barbaram and allied tribes themselves, are oceasions for dances and singing. These continue by relays of men over a period of seyeral days, the performers heing divided, for this pirpose into two groups, the [Aygor mok] or Sun men, and the ['Anso'mok] of Night men, During the rituals, the yonth is ['japeir] (lit. set apart, almost sacred, perhaps corresponding to the ['nerambel of the natives of the Tanganekald and Jarildekald tribes in South Australia), and his feet may not toueh water, all his reqnirements being supplied from a dish; if a stream has to be crosses or followed he must be carried on the shoulders of others.

Burial customs joclude the smoking and partial mommification of the body by treatment with red ochre; subseguent disposal of the body is by cromation aiter a series of rites of remembrance. The lower jaw of the deceased is often carried for a fucther period befove being destroyed. Food cannibalism was rife, and many whus met their deaths at the hands of strangers, were eaten. In consequence of the practices of erematiou and cannibalism, skeletal material of the Tasmanoids from the Cairus region is rare; fewer than a dozen crania are present in Δ nstralian collections, The principal examples are being examined and will be made the suhject of separate studies,

Landeuage.

Comparative vocabularies indicate that, while the peripheral and intermediate zones of pygmoid peoples have languages allied to those of their tafler neighbours, there is a cenfral area where the languages appear to be nuclear and to have been strongly isolated. Barbaram seems best to represent this arehaie type: Wakaman and Agwamin, which adjoin, show marked influences from the west. The northern and north-eastern Tasmanoid tribes reveal the influence of northern languages of the Koko lmudji iype (Koko-vimidir of Roth). In Tiapukai, for example, the original Barbaram elements have been obserred and overlaid, surviving only in modified form,

Barbaram, which is regarded in this prelimntary statement as most typical of the area of isolation, is chatacterized among other things by many monosyllabie words with consonantal endings: ['kay] tree, ['mok] man, [kok] vatet. In words of two or more syllables, prineipal stress is often placed on the second syllable: [a'ro] a species of kangaroo, [arunda] head, [a: tja] three, [n'ka;la] leg, [al'mak] meat, [a'bol gromod, [a'wa] mother, [m'bera] grass baskect.

A glottal stop ['] is evident in some words, and in others this is so marked That it seems to have almost the effect of a click, as in [nt garib].

Terminal vowels are often indeterminate, and the voice may he raised a tone $\left|n d^{a}\right|$, $\left[a j^{n} \mid,\left[k^{n}\right],\left[k^{n}\right]\right.$. The last-named word is an example in which the terminal vowel is very short.

Short texts and grammatical nutus have been obtaned from two of the tribes in this area, and parallel vocabularies from each of them. They will be the subject of a more detailed separate strdy.

Matertal Cutture.

Gultural elements which seem to belong essentially to this area inchinde the T'japukai practice of earrying the skolls and the jaw booes of the deceased as ornaments upon the body for a lengthy period bofore disposal by buming.

The use of large decorated fighting shields made from the butiresses of Ficus trees is confined to the area. These shiclds are used in conjunction with a siuglehanded, flat-bladed and long, wooden, fighting sword, which elsewhere occurs only among the Kandin people of Coen and among sono people who similarly inhabit raim forests near Brisbane, where rear sime cultural, and not a few physical, characters of the Tasmanoids.

Clothing was confined to the use of beaten bark blankets, which seems to be an adaptation to wet elimates of the custom of wearing amimal skins, which is so highly characteristio of the marginal peoples along the eastern and southem coasts. of Australin.

Cane baskets of several highty characteristic forms are made; the designs of thesc are confined to the inner group of Tasmanoid folk, so that their association with them may be rather old. Some of them are based on local models, being translations into basket ware of prototypes made from sewn fig tree bark. The Barbaram, Tjapukai, and Idindji make half-hitch coiled grass baskets closely similar in their appearance and technique of mannfactnce to those of the Tasmanians. The details of the processes of manufacture are recorded in the $16 \mathrm{~m} . \mathrm{m}$. film library of the South Anstralian Museum.

Several specialized techniques of food gathering such as would develop in a dense rain-forest environment are characteristic of these people. Food of the rain jungle tribes consists]argely of roots, sceds, tevits, and honey, there being a general
scarcity of meat except for an oceasional cassowary, scrub wallaby, tree kangaroo, and flying fox. Human flesh was eonsumed as a luxury meat. Many of the seeds and nuts eaten contain actively poisonons alkaloids, which are eliminated only by special washings, leachings, roastings, and by fermentational methods, Many of the muts and the bees' nests are very inaccessibly placed on high trees, and methods are practised of tree-climbing with a cane loop held in the hand, the climber appearing to run up the tree trunk by cleverly synchronized alternating steps and lifting movements of his knotted climbing cane. A motion picture ($16 \mathrm{~m} . \mathrm{m}$. vecord) of this practice is also preserved in the film library of this Museum.

Stone axes are employed; the people on the coast ward side of the area having trimmed and edge-gronnd canc-hafted axes, and those on the inland margin use axes which have been symmetrically trimmed by pecking and battering and ground on the edge. The principal function of the axe was in honey gathering from trees in the open savannah between the jungles. According to native tradition, the making of axes was formerly unknown, aud they were brought from the west and traded by newcomers. Stone knives were made from irregular flakes of quartz; the handles are pieces of beeswax. Large stone slabs containing cireular pits of approximately $2,5 \mathrm{~cm}$. diameter ase used in the breaking of the exceedingly hard Queensland Nut, which yields an important food item.

SUMMARY.

This is a report on one aspect of the work of the combined Harvard and Adelaide Universities Anthropological Expedition of 1938-99, financed by the Carnegie Corporation of New York,

The presence, in the Atherton Tableland, of a people of relatively small stature and erisp curly hair, is recorded. These people are identified as modified descendants of a 'Dasmanoid stratum on the Anstralian mainland. They inhabit an area of dense rain jungle and highland plateau in the wettest area of North Queensland. Their physical form appears to have been preserved, through isolation, in a relatively inaccessible and minviting environment, not sought by the usnal Australian tribes.

In their burial customs these people present some features reminiscent of the Tasmanian aborigines. Their essential cultural relationships are recognized as heing rather with the people of Tasmania and of Sonthern Australia than with the folk of the northern tribes who surround them.

REFERTINOES CTTED.

dimmholte, O. (1889) : Among eannibals, London.
Burston, R. (1913) : Records of the anthropometrie ousaruroments of 102 Australian aboriginali, Wood Jones, F. (1934): Australia's ranishing race. Sydney,
Camphell, T. D., Gray, J, II. and Hackett, C. T. $\langle 1936$) : Physical Antloropology of the alorigines of Central Australia. Oceunia, vii-viii.
Howitt, A, W. (1898) : Aust. Ansoc. LIv, Soi. Prom.
Disvidzon, D. ©. (1937): Relationship of Tasmaniun and Australian enttwres, Twentryfifth Anniv. Studies; Philadelphia Anthrop, Soc., D. 47,
Howells, W, W. (1937) : Anthropometry of the natives of Aunhem Land wid tho Australian race problem. Papers of Peabody Mus. Harvard University, xyi (1).
Tindule, $N_{1}, B_{-}(1940)=$ Distribution of Australian abokiginal tribes. Trans, Roy. Sore, S Aust.,
lsiv (1).
Birdsoll, J. B, and Boyd, C. (1940) : Blood groups in the Australian aborigiges. Amer, fourn. Phys, Anthropology, xxvii (1).

EXPLANATION OF PLATES.

Plate i.

Camp scene on edge of rain jungle; huts roofed with wild hanana leaves; Cairns District; period 1890, photo A. Atkinson.

Plate ii.

1. Idindji tribespeople near Babinda, about 1893 (the figure 5 th from the loft then was approximately 10 years of age; he was measured, at 55 years, under the number N. 822 by this Expedition; the figure at left holding a ['paku:r] or wooden sword-club) was a leading man, Burumbu, of Mulgrave River; 4th from left is Torunga of Warukeinju, a Korabana man, father of our N.1108). The design of the shield [biku:n] held by the central standing figure relates to a species of fruit; the second shield from right bears a frog design.
2. Idindji women with cane baskets of types based on sewn bark originals.
3. An Idindji leading man, Jabulum, about 1890; father of Mandinggarabai ($\mathrm{N}, 611$) who is shown in Plate iv, 1 and 2 ; he is wearing a ['butju:l] ornament of white cockatoo feathers. Photos, A. Atkinson.

Plate iii.

1. Tjapukai youth, 18 years (measured as N. 433 of this expedition).
2. Buluwai girl, 11 years (measured as N. 581).
3. Tjapukai man, 68 years (measured as N. 444).
4. Muluridji man wearing ['meramba] a Tjapukai dancing ornament of sulphur-erested-cockatoo feathers, affixed to hair with beeswax. Photos, N. B. Tindale.

Plate iv.

1. Idindji man in position of defence with sword-club and a shield bearing a turtle and fish design.
?. Idindji man with shield and sword-club held in a position for attack (subject measured as N. 611, aged 55 years; stature 155 cm .; son of Jabulum, plate ii, fig. 3).

ㄱ. J. B. Birdsell and the shortest Kongkandji man, 24 years (N .669 ; stature 140 cm .).
4. N. B. Tindale and Barbaram man (estimated age 60 years, measured as N. 482; stature 151. cm.).

NORTH QTEEASLAND GANMANOHES

IMPROVED METHODS OF COLLECTING MARINE ORGANISMS

By Keith Sheard

Abstract

Summary As much of the present-day study of marine organisms is concerned with the recording of associations, and with the relationship existing between animals and the physical condition of their environment, it follows that the value of such work is largely dependent on the thoroughness of the collecting methods used. During recent years, work on marine crustacea carried out at the South Australian Museum has led to adaptations of various methods, resulting in a great increase in the number of species and total quantity of animals secured.

IMPROIED METHODS of COLLECTING MARINE ORGANISMS

By KEIT'H SHEARD.

Fig. 1.
As much of the present-day sthdy of mavine uganisms is concerned with the recording of associations, and with the redatomship existing between animals and the physical condition of their emviroment. it follows that the ralue of such work is largely dependent on the thoronghess of the collecting methods used.

During resent years, work on marine crustace carried ont at the Somth Australian Insenm has led 10 adaptations of varions methods, resulting in a great increase in the muber of species and total quantity of ammals sceured.

One result of the employnent of these methods has been to indicate that mumbers of Orders such as Amphipoda. Cumacea, and Ostracoda, Iogether with the varions sub-orders of the Isupoda, are mush more abundant and are firs freater finetors in the food chains of tishes than has been apprectiated by workers ont this subject. Actually, there is some evidence to show that the vecurvence of He larger pelagic fishes in any one lucality is, to some cxtent, dependent on the distribution of organisms which aro ushally regarded as bottom living. In other Wonds, whike the general distribution of the Nekton may be determined by that of the Plankton, at lactor of its particular weonrence may he the character of the maderlying Benthos. On this point muen enfuiry is necessary.
'llo: improvements detailed below eover the following technimues: full-speed plankton netting. submariue light methods, reet collecting, and dredging.

Futi-speed Npts.

(Fim . 1)
The pusition with regard to these is well summarized in the B.A.N.Z.A.R.E. reports (Jobnston, T. II, 1937, p.6). In the majority of the nets, the month opening is of necessity small, aud in addition the frontal ware at sped is so great that active swimmers and larger organisms have little diffienly in evading the ned. Yet high speed nets are desirable, as even with efficient low speed nots of the "Discover?" type the frontal wave is large in comparison with the spurl obtained, so that again the more active forms escape.

For the last twelve months 1 have been using a modification of the N70 type, Which is towed at up to six lenots, calching material ranging from large diatoms to Blue Sprats (stolephorus moustus) of $7 \cdot 5 \mathrm{cms}$. in length. During that time the net has suffered no apparent damage afier covering abont two hundred miles at a high speed. The organisms unllocted were little damaged. The net itself proved remarkably stable durins towings.

DETAILS OL \&ONSTIRTCTION.
Dr. Harold Thompson, of the C.s. 承 I.R., Division of Fisheries, kindly provided a uet of the general N70 type (see Kemp and IIardy, 1929, 1,181 , fig. 6), This net had a mouth opening of 61 (em. The first section was of canvas 1 foot

9 inches long ; the second of No, fololting athoth, 3 feet lomes. while the third was of No. 74 bolting cloth, 3 feet 6 inchers long.

I'o adapt this for highs speed work, a ring of 1 inch cane was made as a tow ring; the camsas seetion was remoned and replaced hy inch shrimp net, while a lorask rimg: inches in dianutro was fittel to the bucked end of the not, three baskets beingrove on to this, the buckrt itself heing dispensed with.

The bucket end of the net was then threme in on itself and drawn up, so that tho brass ring cane alme halt-way ur the No. 40 bolting cloth. A second brass ringe, 11 inches in diameter, was them slid down the inside of the net to keep the lind end distented. This was secured from the outside with brass elips. Three litht marlin leads, wath of a lreaking strain of $16 t$ pombls, were threaded from the herkets of the small brass ring and attached to the cane towing ring. (This mardin could be lightew if H greater snfety margin were desired.)

Fig. 1. Scetun through IIflı Spewi Noct. A, Tow ding. D, Smull brass rime (', Latrge brase ring. Dotted lines indicate original position of hind end of net.

The completed net was towed at the end of about ome liundred feet of light rope in order thast the clasticity in this hength would comber sudden jerks. I fight ammmbator combld he used with a greater satety margin at speeds in exmes of five knots, the strain at that speed being about 300 pormids.

The action of the net is am application of Bernoulli's Principle. The inercase in speen of the wator mhmm in passing throngh the narrow orifice results in a Inwering of pressure immediately belind it, comserguently giving the net a greater filteringe capacits. In addition, the swift, imintermpted flow of a monertion of the water thromg the net climinatus the frontal wave, making it diffieult for even fast swimming organisme to escape.

At slow speeds, the matching power is comparable with that of the standard nut. increasing with the spede. The only diffienlty oceurs in removing organisms trom the uet, as the widition of an wherlox collecting device unduly jncreases the total strain. However, Thave not lomud this to be a serious disadvantage.

The principle could pasily be extroded, amm it should he possible by suitably vatying the relative size of the large amd smatl orifiees to huild nets which womlid low, efficiently, at any reasomahle speed, thus answering the ubjection ratsed hy Mare (Mare, 19:38) to the nse of large plaukton nets.

Submarine Liario Metnods.

Work dunc by MH. II. M. Hale at Sellick Beach led us to ensider whether the apparent incquality in distribution, and prepondrance of males in certain areas, recorded in literatime, might not be due to the bias given by current collesting innthode.

Aecordingly, I experimentel with a modifeation of suhmarine licht collecting methodis. It was found that, he suitably derereasing the intensity of a light held
near a culass jar contaning a mincellancoms assmment of marine organisms, the bulk of these contel be attraced toward the soure of light. Further experiments at sea showed that the best all-round results were nlatained when a light of 1 ow intensity was hum inside the monh of a net a lifte above the sea botom at abont half an hom uffer sundown. The light and hed were left in position fors thisty' minntes.

One trial was sade in the daytime at a depth of 180 metres. Fair results were oblained. 'Throtgh the eometesy of Dr. A. L. 'Tostevin, it was possihle io make at collecting trij) on his sath, "Nyroca", and in one sample laken at night at the ['uge Island (off liangarm Ishand) in nime fathons of water on 12/4/41 between 7 and 7.30 p.mo, representatives of the following groups of organimms were obtained:
Radiohtia, tyon species. Citcmphora, one specjes. Chaetognathar, one speceies; Amulida, threa sperjes, Ophiuriclen, whe species. Lurvae of a ruetedwelling Trochid. Nebalienea, one species; Cladocera, two specius; Mysidac, one sjeceies; Euphansiacda, two specens; Decapoda, loth adult mud lurval. five species; Ostatoota, theresperies; Tsopotat three seedes; Amphipoda, nime species; Cumatera, a corath species; Copeniola, cight species. Tunieata, one species. Fishes, Stolophorns robustus and Fingrantis anstrolis. In size, the organisms ringed trom $0 \cdot \overline{5} \mathrm{~mm}$, to 98 mm 。
In preparing this apparatus, a whort wire was soldered to the combact uf a
 lary was then thrued over io wrap around the metal stem of the shobe, and the lonse end of the wire was elippeet ou to the side strip) of the battery to complete the circhit. The lighting unit: was then placed into a quat clip-top preserving jar, logether with some lead woinhts.

In nke this light was home with marlin su that it fell about 122 weltes lelow the
 This net wats weighted in order tos sink in any reasomable current, and Jowered so the light and shrimp netting wese clear of the bothom.

In a number of hanle, the only damage stastained was when a large shank attacked the apmaratum, hiting wf the bucket and laten weights as the net was heing lumbed inlward.

Rfen ant Bottom Collevering Methots.

This procedure was adapted from a suggestion made ly Dh. K. IT. Fianamed, Suth Atrean Mrselem, in a letter to Mro. H. M. ITale (1lale, H. M., 1! P29, p. 9: 19:36, p. 10t). It is as offective the remoriber small orgathisms from seawed ats it is from the crevices of romks.

Stones. cle, homeht eatully from the hotlom so that the sand film is litthe disturhed, were immersed in a sulntion comsist ing of one part of enmmercial formalin to forty narts of sea water, i, en it per cent. folution.. It is essential to have the comentasiturn of formalin so low that the anmals do not die immedialely, ret strong enomeh to drive them from the weriees. Atter ahont difteen minutes im. morsion, the roeks or seawem were shaken in the water and removed. The liguid Was sfrained. the straninges torether with the sediment from the botton being bottled tor examintation.

Material dredged diom deeper water when toded in the same manner. In this erise the results wry mot quite as gond since, in tho long haul to the surface, rome of the simul fihm on the rooks wats lont. Lowerer, even with this disadrantage. Whe incerase in the number of specimens obtained from derderines was considerable in comparism with thase mathered hat that methods of hame piekius and sieving.

Only too often in the course of marine expeditions has the best part of the catch been allowed to wash overboard again through the scuppers.

A further device for securing plankton forms living near the sea floor is detailed by Dakin and Colefax (1940, p. 17). This consists of a sled type of net which could possibly be adapted to work over a broken bottom, thus supplementing the submarine light catches.

LITEERATURE.

Dakin, W. J. and Colefax, A. N. (1940) : Pub. Univ. Sydney, Dept. Zool., Mon. í, Hale, H. M. (1927) : Crustacea of South Australia. Hale, H. M. (1936) : Rec. S. Aust. Mus., v, No. 4. Johnston, T. H. (1937) : B.A.N.Z.A.R.E. Rept., i. Kemp, S. and Hardy, A. C. (1929) : Discovery Rept., i.
Marr, J. W. S. (1938) : Discovery Rept., xviii, pp. 105-120.
Sheard, K. (1937) : S. Aust. Nat., xvi.

REVISION OF THE GHOST MOTHS ${ }^{1}$ (LEPIDOPTERA HOMONEURA, FAMILY HEPIALIDAE)

PART IV
By Norman B. Tindale, B.SC., South Australian Museum

Abstract

Summary In the course of the revision of the Australian Hepialidae it has become desirable to pay attention to genera and species from several other natural regions. The scope of the study is therefore widened. The presence in southern South America of genera and even species closely related to Australian ones, and the existence of other somewhat more distantly related ones, in the Gondwanan and Himalayan areas of India, has raised generic problems, while the archaic nature of these strange moths necessitates wide study of their relationships. In the present contribution attention is given amongst others to several Asiatic genera, and a new sub-family division is proposed.

REVISION of THE GHOST MOTHS ${ }^{1}$ (LEPIDOPTERA HOMONEURA, FAMILY HEPIALIDAE)

PART IV.
By NORMAN B. TINDALP: B.Sc., Soutir Augtralian Musevm.
Elates r-vii, and 'lext-fig. 1-51.

In the course of the revision of the Australian Itepiatidac it has become desirable Io pay athention to generand spmes from several other natural rerions. The seoper of the study is 1 herefore widened. The presmee in southern South America of genera and ovens species closely related to Australian ones, and the existence of "ther summ hat more distantly relatod mes, in the Gondwanan and Mimalayan armas of Ludis, has raised genmic pohbmes, while the archaie nature of these strange moths necessitates wirk shaly of their relationships. In the prestant contribution atention is given anmmet others fo several Astatio gemera, and a new sub-family division is propesed.

Since the prepatation of earlier parts one yaw member of the dustralian gemas Trimben and another of Bordaia have conne buter notiee and these are deswibed.

For some yeath it has been dittient to identity species of Hepialidae from conntries outside Europr mul thr l'nited States. One problan has been seareity of matorial, even uf species which ne of ronsiderable eemomic importance to forestor and farmer. [t is also unfortunate that trpes of the species are windely suattared in collections, and, in a gromprach as Itepialidat whers the wher determinations, unchecked by studies of the genitalia and venation, are subjeet to many rloubts, research workers have been ehary of deseribing their material.

Oppertunties afforded in 1936-7 by the C'arnegie Corporation of New Youk and by the Anstralian National Reseath Council, mabled the writer to spend brief periods in examinius types of species preserved in the Berlin Museum; the Sicuckenberg Musemm (Ftankturt-am-Nain) : the Unitmi States National Muscum (Washugton); Amerien Mhseum of Nathal Histury (New York) ; Tring Musenm; British Mluseum (South Kemsington), as well as in sume sualler collections in the Thited States of America, C'anda, IIolland, and lelgium.

I am indehted to Mr. W. II. T. Tams for his assistaner in the study of tope matrerial in the Brifish Musetm, and to l'rolessur A. Sita, Dis. Q. D. II. Carpenter, W. Forbes, M. Hming, K. Jordan, T, MuDumoumh, W. Schans, E, D. Van Duzee, and Messrs. T. Bainhridga Fhoteher. T'. K. Bell, J. C'. M. Garduer, and F. (C. Watson, who have heen kind rmourh to provide material of this gromp for study. 'T'ypes of several new species deseribod in this revision are to the lodged in the British Museum; others are in the south Anstratian Mnseum, where, so far is is pussible, a paratype spries is also preserved. Thromg the courtesy of collectors and others it has been possible to bring toxel her at Admaide ome of the most extensive axtant Reries of Ilepinlidae.

The importanee of the stady of the genitalia, in luth seses, must be stressed; lack of attention to details of these wrans has been one of the primary canses of the diffinalty experienced in the recompitura and classification of the insects, The complex erenital armature of the lemate has been mistaken for that of the mate, and in conserfuence the types of some specics have masqueraded muder wrones sex desigmations.

[^0]The homologies of the fomale genitalia in the Hepialidas have not hitherto been worked out. For the study of Endoclle and allied eqmera it is desirnble to attempt to identily or define someol the principal parts.

It would aprear that, for example, in Es undulifer, the seventh stemite is specialized to Korm a hood over the genitulia (fig, 1-2). Its posterior margin is strongly motched, evidnatly to enuble the cighth stanite to bo folded forward Whan extruded in the act or monlation. The eighth sternite or subgenital phate is itwelf drawn onf posterionly, and the lateral margins are folded over to form : hollow tromeht this may serve as a sullide to the intromittent organ of the male.

Fig. 1-g. Tinduclita mmzulifir (Walkery). 1. Venfal view of female genitilin. 2. Ifatomal riew, composite sketell.

The ropulatory opening is comepaled beneath the righth sternite on the margin betwern the cirghth and ninth. Attacherl to the lateral margins of the righth step. nite tro hollow, cylimetrial pointed processes, one on each side, which may be homologons with the antorior gomapophyses of more primitive inseets. Posterion to these are larpe swollen, stroncrly chitinized convex plates (perhape homologous with the postorior ronapophyses) one on cam side of an elongate cloaca-like median envity leading to the oviporns. Posteriorly from these chitinged plates are curione comererthatike folded protuberanose, which may represent ruliments of the lateral gonapophyses. The posterior and lateral gonapophyses can be considered to form an apparahns for carrying thr newly extruded cerg fowards the frosterion extremity of the body. There is an anal opening situated at the extremity of the abdomen.

In the interpretation of the wing veins it is now recognized that the 1 A of Comstock and Neetham (1898, 1899. American Naturalist 32, 33) should, following shodgrass (1935, Princjples of insed morphology) he regarded as a separate vein, the post-cubitus, while the following anal veins should be distingrushed as rannal reins. The venational diagrams are marked accordingly; those reading earlier parts of this Revision should make the necessary adjustments.

Zenophassinae subfam. nov.

Zenorhassus gen. nov.
Plate v , fig. 52 ; Text-fig. 3 - $\mathbf{6}$.
Head with antemae evlindrieal, fapering to apex, composed of about 28 segmonts. A supposed post-antemal organ, composed of a single club-shaped member pressent at the anterior angle of the clypens. Mouth parts with mandibles pre-

Fig. 3-6. Zenophassus sehamyl (Christoph), male, Kuban, Cancasus. 3. Ventral viow of head. 4. Antenna, 5. Moutly parts from dorsal aspeet of hypopharynx. 6. Venation.
sent, rudimentary, but strongly chitinized, some obscure traces of dentition. Hypopharynx large, about as wide is long. Labial nalpi two-segmonted, becasionally segments almost fused, the division then only visible in microseope mounts. Maxillae present, teduced, at least five visible segments. Posterion legs in male with specialized tibial tuft. Forewings with Se present as as strong vein; R_{1} and R_{2} before apex; R_{8} well separated from $\mathrm{Ne}: \mathrm{R}_{2}$ from R_{3} near apex ${ }_{3} \mathrm{R}_{4}$ from R_{5} before $\mathrm{r}^{-} \mathrm{m}$ vein; Cug a weak vein but reaching to margin; Peu apparently obso-
lete; 1V a strong vein to posterior angle ; ? atment. Hindwing with the present. as a strung vein tu costa; Cuna strong vein; Jou and iwn vanal veins apparently fusing near hase, with IV extending to hind margin.

Genotype: Hepialus schumyl Christoph. (1888, p. 309 ; 1889, 1. 198).
Only one species has so far been recogrizal in this strange gents which serms to eombine one or two specializations ustally associated with generat like Phassus and sthenopis with some of the most primilive leatures yet found in the Lepidoptera. The latter warrat its separation as a new subliamily, the Zonophassinate The mandibles, apparently non-functinat yet rather wall doveropent, and the maxillae, are features which could he oxpected to ocen ju a primitive member of this arehaic family, although they have maly heen notiect as traces in such species as Firans polyspribn. The supposed post-matemal ur, aun, a single clubs. shaped sperment, has apparently mot hitherto been fonmed in a lepidoptorons insed. allhath such organs have beta reanded for insecta of other mote prinitive onders.

The fresence of Se_{1} in both wings is nothor arclatie feature. This vein is

 so tar as they have been examined, fons it weem to be su strengly doveloped as in this senas.
 pl. xir) have deseribed seent argans present un the posturion legs of the male of Z. sehamyl, whide Shastshevskij (1!29), p1, 1s9)-199, fuy.. $1929 \mathrm{i}, \mathrm{pm}, 39-56$ and

 (Scpt.), and Elisabethonl.

Subfamily Heplalinaf.

Enjoclita Fehtay 1874.

 (similis). ffypophassus Te Cerf゙, I!119, xxv, 0. 470 (signifir"), new synonyny.
Anteniae sparsely clothed with hairs, eylindrical, short, tapering, with about 20 sergments (fis. 7). Lahial jaipit reduced. composed apparently of a xinge segment, with some indications if at second marked by a line aud unt artientated (fix. S'). Posterior legs of male with thite clothed with at large tuft of specialized hairs. Forewings with Se, present ats abranch to the ensta: often

 hatf: $l^{3} \mathrm{c}$ and 1 V andstomosing bevont middle ant extending to maryin; 2 V present near hase. Hindwings with se mbluadmed. R_{2} from well before midnle.

Gonotype: (Enhuclita similis) F'eliter = Phusxus rlumor Doore.
The spolling of the generic namo as Enfontata is accepted. This appeared on plate laxif of part if of Felder's work which was published in November, 1871.
 spuelliug (Endaciyla). In the Zandorical kerord for $1 \times 7 .+$ and in the supplementary list of new gencra, butuctita is disgnised under thr misprint of sudoclifo.
 ted as a valid indication aceording to the Intemational Shales tor Zonlogioal ummenclature. (See also Jumming, Genpric names of Holarctic Buttorffise, 19:4, 1. 8-9). In Fedder's "Erklarung" the hrict deseriptiont Endoclyta nog. (Epialo
affine; pedeo validi, corpus longum, al. post angulus internus expressus) simitis F. 8 Himalaya (Stoliczka) "gives no reason for an alteration in spelling.

Hypophassus is a valid name but it must be regarded as a synonym of Endoclitu unless it is later on established that E. signifer can be separated generically from E. damor.

Fig. 7-10. Endoclita danor (Moore), femalc, Mussoorie. 7. Antonua. 8, Labial palpi, 0. Venation. 10. Venation of portion of forewing (much enlarged).

In the species placed in Hypophassus the costa of the forcwings at Sc_{1} is dilated, forming a lobular expansion; the condition reaches its climax in E. crenilimbutu Le Cerf, from China, but is well marked in numbers of others, including E. signifer. It is absent in the genotype of Endoclita. When present it is about equally developed in the sexes, and may be of generic significance, but in the absence of a well-defined line of demareation it is difficult to apply. If Hypophassus is regarded as a subgenus it will cmbrace signifer, crenilimbata, gmelina, and other, as yet undeseribed East Indian species possessing a swolleu costa; E. chatybeuto is an intermediate form. Fourteen species are at present known from India, Burma, and Ceylon, and several are important timber pests.

Members of agroup within this genus, embracing E. punctimargo, buettneriu, mefallica, rusticu, aurata, and chrysoptera appear to have yalid specifie differences sparating them, for in addition to rather striking variations in size, wing proportions, distribution of markings and of "metallic" scalings on the wing, there are observable differences in the genitalia. Nevertheless the genitalia show by their similarity that the differences may be of a lesser order than those separating some other members of the genus. An explanation which oecurs to me is that
these represent a complex of relatively lately evolved species, developed in the highlands of the Eastern Himalayas. Other more widely divergent members uf the genus may belong to older forms representing survivals from carlier periods of species formation. In the In pialidar, which are generally eonsidered to be primitive and rolatively stable, atively pyolving groups nay be ohserved in several different geographical areas, for example in the mountains of Papua, where many diverse, and yet related, forms of Oxycunus and of Oenetus appear, in the south of Australia (Oxycomus, Ochelus and Onropera), and in the southern extremity of Africa.
n. Males.

Key to Princtpal sprcien of Endoclitha.
(Based partly ou the genitalia.)
b. Tegumen with a posterior, ventrally directed spine.
c. Spine long, extending leyond rest of tegumen.
d. Fighth sternite deeply notched on posteriur margin. .

- damar
dd. Fighth stermite not deeply notehed on posterion margin ce. Spine short, extending no further thau tegumen.
D. Tegumen without a pusterior, ventrally directed spine.
e. Posterior margin of eighth sternite with a median projection. .
cc. Posterior margin of cighth sternite without a median projection.
f. Tegumen, in lateral view, with margin entire and convexly dilated.
g. Margin of tegumen inventral view diverging posteriorly.
h. Posterior margin of tegumen strongly transverse and only slightly excavated exc
-

gg. Margins of tegumen in ventral view, not diverging posteriorly.
i. Seventh sternite decply notehed on posterior margin
ii. Seventh sternite transferse on posterior margin . .
ff. Tegumen in lateral view with only posterior hale dilated,

1. Posterior margin of eighth sternite with a median noteh
jj. Posterior margin of eighth sternite transverse, and without median notch.
k. Hindwings clothed with metallie seales
kk. Hindwings not cluthod with metallic seales.
2. Expanse over 50 mm .
m. Forewings chocolate brown . .
mm . Forewings yellowish-brown and gol. deu-yellow :1a, fomales.
3. Expanse under $50 \mathrm{~mm}, \quad \therefore \quad \therefore \quad \therefore \quad . \quad . \quad$ alryate
n. Posterior margin of seventh sternite with deep median mem. . .
nn. Posterior margin of seventh stemite without decp median notel.
o. Anterior gouapophyses with apieol spine. Penultimate tergile with anteroventral margin produeed.
p. Eighth sternite uarrow, with parallel sidos
mictoscripha
pp. Fighth sternite broad, kides not parallil.
If. Seventh sternite much wider than loug
munctimario
4. Soventh sternite as long as wide ..
bietthertio
(H). Anterior tronapophyses without apieal spine, "Penultimate tergiti" with antero-ventral margin not produced.
r. Anterior gonapophyses a bruat plate, not digitiform.
s. Fighth sternite swollen at apex of postorionly prodnced portion.
t. Eighth sternite uarrowly spatulato
... signifer
tt. Eighth sternite broadly spatulate $\quad . \quad$.. ${ }^{\text {Eighth sternite not swollichen ata }}$
ss. Eighth sternite not swollen att apex.
u. Eighth sternite with margins paralel
ur. Eighth sternite swallen "ucar base, mö
parallel sided
damor

rr. Autcrior gonapophyses digition mont expruded into
at broad plate.

Enioclita damor (Moore).

Plate v , fig. 53-5t, and Text-fig. 7-14.
Phassus domor Muore, 1859, ii, p. 437. Eutochita similis Felder, 1874, iv, pl. Ixxxi, fig. 3. Phassus damor Butlev, 1886, vi, p. 31, pl. cix, f. 3; Hampson, 1892, i, p. 319 ; Pfitzner and Gaede, 1933, x, p. 843, pl. Ixxvii b.
of Antennae pale ochreous; head, sides of thorax and abdomen, pale brown; thorax above slighty paler hind tibiae ornamonted with large tuft of dull ochreons hairs. Forewings pale subhyaline brown, with a dull golden tinge, ornamented with obseure brown, silvery-grey, and white lunular markings; the brown of wing forms a brod obligue zigzag fiascia tree from silvery makings across discoidal area, starting from costa near base, and rumiug across to termination of

Fig. 11-14. Eqfoctifa damor (Moore). 11. Male, Kangra Vallej, genitalia, ventral aspect. 13. Male lateral aspect. 13. Female, Mussoorie genitalia, vontral aspect. -14, Fomale, lateral aspect.

Otu where it is margined below by a elearly definet semi-circle of silvery-white markings enclosing a brown spot, and thence to costa at four-fifths, after making an angle to droid an obseure triangular wedge of silvery-grey markings at twothirds costa. Hindwings greyish-brown, darker towards apex, costal margin just before apex tinged with brown and bearing two obscure silvery-grey markings. Expanse 63 mm .
of Similar to male, but colour darker olivaceous brown, markings well defined, similar to male. IIead and thorax above dull whitish-olivaceous; posterior tibiae without specialized hair tufts. Expanse 68 mm .

Loc. Sikkim: Darjeeling (type a female, expanse 88 mn. labelled "Darjeeling, l'aris Exhib. 60-61 E.I.C.'" in British Museum).

Tinited Provinces; Mussoorie. Punjab; Kangra Valley (4. 000 ft.). 6. One male, thice females.

The male deseribed is from Kangrat Valley, the female from Mussoorie, The differenees in eolome exhibited betwern the few examples examined suggests that,
like many Australian Hepialidar, there may be comsiderable range in the shades of colour present on the wings.

The Mussomric lemale, from onr enllection, has been dosely compared with Felder's type of Emlurlita simitis in the 'Triug Museum. The latter is a female, expanse fis mon., lathelled "Imdia Sept. typu Endoclila similis, un, 6 in tab. Felder" Coll." The un. 6 is evidently in error for "no, :3". The genitalia of this lype specimen, as tar as may be sern without diasection, agree closely with the one figured.

The typre of damur, of which Butlers figure is a representalion, is alsn a female; it is latger than our dexeribed specimen, but the markings are similar. The genitalia ata so badly affeeted with mond that it was not possible to make a rlose examination of them. The tigne in seitz is an inferioe copy ut Felder's plate, and does not freatly respmble the orgimat. Specimens of this species are pressul in the British, Tring, and south Australian Musems colleretions.

The male gentalia, which have heen examiued without dissection (tig. 11-12) have the tegmen, viewed from the sidfe, somewhat evonly convex and smonth margined. There is a fone-pointed cylindrieal spine rising from its postero-lateral margin. The mosterior margin of the eighth sternite is deeply notched, and the postero-lateral extrenities are strongly rounded and chitinized.

The female genitalia, also drawn withont dissection (lig. 1:3-14) show a rommed triangular seventh sternite, a strongly chitimizei, narrow, straight-sided, mul-motched, well-rounded eighth sternit"; curions irregular Hat, racket-like anterior gonaponhyses anc present, and the supposed posterior gonapophyses appear as rounded, subglobose, lateral Jobes.

Endoclita mabglienotatus (Leech).

Plate vii, fig. 68 and Text-fig. 15.
Phinssucs margincustatus Leech, 1898, 1. 356 .
The type of this species is figured, together with a representation of the male genitalia for comparison with species such as E, chrysoptera, which is superficially similar. The tyme example in the Firitish Museum is from Western China and is lalndled "Omei-sham 3.500 teet, native enllector". Jume and July, 1890, laeech Coll. 1900-6t".

I am indebted to MJs, W. H. T. Tams for the photograph (fl , vii, fig, 68) and tro his contirmatuon ot wy upinion that this spreses belongs to Emborlitu. Me Wrote (13th Dee., 1!lit): "In merninemotatus, the remation is almost identical with that of P. signifer. Fein $3 A$ in the forewing seems rery weak, but 1 have
 was simitars. There scems to be only a minn point of difference, and that is the slope of Sce in the forewing. This is mach more achte in P. signifer."

The male gentratia (fig. 15) have the legumen, in lateral view, avenly rounded and there is a josterion, vesthally produced, Jonge cylindrical spine of characteristic shape.

Enbochima innturafer (Walker) 。

$$
\text { Plate } v, \text { fing, } 55 \text { and Text-fis. } 1-\frac{y}{-}, 16 \text {. }
$$

Phassus undulifer Walker, 1869, 1. 102. Phassus signifor Hampson, 1892. i, p.
 ml. Lxavid.
\therefore Head, thorax, ahdumem, and lacs dull ochem, hrown. Forewings slightly denfe at apex, costa not dilated, dull neforenus brown with darker markings; a rich
hrown, highly characteristic undulating mark from near apex to near base ; traces of dull silvery-white marks, a large one at r-m vein, several near junction of Mand Cu, and small ones among M_{1} and near apex. Hindwings dull greyish-brown, a narrow ochresus suffusion along termen from apex, most evident at hinder angle, where it terminates rather abruptly. Expanse 06 mm .
o Similar to male, larger, silvery-white spot just before r-m vein well defined. Expanse 84 mm ,

Lor, United Provinces: ncar Benares (type, a temale; expanse 92 mm ., labdled "Benares. John (iraham, 19:2-2s8" in British Museum). Sikkim: Senchal Range, Darjeeling 8 ; Assam . Khasia Hills 10 (allotype mald I. $189: 37$ in N. Aust. Museum); lipper Burma: Namhaing Res. Shwebo, 9, 10. Seven males, seven females.

Fig, 10-13. 15. Endoclita marginenolalus (Leech), male genttalia, lateral view, from a frechnal sketch of type in British Museumi 10, Endoctita undulifer (Walker), Shwebo, male genitulin, dissucted, ventral view.

The type of this species was for many years in the Devon and Exeter Albert Memorial Muserm, but in 1935 it passed into the British Museum collection.

The species is a distinct one, and has nothing to do with \boldsymbol{E}^{\prime}. signifer, nonder Which same Hampsom, in the absence of the type, sought to place it,

The troe of danajanti, a female expauding 72 mm . from the Khasia Hills, in the Senckembere Musemm, indiratos the name is a direot symonym. Informately the figure in Seitz is searedy reogniaable. 'lhe example is much worn, but agrees in markings and in the structure of its genitalia with typical material of E. untulifer in our collection.

Specimens of E. matulifer are preserved at the British, 'Tring, Senckenberg, aud South Australian Museums.

The posterior legs of the male of this species, unlike other members of the proms, lack the specialized tuft of golden-coloured tihial planes. It thus stands a little apart from its congeners, but it scems undesimble to use this secondary made sex character for gencric separation, enpecially as in other respects it is too close to warrant separation,

The male genitalia (fig. 16) have the tegumm divided into a sub-quadrate, anterior, dilated portion with smooth elleses, and in separate strongly chitinized, ventrally produced posterior spiny process, which docs not project beyond the
lime of the rest of the tegumen ; in dissented genitalia the harpes are seen as simple digitifno lobs, swollen at the apex, and bearing semsory hais; the vinendm is of nesual torm.

The fomale senitalia nee drawn in slimhty diagrammatio maner in fig. 1-2, which are composites built up, from ohservatioms on two specimens. The seventh sternite is sub-reptangular with a deep notch on the posterior margin; the eighth sternite has its busterior margin produed jnto an achte median spine; the anterion zonaponhyses are ampled spine-like proeesses: the posterion gonapophysis in a fat lemelhate member, which in followed by several less wollochitinized folded plates forming the lateral gonapophyses. The following reated specimens have been submitted din detemination loy the Forest Researels Institute, Dehra Dum:

K, K, L, loge No.	Luc.	Stid.	Datre.	Host Tref.
97	Darjeuling	Minlo	*ind August, 1!283	Alnus mepatensix
17	Shwelsor. Burusi	\#	Brd Oetotser, 1933	Bumtheria pilosn
18	" ${ }^{\prime}$	"	With Octuber, 1936	Buctimeria pitosat
19	" ${ }^{\prime}$	-1	1at Octobuer, 1933	Buctineria pilusa
? ${ }^{1}$	11	\cdots	89th Scptember, 1920	Buettmerra priesue
$\because 8$	" "	Femalio	12th Octolser, 1936	Buctinerios pilosa
:10	"	"	ESth September, 1935	Callicargia arborew

Enboglata ghatiymeata (Moore).
Plate v, Hg, in-is and Text-fig. 17-20.
 B20, lig. el9 (partim)
\& Head, thorax, abdomen, and lems palo yellow; posterior legs with tibiae whamented with large thltis of ochreons hairs. Forewings with ensta mot markedy-
 ulong costa; the middlo of wing is occupied by a large brown area which partly
 Pused w hitish half": a large brown area in discoidal respom and another from masta near apex to Cu_{1}, are margined with obscure arenate marks; there is a whe streak at $x^{r-1 m}$ vein and trases of another just beyond it. ITindwings pale fleshcoloured, with trames of a paler mark on costa hefore aper. Expanise 80 mm .
of Slighty poler and duller in colnor than male markings slightly more definet, brown areas redured, and white sutfinsed areas sommwhat lirger ; the white spot paratled to $3^{\prime}-\mathrm{m}$ vein lariper, with traces of another on each side of it. Hapause

Lone Sikkims: Darjeoling (type, u femate, expansse $8: 3$ mm, labelled "Dar-
 male, 1.18985 in 8 . Aust. Museom). Syllet is. Burma: Namtu 5. Samboray 4. Latha t. S. Toungoo 5. Five males, seven females.

Moore's type, when examined in 1436, was found to have lust the abdennex; The Darjectine fomate wample deseribat harein eompares so wall in other respects that the gouitalia of it may be regarded as typical of the speche.
 Hiss species. It has nuthing to do with true E. sigmifer. Unfurduatoly Hamp-

 nxouple fromin Δ ssam, which cast be confirlently associated with the type ficmale. and the genitalia of which may bo atudied.

Figs, 18 is of the apex af the abdonen of the neo-allotgope male, and yive 17 shows a slicte proparation of the pentalia of another exantple from Katha

the posterior margin slightly concave on each side of the middle, which is slighty acutely terminated. The tegumen bears many serrations, rather evenly set and posteriorly directed; the harpes are reduced to simple, small, irregular, hair-beset digitiform processes. The ultimate tergite is bluntly rounded.

Fig. 17-20. Endoctita chalybeata (Moore). 17. Male, Mohnyin, genitalia, dissected, ventral aspect. 18. Male, ventral aspect in silu. 19. Female, Darjeeling, genitalia, ventral aspect. $\because 0$. Female, lateral aspuect.

From E. signifer, with which it has been confused, the male differs widely in the form of the posterior margin of the eighth sternite, in the differently shaped tegumen, in the absence of a carina on the harpes, as well as in the blunter appearance of the ultimate tergite.

The female semitalia (fig. 10-20) haw hern drawn trom the deseribed speciimen, without dissection. The posterion margin on' the seventh staruite is produced infua strongly chitinizel spatulate process whioh is slightly concare on its ventral surtaces, and in lateral view is spen to be actely pointech. The anterior gonamo physes are commed plates: the poaterime mestre carinato rommed lobes, white the ullimate tergite forms a double hood over the genitalia.

In the largest Pemale examples examined, the eighth sternite appears to be hypertrophied as compared with more typical examples. 'Ihis is probably a case

 bately larks the farial mask: it is 67 mm , in length. 11 mm . in diamelor, and of typical IIopialis torm.

A fortilized example of the exar of this speries was format atathed at the upeninge of the wriporns of the deserifurl temale example. When relaxed in dilute
 grey in colour.
 seared Prom Tectona grandis and (xnclina arborna.

Tp to the present this is the only species knosin to attacts toak wood in Burma aud Assam. The snperticially similar but generucully dist huct Sullyadrassus malaburious (Moore, 1879,10 , new combination) is atho a teak beteler. but is strietly confined to the Western Clats. (${ }^{2}$)

A1 present abelt of dry country some 600 niles wide divides the areas nempied by the two forms. Only mes apreing of Ilepialid is common to both regions, and it is evident that the separation between the Hepratid fannes of the Ilimalayas and the Western Ghats most have breen a longe me. If is of some academice interest 10) speculate whe these 1 wa superficially similar smepies, both teak fecter's, shombly be so alike mul yed structurally distinet.

 that the time interval since the two famules last momingled has been sufficiently lome for differeners of gemerie rank to have beeme estahishord, I have been informed that this is alsi true of other herems ol trak; Malayan and llimalayan species do not extend into the Peninsula. It womd he introvesting to see whether some differences may but also vecur in the host plant spercies of trak inhathiting
 specifically identical.

fintrocitid gamaind spe not:

Pगre vii, fin. 73 und Text-fig: 21-22.
of Hearl, thorax, auterion leag, and ablomen dark greyish-htown, sites of thorax black, fringes of anteribe lage and the membian amb poshorion lege bememsh-

 smips of about sis markinge along mista; a very datk pateh mear base of discoidal area enchsing two silver whife apots the larere of which is bi-sected by M_{1+1}; posternory trom this and just alnese and bryond distal junction of 1 A and 2 A is a V-khaped black spot from which a dark suttused areat extemels ton the p -m vein

[^1]where there is a cluster of three silfery-white spots; pale ochreous spots of small size lie in two irregular series parallel to and inwards from termen, while a dark suffused longitudinal streak lies between K_{5}, and M_{1}, and runs nearly to termen where it terminates at a small silvery-white spot. Hindwings wide, short, very shortly subfaleate at apex, greyish-brown with traces of brown markings along termen and at the aper. Forewings bencath with costal markings as above : those of hindwing even more pronotuced than above. Expanse 90 man.
of Larger than male; markings and colour similar; the black V-shaped mark of forewing broken into a series of three spots, 1 wo of them unjoined. Expanse 129 mm .

21
NB.T.

Fig. 81-20. Endoclita amelina Tindale. 81. Paratypo male, Panyhai, genitalin, ventral ispeet 22. Allotype fomalc, Payyai, genitalia, ventral aspect.

Loc. Burma: Panyhai Rus, Namtu is (type, a male, 22 May, 1931, and allotype female, 10 May, 1931, colleretol hy M. M. Desai, in British Museum; paratype male, $13 \mathrm{May}, 1931$, I. $18950 \mathrm{in} \mathrm{S}. \mathrm{Aust}. \mathrm{Museum)} .\mathrm{Two} \mathrm{males} ,\mathrm{one} \mathrm{female}$. three known examples were reared from Gmelina arbored at Namtu.

Another species sometimes found in Gmelina wood is E. chalybeata. From this it differs widely in proportions, in the colouring of the wings, and in the form of the genitalia. The species is apparently not chase to any other deseribed one.

In both sexes of this species the costal expansion at Sc_{1} is very marked. In this character it is closest to E. sigmifer, from which it is otherwise distinct ; it may also be compared with E. crenilimbuta from China:

The male genitalia, drawn without dissection (fig, 21) have the vinculum furnished with cylindrical, posteriorly divected processes, one on each side; tho tegumen is a curious shovel-shaped sbjeet, wide posteriorly, narrow anteriorly, with its ventral margins strongly chitinized and rather irregularly formed. There is a strongly chitinized lateral piece on the onter margin of the tegnmen. Super-
ficially the tegumen is similar to that of E. purpurescens, but it markedly different in details.

The female genitalia (fig. 22) are extraordinarily different from those of other described members of the genus; the seventh sternite is transverse, the anterior margin bent into a notched fold (which may be accentuated in the dried specimen) while the posterior margin is slightly convex; the eighth sternite is a convex rounded median process which appears to lie ventrally from a broad, much larger chitinized plate, concave in ventral view and with the side portions of its posterior margin bent over; this may be a further portion of the eighth sternite; the anterior gonapophyses are digitiform processes, angled before the apex and with the lateral margins beset with stout hairs (as on the internal margins of the male harpes of many species of Hepialidae). To satisfactorily determine the homologies of the posterior parts of the genitalia it would be desirable to have further material for dissection.

Endoclita purpurescens (Moore).

Plate v , fig. 56-57, and Text-fig. 23-26.
Phassus purpurescens Moore, 1883, ii, p. 156, pl. cxliii, f. 4. Phassus purpurascens (sic) Hampson, 1892, i, p. 319. Phassus purpurascens Pfitzner and Gaede, 1933, x, p. 843, pl. lxxviii d.
ô Head, thorax, abdomen, and anterior and median legs dull brown with a faint purple tone, posterior legs with tibiae clothed with tufts of deep orangecoloured hair. Forewings dull brown with a purple tone (probably somewhat brighter in freshly-captured specimens) ; faint brown lunulate markings cover greater part of wing, except in a broad, brown, irregular band across discoidal region and a less well-defined strip running across from four-fifths costa to near hind margin; a yellowish-white spot just inside $\mathrm{r}-\mathrm{m}$ vein and two minute ones external to it; another near base of wing; a series of minute black spots along costa, and several others near the posterior margin. Hindwings slightly darker than forewings, unicolorous greyish-brown with a faint purple tinge. Wings beneath pale uniform greyish-brown. Expanse 94 mm .
o Markings similar to male; the broad oblique brown band across discoidal region of forewing terminates in a clear-cut line near hinder margin with an Lshaped angular band of very pale purplish-brown; the posterior legs are not ornamented with orange plumes, and are concolorous with the other pairs. Expanse 118 mm .

Loc. Ceylon (type, a female; expanse 112 mm ., described as a male, labelled "Phassus purpurescens Moore type" 52-62, in British Museum) ; Punduloya 5, 6 ; Maskeliya 1; Haputale 1; Dimbula 4. Four males, 10 females.

The species appears to be confined to Ceylon; the Perak record by Hampson is doubtful. Specimens are to be found in the British, Tring, Colombo, and South Australian Museums. Examples identified as this species at the Berlin Museum belong to other species.

Moore's type proves to be a female; at the time of its first description it was unique. His figure differs from the type only in the greater emphasis placed on the costal markings of the forewing; this is probably an artist's error for, in other respects, it is a good figure of the type specimen. The figure in Seitz Macrolepidoptera (le. pl. Ixxviii d) does not resemble the type in any particular, and may apply to one of the numerous Malayan species of this genus.

The venation of the male agrees closely with that of E. damor. Sc_{1} is present in the forewing, but absent in the hindwing. There is no expansion of the costa at Sc_{1}. The posterior legs of the male are clothed with a large tuft of specialized orange-coloured hairs; these are absent in the female.

Fig. 23-26. Endoclita purpurescens (Mooro) 23. Male, Punduloya, genitalia, ventral aspect. 24. Male, lateral aspect. 25. Female, Ceylon, genitalia, ventral aspect, extremity broken off. 26. Female, lateral aspect.

From an oblique angle the hindwing appears to be tinged with a purple sheen, hence the name purpurescens; this feature is not nearly so well displayed as in some of species from Malaya, which have been confused with it.

I am indebted to the Director of the Colombo Museum (P. P. Deraniyagala) for study material.

The male genitalia (fig. 23-24) have the posterior margin of the eighth sternite concave and further notched in the middle; the tegumen, viewed from the side, is evenly rounded, with its cntire margin armed with fine teeth, a line of less
evident serrations furms a carina on outre surface of the lecrumum this line lades alway posteriorly. The harpes are not apparent in the undissected specimen.
 have the seventh sternite somewhat like an inverted shield, the posterim margin heing comeave on cath side of the minllle; the cighth stornite is large amd bultums

 warld their apicers.

Endocilta mignjere (Walker).

Plate vi, fig. 60-61 and Text-fig. $27-30$.

 1. 770. Phassus signifor Pfitzner, 1!1:2, Seilz Mammep, ii, p, b:3s, pl, liva: 193", x, p. $844^{\prime \prime}$ (partim).
a Head, thorax, anterion and median legs nehreous brown, abdomen dark Wreynh-brown, wherous-timged at amex, posterior hegs reduced in size, melreous, mbamonted with sureialized tuft of heinht ocheous hairs. Forminge with ensta

 rowly with black and pale hown rings: a hoad V-shaped pateh of hrown with its
 "f the V, one or mure white spots, harmuly margised with dark lyown: suhtermanal and hind margital areas pater, matked with transverse brown lines hetween the veins, and with obselre, ushally patad timy hack mpots. ILind whors dark grevish bown om hasal half, eostal margin with paitera as on forewings, termme dall brown with taces of the forewing pattern. Expanse 10. mm .
of Jarkings somewhat as in male but rather more conspienons; ; momel colone dall olivacebs-hrown with pale brown areas well dofined. Hindwing with base sulfused with greyish-hrown pobespencu, apex marked as in forewing; thesic markinss merge posterions into a series of whecure dull grevish-hrown patches momine parallel to termen. Expanse 120 mm .

Lorr. Assam: Sythet (tyje, a l'emale; expanse 104 mm., labellarl "silhet, 47$96^{\prime \prime}$ in british Mnseum) : Khasia Itills (allotype mate 1, 18934 iu s . Aust. Museun) : Jaintia Hills; Cherrapunji. Nine males, 11 fenales.

The swollen costant ise of forewing is notrworthy, and reappears in several Indian, Malayan, and Clinese spoces. If sub-generje division is desired, this species may bo placed in IIypophassus.

The figmed male is the allotype, and tho femate is a second example from. Khasia Hills also in the S. Anst. Museam eollection.

Watker's tyjue of this species, of which Eutler's figure is a gook rembring, is a female from Sylhel: our example is smaller but agrees closely in other details. The other specimens assuciated with the type of E' signifer by Walker himselt are
 the identity of the species. A review of the carlier literature shows that at rum lime or other sunt ot the commun Oroental speceies of the composite Plussus. gronp have been regarded as synonyms mader the name.
 of the sub-faleste furewhess, repetition of portion of the patterth of the forewing un the hodwing, atul liv the peculiar genitatia. Ilampson appears to have hurn confused abmut this species, and the figure given by him agrees hest with that of the male at E. chalybeata.

Fig. 27-30. Endoclita signifer (Walker). 27. Allotype male, Kliasia IIills, genitalia, ventral aspect. 28. Allotype, lateral aspect. 29. Type female, Syllet, genitalia, rentral aspect. 30. Type female, lateral aspect.

In Seitz Macrolepidoptera, Pfitzner has copied Butler's figure of the type female. Following Hampson, he and Gaede have grouped as races several rather widely different Oriental species, some belonging to the Endoclita series without the costal swelling, and others belonging to the suberenus Hypophassus in which the costa is expanded at Sc_{1}. It is the writer's present opinion that E, signifer is a species confined to Assam, and that no races have yet been established to exist outside India.

The male genitalia, examined in situ in the allotype male (fig. 27-28) have the harpes as a simple, slightly angled, smooth, eylindrical process with traces of a
carina on the ventral surface. The tegmen in lateral view is evenly convex, the margin slighty bent outwarts and inregulady serrated; serrations fine; the posterior margin of the cighth sternite is excavated in wide V-fashion.

The species is represented in the British, Senckenberg, Tring, and South Anstralian Mnseums.

The genitalia of the type female have been drawn, without dissection (fig. 2930). The secenth sternite has the posterior margin transverse and searcely notehed in the middle. The eiphth sternite is preduced into a longe, taperiug, np)turned process; its ventral side is arooved apieally where it euds in at slight spatalatpswelling. Nuarer the base the prowess is secm to be produced laterally as a thin membrane which is folded into several transverse rugae. Tho anterior gonapophyses take the form of flat lateral plates, with sinuate apical margins, which partly overlic the rugose part ol the eighth stamite. The posterior gomapophyses are large, strongly chitinized, rounded, swollen plates.

Endoclira alibosignata sp. nov.

Plate vi, fig. 62 and Text-fig. 31-32.
of Ifead, thorax, ablomen, and leys pale brownish-fiawn ; posterior tibiae with orangr-hrown fufts of hairs. Forewings brownish-fawn with paler sulfusions and traces of mumerous seattered white spots laintly margined with dark brown; a

Fig, 31-3g. Endoclita albosignata Tindale, :31. Type, a male, unique, Assam, genitalia, ventrol aspect. B2. Male lateral aspect.
white inverted Th-shaped mark along M_{1} aud 1 -m vein, Hindwings dull greyishbrown with costal margin and termen brownish-fawn. Expause 68 mm .

Loc. Assam: type, a male, unique I. 189t2, in 's. Aust. Museum.
This species difters markedly from its congeners. In the general form of the tegumen it is nearest to E. signifer, from which it differs in the absence of the costal expansion of forewing and in many other characters. With its rather narrow wiug it is at first mlance like sathyudrassus albofasciatus (Moorre. 1879. 1. 413), but the presence of sice in forewing and an examination of the fenitalia inmediately separates them.

The male genitalia, drawn without dissection (fig. 31-32) show the eighth sternite with the posterior margin transerse, the tegrmen, in lateral view expanded, and with the anterior two-thirds evenly convex, the posterior portion somewhat abruptly angled, and the ventral margin slightly turned outwards and freely and evenly serrated, in ventral view the sides of the tegumen are secn to be swollen, smooth and with a lateral carina; the harpes are present, digitiform and clothed with reversed hairs on their internal faces.

Endochita nustica sp. hov.

1 'late vi, fig. 6:3, 66 , and Text-fig. 33 .
ô Head and thorax rich brown, antemae and legs daiker; abodomen dull grey; posterior tibiae with ochreous yellow tufts. Forewings rich brown with golden-brown suffusions and traces of many short transverse dark brown streaks between the veins; traces of some white spots aloug termen and along onter half

Fig. 33-34. 33. Eudoclita rustim Tindale, type, a made, Shillong, genitalia, oblirpue aspeet. if. E. metallica Tindale, type, arale, Durjueling, genitalia, oblique aspect.
of 1V: traces of a groklen-hrown suffusion in a hand from near base to termen at one-half. Hindwings dull grey, at apex marowly tipped brown. Expanse 56 mm .

Loce. Assam: Shillong 9 (type, a male, I. 18943, in S. Aust. Musemm) Khasia IIjlls (paratype male in Tring Museum), 2 males.

This rather distinet species, with its rich ehneolate brown forewings and dull grey hindwings, is one of a gronp of allied species inhabiting the wet rain forests of Upper Assm and the IImalayas, and is more especially related to E. chrysoplera, from Nikkim. From the latter it differs in the narrower forewings, different colonred hindwings, and in the shape of the eighth sternitt.

The male genitalia (fig. 333) have the posterior margin of the eighth sternite concave, and slightly notched in the middle; the tequmen has the posterior half dilated into a subrectangular lamella whose margin is serrated.

Endoerrita metalitea spa nov.

Plate vii, fig. 71 and Trext-fig. 34.

 yollow tutts; abdomen dnll hrown. Forawing chocolate brown with traces of darker transverse bars between the vains; two large dark brown suffused spots, whe along course of M_{1} before $\mathrm{r}-\mathrm{m}$ and one just attor; a white sealed triangular spot at jumetion of $r=m$ rein and Δ_{1}; from a very blinge angle two opaleseent blue fasciac appeat, the first from hear apes of hind matren at fomettifths, the second from costa at three-fourths parullel to its as far as Chab; the hind margin hroadly linged with same hue. Himdwing greyish-bronze with a strong metallie Lustre. Expanse 54 mm .

Lone Wikkim: Darjeeling (type, s male, "Dar,juding No, 69 Atkinson Coll." in Tring Musenm; paratye male, ditto. 1. 1sildt in A. Aust. Musmm), 2 mates.
I. am indebted to D1. K. Iordan for permission to describe this species; the fwo knenm examples have had a varided history, having been incorrectly identified, at various times, as Ihassus punctimargo Jlampson and as P. aboe Noore. Thes passed from the Atkinson collection to Elwes abs themen (o) Tring. The spereses is related to E . rustion, but differs in the dall metallio bronze lustre of the sealing of the hindwiugs, in the dark choedate colow of torewings and in the relatively transverse eighth stornite as well as the similar, but diferently armed termmen. The paratypar has the forewings darker that the tym, hut is otherwise similar.

The male genitalia (fig. 34) have the cielth sternite transuerse and its fusterior margiu straight; the tegnmon has the posterior lanf dilated into a lamella, portion of the serrated ventral murgin of which js bent outwards; the serrations and denticules on the anterion half of tegumen appear in several rows.

Endochile ibuettenirid sp, ner.

Plate vii, fig. 75 and 'rext-fig. 3a-36.
of Head, thorax, and legs dark brown, abdomen greyishbrown; pusterior
 rounded at apex (slightly injured in lonth specimens available for study), ensta strathe without any expansion at Se_{1}; davk honw with palar brown indefinite
 and in the middle of the wings traces of ar white spot at $1 \cdot 10$ vein and two faint brown lines of suffusion ferm ensia to hind margin, the first extending fresm jast. bebore apex to hinder angle, and the other from threrefonths costa to three-fifths hind margin-these, when viewed from an oblighe angle, wlow with seintillating
 may he sedn to rut alomg the hind matein. Hindwings dull greyish-hrown wibly traces ol a dall bronze lustre. Expanse fig mo.
of Larger than male, with colour mavkingn, fo far as preserved, similar to those of males. Expanse (estimaterl) 90 mm .

Boc. Bumma: Nanhlaing Res, Shweloo. (type, at matr, 7 th Septewher. 1930.
 Museum; paratype nale, cxpanse 68 mm ., 24th September; 1936 , 1. 78938 in S. Aust. Musenm).

The mata genitalia aro drawn withon ifissection fron the typo example (for 35): the posterior margin of the elghth sternite transverse, the toghaner with the antarion hatis strongly chitinized and its rontal margin sermaten, the posterion
half expanderl into an angulate, laterally concave lobe, also strongly chitinized, and with the margin serrated ; the ventral margin of this lobe is transverse or even slightly concave in outline when viewed from the side.

The temale genitalia (fig. 36) have the seventh sternite more than threefourths as long as tride, the eighth sternite is a rounded projection, whose sides are not constricted; and there is a swollen globose anterior portion largely concealed bolow the seventh sternite: the anterior gonapophyses are acute spines, rather dilated now base; in other respects the genitalia are similar to those of E. punctimargo.

Fig. 35-36. Endoclita burtheria Tindalc. 35. Type, at male, Nanhlaing, genitalia, oblique aspect. 36. Allotype female, Nanhlang, genitalia, ventral aspect.

The three known specimens were reared from 1 uettnoria pilosa and were submitted for identification by the Forest Research Institute at Dehra Dun, who have requested that the type specimens be lodged in the British Museum.

This species is allied to E. punctimargo, of which only the female is well known. It differs from that species in its darker and different markings, and. in the form of the renitalit. The wider anterior gonapophyses, differently proportioned seventh sternite, and the wider eighth sternite (which is not constricted as in E. punctimargo) are good distingushing characters. The males resemble E. motallica, but are larger, have well-defined transverse markings on forewings, lack the dull metallic mirror-like surface to hindwings, and have the ventral margin of the posterior half of the tegumen straight or slightly concave rather than evenly rounded as in that species.

Endoclita chrysortera sp. nov.

Plate vì, fig. 67 and T'ext-fị!, 37.
a Head, thorax, abdomen, and anterior and median leas dull yellowishhrown, posterior legs clothed with tuft of dull ochreons specialized hairs. Forewiugs golden-yellow with pale chocolate-brown markings; costa mith a serins of seven well-defined wedge-shaped brown marks; a broad band of brown (occasionally flecked with minutr patches of intensely white scales) extending from base of wing ohlinuely to inner margin at one-half, thence irregularly towards apes, where it is dilated to form an irregnlarly eirenlar brown blotch just before apes; the large brown area is flecked with somewhat larger patches of white seales, a larger group thm usual being associated with the junction of $\mathrm{r}^{\mathrm{r}} \mathrm{m}$ and MI_{1}; subcostal area tron base to one-half golden-yellow with obscure brown markings; subterminal area dull golden-yellow with faint hrown flecks and markings; termen with a narrow band of intensely blue-white seales betwern the reins. Hindwings rather miformly pale fawn a apex tiuged oehreous, temen with white scales between the veins. Expanse 63 mu.

Fig, 37-39. 37. Enelochite chrysopheru Tindale, type, an male, unique, Senchal Iange, genitalit, oblique aspect. $38-39 \mathrm{E}$. aurata (H umpon). $38, \mathrm{Maje}$, Bernardmyo, genltalia, ventral aspuect. 39. Male, a slightly oblique lateral view.

Loc. Sikkim: Senchal Range, Darjecling 8 (type, h mate, unique, reared August 3, 192:3, from Machilus edulis. by s. C. M. (Hardner; in British Mnseum).

Fir. 37 is an oblique view of the apex of the abomen of the type male the genitalia of which have been drawn withont dissection. The eighth sternite is rather evenly concave on the posterior margin and the tegumen is eventy and minutely serrated, the anterior halt is statight and the posterime half is strongly dilated as a rounded rather flattened dise. The harpe is a simple digitiform process. This species is simitar in sencral appearance and markings to F. maryinenotalus (Lecel, 18:98) from Unei-shan, China (at 3,500 fect in Jme wo July), but differs in having the dark brown and goldeu-yellon areas differently disposed. The genitalia also are quite distinct, for the tegumen of the Chinese species is semi-circular in outline when viewed from the side and the posterior extremity of the degumen is furnished with a long downwardly directed eybudrical process on each side. This is more than twice as long as the similar one in fonnd F. undulifor. Ln E. chrysoptcrathere is us trace of such a spine.

Endoclatid atradia (Hompson).
Plate vii, fig。 6 and Thext-fig, :38-3!
Phassuls aumatus Hampsoms, 1892, Fmma Brit. Ind, Moths, i, w. 321. Phassus auralus Pfitzaer and Gaede, 19:33, p. 843, pl, lxxvid.
of Ilead, thorax and anterion and median less brown, abdomen paler, posferior lage with brownish-ycllow libial tutts; Forewings romnded at upex, costa straight, whout swelling at Ses ; bown, with obseure darker brown transverse markings; a sulb-metallic goldon sutinsion along Jasal halt of mata and another at upex; traces of two dull grey fasciace paralled to termen in outer halt of wing; when viewn from an oblique angle the hind marginal third of wing, the two fascoue and a subenstal patch glow with an opatescent blue suffusion. Hindwings smbhyaline, greyists-1aws. Expanse 44 mm .

Lone Burma: Turnardmyo, $5,500-7,000$ teet (typer, a male, expanse 39 mm , labelled "May, 1890, W, Doherty, Collection II. J. Fiwes" in Tring Musemm). Assam : Khasia Hills. \& males.

Thr type expands only 39 mm., not 42 mom., as indicated in the original description. The sperimen dessurbed abowe was taken with the type example and agrees closely with it.

The figure in sheitz is hased on an (xample in the Simelkentherg Mnsemm doubtfully identified with this speces; it is almost urecognizable, for tho markings aromisplaced and the colouring is poor. The species is not a common one, and nothing is known of its life history. Its small size, rather angulate wings, and markings are distinctive.

The male genitalia (fig. $38-39$) have the eighth sternite with the posterior murgin transverse; the tegumen strongly chitinized; unterior half not dilated, and straghtmargined, posterion half expanded into a sembirentar portion; the Whole of the ventral margin of termmen is sorrated with laterally vet small blut leeth.

Entochata microschata sp. nov.
Text-fige 40-41.
of Head, thorax, and legs brownish-fawn, abdomen slighty darker. Forewings brownish-iawn, almost completely covered with fine curvid transverse limes between the reins: traces of four darker enstal marke, the first at one-halt followed by three smaller ones fowards apex; thaces of several dines of faint. white spots helwen the veins, the first from near apex to hind margin at tourfifits, the second parallel and internal to it, trom costa at fire-sixths to ML_{1}; 14 fant series also from r-m vein to hind margin al me-hall, and a gigygg series between there and the base. Hindwing grey, the apex and ternen marowly tinged with fawn. Expanse 88 mm,

Lon, Madras: (1ype, minue, T. 18939 in s. Aust. Musemm).
The female gentalia, drawn withont dissection (hig. 40-41) have the seventh sternite dransverse, the posterion margin sinnate, projecting in the midde; the cinhth sternite is a conspicnots parallolosided propess, its posterior extremity is cntire but with a dapression hefore the aper; in latoral view it is seen to be slighty mptumed at apex. The anterior gonapophysis is a hrom plate, with the apex drawn out into a spinous process; tha penultmate tergite has fentral processes projecting towards the midlise.

This is the only true Endoclita so far recorded from the east coast of peninsular Turlia; one species is known from Ceylom. It is a distinct form. The genitalia are characteristie, with an eighth sternite which is nearest in form to species such as E. damor, but with anterior gonapophyses more like those of E. punclimargo and its allies.

Fig. 40-41. Endoctita microscripta Tivdale. 40. Fenale, Madras, genitalia, ventral aspect. 41. Female, lateral aspect.

Endoclita punctimargo (Swinhoe).
Text-fig. 42-43.
Phussus punctimaryo Swinhoe (Hampson m.s.), 1892, i, p. 291 (Nuvember).
Hampson, 1892, i, p. 319 (December). Pfitzner and Gaede, 1933, x, p. 843.
of Head, thonax, and legs dull reddish-brown, abdomen dull greyish-fawn. Forewings reddish-brown with faint traces of yellowish-brown on costa; two parallel greyish-white post-median fasciac parallel to termen from costa, near ippex, to posterior angle; each of these is bordered internally by a wide band of seales which, when viewed from an oblique angle, have a dull metallis sheen. Hindwings dull greyish-fawn. Expause 108 mm .

Loc. Sikkim: Darjeeling, Nenchal Ranre 8. 4 females.
Superficially examined, females of this species appear to bear considerable resemblance to Aemona aboe (Moore), and in the absence of anthentically determined females of N. aboe and of males of E. punctimargo it might at first appear that they were merely the sexes of one species. Closer examination shows that in E. punctimargo Cug of forewing is romected to 15 hy a strong oblique vein Pent. In N. aboe this is absent. It therefore seems certain that they are distinct.

Swinhoe anticipated Hampson's name (he has a month's priority). Both authors described the same specimens, and at least three examples were known to them. Two of these, both females, have been examined by the present writer. One
example, 22 mm . in expanse, labelled "India, No. 1:549, Phassus punctimargo Hampson", is in the Oxford ['niversity Museum, and is the example listed as specimen "a" in Swinhoe's catalogne. The uther fomale is in the British Ifusemm; it is 108 mm . in expanse, and is lahelled "Tふ-2. L'hossus punctimaryo Hampson type female". Swinhoe stated that his tree was in the Elwes collection. On the cridence, the type is the example, expanding ot mm., which Swinhoe regarded as a male. ["nfortmately this specimen has not been traced, hence determinations ran onls bo hased on the fwo femalr examples associated with it. The British Mnseum example, 108 mom. may be regarded as the allotype female. Sketehes of the genitalia of the Oxford female were prepared. The example deseribed and figured in the present paper is closely similar. It is a rather battered fenale from the Forest Research Institute at Dehra Dum, Labelled "Senchal Ramere, Darjiling, 6th August, 1923", and reared by MLr. J. C. M. Gardner from Cryptomeria joponica.

Fig. 42-43. Endactita punctimaryo (Swinhoo). 42. Female, Senchal Ramge, genitalia, ventrul aspect. 43. Female, lateral aspeet.

Female genitalia (chawn without dissection from the above-mentioned Senchal Range specimen, fig. 42-43) lave the reventh sternite swollun at hase, and drawn ont into a process which is constricted in the middle and at first down-bent, lont upturned at apex; in ventral view the process is seen to be expanded into a wide spade-like appembape; the anterion gomapopheses are simple, "ylindrical, fapered processes, the posterior gonapophyses are semi-circular, laterally compressed lamellate overlying and slightly posterior to the eighth sternite. The immer fold of the ultimate tergite has its lateral murgin drawn out and eovered with irregularly disposed hairs so that from one oblique angle it appears as a digitiform mocess.

Examples of this species are to be found in the British, Tring, Oxtord University, and South Austrulian Museums.

Nevina gen. nov.

Male with antennae simple, eylindrical, tapering gradually towards apex. composed of about 22 segments, each segment armed with a few setae; palpis two.
segmenterl, each alont twiew as long as wide. Foreroing with Se_{1} present; R_{1} from betore midulle of wing; l_{2} from $\mathrm{Fi}_{3} ; \mathrm{R}_{\mathrm{s}}$ from K_{5} before r-m vein; $\mathrm{M}_{1}+\mathrm{M}_{2}$

 Dindwiner with sig ahsent: Rymu as in lonrwiug ; only one vamal vein present.

Geamype: Ihensus uhne Moore.
In this qemps archatic featmes such as the separate origins of $M_{1}+M_{2}$ and $\mathrm{M}_{3}+\mathrm{I}_{1}$ appear side: hy side with specralizations; ("11! is reduced, while P^{\prime} (on

 to hind margin as a single vaint. Only une spectes has been reengnizad.

Nertiva aboe (Moore).

Plate vii, fig. 74 and 'rext-fig. if 48 .

 j, p. 318.
of Head, thomax, abdomen, and legrs dull docolate-beown; posterior ribite
 sufinsions: and memprotis short transvers lark brown hars between the verins, each margined, on lice inner side, with pate brown; fore eonspicuous ones aromed in
 other from three-fonths conta tor twothirds immer marmin, athll traces of a hiord
 suffused hand of male bewn, a similat subtinsion covers most of the wine below C'u $u_{1 b}$; a small white spot appuars at $\mathrm{r}-\mathrm{m}$ rein. Hindwiuers dull grey, suhhyalline when worl. Expanse 46 mm .

Loc. Sikkim: Darjerling (type, a make, 71 um, Labelled "Darpocelmen Finst
 Hills (i. Bombay Presideney : Jombay (allotype femalo, expanse 64 mm . Hoore (Coll. 94-106" in brilish Muselun), Kodaikamal (7.000 ft .). Thirteen males, thee temales.

The type example was fomad. withond definite type indication, in the Botish Muscom rollection, and hats bren markend, after checking with catalogut numbers

 locality. This speceios sems to have a bather wide distribution thom komblow lutia io the Himalayas, hat it is pensible that the starly of hatter series may in-
 this specten is structurally "listinet and not closidy related for any uthers.

The example fighrel in seoty is a mathe expanse os 1 mom. trom Khasia lifls: in the figute of the female given by Nowre (187!), pl, xaxiv, f, 各) the markings are
 Adelates. Tha bodies of the males are strikingly distinet with their lome spineJike rearwad projertion of the eqghth strmite. Examples sidutied included ane from the type lowatit! Darjecting the wher figured one is from Assim.

Fig. 44-48. Nevina aboe (Moore), Assam. 44. Labial palpi. 45. Antenna. 46. Venation of male. 47. Male, genitalia, ventral aspect. 48. Male, slightly oblique, lateral aspect.
armed with several rows of spines ; the two sides diverge posteriorly, and the armature is less marked; the anal extremity of the tegumen is produced ventrally into a blunt recurved spine.

Examples of this species may be found in the British, Tring, Berlin, Senckenherg, and South Australian Museums.

Stuenopis Packard.

Sthenopis Packard, 1864, iii, p. 390.
Antemae short, cylindrical, tapering, composed of about 23 segments. Hypopharynx large, shield-shaped, labial palpi small, composed of two segments, first
twice as long as wide, second much smaller and globose, densely clothed in pubesdence; maxillary palpi vestigial. Forewings with Sc_{1} present, R_{1} from before middle, R_{2} and R_{d} branching; R_{2} to apex, R_{4} from $\mathrm{R}_{\mathbf{3}}$ before $\mathrm{r}-\mathrm{m}$ rein; Cu_{2} not reaching to margin; Pcu and 2 V not developed; 1 V a strong vein to hind margin. Hindwings with Sc_{1} absent; R_{1} much reduced, R_{2} and R_{2} long-stalkex.

Genotype: Sthenopis argentcomaculatus Harris, 1841.
The only member of this essuntially Nearetic gents which has beeu recognized as belonging to the Eastern Hemisphere is S. regins from Tibet. Sthenopis differs from Ihensus in the presence of Sc_{1}, and in the two-segmented labial palpi. From Endoclita and Nomina it is distinguished by the absence of 2 V in the formings. which, in both the latter genera, forms a Y-fork with 1V.

Sthenopis regius (Staudinger).

Plate vii, fig, 70 and Text-fig, 49-51.
Hepialus regins Standinger. 1895, viii, p. 301. pl. v, fig. 11. Phassus regius Pfit\%ner, 1912, ii, p. 438 , pl. liv b.
ô Head, thorax abdomen excluding base, and legs pale fawn, base of abdomen with pink suffusions; posterior legs with tibiate ornamented with specialized plumes. Forewings brownish-grey with white transverse bands; all the markings

Fig. 49-51. Sthenopis regins (Staudinger) 4. Female, Tihet, antenna. 50. Labial palpi. 51. Venntion.
edged with metallic golden colour. IIndwings with traces of white and brown markings at apex, otherwise white with a pink suffusion, rather variable in degree. Expause 50 mm .
of Similar to male, posterior tibiae withont specialized plumes. Expanse 52 mm .

Loc. Tibet: between Lop Nor and Kokonor (type not senn), Kokonor 6; Autlo. Kansu Province: Sining-fn. Szechwan Province; Tatsien-lu, Three males, three lemales.

Fiy. 70 depicts a male from Amdo (in the Senckerberg Nusemm) ; this has the hind wings almost white; in other examples the roseate hue is more intense. The speces is an excedingly mo one, the few specimens examined beine distributed anomg the Berlin, Semokenberg, Whited Stales National, and somb AnsIralian Musemms, I have been mufordmately mable to see the types which are, according io pmblished measurements, larger than in those avalable for lescription.

Pinasus Walker.

Plate vii, fig. 73.
Phassus Walker, 1856 , vii, p. 1566 ; Drucr, 18s7. i, p. 293: it, 1898, p. 451; Kirby.
 Le Uert. 1919, xxt, p. 469.
Antennae slender, simple, tuperiug, composed of about to segments. Labial palpi composed of threr well-deveroped segments, each longer than wide. Maxillars palpoi present but much reduced. Posterior legs, iu male, with a tuft of sureializer tibial hairs, watly orangeroloned; these are absent in femate. Forewings with So simple, R_{1} branching from R_{s} well before middle of wing: $R_{1,1}$ and
 wholetr; 1V a strong voin to hind margiu: "V ahsent. Hindrimes with Se a simple
 trunsverse rein to $\mathrm{Cu}_{2} ; 1 \mathrm{~V}$ and 2 V present.

Genotype Phassus utyentiforts Walker, 1856, nominated hy Kirbs, 1892.
As first noticed by Le Celf the genus Phassus of older authors is it heterogemeons collection of Mepialids. The genotype was nominated by Kirby, whose selection of l^{\prime}. argatiferus has priority nser that made hy Hampam. The generie name belongs to a wefl defined ermp of Contral Amstican speeies associated with P. uryentiferus Walker, while the lndian and other Old Word species formerly placed under this name appear to belong to rather distinct genera, several of which are defined in the present paper.

Phassus ss, is nearest to Sthemopis, but differs from it in the possession of three-segmented lahial palpi. The reduction ut Se to a simple vein appears to be i) recent specialization which has not extended to all the American specics at present grouped under Phassus. The genotype is figared (pl. viii, figa 73),

Additions to earlier parts of this revision are as follows:

Thictena barnardt sp. nov.

Platovi, fig. 64.
\& Head, with face and palpi greyish-hrown, vertex slate-grey, Antennae grevish-hrown, tripectinate, pectinations lous and subequal. Thorax state-grey with pale lawn modereat: legs slate-grey and fawn. Abdomen gres. Formwins subhyaline wrey, with monerous seriplose and watermark-like impressions; a greyish-white irregular longitudinal tascia from near hase, and an ohlique silveryWhite, Whack- and white-bordered irsecular streak drom near apex to $\mathrm{Cis}_{\mathrm{g}}$; par-

similar shorter series from threa-fonthes ensta $10 \mathrm{M}_{3}$. Wind wings opaque brown-ish-grey. Expanse 110 mm .

Lioc. Western Australia : Lake Grace 4. (T'ype, a male, in Barruard Coll. at 17w (Qumsiand Musemm; paratype male I. 18946 in s. Aust. Museum.) Two males.

The examples were taken hy the Late Mr. W. B. Barnard, whose death is a great loss to those interesterl in the eollecting of these primilive Lepidoptera. His collection is now in the Queensland Museum, Brisbane.

The two cxamples differ in size, that figured hoing 110 um, in "xpanse, ant Ilse other 129 mm .

At first sight the speries might be taken for a form of Thistona argentate (1forrich-Schaeffer, 1855, n , in), to which it bents some resemblance in size and markings but it is structurally distmet in the qembitiad. In members of this genns the male genitalia lave the legumen large and rather weakly chitinized; exept whore distorted by post mortem changes it is of regular form, and may serve to distinguish the three known speries, as follows:
a. Tegumen, in lateral view, distinctly lobed aygyonspohn
aa. Tegumen in lateral yiuw broadly rounded, not lobed.
h. Tegumen subquadratoly produced arycutala

Truetena araentata (Herich-Schaefier, 1855).
I'rictena argentata Tindale, 1922, iv, $\beta, 500$.
Several mukes and a female werp taken, in early thne, by Dr, C. Tr. Madigan's parly, at the Hale River, on the western margin of tho Arunta (or Simpson) Desert.

Bordaia rarntea sp. nop.

Plate vi, fig. 65.
of Head with faco and palpi black; palpi short, not mrojecting, vertox black. Antemate lomer, pectinations long and skender, minutely ciliated. Thnrax and legs lonse and slonder, smoke-hark, with a more greyish tone heneath. Forewings. opature, greyish-black with taint suriptose markings and watermank best prident along termen. An aremate silvery-white faselia from hase to middle of wing, hroken towated middle: a faintly black margined series of conjoined white spots forming a. Land from near apex to $\mathrm{Cl} \mathrm{l}_{3} \mathrm{n}^{2}$. IIndwings greyish-black, paler lowards hase venation with K_{2} and k_{i} rather $10 n g$-stalked. Expmse 79 mm .

Loc. Westerrs Australia; Lake Grace. 4. (Type, mitute, in Barnard Colbection at Queensland Mnsemm; male genitalia 1. 1894.5 in S. Anst. Thsemm.)
 suetion a_{a} in which the forewings possess comspienons silvery-white bands. The artangement of the wind markings is like that of Trittem "moyrostion 'Tamer (1929, p. 307). In form of antenuar it is nearest on B. pirn Tindald (1932), the antrnnal rami boing even more slender than in that species.

In the male genitalia the form of the texumen is distinctive in lakeral viow, haviug the anterine margin "xeavate and bollowed by a low monded eminence, behind which the margin is esmeave, beong unlike that of any of its three conyenters. The venation differs from the gemofye in the lenuth nt the stalking of R_{2} and K_{3} of himdwing, hit is nherwise similar. The palpi of this speries are
 they are visible from above.

REFERENCES CITED IN PART IV.

Butler, A. G. (1886) : Ill. Lep. Brit. Mus., vi.
Christoph, H. T. (1888) : Hor. Soc. Ent. Ross., xxii.
Christoph, H. T. (1889) : Romanoff, Mém. Lep, v.
Deegener, P. and Schaposchnikow, U. (1904): Zeitschr. wiss. Zool., lxxviii, pp. 245-260.
Druce, H. (1887): Biol. Centrali-Amer. Het., i.
Druce, H. (1898) : Ibid., ii.
Felder, R. (1874): Reise Novara Lep., iv.
Felder, R. (1875) : Ibid., v, Eklär.
Hampson, G. F. (1892) : Fauna Brit. Ind. Moths, i (published December).
Harris, T. W. (1841): Rep. Ins. Massachusetts, Bost.
Horrich-Schaeffer, G. A. (1855) : Lep. Exot.
Kirby, W, F. (1892) : Cat. Lep. Het., i.
Le Cerf, F. (1919) : Bull. Mus. Nat. d'Hist. Nat, Paris, xxv.
Leech, J. H. (1898) : Trans. Ent. Soc. Lond.
Moore, F. (1859): Cat. Lep. Mus. E. I. House, ii.
Moore, F. (1879): Proc. Zool. Soc. Lond.
Moore, F. (1883): Lep. Ceylon, ii.
Packard, A. S. (1864) : Proc. Ent. Soc. Philad., iii,
Philpott, A. (1926) : Trans. Ent. Soc. Lond., pp. 531-535.
Pfitzner, R. (1912) : Seitz Macrolep., ii.
Pfitmer, R. and Gaede, M, (1933): Ibid., X.
Slastsherskij, P. (1929) : Rev. russe Ent., xxiii.
Slastshevskij, P. (1929a): Rev. Zool. Russe, ix.
Slastshevskij, P. (1929b) : Ibid., x.
Staudinger, O. (1895) : Deutsche Ent. Zeitschr. Lep., viii.
Swinhoe, C. (1892) : Cat. Lep. Oxford, i (published November).
Tindale, N. B. (1932): Rec. S. Aust. Mus., iv.
Turner, A.J. (1929) : Trans. Roy.Soc. S. Aust., liii.
Walker, F. (1856) : Cat. Lep. Het. Brit. Mus., vii.
Walker, F. (1869) : Char. Undescr. Lep.

EXPLANATTONS OF PLATES.

Platev.
Fig. 52. Zenophassus schamyl (Christoph), male, Kuban, Caucasus Mountains, 83 mm , Fig. 53. Endoclita damor (Moore), male, Kangra Valley, 63 mm .
Fig. 54. Endoclifa damor (Moore), female, Mussoorie, 68 mm .
Fig. 55. Endoclita undulifer (Walker), allotype male, Khasia Hills, 56 mm .
Fig. 56. Endoclita purpurescens (Moore), male, Punduloya, Ceylon, 94 mm .
Fig. 57. Endoclita purpurescens (Moore), female, Maskeliya, Ceylon, 118 mm .
Fig. 58. Endoclita chalybeata (Moore), allotype male, Khasia Fiils, 80 mm .
Fig. 59. Endoclita chalybeata (Moore), female, Darjeeling, 82 mm .

Plate vi.
Fig. 60. Endoclita signifer (Walker), allotype male, Khasia Hills, 105 mm ,
Fig. 61. Endoclita signifer (Walker), female, Khasia Hills, 120 mm .
Fig. 62. Endoclita albosignata Tindale, type, a male, Assam, 68 mm .
Fig. 63. Endoclita rustica Tindale, type, a male, Shillong, 56 mm .
Fig. 64. Trictena barnardi Tindale, type, a male, Lake Grace, 110 mm .
Fig. 65. Bordaia Karnka Tindale, type, a male, Lake Grace, 79 mm .
Fig. 66. Endoclita rustica 'lindale, paratype male, Khasia Hills, 64 mm .
Fig. 67. Endoclita chrysoptera Tindale, type, a male, Senchal Range, 53 mm .

Plate vii.
Fig. 68. Endoclita marginenotatus (Leech), type, a male, Omeishan.
Fig. 69. Endoclita aurata (Hampson), male, Bernardmyo, Burma, 44 mm .
Fig. 70. Sthenopis regius (Staudinger), male, Amdo, Tibet, 50 mm .
Fig. 71. Endoclita metallica Tindale, type, a male, Darjeeling, 54 mm .
Fig. 72. Endoclita gmelina Tindale, type, a male, Namtu, 90 mm .
Fig. 73. Phassus argentiferus (Walker), male, Jalapa, Mexico, 112 mm .
Fig. 74. Nevina aboe (Moore), male, Assam, 62 mm .
Fig. 75. Endoclita buettneria Tindale, paratype male, Shwebo, 68 mm .

LWDLAS (ND AINTRALIAN MEPHADDAE

LIFE HISTORY OF A CONVOLVULUS FEEDING MOTH, AEDIA ACRONYCTOIDES (GUENÉE 1854): LEPIDOPTERA HETERONEURA, FAMILY NOCTUIDAE

By Norman B. Tindale, B.Sc., South Australian Museum

Summary

The lesser Bindweed (Convolvulus arvensis Linn), originally perhaps a native of Europe and Asia, is a troublesome weed, now spreading widely in the settled districts of South Australia. Recently it has been rapidly dispersed by being included in the soil of nursery stock. In irrigation settlements it tends to choke water channels, and in city gardens may form dense mats of summer vegetation strangling all other plants in its vicinity.
In March, 1941, Mr. H. M. Hale first noticed the bindweed in his garden being heavily defoliated by a Noctuid larva, and specimens secured were reared at the South Australia Museum. The species proved to be Aedia acronyctoides (Guen.), the larva of which had not been previously described.

LIFE History of a GONVOLVULUS FEEDING MOTH, AEDIA ACRONYCTOIDES (GUENEE 1854): LEPIDOptera heteroneura, Family noctuidae

By NORMAN B. 'TLNDALE, B.Sicis Soutr Australian Miseum,

Fig. 1-1.

Trte Lesser Bindweed ('onvoluhtus urnensis Limm.), originally perhaps a native of Europe and dxit, is a trothlesome werd, now sproarling widely in the setted districts of south Anstralia, Remently it has hem rapidly dispersed by heing included in the soil of unsery sinck. In irrigation settlements it tends to choke water chammels, and in eity gardens may form dense mats of summer pegetation strangling all other plants in its vicinity.

In March, 1941, Mr, II. M. Hale first noticed the bindweat in his gardern being heavily drfoliated hy a Noctuid larva, and specimens secured were reared at the Sunth Australian Mnseum. The species proved to be Actia acronyctoides (Gnen.), the larva of which hat not been previously described.

Several Palaearctic species of the gemus Aodin Hucbmer, 1825 (fornerly C'rlephin Treitschke, 1806), including the grenotype A. Ifucomelas (Linm. 1758) atul A. funcsta (Esper 1787) are already known as feeders on members of the plant genus Comoleulus. It is not therefore surprising to find that the present suecies has similar habits. A. acromyctoides appears to be a native of Australia, but it oreurs also in South Eastrman Asiamen possibly Atriea. It has been reworded necasionally in this State since about 1881; no information has been available as to its life history or host plant. On genemal gromds the Anstralian bindweed (Convoldulus crubescens) mar be suspected as a possible endemic food. The present ohservations are based on pamples reared on the introblured speries, and it will be of interest in the fntures to note whether or not A. acronyctoides will exert any measure of control over this pest weed.

In preparing these notes opportunity is taken to clarify and revise the generic symonymy and to give reasons for the adoption for members of the genus of the name dedia rather than Cutcphid.

Aedia (Huebner).
Acdia Inuebner (1825) , p. 261 (genotype Mmomelas Linn.) ; Catephin OchsenLeimer (1816), iv, p. 94 (non deser.) : Treitsche (1826), v (3), p. 320 (genotype leucomelas Linn.) ; Iampson (1894), ii. p. 482 ; Acdit Swimhoe (1900), ii, p. 129; Cutephid Hantson (1926), p. 49.
Hampson contimued the use of the name Catephio in preference to Acdia on the assumption that Hurhuer's work did not appear until 1827, hat Sherborn and Prout (1912.p. 175) give 1825 as the publishing date of the portion of the work containing this description. ITemming (1993 , p. 16) indicates that the work was romplete by 1896 . It thins serms necessary to acerpt the term dedia in preference to the more frequently nsed Catephia.

Aedia acronyutomes (Guenée).

Fig. 1-2; larva fig. 3.
 Hampson (189t), ii, p. 48:2: trdia acronyctoides Swinhoe (1900), ii, p. 129.
Malc. Head dark purplish-brown, with some paler scales forming a frontal dise; thorax dark purplish-hrown, almost hack, with transverse bamds of white suales; abdomen dark purplish-biown, clarker at apex; ablomen with dorsal tufts on hasal segments, a conspicuous dorsal one on third segment ; also lateral tufts of

Fig. 1-3. Aedia acronyctoides (Guenér). 1. Venation. 2. Adult female, Adelaide, Jure, 30 mm . 3. Penultimato instar larra, 50 mm .
long golden yellow hair at base. Forewing hrownish-hlack, with dark olive green and white scales arranged in a rosette in outer discal area; five white marks along costa; an irregular domble line trom near costa at theeequarters to inner maryin at lwo-thirds: an irregular black fascia expanded into a subrectangular botch at. one-third, continues alomg C_{1} b, to meet paired black lines: cilia brownish-black. Hindwings with hasal half suow-white, outer half dull hrownish-black. (Gilia white except for an jufuscation between M_{3} and Cu_{1} b. Wings bencatl white on basal, greyish-black on outer halt'; a yellorrish suffusion near base and grey seales at costa; cilia grey flecked with white, a semi-lunate black mark on dise of forewing. Expanse $37-41 \mathrm{~mm}$.

Female, Colour and markings similar to male; abdomen without lateral tufts
of golden yellow hair at base; dorsal tutts ouly feebly deveroped. Wings beneath with only scant traces of yellow suffusion. Expanse $34-40$ mm.

Loc. Qucensland: Cooktown, Mackay, Brisbane. South Australia: Balhanuah, 12; Norton Summit, 4 ; Adelaide, 3, 6, 11. North Australia: Temant Creek, 9 males, 16 females, and 36 larvac.

The above deseriptions have been drawn up from the particular examination of two examples (Reg. No. I. 18947 in S. Aust, Museum), a male expanding 38 mun., from Norton Summit, 7 Ipril, 1884 , and the reared female cxample (expanding 36 mm .) from Adelaide, 25 June, 1941 ; the latter is figured (fit. 2).

Mr. F. M. Angel has taken the species at Parkside, near Adelaide. It was particularly abmdant in November, 1934, and occurred again in March of 1938 and 1939. It will be noticed that his emergence dates are a month carlier than those of the insects taken in the Mount Loffy Ranges. Examples in his eollection from T'ennaut Credk, North Australia, appear to beloner to a separate race.

The species were first recorded from Tasmania, and several distinct geographical races have since been described from Ké Island, Java, Borneo, Andaman Islands, Lurma, India, China (Amoy), and West and South Africa. A. acronyctoides discistrigu. (Walker), the African form, which may be a distinct species, has been stated to have the white areas of himdwings reduced; in the Indian form A. a. ofincserns (Guenée) the suffusion on foremings tends to be olive in tone.

Life History.

Batches of larvac (fig. 4) were taken at Adelaide on 6th and 17th April. The first series ceased teeding within a week, and by 18 th all had burrowed in tho earth. The series of the 17 th were on the average more developed, and were actively feeding until the 18 th, when they also commenced to burrow; all had

Fig. 4. Dimensions of larvac of several instars of dedia acromyctoides (Gucnée).
tumelod in by the 2end, the disappearance coinciding closedy with the seasonal withering off of the hindweed. Most of the larvae formed ovate earthen cases lined with silt; one case was elongate owal in form, and had a prepared circular aroa situated assymetrically at one end, where tho carth covering was wenk.

On 25 th June the only fully-fed larva (that measuring 54 mm .) emerged from the elongate oval case as an adult female. Its pupation period had been 38-42 days, and it was possibly a belated individual of an autumn brood, for dated adult examples previously known from South Australia have been taken in December (near Balhannah) and April (Norton Summit).

Examination of a sufficient sample of the ovate earthen cases on 26th June showed that larvae of the penultimate instar had not pupated but were hibernating in a flexed position within their earthen chambers. This may indicate the means by which the species bridges the six-month long period when the food plant is resting and no portions of it survive above ground.

Descriptions of Larvae.

Larva 12.5 mm . in length. Diameter 1.5 mm ., smooth, primary setae not conspicuous; setal pattern normal for family; colour blue-grey with many small irregular circular black spots arranged in rows; dorsally a median black-margined yellow line from second thoracic segment to posterior margin of third; this may be extended forward on to head as a pale grey line ; a dorso-lateral yellow line extending full length of body. In lateral view a broadly black-bordered, creamcoloured band also extends the full length; on each segment it is overlaid by an irregular patch of orange suffusion; the ventral surface brownish-black with traces of a lateral longitudinal paler blue-grey line.

Larvae 1r-20 mm. in length. Diameter $1 \cdot 6-2 \cdot 3 \mathrm{~mm}$. Similar to earlier larva, but with traces of a second dorso-lateral pale yellow line.

Larvae 23-50 mm. in length (fig. 3). Diameter $3 \cdot 0-6 \cdot 5 \mathrm{~mm}$. Markings basically similar to earlier instar larvae but blue-grey and black pattern accentuated, forming a slightly irregular reticulating network; a median, and dorso-lateral bands on the dorsum are conspicuously dark orange in colour, but are without black margins ; the median one is most conspicuous on the thorax and near the anal extremity; the second dorso-lateral line is irregularly but well marked, and has an orange suffusion extending within it almost as a continuous central line; ventrally the larva is similar in colour to the dorsum, save that on each segment (except the head) there is a median large circular black mark.

Larva 54 mm . in length. Diameter 7.5 mm . The markings are similar to those of the previous instar, but just before pupation are dulled and matt in tone.

Pupa. Not examined; pupal skin pale reddish-brown. Pupa enclosed in an elongate-oval earthen cocoon of $13 \times 33 \mathrm{~mm}$. external, $8 \times 18 \mathrm{~mm}$. internal measurements.

REFERENCES OITED.

Guenée, A. (1854) : Histoire Naturelle des Ins., Noct., iii.
Hampson, G. F. (1894) : Fauna Brit. India, Moths, ii.
Hampson, G. F. (1926) : Desc. Lep. Phal. Noctuinae Brit. Mus.
Hemming, F. (1934): Generic names of Holarctic butterflies.
Huebner, J. (1825) : Verz. bek. Schmett.
Ochsenheimer, F. (1816) : Schmett. Europ., iv.
Sherborn, C. D. and Prout, L. B. (1912): Ann. Mag. Nat. Hist. (8), ix.
Swinhoe, C. (1900) : Cat. East, and Aust. Lep. Het., ii.
Treitsche, F. (1826) : Schmett. Europ., v.

NOTES ON THE CHEYLETIDAE (ACARINA, TROMBIDOIDEA) OF AUSTRALIA AND NEW ZEALAND, WITH DESCRIPTIONS OF NEW SPECIES

By H. Womersley, A.L.S., F.R.E.S., South Australian Museum

Summary

This family of microscopic mites has hitherto been unrecorded from Australia or New Zealand. They may be distinguished by the morphological characters given in the following family diagnosis.
Comparatively little is known of their life-history. Many are free-living or predatory on other mites or on insects, while others are parasitic on animals or birds, or are predatory upon other mites living on or in the fur or feathers of mammals or birds. Rats. mice, bats, and even sheep are affected.

NOTES on the CHEYLETIDAE (ACARINA, TROMBIDOIDEA) of AUSTRALIA and NEW ZEALAND, with DESCRIPTIONS or NEW SPECIES

By H. WOMERSLfy, A.L.S., F.R.E.S., Suutif Australian Museum.

Fig. 1-9.
Tuns family of microscopic mites has hitherto heen unrecorded from Anstralia or New Zealand. They mar be distinguished by the morphological characters given in the following family diagnosis.

Comparatively little is known of their life-history. Many are free-living or predatory on other mites or on insects. while others are parasitic on animals or birds, or are predatory upon other mites living on or in the fur or feathers of mammals or birds. Rats, mice, bats, and even sheep are affected.

Hitherto none have appeared to be of direct importance to man, but in this paper is described a new species, P^{\prime} sorergates ovis, which sems likely to become a serious pest to sheep in Australia,

In the present paper fourteen species are recorded from Australia and one from New Kealand. Of these seven Austratian species (and one genus) are deseribed as new. The remainder are cosmopolitan or introduced forms.

Famity CHEYLETidAE Lexh 1814.

Leach, W. E. 1814, Tr. Linn. Soc. London, 11, 399.
Body rounded, oval to tainly clongate, nut amulated, of soft texture. Larvae with three pairs of legs, later stages with four pairs. Psendostirmal nrgan absent. Palpi four- to five-segmented, free, often forceps-like, tibial-claw present, tarsus thumb-like. Legs short and stumpy or long and slender, without strong spines, Claws two on one, sometimes absent mone more legs. Body setac ulten branched or pectinated or fan-like. Terrestrial forms but frequently parasitic or predatory.

Key to the Known Genera.

1. Legs I normal, adapted for walking or tactile nse: with g or withont claws 2. Legs I very short, with a spiralike chan :ndapted for ${ }^{\text {braspang hair. Parasitic un mice, rats, }}$ bats, ete. fien. Mynbia v. Heyden 1826.
2. Palpi normal, not forming a pair of forceps 3. Palpi forming a pair of forceps 6.
3. Palpi normal, eylindrical $*$. \quad. $\quad . \quad$. . 4. Palpi very short, swollen or conical 5.
4. Tarsal empodium bipectinate. In quills of birds .. Gen. Syringaphilus Haller 1880 . Tarsal empodium as a pectinate V. Subeutaneous on Woodpeckers.
(ien, Picnbios Hatler 1878 (not Australiau).
5. Palpi swollen. Only on birds . . Gen. Sarcopterinus Raillat 1893.

Palpi conical. On mice and sheep $\quad . \quad$.. Gen. Psorergates Tyrrell 1883."
(8. Palpal takus with comb- and sichel-like stetae .
Palpal tarsus without ahove, only with small urdinary setac:
Ben. Chmblirlla Canest. 1886°.
7. Palpal tarsus with 2 comb- and 2 sichel-like setae ..

$$
\text { .. } \quad .
$$

Palpal tarsus with 1 comb- and 2 sichel-like setae .
.. 13.
Papal tarsus with 2 sichel-like setae only \quad Gen. Cheletoides Ouds. 1904a.
8. Dorsal setae feather-like. Free living .. With eyes
.. Gen. Cheyletus Latr. 1797.
Dorsal setae in the form of strongly ciliated rods. With eyes
Gen. Cheletophyes Ouds. 1914 (not Australian).
Dorsal setao fan-or scale-like, often slender
.. 9.
9. Legs I normal, with claws, for walking 10 .

Legs I without claws, tactile 12.
10. Claw of palp internally smooth or with few basal tubercles \quad. Chaw of 11.

Claw of palp pectinate along entire inner edge .. Gen, Cheletophanes Ouds. 1904a.
11. One anterior dorsal shield Gen. Cheletonella nov.

T'wo dorsal shields, one on propodosoma and one on hysterosoma Gen. Cheletia Haller 1884. Three dorsal shields, one on propodosoma and two, side by side, on hysterosoma

Gen. Cheletomimus Ouds. 1904a.
12. Palpal claw entirely pectinate along inner margin

Gen. Cheletogenes Ouds. 1905 (not Australian).
Palpal claw with basal inner tubercle or smooth .. Gen. Cheletomorpha Ouds. 1904a.
13. Two dorsal shields Anterior dorsal shield only $\quad \therefore \quad \therefore \quad$ Gen. Cheletopsis Ouds. 1904a.
14. Dorsal shields contiguous and covering entire dorsum

Gen. Chelonotus Trt. in Berlese 1893 (not Australian).
Dorsal shields separate, encircled by soft cuticle . 15.
15. Anterior shield trapezoidal Gen. Acaropsis Moq.-Tand. 1863. Anterior shield pentagonal Gen. Cheletosoma Ouds. 1905 (not Australian).

Genus Myobia v. Heyden 1826.

von Heyden 1826, col. 613.
Myobia miniopteris sp. nov.
Text-fig. $1 \mathrm{~A}-\mathrm{E}$.
Description. Female. Elongate, 578μ by 238μ. Front of head flattened. Dorsal surface with characteristic setae as figured, these arranged $4,4,6,4,4$, those of first and outer members of second row very much asymmetrically broadened at base and with 8-10 longitudinal striations, those of third and fourth rows and the middle pair of second and fifth rows less broadened, outer members of fifth row normal. Outer setae of first and second rows 180μ long, inner of these rows 105μ, remainder $75-90 \mu$ long. At apex of body a pair of setae about 510μ long. Ventrally with three pairs of long fine setae, one between coxae III, one just anterior of coxae IV and one just posterior of coxae IV; there is also a pair of small outer setae between coxae III, another pair outside of the third pair of long setae, and a pair of medium setae just before the apex of the body; the lengths of these setae are, first long 90μ, second long 90μ, third long 120μ, short 21μ, medium 51μ. Tarsi and claws of leg I normal for the genus, adapted for clasping hair ; of leg II strong and evenly curved; of legs III and IV straighter and seythe-like; two claws on legs II-IV. Tibiae and tarsi of legs III and IV with three and two stout spines at the outer anterior angles. Tip of tarsi I with two stout long blunt setae. This species is remarkable for the prominent and large air cavities at the insertion of the legs. Leg I as figured.

Locality and Host. South Australia: one (type) from Miniopteris schreibersi Naracoorte 1893 (R. Fleming) ; another from Chalinolobus gouldi (no precise locality), M 401,506. N.B. : Bat hosts in South Australian Museum collections.

Remarks. Nearest to M. rollinati (Poppe) described from the Greater Horse Shoe Bat (Rhinolophus ferrum equinum) of Europe, but differs in the form of the longer expanded dorsal setae.

Fig. 1. Myobia minionteris spmor. A, Entire dorsal view of female; B, ventral view of same, except gnathosoma and legs; ($\mathrm{C}_{\text {, tip }}$ of leg II; D, leg III or IV; F, capitulum and right palp from alboye.

Myobia clara sp. nov.
Text-fig. $2 \mathrm{~A}-\mathrm{B}$.
Description. Female. Elongate, leugth fober, width 170 . Front of head lightly produced, snout-like. Dorsally with 22 setae, arranged $4,4,4,2,2,2,4,2$; all except the two posterior rows simple, as figured, moderately broad basally for rather more than half their length, and only indistinetly longitudinally striated;

Fig. 2. Myobia clara sp.nov. Female: A, entire dorsal view; B, ventral view, except gnathosoma and legs. Myobia minima
sp.nov. Female: C, entire dorsal view; D, ventral view, except gnathosoma and legs.
outer ones of first three rows 90μ long, the six central pairs $60-75 \mu$, posterior six 6in μ. The paired apical abdominal setae 3330μ long. Ventrally with four pairs of setae, $60 \mu \mathrm{long}$ and arranged as figured. Leg I normal for the genus; II to IV with paired claws whel are all alike, slender and sichel-like. The prominent air chambers at the insertion of the legs present in the preceding species are absent.

Locality and Most. ? Suth Australia from bats M490 and $4+18-21$ in the South Australian Museum collections.

Myobia minima sp, hov.

Text-fig. 2C-D.
Description. Female, Elongate, Iength 340μ, width 136μ. Front of head flatterned as in minionteris. Dorsally with '20 setae arranged 2, 4, 4, 2, 2, 2, and then fow small fine ones; the first six rows are somervhat thickened basally tor not more than half their length the median pair of the second row and the outer ones of the third row are 7 ap longe the others $30-33 \mu$; the pair of lone apical setac are 180μ in length. Ventrally with three pairs of long fine setae, 45μ long, as figurd, in front of the anterior pair is a pair of very small fine ones on each side. Leg I as figmed, adapted for elasping hair: 11 to IV with only a single claw Which is stromgly eurved and sichel-like. No air chambers at insertions of legs.

Locality and Ilost. ? South Australia on Chalinolobus !gouldi M1401, 506 in South Australian Musemu collections.

Myobia chalinolobus sp. hov.

$$
\text { Text-lig. is } \mathrm{A}-\mathrm{C} \text {. }
$$

Description. Female. Ot squat form, length 323μ, width 238μ. Front of hesal not flattened. Dormally with three pairs of long slender setae each of which has a short accessory harlet at about one-fourth from its tip; medially and anlerionly is a pair of very shot setae, while posterionly there are four short setac. The lomen dorsal setace are 120 in length. The apical paired setac are 390μ long. On the fenter coxar I with two fine setae, If with three, II with one, IV without any setae; between coxae IV a transverse row of forr fine setae, and at apex two more. Leg I normal for the genus, as figured; legs 11 to IV all with paired stout cyenly curved similat claws. At the insertion of the legs are slender invaginations representing air chambers.

Larality and Hosls. Type from C'halinolobus !maldi, M401, 506 from Suuth Australia, in the collections of the South Australian Museum.

> Myobia ensifera (l'oppe 1896).

> Text-fig. 3D.

Popue, s. A. 1896, 34].
This is a well-known European species found on rats and mice. In Australia it has been fond (1) m laboratory white rats, Iniversity. Addaide, June, 1938 (T.H.J.) and (2) on rats at Cairns, Queensland, 1939 (W.G.H.).

Genus Psonergates Tyrrell 1883.
Tyruell 188:3, 33:

Fig. 3. Myobia chatinolobus sp.nov. Fumale; A, entire dorsal riew; B, yentral view, except legs; C, right palp. Myobia eusifcra Poppe, D, Entire dorsal view of female.

Psorerchates ovis sp, nov.
Text-fig. 4 A-J.
Description. General form rounded and flattened, rather narrower than long. Lateral margins indented slightly between the coxae. Claws furnished with paired claws. Palpi short and conical. Penis of male dorsal.

Female. Length 189μ, width 162μ. Palpi as figured, with a short stout somewhat clavate rod-like seta at the outer dorsal angle; tibia with a long and a short seta, and with well chitinized blunt claw. Legs short and stout, femur on outer margin below with a pair of adjacent long setae; tibia with a long outer seta and as stout eurved tooth on inner surface; tarsus with outer tooth and two strong claws; all legs alike, but the long tibial seta is much longer on leg IV. Dorsum smooth, except for a narrow outer margin of longiturlinally striated cuticle; with fone pairs of stout setae as figured. Venter with a pair of short setae in the middle; a single setae on each coxa and apically with two pairs of long (68μ) setac arising from a pair of lobes.

Male. Length 167μ, width 116μ; differs from female only in having but a single pair of long setac apically and ventrally, which are rather shorter than in

Hig. 4. Psorergates ovis spmov. A, Entire dorsal view of female; B, ventral view of same. C, Dorsal view of male except legs. D, Adult female within nymphal skin. E*, Sceond nympl, ventral. F, First nymph, ventral. G, Palp from above; H, Leg I; I, ova; J, penis.
the female, and arises from a single medial tuberele. The dorsal penis arises near the middle, and extends almost to the anterior margin as figured.

Ovim. Round as figured, 48μ in diameter.
Larva. Length 108μ, width 95μ, with three pairs of rudimentary legs which are little wore than stumps, but are fumished with distinct if rudimentary claws. No dorsal or ventral setace can be observed.

Nymph I. Length 121μ, width 108μ, as figured. With four pairs of legs, still rudimentary but rather more developed. No dorsal or ventral setae.

Nymph II. Length 155μ, width 135μ. Legs still more developed, but showing no signs of segmentation. No dorsal or ventral setae, but in this and the preceding stages the palpal setae are strongly evident. In one specimen of the later nymphal stage the adult female could be observed within the nymphal cuticle (see fig. 6D). Here it will be noticed that the apical long setae are curled within the nymphal skin.

Locality and Host. On sheep, Yass, Goulburn, New South Wales, and Canberra, Aust. Cap. Territory, May, 1941 (H. B. Carter).

Remarks. This species may become of serious import to the sheep industry of Australia. Its economic aspect is being investigated by Mr. FI, B. Carter and other officers of the Council for Scientific and Industrial Research at the McMaster Laboratories, Sydney. I am indebted to Dr. Bull and Mr. Carter for bringing this interesting species to my notice, and for affording me the opportunity of describing it.

Its effect upon the sheep is to produce a chronic irritation of the skin, mainly along the sides and flanks, although specimens have been recovered from most regions of the body. The appearance of the fleece is similar to that of infestation by the common biting louse (Bovicola ovis).

Genus Syringophilus Heller 1880.
Heller 1880, 186.
Goniomerus Michael, A. D. 1890, 405.
Syringophilus totani Ouds. 1904.
Text-fig. 5, A-B.
Oudemans, A. C. 1904a. Ent. Bericht. No. 19, 171; 1906, Mem. Soc. zool. Fr., 19, 36 , fig. $7,8$.
This species was described from the quills of the Swallow Totanus calidris, probably from France. My material, which was from a Magpie collected at Barringun, New South Wales (no date) by the late Stanley Hirst, does not appear to differ from the description and figures given by Oudemans.

Genus Cheyletus Latreille 1796.
Latreille, P. A. 1796, 179.

Cheyletus eruditus Schrank 1781.

Text-fig. $5 \mathrm{C}-\mathrm{D}$.
Schrank, F. v. P. 1781, 513.
This species is the type of the genus. It is almost cosmopolitan and occurs in and on various foodstuffs. It is predatory in habit, feeding upon insects and mites infesting the materials. It is frequently to be found in cultures of economic insect pests. I have material from the following Australian localities :

Queensland: On cheese, Brisbane, June, 1932 (F.H.S.R.).
New South Wales: On head of a fly, Sydney, 1909.
Victoria: On imported seeds, Dept. of Agric., Melbourne, August, 1932.
South Australia: In infested wheat, Adelaide, September, 1940.

Genus Cheletrelua Canestrini 1886.
Canestrini, G. 1886, 170.

Cifeletiella parasitivorax Megnin 1878.

Text-fig. $5 \mathrm{E}-\mathrm{F}$.
Megnin, P. 1878, 425, pl. xxviii.
This is a well-known predatory species found inhabiting the fur of rabbits where it probably feeds upon the Listrophorid mites living there. It is not yet

Fig. 5. Syringophilus totani Ouds. A, Entire dorsal view of female; B, tarsus. Cheyletus cruditus Schrank. Female; C, dorsal view; D, palp from above. Cheletiella parasitivorax Megnin. IU, Dorsal view; F, tarsus.
known from Australia, but a few years ato I received material from the fur of Angora rabbits from Auckland, New Zealand (1935 L.M.).

Cheletiella pinguts Berlese 1889.
Text-fig. $6 \mathrm{~A}-\mathrm{C}$.
Berlese, A. 1889.
With somewhat similar habits to the above species, but found upon birds. My Australian material is from the parrot Platycercus elegans from Mansfield, Victoria, June, 1933 (A,E.B.).

Genus Cheyletia Haller 1884.

Haller, G. 1884, 233, 234.

> Citesceria flabeldifera (Michael 1878).
> Text-fig. 6 D-F.

Michacl, A. D. 1878, 435.
To be found generally in similar habitat to Chelelielle parasitivorax and of the same habit. My Australian material was found among the debris of an old

Fig. 6. Chelcticlla pinguis Berlese. Female; A, dorsal view; B, palp; C, tip of taras. Cheyletiella flabellifera (Michael). Female; 1), dorsal view; E, Talp dorsa\}.

Yacea (Xanthorwoen) stump in Torrens Gorge, Soutls Australia, May, 1939 (R.V.S.), Probably rabbits were nesting nearby.

Genus Cheletonella nov.

Allied to Cheyletia but distinguished, as in the key, by having only an anterior dorsal shield.

Cheletonelia vespertilionis sp. nov.
Text-fig. $7 \mathrm{~A}-\mathrm{D}$.
Description. Female. Length 580μ, width 260μ. Gnathosoma 195μ. Eyes $?$ Palpi strong; femur stout and thick, 67μ long by 72μ wide, tibial claw strong 54μ long, and fumished with three inner basal tubereles, tarsus with two combs

Fig. 7. Chetetonella wespertilionis gen, et spaov. F’emale; A, dorsal view; B, ventral view; C, palp from above; D, tibia and tarsus.
and two sichel-like setae, stronger comb with about 12 teeth; femur and tibia cach with one fan-like seta. Dorsum with only a single indistinct shield on anterior half. Dorsal setar fan-like, 39μ by 19μ, arranged as figured. Legs comparatively short, I 340μ loug, II 250μ, IT 290μ, IV 375μ, tarsus as figured with a pair of simple claws and pulvilli of abont four hairs. Ventral surface as figured.

Male. Unknown.
Locality and Host. A single specimen taken from a bat at Glen Osmond, South Anstralia, May, 1933 (D.C.N.).

Genus Cileletomorpha Ouds. 1904.
Oudemans, A. (\%. 1904a, No. 18, 162.

Cheletomorpita venustissima (Koch 1839).

Text-fig. $8 \mathrm{~A}-\mathrm{B}$.

Koch, C. L. 1839.

This is the genotype and only species of the genus. It is almost cosmopolitan, and is predatory upon other Acarids such as the Tyroglyphidae. My Australian reeords are:

South Australia: In hay, Two Wells, December, 1933 (D.C.S.) ; in chatl, Adelaide, May, 1935̆ (II.W.).
Western Australia: Denmark, July, 1932 (II.W.).

Fig. 8. Cheletomorpha venustissima (Koch). Female; A, dorsal view; B, palp ilorsal. Acaropsis docta Berlese. Female; C, dorsal view; D, palp.

Genus Cheietophanes Ouds. 1904.
Oudemans, A. C. 1904a, No. 18, 162.
Cheletopilanes rugosa sp. nov.
Text-fig. $9 \mathrm{~A}-\mathrm{D}$.
Description. Female. Length 475μ, width 2555μ. Guathosoma 153μ. Eyes $? 1-1$. Palpi strong and stout ; femur $66^{2} \mu$ by 62μ, tibial claw strong 43μ long and
entirely pectinate along imere edge, tarsus with two combs and two sichel-like setae, stronger eomb with about 12-14 teeth which are about one-third the length of comb. Legs: I 600μ long, slender, with two claws and pulvilii as figured; II 390μ; III 410μ; IV 400μ. Dorsm with only anterior shield, this with four pairs of setae, of which the anterior two pairs are longer, about 54μ; setae on hysterosoma beyond those figured are uncertain owing to damage. Cuticle ontside of shields rugose.

Fig, 9. Chelctophanes rugosa spmor. Ay Female from above, B, Male from above; C, male from helow. D, Tip of tarsus.

Male. Length 340μ, width 187μ. Gnathosoma 85μ. Palpi as in female but smaller, femmr 54μ long by 43μ wide, claw 40μ and as in female. All other characters as in female.

Locality and Host. From Calymmaderus (Coleoptera) material Brisbane, Queensland, December, 1934 (A.R.B.). One female, two males.

Genus Acaropsis Moq.-Tand. 1863.
Moquin-Tandon 1863, 314 ; Oudemans, A. C. 1904, No. 18, 209.
Acaropsis docta (Berlese 1886).
Text-fig. 8 C-D.
Berlese, A, 1886.
Frequently found in the dust of human habitations. My Australian records are from Western Australia; from B. obtectus culture, Dept. of Agric., Perth; on Alyssia. sp., Perth, November, 1931 (B.A.O'C.).

REFERENCES.

Berlese, A. (1889) : Acari. Myriap. Scorp. Hal. Rep., fasc. lvi, No. 4.
Canestrini, G. (1886) : Prosp. Acarof. Ital., pt. 2.
Haller, G. (1884) : Arch. f. Naturgesch, 1 (1).
Heller, A. (1880) : Schmar. mensch.
v. Heyden, C. H. G. (1826) : Oken, Isis, xix.

Koch, C. L. (1839) : Deutschl. Crust. Myr. Arachn., xxiii, No. 22.
Latreille, P. A. (1796) : Précis car. gen. Ins.
Leach, W. E. (1814) : Tr. Linn. Soc., xi.
Megnin, P. (1878): J. Anat. Physiol.
Michael, A. D. (1878) : Tr. Roy. Micros. Soc., i.
Michael, A. D. (1890) : J. Linn. Soc., xx.
Moquin-Tandon, H. B. A. (1862) : Elem. Zool. med.
Oudemans, A. C. (1904a) : Entom. Bericht, No. 18.
Oudemans, A. C. (1904b) : Ibid., No. 19.
Oudemans, A. C. (1906) : Mem. Soc. Zool. Fr., xix.
Oudemans, A. C. (1914) : Entom. Berich., iv, No. 78.
Oudemans, A. C. (1915) : Archiv. f. Naturgesch., lxxxi.
Poppe, S. A. (1896): Zool. Anz., xix.
Schrank, F. v. P. (1781) : Enum. Ins. Austriæ.
Tyrrell, J. B. (1883) : Proc. Canad. Inst. Toronto, i.

A REVISION OF THE FAMILIES DIOSACCIDAE SARS, 1906
 AND LAOPHONTIDAE T. SCOTT, 1905 (COPEPODA, HARPACTICOIDA)

By A. G. Nicholls, Ph.D., University of Western Australia

Abstract

Summary I have recently had an opportunity of studying the collection of Copepoda in the South Australian Museum, a report on which appeared in the previous volume of these Records (Nicholls, 1941). Arising out of this and some earlier work on a collection of copepods from the St. Lawrence, it has been found necessary to revise the two genera Amphiascus and Laophonte, and while engaged upon this revision a survey has been made of their respective families. This paper is an attempt to clarify the relationships of the genera comprising these families and, at the same time, to subdivide the two chief genera, both of which contain a large number of species, into homogeneous groups, clearly defined and easily separable. It is hoped that this paper will simplify the process of identification of species belonging to these two genera in particular.

A REVISION of the FAMILIES DIOSACCIDAE SARS, 1906
 and LAOPHONTIDAE T. SCOTT, rgo5 (COPEPODA, HARPACTICOIDA)

Br A. G. NICHOLLS, Phf, D., Univirkerty ar Western Austrafia.

I nave recently had an opportunty uf studying the collipetion of Copepota in the Sonth Australian Muscum, a report on which appeared in the previous volume of these Records (Nicholls, 1941).

Arising ont of this and some carlier work on a collection of copepors from 17be St. Jawrence, it has been found necessary to revise the two genera Amphidaves and Laophonte, and while engaqed upon this revision a survey has been made of their rerpective familis, This gater is an attempt to clarify the relationships of the gemera romprising thene families and, at the same time, to subdivide the two chief yencra, both of wheh contain a large number of species, into homogepeons gronps, clearly defined and casily sparable. It is hoped that this paper will simplity the process of identificution of species belonging to these two generat in particular.

In matters of nomenclature I gratofully acknowledge the assistance received from E'rofessor (i. E. Niohnlls, of the l'miversity of Western Australia, and Mr. K. Sheard, of the Sonth Anstralian Mnseum.

It has been neessary to borrow many books of reference from librarics in South Anstralia, Vietoria, and New sonth Wales. In pach ease the lihrarians have
 soveral months. A forw importaut works are not arailable in Anstralia, notably some ne the carlier works of (llaus and others.

It is appropriate here to express my thanks to Niss E. Wood, Librarian to the l'uiversity of Wentern Anstralia, for whaning the large amome of literature reguired.

Family DIOSACCIDAE Sars 1906.

As sarg (1911, p. 103) has already observed there is a elose relationship between the Diosaceidae and Thalestridae. The whof chatacters distinguthingr the two families are as follows:

FILATJFSTRIDAE.
Rostrum usually small and comparatively immobile.
Exonod of first les aspally whongly modidied.
Endopod of first ley strongly modifien,

Tumer seta on basal segment of first cudopod insertal ubout the middle, or proximal thereto.

THOSACTIDAE.

IRostrom latige anil mohite.
Exopud of firsl Jear eompratively ummodificd. lindonod of first ley little modified, exeret in dmpliascus and related generis.
Tunel seta on basul segment uf first endopod alwiyg inscrted distally,

These two fanilies approach one another most elosely in the genera Doctylopusiu and Amphusacus, which have many points in common. Gurney (1927b, p. 512) has already disenssed the similarity bwtwern then and finds five points of difference. He disposes of the signifisanee, from the systematice aspert. of the number of eqg-sades which was regrded by Sars and Monard as important (sue Monard's works, Gumey 1932, p. 17; and Lang 1935a.).

The siguificance of the position of the imme seta on the hasal segment of the first condopod is also somewhat duastionable．In at．least one species of Thalestrid （Dactylopodella flema（Clans））it is inserted beyond the middle of the segment， and in Robertsonia（as defined beluw）which，it is now gencrally agreed，botongs to the Dinsacecidae it tends to beeome less distal than is usual in typical Diosacedae． This tendence reaches a climax in Varnan monami Kilie，which I regard as a true Robertsoniu（sse p．87）．Here it approximates to the pusition it necupies in Dactylapodella flava．

Tho following genera have becn assribed to this family：
Ntenhntia Bueck 1864；Diosacous Bocek 1870；Robortamie 13sady 1880；Psendomesochra T．Scott 190：3；I＇arastenhelk Thompson and Scott 1903；Amphiascus Sary 1905a；Schizupera

 1935：Varnnia Ḱlic 1937.

According to Inag（1Hzifin）Sars＇genus Stenheliopsis is synomymons with l＇sadomesochra．Scott and bolongs to the Diosaccidae，while the same athor （1034，1），22）shows that Parstenhedia is a Thalestrid and synomynous with Mirbohalestris Sars．

The gemn Timlomanella wan placed by sent in the Thatestridae but，as has been shown by Lang（1936e，p．18），it belonge to the Dinsaceridar．Brian（1927） desmibed anow gemas Latysus，which bears a considerable resemblance to Toydrmanclla，and in a decent fanur（19＋1）I regarded them as synomymous，in order to include a new species trom Sonth Australia which was intermediate． 1 have here separated them once again for srasons given below，and it has thus been necessary to matalish a new grmon for the dustralian species，for which I propose the name Parialysus（defined p．91）．

Gumes＇s genus Amphioscopsis has heen somowhat modified and enlarged to include a greater number of species，and from the remaining species of Amphideas two new genera have been formed，leaving a suall mmber still regarded as Amphiosous seus．str．

T＇eissicrellas，stated by Monard to lo intermediate hetwoen Amphiasous and Roberasomia，is in fact composed of speries belonging to these two genera and therefore lapses．

Varnair Klie is indentical with Rolertsonm，hs duffed bolow．
The family，therefore，consists of the following genera，here arranged in chronolugical order：

Sthanelis Renerk 1864.
18G4．Nilrometre bivesh．
1905．Beatricplla T．Rent 1006．
1808．Delatalia Brady（Irro part．）．
Dhosaceus Bneck 1872．

Robertaonia Lbraly 1880.

1684．Dactylopes I＇，Scott（pro．part．）．1434．A mphieseus Monard．
1902．Stembelia A．scott（pro．part．）．1935．Teissirrella Monaril．
 part．）．

1：3：7．Fartair Klic．
L＇gevionemoctra T．Seot 1108，
1012．Preudompsachre Γ ，Sentt．1906．Stenheliopsis Sars．
AyPHASCLOS SAR 100．i．

1sbis．Hactylopme（lawy，
LSG6t，Deselylopus Cliua．
1868．Dectylopus Czerninvaki．
187．．Dactyluph．liocek．

1872．Diosuccus Borek．
187？．Stenhelia Brady．
T\＆ブラ．Hactylnpus Brady and Robertaon．
1880．Daclylowun Brady．
1880. Stenheclat Brady,

188:. Dactylopms Gieshrecht.
1882. Stentelia (tieshrecht.
1893. Stonhrlia I. C. Thompson.

189-1. Stenhelira TT. Sentt.
1894. Dectylopus T. Scott 18:144.
1894. Stembefiat I'. Seott IS39.9.
1894. Stemhelia 'T' and A. Scott.

18!5. Stambita T. Keott.
1895. Stenhmiar T. and A. Scoth.
1896. Slenhelia A. Scott.
1897. Stemhilia T. Seatt.
1898. Dectylopus ' I ' Šeott.
1890. Dactyloputs IBtady.
1899. Stenhalia 1. Scott.

1!100. Stewhellot Brady.
1901. Dactylopus T. and A. Scott.
1902. Dactylopus Giesbrecht.
1902. Dactylopus T. Scutt.
140. Stenhetion T', Scott.
1903. Vactylopus A. Scott.

190․ Stenilucia A. Scott.
1903. Danetylopms T. Sicut.

191\%. Hantylopun T. Scott 1903a.
1903. Stenhelia T. Scott 1903b.
1103. Innelyiopusia Thompson and scott.
1903. Stombelirs Thompson and Seott.
1905. Inctylupus Wolfenden 1905а.

1:015. Hactulopmsia Norman and Scoth.
1005. Stenhelia Norman aud Scott.

190云. In mhinsous Sars 1905s.
1035. Triswierclla Monard.

Antizoptra Sars 190\%.
1891. Dractulopus Blanchard and Richard. 1903. dmphinseres. Rlice
1005. Srhizupert Sars 1905a.
1924. Amphiarens Monard 1928n.

Pebermontosaccus I' Scott 1 Sob.
1803. Dinsurcus 'I'. and A. Scott 1803s. 190t. Psendndinsacrus 'T, Scott.

Trymananthia A. Seott 1909.
1909. I'yremanella A. Scolt.

Drosamentsis Brian 192\%.
1925. Diosaceopxis Brian.
1097. Inlysus Hrian.
1027. Intysus Gurmey 19a7b.
1936. Hinsaccopsin Monard.

Tatitsus Brian 19:7.
1941. Tydemanrlla Nicholls.

Amphiascopsis Gurncy 1927.
1927. Amphiasropris Gurney 1027 b .

To which are added three now gencra Mesomphiascus (defined p. 79), Amphiascoides (defined p. 81), and Puriulysus (defined p.91).

Sutbdiviston of the Diosafcidafi into Subfamides.

(n mrney's genus Amphiuscopsis links on to the Thalestrids by Dactylopusia on the ome band, and on the other, following a regular reduction in the number of setae, a serics is formed through Amphitascus sens. str., Mesamphiascus and Imphiasonilts to Robertsonte and schiongra. This yroup is sufficiently homogemous to constitute a sulbfamily, here called the Amphiascinae.

The cosse relationship between Dactylomusift and Amphiascopsis is further emphasized by the fact that many species described by earlier workers as Dantylopus(ia) now find their trus position in Gumey's genns, as it has here bern modified. Lantr (19364, , 5.29) lists 36 species and varieties of Dactylopus (ia) which have been wrommly identified, 28 of which, as he points out, belong to Amphiascus. Ot these 28, two belong to Robertsonim or Nehizopern, two of the varieties are synonyms, seven are placed be mo in "species inquaerendae" or "not axamined ${ }^{22}$ and one in Amphiuscoides; this leaves 16 species of which 12 belong to Amphiascopsis and four to Amphinscus sens. stro, which in some respects is very close to Gurney's genus.

Of the remaining Dinsaenids a second subfamily-the Diosaccinae conGining Diosaccopsis, Diosaccus, Pseudodiosaccus, Lydemanclla. Ithysus and Parialysus probably arose from 1 mphiascopisis. In these the two inner setac on
the middle segments of the second and third endopods are retained (except in Parialysus which shows certain reductions) ; the long first endopod is prehensile in all, but somewhat shortened in Tydcmanclla, Ialysus and Parialysus; a slightly modified first exopod is present in both Diosaccopsis and Pseudodiosaccus; the inner lobe of the mandible palp is reduced to a seta in Diosaccus (except in one species), absent in Lalysus and Parialysus; and the remaining lobe is further reduced in Pseudodiosaccus; the exopod of the second antenna is one-segmented in all but Pseudodiosaccus.

The two remaining genera, Stenhelia and Pscudomesochra, form the third subfamily Stenheliinae. These, with two and one inner setae on the middle segments of the second and third endopods respectively, unmodified first exopod, and relatively long end segment in the first endopod, were probably derived from Mesamphiascus. Incidental support for this view is found in the fact that, of the 25 species of Amphiascus originally described as Stenhelia, 10 belong to Mesamphiascus. Of the others, one belongs to Amphiascus sens. str., five to Amphiascoides, and of the remaining nine, six cannot be placed with certainty though none is excluded from Mesamphiascus, and in most cases the probability is in favour of their inclusion in this genus. The last three are those whose descriptions I have not seen.

The name Stenheliinae was first used by Brady (1880, p. 31) for a subfamily of the Family Harpacticidae, and contained the genera Delavalia, Jonesiella, Ameira, and Stenhelia. This classification has since been superseded by that of Sars, and the name is used here in its restricted sense for Stentelia and closely related genera.

Key to the Diosacgidae.

1. Body without strong demarcation between metasome and urosome .. 2. (Amphiascinae) subfam. nov.

Metasome more or less strongly demarcated from urosome
2. Proximal portion of 1 st antenna 3 -segmented Proximal portion of 1 st antenna 4 -segmented
4. Middle segments of 2nd and 3rd endopods each with 2 inner setae ... 5 . Middle segments of 2nd and 3rd endopods with 2 and 1 inner setae respectively.

Mesamphiascus gen, nov. Middle segments of 2 nd and 3rd endopods each with I inner seta Amphiascoides gen, nov.
5. Middle segment of 1st exopod the largest; basal segment of 1st endopod at least 3 times 2nd and 3rd together and longer than whole exopod; seta formula for imer margins of endopods: 121, 123, 112, of exopods: 112, 113 or 2,113 or 24 mphiascopsis Gurncy 1927 b . Differing in one or more of these characters ... Amphiascus sens. str.
6. 1st endopod prehensile; middle segment of 3rd endopod with 2 iner setae; caudal rami little or no longer than wide ..
(Diosaccinae) subfam. nov. 7. 1st endopod natatory; middle segment of 3 rd endopod with 1 inner seta; caudal rami usually at least twice as long as wide ... (Stenheliinae) sens. str. 12.
7. 1st endopod 2 -segmented 8. 1st endopod 3-segmented 10 .
8. Mandible palp biramous Tydemanella A. Scott 1909. Mandible palp uniramous 9 .
9. Middle segment of 2nd endopod with 2 imner setae; basal segments of exopods 2-4 with inner seta Ialysus Brian 1927. Middle segment of 2 nd endopod with 1 inner seta; basal segments of exopods $2-4$ without inner setac Parialysus gen. nov.
10. 4th endopod 2-segmented Pseudodiosaccus T . Scott 1906. 4th endopod 3-segmented 11.
11. Basal segment of 2nd antema divided Diosaccopsis Brian 1925. Basal segment of 2nd antemna undivided. $\quad . \quad$ Diosacous Boeck 1872.
12. 18t endopod 2 -segmented

1st endopod s-segmonted

 mented in P_{1} (urtcrif); (st antemna 5- to I-segmented Prendomestoman T. Scotf 1902. 1st ondopod equal to or shorter than cerpod; bud untmua with 3-segmented exerpod: 1st antenna 8 -segmenten]
Stenhelio (1Petuvalio) Brady 1s68.

Amphiascinae subfam. nov.

Body elongate tapering posteriorly, without demareation hetween metasome and urosmme. First antema (i- to V -segmented; End anteman with axopod 2- or ${ }^{3}$-segmented; mandible palp biranous, each ramus 1-segmented. Legs 1-4 :3-segmented thronghont: middle segment of 3rd endopod with © or 1 inner setae; eaudal rami usualy no louger, hat much shorter than wide, figenera:
 (gen. nov.), Roberdsoniur, aud Sohizopert.

Gemus Ampritascua Sare 1905.

1905. Amphiascus Sars 1905a, p, 380 ; 1906, Amphase"1s Surs 1911, p. 148.

The gonnk was defined by Sars (190解) to (momain those species whiols had been inemrectly ascribed to Stenholin Boeck lye Brady and otherw. He named

 new gentus. Amphiesens Tongirostris (Claus) can therefore le ustublinhed as the type of Jmpliossus sens. lat. (see p. 77) . A. minutus (Clans) comes into Gumny's gelus Amphiascopsis-here somewhat: widened-while A. Hebilis (Gushrecht) comes into the new genus Amphiuscoules, dofined below.
Λ rovision of this genms has heen made by Monard (1928a), but he later (1927. 11. 32) witharew his previons work, slating. hossever, that the hasis of his divisim into groups is matheal and eonlal he retamed. In his revision (1928a) he extended the seven groups outinert in his 192 s paper to thirtem, and since he
 separation into gromps, these can be eompared lith the genera mutlined here. Dis first five groups, correspond to Amphiascupsis ind Limplbiaschts sens. str. as Wefinel here; the next five are comparable with Mrsmmphinseus, but inchude also speciss here regarded as bolonging to Foblumanat the remaninur three gromps correspontl to dmphunscoincos, but inchedo specties which belong tos sefizupera.

The revisism athmpted here takes dmphasoupsis Gnmory (1927h) as the starting point, and is based on the setation of the midde segmonts of the end and ard endopods. Where pessible, this whamere is supported by olber Patures.

 inchusion in Amphinstopsis; Mesomphiaseus is little more than an assemblage of species showing omly one conmom characteristic, but as a whole olearly intermediate betweens Amphinseas sons. str. and Amphuscuides.

Broadly definod the new gemera are as follows (further details are given below) :-
 the midale scements of the Bud and ind endopods.
 I imer sela in the middle segment of the int entopod.
 midopods.

Armature of the Swimming Legs within the Genus.

As stated above, Amphiascopsis is the starting point of a series which links on with Dactylopusia. The remaining genera form a natural sequence in which the setation is gradually reduced. Amphiascus sens. str. forms a transitional group leading to Mesamphiascus but retaining the typical setation of the 2nd and 3rd endopods. Mesamphiascus, admittedly a grouping of convenience, is in turn regarded as transitional between Amphiascus sens. str. and Amphiascoides. The last forms a group as homogeneous as could be expected.

To illustrate the reduction in setation which is observable in the series of genera a summary in tabular form of the total number of "setae" in legs 1-5 is given for each genus. (The term "setae" is used in its widest sense to include spines.) Only 91 out of the total of over 110 species are dealt with in the table, since for the remainder nothing is known about the setation of the 2nd and 3rd legs, and in many of the examples included the information is often incomplete.

The following table shows the distribution of species according to total number of setae and spines on legs $1-5$ within the genus A mphiascus sens, lat.:

Genus	$\underset{\text { exp. }}{\text { p. }}$	end.	2. exp.	$\text { end. } \mathrm{p}$	3. exp.	end.	exp.	prox.	dist.
Amphiascopsis (30 species)	825	719	1119	918	1214	81	1214		7 2
	74				114	718	113	$\begin{array}{rr} 5 & 26 \\ 4 & 3 \end{array}$	628
Amphiascus sens. str. (15 species)	811	79	117	97	$12 \quad 4$	710	12	515	615
	74	61	103	82	115	61	113		
				71	101		$10 \quad 2$		
Mesamphiascus (26 species)	816	722	117	811	117	712	1212	522	618
	76	62	1011	$7 \quad 9$	108	611	117	44	58
	64		92	64	$9 \quad 3$	51	104		
			83		81		92		
Amphiascoides (23 species)	623	621	96	720	920	622	1018	521	
			815				93	42	516

It can be seen from this table that there is a gradual reduction in the number of "setae" throughout the series as grouped here. In Amphiascopsis 25 of the species have the full number of "setae" on the 1st exopod; of those with only 7, south-georgiensis lacks the inner seta on the middle segment and the other 3 lack a "seta" from the terminal segment. In Amphiascoidcs, on the other hand, each of the species has only 6 "setae"-an outer spine on each of the first two segments, and 4 "setae" on the end segment.

A similar trend can be followed in the 2nd and 3rd legs; in the case of the endopods this is partly due to the loss of one imner seta on the middle segments, by which the genera have been defined. But in the 4 th leg, only 3 of the 17 species of Amphiascopsis for which data are available have less than 12 "setae" on the exopods, whereas in Amphiascoides, where our knowledge is fairly complete, none of the 21 species has more than 10. In the endopods of this leg every species of Amphiascopsis has 7 "setae" (fucicolous apparently 8), while in Amphiascoides 6 is the constant figure.

It should further be noted that of the 3 species (brevis, dentatus, obscurus) known to have 7 "setae" on the distal segment of the 5th leg, 2 belong to Amphiascopsis (the position of brevis is uncertain) and that no species in this genus has less than 6 ; the majority of those in Amphiascoides have only 5. It may be of interest to note that the 6 species with 9 -segmented 1 st antennae
(Monard's nosulus-group) alsw bolong to Amphioscopsis, to which may be added anstrolis recently described trom South Australia.

Ampliasors sems. its, and Mesemphiascus are clanly intermedinte in reduction in number uf setace.

It has been stated above that Amplimsoopsis appears to be most closply
 in "hich the modde segmonts of the "mopods in loase $2-4$ all had 2 inuer setae, a coudition which ocenrs. for instanee. in the 'rishidae, ant that ome of these setale wis lost from the gnd lag in factplopnsith and from the fth leg in Aurphinservs. (1)

万ith leg (hishoiles and micronys) have two thin terminal setac, with winner and donter spines; in those with 6 "sertae" it is in an imner spine which is lost. Ther sime happenis in Amphiasers-in obseurus, dentulus, abd brevis, the only specics known to have T "selate" here. the arrangenent is as in Dachophait and in the speejes witly 0^{1} setae" it is an immospine which goes, learing twor

 1906, plo xevii).

The very wide basal and distal snyments of the tith lege in Dactulopusia are also retaned in Amphiascopsis. It is interesting to note that the Dactylupnsoid shape of the 5th leg is more mominent. is those species of A A phtasonpsis which retain the Dacts[opmsnid first]eg; it oceurs in 18 out of the 30 species listed howe, the wheroshow a gradual nateming of the haval segment with elongation of the distul segment, finally reaching the womdition found in kemeltome.

In almphinseus seons, stre, unly ty species (pallidus and ubyss?) have wide 5th logs. and these spexies thifer fromi - Imphascopsis in the shortaning of the middele xrgment of the exopod and basal sugmen of the cmanod in the first leg, and elongation of the end segments of this patopod. The rematumg specins in this
 in the shape found in uttimus, gieshrechti, and pestni.

1 moderately clongate shape is tombl thomghout Mesmmphascus, accomphnted in some cases by the loss of at spone from the distal seqment. This elonga-
 in which the distal outer spine tende to become modified into a short spur. 'These species, and the majority of the olthers in this semos, have an inner seta on the midde segment of How 1st "xoparl ami $\overline{5}$ "setaz" om the end segment. Eight. species, homever, have lost this seta, and while fors of these (bulbifor, pyythrachs. raiguns, had simulans) have also lost a "seta" from the end segment, this is

T'wo species (junudiand muthoi) retain the jomer seta bin the midnJe sergment fort have last ane of the "setae" from the end senment, and ure similar in other respects, while differing fron Mrsomphinsens in general. The fon species mentioned above (bublifer, etc.) hare a first propod of the type found in amphiascordes. The foth lou is of the general type for the gemus.

OE the 23 "nood" species of Amphiascoides listed here only 7 have 0 "setar"

ilievecensis, spinulosus, pygmacus and rostratus) and in these the shape is usually that of the type found in Mcsamphiascus (with the exception of rostratus, which has a subcircular distal segment), and a distribution of setae similar to that of the same genus.

In the remaining species the shape varies from the wide form to an elongate form, most of the species showing an intermediate condition, wide basally and tapering distally. The "setae", 5 in number on the distal segment, are 2 inner spines, a delicate terminal seta, and 2 outer spines. In some, the 2nd inner spine is less robust and siuated terminally, as in those forms with 6 "setae." The first arrangement is shown by debilis (cf. Sars, 1911, pl. civ), the second by subdebilis Willey (1935, Fig. 49). It is interesting to note that Willey's variety subdebilis intermixtus shows the debilis arrangement, which occurs in 13 of the species of Amphiascoides. This form, which has recently been found in South Australia, has been raised to specific rank.

In Robertsonia the same arrangement of "setae" on the 5th leg is found as in those species of Amphiascoides and Mesamphiascus which have 6 "setae"; in all, the segment is short and wide, without elongation.

Schizopera is interesting in that though the distal segment of the 5th leg may have 5 or 6 " setae" there is only one seta definitely terminal in position, showing its derivation from the reduced forms of Amphiascoides. I have not made an exhaustive study of the genus, but bave examined a dozen species in this particular connection, from among those described by Sars (1909b) and by Gurney (1928).

Comparison of the Males Within the Family.

Support for the classification of the Diosaccidae outlined above is obtained from an examination of the males, though as with the females there is a certain amount of overlapping between genera.

Apart from the 1st antenna, the chief modifications in the males are in the basipod of the 1st leg, the endopod of the 2 nd leg, and a reduction in the 5 th leg. In the 1st leg either the inner spine on the basipod is enlarged or the inner edge of the basipod bears a number of short spurs or spines. Two species, erythraeus and dactylifer, show a combination of both forms of modification. In some cases there is no modification in the first leg, which is identical with that of the female.

The 2nd endopod is usually only 2 -segmented in the males, the 2 nd and 3 3rd segments being fused, but occasionally a 3 -segmented endopod occurs as in pacificus and spinulosus. The endopod in a typical 2-segmented form, such as cinctus or longirostris, bears 1 inner seta on the basal segment, and 2 or 3 inner setae, 1 or 2 terminal setae, one of which may be modified into a slender spine, and 2 large outer spines, on the distal segment. Occasionally one of the outer spines is reduced and slender, sometimes occurring as a seta, while in other cases the two large spines appear to be fused into one much wider spine. Of the species with 3 -segmented endopods, pacificus bears two inner setae on the 2nd segment, and spinulosus one, as in their respective females. In the former, the outer spine is clearly borne on the 2nd segment, whereas in spinulosus there are two large spines on the outer margin of the end segment. The end segment bears 1 inner and 2 terminal setae in pacificus and 1 inner and 1 terminal in spinulosus.

The 5 th legs are smaller than those of the females, the basal segments of opposite sides are always united in the mid-line, and usually bear 2 spines, occasionally 3. The end segments bear 4-6 "setae" arranged in a manner comparable with those of their respective females. Males are known for 60 species.

In Amphiascopsis males have been deseribed for 19 species. Of these the 1st leg has been described in 12 cases, in 8 of which the inner spine on the basipod. is enlarged; in the other 4 cases there is mo enlargement but a modification of
the inner edge of twe basipod. The 2nd endopod has been deseribed in every case and in 17 of theso there are 9 Jarge spines inserted on the outer margin of he finsed end rigments. In the other two sases the outer apperdage is cither a weak spine or a scta.

The 5th lear is deseribed in 18 species, in 13 of which 6 "setau" are preseut,
 ure orly $\overline{0}$ "selae" and in the other \& there are only 4 "getae," but in every one of these there is a single thin terminal seta.

In Imphiuscus sems. sid'. males are linown for 10 of the spocies. The 1st leg hus been deseribed in all but two. Ondy en ot these have an marged spine in the othex 6 there is a varying sumber of nimis or spines on the innere edge of the basipul. The ghat motopod respmbles that of the typieal 1 mphimsonpsis speries in every ease. The 5 th lese hat the Amphiancopsid bamber and arrangenent of setae in 0 estres, the ofther 4 showing a veduction.

In Mesamphinstits, in whed males are known ton 16 spurios, the 1 st ley has bern deseribed in only 8 instances, Une uf these shons the entarged spine, 6 have the ibser edge of the basipod modifed, and one (nypthraeus) slows a combinafion of hoth. The and cmupord is like that of dmphiascopsis in avory case but
 lus a 8 -segmented endoporl described aboris.

 thin terminal seta.

In Amphiascoides matcs are known for 10 speries, and the 1st leg has been described in 6 cases. Nom lats thr imer apine enlarged, 4 hate the imer edge of the hasiporl with spurs, and 2 are quite monodilied. In those cakes where the list has has not hean specially mentioned it is probable that it resembles the lomale, and is therefors mmodified.

The nad cudopod is fescribed in 10 usses. Thero is a lage terminal spine in 7 of these, 4 of which have an onter spine as well, and the remaining 3 have in outer spine only. The 5th leg, describod for 9 spocien, has the 2,1,2 arrangement of Mesamphuscus, except in ctenophorks which has 9,7.3.

Summariziug, it can be stated that in Amphiasenpsis, cinctus is typical of the majorify; inner spien on 1st basipod enlarged: "nd endoporl with "e large
 spine as well is setale ; oth lor with 2 inner spines, 1 thin terminal seta and 3 outer spines on the distal seguent. This entivinn lipenmes reduced throush the scries of genera, with at entain amomnt of overlapping betwoen genera, to the Irbilis enulition it Amphinseoides, in whith the two end segments have hecome completely fused and all trace of a middle regment is lost. The end segment is produced into th large spine and there are "'inner setae, one of which probably expresents a terminal seta.

Males are known for 5 of the species listed under "\$periss inquacrendae".
[n Roberlsoniu males are known in tevery species exeopt brosen, and the sexual mondifuations ate the same in eath. The inner margin of the hasipod hears
 The Dhe codapod, normally a-segmonted hat 3 -segmented in prapinqua, accord-
 of the usual appearaner dudging form the fignte, beats 1 imner seta on the basal
 When fusod with the and semment, and on what corresponds fo the terminal
 outer spines.

The 5th leg shows 6 "setne"; "2 immer spines, 1 thin terminal seta, and is outer spilus.

In those 5 species of Schizopent, of which 1 have seen descroptions of inales, the Ist leg may ho nodified in either of the two ways deseribed above or may be thmodified. The 2and mothood shows wne emstant difference from preceding genura in that there is no inmer seta on the basal segmeut. The Eth leg shows the emblition fomm in dimphemsondes, exerpt that the 2 onter spines of the distal segment are usually momsiderably reduced.

In the Dinsaccinae the male uf the monotypie P'seudodiosuctus is unknown; it Diosuccus males are known for tonucornis and spinutus. In the first of these the imes edge of the first hasipod hears a hook-like spurs and the spine is not culargent; the second endopod is comparable with the condition in Amphiascopsis, but the fused and segments have become greatly reduced in size. In the fifth lag the distribnion of satae is men elear, but is comparable with the condition in A. similis und A. minutus. D. spmatus is said to resemble lennicornis, but with fewer selae on the fifth Jeg.

In Diosuctopsis ismuelensis the flest hasipod does not appear to be modified. the speond endopod is threc-segmented with two small onter spines on the end seament. The fitth leg is typical of that in Amphiascopsis.

Ialysus shous the enlarged spine on the first basinod, but this is not modified ${ }^{12}$ Purialysus; the secomd endumbl is twospantented, with a pair of adjacent spines nu the outer edge of the end regment in both grama. The fifth legs lack one inner spine, but the onter spines are wrill developed, and the thin terminal seta is present.

In emeral the strueture of the malus of the Diosaccinate supports the sumpested devivation from Amphioscopsis.

The suggested dorivation of the Stenhelinat lrom . Imphiuscoides receives strong support from the structure of the mates. The first hasipul shons numotification, the speond ondopod is almost exactly as in A. Aebilis, and the setae of the fifth leg are redneed in momber.

Ampriascopsis Gurney 1907b.
The genns is herein defined by the following characters:

1. Middle segment of and and nrd endopode weh with setac.
\because Middle segment of lat exopod jonger than cither 1st or ard segments, nud niways with an inner seta (2)。
 together not morn than 1 of basall.
2. Lege s- 7 with the following seta formula for the inner maryins:

	Endopart.	Expport.
p.u.	1.2.].	1.1.2.
p.is.	1.8.3,	1.1 .3 or ${ }^{\text {a }}$
pet.	1.1.2.	1.1.3 or ${ }^{\text {a }}$.

i. Distal segment of 5th Teg with at leagt 9 getate

It will be suen that this definition includes all those species transferred by Gumey to this genus, and by extending the somewhat limited defintion of his gemus a large number of species fall naturally into it. One of the most characteristic features is 1 hew seomill in the above list, which expresses in a slightly altered Lumm that plated first in (harney's list of distinguishing characters (Gnmey, 1927b, 12. 515). In lnang wases where tho mmber of setan m the second and third legs is makniw, species have been placed in this genus on the appearance of the first legs. The group is further characterized by showing little or no reduction from the full mumber of setae found in Amphiaseus as a whole.
(2) A. soulh-gcorgichsix appetre to lack the inner seta.

The type species for the gembis rinctus (Clats) ars ileseribed by sars (1911. 1. 14!, pl xat suii). If may be memed from the fact that it heads (ramen's list of species that ho also regards this an the type, though he does not state so sperifically:

 illustrated the first leg of monardi). Thuse whose seta formulae are unkwown for ans of logs "- 4 are marked by an (*)。In adition these are a lew species in which
 Lughentis, suasebthus).

Ot the entove listed specjes attemuthe forms an exception in having the cod sorghmis of the first endopod together slighty more than one-third of the basal.
 hasal secment, thengh charly lomper than the end semment. Both of these species are othervise gove examples of the qemus, so far as is linown.

It. should be noted here that none of the species which definitely come inta Nesumphiascus and Amphiascoindes lus an whitron middle segment in the first exupod.

With regard to the syonymy in this gemens, rubius rakut. (1993) is notoubt-

 p. $2(6)$ this form shows small variations trom the lype. There appears to he no real differower, apart trom size, lwoen hirsutus (Thmopson and scott) and hem-

 drseription.

The sumeses deseriben as funirolus by I . Scoll is unusual in that the fourth andupod sbons three immer retate on the ent segment; the first lem is ilearly of the Amphiaseopsid type.

For the setation of the Lers of lagumaris I have relid on Monard (19288, p. 360), in which it is indicated that this species has the finll setation found in cinetus. Other details are given by Ram (1908) 。

Concerning phyllopus sars (1906). Monard (1937. 1. 366) slates that the end segment of the foumb exnpod has seven smate and not right as stated in his revision. hat he later remarks that examples l'mon Banguls had eight shtap. Sins domenot illnatrate the fourth lag of phitlopos, hat statec that the natatory legs exhibit the finl mmber of sethe. If the number ean vary betwean seven and pight, then monardi Lange (1934) would appear to be a synonym of phyplomes (onfertnoately Lany dose not ilhsisate the firsi leg, but his eleseription shows that it is probably "f the Amphiaseopsin (eppe): if the nmmber is comstant Iten Mouard's specimens
 le monnadi. The illustration of the fifth bem given by Lange agrees well with sars. figurefor phyllopus, but the mald seecond (mulonod appears to difters. The species ate prolbhly, flewrore, distind.

While it is tempting to widen the keope of dimphiascopsis to include such forms as mothurime and domorsus with thein typical first legs, particnlarly in the former, by udmithing forms which lack an inner seta on the basal segments of one ne more of the scood to fourth esopods, there would them be little reasom for ex-
duding maronor, which differs from these only in lacking one of the inner setan on the end serment of the seeond endopod; this form leads on to walens, with an identienl seta formula, but has the end serments of the first endopod tomether comsiderahly more than one-third of the basal. The division of Amphiascus into gendra is luset with sump problems as this, and Monard (1925a) considers that the genus forms such a natural series that it cannot loe divided, even into subgenera. In attempting a division into genera it beemes necessary to dray a line somewhere, however arbitrary:

It shouk lo moted that those spercies in the above list which have been matsed with an (*) may later, when their setation is known, prove to belong not to Amphinscopsis but to Amphiaseus sens, str,

Kry to Ampmiagcoprie Fmidaties.
3. End angment of sud exopud with $\ddot{2}$ inner setac
$\begin{array}{llll}\therefore & \because & \cdots & \pi \\ i & \cdots & \cdots\end{array}$ Find segment of 3 rd exopod with. \& Smer setae

 Enel semments of 1st endopod logetleer no moro than $1 /$ of 1hasal to
 End segment of 4th cxopod with 's inner' setae
..
 Distal segmeut of 5 th leg sub-circular, almost cas wide as long . . grafitis (Lang) 193bon.
B.. Jind segment of 4 th exopod with a innet setac . . . 7. End segment of 4 th exopod with 3 inner setac 8.
7 Distul segment of 5 tht leg elongate, oval, nearly twieu as long as wide ximilis (Ulatus) 1866.

8. End and 3mi segmente of 1 st andoporl fuwel hanseni (13vady) 189!. Ond and Brd segments of 1st endopod separolo
!. Find segment of th cndopod with el inner setac
.
. 10 , Enal segment uf the endopod with 3 inner setan ... fuciculus (Ts. Scott) 1019.
70. Fixopod of and anteuna a.sepmested 11.

11. End segmests of 1st endopod together nlont 1/3 of loms . . nttennafis (Sars) 1006. End segments of ist endopod a bout 1 of hassat 12.
12. Distal segment of Eth lege elongate, rectangular, twice as long us wide.
hamiltoni (Thompson and Seott) 1903. Distal sogment of 5th leg oral, half ns long agnin os wide.

Tratatise (Thompson und Scott) 1903.
 Fud segmonts of Ist endopod together less than $1 / 3$ of hasal ... 14 ,
 Midtligs segment of $18 t$ exopod without inner seta .. snuthogeorgicusis (Jang) 1036e,
 End segments of 1 st endopod no mure thin $1 \frac{1}{4}$ of batsal. Si.
1i, Distal segment of 5th lef elongate, twice at lonty ns wide.
robustms (Thompsou and Scots.) 1903. Distal segment of fith log aubmiveular, almast an wide as long -i ... 17.
 Basal segment of 5th leg with 5 sctac
1R. Distal segment of Sth leg with is setne 19.

19. Caudal rami about us long as wide Caudal rami at Jeast twice as wide as long
20. Basal expansion of $5 t h$ leg wide and romaded \quad. \quad hatilubus (Monard) 1928. Basal expansion of 5th jeg sub-conical... $\quad . \quad$ mincthe (Claus) 1866.
$\therefore 1$. Ist antenas 8 -segmented imperestor (Monami) 1928. lst antenua 9 -segmosted $\quad . \quad$. madivensin (Wolfendeu) 1905a.

Amphiasctis senr. bir.

This cemus, which is very close to Amphinsropsis, containa those species which denart from that genus in one or more respects. It an be defined us follows:

1. Midile segments of gud and srd endorens each with 9 Eetab;

巳. Midalle segmont nif 1st exopod usually not eolarged, but culways with an imner gota ;
3. Basal segment of lat endopod wanally lithe or no Ionger than exopod: Ind and Brd seg. ments together usually greator than one-third of hasnd segment;
4. Tege 2-4 with seth formuln usually as in Amphiascopsis, but with realuced setation if resombing dmphascupsis in clatactens ensh/or 3 ;
5. Distal segment of 5th leg with att leakt 6 "setue".

It will be seen that this genus is difficult to define as a whole, and really amonents to a wroupine of those species which, while Amphaseopsid in most of their Esatheres. depart from the striot detintion of that genns in one or more characters.

So far as a type can be selected under such circumstancus the speeimen deseribed by Sars (1911, n. 159, p1.e. ei) and aseribed by him to A. longirostris (Clans) is typical of the majority of the species planed in this renms. It is unfortunate that "Taus" deseription is so meagre that some considerable doubt was expressed hy Saris (loc. cil. D. 160) as to whether his specimens shond really be aseribed to Claus' species.

The following species are included here:

 I928; 7athomeus Willoy 1031; peatai Monard 1035; demersus Nicholle 1939.

Concerning glaciatis there is some doubt, since it is ahnost certain that. Brady has figured the scenoll lag, although it is labelled "dritter fuss" (possibly a trans(utor's slip) ; it may, therefore, belong to Mesamphiascus.

The members of this gemes all show the two imer setae on the middle segments of the seemon and third andoporde and the imere seta on the madde segment ol the first exopod, but difter trom Amphioscopsis in sume nther partintlar, either in the first logs or in having a redneed number of satate on legs 2-4. In this respeet they are intermediate betwecn Amphiascopsis and Mesumphiascits.

Of these spenes nhensi, !nesbrechti, pullidus, trnuiremis and ullimus have the midde segment of the first exnporl as long is the end spgment, and demersus, pestai and rulfons have this semment only very slightly longer than the end segment ; in ahyses, pallidus and giesbrefhti the dirst exupod is longer than the basal endopod.
and in these three and the following additional species the end segments of the first embopod are tomether suow than one-third of the basal serment: glatalis, longirustris, pestai, purocides, tenuiremis, ultimus, mad valens. A tew, brunnews, ratharinae, demersus, pyroeides and varicolor, whild retaining one or hath of these Amphiaseonsid characters, differ from the members of that gentus in the reduction in setation. Ther, with the exeeption of calhorinae aud demersus, lade OII" of the "setae" from the end segment of the first exopod, while the same five species, with the possible exception of pyrocides, and the adrition of mulens, lack inner setae on the basal segments of the exopods.

Lacking information on the setation of the second and third legs it has not heren mossible to inclade ratharinae in the kry. Scott states that in some resperets it ennus sery close to minudus, hut since it differs from that species in the setation of the fourth exopod it would he mase to assume no difterence in the setation of lege 2 and 3.

Concerning canduespinosus, Brian (1927a) does not illustrate or deseribe tha swinming lems, but Monard (1928a, p, 369) includes it in his cimelus-yroup, and indicates that it has the full setation of the latter form. From Brian's figure of the fiest leg, hewerer, it is clear that it dones not conform to the condition found in Amphascopsis, and hust, therefore, be placed in Amphiascuss sens. str. Assuming it has the full setation of sinclus it can be semen that it neoupies a pusition intermediate between pallidus and ohyssi, somewhat hearer the former, from which it can he distimenushed on the proportions of the first endupord and fifth leg.

Key to Amphiascens mens. str. Frarales.

 Caudal rami normal, rectangular $\quad \therefore \quad \because \quad \therefore \quad$ plfimus Monard 192R.
i. Basal serments of Brd and the exopods without huner setac -. remersur Nicholls 1 tsan.

Basal segnents of aril and 4th exopods with inner betuc.
tenuiremis (Brady and Rohertson) 1875,
9. 1st exopod longer than basal matupod
al endonod

\because	\cdots	
\because	\because	9

9. Distal segment ut 5th leg twice as Jong as wide; chudal seta wilt pronomeed hateral process. glesbrechti Sars 1906. Tistal gegment of 5 th leg unt more than hulf ins lang again at widu; "caudal sethe without processers 10.
10. End segments of 1st endopod subequal ur coudacspimosus Brian 1027a. End segment of 1st vulopod twice us long as midite segment .. 11.
11. Fnd segments of list endopod together enpual to basal segment; segments of $18 t$ antenna short and compressed abyssi (Bueck) 1872.

pallitus Sara 1906.
12. Fisorod of and antenna 2 -segmentod

Exopod of and antenna 3 -segmented
13. Cusdal rami wider than loug

Caudal rami longer than wide
$\therefore \quad \therefore \quad \therefore \quad$ myroentes Monard 1998.
\therefore longirnstria (Claus) 1863. glaciatis Brady 1910.

Mesasiptiascits gen, hov.

Amphiasme having two and one immer setate on the midde segmonts of the seromd and thind endopods respectively.

This gromp is a somewhat arthary collection of speces showing eomsidarable Lange in setation, sme species such as amblyops having the momber of setar approabhing that of Amphiuscopsis, while others show a redued setation approach-

 less eentral position in the genns. and having a fairly wide distrihution. Tt has
 Woods IIole, in neldition to the miginal Inealities is Norway.

It is of interpst to fute that all those species having the more andsual shape of fifth lies shawn ly denticulatus are eontaned in this gemos. The: follonving species belong here:

Sars (1906) ittentified a specioss ats A. imns (hady, 1872, 1880), int later (1011, p, 378) Areiden that his ardier identification was incorrect, and that it showd hatre been recorded at forions (Nopman and seott, 1905. 1906) both having bren described as distind speries ly Noman and seotl. This appors to be eor-

 putite different setation in the fouth lum from that show hy Brady for imus (1880. Fl. xliai), and mopingu*s so far from bejus a doduced fom of imus, actualy has more setace. The form identified as imus (Brady) by Nonard is eorrectly pllo-
 Siont), fimm whed it can be distingninad by the shape and armature of the fifth lues, propurtions of the body, and of the bumi of the fonth less. These may prove
 seribed by sate in 7906 as imus).

Monard ($1935, \mathrm{p} .29$) states that simatues (Sars) and perplexus (Thompan and beotl) are syonymb, and give a setale formula fur perplexus which, as is shown bere, agrees with neither perplectes uor sinuatus. The formalae, so far as they aro known and set out in the manner used hy Nomat for combarison, are as Pollows:

	sinmatus	perple.cus:	perplersus
	(Sara) 100%.	(Thompenmand Scott) 1903.	(Monard) 19:15.
p.S.	6.. 4, $\mathrm{S}^{\text {. }}$	-	t. 4.8.
P.3.	6. U.1.	-	b. 5.1.
p.4.	8.	9.5 .1.	8. 4.1.

Thus, white it is clear thut Soward is not lealing with perplexus (Thompson
 chuded by the setae formula. But there are other ditferences which mast be reghoded ass signifient in this arems. The fitst lags of the two specjes ditter in their proportions, and perplecus hat an inmer seta on the firm emelopod which is lacking
 not tigure his perplewus and it is, theretore, meertain with what species he was dealing, but it is clearly meither of these. As has han sem parplemes inaderately deacribed, and thus cmon with eertainty be included in this gemme. From

"more or less'" as in imus, but no importanes eam le given to this statement since the fourth legs, which are illustrated, are quite distimet from those of imus.

Monard (loc. rit., p, 29) also re-establishes the spectes temax Brian (1927a), regarded by (iurney (19375, p. 522]) as a synonym of rythracus (A. Soott) 1902. Ther only apparent difference betwen the two is in the proportions of the distal segment of the fifth lag, which seems insufficient for the separation of a species, and Gurney's view is, therefore, accepted.

For the rest, falkiandipnsis lang (1936e) is a synonym of simuluns (Norman aud Seatt) 1905. 1906 ; and seluctensis Monatd 1936 is a synonym of normani Sars 1911. 'This is rery clear when one compares the description and figures of subtensis (loc. cit., figs. 4, 6) with Monard 's deseription of normani (1928, p. 388, figs. 31, 3. and 39,1) as well as with Sars (1911, Supp. pl. xix) and Norman and Scott: (1.006 , p. 147, as Stenhelin longirostris).

It is doubtul whether gathieri Monard (1936) should be regarderd as a misstinct specids, since the only recorded featnre in which it differs from angustipes Gimene (1927h) is the arrangement of the sutae on the basal segment of the fifth leg.

Teissierella salammboi Monard (1935a) has been includerd here for the reasons siven below (p .87) .

Key to Mebastphinasiug Femaies.

1. 2nul endopad without inuar seta on basal segment .
-. 2. Ind endoporl with inner seta on hasal segmont $. . \quad . \quad$.
2. Ist antenas 6 -scgmented; 2 ud terminal seta of candal ramus greatly swollen.

$$
\begin{aligned}
& \text { Ist autenne S-segmented; caudal setac normal } \quad \text { bubbifer (Sar8) } 1911 .
\end{aligned}
$$

3. End exopod without inner seta on basal segment gimom (domara) 1905 and exopod with inner seta on basal segment $\quad \because \quad \because \quad \because \quad \because \quad . \quad \because$
4. Lind segment: of and exopod without. Inner sotn .. .1. . . . 0 End segment of and exopod with I inner sutn $\quad \therefore \quad \because \quad \because \quad \because \quad$. Fnd segment of and exopod with 2 mner setae ... salammboi (Momard) ionas.
5. Distal segment of 5 h leg rechagular, with of sotac. exiguts (Surs) 1900. Distal gegment of 5 the legg oval, with 5 setac $\quad \therefore \quad \therefore$ mathof (Montard) 1935a.
6. and segment of 1st antema twice ns lung as basal seguent.

2nd segment of 1 st antenua about equal to 1 at
simulans (Norman and 8eott) 1905.
7. End segment of Ind exopod with ? inner seta eryithraeHs (A. Sentt) 1902, Lind segment of and exupod with e inner setan S. End seyment of 3rd cudopod with g inner setno O_{0}
-• 17. End segment of 3rd endopod with is inmer setan $\quad \cdots \quad . . \quad$...
 Middle sogment of ath endopod with inner setal 10 .
10. Fnd segment of th endoporl with I inner setg. . End segment of sth entopod with immer setne \quad. 11 , End segment of sth endopod with inner sctne . blanchardi (T. and A, Scott) 1895.
11. Catudal rumi straight, immer ferminte seta with latoral frocess . (yphooides (Sars) 1911.

1s. Find segment of 3rd cxopadi with 1 innere betal 13. End segment of 3 rd exopod with 2 inner sedne .. $\quad . \quad$ amblyops (Sars) Tg11,
13. Ead segment of thexopud with $\frac{1}{2}$ immer sptian
.. .. I4. Fad segment of ath exopod with if huer suttues $\because!\quad \therefore \quad \because \quad . \quad 15$.
14. Body segmenta fringed with spines; Jasal segment of 5 th leg with outer distnl process.
spinifec (Farran) 1913.
Body segments without spinos; gth Jeg Jurawl lagerirostria (Sars) 1911.
16. End segrant of ist cndoprod lows than halle of and segment ; weopod of and antenna. with seta on middle segment. - 16. ?ud segment of let andopod mom than hatif of end segment ; BSojod of Sudi antenna without seta on middlo segment
parvus (8ars) 1800.

Amphascomes gen, nov.

The following characters define the gemus:

1. Midder semuents of and and Srel endopods such with 1 inner seta:
2. Niddle segment of lat exopod without an inser suta, and negment with only 4 sofac and/or spines;
3. Lugs a-t having basal segments of exopods alwayg without inner seta, and the following neta formula for the margins of the cndopods:

p.S.	1.1 .1.
p.3.	1.1 .2.
p.1.	1.1 .1.

 is the number is high ia that found an Anphiakeopsis (see Table, N. 13) ;
4. The reduction in the number of setac is shown also in the bth legs in which the distul sagment hits ouly 5 sutac (with 7 exceptions),

This genus-by virtare of the reduction in the mmber of setae-clearly forms thr comereting link between Amphiascus (sens. lat.) and Schizopera. The type of the gemus is regarded as debilis. (Giesbrecht) as deseribed by Sars (1911, 1. 162, pl. civ).

The following spucies beloug to the genus:
dobilis (Giesbrecht) 188: ; intormediks (C 。Soutt) 1807 ; vararensis (T. Scott) 1003; hyper. bure"w (T, Scolt) 1003b; veglectus and pymbeve (Nornan and Scott) 190 18., Sars) and mam月s (Sars) 190ti; mannines and spinulosus (Sars) 1911; speoiosus (Brian) 1931 ; Retyeliopharus (Monard) 1924: invaninatus and strrifis (Mchard) 1226a; rostratus
 ard) 1935; roberti. (Atonard) 1935 = vetrarensis (7 '. Scott) 1903 ; intermisthe and subdebilis (Willey) 1935; rroudatus and fangi (Monard) 1936.
A. robinsonii, according to Gumey's seta lormula. (1927b, p. 526) woud form an exception in that the foruth endopod appears to have two inner setae on the end segment. However, Willey (19:30, p. 107) correds this slip, and shows that there is noly one inner seta here. The species, theretner, womplies with the generio deseriptins, Gumey (lon, cito) draws attention to the resemblance between this speceles and hispidus, affinis $(=$ varomensis $)$ and intermedins, and enlarges om Sentt's miginal deseription of robinsonit. While the first two ean be distinguished from intermedins, the distinctions hetwern his and robinsomii seem so small that I regard them as synonymons.

According to Monard's figure (1935, fig. (64) the fourth cxopod of roberti has dight "setae" on the end serment, wherens in the text ($p .3$. 3) he states that it has
only seven. The latter is the usual number in this genus, no other species having eight. The species has been given a place in the key on the somewhat dubious assumption that the figure is correct; if the text is correct then the species would appear to be a synonym of vararensis.

Klie (1937, p. 24) states that debiloides Monard is a synonym of speciosus Brian, with which I agree.

The species described as linearis by Sars (1906) appears to be identical with neglectus (Norman and Scott) 1905, 1906. The size of linearis is only 0.63 mm . compared with 0.8 mm . for neglectus according to Norman and Scott, but Monard ($1935, \mathrm{p} .30$) finds neglectus only 0.62 mm. ; the name linearis, therefore, should give way to neglectus. Monard (1937, p. 43), however, records the male of linearis, so that it is to be presumed that he does not find them to be synonymous. The only possible difference is in the setation of the exopod of the second antenna, but though Norman and Scott's figures differ from Sars' they state that the middle segment is somewhat indistinct, and therefore the seta shown on this segment may possibly occupy the position shown by Sars for linearis. The majority of species in this genus lack a seta on the middle segment, or have the exopod only twosegmented.

Stenhelia pygmaea Norman and Scott (1905, 1906), while clearly an Amphiascus (sens. lat.), approaches Robertsonia in the shape of the first endopod. It belongs to Amphiascoides, close to nanoides and hyperboreus, assuming the second and third exopods lack an inner seta on the basal segment, as does the fourth exopod. I have been unable to find any further reference to this species in the literature, and failing definite information on the second and third legs it cannot be included in the key.

Key to Amphiascoides Females.

1. End segment of 2 nd exopod without inner seta

End segment of 2nd exopod with inner seta $\quad . . \quad . \quad .016$.
2. End segment of 4th exopod with 1 inner seta 3. End segment of 4th exopod with 2 inner setae 5 . End segment of 4 th exopod with 3 inner setae .. roberti (Monard) 1935 (3).
3. 1st exopod as long as basal endopod ; distal segment of 5th leg at least twice as long as wide. sterilis (Monard) 1926a. 1st exopod not more than $4 /$ of basal endopod; distal segment of 5 th leg less than twice as long as wide
4. Width of body only $1 / \frac{1}{1}$ of length debilis (Giesbrecht) 1882.

Width of body more than $1 / 4$ of length nanus (Sars) 1906.
5. Basal segment of 1st endopod distinctly longer than exopod 6 .

Basal segment of 1st endopod little or no longer than exopod 8.
6. Basal segment of 5 th log armed only with 5 short spine-like setae speciosus (Brian) 1921. Basal segment of 5th leg armed with normal setae
7. Distal segment of 5 th leg with 2 terminal setae subdebilis (Willey) $193 \overline{5}$. Distal segment of 5th leg with 1 terminal seta. . . intermixtus (Willey) 1935.
8. 2nd and 3rd segments of 1st endopod together greater than half of basal segment

2nd and 3rd segments of 1st endopod together no more than half of basal segment $\quad \cdots 13$.
9. Distal segment of 5 th leg elongate, twice as long as wide 10 . Distal segment of 5th leg short, oval, not more than half as long again as wide .. 12.
10. End segment of 1 st endopod twice as long as 2nd segment 11 . End segment of 1 st endopod 3 times as long as 2ud segment .. nanoides (Sars) 1911.
11. Basal segment of 1st endopod approximately equal to exopod.

Basal segment of 1 st endopod only 2/ of exopod neglectus (Norman and Scott) 1905.
12. Basal segment of 1 st endopod wide proximally, tapering distally; exopod of 2nd antenna 2 -segmented commensalis (Seiwell) 1928. Basal segment of 1 st endopod of same width throughout; exopod of 2nd antenna 3 -segmented (3)
13. T'erminal setap nt candal rami greaty awollen hasally, tapering alnuptly, ending in fise hairs. langï (Monard) 193i. 'Terminal sctac of caudal rami thickeneat hasally but not tapering abruptly . . 14.
 Guentest width of body mure than $1 / 4$ of lengtli
\therefore hismintur (Nomman as., hars limi).
15. Exopod of and sutemna i-segmentod . . intermedius (T. Hicott) 189π Fisopod of Eud antenna ©-segmented ... innaginatum (Monard) 1920. ...
16. Iat exarad distinctly shorter than hasal chndopud; 2nt and Bril segments of endopod together less thom half of linsal Tat exopod rery little or no shorter than has:1 modopod; end segments of endopend together noarl, ats long in hasal 10 .
 Caudal setas: Hormal

 deuticley
ilipbemhsts (Monard) 162E.

"Flompon Caudnl tami abuut of of amat segment.
20. Tistal segment of 5 th Jeg orill, length to width Jess thas ma: 3 Distal segment of 碚 leg clongate, twice as long as whle
 rcandulus (Monard) 1930.

Shecieq Inquaterendate.

 ervainty until our knowledge of the second and third legs is complete. These are listed in chronological order :

 tongicornis and preht rus (Thempon and Scott) 1903; lolloralis and mixtus (T. Scott) 190is,

 is so clearle chasacterized that even species whose second and third lugs are ur-
 majority is that they should gno juto Mesamphinscus.

OI "ecruensis Sout states that the swimruing legs tre "ncarly ss in imus". Which sugyests that it helomss to. Mesomphenseus; this is supported by the structure of the first exopod, wheh exchudes it l'rom Amphimseroiles; it might, however, be ineluded in Amphiascus sens. str.

The three species brencornis, gracilicundata and longicomis desoribed as species of Stenhela by Thompsom and Scolt, atw wadnded Prom Amphiascus sens. str. by the first exopod or fourth endopod or both, while Rentipes of the same authors cannot be A mphiascoides: perplexus of the same authors is probably Mesamphiascus.

Ofbrevis, congener and polaris sars states that their natatory legs are nomal ; these are not illastrated, hat comgemer in stated to resemble similis, and polaris to resemble imus. From the dratings of the in linst exnpods it is improbetble that they holoncr to Amphiascus sens, stre thoy canmot bolong to Amphiascoides since the middle segment of the first exoped kears an inmer neta and the end segnomit five "selat". Nonard (1928a) regards congcner as a synonym of forucnsis.

Of bruce, the only information concerning the swimming legs is that "seemul, third sumi fontil legs similar th stromi (Baird)". The jllustration of the fourth

[^2]leg suggests either Mesemphiascus or Amphiascoides; the first exopod, while typical of Amphiascoides, does not exclude it from the former.

Of dactylifer, Wilson (1932) states that the legs are of the "usual pattern in this genus". Since the first exopod is without an inner seta on the middle segment, and the end segment has only four "setae", it may belong to either Mesamphiascus or Amphiascoides.

The first four pairs of legs of dispar are stated to resemble those of imus; from the first and fourth, which are illustrated, this species could belong to either Mesamphiascus or Amphiascoides.

Of the two species described by Brady (1918) ignotus is known only from the male, while elegans is insufficiently described. From the third endopod, which has two inner setae on the middle segment, it would appear to belong to Amphiascus sens. str. If so it would be an aberrant form, since the reduced setation of this endopod, lacking outer setae on the end segment, is not found in any other species of Amphiascus, on any of the endopods. The description is too unsatisfactory for certain identification.

In the case of faroonsis, described by T. Scott (1903a) as a variety of Dactylopus stromi, the first four pairs of legs are stated to be "almost similar to those of D. stromi". This species of Dactylopus was renamed by Sars as vulgaris, and Scott's variety differs from that in the proportions of the first legs. It appears to be either Amphiascus sens. str. or Mesamphiascus; it is definitely excluded from Amphiascoides.

Of herdmani and similis A. Scott states that the first four pairs of legs are similar to imus, suggesting once more that they belong to Mesamphiascus; similis is not excluded from Amphiascoidcs however. This species, being distinct from similis (Claus) has been renamed similoides by Monard (1938a), who places herdmani in his varicolor-group, and similoides in his giesbrechti-group, but in each case expresses some doubt. These two groups are among those which correspond to Amphiascopsis and Amphiascus sens. str., and there seems little justification for their inclusion in either of these genera.

Sars (1911) gives no information about the legs of lamellifer, beyond stating. its affinities with confusus, typhloides and typhlops, and since the middle segment of the first exopod has an inner seta and the end segment five "setae", in all probability it belongs with the above species in Mesamphiascus.
A. littoralis (T. Scott) 1903, can be either Mesamphiascus or Amphiascoides, but not Amphiascus sens. str., since there is no immer seta on the middle segment of the first exopod, and only four setae on the end segment of the fourth endopod. Monard (1935, p. 31 ; and 1937, p. 42) identifies a species with littoralis (T. Scott) but the setation of Monard's form does not agree with that of Scott in that the end segment of the fourth exopod has seven appendages, whereas Scott's has only six. Further, Monard (1935, fig. 32) shows an inner seta on the middle segment of the first exopod, not present in littoralis. Monard's form cannot be identified without further details, but from the single seta present on the middle segments of the endopods, according to his seta formula, it would appear to be an Amphiascoides, but the inner seta on the first exopod (op. cit., fig. 32) is not known in any other species of this genus.

Monard (1928a, p. 369) suggests that mixtus (T. Scott) is a synonym of longirostris (Claus) ; later (1937, p. 97), however, he identifies a species as mixtus, and gives its seta formula, which agrees exactly with that of longirostris. He states, also, that the first leg, first antenna and fifth leg agree with Scott's figures. There seems, therefore, no reason for retaining Scott's name, since the only apparent difference is one of size, especially as Scott's figures agree very closely with Sars' for longirostris.

The swimming legs of reflexus are described by T. Scott (1895) as "somewhat similar to imus", and since it is excluded from Amphiascoides by the inner seta
on the first exuporl，it probably belongs to Mesamphiascus，though not exeluded from Anphinsrus sens．str＂．

The sprecies described hy Prady（1！110）ats mucronatus is clonrly not an Am－ phinseus but appears to be neap to 1 meimpsis Sars．It is，however，no inadequately Aescribed that certain identification is diffeult．

Regarding proximus T＇．Seott（1914，ก．373）the deseription is somewht in－ adequate but the uppearance of the exopod of the seeand antenna，which is two－ segmented with a very short end segment，and the position of the inuer seta on the basal serment of the first endopoll suggest alfinities with Ameiropsis rather than with fmphiuseus．Traforthately we linow nothing of the swimming lags or rostrum．

The remaining species are those of which I have unt seen descriptions：
brevifurcu＊（Czernarski）1808；limicolus（Brady）1900；crassw．（Gieslricht）1905； angrapequensis Pesta 1916；rufcsceин Brian 1925．

According to Momard（1935a，p．3t）brevifurcus（Cz．）is probably yyony－ mous with debilis（Ciesbreche）；and the same author（1928a，p．382）states that rufescons brian is known only from the male．In this latter paper he places crassus in his varionlor－wroup，which suggests that it belongs to A mphiascopsis ； it would appear also that it is quite distinct from any other species of 1 mphiuserus in having eight setae on the distal segment of the fifth leg．Brady＇s species limicolus，Monard places in his dehilis－group，which suggests that it helongs to Amphiascoiles．Of emyropegumsis he makes no mention；this spreies is listed in the＂Zoulogical Record＂，Vol．Iv I_{1} for 1918.

COLLeTtED Lists of Sivonvis wigit Referencts．

afiniz Surs 790 （i， angolensis Jfomard 1934， clandestina Klie 1023, debonories Monard 1928． dubius Takubisink 1933． falklundiensis Lang 1936e irmaus（ 1 ．scott）Monard 19\％8a， jugurihe（BI，and Rjch）Monard 1928：1， hnowi（This and Sc．）Monard 1928a limearin Sars 1906，
fongicumbus Sars Mronard 1928is， mixtus（T．Scoti）1903， mucronalus Brady 1910， puradoxus Daday Monurd 19n8a， parautes（C1）Brias 1017． productus Rars 1900， propinqu＊s（Scott）Monard 1928a， proxinus T．Scott 1914， robivsn⿰⿺𠃊⿻丷木斤丶（A．Scott）1902， suhblemsis Munard 1936 scotti sewell 1024， tenar Brian 1987n． Tho following ate probably eymonyms：
banyulcmsis Momard 19e8， gawthder Monard 1936， poberti Monard 193 ，
$=$ vnrarensis（ T ．Scotl）1903，
＝Robertsonia，
＝Schisonpera longicauda Klie 1925，
$=$ specinsus Brian 1921，
$=$ simills（Claus）1866，
$=$ simulans（Norm，and 8c．） 1905 ，
＝Robertsonfa．
＝Schizupera
＝Moberisunin，
$=$ neglectus（Norm，and Sico）1H0 \bar{J}_{3}
$=$ Schizopera
$=$ longinostris（Clars）1863．Mon．192Sa，
$=$ Ameiridac，

$=$ blanchardi（T．and A．Sc．）1895\％，Bars 1911，
$=$ Robortsmia，
＝Ameiridae．
$=$ intervirrias（T，Scatt）1897．
$=$ normanisiars 1011，
$=$ Robertкonia propinqua（T．S．S．） 1894 Gurn，10271，
$=$ erythracus（A．Scott）1902，Gurn．1927b，
$8=$ hirsutur（Tho and Mre）190．s，
$\stackrel{y}{=}=$ angustines Gurncy 1927b，
$:=$ vararchnis（ $\mathrm{T}_{4} . \mathrm{Sc}_{0}$ ）1903．

Robehrsosia Brady 1880.
There has been considerable differmee of opision as to whether this genus
 domonstrated by Laner（ 1933 ai ）that it must he indlated in the former，as sugesest by Gurney（1927b）．

The genus is here regarded as being characterized by the following combination of features:

1. 1st antenna 5- to 7 -segmented, having only 3 segments in the basal portion (4);
2. 2nd antenna with exopod 2 - or 3 -segmented, but when 3 -segmented then the middle segment is without a seta;
3. exopod of 1 st leg with an inner seta on the middle segment, and usually with 5 "setae", on the end segment (1 exception, see $p, 89$);
4. endopods of legs.2-4 with only 1 inner seta on the middle segment;
5. exopods of legs 2-4 without inner seta on the basal segment.

It will be seen that the 4 th and 5th characters are those of Amphiascoides, the 5th occurring occasionally in Mesamphiascus; the 3rd is that of Amphiascopsis and the less reduced forms, found also in Mesamphiascus; the 2nd is common to all the genera into which Amphiascus is here divided, in that the exopod may be 2- or 3 -segmented, but the middle segment when present may be with or without a seta, and all three conditions are found in each genus-here, if there is a third segment, the middle one is without a seta. The 1st character, as pointed out by Willey (see footnote) is found only in Robertsonia.

This combination of features suggests that Robertsonia is derived from Mesamphiascus, retaining the unreduced 1st exopod found in that genus, but has undergone a reduction in the setation of legs 2-4, attaining the condition found in Amphiascoides; while the 1st antenna has undergone reduction in the number of segments, and the exopod of the 2nd antenna a reduction in the number of setae.

That Robertsonia is a distinct genus can be established by an examination of the genital area where it has been figured. That of tenuis has been shown by Lang (1935a, p. 6) along with that of Amphiascus longirostris. Its relationship to Amphiascus is clear, as pointed out by Lang (loc. cit.), while its distinctness from Dactylopusia is clearly seen by a comparison with the figures for species of this genus given by Lang (1936e, p. 22, figs. 25-28). Other illustrations of the receptacular portion of this apparatus are given by Monard (1926, p. 627) for diademata and Willey (1931, pl. xx, figs. 57,58) for hamata and flavidula.

A possible exception to the 5 th in the above list of generic characters is found in knoxi (Thompson \& Scott) as described by Gurney (1927b, p. 534), but diademata Monard (1926, in 1928, fig. V, 1) which Gurney (loc. cit., p. 530, and 1932, p. 17) regards as a synonym of knoxi, lacks the inner seta on the basal segment of at least the 3rd exopod. Monard (1926, p. 627) does not describe or figure the basal segments of the legs of diadomata.

Amphiascus bulbifer Sars (1911), included by Gurney (1927b, p. 530), in Robertsonia, has the basal portion of the 1st antenna with 4 segments, the middle segment of the exopod of the 2 nd antenna has a seta, the middle segment of the 1 st exopod has an inner seta, and the middle segment of the 2 nd endopod has 2 inner setae. In these respects it is a true Mesamphiascus, in spite of the 1st legs which, after all, differ very little from those of exiguus and mathoi, for example.
T. Scott (1894) described a species Dactylopus propinquus, which Sewell (1924) transferred to Amphiascus and renamed Scotti, since it was distinct from A. propinquus Sars (1906). As Gurney (1927b, p. 530) has pointed out, Scott's is the older name and should have been retained, but the point does not arise since, as Gurney states, the species really belongs to Robertsonia. Sewell points out the resemblance between propinqua (T. Scott) and irrasa (A. Scott 1902, as Stenhelia) which, as far as is known, are separable only on the proportions of the 1st endopod, since the setation of the swimming legs has not been indicated for propinqua by either Scott, Sewell, or Gurney. That of irrasa is given both by Gurney (loc. cit.,
(4) Willey (1931, p. 614) states: "It is one of the leading characters of Robertsonia that the proximal portion of the antenule consists in the female of three joints only"?
p. 1322) and lyy Munard (14ij5a, p. 28), but Monard's illustration of the lat lag (lor. ril., fig. 30) does not agre with those of Λ. Sentl ($1902, \mathrm{pl}$, iii, firg. B) and

 uppear that Munard (1913.5a) was not dualiug with irmas, hot with propingut, unless these two are torms of the mame sppeces, as suggested by sinweld (lar. cit., p. A8:3). The segmentation of the 1 st antenna, according to sewell, is variable and may be cither of of f in the name species. so that moloss there is a difference in the setation of tha swimming leges only the Inng fond serguent of the lat endopod distinpuishes iraan from propingua. It Man, therefore, be assumed that simes irman uf Mrmard (198ia) is in all probability propmequ. the seta formula siven by Monard is that of the latter,
 under the dafinition miven here, and the first low is intentical with that of propinqu, but the enecies lliffer in the seta formuln ot the 3 ad leg. In angolensis there are 4 sedae on the cut semment of the 3 od endopod, in propinqua there axe 6, as in iverasa.

It should he noted that aldongh T. Soot shows the exnora of tie 2nd antenna

As a result of the inclusion of Robertsmat in the Diosaccidae, Monard's genns

 Amphassus and Robortsomin. Its resemblance to the former depends on the
 armed with pectinated setac. (inmey (1927h, p, i32) has stated that these setate may rometimes be absent in R. Finneri, and dismisses them as mimporiant. T, rellicer must, therofore be induded in Roberdsoniu-a possibility which is ad mitted by Momaril (19:30, p. 27. footnot()-whild T. sulammboi Monard (79:53a,

The inclusion of sulammben in the genus Tnissierella by Monard rasted antirely on the pertinated setae of the lot datemb, wheh is K -sergmentad, with t segments in the basal portion. Thas fature, combined with the prevene of
 basal segments of the ibrd and the exopucts, clearly shons, its alfinities with Amphuscus sum excludes it from Robertsonin.

Filo (1937) crenped a menns Varmaia, but did mot apparently wake a close remparisom of this gems with Robertsomin. He regards his new gemas as inter. mediate betwecu . Imphinseus and Dactglopmsia, in spite of there heing mily ane inner seta in the midnle sepments of legs "4, and later (10.31) tismisses the splation of tha swimminer lege from considuation mat uther species are known. He relates Varmuin to Bachylopusio on the enlarged basal segment of tha lit. entopot, and to dmphusens me the rustrom, end antenna, mandible, maxillute, ith lour, candal rami and mate features, hur suparales if l'rom buth on the position of the immer sela of the Ist endenod. Aspointed out above (D 。 (66), this is variable in hoth Thalestrids and Diosaceids. donl partionlarly in Rathertsoma, in which pems it may even be absent. In fact, larnain monardi is at crood example of Robertsamia as defiued almose ind, with the exception of the endoperl of the "and antoma. Which kitie statnes to he indistinetly is-segmonted, all the features named ly him as Amphiasenill :yper extraordinarily well with Sars' (1911) figures of B. Lemuis.

In any case, the position of Whe imner seta on the hasal segment of the 1 st eudoped, masmported by other distimgothing characters, is insufficient for the erention of in now genus.

Further support t're the imelosion of V. monardi in Robertsonim is found in the 3 ssegmented basal portion of the first antema, and the genital area of the femate, which shows cllose agreement with those of didulemutu, hamata, and flavidula. In many details Klia's specits closely resembles R. flomidula Willey (1931), while the reduction in size of the inmer seta on the basal segment of the lst endopod compares with the condition in h. chesupeakensis Wilson (1932a) in which it is absent.

The following species have been ascribed to Robertsonia:
tenuls Brady 1880; wropinqua (T. Scott) 18!14; irrasa (A. Scott) 1902; hnoxi (Thompson and Scott) 1903; mormani Brady 1010; bubbifor (Sars) 1511; menfeifera Klie 1913; diademeta Monard 1026 ; salsa Gumey $19: 7 a$, fluvidula and hamata Willey 1931 ; ahesapealie has Wilson 123ำ.

Ot these Gurney ($1927 \mathrm{~b}, \mathrm{p} .530$) has stated that normani Brady is as Eetinosomid; arulaifera kitie is a synonym of Thompsonula hymenae (I. (: Thompsom 18s9) ; and that diademata Munard and sulsa Gumey are synonyms of knoxi (Thompson and Scott.).

To the genas musi ho adted angolensis (Monard) (19:3t; celtica (Munard) 1935; and monardi (Klie) 1937. As shown above bulbifer belongs to Mesamphiuscus.

The genus, theretore, comprises the species listed below:
tenuis Brady 1880; propinywu (T. Scott) 1894; irrasa (A. Scott) 190: ; knoxi (Thompson and scott) 1903; flevidula and hamata Willey 1931; chempealensis Wilson 19a2ib, ungolensis. (Monard) 1934; celtica (Monard) 1985; nomardi (Kife) 193i.

Key to Robratsonla limanabes.

I. End segment of nad cudoped will 1 inmer seta

\therefore Megments of 1 st endopod subequal 3 Basal segment. of 18t endopod at least us long as 2nd and 3ril lugether .. $\quad .$.
3. Distal segment of 5 th leg with 5 sotan .o... .. tenuis Brady 1880. Distal segment of 5 thi leg witts 6 setac $\because \because \quad \because \quad$ Rnoxi (Thompson aud scott) $1001{ }^{\circ}$

1. End segments of ist. endopod together at Luast one-quarter of basal seguient. .. © End segments of 1st endopod together no more than one-sixth of basal serment ... \%.
2. End segment of 1 st endopod twiec as long as middle negneat .. irrasa (A, Scott) 1202. End segments of 1st caldopod subequal propinque (T , Scott) 1594,
i. End segment of 3 rd endopod with is setab Find segment ot' 3rd undopud with 4 setan ungolensis (Monard) 1934.
J. Ist exopod alunost as long as bassal begment of endopod
Ist exopod little noore thans lhalf of endopod
3. 1 st antennm 6 -scgmented \quad ist antenua 7 -segmented $\quad \therefore \quad$... monardi (18110) 1937, 1st antenua 7 -segmented $\quad \therefore \quad \therefore \quad$ favidula Villey 1981,
chosaperkemsis Wilsun (1932n) cannot be imeluled in the key sine the appendages of the Pemale were not demeribed.

Sctmyorera Sars 1905.

1900. Schizopera Sars, 1905a, p. 38: : 1!0! schizopera Sars, 1909b, p. 39.

It is not propmsed to deal with thes genus in detail here since it in comfined 1.0 fresh or hrackish water. Its affinities with Amphusseus are very dear, and Monard (1935, p. 21) eonsiders that it should be merged with that genns. This Guestion has bem discussed by Gumey (1927h, p. $514 ; 1932$, , 38) and Chapmis (1931, p. 585). The latter author indudes a key to the species.

As staterl above, it forms the lasi, grnus in thas serien inchuted in the Amphascinase, showing the erreatest amoment of reduct ion in the nsmbere of setar ous the swimming legs, and is clearly denived from Amphiascoides.

Sumpary of Distinguishing Characters of the Amphiscinae.

Character.

1. Number of setae on middle segments of 2nd and 3rd endopods respectively.
2. Middlo segment of 1 st exopod with inner seta.
3. Midale segment of 1st exopod greater than 1 st or 3rd segments.
4. Number of setae on end segment of lst exopod.
5. End segments of 1st endopod together less than $1 / r$ of basal.
6. Number of inner setae on end segment of 3rd endopod.
7. Number of inner setae on end segment of 4th endopod.
8. Basal segments of exopods 3-4 with inner setac.
9. Number of segments in basal portion of 1st antenna.
10. Middle segment of exopod of end antenna, when present, with seta.

Diosaccinae subfam. nov.

Body with metasome enlarged, distinctly wider than urosome and more or less stroncly demareated therefrom. Fisst antema 8-segmented; exopod of 2nd antenna 1-segmented (2-segmented in Pseudodiosaccus) ; mandible palp uniramous (biramous in Tydemanella, Diosuccopsis, and Diosaccus truncatus); rami of legs 1-4 usually 3 -segmented, but 1st endopod "-segmented in Tydemanella, Ialysus and Parialysus; 1st exopod slightly modified in Diosaccopsis and Pseudodiosaccus; 1st endopod always prehensile; middle segment of Brd endopod with 2 inner sctae; caudal rami little or no longer than wide. 6 genera : Diosaccopsis, Diosaccus, Pseudodiosaccus, Tydemanella, Ialysus, Parialysus.

Diosaccopsis Brian 1925.

According to Monard (1936, p. 18), the genus, which was somewhat doubtful as first described by Brian, based is it was on a speeies (rubous), which closely resembles Amphiaseus pyroeides Monard 1928, has been firmly established hy the inclusion of the species \bar{D}. ismaclensis Monard 1936. 2 species.
D. rubeus Brian 1925, syn. D. amphiasculus Brian 1927; and D. ismaelensis Monard 1936.

[^3]
Diosaccus Boeck 1872.

The genus contains 5 species:
tenuicornis (Claus) 1863; sordidus Brady 1910; ruber Brian 1923; truncatus Gurney 1927b; spinatus Campbell 1929.

Pseudodiosaccuts T. Scott 1906.

This genus was created by T. Scott for the species Diosaccus propinquus T. and A. Scott (1893a), and at present contains only the one species.

In a recent paper (1941) I expressed the view that Ialysus was synonymous with Tydemanella, based chiefly on certain similarities which are evident, and supported by the discovery of a species which appeared to be intermediate between these genera. The finding in Western Australia of further material of the species described from South Australia as T. robusta has led me to revise my opinion as to their synonymy.

The result is that the Australian species has now to be placed in a nefv genus, for which I have (p.91) suggested the name Parialysus, while the other two must be regarded as distinct. This is particularly evident from a comparison of the structure of the mouth parts, which are considerably reduced in Parialysus. The distinctive features of the three genera are set out below.

Character	Tydemanella	Ialysus	Parialysus
Ant. Body, depth: length	4: 9	4:10	4:7
Urosome, length: width	-	5:3	almost equal
segments of first antenna	elongate	short and compact	short and compact
mandible palp	biramous	"long slender umbranched rod" (7)	like Ialysus but - segmented
$\left.\begin{array}{l} \text { maxillule } \\ \text { maxilla } \end{array}\right\}$	"'nearly similar to those of Dactylopodella flava' '(8)	"as in Dactylopusia', (i)	strongly reduced and without lobes.
maxilliped	ditto	robust.	like Ialysus.
p.1. endopod	length: width $-13: 4$ 1 terminal spine, and 2 setae.	length: width - $10: 4$ 2 terminal spines only.	length: width $-14: 4$ as in Ialysus.
exopod	middle segment with inner seta.	middle segment with inner seta.	middle segment without inner seta.
p.2. endopod exopod		middle segment with 2 inner setae. basal segment with	middle segment with 1 inner setae. basal segment without
p.3. endopod exopod	''nearly similar to those of Dactylopodella flava' '(8)	inner seta. end segment with 3 inner setae. basal segment with inner seta.	inner seta. end segment with 2 inner setae. basal segment without inner seta.
p.4. exopod)		basal segment with inner seta.	basal segment without inner seta.
caudal rami	longer than wide, as long as anal segment.	little longer than wide, shorter than anal sgt.	as wide as long, shorter than anal sgt.

(7) Gurney, 1927b, p. 505.
(8) A. Scott, 1909, p. 217.

Tymemanelda A. Scote 1909.
The gemus was regarded by Scott as a Thalestrid relater to Dractylopodella, which it resembles in shape and in the relatively large basal serment of the first endopod. It is, however, as stated by Lang (1936e, p. 18), clearly a Diosaceid.

One species: T. typica A. Scott, 1909.

TAlysus Brian 1927.

13vian phaced this wemm in the Diosaceidae: Gurney (1927b) riscovered the same species independently and regarded it as a Thalestrid, in which view Monard (1935) supports him. In his revision of the Thalestridae Jang (1936e) confirms Brian's views regarding its systematic position.

One speoies: J. rufus Brian 1927.

Partalizaug gen, nov.

The opinion expressed by me (1941) that Lalysus is aynonym of Tydemanclla camot be rphold, and 1 am theretoro cormpelled to establish a new gemus for the spocies described as Tydomunclla robusta, since the month parts show a very considerable reduction, Apart from these the species could probably be plated in Ialysus, in spite of the much more slender first endopor, The differences have been set ont in the table above.

One species: P. robusta (Nicholls) 1941.

Subfam. Stenhethinafe sens, str.

Body with metasome enlarged, distinetly wider than urosome and demarmated therefrom. First antenna, 5-, 6-, wisesmented; exoper of 2nd antenna 9- of 3 -segmanted; mandible palp hiramous (outer branch strongly developed and reflexed in Stenhelia.). First exopod mmodified, endopod with long end
 mented endopors; middle semment of Brd endopod with 1 inuer set; caudal romi at least twiec as long as wide, 2 genera.

Stenhelia, Pseudomesochra.

Stennelia Boeck 1864.

T'hn genus is divided juto a subgenera, aceording to the segmentation of the 1st endopod. In Stenhelia (Stenhelia) it is 3 -segmented; in $\$$. (Delavalia) Q-segmented. A key to the genns has been given in an carlicr work (1939), from which 3 species were left out. Two of these S. (D.) inopinata (A_{1} Scott) 1902 and S. (D.) longifura Sewell 1934, were overlooked; S. . glacialis Brady 1918 is insufficiently deseribed. but appears to be a Thalestrid belonging to the subfamily Pspudntachidinae Lang (1936ir) ; further identification does not seem possible.

The following species referreal to Stenhetia belong to Amphiusous:
ima Brady 187* ; hispila Norman Ms, Isrady 1880; tma Gieshecht 1889; denticulata I. O. Thumpson 1893; aceraensis T', Scott 1804: Aismur 'T, and A, Scott 1804; reffror. I'. Scott 1895; blanchardi TT. and A. Scott. 1895; herdmani and similis A. Scott 1896; intermedia I . Scott 1897: Itmicola Brady 1900; comfusa T. Scott. 1902; ergithraea A. Scott. 1902; minuta, perplexa, brevicornis, gracilicaulhta, Zongicornis shd dentipes Thompson ind Scott 1903; hyperborca 'ry, Scott 1903b; neglente, pygmaca, simulnms, varians and longirostria Normun and Scott-1905.

Of these the following have been renamed: ima Giesbrecht $=$ giesbrechti Sars ; similis A. Scott $=$ similoides Monard ; minuta Thompson and Scott $=$ angustipes Gurney ; longirostris Norman and Scott = normani Sars.

The following species referred to Stenhelia now belong to Robertsonia:
irrasa A. Scott 1902, knoxi Thompson and Scott 1903.

Pseudomesochra T. Scott 1902.

This genus has been discussed by Lang (1936a), who shows that Stenheliopsis Sars 1906 is synonymous. A key to the species is given by Lang (loc. cit.).

LAOPHONTIDAE T. Scott 1905.

1907. Laophontidae Sars.

Monard (1935) has discussed the relationship of the genera included in this family and lists the following genera:

Laophonte Phillippe 1840; Asellopsis Brady and Robertson 1873; Platychelipus and Normanella Brady 1880; Esola C. L. Edwards 1891; Laophontodes T. Scott 1894a; Pseudolaophonte A. Scott; Laophontina Norman and Scott 1905; Harrietella T. Scott 1906; Laophontopsis Sars 1908; Hemilaophonte Jakubisiak 1932; Lobitella Monard 1934.

The genus Laophontella Thompson and Scott (1903, p. 83) was regarded by the authors as a Laophontid, by Gurney (1932, p. 314) and Monard (1935, p. 83) as a Cletodid, but, as has been stated by Lang (1936d, p. 451), is clearly a Canthocamptid.

The following genera have been added to the family since Monard's review :
Sarsocletodes Wilson 1924 (for Pseudocletodes Sars 1921, preoccupied Coleoptera $1893=$ Pseudoplatychelipus Lang 1936), Cletopsyllus Willey 1935, Donsiella Stephenson 1935.

Of the above genera Sewell 1924, p. 834, considered that Laophontopsis Sars 1908 should be known as Cleta since lamellifera, which must be regarded as the type, was originally so named by Claus (1863, p. 123); however, Cleta is twice preoceupied (Lepidoptera 1845 and Coleoptera 1850) so that Sars' name stands.

Laophontodes has justly been removed to the family Anchorabolidae by Lang (1936c).

Loaphontina was regarded by Sars (1911, p. 427) as not worthy of generic value and included by him in Pseudolaophonte; Monard (1934, p. 3) states that under such circumstances his genus Lobitella might well be included in Scott's genus. Monard's genus has, however, the second antenna with a reduced exopod, and is here regarded as a distinct genus, as also is Laophontina.

Esola, as remarked by Monard (1935, p. 66) appears to be a Laophonte with 1-segmented first exopod; it is probable that the four apparent setae on the basal segment of the first endopod are really long hairs, but until the species has been redescribed the generic name may be retained.

According to Lang (1936d, p. 451) Pseudocletodes Sars (1921) (preoccupied Coleoptera 1893), is not a Cletodid, and must be transferred to the Laophontidae, close to Platychelipus. Lang has renamed Sars' genus as Pseudoplatychelipus, being unaware that Wilson (1924) had already renamed it Sarsoclctodes.

As Monard (1935, p. 65) dealing with the genera known at that time, has pointed out, the Laophontidae form a very homogeneous group, with the exception of Normanella. Excluding this genus the family has the following constant features:

1. mandible palp 1-segmented;
2. 1st exopod reduced, without inner setae;
3. 1st chdopod wifh single terminal claw, strongly dereloped (wak in Plutychalipms), accessary seta when present very smanl, mo Inner seta on ead segment, seta on basal gegment when wesent centrul in fosition (fomm whly in Leaphontopsis);
4. rostruu always firsed with cephialosome;
5. mule w, where known, hate 3rd endopot a- or 3-regmented, usually modifind: exopode e-4 modifient.

The abown charactern iste constant in all the gewera deseribed before Momat 's review excopl Plal!fotipus and Normumella. Of these, the fomme departs so lithe from these dabacters that it comblow regarded as an aberrant member of the family, Sormamello on the oflere hamd disagrees with all the ahove listerd featmes:

1. mandthic paly bilobed;
2. 1st exomod of normal devolopment, with inner setas;
3. Ist oudopod las ilistal imner seta on basal segment, inner seta on end segment and long torminal seta in addition to claw:

4, rostrum distinctly defines hasally:
5. wimming legg of male undifierentiated from those of fevale.

This genns. while it has some aftinties with the Cletorlalise, as axmplified by Pomtopolites, differs in the first logn to sumb inn catent that it camot be inglurled in this family. It is fombaby intermediate botwean the Cletodidac and Canthoeamp-
 lectom of genera.

Df the generg added since Momard reviemed the famidy, Clctopsyllus departs Prom the true Jaophontid characters in sevoral respects:

1. mamitible palp s-scegmented:
n nnd.3. Jit legs as in Normanella;
2. rostrum definad ly suture;
3. (malo unknown),
and, therefore, for the pesent Clletopsyllus must acempany Normanella into the Canthocamptida.

Tnfochunately we know nothing of the mouth parts of Donsinlla: the shape of the firs leg. however, is typical of the latophontidae, lum, there are two subegual terminal daws. The second and third lega have 3 -segmented endopods in both sexes, the fomith "ulopul is 1 seremented in the male and absent in the female; the exopols of the male ate like those of the female exeret for that of the seennd leg which is slightly modifiod. It camot. therefore, remain in this family, where it Was placed with sme miscivines by its athor, and appears to have Tachidied nftinities.

As for Sarsocletodes, Lang transfers it to the Lamphontidac on account of the
 In my opiniom this dues not differ from that of Clelodes limicola, an acepted (Tetortiol, to any thing like the cextont to which e. limicola differs from other Cletodide (cé. Entuilrosoma curtisuuitatum in Sars 1911, pl. cev).
sarsochedodes differs from the Latophontidae in that the first embnod is shorter than the exopod (ab Cledid chatacter), and is armed with ome imer and one terminal seta on the end segment.

The truth prohalily is that both Platychctipus, which defants somewhat from typieal Laphontids, and Sarsoctotodess shomld bu placed in a separate family intermediate het weon the Lamphomtide and Cletorlidar. This wonht heaw the Taophontidne a very clearly defined family,

Felow is givell a dingrosis of the family Lapopontidae.
Findy usially eylindrical, but thatlened and romsiderahly wider in tront than behind in Harriflelle. Momiluophonte and a few apecies of Canphonto; kerments debincul hy hateral incisions: rostrum prominent, always completely fused with the head. Aitennules to to 8 -ssogmented; antembac 2 -scgmented, the exopod 1 -segmented with four setae, on reduced, even to u single seta; mandible palp always

1 -segmented; maxillule usually well developed; maxilla with three inner lobes, the proximal sometimes reduced to a seta; masilliped prehensile, usually strongly developed.

First leg's with mdopod always 2 -segmented, longer than the exopod, basal semment with or withont an immer seta (when prosent iuserted ahout middle of segment), end segmeut always without an imner seta but having a single large terminal claw which may be ateompanied by a small accessory seta; exopod 2- or 3-segmented, altrays without inner setae. Iegs 2-4 usually with 8 -segmented exopods and 2 -segmented endopods, both rami reduced in some genera.

Male with third endopod almost always modified, exopods of legs $2-4$ usually morlified.

The following genern, arranged in chronologieal order, are here regarded as belonging to this family :

Laorhonte Philippi.
1840. Laophonte Philippi,
1850. Canthocamptus Baird (pro part.),
:1860. Harpacticus Fischer
1863. Cleta (14us (pro part.),
1868. Cleta Czerniavski,
1875. Tetragoniceps Brady and Robertson (T. longiremis),
1907. Laophonte Sars (pro part.).

This genus contains oyer 100 species which ure dealt with in the following pages.

PaAOphontopsis Sars.
1863. Cleta Claus, 1935. Laophontopsis Monard,
1908. Laophontopsios Sars, 1935̃a. Laophontopsis Monard.
1924. Cleta Sewell, 1937. Laophontopsis Monard.
1928. Laophontopsis Monard,

This gents contains two species mly: Laophontopsis lamellifera (Claus) 1863, and L. secunda (Sewell) 1924.

AskLLopess Brady and Robertson.
1873. Asellopsis Brady and Robertson, 1903. Asellopsis Sarr. 1895. Laophonte T. Scott,

There are four species known in this genus: A. hispidar Brady and Robertson 1873: A. intermedia (T. Scott) 189.7 ; A. dubosequi Monard 1926a; A. littoralis Nicholls 1939.

A key to these species has been given by Nicholls (1939).
Esola Edwards.
1891. Esola C. L. Edwards.

Pseudohaophonte A. Scott.
1893. Laophonte I. C. Thompson, 1896. Pseadolaophonte Λ. Scott.
1911. Psendolaophonte Surs.

One species : P. spinosa (I. C. Thompson) 1893, syn. P. aculenta Λ. Scott 1896.
Ladophontina Norman and Seott.
1905. Laophontina Norman and Scott, 1908. Pseudolaophonte Sars. 1406. Laophontina Norman and Scott,

One species : L. dubiu Norman and Scott 1905.
Harrieteleta T. Scott.
1894. Laophonte T. Scott, 1894s,
1921. Harrietella Sars,
1906. Harrietclla T, Beott,

One species: H. simulans (T. Scott) 1894a. As stated below (p.98) the specimen deseribed by stephensen (1935) as prohably the male of Laophonto brevifura is much more probably a speces of this gentes, possibly the malo of $I I$. simulans.

> HEMILAOPHONTE Jakubisiak, 1939. Hemilnophonte Jakubisiak.

Oue species: II. janinue bakubisiak (1932).
Lobitelea Monard. 1034. Tobbtella Monard.

One species : Lo apodn Monard (1934).
Entmanabphoste gen. nov.

1870	Cleta Norman,	1428. Laophonte Brian (pro per
1.008.	Laophonte Sars (pro parto),	1929. Letophonte van Douwe (pro part
1927.	Laophonte (Gurncy 1907h (propurt.),	1929. Laophonte Brian 1929a.

I.uophonte having a single large recurved spur dorsally on the posterior margin of the hend segment, and paired spines dorso-laterally on each of the following lowly segments except the last une or two, Rostrum large and expanded. First mitemat 6 -sermented, with four segments in the hasal portion which is eomposed of three long segments and a short fourth, hearing the sensory filament; terminal portion with ead segment longer than penultimate. First lus with basipod long and slender, its secoud segment abont as lomy as the basal segment of the endopod; wopod s-segmented-the two semments may be partially fused-rary slender and not exceeding half the length of the hasal sugment of the endopot. Seta formula for legs $2-1$ as follows:

Fifth leg with basal expmasion narrow, with four or five sotae, distal segment elongate, bearing only three setar. The ahove seta formula ame this type of fiftle leg arr" fombd in $n o$ ot her speceses of Lamphome which, together with the modification of the body and rostrum, justifies their removal to a separate genus.

The genns contains the following four species removed from Latophonte:
hurfide Norman 1876, genotylu; brevispinasu Sars 1908; aimiger Gurney 1997h; mirabitis (Gurney 1927).

As pointed out below hystrix Brian (1028) and steucri van Donwe (1929) are synonyms of armiger Gurney 1927b.

It is of interest to note that this genus shows affinities with L. (Mesolnophomer). The seta formula closely resembles that of the gumquespinose group, in at least onf member of which bods spines are developer. It should be noted, however, that spines are developed also in dinopergte which is a Latophome sens. str.

Key to the Dimataes.

1. Basal expansion of bth leg raching ent of distal segment

\therefore Ist endopod at least is times as long as exupod - - . . 3. Lst endopod suo mure than twice as long as exopod . . . brenispinism (8ars) 190s.
2. Bansl segment of Ist endopod longer than and hasipud; rostrumi longer than wide.
horidda (Norman) 187̈f.
I3nsal segment of 1st endopod abont aqual to ind segmont of Thapod; rostrum vider than long ., armigey (Gurney) 7927b.

Key to the Maleg.

7. 3rid emblnod a-segmented, unmodified, bearing setae only
. . armigrr (Curner) 1927b. 3rd culonod 3 -segnented, middle segment with spine
brevivpinoxa (Sars) 1908.
8. Find exgment of Brd esoped armul with 3 sutan and 4 spines

Find segment of Brd exopod armed with spistes only... Horride (Norsom) 1876 .
Tho male of mimbitiv is unknown thitt of aymiger is deseribed by Willoy (7130) and by Lrian (1998) as hystrix

These 10 gronera are elosely allied and, as already stated, form a well defined family.

Letophontr is here divided into submenera based on the setation of the swimming legs which, in most cuses, show a constant segmentation-the exopod $\}$ -
 porl is reduced in one or two specips, and in the mumotypic L. (Noplaphomte) the endopods of legs $2-4$ are all 1-segmented.

The allied genmai Fiswin, Ascllopsis, Echinolaophomle and Laophontopsis appear to be cherivatives ut lobophunte, in which the body has umbremone certain נnolifications withont reduction in the segmentation of the legs. Hsola diffors Very little from typical Laophonte spereiss and, as stated above is probably a true Lanphoute. Asellopsis shows the fall number of setae foumd in Taophomet sems, str. (sere p. 98) but differs in the depressed bodre and sloort, lamellar candal rami. with very short culudal setare. Efthinolaophonte has the typieal seta formula of the 1. (Mcsolenphonte) sprecies, but again difters in the structure of the body hy the developmont of a spiny armature and modificeation of the rostrum. Laophonlopsis has the setal armature ut the $J_{\text {. (Metalaophonte) speries, but differs in the monti- }}^{\text {one }}$. fied catudal rami and prerence of an immer seta on the basal segment of the first endopod.

The remaining five genera of this family show a progressive roduction in the somentation of the legs, and form two suries aceording to whether this reduction proceds from behind forwards or wice verse.

In the Hemitaophontos series the reduction starts in the fourth leas and proueeds forwards, as can be seen in the table given below:

	End	3 rd	41.11
Genus.	cxp. cnd.	exp. eud.	exp, cud,
IIemilaophontc	3 -	32	\bigcirc ロ
Harrictella	3 3	32	\because
Lobritelle	3 -	3.1	$11(0)$

whereas in the Pscudolumphonte series the reduction takes place in the reverse diesetion:

Gemus.
Psezdolaophonte
Laophow/ina

2nd	
exp.	end.
1	0
1	0

Segmentation of legs.
3rd

$$
\begin{array}{cc}
4 t h \\
\text { expo } & \text { end, } \\
3 & \ddots \\
3 & 1
\end{array}
$$

From this it is elear that while Sars ${ }^{2}$ view that Laophontina should be ineluded in Psewdoldophonts might be upheld, the further inelosiou of Lulbitollu with these is not justifiable.

KEY TO ThE IAAOPIONTIDAE.

1. Fxopods of legs $\Omega_{-4}-4$.sugruented At least uno u1 theso cxopods 1-ar esegmented :. U.
2. Caudal rami cylindricul, widely separated, armed with at least 1 long seta. .. $\quad .$.

Caudal rami lamellar, closely approximater, urmed only with short spines and/or setae 5 .
\%. Ist endopod withont inmer sutae on basal segment
1st endopod with 4 inner setae on hasal segment $\quad \therefore \quad \therefore \quad$ Esnla Eiwards 1891.

1. Head with large dorsal spine, fustrum expanded .. . Echinolaophome ger unv. Head without spine, rostrum normal Laophonte Phimph 1840,
2. fandal rami long and tapering, at least tiviee as long as anat sogment; hasat serment of
 Caudal dami short and rounded, Jitto or no Jonger than anal begment; basnl seguent of 1st entopod without inuor seta Asellopsta Brady and Rohertaon 3873.
3. End ind iard exopods 3 -segmented, the exmod 1-012-sggmented.

$$
\because \quad \because l_{8}^{7}
$$

 4th exoford 2 -segmented, cudopod 1 -segmented .- .. Harrictella T. Scott 1906. the exopord I-segmented
8. Brd and the cndopods e-segmented

-. . Coblitellet Mustird 1934.

- Tsetumbuophonts A. Sent 1896.

Letophontina Anomban and sent lañ.

Laophonte Philippi 1840.

A Niaknosis of the genas has been given by Gurney (1939, p. 314) but uceds a minor correction. The third andopod of the mate shoutd be deseribed as 2- or 3 -segniented.

Wonard ($10155, \mathrm{p}, 66$) enumerates 87 specips and adds four more in the subse. ruent pages. Tu those must be added another 18 species; some of these were omitted from his list, while others have been deseribed sinee:
 and gurneyi Lange 193s; lithequilin Monard 1934 ; octavia Monard 1035a; combuln, homplapyputho

Of the spmepes Listed by Monard, hecate Prechm (1910) is a symongm of Mesochon lilljchorgi, acending to Gurney (1932, p. 257) :
exigua T. Scott (1912) is distinet from prigua Sars (1905 a), and must therefore be remanod. It is proposed to name it sootti:

Aystrix. Lisith (1928), of which steuch van Douwe (1029) is a synonym, as has been shown by Brian (192na), is in turn a synonym of amiger Gnuey

 prority. Ithis specise is one of those here transterred to the new gentrs Edemolaophonte:
humilis Jirian (1929) is a synnnyw of mokammed, necording to Chrney (1932, 『, :316) ;
cchinata Willey (1930) has been removed by Lang (1931ic) to the genus Luophontodes, and renamed ormuthes:
masi Monard (1926) appears to be at synnym of bulligera. Farran (1918), from which it difters only in the absence of the "sunsury organ" deseribed by Farcan as present on the fourth emolopod, and in the absence of ome of the setare on the base of the fifth legs. 'lhis seta is inserted near the lase of the proximat segment, a portion of which appears to bave hem lost in rose. IIowever, De, Farran in a prrsostal wommuisation informs me that the sonsory nutgronth oecurred in the same position on the lourth cudronols of thre indipidnals. In each anse the endrupd of one side was lacking. but it is reasonable to assume that the missing endopody were similar to those which were sem. The motornth he deseribes as "very tesnons rad might eseape notice in a mounted specimen". (I have taken the liberty of quoling trom his Ietter.) Ifestremees the: swolken base of the ad-
 +1s) compares with bulligeth. In roser the swollen base of thus seta is "armée d'un finchevelit de tries lins poils raides et remerents". Wo such amature is deseribed for bulligura, but the sensory whagowh is attached at a comparable position.

Unfortumately 7 fiswe not had aceess to curtain of the literatare, and so have nnt scen descriptions of jmivula (Claus) 1866, wnimate (Ozerniavski) 1868,
mordlandicu Boeck 187:, and mississipensis Iterrick 1887; bafamus Labber, listed by Monard without reference, I have been umble to trace.

The specimen described by Stepheosen (19:n) as probably the math of Lanphonte brevifurce is, in my upinim, a member "l' the semus Hurrietclla, and may be the malu of H, simmlans, the only known species, though the rostrum does not appeat to be quite so well developed.
3. rhodiaca Brian (1928), known only from the male, myy possibly he the male of L. bulbifera, Norman (1:111). The first auteman in luth has two spurs on the hasal segment, mot known in any uther speceies of the pems; the long slender exnuod of the second antemm, common to both, is also noticeable; the first legs are very smilar. and the fourth lexy identicat; the candal rami of thodiaco, though not bulburs, are sumenhat morlified.

The genns thes amprises aboul 100 species, somewhat variable amomgst themselves, but held together by sertain constant characters: the clongate firs eudopard with 10 inner seta on the long basall segment. Whed is followed hy a shert seennd scomont and at large temimal claw, which hay be aceompanied by an accessory
 with fome setar, though it may be reduced tolittle more than a knob with Iwn selan or low absent. The first antema varien from four on eight in its segmentation, and has ejther three or fome summenta in the hasal prortion; hut these spereies with omly thre segments in the hasid pordion cannot be removed as at separate genus, since they shos wo other feature in common.

The genus can, however, be divided into subgenera on the setation of the endopods of the thied legs. 'lluns the first group, for which the genwic name
 setae on the end stement of the thised endopod. This gronp. Latophonte sens. stre, is the largest, and the members show the following gencral agreement:

1. Ind endopod rith 2 inner, 2 terminal find 0 outer setar on the eud sogment. (exerph bulbifera, bulligers, longirmin, roset and typhlops, which hure a.2.1-j curticoula, murdgaarai und reticaudata which have 1.2.0.) ;
2. Brd endopod with is inner, 2 terminal und 1 nuter actac on sud megment:
3. Ath ondopind witte number of shtar of man segment varying from 1.1.1. to g.a.1., ineluding nomo forma lacking uter setac.

On the variation in the setation of the fompth manod and other characters this shburnis cau be limther divided into groups (see below).

The second suburentas Laphonts (Hosolaophonte), contaists those speuans iu which the third cndopod las two inver setae on the ear segment.
 spolaca thore are 5 setne, resembling those species of Laphonlo sums str. whieh have sum cuter setis on tho ond regment. of this cadopod:
 the outer setat;

(eevain species which ons the setation of the ondopods would fall inter this suhgems, hut which have dowedonel spimes on the brody and a modified rostrum. have beeu transferred to n aew genus, Echinoloophonte, described above.

The thind sulbemus, Lamphonte (Mentulumpones), contains those species which show is still L'urther rednetion in retation.

3. 4the endepod witis mot motes than as -xplan on tho end wegment.

The fourth subgenus, Luophonte (Ncolaophonte), has affinities with the preceding subgemis, and eontains those species which bave their endopods reduced to one segment.

A fifth subgenus, Luophonte (Monolnophonte), is (arrated for one speeies, rurvete van Douwe (1999), alse described by Monard (19:3) which lalls into none of the almer subgencra since it has humer setae on the end segment of the third endopod, and thas shows the greatest rednction ju setation.
Λ number of species remains, Which woalel probably fit into one or other of the suhgencra proposed, but camot as yet be placed with sertainty owing to the lack of knowhedge of their third legw. Thesw are dealt with below moler "species inquacrendae".

Keys are given to the fomales of the differm sulgenera, but owing to the incomplete state of our knowledge of the males they camot be assigned to their respective subgenera, and ageneral key for the mates is given.

(Bascd on the Fumalus).

Latothonte (Lamplonte) kens. str.

As deffurd above the subgenns contains thens species of Lefophonte with three imner setar on the cma serment of the thind endopon in the female. L. cormuta, thomgh atypieal in some respects, is widely distributed and was the first to be deseribed; it is fully deseribed and illustrated by Sars (1911, p. D35, pl. clvii, (dviii), amd comforms to the subgencric definition in ifs setation, It is, therefore, regarded as the type species.

The following spectes are included in the subgenus:
rormate Philijpi 1840; wtromi (Baind) 1850; thercirostris and servatid (Claus) 1863; curth.

 Alismonhora Willey 1029: thata Willes 1931; ruphlata, manifera and talipes (a) Wilsom 1933;

This rather large collection of species is divisible into a number al groups, whidh ean be fuirly well detined, partly by the number of setac on the fourth endoperd.

[^4]1．The cornula promp．1st．antenua with begnents ahot and compact mustly with spur on Ind segment：Sth leg of cormuta type，smewhat modified in Jinoccrula amd sporadionsis，and probably matformed in lantrntica although very similar to anst ralasiod which probably romex
 serrafa and sporaclionsio．
－．The typhtups gmop．Ist antoma with sexuchis lnug and slemder，ind segment without spur： 5 th leg of thphlopy type．Were belang：barbata，bulbifora，bulligera，rimgata，longiromis． rosei，thoracica und typhtops．

3．The brevirostris groun．1st antenna wifl segmenta neither vary compaet nor very slender，
 with no trace of al syulu＇，through the halge seen in complemera and brevirostris to the well heveloped
 hroatensifing ju the male the distal aegment is small lut distivet，

 merplexa，lencra and tenuだspina．
 of End antenna always redueed；rith leg of female of strome typer，that is having there ar leas ilistine notel hintweon the 1st und Eni setace of the distal segment．This feature has already been streased by Willoy（1949，$p, 581$ ）and is nanst marled in discoploura and least moticeable in mfratta；ith leg uf male ilways reduced，the dixtul segment completely firsed with she hase．

［1．Tho mohammed group．＇lhesc are fersh or brackiall water forms，Tle groul comprises

 by Monarit（ 1035 ）and I bare bot acen the descriptions．It is possible that it twougs to this group as a freshwater form．

6．There remains a number of suecie日 whech do not Poll into any of the abowe gronps，but ate intemediate betwoen groups ur are distinct．＇They arv：
similis，with a modamely Jong lat antenat with a trace of a spur on the Znd wegment is intermediate between the tuphlups and bremenstrik groups，its ioth leg being eleany intermediato between theare typus；
capillata is intermediate lntween 1 ho cornwh Had stromi groups；the 7 sh sutema is compact， the exopwid of ？nd antoma and male 5th legs are redncell，the frmate sth leg is like dinnccraba；

 seromi in strueture，mate bth leg with distinct distal segment（see fontmote，p．99）；

 is alsu in this intarmediate group（seo fontsute，ps 9月），
lemgimas pentably belongs to the brewirostris group（sea fnotnote，p．49），while refrectueden is ruite distinct Promi all pthers in the 1at athemn and 5th legs．

Ladopionte（Ladurionte）hatthentica rpl．hov．

Fremales with the characters of the subgrous，the first exmod 3 －semmented．
 with the end segment of nombal shape bearing an spine on the outer margid．The
 fifth leg is fuserl with the basal seepucut．

Octurence．Two specimens，one of ench sex，were washed from Jucus grow－

Lhophonte afentiola sp．not．

Males with the thiril eudoporl 3 －segmented，basal sumumt withont setae． second segneat with a spine only，this extembing beyond the end of the ramus．
 endopod with inner setac normal．Caudal rami twiee as long as wide．

Ocourence. A single specimen, a male, was washed from coarse sand at a depth of 8 metres in the St. Lawrence (Sample No. 111).

Bemg kawn from the male only, this species camot at present he assigned to a subgenus. It is described here for convenience, and should not he regarded as belonging to J_{0} (Laophonte) sens. str.

This and the preceding species will be more fully deseribed in "The Amals and Magazine of Natural History' ${ }^{\prime}$, London.

The sample numbers refer to those already published (Nicholls, 1939).

Key to Females of Lapphonte sens. str.

All the species in this sulngems linve 3 imer setie on the Brd endopod; sinco the end and 4 th legs are not known in many casog the key has, of necessity, been ennstrueted on characters which are regarded as lesa colithle: segmentotion of lat auternit and ist exopod,
 $\begin{array}{llllll}\text { 1st exopod } 3 \text {-segmented } & \ldots & \ldots & \ldots & \ldots & \ldots \\ 1 \text { st antenns } 4 \text {-scgmented } & \ldots & \ldots & \ldots & \ldots & \text { cornula Philippi } 1840\end{array}$

3. Caudal rami twice us long as and gegment; segments of jth leg fused,
bengafennis sowell 193子 Caudal rami no longer tinn anal segment; segmonts of 5 th leg distinct 4.
4. End segnont of 5 th leg not more than twico as long as wide, nomed with 3 terminal setane.
mohammed J3h, and Rich. 1891. End segment of 5 th leg 3 times as long is wide, with 1 terminal epine and .2 short lateral setac. chathamensis Sars 1905:.

- Bensal segment of thendopod with inner seta
.. bulbifera Norman 1911. Basat seghen of 4th endopod withort seta
f. 4 thendoporl with of inner, 2 terminal nud 1 outer setac 7. 4th ondopod with 1 immer, 1 termimal and 1 outer seta .. \quad. 8 ,
T. aminher seta of 4 th endopod with basal fringe of fine hatrs . . Fond Monard 1926. End imer scta of 4 the cndoped withont tringe, but with sensory outgrowth.
bulligera Farran 101:i.
 Segments of 5th leg with 4 or 5 setre..
.- ..

9. Fnd segment of bith leg not extending loyynd basal expansion; padal trmi no longer than anal segment nena Sars 1908. End segment of 5 th log extending beyomi hasal cxpansion by half its lencth; caudal rami half as loug again its anal argment. ... Find segment of 5th leg extending beyond hasal expension hy is its lemgth; paudal rami nearly 3 times anal segment... rlongata Bocek 1872.
10. Basal segment of 5th leg with 3 setae longipes Th, Scott 1894. Basal segment of 5th leg with 4 setar 11. Basal segment of 5th leg with 5 setae $\quad . \quad . \quad$. phycobales Monarit 1935.
11. End grgment of 5 th Ing with I getat karmensis Sars 1911. End segment of lith leg with $\overline{6}$ setae 12,
12. Body with dorso-lateral backwardly projecting lnbes .. Tumata Willey 1931. Body without such lobes
1:\%. Caudal rumi not more than twiec as long as wide \because
Candal rami at times as long as wide.. $\cdots \quad$ - . . 13.
.. . 14
13. Fin surmant of 4 th exoped with 1 inper setm- tenera Sups 1921
14. End segment of 4th exopod with 1 inner seta $\quad \therefore \quad \therefore \quad$ perplean T. Smott 1899.
15. 1st antenna 4-8cgmented
.. .
.- austialanica G. M. Thomson 1883. Jst nutemas 5 -Egmented laurchticaspave
 $\begin{array}{lllll}\text { 1st antenna } 7 \text {-xegmented } & \cdots & \because & \because & \because \\ \text { 1st auteura } & 8 \text {-segmented } & \because & \because & \because\end{array}$
16. Each segment of 5 th \log with 4 retae

Basal segment with 4 sotac, end segment with 0
Basal segment with 5 sctae, end segment with 0
17. Caudal rami no more than twice as long as wide

Caudal rami more than twiee as long as wide?
18. 1st antenas with recurved spur on end segment

Ist antenna with little or no projection on 2nd segment
mordguardisars 1908.
.. .. $\quad 17$,
. 22.
. 1.
-. 20.
.. dieuzeidei Monara 1936.
..
10. Ath endopod with 1 terminal setil: 1 st endopod with finger-like process distally nu hasud segment capillata W'iknon 1932 4th cndopod with terminal setac; no process on basal segment of 1st endopod.
brenirostris (Claus) 1803.
2U. 1st anteman with rounded protuberance on cath side of hasal segment; 2nd endopod with 1 inner seta 1st antenna without projections; Ind endopod whth á immer setac ... 21 .
31. End segments of 3rd and the exopods with 1 ither sota .. thoracica Bocek 1864.

End segments of Brd and dth exopods with 2 imner setnu \because barbaha Lang 1934.
ㄹ.3. 1st antonna with spur on end gegenent
-

- duminicalis Monard 1935.
lst anteman without spur $\quad . \quad \therefore \quad \because \quad \begin{gathered}\text { manifcra Wilsom } 1932 .\end{gathered}$
D3. Basal segment of 5 th leg with 4 sulate Basal segment of 5th leg with 5 sutao
Basal segment of QT_{g}
Basal segment of bth leg with 6 sotac $\quad \because \quad \therefore$ rongiromis T. scott 1005.
a4. Ist antenna with spur on End seguent $2 \overline{\text { E. }}$ lst antenna without spur

25. Fud segment of 5th leg with 5 subterminal seta0: .. meinertb Brody 1809 . End segment of 5 th leg with "\% inner and \& subterminal netan ", gurneyi. Lang 19a4.
26. Fnd segment of the exopod with 1.9.2, setau .. curticauda Boeck 1864. End segment of ath exopod with D.D.L. sctan $\quad . \quad$ congenera Sirs 1908.
:27. End segment of 5th leg with 4 setae rporadiensis Brinn 1028. Fand segment of 5 th leg with 5 scta0 $\quad . . \quad . \quad . \quad 1028$. Eind segment of 5̂th leg with 6 setate $\quad . \quad \therefore \quad \therefore \quad . \quad 31$
27. End segment of 1st antenma with large triangular projection, hearing setac.
dinocprata Monard 10:6.
1 st intema with little or no spur 29.
2y. Basal segment of 4 the endopod with immer sett $-. \quad . \quad 30$. Basal segment of 4th endopod withut seta $\quad \therefore \quad$ inormata A. Scott $19+2$.
28. 4th endopod with 2 terminal getae typhlops Surs 1908. 4thendopod with 1 terminal settil .. Iongiaridain Bocek 1864.
29. Fxopod of gad antemat with only 9 betau 32. Exopod of 2nd antennar with 4 setae 33.
B2. Basal segment of thls exopod swollen, middle segment shatt, end segment rhah-shaperd.
Segments of the exopod of normal shaspe and proportions
discunteore Willey 19:9.
Iot antuma with opur on Ber sement is minute Boeck 1872.
d3. 1st antenna with spur on end segment
.. .. 34.
1st autenna without spur
serrata (Claus) 1803. End segment of 4 th endopod with 110 outcer setin $\quad \therefore \quad \therefore \quad \therefore \quad . \quad . \quad 35$.
30. End segment of 5th Ieg at least twleo as long as wide
parmb/a Sars 1008.
隹

- purtuloides Monard 193

36. the exopod without inner seta on com segment 4 th exopod with 1 inner geta on end scrment ... Tenvispman Lang tont. 4th exopod witi a inner setac on end segment $\quad \because \quad \therefore$ campuchlinnis Lang 1934 .

Laopionte (Menoliorhonte) sulggen. hov.
Laophonte species having two imner setae on the third endopod; the type species for this subgenms is littorulis ' I '. and A, sontt (1893a), as deseribed by Sars (1908, p. 255, pl. elxxv).

This subgents can also be divided into gromps, the members of which have much in common, based on the setation of the fourth endupod. The following species are included:
 1909a; gracilipes 13rady 1910; rottenburgat. Scott 191: ; quaterspinula Brian 1917; abbreviaka
 Monard 1934; spclefac Chapphus 1938.

1. spelacm stands alone, haviug $\overline{5}$ aetae ont the end segment of the 4 thendopod (2.8 .1.).
2. The cxigut group. With the exception of taurima, all have the lat antemua withoul spur: the exopod of the Rud antenna is well developed (execpt in lithorafin) ; the sth legs are more or less alike, except in applanata in wheh they are elongate; whase the males are known all have their 5 th legs with distinet distal segment (execpt littorahis).
 lilesalin, prosima nnd famima. These has 4 setne om the 4 th endopod $(1,21)$.
3. The guinquerpinowe group. These are alike in haring ne velved exoment on the :3nd antcann (only slighty reduced int quatersperete); - Jth legs of similar shape (agam quakerspimatn forms na exception) ; and no spur on lat antenma. 'The fith leg of the male las ithe distal segurat fused with the base except is quuterspinata. The group consists of 4 species, phorhap at tipth; lithophila, quatcrapinatn, guingncsponows and sigmeides. Of rottenturgi, which possibly belongs bore, very little is known; the 1st, antemm has aspur, bud outeman a reducud exojod, but gnd nud 4th lege are not known. These species have 3 setae on the the endopnd (I.3.6).

Key to featales of haophonte (Megolaphonte).
Alt the spectes in this subgenus have 2 inner setac on the Brad endopod.

1. Lind and the endopods with eloner sutse

- *pehara Chappuis 1038. gnd and dth culdopods with 2 and 1 imner setae respectively 2nd and 4the emborols eacls with I Buner setis

.. 首.
-. 'queterspinata Brina 1917.
Bal $\quad . \quad$ apphanata sars 1900:
Basal segment of 5th len with 4 setac - . . . prasilipes Trady 1910.
Basal segment of 5th leg with a setre
..
 Exopod of und ontenaa notmal of 4 .

1. Ist antenna with pronounced sceurred spur om end segment \quad.. laurinu Monurd 1828.
‥ Greatest width moro than 教ot fotal length .. abbrevinta Sars 1921. Greatest width no more tiran 3_{1}^{\prime} of total length $\quad \therefore \quad \therefore \quad$ promitma sars 1908.
2. 4th endopod with 1 outer seta $\quad \because \quad$.. \quad exiguk Bars 1905a.

 End sugment of 5 th legs with 6 setac.
(1nimquexpmoxa sewell 1924 and sigmoides Willey 1931 (111).
Janothonte (Mietalaophonte) shbgen. nuv.
Lnophonte species haying one inner seta on the end segment ast the third endopod. The following specien are included:

 Willey 1935; parciscta lang 1936e,

The species included here are alike in the general appearanct of the first antemna, but hlici has a prominence on the second segment whieh, in donticornis is develoned into a large repurved hook; the exopod of the seend antenna is normal throughout the group; and the fifth legs of the males, where lanow, have the distal
(10) These two apeeies are separable only by eomparison the males, and then with dimpculty. L. Kullemburni has not been meluded in the key since nothing is known of its end und 4th legs.
segment distinet from the basal, exeent in pateiseta. To this group belong those species which have the eurlopods of the lourth legs reduced to 1 -serment, namely : inopinate and longistylata, 1 -semmented in both sexes, and koreni, 1-segmented in male only. In this feature the group leads on to the next subgems containing those species in which the endopods are 1 -segmented in legs 2,3 , and 4 .
L. depressel T. Scott 1894a, as deserihed by Sars (1908, p. 239, pl. elx), is solected as the type of the subgentus.

Key to the Fealales of Ladofonte (Metalaophonte):

All the species in this subgenus have only 1 inner scta on the end segment of the 3 rel endopod.

1. 4thendopod with 1 tmer seta

- - 4th endopod without inner Eeta. $\quad . \quad$. longislillalu Willey 1935.

2. Brd endopod with 2 torminal setne 3. 3rd endopud with 1 terminal seta $\quad . \quad . \quad . \quad . \quad 9$.
3. Brd endopod with 1 outer seta. .1 4, 3 3rd cndopod witll no outer seta 8.
4. Ith cudojud with 1 outer seta 1. 5. 4th endopod with no outer seta. pauciveta Lang 1936c.
5. 4th endopod with seta on basal segment Foreni Boeck 187. 4th endopod without seta on basal segment duressa T. Scott 1894a.
fi. Brd andopol with sreta on hasal segment
ofressa t. seottinata. $\begin{array}{llll}3 \text { rd endupod without setn on basal segment } & \cdots & \cdots & \cdots \\ 4 \text { elh exopod with } 5 \text { appendages on eud segment } & \cdots & .0 & \text { kitei Monard } 1935 .\end{array}$
6. 4th exopod with 5 appendages on eud segment
the exopod with is appendiges on cand segment $\therefore \quad \begin{gathered}\text { Kitet Monard } 1935 . \\ \text { subsalse Brady } 1902 .\end{gathered}$
7. 1st antenna with spur on 2nd smement enenticornis T. Scott 1894a. 1st antema without spur
baltica Klie 1929.
8. Ind endopod with terminal setac brevifurea Sars 1921 .

End endopod will 1 terminal seta inopinata I', Seott 1892.
LaOpionte: (NEOLAOLHONTE) subgen ${ }^{\text {no }}$ nov.
This subgens contains two species referred to above, trilobata Willey (1929) and corbula Willey (1935). The endopods of legs 2-t in these species are 1 -segmented, and the setation of these endopods is rednced. $L_{0}\left(N_{0}\right)$ trilohata Willey ($1029, \mathrm{p} .581$) is regarded as the type.

Key to the lemales of labophontre (Neolathontt).

1. 2ind, ard and 4th mendopods with 0^{2} setac trilobata.
2. Ind and 3rd endopods with 3 , 4 th with 4 sctac corbula.

The male of corbute is monown, but that of trilobata has 1 -segmented endoporls on legs 2-4, as in the female.

Ladphonte (Monolaofilonte) subgen. hov.
Latophonte species without innor seta on end segment of third endopod.
This subgents contains the single species curvata van Douwe (1929). The oriminal description is not very fully illustrated, but further details are given by Monard (1937, p. 67, fig. 5). The exopod of the second antema is very small, with three setae; endopods of legs $2-4$ are 2 -segmented with four, three and two sctae respectively. The first endopod is mulike that of any other species in having the terminal claw pectinated. According to Monard (loc. cit.) the male has the formeth exopod only 2 -segmenten

Species 1 nqualrendar.

Thr speces incluted under this heading are these whose third endopods have not heen described. They are:

 Sarm 1908; "glacialion und varians Braly 1910: "australim and "wiftont I". Scott 1912; insignix

 T. Scott).

The tirsp of these, unstralasicta, is atmost embainly in the cormutn, gentup, with is compact first antrona, well devoloped exoperl of the socentl antrmat furith endopod Jacking only an onter seta (2,2,0.) and fifth legs like 7anontica. This spreitas has alrcady been inemaded in Laophonte sens. str. (p. 99).

Jof foroensis is also probably in Laophontes sens. stra, with its elongate first antemia, well developdex exopod on the second antoma und rathor Ingg fifth legs.
I_{2} grocilis with its compact tirst antomat and filth legs of the comato type probably belongs to that group of Cutuhomio sens. str.

Of huntsmuni Willey states that it is near to nume and nordyundi, whieh would phave it alsn in Leophonte sens. str.
L. insignis, with its inst autena neither elomgate nor compact, second anbuna with redned exopod, fifth leg mut mulike that of strom. in wape but lacking the dintmetive motoh, is probably like talijes, intermediato hetween stromi and breviruslris.

Ot matern the swimming lers are stated by Sars to le of "pomal strueture"; if Wats placed by him between perplert and mordtumeli, and probably belonges to Lanphonte sens: \$1.

In the ease ot acututa entortnonately the seta formula wiven by Guruey (1027h) is incomplete, but the somewhat reduced seporal of the seemul intenna faken in eonjunction witith the appearance of the dith legs suggests that it helongs in the strambgromp of Larshomle sens. stre: Gomere suggests that it has affinities with proxima, which I have placed in the subgents alesoluophonte.

According to Monard (1928) milnse Car (1884) hets notmal sctation in its summing legs: from the male third endopod it is probahle that it belongs to Inophontr sens. str (2.20, is the usual number of setae in the male when the female has 3,2.1.). Therepond uf the second anterna is reduced, suggesting the stromi group, but Car's figure of the fifth leg does not enable any emelnsion th he drawns.

In pugmaea the fifth leg is of the stromit type, the second antema is stated to be like brevicornis, but is not deseribed or figured for either.

Momard (1902a, p. 61) rewards sima (lurney (1927b) as very clese to koremi on the sirneture of the fitth ley. In my opinnon it is mbed closso to parmula Sars,
 Ferlonge to Laophonte sems, ste.

The I-segmented fourth oudopod of wariuns suggests aftinities with L. (Metal(uophome), but the deseription is tow meagre for ecrtajn identification.

Van Dotw places his species zimmeri trith bevirostris, congeneru and macera, which would place it in lataphonic serns str.

As stated above rhanlaca is known only from the maln; while mondex cannot the placed until it las been more fully described.

The remaining species in the abore list (marked with un (*) are too indefinite for any conelnsions to be drawn.

Of the species listel below I have not seen descriptions.
parvulu (Claus) 1866; mncinata (Czerniavski) 1665; nordlantica Bucek 187a; mississipensis Lerrick 18s7: Jajanus Labbé.

The name paratel was first nsed hy Claus and the probability is that sars' :foceips of the same name will have to be renamed, but since I have not seen a deseription of Clats' species I have refrained from renaming Sars' species to aroid possible contusion.

As stated above I have been quite unable to trace Labbê's species loafanus ghoted by Monard (1935, p. 66).

Kigy to ladophonte males.

1. 3rd endopod 1 -segmentud
. \quad tribobatr Willey 1020, Brd endopod 2 -scgmented $3 r d$ endopod $3-$ segmented, nul sugmat without spine $\quad \therefore$ bengniensin Sewelf 1934. Brd endopod 3'segmented, änd segment with spine 16.
ㄴ. End segment of inf emdopod of sormal shape, bearing setne only ... 3. End segment of 3rd endopod of nommal shape, bearing spine on outer margin \quad, \quad if, End segment of 3rd endopod with outer distal compr produced into spine like proecss .. 11.
:B. Bisal segmeat of 3 rdendopod without seta Basal segment of 3rd endopul witl inner seta.
varians Brady $1010^{\circ}(11)^{4}$.
2. End endopod with ainner setae, ono of them thickened basally
porplext T. Sent 1899. Erad endugod with 1 unmodified inner seta
$\because \quad \because \quad$.
3. Brd and 4 th cndopods with 6 and 4 setae respectively 3rd int thendopods each with 3 setat ..
.. rapillata Wilson 193』,
4. 4th endopod 7 -segmented
-. Tellifers TVilson 193E.
.,
5. Fnd segmut of 5th leg well developed.
.. End segment of 5th leg firsed with basal

- mrowima Sars 1908.
S. Basal segment of 3rd ondopod with inner setn . . . subsu7an Brady 190』. Basal segment of Yrd entopod without apta
.-
. .

1. End segment of 5th leg well developed. .
-. -
End segment of 5th leg fused with Lissil..
..
. .
2. 4 th endopod with innor getse on 2nd and 3red segments 4th endopod without inner setue
.. lawrenticasp, nos.
3. End segment of 5th legs woll doveloped, rectangular
.. knrmu hoeck 187:. End segment of 5th legs fused with hasin
... .. 12.
$1 \therefore$. Snd conduport with modiffed inner seta
.. .. $+=13$.
ond endopod with inner setae normal
..
1i. 1st inner seta of end eudopod swollen bisally
bilosa Car 1884. 18 i imer seta of 2nd endopod a curved spine $\quad \because \quad$.
paveiseta Lang 1936e. Ist inner seta of End endopod n curver spine, hooked distally
$\stackrel{+}{\square}$ punciseta Lang $1936 e^{2}$
1.4. 2nd endopod with 2 inner and $\frac{6}{3}$ terminal setae minuta Boeek 187
End cudopod witls 1 inner and ol terminal setae
.. . 15.
4. 2nd endopod no longer than 1 st segment of exopod.. End cudopod almost equal to 1st two segments of eropod
5. th endopod 1-8egmented
quinquespinosa Bowell 10x\&
sigmoides Willey 1931.
fittoralix T, ant A. Reott 18983.
6. Basal segment of 3rd endopod with seta 18, Basal segment of 3rd endopod without seta $\quad \therefore \quad \therefore \quad \therefore \quad \therefore$ g.
7. 2nd segment of 3rd endopod with seta as well as spine
$\cdots \quad . \cdot \quad . \quad 19$
End segment of 3rd endopod with spine only
. spelaea Chapputas 1038,
8. Basal segment of 4th endopod with inner seta

Batsal scgment of 4th milopot without seta

- longiscta Nicholls ${ }^{3} n^{30} 0$.
(11) Fig. 7 (p. ie55) Brady 1910 is assumed to represent the 3rd rondopod of purimus, since it does not resemble the End (fig. 6) of which it is stated to he the eniargement; the illustration of the endopod of the 3rd leg (fig, 10) is so spuall that an enlargement might be expected, and both the Brd leg nod fig, 7 show setne on the basal segment, not shown in the 2nd leg (fig. 6).

20. Find segment of and endopod with a innor, 1 terminal and 1 nuter satao; spine off 3 rad endopod not extending beyond end of ramms rhodiaca Brion 1948.
 tending beyond eud of ramus
$\because 1$. Suine on 3red "ndopot long and straight cormule Philipni 1840. Spine on zrd endoporl fromeatos, with serraled end $\therefore \quad$ hirsmita Thompson and Heott 1903,
2e. Spine on 3rd endopod not extending beyond and of ramus . . 23. Spine on 3rd cndoporl extuhling beyond end of ramus \quad, ${ }^{\circ}$
21. 1st exopod E-segmented lst exopod 3-segmented .. ., $2 \overline{5}$.
$\because 4$. Spine on 3rd endopod straight, reaching end of ramus .. similis (Claus) 1806. Spino on 3rd endopod S-8haped, not reaching tend of ramus .. nana Sars 1908.
22. Caudal rami ucarly twice as long at wido, little longer than anal segment,
curlicanda Boeck 1864,
Caudal rami nearly 3 times us long ns wide, twico as long as asal segment.
huntsmani Willey 1023,
Oandal rami 4 times ins long as wifle, 青 times as lung as anal segment Phornoima Boeck 1864. Coudal rami נtarly 5 times as long as wide, $2 \frac{1}{2}$ times as long ns anal getment.

Tongicandata Boeck 1864.
 Ind segment of Brd eudopod with spine only 28.
 4 setae mohammer. Bl. and Rich. 1891. End segment of sith leg clonggte, rectangular, with 4 setar anl 1 spine; end segment of 3 rd cndopod with is retae servata (Claus) 1863.
24. End eudopod with 1 of inner setac modified
-. . . . 89.

End endopod with inner setae normal .. $\quad . \quad$.. 39 .
29, 1st seta of ㅇnd endopod as curved spine 30 . 2ud sctan of and endopod thickened basally $\quad . \quad . \quad . \quad 31$.
30. Distal segment of 5th leg fused with hasal .- Aiscophura Willey 1929. Segments of Eth leg distinet Tenuiapinn TJang 1934,
31. 1at antemna with well developed spur on Gad segment 32. 1st astema with little or no projection trom snd segment
33. Spuu on 1st antenna at right anglos to sogment. Spur on 1st antenna recurvod
mpimertí Brady 1899.
33. End segment of 3rd exopod with E sppempages .: 34.
... Callina Monard 1928. End segment of 3rd exopod with 6 appendoges teneru Bars 1021. Find segment of 3rd exopod with 7 appendiges
34. Ist exopod s-segmented Tumak Wialley 1931. 1st exupod 3-gegmented zimmprivan Dotwe 1020,
35. 1st exopod ᄅ-segmented 36 .

36. Fnd segment of 3rd endopod with 1 inner and 2 terminal setae :. inncera Sars 1908. End segment of "3rd endopod with ${ }^{2}$ inner and 2 terminal setac: :
. 37.
37. End segment of 4 th exopod with 1 inner seta; 1st exopod 1/a of baral endopod.
k:armemsis Sirs 1917.
End segment of 4 th exopod with 3 inner setar?; 1st exopod nearly of of basal endopod.
hyprerborea Sars 19019a.
38. Ind ondopod with modified seta inserted near milllle of segment brevirostris (Claus) 1803. Und endopod with modified seta inserted in proximal third of segment congenern Sars 1 !hos.
39.. Find segment of Brd eudopod with \& setac (1 jnner, 1 terminal) .. bnition Klie 1929. End segment of 3 rdendopod with 3 schae (2 inner, I tepminal) :a
. . 40 .
End segment of 3rd endopod with 4 setae (2 imer, 2 terminal).
nordinardi Sars 1908.
40. Candal rami not more than half as long again as wide Caudal rami twice as long as wide
arenicoln spr, nov.
41. Body flattened dorso-ventrally applanata Bats 1909a. Body cylindrical
-42.

48．18t antenna bescgmented ．．．．．．Represna T．Fcott 1894a． 1st antenna 7 －segmented ．．．．．．．．．． 43
13．End segment of 3 rd exoporl with $\overline{5}$ anpendages；rnd sesment of 5th lug fused with basal， campbelliensi．Iang 1934． Find segment of 3 rd exopod with 6 appundages；segments of 5 th leg distinct．
Lud scgment of 3 rd cxopod with 7 appendages
faigua Sars 1905 n．

14．Spiace on 3rd endopod yuite straight
dihe on Brd endopod slightly curved，kerrate Spine on 3rd cadopod sharply eurven gracilipes Brady 1010 （12），

With the folloring exoeptions the deseriptions of the males were obtained aither from the original deseription or from Sars 1911：
petose Car 1884 （Monard 1928）：mohammed Blanch．and Rich． 1801 （Unrney 193s，Wilson
 van Douwe 1929 （Donard 1037），

TITERATUSE．

Ieferences mitrked（＊）have not bech consulted．
Baird，W．（1850）：Natural History of the 13ritish Entomostraca（Ray society，Tomdon）．
Whanchard，R，and Richard，J，（1891）：JIem，sioc．Zool．France，ir，pp．5le－535．
＂Bocek，A．（1864）：Vid．Selst．Forh．，Christianich．
＂Boeck，A．（187马）：luid．
${ }^{+}$Brady，G．S．（1868）：Nat．Mist，Trans．Jorthumberland and Durhem，iii，（1870），IM，120－130，
＊Brady，G．S．（1972）：Ibid．，iv，plp．4！3－445．
Brady，G．S．（1880）：Mon，Britisl C＇mppodn，it（Ray Society，London）．
Brady，G．S．（1899）：Trans．Zoot．Soc．Loncton，xv，pp，31－54．

＂Brady，G．S．and Kohertgon，D．（1875）：Liril．Aksoc．Rippo，Dp，185－199．

－Brian，A．（1917）：Monif．Zool．Ital，Xxviii（11）．

Brian，A．（1923）：Monit，Kool．Ilal．，xxar，pp，126－135．

Brian，A．（1907）：Boll．Mus．Zoot．Anat．comp．Dniv．Genoer，Ser，口，vil，No，9．
Briast，A，（1827a）：Buh．Shene，Ent，Thuh，lix，ph，34－41．
Brian，A．（1928）：Boll，Mus．Zool，Anat，comp，Univ．Genova，Ser，シ，vii，No．18．
＊Brian，A．（1929）：Arch．zet．Torino，xiii，pp．209－281．
Brian，A（1929n）：Zool．Anz．，lxxxvi，p． 94.
Campbelt，M．T1．（1969）：Trans．Roll．Son．Camadn，Bri Ses．，xxiii，pp，303－322．
Car，1．（188t）：Areb，fo Naturf！，1，12，シ37－256．
Chappuis，P．A．（1931）：Arch．f．IIntrob．．Supp．Bia，viai（I），P1．512－ist．
（happuis，飞．A．（1yizy）：Bull．Soc，Snf．Chuj，ix，pp 153－181．
Claus，C．（1803）：I）in dreilcbenden Copepoden（Jetiprig），
＊（1aus，O．（18tié）：Die Copepoden Fauma von Nizzis（Icelpzig）．
 pp．39－57．
van bouwe，C．（1929）：Zonl．Anz．，Ixxxili，pp．283－294．
Ehlwnrds，C，L．（1891）：Arch．f ．Naturg．，lvij，pp．75－101．
Farran，G．P．（1913）：Proc．Roy．Irish Acad．，zexxi，No． 45.
＊Fischer，S．（1860）：Abh．Kg7．Banct．AKad．Wiss．，viii．
＂Giesbrecht，W．（1882）；Der．İamm．Deutseh Merre，it．
＊Giebrecht，W．（190』）：Rapp．Set．Zoolo，Anver＊．
＊（Trandori，R．（19e5）：Roll．Ist，Zool．I＇nie．Romo，iii，ply．3s－70．
Gurney，R．（1927a）：Trans．Zool．Soc．Lond．，xxii，pp．173－177．
（12）For the purposes of this key the male of aracilipes Brady（1910）is assumed to have a 7onegmented 18t antenna like the female；Brady makeg no statement on the subject．

Gurner，R（1927b）：Ibid．，xxii，p1．451－577．
Gurney，IR．（1028）：Proc．Zuol．Suc，Lonel，1pp，817－332．
（iouney，F．（ 9 mis）：British Frosh：Water Copepoda，if（Ray Socicty，Loudon）．
＊Herrick，C．L．（18s7）\＆Mem．Denison Sci．Assoc．．j．
Jakubisiak，8．（1932）：Bull．sor，Znol，France，｜vij，pp，50ti－513．
Jaltuhisiak，S．（1033）：Tbid．Iviii，1p．13－17．
Kilie，W，（1013）：Fer，Naturk，Untrrmeacr，1i\}, pur, 1-44.
＊Klin，V．（1923）：Aroh．f．Hydrob．xiv，pp．335－339．
Klie，K．（1925）＝Mitt，Geogr．Ges，Nat，Mist，Mus．Lübech，II Rero，xxx，pp．123－136，
Klie，W．（1020）：Zool，Tuhrb．，Syst．，lvii，pp 320－380．
Klie，W．（1837）：Milt．Jonig．Naturw，Imst．Sofict，x，pp．1－4…
Klie，W．（1939）：Zook，Ange，exxvi，pp，323－200，
Lang，K．（1034）：Kungl．Fysiogr．Sällsto．Handlon，N．，xlv，Nio．14．

Latig，K．（143むa）：Ibtl．，v，No．＂1．
Langer，（1936in）：\％ool．Anž．，exiii，pp．174－17\％．
Limge，K．（10361）：： 1 bid，exiv，ppo $33-40$ ，
Lang，K．（1934e）：Thid．，exp，pp．159－156．
Lang，K．（1936d）：Zuol，Jahirb，Sysl，Ixviii，11，445－480，
Lang，K．（1936e）：Svedish Autarc．Jrpmd．（1901－1903）：iii， 3.
Monnrd，A．（1924）：Bull．Soc：Zuol，France，xlix，pp．656－b72．
Monard，A．（1926）：Rev．Suisen Zonl，xaxiii，pp，619－62s．
Monard，A．（1926a）：Arch．Zool。Exp，！1014，lxv，pp，39－54．
Mengrd，A．（1928）：lbin．，lsvis，14．259－443．
Monard，A．（1998a）：Rev．Shisse Zool．，xxxv，pp．353－388．
Monard，A．（1034）：Rev，Zool．Bot，Africaimes，xxvl，Pasc． 1.
Monard，A．（1935）：Trav．Stat．Biol．Roscoff，fasc．xiii．
Monard，A．（1935a）：Stat．Oceanogr．Salammbo，Bull， 34.
110nard，A．（193a）：Bull．I＇rav，stat．d＇Acquic，ot de Peche，Cantiglione．Algero
Monard，A．（1937）：Ibid．
Nicholls，A．（7．（1939）：Lc Nat，Canartien，Ixvi，pp．［84－31t．
Nicholls，A．G．（1941）：Rec．South Austr．Muw．，vi，pp．381－427．

Norman，A，M，（1911）：Trams，Linno snc．Lond，Gend Ser．，xi，pp．137－143．
Normun，A．M．and Scott，＇T．（1905）：Ann，Mag．Ňa申．Hish，（T），xv，pp，284－300．
Norman，A, M and seott， $\mathrm{T}_{0}(190(\mathrm{i})$ ：The Crustacen of Devon and Comwall．（Wealey \＆Kon， London）．

Philippi，A．（1840）：Arch．fo Naturg．，vi，נp．188－190．
 （Bergen）．
Sars，（f，O．（1905a）＝Zool，Jahrbe，xxi（4），10，371－41t．
Bars，G ，O．（190Ya）：Report of the Scend Nowergian Aretic lixpetition in the＂tram＇＂ 1898－1902，iii，No．18．Crustucea．Videnkio－Selsk，Kíriatianio，

Sars，（9．O．（1921）：An Account of the Crustacea of Norway vii，Copepodo Supplement． （Bergem）．
Scott，A．（1896）：Trank．Te＇pool Bioh．Sou．，x，pp．134－158．
Scott，A．（1902）：LUiu．，xvi，pp，397－408．
Scott，A．（1909）：Siboga－Expcet．Mon．sxisa，pn．1－3：3（Tacyden）．

Neott，＇1．（1884a）：19th Ann．Rep．Fish．Board Sento，pp，8s1－271．

Scott．T．（1897）：16th Ann．Rop．Finh．Board Scoto＋1p．107－174，
＂Scotit，I＇．（1898）：7Cth Arn．Eicp．Fhish．Boctris Scot．
Scott，T＇（1890）Journ．Limn，Suc Lond．，xxvii，pp，60－126．
＊Scott，T．（1902）：：OOth dmin．Rep．Fish．Bom red Scot．
Scolt，＇Y．（1003）：：\＆18t Ann．Rep．Fish．Roard Scol．，pp，109－13T．
Scott，T．（1901a）：Jon＇m．Linv．Soc．Lond．，さxix，pp．1－11．
Heott，＇1＇．（19031）：Inn．Mfag，Nat，Mixt．（7），xi，17．4－32．
Scott，TV（1905）：©STd Anr．Iiep．Fish．Baard Scot．p 1p．141－15．3．
Seott，T．．（1905a）：Am．Mag．Nrat．Mist．（7），xvi，pp．5if－ 777.
Seott，T，（1006i）：Toid．（7），xvii，pp．458－466．

Scott，T．（1912）：Trans，Roy．Noc，Edin，xlviih，p1，521－599．
Seott，I．（1914）：Ann，Mag．Nat．II ist．（8），xiii，pp．1－11．，369－379．

Scott, T. and Scott, A. (1894): Ibid. (6), Xiii, Mp, 137-149.
Scott, T. and Scott, Λ_{4} (1895): Ibid. (6), xvi, pp, 353-361.
Scott, 'I' and Scott, A. (1901) : 1bid. (7), viii, pp. 337-356.
Soircll, II. R. (1928) : Proc. IT. S. Nat. Mrus., Ixxili, Art, 18.
Sewell, R. B. S. (1924): Mem, Intian Mus., v (12).
Sewell, R. B. S. (1934): Rec. Indian Mus., xxavi, pp. 45-121.
Stephensen, K, (1935) : K, norske viubnsto. Selskr. Trond., Pt. II, No. 39, 1936.
Thomson, G. M. (1883) : Trans. New Zealand Inst., xp, pp, 93-116.
Thompsoni, I. C. (1889) : Proc. L'pool Biol. Soc., iiii, pp, 192-194.
Thompson, I. C. (1893) : Trans+ L'pool Biol. Soc., vii, pp. 1-56.
Thompson, I. O. and Scott, A. (1903): Report on the Copepoda. Ceylon Pearl Oyster Fisheries, Supp. Rept, Pt. 1, No. 7 (London).
Willey, A. (1923) : Contrib. Canadian Biol. (N.S.), i, No. 16, pp. 303-334.
Willey, A. (1929): Ibiu., iv, No. 33, pp. Б®7-539.
Willoy, A. (1930): Ann. Mag. Nat. Hist. (10), vi, pp. 81-114.
Willey, A. (1931) ; Arch. Zool. Ital., xvi, pp. 601-617.
Willey, A. (1935): Ann. Mag. Nat. IIst. (10), xv, pp. j0-100.
Wilson, C. B. (1924): Froc. U. S. Nat. Mus., lxiv, Art. 17 (1925).
Wilson, C. B. (1932) : Bull. T. S. Nat. Mrus., No. 158.
Wilson, C. B. (1932a) : Proc. U. S. Nat. Muso, 1xxx, Art. 15
*Wolfenden, R. N. (1905) : Plankton Studies I. Copepoda (Rebman Ltd., London).
Wolfenden, R. N. (1905a): Fauna and Geography of the Maldive and Laceadive Archipelagous, ii,. Suppl. 1, pp. 989-1040.

Index to Genfra.

(Descriptions, Tablea, Keys, and Synonomy only.)

Amphiascopsis, 66, 68, 70, 74, 76, 89,
Amphiascoides, $67,68,70,81,88,89$.
Amphiascus, 66, 68, 69,70, 77, 78,89.
Asellopsis, 94, 9\%.
Beatricella, 66.
Canthocamptus, 94.
Cleta, 9, 91, 95.
Cletopsyllus, 93.
Dactylopusia, 71.
Delavalia, 69.
Diosaccopsis, 67, 68, 89.
Diosaccus, 66, 68, 90 .
Donsiclla, 29 .
Echinolaophonte, 95, 97. Esola, 94, 96.
Marrietella, 24, 26, 97 .
Hemilaophonte, 95, 96, 97.
Ialysus, 66, 67, 68, 90, 91 .
Liophonte, 94, 97, 99, 106.
Laophonte, 97, 99, 101.
Laophontella, 92.
Laophontina, 94, 96, 97.
Lacophontodes, 99.
Laophontopsis, 94, 97.

Lobitclla, 95, 96, 97 .
Mesamphiascus, 68, 70, 79, 80, 89.
Mesolaophonte, 97, 99, 102, 103.
Metalanphonte, 97, 99, 103, 104.
Microthalestris, 66.
Monolaophonte, 29, 104.
Neolaophonte, 98, $99,104$.
Norminella, 93.
Parastenhelia, 66.
Parialysus, 66, 67, 68, 90, 91.
Platychelipus, 98.
Psendolaophonte, 94, 96,97.
Psendodiosaceus, 67, 68, 90 .
Pseudomesochra, 66, 69, 91.
Robertsonia, 66, 68, 85, 88,89 .
Sarsocletodes, 92, 93.
Schizopera, 67, 68, 85, 88, 89.
Stenhelia, 66, 69, 91.
stenlecliopsis, 66,91.
Teissierella, 66.
Tetragoniceps, 9 .
Tydemanella, 66, 67, 68, 20,91 .
Vamsia, 66, 87 .

FURTHER RECORDS OF LIZARDS AND FROGS
 FROM KANGAROO ISLAND

By H. T. Condon, South Australian Museum

Abstract

Summary Some reptiles and amphibians were collected by the members of the Tate Society, University of Adelaide, during an expedition to Flinders Chase, Kangaroo Island, in January, 1940, under the leadership of Dr. C. T. Madigan. In addition to some species previously recorded from this region by Waite (1927), five forms new to the locality, including two further geographical races, were collected. The parasitology of these specimens is being dealt with by Prof. T. Harvey Johnston and Miss P. Mawson.

FURTHER RECORDS of LIZARDS and FROGS from KANGAROO ISLAND

By H. T. CONDON, South Austratian Museum.

Some reptiles and amphibians were enllected by the member's of the 'Tate society, Thiversity of Adelaide, during inn expedition to Flinders Chase, Kangarno Island, in Jannary, 1940, under the leadership of Dr. C. T. Madigan. In addition to some species previously recorded from this region by Waite (1927), five forms new to the locality, including two further geographical races. were collected. The parasitology of these specimens is being dealt with ly Prof. T. Maryey Johnston and Miss P. Mawson.

LACERTILIA.

Family GEKKONIDAE.

Gyanomactylus minil (Bory 1825).
Phyllurns milii 1sory de St. Vincent, 1825, vii, p. 183, fig. 1.
Two specimens collected under rocks along Stunsail Boom River; the larger has the tail regenerating and measures $98(81+17) \mathrm{mm}$. The smaller measures $103(66+37)$ nmm. Previonsly recorded by Whaite.

Family SCINCIDAE.

Egersia mhiter (Lacepede 1804).
stoincus whitio Lacepede 1804, iv, p. 192: Australia.
Lygosoma moniligera Dumeril and Bibron, 1839, r, p. 736 : Australia.
In all six examples of this species were collected by the Thate Society. All are uniformly much darker below than the typical mainland forms. Two lack completely the characteristice dorsal black lines with pale brown spots, and present a dull brown appearance (No. 122160). They also differ from mainland individuals examined in that the pariotals are completely separated by the interparietal, and there are no muchal shickls.

Tubh (1937) has recorded sonne volour variations of this skink on Lady Julia perey Island, Victoria, and whtei is undoubtedly a very variable species. The Kangaroo Island specimens, however, both from the unilormly dark undersurface and other features, appear to constitute a distinet insular race, and it is proposed to separate them as follows:

Egernia wht wet tranebrosa subsp. nov.
Description: Supranasals absent; eyclids well-developed; the lower eyelid sealy; prefrontals, frontoparictals and interparictal distinct; frontonasal widely separated from the frontal by the prefrontals which form a median suture; parietals completely separated br the interparietal which is nearly as large as the frontal; five supraculars, the second the largest; $7-8$ supraciliaries, the first greatly entarged; three large temporals; no nuchals; $3-4$ anterior lobules in the car-
 the adpressed limbs overlap; mulersurfaees dark slaty grey.

I'ype: S.A. Museum Collection no. R2161, a subadult from Flinders Chase, Kimparan Island. Nonth Anstralia, pollected by members of the Tate Society, Jamary, 1940,

Measurements of type : Total length 210 umm. ; taill 295 ; suout to athus, 85 ; forco limb 24 ; hindlimb 29.

Figs. 1-3. 1. Head of Egernia whitel tencbrona, subsp. nof., S.A. Museum Collection No. R D161, locality Kungaroo Ishand. D. Hyla jentwirnsis, Dumeril and Bihron, male, R Dorl, locality Woudside, South Australia. 3. Mithe, female, 122160 , loculity Rocky River, Kungaroo Islund.

Remarks : This insular race is at onse distinguished by being generally darker ahowe and below, the charamerist ic dorsal markings heing obscured or even absent. while the sealation also diffurs. Athongh this skink may grow to a length of 300 mm. (12 inches) or more, it is better known as a much smaller reptile, when in a general way it resmbles members of the sphenomorphus Section of Lygosoma; it may be recognized at onee, however, by the characters of the head shields.

Lygosoma Hardw, and Gray.

Section Leiolobisara Dumeril and Bibron.

Triductylus (not of Latreille 1802) (1nvier, 1829, p, it (type decresicusis). Trbadactylus (not of Merrem 1820) ('wicr, supra cit., p, 64 (tvpe deresiensis), Perometis Wagler, 1830 , p, 160 (substitute name for Totradactylus Guvier).

Hemicrgis Wagler, supro cit., p. 160 (substitute name for T'ridactylus Cuvier'). Leiolopisna Dumeril and Bibron, 1839, v, p. 742.
Chelomeles Dumeril and Bibron, supra cilo, p, 774 (type quadrilineatus).
Lampropholis Fitzinger, 1843, p. g2 (type L, guichonoti).
Eulepis Fitzinger, supra cit., p. 22 (type l. duporveyi = tritineatum).
Mocon Gray, 1845, p. 80 (type guichenoti).
Lygisau'us deVis, 1884, p. 77 (type foliorum $=$ mundus).
Whophila deVis, supracit., p. 77 (type vivax-bluckmunni).
Leiolomsia entrecasteauxi (Dumeril and Bibron 1839).
L!⿰gosomu entrecustrauxii Dumeril and Bihron, 1839, v, p. 717: Australit.
A single specimen collected on Flinders Chase (R2164); tail regenerating mid-hodys seale rows 28 ; ear-opening romendish and smaller than the phatpeloral disk; nostril pieseed in nasal; no supranasal; frontonasal broater than bume, foming narrow sutures with the rostral and the frontal fom supraoculars, the second the largest; six sumpaciliaries; froutal in entact with the first and second supraoulars; two frontoparietals; interparictal small, parietals forming a suture behind it ; dorsal seales with distinet striations; subdigital lauellae 19 ; adpressed limbs just meet, pentadaryle. Colour: slate prey below, very dark olive-hrown above withont longitudinal black bands. This is a new record for Kangaroo Islamed.

Leiolopisma feroni (Fitzinger 1826).
Scps pronit Fitainger, 1826, p. 5 3; Kangason Island.
Lyyosome (Hemiergis) qualridigitalum Werner, 1!10, ji, p. 480.
Eight individuals were collected:

"'Tail regencrationg, Lucalitys along Stunsail Room River, under rocks.
An modivided transparent disk in the lower eyolid, frontoparietals paired, interparietal large, subdigital lamellae not enlarged transversely, limbs tetradaciyle, car covered with seales, 18-21 mid-body seale-rows.

Formerds placed under Hemiorus, this species acrording to Dr. M. A. Swith (1937) should be included under Lciolopisma, as Hemicrgis does not warrant recognition as a separate section in Iygosoma.

Leholopisma nufohenoti (Dumeril and Bibron 1839).
Lygosome guichenoti Dumeril and Bibron, 1839, v, p. 713; Australia.
Λ simgle damaged example was taken (182167). The suture betwent the ros. tral and fromtonasal is almost as brod as the frontal. the interparietal is very small, mid-boty scale-rows about 80 ; trontoparietal single: limbs pentadactyle, just meeting when adpressed; lumellas beneath fourth toe 26 ; preanals moderately chlarged.

Total leugth $102(38+64) \mathrm{mm}$.
Locality: Near Stunsail Boom River.
This speries has not previnnsly been reended trom Kangaron Islansl.

AMPHIBTA.

Fimmly Leeptodactylidde.

Lymanymastes platyceminalus Gumther 1867.
This species was mot listed by Waite (1927), but has since been recorded from the Island by Loveridge (1935).

Crinta 'l'sehudi.

Crinio, Tschudi, 1838, Batr., p. 78.
As shown by Boulenger (1882) the members of this genus can readily be divided into two groups, namely those in which the under surdaces are gramulate and those in which under surfaces are suooth. Species of the lather swet ion inchubr Iasmumiensis ((sunther) 186t, lacris (Gimnther) 186t, l. froggniti Fletcher 1891, damingtomi Loveridge 19:33, rosea Harrison 1928, teni Fleteher 1897, and aculirostris Andersson 1916.

The following is a key to members of the first-named group in which the lower surfaces are grambin or areolate.

Lower surfaces granular, two metatarsal tubercles normally present.
T. Back with two promineut lyre-shaped dorsal plicac and small warts.

The only species of Crimin previously reconded from Kangaros 1stand is signifora (Waite,]927), which is apparently of the typical race. The two known forms of China signifera en be distinguished as follows:
a Tower surfaces white, very heavily rovered with dark (hrown or black) mottlims ur spots.

an Lower surfices lightly deeked with durk (brownish) markings or immaculate.
igntat Cope 1866 (W,A.).
Nos examples of Cbimio sigmiford signiform were collected by the Tate Sociely Expertition, although a further race of affimis was taken and is deseribed below.

The races of Crinion affinis can be separated as follows:
a back unitormly grey or pale browa, with a black or lorowa lateral line (which may be interrupted above the arm).
Is Throat and betly white or lightly Heeked with browa .. Affinin (Gunther) 1864, W.A.
1). Under mirfsees heavily overlad with brown or black markings hanwelli Fletelice 189.4 (N.S.W., Vie., S.A.).
on lanek uniformly very dask brown or black, no dank lateral line, water surfuces lighty manterd with brown halmaturina subsp. nov. Kinggaron Island.

Crisia affinis thalamaturina subsp. 3ov.

Description: Habit nut as stout as georgiana, but more so than in signifera. Head about as broad as long; sume cather pointed; nostril :Sightly nearer tip of sont than anterion border of cyo; canthns rostralis feebly marked; interorbital region slighty broader than upura exalid; pupil horizontal; (ympanum hidden; dongue oblong, slightly nicked and free behind; vomerine teeth absent. Fingers slender, first and lasi shomest, third longest ; two motatarsal tubereles; a distinct metatarsal fold, subarticular tubercles present; toes slender, slightly fringed; the tibiotarsal articulation of the adpressed hind limb reaches to the temple; skin smooth above with a fow small warts; below strongly gramular. Colour, very dark olive-brown above, including the limbs; a whitish line from the eye to the Whow; wo lateral black lino; below, white and with sparse mottlings of dark
brown：thighs（？）pale yellew，with brown mottlingi．Total length $20 \cdot$ anm．

Loculity Flinders Chase，Kangarom Island，South Australia．Two examples were collected hy the Tate Soniefy in Jahmary，1940，

Hyla atevtamand Duncril and Bibron 1841.
Hylu jorusiensis Drmenil and Bihron，184！，viii，p． 580 ：Tervis Bay，N．S．W．
Hylu kraflif Gunther， 1863 （3），xi，p．28，pl．iv，fip，C：Sydney，N．S．W．
Hyla rallisedis Peters，1874，p． 620 ：Adelade，South Anstralia．
ILula unpminalis Aht，1085，cix，pp，25s－3：Adelaide，South Australia．
A single adult female aromirently reterable to this species was collected at Rocky－River in Jamary，1940，（ N，A，M，Re166．）

It is douhtul if all the frogs taken in Sonth Australia in the past and identi－ fied by Waite and others as Ilyla coringi we of that species．

For many yoars jowisisnis has ben known only from the type，taken at Jervis Bay，New South Wales，rand we are indehted to Loveridge（1935）for sag－ fresting that the later described lireftition merely it somburm of it．as well as for clarifying the position of cungi，of which for a momber of years lirnfite was re－ garded as a synomym．

Loveridge also recolds at senth Australian specimen of jorvisiensis，but Waile（1929）did not list the speries for Sonth Australia．

Comparisons of soluth Australian maindand material with speecmons of Hyla jemisiensis tront Tasmania，and with xamples of H．emingi veroauxi and H．e． alpinu indicate that these trogs are not ewingh．

The main distanguishing lenture of jernisionsis is the glandular fold at the wormer of the mouth，and this is very distinet in one folly adult breeding male bakon ht Woodside，South Anstralia．In temales which the writpu has examined the phondular fold is stighty indieated．The colour markinge and digital web－ binm，howeror，in all agee wilh that at jemisiensis．

Ahl（1935）described a new spacies of IIylu recuived from Zieta of Adelaide
 the material sow exmminei，In bis deseription be does not inchede a glandular fold at the comer of the month，White the hight yellow thighs are not mentioned， although the other colours are those of gevisionsis．If the froge（andion dispassion can be reparded as true jevisionsis，then additional oharmeters tor the species might bo the relatively more shomber hath，as enompared with cuingi，and also per－ haps，the relatively qreater length of the liuns in jerviviensis，

It is suggested，fowever，that manimalis minht eventually be proved to be a separate speses，althonen the description given recalles that of calliscelis by I＇ders（187t），whioh was also deseribed trom Adelater specimens，and thus this latter name would have to take precedence ewer dhl＇s name．

There is some variation in the marking of the thighs in the npecmenk ex－ amiued；the dark markiogs are wher in the form of dark purplish streaks，blotehes
 in two spremmens，females，there are also af few datk apols on the hinder parte of the flank．There is motigu of yellow on the thighs．The vomerine teth are sitnated between or slightly forward of the chomae．

Mensurements：

> No. 12.260 femake, Rocky liver, tiangaroo Tsland
> No. 12 188:
> No, R 2071
> N゙に. $18: 8079$
> remale, Nitional Park, Tellait, Bouth Allatraila femnle, Niutional Park, Belair, South Austritlis male, Wrandsille, Montle Australia immature, 1anuncestou, 'l'asmania immatare, Lamiceston, Tasmania

38 เ11\％．
it mm ． 2.4 nmm 28 min． $1+$ mil． 17 เงเา．

REFERENCES CITED.

Ahl, E. (1935): Zool. Anz., cix, p. 252. Blyth, E. (1853): Journ. Asiat. Soc. Bengal, xxii. Bory de St. Vincent (1825) : Dict. Hist. Nat., vii, p. 183.
Boulenger, G. A. (1882) : Cat. Batr. Salienta so Ecaudata, Brit. Mus. Cuvier, G. (1829) : Règne Animale.
De Vis, C. W. (1884) : Proc. Roy. Soc. Qld., i, p. 77.
Dumeríl, A. and Bibron, E. (1839): Erpet. Génèrale, v.
Dumeril, A. and Bibron, E. (1841): Ibid., viii.
Fitzinger, L. F. J. (1826) : Neue Classif. Rept., p. 53.
Fitzinger, L. F. J. (1843) : Syst. Rept., pp. 22-3.
Gray, J. E. (1845) : Cat. Liz., Brit. Mus.
Gunther, A. (1863): Ann. Mag. Nat. Hist. (3), xi, p. 28.
Lacepede, B. G. (1804) : Ann. Mus. Paris, iv, p, 192.
Loveridge, A. (1934) : Bull. Mus.Comp. Zool. Harvard, lxxvii, No. 6.
Loveridge, A. (1935) : Ibid., lxxviii, No. 11.
Peters, W. O. H. (1874) : Monatsb. Akad. Wiss. Berlin, p. 620.
Smith, M. A. (1937) : Rec. Indian Mus., xxxix, p. 213.
Tubb, J. A. (1937): Proc. Roy. Soc. Vic., xlix, p. 425.
Wagler, J. G. (1830): Nat. Hist. Amphibia, p. 160.
Waite, E. R. (1927) : Proc. Roy. Soc. S. Austr., li, p. 326.
Waite, E. R. (1929): The Reptiles and Amphibians of South Australia, Adelaide.
Werner, F. (1910) : Fauna Sudwest Austral., ii, p. 480.

THE AUSTRALIAN BROADTAILED PARROTS (SUBFAMILY PLATYCERCINAE)

By H. T. Condon, South Australian Museum

Abstract

Summary The birds forming the subject of this account comprise a mixed assemblage of medium-sized, long-tailed Parrots, and include such well-known forms as the Rosellas (Platycercus), the Ringneeks or Yellow-collared Parrots (Barnardius), and the various "Grass Parrots" (Psephotus). In these birds the tail is longer than the wing, and has the central feathers more elongate than the outer rectrices. The principal other external features apart from plumage colour, by which they may be readily distinguished, are the horn-coloured bill and the peculiarly scalloped primaries.

The AUSTRALIAN BROADTAILED PARROTS

(Subfamily PLATYCERCINAE)

By H. T. Condon, South Aurtralian Museum.

Plate viii, and Text-fig, 1-3.

Introducrion.

The birds forming the subject of this acount comprisp a mixed assemblage of medium-sized, long-tailed learrots, and inchule such well-known forms as the Rosellas (Plutycercus), the Ringnecks or LCduw-eollared L'arrots (Barnardius), and the various "Grass l'arrots" (Psephotus).

In these birds the tail is longer than the wing, and has the central feathers more elongate than the outer rectrices. The principal other external fratures apart from plumare colone, he which they may he readity distinguishol, are the horncoloured bill and the peeuliarly sealloped primaries. The structure of the wing feathers appears tu be one of the most conservative features of the group, for it oceurs in all the Australian forms as well as in related exotic genera sueh as the Pacific Parrots (Uyonorhamphus) nl' New Zealamd aml aljamut regions. In all, the speond, third, fometh, and fifth primaries are markedly scalloped on their outer edges, exactly as occurw in the Cockatoos (Kakatoeinac). As noter by Thompson (1899), the affinitios between the Platyenremane and Kiakatomine may be closer than is usually recognized, Not only are there some similarities between the ramial osteology of certain forms, but both groups are characterized by the absence of an ambiens leg musele and the presence of an oil ghand, although this latter feature may not be important taxomonically. In the Cockatons the orbital ring is complete in the adult, but as in the subfamily Pe\%oporinae, in which a similar arrangement ocenrs, the completion of the orbital ring can only be regarded as a secondary development.

In the Platycercinae the orbital ring is incomplete, and while we can trace other structures in the eraniom of this group whioh ace homologous with thase fomod in the Kakatoeinae, it is apparent that the develofment of the arehitecture of the skull of the tormer has not proceeded as tar as in the last-named.

Another fature generally quoted as characteristic of the Broad-tails is the "hsence of a furulum, hat this structure has atso hem lost in the Peapminan, and its bresence or absme is probably not of areat taxonomic importance. The primfries of the Dezoporidue, which include such genera as the New Zealand Kakapo (Strigops), the Night Parrot (Gcupsitturus), Budperigar (Melopsitlacus) and (ivound Parrot (l'czoporus), are unscalloped, and it may be that these forms are unly remotely comected with the Platycercinae.

The small parrots of the genus Ioophema, which are nsually associated with the Platycercinae, have no furculum and ambiens, and tho primaries are only slightly scalloped.

Peters (19:37) has provided the most recent taxonomic arrangement of the group, and the present paper is a review of the distribution and status of all the known genera, species, and subspecies.

Clamate and Geonrapfiteat, Distributhon:

The larger Aust ralian Brondails are non-migratory. and the varions speenes appear to be confined to distinet elimatie zones.

There crolution and distribution is indinately comected with the past histury "f the Ausiatian comtincut. The serious deteriomation of the climate in late Ples. freene times probubly exterminated species of which now there is no trace. whilst those which were ahle moved hefore the pneroadhing cremeac, and at prosent inlabit the wetter peripheral districts.

With the more accurate diseritumation of many of the mbspeces of Broadtails, the matur of the regions in whels they vecor may be exmmed to diseover, if pussible, the fadm:s responsible for the develogment ith distribution apart. from food and competition. It serms apparemt that the bredime eyblos of many are dominaterl by the incidenes of seasemal ratins, but less obvions is the guestion of chames of climate and genomphy in Anstratia sime the last geological period, Many of the avian forms now liviug in the wetter peripheral districtis of the Conthent are probahly rembants of rates which ones extended much form har inland. and it is often difficult to deeide whether those subspecies now confined to the varions eonemotrie climatie zones have orgigitated in those areas or whether they,
 the sucesssive eremear, whish have hese considered to be the reenemine characteriatie of world climatie history nince the end of the Pleistocenc.

Most parrots are good indieators of pressent climatic conditions, and il we can
 trace their tomer distribulim with reference to the climatic zones of that dime. In this conncetion it would appear that thase lomms nuw living in regions in the
 here the districts which have expmeremed olimatic chandes aro much less extensive than those in the sonth.
 and the zowen imbliated approximate chandy th the wecepted arras of sulasperiation at present recognized in Anstralian ombthotog: 'This onservation is simportmi hy refercnce to many groups of hirds.
 conrclation hetwen watation typer and the asifana. It is prohable, however.
 ment, hut is intimatry connected with tomperathre rainfall, and also, prohaps, the duration of the arid periot, whirl is a fatare of the chimate of many parts of Australia at the present time. Davidson (1936) disenkeps the elimate in rolation to insect ecologs, and comsidets that owiar to the and climate and markedy seasomal rainfath, moisture is the main inthence alfecting tho distribution of these
 and is well illustrated in the 13rmadiailed Purrots.

The areas occupied by the many gengraphient races correspond closely with the gones indicated in duaps showiug the mean duration in monthe of the arid
 (Preseott, 1934).

Davidson (1936) eunatiouted a man of hiodimatio zones based on a critical ratio of rainfall to evaporation of 0.5 for each month. From publistrol data aud further information it has been possible to prepare a revised man of the masture zones based om influemial rainfall and avnilable moisture (tifi, 1).

The margins of the majority of the zones indicated are the same as those of Bhavidson, but the sonthern homadarips on the "flesert" areas have been modified and additjonat "humid" areas have been indoded hased on the known oceurence
of large rain jungles in the Coen district of North Queensland, and smaller areas on Groote Eylandt and elsewhere in Northern Australia.

The nomenclature nsed is that of Davidson, being based on the number of consecutive months during the year the value of the Precipitation/Evaporation ratio is greater than 0.5, as follows: Desert zone (0 months); Arid roue (1-3 months) : Semi-arid zone (4-6 months); Semi-humid zone ($7-9$ months) ; and IImmid zone (10-12 months).

Fig. 1. Moisture Zones of Australia, based on zumber of consecutire months $1 / T \mathrm{~F}$ is greater thatin $0 \cdot 5$.

In the north the approximate margins of the desert areas shown in fig. 1 envrespond closely with a value of 10 for de Martonne's Index of Aridity for mean ammal conditions (Andrews and Maze, 1933), but iu the sunth this index firnere marks the limits of the arid region. Similarly a value of 20 marks the approximate limits of the semi-arid belt in the north and south. A table has been prepared of Whe ranges of the various smbspecies of l'latyeeremes with reference to the moisture zones (fig. 2), and the various niches they occupy are indicated.

From this table it will be seen that the races of Barnurdius, Northella, and Psophotus preduminate in the more arid or even descrt zones, while the Rosellas
(Platyctrrus) and Purpursisephulus atp ermfined to humid, semi-humid, or more rarely semi-arid areas which are subject to some influential summer as well as winter rains.

It is suggested that those forms which are shown in the diagram to meur in more than one gome may the turther divided subspecifically, or alternatively that they are selatively more renent arrivals from uther areas.

Tho above intimate belatiomship belween race and moisture does not seem to hold for all Austratian birds, however, as in nome Panserilormes losal fhethatims
 temperature is an additional dominant factor.

Phisogents and Classifitation.

The Psittaniformes are an extremoly anomit group, and in the prevent state of ohe knowledge it is difficult to twace the plyygeny of the entire order: The dicisions proposed by many modern woskers may mot he hased on sound anatomical fealures, for the tron value of many (fuoted characters has meser been propery decided.

The feutures an which genera are separated apptap to be contradictory. and
 and other internal fealimes which oecolr in widely differing gronps and may have embed independentls. Several distinet lines of erolution are recornizable and the highns forms sumperieitly have come to resmble nom another. Such characters as the loss of the fimonlum, the completion of the whital ring and the appear. ance of other canial nssificatinns, as woll as the loss of the anniens leg masele, White valuable its demonstrating minor sedathemsthips, are ouly secondary devalonments in the varions sublamilies. Even the abored eondition of the sternal keel in Strigops may not in itselt be of mos than generie infortance.

T'he l'latycercinas helong to a section of the Parrot tribe in which the second to lifth primaries are markedly spalloped, and aro apparently allied to the Kakafoeinare (Cockatoos), Pioninae (Amazons and others') in wheh there is a similat
 tu changes in hahits has weromed indergembent in many gencra, and in forther widence supportine the antignity of the gromp. 'The mumber of species and genera in former limes must have bees immengeater them it is to-day. Owing to the disapporaner of many related forms. present-lity species which arce only remotely connceted dnve often hem assuciated in the varions framilias and subfamilies.

Forbes (1874) made mach of the similaritien betweon the pterylusis, nstenlugy
 frather material seems to inflicate that the antinities of the former are with those parrots in which the primarics are lmsealloped, such an the Lorionae (Lories), surt we may dismins the gemb from litrther disenssion in this paper.

Salvadori (1591) proposid separating the Anstralian Lifoadtails as a distinot
 pols reengnized by him.

Mathews (1931) regarded them as a Jistinet frmity I'latycercidae. Accord.

 bave indmed them with the broultails. It is here sugenestad that the first-mamed are closes to the Strigopinam, and with them may ennstitute fo separate fanily.
 Platycerus, Sarnardius, P'mpurcicephalus, Dsphotes, Vorthirlla, Psephotellus, Neopsephotus, Nomunorles, Veophemm, C!!enorhomphus, Bulleria, aud lathumws.

Fig. 2. Table showing correlation between distribution of subspecies and moisture zones.

The last-named is best excluded from this list, while Psephotellus, Neopsephotus and Neonanodes do not seem worthy of generic rank. The remaining genera may then be regarded as a subfamily, Platycercinae, although Neophema is a doubtful inclusion.

Peters (1937) in revising the taxonomy of the Parrots of the world included the Broadtails in the subfamily Psittacinae, in which he includes also the Macaws and a host of other forms. This author's arrangement differs greatly from that of other workers in that he recognizes only one family, with six subfamilies, for the whole order Psittaciformes.

It is anticipated, however, that the Psittacinae of Peters later on will be further subdivided, when the Broadtails, probably together with other Australian and New Guinea forms not now associated with them, will be recognized as a distinct family group. The osteology and other anatomical details of many genera is still quite unknown, and it is difficult to assess the true value of many superficial features, such as differences in colour pattern. It is believed that these characters may later be proved to be good indices for the separation of the different groups and will be supported by more deep-seated structural characters, when further anatomical studies are undertaken.

It is reasonable to assume from the development of present-day forms that the generalized ancestral type was a plain green bird, which in turn may have previously passed through a blue stage, although this is scarcely more than conjecture. From these birds the various highly-coloured species of Broadtails we know to-day have evolved. In this connection it is significant that those forms of Cyanorhamphus which are found in the region of the south-western Pacific are reminiscent of the immature stages of many Australian species.

The following artificial key may indicate the affinities between the Australian genera:

Review of Species and Geographical Races.

In the discussion which follows no complete references to the genera, species, and subspecies are given, and for the full quotation of the original place and date of publication of the various scientific names reference may be made to the R.A.O.U. Check-list (1926 edition), and Mathews' "A List of the Birds of Australasia", 1931, pp. 196-210. The first of the quoted vernacular names are those which were adopted by the R.A.O.U. Check-list Committee (1926), and they are followed by names used by Gould, North, Campbell, Hall, and others, including those applied to subspecies. The use of common names for subspecies is not advocated, however ; many were originally used for forms which were then regarded as full species.

Genus Purpureicephalus Bonaparte 1854.

Diagnosis: Strongly characterized by the long projecting bill and distinctive coloration. The pre-orbital process is larger than in other genera and the postfrontal process is reduced, while the whole cranium is more slender than in allied
forms. The orbital ring is menmpte as in other l'latycerciuas, and the articulation of the quatrate is umbseured. The form of the primaries is axaty a in in related genera, the semon to fitth feathurs being markedly sealloped.

There are un well-marked theek-patches as in Barnardius, Northiolla and Plotyceras, but the entire lacial rexion, with the exeeption of the lores, is bright yellowish-grecn. Genotype: Purpurcicephalns spmehits (Kinhl, 1820).

Diseussion: Confined, so fiat as iskown, th the coastal areas of bouth-western Australia, where it is called the "King Parrot", this speepes is remarkable for the suretly elmated upper madible.

No evidences is yet atrailable as to the special uses of the beak, which is quite
 moy be a case of orempecialization, comparable fome ways with the exensive development of the wide beak of the Tawny Fromouth (Pordurgus). The overdevelopment of the bak may have been party responsible for the extinetion of the gems in othere parts of Anstralia, its possession proving a handrap in eompetition with other tom of a more fomeralized type.

We can he moderately certain that the speeies did not originate in SouthWestorn Australia, and ot is the sole surviving membur of an assemblage of parrot forms which heame extinct probably whe theistocene, and may have bew more widely fopead than at present.

Althongh many anthors have sugersted that f'urpurcierephalus has affinities with tarmardius, it is morelikely that it is an independent development from the ancient prototypes of the laremer Platyeercines. Not only is the colone pattern limique, but the absonce of blue che k-patehes at onee marks it as distinet; as a
 to emphasize ith isolater jusition in the Australian parrot fauna.

Differences between Juvemitcs and Adults: The jmmature plumare differs markedly from that of the mblt. decordine to Tavistock (1929). the adult plumary is anguired with the first moult when the bird is little less than is yar old. In
 acrose the fordead, the muder tail eoverts are mainly yollow with red streaks instead of entirely red, and the umper breast is dull green with faint red transverse harrings, white the abdomen is pale manve. The hadk and uper tail are yellowishgreen. and the rump is vellow. As noted recently by Themtom (1940, p. 91) throre is a well-marked white "wing stripe" in the young of both sexes.

Srecual Differemers: The arfult frmale je eonsiderably duller than the male, and resembles the imnature birct. There is no red cap, hat a restrieted frontal hand of real athd tor mature of the beast is moch datler". As in most flatyenpeines, fomales are further distinguthed by the pregence of a "white wing stripe".

Putpureteepralus spuman (Kinh 1820).
Synonyms: pilatus (Vigors), muffrons (Lesson), prerphoreoct phatus (Qions and Qaimard), carteri M(athews.

Names: Red.capped Parrot, Kiug Parrot, and Pilpated Purrakeet.
Range: South-west Auktralia.
Mathews (19:3) proposed distinguishing two raters, spmerius and carleri. The fypieal form is statarl to lwe confined to the enastal weas; fortorinews furiher inland.

Mathews (1915, p, 198, and 1917, tig.) grives the following characters for rarteri: "Differs from P.s. spurius. in beiner darker ahove, the cheeks greener and the under-surface dank pinple."

Examination of five spermens from repesentative localities has failed to lend support to this proposed subdivision.

Genis Barnardits Bomaparte 1854.

Dia!masis: The Ringuecks (genus Barnardius) are a purely Australian group dameterized by the presence of a"yellow enllar" around the hindneck, reminiseent in some ways of the rivici pink neck-ring of some of the Asiatie Ring-necked l'arrots (Psittorula). The cranial osteology of all species differs from that of Platyeerrus, expecially in the atuditory region. The enndition to be noted is similar to that fonnd in the genera Norlhifla, Psephotus and Purpurcicephalus. In these last-named Platycercines the articulation of the guadrate with the cranium is clearly visible and similar to that found in the Polytclitine parrots (Aprosmictus and Polylelis) and the Lories (such as Trichoplossus), In Platycorcus there is a well-dereloped bridge of bone which connects the zygomatic process with the suprameatal tuberele and which conceals the articulation of the duadrate with the cranium. (See fig. 3.)

Fig. 3. Auditory Region of crania of (A) Platycercus, and (B) Barnardius, showing struetural differences. About twice natural size.

As in related forms, Barnardius has the orbital ring incomplete, the postfrontal process small, and the squamosal process crossed at its base by a deep groove above the meatus and in tront. of the supra-meatal process or tubercle.

The upper mandible is relatively large and heavier than in Platycercus, and the anditory meatus is marrowed and curved. The furculum is also absent as in other members of the subfamily.

Barnardius is characterized by the presence of blne cheek-patches exactly as wecur in Platyecreus, but the colour pattern of the plumage difiers markedly from all the other genera of the subfamily. Genotype: B, typicus = Platycercus barnardi Vigors and Horsfield.

Discussion : Some workers prefer to include all the forms of Barmardius under Plutycercus as members of a single species (e.g. Peters, 19:37), but this riew is not supported herein.

Peters sars (p. 26i3) : "There are no structural characters of importance that justity the existence of the penus Barnardius; those who do admit it do so only on the basis of colour."

Examination of crania of Barnardius and Platycerous reveals that there are diffrences botween the two in the anditnry region, and these quive support to the contentions of salvadori (1891) and Mathews (1918) that Barnardius is wrothy of recoruilion.

Alvorates of the distimetness of farmardius have always stressed the difierenees in mbun pathern between the two genera; these are ohvonsly of more than superficisl importance.

It is anticipated that Peters' (19:37) proposed schome, including all the forms of Bermurdius as members of a single species will not be acceptable to Australian muithologists.

Rather it is suggested that there are two Formankreise the members of wheh fiom excellent examples of IInxlerian geocline series; the character gradients involve size and colour. One serifes occurs west of about 138 deg. east longitude, the othere east of that line.

(West of about 138° eas long.)

Thanardi Formenkreis.

(East of about 138° erst long.)

The most conservative feature in Barnardizes seems to be the colopation of the choek-patches, which ara ble-violet in zomatine and grem-bhes in barnardi. 'Thn geographical races of both species which inhahit more humid southern zones have retained the red forehead band which was probably characteristic of their common smeestor.

Itwonite Plumage: Immatore hirds resemble adults but are generally pales and dulle with the markings less mearly dofined. To B.z. semitorquatus the red forchead band is completely assmmed in thr adnlt omly, while in B. barnardi the head is maiformly dark-colonred in the young, changing to green in eertain races. There is a white wing stripe in both sexes which is usually retained in the mblnt female,

Srorurl Differences : Femaless differ from males in being slightly smaller aud duller in colour, having the heat aud heak sumber. Th fhose forms with a red forwherd bund. this is greatly reduced in extent in the female. As stated above. females may the forthor distinguished hy a white wing stripe which is almost mariably present.

Distribution: The members of Barmardius are mainly confinca to the drier interine, and with a few exceptions oceur within the 15 inch isohyet. From the accompanying table (fig. 2) it will he sem that mearly all the races of Bormordius are confined to warm or hot arid moisture zones which reecive no influential smmmer rains. Two exeeptions oceur. In the semi-humid coastal zone of southwister" Allstralia, which receives some effective stmmer rain, there lives the large, distinctive race, B.a. semitorquatus. In the Cloncury district of North Qucensland is a hot arid arca whol receives no died ive winter rains, but has $\mathrm{P}^{\prime} / \mathrm{E}>0 \cdot \mathrm{~J}$ for from one 1 , there months in the summer. II pre we find another most distinctive race 73.6. macyillitrtyi. These forms are best regarded as the "end members" of the varions cline serics and not as full species.

Barnardics zonarius (Shaw 1805).
Names: Port Lineoln Parrut, Yellow-handed Parrot, Yellow-collared Parot,
 Parrakeet, and North Parrakeet.

Remge: Australia west of about longitude 1.38 ding. and south of ahout 20 deg. South latitude.

Races: Barnarilus sonurius st milorquatus (Quey ant Gaimard) 1830; B.z. dundasi (Mathews) 1!12; B.a. atmurius (Shaw) 1805; B.z. myrtoue (S. A. White) 1915 : $13 . \pi$ occidentnlis (Nontl) 1893.

In 1929, Kinghorn expressed views on the statns of the varinns forms of Barmardius. and publisted a distribution map. Jenkins (19:31) reviewed the wetern forms of Burnardius zonarius, and his findings are approximately the same as these of Mathews (1931). Examination of finther material confirms most of the sugpestions offered by these workers, although it seems proferable. in the light of furtlier linowledare, on requrd as subspecies some of the species reengnined ly Kinghorn.

Barsaridus bonahes sbmitorguatus (Quoy and Gaimard 18:30).

Names: Twenty-eight Parrot, Yellow-saped or Yellow-banded Parrakect, Ypllow-collared Parrot.

Synonym: woolundra Mathews.
In regarding the Twenty-eight Parrot as a race of conarius the modern trend towards a broader concept of species is followed, while it is also felt that such is the cubsensus of opinion thong present-day Australian ornithologists.

Earlier workers allonted semitorquitus full specifie mak. as also did Kinghorn (1929), despite the fact that there are jutergrades between it and zomarius. This is one of the exceptional forms of Barnardius, and inhabits districts subject to influential summer rains, as well as winter rains. The total momber of months $P / E>0 \cdot i$ is $7-8$, which is relatively higher than that of areas where other races

 was probably the first to regard semitorquatus as a race ol zonarius, but in this he was not followed by the R.A.O.11. Check-list Committer (1926). The varinus intermediates produced by the natural interbreeding between semitorquatus and zonarins along their line of contact, such as woolundra, might almost be disrogarded as true erompaphical races; they comprise very variable populations mat Purnish good examples of genocline series.

The green plumage of this race has a more yellowish tinge than that of zon"rius: the yellow abdominal band varies greatly in extent and may be absent or mreatly restrictect, and is never as wide as jn adjacent forms.

Rung: Sonth-western Anstralia, principally in the wetter (semi-humid) coastal areas with an average rainfall of from 20 to above 40 inches, emprising six monthe of winter rains and ome to two months of influential summer sains.

Barvardits zonartus dundast (Mathews 1912).
Name: Dundan Yellow-enllared Parrod.
Vharaters: "Differs from P.z. semitorquatus in lacking the rem frontal band: and from P'z. zonarios in the deep green of the uppre surfiace," (Mathews, 1912, 1. 274.)

Jenkins moted (1931, p. 259) that the female of dundasi which he examined
was "smaller than typical zonarius, back darker" . . . in other respects resembles B.z. woolundre".

Although reengnized by Mathews (19:3]) and Peters (1937) Ihis is a doubtful race, and it might more correctly be regarded a syonym of zonarias. For further remarks see under that name.

Range: Drier interior of South-western Anstralia, ronghly betwem the 10 und 20 inch isohyets.

Batanabdius zonarius occidentalis (North 1893).
Name: North Parrakeet, Northerı Yellow-banded Parrot.
Symonym: connectens Mathews 1912.
Chururtres: "In the disposition of its markings P. occidentalis resembles P. zomurims, but it differn from that species in having light blue (i, e, pale blue-violet) instead of dark blan check; in the greater extent of the conspieuous bemom-yellow al the lower portion of the loreass and the whole of the abdonen and which extends "s for as the rent, instomiof the deep gamboge yellow of the centre of the abdomen ombly ; iu the vediter green of the chest, bark, wiugs, seapulirs and inter-seapular repion, instead of the dark green, and in the absence of the narrow black band irmediately below the collar." (North, 1905.)

Of connectows Mathews (1912, p, 274) says: "Differs trom P.z. orcidcntalis in having the rump uniform with the back; the yollow band of the abdomen more distinet, but not as bright as P.z. zonarius."

Jonkins stated of comuctens: "Tesembles B.z. occidentalis, but the band of yollow on the umdrr-surfore is much depere in tome, haviug an orange tinge." There is some confusion as to the extent of the range of occolentalis and connectons. Kinghorn (1929) shows sonncetens about Geraldton and the Murchivou, with occidentalis to the north boyond Roebourne.
denkins (1:11) gives occidentalis in the Murchison area, with comedens fround north, which is exactly the reverse of Kinghorn's statement. Specimens examined from the Fortesene liver are of hoth forms, and do not support the proposed difterenes between the two, although a North-west Cape pamuple is typical oceidentalis. 'Ihis race imhabits the hot ardd and desert zones of Northwest Australia, and its paler, more vellowish coloration is probably an expression of this difference in climate, where the mean ammal tomperature ($70-80$ der. F^{f}.) is far higher than that experienced by other races.

Although recognized by denkins, connecters is not now regarded as valid by Jathews (1931) or Peters (1937).

Range : North-west Australia from the Fortescue River in the north, south to the Murchison district, Geraldton and eastwards to Lake Way.

Barnardug zonarive myrtae S. A. White 1015.

Name: Central Anstralian Yellow-banded Parrot.
This form, which is requrded as a synongm of zonarius by Nathews (1931), shmble morerthess be reenguzed as a distinet rate. Th the specinens oxamined the ereen of the back is of a lighter (yellower) shade than in typical zomerius. Examples in fresh plumage from the ManDumell Ranges ditier slightly in colour, being of in mure bluish shade above.

Range: Northeru Soutb Australia (interior), from about Ooduadatha north. wards to the MacDonnell Ranges and beyond to Tennant Creek, Northern I'erritory.

Barnarnius gonaritrg yosarius (Shaw 1800).
Nomes: Port Lincoln Parrot, Bater's Parrol, Yellow-banded Parrot, and 13anded Parrot.

Synonyms: I'sitlacus xividis (Shaw) 1812; I's. ryanomelas (Kuhl) 1890; Ps. melanocephalus (Kah1) 1820; Ps bateri ('l'emminek) 1821.

Normal examples do not exhibit a red frontal band, which is characteristie of the South Western Australian wateountry lomn, Some individuals, however, necosionally show traces of red on the forchearl. This race is an inhabitant of the Warmarid zone of the interion of sonthern Anstralia, wher there are no influential summer tains and where $P / E>0 . \bar{i}$ exists only for from one to four winter months.

The form dundasi (fiv. supra) probably refers to this race, and the example digured by Mathews (1917) may be an abnormally pake imdividual. A skin of a male in the eollection of Dr: D. I. Serventy (No, 742), taken at Salmon (iams, 25 miles south of hake Dumias, is of the typical form. It resembles examples of B.z. zonarius from Eyve's l'eninsula, sumth Australia. Examples of this race have also been taken as fur west as limbury, South-western Australia. With the exenption of semitorquatus, the members of this race exhibit traces of the red frontal band more frequently than any othes.

Range : Interior of Western Australia, eastwards to Eyre Trminsula aud the western slopes of the Flinders Ranges, South Australia.
the races of Burnardius zonarius.
(basen on plumage differences-colours according to Ridgway.)

semitorquatus	Firchearl. Bearlet-red	Back. grass green	Cheeks, dark soft bue-riolet	Upiper breast. grase greet	Abdomen. vartable (grass green callisto green, lemon yollaw abdominal band preseat or absent)
smarlus	nsually a fow scarlet-red feathers	meadow green	dark soft blue-violet	meadow green	Iemon chrome abdominal batu
oecridentalis	red absent	bice green	velear endet hlue	light uriental green	palo lemon yellow hand on abdomen
myrtae	Ted ahsent	Ackermann green	durk noft blue-violet:	$\begin{aligned} & \text { Ackermann } \\ & \text { Hreter } \end{aligned}$	strontian yellow ahdominal band

Barnardues barinarid (Vigors and Hursfield 1827).
Jinmes: Ringneck Parrot, Nallee Parrot, Barnard's Parrakeet, Bulla-Bulla, Buln Buln, and Cloncurry Parrot.

Range: South-east portion ot the Lake Eyre Basin, Flinders Ranges, Yorke Pemimsula, Murray Mallee areas, South Australia: north-west Tictoria, interior of
 north to Windorah; Cloncurry district, nortls Quecnsland.

Races: Barnardius barmardi macgillinmif (North) 1900; B.b. whitei (Math(ww) 191"; b.h. autustus (Mnthews) 1912; B.b. barnardi (Vigors and Hors(ield) 1827 .

Barsiardus baranamb mackllevraye (North 1900)).
Nime: Cloncurry Parrot.
Universally known as the Cloneury l'arot, this expuisite race is guite distinct from the lemaining forms of barmmoti.

North named it as a full species, whilo both tho R.A.O. H°. Check-list Committee (1926) and Kinghom (1929) have treated it likewise. Its association
with the burnardi Formenkreis, however, is indicated by the possession of bluegreen cheek patches.

The race white somewhat resembles it being only a sbacke dallor on the back, although it is distinguished from mac!illiwerni by its red forehead and fark head.

Ranfe: About 20 deg. South Iatitude, North Quensland, in the CloneurryCamoowenl districts.

Barnambug bančaror whivet (Mathews 1912).
Same: South Aistranlian Mallee Parmot.
("haractors: "Differs from 1 '. b. hermerdi in having the head, from the red forehead band to the yellow collar, wiform dark hrown." (Mathews, 1912.) Examination of specimens from the northern $\begin{aligned} \text { finders hanges suggests that in }\end{aligned}$ addition, this rase may le distimgushed by the batk, which is moly slighty darker than the rump; this leature also links it with the preceding form.

An drample from Yaneo Glen, near Broken Mill, New South Wales, is infnemediate hetween whtriand barmordi. A further race may be recognized later for the arid interion of New South Wales and Queensland.

Range: Northem Flindars Ranges from above lourt Augusta to beyand Teigh Creck and the lower Lake Eyre Ensity.

Barnamditus barnardt augustus (Mathews 1912).
Symomyms : lindnis. A. White (whitei Mathews 1917. pl, ecevii, sec Matrews. 1912, $\mathrm{p}_{\mathrm{t}}^{2} 73$).

Name: South Australion Nallee Parrot.
(:haracters: "Differs from $\mu_{1} b$, whte" in having a green, hot bue back." There is some confusion as to the correct name for the race of the Mallee hinguper Which oreuss in the Fliuders Ranres, for hoth angustrus and lindoi are qemerally guoted as symonyms of while., and Mathewn original hisure and deseription are eontradictory: Athongh Mathews did not mention the eolour of the hark in his wipinal deseription of whitei, the bird figured had a "myrtle green" back, and the molowe of the head and checkin is that of a somtherm dark-headed hird. rather than typical whitrias remescented by a topotypieal series. It is surgested, therefore that this illustration shomld be referred lo mugnstus, and also that in the original descrigtion an errow erept in and for "whilei" we shond read "bomund ${ }^{29}$, as this is the only form which has a "hatue" baek.

The writec is nt the opinion that there are two distinct forms in the Flinclers Range arpa, white in the hoth, and ougustus turther sonth. Sonthern examples trom mallee areas west of the River Murray have dark beads, but the haek is blue as in B.h. Jormasdi. They ate thus intermediate between ougustus and burnardo.

Range: From ahout Port Augusta sonthwards to Yorke Peninsula, and the mallec arcas west of the River Murray as fas soutly as Lake Alexandrina.
barnardius barnarmi larnamb (Vigors amd Horeficld 1827).
Synonyms: D. typirus Bomaptite; crominelinae Mathews.
Nomes: Ringucek Parrot, Mallee Pamot, Burnard's P'arrakeet, Bulla-Bulla, Baln Bantr.

This tom is immerlintely distinguished by the deen indigoblue back. and alsis the emerald-gecen crown of the lead. The ahdominal band varies in extent. and may be yellow or orange and lares, or almost absent in difturent individuals.
B. nrommelinac of Mathews is now gencrally regarded as an extreme variant which was produced is captivity.

Range: Murray Mallee areas of Somth Anstralia, Victoria, and New Sonth Wates as for north as Windorah and loarealdine in Queenslam, cast to the Moree district in New South Wales.
the races of Barnardius barnardi.
(Based on plumage differences-colours according to Ridgway.)

	Forehead band.	Top of head.	Nape.	Back.	Rump.
macgillivrayi	absent	mineral green	civette green	mineral green	emerald green
whitei	scarlet	dark olive	dark olive	dark green	cobalt green
augustus	carmine	meadow green	dark greenish olive	myrtle green	mineral green
barnardi	spectrum red	emerald green	green-blue slate	dark green-blue slate	emerald green

Genus Northiella Mathews 1912.
Diagnosis: As emphasized by its author (1912, p. 276) this genus may be at once recognized by the first five primaries which are all attenuated into spatulate tips. Considered alone, however, this structural feature might not be of generic importance, but when taken together with other characters such as the presence of blue cheek patches and other colour differences, Northiella is at once seen to be distinct from Psephotus, with which it has been usually placed.

It is here suggested that Northiella has closer affinities with the Barnardius group. Osteologically it is similar to all other Platycercines except Platycercus.

The upper mandible is slightly more massive than that of Psephotus, and most of the races are larger than those of that genus.

Discussion: Northiella is to-day represented by a single species, the Blue Bonnet (N. haematogaster), which occurs widely in the dry interior of the Continent. Several races are readily recognized and are apparently confined to distinct moisture zones, as shown in the table (fig. 2).

Originally associated with Platycercus, and later with Psephotus, there is little doubt that Northiella is distinct from both genera.

Juvenile Plumage: Immature birds are very similar to the adult, but the colours of the plumage are less brilliant, and as in Platycercus the blue cheek patches are less extensive than in the adult. As noted by Lendon (1940) the wing stripe is fairly constant in young birds of both sexes, although it may be less marked in males.

Sexual differences: There is no marked difference in the plumage of the two sexes, although the female is slightly duller. Tavistock (1929) states that females may be distinguished by the flatter skull; a wing stripe is also characteristic of adult females.

Northiella haematogaster (Gould 1838).

Names: Blue Bonnet, Crimson-bellied Parrot, Yellow-vented Parrakeet, Bulloak Parrot, Red-vented Parrot, also Naretha Parrot.

Range: Arid interior of southern Queensland, New South Wales, Victoria (mallee), South Australia, lower Northern Territory, and interior of Western Australia, and Nullarbor Plain.

Races: Northiella haematogaster narethae (H. L. White) 1921; N.h. pallescens (Salvadori) 1891; N.h. haematogaster (Gould) 1838; N.h.alter (Mathews) 1912 ; N.h.haematorrhous (Gould) 1865.

Northiella haematogaster narethae (H. L. White 1921).
Names: Little Blue Bonnet, Naretha Parrot.
Originally described as a separate species, this, the smallest form, has been
recently aceorded subspecific rank hy the R.A.O.IT. Check-list Committee (1941, p. 88), as Psonhotus hupmatogaster naretha.e.

Range: Nullarbor Plain, Western Australia.

Northella haematogaster pallescens (Salvadori 1891).

Name: Pallid Yellow-vented Parrot.

The type upon which this well-marked desert race is based, came from Cooper Creek, South Australia. It may be distinguished by the very pale upper surface and pale breast, and also by the olive pateh on the median wing eoverts, whieh is yellower tham in the nther Enms. This js another distinetive bird peenliar to the Lakn Eyre Basin, and has apparently evolved moder the influenee of the extremely dry conditions of the area. The mean ammal value of the Meym Ratio (Precipitafiom in saturation Deficit) is probably the lowest in Anstralis ($0-15$ acenrding to Presontl, 1934), and areording to Davidson's nomenclature (1936) the area in which the Blae Bomuet neents may he termed the warmer tamperate desert zone of the sonthern half of the Basin.

Tho ollher races of N. hatmatogaster occur in progressively "wetter" gomes, mud a sureessiom of changes in plumage colour may be noted. Those living in the more hmind parts "xhihit morr red in the plumage markings, while the "drier" forms are paler or with more yellow.

Range: Lake Eyre Basim, South Australia.

Northiella haematuciagtrer haematogaster (Gould 1838).

Symanym: a anthorrhon Bouaparte.

Nome: Yellow-vented Parrut.
This geographical race has an extensive vange in the desert, arid and drier sub-arid zones of the interior of the Continent. In the eastarn portion of New South Wakes it merges with the red-vented form, homatorrhous, and intermediates between the two are known. In the south it mects the pale sellow-vented race, alter, which is confinel to the Murray wallee areas of Victoria and South Ansiralia. This form separates pallesechs and unrethaf, pallescens and aller, and pallescens and haematorrhous.

Ronge : Arid interior of sonth Australia (northern mallece ant salthush and blucbush comutry), far-western New south Wales, southern Queensland (Interior).

Nortitiella thafmatogaster alter (Mathews 1912).
Name: Green-vented Parrnt.
Churanfers: "Difors from P.h. xunthorthous in its nuch larger size, and in having the under tail coverts mernish rellow." (Mathews, 1912, p. 275.) The athor gives the lype locality as "Muttoa, Victoria'", but this is an error for Murtora.

In the original description the author states that the under tail coverts wase grecenich-yellow, bat later altorer this to green (1931, p. 20t). Examination of a series from the Viotorian and South Australian Mallee shows that the under tail enverts are very pale lamon-yollow. and there is no greanish eolour. The adult Blat bonnet spens to vary considerably in size, some individuals being moth lurger than others.

Mathewn' statmunt that the race under consideration is much larger in size then the previous race is not borne out by specimens examiner.

Rangr: Mallee areas of Victoria and South Australia.

Nortmielda thaenatorasticr inataatorrhous (Gould 1865).
Names: Red-vented Parrot, Red-vented Blur 13omet.
lievides the eriman-red umer tail eoverts fully adult males of this subspecies nsmally have hor inner median and greater wing enserts homed-ed in colour (riften incorsestly reterved to as "chocolateocoloned"). Mathews (1931) has given the range as "South Now South Wales, Victoria, ant Sunth Australia", hut this may be modified in the light of jresent knowledge.

Renge: Stminide imerior of Northern New South Wales and Southen Qucenstand.

Cremis Phatsterctip Vigors 1Se5.

Diamosis: The Rosellas (gemss Phtycerous) are at once distimgnisheat in the alult lye the sealloged aprearance ol' the back, and have well-defined cheek-patehers as in Barmordizs, and Sorthichn. Anatomically they ecsemble other Broadtails. havine no furenhm or ambiens muscle. 'The chief ditterences are to be noted in the eramial osteolners. The upher mandible is redatively weaker than in Burnmrdius, hut in mush wote important rifference necuss it the auditory region. Ex-
 ramius, P. udscatus, P. venustus, and l^{\prime}. icterotis reveals that in the whalt the zargomutic proces of the squamosal is commeded witb the sumpa-matal procesis by a
 siom (1899) for P. elegans, but as he did unt mentiou the differences in the eramial characters of Bornardius this distinctive feature has never been accorded the importance it undombtedly desprees. In modamaged mania this stmeture is clearly secen, and forms an elevated "andjtory ring". slightly above ant in front of the onetnal tympame oriflee.

A single imperfect aranium of Cynorhamphar novac-zchandiae has been examined. Itere there is a similar ring in the ateditory region, but it is much heavier and more cxtensive. sum the tympaic apmerture appars to be completely enclosed has this acossury struture This apmarently ropusents the extreme develomaent of the armanement fomblin the anditory region of Platycercus.

In Barmardins the artwentation of the quadrate with the skill is mobsene ed, but in Platyecters it is concealed by the "nuditory ring" (see fig. 3).

The structural ditherence, together with the more adranced enlone pateen imficates that the members uf Pluigherus unstitute a more highly evolved section of the latatecerems, and should be recornized as a separate gemus. (demotype: I^{\prime}. pennautii Latham $=P_{\text {a }}$ cleguns Gmolin,

万hiscusciono The name "Rosella", origimally applied to one species only, namely Platyerrous Exiatus, the "Rowehill Parmkeet", was adopted with advanluge by the R,A.O.L. Check-lise Committee (7926) for all forms of Phatyereus.

Shlike Barmardius, the gemus Platycercus is confund to the more humid areas of Anstratio, in which inflemtial rains fall in summer as well as winter. Dry
 (arid moisture zoue). In South-western Australin oecurs a diminutive species (interotis) with distinctive ruces in the semj-humid and semi-ardidaras. Hore the rlimatic and other lactore appear to have affected plomade colon' and size. Disfinctive species of Platycreas oceur in tha somi-arid sones of tropical Northern Anstralia, and in one instane (P. stlscitus) it is of interest 1 a note that where this Phters au urea of winter wo well as summer rains, in listinctive geographical race neemes.

The evolution of the plumage colour in Platycereus presents im interesting prohlem. The ancest al type of this gemen was probably a red bird which was derived from a grean form, of somewhat similar appearane to the inmature stage
of present-day species. The mpen colour is produced by a combination of molaniu and pellow lipochrome pigments deposited in the foathors. Slipht alteratioms of eithor pigment will resull in a change of plamate colour, stoh as is demonsatrater in alhinos, where the dequsition of melanin is imhibitert. Speres now living in Wetter districts are manly blackish-or reddish-fucd. While thone omeureng in atid
 molanin) piomentaton. This funtamental rule, which was recognized hy (iJoger more than one hemdeed yeare agu, seems to andy to many Anstraliam birdo and mamanals, and puvirmmental stimuli such as temperature or lomidity or a mom. hination wh both and jrubahly mesmaille for such colour changes on differemese.
 much yellow pigmentation mas have ewond uader arid conditions, examples being I^{3}. clcgans flumeolus, P_{0} saleilonious, P. venustus. and I^{2}. adscitus. On
 with phesemteday distrihution suppores such an idea. Later environmental
 spemalary blackish sulfision of the upper surfates of ne mustus, and the blure eolowtion nt uldseiths. The yommer of these two forms are similan, expept for the colome of the hean, and it is apmatrat that they are clocely allied. The yomer or vomuslus are vellower on the tail than those of adscitus, however, and it is probable that the first-mamed was onee muth yrallower than it is today. It is alda probable that venustus has ahwas heen limited to the morthern areas it mon inhabits, amd has been subjected in strecessive shmatie changes.

From the red mader-tail coverts it en be deduced that conustus, ansmitus. and culcrlonicus hate retained this feature from a "reel" ancesion, wheh may alsn have
 be dedned in other Platveerine genera.

The bhe of the chatk foathers is apparantly the domiand featme in Platy. revers, althung it in mow in the process of being logt in two species, namely udseitus amb nemstus. Lien in icterotis (yellow cheeks) and exmmins (whito cheoks) the Jomber still exhibit some hane thathets on the wheks, which are only lost at maturity.
 as grogenghisal mess, and afler exammation of mueb matratial omly the followinge uro recognized as valded species of the genus.

Plahyerreus calcelonious (Gmelin); P. Alegans (Gmelin); f. eximins (Shaw);

The tinm Platycereus plavenlus Gond, which nos till now has entoyed full spocifice rank almost withont guestion, is to my mind unly a colour phase of serguns Poters's assocelation of it will "alodonicus's indicates that he had some misgivinges ats to it warratsing specifin mok, but it is anticipated that few Australian omithologists wonk conteur with his armagemont. Other nrnithologisty have adyonated that udeldidue be ace oded sperifer rak: a penemal opinim is that it is only a race of elegans.

Two altumatives sem to be open with regard to these torms, mandy to regard all theoe as distinet, or alternatively to regard them all as races of thermes. The latter armarment is here chosen heeanse, apart from midor differences in the plumase colnur of the alhlt, there ifo not seem to be any important differences in the young of the first jurenal plomage or in the hatits of the threw forms.

Jumenile Plumater: Lmmature birds have plain gremon hades, and the seallopinges characteristie of the adult are not asammed until the birds are several monthis olel. Foblowing this intermediate stage mast species gssume the finly adnlt fumage when just over twelve numthe ohed. Young mates are ushally dist ingonished hy their slightly brighter cologation almost from birth, and the bill. which is at first yellowish-white, som darkens in coloms. A white wing stripe neenrs in hoth sexes.

In thense forms which have white or yellow wheek patches (c.w. crimius and ioterotis), there are apparently always sone hate check fathers in the young stages,

Sexual Differaces: Females are smaller and less richly colomed than males,
 apparently bas some red ou the breast. While the mate ts usually pure yellow heneath. Femmles cabibit a white wing stripe, tormed by white spots on the individual primaries.

Platycerous (abedonionss ((3melin 1788).

Names: Green Rosella, Yollow-hellied Parrakeet, Tasmanian Mountain Paro rot, Hnd Green Parrot.

Fange: Tasmania, ulsn Fing, Elinders, and other Islands, in Bass Strait-
 Mathews 1915; Poc. flimlersi Mathews 1917. (I'wo lant-named doubifinl.)

Synonyms: Psittacus liromaii Knhl 1820; I's. flnvigaster Temminek 1821; P's. flaviventris I'mmincls 1821 ; xanthograser Stephens 1826.

Matbews (1918) has suggestad that the urarest living representative to the prototype of tha Platycercus groups is I^{\prime}. calcolonicus. From its restricted range in I'asmana it semos very probable that this form is indeed an ancient one atthough possibly derived from in "red" incestor. Its oceurence on the islauds of Bass ne mats shows that the avifand of these areas has greater affinitice with Tasmania than with the Australian manlami. As uoted hy North, Camphell, Mathews
 in this respect is simiday to meguns.

It is possible that the tho iteseribed races were based on immature individuals, and until lurge series are examined thrir status must remain open to doubt.

Of Poc, hemictlue Mathens (2915) says: "Differs from Poo. calchonicus in having moner red on the head, and in haviug the under tail coverts rod. Type, King Istand." Two specimens dransed by the National Misemm, Melbourne (Nos. Bte0, R101) ditter not at all from jmmature lirds from Tasmanis, being smaller and nuller than adults from that area. Nathews (1)12) suid;" the birds from Fliadurs Islisuld (and probably the Kent group (ox) are the darkest of all, at the same time they are matler than those from the mainland" (j.e, of "Tasuania). T have not seen any specimens of this domberud race (flindersi). but would suggest that the characters given are those of immatare birds.

Names: Crimson Rosella, Crimson I'armot, Yennat's Parraknet, Red Kory, Moustain Lowry, also Adelade Roselia, Itindmarsh Parrot, Camphell Farrakeet. Yollow Rosella, Yellow-wuuped Parrakect, Swamp Lory and Blam Blan.

Renge: North (puemsland, New South Wales, Victoria, Sumth-east of South Anstralia, Kangarno Tsland. Norfolls Island (introduced).

Ruces: Plutycereux cloguns mifrescens Ramsay 1888; P.e. elcgans (Gmelin) 1788; P.e. melanoptrue North 1906; P.e. Hemricurnsis Ashby 1917; P., antelaidar. Gould 1841 ; P.e. subadelaidac Mathews 1912; P^{P} e. flaveolus Conla 1837.

Platycercus elegans nghescens Ramsay 1888.
Numbs : Campholl Parxakeet, Northern Crimson Parrot,
Characters:" . . . smaller size, thicker and more rolonst bill, and the deeper bint of crimson in its plumage; in some a lew violet feathers appear wn the chest;
thense on the heal, hind neck, mad back are almost hadek, which eodmur extemts also on to the cheeks in ont specimem." (Ramsay, 1888.)

This small, dark race is instantly recognizable, and supports Gloger's Rule that biots inhabiting warm hamid resions have mone mumin pigmentation than
 an area ranging fron at few hundred in many thousands of xquare miles. Th this case, hignesecns is comfined to a relatively small humid aren on the eastem monst of North Quconsland. The type was lakem om Mand Jimlendon Ker, amb specimens have heen oxamined which were takem at Allumbah (mbals Alomma), near ('airns.

Phatychbuge blegans elegans (Gmelin 1788).

Nomms: Crimson Rosella, Crimson Parrot, Pemant's Parrakest, Red Tory, Snmatain Lowsy.

Synonyms: pennanti (Latham) 1790; gloriosus (Shaw) 1791; splemtidus

 Qucenshand, New Sonth Wales, and probably uorth-eastern Victonia. Fntermediaten oceur where tha range of this subspecies meets that of nigreseens.

Platyetrues madans muromaf. Mathews 1912.

(Warneters: "Dificers from P'c. cleguns in the deeper, Tuller" red, especially noticeable on the rmmp and under-surface, and in the more extensive hack markings on the lack." (Mathews 1912.)

Some examples of this race appronels elosely the dark coloration of the Kangaroo Island form, melanoptera. The type was taken at Woori Yallock, a place 37 miles northerest of Mebbourne, and near Lilydale.

An example from Mealeswilie, in the National Musemm colloretion at Melbonme (No. B3381) would appear to he of this pare, (on the other hand an example taken at Monegeetta, $: 87$ miles north-west of Melhourne, in the direction of Fiendign (s.A. Museum No. B20170) is uf the coloration of the typical lorm. Bonth specmens were taken in the month of July.

If wetoriae is indeed valid, then its range would appear to be the semi-humid zonc of sonthern Victoria and the sonthoenst of Sonth Australia, as for west as Robe, or perhaps Kingston.

Platycercits fleqans alelanoitera North 190fo.

Name: Kangaroo Island Orimson Parvot.
North ($1906, \mathrm{P} .78$) sepatated this race on the fact that it differed from P.e. dectims not only "loy the greater amount of black on the leathers of the back, Tua principally by the inner balf of the upper wing-enverts (exoept the pargins at some of the merlian and greater serics) being black . . . "' The stromghold ot the Orimson Rosella on Kangatoo lstand is apparently the western half to Cape Forda, it heine mamerous on Flinders ('hase and in the Vivomue Bay, Middle River and Western liver distriets.

Pratyonmus Ehequng Fimmaturasis Ashby 1917.

Nemu: Hindmarsh Parrot.
Charucters: "This race (Ashby 1917) is distinguished from all other forms of I^{\prime}. leggans (with the exception of P. and daidao) by the searlet colour replacing the crimson, and from the latter in the generally more frilliat searlet plamage, and
in the case of old apromens the green feathers on rump and back are entirely replaced by sererlet." It might also be pointed out that the nape is mot pellowishEreen as in typical aldatae, hut searlet-red. The type, at male (No, B2923) is in the Sonth Anstralian Miseum.

This form is the end member of a wall-defined geocline series which comprises pearicuensis, udeluidut and subadeladae, the character gradient being a progression of colour whanger from scantet in the birds of the south to yellow in those of
 Peninsula, where flumbucnsis uedurs, has long lad cerdain workers to postulate that the decper roloration of the southern mainland bird is due to "an infusion of
 nime miles distant from the mainland, there is on evideno to show that melamoptera at any time erosses this expanse of water. Parrots are weak fliers, tand it seems preferabla to regad the more intense pigmentation of flarieuensis to be an inAepordent expression of the wetter dimatic couditions or other faders present on Fleurien Yeninsula.

Range: Fleurieu Peninsula, from Cape Jervis to about Mount Compass.

Pdeatycereus eleqans adelaidae Gould 1841.

Name: - Adelaide Rosella.
'lhis furm was deseribed as a full speenes by Gould, and for many years its status has furmed tho hasis of mach disentsion. Earlier workers, such as North, Morqan, and Ashby, did not recomize that the northern yellow race, subadclaidur. was intjmately connected wits adclaidac, and regarded it as flaveolus.

Ashby"A Writings, how yer, show that he suspected the northern yellow race had aflinities with the sonthect hiths, althugh he retraned from expressing ams intorpootation montrary to acecpted antions beld at the time. Ho said: "
commencing with the northermmost flaneolus and ending with the sonthernmost adnlaidae. . . . the result will show, I belinve, a complete gradation from the highly coloned frominumsis in the sumb to the extreme pate yellow form in the north or drime distriots." Ashby also engested that aldadue might be regarded as a red lom of flawsuln, and flewrimensis an extremely red form of the Yellow Rosella. In other words he disemutod momely the inca that the Adediade Rosella (adeladde) was a race ut drgens. There is lifthe doubt, howerer, that adeldidae is a itiont derivative uf elogans, or view versa, while fleveolus, too, can only be regarded as a development of adelaidac.

Considerable variation "xists amoner individuals of ublelaidat, but in general an average type may ho recognized. Changes due to age are incompletely maderstend; adder bireds and mates tend to become redder. In the fiedd these hirdes oftern appear much decper in eolour that is aetually the pase, and exatmination in the hand proves them to be much paler than either fleurievensis or clegans. Gencrally speaking an adult make may be satid to be "scarlet" (Ridgway) helow and om the crowu in" hae head, while the intersempuher feathers an edged with "tes green" offen with a tinge of scarlet. The nape is ten green, and merges into the searlet of the crown.

Range: Mount Lofty Rauges, from about Mount Compass in the south to Burra, aud beyond in the north of South Australia.

Pdatyolmeus buegang subadelatdae Mathews 1912.

Numer: Norfheru Adelaide Roselln.
If flacenlus be regarded as a full species, suhardelaiklar esuuot be regarded as a race of it, allhough Mathews (1931) and Peters (1937) treat it as such.

Early workers, tom, marded this form its Ilameolus, but there is now mood reason to helieve that the rallow coloration is simply an expression of tivger"s Rable, wheh satus that races inhahither arid remions are characterized hy an acemmulation of yollow or realdinh-hown pigmatation. Mathews originally considered it to be a form of elegams, lont later placerl it under flaveolus (1031, 11. 198).

In the origital deardiption he sath: " Difers from P ofo drlelaidue in beiner less brillimet helow and in having less real on the "rown." To this might he adeden the fact that tha black feathars ol the intersatpulat renton are edged pale sellow, as in
 redter bolow than fluecolus.
'This race forms a trine connect ingn hala hetween udelardec and flumeolus, but as numional above has sightly watar afiniftes with the former than the later. The intimatre momection belween its distribution and roloration supports (ilogere's Rule. The type was taken at Port Angosta, and the raw apparently extends as fins smuh as Wilmington aud Taura, also lming fomd in the Finders Ranges nowl to Leigh Crepk and beyond.

Rouge: Flinders Ranges, South Australia, apmoximately lietween is ineh and 8 juch isohyets.

P^{2} atroercus elegans fladenhus Gould 1887.

Somes: Yollow Rosilla, Yellow-rumped Parmaket, Swamp Lory, Mumay Smoker, Blam Blam.

Synonym: innominatus Mrathers.
The assuctiation of this apecies with I. culodomicus by Petere is wholly unwarranted, and the anthen may have heen misterl hy North's statement (1911, p. 119) that " . . in erperal appearaner, whan vacwed on the mondu parts, the Hellow-rumpen Parrakeet (i.e. flavolus) closely resembles Platyectus flavirentris (equats P. caledomicus) the maly differever being in the deputh and intensity of the yellow enlouring."

Ashby, in his rarious discussions om the Adetaide Rosella (adelatide). emphasized the affintiess betwem that bird and the present form, and indeed it may he proved later that the addaidar-flaweolus! grnup is distinct from the degans sroup, in which ease three species wonld have to he recognized, namely clegras, arlelibdae, and flavolus.

The R.A.O.D, Check-list (1920), Mathews (1931), and Peters (1937) all remard subuedaidur as a race uf floweolus. This coneaption probahly arose from the fact that many trme flavenlus in the adnlt (? Pemales) exhihit a reddish pigmentation on the rpper beetst. and in this they apmodeh submolaidat. Flaneolus, however. is a mum smaller hirc than any of the ofther forms of elegoms,

 - megans, molanoptor, de.. can he distinguisher often bereduse they exhibit to at Wratur or lesser decree the arimson monation of the adult om the erown, rump, and upper breast.

Mathers (1912) has deseriberl one vate of fincolus, bamely immminatus, from sinuth Australia. The yuoted characters are: "Difine from P'f. glavoolus in its paler coloration, rspecially noticeable on the head and rump, altongether laking the areen linge chatactaristice of the typical form." From the limited material available I an unable to recognize this form.

Bente: Comfined to the areas immediately adjacent to the Rivers Dorlinge. Mnrmmhidgee, and Lachlan (Now Sionth Wales), River Murray, Viotnia, and theip uribataries, and nurmally as far south as Manumb, South Australia.

Platreeroun mximitg (Shaw 1792).

Names: Lastern Rosella, Riosella, Rosehill L'arakeet, Rul-hacked Rosella,

Rang: Sonthern Queensland, throngh New Smith Wales to Vietoria and the south-east of Somblh Anstrulia; Domm Lolty Lames. South Ansiralia: Tasmania.

Platyoercug eximitus neoman: Mathews 191].

Nomes: Splendid Pariakept, (folden-mantled lan akeet, Yellow-mantled Parrol.

Synonym: splondidus Gould 18 th,
This well-marked race with ils "groklen manhle" and Whe-ghen rump is
 apparenty originally confinsit to the Dating Downe it is mplly extending its range.

Range: North of tha Darling Donsus, South Quentidame, southwards alomg the reastal reginus of sorthern New Shith Wales tos seme, MErriwa, and beyond.

Phatroercus exinicos eximus (Shaw 1792).

Names: Eastern Roselle, Ruselia, Rosehill l'arraket.
Mathews (1917, p. 360) prognsed separatine ther Vietorian mombers of eximins as cold, but there appoits to be little of ow differente in examples from southern Now South Wales, Vietoria, southorast of Somblh Australia and the Homet Lofty Ranges.

The status of the specien in hionth Anstralia ss sommenat obseure, and at prerent it is diffioult to decide whether on mot birds in the Mombl Lafty Ranges are dencendants of escapod cage-hirds introtucal from the enstern states. Examples wolleded at Happy Valley and Cherg (Gatons appear to he typical orimius, and it is possible that they were necedentall! liberated at an catly date in the history
 support this supposifion.

 sembling halvaduri's original moned plate have here noted, albomgh none bave vet been taken which cat be definitely referred to it.

Robe or Kingston in tho southomat of the State appears to bo the natural western limit of rximius, and it dom but numally nemer is the 90 miles of maller coutry separating this area from the Monnt Lofty region.

Chancters of Pof colci acemding to Mathewn are:" the yollow of the

Range: Sonthern New Sonth Wales, Vietoria, sontherast of Somth Australia, (8) Mount Lotty Ranges.

Name: Thasmanian Rosella.
This is a well-manked race charnoterized he Nopth ac having an "omspicuonsly targer white chack patch . . . athorichor and davker seadet hend ant hernst, the later of which extende lower down the hery than is dene in bind from the mainlamd.'"

Range: Tasmania.

Phatycercicis venustus (Kuhl 1820).

Nomes: Northern Rosella, Brown's Parrot, Smutty Rosella, Smutty 1’arot. Ran!er: North-west Australia, Northern Territory, Fathurst and Melville. Tslands.

Racs: Plutycerons vomenslus (Kuhl) 1820; Platycerchs wo melvillensis

Platycercus venustes venustis (Kihl 1820).

Synunym; brow aii (Temminck)。

Examination of speeimuns from tha Northern 'rerritory and bathanst Tsland suggest that tho races proposed by Mathews (1,v, supra) may not be walid.
 ernustus in its much blacker back, the femthers of the manthe bring black with a
 Nu. 10,s47. Ramge, Melville Istand," Specimens from thin locality have not heen avalable, Int a large series from Bathurst Island, a part of the same insular mass, agress with his deseription, as do also two from the aldoining maindand.
 white feathers of the lace rediued to a narrow line, the blue spreartine weady and The way up to the black below the eyes. The bhe on the primary coverts is also very mall more intense." The type came trom Napier Bromm Bay, Northewest Alsitraliat.

Observation of aviary hideds ws well as examinution of a large feries of shons reveals that this is an extemely vaciahe fom, and Northern Temitory hids answer to both deseriptions given above.

It is nugestad, thmothre, that only one form is reengizable at present; the patent of the blite cheek-patehes is not a reliable character. The insular raee deseribed by Mathews, if not proved vald at some thature date, ishombl be regarded as a syonym of the typical form, ane nut of hilli an suggested hy Nathews (1931).

This speeies is closely allied to the following, viz. P. ullscitins.

Patscurces anscirts (Latham 1790).

Nanry: Dalesohmded Rosella, Moreton Bay Rosella, Blue-cheeker Parrot, (1rey-rimped Parrot.

Longe: Eastern Quepmsland and northern New הonth Whtes,
liners; flatycercus adscitus udseilus (Latham) 1790; Platycerous udscilus millionss Lear 1832.

The status of the soverat described korms of this very variable species has been the subject of some contusion. North (1912, p. 124) attempted to describe a gepical individual, lat moted that "it is possible for one io oblam a dozen or more viruations of jt.."

Mathews (1917, p, 3443) recognized fone suhspecies: P. adscitus adscitus (1atham), Comkown to Mackay, (Whensland: Po.d. nmuthusiut Ponaparte, ("apu
 Wales.

In his 7931 List, Mathews regarded amathusiae as a aynonym ot adscitus. $_{\text {and }}$ Peters (19:37, p. ${ }^{262}$) followed Mathews in recognizing thrue races, although be molpel that. Isc!gi was doubtiully distinct from P'o. odscitus. IItre it is proposed that only two races be recognized.

Platyéerctis absobelze Absurtus (Latham 1790).
Synonyms: cyanogenys Gould; imathwsiac Bonaparte; clscyi Mathews. Nomes: Pale-headen Rosellia, Blue-chenkel Darrot, Moreton Day Rosellan. According to Mathows (1912, p. 271) clseyi "difters from P.a. anathusiae.
in its paler rump ${ }^{\prime \prime}$. Specimens examined indicate that this feature may not be constant.

In a general way this may be referred to as the yellow-rumped race; formerly it was often referved to as "hlue-cheeked", but the colour of the cheek-patch is mimportant as there are many intcrmediates, and bue-checked individuals may also occur in the sonthern race which is often ealled the "white-checked" race.

Renge: Cape York Peninsula, south to beyond Cairns; also Gulf of Carpentaria, North Queonsland.

Symanyme: conlestis Lussison.
Names: Pale-headed Parot, Whitenecked Rosella, (ireyrumped Parrot..
This is the "blue-rumped" or "white-cheeken" race which extends from northern New South Wales northwards to Cairns where intermediates of the two races are to be found. As noted ubove the amome of blue on the cheeks varies in extent.

Specimens from Charleville and Logan River, south Queensland, agree with examples taken in northern New South Wales.

Range: From below Cairns. North Guernsland, south to northern New South Wales.

Platyceirevs loterotis Kuhil 1820.

Nums: Western Rosella, Jellow-oheeked Parmaket, Stanley Parrakeet, Redmantled Parrot.

Range: South-west Australia.
Races: Platyercus i. icterobis Kuhl 1800 ; Platyecrcus i. xanthogenys Salvadori 1891.

Both the above races ot the Western Rosella are sun secognized by the R.A.O.U. Check-list Committee (1941) (vide Emu xli, 1941, p. 88).

Platyolercise feterotis icterntis 1820 .
Synonyms: stanleyi Vigors; suludori Mathews.
Names: Western Rosella, Red-mantled Iosella, Stanley Parrakeet.
Range: Solth-west Australia (mastal).
Phatyoercus uteronts xanthodenys Salvadori 1891.
Synonym: : whitlocki Mathews.
Name: Dundas Yellow-cheeked Rosella.
Churacters: Differs from ioterotis "in being larger and having the cheeks of a palcr yellow, the feathers of the back edged with reel, the rump feathers and the "hume tail coverts edged with greyish olive, the entral tail-feathers bher, with no green" (Salvadori). Ogilvie-Grant (1910) said: "It is very easily distimgushed from P. icterotis (Kuhl) by the darker gremish-grey (nol sap-green) colone of the hack and the mareins of the immemost secomdaries, while the mistde pair of tail feathors are mostly dark purplish-hlow, instuad af green."

Range: South-west Australin (drier areas).

(denus Peeprotus Gould 1845.

Synomyms: Clominua Malhews; Psephotollus Mathews.
Diagnosis: Nembers of this genus ure medium-sized Broad-tails with uni-
 slighty Longer than the sucocoling pair. Osteologically they resemble nther Platycercines, the furculum also being absent. There are now well-marked cheekpatches, but the wing feathers are scalloped an in Platycercus, Barnardius, Cyano-
rhamphas, cte, and the individual primaries are of similar proportions. Genotype: Platycerons huomatonolus Gould.

Diseussion: Damaged crania of theer species of this grans have been examined, namely hucmutomotus, maius, and dissimilis, and all present similan features. The anditory region in similar to that oft Burnardius and Northiella, and form the limited material 1 have bean mabse to detect any differences which minht warmant the recognition of "larkmm and Psophotelus as proposed hy Mathews (1933). Sembers of the grans are eonfined to the desert, arid and semi-arid moisture zones of Australia, and do not oceur on 'lasmania (humid).

Juncmile mbmage: Generally spoaking vamer hirds racemble the adnlt female, and malas listally assume the adhlt phatage during the first or second year. Young of hoth sexes exhibit a white "wing stripe".

Sexual differencus: Females are always duller in colour than males. in Pscphohus heremulonotus the female lacks the red rmmp of the mate, and is an chill gean hird, with the rump of a brighter shade. From bodow the upper breast is pale wive-green instead of bright gremo and the abdomen is whitish insted of yellow. Youm males resemble the female, but are greener.

In P. warius the fruale has a dull red shoulder pateh insteal of orange-yellow an in the male, and there is no red abdominal patels, while the hirds are genemally dullor, Immature mules resemble the female.

In P. dissimitis the black of the head and hark of the male is entirely absent. in the temale, which is green; alsu the extensive yellow on the wing is ahsent. The d'mps is hur, and the moder tail coverts red as in the mals. The wing stripe is present in the lemales of all the forpoing. Examples of buth sexes of the forms mulnherimmus and chrysopterygius have not been examined.

PSEPHOTUS habsatosotus (Gould 1837).

Names: Red-backed Parmet, Red-rumped Parrot, (irass Parrot.
Fungr: New South Wales, Victoria, South Ausiratia as fia morth as the Lake Fyre Basin South, and west of the Flinders Fanges.

Racks: Pscphotus hnemolonolus hamatonotus (Gould 1837). Pohe caeruleus sulsp. nov.

Pherbotus haematonotus hafmatonorve (iondil 1837).

Synomym: winestens Mathews.

Large series of this specips reveal that this bird in extremely variable through -
 than yomger ones. In the immature the male and female ary anmomately the same colour.

Specimens of tuates from semi-thod nmo nud areas, such as the Durray mallee and northern Flinders Ranger appetar slightly smaller and paler, especially un the rump.

Renye: New Sonth Wales, Victoria, South Australia.
PsEPLOTUS HAEMATONOTUS MAERULEUS Subsp. nov.
Adull matc: Top of head heryl green instead of cmerald grean as in southerm
 red as in the typical form) ; mper tail coverts cobalt green (instad wh Seheele's green) ; tail feathers with a wath of Tyrian hlue (instead of a wash of bice green) ; cheek and upper breast berrel grean; luwer breast wax yollow ; abdomen and moder tail eoverts white; spurious wing pato yellow greas, wing unverts bery groen; wing 124 mm .; tail 147 mm .

Ronye: Interior arid and desert areas of Sonth Australia; type (Begai in s. Anst. Museum) from Inmamindka Station (Lake Eyre Basiu), willected by the South Anstralian Musemm Expedition, 30th Septemiser, 1916.

Remortis: This race differs from the typural form in its generally blare endorafion, and paler appearance; the size also is smaller.

The head and bank present a uniform bine-green apmearance, whereas in the typical form the head is much greener than tho back.

A specimen trom the National Museum. Melbourne, and naid to have been lakill at Cooper ('reck (Lake Eyme Basin) hy A. W. Howitt, of the Somth Austwatian Fectin' Expmation in Burke and Wills in 1861-2, is closer to the typ of reremens than it is to the subtherm hirds. The rmop is of the same shade, but the matour of the head in intermediate between that of easerulew and the hed-rumped l'amots of the borthern Ftinders Ranges. The nppere surface of the midhe tail feathers also much gake that in typical birds from the sonth, as in cacruleus.

For vears there have been persistent reports of this small "blue" parrot in the arid interior of houth Ansiralia. A recent one is by Hjgerinsm (19:38), whon wrote: "Size a litte louser than a Multrat Parrot (Psephotus zarius), but slimmer amd sualler Mtan a Port Liucoln Parrot. Cohnur: hand, hack, witugs and tail very
 the of a slighty more greenish tinge, the head being a little darker in shade. Jnst hefore the bird flew it tumed around in the hush, and I noted a bat uf diry
 wide across the back josis atmee the tail. This was tbu only loreak in the furquoise colour that 1 moted f'cmale (i) appeared do lee a uniform drab precn." The locality wiven was 391 miles north-west of Port Augnsta,

This deseription saggests that the birds senu were $I \cdot h$. cacruleus, but the Iocality given js a considerable month-westerly extunson of the range hitherto accepted for huematonotus.

Rantye: Interior of South Australia, from the Lakes Eyro Basin in the month catending westivards and northwards.

[senthotes vamife Clark 1910.

Names: Mulga Parrot, Many-coloured Parrot, and Varied Parrot..
Range: Did-western Australia, South-west Anstralia, Central Anstralia, Somth Aastratife (dry interior), Vietoria (mallee), interion of New Sonth Walos, and sonth-wastern Qucensland.

Piselmotos variun erthilabi Mathervs 1917.
Charucters; "Paler in gencral roloration, with Jess aud paler real on the atbdomen. A peralian feature would be the retention of the femala red shonder enoration of the males."

Lack of sufficient matnrial makes the status of this race doumf ful, for examples sern from the region of the River Fiake are of the typical form. ()n the other hand the type lucalits is sithated in a hot desert region, and on thenretieal gromeds the race may prove recognizable when further specimens are collected.

Kange: MacDomell Runges, Northem Territory.
Psemorug vanus exsci. Mathews 1919.
Sume: Westorn Varied Parrot.

 West Australia.." (Mathews, 1012).

No examples from the type locality have been seen, but specimens taken at, Wiluna, near Lake Way, aud umly 150 miles away from Mount Magnet. are of the typical race, as are also these from Kalpoorlie. On thenetical gromeds it may he possible to sar that thin form will be prowl walid when further material is whtained.

Rarge: Western Australia (Mome Magnet, type locality).

Pserphonus varius varius Clark 1910.

s゙ynom!us: multicolor (Kuh1 1820) ; dulue Mathews 1911; pminac Mathews 1912.

Names: Mulga Parrot, Many-colonred Parrot, Sonthran Many-colomed Parrot.

Aceording to Mathews (1917, 10.408) the trpe was taken at the head of spencer (xulf, Sonth Australia, A series of specimens shows that this form has less red on the abdomen than any other race except cthelae. There is also much individual variation, both in size and colone.

Range: Interior of Western Australia, Eyre l'eninsula, Yorke Pminsula, and northern South Aystralia.

Pserfotus varius ormantalis Mathews 1917.

Examples taken from various localities in the range given helow are at one distinguished by the generally brighter coloration and deeper and more extensive red patel on the atutomen in the male.
 southern Querosland.

Peephortis Pticuthematis (Gould 184i) .
Names: Paradise Parrot, Beautiful Parrot, Ground Parrot, Elegant Parrot, and Anthill Parrot.

Synonym: dubius Mathews.
The only example seen by the writer is a momed specimen of a male in the mplection of Dr, A. II. Lendon, Mathers originally named one subspecies P.p. dubims, the characters being "darker above" than the typical form. The anthor retracted his proposal in 1917, saying that the differences whor probahly hased on individual variatiom. A complete acmont of the redisumery of the species is given by Uhisholm (1920)。

Range: Semi-humid distriets of south-enstern (quensland, as line north as Rockhampton, and south to Northem Nerw Sonth Wales.

Pesemotus curasoptravouns Gould 1858.

S'omes: (iolden-shouldered or Golden-winged D'arrot.
Symonym: nora Mathets.
Rangus (Gape York Peninsula (western portion), North Quemsland.
Psepmotvis dasimals Collett 1898.
Names: IIombed or Black-hooded Parrot.
Synomyms: cucullatus North; blumui Van Oort f dmmincor Mathews.
Although Putors (1!:37) has again releqated this Furm to subspecific rank, the weirht of evidence serms to indicate that it is a separate species fo. s. see La Wonef and Kinghom, 292.4). There is litle donbt, however, that the (wo forms chrysopterygins and dissimitis, on structural gromads, ire very closely allied.

Ranue: Semi-urd areus of the Northern Tervitory Irom Darwin, east to Gutr of Carpentaria.

Summary．

As a result of this review，it is shown that further collecting is still required before the status and distribution of many races ean be properly runderstool．This applies particularly to forms whahiting the Thterior and Northern parts of the Coutinent．There apporss to be a mose correlation between climate and the orecur－ rence of geographical races，althomgh careful eenhorical studies may be required in some instances to confirm this finding．Nine races proposed by Mathews in his 19：31 List are not recognizahle from availahle material，and are alnost ecreainly not valid ；five others are only domblully distinct．Two toms of Platycerons pre－ viously regarded ass full species are relegated to subspectife rank．as also are two of Burnardius．Although not recognizad by l＇eters（19：37）Barnorduss is com－ sidered a valid gemus on osteolowieal gromeds，A further race of Psephotus huma－ tonotus has been deseribed，and Salvadori＇s（1891）conclusions are confirmed that the Australian Broadtailed Parrots should be reoognized as a distinct subfamily， Hise Platyercinac．

REFERENOES OITED．

Andrews，J．and Maze，W．H．（1933）：Proc．Linn，Soc．N．S．TV．，Jviii，po 105.
Ashby， E_{i}（1917）：Emus xvii，p． 43 ，
Ashby，E．（1925）：E゙mu，xxv，D． 59
Beddard，F．E．（1898）：Tho Structure and Clussithcation of Birds，London．
Campbell，A．万．（1906）：Emu，v， 1 145，
Chisholm，A．H．（1922）：EmH，xxii，pp．98－99．
Davidson，J．（1936）：Trans，Roy．Snc．s．dusir．，1x，p． 88.
de Martome，E．（1927）：Comptes Rendus Acad．Sci，Paris，cixxsii．
Higginson，A．R．R．（1939）：E．AMstr．Ormo Xr，p．J1，
Huxloy，J．（1938）：Natare，exliii，p． 210.
Jenkins，C．F．H．（1931）：Limu，$x \times x$, D． 258.
Kinghorn，J．R．（1929）：Emu，xxix，p 1.
Lendon，A．H．（1940）：S．Austr．Orne，xv，1p．87－n4．
LeSouef，A．S，and Kinghorn，J．T．（1924）：Eimu，p． 1.
Mathews，G．M．（1910）：Buhi，Bril．Orn，Ch．，Xxvii，p． 28.
Mathews，G M（1912）；Nov．Zool．，xyiii，pp．269－277．
Mathews，G ．M．（1913）：A List of the Birds of Australia．
Mathews，G．M．（1915）：Austr．Av，Rec．，ii．
Mathews，G．M．（1917）：Birds Austr．，vi．
Mathews，G．M．（1918）：Ibis，vi，p，11．5．
Mathews，G．M．（1931）：A List of the Birds of Australasia，ppr．196－204．
North，A．J．（1893）：Rec．LVastr．Mus．，ii，p．83．
Noith，A．J．（1906）： $\mathrm{Km} \mathrm{H}_{1}$ vi，p． 7 M ．
North，A．J．（1911）：Austr，Muso，Special Gat．No．1，jii．
Peterth，d．L．（1937）：Check－list Birds W1a，iii，pp． $26(1-266$.
Prescott，J．A．（1931）：Counc．Scf．Indus．Kes．（fustratia）Bull．„h．
Prescott，J．A．（1934）：Trans．Riny．Sue．太．Austro，Iviii，p． 48.
lkamsay，E．P．（1888）：Talo，Jist Austro Bdge，p． 31.
R．A．O．U．Onticial Check－list of the Birde of Austrnlia（1920），［1］．47－49．
R．A，O．U．Check－list Committee（1941）：Em11，xli，14． 88.
Salradori，T．（1891）：Proce Zool．Soo，Lomed，P． 188 s plate xii．
Salvadori，＇1＇．（1891）：Cal．Purrots Brit．Mus．，天x，1p， $539-56 \mathbf{S}^{\circ}$
Servonty，1）．L．（1938）：Emut，xxxvii，1． 1 （is．
Tavistock，Marquess of（1929）：Parroty and Parrot－liko Birds，pp，19t－22．，
Thompson，D，W．（1899）：Proc．Zool，Soc．，Jond．， $1,9,46$ ，
White，S．A．（1915）：Trans．Roy．Soc．S．Austrop xxxix，p． 745.

FIXPLANATION ON PLATTE．

Plate viii．

Red hamed Parrot（Psemhotnshamatmotus caerulrus Condon）．Adult malle，from Imaminek： South Australia．

RED-BACKED PARROT
Psephotus haematonotus caeruleus Condon

SOME NEMATODES FROM KANGAROO ISLAND, SOUTH AUSTRALIA

By T. Harvey Johnston and Patricia M. Mawson, University of ADELAIDE

Summary

The parasites recorded in this report were collected at Flinders Chase by members of the Ralph Tate Society, led by Dr. C. T. Madigan, during an excursion to Kangaroo Island in January, 1940. For identification of some of the hosts we are indebted to the staff of the South Australian Museum, in which institution the types of the new species have been deposited. We thank the Trustees of the Flinders Chase Sanctuary for permission to collect the material studied; and acknowledge assistance received from the Commonwealth Research Grant to the University of Adelaide. The specific name kartana given to several of the new parasites is based on Karta, which, according to Tindale and Maegraith (Rec. South Austr. Mus., 4 (3), 1931, p. 286) is the native name for Kangaroo Island.

Some NEMATODES from KANGAROO ISLAND, SOUTH AUSTRALIA

By T. HARVFY JOHNSTON axid P.ITRIClA M, MAVSON, University of Adetalde.

Fig. 1-14.

The parasites reended in this report were collected at Flinders Chase by members of thr Ralph 'late society, led he Dr. C. T. Madigan, during an exeursion to Kangaroo Island in January, 1940. For identifieation of some of the hosts we are indebted to the slaff of the South Anstralian Museum, in which institution the types of the new species have been deposited. We thank the Trustees of the F'limbers Chase Sanctuary for permission to eollect the material studied; and acknowledge assistance received from the Commonwealth Research Grant to the Tniversity of Adelaide. The specific name kartana given to several of the new parasiters is hased om Karta, which, aceording to Tindale and Maegraith (Rec. Somblh Austr. Mus., 4 (3), 19:31, p. 286) is the native name for Kangaron Island.

List of hosts and nematodes identified:
IIfla servisiensis Dumeril and Bibron: Hedruris hylac spo novo; Aplectana findersi, sph, hor;
Butlietneme kartanam sp. nov.
Varanus cound Gray: Physalopter antarctica Linst, (var, typira Irw, Smith).
Hemierais peront (Fítzinger) : Thelandros kartana spo nov.
(iymnophery lua yuli Bory de St. Vincent: Pharyngodon Rartana sp, nor.
Ttiyfogale elveeni Peron and Lesueur; Chacina chrta J. and Mr.; O. petrogate J. and Mi; Zoniolutus eugcnii J. and M.

Thelandros kartana sp. nov.
Fig. 1-is.
From a lizard, Homiergis peromi.
Males abont 2 mm. long ; femates $1 \cdot 5$ to 6.3 mm . Jong. II ad rounded ; six low Lips each with suall papilla. Month leading to vestibule $1 i^{5} \mu$ wide, 12μ long, with three roumded teeth at base. Oesophayns long (0.34 mm . in male; upito 1 mm . in femalr), narrow, conding in lolth. Norve ring 0.15 mm . from head end in female 4.3 mm , Iong.

Male: Anus on prominence about 15μ in front of rounded posterior region from which progots the tail, 50μ long. One pair adanal papillae; one pair postamal, mure laterally situated; one median postanal; a pair nearly midway along narrowed portion of tail. Spicule 55μ long, very slightly chitinized,

Female: 'Tail $0 \cdot 3(6-0) \cdot 4 \mathrm{~mm}$, long, tapering to sharp point. Vulva 1.5 mm . in front of posterion end of body. Egrgs 75-90 \quad by $35-45 \mu$, with pitted shell.

The species resembles closely T'. maplestoni (Chatterji) Baylis 1936 in general form and size, but differs in the length of the tail and the spicule in the male, the position of the vulva, the mumber of lips and the presence of cephalic papillae.

Pilarfngodon kartana sp, nov.
Fig. 4-6.
From two geckoes, Gymnodactylus milii.
Males 2.2-2.6 mm. long; females 4-5 mm. Head with three low lips; buceal cavity funnel-shaped, chitinized, 10μ long in male. Oesophagus 0.33 min. long in
mate, 0.47 mm . in female; its terminal bulh with chitioms blales. Nerve ring 0.15 sum. and excretory jore 0.56 mm . in mate, 0.60 mm . in female, from hear and. Exaretory pure larex, cirenlar, with strongly chitinized margin; the stron-
 specimens rather as grooves of obeases on posterion patt of margill pore leading direstly to spherical vesiche connected with two anterior and two pasterion lateral duets.
 long. Lateral alae extending from mid-gesuphageal region to anterior end of (amdal atas, widening Eradually fogreatest beedth just before tomination. Anlerion (preanal) pair candal papillac sessile; near their bases a projection of body Wall shmonting anderion and of cantal alac. Adanal pair papillar bifureated: postanal par wide, conical, inchded in alate. Posterior lip of eloata propecting as blunt spike. Spicule, it present, very lightly chitiuized, $60 \mu \mathrm{long}$.

Frate Thil tupering suddendy 0.05 mm . posterior to amts, ending in 10 mg narrow portion 0.95 mm . loug, provided with aboat seven spines on proximal twothirds of length. Vulva immediately hehind exretory pore. Egge $115 \mu \times 30 \mu$ with ome side slightly tatened, and with phorelike siturtwe at each end, embreo in karly sermentation.

This species agrees witb l^{3}. lifique Baylis from Tiliqua seincoites from (bleensland, and with P. hindli Thapar from the same host species (recorded in pror as T. scmeordis) in the nimber and arpasement of papillate on the mate tail. low diffors in the langth of the tail in both mate and fomale, and in the size of the spionle (if present). Tt also dilhers trom P. tiliquap in the widh of the lateral alae in the mate; and from P. limelloi fin the alsene of two additional pains of pupillat. It differe from Pharyngulon sp. Thapar 192. from Egernin rumminghumi in the absencer of sumes on the famale tail, ass will as in the tengeth of the latter.

Rabdaternema kartanoui sp. huv.

Wig. 7-8.

Frown at lrog, Hylu jerexisiensis.

Nalus $:+3+3 \mathrm{~mm}$. Long, female 4 mm . Jateral alae present in both sexes, in male extending to drand, in frmale to level of candal papillas. Mouth with three lips: presence of cophatic papillar dombtiol-true hoceal cavity absent but chitinous liniug of oesopharus covers inmor lwoter of each lip and projects as three thin plates rescmbling clempots of a leaf crown. Oesuphagis 0.48 mm . $10 n \mathrm{~g}$ in male, naseow, with trminal bulb longer than wide. Nerve ring at ahont midengeth of wesophagos. Exeretory pore slit-like, at level of anterior end of bulb.

Mate: Cambal ater will serpen pairs pedmentate papillar; also six sessile proanal pairs, thre adatal pairs, is pair at midhength and a pair near tip of tail. Body grashatly narrowing posterionly fo anus; tail $0.1 t \mathrm{~mm}$. long, ending in sharp point. Spicules 0.13 mon, long, subequal, similar, acientar, mot strongly chitinized bint matked with transverse sitriations.

Female: I'ail 0.3 mm, long, tapering to blunt paint; phis of catedal papillae 0. 12 minn. from biq. only spccimest present is imanature, with egms not yet fertilized and vulva not rengetizable.

Wrassign the species to Raillietnemn with some reserve. It agrees in the prosesuirn of eandal alar and the absence of at fabernaenlum, It differs from the tyjue spereses of 0. rysomutiom in these tratures, as well as in the number of eephatip papillate: and from other speroips of the gento in the number and arrangement of [hu: raudal papillae and in the Ienght of the spicules.

Fig. 1-3. Thelandros kariana. 1, head; 2, male tail, ventral view; 3, male tail, lateral view.
Fig. 4-6. Pharyngodon kartana. 4, anterior end; 5, male tail; 6, female tail.
Fig. 7-8, Raillietnema Kartanum. 7, head ; 8, male tail.
Fig. 9-11. Aplectana findersi. 9, head; 10, anterior end; 11, male tail.
Fig. 12-14. Hedruris hylae. 12, head, lateral view; 13, head, ventral view; 14, tail, lateral view.

Fig 1, 7 and 9 to same scale; 2, 3, 5 and 11; 4, 6 and 14; 10, 12 and 13. a, anus; c, cloaca; e, excretory pore; g, gubernaculum; v, vulva.

Aplectana thinderst sp. nov.

Fig. 9-11.
From an frog, Hyla jorvisiensis.
Only me male available, $\quad 2 \cdot 1 \mathrm{~mm}$. long. Head with three shallow lips; behind latter four large and two small papillae. Buccal cavity 10_{μ} wide, 7μ long, with three teeth at base. ()esophagus 0.34 mm . loug (including posterior bulb, 70μ long, $80 / \downarrow$ wide) ; hulb slightly ennstricted from remainder. Nerve ring 0.13 mm . from head end. Exeretory pore slit-like, at level of anterior end of bulls. Posterior end curved ventrad; tail about 0.17 mm . long, tapering to point. Two pairs precloacal papillas. Cloaca on clevation surmunded by three pains small papillat; laterally from latter two pairs; posteriorly five pairs arranged as in fig. 11. Spicules similar, equal, 110μ long, very fine but well chitinized. Gubernaculum $1: 30 \mu \mathrm{long}$, much stouter and more strongly chitinized than spienles, and protruding through cloaca; with two stont lateral projections near proximal end.

We have assigned the species to Aplectonu because of the presence of a buecal cavity, two equal spicules and a mubernaculum. It is distinguished from other specins of the genus of which accombs are avalable, by the large size of the gubernaculum relative to the spicules.

Hedruris hylae sp. nov.

Fig. 12-14.
From a frog, Hyla jervisiensis,
One female present; 9 mm . long, 0.55 mm , wide. Head 0.23 mm . long, 0.23 mim. in maximum breadth. Lips narrower than interlabia, but of essentially similar shape ; pach lip and interhabium with a median, two antero-lateral and two postero-lateral projections; median amterior profection on lips more sharply differrntiated from anterio-laterals; each latter with small conical papilla. Oesophagus ending 1.4 mm , behind anterior end. Nerve ring at 0.35 mm . aud excretory pore at 0.43 mm . behind head end. ("ervical papillae very small, 0.54 mm . behind base of lips. Sucker-like invagination of tail in dorsal position, hook 0.3 mm . long. Anus 0.3 B mm, from posterior end; vulva 0.2 mm . in front of anms; eggs thickshelled, 35μ diameter.

The species differs from all others whose description is available to $u s$, in the shape of the lips. The qemus had not been identified previously from Australia.

Other Species of Nematodes.

The parasites listed above from the Kancaroo Island wallaby, I'hylogate pugonii, and from the lizard, Varanus gouddi, present mon features of interest.

LITERATURE.

Baylis, II. A. (1930) : Ann。Mag. Nat. Hist. (10), v, 1p. 354-366. Baylis, H. A. (1936) : Nematoda of British India, i,
Chatterji, R. C. (1933): Aun. Trop. Med. Parasit., גxvii, pp. 131-134.
Thapar, G. S. (1925) : Journ, IIelm., iij, Pp, 83-150.

RECORDS

OF THE

SOUTH AUSTRALIAN MUSEUM

Vol. VII, No. 2

Published by The Museum Board, and edited by the Museum Director (Herbert M. Hale)

Ad̈elaide, December 24, 1942

CEREMONIAL OBJECTS OF THE DIERI TRIBE, COOPER CREEK, SOUTH AUSTRALIA

(OCHRE BALLS, WOVEN STRING WRAPPERS, AND POINTING STICKS) CALLED THE
 "HEARTS OF THE TWO SONS OF THE MURAMURA DARANA"

By T. Vogelsang, South Australian Museum

Abstract

Summary Among recent ethnological acquisitions the South Australian Museum has received (Reg. No. A. 31127) a large parcel of pointing sticks, two large oval balls apparently made by successive layers of ochre and grease, enclosing some sort of core, and two pieces of woven string wrapper, the whole packed in a heap of ochre and greasestained emu feathers. The two oval balls are the "hearts" of the two sons (Dara-ulu) of the great Dieri mythical being Darana.

(EEREMONIAL OBJECTS of the DIERI TRIBE, COOPER CREEK, SOUTH AUSTRALIA

(Ochre Balls, Woven String Wrappers, and Pointing Sileks)

CALLED

The "Hearts of the Two Sons of the Muramura Darana"

By T. Voglilsang, South Athetralian Museum,

Among rerent ethnological acepuisilinns the sonth Anstralian Mnsemm has received (Reg. No. A.3112T) a lare pateel of pointing sticks, two large oval halls appa-
 and two pieces of worn string wrapper, the whole patked in a heap of nobre and grease-stancol cmu feathers. The two oval halls are the "hearts" of the two sons (Dara-ulu) of the great Dieri mythical being Darana.

Ngantjalina, a member of the Darana Totem, hus informad the writer that
 person aided by a entucil of six or seven ment und women. When the father of
 stones, hot the som. who lived at the now ahandoned killatpanima Mission, refused, saying that the secrets and beliots in commection with these hearts did not agree with his Christian oullook.

In attempting to lewn dotails of the scerrts, 1 metuested Ngantjalina to mention some of the beliofs, hut he refined, capine that he had promised his father never to give away the serects and he felt that he enuld not. break his wodd. Instead he told me that there were duite a mumbor aldangerous pointing stick preserved in the
 of a persm who hat atfompled to give awsy the secerets of the cult ; for fear of these stieks, ,one of the members of the conncil would give them up, or mention anything about them.

Mr. N. B. Tindalo points out that several of the sticks are of the slender donble-ended kind veed in the dhurray River district as killing atente; the vietion was seized and the stick, previmusly soaked in dead body jnices, was fored jutn the body cavity inaide the amms ko that there was no external wound.

Sqamtalina further stated that from his Pather and gramdathry he had learned that Darana was the most powrefnil Mnramura of them all. IIe was the first one to come nut of the earth. Darana came out of the earlh at Kandrimokn
 Creek, was the controller of the sky, and of the winds, and ennld danse droughts
 number of "muluru or Witehetty prubs appeased in the gromed aftur a heavy Bain, the Jhramma Darana gathered hogether a great many of them hey simging ouce of his sungs; he dried themt ind put them into string bags wheh he hung on ateme. When lis two sums, the Dara-ult, came to the place and satw the bage hang. ing, they miselievonsly threw their hoomerangs at them. One of them struck a bag, causing a great wat in it ; dust poured ont and blew everywhere the far-romohns clonds of dust darkened the sun and caused a terrible dronght.

During the fromght Darama was askid hy one of his friends, another Mura-
mura, to come and share a pata or grass seed feast. Mo went to his friend's country, takins all his staming people; some wow eripples and others were so weals that "they crawlod alom on their clbows." When the Murammras learned What the Dara-blu gouthe hat shme by their misedimons satfering of the dried raterpillar dust, they quidkly followed and strangled lhem. The ohd Stramura Damata interfered at onee tith their intration and mage ally brought the lads baek to life again. Hownere, thes were again lok stranglet and the Murama eolled thair hadies up to form the two pry-shaper "harts" which hava how han reveated.
 rain-making encenony the two stomes were freshly smuace with fat.
dal event. at Killalpaninna, about the year 1917, while the writer was at the Misaion station throws jmided light on the signifinamer of these ohicets. An old
 rapmbers of the Tharma cult, Indeed, he clamed to have received, from Davana,
「'Mardir turul-liternly "stom" fire"- that is, by aid of metens. At we time of the indolent feoree was livine in a ramp at a plate about a ruartere of a mile Hest of the Jillalpaninua station, with his: "nipee" pact social relatiomship not. kunwn) amd hor hachanf, namol Nod. Every numbine before sumber, for over a
 abont the power he had of killing whers he means of F'Marda dirul. Th the courge uf his honstinge, he elatimed to have nsed this power ingon some women at Nournpiowi. It was athout thas time that a meteorite acthally fell at Mumpiowi and shorly after several imdividuts died. 1 enst of thin meteorite is in the South Amatralian Mnsmm. Ther ontinued boasting so monoyed Nerl and his wife, that

 and Aiston ("Savate Life in Ceutral Anstralia," ph, 147-8). The infomatiom
 mublished record are contused. George was not a trme "kitrdaitcha." and the incerdent of the killine hy lightninge was at Mormpiows, mot Tmamincka. The ofd man when ntacked hy his "niece" retired only ashort distance away, not to Sganangana Lake. The weapon used in the killing was a 'mariwirn on fighting hoomerang. Mr. Aiston did not bear the actual chaldene as he whe at Moncranie. fitty miles away rluing the period of the events natrated.

The writer has lomsw of these two sacren obicets of the Darana totem for many years und for the last cisht years has followed the movements of the matives who have had charge of the stomes, in the hope that they inight be seeurest esentmally for this Mnsenm. This was done by eoresponding with matives who had grown in with meand who can read atol wite in their own langage. I first heard of the oligerets when thes wrer kent at Murnpiowi. Iater on ther were taken to
 Mampinwi. From this phace ther were taken to Pandimandi. thenee to Kurinima, and lactly back to Kmammina where the last member of the conncil died, They were dispatehed from Kiznauwina to the South Australian Mitscum.

LITTFRRATTIRE.

 798-800.

REVISION OF THE GHOST MOTHS ${ }^{1}$ (LEPIDOPTERA HOMONEURA, FAMILY HEPIALIDAE)

PART V.
By Norman B. Tindale, B.Sc., South Australian Museum

Summary

Sahyadrassus Tindale 1941.
Sahyadrassus Tindale, 1941, p. 26 (footnote).
Antennae tapering, cylindrical, short, sparsely ornamented with hairs, composed of about twenty segments. Mouth much reduced, labial palpi short, two-segmented, each segment spherical and subequal in length. Traces of mandibles present as circular discs at base of hypopharynx; traces of feebly chitinized maxillary palpi visible in microscope mounts. Posterior legs of male with tabiae clothed with a tuft of specialized orange coloured hairs. Forewings with Sc_{1} absent; R_{S} from before middle; R_{2} and R_{3} short-stalked; R_{4} from R_{5} before $r-m$ vein. $C u_{2}$ obsolete in distal half. Pcu anastomosed with Cu_{z} to well beyond cuf, then Y-forking with 1V. Hindwings with Sc_{1} absent ; Pcu obsolete in male except for traces at base; 1 V and 2 V present, but the latter reduced (in some species 1 V and 2 V may be approximated at base and 2 V much reduced); in females all three vannal veins $\mathrm{Pcu}, 1 \mathrm{~V}$ and 2 V are usually present.

REVISION of rhr GHOST MOTHS ${ }^{1}$ (LEPLDOIPTERA HOMONEURA, FAMILY HEPIALIDAE)

PARTV.
By NORMIN B. TindALE, B.Sc., Soutid Australiay Museum.

Plates ix-xi, and Test Figs. 1-30.
Satyantansus Tindale 1941.
Sohmmenassus Thindale, 1941, p. 26 (footnote).
Anteninae tapering, eylindrical, short, sparsely ornamented with hairs, composod of about twenty segments. Mouth much reduced, labial palpi short, two-
 present as circular dises at base of bypopharymx; traces of fechly chitinized maxillary palpi visible in microseope monuts. Posturior legs of male with tabace clothed with it tuft of specialized orange coloured hats. Forewings with sce abseut; Fis from before middle; R_{2} and R_{3} short-stallsed; R_{4} from R_{5} before $x-m$ vein. Cote ohsolete in distal half. Pen inastomosed with Cus to well berond euf, then Y-forking with 1 V . Hindwings with Sc_{1} absent; Peu obsolete in male except for traees at base; 11° and 2V present, hut the latter reducet (in some species $1 \mathrm{~V}^{\gamma}$ and 2V may he apmoximated at base and 2 V much reduced) ; in females all three vannal veins P eu, 1 Y and $2 V$ are usually present.

Genotype: Phissus malaburicus Moore.
Differs from Endoclito in the absence of vein Sc_{1} in the forewing, in the mumher of vannal veins of hindwing, and in the mouth parts.

The renus was briefly defined in a fontnote to a previous page of these studims.
The absence of Se_{1} in all the principle Hepialids of this group from the Western Ghats and its presence in all members living in the Himalayan subregion is of some theoretical interest.
S. mulabarious seams to represent most closely the arehetype of the present genus, and shows relationships with Euforlita molythrata, its parallel form in the Mimalayan subrewinn. It may therefore be considered to be an wh continatal Indian specialization of the more generalized genus Eudoclita.

Sume nembers of Sthyadrassus hate developed amions modifieations of wing form ; these reach their extreme in the male of S. albofasciatus in which the apieal portions of the wing have beeme clongated, and the posterion halves ditated. The yenation is similar to that found in the genolyne.

The distribution of Iepialids in the Western (thats appears to he strongly groverned ly rainfall. Not only does a high summer rainfall sem necessary for theje existence, hut the continuane of some measure of rain is also required in the aritical periods Nowember to December, and March on May, when the imagines appear. The areanenpied by these insects therefore does not extend moln finthere north than Mangalore or south of Cochin. Within this himh rainfall belt speries are known from about sea level to 8,000 feat elevation.

The species of Sohyodrassus may be rearlily keyed by means of eharacters of the genitalia:
(1) Pt, IV wos publisheil in thess Records VII, No. 1, Oct. $27 \mathrm{th}, 1941$, 1p. 15-45.

n. Mnlas.

b. Tegumeri witt strongly chitinixed proeesses mueding in the mid-line.
c. Poaturior axtremity of isphmen with posteriorly directed tateral sphne manbervets
ne, Posterior extremity of tegumen with spine directed towards midine magnus
bh. Tegumem with etrungly chtinizon processes not meeting in mid-line.
d. Tegumes with margin spint-like
albormetiatiks
dd. Teमumen with margin unt spine-llke viridis
e. Thgnuing margin broadly triangalar when viownd from below strobitumines
ee. Teguman rounded when viewed from below uiridis
14n. Femalog.
. Wighth sternite with posterior uxtremity notehed.
\%. Eiglth sternite upturned att extremity malabaricus
gg. Eighth sternite not upturned at amex .. if ulbofascintus
ff. Eighth sternite with Lostorior extremity not notched strobilanthes

Saityadrafisus majaimaricug (Moore).

Plate ix, fig. 78-79, Plater s_{1} fig 81, and Toxt fig. 1-i3, 5-6i.
Phassus malabaricus Moore, Proe, Zool, Soe, 1879, p. 412.
Phassus matabaricus Irmpson, 1892, Finma Bril. Ind., Moths, 1, 1, 321.
to Heal, thorax and lugs clull brown, posterior legss with thiae dothed with dense orange haids : abloman pald brown with latw pubescenee which has a piuk tinge at hase. Forewinge dhll hrown with whitish-lawn sumbions and bands; weta hrownish, ornmmented with about wine irrewharls spared, semilmate, and ovate small hank spots, "ach margined with pale fawn; a large whliguly plated shotrectansular brow patch in midde of wiug, its inner angle terminated by a lumate creams-white spot, surromel by brown, its distal extremity at r -m vein also mankel hy a pair of white nots, a series of subterminal fown sultusions from near npex to hind maryin at two-thirds; between these two is a rather well defined brown faselin, slightly bent undwade at Rand bearing traces of darker matkings between the veins; hind marmin bondly suffased with pale fitwh, wilh slightly darker chougate, wvate marks between the veins. Пindwings dull fawn with a pink dinge. Fxpanse 78 mm .
of Much larger, mankings paler, num more suffused than in male, but with same qunerit pattern, Expanse 1.28 mm .

Loc. North Kanara Kiartar 6, 7. Sirey (type, a male, t. Noore) Yollapur 6. South Kanara: Mangalore (400 th.) 6, Barkur 6. Coorg: Pithimatti Reserve b:
 126 umm, labelled "Ooty, Nilgiris, Dr. Day, Moore Col., 94-106" in L3ritish Ifoseum). South Malabar: Nilambur 6. 6 mates, 8 femalos.

The type malo (from Sircy in North Kanara) is missing trom the Mome Colbection at the british NLusemm, hat the allotype female from Ootacammen is preselved and has been atudied.

Females are variable in size; the smallest examined is a well-marked example from North Kinara expanding only 67 mm , while the largest, fyom Yellapur measures 150 mm . Large examples are generally duller in enlontr and less wellmarked than smaller ones, which nsually bear a colose resemblance to the males.

The male described, which in the absence of the type specimen may be regarded as the neotype is a typical ixample from Coorg.

The male genitalia have been drawn from the dissection of an examnle from Nangatore (text fig. 3). Thereiehth stermite is strongly and rather eyonly ronease the vinulum is of the rather familiar triangular form; the tegumen has a strongly rhitinized median probogeation which runs in an oblique direction $\begin{gathered}\text { owneds the }\end{gathered}$
mid-line. In the undissected specimen this appears as a keeled ridgo obliquely directed towards the middle and bearing series of minnte and obscure serrations. The posterior extrenity of the tegmen is drawn out into a posteriorly directed spine; the harpe is a simple clul-shaped process.

mate

Fig. 1-4: 1-3 Sahyadrassus malabaricus Moore, male, South Mangalore; 1. labial palpi; 2. venation; 3. malo genitalia, dissected; 4. S. albofascialus Moore, renation of male.

The female genitalia, drawn from the deseribed example from Yellapur (text fig. 5-6) have the seventh sternite sub-rectangular, with the posterior margin straight. The eighth sternite, viewed from below, is a swollen, posteriorly notehed, process which is upturned near the apex; the anterior gonapophyses are triangular plates; the posterior gonapophyses are rather smooth, rounded, obliquely disposed processes overlying the eighth sternite; the inner fold of the penultimate tergite bears a curious irregularly notehed subrectangular projection; this divides the space enveloped by the hood-like tergite and presents what becomes almost a circular posterior aperture for the oviporus.

This species has a wide distribution within the areas of higher rainfall in South India, vcemring not only in evergreen forested arcas of high equable temperatures and high rainfall (116 inches) as at Karwar headland, hut also in the deciduous forests and on the plateau of the Western Ghats up to 6,500 feet above sea level, Where the temperatures and rainfall are lower (rainfall 6:3-67 inches), and there is a dry period from December to April.

In common with Endoclita chalybeata this species is a pest of teak. Its list of known host plauts is much longer than in chulybeata, so that it may be regarded as a general feeder.

The following series of specimens (most of them reared) have been submitted for identification by the Forest Rescarch Institute at Dehra Dun.

No.		Skx.	Date.	Host Trie.
4	S. Mangalore	Male	7th Junce, 1930	Gmelinusp.
6	Tithimatti	"	and May, 1903	${ }^{6} \mathrm{on}$ leati":
3	\&. D. Kanara		19th May, 1923	Macarange tomeralose
2	S. D. Kanara	Female	10th May, 1923	Macaranga tomentosn
5	Mercara	"	11th May, 1933	Machranga Roxburghin
1	Nilambur	\%	5th June, 1933	Tectona grandis

I am indebted to Mr. T. R. Bell for some material of this species from North Kanara. Specimens are to be foum in the British, Haveard ITniversity amd sonth Australian Museums.

Sahyadrassus magnes sp. nov.

Text fig. 7.

3 Heal, thorax, logs and abdomen ochreous, the abdomen at base clothed with dull pink hairs, posterior legs ornamented with large tufts of ochreons-pink hairs. Forewings rather uniformly dull golden-yellow with traces of transverse markings like watermarks, betwern the veims; veins prominent, ensta with obsenre dull watermarkings ; a silvery-white semilunate mark above and just beyond hase of $\mathrm{M}_{1}+\mathrm{M}_{2}$ and traces of two others at $\mathrm{r}-\mathrm{m}$ rein. Hindwings dusky ochrenus pink, veins frominent. Expanse 116 mm .

Fig. 5-7, 5-6: Salbundrusshs malaburicus Moote; 5. female genitalia, ventral aspect; 6 . ditto ladaral aspect; 7. S. magnus Timbale, male, Palni Hills, genitalia, ventral aspect.

Loc. South India : Pahi IIills (type, a male, miqué, 1.18936 in South Aus(ralian Museum).

This is a distinctive species because of its large size, dull golden-yellow forewings and pink-tinged hindwings, If the usual sex ratios for size hold in this
specirs, we may expent the fomale to measure uprards of 160 mm . in expanse, and to be one of the largest of Indian ITepialids.

The environment of this species is among the grass covered domens and thickly womed valleys ut the platent of the Palni Hills, where the ammal rainfall of 65 inches is mather ovenly distributed throughout the year.

The male genitalia, examined without dissection in the unique type, have (text, fig. 7) the postorior margin of the eighth sternite evenly coneave; the terumen, part! eoncealer beueath this sternite, runs obliquely to the mid-line, where its strongly chitinized posterior margin is rathor evenly notched and joined to its opposite member ; the aedeagns appears below it (in ventral view) ; a stout and long spine-like process, donhtless "orresponding to the similarly situated and posteriorly directed spiue of S. mofuluricus, is present towards the anal extremity, it is directed towards the middle where it almost touches its fellow from the other side.

Sahyadrassus albofasciatus (Moore),
Text fig. 4, 8-9.
Phassus albofasciatus Moore, Proc. Zoul. Soc., 1879, p, 413, pl. 34, fig. 8,
Phassus albofnscintus Jlampson, Ih, L」ep. Ilet. Brit. Mus., vii, 1891, p. 67.
Phassus albofascintus Hampson, Fnum Brit. Ind., Moths., i, 1892, p. 321.
Phassus albofasciotus (Gacde, in Seit\% Macrolep, x, 1933, p, 843.

Nig, 8-9, Sahyadrassus albofaschutus Moore: S, mule, Nilgiri Nills, genitalia, rentral aspect; 9. fomale, Aushi, geuitalia, ventral aspect.
of Head, thorax, and anterior and median legs dull umber brown, abdomen paler; posterior legs gaily elothed with long golden-yellow tibial phmes. Forewings elongaterl, narrow, basal half of hind margin dilated, costal margin irregularly coneave at two-thirds, pale umber brown, slighty darker along costa and with traces of it hroken longitudinal median fascia bearing white seales; margink, partieularly near apex and along termen. marked with a line of finc black dots, a few others internally from the apex. Hindwings subhyatine, atron, hasal half of hind margin somewhat dilated, pale greyish-umber with traces of two minute hack specks on costal margin just betore apex. Expanse 65 mm ,

I Similar to mate, but larger, athomen mure ochreons-colonred, posterior lese not ornamment with yellow tibial phmose. Formwing not quite so narrow and hasal half less dilated, mankings somewhat as in mate; for lomgiturlinal fascia less
 evident wer the wime. Hindwings with hasal hadf of hind margin dilated as in male, dull groyish-imber uithout markings. Expanse 76 mm .

Loc. Nilgiri llills (type, a male, exp. 65 mm, labolled "Nilgiris l^{\prime}. Moore Coll." and allotype female, exp. St mm. labeltad "Nilgiri platuan 7,000-8,000 l'eet" in British Museum), North Kumaru: Aushi 2.

The examples deseribud have ham "mpared with the (ypes in the British Mnsenm. The aldutype female is an example deseribul by Hampon in 1892; Moore's fighre of the trpe is un excellent oue.

The male genitalia, "xamined withont distection (text fir. 8) have the eighth sternite deeply mothed, with a remmed projeetion in the middo; the tegmen has
 processes, whose acute apices are not joined in the mid-line.

The female genitatia, whon viewed from bolow (toxt fig. !) have the poseterion margin of the seventh starnite rathon transverse and slightly lout evenly concave; Ifo ciehth sternite is produced into a laree. rommed, terminally bifureate momber, whose ventral surface is raised in a broad keel; the anterion gonapophyses are irmeguander shapud fat plates, one on eard side of the eighth sternite.

Examples, of this stragespejes arw preswed in the Pritish, Trime, and Somth Anstrntim Musenm Collections.

Saityadrassus vimdis (Swinhoe).
T'ext fig. 10-11.
Phassus viridis Swinhon, Cat, Japp, Oxtord, i, 1892, p. 291 (November'),
Phassus viridis Hampson, Fama Brit. Ind., Doths, i, 1892, p. 321 (Derember),
I'hassus virides Pitaner und (Zatde, Seitr Alaerolep., x, 11. 19:3\%, p. 8ta,
Thussus viridis Tindale, S. Aust. Nuturulist, xix, 1938, p. GE fig.
© Head, thotax, antorion and median legs green: postorior legs sonewhet reduced, with libial tult of orange-yellow hairs; abdomes grey ish-broms. Fore-

 $1850^{\prime \prime}$ in Oxford (hniverrity Insemm). © males.

The type exumple has been examined. It is the same one described lay Itamp. son, who recomed the expanse as 86 sma. Thure is a secood male oxample from the
 Col. d. (\%. Frazer and expands 76 man. Buth cexamples are closely similar in colnur.

The made menitalia of the tyju", drawn without dissectiont. are seen to have Whe hind margin of the cipleth sternite rather strongly eoneave, white the lumum is an evenly ronaded and shomgly ahinized lateral process; the two sides do not
 could wot be examined, but the fom of the rexumen alone will mable it to be disfandished trom and its known conqeners, white the green colour of the formings
 and from the larity ol this and other species in coltentions, it sems evidend that Du Mopiadid tama of the Wertern Ghats lias ins yed been imperieetly gathered.

Tindale-Revision of the Ghost Moths

Fig. 10-11. Sahyadrassus viridis (Swinhoe), male, Nilgiri Hills: 10, genitalia, ventral aspect; 11. ditto lateral aspect, from frechand sketches of type.

Sativadrassus strobilanthes sp. nov.
Plate x , fig. 82-83 and T'ext fig. 12-13.
o Itead, thorax and abdomen pale greyish-fawn, legs slightly ochreous fawn, posterior tibiae with a small tutt of ochreous hairs. Forewings with costa straight or slighty concave and termen continnonsly rounded with hind margin brown with paler suffusions, al dull greyish-white tascia from costa at three-fourths to fork of (${ }^{\prime} u_{1}$ a and $C^{\prime} n_{1}$, thence in an obscure hand to base of wing ; traces of a faint fiasera parallel to termen from near apex to near hind margin where it is obsoleseent. Hindwings subhyaline, brownish-fawn. Expanse 36 mm .
4. Larger than male, forewings subhyaline, longer than in male, apex slighty more rounded, colour smilar but with pale markings larger, more difiused, and with paler suffused areas nore marked. Expanse 48 mm .

Loc. North Kanara: Anshi ($1,800 \mathrm{ft}^{2}$) 6. (Type, a male, 20th Junc, 1907, and allotype female, 23 rd June, 1909 , T. R. Bell, in British Musenm, paratypes I, 18941 in South Australian Museum). 4 males, 5 females.

This is the smallest member of the genus. The males range from 36 mm . to If, mm. while the females expand from 48 mm . to 60 mm . The wings are elongated as in S. albofusciatus but the hind margin is not expanded as in that species. A brown form of the male in which the forewing markings are almost suppressed and sulfused with pale brown, is taken with the typical one; this may be known as f. brunneas (type, a male, expanse 44 mm ., 9th June, 1909, T. IR. Bell, in Br. Suseum). Strncturally the two forms are identical.

The species has been bred by Mr. Bell from a gregarious shrub, Strohitunthes nersiamus, and I am indehted to him for material for study and deseription. At Lis request the types have been placed in the British Musemm Collection.

The male genitalia have the seventh sternite with posterior margin evenly coneave (text fig, 12) : the temumen in ventral view broadly trimutar with the margin strongly ehitinized and smooth; there is also a longitudinal lateral carina, widest anteriorly; the harpe is visible as a short, simple, digitiform lobe.

Fig. 12-13. Sahyotrassus strobitanthes Tindale: 12. type, male, Anmi, genitalia, ventral aspect; 13. allotype female, Anshi, genitalia, ventral aspect.

The female genitalia (text fig. 13) have the seventh sternite narrow, coneave on the anterior margin, and tiansverse and wide on the posterior; the eighth sternite is a shovel-shaped process, ventrally rather feebly grooved, and with the posterior margin transverse; the anterior gonapophyses are smoth, shining. rounded plates; the ultimate tergite is rather eomplesly folded on the ventral surface, and the penultimate one has reutral spinons prolongations which nearly meet in the mid-line.

Palpifer Hampsun.

Palpifor Uampson, Fanna Brit. Ind., Moths, i, 1892, p. 316. Palpifer Gaede, Seitz Macrolep., x, 1933, p. 844.

Antemae (text fig. 17) short, subcylindrical, nomerhat subescent, composed of about 38 segments, towards apex with traces of incipient unipectination. Labial palpi well developed, densely clothed in pubescence and carried at an angle of 45° away from mid-line ; appareutly three-segmented, two basal spherical sesments and a third, greatly clougated one, which lears an ill-defined suture near its apee (text fig. 18). Maxillary palpi mot ohserved. Forelags with moderate strimil-like fold at base of tibia. Median and posterim legs unarmed. Forewings with se ${ }_{1}$
 vein; i-m eross vein after forking of I_{1} and N_{2}; (In_{2} reduced, not extending to margin, Peu apparently obsolete, 15 in male beariug a large seent gland near base. Hindwings with traces of sic $; R_{1}$ from Kis befote middle; R_{z} and R_{3} forked;
R_{4} from R_{i}, after $r-m$ vein; i-m cross vein very shortly atter, or at, forking of M_{1} and M_{2}.

Genotype: Polpifor sexmolalus Moore designated by 11 amp:on (1892).
The strigil-tike fold at hase of ibia is probably not homberous with the true strigil of many heteroueurous lephofuptera. There is a eurivus seent sute situated on the base of $1 V^{\prime}$ ul torewing. 'l'hs appeas to be formed as an invagination from the dorsal surface of the wimg om the line of 1 V . D'en in this insect is obsolete beyond the basal area mulass it is represented by the vein, interpeted by Tillyard as the crossvein cu-i, which runs up to meet C C_{1}, just beyond cuf. It wond appear
 vern. This interpetathon apprombes that of Comstock and rums comuter to the view of tillyard, who regaded the strong analis veiu as 1A. The interpretation of the origins of 1 A differs however from that of Comstock who considered iA to be fused with curght trom the base. The present viom appears to rewoncile the opposing theories of these two workers and sems to account for apparent anomalies such as the supposed entire disappearance of is (2V) from the forewing of the Ilepiadidae. It alsw makes possible a clearee interpretation of the venation of the fonswing of some species of the gemus sulyudrussus whose venations are also disehssed in this paper.

Haterial is seanty for several of the Indian species of this genus, two apecies abs ouly know from hadly preserved type specinens, and another one was deseribed from a single type sample, the presen location of which is unknown. The fullowing key is, of necessity, based on obvious, superficial leatures. With wore material the chavacters of the mate genitalia should provile clear eut distinetions for, in the specejes studied, and in mumerous F'ar Eastern forms, not yet described, Whoy are highy characteristic.

Pulprifer minulus Hampson, formerly referred to this grmas, helougs to the hornomemous fanily Palacosetidae and has been pheded by lasiki and stringer (Stylons, $1,19^{3} 2, \mathrm{pp} .71$ and 73) as the type of a genus (renustés.

Rey to some gpteres on Halpher.

at. Winge nsaque, well sealed.
b. Itinurring with hasal portion brightiy velpeths, unter lanf dajk hown..
c. Fiurewings with several creamy yellow spots .-
sexnotatys
ce. Forewings withant ereany sipots (ficte Hampson) it tavoyanus
bls. Hiulwiag with bisal portion of wigg data, pusplidhtrown, and concoluruus with rest of wing.
a. Base ot ahdomen and portion of thorax ochreous; apur of abtomen dark brown
taprobanus
dd. Base of abdomen purplish-brom, and concolorous with apor of abdomen.
c. L'orewings with molerately largo white sint: botween ${ }^{4}$ and mf
cc. Forewings with white spot ieduced or absent
murinus
pelliria
ala. Wags sulhyaline, rather poorly sealed..

Palpherisechotatus (Moore).

Plate xi, fig. 84-85 and Text fig. 11-18, 22-23.
Hepiaius scanotatus Moore, Proe. Zool. Sote, 18is, p。413,
P'alpifor semotalus Hampson, Fama Brit. Imlia, Moths, i, 1892, p. 316, tig. 217.
Pulpifer scanotelus Pfitzner, Suik Macrolepo, viii, 1912, p. 437, pl iff d.
B Heal, antenne, thorax, lears and ereater part of abdomen dakl brown, a dense clothimg of hair at base of abdomen and on metathorax, dull yellowishorhicoms. Fonewing dull thsty-brown wilh some right white spots, tro small
subleostal ones faintly ochrous tinged at two-thirds and fonr-fifths, one at r-m foin, ad group of three, one rather large and silvery-white, in basal fourth, traces "f a smaller one near imer margin; a minute marginal black spot between (${ }^{\prime} n_{1}$, and the analis vein. Hindwings with hasal hall bright ochreous-yollow, apical half and inner margin purplish-brown exeept for a subrectangular dull yellow terminal spot between veins M_{1} and M_{3}. Expanse 25 mim.

Fig. 14-17. Palpifor snxnotatrs Moore, male, Nainital: 14, antenna; 15. anterior aspect of head to show labial palpi; 16. venation; 17. base of forewing ventral aspect, to show scent gland.
9. Larger than male; dense clothing of hair at base of abolomen and ou metathoras brightly nchreous. Forewings rusty-hrown with two rows of subterminal dark brown spots in outer half of wing; basal series of thite spots well defined, black spot at posteriov margin well defined. Ilindwings with basal thind bright ochreous yellow, rest of wing dark brown, with traces of terminal yellow spot botween M_{1} and M_{5} as in male. Expanse 38 mm .

Loc. Sikkim : Darjiling, 7 (type, a lemale, ahdomen missing, expanse 38 mm ,
 Bhutan; Buxar. 8 .

A female specimen in the Sonth Australian Musenm, from the type locality, agrecing closely with the type example, and a male from the Khasia IIills (pl. xi, fig. 84) have been nsed in drawine up the above desoription. Another female, from Khasia, has been figured (pl . xi, fig. 85) .

Specimens are to be found at the British, Tring, Sonckenberg and South Australian Museums.
P. murinus and P. taprobanus have been inchaded in the symonymy of this species by some authors, but a close examination of the types and genitalia studies indicate that they are distinct.

The male genitalia have a broadly four-sided vinculum with straight anterior
and posterior margius. The harpe has a liurge, expanded, and flattened hond like
 with rolnm, boiuted auteroventeal extremity and domble-spined posterior brojection. Text fig. 18 has been drawn from at slide preparation.
 son with a similar skeld of the type of P. umbrimus, shows a chuplicated process lurmoil from what is probably the eighth sternite.

Palpteler tavoyantita (Moore).

Tcpintus tavoyanus Moore, Journ. Asiat. Soc. Beng., v, 18R6, p. 98. P'Alpifer tavotamus Manıpsou, Fama Frit. Tud., Moths, i, 1892, p. 317.
; Palr, vinous brown ; atter-margin of metathoras amd first segment of abdomem chothel with ocheous hairs. Forewing with somur dark quadrate costal marks, ollers in and below the cell; an irregular mential band witl dentate margin; a series of small marginal Immules and a black spot above outer angle; all these murkings with narrow ochreous edres. Hindwing dark vimons brown, at hase "iliate melneons from M_{3} to posterine angle (after Hampson). Expanse 77 mon.

Loc: Jower Burma : Tavoy.
This species is not represented in any of the collectious examined and the type has mot heen tramed. The specimen is sain to be a mate; if rorreet this species should have a fenale even latger in size and thus much larger than and of the wher known specius. The genoric placing may be in error.

Paipifer taprobanus (Minote).

Plate xi, fig. 87 and Text fig. 20-21.
Mopialus taprohamus Moure, Lep, Ceyl., jiis, 1887, p. 545, pl. cexii, fiy, 6i.
P'elpifersermotatus Hampson (Mor Monere), Famal Trit. Ind.. Moths, i, 1892, p. 317.

\& Head, palpi, thorax ablonen and legs purplish-brown, a bright orangeerloured band of bairs at hase of abdomen. Forewings purplish brown with a
 hy fant trase of darker brown broke zig-ag hands followed he a marcinal pow of spols; as single white ghe thow oft and at clealy definct black spot at margin between veins (${ }^{\prime} 1_{14}$ and 11 . Mimlwing purplich hrown: costal margin and the ciliate tinged nelureons; tho base elathed with otange-coloured hairs.. Fxpanse 50 mm .

 Mantukima 11. : females.

Tho type jo the Initish Inseum has heen examined, but it was not pussible to study tho gruitalia. The obe deseribed, from Mndulsima is somewhat larger.
 of abdomen, the single white disemith spot, which is smaller in the deseribed specimen that in that type, and the black spot at the hinder angle of formones are rharacteristics. Thilike sarmofotus tho brown markings of forewing are distributed all over the wing and are not confined in two sulparallel bands fud there

The female genitalia (text fig. $20-21$) have the eighth stomite producer into a
 tergite is in the form of a curiously lipped sevop; the homongies are nuectain.

Patpteer murinus (Moore).
Plate xi, fig. 86 and Text. fig. 19.
Hepialus murinus Moore, Proc. Zool. Soc., 1879, p. 413
Palpifer sexnotalus Mampson (nec Moore), Fama Brit. Ind., Moths, i, 1892, p. 317 (part).

Palpifer caerulescens Swinhoe, Ann. Mag. Nat. Hist. (6), xiv, 1894, p. 440 (new synonymy).
Palpifer cacrulescens Hampson, Fama Iritit. Ind., Moths iv, 1896, p. 473.
Palpifer coerulescens Pfitzer and Gaede, Seitz Macrolep., x, 193, p. 845, pl. lxxy B.

Fig. 18-21. 18. Palpifer sexnotatus Nroore, male, Nainital, genitalia, ventral aspect of dissected example; 19. P. nurinus Moore, male, khasia Hills, genitalia, ventral aspect of dissected example. 20-21. P. taprobanus Moore, female, Madulsima: 20. genitalia, ventral aspect; 21. lateral aspect somewhat oblique.
a Antemae pale brown : head, homax ami legs pale chocolate brown, abdomen sommehat darker. F'mewiup chocolate brown with obseme darker chocolate spota forming two indistinct lines parallet to temen; a creamy white spot below radial fork. Hindwings dark chorolate brown with slighty opalescend hastre when viewned from one obligue direction, a dull white teminal quadrate spot continued into the cilia between M_{1} and M_{3}, Expanse 29 num.

Loe, Jalandhar : Dbarmsala (type, a male, expanse 49 mm., abdomen lacking, labelled "Dharmsala, Moore Coll. 94-106" in British Musenm). Assam: Khasia IItls 4, 5, 10; Cherrupurji. 20 males.

The above description is hased on a male from the Khasis taken in May, which agres rablur well with the fype. This sperimen has also beom enopared and found to agree ingreat detail with the type oldorndescens Swinhoe (type, a male, 26 mm . in cepanse, labelled, 'Cherrapunji, Khasis, 96-121'", in British Husemm).

The male gemitalia (test lig. 19) have the terumen irvegular in form, with the
 median portion is produced into a hammer-shaped member and the posterior part into a hair-beset lagellum ; the harpe has a large digitiform enculthes and it smatl shiot-like succulus.

Palatper pellicia Swinhoe.

Yalphifer pollicia Swinhoe, Aun, May, Nat, Hist. (7), xv, 1905, p. 152.
a Head, thorax, and almoman dhll mifurn brown, legs brown, clothed with stights reddish-tinged hairs. Forewings sparsely elothed in seales, full browu, a single small white spot betwen of and mif (abent in same examples). Thindwing.s rather mikormly dull hrown a morlerately larqe subructanguar marmiual yellow spot on outer margin. Fxpanse 622 mn .
q. Similar to male. Expanse 28 mm .

Loc. Assam: Khasia Hills! (type, a male, expanse 22 mm . Labelled "Khasis, Nat. Coll. 190; -6a", allotypu fomale, pxpance "8 mon, in British Museum). Cherrapunji. \bar{a} males, 1 female.

This steceies is nearest to P. mutrinus from which it differs in its smaller size and obseure markings, Spurimpis are present in the British Musemm and at Tring: it has not yet bem possible to study the genitalia.

Palptfer hatbrinus (aloore).
Text fig. 24-25.
Mr pinlus unhrimus Moner, Dpser, new Ind. Lep. Ins. Coll. Alkinsm, Calentita, 1879, n. 88.
of Head will antonnae and malpt, thorax except posterior margiv, alulomen and legs dark momer brown, posterior marein of thorax ochrows, Forewings hyalinc, rather sparsely scalei, pale, momer brown with vinous tint externally and sparsely irrorated with dark horwa seales; fringe at base of wing ochreons, costal margin aud ciliae dark purplish-brown with a darker row of lunular spots on outer mareins. Hindwings hyaline, sparsely suatod, colour as in forewing costal margin aud ciliae dart parplish-brown. Expanse 51 mm .

Lone, Sikkim: Darje eling (type, a female, lahelled "Darjiling Coll. Atkinsou, Staudinger K. $740^{\prime \prime}$ in Berlin Mnseum). 1 female.

The unique type has been examined. It is a fernale, rather worn, and the venation is couspicuous owing to the feebleness of the sealing. When fully clothed the wings were probably a subhyaline and npalesceut dark brown with dull golden
hairs at the base of hindwings and at base of abdomen. Text fig. 24-25 show freehand sketches of as much of the outline of the female genitalia as may be seen on the type without dissection. From the genitalia of the female of P. sexnotatus this species differs in having a median line of four stout tuberous swellings on the seventh sternite; the interpretation of the rest of the genitalia must await additional matcrial. If ratios of wing length are the same in all species of this genus the male

Fig. 22-25: 22-23 Palpifer sexnotatus Moore, female, Darjiling; 22, genitalia lateral aspect; 23 . ditto ventral aspect. 24-25. P. umbrinus Moore, type, a female, Darjiling: 24. genitalia, from frechand sketches, ventral aspect; $2 \overline{5}$. ditto lateral aspeet.
 larger than males of P. murimus.

Hepparascua Mampson.

Ilopialiseus Hampson, Faman Brit. Int., Moths, 1, 1892, p. 317.
Male with antemae filitom, almust naked, and short, composed of about nincteen segments. Labial palpi reduced to a single spherical suguent. Maxillary palpiohsoletr, a three-segmented promess apparently represents a rudiment of the maxilla. Forelegs with a small thimal striyil sitmated at the base of the semment. Median legs marmed. IJindlegs with ibiar unarmed. Unexpanded and not omamented with specialized han tuft. Forewings with se unbranched; R_{1} he-
 in distal half; Pen apparently fosed with IV at hase, hranching up to muet Cu: at cu-f. 1 V reachiug to margin, 2 V visible as a small hasal vein. Hindwings with Se mobrambed, R_{1} almost obsolete, R_{s} with R_{3}, R_{1} and R_{5} from $R_{2} ; R_{2}$ at apex. Apparently only one vanal voin present.

Genotype: Heprolispus wepalrinsis (Walker') desimated by Hampson 1]892) This gents is somewhat similar in its wing venation to Oxyenus but differs in the redaution of the palpi. It superfieially resembles Elhamma, in which the palpi haw heenme reduced to the two-segmented condition and in which R_{1} is undergoing reduction by virtmal fusion with Res to beyond the midde. In one wale specimen of $I I$. nepalensis in mur millotion R_{1} is so reduced that it appears only as a rudiment at the radial fook. The himdwing of the female has the same number of vannal veins as in the male.

The larvan are stated to leed in or on the roote of grasses.

Herialiscus nepalensers (Walker).

Plate ≤ 1, fig. 88-91 and Text fig. 26-31.
Hepialus mepalensis Watker List Lep. Ins. Brit. Mus., vii, 1856; p. I557.
Heprialus indious Walker. loc nit. D. 1558.
Hepialus pauperatus Walker, Ioc. rit, sxxil, 1865, p. 593.
Hepialus marrimus Butler, iii, Iep. Tlet., Brit. Ilus., vi, 1886, p. 29, pl. ©viii, fies. -5. Hepralus pauperatus Butler, lore rit. vi, 1886, p, 30, pl, eviii, fig, 6-7.
Hepialus marcidus Butler, Am. Mag. Nat, Hist. (5), ธi, p. 69.
Hepüliscus nepalensis Mampons. Wanua Brit. Int.. Moths, i, 1892, p. 317, fiss, 218. It pinhiscus nfpalensis Pfatzer, Scit\% Mactolep., viii, 1912, p. 437, pl. liv d, mate.
of Autemac hrowni, ench sergment paler at apos giving a somewhat banded appearanep to antemac. Hrad with eyes redtish-bronze, thorax and abdomen grey. sometimes orange-brown; lugs orange-brown. Forewings sublyaline, pale brown with obseure sulbyaline white, paired rimg markings, arranged in two series parallel to termen; similar markings, somowhat more irregular in form in basal half of wing. Hindwings hasaline erey, sliphtly timed with ochreous alone costal nargin. Expause 40 mm .
of Larger than male. Ilead, thorax and ablomen greyish-brown. Forewing subhyaline, flecked with greyish-hrown and ochreots seales, the latter forming ircegularly transwerse series of ohbeots sellow spots, margimed with greyishbrown, arranged as in male. EXindwings hatine, sparsely clothed with greyishbrown scales. Expanse 56 mm .

Loc. Punjab: Dalhousie.
Mill States: Simla ($7,000 \mathrm{ft}$.) Subathu 6 , Kulu, Nepal (type a female, abdomen missing, unset, estimated (xpanse 49 mm ., labelled "Hardwjeke Bequest Nepal" in British Museum).

Fig. 26-30. Hepialiscus nepalensis Walker, make, Subathu: 26. antenna; 27. mouth parts; 28. base of anterior tibia; 39. venation; 30. genitalia, ventral aspect of dissected specimen.

Sikkim: Darjiling 4, 5, 6, 7. Assam: Khasia Mills, 2. 19 males, 24 females.
The types of II. nepalensis pauperatus (a female of nepalensis with abdomen partly broken off, 58 mm . in expanse, labelled " E Ind.") and marcidus (a male of nepalensis, expanse 48 mm . labelled "Darjiling 79.56 ") have been studied but that of indicus was not seen. The following possess material of the species: British, Tring, Senckenberg, Harvard, and South Australian Museums.

The specimens described above are a male from Subathu and a female (pl. xi, fig. 89) from Darjeeling; the latter was selected because of its general agreement
with the type example. Pl. xi, fig. 89-91 represent a small form taken at Darjeeling. The figure of the male in Seitz (l.c. pl. 54 d) is a good one, representing the typical form.

The male genitalia of this species, from a specimen from Subathu (text fig. 30) have the vinculum well rounded and transverse ; the posterior margin with a well marked convex lip beset with some bristles; the tegumen is relatively large, well chitinized, and bears marginal spines, including two large and three smaller ones on each side; the harpes are small and simple. The present species is confined to the Himalayas, another one is known from Borneo.

REFERENCES CITED.

A list of references is given in Pt. IV of this series of papers.

EXPLANATION OF PLATES.

Plate ix.

Fig. 76. Sahyadrassus malabaricus Moore, male, Tithimatti River, 78 mm .
Fig. 77. Sahyadrassus malabaricus Moore, small form of female, North Kanara, 67 mm .
Fig. 78. Sahyadrassus albofasciatus Moore, male, Nilgiri Hills, 65 mm .
Fig. 79. Sahyadrassus albofasciatus Moore, female, Anshi, N, Kanara, 76 mm.

Platex.

Fig. 80. Endoclita microscripta Tindale, type, a male, Madras, 88 mm .
Fig. 81. Sahyadrassus malabaricus Moore, female, Yellapur, 130 mm .
Fig. 82. Sahyadrassus strobilanthes Tindale, type, a male, Anshi, 36 mm .
Fig. 83. Sahyadrassus strobilanthes Tindale, paratype female, Anshi, 60 mm .

Plate xi.

Fig. 84. Palpifer sexnotatus Moore, male, Khasia Hills, 25 mm .
Fig. 85. Palpifer sexnotatus Moore, female, Khasia Hills, 38 mm . Fig. 86. Palpifer murinus Moore, male, Khasia Hills, 29 mm .
Fig. 87. Palpifer taprobanus Moore, female, Madulsima, Ceylon, 50 mm .
Fig. 88. Hepialiscus nepalensis Walker, male, Subathu, 40 mm .
Fig. 89. Hepialiscus nepalensis Walker, female, Darjiling, 56 mm .
Fig. 90. Hepialiscus nepalensis Walker, male, Darjiling, 42 mm .
Fig. 91. Hepialiscus nepalensis Walker, female, Darjiling, 42 mm .

indian ghost motis

INDIANGHOSTMOTHN

LNDAN GHON゙T WOTH

ADDITIONS TO THE ACARINA OF AUSTRALIA (TROMBIDIIDAE AND CALYPTOSTOMIDAE)

By H. Womersley, F.R.E.S., A.L.S., Entomologist, South Australian Museum

Summary

Family Trombidiidae Leach 1814.
Subfamily Trombellinae Sig Thor 1935.
Zool. Anz, 1935, cix, p. 108
Genus Chyzeria Canestrini 1897.
"Acari della Nuovi Guinea" Atti Soc. Venit., 1897, p. 463 ,
Chyzeria Queenslandica n. sp.
Description: Colour red. Length 3.2 mm ., width 1.6 mm . across shoulders. Dorsally with a long antero-median and two straight, longer, antero-lateral processes followed by four pairs of shorter lateral processes which are well chitinsed and strongly curved inwards; no median posterior process either dorsally or ventrally. Crista present, short and wide, at the anterior end forming a pair of lobes overlapping the bases of the sensillary setae. Eyes $2+2$, small, sessile. Palpi as figured; tibia with short blunt claw, and rather smaller, blunt, accessory claw, and a row of spines.

ADIITIONS to the ACARINA of AUSTRALIA (TROMBIDIIDAE and CALYPTOSTOMIDAE)

By H. WOMERSLEY, F.R.E.S., A.L.S., Entomolocist, South Australian Museum.

Fig. 1-10.
Family TROMBIDIIDAE Leach 1814.
Subfamily 'Trombellinae sig Thor 1935.
Kool, Anz, 1935, cix, p. 108.
Genus Chyzeria Canestrini 1897.
"Acari della Nuovi Guinca" Atti Soc. Venit, 1897, p. 463.
Chyzeria queenslandica 1 n , sp.
Description: Colour red. Length 3.2 mm ., width 1.6 mm . across shoulders. Dorsally with a long antero-median and two straight, longer, antero-lateral processes followed by four pairs of shorter lateral processes which are well chitinised and strongly curved inwards; no median posterior process either dorsally or ventrally. Crista present, short and wide, at the anterior end forming a pair of lobes overlapping the bases of the sensillary setac. Eyes $2+2$, small, sessile. Palpi as figured; tibia with short blunt claw, and rather smaller, klunt, accessory claw, and a row of spines.

Legs long, I 2.7 mm ., II 1.7 mm ., III 1.95 mm ., IV, 3.05 mm .; tarsus I 697μ long, 204μ high; metatarsus I 425μ long.

The sctae of the dorsum and dorsal processes are numerous and long, to 95μ, simple spines, interspersed, particularly on processes, with long. 108μ ciliated setae, of which the stem is almost as strong as the spines. Sensillae $10 \mathrm{~s}_{\mu} \mathrm{long}$.

Loc. A single o from Cairns, Queensland, 1939 (W. G. Heaslip).
Remarks: In the long antero-median process this species is near to C. australienso v. musgravei Hirst, but differs in that this process is very much longer.

It also differs in the lack of the very fine, numerous setae interspersed amongst the dorsal spines of australiense, as well as in the more pronounced and eurved lateral dorsal processes.

As Hirst states (Proc. Zool. Soc., 1929, (1), p. 165) that Canestrini's C. ornata (the genotype) also has a long antero-median process, this new species may possibly be the same, but Canestrini's brief description without figures, is inadequate.

Subfamily Johnstonianinae Sig Thor 1935.
Zool. Anz., 1935, cix, p. 108.
Genus Centrotrombinum Kramer 1896.
Zool. Anz., 1896, xix, p. 445.

triangular, sessile, with two eyes on each, of which the anterior are much the larger.

The dorsal euticle is strongly ehitinized with numerous fine, simple, short, 12μ, curved setae arising from platelets which are closely packed torether. Palpi and legs strongly chitinized with prominent ratieulations. Palpi (fig. \quad - B) large and stont; tihia with strong claw, larsus with numerous simple setae, the two apical ones being strong and awl-like, and some of the others widened basally. Mandibles as in fig. 2 D. Legs relatively short, I 570μ, II 540μ, III 485μ, IV 620μ; tarsus I 175μ long by 95μ wide, metatarsus I 80μ long. All tarsi without scopulae. Leg setae feathered on one side; on tarsus I interspersed with simple short clavate setae (ct. fig. 2 F).

Fig. 2. Centrotrombidium australasiae n.sp. A. dorsum; B. palp; O. crista and eyes; D. chela; E. front tarsus; F. हetae from front tarsus.

Loc. Seven specimens from moss. Cairns, Queensland, 1939 (W.G.H.).
Remarks: This genus was established by Kramer for C. schneideri from the island of Borkum, Germany. Up to the present time no other species has been described, so that it is particularly interesting to find a second species, this time from Australia.

Kramer loc. cit. only figures the palp of schneideri, but Vitzthum 1939 in the Handbuch Zool. Bed. III, Hft. ${ }^{\text {a }}$, p. 6:3, gives an excellent figure of the erista, eyes, etc., and from this our species can be differentiated by (1) the very long and slender stalked sensillary setae, (2) the more pronounced and slender nasus, and (3) the smaller and less compact dorsal platelets.

Genus Crossothrombium Womersley 1939.
Trans. Roy. Soc., S. Aust., 1939, lxiii (2), p. 152.
Crossothrombium parkhousei Womersley 1939.
loc. cit.
Originally described and recorded from Second Valley, South Australia, it has recently been collected by Mr. N. B. Tindale in Victoria, 1942.

Subfamily Podothrombienae Sig Thor 1935.
Zool. Anz. 1935, cix, p. 109.
Genus Podotirombium Berlese 1910.
Redia, 1910, vi, fase. 2, p. 354.

Podotilrombium tubbi n. sp.

Description: Colour in spirit white, in life unknown. Shape cordate, swollen, very slightly constricted medially, and anterior of opisthosoma overhanging prosoma. Length 2.5 mm ., width 1.75 mm . Crista with well developed sensillary

Fig. 3. Podothrombium tubbi n.sp. A. dorsum; B. side view; C. crista and eyes; D. palp; E. mandible; F. tarsus and metatarsus, leg I; G. same, leg II; H, same, leg III; I. same, leg IV; J. dorsal setae; K. ventral setae.
area, but very short anterior and pusterior stem, its whole length 170μ; sensillary setac only indistinctly ciliate, 170μ long. Eyes $2+2$, on long, 78μ, outstanding peduncles. Chelae of mandibles with finely serrated inner edge. Palpi as in figure, tibia with only one claw, no accessory claw or spines; tarsus slightly clavate and overreaching tip of tibial claw. Legs short, I 1170μ, II 1000μ, III 850μ, IV 850μ long, tarsus I elongate ovate, $333^{5} \mu$ long by 117μ high, metatarsus I 250μ long.

Dorsal setae of two sizes, 100μ and $6 \bar{\pi} \mu$, slender with moderately long ciliations; ventral setae similar but somewhat stouter, 65μ and 30μ long.

Loc. Two females from Julia Percy Island, New South Wales, Feb. 1936 (A. Tubb).

Remarks: At first sight this species suggests a Trombicula but differs therefrom in the pedunculate paired eyes, the lack of accessory claw and spines on the palpal tibia and the serrate mandibular chela. It appears to fall into Berlese's Podothrombinm and is tentatively placed there, although the ocular peduncle is not short as in the known European species of that genus.

Subfamily Trombiculinae Ewing 1929.

Monog. External Parasites, 1929, p. 23.
Genus Trombicula Berlese 1905.
Acari nuovi Manip., 4, 1905, p. 155.

Trombicula elegans n. sp.

Description: Female. Very narrow elongate species; length 1.67 mm .; width of both prosoma and opisthosoma 0.58 mm ., opisthosoma about twice length of

Fig. 4. Trombiculd elegans n.sp. A. dorsal view ; B. crista and eyes; C. palp; 1. mandible; E. tarsus and metatarsus, leg I; F. same, leg II; G. same, leg III; H. same, leg IV ; I. dorsal seta.
prosoma. Colour in spirit white. Crista normal, with a single closely adjacent eye on each side on a level with the bases of the sensillae. Sensillue long and apparently nude. Palpi as in fig. 4 C , tibia with claw, accessory claw and one strong spine, tarsus slightly overreaching tip of claw. Chela of mandible with slightly serrate inner edge. Legs short, I 1000μ, II 665μ, III 650μ, IV 900μ long; tarsus I 275μ long by 67μ high, metatarsus 275μ long.

Dorsal setae numerous, fine and slender, with ciliations, to 70μ in length, uniform.

Loc. Two females from Lush Is., South Australia, December 1936. MeCoy Exped.; from just about high water mark.

Romarlis: Differs from the other adult species of Trombicula known from Australia in its elongate build; from T. tindalei Wom. in the presence of eyes and from T. signata in the palp and dorsal setae.

Subfamily Ottoninae Sig Thor 1935.

Zool. Anz. 1935, cix, p. 110.
$=$ Microtrombidinae Wom. 1937. Rec. S. Aust. Mus. vi (1), p. 82.
Genus Calothrombium Berlese 1919.
Redia, 1019 xiii, p. 94, p. 190, p. 199.

Calothrombium heaslipi n . sp.

Description: Colour red. Length 1360μ, width 850μ, broadest across shoulders. Eyes 2 on each side, sessile. Crista normal 189μ long, with posterior sensillary area and paired fine sensillae. Legs stont and relatively short, I missing, IL

Fig. 5. A-D. Calothrombium heaslipi n.sp. A. palp; B. tarsus and metatarsus IV; C. dorsal setue; D. leg setae. E-II. C. tubbi Wom. for comparison; E. torsus and metatarsus IV; F. seta from front of opisthosomia; G. leg seta.
680μ, III 765μ, IV 1450μ; tarsus IV 240μ long by 102μ high, metatarsus IV 255μ long. Dorsal setae bifureate, as figured, somewhat similar to C. tubbi Wom, but with longer ciliations and longer basal tubercle, $21 \cdot 5 \mu$, on anterior margin of hysterosoma and around the sensillary area the hairs are simple and elongate, 32μ long as figured; on the basal leg segments as in fig. $5 \mathrm{D}, 32 \mu$ long. Palpi stout as in fig. 5 A .

Loc. A single specimen from Cairns, Queensland, 1939 (W.G.H.).
Remarks: Very close to C. tubbi in the form of the dorsal setae, but these have much longer cilia on the lamellae. It also differs in the sctae on the front of the hysterosoma and around the sensillary area which in tubbi are long, 41μ, and pointed. The legs of this new species are also very much stouter.

Genus Microtrombidium Haller 1882.

Jahresh. Ver. Wurttemb. 1882, xxxviii, p. 322.
Subgen. Microtrombidium Haller 1882, s. str. Berlese 1912.
Microtrombidium (M.) maculatum n. sp.
Description: Colour dark red except in the area of the crista and the eyes, and on fifteen circular areas on the dorsum which are whitish. Shape clongate oval, wider on anterior half. Length 1040μ, width 720μ. Eyes $2+2$, on distinet ocular

Fig. 6. A-E. Microtrombium (Af.) maculatum n.sp. A. dorsal; B. crista and eyes; C. palp; U. Iront tarsus and metatarsus; E. dorsal scta. FLI. M. (M.) tubbi n. sp. F. crista and eyes; G. pitp; H. front tarsus and metatarsus; 1. dorsal setac. J-K. Mf. (Dromeothrombium) macropodum Berl. J. front tarsus and metatarsus; K. dorsal seta. L-M. M. (D.) dromus Wom. L. front tarsus and metatarsus; M. dorsal setae. N-O. M. (D.) attolus (Banks). N. front tarsus and metatarsus; O. dorsal seta.
shields; posterior eyes the smaller. Crista present, $240 \mu \mathrm{lomg}$, with posterior sensillary area bearing a pair of long filamentons seusillar 108μ long, Legs relatively short, I 1040μ, II 608μ, ILI 480μ. IV 720μ; tarsus I 255μ fong by 125μ high, widest slightly before the middle, metatarsus $1 \mathbf{1 5 0} \mu$. Dorsal setac mmerous and uniform, 30μ long as figured ; atl the setace are densely pigmented except those on the white patches.

Remarks: Unlike any other Australian species in the clorsal spots.
Loc.: A single specimen from a motling tree-fern log at Belgrave, Victoria, November, 1941 (O.W.T.).

Mrerotrombidium (M.) tubbi n. sp.

Theseription: Colour miformly red. Shape cordate. Length $1 \cdot 6$ mm., width 1.0 mm . Crista with posterior or subposterior sensillary area with relatively short fine sensilla, Eyes $2+2$, large, anterior of sensillary area, the anterior eyes the larger. P'alpi as figure, tibia with strong claw and two aceessory daws, farsus clavate, not quite reaching tip of claw. Legs of only moderate length, none longer than body. 'Tarsus I 275μ long by 106μ high, with in distinet basal angle and widest at one-third from base. Dorsal setae of two different lengths, but generally similar, long setase 33μ, short 16μ, long ones not tapering apically.

Loc. Two specimens from Julia Perrey Inlawd, New Sonth Wales, Felruary 1936 (A. Tubl).
hemarks: This species is close to M.(M.) karriense Wom. and aliso to M.(M.) tasmanicum Wom. in the shape and dimensions of the front tarsus but differs in the two Jengths of the dorsal setae and in the accessory spines or claws of the palpal tibia.

Subgen. Dromenturomibua Berlese 1912.
Redia, 1912, viii, p. 131, p. 132.
Key to the Australian Spegies.

1. Dorsal setae of two sizes, but uniform abont 100μ and 50μ. 'Thrsus I 600μ Jong by 100μ high.
M. (D.) dromus Wom.. Fig. 6 Ls - .

Dorsal setae uniform in size. Tarsus I shorter, תbout $300-350 \mu$
2. Front tarsus 340μ by 178μ, elliptical, motatarsus shorter than tarsus. Dorsal sutae slender, to $54 \mu_{\text {, }}$, with ciliations. Front legs vary thick. M. (D.) nacropodum Ber. Fig. 0 . $\mathrm{J}-\mathrm{K}$. Front tarsus 300μ by 85μ, ulongate, metatarsus abouk equal to tarsus. Dorsal setacs short, 27μ, and thick with long ciliations. Front legs more slequer.
M. (D.) attolus Bunds. Fig. $6 \mathrm{~N}-\mathrm{U}$.

Genus Efinotirombum Womersley 1937.
Rec. S. Aust. Mus. 1937, vi (1), p. 89.

Eghinothrombium queenslandtae n , sp .

Description: Colour in life red. Length 1600μ, width 1200μ. Crista with posterior sensory area, with paired sensillary setae, length 148μ. Dursal setar of two kinds, long and slender, with conspienous short eiliations which are more distinct on the more anterior setae; these long setae are to 85μ by $3 \cdot \overline{\mathrm{j}} \mathrm{m}$ wille; short setae are 21μ long by 8μ wide, somewhat compressed laterally and not cylindrical, with rows of pointed sermations. Palpi stout as figured, lihia with short stuut
claw, similar but smaller accessory claw, and a row of about 12 spines. Legs short, I 715μ, II 475μ, III 529μ, IV 765μ, tarsus I as figured, 162μ long by 95μ wide, metatarsus [108μ. Ventrally the setae are as on the dorsum. Eyes sessile, two on each side.

Loc. A single female from Lantana debris, Gympie, Qld., 27 April, 1940. (D.J.W.S.).

Remarks: This species is very close to E. southcotti Wom, differing in the more slender and more ciliated major dorsal sctae, the minor setae having serrations rather than long ciliations, and in the smaller front tarsi.

Fig. 7. A-C. Echinothrombium hystricinum (Canest). A. palp; B. front tarsus and metatarsus; C. dorsal setze. D-F. E. queenslandiae n. sp. D. palp; E. front tarsus and metatarsus; F. dorsal setae.

Echinotirombium hystricinum (Canest 1897).

Ottonia Tystricina G. Canestrini 1897. Termes Fuzet, xxi, p. 193.
Microtrombidium hystricinum Berlese 1912, Redia viii, p 160.
Microtrombidium hystricinum Vitzthum 1926, Treubia viii, p. 133.
Originally described from Berlinhafen, New Guinea, it was later recorded by Vitzthum from Prince Island, Sunda Strait.

I have material from the following Queensland localities: Malonda, Aug. 1935 (Parkhouse) ; Gympie, April 1940, in Lantana debris (D.J.W.S.).

Genus Enemothrombium Berlese 1910.
Redia, 1910, vi, fasc. 2, 258.

Enemothrombium gambiense n. sp.

Description: Colour red. Length 3.0 mm ., width 2.3 mm . Crista with sensillary area at one-third from posterior end, with paired sensillary setae. Eyes $2+2$, sessile. Dorsul setae of two kinds and two sizes; larger 40μ, cup-shaped with distinct septum and open end, with long ciliations; smaller 16μ, broadly cupshaped with shorter ciliations. At the anterior end of crista is a bunch of long, 80μ, slender, ciliated setae, and on each side of these some stouter, shorter, 30μ, ciliated setae; on the dorsal surface of the legs the seta are $30 \mu \mathrm{long}$, clavate and ciliated. Legs, I 1700μ, II 1275μ III 1275μ, IV 1870μ; tarsus I 340μ long by 120μ high, metatarsus 255μ. Palpi normal, fairly stout, with stout tibial claw and accessory claw, and row of accessory spines.

Fig. 8. A-E. Encmothrombium gambiense n.sp. A. front tarsus and metatarsus; B. dorsal setae; C. seta from front of crista; D. seta at side of crista; E. seta from dorsal surface of leg. F-I. Caenothrombium burraensis n.sp. F. crista; G. palp; H. front tarsus and metatarsus; 1. dorsal seta.

Loc. A single specimen under a log, Shoulder of Mutton Lake, Mount Gambier, South Australia, January, 1941 (J.S.W.).

Remarks: In the form of the dorsal setac this species does not fit in with any known form in which the major setae are septate.

Subfamily Trombidinae Mich. 1883 (part) Sig Thor 1935.
Zool. Anz., 1935, cix, p. 111.

Genus Caenothrombium Oudemans 1927.

Ent. Bericht, 1927, vii, p. 230.

Oaenothrombium burraensis n . sp.

Descriplion: Colour in life red. Length 935μ, width across shoulders 680μ. Eyes $2+2$, pedunculate. Crista typical of the genus, $162 \mu \mathrm{long}$, as figured. Dorsal setae on propodosoma lonr and ciliated, 68μ; on hysterosoma uniform and short with long ciliations, $2 \pi \mu$. Legs I 1240μ, II 756μ, ПI 680μ, IV 985μ; tarsus I 374μ by 136μ, with almost parallel sides; metatarsus I 255μ.

Remarks: This relatively small species differs from all known Australian forms in the uniformly short dorsal setae.

Loc. A single specimen from an ants' nest, Burra, Sonth Anstralia, August 4th, 1940 (J.S.W.).

Genus Trombidium Fabr. 1775.
Syst. Ent. 1775, p. 430.

Trombiditim hemistratum n. sp.

Description: Larva, newly hatched and unfed. Length 279μ, width 162μ, widest between coxae II and TII. Mouth parts not visible from above, enclosed in a chitinous ring, Dorsal surface with two median scuta, anterior with 6 normal feathered setae aud a pair of sensillary setae which are apparently naked; anterior portion of this scutum going over on to the venter, but all the setae on the dorsal part, the scutum is porous and longitudinal striated laterally, it is 162μ long and 135μ wide; the posterior dorsal scutum is 35μ long and 135μ wide, with 2 ciliated setae, porous and longitudinally striated laterally. Eyes $2+2$ on distinct ocular shinlds, the posterior eye the smaller. Dorsal setac feathered, arranged 4.4.6.4.2.2 the median pairs of first and second rows on small platelets. Ventrally coxae I and II tonching, coxae I with two feathered setae, II and III with one, no setae between coxat I but a pair between coxae III: posterior of III with 2.4 .2 setae, the posterior pair longer, Thegs as figured, I 243μ long (inchding coxae), II 200μ, III $230 \mu^{2}$, tarsus III with deformed claw as figured.

Fully engorged larva, $700 \mu \mathrm{long}, 440 \mu$ wide as figured.

Fig: 9. Trombicula hemistriatum n.sp, (larra): A_{1} dorsal, unfed; D, ventral, samo; O. dorsal, fully gorged.

Remarks: In his key, Ondemans 1912, separates the genera of larval Trombididac into two qrouns, A2 Bl with the dorsal seuta porous but not striated and A2 B2 with the sental lonsifulinally striated. The genus Trombitium lalls into the second group.

The species deseribed here, while haviug only partially striated senta, fits entirely in Trombitium. It is, in fact, in the arrangement of dorsal setae, with the median members of the first and second rows on platelets, very elose to Trombidium deneyeri Ouds. from Holland.

From T, clathi Won, firon Vietoria it rlifers in the partially striated seuta, and in tho dorsal setoe 1 no being arranged 2.4.4.4.2, with none on platelets.

Loc, and Host: Ten specimens, 4 fully engorged, the rest unfed, from at fly, Kenilworth, Queensland, 4 March, 1940 (D.J.W.S.).

FAmiry CALYPTOSTOMIDAE Oudemans 1923.

Genus Canfptostoma Cambridge 1875.

Aurn, Mar, Nata Hist 1875 (4), xvi, p. 384.
Califptostóna velutinus (O. F. Müll. 1776).
Acarve velutinus O. F. Müller Zool, Dav, Pronlr, 1776, 1, 187.
Trombidium expalpe Iermann Mem. Apt. 1804, p. 30.
Smaris expolpis Berl. A.MLS. iLal. Rept. 1887, fase xxxix, No. 2.
Calyptostomm, vehutinus Onds. Kirit, hist. averz: Acar. 1929, ii, p. 596.
Description: Adult. Colour in life red, with conspicuons cyes and sensillares bases. Mouth parts hidden from ahove. Eywa $2+2$ placed well hehind the sensillae. Crista absent. Paired semsildary setan $108 p$ lone indistinctly ciliated and arising from a pair of adjarent hases as in fige 10 D ; these hases are dan behime the apex of body. The hoty stane js as figured liy Berlese (loc. nit.). Dorsal setac 54μ long, eurved, arising fom hatelems (fig. 10 F) between which the contiole is reticnlated ; the setae are mimerons and minform and shaped as in firs. 10 K . Palpi as in fig. 10 B , apical seqment twioc as lone as wide. with numernus long setac. hint no very definite tibial claw. Mandibles (firs. 10 (c) long and slender with a singlo mhela. Ventrally with the enxar in twn pairs and all coxace with mumerous setae; the enticle reticulated (fim. 10 F) hint the setae fine and straight and arisine from platelets. Thegs relatively short, 1.1020 , IT 935μ, ITT 98%, TV 1200μ; 1 arsus T 243μ long hy 120μ wide; all larsi without scopnlae; claws two.

Nymph: Similar to adult, but genital oponing with only two pairs of dises. Lemuth 1000 , width $1100 m$. Sensillae long. II 925μ. III 1100μ, IV 1190μ; tarsus I 216μ by 81μ; claws two.

Larva: Colour red, With only 3 pairs of legs, tarsi with 3 claws, otherwise as in nymph and adult. Length 3.97μ, wilth 290μ. Sensillae 108μ back from apex of body. Palpi short and stumpy (firs. 10 T). Mandibles rolalively shortar and
 I and II touching with the stigmata between, all coxale as in nymph and adult but with fewer setae.

Loc. Fiji, one adult Viti Levu in the South Australian Museum (coll. A. M. Lea), Australia. Queensland; Cairns 4 nymphs, 2 larvae (coll. W. G. Heaslip 1939).

Fig. 10. Calyptostoma wlutinus (O. F. Müll). A. dorsal; B. palp; C. mandible; D. sensillary area and setae; E. dorsal setac; F. right coxae; G. front tarsus and metatarsus; H. dorsal, larra; I. chelicerao and palp, larva; J. anterior right coxae, larva; K. dorsal seta, larva.

Remarks: In spite of the countries from which I now record this species I cannot find any differences from Berlese's figures to warrant describing it as a new species. In his fine work on the history of Acarology Oudemans refers Herman's species to volutinus O.F. Müll. and I have found him in the synonymy.

Calyptostoma caelatum. (Berl.) Vitz. from Malaya differs in having some simple, long and fine setae between the normal dorsal setae.

REMARKS ON SOME PARASITIC NEMATODES

By T. Harvey Johnston and Patricia M. Mawson, University of ADELAIDE

Summary

The examination of this small collection of nematodes was undertaken as part of our investigations which are assisted by the Commonwealth Research Grant to the University of Adelaide. Messrs. G. Jaensch and L. Ellis, of Tailem Bend, have generously helped us in regard to the local material. Types and allotypes have been deposited in the South Australian Museum. The following is a list of parasites arranged under their hosts:

REMARKS on some PARASITIC NEMATODES

By'T. Harvey johnston and Patricla m. Mawson, Liviversity of Adelade.

Fig. 1-8.
Tres examination of this small collection of nematodes was undertaken as part of our iuvestigations which are assisted by the Commonwealth Rescarch Grant to the University of Adelaide. Messrs, (\ddagger, daenseh and L, Ellis, of Tailem Bend, have gencrously buped us in regard to the local maturial. Types and allotypes have bern deposited in the South Anstralian Musemm. The following is a list of parasites arranged nuder their hosts:
Lagenorhtwenus obscurve Gray (Now Zoaland): Anisaki, simplex (Rud.).
Kogas brevicers (Blainville), (Quensland: South Australia): Anisukis simples wyn. A. Kogitue Johuston and Mawson.
I'Anmptila desorata (imel, (st. Vincent's (inlt, S.A.) : Paryseria puchyptilue Johnstom aud Massonn; Anisnkís sp. (9 diomedcue).
 cephulus menxchi Johnstum and Mawson. Te trancres pelcrani Johnston and Mawson.
pmalarmorokar peseesens Vicill. (Tailem Behd, s.A.): Eustronyylides phaterrocorucio Johsston and Mawson.

Antsakis stmpritix (Rudolphi 1809).

E'ig. 1-3. From a dolphin. Lagenorhynehus obsewres, from Cook Sitrait, New Zealand, material eollected and formarded hy Professor II. B. Kirk, Victoria liniversity College, Wellington. The material ronsists of a mate to ma, long, two yomeng females, and an older female 76 mm . ham. Dorsal lip rather shorter than laterale, with two wide lateral expansions and slighty bilobed antryior expansions, latter bearing testh along free edge. Each dateral lip with a homp hearing a papila on its ventral side; biluned dentigerms ridge prasent, not vishble from ontside of lip. Cervical papillac roundor, 5 mm . from anterion end in male, 72 mm . in fomale. Nerve ring at about same level as cervical papilla, Desophagus excluding ventri-
 1.2 mm . in female.

Male : Spientes 1.2 mm , and 2 um, in length, tail - 3.5 mm . long. Narrow cambal alae present. Six pairs of postanal papillae arranged as in fig. 3. Numerous proanal papillae arranged in an irrecular lompitudinal series on each sidn.

Frmale : Vulva not seen, prohably about midelle of body. Fergs small, mone on less spherical, 32-30/t in diameler. Tail very short, rounded.

Onr apeeimens agree in most points with the deseription of A nisalias simplex given by Lyster (1940), Int be ventriculus is rather longer, and the papillae on the mak tail are somewhat differatly arranged. They differ from the aconut by Baylis (1920) in the pussession uf unequal spicules. although in this feature they resemble A. dussumieri. A. Kutinthalii aud A. timporm, which are consideped synmyms of A. simplex.

In 1939 we described A. Koyine as a new species because of differences from A simplex and allied forms is deseribed in such accounts as were then available. Quite recently lyster (1940) has oiven a much more satisfactory neromit of A. simplex: we holieve that our A. kagrac is covered by his description and tie therefore place it as a synonym of A simplex.

Anisakis sp.

Some very young Anisthis sp. were taken from Pachyptila desolata at Henley Beach, S.A. The specimeus are quite immature, each having still a larval tooth; they agree exactly with Anisatis sp. larvae recorded by us (1942), from various albatrosses and petrels as likely to be young forms of A inisalis diomedeae (Linst.).

Fig. 1-3. Anisakis simplex, 1. head, lateral view; 2. dorsal lip; 3, male tail.
Fig. 4. Paryseria pachyptilae, male tail.
Fig. 5-6. Dispharyns pelecani. 5. anterior end; 6. male tail.
Fig. 7-8. Tetrameres pelecani. 7, male tail; 8. female tail.
Figs. 1, 2 and 4 to scale beside 4; Figs. 5,6 and 7 to seale beside 7. e, cloaca.

Paryseria pachyptilae Johnston and Mawson, 1942.
Fig. 4.
Λ male and two females of this species were taken from a dove Prion, Pachyplila desolata, washed ashore at IIenley Beach, South Australia. The speries was originally described from a single female from P. vittata. The present worms agree with the type specimen except that in the two shorter worms (the male 3.4 mm . and the female 5.9 mm . longr) the vestibule is relatively longer $(.13 \mathrm{~mm}$.
and $\cdot 1 \mathrm{um}$, respectively). The cuticle is striated transversely exeent at the lateral limes, each of which is marked by two longitudinal rows of small bosses.

In the male the madal alar are wide, the entire ventsal surferce of tho alate and body in this region beings strongly marked with transverse striations. Four pairs of preanal and five pairs of pmstanal papillae are present, arranged as in tig. $\hat{1}$. The spicules are very unegual; the shorter 70μ long, forming a groove in wheh muves the longer, which is 7 mm . lone, uerlle-like, and ends in a sharp tip.

The vulva, in the case of the female 5.4 mm . long, is 1.5 mm . 'trom the posterion end of the body. The thicls-shellerl tage aro 19μ by 30μ.

Therspecies is distinguished hy the characters of the collar, cervical papillas and vestibule, and by the structure of the posterior end of the male.

Disphafyais pelechnitisp.

> Fig, 5-6.

From Peleconus conspicillatus, from Tailem Tsend, Sonth Australia. Malone $8 \cdot 5-4 \mathrm{~mm}$, long, females $4-4 \cdot 2 \mathrm{~mm}$. Lips not markedly conical. Cuticle at anterior end slightly expanded dorsally and ventrally; cordons $\cdot 26 \mathrm{~mm}$, long in female, recurrent for ahont a gatery of their lengib. Vestibule: 14 mm . Jong in male, $\cdot 2 \cdot 2 \mathrm{~mm}$. in female, its walls striated transversely; onsophasus direetly followjug vestibule marrowed and survomded by uerve ving, hen widening. Antorion
 loug in male, 2 mm , in female. Cerviral papiltaresme distance hehind cutdons, .16 mm . in male, 17 mm . in female, usually bicuspid, fors sometimes one or foth papillae of a specimen have an adilitional small median cusp. Lateral alae presenl. oxtcnding from cervical gapillac to past, midlength of the body.

Male: Lomger spicule $\cdot 27 \mathrm{~mm}$, in lemgth, tapering, but ending in flatomet piederat right anyles to the matimsialt. Shorter spicule $\cdot 1 \mathrm{~mm}$, long, hroad, embling in blunt fing. Catulal alre supporting four pairs of preanal and five pairs of postanal papillae.

Female : Tail hlunted romully, 6 mm . 1oup. Vulva just behind posterior end of oesophagus, 1.5 mm , from tail. Fergs thick-shelleal, 61μ by 36μ.

The species differs from others of the genus in the lengith of the vestibule, the position of the cervical papillae, and the form of the male tail and the spimles,

Oosmooefhalus jaensurit Johnston and Mawsob, 1041.

This specios was deseribed from two mate worms taken frou Phalurrarorax: carbo at Tailem Reud. One female worm of the same species is now recorded from Pelrcanus conspicillutus from the same leverlity: In relative lengeths of eordons, vestibulo and oesophagus, and in thr positions of norve rime amd rervical papillae, the female agrees exactly with the male. The shape of the eervical papillace however, differs, those of the male foring trienspid, while those of the female ure hicuspid.

The measurements of the fomale are as follows . Length 16 mm ; vestibule -44 mm ; anterior portion of the oesephanns 1.1 mm : pasterior recion of the Desophagus 4.6 mm , tail tapering, blunt-tipped, $-3!3 \mathrm{~mm}$. long; vulva 7.5 mum. from the head. Eggs thick-shelled, $20 \mu \mathrm{loy} 35 \mu$.

Temrameres pedecani Johnston aud Mawson, 1942.

Fige, 7-8.
This apecies was desuribed from a simp mate specimen from Pelfennus com. spicillatus. from Tailem Bend, S.A. Reeently several similar worms ware ubtannd from the same host species in the same lenenlity, the material comprising thres males
and an immature female. In general appearance and size and in the relative lengths of the spicules the males agree with the type specimen, but they differ in the number of caudal papillae, there being two pairs of small preanal and five pairs of postanal; there are also narrow caudal alae, not observed in the type specimen.

The measurements of the present material are as follows: Length of males $4.1 \mathrm{~mm} .-5 \cdot 7 \mathrm{~mm}$., of females $3 \cdot 1 \mathrm{~mm}$.; vestibule of male $27 \mu-30 \mu$, of female 20μ; Oesophagus of male $\cdot 85-1 \mathrm{~mm}$., of female $\cdot 75 \mathrm{~mm}$.; nerve ring $\cdot 2 \mathrm{~mm}$. from head in male; tail $\cdot 17-.2 \mathrm{~mm}$. long in male, .1 mm . in female, the female tail possessing a pair of papillae half way along its length and about six terminal spines; longer stouter spicule $\cdot 8 \mathrm{~mm}$., shorter $\cdot 08-1 \mathrm{~mm}$. in length.

Eustrongylides phaiacrocoracis Johnston and Mawson, 1941.
This species is now recorded from a new host, Phalacrocorax fuscescens, from Tailem Bend, S.A.

LITERATURE.

Johuston, T.H. and Mawson, P. M. (1941) : Trans. Roy. Soc., S. Austr., lxv (2), pp. 254-262. Johnston, T. H. and Mawson, P. M. (1942) : Trans. Roy. Soc., S. Austr., lxvi (1), pp. 66-70. Johnston, T. H. and Mawson, P.M. (1942) : Trans. Roy. Soc, S Austr, lxvi (1), pp. $71-73$. Lyster, L. L. (1940) : Canadian Journ. Research, xviii (12), pp. 395-409.

THE METACERCARIA STAGE OF AUSTRALIAN SPECIES OF CLINOSTOMUM

By T. Harvey Johnston, University of Adelaide

Summary

The material examined consists of three specimens, each from a different species of fish host, all of them from Queensland and all of them collected during August (1918, 1919). Though the metacercaria stages of some species of the trematode genus, Clinostomum, have been described from Europe, America and Japan, it has not been reported for either of the two known Australian species. The present paper forms part of the series relating to investigations concerning the life history of Australian trematodes, undertaken in connection with the Commonwealth Research to the University of Adelaide. Acknowledgement is made of assistance from the late Dr. T. L. Bancroft of Eidsyold, Upper Burnett River, Queensland, and from his daughter, Dr. M. J. Mackerras, for the material studied.

The METACERCARIA STAGE of AUSTRALIAN SPECIES of CLINOSTOMUM

By 'r. HARVEY JOBINST'ON, University or Adelaiue,

Fig. 1-6.
Tue material examined consists of three specimens, each from a different species of fish bost, all of them from Queonsland and all of them collected dariug August (1918, 1919). Though the metacercaria stages of soute species of the trematode gemus, Cliustomum, have been deseribed from Enrope, America amd dapan, it has not been reported for either of the two known Australian specips. The present mper forms part of the series relating to investigations conerning the life history of Australian trematudes, madertaken in conneetion with the Commonwealds leseared to the Wuiversity of Adelade. Acknowledgment is made of as :sistance Lrom the late Dr.' I'. It. Lancrolt of Eidsvold, Upper Burnet River, (fuecnsland, and trom his daughter, Dr. M. J. Nackerras, for the material studied.

Chinostomum aubtialiense S . J. Johnston.
(Fig. 1-8).
This Jarge species was deseribed by S. J. Johnston (1917, 230) from specimeus baken from the oesophagus of a darter, Anhinga noraehollandiae, from the biarnett River. I have rostudied the type material (Johnston, 1042).

In August, 1918, Dr, Bancinft nent me a single larval trematode taken from a bony bream, Nemmaluse domyatu Macleay, at Eidsrold, Bmbett River. Recent examination proved it to be a very lane metacerceria whose antomy in ald essentials resembled that of (\mathbf{C}. australicnsf, as figured by S. I. Johnstom (1917) amt myself (1942). The trpe specimens thmselves ara metacercasiae, not adulto, and it is probable that the darter may not be the normal bird host, since species of Clinostomum oeene almost exclusively iu Λ rdeiform hirds. Cort $(1913,177)$ mentimed finding the adult stage in it North American mull, as well as in herons. Ward (1918, 408) referted to other tish-eating hird hosts in the I nited states. He also mentioned the presence of encysted metacurariate in varinus fresh water fish, statimg that these larval stages were so abondant in some focalities that food fish were rendered mint for use by the middle of June, but that the cysts were deserted by the Jate antum, so that fish were free from infection in winter, It is probally nulikely that these condilions apply to Australia where the dimate is mikler. The few Climestomum larvase examined by me were all taken in August, i.e. at the endi of winter which in Quecusland does not necessarily mean cold weather.

The following are the masumuents in millimetres of the larva from Nomatolosu, the corvesponding figures to the type sperimes from dmhinga heing added in parentheses: lengen $9 \cdot 7$ (11) ; maximum hradth : ($3 \cdot 2 \cdot 25$) ; bremlth at waist in acetabular region $1 \cdot 7(1 \cdot 9)$, at the genital pore which is in the midline 3 (3.2). att the level of the ovary 3 (3.2), at the level of the pusterine testey 2.8 (3.2), across the oral field at the mid-level of the oral sucker $1-3(1-3)$: maxmum breadth between the suckers 1-8(5.]) ; oral sucker - 54 in diancter (-54) ; ace-
 oral to acetabular diameters $1: 3 \cdot 4(1: 2 \cdot 3)$; front edge of acetabulum to head end of worm $1 \cdot 5(1-5)$; posterior edge of acetabulum to tail end of worm $7 \cdot 0(8 \cdot 3)$: ratio of preacetabular leugth to body length $1: 6 \cdot 5(1: 7 \cdot 3)$; distance of genital

Fig. 1-2. Clinostomum australiense. 3-4, C. complanatum from Therapon Willii. 5-6. C. complanatum from Carassiops galii. (Fig. 1, 3, and 5 to scale besirle fg. 1; 2, 4 and 6 to sesle beside fig. 8).
pore from head end of worm 6 (7), and its ratio to body length 7:11 (7:11); anterior testis $\cdot 75 \mathrm{~mm}$. long by $\cdot 5$ (ransversely (78 by $\cdot 69$) ; posterior testis - 5 Jong by $\cdot 9$ broad ($\cdot 4 \mathrm{by} \cdot 9$) ; testes $\cdot 5$ a anit ($\cdot 5$) ; ovary - 3 long by $\cdot 25$ ($\cdot 33$ by -25) ; cirrus sac 6 to 45 (.6 ler - 3) ; length of nterine sac, excluding metra term, $1 \cdot 8(3 \cdot 0)$, ratio of that leagth to body length $1: 5 \cdot 4(1: 3 \cdot 7)$; distance from front of ovary to heal eud of worm $6 \cdot 5(7 \cdot 6)$, ratio of that leugth to body length $1: 1.5(1: 1.45)$ hence the ovary lies in the posterior half of the worm and in the vicinity of the anterior limit of the posterior third of the body; distance from front of ovary to the pusterior edme of the acetabulum $3 \cdot 6(4 \cdot 7)$, i.e just behind the middle of the postacetabular lengils; distance from auterior end of the utcrine sac to the posterior end of the acetabulum $1 \cdot 0(1 \cdot 0)$, and its ratio to the postacetabular length $1 ; 7(1: 8)$,

Chinostomum complanatum (Rud.).

Syn. C. hornum Nicoll.

Fig. 3-6.
This is a much smaller worm than the preseding aud is known from ardeiform birds in Europe (Bram 19009, h; Lühe 1900; Ciurea 1911; Sprehn 1922) and Japan (Yamaguti 1933). The only Australian record is that by Nicoll (1914, 123) who deseribed it as C. hormum, his material (all from North Queensland) having been taken from Nycticorax caledonicus, while some iumatur" sperimens from Fivlaurus pocciloptilus appeared to him to beloug to the same species. He mendioned that. C. hormum was close to C. marginatum and C. complanatum, differing from the latter in having the acetabulum nearer the middle of the body aud in possessing a larger ural sucker, while the lateral position of the genital aperture differentiated it from C. maryinatum. Yamagnti $(1933,66)$ gave a good account and figure of (". complanatum from Japanese herons and mentioned three species of freshwater fish as hosts for the metarerearia. The adnalt stage was obtaned by him experimentally by feeding eysts to Nycticorar, maturity being attained in forty-five hours. He considered C. hormum to be a synonym of C. complanatum.

	a	b	c.	d
length:	$4 \cdot 6$	4.6	$5 \cdot 3$	$3 \cdot 7$
maximum breadth:	1.68	$1 \cdot 45$	2-3	$1 \cdot 35$
oral sucker, length, breadth:	. $28 \times .33$	-4 \times - 4	-33 \times - 44	. 22×22
oral field:	- 5 5 - 8	- $45 \times$ - 8	- $45 \times .6$	- $4 \times \cdot 7$
acetabulum:	- $7 \times \cdot 7$	-7 \times - 7	$\cdot 75 \times .8$	-63 \times-55
antorine testis:	- $4 \times \cdot 7$	-65 \times - 55	-4 \times - 3	-2 x 28
posterior testes!	-25 X 79	- $51 \times \cdot 75$	- $\times 16$	-2 $2 \cdot 3$
distance batwenn testes:	$\cdot 2$	$\cdot 1$	-3	-2
ovary:	$.25 \times \cdot 16$	-15 欠. 25	. 18×115	$.1 \times 08$
max. breadth between suckers:	1.5	$1 \cdot 95$	1.7	$1 \cdot 1$
breatith at acetahuluts:	1-5	$1 \cdot 45$	2-0	1-0
breadth at sex purg:	$\because \cdot 0$	$1 \cdot 3$	$2 \cdot 3$	1.33
breadth at posterior testes	$1 \cdot 85$	1-3	2.25	1-33
breadth at ovary	$1 \cdot 9$	1.3	$2 \cdot 05$	$1 \cdot 33$
front acetall, to head end:	1-0	-9	1.0	-7
post. end acetab, to tail end:	9. 7	3.0	$3 \cdot 6$	$2 \cdot 5$
preacolal). length: body length:	1:4.7	1:5-1	1: 5-3	1:5.3
geult, pore to head end:	2.8	$2 \cdot 6$	$3 \cdot 4$	$2 \cdot 0$
front ovary to post, edge acetab.:	$1 \cdot 3$	$1 \cdot 25$	1.8	1.0
pront ovary to head end:	$3 \cdot 1$	$0 \cdot 85$	$3 \cdot 6$	$2 \cdot 2$
nosl sucker: scetald :	1: $2 \cdot 1-2 \cdot 5$	1:1*S	1: 2	2:5
cirrus sate:	98×-18	\%-45 \times - 25	$.37 \times .2$	-27×12
length uterino sac (excluding metraterm):	-7	1.85	1.2	- 6
egg8:	$\begin{array}{r} \cdot 114--130 x \\ \cdot 072-\cdot 078 \end{array}$	$\begin{array}{r} -105-111 x \\ -0163 \end{array}$	-	-

The metacereariae examined by tae were taken by Dr. J. M. Mackersas from the peritomeal eavity ut a goby, fomassiops galia Ogilhy, from the Burnett River at Eidsvold and from a esst in the gill of Therapon hillii Casth. from the Thompsom River at Longreach. The fereseding tabulation of measurements in millimetres of (ia) adnlt C. complanutum (hastad on Xiansiguti's aceonnt and figurr), (h) aflull C. hornum (fom Niroll's figure), (c) metacercasja from I'herapom hillit, and (d) metacercaria from C'nrossiops gutii, will indicute that all belone to the same spectes.

1t will be noticed that the larva from Therapon agrees elosely in dimensions with the adults. Lu all, the anterior ash of the uterine sate extende forwambs to end only a shoet distance heluind the seembolum, and the genital pore is displaced from the median line. The main difterence between the two Anstralian ditrae is that of size, the parasite from Cumssions having its reprolnetion system just as differentiated as that of the worm from Theropan.

 commonly in the museles or anter the skin of dapanese fish. The very thin lihems prats were fragile and radily bust. He reported that larvae were -28-6.7 man.

 of the testes, and the presence of a well devalonest eellular coating of the nerens were distinctive fidathe of the molacereariap. Buth of these characteristics were ohyous in the Australian specimens.

Yamanti mentionel that in two of lis larvar the "irrus was mested into the metraterm, and in oue of these the organ reached further forward than the front adere of the anterior testis. In nuy sperimen from Therapm a similar condition Was ohserved and is intieated in fis. 4 , the oterime sae being partly invarinaterl as a result af the cirrus abd the surroundime metraterm having been pushed so tar forward.

Bram, whu gave an account of C. marginatman (1900a, 28; 1900b, 25) from Brazilian herons, dubthot whether (e complanatum was distinct from it (19000,

 from a Canarlian heron was not the same as Romblphi's species lout was (: mar-
 frogs, fish and herous is not availahle.

Citurea (1911) pubhished an account and tigures of the larvin of C. commplandetum from the musculature of Procu flumbitis from the Tauble. The dimensions were length $4 \cdot 3-4.7 \mathrm{~mm}$; meek region 76 mm . long by $1 \cdot 67 \mathrm{~mm}$. broatl ; cital

 have referred to the presence of these mands in the melacerearia. If is fieme sngerests that he illustrated the wery extension and chancturstice exeretory eanals which are sheld a conspiouous feathe uf hoth larvat and adult stages. Jis figure
 inta the metraterm in his larva.

Cort (1913) ngve an acenunt of Clinostomum Iarvae from North American freshwater fish mel trogs, aud came to the comelnsion that those from fish betoneref 10 (!, marginatum, a widely distributal specins in Sorth aud south Ameriea, whilf
 two kinds of larvae, as woll as the adult stage of C. marginatum.

Travassos (192s, 334) dealt with several Brazilian species of flinostomum all from herons and their allies, and revoltal firming the young stares in the rills vienera aud subcutaneons tissues of froshmater fíh.

SUMMARY.

The metacercaria of Clinostomum australiense S. J. Johnston is recorded from the bony bream, Nematalosa elongata, from the Burnett River, Queensland.

The metacercaria of C. complanatum Rud. (of which C. hornum Nicoll is a synonym) is now recorded from the fish Therapon hillii from Western Queensland, and from Carassiops galii from the Burnett River.

LITERATURE.

Braun, M. (1899) : Zool. Anz. xxii, pp. 484-488, and pp. 489-493.
Braun, M. (1900a) : Centr. Bakt., 1, Orig., p. 27, and pp. 24-32.
Braun, M. (1900b): Zool. Jahrb. Syst., xiv, pp. 1-48 (not available).
Braun, M. (1900c) : Zool. Anz., xxiii, pp. 140-1.
Ciurea, J. (1911) : Centr. Bakt., 1, Orig., lx, pp. 354-8.
Cort, W. W. (1913) : Trans, Amer. Hicr. Soc., xxxii, pp. 169-182.
Johnston, S. J. (1917): Jour. Roy. Soc., N.S. Wales, 1, (1916), pp. 187-261.
Johnston, T. H. (1942) : Trans. Roy. Soc., South Austr., 1xvi, pp. 226-242.
Lühe, M. (1909) : Trematodes. Die Susswasserfauna Deutschlands. Heft, xvii (1).
Nicoll, W. (1914) : Parasitol., vii, pp. 105-126.
Osborn, H. L. (1912) : Jour. Morphol., xxiii, pp. 189-223 (not available).
Sprehn, C. E. (1932) : Lehrbuch der Helminthologie. Berlin.
Travassos, L. (1928): Mem. Inst. Osw. Cruz, xxi, pp. 309-372.
Ward, H. B. (1918) : Parasitic flatworms. In Ward and Whipple, Freshwater Biology, pp 365453. New York.

Yamaguti, S. (1933): Jap. Jour. Zool., V, pp. 1-134.

ECHINODERMATA OF THE FLINDERSIAN REGION SOUTHERN AUSTRALIA

By Bernard C. Cotton and Frank K. Godfrey

Summary

The Phylum Echinodermata appears to have been somewhat neglected by South Australian zoological workers.
Tenison-Woods (1877) gave a list of the Sea-urchins of Australia. Thirteen species are there said to inhabit our shores, and in a supplementary paper (1878) another one is added. A large number of Australian Sea-stars was described by Gray in an appendix to Jukes' Voyage of the "Fly". Qouy and Gaimard, "Voyage Astrolabe", described three species of Australian Holothurians. Tate (1882) supplied a short list of Sea-urchins from South Australia.

ECHINODERMATA of the FLINDERSIAN REGION SOUTHERN AUSTRALIA

Br BERNARD C. COTTTON and FRANK K. GODFREY.

Plate xii.

The Phylum Echinodermatn appears to have been somewhat neglected by South Australian zoological workers.

Tenison-Woods (1877) gave a list of the Sen-urehins of Australia, Thirteen species are there said to inhabit our shores, and in a supplementary paper (1878) another one is added. A large nmmber of Anstralian Nei-stars was deseribed hy Gray in an appendix to dukes' Voyare of the "Fly". Quoy and Gaimard, "Voyage "Astrolabe", described three species of Australian Holothurians. Tate (1882) supplied a short list of Sea-urchins from South Australia.

Dr. H. L. Clark (1025) nawed a number of Sea-lilies, Sea-stars, Brittle-stars and Seantrehius, mainly the results of dredginess by Sir Joseph Vereo, and forwardeal by the South Anstralian Museum. Dr, Clark, in company with Mr. H. M. Hale, collected Echinoderms during a briof visit to Port Willunga in 1932, as recorded by him in 1938. The same author described a new Basket-star from Cape Dutton, South Australia, in 1939.

The present anthors now endeavour to systematize the Eehinodermata recorded from the Flindersian Regiou, the whole coastline from Wilson's Promontory, Victoria, to Geraldton, Western Australia, and including the northern and westorn coasts of Tasmania, Where a species apparently belones to the Dampicrian Region and is recorded north of Cape Leenwin, its extralimital character is noted. The same applies to Peronian species recorded at the eastern end of the Flindersian. Following the type lowality, we have listed the exact localities in the Flindersian Region of authentic specimens.

We have found that the determination of genotypes, and the fixing of type localities, are primary meessities in any account of a zoological nature, therefore we have endearoured to determine and fix this basic information first.

Dr. Clark in his work "Echinoderms of Anstralia", indieated that conclusions arrived at hy a distant zoologist were not the most satisfactory and it required local students to intensify the study. We lake this stup havine the knowledge that at present there is no worker giving this phylum special attention here.

In the previous sectional lists published, several localities are inscenrate, and we have endeavoured to give exact localities wherever possible. A little risorder has arisen in Dr. Clapk's work through the failure to recomize natural Zonlogical Regions, and this has tended to confuse restults.

The material, the basis of this list, inchedes the results of Vereo's dredrings, besides original South Australian Museum specimens.

Dr. Clark's 1928 holotypes are in the Sonth Australian Musemm and are here referred to under our registration numbers; his 1998 collection was, however. taken hy him to America, We hapereceivel valuable assistance, with specimens, from the members of the Nalacological Sociely of South Australia, espeecially Messrs. G. Pattison aut W. G. Buick. The results of our own collecting are also recorded.

Phylum ECHINODERMATA

Class ASTEROIDEA

Order PHANEROZONIA.

Family ASTROPECTINIDAE.

Genus Astronecten Gray 1840.
Genotype: Astropecten murantiacus Tiedemann $1816=$ Astropecten aranciacus Linné 1758 (Mediterranean).

Astropecten pectinatus Sladen 1883.
Astropecten pectinatus Sladen 1883, p. 251.
Type locality. Port Jackson, New South Wales. Döderlein (1917, p. 166) records this species from Bass Strait and Port Phillip. The specimen recorded by H. L. Clark (1928, p. 371), from Petrel Bay, St. Francis Island, South Australia, appears to be this species. (K. 38 S.A.M.).

Astropecten preissil Müller and Troschel 1843.
Astropecten preissia Mïller and Troschel 1843, p. 119.
Type locality. Fremantle, Western Australia.
Distribution. South Australia: Marino, Port Noarlunga, Port Willunga, Sellicks, Spencer Gulf, north coast of Kangaroo Island, Flinders Island 37 fathoms. Western Australia: Fremantle, Shark Bay.

South Australian examples are reddish brown in life.
The subspecies albanicus Döderlein (1917, p. 162) is a wide armed variety and we have it from Spencer Gulf (K. 43 S.A.M.). The dimensions of this specimen are $R=60 \mathrm{~mm} ., r=15 \mathrm{~mm}$., br. $=17 \mathrm{~mm}$.

Astropecten triseriatus Müller and Troschel 1843.
Astropecten triseriatus Müller and Troschel 1843, p. 118.
Astropecten arenarius Perrier 1876, p. 286.
Type locality. South-western Australia,
Distribution. Western Australia: Fremantle, also north-western Australia.
We have not taken this species in South Australia, and the record is probabl. extralimital from the Dampierian Region.

Astropecten vappa Müller and Troschel 1843.
Astropecten vappa Müller and Troschel 1843, p. 119.
Type locality. South-weest Australia.
Distribution. South Australia: Spencer Gulf, juvenile (K.44). Western Australia: Shark Bay, Albany.

Astropecten syntomus H. L. Clark 1928.
Astropecten syntomus H. L. Clark 1928, p. 372.
Holotype: Reg. No. K.45. South Australia.
Astropeoten schayeri Döderlein 1917.
Astropecten schayeri Döderlein 1917, p. 60.
Type locality. Tasmania.
Distribution. Victoria: Portland. Tasmania.
Genus Lonchotaster Sladen 1885.
Genotype: Lonchotaster tartareus Sladen 1889 (Atlantic and Southern Oceans)
Lonohotaster magnificus I. L. Clark 1916.
Lonchotaster magnificus H. L. Clark 1916, p. 30.
Type locality. Great Australian Bight, 80-120 fathoms.
Ijonomotaster forficifer Sladen 1889.
Lonchotaster forficifer Sladen 1889, p. 106.
Type locality. Near Antarctic Circle, lat $62^{\circ} 26^{\prime}$ S., long. $95^{\circ} 44^{\prime}$ E., depth 1975 fathoms, Diatom ooze.

Distribution. Also South Australia, lat. $53^{\circ} 55^{\prime}$ S., long. $108^{\circ} 35^{\circ}$ E., 1950 fathoms from Diatom ooze.

Genus Psilaster Sladen 1885.
Genotype: Astropecten andromerla Müller and Troschel 1842. (Europe).
Psilaster acuminatus Sladen 1889.
Psilaster acuminatus Sladen 1889, p. 225.
Type locality. North-west of Port IIardy, New Zealand, 150 fathoms.
Distribution. South Australia: Great Australian Bight. Bass Strait. Victoria, Gabo Island, 80-200 fathoms.

Family LUIDIIDAE。

Genus Lutidia Forbes 1839.
Genotype: Luidia fragilissima Forbes $1939=$ Luidia ciliaris Philippi 1837. (Europe).

Lutidia maculata Müller and Troschel 1842.
Luidia maculata Müller and Troschel 1842, p. 77.
Type locality. East Indies.
Distribution. South Australia: Flinders Island, 37 fathoms. New South Wales. Queenslaud : Fraser Island, 25-30 fathoms. Western Australia : Broome.

This seems distinct from the Flindersian Luidia australine Dölorlein. It has bech recorded from the Dampierian aml Peronian Regious. We have nut specimens from tha Flindersian Region which combl heregrarded as this species, although IT. L. Clark (1916, p. 29), records it from Flinders Islamd, Smeth Australia, 37 fathoms.

Luidia australiae Dỏderlein 1920.
Iuidia australiae Döderlein 1900, p. 266.
Type locality. Fremantle, Western Australia.
Distribution. South Australia : Gulf St. Vincent, Kangaroo Island. Western Australia: Rottnest Tsland.

All Flindersian examples examined by us have seven arms, and differ characteristically from Ludia maculate in the paxillan on the dissal part of the arm. Compared with muculata, australiaf bas the modian paxillae larger of markodly: unequal size, and the lateral paxillae less regular. Two large specimens recently taken at Sellicks Beach, one by II, MT. Tale. Director of South Anstralian Museum. and one by Mrs. Dickensen :

1. Reer, No. K.429. Sellicks Beach, six fathoms, seven arms, $R=160 \mathrm{~mm}$. Colour in life, variegated yellow and backish.
2. Reg. No. K.563. Sellicks Beach, seven arms, $R=190 \mathrm{~mm}$. Colour, variegated yollow and blackish (figured).

Family ARCHASTERIDAE.

Genus Anchaster Milller and Troschel 1842.
Genotype: Arhuster typicus Mitler and 'Troschel 1812 (Iudian Ocean). Arohaster hesperus Miiller and Troschel 1842, is reeorded from Japan, and the third species described when the genus was introduced, namely Archaster any"latus, came from "Java; Isle de Erance".

Areifaster laevis II. L. Clark 1839.
Archaster luevis H. Is. Clark 1938, p. 75.
Type locality. Bronme, Western Australia, 5-8 fathoms.
A large scrics of this species was forwarded from Fremantle. Western Anstralia, by Mr. II. Rossell, also two large examples were domated by Mr. W. IS. Steadman. Sperimens in this Mnsenm were habelled " Asterias angulatus". . 1% ehester angulatus Müller and Trosehel is from Manritius, and has been douhfully: recorded from Java, and the Philippine Islands. The distribution of Arehasteo anqulatus (? = mauritianus Gray) is recorded by Sladem (1859, p. 163) as the Indian Ocean, with Mauritims as the metropolis. II. L. Clark (1938, p 76), when deseribing Archaster lacuis remarks "that this handsome Arehaster is nearly related to Arohaster angulatus armits of no doubt, hat the smooth tessellated aboral surface caused by the crowded, trumeate, prismatic gramules of the paxillae gives it a very characteristic appearance, unite nulike that of any specimens of angulatus available for comparison'"

Under the Museum registration K.49, nineteen specimens, taken in October. 1934, are entered. The species is apparently common in shallow water at Fremantle. Mr. Marold Rossell when forwarding them writes: "You will notice these stars are nearly all five-rayed, though oceasionally a six-rayed specimen is found.

I noticed that out of ahout sisty stars of this species I only found two six-rayed, one of which I am seuding in this parcel". The largest specimen has $\mathrm{R}=110 \mathrm{~mm}$., $r=15 \mathrm{~mm}$., and maximum br. $=17 \mathrm{~mm}$, at the disc. The smallest juvenile has $\mathrm{R}=45 \mathrm{~mm} ., \mathrm{r}=9 \mathrm{~mm}$., and maximum $\mathrm{hr},=10 \mathrm{~mm}$. at the disc. The aboral surface is flat, but frequently the middle of the rays is actually sunken in dried specimens, giving it a channel-like effect up to the distal quarter of the ray. The six-rayed specimen has $R=75 \mathrm{~mm}_{,}, \mathrm{r}=13 \mathrm{~mm}$., br. $=14 \mathrm{~mm}$.
K. 575 from Shark Island, Fremantle, two large specimens. The largest has $\mathrm{R}=125 \mathrm{~mm}, \mathrm{r}=27 \mathrm{~mm}$., br. $=17 \mathrm{~mm}$.

So far we have no record of this species from South Australia. It is probably extralimital from the Dampierian Region.

Family GONIASTERIDAE.

Genus Nectria Gray 1840.
Genotype: Asterias ocellifera Iamarck 1816 (Australian Seas),
Neetria multispina H. L. Clark 1928.
Nectria multispina. H. L. Clark 1998, p. 375.
Holotype: Reg. No. K.50. Gulf St. Vincent, South Australia.
Distmbution. Sonth Australia: Gulf St. Vinceut, Port Willunga, Marino. Spencer Gulf. Western Australia: Albany

The species is probably equally as common as Nectria ocellata Perrier, in South Anstralia. A living specimen before us now is bright red with five olscure creamcoloured blotches situated on the dise, near the base of the arms; the tube feet are dark blood-red. This example, Reg. No. K.564, from Sellicks Beach (H. M. Hale), is typical; $R=45 \mathrm{~mm}$.

Although multispina is regarded as distinct from occllata, some specimens are difficult to separate.

Nectrta oceliata Perrier 1876.
Nectria ocellata Perrier 1876, p. 4.
Type locality. Tasmania.
Distribution. South Australia: Gulf St. Vincent, Spencer Gulf, Granite Island, Kingstou, Great Australian Bight, and taken hy us from the reefs at Marino, Port Willunga, and Sellicks (all Gulf St. Vincent). Also recorded from Tasmania, Devonport. Bass Strait.

Gemis Pentagonaster Gray 1840.

Genotype: Pentagonaster pulchellus Gray 1860 (New Zealand).

Pentagonaster dübeni Gray 1847.

Pentagonaster dübeni Gray 1847, p. 79.
Type locality. Western Australia.
Distmbution. South Australia: Gulf St. Vincent, Spencer Gulf. Western Australia: Point Peron.

Genotype: N'ymphaster symbolicus Sladen 1889 (Philippine Islamds).
Nymphaster pentagonus H. T. Clark 1916.
Nymphaster pentagonus II. L, Clark 1916, p. 36.
Type locality. Great Australiau Bight, South Australia, 250 fathoms.
Genus Tosta Gray 1840.
Genotype : Tosia australis Gray 1840 (Swan River, Western Australia).

Tosfa australis Gray 1840.
T'osia australis Gray 1840, p. 281.
Type locality. Swan Rivel, Western Australia.
Distribution. South Australia: (znlf St. Vincent, Port Noarlunga (Miss [. Davies) |Adelaide University, No. Gi31, Port Willunga (W. M. Nielsen), Marino, Spencer Gulf, Kangaroo Island, Port Lincoln, Wallaroo. Victoria: Port Phillip, Westornport. Bass Strait: King Island. Tasmania: d'Entrepasteaux Chamel. Westem Australia: Lucky Bay, King George Sound.

The species is very common throughout the Flindersian Region. The colonation is variable. A specimen (Reg. No. K.j66) from Marino has a five-raved salmon-coloured star pattern in the middle, the interstices being light vinlet; the superomarginal plates are mottled light and dark violet, while the inferomarginals are lighter coloured; the underside is predominantly of a croam-coloured ground sparsely spotted with light violet-coloured plates irregularly disposed. This example is a juvenile, $\mathrm{R}=15 \mathrm{~mm}$., and $\mathrm{r}=10 \mathrm{~mm}$. The superomarginals are six on each side, the terminal ones being slightly largor; the inferomarginals number six corresponding with those alove.

Reg. No. K.567, is a typical half emorn specimen taken by one of us at Port Fairy, Victoria.

Tosia astronogorum Müller and Troschel 1842.

Astrogonizm astrologorum Mïller and Troschel 1842, p. 54.
Tosia australis var. astrologorum, H. L. Clark 1928, p. 384.
Type locality. New Molland. We designate Port Willunga, South Australia.
Distribution. South Australia: Port Will manga, Port Noarlunga (Miss I. Davies) [Adelaide University No. 63a], Spencer (Mulf. Victoria: Porl Phillip. Tasmania : d'Entrecasteaux Channel, 5 fathoms. Western Australia.

This speeies is probably quite distinet from Tosin australis, and living adult specimens can be readily sparated. It is characterized by the produced pointed rays, large distal superomarginal plates, and centrally elevated median superomarginals. Reg. No. K. 568 , from Marino, measures $R=25 \mathrm{~mm}$., and $\mathrm{r}=16 \mathrm{~mm}$, Colour is predominantly dark violet. A speeimen from Normanville, S.A., Nov., 1941, has orange and red macmlations aborally, lighter coloured beneath; $\mathrm{R}=$ 25 mm . and $\mathrm{r}=17 \mathrm{~mm}$.

Tosia grandis Gray 1847.
Tosia grandis Gray 1847, p. 80.
Tosia aurata Gray 1847, p. 80.
Type locality. T. grandis, Western Australia; T. aurata, Australia.
Distribution. Western Australia. South Australia. Victoria: Port Phillip. Tasmania : Oyster Bay, 20-30 fathoms, d'Entrecastcaux Channel, 5 fathoms.

There seems little doubt but that grondis and aurata are one and the same species. Livingstone (1932, p. 373), when diseussing the status of the two names wrote, "T. aurata Gray (valid)" and beneath, "T. grandis Gray (" synonym of T. aurata Gray)'". However if the oriminal descriptions are referred to it will be seen that grandis has line priority over aurata.

Genus Medaster Stimpson 1857.
Genotype: Lediaster aequalis Stimpson 18557 (Alaskan Peninsula to Panama).
Medister austraifensis H. L. Clark 1916.
Mediaster australiensis H. L. Clark 1916, p. 39.
Type locality. Flinders Island, Bass Strait, 40 fathoms.
Distribution. Bass Strait. Tasmania.

Family OREASTERIDAE.

Genus Asterodiscus Gray 1847.
Genotype: Asterodiscus clegans Gray 1847 (North-east China).
Asterodiscus truncatus Coleman 1911.
Asterodisous truncatus Coleman 1911, p. 699.
Nectria ocellifera H. I. Clark 1909, p. 529 (non Lamarck).
Type locality. Botany Bar, New South Wales, 79-80 fathoms, sand and stones.
Distribution. South Australia: Great Australian Bight, 15 miles sonth of St. Francis Island, 30 fathoms. Bass Strait. Victoria. New South Wales. Western Australia: Western end of Bight, 90 fathoms.

Family ANTHENEIDAE.

Genus Anthaster Döderlein 1915.
Genotypr: Oreaster valvulatus Miiller and Troschel 1843 (South-west Australia).
Anthaster valdulatus Müller and Troschel 1843.
Orcaster valvulatus Müller and Troschel 1843, p. 115.
Type locality. South-west Australia.
Distribution. South Australia: Clenelg, Kangaroo Island, Althorpe Tslands. Western Anstralia: Rottnest Island, Cottesloe.

Family Linckiidae.
Genus Pseudophitiaster II. L. Clark 1916.
Genotype: Pscudophidiaster rhysus II. L. Clark 1916 (Great Australian Bight. 80-120 fathoms).

Pseudophidiaster rhysus II. L. Clark 1916.
Psendophidiaster rhysus H. L. Clark 1916, p. 55.
Type locality. Great Australian Bight, 80-120 fathoms.
Distribution. South Australia: Great Anstralian Bight. Bass Strait. Victoria: South of Gabo Island, 200 fathoms. Tasmania: Oyster Bay, 60 fathoms.

Family ASTEROPIDAE.

Genus Petricia Gray 1847.
Genotype: Asterias vernicina Lamarek $1816=$ Petricia punctata Gray 1847 (Southern Australia).

Petricta vernicina Lamarck 1816.
Asterias vernicina Lamarck 1816, p. 554.
Petricia punctata Gray 1847.
Type locality. South Australia ("les mers Australes?"' Lamarck).
Distribution. South Australia: Twenty specimens from Port Willunga (Reg. No. K.539) are typical ; Port Noarlunga (Arlelaide University, Reg. No. 143) taken by Miss I. Davies, preserved in glyeerine has retained the dark red colour so typical of the living specimens; Cape Jervis (G. Pattison), taken alive under a rock at half tide mark, November, 1941, $\mathrm{R}=52 \mathrm{~mm} ., \mathrm{r}=24 \mathrm{~mm}$., br $=44 \mathrm{~mm}$., thickness in esutre (living) 16 mm., tapering only slightly to 12 mm . at and of arms; colour, a blend of scarlet, orange and yellow; a kind of skin covered the entire animal, so highly coloured that the collector's hands were stained; aboral surface lumpy and uneven. The species is also recorded from Spencer Gulf.

Petricta obesa H. L. Clark 1923.
Petricia obesa H. L. Olark 1923, p. 241.
Type locality. Western Australia.
Distribution. Western Australia: Bunkers Bay, Point Peron.

Order S PINULOSA.

Family ASTERINIDAE.
Gemus Asterina Nardo 1834.
Genotype: Astorias minutu Nardo $1834=$ Asterias gibbosa Perrier. (Europe).

Asterina atymioida H. Id. Clark 1916.
Asterina atyphoida E. I. Clark 1916, p. 57.
Typu locality. Fifteen miles north-west of Cape Jervis, South Australia, 17 fathoms.

Distribulion. South Australia: Gulf St. Vincent, Spencer Gulf, Backstairs Passage, Tromhridge Shoal, Cape Marsden, The lages, Kangaroo Island.

Asterina scobinata Livingstone 1933.
Asterina scobinata Livingstone 1933, p. 1.
Type locality. Tasmania.
Jistribution. Tasmania: Inhart, Eagle Ilawk Neck, Wynyard. The species may be extralimital from the Permian, Mangem subregion. It has been recorded in the Flindersian at Wrnyard, moth-western Tasmania. The exact type locality in Tasmania is not given by Livingstone in the original description. We have not tiaken it in South Australia,

Genus Patimella Verrill 1913.

Qenotype: Asterina regularis Verrill (New Zcaland and Australia).
Patimiedla calcar Lamarck 1816.
Asterias calcar Lamarck 1816, p. 557.
Type locality. King George Sound, Western Australia.
Distribution. South Australia: Guichen Bay, Encounter Bay, Gult st, Vincent, Spencer Gulf, Kangaroo Iskand. Western Australia. Tasmania: Mobart. New South Wales.

This is a common intertidal species in New South Wales, and it is very common in South Australia ahove low tide mark at Port Willunga, Sellicks, Marinu, and Cape Jervis on rocky reefs.

South Australian specimens above are mange eoloured ground, and olive green on the rays; underside cream colnured exerpt the tips of the rays which are tinged with olive green. A typical series of ten from Cape de Comedie, Kangroo Island (Reg. No. K.569), average $R=50 \mathrm{~mm}$. All South Australian specimens of this common Asteroid which we have examined, numbering hundreds, have eight rays and are of the typical green colour. A lare exanple from Guichen Bay (K.108) has $\mathrm{R}=60 \mathrm{~mm}$.

Patiriella gunnit Gray 1840 .

Asterima gunnii (tray 1840, p. 289.
Type locality. Tasmania (Van Diemens Land, Gray).
Distribution. South Australia: Gulf St. Vincent, Spencer Gulf, Port Lincoln, Kangaroo Island, St. Francis Island. Western Australia.

This species is common on reefs in both Culfs, and is just as common on the open ocean recfs, tuo. We have taken it at Reevesby Island, and on the local reofs at Port Willunga, Marino, and Sellicks. It lives at about low tide mark, and the aboral surface is a dark purple colour in life, sometines erading into cream orally towards the middle. We have taken specimens of this colour at Marino (K.570).

Patiriella exiqua Lamarek 1816.

Asterias exigua Lamarck 1816, p,554.
Type locality. Indian Ocean (Lamarck records, habites les mers d'Amerique).
Distribution. South Australia: Gulf St. Vincent, Spencer Gulf, Kangaroo Island. Tasmania. New South Wales. North Australia. Lord Howe Island. Also Cape of Good Hope and East Indies.

In F'ebruary, 1926, Messrs. Hale and Tindale took 47 specimens of this species at Kingscote, Kangaroo Island (K.118). These serve to give a good idea of the South Australian form. Mr. Hale describes the living star as very plentiful and blue in colour (somewhat like gunnii). The average of these specimens has $\mathrm{R}=10 \mathrm{~mm}$., and $\mathrm{r}=8 \mathrm{~mm}$. All have the characteristic bare, smooth area, in the actinal interradii. The radial extent of this area varies somewhat but averages 3-5 mm. in radial extent. Forty-five specimens have five rays and tro have four rays. The species has been recorded from the Atlantic, Pacific, and Indian Oceans, and the Eastern Archipelago. Whother the South Australian examples are conspecific with those from other parts of the world remains to be seen.

Patiriella brevispina H. L. Clark 1938.
Pativiella brevispina II. I. Clark 1938, p. 166.
Type locality. Bunbury, Lombana Bay, 5-8 fathorns. Western Australia. Distribution. South Australia : Port Wilhnga. Western Australia : Bumbury.

Patiriella inornata Livingstone 1933.
Patiriella inornata Livingstone 1933 , p. 17.
Type locality. Western Australia.
Distribution. Western Australia.
Livingstone does not say from what part of Western Australia his holotype comes. There are no other records known of this species.

Genus Parasterina Fisher 1908.
Genotype : Patiria crassa Gray 1840 (Indian Ocean).
Parasterina troughtoni Livingstone 1934.
Parasterine troughtoni Livingstone 1934, p. 179.
Type locality. Albany, Western Australia.
Distribution. Western Australis, three examples in all.
Parasterina occidentalis H. L. Clark 1938.
Parasterina oocidentalis H, L. Clark 1938, p. 180.
Typr localit!!. From a small cavern under a big rock at Point Peron, Western Austrulia.

Distribution. Western Australia: Nhagr Rocks (Penguin Island), Fremantle, Cottesloe, Garden Island.

A well defined species inhabiting the western end of the Flindersian Region. We have not taken il in South Australia.

Genus Λ sterinopsis Verrill 1913.

Genotype: Asterias penicillaris Lamarck 1816 (8 Red Sca).
Asterinopsis grandis H. L. Clark 1928.
Nepantuia grandis H. L. Clark 1928, p. 393.
Holotype: Reg. No. K.152. Gulf St. Vincent and Spencer Gulf, South Australia.

Distributzon. Sonth Australia: Gulf St. Vincent, Speucer Gulf, Tumby Day.
This species is not uncommon in Spencer Gulf and the Great Australian Bight. The holutype was dredged by Verco in South Australian waters, but the exact locality is not given. The words "S.A. coast, Verco" appear on the label. Yaratypes are labelled "Spencer Gult". Of ten juveniles from Spencer Gulf, only one is six-ruyed; of Clarks' 26 specimens, three are six-rayed. The colour in life is reddish-orange.

$$
\text { Asterinopsis rosen I. L. Clark } 1938 .
$$

Paranepanthia rosea H. L. Clark 1938, p. 161.
Type locality. North-east comer of Rotnest Islaud, Western Australia.
Distribution. Western Australia.
The generic location of this and the preceding species is questionable. H. L. Clavk (10:38), placed grandis in Paraneponthia Fisher, but that is probably a synonym of Asterinopsis. I'nfortunately, Asterinopsis is based on penioillaris, a species of doubtinl validity. We have, however, aceepted Asterinopsis for the present.

Family ECHINASTERIDAE.

Genus Eomnaster Müller and Troschel 1842.
Genotype: Echinaster spinosus Miiller and Trosehel 18t2, r, 22 (North America),
Eohinaster aroystatus H, L. Clark 1914.
Eohinaster arcystotus H. L، Clark 1914, p. 148.
Type locality. South-western Australia.
Distribution. Sonth Australia: Gnlf St. Vincent. Western Australia.
We lave never taken this specics in South Anstralia, though more exlonsive collecting may result in its discovery. A typical, though juvenile, speeimen in the
 17 mm . The only authentie record of this species from South Australia is that mentioned by H. L. Clatk (1!15, p. 395), "Dotween Backstairs Passage and the Pages, dredged in 95 fathoms. Field Naturalist Expedition, April, 1888",

Echinaster glomeratus E. L. Clark 1916.
Echinaster glomeratus H. Is. Clark 1916, p. 62.
EChinaster glomeratus extremus II. L. Clark 1928, p. 396.
Type locality. Kanguroo Lsland, South Australia.
Distribution, South Anstralia : Gulf St. Vineent, Kangaroo Island.
The varicty extremus H. L. (lark (1928) (Holotype: K. 156 , (Gulf St. Vincent) is a well preserved dried specimen showing prominent heaps of spinelets which
tend to give it a slightly different appearance from glomeratus. A close examination of specimens has convinced us that the varictal name is not rerpuired, and they all represent one species. The grouped spinclets of both !lomeratus and its varicty catremus suggest that the species should be placed in the following genus Ifemriviu. More Australian material must be examined, however, before a definite decision can be given.

Genus Ifenricia Gray 1840.
Genotype: Itenricia oculata Gray $1840=$ Asterias sanguinolenta O. F. Müller 1776. (North Atlantic, both sides).

Henricla hyadesi Perricr 1891.
Cribella hyadesi Perrier 1891, p. K100.
Type locality. Southern South America.
Distribution. Western Australia: Great Australian Biglnt, 80-150 fathoms. Vioforia; Gabo lsland, 200 fathoms. Bass Struit : Babel Island, $50-60$ fathoms. 'Tasmania : East of Maria Island, 78 fathoms.

We have not yet seen a specimen of this deep-water species from South Aus. tralia.

Gemus Pleotaster Sladen 1889.
Genotype: Echinaster decanus. Müller and Troschel 1843 (New Holland).
Plectaster decanus Müller and Troschel, 1843.
Echinaster decanus Müller and 'Irosehel 1843, p. 114.
T'ype locality. We designate Purt Jackson, New South Wales.
Distmbution. South Australia: Gulf St. Vincent, Spencer Gulf. Western Australia: Western end of the Great Australian Bight, $33^{\circ} 15^{\prime}$ 心. $\times 126^{\circ} 22^{\circ} 15^{\prime \prime}$ E.. 90 fathoms.

The first figure of this peenliar species was given by II. L. Clark (1916, p. 66), pl. xxvi, figs. 1 and 2, from a specimen taken at Pont Jackson, New Suuth Wales. As it is desirable to desionate type localitics, wherever posisihls, we thus cite Port Jackson (Müller and Troschel merely indicated "New Holland"). The species inhabits the Peronian Region, and the Flindersian to the western end of the Great Australian Bight. A large specimen from Gulf St. Vincent, K.157, has the following measurenents: $\mathrm{i}=130 \mathrm{~mm}$. in the longest ray and 115 mm . in the shortest, with corresponding be $=28 \mathrm{mmn}$. and 21 mm ., also $\mathrm{r}=30 \mathrm{~mm}$. The species does not appear to be common in South Australia.

Family ZOROASTERIDAE.

Genus Zoroaster Wyville-Thomson 187 .
Genotype: Zoroaster fulgens Wyville-Thomson 1873 (Faröe Ohannel).
Zordaster macracantiia H. L. Clark 1916.
Zoroaster macracanthe II. L. Clark 1916, p. 68.
T'ypo locality. Great Australian Bight, $129^{\circ} 28^{\circ}$ E., 250-150 fathoms.

Family ASTERIIDAE.

Genus Allostichaster Verrill 1914.
Genotype: Asteracanthion polyplax Miiller and Troschel 1844 (Australia and New Zealand.

Allostichaster polyplax Miiller and Troschel 1844.
Asteracanthion polyplax Miiller and Troschel 1844, p. 178.
Type locality. Australia. We designate Port Willunga, South Australia.
Distribution. South Australia: Port Willunga, Coobowie, Tumby Bay, Guichen Bas, "hetween 'Troubridge Light and Backstairs Passage" (II. L. Clark). We have taken it at Marimu and Sellieks Reefs. Also recorded from Tasmania. Victoria. Western Australia. New South Wales. New Zealand.

Specimens examined by us provide the following information:
K.166. Yorke Peninsula, $\mathrm{R}=33 \mathrm{~mm}$., $\mathrm{r}=5 \mathrm{~mm}$. Rays 7 .
K.167. Gulf St. Vincent, $R=20 \mathrm{~mm}$., $\mathrm{r}=4 \mathrm{~mm}$, Rays 8 .
K.173. Gulf St. Vincent, $R=32 \mathrm{~mm}$. $\mathrm{r}=5 \mathrm{~mm}$. Rays 7 .
K.168. Spencer Gulf, $\mathrm{R}=22 \mathrm{~mm} .9 \mathrm{r}=5 \mathrm{~mm}$. Rays 8 .

Allostichaster regularis H. L. Clark 1928.
Allostichaster regularis H. L. Clark 1928, p. 400.
Holotype: Reg. No. K.169. Gulf St. Vincent, South Australia.
Distribution. South Australia: Gulf St. Vincent, Spencer Gulf.
A juvenile star, K.170, from Gulf St. Vincent, appears to be this species. This specimen measures $\mathrm{R}=10 \mathrm{~mm} ., \mathrm{r}=2 \mathrm{~mm} ., \mathrm{br},=2 \mathrm{~mm}$. Rays 5 .

Genus Sailastirias Sladen, 1889.
Genotype: Asterias scalprifera Sladen 1889. (Kerguplen, Marion and Heard
Islands, $50-150$ fathoms).
These localitics and depths cover the two species, scalprifera (type) and triromis of the genus.

Smlasterias irregulatis H. L. Clark 1928.

Smilasterias irregularis II. L. Clark 1928, p. 402.
Holotype: Reg. No. K.171. Spencer Gulf, South Australia.
Distribution. Spencer Gulf.
The lolotype is unique and so far we have not taken further examples. The species is donbtfully placed in Smilasterius, but more material might decide its ultimate generic location. Compared with the genotype of this genus (S. scalprifera) the principal differences may be summarized as follows:
S. scalprifera. Inferomarginal spines three or four set very obliquely on the plate; adambulacral plates triplacauthid.
S. irvegularis. Inferomarginal spines two, flat, square cut, side by side, or placed slightly obliquely, adambulacral plates diplacanthid.

Genotype: Coscinasterias muricata Verrill $=C$. calamaria Gray (Australia; Indian Ocean).

Cosoinastertas calamaria Gray 1840.
Asterias calamaria Gray 1840, p. 179.
Coscinasterias muricata Verrill.
Type locality. Australial (South Australia) .
Distribution. South Australia: Kangaroo Island 28 fathoms, Althorpe Island, Port Vineent, Yort Willunga, Cape Jervis, Black Point, Largs Bay, Grange. Western Australia. Tasmania. New South Wales.

This common large sea-star is frequently taken on the South Australian reefs. Specimens taken by us have been chiefly at Cape Jervis, and at the entrance of and just outside Gulf st. Vincent. It has been taken alive down to 28 fathoms, but is often found washed off the shallow shore reefs.

We have examined the following examples:
K.572. Cape Jervis. August, 1941. Colour : brown ground, with extensive blue maculations, spines bright blue at the bases, grading to brownish yellow at the tips. Rays 11. $\mathrm{R}=185 \mathrm{~mm} ., \mathrm{r}=30 \mathrm{~mm}$., $\mathrm{br} .=22 \mathrm{~mm}$. maximum.
K.2. Encounter Bay. September 25, 1935. Colouration similar to K.572. Rays 11. $\mathrm{R}=150 \mathrm{~mm}$., $\mathrm{r}=25 \mathrm{~mm}$., $\mathrm{br}=30 \mathrm{~mm}$.
K.546. Gulf St. Vincent. 10 Rays.
K.573. Port Myponga. April 27, 1923. Rays 11. $\mathrm{R}=260 \mathrm{~mm}$., $\mathrm{r}=35 \mathrm{~mm}$., $\mathrm{br} .=36 \mathrm{~mm}$.
K.574. Sellicks. July 18, 1937. Rays 11. Colouration similar to K.572. $\mathrm{R}=200 \mathrm{~mm} ., \mathrm{r}=25 \mathrm{~mm} ., \mathrm{br} .=30 \mathrm{~mm}$.
K.4. Kangaroo Island. September, 1935. Juvenile. $\mathrm{R}=90 \mathrm{~mm}$, $\mathrm{r}=$ $20 \mathrm{~mm} .$, br $=15 \mathrm{~mm}$.

Coscinastertas dubia H. L. Clark 1909.
Coscinasterias dubia H. L. Clark 1909, p. 532.
Type locality. Botany Bay, New South Wales, 20-23 fathoms.
Distribution. South Australia: Southern coast. Vietoria. Bass Strait. Tasmania.

We have never seen specimens of this species from South or Western Australia.
Genus Uniophora Gray 1840.
Genotype: Uniophora globifora Gray $1840=$ Asterias granifcra Lamarck 1816 (South Seas).

Uniophora granifera Lamarek 1816.
Asterias granifera Lamarck 1816, p. 560.
Uniophora globifera Gray 1840, p. 288.
Type locality. South Seas.

Distribution. South Australia: Gulf St. Vincent. New South Wales : Bottle and Glass Rocks, Port Jackson.
II. L. Clark, durintr his collecting trip, did not take this species in either South Australia or Western Australia but found it at Port Jackson, New South Wales. We have found but one South Australian record:
K.175. (tlenelg. Typical, though not adult example. Deep reddish-brown. Rays 5. Longest $\mathrm{R}=47 \mathrm{~mm}$., br. $=14 \mathrm{~mm}$., shortest $\mathrm{R}=25 \mathrm{~mm}$., br. $=9 \mathrm{~mm}, \mathrm{r}=7$ to 15 mm . This is apparently fax less common in South Australia thau Uniophora multispina.

Uniophora gymnonota II. L. Clark 1928.
Uniophora gymnonota II. L. Clark 1928, p. 405.
IIolotype : Reg. No. K.170. Backstairs Passage near The Pages, 25 fathoms. Distribution. South Australia: Gulf St. Vincent, Spencer Gulf.
The largest specimen from South Australia has $R=75 \mathrm{~mm}$. We have not taken further examples of this peculiar smooth sea-star.

Uniophora mulitisprina H. L. Clark 1928.
Uniophora multispina H. L. Clark 1928, p. 407.
Holotype: Reg. No, K.184. Henley Beach, South Australia.
Distribution. South Australia : Port Adelaide River, Henley Beach.
This species is fairly common on the beaches of Gulf St. Vincent where we have taken it at Port Willunga, Sellicks, Marino, and Christie's Beach.
K. 520 from Semaphore (South Australia), a large specimen collected by JI. M. LIale, June, 1923, after storms. $\mathrm{R}=100 \mathrm{mm},. \mathrm{r}=20 \mathrm{~mm}$., $\mathrm{br} .=30 \mathrm{~mm}$. maximum.

Uniopmora obesa H. L. Clark 1928.
Uniophorle obesa H. L. Clark 1928, p. 409.
IIolotype : Reg. No. Ǩ.190. Eastern Cove, Kangaron Island, South Australia.
Uniophora sinusoida Perrier 1875.
Asteria sinusoida Perrier 1875, p. 338.
Type locality. Hobart Tasmania.
Distribution. South Australia: Gulf St. Vincent, Spencer Gulf.
Uniophora uniserialis H. L. Clark 1928.
Uniophora uniservalis H. L. Clark 1928, p. 413.
Holotype: Reg. No. K.193. Gulf St. Vincent, South Australia.
Distribution. South Australia: Gulf St. Vincent, Spencer Gulf.
Uniophora nuda Perrier 1875.
Asterias nuda Perrier 1875, p. 335.
Type locality. Port Lincoln, South Australia.
H. L. Clark (1928, p. 417), points out that Perrier gives "Port Lincoln (détroit de Torres)" as the type locality of A. muda, which probably means Port Lincoln, South Australia, as there is no Port Lincoln in the Torres Strait region of Northern Australia. Also, no representative of family Asteriadde: oceurs on the northern coast of Australia.

Clark's key definitely separates this species from V. gymmonota; the latter has the pedicellariae rare or wanting, except on the inner end of the oral plates. U. nuda has the pedicellariae numerous both in the ambulacral furrow and exterual to the adambulacral spines (Perrier).

Uniophora fungifera Perrier 1875.
Asterias fungifera Perrier 1875, p. 337.
Type locality. Australia. (Bouthern Australia).
This species was recorded varuely as from Anstralia, and for reasons similar
 probably somewhere in the Flindersian Region. Again the key given by II. L. Clark ($1928, \mathrm{p} .415$), shows this species as quite distinet from others of the genus. Briefly, the distinguishing features are here guted so that the species may be recognized when it is taken, as most likely it will be now that a number of enthusiasts are collecting hereabout: Large, straight pedicellatiae rare or wanting, except on imner end of oral plates. Dursal spines conspicuously capitate, globose, or fungiform, the dorsal spines crowded.

In his "Echinoderms from Australia", H. L. Clark (1938, p. 196) records only one species, granifera, taken during his extensive and valuable personal investigations in Australia. It appears, however, that off the South Australian coast alone, there must be at least eight species of Uniophora.

Uniophora dyscrita H. I. Clark 1923.
Uniophora dyserita H. L. Clark 1923, p. 244.
Type locality. Western Australia.

Glass OPHIUROIDEA
Order PHRYNOPHIURIDA.
Family OPHIOMYXIDAE.
Genus Opinomyza Müller and Troschel 1849.
Genotype: Ophiomyxa pentagona Müller and Troschel 1842.
Ophionyxa australis Lititken 1869.
Ophiomyxa australis Liitken 1869, p. 45.
Type locality. Australia,
Distribution. South Australia : Gulf St. Vincent, Snencer Gulf, Salt Creck. Coobowie, Port Willmga, Port Vincent, Tumby Bay, Kingston 30 Pathoms. Tasmania. New South Wales: Wollongong, 55-56 fathoms.

Genus Ophiocreas Lyman.

Ophiocreas stbogae Knehler 1904.
Ophiocras sibogae Kochler 1904, p. 165.
Type locality. Indian Ocean.
Distribution. Great Australian Bight 200-300 fathoms. Bass Strait: FlinMers Island 80-300 fathoms.

Colour of holotype is given as reddish-purple-violet. The cotype is uniformly yellow, and the Australian "Endearnur" specimens are described by H. T. Clark (1916) as reddish flesh-colour with a more or less heavy purple cast.

Family GORGONOCEPHALIDAE.

Genus Astroconus Döderlein 1911.
Genotype: Astrophyton australe Verrill 1876 (Australia).
Astroconus australis Verrill 1876.
Astrophyton australe Verrill 1876, p. 74.
Distribution. South Australia: Gulf St. Vincent, Spencer Gulf, Encounter Bay, Edithburgh, Flinders Island 37 fathoms, St. Francis Island 30 fathoms, Cape Wiles 75 fathoms, Sanders Bank (Kangaroo Island) 28 fathoms, Kingston 30 fathoms, off Murray River Mouth 17 fathoms. Tictoria. Tasmania: Devonport, Launceston, east coast Tasmania. Bass Strail: King Island,

Astroconus pulcier H, L. Clark 1939.
Astroconus mulcher H. L. Clark 1939, p. 207.
Holotype: Reg. No. K.561, Cape Dutton, South Australia, 20 fathoms in crayfish pot.

Astroconus oocmentalis H. L. Clark 1938.
Astroconus occidentalis H. L. Clark 1938, p. 205.
Type locality. Fremantle, Western Australia.

> Genus Conocladus H. L. Clark.

Genotype: Conocladus oxyconus H. L. Clark 1909 (Eastern and South Australia).
Conocladus oxyconus II. I. Clark 1909.
Conocladus oxyconus II. L. Clark 1909, p. 132.
Type locality. Port Jackson, New South Wales.
Distribution. South Australia: Cape Wiles. New South Wales.

> Genus Astroboa Döderlein.

Astroboa ernaf Döderlcin 1911.
Astroboa ernae Döderlein 1911, p. 82.
Type locality. Western Australia.
Distribution. South Australia: Kangaroo Island, Edithburgh, Victor Harbour. Western Australia.

Family TRICHASTERIDAE.

Genus Euryale Lamarck 1816.
Genotype: Euryale verrucosum Lamarck 1816 (Indian Ocean).
Euryale euopla H. L. Clark 1938.
Euryale euopla H. L. Clark 1938, p. 203.
Type locality. Bald Island, Albany, Western Australia.

Family OPHIACANTHIDAE.

Genus Ophiacantha Müller and Troschel 1842.
Genotype: Ophiacantha setosa Müller and Troschel 1842.

Ophiacantha heterotyla H. L. Clark 1909.
Ophiacantha heterotyla H. L. Clark 1909.
Type locality. Port IIacking, New South Wales, 22-38 fathoms, sand.
Distribution. Between Devonport and Launceston, Tasmania. New South Wales : Port Hacking, Crookhaven River 11-15 fathoms sand to rock, Wata Mooli 54-59 fathoms mud.

Ophiacantha brachygnatha H. L. Clark 1928.
Ophiacantha brachygnatha H. L. Clark 1928, p. 420.
Holotype: Reg. No. K.208, Spencer Gulf, South Australia.
Distribution. Spencer Gulf and Gulf St. Vincent.

Ophiacantha clavigera Koehler 1907.
Ophiacantha clavigera Koehler 1907, p. 247.
Type locality. Bunbury, Western Australia.
Distribution. Western Australia: Bunbury, Fremantle, Broome.

Genus Ophiocomina Koehler.
Ophiocomina australis II. L. Clark 1928.
Ophiocomina australis H. L. Clark 1928, p. 422.
Holotype: Reg. No. K.211, Spencer Gulf, South Australia.
Distribution. South Australia : Troubridge Island, Backstairs Passage, Port Vincent.

Order GNATHOPHIURIDA.

Family AMPHIURIDAE.

Genus Amphiura Forbes 1845.
Amphiura trisacantita H. L. Clark 1928.
Amphiura trisacantha H. L. Clark 1928, p. 425.
Holotype : Reg. No. K.212, Spencer Gulf, South Australia.
Ampitura constricta Lyman 1879.
Amphiura constricta Lyman 1879, p. 22.
Type locality. Port Jackson, New South Wales.
Distribution. All round Australia and Tasmania.
Amphiura miorosoma H. L. Clark 1915.
Amphiura microsoma H. L. Clark 1915, p. 228.
Type locality. Murray Islands, Great Barrier Reef.
Distribution. Western Australia : Rottnest Island, Broome.
Amphiura nannodes H. L. Clark 1938.
Amphiura nannodes H. L. Clark 1938, p. 230.
Type locality. Rotnest Island, Western Australia.
Genus Amphiodia Verrill.
Amphiodia ochroleuca Brock 1888.
Amphiura ochroleuca Brock 1888, p. 484.
Amphiodia mesopoma H. L. Clark 1915, p. 247 (Torres Strait).
Distribution. South Australia : Gulf St. Vincent, Spencer Gulf. Victoria: Westernport. Western Australia. Torres Strait.

Genus Amphipolis.
Amphipolis squamata Delle Chiaje 1828.
Asterias squamata Delle Chiaje 1828, p. 74.
Distribution. South Australia : Port Willunga. All round Australia.
Genus Ophiaotis Lütken 1856 (1857).
Genotype: Ophiocoma ballii Thompson 1840.
Ophiactis resiliens Lyman 1879.
Ophiactis resiliens Lyman 1879, p. 36.
Distribution. South Australia : Cape Martin 21 fathoms, Kingston 30 fathoms. Western Australia : Rottnest Island. Victoria. New South Wales.

Ophiactis trionoor II. L. Clark 1928.
Ophiactis tricolor II. L. Clark 1928, p. 427.
Holotype: Reg. No. K.213, Spencer Gulf, South Australia.
Distribution. South Australia: Gulf St. Vineent, Spencer Gulf, Cape Borda 40 fathoms.

Ophtactis laevis H. L. Clark 1938.
Ophiactis laevis H. L. Clark, 1938, p. 268.
Type locality. Bunbury, Western Australia, 5-8 fathoms.

Family OPHIOTHRICIDAE.

Genus Ormiothrix Müller and Trosehel 1842.
Genotype: Asterias fragilis Abilg 1789 (Europe).
Ophiothrix albostriata H. L. Clark 1928.
Ophiothrix albostriata. H. L. Clark 1928.
Holotype: Reg. No. K.215, Great Australian Bight.
Ophiothrix caespitosa Lyman 1879,
Ophiothrix caespitosa Lyman 1879, p. 53.
Ophiothrix acestra H. L. Clark 1909, p. 544.
Distribution. South Australia : Gulf St. Vincent, Troubridge Island, Backstairs Passage, Spencer Gulf, Kingston 30 fathoms, Sanders Bank (Kangaroo Island) 28 fathoms, Cape Jervis 17 fathoms. Westeril Australia: Bunbury, Fremantle, Rottnest Island. New South Wales. Queensland.

Ophiothrix-hymenacantha II. J. Clark 1928.
Ophiothrix hymenacantha. H. L. Clark 1928, p. 431.
Holotype: Reg. No. K.217, Great Australian Bight.
Ophiothrix fifmaria Miiller and Troschel 1842.
Ophiothrix fumaria Mïller and Troschel 1842, p. 113.
Ophiothrix spongicola Stimpson 1855, p. 385.
Type locality. Port Jackson, New South Wales.
Distribution. South Australia: Cape Jervis, Gulf St. Vincent, Troubridge Shoal, Backstairs Passage, Tumby Bay. The species is known to range from Abrolhos Islands on the west coast of Australia, along the whole southern coast, to Broken Bay, New South Wales.

Ofhiotitrix lineocaerdlea H. L، Clark 1928.
Ophiothrix lineocaerulea H. L. Clark 1928, p. 432.
Holotype: Reg. No. K. 218. Spencer Gulf, South Australia.

Order CHILOPHIURIDA.

Family OPHIOCHITONIDAE.

Genus Opmonereis Lütken.

Ophionereis schayeri Müller and Troschel 1844.
Ophiolepis schayeri Müller and Troschel 1844, p. 182.
Ophionercis porrecta H. L. Clark 1923, p. 247. (Abrolhos Islands, Western Australia).
Distribution. South Australia: Spencer Gulf, Gulf St. Vincent, Tumby Bay, Port Willunga. Westeru Australia : Abrolhos Islands. Tasmania : between Devonport and Launceston.

Opetonereis semont Döderlein 1896.
Ophiotriton semoni Döderlcin 1896, p. 288.
Distribution. South Australia: Spencer Gulf, Gulf St. Viucent. Queensland: Torres Strait, Cairns.

> Family OPHIOCOMIDAE.

Genus Ophiocoma Agassiz.
Ophiocoma canalioulata Lütken 1869.
Ophiocoma canaliculata Lütken 1869, pp. 46, 99.
Distribution. South Anstralia: Edithburgh, Gulf St. Vincent, Spencer Gulf.
Ophiocoma canaliculata pulchra H. L. Clark 1928.
Ophiocoma canaliculata var. pulchra II. L. Clark 1928, p. 439.
Holotype: Reg. No, K.241. Spencer Gulf, South Australia.

Family OPHIODERMATIDAE

Genus Ophiurodon Matsumoto.
Ophiurodon opacum II. L. Clark 1928.
Ophiurodon opacum II. L. Clark. 1928, p. 440.
Holotype: Reg. No, K.243, Gulf St. Vincent, South Australia.
Distribution. South Australia : Port Vincent, Gulf St. Vincent.
Genus Pectinura Forbes.
Pectinura arenosa Liyman 1879.
Pectinura arenosa Lyman 1879, p. 48.
Distribution. South Australia : Gulf St. Vincent, Spencer Gulf, Tumby Bay. Ardrossan, Troubridge Island, Backstairs Passage.

Peotinura assmimis Bell 1888.
Ophiopeza assimilis Bell 1888, p. 282.
Distribution. South Australia : Tumby Bay, Gulf St. Vincent, Spencer Gulf.
Genus Ophiaracinella Ljungman.
Ophiaraohnella ramsayi Bell 1888.
Pectinura ramsayi Bell 1888, p. 281.
Type locality. Port Jackson, New South Wales.
Distribution. South Australia: Gulf St. Vincent, Spencer Gulf, Qucenseliff (Kangaroo Island), Edithburgh. Western Australia : Rottnest Island, Fremantle. New South Wales.

Family OPHIOLEPIDIDAE.

Genus Amphiophtura Matsumoto.
Amphiophiura colleta H. L. Clark 1916.
Amphiophiura colleta H. L. Clark 1916, p. 93.
Type locality. East of Babel Island, Bass Strait, 60-80 fathoms.
Distribution. South Australia: Gulf St. Vincent. Bass Strait.
Genus Ophiura Lamarck 1816.
Ophiura kinberar Ljungman 1866.
Ophiura kinbergi Tjjungman 1866, p. 166.
Distribution. South Australia : Gulf St. Vincent, Spencer Gulf. Victoria : Port Phillip. New South Wales: Port Jackson.

Ophiura ooplax H. I. Clark 1911.
Ophiocten ooplex H. L. Clark 1911, p. 99.
Type locality. Japan.
Distribution. South Australia: Gulf St. Vincent, Spencer Gulf. Also Japan. Genus Ophiomusium Lyman 1869.

Ophiomusium anisacanthum H: L. Clark 1928.
Ophiomusium anisacanthum H. L. Clark 1928, p. 446.
Molotype: Reg. No. K.254, Gulf St. Vincent, and Spencer Gulf, South Australia.

Ophiomusium aporum H. L. Clark 1928.
Ophiomusium aporum H. L. Clark 1928, p. 447.
Holotype: Reg. No. K.255, Gulf St. Vincent and Spencer Gulf, South Australia.

Ophiomusium smplex australe H. L. Clark 1928.
Ophiomusium simplex var, australe H. L. Clark 1928, p. 449.
Holotype: Reg. No. K. 256 , Spencer Gulf, South Australia.

Genus Ophiozonella Matsumoto.

Ophiozonella elevata H. L. Clark 1911.
Ophiozona elevata H. L. Clark 1911, p. 31.
Type locality. Japan.
Distribution. South Australia : Spencer Gulf, Gulf St. Vincent. Also Japan.

Genus Ophiocrossota H. L. Clark 1928.
Genotype: Ophiocrossola heteracantha H. L. Clark 1928, p. 450.

Ophiocrossota heteracantiia H. L. Clark 1928.
Ophiocrossota heteracantha H. L. Clark 1928, p. 451.
Holotype: Reg. No. K.258, Gulf St. Vincent, and Spencer Gulf, South Australia.

Class E C H I N O I D E A

Order CIDAROIDA.

Family CIDARIDAE.
Genus Phyllafanthus Brandt 1835.
Genotype: Cidarites dubia Brandt 1835.
The genotype is known only from the Bonin Islands. Four of the six species in the genus are known only from Australia, and the remaining one, imperialis, occurs all over the Indo-Pacific.

Phyllacanthus irregularis Mortensen 1928.
Phyllacanthus irregularis Mortensen 1928, p. 74.
Type locality. Fremantle, Western Australia.
Distribution. Western Australia: Fremantle to Bremer Bay.

Phyllacanthets armegularis rimbers subsp. nov.

$$
\text { Pl. xii. Fig. } 1 \text { and } 2 \text {.. }
$$

Holotype: Reg. No. K.576. Port Willunga, South Australia.
Distribution, South Australia: Port Willunga, Leveus Beach, d'Estree Day (Kangaroo Island), Halletts Cove.

Test large and round, flattened aborr and helow ; horizontal diameter 115 mm ., rertical diameter 7.5 mm . Primary spines shon't, $5: 3 \mathrm{~mm}$. in length, about half the lurizontal diameter of test, comparatively stender, fusiform, tapering to the
 with an indistinet white band about one third of the leugth from the tip; sculpture of tine gramules forming into fine ridqes from about the position of the white hand to the tip. The secondary spines are a little wider af the tip than those of irraguInris, and have distinct brownish colonation, although there are tranes of the dark purplish colour seen in the primarics. The apical system gemerally resemblos that of irregnlumis, but the genital pores are emmparatively smaller and closer on the edge, while the tubercles aloner the imer edre of the genital plates are comparatively smaller and more mumerous, thongh atill larger than those of tho sest of the grenital plates. 'The formatim is inturmetiate between that of parrisping sud irroghlaris, but the ambubacral spines are puinted and resembe those of irroyularis and not parvispina. In most other respects the subspecies resembles the typical Western Anstralian irrogularis. We wey the differences:
a. A serjes of larger spines along the inner edge of the genital phato; spines an apherl system pointed; marginal anbulacral tubercles irregular.
b. Primary spiney abont six times as long fis wide; tabercules along the inner cdge of genital plates conspicuonsly larger, mmaning ahout five; genital pors large, not cluse Lo the edge of the genital plates irregularin.
bob. Primary spinces ntout oight, times as long ga widn; tabercles along the jnner edge of genital plates slightly larger, mumbering about eight; genital pores large, not close to the edge of tho genitul plates
. itregulatis Fimberi.
 matrginal ambulamal fubereles rasy regular parvispina.
A specimen of this nuhspecies was taken some years acco by W. d. Kimber at Port Willanga, whth H. L. Clark (1938, p. 373) suspected as heing different Erom the typieal south-westan Australian Phylhanomhns imeqularis Mortensen
 gested it might be a variely of the leronian Phyllacanthus pareispina.

We recrad purvispima ns a distinet spucies trom irregularis, hat have ducidel to give timberi subspecifice status only, for the prosent.

The following are some of the South Anstralian specimens in the South Australian Mussum:
K.552. Levens Beach, York Peninsula, April, 193G. Height 50 mm , diameter 80 mm . Primary spines 48 mm .
K.5n1. Levens Beach, Height 48 mm., diameter 70 mm, Yrimary spines 43 mm , Drimaries encrusted with Bryozor.
K, 万77. D'Estrue Bay, Kingaron Island. Height 75 sum. diameter 110 mm . Primary spines 55 mm .
 Erimary spines 45 mm .
K,553. Jevens Beach, Yorke I'eninsula, April, 1936\%. Height 54 mon. diameter 85 mm . Primary spines 45 mm .

Two bare tests from South Australia, $\mathbb{K} .286$, in the Musenm eollection and labelled Prionocidaris biapinosa Agassiz, are not that species but are juvenile Phyllacanthus irregulay's limberi.

A pertect large living specimen has benn taken, sinee the above was written,
 a jurenile specimen was taken by G. Buick at Little Gorge, Nommanville.

Génus Adelotdaris nov,

Genutype: Cidarites twbaria Lamaxelk 1816 (Australie).
11. L. Clark (11488, p. 369) points out that the genotype of (Goniocidaris, C'darites gurunoides Jamarek 1816 (tiast Indies), is probably undentifiable. It certainly has nothing to do with tubaria and dous not belone tu the family Ciduridnc, since the figures of geranobles show gills which are lacking in the specjes of this family. In order in clear up the mater we have introduced a new genus for the Australian speries tubaria impressu, and the: New Zealand umbraculam, white leariner yerunoides with its genus Goniondaris Agassi\% and Desor (1846) for future altention.

Livicfly, the new genus maty he desmibed an follows : Test stont, primary spines larye, primary tubercles perforate; ambulacra wide; median interambolacral areas panspicumaly bare and sumken, especially at angles of coronal. Otherwise typieal of the tamily Uidarides.

Anelomaris larressa Kochler 1926.
Gunintidaris impressu Koehler 1926, p. 24.
Distribution. Sonth Australia : Grauge, Kingstom 30 fathoms, Cape Marsden 17 latluns, St. Fraucis lishand 85 fathoms. Tasmania: Por Davey ss fathoms, Rocky Point, also East Coast Tasuania, Quremsland: Port Curtis (Zoorl. Depto, Sildaide University).

Mompusen (1!2es, pp. 160-163) adopts the name tuburia var. impresse (Koehlev), for the form related in indurin, but having less claborate primary spines, more rexomsive tuberentation, leaving scarely more than the admedian part of the honizontal sutures hare, on both ambulacral and interambubacral areas, therefore un continuous sunk median line, hat only isolated grooves, in a conspicnous ladderlikn arragement ; apical system with genital and ocular plates more completely (than tuluria) rovered with tubereles of uniform size; female genital pores larger. The speries is common in Tasmania, but compared with the oecurrence of thbaria it is much rarer in South Australia,

Two typical specimens (K .269) have both the primary and secondary spines notahly nome slender.

Admelidaris mpibama Lamarek 1816.
Cidurites leturniu Lamarek 1816, p. 57.
Typa lacnlity, Australia, (Iabite les mers de la Nouyelle Hollande).
Distribution. South Australia: Kingsion 30 fathoms, Cape Marsden 17 lathoms, St. Frameis Lsland $9 \overline{0}$ fathoms, Normanville beach, Henley, Queenselifte (Kíangaroo Jsland), Cape daffa !0 l'athoms.

At Normanville, and November, 1941, we took twenty typical livjus specimens of this spereics on the beach at luw tide. Naked test brownish; primary spines 'ream, thorms and ridges riolet, base of spine also collar and milled riug deep red; secondary spines cream to yellow.

Order DIADEMATOIDA.

Suborder CAMARODONTA.

Family TEMNOPLEURIDAE.

Genus Genocidaris A. Agassiz 1869.
Genntype: Genocidaris maculata A. Agassiz 1869 (West Indies).
Genomidaris incerta H. L. Clark 1928.
Genocidaris incerta H. L. Clark 1928, p. 457.
Holotype. Reg. No. 293. Cape Jaffa, South Australia, 300 fathoms.
Distribution. South Australia : Cape Borda, Cape Jaffa, Beachport, all from 60-300 fathoms.

It may presently be shown that this species represents a new genus. We certainly doubt the correctness of its location in Genocidaris.

Genus Temnofleurus L. Agassiz 1841.
Genotype: Cidaris torermatica Leske 1778. (China Seas, Japan, India),
Temnopleurus michaelseni Döderlein 1914.
Salmacis michaelseni Döderlein 1914, p. 454.
Temnopleurus australis H. L. Clark 1928, p. 458 (Reg. No. K.298).
Type locality. South-western Australia.
Distribution. South Australia : Gulf St. Vineent, Spencer Gulf, Port Lincoln, Wallaroo, Yankalilla bay, Backstairs Passage, Troubridge Shoal. Western Australia: Cottesloe Beach, Fremantle, Rotnest 3-22 fathoms, Bunbury.

The type locality of T^{1}. austrulis Clark, is Port Lincoln, South Australia. On cxamining our specimens we are inclined to think that there are subspecific differences present, and the South Australinn form might take the name Temnopleurus michaelseni australis H. L. Clark (1928).

Genus Microcypius Agassiz and Desor 1846.
Genotype: Microcyphus maculatus Agassiz and Desor 1846. (Mauritius and Andaman Islands).

Microoypiius annulatus Mortensen 1904.
Microcyphus annulatus Mortensen 1904B, p. 101.
Type locality. Port Phillip, Victoria.
Distribution. South Australia : Iuvestigator Strait, Gulf St. Vincent, Spencer Gulf. Bass Strait: off East Moneoeur Island. Victoria. Tasmania : east coast. Dredgings to 40 fathoms.

Microcyphus compsus II. L. Clark 1912.
Microcyphus compsus H. L. Clark 1912, p. 322.
Microcyphus elegans Mortensen 1904B, p. 100, prcoccupied.
Type locality. Port Phillip, Victoria (M, clegans).
Distribution. South Australia: Gulf St. Vincent, Spencer Gulf, Cape Borda (Kangaron Island), (appe Jaffa, Backstairs Passage, down to 60 fathoms. Victoria: Port Phillip.

Miorocyphus pulchellus II. I. Clark 1928.
Microcyphus pulchellus II. I., Clark 1928, p. 462.
Holotype: Reg. No. K.340. Spencer Gulf, South Australia. This is known only from the holotype.

Microcypirus ziczac Agrassiz and Desor 1846.
Microcyphus zigzag Agassiz and Desor 1846, p. 358.
Type lacality. Port Phillip, Victoria.
Distribution. South Australia: Backstairs Passage 23 fathoms. Victoria: Port Phillitp. Bass Strait.

A juvenile specimen is the only record of the species from South Australia.
Genus Temnotrema A. Agassiz 1863.
Genotype: Tomnotrema sculpta A. Agassiz 1863. (Japan and Korea).
Temnotreata notium M. L. Clark 1938.
Temnotrema notium II. L. Clark 1938, p. 387.
Type locality. King George Somnd, Western Australia.
Genus Amblypneustes L. Agassiz 1841.
Genotype : Echinus griseus Blainville 1825 = Echinus ovum Lamarck 1816 (Australia).
There is some difficulty in identifying the species of this complex assemblage, so the following distinguishing features may be of assistance:

1. Primary spines bright red; teat dark, height abont 0.9 of the borizontal diameter formosus.
2. Primary spines pink, puple, lavender, or green; test light, pale brown, or dirty white, height about 0.95 of the horizontal diameter pallidus.
3. Primary spines dirty white; test greenish, height and diameter about equal. .. ovum.
4. Primary spines, dull green or brown, whitish at the tip; test dull green or brown, height about 0.8 of the horizontal diameter pachistus.
5. Primaries pale brown, dull pale red, or cream; test somewhat tlatened, height about 0.7 of the horizontal diameter grandis.
6. Primary spines green or brown; test hrown, height about 0.9 of the horizontal diameter leucoglobus,
We doubt the specifie diffremees in some of the species, particularly those of ovum and leucoglobus. These two may be the same species or only geographical subspecies.

Amblifineustes formosus Valenciennes 1846.
Amblypnoustes formosus Valenciennes 1846, pl. ii, fig. 2.
Type localily. Bass Strait.
Distribution. South Australia: Gulf St. Viucent, Suencer Gulf. Bass Strait. Victoria. Tasmania. Western Australia, This is the rarest Amblypneustes species in South Australia.

Amblypneustes palididus Lamarck 1816.
Echinus pallidus Lamarck 1816, p. 48.
Type locality. We designate Encounter Bay, Sonth Australia,
Distribution. Port Willunga, South Australiet, to the Abrolhos Islauds, West. (en Anstralia. Very common all along the South Australiau coast.

Numerons specimens were taken at Normanville, S. Λ., thrown up on the howeh
Amblyprenestes ovum Lamarek 1816.
Echinus ovum Lamarck 1816, p. 48.
Type locality. Australia, We designate Encounter Bay, South Australia.
Distribution. Sonth Anstralia: Port Willmora, all round Yorke Peninsula, Spencer Gulf, Encounter Bay, Cape Jervis, Robe, Port MeDonnell, Port Lincohn, Outer Harbour, Henley Beach, Glenelg, Sellicks. Bass Strait. Tasmania. Vir. toria. Western Anstralia. The commonest sea-urchin in South Australia.

Ambiypneusies pactistus H. L. Clark 1912.
Amblypneustes pachistus H. Ld, Clark 1912, p. 327.
Type loculity. Western Port, Victoria.
Distribution. South Australia: Qulf St. Vinecht, Port Willunga, Spmeer Gulf, Kingston, down to 30 fathoms. Bass Strait: Flinders Island. Vietoria. Tasmania : east coast. New South Wales: Clarence River.

The characteristic colouration of the species is a pale brown test when dey, more nearly olive when moist; small spines, pale cream or whitish; large spines. deep olive-green or greenish-brown, more or less extensively tipped with whitish. This is essentially the colouration of the holotype.

Amblppneustes grandis If. Id. Clark 1912.
Amblypneustes grandis E. L. Clark 1912, p. 329.
Type locality. Southern Australia.
Distribution. South Australia: Gulf Sl. Vincent, Cape Marsden 17 Pathoms. Vietnria. Western Australia. Bass Strait:. Flinders Island. New South Walus, In colouration there is considerable diversity.

Ambiapneitstes leeucoglobus Döderleín 1914.
Amblypneustes leucoglobus Do̊derlein 1914, p. 463.
Type locality, Geraldton, Western Australia.
Distribution. Western Australia : Rottnest, Bunbury, Feraldtom, Fremantle.
IIas not so far bren drfinitely recognized from South Australia. Some sperimens taken seem very close to this species.

Genus Holopneustes Agassiz and Desor 1846.
Genotype: Holopneustes pornsissimus Arassiz and Desor 1846, p. 364. (Sontherm and Eastem Australia).

Holopneistes inflatus A. Agassiz 1872.
Holopneustes inflatus A. Agassiz 1872, p. 56.
Holopneustes purpurescens A. Agassiz 1873, pl. viiic. figs. 5 and 6 .
Type locality. Southern Australia.
Distribution. South Australia: Port Willanga. Victoria: Port Phillip Heads, Warrnambool. New South Wales: Port Tackson. Tasmania. Western Australia: Rottnest, Fremantle.

Holopneustes porosissimus Agassiz and Desor 1846.
Holopneustes porosissimus Agassiz and Desor 1846, p. 364.
Type locality. We designate Port Phillip Heads, Victoria.
Distribution. Sonth Australia : Port Adelaide, Cape Marsden. Victoria : Port Phillip Meads, Warmamboul. Western Anstralia: Cape Leeuwin, Ellen Brook, Fremantle.

Family ECHINIDAE.

Gerius Pseudeoimntis Mortensen 1903.
Genotype: Echimus albocinctus Ifutton 1882. (New Zealand).
Pseidechinus heaperus H. L. Clark 1938.
Pseudechints hesperus II. L. Clark 1938, p. 395.
Type locality. Rotnest Island, Western Australia.
Holotype unique.

Family STRONGYLOCENTROTIDAE.

Genus Pachycentrotus H. L. Clark 1912.
Genotype: Sphaercrhinus australiae A. Agassiz 187e. (Vietoria and Tasmania).
Pacifyoentrotus australiae A. Agassiz 1872.
Sphaerechinus australuae A. Agassiz 1872, p. 55.
Type locality. Port Phillip, Victoria.
Distribution. South Australia: Port Willunga, Kangaroo Island, Gulf St. Vincent, Spencer Gulf. Tasmania, Bass Strait. Victoria: Port Phillip.

Genus Heliocidaris Agassiz and Desor 1846.
Genotype: Echinus omalnstoma Valenciennes $1846=$ Echinus tuherculatus Lamarek 1816. (Anstralia).
Apparently there are two species in South Anstralia. H. erythrogramma is the common New South Wales, but rarer South Australian species, in which the primary spines are comparatively long and the colour light-green.

Helfocidarts erythrogramma Valenciennes 1846.
Echinus erythrogramma Valenciennes 1846, pl. vii, fig. 1.
Type locality. We designate Port Jackson, New South Wales.
Distributiun. South Anstralia : Wallaroo Bay 15 fathoms, Investigator Strait 14 fathoms. Outer Harbour, Marino, Port Wilhnga, Christie's Beach, Spllicks,

Cape Jervis, Encounter Bay, Kingston, Robe, Port MeDomell, Port Lincoln (common). Western Australia to the Abrolhos Tslands. Victoria. Tasmania. New South Wales: Port Stephens southward.

The species rangen through the antire Pernuian and Filindersian Rexions.
In several hundred specimens of Heliocidaris examined hy us af Marino, we have notieed that the typical light-green primary spined species is less ammon than the next, armigera.

The following are no more than local variants:
Heliocidaris erythrogramma pareispina H. L. Clark 1038, p. 404. Point Peron. Western Australia.
Heliocidaris hartmeyeri Döderlain 191t, 1). 47 . Shark Bay, Western Australin. Heliocidaris meridionalis Dölerdein 191t. p. 479. Sunth Australia.

Heliocidaris abaigena A. Agassiz 1872.
Strongylocentrotus armiger A. Agassiz 1872, p. 戶斤.
Type lacality. Swan River, Western Anstralin.
Distribution. South Australia: Marino, Port Willumgat, Christie's Thath, Glencog, Encomiter May, off semaphore of fathoms, Robe, Wool Bay. Levens. Hardwieke Bay, Salt Creek. Western Australia: Swan River.

This species, with its short stonf brown or purple spines, is quite comimun in South Anstralia at Port Wilhungand Marimo Renfe, in ereviecs and on the under. surface of rocks just below low water mark. It is much commono hore than erythrogramma.

Henocidaris tubierculata Iamarek 1816.
Echinus tuberculatus Larmack 1816, p. 50.
Type loculity. Australia.
Distribution. Victoria: Port Phillip ITeads. New South Wales: Sydnes. Lord Howe Island. Kermadec Islands.

Apparently this species is uncommon in Anstralia. IT. J. Clank diel not take it during his collecting trip here and we have seen no signs of it in Sonth Australia. Clark deseribes it as very common at Lord IIowe Island. It appears to be as variable as Mefiocitaris crythrotramma, if not in colour, in the relativa siza and proportions of the primary spines. The specers may enter the mastrm wien of the Flindersian Region but does not reach Sonth Anstralia.

Order EXOCXCLODIA.

Suborder CLYPEASTRINA.

Famiry CLypFASTRIDAE.

Genus Clypeaster Lamarek 1801.
Genotype: Echinus rosaceus Linné 1758. (West Indies).
Clypeaster atistraiastae Gray 1851.
Echinanthus australasing Gray 1851, p. 34.
Type locality. Brisbane Water, New South Wales.
Distribution. Vietoriat Port Phillip. New South Wales. Queensland. Bass Strait.

Clifeaster telijrus H. L. Clark 1914.
Clypeaster telierus H. L. Clark 1914A, p. 166.
Type locality. Fremantle to Geraldton, Western Australia.
Distribution. Western Australia: Rottnest Island, Fremantle, Geraldton. Queensland.

Genus Hesperaster H. L. Clark 1938.
Genotype: Mesperaster ararhnoides H. L. Clark 1938. (Western Flindersian).
Hesperafter arachnoides M. I. Clark 1938.
Hesperaster arachnoides II. I. Clark 1938, p. 411.
Type locality. Rottnest Island, Western Australia, 10-12 fathoms.
Distribution. Western Australia: Rotnest, Cape Leenwin, Fremantle.
Hesperaster crassus H. J. Clark, 1938.
Hesperaster erassus ․ . L. Clark 1938, p. 413.
Type locality. Rottnest Island, Western Australia. Quaternary deposit near salt lake.

Family ARACHNOIDIDAE.

Genus Ammotrophes H. Id. Clark 1928.
Genotype: Ammotrophus cyelius II. L. Clark 1928, p. 471. (South Australia).
Ammotrophos cyclius H. L. Clark 1928.
Ammotrophus cyclius H. L. Clark, 1928, p. 471.
Holotype. Reg. No, K.401. Gulf St. Vincent, South Australia, 10 fathoms.
Distribution. South Australia: Gulf St. Vincent, Spencer Gulf, Eneounter Bay.

The specimens dredged by Vereo in Gulf St. Vincent and Spencer Qulf were, in all probability, taken at the following deptles: Gulf St. Tincent 10 fathoms: Spencer Gulf 15 fathoms.
K.578, Verco, Beachport 25 fathoms, December 26, 1905, two specimens, recently picked from the mixed material of the Terco dredgings, extend the range of this rare species to the south-past of South Australia. Test $42 \mathrm{~mm} . \times 42 \mathrm{~mm} . \times$ 6 mm . high for the larger, and $30 \mathrm{~mm} . \times 30 \mathrm{~mm} . \times 3 \mathrm{~mm}$. high for the smaller of the two.

A specimen of this species from Robe (No. 787, Zoological MLuseum, Adelaide University) is the largest recorded, measuring $73 \mathrm{~mm} . \times 73 \mathrm{~mm} . \times 10 \mathrm{~mm}$. high ; petals 22 mm , long $\times 13 \mathrm{~mm}$. wide in the average; periproct centre 9 mm . from posterior margin of test, 5 mm . long and 3 mm . wide. The test is bare, all the spines are missing.

Ammotropius phatyterus H. I」. Clark 1928.
Ammotrophus platyterus H. L. Clark 1928, p. 474.
Molotype. Reg. No. K.477. Gulf St. Vincent, South Australia. The specimen described as holotype still remains unique.

Family LAGANidAE.

Genus Peronella Gray 1855.
Genotype: Laganum peronii L. Agassiz 1841. (Peronian and Flindersian Rogions).

Peronella peronit L. Agassiz 1841.
Laganum peronii L. Agassiz 1841, p. 123.
Type lacality. Westcrn Australia? (Mabite les mers de l'Inde).
Distribution. Suuth Australia: Gulf St. Tincent. Spencer Gulf, Beachport in 200 fathoms, Cape Borda 62 fathoms. Point Marshom 17 fathoms, American River 8 fathoms, Yankalilla Bay, Neptume Islands. Investigator Sirait. Packstairs Pas. sage 29 fathoms, Cape Jaffa 90 fathoms. Yorke Peninsula. Port Lineonh, and Normanville. Western Australia: Great Australian Bight 60 miles west of Eutela. Victoria. Tasmania. New Sonth Wales. Queensland.

A recent addition (K.579) from Wallaroo, South Australia, measures 17 mm . $\times 15 \mathrm{~mm} . \times 3 \mathrm{~mm}$.

Peronella lestieurt Ts. Agassiz 1841.
Laganum lesucuri L. Agassiz 1841, p. 116.
Type locality. Western Anstralia.
The species was recorded from Fremantle and Albany by Döderlein (1914. P. 490) and hy H. I. Clark (1938, p. 418). The specimen K. 40.3 recorded by IT. T.
 Banksian and Danpiurian Regions. Two large examples from Torke Peninsula, South Australia (K.421), are in the Museum Colleetion and we have carefully compared them with a perfeet specimen from Bronne and find them identical. Thr larger measures $10 \% \mathrm{~mm}$. 90 mm . <12 nim.. and the smaller 95 mm . $\times 00 \mathrm{~mm}$. $\times 10 \mathrm{~mm}$.

Family Fibulariidae.

Genus Feifinocyamua Leese 1778.
Genotype: Echimncyamus angulosus Leske $1778=$ Echinus minutus Pallas 1774.
(Fingland, Mediterranean, North Sea).
Eobinocyamus platytates H. L. Clink 1914.
Echinocyamus platytatus II. I. Clark 1914B, ก. 63.
Type locality. Victoria.
Distribution. South Australian: 12:-200 fathoms, Cape Jaffí, Feachport, Back. stairs Passage, St. Francis Teland, Gulf St. Viueent. Western Australia : King George Sound 12-各 fathoms. Hopetom heach. Tasmanin : Devonport. Lammeston.

Genus Fibularia Liamarek 1816.
Genotype: Fibularia trigona Lamarek $1816=$ Eehinocyamus craniolaris Leske
1778. (Gulf of Suez; Maldive Islands, North Mole).

Fibularta volua Agassiz and Desor 1847.
Fitularia volva Agassiz and Desor 1847, p. 142.
Typo locality. Red Sea.
Distribution. Western Australia: Albany, Broome. North Australia: west uf Torres Strait, 28 fathoms. Madras: Gulf of Manaar. Korea.

Fibularia plateia II. L. Clark 1928.

Fribularia plateia H. L. Clark 1928, p. 477.
Hulotype: Reg. No. K.448. Wallarou Bay, South Australia, 15 fathoms.
Distribution. South Australia: Beachport, Backstairs Passage, Newland Hearl, Wallaroo Bay, Gulf. St, Vincent, St. Francis Island, Cape Borda, Cape Jaffa, Neptune Lslands, depths from 15-130 fathoms. Western Australia: Bunbury, 22 fathoms.

Fibularia craniolaris Leske 1778.
Echinocyamus craniolaris Leske 1778, p. 150.
Fribuleria trigona Lamarek 1816.
Type locality. Gulf of Suez.
Distribulion. South Australia: Xankalilla Bay, Investigator Strat, Backstairs l’assage, P’oint Marsden (Kamgaroo Islaud), Gulf St. Vincent, Neptunc Islands, Spencer Gulf, depths frou 17-25 fathoms. Western Australin: Kiug George Sound, 12-25 fathoms.

There are some hudreals of specimens in thr South Australian Musenm Collection ramging trom Encomnter Bay: South Australia, to King Gerrge Sound, Western Australia. Great Hifferences in general shape aud size are presented, althongh the principal specific eharacters are monstant. The speeies must have a wide distribution, as the British Muscum apecimens are remorded as from Gulf of Suez, also Maldive Islands, Norfh Mole. There doms not appener to be any record of the species from any other Australiau Region.

Suborder NUCLEOLITINA.

Family NUCLEOLITIDAE.

Genus Apatopyous Hawkins 1920.
(ienotype: Nucleolites recens Milne-Edwards 1836, pl. xiv, fig. 3. (New Kcaland).

Apatopygus ocoidentalis H. L. Clark 1938.

A patopygns occidentalis H. L. Clark 1938, p. 497 : non A patopyyus remens Milne. Edwards 1836, pl. siv, fig, 3.
Type locality. Between Rottnest Island and Fremuntle, Western Australia. Distribution. Westem Australia: Rothest Island, Bunbury 22 fathoms.
H. L. Clark (1928, p. 479) referred to the remarlsable oceurrence at Bunbury of a speries of Aputupygus, ant doubtfully recorded it as A. becens, at New Zealand species and the only living representative of the genus, although thore are Aus. tralian Tertiary species. In remarked on the differemes noted in the perlicellarian of the Westerm Australian specimen. Later, Clark (1938, p.497) deseribed a second speeimen of this different Australian species from "bet ween Rotnest Island and Fremante, in ten fathoms". and named it Apatopyrus occidentalis, noting that Vereo's Bumbury sperimen also belonged to that species. Verco's specimen, Ki.478, is now before us and we note that it is considerably smaller than the holotype. The characteristic features of the species are in complete agrement with Clarla's do scription.

Suborder SPATANGINA.

Family HEMIASTERIDAE.

Genus Protenaster Pomel 1883.
Genotype: Desoria australis Gray 1851. (Australia).
Protenaster australis Gray 1851.
Desoria australis Gray 1851, p. 132.
Type Locality. Flinders Island, Bass Strait, Tasmania.
Distribution. South Australia : Murat Bay. Tasmania. Western Australia: Eflen Brook.

A specimen in the South Australian Museum (K .479) from Ellen Brook, Westarn Australia, is typicul of the species, and a further broken juvenile specimen from the same locality is probably that species. An excellent example (K.580) from Murat Bay (Vereo) extends the distribution of this species into South Australia.

Genus Morma A. Agassiz 187!.
Genotype: Spatangus atropos Lamarck 1816.
Morra straia L. Agassiz 1872.
.Moiva stygia L. Agassiz 1872, p. 58.
Type locality. Mediterranean.
Distribution. South Australia; Port Willunga, Port Noarlunga, Sellick's Beach (Zool. Mus., Adelaide University), Kangaroo 1slaud. Western Australia : Broome. Suez, Ked Sca. Andaman Islands.

This Moira species is known from only a few specimens. The only record from the Fliudersian Region mentioned ly H. J. Clark (19:38, p. 433) is a bare test taken by W. J. Kimber at Port Willunga. Clark remarks "that Moire should accur on the southern coast of Australia is certamly astonishing. This record extends the range of the species (and of the genns tou) fully 1400 miles, more than half of which is an extension to the south ${ }^{\text {P/ }}$.

We bave the following specimens at the Museum:
K. 581 . Two partly bare tests, typical; measurements, $50 \mathrm{~mm} . \times 43 \mathrm{~mm} . \times$ 35 mm .; and $45 \mathrm{~mm} . \times 35 \mathrm{~mm} . \times 30 \mathrm{~mm}$. ; colour pale brown; spines remaining posteriorly are whitish. Port Noarlunga, on the beach.
K.515. One bare bleached test, typical ; measurements, $47 \mathrm{~mm} . \times 35 \mathrm{~mm} . \times$ 35 mm . South Australia.
K.514. Two partly bare tests, typical ; measurements, $45 \mathrm{~mm} . \times 35 \mathrm{~mm} . \times$ 30 mm . ; and $35 \mathrm{~mm} . \times 30 \mathrm{~mm} . \times 25 \mathrm{~mm}$. ; colour bleached white; spines in the posterior slit pale brown. South Australia.
K.555. It was taken at. Penneshaw, Kangaroo Island, by the Rev, H. A. Gunter. Length 60 mm ., width 45 mm ., height 40 mm ., being the largest recorded. The test is yellowish white, the spines pale brown, very dense and bristlelike.

No. 715. Zoological Museum, Adelaide University. Two typical specimens, dried test, taken by Prof. Harvey Johnston at Sellick's Beach, South Australia, October, 1928.
No. 24. Zoological Museum, Adelaide University. 'Two well preserved specimens in alcohol from Moreton Bay, Queeusland; tests and bristles are white, evidently from fading.

Family SPATANGIDAE.

Genus Eupatanus Agassiz and Desor 1847.
Genotype: E'upatagus valcnciennesii Agassiz and Desor 1947. (Australia).
Eupatagus valenolennesi Agassiz and Desor 1847.
Eupatagus valenciennesii Agassiz and Desor 1847, p. 9.
Type locality. Australia. (Nouvelle Hollande).
Distribution. Victoria: Port Phillip. Bass Strait: Flinders Island. Thasmania: l'ort Dalrymple. New South Wales: Port Jackson.

The species does not appear to occur in South Australia, and only enters the eastern end of the Flindersian Region from the Peronian.

Genus Gonimaretia II. L. Clark 1917.
Genotype: Gonimaretia tylota H. L. Clark 1917, p. 2\&1. (Kei Islands, between New Guinea and Timor).

Gonimaretta interruppta Studer 1880.

Type locality. Western Australia, 30 fathoms.
The single specimen, K.513, before us, is the one referred to by H. L. Clark ($1928, \mathrm{p} .480$). There is little doubt that this is one of Verco's speciment and therefore came from South Australia or Western Australia.

Genus Eohinocardium Gray 1825.
Genotype: Sputangus pusillus Leske $177 \mathrm{~s}=$ Echinus cordatus Pemnant 1777, p. 69.
(Europe, Korea, Australia, Tasmania, New Zealand).

$$
\text { Echinocardita cordatum Pennant } 1777 .
$$

Echinus cordatus Pennant 1777, p. 69.
Echinocardium australe Gray 1825.
Type locality. Europe.
Distribution. World wide. South Australiat: Port Willunga, American River, Warooka, Yankalilla Day, St. Francis Island 20 fathoms, Guld St. Vincent. Spencer Gulf. Lass Strait: Flinders 1sland. Tasmania. Victoria : Port Phillip. Western Australia : Fremantle, Rottnest Island.

No one appears to have succeeded in separating the southern hemisphere form (E. australe Gray 1825) from E. cordatum. It sems surprising that this variable species should occur all over the world.

Family BRISSIDAE.

(Henus Brissus Leeske 1778.
Genotype: Spatangus brissus unicolor Leske 1778.
Brissus latecarinatuts Leske 1778.
Spatangus brissus var. latecarinatus Leske 1778, p. 185.
Type locality. Red Sea?
Distribution. South Australia, North Australia, Lord Howe Island, Red Sea, Mauritius. Solomon Islands, Xadras, Philippine Islands, Japan, Hawaiian Islands. Samoa.

In the British Museum is a specimen labelled "Adelaide", and H. L. Clark (1925, p. 20) queries the correctness of the locality. I fine lare test from Port Lincoln (No. 347, Zoological Musemm, Adelaide University), confirms the occurrence of this species in South Australia. Length 78 mm ., breadth 62 mm ., height 40 mm . There are black spots on the posterior half of the dorsum, indicating the position of the large globiferous pedicedlariac, while the general colour of the test is pale brown dorsally and white on the ventral, although it is, of course, somewhat bleached. Compared with a test from New Ilebrides, the South Australian speri. men is very close in every detail.

Class H O L O THUROIDEA

Order ACTINOPODA.

Family Holothuridae.

Genus Holothuria Linnó 1758.
Genotype: IIolothuria tremula Gunnerus (Cosmopolitan).
Holotiluria hartaieyert Eiwe 1913.
Holothuria hartmeyeri Ewwe 1913, p. 383.
Type localily. Oyster Bay, Albany, Western Australia.
Distribution. Flindersian.
Holothurta fuscocinerea Jäger 1833.
Holothuria fuscocinerea Jäger 1833.
Type locality. Indo-Pacific.
Distribution. South Australia.
This species was taken in great numbers at Glenelg on July 5 and September 24,1942 , following unusually heavy storms.

Holormurta vagabunda Selenka.
Holothuria vagabunda Selenka.

Genus Stichopus Semper 1868.
Genotype: Stichopus variegatus Semper 1868. (Flindersian).
Sticiopus ludwigi Erwe 1913.
Stichopus ludwigi Erwe 1913, p. 388.
Type locality. South-western Australia.
Distribution. South Australia. Western Australia.

Family DENDROCHIROTAE.

(xemus Cucumaria Blainville 1830.
Cucumiaria squamata Ludwig 1898.
Cucumaria squamata Ludwig 1898.
Distribution. South Australia: Encounter Bay.
Cuoumaria inconspicua Bell 1887.
Cucumaria inconspicua Bell 1887, p. 532.
Type locality. Port Phillip Heads, Victoria.
Distribution. South Australia. Victoria.
Cucumaria striata Joshua and Creed 1914.
Cucumaria striata Joshua and Creed 1914, p. 18.
Type locality. Great Australian Bight.
Distribution. South Australia.
Cucumaria mutans Joshua 1914.
Cucumaria mutans Joshua 1914.
Type locality. Port Phillip, Victoria.
Distribution. Victoria: Western Port and general. South Australia: Gulf St. Vincent. Western Australia : Bunkers Bay, Cottesloe Beach.

Genus Pseudocucumis.

Pseudocucumis bicolumnarus Dendy.
Pseudocucumis bicolumnatus Dendy.
Type locality. New Zealand.
Distribution. South Australia. New Zealand.
Genus Lifotrapeza H. L. Clark 1938.
Genotype: Phyllophorus vestiens Joshua 1914. (Flindersian).
Lipotrapeza ventripes Joshma and Creed 1914.
Phyllophorus ventripes Joshua and Creed 1914, p. 19.
Type locality. Gulf St. Vincent, South Australia.
Distribution. South Australia.

Lipotrapeza vestiens Joshua 1914.
Phyllophorus vestiens Joshua 1914, p. 5.
Type locality. Port Phillip Bay, Victoria.
Distribution. Victoria (general). This species apparently enters the Flindersian Region at Western Port Bay.

Genus Thyone Oken 1815.
Thyone vercot Joshua and Creed 1914.
Thyone vercoi Joshua and Creed 1914, p. 19.
Holotype: Reg. No. K.517. Gulf St. Vincent, South Australia.
Distribution. South Australia.
Thyone nigra Joshua and Creed 1914.
Thyone nigra Joshua and Creed 1914, p. 20.
Type locality. Gulf St. Vincent, South Australia.
Distribution. South Australia.
Genus Colochirus.
Colochirus doliolum Pallas.
Colochirus doliolum Pallas.
Distribution. Flindersian Region.
Colochirus quadrangularis Lesson.
Colochirus quadrangularis Lesson.
Distribution. Great Australian Bight.
Family SYNAPTIDAE.
Genus Trochodota Ludwig 1892.
Genotype: Chirodota studeri Ludwig 1892 = Holothurin (Fistularia) purpurea Lesson 1830, (New Zealand, Sonth America, Bay of Naples, Southern Australia).

Trochodota allani Joshua 1912.
Taeniogyrus allani Joshua 1912
Type locality. New Zealand.
Distribution. South Australia: Kangaroo Island. Victoria: Port Phillip, Western Port Bay, Corio Bay.

Family MOLPADIIDAE.
Genus Caudina Stimpson 1853.
Genotype: Chirodota arenata Gould 1841. (America).
Caudina chillensis t. Miuller.
Caudina chilensis J. Müller.
Distribution. South Australia.

Class CRINOIDEA

Order ARTICULATA.

Family COMATULIDAE.

Genus Comatula Lamarek 1816.
Genotype: Comalula solaris Lamarck 1816. (Australian Seas).
Comatula solaris Lamarek 1816.
Comatula solaris Lamarck 1816, p. 533.
Type locality. Australian Seas.
Distribution. North Australia. Western Australia. Queensland. The species is recorded from East Wallaby Island and Long Island, in the Abrolhos group, Western Australia by II. L. Clark, and is therefore probably extralimital in the extreme west of the Flindersian Region.

Genus Comatulfula.

Comatulella brachiolata Lamarck 1816.
Comatula brachiolata Lamarck 1816, p. 535.
Type locality, \& Atlantic Ocean (in error). South Australia.
Distribution. South Australia : Guli St. Vincent, Spencer Gulf. Western Australia: Koombana Bay 14.5-18 metres rocky bottom, King George Sound. Victoria: Port Phillip. This species is confined to southern and south-western Australia.

Gemus Comanthus A. II. Clark 1908.
Genotype: Alecto parvicirra J. Müller 1841, p. 145.
Distribution of genus. Madagascar, Mauritius, Australia, Fiji, Southern Japan, China etc., Ceylon.

Comanthus parvicirra J. Miziller 1841.
Alecto parvicirra J. Müller 1841, p. 185.
Type locality. "We designate Indian Ocean.
Distribution. Western Australia: Between Fremantle and Geraldton, Abrolhos, Cape Joubert, Cape Baudin. The species is very variable and is very widely distributed in the Indian Ocean and south-west Pacific.

Comanthus trichoptera J. Müller 1846.
Comatula trichoptera J. Müller 1846, p. 178.
Type locality. King George Sound, Western Australia.
Distribution. South Australia: Encounter Bay, Spencer Gulf, Tumby Bay. culf St. Vincent.

Family THALASSOMETRIDAE.

Genus Priomerra A. H. Clark 1907.
Genotype: Comatula macronema J. Müller 1846.
Ptilometra macronema J. Müller 1846.
Comatula macronema J. Müller 1846, p. 179.
Type locality. King George Sound, Western Australia.
Distribution. South Australia: Great Australian Bight about 131° E., Flinders Island, Kangaroo Istand, Kingstom, Eneounter Bay, Gulf St. Vincent, Spencer Gulf, Althorpe Island. Western Australia : Dirk Hartocr Island 7 fathoms, Kiug George Sound. Victoria: Port Phillip.

Family ANTEDONIDAE.

Genus Compsometra A. FI. Clark 1908.
Genotype: Antedon loveni Bell $1882=$ Antedon pmila Bell 188t. (Australia, etc.).

Comisometra incommoda Bell 1888.
Antedon incommoda Bell 1888 A, p. 404.
Type locality. Port Phillip, Victoria.
Distribution. South Australia: Flinders Island 37 fathoms. Victoria. Also recorded from Part Jackson, New South Wales, as Compsometra lacertosu.

Genus Euantedon A. I. Clark.
Genotype: Antedon moluccana A. H. Clark 1912. (Tahiti, Moluccas, China, Australia).

Euantedon paucioirra II. L. Clark 1928.
Euantedon paucicirra H. L. Clark 1928, p. 369.
Holotype : Reg. No. K.37, Gulf St. Vincent, South Australia.
Distribution. This species occurs on the reef at Marino, South Australia.

RFFERENCES CITED.

Agassiz, A. (1863) : Proc. Acad. Nat. Sci. Philadelphia, 350-360.
Agassiz, A. (1869) : Bull. 31.C.Z., i, pp. 17-28.
Agassiz, A. (1872) : Bull. Mus. Comp. Zool. Harvart, iii.
Agassiz, A. (1873) : Revisiox of the Eehini.
Agassiz, A. (1879) : Proc. Amer. Acad., xiv.
Agassiz. L. (1841): Mon, Eeh, Λ nat. Echinus.
Agassiz, L. and Desor, E. (1846): Anr. Sci. Nat., iii (6).
Agassiz, L. and Desor, E. (1847) : Ann. Sci. Nat., iii (7).
Bell, F. Jeffrey (1887): Proc. Zool. Soc., London.
Bell, F. Jeffrey (1888): Proc. Zool. Soc., London.
Bell, T. Jefirey (1888a) : Amn. Mag. Naf. Hist., vi (2).
Brandt, J. F. (1835) : Prodr. Descr. Anim.
Brock, J. (1888): Zeit. f. w. Zool., xlvii, pp. 465-ā39.
Clark, A. H. (1907): Sniths, Misc. Coll., l, pp. 343-364.
Clark, A. II. (1908): Smiths. Misc. Coll., lii, pp. 199-234.

Clark，A．H．（1911）：Mem．Avstralian Mfug．，iv，pp，706－804．
Clark，II．L．（1909）：Mfem．Austr．Nous．，iv，pp．519－564．
Olark，H．Is．（1909a）：Bull．Mrs．Comp，Zonf，lii，pp．107－1．3G．
Clark，II．L．（1911）：Bull．UT．S．Nat．Mfuso，lxxv，pp．1－301．
Clark，H．L．（1912）：Mem．MTus，Comp．Z̈ol．，xxxiv，pp．20y－383．
Clark，H．L．（1914）：Rec．IV． 4 ust，Mus．，i，pp．132－173．
Clark，H，L．（1914a）：Mem．Mfus．Comp．Znol，slvi．
Clark，H．L．（1915）：Mem．Mus．Comp．Zonlo，xxv，pp．163－376．
Clark，H．I．（1916）：Findeavmir Biob，Rcs．iv，pp．1－123．
Glark，H．I．（1917）：Mcm．Mous．Camp，Zonl，，xlvi，pp．81－283．
Clark，TI．L．（1923）：Jowr，Linn，Soc．，Zoolo，xxxv．
Olark，H．Id．（1925）：Cat．Rec．Sea－urchins，Brit．Mrus．

Clark，I1．L．（1938）：Mrom．It ws．Cump，Zool．1r．

Coleman，H，L．（1911）：Mcm．Ahsfr．Mus．，xiv（4）．
Delle Chirjc，S．（1928）：Mem，Anim．sans Vert，Napoli，iii．
Uendy，A．(1898) ；Jour．Linn．Soce，xxyi，p， 1897.
Dendy，A．and Ilindle，E．（1907）：Jour．Jimn．Soc．，Zput．，xxx，pp．95－185．
Döderlein，J Js（1896）：Jens．Dontaschro，viit，pp，473－488．
Dídorlnia，Is。（1911）：Jap．Euryalae，xi（5），pp．1－123．
Döderlein，I．（1914）：Famna Siidreet Austral．，iv，Ip．440－492．
Döderlein，L．（1015）：Jahrb．Nasamu，Ver，Nolurhi，Ixviii．
Döderlein，L．（1917）：Dé Asteriten der Sibaga－Exped．，exci，pa，1－19．．
Döderlain，L，（1920）：Siboga Kep，Ixxxviii．
Erwe，W．（1013）：Holuth．in Din Fama Sudwest Anatral，iv，
Fikber，W，K．（1908）：Smiths，Mfisc，Coll．，lii（1799），pp．87－93．
Forbes，E，（1839）：Mem．Wernerian Soc．，Flli（1），pp．114－129．
Forbes，E．（1845）：Linn．Trans，yix．
Gray，d，E．（1825）：Anno Philo，xxv，pp．423－431．

（tray，J．E．（1847）：Pron．Zoo7，Suc．pir．70－83．
Gray，J．E．（1851）：Ann．Nrag．Nat．Ifisto，vii（2），pp．130－144．
Glisy，J．I．（1855）：Cat，Ree，Eichinida in Brit．Mus．
Gray，J，E＋（1866）：Syn．Starfish in Brit．Mus．
Hawkins，T．（1820）：Geological Magos lvii．
Moyle，W，E $, ~(1884):$ Proc．Roy．Snic．Eidin．，xif．
Hutton，F．W．（1882）：Cat．Echinoderms，New Zealand，

Joshua，F．C．（1914）：Proe．Roy，Snco．Victoria，m，oo Xxrij，pp 1－11．
Toshua， $\mathrm{F}_{2} \mathrm{O}$ and Crmd，E，（1914）：Trank，and Pron，Roy，Soc．，S．Austr．，exxix，pp．16－24．
Kochlor，R．（1904）：Ophiurno de b＇Nxped．du Siboga．
Kochler，R．（1905）：Siboga Reports，xlv（21），
Koohlor，R．（1907）：Fiaunas Sinlyest．－Australicns，í pp，243－254．
Lamarcls，J，B，P．A．do（1801）：Sys．unim．sitns vert．
Lamarels，J．B．P．A．de（1816）：Hist．nat．des anim，sans vert．，ii，pp．547－658．
Loske，N．G．（1778）：Additaments ad Kloin．
Linck，T，TI，（1733）：De stellis marinis．
Linné，C．（1758）：Syatema Naturac．，Ed． 10.
Livingstone $\Lambda_{1}, \mathrm{~A}_{1}(1933):$ Fieo．Aust，Mruso，xix（1），pro 1－20．
Livingstone，A．A．（1933）：Rec．A火st．Mfus．，x｜x（2），pp．21－0．
Livingstone，A．A．（1934）：Rece，Aust．Mruse，xix，pp．17p－180，
Ljungmau，A．V．（1866）：nfv．Knngl．Fet．A7atl．Fork，xxivi，np，163－166．．
Iudwig，H．（1898）：Holothurion in Frgebn．der Hamburg．
Liitken，O，（1856）：（1857）Bidrag vil Kund．Fidenshi．Meiluck．，pp，1－26．

Liitken，C．（1864）：Krit，Bem．Fid．Jed．，pp，123－J69．

Lyman， T_{1}（1879）：Bull．M，C．Z．，耳j，pp．17－83．
Lyman，T．（1882）：Chullenger Ophuнrans．
Milne－Edwards（1886）：Cuvice＇s Fegทe Amimul，Thus．Eat，Zoophytes．
Mortensert，T．（1903）：Ingolf Ecels．，i．
Mortensen， $\mathrm{r}_{\mathrm{c}},(1004)$ ：Dansk．Fih．Selsk．Skr．，vii（1），pp，1－124，
Mortonsen，T．（1904a）：Siam Ech．
Mnrtonsen，T．（1928）：Vid，Dfedत，Dansk，Nat，Foor，Copanhagen，lxxxo．
Mïllers J．（1841）：Aroh．fo Natyrge，vii，pp．139－148．

Miller, J. (1846): Monatsbr, d. K. Preuss. Aliad. त. Wiss.
Müller, O. F. (1776) : Prod. Zool. Dan.
Mitler, J. and Troschel, F. (1840): Archiv, f. Nuturg., vi, pp, 318-326.
Minller, J. and Troschel, F. (1842): Bystom dup Asteriden, pp. 1-134.
Müller, J. and Troschel, F. (1844): Archinf(. Naturg., x.
Norman, A. M. (186z): Ann. and Mag. Vab. Miol., xv.
Pallas, P. S. (1774): Spicilegia Koulugica, x.
Pemant, T. (1777): Brit. Zool., 4thed., iv.
Perrier, E. (1875) : Archiv. Zool., expér, et gễ., iv, pp. 2(55-450).
Perrier, E. (1876): Archiv. Zool. expéro, ct géno, pp. 1-104 and 209-304.
Perrier, E (1891) : Mission scieutifque Cap Horr, Zoologie, vi, 198 pp-1-198,
Pomel, N. A. (1883): Cless. Moth. Ech.
Sladen, W. P. (1883) : £ourn, Linn. Soc. Zonl., svii, pp. 214-269.
Sladen, W. P_{+}(1885) : Challenger Varrative.
Sladen, W. P. (1880): Challenger Asteroidea, xxx, pip. 1-893.
Stimpson, W. (1855-6) : Pror, Acad. Nat. Sci. Philadelphio, vii, pp, 386-387.
Stimpsou, W. (1857) 士 Jour. Bosfon Soc. Nat. Hist, vi, pp. 594-526.
Studer, T. (1880): Dbersicht wber die "Gaefles" Echinoiden Monastb. If. 1 kut. Wiss, Brylin. pp. 861-8655.
Tate, R. (1882): Proc. Roy. Soc., S. Austr, V. pp. 74-75.
Tenison-Woods, J. F. (1878) : Proc. Linn. Soc., N.S.W., ii, pp. 145-176,
Tenison-Woods, J. F. (1879) : Trans, Proc, Phil. Soc. Adelalde.
Tenison-Woods, J. E. (1880): Proc. Limn. Soc., N.S.IF. iv, pp. 282-991.
Valenciennes, A. (1846) : Voy. Venus: Foophytes.
Verrill, A. F. (1876) : Bull. U.S. Nat. Mus, iii,
Verrill, A. E. (1913): Amer. Jour. Sci., xxxv, pp. 177-485.
Verrill, A. E. (1914) : Marriman Alasha Series, xiv, pp. 1-408.
Wyville-Thomson, Sir C. (1873): Depths of the Sca.

FKPLANATION OF PLATE.

Plate xii .
 laris kimberi subsp, nov., lateral view, $\times 0 \cdot 5$.

IDIELLANA, a NEW NAME for rhe PREOCCUPIED GENUS IDIELLA STECHOW (COELENTERATA—FAMILY SERTUIARIIDAE)

By BERNARD C. COTTON AND FRANK K. GODFREY.

The genus Jdicha Braner and Bergenstamm 1890), Denkschr. Acad. Wiss. Wien, $56(1), 154$, was first used for a genus of Diptera in the Insecta.

Idiella Stechow 1919, Zool. Jahrb., Syst., 12, 106, was introduced as a new name for Idiu Lamouroux 1816, Hist. 1'olyp., 199 prencenpied by Idio Muebner 1809, Eirste. Zutr., ©; Zutr. Samml. Exot. Schmett., 1. pl. xxiii, a arents of the Lepidoptera. Idiclla Stechow 1919 is therefore not available so we introduce the name Idiellana for the genus belonging to the family Sertularidae in the Phyllum Coelenterata.

Idiellana is represented in the Flindersian Regrion, Southern Australia, by I. pristis Lamouroux, a species recorded from Victoria and wonth-western Australia. We make this correction here as we are preparing an annotated list of pertain Southern Australian Invertehrates which we hope to publish this year in Publica(ion No. 3 of the Malacological Socicty of South Australia.

IDIELLANA, A NEW NAME FOR THE PREOCCUPIED GENUS IDIELLA STECHOW

(COELENTERATA - FAMILY SERTULARIIDAE)

By Bernard C. Cotton and Frank K. Godfrey

Abstract

Summary The genus Idiella Brauer and Bergenstamm 1890, Denkschr. Acad. Wiss. Wien, 56 (1), 154 , was first used for a genus of Diptera in the Insecta.

Idiella Stechow 1919, Zool. Jahrb., Syst., 42, 106, was introduced as a new name for Idia Lamouroux 1816, Hist. Polyp., 199 preoccupied by Idia Huebner 1809, Erste. Zutr., 5; Zutr. Samml. Exot. Schmett., 1, pl. xxiii, a genus of the Lepidoptera. Idiella Stechow 1919 is therefore not available so we introduce the name Idiellana for the genus belonging to the family Sertulariidae in the Phyllum Coelenterata.

A SUGGESTED RECONSTRUCTION OF THE MISSING ANTERIOR TEETH OF THE COHUNA SPECIMEN

By T. D. CAMPBELL, UNIVERSITY of ADELAIDE

Summary

The accompanying photographs are published to illustrate an attempt at what is considered a more feasible reconstruction of the missing anterior teeth of the Cohuna specimen than that presented in the plaster replica which has been produced for museum purposes.

A SUGGESTED RECONSTRUCTION of the MISSING ANTERIOR TEETH of THE COHUNA SPECIMEN

By T. D. CAMPBELLL, Universtyy of Adelaide.

Platexiii.
The accompanying photomraths are mabinhel to illostrate an attempt at what is considered a more fasible reconstmection of the missing anterior teeth of the Cohuma specimen than that presented in the plaster replica which has been produced for muserm purposes.

The plaster models available in the South Anstralian Museum are (1) a replica of the Cohma cranium, containing reconstructed anterior teeth; and (2) a cast of the upper jaw only, representing the original arch with its front teeth missing. The present reconstruetion has been made by using a separate model derived by dental impression methock from the upper daw east. The missing teeth were added in aceordance with the writer's conception of what the anterior part of the dental Wreh might have been like; and hased om a previnte extensive study of Australian aboriginal teeth and jaws. This revised reconstrotion is put forward only as a teutative improvement on that given in this Muscum's plaster cranial replica (1) and is mainly for display purposes. As mo complete set of measurements of the teeth and jaws of the origimal specimen is available, nor any knowledge as to how faithfully the plaster replica represents the original. it has not heen possible to attempt a reconstruction hy thoroughly eritical methods. However. it is felt that this suggested fresh uovel is an imporement, as it does away with the cumbersmme and incongruous design of the incisors in the origimal reconstruction. The intart, major portion of the Cohma dental areh is a typical picture of a laxgesized aboriginal dental arch, and there secms to be no need to depart radically from the usial human features of tooth and areh form exeepting that Cohuna man probable possessed unusually large anterior tecth. But even allowing for this latter prohability, the merest dance at the official reconstruction shows the size of the lateral ineisors, for exampt, to be wht of all reasonable proportion to that of the natural canine and premolars. And these, with the type of central incisors given, make the front of the arch putiroly foreign in appearance to that Which seems fairly olviously inferved by the major protion of the dental asch which is intace in the original fud. Furthermore the attrition of the pusterion teeth presents a picture which is typical of aluriginal dentitions; wheres the type of wear sugrested hy the reconslructed incisors also helps to make un antirel. incongruous effect. The writer's reconstruetion definitely lessens the length of dental areh and redures the amomen of promathism expressed by the official east.

EXPLANATION OF PLATE.

Plate xiii.

a. Palatal view of the plaster replica of the reconstructed Cohuna dental arch-referred to as (1) in the above text.
b. Anterior view of same.
c. Palatal view of the present writer's version of the Cohuna arch ; carried out on a plaster copy of model (2) referred to in above text.
d. Anterior view of present writer's reconstruction.

Thanks are due to Miss G. Walsh of this Museum for her careful preparation of the illustrations.

OOHUNA DENTAI, IRTH

RECORDS

OF THE

SOUTH AUSTRALIAN MUSEUM

Vol. VII, Nó. 3

Published by The Museum Board, and edited by the Museum Director (Herbert M. Hale)

$$
\text { ADELADE, } \mathrm{MAY}^{2} 30,1943
$$

ENDOPARASITES FROM THE SUBANTARCTIC ISLANDS OF NEW ZEALAND

By T. Harvey Johnston and Patricia M. Mawson, University of ADELAIDE

Summary

Toward the end of 1907 an expedition organized by the Philosophical Institute of Canterbury, and supported by the Government of New Zealand, visited the subantarctic islands of that Dominion : The Snares ($48^{\circ} \mathrm{S} .167^{\circ} \mathrm{E}$.), Antipodes Island (49° 41^{\prime} S., $178^{\circ} 43^{\prime} \mathrm{E}$,), Bounty Island, Auckland Island ($50^{\circ} 50^{\prime} \mathrm{S} ., 166^{\circ} \mathrm{E}$.), and Campbell Island ($52^{\circ} 30^{\prime} \mathrm{S}$., $169^{\circ} 10^{\prime} \mathrm{E}$.). The positions stated are those given by various authors in reports appearing in "The Subantarctic Islands of New Zealand". The latter, edited by Chilton (1909), contains reports on various groups of organisms collected by the expedition. Macquarie Island ($54^{\circ} 31^{\prime}$ S., $158^{\circ} 58^{\prime}$ E.) is excluded, as it belongs politically to Tasmania.

ENDOTARASITES FROM TuE SUBANTAR('TIC ISLANI) of NEW ZEALANI)

 Cunterhury. Hud supported by the Coyboment of New Toaland, visited the simb. amaretice istames of that Dominion : The Sunares ($\left.48^{\circ} \mathrm{S}, 167^{\circ} \mathrm{F}.\right)$, Antimodes T:lam ($\left.19^{\circ} 47^{\prime} \mathrm{K} ., 175^{\circ} 43^{\prime} \mathrm{E}.\right)$, Bounty Island, Auckland Istand ($50^{\circ} 50^{\circ} \mathrm{S} . .166^{\circ} \mathrm{K}$.),
 given by various mathors in reports appenting in' The Sulmurardic falands of New
 of organisms collected by the expedition. Maenuarie Island ($54^{\circ} 31^{\prime} \mathrm{S}$., $158^{\circ} 58^{\circ} \mathrm{H}$. .) is excluded, as it belongs politically to Tasmania.

The parasitio helminthe ohtainad were not doalt with in the afficial report. exsent for a casual reference by Waite (1903 , ativ) to the presence of Heshworms in, and paternal thaces (Tristomn sp.) on, fish. The small collection thas, lator. handed over to us hy Sir W. I3. Benham, F.IR.S., who aceompanicd the expedition as one of its zoologists. The material comprised heterocotylean trematomes from
 from the two species of fish finst mentiomed, from N. mierolepiflota from Anckland
 from Port. Chalmars, New Zealand : nematodes from a seal, dretorephohus honken. from ('amphell [sland; and wmatomes from a hird, Pholdaroromar colensoi, from Ancktand Islamels.

We desire to acknowledge our indehtedness tu Sir W. B. Benham for mivinge ns the omportunity to study the collection. I'he work has beon carried ont in comncetion with the Commonwealth Researeh grant to the Thiversity of Adelaide. Thu material has been deposited in ther Sonlh Ansmalian Mnsenm.

Some of the islands belonging to the aroup have been visited by other seientife expeditions: Auckland Islands by D'Urville in the "Astrolabe" and 7olec (1839) ; "The Porporise" (Wilkes' U.S, Explorine Expedition, 18:89) ; "Erehus" ami "terror", 18.10 (Sir dames Clark kos-Sir o. D. Ifonker being a member of the scientifie staff) : National Antaretic Expectition (Capt. R. F. Seott) in the "Dismover" (1904) ; and the "Aurova" in Jnly, 1912, durimg the first shartaretie

 (iun to observe the transit of Venus, 1874 (Dr. Filhol was the naturalist); Ball in Hes "Anlaretie", 1894, Borehgrevinck in the "Southern Cross", 1900. The "I'errat Nova" (Sicott's second Antaretic Expedition) pussed nom Aubkland, Campbell and Ampondos lslands on its return voyage 10 New Yealand (1913) but did not visit any ol then. Auckland and Campbell fstands were visited by Kirk in 1890) Alll by Wutton in 1900.
hatasitie material from the region was identifed by Chatim (collected by Fillob during the french expedition in 187.), but his report is unfigured and his acombts are very unsatisfactory and in some cases he did mot indicate whether his
 Wate ($19(09 ; 1916$) made castad reference to some parasites of the fish from the

'Thedominant lishes of the antaretio amil subantaretic consts and istands hedony (10 the Nonntomidare and, 10 a less extent, to clasely related families of the Noles-
 Hhich hata mang spectos. eqperially in the American sector where the Antaretio and

 ably knows to all who had visided these subantaretic landr. on aceount of the patasiter which inlowad the flesh. while revalsion was oceasioned to some be a mere wient or hamallurg of the fish, due to the presence of external parasiter. The former are larvol nematodes and the later are monogenctice trematodes. Anisulis darvae have alvends becn recorded as occurrius in the peritoneal rewion of three spectes
 acomting (o Norman), N. colbectitand No marocephate. The adult stage of these

 (hat istamd (olohnstom 1938, 18, 19)). Our presem sthdies indicate that the flesh-
 speries belonging to a ralated pions, Porrocascum.

Paminobenedenia notothenlae Johmsion.

This rather large heforocotrlean trematode was deseribed by one of un (1931, $01(0 ; 1937,5-18)$ from material collected by Sir W. B. Beulam trom the fish. Nubthemin colbectia and N. muncrocephulwo from Antipodes Island. P. nototheniac Was also recorded from the laller species from Macguarim Istand where it was ent. lected he tho Anstralasian Autaretis. Expedition. They were fonnd pliding over the surface. Waite ($1909,59 t: 1!11(6,689)$ mentioned that many specimens of
 Boshlams had identified as Trristomos app.

 191(i). (ifi).

Pornoration dentilens (Krabbe).

This widmy distributed mematode parasite of seals has num heen idenfifion
 Uf" this satel includes also the Anclitand Islands and fore suates.

Latral stages (flosh woms) were eollected from the lollowine fish, Mombor

 Ghames. Trenes it is prohable that this small homys will be fonnd to be sintarlas
 renne op these fteshworms in dimblhemin colloreti at dutpodes Islant and in

 of the mhlt stage in the elephant seal and leoparol som at the istand has already
 Find idemified from drequatin (sland by dohmstom (1088, 27). it was assmmed (lain the flesh-woms referped 10 by the observers montioned above were perhaps uf the same kind, and wew aneordingly recorded us dmankis sp. howh it was
 (19898.30).

Fahl (1938) has aiven an exepllent aceont of the process of (neapsulation (1) the darvan of I^{\prime}. decipimes in rarions deropean marine fish.

 Eshat, though Waite (1909, 581) reended the presence of both specing off the

Baylis (1200 , 256 and fondote) mentioned having examined material (in the

 spectumens holonged to the "Chablomer" and "Dispovery" colleetions respectively and hul bem iclentified by Limatow as Ascovis sprimpligern. Linstow hat alpetady recomed the species from P. vemmosels from Kergelan ("Challenger" Repurts). amd published a very shom xeport (1902, 288) om the mematocles and costodes bronght had: lig the "Southem (ross" Experdition io the Antaretice all these collections heine housed in the British Masenom. The "sont hern Cross" visited ("amp-

 at the dueklands. F'rom the formonge remulis there secms to lie liftle denth that

The material relfored to by Baylis as having been taken from P. pompheti was Whtumed by the "Southern Cross" from Campledi Istand, and mot by the "Disenvory". We have acemolingly so indicated it in the host-parasite list at thr ont of this paper. Whe species has heen eollected by one of ha in an adjacent subs

 purpurascens. The larval stages of (! sphendigeram can be expected to be found in subantarctic fish. We have already reemded the adult stase from four speceics of Anstatian cormorants, as weld as from some allied bivids (Johmstou aud Mawnon $19+1,111$).

> ANisARIS nimplex (lind+) larva.

Mony closely-coiled (neapsulated larvac (Anisolits sp.) from hedow the morifomenm of the barmentat. Thysites atan, were ohtained at l'ort Clablmass. Sonthern New Yealand. These larvate will be dealt with in a paper now in preparafinn relating to some nematodes tirom Λ ustralian fish, the parasite being abumbut in harranota from sontherns Anstralim waters. The larvae are suggestive of A. simplex whichocens in dolphins in many parts of the world, inchuding Anstralia und New Zealand, from both of which regions we have already reported il (Johnston and Thwson $1941,43: 3 ; 194,18.3$). We know that dolphins prey upon barracouta as well as on many other kinds of fish. In a later part of the report we indicate that secaris filholi Chatin probably helongs to the same species as theat infesting the Inaracouta so commonly.

Ohatin's speches of l'aramitras.

(That in (1885) gave brief matigured descriptions of some parnsites from (inmpbell Istand and New \%ealand. They inchuded Spirophtore compholli from a lish,
 locality being stated, lont it must have been New Kealand; Ascuria filholi from fish, Witlont any ucation of species on levality i Igomancma comphellifrom the flesh of
 Aplery.e. whose focality must have been New Zealand. Brief mention of Chatin's phorisites was made by ment us (Johnstom 19:8, 27). We will now eonsider each of the threes species tilkom from fish.

Ascarobitio camprardit (Chatia) Juhnstom and Muwson.
Syra Spiroptera ampla! li Chatin (1885, 37).
The host was saill to be Antotacmit fithoti, an error for Notolhemik filholi. The
 organs resembling those of spromb tolpote as deseribed by E. Blanchand in 1849. Nother dimensions are given and the acmunt of the or watization is quite general. The main distinguishing features seem to be the small oval mouth surromoded by a thick labial pad on chshion the prespace of membanous expansons on cither side of the morth wiving the head end a datacteristic apparance; the presence
 mongul spicules. We think that it may be a spmeces of Asctrophis and accordingly list it provisionally as Asentophis comporlli.

The host sjecies. Notothoma fithoti, was pondy leseribed by sallatye in 1880 and foes not serdu to have been recogrized simee. The name is probably synonywous
with that of one nf the threer species neourring commonly in the area. N. colbcetio serms the most likely, judring form Ebulenger's symonsis of the speecies (1902, 184) cund, gl^{\prime} su, the name V , fitholi would have mionity.

 siated to the $18-i$ is mm. lons, with its mouth surounded by a thin fold without. Anfnte bapillar on tubereles (lips were thus presumably not well difterentiated). and with the orenphagns shondre bud wideniug to pass into the intestine. Male and lemate otgans werre referped to in spite of the assigmment of the parasites to
 reasomable to assume that hase flashwoms which parasitize various species of fish,

 in the waters af the other subataretic istands. A. cumplefli is probably a larval Anisakine worm and we propose do place it mades the synomyny of Porocaremm decipiens in spite of some of the features mentioned by Chatin.

Ascarts filmold Chatin (1885, 39-41).
Sivn A. Mrlsumis (Chatin (1885, 41) (=lurva of Ansokis simplex).
A. fithoti was said to have beeth nbtained from fish, but whether at Canplell Indand on in New Younand waters, was not stated. The following particulars were given: drovare lengeth sifimm: hody fairly thick and relatively wide; head remim
 prominent lips: and the assophang harder distinct trom the intestiue, both having tho same dinnotor. A shom atcount of the male and female systems was given and How whendes were said to be apmoximately equal. The characters were stated to place the species (which he also called A. nelsonis) between Ascaris wotundata and i. comstricte. Chatin's romarlis suggest that he mas have been dealing with adnlt. woms matad to Anisakis and Paromisulis, but it is quite likely that he misinterpreted varioms stractimes an genital organs, just as he must have done in the case of his Anamonema cumphelli. Species belonging to Paranisakis possess intermediate lips.

A, rotmulata lual, is the lype of Anacanthorheilus. Wuelker 1929 which has three poonly dopeloperl lips and has so interlabia. Its species, in the adult stage, wewn in sharks and rays, while the larrae infest marine telensts where they are fomad rolled up on the riseera and peritonem. Whelker (1930), 14) reported that. these larve (which he firured) were often refered to under the group names,

Ascoris ronstrinh Rind., a darval form l'om various kinds of European fish was placed by stossich (1896) as a symonym of A. cotasularia. Sinstow (1880) hat previonsty raberal lo their simitarity. Baylis attemperd to disentangle the con-

 vionsly identified as A. comstribta (1916, 363), but one of his figures (pl. 1, tig. 1)

lisent papers indicate that porrocacerm larvae can be oxeluted from
 axtent by thosent Contracuceum. The probability is that the true Ascuris copsularia
is the eneapsuled larval stage of 2 misukis simplex, a widely distributen paraste of dolphins and porpoises.

We have already stated eadiay in this report that chasely-coled larvac necur commonly in the peritoneal and mesenteric tissues of marine fish (inclading the burvencota) and that they befone to a miseliso probably A. simplex from dolphins.

The fact that Chatin used the name: Asporis molsomis in his areoment of A, fithon may indicate that the woms were collected in the vicinity of Nelson, on the shuthern whores of Cook Strait. New Zaland, from which locality we have alrady recurded
 shon and Mawson 1942, 18:3). We sugyest that Asemeris fithoti and A. Melsnais
 in the synonymy of Anisekes simpers and that the locality for Chatin's species was New Zealand.

HOST'PARASITE LIST.

The following ablureviations are uced F FTV, Frenels Expectition to olserve the Transit of Venus, SANZ, Expedition on the Subantaretic Islauds of New Yraland: sC!, "Somthern Cross" Antaretie Expedition; 'l'N, "Terra Nova", Sentl"s semenm Antarctic Expedition; J. \& M. for fohnstom and Mawson.

Host.	Locadaty ant Repenition.	「\asitite.	
Notothenia fitholi	Campresll I, FTV	Spiroptera campuelli = 1staraphis compuctli	$\begin{aligned} & \text { Clistion } 1885 \\ & \text { J. is M. } 141 \text { lis } \end{aligned}$
N. microlepidota	$\begin{aligned} & \text { Aucklands } \\ & \text { Snares } \end{aligned}$	Porrurterents denipirys	.f. © M M . 1 !1-13
N. maorocephala	Antipodee, SA:NZ	Porrocaecum recipiens PaEudnbpuedenianototheni	$\begin{aligned} & \text { J. \& } \$ 1.1946 \\ & 3.1931,1937 \text {; J. \& ML. } 1943 \end{aligned}$
N, colberki	Antipodes, SAN\%	Porrocatman decipiens Pseudobencilenia nototherim	J. \& M. 164: J. $199 \mathrm{I}_{\mathrm{i}} 1937$; J. © M. 1943
Mhorrbasolea fapirina	Camplell I, SANZ	Porrocarern deaticha	J. \& M. $794{ }^{\circ}$
Thyrsites afun	N.Z., SANZ	Anisatis simpler	IT. © 11. 194:
Fish	Camphell I, FTV	Agamonemu campbelli = Porroenceum decipiens	Chation 1885 J. \& M. Tifin
Fish	Jow.? FTV prob. N.Z.	Asem is that? $=$ Aniaklis simplex	(Thatin 3885 J. \& M. 1418
Phalacrocorax molensoi.	Aucklands, SANZ.	Conlonatermm spmenligromm	d. \& Mr. 191:
P. campbelli	Campuell $\mathrm{I}_{4} \mathrm{SO}$	C. spicidigermm	Baylis 1930; T. S M M 1948
Dinmedera melanophris	Off Campleell I, T'N	Kathlechar senti $=$ Contrastecam neolli	Leip) \& Attr. 1014: 1,115 Paylis 1900
Arefoce phatus hookheri	Cumphell I, NANZ	Ponromitiman drajperns	J. \& M. 1943

REFERENCEA OITED.

Aingworth, G. F. (1915) : Mapquarin Island: in Mawson's The llomp of the Elleward, ii, chaptere 25-27.
Baylis, H. A. (191fi): "Some Ascariels in the British Muscum" Parasitolo, viii, pp. 360-3is".
 2lit.

Chatin, J. (1885): "Htwhinthes de l âle Camplell et de lis Nowelle Zelande". Bull. Sot. Philomat., Paris (7), ix, pp. 3f-i3.

 Trans. N. Zc'al. Enst.o xi (1878), D11, 337-343.
Inhnston, T. 11. (1931): "Now trematnder trom the Susantaretic and Antaretic ". Austro ofour. Exp. Bial. Mef. Seion vii, pH. 91-98.

 Ser. $C, \times(5), 31 \mathrm{pr}$.

Johnston, T. H. and Mawson, P. M. (1941) "Ascaroid nematodes from Australian birds". Trans. Roy. Soc, S. Austr., lxv, pp. 110-115.
Johnston, T. H. and Mawson, P. M. (1942): "Remarks on some parasitic nematodes". Rec. South Austr. Mus., vii, pp. 183-186.
Kalıl, W. (1839) : Nematoden in Seefischen, I. etc., Z. f. Parasitenk., x, pp. 415-431.
Leiper, R. T. and Atkinson, F. $1 / .(1914)$: "Helminths of tho British Antaretic Expedition". Proc. Zool. Soc. (1914), pp. 220-226.
Leiper, R. T. and Atkinson, E. L. (1915): "Parasitic worms, ete.". Brit. Antarct. ("Terra Nova'") Exp. Zool., ii, pp. 19-60.
Linstow, O. (1880): "Helminthologische Untersuchungen". Arch. f. Naturg., xlvi (I), pp. 41-54.
Linstow, O. (1902): "Nematoda, Costoda", Rep. Nat. Hist. Coll. "Southern Cross", p. 285.
Sharpe, R. B. (1902): "Bixds". Rep. Nat. Mist. Coll. "Southern Cross", pp. 106-173.
Stossich, M. (1896): "Il gencro Ascaris"", Boll. Soc. Adriat. Sci. Nat. (Trieste), xvii, pp. 9-120.
Waite, E.R. (1909): "Vertebrata, etc.". Subantarctio Islands of New Zealand, ii, pp. $542-598$.
Waite, E. R. (1916): "Fishas", Austr. Antarct. Exp.Sei. Rep., Ser. C., iii (1), pp. 1-92.
Wilson, E. A. (1907): "Aves". Nat. Antarct. Exp. Nat. Hist., ii, Zool., 121 pp.
Wuelker, G. (1929): "Ueber Nematoden aus Nordseetieren I", Zool. Anz., Ixxxvii, pp. 293-302.
Wuelker", G. (1930): "Ueber Nematoden aus Nordseetieren II", Zool. Anz., Ixxxviii, pp. 1-16.

AUSTRALIAN ACARINA OF THE FAMILY TRICHADENIDAE

By H. Womersley, F.R.E.S., A.L.S., Entomologist, South Australian Museum

Summary

Family Trichadenidae Oudemans 1938.
So far this family comprises only the two genera Trichadenus Rondani 1870 and Raoiella Hirst 1924, both of which are now known to occur in Australia. As with the closely related Tetranychidae all the species are phytophagous and of economic importance.
The two genera may be separated on the structure of the tarsal claws and empodium as follows:

1. Claws distinctly claw-like and with a pair of lateral long clavate tenent hairs; empodium bifurcate with ciliations. Genus Raoiella Hirst 1924.
2. Claws modified, not claw-like, bifurcate, the inner branch short, with ciliations,
outer branch long, seta-like with clavate apex; empodium bifurcate in apical half, stem and branches with ciliations. Genus Trichadenus Rondani 1870.

AUSTRALIAN ACARINA of the FAMILY TRICHADENIDAE

By H. WOMERSLeY, F.R.E.S., A.L.S., Fntomohocist, South Australian Musfum,

Fig. 1.
Family TRICHADENIDAE Oudemans 1938.
So forr this family comprises only the two genera Trichedenus Rondani 1870 and Rooiflo Itirst 1924, both of which are now known to oceur in Australia. As with the closcly related Tetmonehidae all the species are phytophagons and of economic impertan"e.
'Thu two genera may be separated on the structure of the tarsal claws and empodimm as follows:

1. Claws distinctly elaw-like and with a pair of lateral long clavate tenent hairs; empodium hiftureate with piliations. Chenus Ranirlla IIirst 1!日e
\therefore Claws modificd, not clars-like, bifureate, the inmer branch short, with ciliations, outer braneh long, seta-like with clavate apex; cmpodium bifurate in apical half, stem and braneloce with cilations. Genus Trichartenus Rondani 18f!.

Gemus 'Irmemadenus Rondemi 1870.
(3ull. Soe. ent, ital., ii, 168 (genotype Trichadenus sericariae Rondani 1870) $=l^{\prime}$ sendoleptus Bruyant 1911, Zool. Anz., xxxvii, p. 340 (genotype I'seudotophus arechavaletae bruyant 1911).
According to Outcmaus, Tijds. Enom., Ixxxi, Verslag, p. vii, Banks' Stig: meters flomidanus (11.S. Dept. Agric., Rept. 108, 1915. p. 36. fig. 47) is a Pseudo. leptus, and Psotdoleptus Bruyant 1911 is synomymous with Trichudenus Rondeni 1870.

Tricimapentus australiantis h.sp.

Fiy, A-H.

Description: Q Length 410μ, width 190μ, elongate oral but with a conspicuous ponsifiet inn and sufure het ween the proterosomatad hispidesoma. Cnticle dorsally and ventrally grammate striate. Mandibles long and styliform. I'alpi B-seg- $^{\text {ghen }}$ mentel, basal spgment pery small, second the longest about twice as long as broad, apiead spherical with a stont shord sensory seta, and a longer simple pointed seta. Eyes $2+2$, small, lateral and about midway on the proterosoma. Leews, 6 -sper. menterl, short, secgments not wrinkled; tarsal claws modified, not claw-like, with a whort inmer ciliated branch, and a longer outer seta-like branch which is apically knobord; fansi III and IV with a long subapieal reeurved seta. I and II with it subapisal stout outcr sensory seta; leg I 105μ, II 87μ, III 77μ, IV 77μ. P'eritreme typical of the family (cf. fig. E). Dorsal setace few and short; an anterior pair and one behind each pair of cyes on proterosomat on hispidosoma, there are 6 subapical simple setae, the median one on eath side being the longest, 30μ; laterally and an-

terion of thesu apical sotae are two short setae. Ventrally with a pais of tome
 but places aldase to the suture line.
of denmally as in of, length 350 p, width 160μ; pasteriorly of cosac IV the
 plevated (ato fig, IL) Dorsal and ventmal setae as in of, except that the apex has

 Rich, ou ukyling treen at Gayndah, South Qumensland, January aud Fobmory. 1!) tis (A. May).

M3: Alan May of the Qucensland Department of Agriculture and Stock, 10 whon 1 am indobed for this material, states that the mites were "attaeking the
 Dy the loat shath. Alfaged giass becomes elumped and somewhat stunted in hahtif, altmond there is asencral thickening of the stems. Bumers are not prodherd ind the grass eventually dies out lemping bare patehes. On removal of the leaf cheath, the mites are fomm elnstrong in lares mumbers at the notes, sum arm ascompanied by a general brown discoloration. The mites are bright red in colour
 baf shemth. direct pontrol measures are out of the chestion.

List of Descrabed Mractra.
Frichetems ssminnrae Rond. 1870 , Italy, on Morms.

- archn:aletae Jruyant 1911, Urugnay, un Inistichtis sconneria Arech.
- Moridmaus (Banks) Florida, on hananas.
" Amstralianus n.sp. Quecensland, on Gynodon eluctulon Rich.

Genus Rablella Hirst 1924.

- Monednamerns Ouds. 19:88, iv, 'lijels. Ent., 81, Verslagen, p. vii (genoty]e Ararus mori homelami 1870).
ds previonsly stated all the known spectes of this family are plan feeders. normaly at leash. Trmindemus smocorioe Romdani 1870, was originally described from the coeoons of Sericemit mori (Limm. 1758) the silk-wom of emmores, but Hhis fuhtat was probuhly aceidental for the mites were later fond on the under sides of the leason of mithery (Morns), used as food for the silk worms.

Banks' flordamus ocemred at the bases of the leaves of pine apple (Ambunsel)
 firhlis ssopmrin Arech, from Monteviden. "ruguay. This species was known hy the vernambar mame of "hicho colorado" but this appears to buve been widely nsed and (1) indude any minntered mites, induding the lared Trombids, ete, canable al bitine mun. "The species described in this praper was found attacking "coneh"

 lore, s. India. The two known Australian species are both from Encalypts.

identified species from New South Wales, and from E. andrewsiana and E. tereticornis from Queensland, R. queenslandica Wom. 1942 (Tr. Roy. Soc. S. Aust., lxvi (1), p. 88) was from E. micrantha, Queensland. Rondani's mori was from Morus.

List of Described Species.

Raoiella australica Wom. 1940, Australia, New South Wales, on Eucalyptus.
", indica Hirst 1924, Southern India, on coconut leaves.
", mori (Rondani 1870) Italy, on mulberry.
", queenslandica Wom. 1942, Australia, Queensland, on Eucalyptus.

A REVISION OF THE SPIDERS OF THE GENUS MISSULENA WALCKENAER 1805

By H. Womersley, A.L.S., F.R.E.S., South Australian Museum

Summary
Suborder Mygalomorphae
Superfamily Octostiatae
Family Ctenizidae
Subfamily Actinopodinae

Genus Missulena Walckr. 1805, Tabl. Aran., p. 6 (type occatoria)
Eriodon Latr. 1804, Nouv. Dict. Hist. Nat., xxiv, p. 134 (nom. Nud.); Lucas 1865, Ann. Soc. Ent. Fr. (4) v. p, 309, p1. 8; Auss. 1871, Verb. Z. b. G. Wien, xxi, p. 142; L. Koch 1873, Die Arachn. Austr., i. p. 454; Simon 1892, Hist. Nat. d. Araignees, i, p. 81; Hogg 1891, P.Z.S., p. 219, ibid. 1901, p. 223 ; Rainbow 1911, Rec. Austr. Mus., ix (2), p. 107.

A REVISION of the SPIDERS of the GENUS Missulena Walckenalir 1805

Fig 1.

Suborder MYGALOMORPHAE.

Superfamily OCTOSTIATAE.

Famity CTilNiZlDAF.
Subfamily Actinopodinaf.
(Gemis Missutena Walelis. 1805. Tabl. Aram., p. 6 (1ypuemontoria).
= Erioton Latr. 1804, Nonv. Dict. Dist. Nat., xxiv, p. 184 (nom. mut.) : Latueas

 1911, Rece Anstr. Minso, ix (2), p. 107.
 stomotros Walckro 18:37, Ins. $\Lambda_{\text {pt. }}$ i, p. 246.
Closterorhilus Auss. 1871, Verhı, z. h. G. Wien, xxi, p. 1+1.
Theragretes Aus. 1871, ibit, p. 142.
Missulcme Rainbow and Prtleine 1918, Ree. Austr. Mus., xii (7). p. 87.
. 1ctinopus lkanbow 1896, 1roc, Limn. Soc, N.S.W., xxi, p. 328 , pl, sx, op. ci'. 1897. xxii, p. 25%.

Pars eephatica very high and wide. Ocnlar area wide (ocenpying almost the cutire width of the front of the pars cephatiea) and marow. Eyes small, anterior row staight or only slightly procurved, A. WE elose together and widely semarated from $\triangle \mathrm{LA}$; posterior row strongly recurved so that the PME lie almost in a line with the anterior eyes, and nearer fo ALA than in PLd. Chelicerae thick and strone, their bases ocempying the entire front of the ceplatothorax, apex of hasal segment rounded and armed with a rastelhm. Daxilate without a lobe but with the immer interior eomer probluced into a blunt paserss, furnished with mumerous blunt short spines in female (often incipient or absent in male). Labinm Inger than hroad at the base, inserted immovably in the front of the stevom, apically rombled, often with mmeroms short stont spines especealls in female. Sternum an fong as homed, with ? pairs of distinct sigilla, the posterion pair large and ova! and distinctly separated from margins, the anterion pairs are small fand there is anetnally a small fouth pain jmmediately behind the insertion of the labom, the thise paris is forduently divided into two lying side by side. The sexes are wed difterphtiated.
of Large and robust with relatively short stont legs. P'ars eeplatica and chelicerae generally concolorous with the rest. Tarsi and metatarsi with mumerous
 large imme basal tooth. L'alpal tansus with a simgle claw similat to buper elan's of
 inferion **surnmond.

 lemale, inferior 1-seymented.

 other. He considers that they wan be redued to at bast eipht suevers, sime his

 West Anstralian Musemm, I'peth, aud DriV.V. Jiekman, of Hobart has heen examined, the result of which shonss that at present not more than 6 valid spmedes
 and mfipes hat unt recomized since. Aceording lo 1foge (1901) these are massibly

 - Imeribat, as errmeons.

In his liey to the spectes Howe (1901) wives the AME of M. formathbite (Gumhro)

 The large mumber of specimens of this gemes which I have been able to cxumine, fot

 ahle and measulable than the larger cornes, and it would seem that thoge in re-

 and the mates of oceatorin are the most abundat and widespread specoses, yet I

W. incertum (Cambr, 1877) is, I consider, the same as yrumelosum ('ambr,
 haggi is proposed.

 wharacters mow recognized by Aruchoologists. Op the six speedes now recognized. fone are known from both sexis.
 beyond the obscrvation of Dro Fulleine (Hec. Austr. Mus, 1918, xii (7), p. 82,
 nif hoil frarticles.

Miscimelena oce:atoria Walekr. 180.
 id. Ins. Apt. 1837, i, p. 252.

 190:', Rec. Austr. Mus., ₹., No. 1, p. 62, fig. 5.

Exiodon rubrocapitalum Auss. 1875, Verh. \%. b. Ges. Wien, xav, p. 140, pl. v, fig.
 Austr. Muss, v, No. 1, p. 64, fim. (6.
Gronton semiroccincum Simon 1896, in Semon, Zool. Fonschr. Anstr, Mahay Archipel, Lfig. viiii, p. 3ti3; Hogg I!01, I'roc. Zool. Noc., p. 228.
detinopus formosus Rainbow 1896, Proc. Linn. Soc. N.S.W., xxi, p. 328, pl. xx; (1p), wit. 1897, xxv, D. 25.3.

Missulcuu rubrocopitate hainbow and Pulleine 1918, Rec. Anstr. Mus., xxi, Nu. 7 , p. 88, 11. xii, fig. 1-2.

Missulena formidabile R. and L’. 1918, Rec. Austr. Mus., xv, No. 7, p. 89.
Text fig. $1 \Lambda-N$ N.
 May 19:37, 1R. Towe.)

Total length (exeluding chelicerae and spinnerets) 12-5mm. Lengtly of Cophalothoras $6 \cdot(0 \mathrm{~mm}$. Willh of Cephalothomx $\quad 7.0 \mathrm{~mm}$. Lenipth of Abdomen $\quad 7.0 \mathrm{~mm}$. Width of Aladomen $\quad 6.0 \mathrm{~mm}$.

Lengthes of ieg and pal pal segments in millimetres.

	Femmr.	Patella.	'Tibia.	Metatarsis.	Tarsus.	Total.
beere 1	$5 \cdot 3$	¢ $\cdot 7$	3-0	$2 \cdot 6$	$2 \cdot 1$	$15 \cdot 7$
Leg II	$4 \cdot 8$	$2 \cdot 6$	$2 \cdot 5$	$\underline{9}$	$\underline{2} \cdot 0$	14.4
Leg III	$4 \cdot 5$	$2 \cdot 5$	$2 \cdot 2$	$2 \cdot 5$	${ }^{2} \cdot 0$	$13 \cdot 7$
Lege IV	-5. 1	2،8	$3 \cdot 3$	\%-0	2.9	16.4
Palp	4.8	$\underline{9} 5$	$4 \cdot 0$	-	1.5	$12 \cdot 8$

Width of 1 st patellat at "knee" 1.5 mm.; tibial index $26 \cdot 3$.
Wirlth of 4 th patella at. "knee" $1 \cdot(0$ mun. ; tihitul index $26 \cdot 2$.
Carobuce. Ovato, truncate in front, ($6 \cdot(0 \mathrm{~mm}$. Jmos, $7 \cdot 0 \mathrm{~mm}$, wide, rear margis incised. Thorncie fovea deep medially and strongly proentred, radial finmows distinct, a deep longitudinal groove from behind middle of foved, lateral margins reflexed, Pars cephatica $\$ 0.0 \mathrm{~mm}$. Ligh, 3.8 mm . Iong, bright searlet and tiucly rugose, with a fine longitudinal line from middle of ocular area; elypens white,
 from denlar area. I'ars thonaciea black, slighty and linely xugose, apparently without hairs except af few black oues on maryins.

Eyes. Oenlar area much wider than long, 3.7 mm , hy 0.7 mm . AME on a shighty raised, dark pigmented tuberele, cach cye cirenlar, 0.25 mm . in dianteter. Anterion row of eyes slighty procurved, posterior row strongly recurved Ald raised, oval, inclinerl, $0 \cdot 0 \mathrm{~mm}$. diam,, $1 \cdot 3 \mathrm{~mm}$. from $A M E$, base black. PLE raised, oval, inclined, 0.6 mm . tham., 0.7 mm . from $A L_{4} E$ and 3.0 mm . apart; PME oval, sessile 18 mm . diam., their anterior edge in line with posterior edqe of ALA $\mathrm{E}^{2}, \stackrel{O}{2} \cdot 4 \mathrm{~mm}$. apart.

Fig. 1. Missulena nematoria Walckr. A. cyes of $\delta^{\circ} \times 9$, B. ayes of 9×9, C. palp of ${ }^{2}$,
 1. cheliceral teeth of, claws of leg I 9 , K. ditto leg IL, L. dito leg IM, M. ditto leg IV, N. claw of palp ㅇ.

Shelicerae. Basal segment 4.5 mm . long, bright searlet, shining with transperse striations, rastellum of 10-12 black spines; fangs dark, $2 \cdot 5 \mathrm{~mm}$. long, curved, promargin of furrow with 8-9 medium to large teeth (et. fig. I, D), retromargin with is small treth, a few tuberosities between margins, a scopula of reddish hairs present.

Labium. Langer than broad, 1.6 mm . by 1.0 mm , sides tapering, apically rounded with only short spines. Colom reddish with black hairs.

Stermem. 3.8 mm . long by 3.8 mm . Wide, atmost black in colour except for a narrow reddish hand just behind insertion of labium. Sigilla 4 pairs, pos-
torime large find oval, necupying abont halt of stermum and distinctly separated from magins; anterior patis of similla small, second pair from front subdivided. CHothing wf blatek hairs.
 revl hairs and finmished with a montuer of short, almost incipient spines. Colour ruldish with black hatis.
 on all tibia. tarsi and metatarsi. Tassal claws :3, upper claws with :3-6 teeth dis-
 IV with a ventral scopula of short blunt red hairs.

Putpo. Blackish with hack hairs. Genital bulb reddish black. Stigma very sleuder", Mont "'\% Ienqth of thina, blackish.
sipins. I'atella, tibin, metatarsus and tarsus of all legs with mumerous strong spints ventralls: those un modatarsi and tansi of leqs III and IV ventrolateral. D'atellan of ald Jeas with stromp, short, inclined spines, dorsal and few on II and IV, more, and forming a pad on accessory rastellum, on I and III and placed somewhat prolateral. All spines blad.
dbutomen, Ovate, arched, and sliyhty overhanging base of cephatothorax, donsally batek with long hack hairs and short fine spine-like hars, not shiming. Vonter similur exeept that in front of epigastric furrow it is chitinized, shining and with \& brown tiage coneolorous with the sternum.

Numbert. Four, basal segment of superior and the inferior spimerets black; of her secemeuts of superior brownish bata; intersegmental membrane whitso Superior $2 \cdot-$ mm. Iong, inferior 0.9 mm . long.

O (Specimen from Whyalla, S. Aust., August 1938).
Total leupth (excluding chelicerae and spinnerets) $\quad 26.0 \mathrm{~mm}$.
Length of ('ephatothorax 12.0 mm ,
Width of Cephatothorax
dengeth of Abdomen
12.7 mm .

Widtly of Abdomen
Length: of log and palpal segments in millimetres.

	femur.	['atolla.	Tibiat.	Metatarsus.	Tarsus.	Total.
Letw I	$7 \cdot 1$	$5 \cdot 0$	$4 \cdot 2$	$3 \cdot 7$	2-5	$2 \cdot \cdot \overline{9}$
Lemg II	$6 \cdot 3$	$5 \cdot 0$	$4 \cdot 0$	$3 \cdot 7$	$2 \cdot 13$	$21 \cdot 6$
Leer III	$6 \cdot 5$	$5 \cdot 4$	$4 \cdot 0$	$3 \cdot 8$	$2 \cdot 8$	$22 \cdot 5$
	$8 \cdot 0$	$6 \cdot 0$	$5 \cdot 0$	$3 \cdot 8$	9.7	$35 \cdot 5$
Palp.	6.2	$4 \cdot 0$	$4 \cdot 2$	-	$4 \cdot 5$	18.9

Wiath of 1 st patella at "knee" $3 \cdot 0 \mathrm{~mm}$. $;$ tibial index 32.6 . Width of 4 th patella at "kuce" $3 \cdot 5$ mm.; tibial intex $31 \cdot 8$.

Carapatce. Broadly ovate, shining. widen than long, $12 \cdot 0 \mathrm{~mm}$. by 12.7 mm , muncate in front, incised posterionly. Thoracie fovea deep medially, stronyly prochrved. malial furrows distinet, a findy deep longitudinal groove from midde of fovea, margins strongly roflexed. Pars ceplatica 7.0 mm . high, 5.5 mm long, at (harls "hmentate hown in colonm with a few dark hairs in front of ocular area and altmper astinht demressed longitudinal line from middle of ocular area, and a few suarse hairs on dise. Clymus white, as wide as the dianeter of one AME and sepatrated therofrom by two drameters. lars thoraciea smooth, shinting, concoloronts with pars eephalica, slightly raised on dise.

Eyes. Ueular area very much wider than loug, 7.5 mm . by 1.8 mm . $\Delta M \mathrm{G}$

 l'las raised, oval, inclined, 0.18 mm . diam, separated form ench other by 7.0 mm .
 $2 \cdot 0 \mathrm{~mm}$. apart from AME, thrir anterion edges in tine with fosterim moter of AME Fand AIJE.
 with thick dothing an modilish hrown lains, with rastellam of 12-20) stout reddish
 and emved; promargin of chediceral groove with $7-8$ lage and alonot wniform

 front subdivided; elothing of Dackish hairs.

Maxillae. 6.5 mm , long, 4.0 mm . wide with scopula of long recklish haiss, and furmished with mumerons strong spines.

Legs. $4 \cdot 3 \cdot 1 \cdot 6$. Stout, dark chocolate hown : all tibine, metatarsi and tarsi with trichobothria. Tarsal claws 3 , superior with one stroms inmer basal tomith and occasionally a small one in the basal angle; inforior claw with one or an tecth. Nll lues withont scopulae.

Palpi. Dark chocolate brown, intersegmonted membrane white: pateln, tibia
 a single claw with a strong inner basally trifureate tonth, tha dutan dentichen of which are shorter than the inner.

Spines. Tibiae, metatarsi and tarsi with a number ol' spinus ventrally, these on tarsi and metatursi III and IV extembing laterally, No spines ou the matella of any leg.

Abdomen. Orate, urched, overhanging hare of eqphatothorax forsally and rontrally dark chocolute brown, barely shininy, finely gramulose, with long biad haik interspersed with shorter and slighty stromer hairs, In front of epgastric furrow shining and concolorous with stermm.

Spinnerets. Four, superior $4 \cdot \underline{2} \mathrm{~mm}$. Lone, chocolate brown, with whin inter segmental mornbrane; inferior 1.2 mat. long.

Loc, of the specimens examinet.

 t/19.10 (1) ; Peterborotegh $4 / 1940$ (1); mulocatized (i3).

Western Australia: 90 Mile Desert 10/1907 (2) : Pridgetomn 26/892: (1) : Lascrton 26/715 (1) ; Buniche 39/417 (1) ; Wurargat 32/1434 (1); Wuhin 3i3/1614 (1): Canning 13ra 33:/1537 (1).

Nerf Sonth Wales: Tareom 6/1927, K 56291 (1) ; (anley Vale $3 / 1028, \mathrm{~K}$

 Ryilal, K 1907:3 (1).

31 specimens.
 1437 (1) ; Cadell $5 / 1937$ (1) ; Whyulta $8 / 1938$ (1) ; Ardrossan 8/1938 (1) ; Belair
 ผ. 46833 (\mathbf{n}^{2})

Victoria : Swan IIill 5/1928 (1).
Western Australia: 90 Mile Desert 10/1907 (2); Mt. Lawley 9/1928-630; I^{3} (reth 1915-467.

New South Wales: Stewart Town K 9420 (as formidebile) (1) ; Granville K 467 (as formilahile) (1) ; N. Strathicld 6/1929, K 59217 ; Willeannia K 3.300 (1) : Chatswond K 3309 (1); Mosman K $1+173$ (1).

22 specimens.
Missurfa insigne (O.P. Cambridge 1877).
Priodon insigne O.P. Cambordge 1877, Am1. Mag. Nat. Hist., ser. 4, xix, p. 29 ; ? mec Hogry, Proc. Zool. Soc. 1901, p, 293, fig. 21f, 1).
Erionton rubrocapitntum, i, Rainhow 1903, Rec. Austr. Mus., v, No. 1, p. 64, fig. 6. Missulena insigne, Rainbow and Fulleine, 1918, Ree. Anstr. Mus, xii, No. 7, r. 87.

Text fig. 2A-1.
f Total lengeth (exchding chelicerae and spimnerets) 8.5 mm .

Length of Celpalothorax
5.0 mm .
6.0 mm .

Width of Cephalothorax
Length of Abdomen (shrivelled)
Width of Abdomen
4.5 mm .
4.0 mrn .

Lengths of leg and pulpol segments in millimetres.*

	Femine.	Patella.	Tibia.	Metatarsus.	'Tarsus.	Total
Lemir I	$5 \cdot 0$	1.9	$3 \cdot 2$	$3 \cdot 0$	1.8	14.9
Lex II	$4 \cdot 4$	$2 \cdot 0$	$2 \cdot 6$	$2 \cdot 6$	1.8	$13 \cdot 4$
Leg Ill	$3 \cdot 8$	1.9	$2 \cdot 1$	$2 \cdot 4$	1.8	$12 \cdot()$
lear IV	$4 \cdot 2$	$2 \cdot 0$	$3 \cdot 0$	$3 \cdot 1$	1.8	$1 \pm \cdot 1$
Palp.	4.5	$2 \cdot 5$	$4 \cdot 0$	-	1-0	$12 \cdot 0$

Width of 1 st patella at "knce" $1 \cdot 0 \mathrm{~mm}$. ; tibial index $19 \cdot 6$.
Width of th patella at "knee" 1.0 mm . ; tibial inclex $20 \cdot 0$.
Carapare. Ovate, truncate in front, $5 \cdot 0 \mathrm{~mm}$. long, $6 \cdot 0 \mathrm{~mm}$. wide, posterior margin incised. Thoracie form deep procurved, radial furrows distinet, lateral margins retlexed. P'ars cephatica 1.7 mm . high, 3.0 mm . long, bright red, faintly rugose with slight uedial longitndinal line. Clypeus narrow, equal to diameter: of one ABE and about two diameters therefrom. A few long black hairs in front of ocular area and some shorter ones along medial line. Pars thoracica chocolate brown with slight purplish tinge, munse, slightly raised medially, a few brownish black hairs on margin.

Eyps. Oendar area very much wider than long, $2 \cdot 6 \mathrm{~mm}$. by 0.7 mm . AME on slighty raised luberele pigmented with black, each eye 0.15 mm . diant, round and

 posterior row strongly recurved. ALE raised, oval, inclined, $2 \cdot 5 \mathrm{~mm}$. apart, $0+2 \mathrm{nmm}$ diam., the hase with hack pigment, and separated from A.It by slightly more than 5 diameters. LLL raised, oval, inclined, 0.15 mm . diam, and separated
"Average of throe specimeus, one each from Latham and Eorest Grove, Western Australia, and one from Kivith, Soufll Australia.
 1.5 mm , aptart, their anterior edges ju line with postorion edres of AME and ALAS.

Chelicerue. Basal segment bright red, $3 \cdot 0 \mathrm{~mm}$. Iong with transversely lightly rugose surface with light clothing of long black latirs espectally distally with rast ellum of $2-5$ spines. Fangs $2 \cdot 0 \mathrm{mmn}$. long, brownish red, curved. Promargin ot furrow with " $3-4$ large and about 6 small teeth, rotromargin with e moderately large and is small teeth, a few small tubereles hasally botween furrow margins (of text fir, 2 E), with a slight scopula of long hairs.

 of $\operatorname{leg} I \sigma^{\prime \prime} I$, ditto ot^{2}.

Lathium. Longe than broad at base, sides tapering anteriorly, apex romntext. with long hairs but no spines. not even incipient ones. Colonr reddish.

Sterumm. Bright reddish, tinged with brown postexiorly, 2. 5 mm , long by 2.5 mm . wide, with long reddish hairs. Sigilla 4 pairs, distinct, posterior large, oval, distinctly separated from margins, others small.

Maxillac. 2.0 mm . Iong by 1.5 mm , wide, with a scopula of long reddish hairs. but no spines. Colour reddish.

Lecgs. $1 \cdot 4 \cdot 2 \cdot 3$. Chocolate brown with slight murplish tinge. Trichobothria on all fibiae, metatursi and tarsi. Tarsi and metatarsi III and JV with a scopula of short blunt yellowish hairs. Tarsal clatrs B, upper with 5 teeth only, slighty dissimilar: lower with 2 teeth.

Palpi. Chocolate brown with purplish tinge, elothed with blackish brown hair. Cenital bulb spiral, stigma slender, abont half the length of tihas.

Spines. l'atella, tibia, metatarsus and tarsus of all leas ventrally with rather Jong strong spines, those on metatarsus and tarsus III and IV ventrolatemb. Patella of all legs with a number of short strong inclined spines dorsalls, few on II and IV, more and torming a pad or accessory rastellum on I and If and placed somewhat prolaterally, All spines back.

Abdomen. Ovate, arched and slightly overhanging hase of ephatothorax. Iorsally, with long black hairs and short fine spine-like hairs, nut shiningr; ven-
fonlly similat exech auterior of epigastric furm which is chitnised, shining and annolorons with stermum.
stpinarrets. Four. Superion 1.2 mm . long, basal segment the longest, apical fers short. Inferior 0.5 mm . long. Colour hrown.

q Total length (excluding chelicerae and spimmerets)	17.0 mm .
Lengeth of Cephalothorax	8.0 mm .
Width of Cephatothorax	9.0 mm .
Length of Abdomen	10.0 mm .
Width of Abdomen	8.0 mm.

Longths of log and palpal segments in millimetres.
Femur. Patella. Tibia. Metatarsus. Tarsus. Total.

Tieg I	6.3	$3 \cdot 6$	$3 \cdot 2$	$3 \cdot 0$	$2 \cdot 0$	$18 \cdot 1$
Leg II	5. 5	$3 \cdot 5$	$4 \cdot 0$	$3 \cdot 0$	$2 \cdot 0$	$18 \cdot 0$
Peg III	$5 \cdot 13$	$3 \cdot 0$	$3 \cdot 0$	$3 \cdot 4$	$2 \cdot 0$	16.4
Legy IV	$5 \cdot \square$	4.0	$3 \cdot 5$	$3 \cdot 0$	$2 \cdot 0$	$18 \cdot 0$
L'alp.	$5 \cdot 5$	2.5	$3 \cdot 0$	-	$2 \cdot 5$	$13 \cdot 5$

Wialth of 1st patella at "knee" 2.0 mm . ; tibial index $32 \cdot 3$.
Wieth of tht patella at "kuee" 2.5 mm . ; tibial index $33 \cdot 3$.
Carapace. Oyate, dark chocolate brown exeept in front of pars cephatica where it is reddish, tront margin truncate, posterior margin incised, 7 mm . long, $9 \cdot 0 \mathrm{~mm}$. wide. Thoracie foven deep, procurved, radial furrows distinct, margins
 narrow, equal to one AJE in widh and separated hy two diameters therefrom. A fewlong brown hairs in front of ocular area and seattered on dise Pars thoracies dark choculate, suonth, with scattered brown hairs; slightly raised medially and on margins.

E'yes. Ocultr area much wider than long, $5 \cdot 5 \mathrm{~mm}$. by $1 \cdot 1 \mathrm{~mm}$. AME on a very shightly taised tuberele round, 0.2 mm . diam., each çe separated by $1 \frac{1}{\text { a diam., no }}$ surrounding black pigmont. Anterion row of eyes stanght, posterior row strongly recurved. ALE broadly wal, raised, inelined. 0.25 mm . diam., 5.5 mm . apart, -. 3 mmm . from $\Lambda \mathrm{MF}$, hase with black pigment. PLA oval, inclined, raised, 0.25 mm . diam., 1.7 mm . from AhE and 5.0 mm . apart, base black pigmented. PME oval, herizontal, sessile, white. 0.17 mm . diam. $4 \cdot 5$ mm, apart, anterior edges slightly Wehind line of posterior edges of ALE.

Cheliserfe: Basal semment reddish, but not scarlet as in © smooth, shining. (i.j mm. long, with numerons long reddish hairs; rastellum of 10-12 dark stont spines. F'angs +6.5 mm . loug, black, curved, moderately thick. Promargin of furrow with $4-\bar{b}$ larqe teeth and $\overline{\text { and }}-6$ small ones, retromargin with 4 large teeth, with slight seopula.

Labium. Longer than broad at the base, sides ouly slightly tapering, $2 \cdot 6 \mathrm{~mm}$. lo 1.8 mm, apex romded with a number of short peg.like spines. Colour chocolate browni.

Sterntm. Chocolate brown $5 \cdot 0 \mathrm{~mm}$. Iong by $5 \cdot 0 \mathrm{~mm}$. wide, with long hackish hairs. Sigilla 1 pairs, second pair subdivided, posterior pair large, oval, and well separated foom margins.

Harillace 4.5 num. long by 4.0 mm . wide, with scopula of reddish hairs and mamerons short peg-like spines. Colour choeolate brown.
lefge $1 \cdot 4 \cdot 3 \cdot 3$. Chocolate brown with slight purplish timpe trichobothria on

Spines. Tarsi and metatarsi of all leys with many long strong spines ventrally: on leag III and IV also ventrolaterally.

Abdomen. Dark brown with long hrown hairs dorsally and ventrally ; hamltr overlapping vephalothorax.

S'pimerets. Four, superion 1.8 mm . Ions, inferior 0.8 mm ., chocolats hrows.
Remarlis. As with most of the deserihed species of this gemus, only mus s.ans was included in the oriminal deserpintions, in this case the male; and all hithorto published records are of the same sex. Amonsst the material sent to me from the West Anstralian Museum, Perth, ures two fermales wheh can definitely be eorvelated with the male, and the above description of that ses is drawn up from one of these. The specinen described by Rainbow (1903) as the then unkown femate of rubrocapitatum and which I havo been able to examine is undothededy to be referem to insigne as will be exident whon his description is sompared with the one given above. Rainbow's specimen was from Kalgonmie. Westem Australia, and was sonl fo him with a male from the same locality. The male, howover, was mot deserihed but only referred to the same species, so that it is not possible to say whe her it belongs (o) insigne or not. Mogg's description (1901) from several males from Dimboola, Vioforia, is somewhat doubtiol for he slates that the colour of the pars thomedea, abiomen and lets was black, whereas tho origmal deseription of Cambridge gives

 with the material before me. M. insimue is the only species on fon lanorn, in which the o has the mars mephatica in part and the chelicerae wholly red, althongh not of the bright colour of the males of this and some other species.

Loc. and specimens examined.
â ô South Australia: Keith, no date (4), (2. K 408:31); Warburton dimges. no date (1).
 27-838 (1) : Morawa 29-4:3 (1) : Latham 30-466 (1) ; Forest Grovo 31-660 (1).

 K 58929 。

Queensland: Brisbane, no date (1).
20 spucimu*и,
오 ㅇWestern Anstralia: Worawa, 24 - 440 (1) ; Buracoppin, 32-1493 (1):
 Lainbow's typent rubracapitalwi) (1).

Now South Wales: West. Wyalong, K 48135 (1).
Gspenimens.
Minstitiana (abanthosa (O.P. Cambridge 1870).
Erindon gramulosum O.1'. Cambridge 1870, J. Timm. Soc., London (\%ool.) . X, p.2tis,

Text fig. $3 \boldsymbol{\Lambda}-\mathrm{N}$.	
क Total lourill (exclucling chelicerae aud spinnerets)	12.0 mm 。
Jemight of Cephatothorex	6.5 mm .
Width of Cephalolhorax	8.0 mm .
Lenath of A (hlomen (shriçellerl)	$7 \cdot 5 \mathrm{~mm}$.
Width ol Abdomen	6.17 mm .

Lengths of le! and palpal segments in millimetres.

	F'rimili*	Patella.	Tibia.	Metatarsus.	Trarsus.	Total.
Lexy 1	$6 \cdot 5$	$3 \cdot 0$	8.7	$3 \cdot 2$	$2 \cdot 0$	18.4
Legra I [$5 \cdot 5$	$3 \cdot 0$? 3.4	$3 \cdot 2$	$2 \cdot 0$	17.8
Legr III	$5 \cdot 0$	$2 \cdot 8$	$2 \cdot 7$	$3 \cdot 0$	2.0	15.3
Lege IV	$6 \cdot 0$	R.9	$3 \cdot 5$	3-5	$2 \cdot 0$	18.2
l'alj.	$6 \cdot 0$	3.0	$4 \cdot 5$	-	$2 \cdot 0$	15.7

Width of 1st patella at "knee" 1.510 m ; tibial index $22 \cdot 4$. Width of 4 th patella at "knep" 1.8 mm. ; tibial index $26 \cdot 8$.

Corapacic. Ovate, troneate in tront. 6.5 mm . long by 8.0 mm . wide, rear marrein shoghty incised. Thoracic fovea deop medially strongly procurved, wadial furpous distiust, lateral margins reftexed and gramulose. Pars cephalica 3.5 mon. high and $4 \cdot()$ mm. lonew, harek withond any trace of red, strongly monose almost. fabcrenlate, with lomeitudinal mediun line from behind ocular area. Clypeus reddish, about one AME in width, semarated from AME by two eve diameters. A few loug black hairs in front of A ME and on dise. Pars thoracic black, rugose; the mogosites tending to form lines parenled to radial furrows. A few black hairs on marcrias.

Fyes. Oenlar area very mach rider ham long, 4.2 mm . by 1.2 mm . AMEA on slimhty raised prominnec, cuch eye 0.25 mm , in cliam., round, and 2 diams apart. Anteriou row of cyes slichtly procurved, posterjor row strongly reeurved, ALE raised, ovol, inclined, 0.2 nmm. in diam. ind separated from AME by 1.5 mm , PLF raised, oval, inclinert, $0 \cdot 8 \mathrm{~mm}$. jn diam. 3.8 mm . apart and 1.1 mmn . trom
 and $\Lambda L E$, their front ederes sliyhtly behind line joming posterior edres of $A I_{A} E$.

Cihelicerae. Basal segment $\bar{j} 0$ mun. loug, mugose, black, with tonch of red laterally and dorsally on apical halt, matellum of 6 - 8 hack spones. Hancs black,
 foeth, retromargin with \bar{b} Jarge tecth, and a mumber of tuberosilies between mancins; witl a slight scopula.

Labium. Isompere than broad, $1+7$ 10m. by 1 -: mm, sides tapering, apex ronnded, with long black hairs and distally with short stout spines; colow hack rxeept tip, which is rodelish tiuged.
 Sigillat pains, second pair divided, posterour large, oval, and wedl separated from nsarerins.

Marillat. Black, $f \cdot() \mathrm{mm}$. lonce, $2 \cdot-5 \mathrm{~mm}$. wide, with scopnla of long brownish black hairs, and some very slow spines.
 and tarsi. Toursi and metatarsi with slimht scopalae of short, close, slishtly brownish
 with 4 -is tecth (efo. fig. 3F-I).

Palpi. Black clothed with long brownish black hairs. Genital bulb brownish, stigma slender, more than half as long as tibia.

Spines. Patella, tibia, metatarsus and tarsus of all legs with many long strong black spines ventrally, those on metatarsus and tarsus of III and IV being lateroventral; patella I and III retrodorsally rather swollen and pad like, especially I, With numerons, anteriorly directed, inclined or adpressed short stout spines forming a rastellum.

Fig. 3. Missulena granulosa (Cambr.). A. cyes of 0×9, B. eyes of 9×9, C, palp of ${ }^{2}$, D. cheliecral teeth $\delta^{\prime \prime}$, Fo. ditto ; F'. claws of leg I $\delta^{\prime \prime}$, (x_{0} ditto leg II, IT, ditto leg III, I. ditfo leg IV, J. claw of palp, $\frac{\text { o }}{} \mathrm{K}$. claws of leg I q, L. ditto leg II, M, dittoleg IV, N. ditto leg IV.

Abdomen. Brownish grey, with black hairs shorsally and ventrally ; book lundes and in front of epigastric furrow concolorous. Ovate, slightly orerlapping pars thoracica.

Spinncrets. Four, superior 1.8 mm . long, back; inner 0.5 mm . long.
¢ Total length (exelıding chelicerae and spinnerets) $22 \cdot 0$ mm,
Length of Cephalothorax
$10 \cdot 0 \mathrm{~mm}$.
Width of Cephatothorax
Length of Abdomen
11.0 mı.

Width of Abdomen

Longths of len and pulpol. segments in millimetres.

	Formir,	Patella.	Thilna.	Metatarsils.	Tarsus.	Total
1 dear 1	(i.0	$3 \cdot 8$	$8 \cdot 6$	$8 \cdot 2$	2.4	18.9
Lum II	$5 \cdot 5$	3.8	$3 \cdot 0$	$3 \cdot 6$	9.4]7.!
Lieg III	$5 \cdot 7$	$4 \cdot 4$	$2 \cdot 8$	$3 \cdot 5$	$2 \cdot 5$	18.!
lseg IV	6.9	4.5	$4 \cdot 0$	$4 \cdot 0$	2.5	$21 .!$
Palp.	$5 \cdot 6$	$3 \cdot 0$	$3 \cdot 0$	-	$2 \cdot 8$	1.4.1

Widuh of 1st phatella al "Irnee" $2 \cdot 0$ mme; tibial index 27.4 .
Width of 4th patella at "kner"' 2.5 mm.; tibial index $29 \cdot 4$.
(harapher, Oyane, trmuate in fromt, 10.0 mm , 10 mg by 11.0 mm . wide, trear margin incised, lateral margins slighty reflexed. Thoracie fover firirly deen
 hierh. 8.5 mm . Jong, piceous black, smonth, shinine, with lous picems hajes in troul of neular uren and ulong mextian longitudinat line and sparsely on dise. (lypenss bank, Harvow, ahout 21 diams, in front of AME. Pars thoracica concolorous. smonth, shiming, with sparse hairs.

Ehc: Ounlar area very much wider than lone, 5.7 mm long, 1.5 mm . Wide. $\triangle M E$ on very slightly wised area, ash eye 0.05 mm , diamo, $\frac{1}{4}$ diam, apart. Antcrior row procurved, posterion row strongly recurved. ALE oval, slightly
 inclined, 0.25 mm , diam., 2.2 mm . from $\Lambda / 1 \mathrm{E}$ and 5.0 mm . apart, and 1.0 mm . from ALE PME horizontal, oval, sessile, 0.2 mm . diam. and 3.0 mm . apart, tromt celeces in the curved line joinine posterion edges of ALE and AME.

Cheliratue. Batsal swommt $7 \times 0 \mathrm{~mm}$. Iong, picenus, shining, with blave hairs, axept at innor apical angle where they are reddish, rastellum of $12-20$ short black spines, Funcs $\overline{\delta \cdot 0} \mathrm{~mm}$. lone, piceous, fairly stout. Promargin of furrow with about fomerian to large, and 6-7 small teeth, retromargin with 5 smatl and 3 moderately Jarpe treth basally, a muber of tuberositics between margins; marming furnished with seopulae of reddish hairs.

Labiom. Longer than hroad, $8 \cdot 0$ mm, by $2 \cdot 0$ num., sides only slighty taperith, picems with hadi hairs, cxecpt at extreme tip where it is tinged with red and with red hairs, will ummornts stort spines apically.

Sternum. L'iceous. with slight tinge of red mestially, slightly wider than lowe, 6.0 mm , hy 5.5 mm . With 4 pairs of sigila, anterior pair almost ohsolete, seend pair suhdividen, fourth pair large, oval, well separated from margins, hairs black.

Maxillec. 5.2 mm . $10 n \mathrm{~g}$ by 4.0 mm , wide, redtish piecons, with black hairs on (lise, and seopulte of long ted hates, with many small blunt spines,

Leqk, 4-1.3.2. Piceons, shining, trichohothria on all legs from pabita to larsus, sime segments with many strong spines ventrally, ito scopulae on uny farsi or motatursi。 Claws 3, upper claws with $9-3$ teeth, slishty dissimilar, lower claw will ()-1 tweth (br. fig. $3 \mathrm{~K}-\mathrm{N}$).

Pulph. l'iceons with long black hairs. Thrsus with single strong claw with theec large inmer basal teeth and traces of two smaller ones.

Sprimes. Tihiae metatarsi and tarsi with many ventral spincs. No spines on patella of any leg.

Abdome:t. Arehed, ovate, overhanging hase of cephatothorax slighty, piceons in colour but dull with long brownish hack hairs. Th front ot epigastrie furrow whinizol, shining, brownish pieeons, and eoncolorous with sternum and eoxae.
 lone ; inferior 1 -() mm . Jong.

Loc. of Western Australia: Maida Vale, 26-283; Bridgetown, 26-i322: Yotting, 66-693/4 (2 spec.) ; Wembley Park, 29-453; Palmyra, 30-124; IInllywood, 31-651; Mt. Lawley, 31-652; Liasseudean. 32-1103; Nedlands, 32-1101; Coftersloe, $32-1461 ;$ W.A., K 8847 ; Perth, K 15260.

13 specimens.
of 오 North I'crth, 纤-150; Camington, 32-1427; Boologooro Sta., Carnarvon. 110 diate.
is specimens.
Misstllena hogat nom, nov.
 Cambridge 1877, Amm. Mag. Nat. Hist., ser, 4, xix, p. 30.

I'ext fip. 4A-g.
The specimen deseribed by 1 ogere from Swan River, Western Australia (enll. II: W. .J. 'l'urner') does not agree with Cambridge's origimal deseription, alsn from a Swan River specimen, but does agree with a second specimen referred to later by (Gmbridge (loce cit.p. 81), hence the neessity for a new name. Further, Cambridge's original descriph of intertus agrees with that of his sprecies tprontlosum, ind these two species become symonymous.

Only known as yet from the male sex.

S Total length (exchding chelicurae and spinnerets)	10.0 mm.
Length of Cephalothorax	5.5 mm.
Width of Cephalothorax	6.0 mm.
Length of Abdomen	5.5 mm.
Widith of Abdomen	4.0 mm.

Langthes of leg ant palpal segments in millimetres.
Femur. Patella. Tibia. Melatarsms. Tarsus. Total.

Legr I	S. 1	$\underline{2} \cdot 6$	$8 \cdot 0$	9.8	$1 \cdot 8$	15•3
Lestir I!	$4 \cdot 5$	$2 \cdot 5$	$3 \cdot 0$	$\underline{2} \cdot 6$	1.8	14.4
Leg LII	4.2	$2 \cdot 4$	$\because \cdot 1$	$2 \cdot 8$	1.8	13.1
Lere IV	万. ()	$9 \cdot 5$	$3 \cdot 0$	\cdots	1.8	15.2
Pillpo	$4 \cdot 5$	$2 \cdot 5$	$3 \cdot 5$		$1 \cdot 6$	$12 \cdot 1$

Width of 1st patella at "kure" 1.2 mm.; tibial intex $21 \cdot t$.
Wiath of th patelta af "kne" $1 \cdot 5 \mathrm{~mm}$. ; tibial index $97 \cdot 3$.
r 4 arapare. Ovate, truncate in front, $5 \cdot 5 \mathrm{~mm}+$ long, $6 \cdot 0 \mathrm{~mm}$, wide, rear margin incised medially. Thoracie fovea deep medially, stromply procurved, radial furrows distinet. Pars cephatica $2 \cdot 2 \mathrm{~mm}$, high, $3 \cdot(0 \mathrm{~mm}$. hons almost blatk but with it tinge of dark red, strongly rugose but less so than in grand okn, a slight lompitudimal lime from behind middle of ocular area ; a few long hatiss in front of ocular area. Ciypers brown, about one $\Lambda A \mathrm{E}$ in width, and two ryon diameters away therefenm. Pats thonacica black, rugose, the rugosities tending to form lines parallel to the radial furgows, lateral margins reflesed and rugose, with a few hatis m morgins but mone on dise.
 anstiyhtly raised inea, $0 \cdot 2 \mathrm{~mm}$. diam. and separated from each other by 1 diameter. Anterine row of eyes very slighty procurved, posterior row sirongly reenrved.

oval, inclined, raised, 0.15 mm . cliam., 2.8 mm . apart. PME oval, horizontal, sessile, $0 \cdot 15 \mathrm{~mm}$. diam.. 0.8 mm , from ALE , and front edges slighty behind line joininy posterior edges of Aath.
(helieerat. Basal segment 4.0 mm . long, entively bright rect, lightly rugose with hack bairs; rastellum of $8-10$ stont hack spines. Fangs dark red to black, 2.5 mm . long, enved. Piomargin of furrow with about 3 large and $7-8$ small teeth, retronargin with :3 large and : $3-4$ mall teeth. A number of small tuberosities between finerow margins. A. liyht seopnla of reddish black hairs.

Labium. Longer than broad, $1 \cdot 5 \mathrm{~mm}$. by $1 \cdot 0$., sides tapering anteriorly, apex romuded, with long black hairs and distally small blunt almost incipient spines; eolour reeddish back.

Fig. 4. Missulena hoggi n.m. O. A, eyes \times, B, B, palp, C. choliceral teeth, D, clatws leg I, E. ditto leg II, F. ditto $\operatorname{leg} \operatorname{III}, G$ ditto leg TV.

Stornum. Oval, a little longer than wide, 3.5 mm . by 3.0 mm ., blackish red. with concolorons hairs. Sigilla, 4 pairs, second pair subdivided, fourth pair large, oval, and trell away from margins.

Mnaillm, 2.8 mm . longe by 1.6 mm . wide, with black hairs on dise, numerous small incipient spines and a seopula of long reddish hairs; colour dark reddish black.

Legs. 1-4.2.3. Shining btack, light brommish scopula on tarsi and netatarsi of ItI and IV: trichobothria on all legs from patella to tarsus. Tarsal claws 3 , upper with :3-9 teeth, dissimidar ; lower with 2-3 teeth (ct. fig. 4D-G).
l'tlpi. Black, clothed with long black hairs. Genital bulb black, spiral: stigma rather less than half Jength of tibra, red basally, black apically.

Spines. Patella to tarsus of all legs with many long strong spines ventrally, those on tarsus and metatarsus of III and IV laterovental. Patella I aud III with short, curved, forwarddy directed spines forming an aceessory rastellum.

Abdomen. Greyjsh back with coneolorous long hairs dorsally and ventrally; in front of epigastric furrow eoneolorons.

Spinnrets. Four, superior 1-5 mm. long, inferior () \cdot (mm .
Loce. Western Australia: Darkan, 25-565; Williams, 38-2232; Pithara, : :3-90:3; Jundariug, 28-620 ; 'loodyay, 2s-678.

- specimens.

Mishatana heriexa Rainhow and Pulleine 1918.
Australian Trap-door Spiders, Ree. Austr. Museum, 1918, xii (7), p. 87, pl. xxi. [if. $33,34$.

Text fig, 5A-G.
Redescription of Type specimens.

A Total length (exeluding elrelicerae and spinnerets)	9.5 mm ,
Length of Cephalothorax	5.2 mm .
Width of Cephalothorax	5.5 mm.
Length of Abdomen	5.5 mm
Width of Abdomen	5.1 mm.

Lengthes of leg and palpal segments in millimetres.
Femur. Patella. Tibia. Metatarsus. Tarsus. Total.

Tsegir I	$5 \cdot 0$	$2 \cdot 3$	3.2	$2 \cdot 7$	$2 \cdot 0$	$15 \cdot 2$
Ler II	4.0	$2 \cdot 2$	$2 \cdot 7$	$2 \cdot 5$	$2 \cdot 0$	$13 \cdot 7$
Leg III	$3 \cdot 5$	$2 \cdot 2$	$2 \cdot 7$	$2 \cdot 5$	$2 \cdot 0$	12.9
Leer IV	4-2	$2 \cdot 2$	$2 \cdot 6$	2.6	$2 \cdot 3$	$13 \cdot 9$
Palp.	4.7	2.5	$4 \cdot 3$	-	$1 \cdot 9$	$12 \cdot 7$

Width of 1st patella at "knee" 1.0 mm . ; tibial index 18.2 .
Width of 4 th patella at "knee" 1.2 mm . ; tibial index $25 \cdot 0$.
Carapace. Broanly ovate, shining, truncate in front, 5.2 mm . $10 n \mathrm{~m}, 5.5 \mathrm{~mm}$. wide, rear margin somewhat incised. Thoracic fovea deep medially, and strongly mocurved (given as recurved by R. and P.), a deep longitudinal furrow from middle of fovea to posterior margin, radial furrows distinct, margins thick and

 $\log I, F$, ditto $\operatorname{leg} \Pi, F$, ditto leg ITT, (F. ditto leg IV.
reflexed. Pars cephalica 2.0 mm , high, 2.6 mm . $10 n \mathrm{~g}$, bright recl, rugose, with a
 sinuous, medially as wide as 1 AME diam. and about 2 diameters away therefrom. with a few reddish hairs in front of AME. Pars thoracica chocolate brown finely granular, margin reddish, a few hairs on margins.

Lyes. Ocular area wider than long, $8 \cdot 0 \mathrm{~mm}$. hy 0.7 mm . AME on slight] raised prominence, cach eye 0.2 mm . diam. and 1 diameter apart, Anterior row slightly procurved, rear row decurved. AILE inclined, wat, only slighty mised,
 as $\Lambda L E, 0.1 \mathrm{~mm}$. diam., 2.2 mm . apart, and 0.5 mm . from $\triangle \mathrm{LE}$. PME 0.1 mm , diam., hroadly oval, $1 \cdot 5 \mathrm{~mm}$. apart, in line with posterior edge of $A M E$.

Chelicorue. Basal segment 3.8 mm . long, concolorous with pars cephalica, shining, hairy with transverse striations, rastellum of 16-20 fairly long spines, dark red, in two or three rows. Fangs darker in colour, curved, $2 \cdot 5 \mathrm{~mm}$. long; promargin with 7 teeth, 2 large and 5 small ; retromargin with 3 small as in figure; with scopula of reddish hairs.

Labium. Longer than broad, 1.2 mm . by 0.7 mm ., sides tapering, apex rounded, without spines, red in colour.

Maxillae. 2.0 mm . long by 1.7 mm . wide, red, with scopula of reddish hairs, but no spines.

Sternum. As wide as long, $3 \cdot 0 \mathrm{~mm}$., reddish yellow in front, a little darker behind ; sigilla distinct, 4 pairs, away from margins ; posterior large, oval, anterior small; clothed with long reddish black hairs.

Legs. $1 \cdot 4 \cdot 2 \cdot 3$. (R. and P. say $4 \cdot 1 \cdot 2 \cdot 3$). Chocolate brown in colour, shining. Tarsal claws 3, superior claws with 5-7 teeth, inferior claw with 1-3 teeth.

Palpi. Chocolate brown in colour, with brownish hairs. Genital bulb reddish (fig. 5B), stigma lighter in colour, slender, curved, $2 / \sqrt{6}$ length of tibia.

Spines. Spination of leg-segments much as in other members of the genus.
Abdomen. Ovate, arched and slightly overhanging base of cephalothorax dorsally, clothed with long black hairs, colour as given in the original description, with a light yellowish patch anteriorly. Anterior of epigastric furrow and posterior booklungs concolorous with sternum.

Spinnerets. Four, concolorous with venter of abdomen, superior 1.0 mm . long, inferior 0.4 mm . long.

Loc. Type from Keith, South Australia. Australian Mus. Coll., K 40832.

Missulena bradleyi Rainbow.

Studies in Australian Araneidae, No. 6. The Terretelariae, Suppl., Rec. Aust. Museum, 1914, x (8), pp. 267-270, fig. 73-75.

Text fig. 6A-N.
Redescription of type specimen aided by additional material. ${ }^{*}$ Total length (excluding chelicerae and spinnerets) 10.5 mm . Length of Cephalothorax 6.0 mm . Width of Cephalothorax $7 \cdot 0 \mathrm{~mm}$. Length of Abdomen $\quad 6.0 \mathrm{~mm}$. Width of Abdomen $.5 \cdot 0 \mathrm{~mm}$.

Lengths of leg and palpal segments in millimetres.

	Femur.	Patella.	Tibia.	Metatarsus.	Tarsus.	Total.
Leg' I	$4 \cdot 7$	$2 \cdot 2$	$3 \cdot 0$	$2 \cdot 7$	$1 \cdot 5$	$14 \cdot 1$
Leg II	$4 \cdot 5$	$2 \cdot 2$	$3 \cdot 0$	$2 \cdot 5$	$1 \cdot 3$	$13 \cdot 5$
Leg III	$4 \cdot 2$	$2 \cdot 2$	$3 \cdot 0$	$2 \cdot 5$	$1 \cdot 5$	$13 \cdot 4$
Leg IV	$4 \cdot 7$	$2 \cdot 5$	$3 \cdot 0$	$3 \cdot 0$	$1 \cdot 6$	$14 \cdot 8$
Palp.*	$4 \cdot 0$	$2 \cdot 2$	$3 \cdot 5$	-	$1 \cdot 6$	$11 \cdot 3$

Width of 1st patella at "knee" 1.4 mm . ; tibial index 26.9 .
Width of 4th patella at "knee" 1.5 mm . ; tibial index $27 \cdot 3$.

[^5]Carapare. Broadly ovate, shining, truncate in front, $6 \cdot 0 \mathrm{~mm}$. long, $7 \cdot 0 \mathrm{~mm}$, wide, rear margin slightly incised. Thoracie fovea deep medially and strongly procturved, radial furrows distinct, a deep longitadinal furrow from middle of fovea to posterior margin, margins ruflexed. ['ars cephalicat 3.0 mm , high, 3.7 mm , long, not black (Rainbow) but a very dark chocolate brown, wo trace uf red; with a fine longitudinal groove from behind ocular area, surface finely granular. ('Jpens reddish, about half' the width of ome A.DE and separated therefrom be one AME diancter, with ${ }^{3}$ or 4 long hatek hairs in front of AME. Yars thoracica concolorous with panserphatica and similarly slightly and finely gramular, apparently without hairs.

Fig. 6. Arissulena bradleyi Rainbow. A. eyes of $\sigma^{7} \times 9$, B. eyes of $9 \times y, C$ pall of 8 ,
 leg III, J. ditto leg IV, K, clatws of leg I o, T, ditto leg II, M, ditto leg TII, N. ditto leg IV.

Eyes. Oedar area much wider than long, 3.8 mm . by 0.8 mm . AME on slighty raised prominence. cach cye 0.37 mm . in dianeter, romid, and half a cliameter apart. Autarior row of eyes slightly proemerved, posterion row recurved. ALE inclined, oval, raised 0.3 mm . in diam. and separated trom AME by $1 \cdot 0 \mathrm{~mm}$. PLE oval, raised, inclined, 0.25 mm . dian., 2.6 mm . apart, and 0.4 mm . from $A \mathrm{~L}$. . PME O.d mm. Jong, oval, long diam. in line with posterior edge of $\triangle \mathrm{ME}, 0 \cdot 37$ mm, from AME.

Cheticcrefe. Basal segment 4.5 mm . long, eoncolorous with cephatothorax, shining, with fine transverse striations, rasteltam with $5-6$ spines of same colour. Fanss concolorous, $2 \cdot 2 \mathrm{~mm}$. long, curved, promargin with 3 small gradually inereasing teeth, then ${ }^{3}$ large, lollowed by 2 medium and 20 small teeth, retromargin with only ${ }^{3}$ small teeth near base, a few small tubcrosities between margins, with slight scopula.

Labium. Longer than broad, $1 \cdot 5 \mathrm{~mm}$. by $1 \cdot 2 \mathrm{~mm}$., sides tapering, apex
rounded, with brown hairs. and only incipient spines apically; colour rather light chosolate brown.

Maxillue. $2 \cdot 0 \mathrm{mim}$. long by 1.7 mm . wide, with seopula ne hrown lails, und on inner hasal insple a few incipient spines. Colour light phocolate brown.

Stermum. $\quad .0 .0 \mathrm{~mm}$. long by $3 \cdot 0 \mathrm{~mm}$. wide. Shight chocolate brown with hrown. ish hairs. Sigilla distinct, 4 paits, posterior large, oval, well separated from marain. anterion small, second pair untire.

Legs. 4•1-2•8, chocolate brown in colour; scopulate on tarsi and matatnrsi fil and IV', trichobothria on all tibiae, tarsi and metatarsi. Tarsal claws 33 , superion
 tereth, second tooth if present, small.

Palpi. Chocolate brown with brown hairs. Genital butb concolurons (fig. GO). stigma slender, rather less than half leupth of tihia, darkened tomencis apex.

Speimes. A distinct pad ot many spines ou distal imner half of patella I and II I. A few in same position nu ler IT, none on IV: tibia, metatarsus and tarsus of all lews with a number of stronge spines ventrally, those on tarsus and melatarsus of III and IV latero-ventral.

Ablomon. Ovate, arched, slighty overhanging base of ecphalothorex, dorsally dark chocolate brown with nomute yellow spots and on anterior hall a large patch of bluish grey or yellow; sides comenlorous with posterior port ion of dorsum. dorsum with short spine-like hairs, interspersed sparsely with Ionqer hairs; venter dark chocolate brown, with lomer hairs, and also spotted with yellow; in frout of the
 with the sternum and legs.
spinnerets. Four, light yellowish chocolate brown; superioe $1 \cdot 2$ mm. long, :3 segmented, basal serment the longest, apical vers short ; inferior 1 -semented. thin, $0 \cdot \overline{6} \mathrm{~mm}$. long.

q Total length (excluding chelicera and spinnerets)	$15 \cdot 0 \mathrm{~mm}$.
Length of Cephalothorax	7.2 mm.
Width of Cephalothorax	8.0 mm.
Length of Abdomen	9.3 mm.
Width of Abdomen	$\$ \cdot 0 \mathrm{~mm}$.

Lengths of leg and palpal segments in millimalres. Femur. Patella. Tibia. Metatarsus. Tarsus. Tutal.

Width of 1 st patella at "knee" 1.5 mm.; tibial index 93.3 .
Width of 4th patella at "kinee" 1.8 mm .; tibial index 30 .
Curapace. Broadly ovate, shining, slightly wider than long, T.9 mun, wide, 8.0 num. long, truicate in front, incised in posterior margin. Thoracie fovpa deep medially, strongly procurved, ladial furrows distinet, longitudinal furrow from middle of fovea not so evident as in on margins reflexed. Pars cephatica $f \cdot(0$ mu. high, + . fm . m . long, chocolate brown in colour, somewhat lighter at margins; with a few hrown hairs in front of ocnher area and seattered on disc. Clypeus whitish, as wide as the diameter of one AME and separated therefrom by the same distaneo. I'urs thoracica swooth, shining, concolorous with pars cephatica, but a shade Jimhter. especially on margins.

Eyes. Ocular area very much wider than $10 n \mathrm{~g}, 4.7 \mathrm{~mm}$. by 1.2 mm . AME almost sessile; each eye 0.25 mm . in diam., round, one diameter apart, cach cye surrounded by dark pigment. Anterior row slightly procurved, posterion row recurved. ALE slightly reclined to horizontal, raised, 0.25 mm . in diam., base darks pigmeuted, separated from AME by 1.7 mm . PLE 0.95 mm . diam., raised, uval, inclined, 3.9 mm . apart and 0.6 mm . from $\triangle \mathrm{LE}$ 。 PME 0.55 mm , diam., oval, 0.85 mm . from AJLE

Chelicerac. Basal segment $\mathbf{1} \cdot(0) \mathrm{mm}$. long, concolorous with eephalothorax, shining, with fine transwerse striations, with slight seopula of brown hairs, mastellun with 10-1"3 short spines of same entomr. Fanms a little darker, especially fowards the tip, 4.0 mm . Jong, enved; promargin with is gradually increasing leeth, then 1 large, 2 small. 1 large, 1 small, 1 medium, then 2 small teeth; retromargin with only is mall teeth near base, and a few tuberosilies between.

Latium. Longer than lorvad, 9.5 mm . by 2.0 mm .; sides taperiug, apex romnded, with about $20-30$ short stont spines; with long brown hairs. Colonr, museolate brown.

Maxillae. 3.2 mm . Jons, $2 \cdot T \mathrm{~mm}$. Wide, with seopula of brown hairs and on immer angle a number of stout spines. Colour as for labium.

Sternum. 4.5 mm . wide and $4-5 \mathrm{~mm}$. $10 n \mathrm{~g}$. Colour yellowish chnculato hrown. Sigila iu 4 pairs, away from margins, posterior pair large, oval; anterion smull, second pair entire.

Legs. 4.3.9-1, yellowish chocolate brown in colour, dorsally rather darksh, No tarsal and metatarsal scophlare trichobothria on all tibia, tarst and mudarsi; larsal claws ${ }^{3}$, superior claws with one large inner tooth, and usually a very small fine tooth in the imer angle of the large tonth; inferior claw similar. Hairs brownish.

Palpi. Concolorous with the legs; clothed rith brownish hairs. 'Tarsus with single claw with large inner tooth, ventrally with strong spines in distal half.

Spincs. Patella I and II without spines, III and IV with a few on the distal outer side: tibia III and IV with 2 domsal subapical spines, metatarsi III and IV with 3-4 clorsal subapical spines tarsus of all legs with ventral spines.

Abromen. Ovate, arched, overhanging hase of cephalothorax, dull choonate brown in colour with a number of fine yellow spots but without the huish grey anterior pateh of the mate, althongh this area is indistinctly indicated by a change in the eorrugations on striations of the cuticle. With shord spines arising from trbereles, and long fine hairs brown in colom". Venter except for the posterine booklungs concolorous with abdomen. Anterior of the epigastric furow, and also posterior booklungs, concolorous with sternum and legs, a yellowish chocolate brown, strongly chitinized.

Spinnerets. Four, light yellowish brown. Superior 2.5 mm . long, 3 -segmented and stont, inferior 1.0 mm . long, 1 -segmented, thin,

Loc. Nllotype q. Willoughby, N.S.W., Feb. 1928, Aus. Mus. Coll., K 57495.
 Eastwond, K 36064.

Key to the Spectes of Missulena Walekr.

ठేర

1. Abdomen dorsally with a light bluish or yellowish pateh antoriorly, or entirely cinnamun yellow $\quad \because$ ontirely dark coloured $\quad \because \quad . \quad \because \quad . . \quad . . \quad 3$.
2. AMFA largo in proportion to length of ocular area, separated by an eyo diaro., and from IME by 1 diam. Superior claws of legs with not more than 4 tecth. Yars cephatica a dark chocolate brown without any trace of red. Abdomen dark with anterior bluish or yellowish palch. Mo. bradleyi Rainlow 1914. AME small in proportion fo length of ncular area, scparated by 1 oye diam. and from PME by 蛙dian. Superior claws of legs with $\overline{5}-7$ teeth. Pars cephadica bright red. Abdomen entircly sellow.
M. reflexa R. and P. 1918.
a. Pars ceplalica entirely bright red 4 . Pars cephitiliea nutirely black or with only a truce of dark red auteriorly. 5 .
3. Pars thoraciea, legs and generally, a light ehocolate brown with slight purphish tinge. ANE separated by 1 eye diams, and from PME by 3 diam., surrounded with black pigment. Superior claws with 5 teeth. Lahium and maxillae futirely trithout spines, even incipient ones. Pronargin of cheliectan furrow with 3-4 large and 6 small teeth.
M. insigne (Cambr. 1877).

Pars thoraciea, legs and generally, black. AME separated by 1 eye diamo, and from PME by 2 dian. Superior claws with $4-6$ strong teeth. Labium and maxillae with short but distinct spines. Promargin of cheliceral furrow with 8-9 large teeth.
M. oecatoria Walckr. 1805.
5. Pars coplialiea atrongly rugose, almost tuberculate, ontiroly black. AME separatod by acyc diam., and from PME by $2 \frac{1}{2}$ dian. Superine claws with $8-10$ teeth. Lalium and maxillae with short stout spines. Promargin of cheliceral furrow with (6-7 large and 2-3 small tecth.

1. granulosa (Cambro 1870).

Pars cophalica less rugose anteriorly with a tinge of dark red. AME separated by 1 eye diam, and from PME by 3 diam. Superior claws with 3-8 tecth. Tahium and maxillae with numerous but incipient spines. Prunargin of cheliceral furrow with 3 large and 7-8 small teeth.

> M. hoggi nom. nor.

$\quad 9$

1. Basal segment of chelicerae, and anterior part of pars cephalica it least, reddish but not a bright red. Legs, pars thoracicu nund gencrally, a light chocolato brown with purplish tingo. AME separatod by diam. Superior claws with 1 large tooth, and sometimes a small one in inner angle, Palpal clan with trifurcate tooth. Promargin of cheliceral furrow with 4-5 large and $5-6$ small tectl.
M. insigne (Cambr. 1877). Basal segment of chelicerae and pars cephalica coneolorous with pars thoracica.
2. Eyes relatively small. PME yery mueli nearer laterals than to AME, latter 2 diam. apart and 10 diams. from PME. Palpal claw with strong, hasally trifurcate tooth.

A5. opcatoria Walckr.
Eyes relatively larger. PME about midway between ANF and the laterals.
3. \triangle ME 1 diam, apart and 3 diams, from PME. Palpal claw with 1 large simple tooth with aecessory small tooth.
M. bradleyi Rainhow 1914. AME 量 diam, apart aud 5 diams. from L'ME. Palpal claw with large 3-pronged tooth.
11. granulosa (Cambr, 1870).

SOME ABORIGINAL STONE IMPLEMENTS OF WESTERN AUSTRALIA

By H. V. V. Noone, F.R.A.I.

Summary

In collaboration with the Director of the Perth Museum, Mr. L. Glauert, the collection there of stone implements found in Western Australia has been studied and classified. A short account of many of the specimens is now given to make known the various types represented, and the localities wherein they were found. Sketches in outline of some of the specimens are shown.

SOMF: ABORIGINAI, STONE IMPLEMENTS WESTERN AUSTRALIA ${ }^{1}$

By TI. V. V. NOONF, F.R.A.l.

Fig. 1-31.
IN enllahoration with the Diractor of the Perth Museum, Mr. Ld. Glauert, the eolluetion there of stune implembnts fonme in Western Australia has hem studied and classified. A shme amenmit of many ut the specmens is now given to make lenown Tho surions typuspepresentad, and the localities wherein they were fomd. Slectehes in ontline of some of the ancecimens are shown.

The Australian Aboriginal has been referred to on oceasion as a sort of savage survival of the horrid jast, in fact, wo oredit to his Maker. Those, however, who study him will find anple evidence tlat in his own sphere his intelligence and rharacter are of no mean order. IIe can laty claim to being one of the most suecessful human examples of "hviromuental adabtation, in fact so intimate is his assonciation with his familiar surromdings that too often he does not survive when deprived of them. It is a great pity this fact has not been realized always and that he was not Intt alone to tollow his nisu destiny.

Other peoples of the world have made use of some sort of throwing stick, but the Australian ahoriginal has gone muel further, for he has evolved a weapon of :ppecialized and varied form and armed himself with a projectile that he can use peffectively against the largest of the amimals which he enconnters. There are some who would deny him the invention of this remarkable treapon, the boomerang, but they conld not filch from him the oredit of having developed the idea to its perfection.

Tho aloringe's work in stone also testifies to his resourcefulness and dexterity. It is remarkable that, almost without exception, there is no way of producing tools and weapons from strome, practised by the primitive people of the rest of the world. that was not used ly the Australian aboriminal.

Man's simplest method of fracturing stone into shape, knapping, may be outlined thus: after selection of a suitably shaped pebble of flakeable material another is found of suffocient weight and conveniout form to use as a striker. Λ well placed flattish spot (striking platform) on the pebble having been found, or made, a smart blow with the striker is delivered there in an outward direction and at a slightly acute angle. I flake is thus detached, and by such blows, repeated on selected spots, sometimes it may be on the sear left by a previous flalze struck otre, the unwanted portions of the pobble aro knapped off until the desired shape, at "coreimplement ${ }^{\prime \prime}$. such as suy zu axcheat, is eventually prodnced. Less severe knocks are employed to regularizeand shapen the edge (i.e. secondary work or trimming). The pelhife when knapped may he held, or embedded, in one hand, or rested on a rock, or the striking stome may he dispensed with and the pobble itself carefully struck upon a roek or stone anvil. Of the flakes detached in producines the core implement some may be suitable for service as lonives, ete. Should such flakes or "blades" (distinguishable from in bate hy heing over twice as long as broad and having comparatively redular side margins), be specially required, the worked-on

[^6] kind of flake of blade is lamped. In this ease a wide stroking glat form is first

 the Northern 'reites of Australia prove (o have heen the direet product of onf:
 at final blow detuching the pointed piege from the mosturs. Thongh the material

 of any of the wodd's stone workers. Ome of these hates in the dilataidn Itusemm
 wimonthis imblements also may be found excellent axmples of time knpping and

 Hake is used matrimment.

The trimming or secontary working which shapes. yogularines. nted durime use re-edges, bertais parts of the stone, espectally the working codue is hsitally
 wood, the stone implement sometimes being bedded in the palm wh the wher Land. and in the ease of the "tuke", or finke-ulze, the stone may ber operturned in the

 nent. much as in the way that a mong is applion, may be one of the methods employed in trimming. Ori occasion some uborigines will use theire lectle to hife aff
 ming are called abrupt, lone, channel, step, nibbled, wemated, cte. In phace of tap. pine. that is percussion, the fore nsed in trimming and seeonetare work hy cerduit of the Northern tribes is pressure. 'lhis methed has heen himply specialized in the Kimberdeys of prodace the well known hiface-worked knives and spearheads fom
 of benc or hurdwood grasped in me hand, the peinted end being appliced by heave hody pressure at careftaly selected spots on the margin of a piece of stome (smeh

 The stone blank itsolf upon a bardisis substances, such as a large bone, useal as a

 fine attenuated points of these piecen are atidence of pery deft and phinctakinf: porrk.

In the north-castern part of Western Anstralia there is also practiged mother
 jeroduces at more rolnast and lasting edge than by the older mothod of knappinge
 ats will not satisfacturily flate of form a sume erge. Alter roughly knapping the
 rubling on a wetted block of sablatone of similar rock. 'This labour, howeyel', is stdon earried on by the aborigion hoyond sulficient grinding on holb pases to form and sharwen the actual working edpe, and smooth dift the rurfoce immediatoly adjoment. (Sueh pieces may therefore be convententy distingutshed hy catling
 peffinght for the work required of it, and sensidering the rommers, huntinge and
cepromonial demands upon an aboriginal's timé, fine ther labour could be extrava(\%:Bl|.
'There are vertain pienes, Dine in Western Australia, bronght in I'rom tribes farthere enst, which show another pocess ased in working at a pebble in addition (n) forming the edge by grinding. This method is peoking, or hammer dressing. am is apparently done by crushing ofi small fragments from a sobested pebble,
 on its surface. The hows are divected into the body of the piede resulting in the pecking ont of many small pits which scrve to loth level and shape the surface of Tho implement. Snch a method is well suited to course material that will mot satisfiaconily flake, as also when a monded surface on the body of the implement is refuired, and io roughes the smooth pebble face, providing a better hold for hand or hatt.

Apart from one want of knowledpe as to the actual purpose for which some of the: specimens referved to below were produced, many of them have most probably hem employed for move than ome kind of work. In eonsequence, nomenclature in rogne for our modern specialized tools has as far as possible been uvoided, If is helieval that the most sutisfactory term for a stome implencent is one which makes Pamilian ita form (in sumb casstrizize) and method of prodnction.

Leavint usine the nboquitous milling stones, pomders, etc., the most diverse group of store implements in the liuseum collection comes from:

KTMBERLAFYG AREA.

Chameteristio lypes aro:

1. (11) Ovate: (flg. 1) and (b) corditum (tig. ©) biface-worked pieces. They are ol' arehaic form lom it is not certain that these specimens wore not to be finishod off by wace-grinding.
2. Some very well made discoidal cutting flakes.
 (0) miniature (fig, 6). These forms are very probably of ant early type.
IV. Liface-worked lameotate spearheads in (a) coarso (fig. 7), (b) bay-leaf, (e) Harrow (lig. 8) and (d) syat (him. 9) varieties most of which show pombded lases and secrated side margins, a few specimens being also dentionlated towards the lintt end. One piece shows the pressure trinmang on one faceonly, and a similarls treated pjese is in form diko a "pirri" point (ig. 9), with the plain or immer faco edene-frimmed.
V. Vilge-gronnd axes have beed classificd by form into (a) ovate, (b) cllip). soidah, (ra) rectimgnlar, (d) pick, (c) narrowed butt and (f) minialure. I'le cilipsoidal is the commonest type, then the ovate and piek. There are atso terosmed axeheads, one of whieh is 23.25 cm . in lengtb, produced by pesking and grinding a well-shaped pobble, and is said to have been used for teremonial purposes. This comes from Hall's Crecks, where that peeking dentminge is not ono of the ingthods employed for working on a stomes implement, und it is possible this fact made this partientar piece suspect ass a spirit production invested with mysterious potency. In the circumstances special earemonial handlimend enombloy the experienced elderg of the tribe may have been thought expedient.
Simall whe-ground cutlog tools, wome hatled in gum, are also reported trom Hhis mpat.
 found in this region which show "ulice" attinities. The macommon aspect Whe th the all-surface grimding, the fanhoning of the eque by a bevel, and tho

Fig. 1-19.

1. Ovate biface, Kimberluys, 2. Cordiform biface, Kimberleys. 3. Squat denticulated biface spearhead, Kimborleys. 4. Narrow denticulated bifnco spearhead, Kimberleys. 5. Narrow dentienlated bitime spearlead, Kimberleys. Gi. Mininture fenticulated hiface spearhead, Kimberleys. 7. Coarse lanceolate biraer spearlumd, Kimberleys. 8. Narrow lanceolate biface spear head, Kimberlejs. 9. Squat miface spearheald, Kimberleys. 10. Axe, Napier Range, No. Jutof, cullected 1887. 11. Axe, (irant Range, No. 10415. 12. Axe, unknown locality. 13. Discoidal take, Caming Stock Ronte, 14. Sterp sifled "Stug", Chming Stock Rante. 15. Scugent, Millstream Station. 16. Triangle, Millstream Station. 17. Obliqum phint, Millstream Station. B8. Buriato form, Millstrean Station. 19. Large: trimmed Hake, Shark Bay.
(All drawings one half natural size.)
 loreign (viz. Indonesian) facies. These and Invee pieses trom the sonth West ared, fogether with some other pieces beported by D. S. Devidson, amd some of simbilar unorthodox form in the Museums of the ather States, repnite speceial stuly. This metely sinvestor mithes Westarn distrolian speeimers on record. It is suggested by Is. Clanert that the possibility of forcion pieces
 shombd not he werlumked.

I'OBIN TAKE ARFA.

Erom lhe Canniug Stock Route, hetween walls et and 48 , come some thiok
 ndzes. A well kmapped-off hade is a kime of sars-knife, and there is a steen sided "shum" Fom (fig. 14) somewhat like a worn actze-flake, thergh there serems to be burely unom material ant behind the edge to hold in the fanm selting.

WEST PHAPARA AREA.

A very interesting collection has been made by K. S. Newwll at Millsiream Shation on the Fombence River, This emprises mostly woll made mioroliths (abom 3 em. and less in length). As with these small tools fomed in other parts of the word geometrical forms orew, some romaded such as semments (figi 15) and nthers dugulup meds as triangles (fige 16). Thore are also several boans and fime abropt-trimmed hiadolet points (sumetimes called sparifiers, lancets, backed or chippod-hack knives, Sydney and Bomdi Pomss), one of which is trimmed oblignely (fig. 17). The vecmrence of these narmo pointed hadelets in this area is puatioge becanse they ate rave in the similar microlithie industry of Sonth Anstralia, where (he prossure dinmed leaf-shaped pirri point (sumewhat like Nob.9) is the matandBusp beeen. Those moints which are fonm in that aren to be abupt-trimmed ate often somparatively broan, jn fact they more nonly approach the piovi form and proport ion of width to length. The Adeluide aboupt-trimming seems to have been emploved to milize an ill-formed bade and make it symmetrical like the pirri, the achat mandip being browght an man as possible to the line of the longitudinal asis. It is almost iwariably trimmed only trom one face, and not from both faces as so often seen on the Leastern (Boudi) point. Points like the Millatream specimens ure foum in quantity in both Victorin and the coastal aren of New sonth Wales from whid the pirri is alsent. It wonk seem that a pressure-formod pira puint inhastry has ent acoss that of an abrupt-trimmed badedet, white there seem (o) he indicutions that an adze-flake industry has ponelwated the middle part of

Ontsind Australia no sum emparabla miepolithie industry of detinite furms
 Cedon ume fomm parious geomedrical mieroliths such as segntents, triangles and
 In apile of sumberen almost identical micro (ypes fomm in Anstralia and Geydon there seom do be no grounds tom explaining this fis duc on difiusion. Hate and

Fig. 20-31.
20. Small adze-flake, Shark l3ay, 21. Prismatic nucleus, Murchisom River. eg. TIorsohoof, Murchison River, 8372. 23. Trimmed oval llake, Beria. D4. Arapia, F'allinup River. 25. Laose Efourra-

(All drawings one hale maturel pize.)

The mieroliths are foum roughly cormenpond with those where the "death-spens" was known to be in use, (Λ definite relationship between the Western Λ nstralian "Alath-spear"s and tho North Quecusland chip-barhed spear appears to me anestomable in spite of some similarity. The Qutensland saw-knife is made with sharks' teeth and the spenr shows similar jointed picecs, that might be sopies of the teeth, carcfully gummed in to point forwarl). Ta France a few andhomithes think some of the senments and triangles may lave been ned as fish hooks. The ideal chip used in the West Anstralian "death-spear" is apparently of somewhat rectanglar form with a bevelled entting entoc, the gum employed beintry in not very whesive mature.

In andition to these small micero pieces a concavo serapmer, a well kmapped pointed blade (8poarheat?), and an example nf what may be called the "burimate" form (tig. 18) trere also collented. Similar burinate specimens lave been identifiod by me in South Austrulia, New South Wales, and Queensland. There are also an "nd-seraper at end of in blade, and a highback "shate" form, which may be adzeflakes.

SHARK BAY AREA.

Of a few picees collected here a larue trimund flake (fig. 19), which may have beem nsed for milting trihal marks, and a small adze-flake (tis. 20) may be noted.

MTIROHISON RTVER AREA.

Soveral particularly interesting specimens have been oollested near Milly Milly Station by ld, Glamut. Thumeare a few thick discoidal flaker Tike those from Une 'lobin Lake Area, and some oval had guadrangular well trimmed picces which woul make poot entting flakes. Thero is also a kind of prismatic core or nomens (tig. 21), wh whill a singlo common striking platform appears. This is line fors core of smoh a type (whioh is hsually taken to indicate a developed knapping technique) fomm on this side of Ausimalia. The butt of a prismation anclens has recently been fonud by R. O. Noone in the Vicinity of Peak Mill, Western Australia, Other :signifeant pieces from this area are two cxumples ol the eovedike implement komon as the "horsehoof" (fis, 22), which is alse a type mot hitherto fommed in Western Anstralia. It whild seem that the merfeoded form of this tool is ono having some sort of erest, oftem showing signs of use, opposed to the flat face such as appears on The piece No. 8975 . A variant has a more in less rommed or flat top, some heing of tablet. form. Tan told ly IJ. M. Coopme that at some camp sites in Sonth Anstralia the stome implements fond abe almost entirely of the horseloof and kindred types.

These fwn sjecimens hear signs of use as a kint of clopping or mashing imple. ment. their flat faces showing bruised or rounded-off margins. On erertain spots ons this margin pits may bo seen us if sume blows had heen detivered there with at
 the nse at the wige ans an anvil or a hamber, kisy in breaking bones, if is a chmoteristic Austratian stonc implement.

EASTERN (3OLDFIEJJS AREA.

Severat of the specimens from this reaion would be suitable for nse ne flake-

SOTPM WEST' AREA.

Iband about derth and south to the mastal ravinn there bave been collectent a varioty of tybs. Two specimens arte like the implement known its "Arapia"
(佔. . 24) Whichs may he a kind of heavy hand adre. fine spocimens of this tool
 and South Anstralia and Jiw South Wales.
 point and an ohlinte trimmed badelet which perbaps indieate that othere minero. lithies types, such as the geometrical forms, are to be found in this vicinity. This is finether somblh on this side af Anstralia than they have been hitherto discovered. (1 havesince learnt trom N. 13. Thatale that he has found microlithie pieces in this
 places)

In the meighbom hemed of simddon, near Esperance, has been fonnt a pemarkable biface implement in flint, with nofordmately the point broken. This shows dark stanel patimation. and is in form and appearance strikingly similar to the Lower Palenthite hiface implements found in Euphud. Other special preces from this aren are memboned dsewhere in this paper.

FUTSA AREA.

Wrom this reyion emnes at suting flake of light brown flint evidently of maferind from the deposits in the coastal cliffs some miles east. A hoard of similar tlint flukes from this arean is in the Adelaide Mnserm (Tindale, N, 13. and Noone. II. V. V., 1941).

Amomes pieces in the Monemm that were found over the border, near Ooldea, is a pood example of the swatl uniface-worken point called "pirm" which is tomm in quantity in South Anstralian fan north as the Musgrave Ranges and westram almost to the border of Western Australia. The pirri has been proved hy Hale and Timbate to be ats cenly type of inplement, being found some 5 metres betow the surlace in undisturbent deposil (Hale, H, N, and Tindade, N. B., 1930). This Ooldea specimen of an obsolete implement shows the use of a pressure trimming lechnigue such as is pyen now grantised in making the Kimberleys biface spearo hands. A relationship hetwem the South Austratian pirri point and the workince thaditions of the Kimberleys eraftsmen seems to be definitely indieated.

CONCLUSIONS.

A moticeable featme on tha Parth enllemion is the almost complete ubserve of large thated implemants such as were made torm pebbles in the other Siates. but this may be due to theme teme aredooked by collectors, or their inconvenience of
 phorong or bering a biece from Hillstrem. Several of the throwing stioks and
 still embedded in the gimm. Six of these show that flakes, which are like tho New
 athe, ete. work. It would therefore seem that, on oecasion, this type of stome implement, which has its wromgerge on the side margins, was emploved to take the place of the spectalized tula (tig. e6 (b) jast as nuy sulatable flake with a good monern edge at any part of the margin may he, ns is seen in the varied type on adyen lake prorlued by the Acteluide eraftsman (fig. 27). Either the thin ore thiek
 meant to exchade bo possibility of the clonera beingemployed for other work. "the
 from Shndaberg, Queonsland. and another from Stradbroke Island, as also some
 (hulfer. One was fomm it the l'idran level of Devon Downs.

 the lelu at the chds. The fola is a hioghly spectalized diseodal fomm of anye fake

 1.aba is that if is practically a manufactured article made for trands. of standurdized

 impodmenta. It is a characteristically Anstralian lool especially in the speatthrower form, a combination appapenty moter thomeh of hy the perplea of the jafmals surromming Australia. It muy lo mentioned that the spearthrover-cunt-

 atroge thatein, and rubled whth astick, a masieal instrument, and (i) astriking Wenpun, This is surely the most usaful all-romel implement pecr evolved by primitive man.
(Bher illoresther pieces in the Mnsermm, still complete with their stome parts, are the ghata chip saw-knife. Whe eltip-barthel "drath-xpedr", and the Western Australimn thaked-hatehet as it muy be ealled, all charanteristio of S.W. Nusfralian ahoriginal calture W. A. Cawhorme (1844) mentions a single bhde quatta hatohop (kandappi) as being in usp in the Arelatede tribe as alse the "death-
 somembut semi disenidal form very erindely foshomed, and when the Jaft and ellan Tro ubsent wot ensily reemenizet as hatchet bades. Their nso for womleuliner shows wifh what cride ill-formand logls some ahorigines managed to obtain thrio dequirements in life (Mountford. (? P., 19月1). Sommimes a mere blant stone block is tised as one of the stones it the hatehet, perhaps, besides for hanmmerne hark, le gorovido veight. on hatable A well made piece, however, whieh is sain
 and is aft semidiseodal shupe. of somewhat similar shape, thongh an outhize, is a
 heen eromad madnly on homb fates and may be a single axehend. The material Hsod is satid to be obtamable in the forality, hat enoum axes ane thonght not to have

 ant redes formed ly grimding, and a midridge naturally formed, was fonm at Diminup (liy. :31). As already mantionel these piecs of "alien" technique are worthy ap sucecial study.

So mush evidence has been put forward to indicate that the Anstralian athitimal has hrought, or borrowed, many tents of his culture from oyerseas

shafts and barbs, (e) certain forms of stone implements such as horsehonf, flakedpick, composite saw-knife, flaked-hatchet, and "death-spear" as also cylindroconical stones and tjurungas, (f) microlithic industry, (g) pressure working of stone, (h) mastic materials and grum hafting, (i) edge-grinding of flaked axes, and (j) highly developed flaking technique.

Little or nothing has been said of the antiquity of these stone implements in the Museum because, almost without exception, they are surface finds and any estimate of age is unwarranted without support from definite stratificatory evidence, adequately confirmed, which unfortunately is still wanting in this State.

My deep indebtedness to Mr. It. Glanert for his most valuable assistance and advice is gratefully acknowledged.

To Miss G. Walsh my thanks are due for her drawings, which bring out so well the salient features of the implements.

references cited.

Cowthorne, W. A. (1925-6): "Manners and Customs of the Natives", MS. 1844, Proc. Roy. Ceo. Soc., S. Austr.
Hale, H. M. and Tindale, N. B. (1930): "'Notes on some Human Remains in the Lower Murray Valley, South Australia'3. Ree. S. Austr. Mus., iv, pp. 145-218, text fig. 1-249.
Mountford, C. P. (1941): "Unrecorded Method of manufacturing Wooden Implements by simple Stone Tools", Trans. Roy. Soc., S. Austr., lxv, pp. 312-316, pl, xx, text fig. 1-3.
Noone, N. A. and H. V. V. (1940): "The Stone Implements of Bandarawela (Ceylon)" Ceylon Journ. Sci., Sect. G., Nov.
Tindale, N. B. and Noone, H.V.V. (1941): "Analysis of an Australian Aboriginal's Hoard of Knapped Flint'". Trans. Roy. Soc., S. Austro, Ixv, pp. 116-122, text fig. 1-3.

SOUTH AUSTRALIAN MICROLITHIC STONE IMPLEMENTS

By T. D. Campbell and H. V. V. Noone, F.R.A.I.

Summary

South Australian stone implements, not more than about three centimetres in largest dimension, sometimes called "pygmies", but now termed "microliths", have been referred to from time to time in various publications, and some of them described. No detailed classification or description of the South Australian microlithic industry as a whole has been hitherto put on record. The present paper is an attempt to supply this want. It is hoped that a similar analysis of the microlithic industries of the other States will be undertaken in the near future and results published.

SOUTH AUSTRAIIAN MICROLITHIC STONL: IMPLEMENTS

By'T.D. CAMPBELLAMOH.V.V. NOONE, F.R.A.I.

Fig. 1-117.
 latrest dimension, sometimes called "pysmis"", bint now fermed "mieroliths". have heen rotered to from time to time in varions pmblications, and some of them deseribat. Nondetailed classification or deseription of the South Austratian mierolithic inthstry as a whot has been hitherto put on resord. The presem paper is en etfompt to supply this want. It is hoped that a similat analysis ot the miurolithise induatries of the other States will be undertaken in the ntar fulure and results mblished.

These attractive little pieces play a very important and signifieant part, in Anstallian predistory. They are usually found on, or near, the surface of windblown camp sitos, either in quantity or sparsely distributed, in most parts of this Stute. Λ s in Europe and elsewhere, full-sized tools accompany them; but though These may be part and parcel of the same culture, it is not the purpose of the present stady, exsent in the case of the pirti, to deal with any but those of mierolithic aze. Thoumh we are treating these small pieces as a whole, this does not imply we consider them ans being components of omly one industry, phase, or culture; that can only be determined by statificatory evidence.

In sma parts of the word mieroliths seem to have been of comparativaly recent manalacture; lut in Europe they led the way to the decline and eventalal abandon. mont by man of a dependence upon stoue for his tools and werpons. There mieroliths appora most promineutly during the age called Mesolithic, which followed the finat stares of the Upper Paleolithic (Mastalenian) ; but their produetion is carried on well info the Nolithic Age. Stone implements of morolithie dimensions are actually fomb sparsely in the deposits of the Upper Prabolithic. especinlly of the abrupt-trimmed bladelet form, which the French call "lamelle d doss aballu" ; but it is in the Mesolithic Sauveterrian, and espectially the Tardenoisim I, II and III, of the French sites, that they are the predominant form of implement. Then they reach their full development in the production of various precise geometrical forms. In fact the true Mesolithic period is mainly charaeferized by mierolithic tools in qreat quantities, and made from bladelets prodnced ly careful knapping.

In the following acount the South Australian microliths are deseribed in various sections dealing with : their distribution, so tar as present knowledge goes; tho materials used; the teohnigue which was probably employed in their mantofaLure; Al dassification of the various types and their description, with some special eonsideration to one or tworoutstaudiut forms; some discussion on their antiquity and other features of interest: and finally a comparison with the ocenrence of minolithe in Frauce and Ceylon.

DISTRIBUTION.

Lu Sonth dustralia most of the known microlithic types were used. Their renkenized distribution is, of consse. dependent upon the extent of collection, which reynires at least some degree of expert knomledge. The list of recorded locations

Which will be found at the end of the naper gives a faire ideat of the wide rame of dishibution. From these reords if will be seen that with relatively linted entlatine, the oecurbence of microlithe mages mactically over the whate al ine Siate.

Collections made outside this State show these implements have been found
 the west of the embinent ont the Forterome River, and aromed Learth. Comtral Guecusland, aded eyen Central Australia as far north as the Macdonalad Downs, have also miven evidence of a micerolithe industry in these areas. It is probable that this distribution area will he expended ast time grees on, as unfortuntely these shath pieces, sometimes finite minute, are ouly too casily overlooked execpl by experieneed collectors, who already know for what shapes and appearance to sparch. (1)

Besides beiner widespread and well-developed, the mierolithie industry of Anstralia wond seem to be mingue for this pate of the world. Np to the present, the menesid similar industry is fomd mo nearer then Coylon, where several types idmatient with those fonull in Anstralia were produced. In Tasmania, Iapqep, R. W. (1923) hat reworded the findinge of small "1hmmbail", nosed, and high-hamekd serapurs which may be indications ot a temdeney townds a mierolithie imdustry af reonetric forms.

MATHERIALS USED.

Some of thes matorials nee of combe, rather restricted to certain areas: fon his ratom, the gemeral design and linish of implements tend to vary mepording fo the matare of the raw material lowally avalahin. For example, the tinest work munship and quality of tho implements collental in this sitate are represented in Lhese which wear in a wide east-west belt in the latitude of and dust below, Lake Fyre (approximately between dogrectios and 31). It is in this termin that excellent material, particulaty the fine chatewhomizo samblomes and poreellanites, are avalahle. Theses smoth, very fine-graned rocks aro almost ideal for clean, delientr, fand well emtrolled fracturing. On the uther hand, for eximple, the blue, likht hown, and may quitzite material predominat in the implements of the Alelader rarion is a mold courser gramed material, and the briefest experiment in
 prombing finely chiphed implenents of microlithic size. Nevertheless, in spite of this, many examples of this latter rewion are well formed and delightind ditde: pioces, and show a thorough appreciation of the technique involved in the micro. lithie work.

In the south-rastern area of the state, foeal flint has been ased which for the pirpose of making small implements is particularly suitable in spite of its somewhat inferior anality.

Ifictoliths are usially made of enmelnlly selected material, their small dimensions necessitatium the use of tho bestomanable fine-grained stone. Here in thix State they ure mostly made of the following materials: agate, ehaleedonic chays and sandelome, jasper, chert, porecllanite, potch opal, australite, indurateo slate and shale, quatzite, milks ruartz, aud oceasionally yuarta erystal and flint.

TECHNIQUE OF MANUFACTURE.

 been disenssed in a low of the published aceunts, but there appears to be somb varianes of apinion on the matter.

[^7]Horne and Aiston (1924) record their observations on the manufacture of some of the smaller tools, but while their statements concerning the use of percussion in shaping the flake, and pressure for subsequent fine trimming, are, to some extent, in accord with the likely technical proceedure, their information was gathered from living aborigines who, on their own statements (Horne and Aiston), were obviously unacquainted with this microlithic industry.

Hale and Tindale (1930) express the belief (p. 205) that the margin trimming of the pirri ". . seems to have been fashioned entirely by hammer flaking, not by pressure" ; but no reason is given for excluding the latter possibility.

Howchin does not discuss the manufacture of microliths, and merely refers to the fine trimmed edges as "very symmetrically and minutely chipped"."

There has undoubtedly been an impression among local students that the fine long low-angled trimming of pirris, and the vertical or abrupt trimming of other microlithie forms, was done by light percussive work and not by pressure; enquiries Irom living aborigines having tended towards adoption of this opinion. But also it has been generally accepted that living natives actually showed little appreciation or knowledge of these smaller types of finely trimmed implements. The present writers feel convinced that from what is definitely known of the technique required for this particular kind of trimming, that the prehistoric South Australian aborigines, too, must have been acquainted with the use of pressure trimming, in order to produce the extraordinarily beautiful and delicate work displayed in some of their implements. The very nature of some of these miniature tools, with their delicate edges and points, seems to exclude percussive trimming for such small, fine work. Moreover, pressure trimming is a technique well known to the aborigines of the north west of the continent; and a critical examination of the trimming detail, of the South Australian uniface pirri for example, shows it to be identical -though the ultimate tool may differ in form-with that of the biface trimmed spearheads of the north-west.

The microlith was not only made of carefully selected fine-grained material whenever available, but in some groups of users the delicate handling necessitated by their smallness, led to their production by specialists-if one can judge by their frequent occurrence in clumps or groups-who carefully hoarded their output after production. A developed blade technique was often employed in obtaining the fine, regular bladelets and specially shaped flakes from which the various types were trimmed; this is particularly noticeable in the points and trapezes. Ifere we would mention that small flakes or bladelets can be knapped from large as well as small nuclei. The abrupt or vertical trimming was used to strengthen the piece as well as shape or regularize it. This part of the work was quite as delicate in its way as the careful knapping-off of the required shape of small flake or bladelet, and even more so when fashioning the ends to a sharp point. With largish, thick pieces, percussion by small pebble tapping would be used, but the more precise pressure trimming, possibly with hardwood or bone point, was most likely applied to the thimer pieces and the delicate points. Careful tapping or pressing on the implement, with its edge held against a stone or bone anvil, or drawing the edge, carefully exerting pressure, over a hard or roughish surface, with a rasping effect, may have been other methods employed. It is not impossible that the teeth may also have been used for exerting a form of pressure; this has been recorded by Home and Aiston (1924). These writers have also mentioned the trimming of the tula adze-flake, and the latter (1929) the pirri, whilst embedded in gum on a stick. This to some extent gives support to our impression that in order to provide the requisite rigidity and holding area when trimming the smaller micros, the piece was probably fixed in gum, cleft stick, or other device. On occasion one sees the trimming has been done on the inner face of the piece instead of, as is usual, only on the outer.

This variation is manally due to the inner fuce beine more ensily wonked upon as a
 grometric shapes; but observations, on what evidense is available show that a
 inst above 100".

CLASSIFICATION.

In the matter of elassifleation, the amment of avaibable South Australian matorial ohvionsly presents limitations. As stated showa, these mieroliths require
 diable coltections of implements have been made in this state. only a few workers hare given any attention to these sainiature types. Sention mety be made here of an asedlent smbinary of small Pictorian implements made by A. S. Kimyon (1927). Ono shadies, therefore, have heon to a lurge ustent, confined to such specimens as have been selected, and kept for their Pomiliarity, or attractivness. We would here omphasize that all surtace or exavatory eollecting eoneerned with the past. shontd be undertaken mimarily with the object of acpuibing knowlodgo, amo not merely sperimens for cablition. One of the featares that bedame obvions, is peseareh and exenvation progresked in Enoone, wats that cortain stone tood types nad varieties were so rignificant and distinetive that they satpulimed a peliable quide (10) differentiation of the successive enftures, and aven in eases where omly one habitation laver was found at asite. In some enttures, as also in their phases, the existenes of predominame of at tym, or varidy, of stone or bone implement anch us the Mousterian L'oint, Solutrean "fisue plan", "feuille de lanrier", and "pointe. "cran" points. Tagdalenian larbed boue darpoon and bee do porrognet hurin He formed to be clelinite indicutions in the deposit of those contares. For this reasons alone it is, therefore, most advisable that a detailed classiliention should be worked out.

In the past cansitieations of the Abrtratian mionoliths that have so far been unlueted and eleseribed, very little attempt has been made to diseriminate bet wepm The various types or vurietics presented. Sud terms as microliths, pyony imple-
 qnite loosely applied.

As the aboriginal was not dominated by uny such thing as classification, but

 Whoving more than one kind of working edge. Hor purposes of the present classifieation we have had roconne for making what sermeal the matu nse of the imphement its major feature.

Use in classificatory momenelature of any assumed fonet ion of a stone imploment utilized by an Anstralian uboriginal is to be avoided as far as possible. We beliave it preterable to hee terme which make limiliar form and method of produefiom on the implement, and when pertinent, the size.
 in certain areas large enomgh to be classed as tull sized implements or macroliths.

The following chassitication has been adopted by wis ans aplicathe to the matorial pammed, and is here pht forward as a basis for future collecting and deseription.

In our dexeriphion ul pieces the term "outer" signifies that face of the implement which was made first, and "immer" the other fiace which wass suhseumently formod when her piom was letaehed from the enre; this latter face often still
 detnils sere Thedatu amel Nomm (19-11).

The salient features of the typea and varioties are shown hy line draxing Which accompany the papker.

FLAKE AND BLADE IMPLEMENTS.

A. POINTS.
I. Symmetrical, leaf-shape.
(a) South Australian Pirris.
(1) Typical.
(2) Fulham.
(3) One margin trimmed.
(b) Abrupt trimmed.
(1) Adelaide type.
(2) Bimarginal.
(c) Untrimmed.
II. Asymmetrical.
(a) Bondi.
(b) Oblique.
B. PIERCERS.
C. Micro-burins.
D. Burinate.
E. Trimmed and utilized bladelets and small Flakes.
I. Abrupt Trimmed.
II. Knives and Saws.
III. Punches, Chisels and battered pieces.
IV. Sundry.
F. SCRAPERS.
I. At end of bladelet.
(a) Ordinary.
(b) Peaked.
II. Semi-discoidal.
III. Butt-end.
IV. Raclette.
V. Nosed.
VI. Concave.
ViI. Carinate.
((. QUARTZ, ETC., SPEAR BARBS.

GEOMETRIC PIECES.

A. ROUNDED.
I. Segments.
(a) Crescent.
(b) Ordinary.
(c) Narrow.
(d) Half-moon.
(e) Rudder.
(f) Cupid's bow.
(g) Semi-segment.
II. Discoidal scrapers.
B. ANGULAR.
I. Triangles.
(a) Equilateral.
(b) Obtuse.
(c) Scalene.
(d) Isosceles.
(e) Bracket.
II. Trapezes.
(a) Symmetrical.
(b) Asymmetrical.

MISCELLANEOUS.
A. PERCUTERS.
I. Peebles.
II. Nucleiform.
B. NUCLEI.
C. BIFACES.
I. Discoidal.
II. Semi-discoidal.
D. PEBBLE IMPLEMENTS.

FLAKE AND BLADE IMPLEMENTS.

1. DOININS.

Woratom this general term as free of iniplications of restricterl function.

1. Symmetricat. I eaf-Sfape Points.
(a) South Australian Pirri Point.
 wa call Smilh Australian P’irri Point of heationt workmanshin and sym metrey. 'Ihis piepe though found in quantity of miero size. down to 1.5 cm . in leneth. was also mato of lome dimensions up in 7.5 cm . in length. The distribution of the S.A. Dimrj, loth in sinall and large size, is widespreast Wver this Sals. From published acenunts, a study of collections, and from unpublished information, the following list of remions and specified sides has been drawn up to indicate the lnealities of their ocenrence; these situs will probably be incroased in number with further collecting. Stuart Range, Diller (perk, Ooktw, Lako Haty, Coward Springs, Marrec, Lower Looper (dreek texiom, Flinders Range, Dort Augnsta, Moonta, Wallarou, Burta, Sintherland, of utham. Nuriootpa, Lowmans, all littoral camp sites from Adebaide (on Nommanille, Parl Fillinf, Gomha, Dovon Downs, just over W.A. burder' at Pacla, over N.S.IV. horder at Bonlka Lake, and Ned's Cormer aver Vietorian border. The (ooper and Miller Creek regions show the wreader propertion of the lonerr varicties and also some of the best workmanship, boih probably, to some extent, fostered by the fine grate of maTorial available. A point of interest arising from our survey of pirvi distributim, acending to finds iff to date, is that the River Murvay forms an approximate limit of the distribution South and East.

As this particular South Australian implement oceupies an exceed. ingly inportant and intercsting place among tho stone implements mader disenssion, it semens fo the present writers that, even at the risk of some lengthy dismasion and guntation, it warrants eritical survey. In South Austratia the pirvi has bem fomm in laree numbers from widely distrihuted sites; fand by eanty collectors has been varuely labelled as a poimb. ehippal point, or sparhend, and later, graver, drill, ele. Apart from this it semos to have aroused little interest even anumg those working on dustralian aboriginal ethnomaphy. By only a few writers in relatively wesen years have these delightind tools received any detailed disenssion. The Pollowiug quotations from Horne and Aiston (1924), Hale and Tindale (1930), and Ifowchin (1934), provide nost of what has been said of the pirri concoming its oecurrence and study in this State.

Howe and Nistom in cteseribing the stone implements of the aborigines on the chst sifle of Lake Eyre, write as follows (p.90): "The last stone of the ideal type to to deseribed is the pirrie; this is a small, pear-shaperf tool ruming to a line point. It is used as a graving tool to make decorative marks on wooden weapons, and oceasimally it is used as atrill for light boring work, such in making the hole to take the string of an inchitcha (bull-roarer) The art of making these seems to be lost anong the bibes heres, thomgh ome old man showed me how they weres made by pressure. I hase lomod humdreds that were beautifully chipped".

Hurther rembrks on the pirri (p. 107) are: "The workman now takes up a komadi fohla having a finc-pointed piece of stome set in the other end, monnted in grm, and holfing it steady hetween the first two fingers of both hands he trames outt the design. 'This tool is called a pirrie'".

On p, 108 they statr: "At some 1 ime there must have been master at making pirries here. I have fonm dozens of beatiful specimens. Mr. Sislon says the bladis are always tryinge to get him do give tho pirvies to them, and there is mome here who ean make them so well. . . Thes wero made, first hy chipping a dake sif the orjemal stone, and the worleman, by long expericnce, was an expery in finding the line of eleavare of any stome. This was foughly chipped up with a kulki until nearly the shape desined. The pirmie had then the final datuty ehipping, done by pressme. For this a heavy kalara was nsed. It was then either mounted in gum on a koondi on put away until wanted".

Ammin their various roferences to the finding of pireri implements during their exeavatory work in the Murray Valley, 1 Sale and T'indale: (1930) state (D .1 nt) : "Among the stome implementane fifteen oramples oft a type which is not found in any layer above; these are leaf-shenped points, fashioned from flakes of dull chert (iigs. 17 (i and 18:3-189)). In the bambline tare if would apmor that an clongate leafolike fake, triangular on trapezoidal in oross seetion, was strmok wh from a propared eare which had a striking platiom. This thake was thimest at the moint of final separation from the core. Its ventral surfuce is usually freefrom marked pipples, while radiating fissures are fomally wonfered to the point of impact; a positive butb of peronssion is often apparent. The dorso-lateral maxins and posterior anglos are retouched by hammer tlaking, and the basal portion (atriking

 (pirvi) ; and althotgh their application was semingly made in error (see? p. 205), this publisher name is hore udonted in preference to any other".

These writers (Hale and Thimble) wo to state ($\mathrm{D}, 205$) : "The "leat'-
 $230-8 \pm 1$), und tor which the name piry is herein adopted, have longe heen known from ofd camp-sites in maty parts of southern Λ ustralia, but their ase among liviag heribes has mot bren ohserved. Horme mul distom (1024, pp. 9(1-91, etc., and fig. (37), illustrate examples of this implement moder the Wonknugurn name "pirrie", rexarding if as the forerumuer of a simplere thase in use (o-day; this less developed lake is lastencd to a stick with gran and used his it drill (see also Brough smyth, 187h, p, 380, tig. 200)". Alter gunting some remaks by Hornemad Δ iston, they gro on to write: "lluus it is evident that the clongato triangular implement with retonched edges and prepared bult is unknown among living Wonkangurn matives. It seens possible that this artifact may have been a spearhead; certaindy it is typologically distinct from the moderu takedrill, sud sems to have been fishioned entirely by hamwer Dukius, not by pressure. Novertheless, it seems convenient to mbots the namse applied by Ifome and diston to the 'leaf-flake' in order to avoid further confosion, and to regard tho exanples fienred by them as typical"。
 in its bettere examples showing the highest stumburd of munpulation mong the remains on' the ddelade tribe. The underside of the fool was formed hy it elear Iractare, producing a smouth surlace with a distinct bulb of perchssion. 'The upper surtace was formot, in the greater mumber of 'xaniples, by the removal of two or thee longitudinal flakes, blending in a point, with secondary chipping, and, ins a tool, frigonal in transperse section. In some examples the upper surface has been very symmetrically and minutuly
 the segment of a wirele. In all cases the poinl is rery sharp. When tirst
(lisenvered I wat disposed to begat these implements as the stone points of simall samars, (o) which they bore at striking likeness. Although flat on one sider this formed no valid objuction to such a supposition. as yuartzite spear poink, with a flal face on ons side and trigumal in transverse section are still in the by thr matives of monthen Anstratia precisely similar to thoir "lantrit, kaives".

Worehin then goos ou to state his subsequent doult in to their wes as
 Ilw inmboment.

Ablur furthen dixmssion on their possibte nses, Howehin qnes un to conclude: "The pirvie was ovidently a very importunt tool amour the black mun's mitifacts, giving, (xxpression to bis symbolis iders and a sense of nleastow in artistic figures. That the Adchaide Tribe appreciated the value of this lowl is sem in the very great numbers that they left behind amony thär remains. Among tho more highty-finished examples were somb that possessed excedingly shap points, that could not beup the pressure used with 1 品解ing fool withont facture: it is, therefore, probable that these bennifhlly-finished and delicatoly-pointed specimens were hed as a malter nf minte an io wexemion mather that as tools".
from the uhove funtations the following main points may be derived. No chan'ent and udeynato dofinition has been given of the typical featuress of tho pirri und its varions forms; its distribution has been stated only in
 arrivel at ; its mamofactore has been varionalv described, In the space possible in this commmiention. the present writers hope, to some extent, to clarify the position.

It is nbvions that some confusion has arisen by the nese of the torm "pirri" Fur inl implement, whell it call also mean the "making of a fine line", and,
 rvilenee as deflitely eomeoting the obsolete pirri with a nore robust 1001 for making fone limes, used by the Wongkongurus (Merna Wadna?). Aetmally it would seem that the Wonkonguras were not identifying the obsolete implement at all, but saying in what way they thonght they could use it. If secms that they were mot ohd mongh witnesses to say for what the prohistorke pirvi was nsed, now how it was made.

Howhin appears to hare too readily accepted a statement, made by (ditlen, that no stour spurheads wore used by Sonth Australian aborimines, as such an mpinion was nacessarily moly applicable to modern times; the pirri besme ats nhsolete implement. Mrs. dames Simith (1880, p, 13) in recording I maturef decent. event susp: "Madly they show their flint-headed spears and flome them at hel. . . one of them went through her heart". She
 mas havahmen intenderd.

Although many of the pirmi puints aremiorolithio (the majority of such (miats frmat at Devon Downs ure of small size) somu large examples arso Gonmed in south Australia, and many large size ot the matrimmed leaf shape
 by us sill attached to their shafts, hoth in the Parth (2) amd Adelaide (2) Whasemm dolladions. We are of the opinion that IJate and Timate were correct in saying: "It senms passible that this artipaet may have been a spobthat". The point is atray trimmed to a piereing sharpness, and marefully strengthencd hy a madian vider on the onter or worked face. The luil is fremently thimed and rounded, and buth these features are specish

only dissimilarities are that the pirri point is miface worked, while the Kimberleys is biface worked with serrations on the margins. In this connection it is interesting to mention that the Solutrean bay-leaf biface worked poiut (fenille de latricr") so like the Kimberleys spearhead, was preceded by a milace form (Face plan), somewhat like the pirri point. The moteru Koondi Pirri (Merma Wadnat) is a much stouter and moro rudely trimmed piece than the fragile pointed pirsi point, and usually lozenge shape from

Fig. 1-20: $1-1$, typical pirri; b, typical pirri, small, naurow; fi- 7 , typical pirri, squat; 8, typical pirri, trinngular; 9, typienl pirri, long, uarrow; 10, typical pirri, large; 11, Fulhan dirri, $18-13$, biface worked pirri; $14-15_{y}$ ono margin trimmed pirri; 17 , unfinished pirri; 18, niblue trimmed point; 19, abrupt amd long trimmed joint; ©0, Adeladd abrupt trimmed point. (All nat, size.)
butt 10 point in transverse section, not plano-convex al base and then 1 riantular up to point as most of en in the pirri.

The pirri point beins it piage mpon which the best workmandip is fombl, whe have selected the finer trimmed and slaped samples the the shandart type (indeed in cerdain areas it is the most muncrous form). thus difforing from Howehin, who wonld make the standard an montrmmen, leafshapu print. It is noticeable when examining al large enllection of these pleces that owiner to variations in trimming and cxtent of same, a fow examples apper which shen fratures similar to the other dypes of these leaf-shape points so that actlatly nowe type merges into the others.
(1) Typionl Nouth Austration Pimpo

They are made from hladelels whirh have been earefully predesicned, before detachment. From the muclens, se as to hear in indian ridpe: (a) extending from two short converging ridges at lontt ond wr (b) mimming full length; as nomery as possible at right angles for the :1riking platform. Py striking on the platform finst hehind this ridge, : stymuctrical leaf-shaped bladelet is detached, ending it1 a centralized point by reason of the ctirecting coutrol of the ridge. Sometimes more than oun ridge was formed in the preparation of the meleus ; and if these converged, a most suitable bladelet could be struck off. The margink were. then frimmed on outer face by removal of long seales by pressure so us to make the picee more symmetrical and robust, and the point carefully brought to a fine, penetrative sharpness. Great skill was shown in maintuining the median ridge so as to strengthen the attenuated point. The holl was thimed and rounded, often removing in the process the bulge of the bulb and the striking platiom. In the viginity of the butt, this trimming was also often done on the imne fate and very oceasionally This face show, trimming sears on the side margins of the piece making it alnonst a bitace. We form thre biface worked specimens. The eompleter implement of the standard type may thesefore be eleseribed as a flat, leaf-shape symmetrical point, with long pressure trimming on the outer thece from both margins, up to, and sometimes over the midridge in the vicinity of the butt, the latter being thimed and rounded white a median ridge strengthens the fhe pont. "The transperse section is planoconvex at hatt. and and triangulate at pointed com. The size varies considerably. Some are sfuat, of triangular arrowhead form, some medium amb uthers narrow. Λ variety has the bull untrimmed, and therefore bearings the striking plat form and hullo.

(6)

Prulhum Pirri.

An impontant varipety of the type form, probably to some extent the metome of tho material used, which is also with a thimned ant convex butt, is mot flat, lum hats a high midridge. These are nsimbly small, and may bertistingushed as the "Fulham Pirri". Whey aro found in quantity at Itromtas.
(ii) OnW wurain trimmed.

A third varicty shows the long. low angled trimuing dome from ons trapein only, and is usually with an untrimmed butt. Then atain. ciare specimens also show some abrupt trimming on the who margin.

A lew sperempas are found to have dphtictited and nieked margins. prestmably being in moness ot manfacture, the prossure trimming pro bass beimg not complete.

Fig. 21-43: 21-22, bimarginal abrupt trimmed point: 23 , untrimmed laf-shape long point; 24, untrimmed leaf-shape point; 25, untrimmed leaf-shape squat point; 20, untrimmed leaf-shape narrow point; 27, tip trimmed leaf-shape point; 28, Bondi asymmotrical point, small: 29-30, oblique trimmed asymmetrical point; 31-32, oblique trimmed asymmetrical large point; 33 , typicai piorcer or awl; 34, fine pointed piercer; 35, large angled piercer; 3f, typical miero-burin tound at Lyudhurst, South Australia; 37-11, pieces showing stigmate; 48, spalled burinate; 43, sealed burinate. (All nat. size.)
(b) Abrupt trimmed points.

These pieces differ from the pirri in theil method of manufacture.
(1) Adelaide Type.

Annther of the leaf-shape points which, however, is not a pirri point, is one which for distinction we call the "Adelaide" abrupt trimmed point.
as they appere more common in the southern regions of the State. Thess ate also hasally symmedreal in motline; in tact we heliove intentionally made so lrom ill-formed asymmetrical blades. to function in the same way as the pirri point. 'they are withont the centord midridge or the consergent lomm trimming as on the piry mont. Thst (ond, om acenme of their knapped-off form, the vertical of ahruph lorm of trimming was used, along one of the margins, in making the piece symmetriend. and al the same time strengthening it and providines a robust point be the supportinse rides. This trimming is almost invariably done fom one l'ase conly: the inme (or buthar). The butt is usualte left antrimmet, ant the striking platform therefore intact. The transperse semtion is manally frimpalar or asymmetrically traperaidal. On omasion this piese is tound with a short nibbling trimming on one or hoth mareins, but these exumples are ratre. The term "chipped-badk knife", eto., is freeptently applied to this kind of implement, lut we ifeal with this matter later. This point varies in form as does the standard pirri. and similar sefmat, medium. narrow, and ontsige specimens ner found.
(2) A fers pointed specimens ure found showing bimmoimul ahonet trim. ming, such treatment resulting from themalformation of the piece ntilized. The Fremeh Sanvariman point is a finer, maromer form of this fype.
(c) The fontrimmod leaf-shape moint which is frequently found is, aceordinge to this classification, not a trac pirvi point, thongh in shape, with ils more or hess central midridge similar in that specially trimmed pisce. As ins name implies, it is motrimmen, and in the name state as when stimele off the melens. Some of these, of course, may be bank whioh were to be trimment Into piry points, hut others appuay good comoh for use as they are. Occorsiomaly if fain trimming may be motioed in the near vicinity of the lip. Signat, merlinm, nimrow, and, as with the pirris, outsize varieties also necur and are in appreciahle quantities.

II. Asymmetricat. Points.

(a) Shropt trimmed Bondre point is the more important of those It is sometimes called lancet, chipped-back knife, senrifier, ete. These are pare in South Anstralia, but tepical examples have been colleneted in the sonth-

 mienolithio pieces their predominant pasition in the Vietorian and Now Snoth Walesentrares being taken in simith Anstralia ly the pirvi point.

Owine to the gencral applisation siven hr carions muthors the the fom "chipped-back knife". but the nse of the lerm to derimate all forms and sizes of pimes which showed the employment of abrupt trimming in their
 like the New South Wales wormi, rearhing somme 12 cm . in lergeth, hat also the mierolithic triunde and segment (arnseent) and even the drapore and the monerotionalized elomen, have been bromph moter the deseription "ehipped-back knife". Actnally there is no evidence that thase partientar whsolet" implements were nsed as knives. As in the usase of the pirri, the fast that modern aborigines thought they might do for nuch purposes, senms to have hear overvalued as evidence in the ease of an wholete implement. A eareful scruting of many spocimens will show the cdpe that conld be used for enlling is usnally deroid of any signs of sum ase; kome specimons with a flat edged thimner margin lack a shapp kniffedge.

The Bondi abrupt trinumed point may be brietly deseribed us mude trom a carethlly knapped off blalelet of asymmetrioal form, being abupt trimmed along its thickest marein so an fo give it a marrow pointed form. this margin often being convex in ontline lengethwise, and the thinmer mararin may he straight on enmeave. The trimming is trefuently from both
 Io suppory the point, forming offen at triangular transverse section. The butt is manalls intant, with atriking platform and bulb; hat sometines is shows sparse trimming and romeding oft. It will be reatizer that in several ways this asymmetrical implement is dimimilar to the symmetrical leapshape piece whe have distinguided the the Adelade abrupt-timmen point. However, this dom mot meran that it is unlibely the Bondi point was nsed for the samu purpose. Thateine by the shombons and size of some of the longer specimens of this pieed, some would the suitable ats spearpoints.
 used as speur barho, which semons possible.
(b) Oblique Point.

This is another asymmetrical piece. It is not very common in this State, and is of variod shape, hoth squat and long varieties being fond. It is formed on or bladelet or small fluke, by abupt-trimming the end, never the butt apparentls, transpersely and obliquely to the long axis. It is a mot uncommon type in the Furopean mierolithic cultures, ant is esperially promident in Great Britain, and whan eompletely trimmed alomg the whole of the thicker mamin was characteristio of the early Mardalentans.

E. JIERCERS.

These are varied in ontline. but at least one conventionalized form is noticesable. This shons a fine, Jong, wollobeled narrow point with trimmed marsims. It has beeu formed on a comvonionts pointed stomish fake. A fuw show larger anele points, some heding on thick flakes, and others are small witla fine trimming.

(.) MICRO-BITRINS.

This delieate lithe European implement, called the Thardencisiun or Kehilian mioro-burin, is cmu of the aristoerats of stome implements, for the technifuc which produced it was seemingly never emplover in making other stome implements of the cultures in which it appeass, even to produe the harins of the older topes which are sometimes found associated. Astin, whreas examples of most other stome implements may be fomd here amo there in widely separated localitics of the world, this phoon setus to have bern restrieted to Western Ebrope and North Africe. Thomph it is called a micro-burin, and is somewhat like one tyom of the burins, its occasional minuteness and lack of evidence of use have eansed monsidesable entroversy as to its fanction. M. Perony and oue of the present writers (II.V.V.N., 19:8) have sugrested its possible use as a spear barb.

Whatever the actual method of production, the result was that a distinctive bulh sean (called stigmate), near a trimmed concave, was left on the piece in dotuohing an oblinge spall "en biais" from the inner face. The ordinary burin always shows a dimple or negative bulb depression at the top ot the spall sear', mad here was the mystery-in making the miero-burin some special technigue mast have been employed which had the opposite effect, that is, producing a small protuberance instead of a dimpte or depression. MaI. Siret and Vignard think, so far as the Sohilian sites are comermed, that the micro-burin is really it hyopromot
resulting from a special way of making a microlithic trapege, triangle, or oblique point, hat at some other sites the trapere is said to appear withont the mioro-hurin. Whether it be a specially produced implement, a mere by-prodnet, or a utilized

 of production, wre all matters still under discussion. However, its onemrence in Hhatity at several Entopean and Afriean mimolithie sites, shows it to be an importan production of those stone industries. It is almays made on some portion of il hamelet, ather tho tip, batt, or middle; but more often on the butt.

We have now fonnd indications that examples of this very dint inetive little piece arce not, is was hitherto thonght, entirely absen from the Anstralian microlithic indusiry, althumg, sof for as anr researches ro, we have not yed identified an sufiofent momber of specimene to say it is a conventionelized type here. The first
 al Toynthnest, fige iff. It shows all the main characteristics of the 'Pardmoisian implimanat, with the minon flifforenee that a crevassed gap takes the place of the nsalat trimmed eoneavity. It is the tip of a bladelet, and the essential stimmate of bulbar protuberane at the beriming of the whligne spall sear, is celearly visible (IIH He inne fane of the piece. Aethally a trimmed concave is not invariably mesent on the mior hurin; it ean be made by removal of one seale ot otherwise. A few
 existence. form, and appearance, it is hopert it sufficient number will be colleeted to establish its oreuremere in mher areas.

D. IBIRINATE.

'The identification of a kind of burin form of implement in Australia was made by oncof us (IT.V.V.N.) sometwo vears ago ; and since then varions examples from widespread losalities have been recogaized. Evidouce that a burin producitor tednighe or traditiom was hathitually practised is, however, so far wanting. The examples found suggest that in response to the ned for this kiud of tool gmeh
 put into operation. Tho greater mumber of examples are what we call the spallont tyje, but rure cxamples nf some of the weatord types also oceur. Many seem to bet "chatue" piecess, used fin harin work, whilst nthers havo been converted by a well direeted how, removing a spall in the orthodox fashon. Some tragments have hem found similar for spalls, such ats ate struck oft in shaping on re-edginge the orthodox European hurin. The pieces we call 13urinate may also have been ased for punching, knapping, of trimming. 'Ihe types we have found are spallod (eentoral), scalded (oblique), a double scated (rectangutar), and the momersealed.

1. Ahrupt Trimmed Bladelet.

This is the type of inplement called by the French "lamede in dus abatha"; in England it is sometimes called the "blunted backs blade". We here confine it 10 pieces not anding in an mint, in acendance with the original use ot the Firemh torm: the pointed piecos, ustally longer, heing termed Λ adi, Chattelperrons, and TaGravelt: phints, aecording to their stemerness and period. The Bondi point, for instance, is of the LaGtavete type, though often on the manall side. Exumples of the mintless abrupl trimmed hladelets, the formation of which shows they are not tiagments of fine bondi points, are rare in South Australiu, hut a few specemens have been fomme. By some prebistorians they arr thomght to be maits of a composite fool or weapone

1I. Knives and Saws,

These are not eommon ; perhaps because the aboriminal hubit, as nowadnys, was to utilize any handy sharpeethrel piece, or knap off a flake for the purpose un oecasimu required.

III. P’unches, Chisels and Battered Pieces.

These show splintering and pulveriand at one or both ends; they are often fragments of blades or fakes, lot some are biface worked and like wederes. There is a form woll known in France, fonnd at Ifpper Patrolithice sites called "pioce esigillo", amb some specinens are like this. Besides other usen, it fool of this kind wond be convenient in obtaining greater precision in knapping, and some of these small, stout flakes or blade fragments may have been nsed for trimming.

IV. Sitindry Piecf.

On many sites numerous untrimmed chips, Hakes, blades, and wher serap (1) various sizes may be found representing the by-prodnets of stome workiny. Whilst the majority of these may be only primary, or shaping and preparing fragnents. in view of the well known habit of the ahoriginal to strike off on make nse of any odd serap of sharp stone for cutting or incising purposes, if is, quitu possible that some few of them have been mitized at one time or anwhes; or aven profned, to servesome purpose. In the absence of any definite vestiges of such nse, or it they are not of mencrivahle standard form, such as tho umbinmed pirri, they cannot be defimitely assigned to any classified type, with the possibla exception that some of them may be considered knives, or suitable fin cutiong purposes.

F. SCRAPERS

Iong usute has so established the name of scraper for this class of tool that we are rataninn it with the reservation that the pieens dealt with under this description are not merely seraprex, lnwase sone may have been used maiuly for other purposes. I'he side seraper does not seen to be a conventionalized Anstralime tool. The discoidal suraper is dealt with nader the memetrical pieces.

1. End-Scraper.

Two forms are charasteristic of the microlithie sorapers at end of badelet. which are seemingly among the earliest types of minature tools in any miem lithie industry; just as the larger sermper at end of blade (duekhill, qratoin (an lame) is ome of the dominant tools of all world stone cultures that have reached a hade-knapping technique.

(a) Ordinary.

One ot the two lomm is a small example of this old type and may be ealled ordinary end-scraper on badelet. The other form is (b) a high crested or Pcabor form with a steep angled working edge which may have been produced for heavier work, A fers specimens show side margin trimming. Only a few examples of the end-scraper on bladelet are found. One of their distinctive characteristice, in addition to that of the presence of bulb and striking platform, is the sharp angled working edge due to a onvonture inwards at the end of the inner face of the piece, whereas the tula adze-flate, spuatter usually, has its working edge usmally formed by the meeting of ' wo convex laces. Some pieces show arectilineal working edge. Amons these small implements the discoidal and 1 momb-wail serapors are evidently the more popular tonls.
11. Sifmil discomal.

Another micero reraper is sometimes aptly called the "thumb-nail" scraper, on account of its semi-discoidal outline. These are made on small

Squat flakes, the smi-cirenlar or semi-oval working edge being formed on the end of the flake and the butt being untrimmed, and usually showing the kiriking plationm and accompanying bulb. A few, however, have bew seemingly made by snapping off the trimned end of a blade. In the majority of sases, the torce tracturing the blate was applied on the imner or bulbar face. In appearance some are miniature replicas of the well-known large adze-lake tool, the tula, suggesting the possibility that they functioned in the same way, and, as with the tula, small worn examples are found. A few have an

ngival shaped working edge and rare examples are of rectilinest, other of pointed working enge. The existence of sharp acute ancrled, large angled, and stect angled (in elevation) working edyes wond seen to indicate different stages produced be reetging durinar use.

Vary attractive looking little donbles are not rare, some almost pectangulav in ombline.

111.

A few examples of the "bulf-chel" seruper have been recornized.
IV.

A rare piece, reminisent of the early Magdalenian "ractcte" js sometimes found; this is formed on a flattish flake, the trimming being of the ahoupt type.

V.

A fow examples of the masod scrappre (sometimes miscalled "duclibill"). are found of the well-known form. In spite of the appearance of this tool at all periods and in all stone cultures-a dominant type in Tasmanin-its method of use and purpose remains a mystery as also whether the nose or adjacent concarps were the main working feature. Varions surgestions such as skin frimminf, anarrow scooping, stone implement trimming, wood graving, shaft shaving, making enps ifrpression for fire drill, etc, have been made, but none gencrally acepted. The fact that it was almost the only stone tool anomer the many flint implements said to have been fabricated by the Tasmanian women, who aceompanied the whito whalers at their camp on Kangaroo Ishand, should restrict the selection of possible uses, climinating such as stome implement trimming, spear shaft shaving, cupping for fire drill, and wood graving.
VI.
'lhe concave scraper (sometimes called "hollow") is a momparatively rare piece in the industry; possibly breause when the wooden spear-poiut, for instance, reached a small diameter, at rasp, such as a piece of sandstme, or shell, was more frepnently nsed. Typical examples of the bladedet with maltiple concaves, characteristic of the Tardenoisian culture, are lacking. The width of the concave ranges from about fo just over $\frac{1}{2}$ inch.

VII.

A heavy piece of varied form made on bloeks rather than flakes. like the well-known Carene seraper of French stone cultures, occurs in quantity and may be called the envinate seraper. These are high back or erested, and some long forms are slug-like. 'They are steep trimmed small blocks. usually flat based, and without striking platform or accompanying bulb. This absence and the fact that the hase, mstead of heing convex, is flat, distinguish them from the "worn tula's adze-flake. One form, not uneommon, shows a eirentar we irrenular working edge at one end, whilst it is trimmed at the other mod to form a point.

There are a few very small pieces in shape like prismatie conical mucted or tea cosies which show squiling on the chipped periphery of the flat face ; these we call corettes.

G. QUARTZ, ETC., SPEAR BARBS.

L'urticles of rquatra, ete., which would be suitable for use on the "death spear" are found at some sites; but whether they were produced for such a purpose.
ur "ven whether such a type of composite spearhead was customary at the time microliths were in yogne, is not known.

GEOMETRIC PIECES.

These ean conveniently be divided intu Rounded and Angular'. Despite thent varied shape, they have been frequently all included under the term "crescents"; therefore, it is necessars for our purpose to make a more precise classifieation, and me more in keeping with that used overscas. Some specturns show schilling caused by some sort of usage of the thin edge, but this is an uncommon leature. Their function is problematical, though by some anthorities they are thought to be mits uf' i comqosite implement. Size ranges down to as small as $0 \cdot 6 \mathrm{~cm}$.

A. ROINDED.

I. Segments.

Ou aceonn of their varied form, this reneral term has been found preferable to crescents, lunates, demi-moous, etc. The majority are made from well knapped badelets. The more or less vertionl or abrupt trimuing is done on oceasion from looth faces, especially if the worked margin is wide. Rarely one of the points is trimmed to a retrousse or cocked-up shape. Workmanship, thickness, and size vary. Sone largish heavy specimens of this type are suggest ive of small examples of the elonera type of implement, full sized examples of which have been found near Millicent, Adelaide, Moonta, and Ooldea. (a) The true crescont-moon shape is very rare. The more common shape is the (b) ardinary, which is betwen the (e) narrow and the (d) half-moon. One special shape which recurs fairly frequently, as if an intentional variety, is (β) in ontline like a rudder, with a greater convexity in the vieinity of one of the ends. When the two points are cocked or turned upwards, which variety is sometimes found, the piece is a (\mathbb{I}) cupid's bow or cocked hat variety. 'An asymmetrical variets (g) really a somi-segment, has one end truncated by trimming, or shows the striking plationm.

II. Discoidal scrapers.

These pieces are beatifully made little implements, for which, for purposes ot classification, we retain the name serapers. Some seem too small to be nsed aven in the fiue thin fingers of the aborigines, and were possibly for fistum in a handle. The diseoidal scraper is an carly and characteristio type of most mierolithic eultures. It is a common type at Moonta, iu tact largely outnumbers the other geometric shapes, the significance of which fact is not at present apparent. Some are flat aud others high backed heavier pieces. Oceasionally the ontline is more an oval. Comparatively large pieces are found as well as small.
[i. AN(T1JLAR.

I. Triangles.

Seval of these are of coarser and heavier apporance than the semments. The same techuigue of abrupt trimming is cmployed, and thay are sometimes worked from both faces. The varieties fom are: (a) equilutron, (b) obtuse.
 enough to have heen porcussively trimmed. A few example are fount in
form to be a sort of hybrid triangle-emn-segnent which takes the shape of (e) a bracket. Sizes range from mimute to large.

Some of the rare isosceles shape show trimming also of the base much like the lypical 'lardenoisian point.

Fig. 94-117: 9.4, obtuse triangle; 95, sealene triangle; 9 (6-97, isosceles trianglo (Thardanoisian form) $95-99$, bracket furm; 100-101, symmetrical trapeze; $102-103$, symmetrical trapeze an untrimmed margin; 101-105, asymmetrical trapeze; 106-108, asymmetrical trapezo an menmed margin; 109-110, nucleiform percutor; 111, prismatic nurleus; 112, polyhedral mucleus: 113. discoidal nuclens; 114, pyramidal discoidal biface; 115 , osate biface: 130 , semi-discoidal biface; 117, semi-discoidal biface minute. (All nat, size.)

II. Trapezes.

These are more delicate than the triangles, being made more offen from thimer bladelets. The technigue is the same as for the other abrupt trimmed microliths. The trimming trom both faces is seldom found. They can be differentiated into: (a) symmetrical, with three margins trimmed, and a variety which has only the ends trimmed with an untonched maruin intween, like a double oblique. Of these latere, some are quite lons, others are squat. The (b) asymmetrical form is usually 1 rimmed at the base and the other end of the piece trimmed to an oblique point, lmot the trimming of all three markins is sometimes found.

MISCELLANEOUS.

A. PERCUTERS OR HAMLIER STONEN.

I. It is likely a small poble perculer would be used for motaining madelets. hut examples are few, and there is the possibility of their use for trinming.
11. Certain slaped specimens of muclear form, some of quartz, are more in evidence, and in view of the greater precision required to produce suall flakes and hlades, it is mossible such prepared tools were frequently used as pereuters instead of round surfaced pebhles. These nudeitorm pieces provided prominent points and edges more suitable for precise knapping.

Softer materials may have been used, but wo definite evidence cam be said to exist that this was so. The possible use of a punch in knapping has been already mentioned.

B. NJOLAFI.

These, of small size, are found in romph prismatic type, but are searee. Mustly they are conical, but some are polyhcdrat, and on oceasiom a discoidal type is fond. No definite examples have been found of such pieces being used as concave serapers. Some specimens, however, show utilization, possibly for scraping. It is not necessary to work at only a small nuteleus to produce bladelets or small flakes.

C. BTFACES.

I. Discoidal Biface Worked Pieces.

These are not simple disenidal nuclei but utilized pieces. At least one specimen shows shaping of one of the faces to a pyramidal form, which is reminiscent of a similar variety found in Ceylom. A lew are approximately ovates, also somewhat like those fomed in Cevlon.

II. Semi-discoidal-Biface Worred Pieces.

These and the discuiduts are the only implements exeent rare pirris and some pronehes, worked on both lecess. In appearance they are just like small replicas, one is mimute, of a well-mando hade of the West Anstralian flakebatchet, an implement, acolding to Cawthome (1844), which was also in use, single bladed, among the Adelaide tribe in his time. It is not, bowerer, supposed that this must have bem their use. Similar pieces are found in Ceylon.

D. PFBI引はE IMPLEMFNTS.

We have tound no definite examples of these of microlithie size.

ANTIQUITY.

 Bhotigimen's ignotance it than. is: that afforded us by the excaration of the shelter if Devan Downs. There omall implenemts including scrapers, pirris, and pisens Jike miniature specimess of the worn tula adze-flake are fond in madisturbed deposit down to some bemers holow the surface. This shows that the micros are of some antinuity in that part of the Muray Valley, and it is signifeant that pirpis are ahsent. in the subsequent culture remains found in the upper levels of the deposit. Confimatore statifleation in other localities is, however, wanting. aud until this is arailable apmoximate dating of the micro industry is not possible. l'atination is in fon experience a most unsound and misleading indication of are, largely dependant on the material and (nvironment. Open air wind blown sited and alluvinl deposits are subjeol to natural disturbances which make them, excont
 floma mal lama which is dateable, also cureliable. A coincidence which muy have some connection with the microlithic implements is the fact that eomposite implements suef is the stone harher "death spear". Hake batehot, and quart\% ehip san-knife were in nse during recent times in the sergons where microliths ocent. II is not inpossible that the sernance of development in somo forms of harbed spear hoads has heon (at) altanded (gnm on sinews) stone barbs, (b) attabled home or word batios. (e) the barbs cut out of the tronten shati. In the present state of our knowledgen we feel wo can say 3 mome than that the microliths are implennents of an extinct aborigimal culture, and their use may have contimund, in some areas, inp to compuralively reent times.

It is vary rarely that one finds pieces theat have heen damaged by fire and heat.

COMHARIS()N WHTH SONLE OHHHR INDUSTRIES.

Table 1 shows at comparison of some eharacteristice implements of the French, Cevlon, aud South Australian microlithe industries. Execpt in Framee, no stratificatory evidence has heen fomad to reveat the phases or ealtures that made micro implementa. In France the industriss recognized by some authorities are A:oiliam, Aanvetcrimn, Tardemisian 1. 11, 111, Turdenoisian-Campignian, Tar-Remoisim-Robenhansian, ant Tardenoisian-Campignian-Robenhausian. As time went on the culture loceame more hud more affected by outside contacts. It will bowhend that, while there ure similarities, wach of the three countries shows cerdin fistinetions. 'Thus dranese has the Satuvetervian and Tardenoisian pointa, 'tardimoisian multiple concave fiomper, Azilian harpoon, and painted pebbles, the franchet and harlod and beaked poims, us also the miero-burin.

Cuylon has the arrowheads and narrow segments, as also miniscule piereers, eorettes, ind biface worked ovates.

Sonth Ansiralia has the mierolithire pirris, and abundant thumb-nail and dis.eoidal serapers.

It must he horne in mind that researel in this State, unlike France, has still a large field to cover, and ('rom that guint of view much headway to make. 'Iypes not yet identiffed or distinguished as sonth dushalian maz, therefore, some ding in the thenere be meded to our list.

GENERAL.

A moticeable chanderistio of the Anstratian stone imphements is the range "f sizes in whieh sertain dhapers of fools inve made, thus: (1) the segment shape is
found as a minnte and large miorolith, and also ds the clowera, and (2) the trinngho shape as a minte and large micro and the gimut worini, glso of somewhat trjangular Porm: (3) the cireular sbupe as the microlithice diseodal and thmb-naib semper, the tula adza-flake, the arapia, mol the larace lowsehool' implement; (4) the leat-shape as the micerolith of stanat and owdinary size, the fons and marrow, ated the laree ontsize pirrix, us ulso the Kimberleys spearhead; (5) the Adelande point ansu has its miens, ordinary and ousti\%ts, whilst (b) the dulrimmed point has a simidar rance; (7) the carinate and alug-like forms will also be fonm to have an similan rampe.
 corettes, the segments, and the admeftake, like pieces, us ulso the pirris, is mother noticeable characteristio.

As regards tectnimue, the skill und variety op methods show that the bypone aboriginal was no tyro or mean cratsman, indeed in both knapping and frimming he embld hold his onv with the best of the world's primitive stome implement makers, Some of the finer specimens of the Somb Anstratian pirxi point are so attractive That thongh it is obvious they ure most dificient implements, it is hard to explain
 Many specimens may be fomm made of inferior materith which are plognent testimony to the patience and clover technical skill of the Soutl) Australian stone worlecr.

Ihis paper is concerned mainly with setting ont. o. general elassificeltion and deseription of microlithic pieces. It is felt that it will serve for their future collecefion, reeognition, aml deseription. We realize that mude still remains to be dome in the way of' speratizel resparal sum as the diftercutiation of now types and varietics, and a anore detaled study of varions individual 1 ypess, dogether with their relation to locatilics and raw material. Wr would arain impress upon amateme collecons the nemessity for systematio eshllecting and prompt locality making of specimens, as also the sreat desimbility of porling than material in a property organized and recorded Minsemm collection. By such means mach more effective research is made possible, as usually evory oncondagemont and fooility is readily provided bey such institulions to those winhine 10 mursue serions study of the often exelnsive material thas centralized.

It will have been noted that apecial and extended attention has been wiven fo the South Australiun pirri. Of all the manv varieties of imptements which make
 pre-eminently a Sonth Australian prodnet.

The writers wish to record their thanke to the Mnseum Ditector, Mr. H. H. Hule, to the actimg ethologist, Mr. M. M. Cooper, and the libeacian, Miss G. M. Sishop, is also to Miss Gven Walsh when drew the illustrations, for their wholehosarted co-operatiom; alse to tho Masenm limard whate so ready to place their collections and facilitics at the disposal of students. The Adelade Muserm's cont. Gextion of microliths has been from time to time entiched by donations from private eollectors such as tho late I'rof. W. Howehin, and Messic. U. B. Mountorid. H, Sheard, and J. H. Johnson, to all of whom we are also indebted.

SUMMARY.

This paper deats with a survor, chassification, and description of the miero.
 able material in the sonth Anstralian Insemm collection.

The classifiention is put forwand in the hope that it will be usctul as a basis for future collecting and deseribing as more precise terminology than hitherto is cmplayest.

Several hitherto undifferentiated types and varieties, including the microhurin, have been now placed on record, and some named.

Particulars are given showing the wide distribution and range of microliths in this State, as also an list of the materials used in their production.

The technique of their manufacture is discussed. Certain characteristies of the implements, such as range of sizes, shapes, and varieties of technique are touched upon.

Attention is called to the sutstanding workmanship and signifieance of a masterpiece of the ahoriginal stone worker-the South Australian pirri.

The evidence which is available giving any idea of the antiquity of the microliths is considered.

A comparative table is given setting out the characteristic types of microlithic ston" implements found in France. ('eylon, and South Australia, showing that many of the main types that have been in use in the first two regions are represented in South Australia.

COMPARISON OH CERTAIN MICROLITHIC INDUSTRIFS.

$$
X=\operatorname{In} \text { Quantity } ; R=\text { Rarc } ;-=\text { Absent. }
$$

Implement.
S.A. Ceylon. France.
I. Abrupt Trimmed:
(a) Narrow, straight (lamelle à dos abattu) . VR X X
(b) Narrow, straight pointed (Bondi) . . R R X
(c) Bimarginal trimmed (Sauveterrian point) VR $R \quad X$
(d) Obilque trimmed (pointe oblique) . . R X X
II. Scrapers:
(a) Semi-discoid or thumb-nail . . . X X R
(h) Concaves (encoche)

1. Single $\because \quad . \quad \cdots \quad \mathrm{B} \quad \mathrm{X}$ X
2. Multiple (Tardenoisian) $\quad . \quad$.. \quad -
III. Geometrical:
(a) Rounded
3. Segments (lunates, erescents, segment
de circle)
Ordinary X X X
Narrow \quad R \quad X
Rudder X X R
4. Discoidal seraper (Azilian) . . X R R
(b) Angular
5. Triangles

RFCORDFD SITES IN SOUTH AUSTRALIA WHFRF, MICRO LITHIC IMPLEMENTS HAVE BEEN FOUND.

Far north: Mt. Dare (near the South Australian-Northern Territory boundary).
Coward Springs, Cooper Creek, Maree, Lyydhurst, Flinders Range.
Far north-west : Stuart Range, Mr. Eba, Miller Creek. Lake Hart, Eucolo.
Far west: Ooldea.
Mid north : Koolunga, Burra, Oakvale, Bute, Port Augusta.
Eyre Peninsula : Near Tumby Bay, Gawler Ranges.
Yorke Peninsula: Cape Spencer, Moonta, Ardrossan.
Adelaide region : Adelaide to Normanville.
Kangaroo Island : Cape Cassini.
Lower Murray region : Devon Downs, Framms Landing, Murrundi, Goolwa, Porl Elliot, Coorong.
East of Mt. Lofty Ranges: Eden Valley, Sutherland.
East: Bordertown, Pinnaroo, 'Tintinara, Ral Ral.
Lower South East: Kingston, Woakwine Range, Millicent, Mt. Gambier', Cape Northumberland.

BIBLIOGRAPHY.

Aiston, (7. (1909): "Method of mounting stone tools on Koondi." Proc. Roy Soc., Tas, pp. 44-6. Cawthorne, W. A. (1925-6): "Manners and Customs of the Natives." Ms. 1844. Proc. Roy.
Ual M M Mir
, 'Valley.'' Rec. S. Austr. Mus., iv (2), pp. 145-218, figs. 176-9.
Horne, G. and Aiston, G. (1924) : Savage Lifc in Central "Australia.
Howchin, W. (1934): Stone Implements of Adelaide Tribe of Aborigines.
Kenyon, A. S. (1927) : "Stone Tmplements on Aboriginal Camping Grounds." Fict. Nat. xliii, pp. 280-285, pl. xvi.
Logge, R. W. (1929): "Tasmanian Stone Culture," Proc. Roy. Soc., Tas., pp. 39-43.
Noone, II. V. V. (1934): "Classification of Flint Burins or Gravers.', Journ. Roy. Anthrop Inst., pp. 81-92.
Noone, N. A. and II. V. V. (1940) : Stone Implements of Bandarawela, Ceylon.', Ceylon Journ.
Sci. (G), iii (1).
Peyrony, D. and Noone, H. V. V. (1938): "Usage possiblo des Micro-burins." Bull. Soc. Preh.
F'rançaise, No. 2.
Smith, Mrs. J. (1880) : Boandilo Tribe South Australian Aborigines.
Tindale, N. B. and Noone, H. V. V. (194i): "Analysis of an Australian Aboriginal's Hoard of Knapped Flint.'r Trans. Roy. Soc., S. Austr., 1xv (1), pp. 116-22, fig. 2.

RECORDS

OF THE

SOUTH AUSTRALIAN MUSEUM

Vol. VII, No. 4

Published by The Museum Board, and edited by the Museum Director (Herbert M. Hale)

Adelatde, November 30, 1943

THE COWRIES (CYPRAEIDAE) OF FIJI

By the Reverend W. R. Steadman and Bernard C. Cotton, Conchologist, South Australian Museum

Summary

The reefs and estuaries of the numerous islands in the Fiji Group constitute one of the most prolific fields for the study of Conchology. Some species of shells are rare, but in many places both reef and shore are teeming with various kinds of Mollusca and other marine life.
The Cowries here enumerated were collected by the Rev. and Mrs. W. R. Steadman during twenty-five years' residence in Fiji. A total of sixty-one species and subspecies are included in this list, of which two only were not found by the Steadmans, namely Ovatipsa chinensis Gmelin 1791 (= cruenta Gmelin $1791=$ crenata Bolton $1798=$ morbillosa Bolton $1798=$ variolaria Lamarck 1810) and Cypraeovula adamsoni Gray 1832.

Tiae COWRIES (CYPRAEIDAE) of FIJI

By gh: Rı.verend W. R. steadman ani bieRn IRD C. COTTON, Concmotociet, South Australian Musrum.

INTRODUCTION.

Tute pefs and estuaties of the mumerons islanils in the Fiji Group constitute one of the must prolifie fields for the study of Concholngy. Sume species of shells are pare, but in many blaces both reef and shore are teming with varions kinds of Mollusea and other marine life.

The Gowrims here emmerated were collected hes the Res and Atrs. W. R. Steadman during twentr-five pears' residener in Fi.ji. A total of sixtr-ome apecies and subspecies ate included in this list, of whielt tron onts vere not fonnd by the Stradmans, namely Ovalimat otionemsis (hedin 1791 ($=$ rrumenta Gmelin $1791=$ (remen Tinlon 1798 = mumillosw Polton 1798 - warioluria Tamarek 1810) aud ruprosicurylu. mumsomi Gray 1832.

Doetors F. A. anf M. Belither in their rebent "Prodrome of a Monouraph on Living C"pracidae" (Proc. M1月. Sor., 1939, xxiii, pt. is, pp. 119-231) lisi several species from the Western Samon $=$ Fijian Region (p. 31f) which have not been found hy diesteadmans, and there are other speries that have been taken ly them in Fiif wheh son not appear in the Aclidders' list for this locality.

Cowries lister hy Schiders for Fiai-Samoan Region, but not takne hy the allthors:

Rроми muriae Schilder (1997). Ipsa chìntemi Cray (1825). Nertich itrotater Detay (1828).

Lyncima 7nv/atham Schilder-Schilder (1927) ginnt curnfola. Cribraria gondalli fuмcomuc'ulata Pease (1865), Cribraria toreg subfascinta liok (1807) Ine. Mauritias.

Th prenaring this account of Fivian Cowries we havesiven, with our identificatinu. r full deserintion of the shell, minimum and maximum adtult size, and rilative frequences of semurence and locality. Some examples were taken by matives, and others werp formd on the hearh after storms. In several cases the live animal was: mot ohmext, althongh many chells of the sperios wepe taken. In the pase of Callishocymrych Murandium luringus sulsp. nov., one example was seen with the animal in the shell: the speceimen was laken by a native and had bren nut of water for some thone then examined. Being dead. only the seneral colour of the aumal could he exiven. It is realized that a deseription of the animal is of great imnortanee, and in eypre passible fullost details are given. We are preparing figures of these shells, incloding anmals where possible, for publication at a later date. Some will appara in the Sonth Aust matime Naturalist. Vol. 22, No. 2, 1943.

The with distribution nt most cowries is explained by the fact that they have a comparatively long free-swimming larval-stage, resulting in the formation, in far-flume anerentraphical regions. of readily distinguishahle sulspocies. This is evident in the hilhertn litlle sthtied Fijian Region, and thus a mumber of new names have bed introduced here. Fijian names of local ohjeets and places, with the apmoximate phometies spelling, have hem largely used by us as a hasis for this new minsurifie momenclature. It must be noted that in Fijian words b is always pronouncerl min+ c^{c} as th. in that, it as wid, g as ny in sim, and q as $n g$ in hungm.

We have to neknowledme the ready and helptul assistance given by the late Mr. W. .1. Kimhur, ot Adelade, and Mr. Tom Iredale, Conchologist of the Austration Ituseum, Sydncy.

Faminy CYPRAEIDAE.

Subfamily Narinae.

The Schiliters 19:39 admitted four species, inclodiner tossalnta, in Pustularia, but, as Iredale (1939) has pointed ont, the later sepresonts a distenct enenns, and is not admissible to the cicmuln gromp. This leaves three species of ricercula, but Fijian shells reveal five distine specters, pach of which has its mitom characteristirs. We have separated margutitemmer the Fuhgenns Anmenong, as is is nearer in form to maviae; we have accepled the names bistrimolala smbactis and ghobulus sphacrintim, but have added comerote jonnisomi (subsp. nov.) and tricomes mintula ismbep. wos.) , retaining old names with subsperifir F'ijian names. Althongh
 has a romgh surfitu, and bistrinotuta subluevis has marly wholete gramulations. There of the species are inite smonth, and camot he placed with eranulatiod sperimons, apart from the fact that there are also nther distinet characteristies when appear in the detailed deseriptions.

I'ugrolarda Swainson 1840.

Subgentes Λ NNEPONA Iredale 1935.
Pustulamin amargabta theeva subsp. nov.
Shell suhb-globular, produced at extremitics, anterior acmminate, mosterior ciflomsed: dossum smooth, slightly humperd, colnured pearly eream with faint white latmate distributed sparsely; slieht marginal ridge; inner wall of dorsum white; bass white, convex, slight bulge at centre and turned upwards towards
 lip declivous at anterine motlet; fecth fine, not produced across base, ohseme in rentre heavier at extremities, lowey trminal ridere at anterior outlet ; sulens wide ambl shallow, fossula concave and dentientate. Animal not observed. Six specimens taken at Nadroga.

Habitat, insife main reaf.
Length 12-14 mun, width 7-9 mm., height 6-7 mm.
I'ypo in South Australian Minsermı, Reg. No. D.14137.
Teeth (holotypo 14 mm . in length), Labial 30 ; Columella 24.
1.on. Kadava, Suva, Levuka; six specimens taken at Nadroga (type loc.).

Named theom from the Fijian word for pearl shell, adopled for this shell becanse of its prarly appearance.

Sulgenus Pusturaria Swainson 1840.

Pustularia cteercuta jennisont subsp. nov.
Shell ghomlar, light brown above and bencath, produced at extremities which are prominently acmminate, perntiar wart-like dorsal callosity above pnsterior ontlet ; dorstum smooth and humped, dark hrown specks all over dorsum, faint at apex, more definite at sides, no dorsal line; inmer wall of dorsum cream ; hase ennvex, turning upwards fowards msterion outlet; aperture narrow, with slight forn to left at pusterior outlet, raised ringe towards anterior outlet, outer anterior lip declivons; two widely spaed small brown blotehes on each side of aperture; teeth fine and regular to half way acruss hase; sulcus and fossula white, shallow, and denticulate. Animal not ohserved.

Habitat, iuside main reef.
Length 13-20 mm, , width $9-12 \mathrm{~mm}$, height 6-10 mm .
Type in south Australian Misenm. Req. No. D.14138.
't'eeth (holotype, 18 mon. in 1ength), Labial 30; Columella 24.
Loc. Levuka, Beqa; twolve specimens taken at Suva, Taveuni (type loc.), ant Naselai.

Named jennisoni after the Rev. eT. C. Tennison, a missionary in Fiji for many Vatrs, who collected shells at Tavemi, and presented the holotype to the south Anstralian Mosseum.

Shell glohalar, light brown above aud benonth, prontuced at extremilies which are armminate, peculian wart-like forsal rallosity above posterior outlet; dorsum humped. smonth aeross afer hot with almost obsolete er ambles towards extremities. faint brown speeka all over dorsum, lateral spoeks more dofinite, three pairs of blotches on eithor side of a faint dorsal line; inner wall of dorsum eream; hase compex turning upwads formods postrefor outled; aperture narrow, slight turn to laft at posterior outlet, nutor interior lip declisons, two widely spaced brown blowhos on pacli side of aporture: tecth fine and remind to half way across hase, but homming shorter along posterion half of columblla ; sulens and fossula wide. shallow, areany, und denticulate. Animal not observed.

Hahitnt, inside main reef.
Length 13-18 mm, width o-11 mmo. Height 6-10 mm.
'I'coth (for specimen 18 fnmo in length), Labial 30; Columella 24.
Thac. Fiji (type loc.), Kadavu, Taveuni; ten specimens taken at Suya and Natroga.

Pustuharia tricornis vulavuta subsp, nov,

Shall ghohur, milky white in colour ; extremities protured and acuminate, axis mbhilioate: dorsum humped and finely eranulated all nver, dorsal gronve along whon lencth: inure wall of dorsum white; base convex turning upwards onwards posterior ontlet; apertura narrow furning to left at posterior nutlet, and having raised ridge towards anterior onlat, water anterior lip slightly declivons; teeth fine and regular, produced right across base on both sides, but shorter towards pusturior motlet ; suleus and fossula wide. comeave, and dontientate. Animal mot nheprexd.

Mabitat, inside main reeff.
Lengeth 13-18 mm., width 8-12 mm, height 6-10 mm.
type in South Australian Musenm, Reg, No, D.14139.
Trecth (hnlotype, 18 mm, in Ienmth), Isabial 35; Columelta 24.
Lum. Nadrog (type lore), Kadavu. Tuvemi ; teu specimons taken at Nadrowa and Suva.

Named walnvuln, from the Eijian word for white.

Pustularta mlobuhus spmaertditm Schilder 1939.

Shell erlohular, extremely humped, coloured pearly eream with faint brown difinsel spots sparsely distributed over dorsum, no dorsal line, axis umbilieate, extremidies produced and acuminate; imer wall of dorsum cream; hase convex, coloned ivery white turning upwads towards posterior outlet; aperture narrow, with sharp turn to left at posterior ontlet, outw antarior lip slightly declivons: tretin herominge obsolete at center, poodured to about half way across base, four treth towards pesterior end of enlumella heavily fornud; suleus wide, fossula concrue, both denticulate. Animal not observed.

Habitat, inside main reef.
Length 10-17 mm., width $7-10 \mathrm{~mm}$., height. G-9 mm.
T'eeth (for specimen 17 mm . in length), Labial 34; Columella est.
Loc. Central Melanesia (type luc.), Juvuka, Kadavin, Taveuni; eight specimens taken at Nadroga and Suva.

Subfamily Starhylaeinae.

Staphylanea fousseaume 1884.

Subgenus Starmylaga Jousseaume 1884.
Stapitylea monsomrina Garmett 1879.
Sholl elongate ovato, dark srepy imer wall of dorsum appeariner fiaintly beneath a prearly white mper surface with white pustules small at apex and lareer at sides of dorsium, gronved dorsal line towards right of apex: axtremities rostrate, coloured brown and pitted; lateral pitted rislges, furning upwards at left centre ; hase white and convex, teeth brown, well formed, oblique towards extremities, several hifnrcate at centre of columella; sulcus wide, fossula concave and denticulate. Animal dark red, further details not observed.

Mabitat, inside main reef.
Isength 18-30 mm., wilth 11-18 mm ., height 9-14 mm.
Teeth (for specimen 27 mm. in Iength), Labial 20 ; Columella 19.
Loc. Central Pacific (typeloce), Levuka, Kadavn, Tavemi; twelve specimens taken at Suva and Nadroga.

Stapitytea nukthay sp. nov.

Shell ovate, smaller than consnhrint, with similar colouring (some specimens, however, have brownish instead of greyish shade), mmerous minute granules all over dursum; dorsal line finely groned ; extremities and teeth hrown; base convex. teeth couspicuous and produced evenly right across hase to margins which are clearly defined ind slightly rided. treth ohbique at extremities, several columella teeth are bifurate; aperture turns to left at posterior outlet; suleus wide and shallow, fossula slightly concave, both strongly denticulate. Aninal red, further details not observed.

Hahitat, inside main reef.
Length 11-18 mms, width 7-12 mm., height 5-8 mm.
Type in South Australian Muscum, Reg. No. D. 14140.
Treeth (holotype, 18 mm . in length), Labial 19 ; Columella 17.
Loc. Nukulau (type loc.), Levuka, Kadavu; twenty specimens taken at Suva and Nadroga.

This species is distinct from consobrinu in having uniformly minute gramules all over dorsum instead of heary pustules, and the teeth are comspicuously earried right across hase to clearly defined mareins instear of half way across. The name nukulau is taken from Nukulau Island near Suva, where mumerous varieties of shells are found.

Subgenus Purperosa Iredale 1935.
Stapitylea purperosa intovaya subsp. nov.
Shell ovate; dorsum light hrown, with whitish lacunae of varying sizes all over, a scarcely perceptible dorsal ervore on right side, dorsal surface smooth; ex-
fremities brown, rostratrand pitted : right marein ridyrd and pitted; inner wall of dorsum lisht violet ; base emvex, white want wase of enlumellat raised above level of opposite side; teeth brown and conspientus, very oblique towards posterior columella cextremity, produced half way across batar : sulens and fossula shallow and dentictlate. Animal red, further details not observed.

THabilal inside main reef.
Length 12-21 mm., wilth 7-13 mm., height 6-10 mm,
Type in South Australian ILusenm, Reg. No. D. N11/1.
Teeth (holotype, 21 mm . in length), Labial 20 ; Columella 19.
Loc. Levoka, Kadavu; four specimens taken at Suva (typeloc.), aud Nadroga.
The Schilders (193!)) use the name limnoima. fuctof', but we have necepted Irediale's name, purperonn. This species has no "dorsal tubercles" as mentioned by the Schilders, pare 129 ; the dowal surface is gute smooth. One specimen taken by the Rev. W. O. North has a few lateral spots sliphtly pustulose. The word ruve, pronounced ravay, is Fijian for dove. The name rusazu is used to distinguish the Fijoan limm the Quednsland morporose forifio, mainly lecanse the teeth are finer and prodined somewhat firther across the base.

Suhgenus Nireleaka Jonsseanme 1884.

Nuchladra nuthetis aemmoma lerry 1811.
Shell nvate with heavy rough crean coloured pustules all over it light proy dorsum, dorsal line grooved base conves. estremities achminate, base has upward turn al posterior extrenity; aperture has sharp turn to left at posterior ontlet;
 conspiouolls, light brown in colomr, hifureate along most of columella site, produced rioht across base and orer marins to form striat on each side of dorstam : suldenis very shallow and deutioulate, tosshla shallow with prominent ridge on lower inner edge earried through outwards to left anterior extremity ; inner wall of dorsam purple. Animal dark gray, further details not observed.

Llubitat, inside main reef.
fuength 15-26 mun., width 11-17 mms, height 8-12 nuw.
Teeth (ton specimen 26 mm . in length), Labial 26 ; Columella 18.
Loc. Contral l'acific (type loc.), fainly general throughont Fiji ; thirty specimens taken at Suva and Nadroga.
'He Schilders (1939) in their deseription of this species state that the extremifies ure "short to blunt", but the Pijian specimens have well produced cotrmities, deuminate, perhaps inclined to an mpwards rostrate tendency. We have, however, accepted the name as other characteristies apply.

Subfamily Erosarinale.

Erosamia Troschel 18is. Sulgenus Ravinimana lredale 1930.

Frosarta caputserpentra argentata Daltyenberg und Bunge 1933.
shell urate and depressed, with wide heavy chocolate bron'm margins, plain in colour half way to apex of donsum, where the enlouring breaks into a network of numerons integular white tacmae, apparing through brown enmeeting threads, and somelimes gray zonal shadings showing thromgh from below; white dorsal line croukd, often missing ; inner wall of dorstum and extremities violel, light
palch ahove posterior extremity, anterior axtremity somewhat attenuated; base depressed, shaded from dark al margins to cream at aperture; aperture thrning left at posteriom ont of ; suldis shallon, tossinla narrow, concare, slierhdy denticulate: teeth mot produced aerose base inelined to be shom and heavy, oblighe towards posterior mitlet. Animal has variogated dark brown mantle, with filaments in which red and brown appear, siphon and tentacles gray.

Habitat, among brown weeds in vermiculated grooves on outer cdge of auin reef where there are big breakers at high tide.

Length 20-36 mmo, width $15-25 \mathrm{~mm}$., height $9-16 \mathrm{~mm}$.
Teeth (for specimen 36 mm . in length), Labial 16 ; (Volumella 14,
Loc, Central Pacific (type loc.), eommon throughont Fiji; numurnts specimens taken at Suva and Nadroga.

Subgenas Erosaria Troschel 1863.

Erosaria eroma uhlomzans Melville 1888.

Shell ovate: dorsum light hrown with numerous gray tacunae oftom enclosed by brown rings irmegharly maned, dowal lime pray on right side, sometimes miss. ing ; inner wall of dormum light purple; margins heavily callonsed and ridend, with hrown spats; exdemities heavily ridged, with heown lines above; latge dark hrown blotches above and benpath centre of marrinis; buse depressed, cream; aperture wide, turns left at posierion onder; shlens and forsula shallow and denticulate; tecth heavy, produced well across base to right margin, lyot not om loft, obligue lowards posterior outlet. Animal spray, mantle yeflowish gray with prominent delicate lilaments sharled Io dark bown, siphon light brown, tentaclés darker brown.

Habitat, both on ohter and shore rects, usually larger specimens taken on outer reef.

Length $20-43$ mm, widtl $13-27 \mathrm{~mm}$. height $8-18 \mathrm{~mm}$.
Teeth (for specimen 43 mm . in lenyth), Jabial 10 ; Culumella 14.
Loc. Central Melanesia (type loe.), common throughout Fiji; numerous specimens taken at Suva and Nadroga.

Erogaria porarta scarabaeus Bory 1827.
Shell ovate; dorsum light brown, with numerous white spots enclosed in violetbrown rings, dorgal line violet-gray, olten missing; margins violet, slightly rided and pitted towards extremities; hase slightly ennvex, shaded from violet at margins to white at aperture; aperture turns left at posterior outlet; inner wall of forsum deep violet, sulons shallow, fossula enncave and dentienlate; tecth white, fincly chiselled on both sides of aperture, produed half way aroms base nn right side, but shorter on leit, obligue bwirds prosterior outlet. Animal red, mantle gray, filaments white and gray.

Mabitat, inside main reef.
Lengtli 15-21 mmo, width 10-15 nmo., height 5-9 mim.
Teeth (for specimen ${ }^{\prime} 1 \mathrm{~mm}$. in Length), Labial 16 ; Columella 14.
Loc. Central Pacilic (type loc,), Kadnvu, Levuka, Taveuni; twenty specimens taken at Suva and Nadroga.

Eleosaria felvola nallista Shaw 1909.
Shell uvate, deprensed, with wide heary plain brown margins shaded to darkest bulf way to apex of dorsum, where the plain eolomring loreaks into a network of
minute elesely packeh while lacmae on a bleey gray sturface, and many jrteghlarly placed brown spots simperimposed upon this network, no pereeptible dorsal line: hase depressied, hrown in colour ; extremilies shaded violet on upper side: tecth heaver, prolneed to margin on right side. short especially at centre on loft side. ohlighe towards extremities; inner wall of domsum violes. \ddagger sulens and fossula marrow, the latter slightly denticulate. Animal oramge, mantle mottled with lightere shaded tilaments, siphom and tentacles shaded yellome to red.

ITabilat, inside main reef.
Length 12-20 min. width 8-14 mon., leight 6-9 $\mathbf{~ m m}$.
Teeth (for specimen 20 mm . in length), Lahial 15: Columella 15.
Lor. Polynesia (type loc.), common thronghont Fiji; thinty specimens taken at Sirva and Nadroga.

Erosarda llumenae nasesk subsjo. hoy.
Shell elongate ovate; dorsum brownish may, with mumerous tiny whitish eray spots alt over dorsal surface, dorsal line indicated by eray shatow hreak in pattern: inner wall of dursum purple; both margins ridged, with dark brown spofs on upper sidof extremities rostato, antexior especially prominent, with
 anterior extremity, tmrning slightly to left at pusterior ondet; beoth produmed to margin on right side, but shot on lefí, oblique towards columella posterion ont at : lossula shallow and denticolate; frominent derminal ridge at anterion columella extremity. Auimal not observed.
llabitat, inside main rect.
Temgth 14-16 mm, widil 8-10 mum, height ($6-7 \mathrm{~mm}$.
Type in South Austrolisn Museum, Reg, No. D. 14142.
'Teeth, (holotype, 14 mm 。 in length), Labial 14 : Columelia 14.
Loc. Threo specimens taken at Suva (iype loc.) ; probably oceurs at other localities, but not observed.

Solitders (1939) rujeet flaveda Gray I825, and use the name fabrobinculn
 heleme Roberts 1869. We have adopted hemonn, and added nasese to diminguish the Fijian specimen. Nascse is the nume of a suburb of Suva, where there is a constal reed with a fine lot of shells.

Erosaria eiburnea Barnes 1828.

Shell ovate, pearly white hoth ahove and beneath; inner wall of dorsmm light howa; auterior extromity has couspicuons pitted rider, posterior extromity sliphty modued on ritht side; hase convex ; aperture wide, slighty amstricted
 narrow, prominent terminal ridge at left minterior pxtremily; ohsolete ridge along right margiu; teeth large, not produced aeross base, sblique towards posterior columedta outce. Fonng shells have a blush shading appearing beneath the prarly White envering of the dorsmm, but as shell matures and dorsum thickens this dark undershade disappears. Animal hrownish gray, mante gray with tiny filaments edged with light brown, fringed siphou and tentacles brown.

Habitat, in sand around shore rocks between lides.
Length 27-50 mina, width $17-30 \mathrm{~mm}$., height 12-23 mm.
Teeth (for specimen 50 mm , in Iength), Labial 18: Colunella 15.
Loce lijij (type loc.), Nadi, Nadroga, liadinu; Hirty speeimens taken at Tavia and Suva.

Monetarta Troschel 1863.

Subgemes Ornamentaras Schilder-Schilder 1936.

atonetabra ANwitits Nommenassis Bermardi 1861.

 al margins, and half way to apex darker greeny grey with eroatic nrane line, lighter bluish gray around apex within the orange lime; inmer wall of dorsum purple; base depressed, pearly gray in colour; nperture wide, somowhat constricted at lahial antorior extremity, slight lurn to Ieft at posterior mothe sulens and lossula obsolete; teeth mot produced acernss hase, nhligne towards pasterion outlet on colmmella side. Animal dark gray, mantle dark wreen, flowed wifl hark and white patehes, filaments light colourod with pink shadings, siphon sray with pink fringe, tentacles pink.

Hahitat, among small rooks and broken coral on shore reefs, where it is taken in erreat numbers, also on outer reets where surface is left bave by reventing tide.

Length 18-65 mm., width $8-16 \mathrm{mim}$., height $7-14 \mathrm{~mm}$.
Teeth (for speeiment 25 mm in length), Labial 12; Columella 11,
Luc, New Caledonia (type loc.), very common throughont Fiji; mamerous specimens taken ut Suva and Nadroga.

Monetarta annumus mranaa Ircdale 1939.

This species diffors from momemsis in being moportionately wider, dorsum Nepressed instead of slightly humped, calloused at margins, with slisht torus, ravaling a temiency towards obochalu; teeth further produced acons columella base; apertmp has greater form to left at posterion mitlet, hoth lips ratsed in centre. No apparent differcuess onserved in the animal from that of nonmennsis.

IIabitat, usnally found near noumconsis in similar conditions.
Length 16-93 mm., width 13-19 mm., height 9-12 mm.
Teeth (for apecimen es mm, in length), Labial 12; Columella 10.
Loc. Samoa (type loe.), common thronghout Fiai ; numerous specimens taken at Suva and Nadroga.

Whilst there are numerous true specimens of both noumenosis and riranga, showing clearly the distinct features deseribed above, there are ako a great number of intermediate sperimens tending either towards one or the other. In view of this we would venture the suggestion that there are two tribes, hat quite a tot of cross breeding.

Subgenus Monetama troschel 1863.
The Schildors (1939) list moneth barthelemyi, locality, Central Pacific, as from the Wiji rewion, but this natm applies 10 a New Catedonian aborration, as pointed out by lredale ($19: 3$) and (rammot be used tor the Fijian specimens. There are theo distinet sperese of mometo in Frai easily adentified by (1) slightly tramped dorsnm, equally sloped sides, ceram hasi, (2) Anpressed dorsum, heary tubercles, cream base, (i) slighly lumped dorsum, milky white marems and hase. We have given these three species subsp, names of chelum, mon, and cloln, Fijian words for one, two and three, $A t$ the same time, whilst there are monerons true specimens showing eleary the distinct leatures deseribed above, as in the case of cmmus, there are many intermediate specimens tending either towards ond or the other. The suggestim may arain be made that there are probably three distinct kindred tribes, but also an amount of cross breeding.

Monetaria monheta enduda, subsp, hov.
Whell pyriform, heavily calloused at marems and extremities; dorsum slightly humperd, colour deep cream, with gremish meder shading aeross upper half of dorstom, and clanker zonal hatuls. Some specimeus are bright canary yellow, and others again have faint orange lateral lines similar to annulus; inner wall of dorsum purple; base depressed, shaded deep cream at margins to ivory white at aporture; aperture wide, constricted at anterior outlet, turos slightly to left at posterior ontlet; teeth large, not produred arross hase, heeming obsolete towards posterior end of columella; sulens and fossula missing ; polmmella base raised in centre above lovel of opposite side. Auimal gray, mantle mottled gray and vellow, filaments small, shatod "rean and purple, siphom gray, fringed, tentacles gray tonched with yellow.

Habitat, both annulins and the three species of monetin are msnally found in proxinity, "omeresated in eoknipy amoner amall rocks and hroken coral an shore reefs, aur nlso found in less numbers on outer reefs.

Length 15-35 mm, width $9-22 \mathrm{mml}$, heigh 8-17 mm,
Type in Suth Australian Museum, Reg. No. D.14143.
l'eeth (holotype, 30 mm . in length), Labial 14 ; Columella 13.
Lar'. ('ommon throughout Fiji; numerous specimens taken at Suva (type. loe.) and Nadroga.

Monetarla moneta erua bubsp. nov.
Shell broader than mourla entua, dorsum somewhat depressed, margins and extramities heavily ealloused with enarss thbereles expecially towards posterior expromity: dorsal columine inep cream to brieht canary yellow, some specimens having ermmish shating un upper halt of dorsal surface, and dark zonal hants, some have also the orange lateral lines similar to annulns; inner wall of dotsum purple; base depressed, deeper aream on mater mareins, shaded to jvory white at aperture: aperture rathor less wide than in endua, seareely any turn to left at posterior onllat; terth huas; with tendency to become luberculose. not prodnced across base: shlcus and lossula obsolete. Animal similar to that of enduu.

Habitat, similar to that of endua.
Length 18-88 mm, width $13-22 y$ mon., height 9-15 mm.
Iype in South Australian Museum, Reg. Nu. D. 14144.
Tersth (holotype, 28 mm . in length), Labial 12; Columella 12.
Lou: Common thronghont Fiji; numerous specimens taken at Suva (type luc.) and Nadroga.

Monetaria moneta etolu subsp. nov.

Shell pryiform, dorstum slightly humped and shaded creamy gray over upper half, with three dark greenish zonal bands; maryins, extromities, and base milky White ; inner wall of dorsum purple; hase depressel ; aperture wide, almost straight, wider at anterior outlet ; tweth large, unt produced areross hase; : mollus and fossula obsolete. Animal similar to that of cmotur aud come.

Mabitat similar to that of endua and erva.
Length 17-23 mm., width 14-17 mm, height 10-13 inm,
TYpe in south Anstralian Musenm, Reg. No. D.14145.
'Teeth (holotype, 23 mm , in length), Lahial 14, Columella 14.
Loc. Common throughout Fiji; numerons specimens taken at Suvu (type loc.) and Nadroga.

Subfamily Erroneinae.

Cribraria 'lyosehel 1866^{53}.
Cbiblaria mbrbrakia northi subsp. now.
Shall pyriform-elongate; dorsmm has white spots on brown surface making a sumewhat side-like apparance (whence the specific name) ; margins, extremities and base white, right marsin and cxtremities ridged; abrupt change in dorsal
 inner wall of dorsum white; base convex ; teeth heavier and produced across hase un labial side, more numprons and finer on columella side: sulens wide, fossula slightly concare, both dentionlato; a perture lurns left towards posterior ontlet. Animal not observed.

Habilat, inside main reef.
Length 19-31 mm., willth 10-18 mmo, height 0-14 mm.
Type in South Australian Muscum, Reg. No. D. 14146.
I'eeth (holotype, 28 mm . in leneth), Lablial 17; Columellat 21.
Loce. Bega, Kadavu, Levuka, Tavenni; twenty specimens taken at suva and Natloga (typo loc.).

The shalders (1939) list eribromit melnomdi Jredale (1930), from the Fijig reyion, Int ass Iredale (1939) points out, maturdi is "a shining stont white shell" quite distine ferm the typisal criluraria. For tho fijaian specimens we have riven He subsureifie nume of morlhi after the liev. W. O). North, who was for many years a minsionary in kiji, and whotomanerimens of this shell near his home at Nadroga.

Bistolida Iredale 1939.

Bistolida stolida thakati subsju。 nuv.

Sholl clongatu; extremities produced; apex depressed, light gray along lemgth of dorsum, with irregular shaped large light brown macula in centre, and erratic lateral light brown lines from sides of macula to extremities; margins ivory white. with two yellow transverss markings on each side; inner wall of dorsum white; slight marginal ridge on light side; base white, convex; aperture has very slight turn to left at posterior outlet; sulcus wide and shallow, fossula slightly concave and denticulate; teeth produced half way across base. Animal not observed.

Habitat, inside main reef.
Length 26 mmo , width $15 \mathrm{~mm} .$, height 11 mm .
'I'ype in South Australian Museum, Reg. No. D.14147.
Treeth (holotype, 26 mm . in length), I sabial 19; Columella 90.
Loo. Nadroga, Kadavu; one specimen taken at Suva (type loc.).
The Fijian surecmen has extrmitiss more attemated than specimens from regions finther west. The subspecific name of thutum. Fijian for reef, has heen riven to distinguish the Rijian spocimen.

Bistolida flictuang nandronga subsp. nov.

Shell elongate, extremities promberd; apex depressed; dorsum light pinkish gray, with dark brown macula in centre, but no lateral lines, minutest light brown sperks along margins; marginal ridge on right side, with small light brown marks along both margins, axis umbilicate; inner wall of dorsum light brown; hase depressed ; aperture wide, with turn to left at posterior outlet; teeth produced across
marrow lahial side of has', lut unly half way acruss left side; no sulcus, fossula nafrow and slightly concave, denticulate within. Animal not observed.

Mnbitat, inside main reot.
Lemgth 25 mm., width 14 mun,, leigent 12 mm.
Type in South Australian Musemm, Reg. No. D.14148.
'Tecth (holotype, 25 mm in lengith), Labial 15; Columellan 16.
Lrm. ()ne sprementaken at Nadroga (type loce.); other localities not known but probable.

Tredate (1935) introdteced the name ftuctuens for speremens of a similar sheth from Norts Australia. Thr Fijian specinem is more elongate than the North Lustralian, and has finer terth; it has alsu a brown bloteh on the apex of the dorsum. We have, therofore, miven this shell the suhspecifis maze of nandrongu (spelt Nadroma in Fijian) from the name of a district in Hiji, where a great varicty of shells is found.

T'AtostoLidn Iredale 1931.

Thlostotita surteres vava subsp. hov.

Shell mb-cylindrical; dorsum inpressed, gremish gray, with mumerous more of less aughomerate finy bonm specks, and erratic brown markings, arranged annawhat irregularly in a series of zonal lines; callonsed extremities produced; cailoused labial margin ridged, with dark howo spots; inner wall of dorsma purple; base convex, white apertime rather narrow, slight turn to left at posterion oulles; sulens and enneave fussula dentioulate, strong amminate ridge at lelt side wh anterior ontlet; teeth produced hatif way aross base on right side. but mon on left. Animal not observed.

Habitat, inside main reet.
Lengith 23-27 min., width 14-16 mm., height 11-13 mm.
Type in South Australian Museam, Reg. No. D. 14149.
'Leeth (holotype, 27 mm 。in length), Labial 23 ; Columella 84.
Loo. Bça, Kiadavu; ten specimens taken at Suva (type loc.) aud Nadroga.
'The Schilders (1939) list keres subfasciutu Link (1807) from the Fijian region. but Iredale (1939) states that this subspecies came from Nanitius, and the name is, therefore, uot applicable to the Pacifie subsperies. The Fijian speciments seem to belong to the subteres species, and we have added the subspecifie name of vava, Fijian for a shoe.

Pathonarta Iredale 1930.

Patulunaria minormens stivaensis subsp. nov.

Sholl reylindrieal and frogile; dorsm biscuit coloured, with three fulvons \%onal makings, of which that across the apex comprises a series of short eurved stripes, the whole of the dorsal surface is eovered with minutest fulvous specks; extremities thaged with a bright: fuchsia colouring, which is continued well within Tho antruior outlet; inner wall uf dursum buff coloured; base white on the narrow lathal side, buft dorsal shading continued over left margin aud across eolumella site of base; aporture wider at anterior ontlet: no tarn left at posterior outlet; tossula slighty eoneave and denticulate; teetline, obsolete on most of entamelta antre, Animal gray, mantle bright red, with mintest filampats of same colow, siphom gray and pink, tentacles shaded red.

ITabitat, on rocks inside main reef.
Lengtis !3-12 nim., width $5-6 \mathrm{~mm}$., height: 3-4 mum.
'Iype in South Australian Museum, Reg. No, D. 14150.

Teeth (holotype, 10 mm , in length), Tuabial 15; Columella 15.
Loc. Eight specimens taken at Suva (tym loc.) ; probably necurs at nther localities but not observed.

The names fimbriata, minoridens, and microdon seem to have been somewhat confused, and minoridms has heen called both fimbriata and microdon. We have
 town of suva, and micronlun is used bolow low a pyriform species with finer teeth.

Padunnaria meromon dranijn Schilder 1938.

Shell suhprexform: dorsum stishty inflated: extremities rostrate: bas white. convex ; aperture narrow, slight turn left at posterior outlet ; teeth very fine, not
 late. Animal not obscreved.

IIabitat, the one spenimen taken is from the beach, and dorsal markings are aroiled.

Length 9 mim, widtly 5 mm, height 4 mm .
Teeth, Labial 15; Columella 15.
Cod Fiji (type loc.). Ones specimen taken at Nudruga; other localities not known.

Evanaria Iredale 1930.
Evanarta asedidus rawakata subsp, nov.
Shell dongate pyriform; dorsum has three broad chocolate (or in some cases black) bands transyersely placed over a whito surfore, and continued ohsentely across colamolla within aperture; margins, edremities, and base white, right margin slightly ridged; imer wall of dorstm white: axis depressed; aperture has very slight turn lel't at posteriur outlet; teeth fine. produced half way across base, rolumella teeth inclined to be tuberenhme towards pastorior matlet; suleus wibla and shatlow, fossula concave and dentivulate. Amanal black, mantle miniature proecesses, siphon and tentacles black, the latter with red tips.

Habitat, on rocks inside main reef.
Length 11-21 mm., width (i-11 mm., height $5-9 \mathrm{~mm}$.
Type in South Australimn Museum, Rew. No. D.14151.
Teoth (holotype, 14 mm . in lenglli), Labial 16; Columella 14.
Tooc, Levuka, Kadayn, Taveuni; twelve specimens taken at: Suva (type loc.) and Nadroga.

The Schilders list asollus bitucmiut (ieret (190?) for the Pacific region, but Iredate (1930) points out that Geret's name was given to a freak colouration with two bands instead of three. We have given the subspecifie name of kawakawa, Fijian for a bridge, to distinguish the Fijian shell.

Evanaria hirundo jorolfive subsp, nov.
Shell pyriform, rather plump in appearance; two jeregular white zonal markings anoros light hrown eolomed dorsum; apex of dorsum depressed, falling away quickly to posterior, and more obliquely to anterior extremity; axis depressed, brown speeks distributed sparsely wer dorsmm and on margins; right margin slighty ridged; extremitics white aud rostrate, hrown spots on both upure sides; inner wall of dorsum purple; base conver, creamy white; aperture turns left at nosterior outlet; teeth produced across most of base, hifurcate at columella centre; suleus and fossula wide, shallow ind denticulate. Animal not observed.

Habitat, inside main reef.

Tength 13-32 mm., width 8-17 mim, height 7-10 mm.
Type in South Australian Musemm, Reg. No. D. 14152.
Teath (holotype, 16 mm. in lmgth), Labial 18; Colnmella 18.
 from Suva and Nadroga.

The Schilders have used hirundormut Anver (1882) for Melanesian typus of This :"pecies, but their descriptions du wot asere with the Fijian specimens. We have, therefore, introduced a new subspecific namo of Tomblour, from a town on the sonth enast of the island of Viti Levm, where many of those shells are taken.

Evanarta mbsplifus vitiensa aulbsp, nov.
Shell subeylindrieal, with two orratio whitish gnial markings across dorsum, lenving a curious patiorn of eray markings, the whole dursal surface being envered with a lilmy pearly eroam enating; minnte brown specks sparsely distributel over dorsum: cxtremities rostrate, white with two dark brown spots on upper side at pach end ; right margin very slightly ridered with hrown specks; base conver, white:
 brown outer pattern; teeth produced amoss hase; sulcus shallow, fossula concate and denticulate. Animal nol observed.

Mabitat, inside main reef.
Length 10-16 mm.. width 5-9 mm., height |1-7 mm,
Type in South Australian Mruseum, Req. No. D.14153,
Truth (holotype, 14 mm . in lengeth), Talial 16 ; Columella 16.
Lon, Beqa, Kadaron, Taveuni; twenty specimens taken at Suva (type loc.) and Nadroma.

Various mames have been used for this spectes, the shithers using kieneri, but we have followed lredale in usine ursellus, and have added the subapereifie mathe of mitensis, i.c. "Fijian". The native smalling of Fiji is Viti.

Evanarta biferiata trizonata Sowerby 1870.
Shell elongate pyriform; dorsum ivory white, with brown specks sparsely and irregularly placed, axis depresend towath foft : extremilies mitrate; slightly lareer spots along hoth marwins: hase cream, slightly dopuessed; inner wall of Ansmon white; apernue slight turn left towards maserion ontlet : teeth produed half way across narrow latbial side of base, mot acmes columella sirle: sulems ind fossula shallow and denticulate. Animal not observed.

Habitat, on inner reefs.
Length 8-15 mm., width 5-9 mm., hright $4-7 \mathrm{~mm}$.
Teeth (for specimen 15 mm . in length), Labial 15; Columella 16.
Loc. Polynesia (type loc.); twelve specimens taken at Suva and Nukroga, other localities not known but probable.

Palmadista Irediale 19:30.
Padamadista ctannesmina (eandma Prase 1865.
Shell pyriform, dorsum white, with three large ohscure very light brown arvatic shaped zonal narkiugs, and a mumber of faint hight lown zigzag gossamer lines stretched across; inner wall ul dorsum white, but showiner fandy the zonal shanlings above; margins and extromitues parly whte; base convex, white; aprelure turns left at posterior outlet; shlelte and fombla shallow, slightly denticulate; teeth produced half way across base. Animal not observed.

Habitat, inside main reef.
Length $10-16 \mathrm{~mm}$., width 5-10 mm ., height 4-8 mm .
Teeth (for specimen 16 mm , in length), latial 20. Columella 18.
Lou. Central Pacific (type loc.), Sura, Terga, Kulavu; two specimens takpu at Nadroga.

Paliatadusta lititea fal,oren subsp. nov.

Shell pyriform; dorsmm envered with seatered brown spots umon whilish
 spots are continued over the base, which is convex, and has a yollowish shading: iuner wall of dopsum linht hrown; aperture turns left at posterior outlet; teeth not mroduced across base, white teeth on labial side: colnmella white within: fossula slightly concave, Animal not observed.

Lmgth 19 mm ., width 12 mm ., hright 10 mm .
Type in South Australian Musenm, Reg. No. D. 14154.
Loc. Nadrogn (type loc., specimen taken by Rev. W. O. North) ; anothere spucimen was taken there by Steadman.

The Nochidders list lutea humpherusii (eray (1825) for a wide area from South Melancuia and Sydney to Tonga in the Central Padifie, hut the Fijian specimens do but agroc with the desuriptions given. and we have intronluced a new smberecifo name of yoluka, Fijian for bird's egg, for the Fijian shell,

Solvadusta Tredale 1935.

Solvadusta sumvimidis kesata subsp. nov.

Shell pyriform ; lorsum erray. With large brown macula on ancex, and smaller manculae on sides; margins pxtremities and base white, anterior extremity and nosterion lahial extremity modneed aperture wide. especially at anterion and: inner wall of dorsum purple: teeth mot prombed across base. and very lightly: formed on posterior end of columella; fossula small, concave, and dentimntate: colnmella raised above opposite side of aperturio. Animal not observed.

Habitat, inside main reef.
IJength 28 mm ., width 17 mm ., height 16 mm .
Type in South Australian Museum, Rer. No. D.141.55.
Teeth (holotype, 28 mm . in length), Lahial 17; Colnmella 19.
Loc. One specimen taken at Suva (Ispe loo.): other localities not knotn,
S. subviridis has been listed trom Anstralia and Molanesia, and Figi can now be ghfled, althongh only one specimen has been taken by Steadman, and we have sem no other specimen from Fiji. The name kesnta, Fijian for stained, has hem giten to denole the Fijian sulspecies.

Melicerona Tredale 1930.

Melterarona mmavidit ratu subsp. nov.
Shell sub-cylindrical ; dorsum has fom more or less broken black zonal hands. and a yellow patch behind the anterion band, otherwise the shading is wrepuish gray between bands, with numerons hrown specks all over; several large Mackbrown spots at margins, and hark-hown markings on upper side of extremities; immy wall of dorsum gray; hase pearly modm. hot the four black gomal hants are comtumed obsemrely across left cirle fo within columella; aperture fairly winde: teeth fine, not produced across base, but fout of them are prominent across shallow
linssula, amb small aloug rest of columelta side. Animal dark gray, mantle motter dark brown with minute filaments of sane colour. siphon brown, tentaches gray.

Habitat, inside main reef.
Length 13-32 mm., width 7-12 mmo, height 4-7 mm.
Type in South Australian Museum, Reg. No. D,14156.
Teeth (holotypo, 22 mm . in leumth), Labial 14; Colrmella 14.
Fioc. Beqa, Kadavn, Levulat thidy specimens taken at Suva (typo loc.) and Nadrogra.

The Schilders list folinn melrilli ITilalgo (1906), from a wide ragion stretch-
 bype localidy for melwilli, and proposes monilli nelowio for shells from the East Alstralian coast. The Figian specimens appear mors elongate than the melrimi Nelesio illustrated by lredale, and we have thus given the name melvilli matn for the Fipian shells; mith is the Fijian word for a stone.

Buastomtra Iredale 1930.

Blasicrura ritinoceros vivta subsp, nov,
Shell sylimatical ; Aorsum greenish gray, with mumerous light brown spectss. and four faint dark brown zonal markings; margins and base cream with a few small browu spots; imur wall of dorsum purple; apertire almost straizht ; leeth produced half way across base: suleus wide and shallow becoming dentienlate towards fossula, which is shallow and heavily denticulate. Animal not uspered.

Habitat, inside main reef.
Isength $15-2.4 \mathrm{~mm}$. width $8-13 \mathrm{~mm}$., height 6-10 mm,
Type in Sonth Australian Museum, Reg. No, D. 14157.
Teeth (holotype, 18 mm . in length), Tabial 20: Columolla 19.
Loc. Numerous specimens taken at Suva (type 1ne.) and Nadrogn; nthep knuwn localities fairly common thronghont Fioi.

The Schilders (1939) list pallinhen whareros from Western to C'intral Pacifie. hut the Fijian shell seems more elonerate than the Melan wian, and the жnal lines more distinct. We Jave therefore distinguished the Fijian shell with the mame rhinoccros vivia, the word min being Fijim for rolled round or banded.

Blasigrura quadmimamilata garretit Schilder 1939.

Sholl alongate: dorsum nray, with numorous light hrown speeks, and spoekted light hrown dorsal line two large wery dark hown spofs at each extremity, one of these spots on axis, whieh is somken; inmer wall of dorsum wine coloured; marerins. extremities, and base ivory white; anterion extremity extended to give slender appearance; aperture almost straight : terth mooheed half way across hase at postorior end of columella indined to he tuhorentose; fossula sliwhtly womeave and denticulato. Animal not nbserver.

Mabitat, inside main reef.
Length 13-21 nmm ., width 7-11 mm., height 0-9 mm.
Tecth (for specimen 21 mm , in lenyth), Labial 17 ; Colrmella 17.
Loc. Fiji (type loc.) : two specimens taken at Suva.
Patangerora Tredale 1980.
Padantierosa uylindrica wangea subsp. nov.
Shell eylindrical ; dorsum has gray shading with mumerous light hrown speeks all over, and darker brown pateh wear apex; anterior extremity greatly produced
and rostrate, with pronounced ridge carried hack to margins, posterior extremity less produced, axis depresserf. dark bromm markings on buth upper sides of extremities; inner wall of dorsum puple; base convex, pearly white; aperture wide and ononstrieterl fowards anterior onthef, slight turn left at posterior outhet, tecth thin amd widely spaced extending across inner side of eoldmella, but not across hase. Animal not observed.

Mabitat, on inner reefs.
Jength 29-82 mm., willth $15-16 \mathrm{~mm}$, height 11-12 mm,
Type in South Australian Minseum, Reg. No. D. 14158.
Teeth (holotype, 30 mm . in length), Labial 17; Colqmella 19.
Loc. Three specimens taken at Suva (type loe.),
Iredale (1939) gives the type locality of mpindrion as Amboina, and wo have arklerl the subspecific name wrngya. Fijian for boat, to distinguish the Fijian sprecies.

Erronfa Trischu! 1863.

Erronea nimitsserans iediavo subsp, now.
Shell subeylindrical, dorsum has greenish gray undershade, with mumerous brown specks all over, and random dark brown patch near the apex (in some specimens the brown speceks form lines along the lrigeth of the dorsum, and there is no dark brown patch); axjs depressed: margins, extremities, and base plain buft colour (some specimens have dark brown spots on upper side of antorior axtremity) ; inner wall of dorsum purple; base convex; aperture wide, and constricted towards labial anterion outlet, columella side of aperture raised above livel of upposite side; teeth diminished, columella tenth becoming obsolete, short. and more promiuent across shallow fossula. Animal gray mantle greeny gray with whitish Hecks, filaments gray aut yellow, siphom gray with yellow fringe. tentacles orange.

Habitat, on rocks and broken coral on both shore and outer reefs: larger specimens usually on outer reets.

Length 19-30 mm . width $10-16 \mathrm{~mm}$. height, $7-12 \mathrm{~mm}$.
T'ype in South Australian Museum, Reg. No. D.14159.
Teeth (holotype, 30 mm . in Iength), Labial 13; Columella 13.
Loc. Numerous specimens taken at Snva (type loc.) and Nadroga; other known localitics, common throughnot Fiji.

The sehilders (1!9:9) list arones corrula seems from the Pacifie regions, hut the Irue errones has red lips, which does not ohtain in the rijian species, We have, therefore, adopted the name nimissorans used by Tredale (1939), adding the suthspecific name kaluvo. Fijian for mouse, for the Fi,jian species.

Frronea nimiseerans vivits subsp. nov:
This shell is related to mimisserons kalanu, uniformly smaller, and of a much lighter shade ; the doram is of a light huish gray undorshading, with numerous: light brown speeks all over, the base is ivory white, othruise characteristics are similar.

Length 18-22 mm., width 9-12 mm., height 7-9 num.
Type in South Australian Museum, Reg. No. D.14160.
Treth (hontyne, 19 mm . in length), Lahial 11; Coluruella 13.
Loc. Suva (type loc.).
The name vivili, Fijian for small sea shells, is given to distinguish this sulb) species.

Eribonea caurica theima Tredale 1989.
Shell subeylindrical; dorsim fantly zoned in thee darker and two lighter bands, apex of dorsum level for two-thirds of length, and falliug precipitately to sumken axis, move obliquely fo antorior extremits, maltitndinoms brown specks all over, toming to agghomerato in places, ceram undershading beneath these specks; margins heavily callotised especially on right side. which is uneventy ridged; margins, extremities and base coloured dark cheam, large nank brown spots regularly placed on right margin, smaller pandom spots on heft margin, dark brown patehes on upper sido of enterion extremity, and over axis, extremitios prodnced; inner wall of dorsim light violet: hase depressed at centre; aperture
 widely placed, with orange colonring betwen, protuend half way aeross base. dninal tout observed.

Habitat, of roeks ame broked ental on inner reefts.
Jengeth $25-50 \mathrm{~mm}$. wilth $14-2(5 \mathrm{~mm}$. height $10-18 \mathrm{~mm}$.
Tectlo (for specimen 50 mm , in lengtis), Jabial 10; ('olumella 17.
Loc. New Caledonia (tspelne.), Requ. Khlurn, Nidroga: twenty specimens taken at Suva and Ba.

Odatitsa Iredale 1981.

Ovattpsa ohinensis Gmelin 1791.
Specimens in collection of Mr. S. Leevy, Sura.
Shell orate; dorsum ligh brown, with numerons creamy gray bennap freguently agglomerate; margins and extromities callonsed, creans in colour with many violet spots; inner wall of dorsum gray; base eonvex, lahial side raised above level of opposite side; aperture wide, teeth combe with orande interstices, suleus wide and shallow, fossula slighty coneave. both denticulate. Animal mot observed.

Loc. China (type loc.), Amboina, New Sonth Wales, Qumasland, New Guinea, Steadman did sont take a specimen, but Mr. Teevy has nhtained several sjecomens from Fijian matives at Kadaru. Another specimen obtamed at Levuka by Commander W. Burrows, R.N., tras seen.

Subfamily 'Tat.parinnae.

Taliparia Troschel 1863.
Tatpama tatpa rattrata Dantzenberg 190\%.
Shell nlongate: dorsum fawn, with two darker lorown thansvirse sharlings forming summhat indefmite zonal bands, extremities, margins, and base glistrming chocolate brown, anterior extremity and labial posterior extremity prodnced; inner wall of dorsum white; base convex, aperture almost straight, teeth fine. chocolate with white interstiees, continued to edge of extremitios, last member at columella anterior outlet massive, anterior outer extremity declivous, fossula wide. white, coneave, and denticulate with pronomeed bulge above. Animal dark brown, mantle brown with small rough protuberances flecked in lighter shades, sifhom and duntacles dark brown.

ITabitat. on rocks inside main reef.
Length 5: -8.5 mm ., width $27-43 \mathrm{~mm}$., hairht $24-38 \mathrm{~mm}$.
Teeth (for specimen 85 mm . in lengeth). Labial 49 : Columella 48.
Loc. Central Pacifie (type loc.), moderately trequent thronghout Fiji; forty specimens taken at Suva and Nadroga.

Arestorides Tredale 1930.
Armatomams argus ventricosa Gruy 1824.
Shell elongate; dorsum depressed, with light fowny gray colouring npou Which arw four dark zomal hamds and nomerons hrown ringe of varying sizes all over and continued well down mi margins; anterior extremity produced and acuminate, labial posterion estremity pronduced beyond length of opposite side: inner wall of corsum light may ; hase comvex, coloured darker fawn, with two dark brown smudges on pach side of aperture; aperture wide and obligucly ennstricted at anterior lahial nutlet. teeth ridges dark brown, not prodneed actoss hase ; sulens shallow, fossula wide and eoncate, treth eontinued stromgly right aepose both sulens and fossula, last momber on anterior columella side massive. Animal not wheprect,

Inabitat, on rocks inside main reef.
Lsength 62-86 mmowidth $34-48 \mathrm{~mm}$. height $28-97 \mathrm{ntm}$.
Teeth (for specimen 86 mm . in length), Lahial 39; Columella 36.
Loc. Central Pacific (typeloe.), othor localities monderately frement through. oul Fiij: twents specimens taken at Suva and Nalroga.

Basititrona Tredale 1980.
Pasmitrona tiatifitad cavia subsp. nov.
Shell cerlindrical : dorsum fawnish-uras (in some hluish-gray), with three perv faint darker zonal bands and hack broken thin longitudinal lines; at pach exfomity red marking in centre of which are dark brown spots; hase eonvex. pearly white. with small demression in centre on cath side of aperture: apreme narrow with slight turn lefl towards posterine outlet: teeth fine, not produced across hase: smlens tride fossula concave heavily denticmlate on imer marein: ped markimes ot extemities emblimest well within both ontlets: anterior labial outlet slightly doclivous. Animal black, mantle black with rough surface, no filaments, siphon and tentacles dark gray.

Hahitat, inside main reef.
Length 10-36 mm 。, wirth $10-22 \mathrm{~mm}$, height $9-19 \mathrm{~mm}$,
Type in South Australian Mrsenm. Reg. No. D.14161.
Terth (holotypro 34 mm . in Ieneth). Labial 33: Columella 27.
Lor. Numerous specimens dakn at Suva (type loes, and Nartrous ; fairly common throughont Fiji.

Tho Schilders (1939) list ismbella lt hateromun Land (1934) from the Cemtral Pauifer, but the duseription does not fit the Fijian specimens. Wr have therefore introshered the name cavio. the Zoolowical name for sumea-pig, which they seem to resemble.

Chelaycyprafa Schilder 1927.

Citelyoypraen thatudisaha teravininosa Perry 1811.
Shell cylindrical; dorsum iferpessed with pinky gray underonlomring upon which are larger dark brown and purple shadiugs, with numerous darl brown spons, and a corious dusting effeet, as thongh the whole dorsum has been thinds sipninklod with finest white sand: extromities pronhened and heavily callomsed: inmer wall of dorsum white; hase eonsex, light brown, depressed in centre ; aperture wide, white, and nearly straight, outer lip deeljous at anterion ontlet, forth mot prolueed aceross hase, heroming obsulcte towards posterion end of columella : sulcus wide, shallow, and slightly dantimatr; fossula deeply roneave and denticulate,
deap depression at anterior and of columella. which is produced acuminately. Animal not ohserved.

ITabitat, on rocks inside main reof.
Length 81-118 mm., width $40-58 \mathrm{~mm}$., heirht : $30-47 \mathrm{~mm}$.
Teetly (for specimen 118 mm . in leugth), Labial 46: Colnmella 46.
Lor. 'l'wenty specimens taken at Suva and Nudroga: Samun (typo low.) (West Indiss. Perry, in error): fairly common throughont. Fijii.

Subfamily Cypraeinae.
Arabica Tousseanme 1884.
Arabich arabica betichtata Mattyil 1784.
Shell ovato: dorsum dark brown, with mumerons confused creamy yray lacmane and creamy grav longiturlinal lines. dorsal line indicated hat eray sap in dorsal mattern ; margins heavile eallomeed, with lateral forms at extremities, momeraus ateghmerato hark spots on bluish gray ; inner wall of dorsum light purple: hase denressed, shaded from bluish-rray at mareins to purplish-epeam at aperture: anterion extremity acuminate; aperture turns stightly left at posterion outlet, oulde lip declivons at anterior outlet ; terth dark herow with cream interstices, not produced arposs base: sulcus wide and shallow, fossula wide and comeare, hoth donticulate. Animal dark gray, mantle mottled dark gray, with mumerots tiny black filaments, siohom and tentacles dark gray.

Hobitat, on inner reefs.
Tenorth 43-65 nmm_{1}, width $26-43 \mathrm{~mm}$., height $20-33 \mathrm{~mm}$.
Teath (For spenimen 65 mm . in leneth), Labial 26 ; Columella 26 .
Lor. Friendly Talands (type loe.) : numerous specimens taken at Suva and Nudroga: fairly common throughout Fiji,

Aribica maculifera Schilder (1932) is a direct synonym.
Atabica ealantina momoktti subsp. nov.
Shell nlomgate ovate; dorsum has a reticulated patterm of mumernus hrown lines on gray undercolouring, and mumerons confused mray lacumap, domsal lime indioated by wide gray break in dorsal pattern; margins rounderd. ninkish gray with a momber of purplish brown sputs lolow edge of dorsal pattern: imner wall of forsum light purple; hase convex, pinkish why, antcrior extremity armmate and declivous on outer lip : aprefure turns slightly left at pusterior outlet: terth dark brown, with pinkish gray interstices. not protued across base, sulems wide and very challow, obsoletely identientate fossula coneave wide, white and denticulate. Animal dark eras. mantle cevered with mottled hack nodules, siphon and temtacles dark gray,

Habitat, on inner reefs.
Length 51-70 mm, width $30-40 \mathrm{~mm}$., height $24-33 \mathrm{~mm}$.
Type in South Australian Museum, Reg, No, D. 14162.
Teeth (holutype, 58 mm . in length), Thabial 29 ; Columella 32,
Lor. Numerous specimens taken at Suva (type loc.) and Nadroga; fairly common throughent Fiji

The Schilders (1939) list the Welamesian rglantinn eglantimu Duclos (1833) for Fiji, hat the specimens taken by Steadman do not agree in all points with the leseription given, and we have, therefore, given the subspecifie name momokiti, Fijian for rounden, to distinguish the Fijian shell.

Arabtoa intermpma Gray 1804,

Sholl elongate ovate; similar to entuntinn momokiti ir shape. but the dorsal pattorm is of a gencral blaish monn', with confused brown gigzag manking alomg whole length f fewer spois on margins: teeth very light brown insted of dark.

Habitat. on inner reefs.
Lengtls 48-67 mm. willt 28-40 mm, hejeht 23-32 mm.
'Pecth (for specimen 67 mm . in length), Labial 33: Collumella 33.
Loue Melanesia (type Loe.), Kadavu, Levuka; fourteen specimens taken at. Suvar and Nodroga.

Arabica mepreqsa Gray 1824.
Shell ovate; dorsum has retienlated pattern of smalf round lammae, intollaend
 to half way from apex to matgins, dowsal line gray: inner wall of dorsum gray; margins heavily callomsad, with tomes at watremitien, and hent up in ceme meath side, coloured srays, with mometous purplish hrown spats more mo less eontinsed; hase ivory and depressed, anterior extremity acuminate month sides, aperture fums lefi at posterior outlet, slimhtly declivons at onter anterior lip; teeth dark brown, heavy, with ivory intorsifees. produced about a third of the way across hase: sulens wide and alablof, obsoletely dentionlate, fossila coneave, white and denticulate. Animal not observed.

Habitat, on inner recis.

Teeth (for specimen 48 mm, in length), Labial 20 ; Columella 19.
Loc. Central Pacific (type loce) : four specimens f'rom Mareuata, Vanau Levn (the northorn issamb of the Fiji (tromp), This shell appears in the nor them islands of Fiji but we have not kmown of it being taken iu the central or southern Fiji tslands.

Arabica benrra pono subsp. hov.

Shell cylindrioal ; dorsim has a mosaic pattern composed of numerons haish gray lacunte interlaced with light brown lines; margins amd hase pinkish brown, with many purplish brown spots: extremilies produced, anterion extremity acuminate on lonth sides, eallonsod axis protemting at mastorioe extremity; inner wall of dorsim light purple; aperture narrower at posterior ontlet, nearly straight, declivons at onter anterior lip; teeth fine, dark brown, with pinkish brown interstiens, not produced across base; fossula white deeply ooneave and faintly dentienlate. Animal not observerl.

Habilat, on inner reeis.
Lenuth 31-18 mm., width 28-31 mmo, height 25-27 mm.
Type in South Australiarn Musemu, Reg. No. D. 14163.
Teetl (holotype, 40 mm . in lengtli), Labial 37 ; Columella 36 ,
Ioce. Kadavu, Tevaka; twelve spactinens taken at Suya (type loc.) and Nachoma.
 shelles of this species, but Iredale points out that rolifera does mot belme to that ragion. Wr have, theworre, athoped the subsperife name romo. Figitm for "inlaid with pearl", for distinguishing the Fijimu shells.

Maunitia troschel 1863.

Maukitia mauritiana oalaxequina Melvill-Standen 1899.
Shell ovate with flatt"ned bass" ; dorsunt humped, dark brown, with numerous spots, some of which are pinkish grey, and others deep cream; most specimens have

dark brown of margin moloring about twothirds of distances from almex to lateral edge; margins and extromities heavily valloused, chomate coloured, in some speci-
 pletely covered; inncy wall of dorsm purple; base flattemad, dark chocolate or hack; apertitre wide, declivoths at onter anterior ontlet, where both mpes of acmmate extremity turn dowsuards, sharp turn lo left at posterior outlet; teeth

 latte. Aminial not olserved.

Itabitat, on main erefs.
Length 58-10.3 mm ., width 36 -699 sum, heirht 28-50 $\mathbf{~ m m}$.
Teeth (for specimen 100 mm . in length), hahial 25 ; Coltmella 27.

Leporicypraea mappa rewa subsp, hovi

Shel! inflatel ovate: dorsum coloured light browns, with somewhat confused
 the very distmetive oreamy gray dorsal marking that remember the strange "ourse of a river, inner wall of dorsum very light arat; margins round and somewhat mallonspal, comby coloured with purple hrown spots: extremities acmminate and purplish groy; hase donvax, luavily mallonsed, purplish grays anerture declivous
 beyond opposite side; teeth bright orange, not produced across base ; sulens wide and shallow, fossula concave, both denticulate, Astimal not observed.

Lahital, wh rocks within main reef.
Iseugth 61-73 tim., width 38-4.4. mm., height :35-4!2 mm.
'Type in South Australian Mnsemm, Leeg. No. D. $1+166$.

Lod, Moderatoly frequent throughout Fijif: looly spechombtaken ut Suva (type loce) ind Nadrounal.

Thu Schilders (1939) List mappa mithis Kenyon (1:02), tor the Pacific region, that the description does not fit the Fijan specimens. Wi lave, therefore given the name reua, a trell-known district in Fiji, the coast of which js famons for the varicty of shells found there, to distinguish the Fijian shell.

Callistonytrafea Schilder 1 !227.

Callistooyprata aurantium turanga subsp, nuy.
Shell ovate; (hussm intheted, glistening aureate muiformly over whole surface and well lown over margins; buse and extremities pearly cremm; axis has two senicircular grooves, milky white on upper side, and orange between; aperture wide, deeply grooved at both ontlets, slightly deelivous at onter anterior outlet,
 arann in colour ; teeth orange, with deeper shade on interstiees, wot prodneed aeross base: sulden wide and shallow, fossula very wide and enmeave, hoth heavily dentioulate harge terminal ridge at anterior columella outct. Animal ninkish gray, but further details not observed as it was withdrawn.

Habitat, Nijian natives state that this cowry lives in deep water in pradically inacesssible positions on the outside ledges of the main reel., and is mainty takpn on (op of the main reef after hetring been thom no during a heavy storm.

Length $90-110 \mathrm{~mm}$., width $57-70 \mathrm{~mm}$., height $46-60 \mathrm{~mm}$.
T'ype in South Australian Museum, Rog. No. 1.1416方.
'l'aeth (holotypusperaed firm South Australian Muscum Colledion, 106 mm . in length), Lahial 36 ; Columella 36 .

Loce. Twelve specimens obtained from Fijian matives at Nadroga (type Ioc.) ; wher lucalities, rarely taken thronghout Fi,ji islands, but Nadroga seems to be the main Jocality.

This very beautiful shell js fonnd in many parts of the Pacific, but to distinguish the Hijian specimens we have added the subspecific name toranga, Fijian for whicf. as it was the prerogative of rijian chiefs to wear this shell as an ornament tied on the neek.

IJyncina Troschel 1863.
Iffnoina tinx pactatea mubsp. nov.
Shell clongate ovate; dorsum colonring bluish (varits from mottled brown to huish) sevoral hack spots of varying sizes erratically placed, orange dorsal line; marpius roluml ; antorior extremity produced; inner wall of dorsum light gray; base flattencd, white; aperture harrow, slight turn luft at posterior outlet ; teeth White with interstices deep orange; shallow sulens and coneave fossula denticulate. Ammal dark gray, manle has whitish branching filaments, siphom and tentacles gray.

Habilat, on inner reefs.
Isength 30-50 mm, width 18-30 mm., height 17-27 mm.
l'ype in South Australim Museurn, Reg. No. D.14166,
Tecth (Holotype, 50 mm . in length), Labial 24 ; Columella 22,
Lor. Common throughout Fiji ; numerous specimens taken at Suva (type low.) and Nadroga.

The schilders (19:39) lisi lyme culedonicu Crosse (1869) for Fiji, but the New Catodonian pecimens are mostly abormal crassate shells unlike those from other regioms. To distinguish the fijian specimens wo have added the subspecific name pacifica.

PONDA Jousseaume 1884.

Ponda carneola profinqua Garrett 1879.
Shell elougate ovate; dorsim reckish linwn, with four darker shaded zonal hands; margins and extremities dark lawn, minutely speckled; base fawn, with
 inner wall of dorsum white; teeth deep violet; wide sthens and concave fossula, both havily dentimulate; teeth nor produced adoros hase; anterior extremity has tendeney to be modulase. Anmal ereany gray, mantlo mottled light brown and gray with small black and gray markings, siphon and tentacles black.

Habitat, inside main reef.
Longth e4-55 mm., width $14-34 \mathrm{~mm}$., height 12-30 mm.
Teeth (for specimen 5 mm, in length), Labial ©6; Columella 26.
Loce. Moderately frequent throughout riji ; l'ammotu Is. (type loc.) ; numerUus specimens l'rom Suva and Nadroga.

The Suhildurs (1933) list levathom Schilder-Schilder (1937), apparently a
 up to 55 mm . in length, the specimons of varying sizes sorem miform, and harilly warrant the division into two species.

Ponda schmineronuar Iredale 1829.

Shell ovate; dorsum light hrown, with five transverse gray monal bands; maro prims speded fawny, humed up at eartre; base eonvex, shated from fawn at margins to white on either side of aperture: imere wall of dorsum limht wray aperture shight farn to lell at posterion mothen, slightly dedivons at man anterion extremity; teath fine, white, 1 mis produced acoss hase; wide sulens and ennenve tossula heavily demiculate. Animal not observed.

Wahitat, on inner reefs.
Lentith $88-32 \mathrm{~mm}_{\mathrm{n}}$, widdl $20-24 \mathrm{~m}_{\text {m, }}$, height $15-18 \mathrm{~mm}$.
T'eells (for specimen 32 mu, in lengtit), labial 25 ; Columella 25_{5}.
Loc, Four specimens taken at Lsomaloma and Lakeba; Amaa Is. Paumoto
 astorn islands of Fiji. We have noe known it taken in the sonthern or western purtis of the Group.
P. sohtherotum was introduced as a new hane for aranow.
Ponda ventrinelus topee sulosp. hov.
Shell ovate, shaped like an Indian foppe ; dorsum has irremum bhish white strip along contre, with alturnate lateral shadings of brown, chocolate, and at margins purplish fawn; margins have mumerons whitish gossamer lines transvisely acrons sides, marpins and extromities callouserl; innow wall ot dorsum lipht. gray ; base depressed, eoloured dark erean at margins to light cream at aperture: Teeth heavy, obligue at postarine intla, where aperture turns slightly left : shallow sulens and ameave fossula heavily denticulate. Animal not observed.

Habitat, inside main reof.
Length $35-50$ mmo, width $24-34$ mu., height $37-94$ mum.
'Type in Soulh Australian Musemm, Reg. No. D. 14167.
Teeth (holotypo, 35 mm . in Iengtis), Labial 19; Columellu I!
Isuc. Three apecimens tuken at Kalavit (type loe.) ; othor localities unewtain. One on two specimens taken in wiji have been seen in private collections there, biat. the sppecies appears to be rare.

Thu Fijian specimens of this shell, whilst having the very distim! (ive anm striking dorsal pattern and colomring of nentrioulus, are on the averaqe smatler. and the dossal lighter colourings are wider than specimens from regions further west. We have, therefore, introduced the new subspecific name, Inpro, L'rm their resemblance in shape to the Indian topee, or sum helmet.

Mystaponda Iredale 1930.

Mystaponda vitellus polynesiae Sehilder 1938.

Shell pyriform; dorsum coloured light brown, with several gray spots of varying sizes, darker bruwn shading, with taint gossamer lines, from half way to margins, spots continued lamtly right across the rounded marcins; inner wall of dorsum gray ; extremities eallonsed ; base convex, coloured fawny to pinkish eremm, gossamer lines continued faintly across base; aperture wide, slight turn left at posterior outlet; Iecth coarse, not produced across base; shallow sulens and concave fossula, both heavily denticulate, Animal greenish gray, mantle has long slender branching filaments of motled brown and gray, siphon light hrown, tentacles darker brown.

Habitat, inside main reefs.
Tength 34-77 mm., width $23-46 \mathrm{~mm}$, height, $18-40 \mathrm{~mm}$.
Teeth (for specimen 55 man, in length), Labial 22; Columella 23.

Lore Fiji (type loc.) ; numorous specimens from Suva and Nadroga; faicly common throughout Fiji,

Cxpraza lime 1758.

Cfpraea mgris volas subsp, nov.
Shell pyriform, inflatod : colouring of dorsum varies considerably, holotype has numerous more on las agydmarate hadk spots on pinkish gray undersurface and a bright orange dorsal line (sometimes the undersurface is of bhish gray, in wher spumens the hack spots are so very mumerons as to give the appearane of almost a black shell, whers: again have a light brown undersurface with dark spots) ; margins rotund, swollen, and while with ferwer black spots; inner wall of dorsum gray; extronities calloused; hase white, convex; aperture wide, turns left at posterior onthe ; teeth eonsis, white inclined to bre tubereulose on posterior end of columella; fossula wide and concave, obsoletely denticulate. Animal gray with mothoi gray mantle.

Habitat, on both inner and onter reefo.
Lengrth 72- 110 mm ., width $4 \mathrm{fi}_{\mathrm{i}}-75 \mathrm{nmm}$, height $38-60 \mathrm{~mm}$.
'Xype in South Australian Museum, Reg. No, D. 14168.
Teeth (holotype, 80 mm . in length), Labial 22 ; Columella 23.
Loc. Numerous specmus laken at Suva (type loc.) and Nadroga; other localities common thronghont. Fiji.

There nppear to be two species of tigmis in Fiji ; the one is darker in colour, aud has a gray imper dorsal wall, and a bright orange dersal line, whede distingnishes it from the other type described below. We have given the new name volai, Hijiau for spotted, lor this species.

Uypraea tigris amboolee subsp, nov,

Shell hyriform, inflated: dorsum white, with both small and large purplish bhack spots, colourless dorsal growe (some specimens have a coating of bright yellow all (aye don'sm, others hate yellow shate aloug summit of dorsum) : margins condand, swollen, and spolfed; inner wall of dorsmom white; aperture wide, turus lett, no posterior outlet; extrentities salloused; base white, convex; teeth coarse, white; fossula wide and concave, domientate, Animal has no features observed to distinguish it from wolut, clescribed above.

Habitat, both on inuer and outer reefs.
Length 72-103 mm., width 4'7-67 mmo, height 35-55 mm.
Type in South Australiun Museum, Reg. No. D. 14169.
L'eeth (holotype, 76 mm . in length), Latoial 23. Columella 19.
Loc. Numerous specimens taken at Suva (type loc.), Nadroga and Nairai; other localities, taken mostly in eastern parts ol $\mathrm{F}^{\prime} \mathrm{j}, \mathrm{ji}$.

This species is lighter in colour, hus whito inmer dorsal wall, and colourless whsal groove, instem ot orage dorsal line. Wh have given this speepes the mame amboolec Fijian (spelt buli in Wijian) the native mame for this shell.

Subfamily PseudocypraEa.

Oypraeovila abamsoni Gray 1832.
Mr., 'T', Drauga ol' Hawaii, who spent a month collecting specimens of shells
 there, hat wo did sot see the specimen, and have not heard of anyone else taking if in Fiji. We have inclurled this speries in this list of fijian entries on Mr. Dranga's testimony.

CLASSIFICATION OF FIJI COWRIES.

Family CYPRAEIDAE.

Subfamily NARIINAE.
Pustularia.
Subgenus Annepona
Subgenus Pustularia

> MARGARITA THEEVA CICERCULA JENNISONI BISTRINOTATA SUBLAEVIS TRICORNIS VULAVULA GLOBULUS SPHAERIDIUM

Subfamily STAPIIYLAEINAE.

STAPHYLAEA
Purperosa
Nuclearia

STAPHYLAEA CONSOBRINA NUKULAAU
PURPEROSA RUVAYA
NUCLEUS GEMMOSA
subsp. nov. subsp. nov. Schilder 1989. subsp. nov. Schilder 1939.

Subfamily EROSARIINAE.
Erosarta.

Subgenus Ravitrona	CAPUTSERPENTIS ARGENTATA	Dautzenberg and Bouge 1933.
Subgenus Erosaria	EROSA OHLORIZANS	Melville 1888.
	PORARIA SCARABAEUS	Bory 1827.
	HELVOLA CALLISTA	Shaw 1909.
	HELENE NASESE	subsp. nov.
	Eburnea	Barnes 1828.
Monetalva.		
Subgelus Ornamentaria	ANNUL	Bernardi 1861.
	ANNULUS DRANGA	Iredale 1939.
Subgenus Monetaria	MONETA ENDUA	subsp. nov.
	MONETA ERUA	subsp. nov.
	MONETA ETOLU	subsp. nov.

Subfamily ERRONEINAE.

Cribraria	("RIbraria Northi
Bistolida	STOLIDA THAKAU
	FLUUTUANS NANDRONGA
'Talostolida	subteres vava
Paulonaria	MINORIDENS SUVAENSIS
	MICRODON GRANUM
Evanaria	ASELLLUS KAWAKAWA
	mITRUNDO KOROLEVU
	URSELLUS VITIENSIS
	PUNCTATA TRIZONATA
Palmatusta	CLANDESTINA CANDIDA
	LUTEA YALOKA

Garrett 1879. sp. nov. subsp. nov. Perry 1811.

Bernardi 18. subsp, nov. subsp. nov. subsp. nov.
subsp. nov. subsp. nov. subsp. nov. subsp. nov. subsp. nov. Schilder 1938. subsp. nov. subsp. nov. subsp. nov. Sowerby 1870. Pease 1865. subsp. nov.

Solvadusta
Melicerona
Blasicrura
Palangerosa
Erronea

Ofatipsa

SUBVIRIDIS KESATA MELVILLI VATU RHINOCEROS VIVIA QUADRIMACULATA GARRETTT OYLINDRICA WANGGA NIMISSERANS KALAVO NIMISSERANS VIVILI CAURICA THEMA CHINENSIS
TALPA SATURATA
ARQUS VENTRICOSA
ISABELLA CAVIA
TESTUDINARIA TESTUDINOSA

TESTUDINARIA TESTUDINOSA
subsp. nov. subsp. nov. subsp. nov. Schilder 1939. subsp. nov. subsp. nov. subsp. nov. Iredale 1939. Gmelin 1791.

Dautzenberg1903. Gray 1824. subsp. nov. Perry 1811.

Martyn 1784. subsp. nov. Gray 1824. Gray 1824. subsp. nov. Melville-Standen 1899.
subsp. nov. subsp. nov. subsp. nov. Garrett 1879. Iredale 1939. subsp. nov. Schilder 1938. subsp. nov. subsp. nov.

Subfamily PSEUDOCYPRAEA.

INDEX to GENERA, SUBGENERA, SPECIES and SUBSPECIES of FIJIAN COWRIES

	Page		Page		Page
adamsoni	309, 332	globulus	311	Pseudocypraea	332
ambinole	.. 332	grodalli .	309	punctata	321
Ammepona	310	granum	320	Purperosat	312
anvulus	316	helonate	315	Pustularia	310, 311
Arabica	327, 328	helvola	314	quadrimaculata	383
urabica	. 327	hirundo	320	Ravitrona	313
Arestorider	326	intermedia	328	reticmlata	327
argentata	313	Ipsa	309	rewa	329
argus	326	irrotata	309	rhinoceros	323
asellus	380	isalsella	326	ruvaya	312
aurantium	309, 329	jenrisoni	310, 311	saturata	32 c
Basilitrona	- 326	kalavo	.. 324	searabueus	314
Bistolida	318	kawakawa	330	schilderorum	331
bistrinotata	310,311	kesata	. 322	seurra	328
Blasipmura	323	koroleva	320	Solvatusta	322
caledonica	330	Leporicypraen	329	sphaeridium	311
pallista	.. 314	leviathan .	309	Staphylaca	312
Callistocypraca	309. 329	lutea	329	stolida	318
calxequina	. 3 328	Lyncina.	309, 330	subfasciata	309, 319
eandida	321	Jinx	. 330	sublaevis	310, 311
caputserpentis	313	maculifera	327	subteres	- 319
carneola.	330	mappa	327	subviridis	322
caurica	325	margarita.	310	suvacnsis	319
pavia	326	mariac .	309, 310	Talostolida	319
Chelycypruen	326	Mauritia	338	talpa ..	325
ehildreni	309	mauritiana	328	'Talparia	325
chinensis	309, 325	Melicerona	339	teres	309
chlorizans	. 314	melvilli	322,323	tossalata	310
rirorcula	310	microdon	-. 390	testudinaris	326
clandestina	321	minoridens	319	testudinosa	326
remkelorinat	31:	momokiti	327	thakau..	318
cmata	309	moneta	: 317	theera	310
Cribraraa	309,318	Monetaria	316, 317	thema	325
chilmaria	318	morbillosa	309	tigris	332
eruenta	309	Mystaponda	331	topee	331
cylindrica	$32.3,324$	maudronga	318, 319	tricornis	311
Cypraea	. 332	Narla .	309	trizonata	321
Cypraeovula	309, 332	пasese	315	turanga.	309, 329, 330
depressa	328	nimisserans	324	ursellus	321
dranga	316	northi	318	rariolaria	309
elmurnea	315	noumeensis	316	watur	229, 323
eglantina	327	Nuclearia	313	rava	319
cudua	317	nutlelus	. 313	velesia	323
Epana	304	nukulau	312	ventricoss	326
ยrosa	314	Ommmentaria	316	ventriculus	331
tirosaria	313, 314, 315	Ovatipsa	309, 34.5	vitellus	
Erronea	324,325	pracifica	330	vitiensis	321
erus	. 317	Palangerosa	323	vivia	323
ctolu	. 317	pallidula	- 323	vivili	
Emanaria	320,321	Palmadusta	321,322	volai	
felina	323	Paulonaria	-. 319, 380	vola	
Huctuans	318	polynesiae	. . 331	rono	
fuscomaculata	309	Ponda	330, 331	vularula	311
garretti	323	poraria	314	wangga	393,324
gemmusa	313	propinqua	330	yalokn .	322

Terminology of the Cowry Shell.

NOTES ON TWO SAND-DWELLING CUMACEA (GEPHYROCUMA AND PICROCUMA)

By Herbert M. Hale, Director, South Australian Museum

Summary

During the preparation of a previous paper (Hale 1936, pp. 393-438) the writer collected sample catches of the burrowing Crustacea (Amphipods, Cumacea, etc.) occurring at the edge of the sea in Aldinga Bay, St. Vincent Gulf, South Australia. These were placed in glass jars of seawater for observation and the following general notes concerning them were made.

NOTES on TWO SAND-DWELLING CUMACEA (GEPHYROCUMA and PICROCUMA)

By Herbert M. Halfi, Director, South Australian Museum.

Fig. 1-9.

INTRODUCTION.

During the preparation of a previons paper (Hale, 1936, pp, 393-438) the writer collected sample catches of the burrowing (rinstacea (Amphipods, Cumacea, etc.) occurring at the edge of the sea in Aldinga Dasy, St. Vincent Gulf, South Australia. These were placed in glass jars of seawater for observation and the following general notes concerning them were made.

Fig. 1. Response of Picrocuma and Gephyrocuma to stimulus of light.
Fig. 2. Track of Piorocuma approaching light ray with pleon folded under thorax.

A layer of about three inches of sand was placed in some of the vessels. In these the fossorial Crustacea were rarely seen in bright daylight; under the same conditions, with jars containing water only, activity was very restricted. Movement becane accelerated towards dusk whethers sand was present or not but, later in the evening, in complete darkness, activity continued where sand was absent, but few or no swimmers were apparent in the jars containing sand.

To facilitate ohservations af night and to test response to the stimulus of light, a cone of light of low candle-power intensity was thrown through an aquarium otherwise in darkness (fig. 1).

T'wo species of Cumacea, Gephyrocuma and Picrocuma, readily separable with the naked eye from the other material and from each other, were placed in this illuminated tamk.

These Cumacea were defintely attracted by the light, but in general did not
moncregate in the brightest part of the ray but, for a considerable period at least, ,just outside it (fig. 1; see also Foxon, 1936, p. 379). Progress towards a brighter light under one observation was slower.

In complete darkness both Cumacea became pale, almost white.
A dim submarine light has been used successfully for the collecting of large numbers of ('1macea and other small Crustacea (Sheard, 1941, p. 12); it seems that the most profitable period for its employment is just after nightiall.

PICROCUMA Hale.

Pictooumu peocitota Hale, 1936, p. 415, fig. 7-8.
Specimens are now available from several Incalities in St. Vincent Gulf. South Anstralia. As the male in mknown the species was referred provisionally to the Bodotriidae.

Swimming Habits.

As noted by Foxon (1936, p. 378): "Cumaceaus do not respond to light in the marked manner of Decapod larvae, and they employ rarious methods of locomotion". Picrocuma readily follows the light of a forch to one side or other of an aguarium, and also to the surface of the water : in daylight it dres not aseend morer than two or three inches aboye the sand layer unless it be at dusk or indoner in a dim light, under which eircumstances it may be found near the surface.

Fig. 3, and 4. Sirimming attitudes of Pforocuma puecilota ($\times 35$).

The animal may progress with a relatively smooth motion, propelling itself with rapid vibratory movements of the exopods of the anterior thoracie appendares; the yellowish plem may be extended (figr. 3) or may be carried adpressed to the body (figr. 4) and moly oceasionally extended. Evem when the pleon is extended during swimming it is folded against the body rivectly effort ceases and the animal commences to sink. Swimming with the pleon against the body the crustacean propresses in a manner reminiseent of an Ostracod and tends to pursue a rather rambling course in its approach to a light ray. The approximate track of an individual is shown in fig. 2.

At timps swimming is assisted by rapid up and down movements of the pleon, similar to those of the pupa of a r'ulex ; these motions, however, seem to play a subsidiary part in defined progress.

Burrowing, etc.

As mentioned above, Pirrocuma, when swimming ceases, folds the plenn under the body; it then simks at the rate of about one ineh per second; in this position it
awkwardly reaches the bottom and may rest for a time on its side. Righting itself it is able to move rapidly through the top layer of sand, "breasting" along with the thomax obliguely upright and the pleon directed obliquely upwards and backwards (fig. \bar{b}) or sometimes curved in the position shown in fig. 6.

Fig. 5. Attitude of Piorocuma poecilota when buried in the saull; arrow shows direction of entry ($\times 3$) .

Observation of burrowing, etc., was made in a watch glass. As a rule the animal burrows straight down in the attitude it assumes when travelling in the upper layer of sand. A forward motion may be suddenly arrested and an downward movement eommenced; the thres posterior pairs of thoracic appendages are mainly responsible for both operations although the first pair of peraeopods are sometimes used to push aside sand grains in the last stages.

6

Fig. 6. Occasional burrowing attiude of Picrocuma poccilota; arrow shows direction of entry ($\times 35$).

Fig. 7. Rami of uropoda of Picrocuma poecilota ($\times 250$).

A few individuals were seen to burrow in the attitude shown in fig. 6 ; in this position they entered the sand "backwards", at an oblique angle.

Picrocuma is often completely concealed below the sand or has only the tips of the uropods visible (fig. $\overline{\text { b }}$); when so hidden a liny depression marks its presence. It also travels just beneath the surface of the sand, its rapid progress being casily followed by disturbed grains.

The addition of fresh seawater areelerates the respiratory movements, the anterior exhalent tubes "flickering" with great rapidity"

In feeding, sand-grains are grasped with the first pair of legs and rotated tapidly in front of the mouth. It may he noted lowe that the sand at Aldinga Bay is rather coarse, individual grains ranging from 0.15 mm . up to 0.35 mm . in greatest diameter ; the adull female of Pirrorum, is $1 \cdot!\mathrm{mm}$. in total length. The cumera lucida drawing in fig, 5 shows the relative size of the grains.

Use of Uropods.

In one observation ouly the plem (hold as in fir. 6) was thrust into the sand in the initial burowing motions; the appressorl uropods, forming an atvl-like point, were first pressed down between the grains.

The uropods, with their terminal spines, are nsed to clean the month parts, the first antemae, to comb the hairs of the peracopods and even to brush over the sides of the cearapace; the fincly serpated imme margin of the endopod may he of nse here (fig. 7).

Summary.

The thoracie exopods are the prineipal swimming organs and the pleon apparcutly plays no major part in cither burrowing or swimming: these notes, bowever, eonecrn sub-adnlt specimens and the adult male is unknown. The first peracopods
 mashing to one side the larger grains of sand.

The use of the uropods as toilet combs was onserved.

GEPHYROCUMA Hale.

Gephyrocuma pala Fale, 1936, p. 412, fig. 5-6.
Since its desoription ut supro ardult males of this curions speeies have been taken in New South Wales at depths down to fifty metres, on sandy bottoms.

Swimming Habits.

The species is larger and bulkier than Picrocuma and in sharp distinction to The last-named the trausparent pleon is held always upwards and straight or slightly curved, more or less at a right angle to the thorax; the position is well shown in the urigimal figures of the species (Hale, 1936, p. 413, fig, 5, a and e).

Both males and ovigerous females are rather active swimmers; the movements "an hast be described as "jerks", partioularly when travelling upwards. Tn general the behaviour is men as in Picrocnmu and the response to light is similar.

Burrowing, etc.

When swimming movements cease the animal sinks, with pleon still erect, at Ha rate of about one inch each sieenud. If lands haphazard on the bottom, often on the side.

Gephyracuma can skip rapidly over the surface of the sandy bottom with a series of flea-like hops (fig. 8).
lu burrowing the creature coters the sand with the thorax in an upright, or ahost upright position, sumetimes slighty latrally ohlique, sometimes backwardly obligne; the blem matims direded at approximately a dight angle to the
thorax. The greater part of the animal disappears in a flash. The rakes of spines with which the trausparent posterior peraeopods are armed (Hale, 1936, p. 414. fig. 6, f., gind h) rapidy thrust aside the grains of sand to clear a space for the stout hody. Movement of the pleon suggests that, with an upward thrust below the sand, it assists in pulling the thorax deeper, hat it was not possible to substantiate this definitely.

Fig. 8. Gephyrocuma pala, underwater "skipping" progress over sand surface.
The attitude when buried is illustrated in fig. 9. A dorsal riew shows the frons woll caposed (not concealed or almost so as in Pierocumo.) ; a slight shock-such as a tap on the eontaining ressel-canses the creature to withdraw more deeply into the sand but the frons still remains visible. The chalky white distal portions of the carapace and first peraeopods simulate the shell fragments in the sand and grit.

Fig. 9. Attitudo of Gephyrocuma pala when buried in sand ($\times 32$).
Viewed from above, apparent movements are jerking of the first antemae and grasping motions of the fire transpareut terminal semments of the first peracopods. The exhalent aperture is single, large and oval in shape, and the eurrent is strong, moving flocenlent material on the sand surface.

A buried example often pops out from the sand and skips to a fresh spot and immediately disappears below save for the exposed frons.

The adult Gephyrocuma is about 2.5 mm . in length. Its relation in size to the grains of sand into which it burrows is illustrated in fig. 9.

Summary.

The position in which the relatively short pleon is consistently carried is characteristic of Gcphyrocumu. The species spends little time wholly concealed in the sand.

Details of the burrowing procedure are difficult to observe becanse of the speed with which the operation is carried out. It seems certain, however, that the spines of the three pairs of stout posterior peraeopods constitute an important apparatus for fast burrowing, as a considerable displacement is necessary to accommodate the bulky thorax.

The mechanism of the rapid "skipping"' progress over the sand surface could not be determined.

Feeding was not detected although, as mentioned, grasping or "casting" movements were made with the first peraeopods. The specialized structure of these limbs, with their widened terminal segments, forming efficient supports for the unusually large brushes of plumose setae (see Hale, 1936, p. 414, fig. 6d) presents interesting possibilities.

The first legs of Leptocuma australiae-Zimmer (1921, fig. 1 and 5) are remarkably similar in general form to those of Gephyrocuma.

REFERENOES CITED.

Foxon, G. E. H. (1936): "Notes on the Natural History of Certain Sand-dwelling Cumacea". Ann. Mag. Nat. Hist. (10), xvii, pp, 377-393, fig. 1-7.
Hale, H. M. (1936): "Cumacea from a South Australian Reef". Rec. S. Austr. Mus., ∇, pp. 404-438, fig, 1-23.
Sheard, K. (1941): "Improved Methods of Collecting Marine Organisms". Rec. S. Austr. Mus., vii, pp. 11-14, fig. 1.
Zimmer, C. (1921): "Results of Dr. E. Mjöbergs Swedish Scientific Expeditions to Australia 1910-13, xxvi, Cumacea". Kungl. Svenska Vet. Hand., lxi (No. 7), pp. 1-13, fig. 1-16.

LARGE STONE IMPLEMENTS FROM SOUTH AUSTRALIA

By H. M. Cooper, Assistant in Ethnology

Summary

On nearly all ancient camp sites in this State some outsize stone implements may be found ; many are of the coroid class, which on account of the usual signs of utilization are distinguishable from nuclei. Among the best known of these larger pieces are the types named horsehoof, karta, arapia and the important series of pebble implements, with certain varieties which will be described later.
Some have already been recorded by White (1919), Hossfeld (1926), Tindale and Maegraith (1931), Tindale (1937) and others ; but in the last few years several extensive camp sites have been exposed by the plough, adding considerably to the amount of material available for study.

LARGE STONE IMPLEMENTS from SOUTH AUSTRALIA

By H. M. COOPER, Astistant in Ethnology.

INTRODUCTION

Fig. 1-96.
Ov nearly all anment ramp sites in this State some misize stome implements mas bo found : many are of the emoid class, which on aecount of the usual signs of atilizafion are distinguishahle from nuelei. Among the best known of these larger pirees are the types named horsmoof. korta, arapin and the important series of pehble implements, with eeretnin varieties which will be described later.

Some have already heen moorded by White (1919), Hossfeld (1926), Tindale and Mangraith (1931). Tindale (1937) and others; but in the last few rears several axtonsive amp sites have been exposed by the plough, adding considerably to the amount of material available for study.

It has been found, for instance, that at a few of the sites these ontsize implements are unaccompanied by any kind of flake or blade implement and therefore apparently represent a distinct culture. This applies especially to many of the Fangaron Tsland sites. During the last ten rears the miter has eollected on this Tsland and on the adjacent mainland, about 2,000 specimens of the teppes it is proposed to review. Ha believes that detailed deseription and suggested classifieation will be of interest and that the sites concerned are worthy of record.

No attempt is made to assign the material to any defined culture or sefuence of such. unless supported by suitable data. The evidenee, howerer, of the Kangaron Island sites, with their lack pencrally of flake or hlade implements, seems to indicate that these large artefacts are the relies of a distinct culture and in consequence may be taken to represent the type standard of the pobble implement industry of South Australia.

Drawings of certain selected specimens are reproduced herein; weights are given in order to suggest the possible uses to which the various types could be put.

For couvenicnce, the area from which these pieces have been systematically collected is divided into three regions thas:
(1) Ḱingaroo Island.
(2) Quorn, northward to Marree and extending ronghly east and west in the direct inn of Lake Frome and Lake Torrens.
(3) Adelaide Plains, southward along, and adjacent to the coast, throngh Morphotl Vale, Normanville and Rapid Bay to Cape Jervis, thence eastward to (zomlwa.

Certain localities in these areas have not yet been examined, and therefore, this caunot claim to be a complete surver of the districts enumerated.

The following is a list of the more important sites from the abore threer regions whereon the larger implements to be described were collected:

Region 1.

Muston (3 sites)
Pennington Bay
Hog Bay River (5 sites)
Deep Creek, Nepean Bay
Taylor's Lagoon
Cape Hart
Creek Bay Station
Waller's, Pelican Lagoon
Bay of Shoals (2 sites)
Discovery Lagoon
Tentree Lagoon
Buick's, Pelican Lagoon
Creek Crossing, Muston-Redbanks Road
Point Morison
Distillery Lagoon, Hawk's Nest Road

Kiawarra
Hawk's Nest
Cape Borda Road, near Cygnet River
Western River
Stokes Bay
Smith's Bay
Emu Bay
Wisanger Gap
Cuttlefish Bay Station
Gap Road, Cygnet River
.Jack's Creek, Hog Bay
Neave's, Hog Bay River
Lashmar's Lagoon
Near Red Banks
Cape Cassini

Region 2.

Brachina Creek
Kanyaka Springs
Third Waters
Wirreanda Creek
Yappala Waters
Port Augusta West
Wonoka Creek (2 sites)
Oratunga Springs
Matthewson's Springs
Emu Springs
Workshop Hill, Wirrealpa
Parawilya Springs
Kanyaka Creek
Mt. Chambers Creek (near rock carvings)
Yappala Lagoon (2 sites)
Balcoracana Creek, Little Bunkers Range
Nilpena Creek

Arrowie
Sand Hills, Old Hookina
Artipena Water
Oratunga
Elka Creek, Moralana
Horn's Camp Creek, Parachilna Pass
Yadlamalka
Boorloo Creek, near Marree (at rock carvings)
Motpena
Italowie Gorge
Yorkey's Crossing
Balcanoona Gorge
Coolong Springs, near Marree
Parachilna Pass
Redbanks, Wirrealpa
Edeowie Sand Hills
Wirrealpa Head Station (near)

Region 3.

```
Christie's Beach North
Noarlunga (near)
Sellick's Beach
Aldinga Beach
McLaren Vale (near)
Hallett's Cove ( 5 sites)
Moana
Blanche Point (north of)
Haycock Point
```

Rapid Bay
Carrickalinga Hill
Fishery (3 miles east of Cape Jervis)
Normanville (near)
Salt Creek (south of Rapid Bay)
Waitpinga Creek
Carrickalinga Head (1 mile inland)
Cape Jervis (1 mile N.E. of)
Cape Jervis (near Cable Hut)

'I'ypical Kangarot Island Peblele Tmplsment from Hog Hay River' weight. 47 ounces (nat, size).

Region 1. KANGAROO LSLAND. (900 Pieoes),

The chief industry here was a pebble one and with but three excentions. (madr from pebhle flakes), all finished implements collected in this class may perhaps be regarded as pebble arpefacts, the characteristic tool heine the semi-nnifuce pebber choppor: A range of examples sedected from over 800 specimens is shown in fig. 48 105 生, ete.

Morschoufs, dorived from blocks, constitute nearly all the remaining implements of large size from this Tsland. these comprise 8 per cent. of the total.

Targe eleavers (see fig. 8t 1087), wer not recorded and only one true arapia was discovered.

It is important to note that practially all the large implements colleeted by the writer on Kinngaron Island had heen fashoned from quartaite. The nearest points whence this material comblave been derived was often at a considorable distane from its phace of use, of oceasioms ahost thirty miles away. Inforion local stoue was invariably passed over.

The extensive Hog bay Tiver series of camp sites had at least one powsible source of supply at ('ape Hart, ahout suren milos to the sonth-easi, where quartzite
 terial for flaking and trimming) are also available al Cape Hart, not a single large implement of this material appears to have been noted.

Furthermore, at Cape Ilart varinns smaller implements collected by the whiter and attributed to Tasmanian women assuciated with sealers and whalers, Tindale (1937), Harvey (1941), have all withul axception, hean fashioned from flimb, a material with which they were probahly tamiliar in their homeland. 'They, in furn, had rejected the quartaite.

The reason for the passing over of such admirable material as flint hy the extinct Kangaroo Islanders, Leminins mesplained.

Regon d. QUURN TO MARIREE.

Nomerous examinations of this district suggest that the pebhle industry, "erivel from romaded symmetrical material, had not been develoged to any aprosciable degree. Λ tew implements, how ever', were noted, as in lig. 62 amd 63 , and nlso a small number shaped from angular pebbles.

Horshoof types made trom blocks and arapias which show considerable skill iu workmanship, constitute the bull of the larger implement industry in this area,

Cleavers occur sparingly and, as meutioned above, pobble implements such as Whe sem-uniface, appear to be rare.

Reqion 3. ADELAIDE PLAMNSAND ADJAC'ENT' SOUTBERN GOAST LINE.

A shall mumber of implements trimmed firm rounded pebbles was collected, manly from the vicinity of Moand and sellick's Beach, denoting the existenere of a small pebble industry; but the whole of this region was ahmost exclnsively productive of the horsehoof type. This is particularly apparent in the vicinity of ('ape Jervis, adjaceut to and within sight of Kangaroo Island, an interesting conparison to the firmly establishod pebble industry of that Island. Liomoder gmartzite material, exeellent in texture and furm, was avalable on many parts of the coast, that very little used.

The occurrence of the cleaver and the arapia is limited.

K/NGAROO ISLAND PEBBLE INDUSTRY.

The possible origin of the characteristic implements of the lsland warants a short discussion.

It is somewhat perplexing that no defined evidence of this elongate-oval type mohne intustry has hem risenverd by the writer on the mainland, cyen althugh
 have been developed atter all communipation was severed with the maingan becanse of the following reasoms: 98 of the large implements collected in the reginn of Cape Iorvis - as an example-were horshoof types, but pebble implaments of symmetrical material were absent..

On more than fifty Kangaroo Lsland sites (excepting Cape Cassinj, which is
 imploments, such as the spmi-uniface choppor and its varieties.

It must be admitted, however, that a few pebble implenents derived from material of more or less roundrd shape have been collected from widely scatinerd siles 0^{2} the maiuland (see fig, (i2) to 64).

If the above suggestion be correct, it seems possible that the Islanders carried the horschoot desiren with them from the mainland, but later evolved the pebble type which gradually supplemented it,

CAPE CASSINI SITE.

Al Cape Cassini (ser fig. 88 to 92) the relative finures are 16 horsehoot and 8 pebble inmpenent types; the former being eomparable with oblore rather imbern stone tools from near Cape Jervis.

The pebble implements from Cape Cassini are also poor in worknanship and bubluigue (sier fig. 92), and possibly surgest an early aud elementary attempt at a new design.

The Cape Cassini site and possibly others yet to be diseovered in the same region, may have been the seene uf a transition period during which the mebble implement was in process of development. before it became the dominant Kameroo lsland type of tool tending to displace the older horschoof.

DISAPJEARANOE OF KANGAROO ISLANDERS.

This subject has been discussed by Thimdale and Maegraith (1931), but if might be mentioned here that the non-diseovery of skeletal remains and rock shelters showing arlefacts in situ. bas serimoly restricted our knowledge of the extinct penples of the Island.

The complete and final disappearane of its former jubahitants (and the surviving concrete evidence of their many implements indicates that their numbers may not have been inconsidertble) is surprising.

Many explanations, well considered, comad be bronght forward as a solntion, but they all lack tangible proof. Examplew, briefly, comld have been fercee local tribal fights, or some wide-spread and uverwheming diseasc.

However, it can be said, that if their pebble colture had been derived from the mainand, or by contact with casual visitors theretiom, these typieal Kangaroo dsand implements would surely survive, even if sparingly, in other plases. The disappearamee of their makers from a land where nature, by present standards at Leist, provided in the air, in the sea, and on land, all which primitive man required presentsa dimly difteult and complex problem. Apart from stone implements, the ouly whins important traces of the Island is former oseupants so far noted appear
to be those disenvered hy the writer on an indmated moded fonor laid burn the the reteat of sand dunes wear Pemangen Lay. They itacluded monnis of hom
 for the monoval ol their eontents and in an exeellent state of preservation!, and also
 plements. Mr. B. C. Cotom, Couchologist at the South Anstralian Mumemm, hats kindly jdentifed the following shells.

Kalelysia carrugala
Gcllana tramensericus
Osirea smuata
Vorila (Uclanerita) metamotrugus
(Crmshed inl entionally)

> Austronuchea torri
> Brachymon/as erosus
> Mytilushiosuta
> Austracochlea concamcrom
> (Crished intentionally)

This site is briotly mentioned by I'indales (19a7).
A tew shells of the Port Lisenlobster (Ostrea simata), associated with pebble implements partly weathered ont, were also ohserved by the writer on the margin ul' a fresh water swamp near Masion (Tindale, 1937).

USES.

There secms to be no positive evidnuce insofar as the mainland localities are concerned. rewarding the uses of these implements. Information relative to Kiangaron Ishand, mponmlated at the limu of the first Europem ocepation, is of course unobatainable.

In attempting to formatate suggestinus for possible uses, the writer spent some time in conatry typical ol the dreas examined, experimenting with phbthe and horsehoof implements in work and reminements which sugested themsedves as nocessary for the simplaneds of man, living under those conditions.

In inexperienced hands, all proved eflicient in such directions as removing bark, cutting through limbs of trees, trimming fwigs, and seooping out holes in the eath. The weight of the darger t.jpes was fand to be of considerable adsantage and this factor was evidently atilized in designing thens intended tor heavier work.

Two such experimental tests are as follow:
(1) A bark shicld of oval shape and 80 imehes in leugth was removed from a tree (Euratyptus lrucorylom) within a period of ten minntes ly means of a horsehoof implement similar to fige. 1.
(9) Iftilizing a pobble chopper, such as fyr, in), a saplinge (Eucalyphus baxteri) cleven inches in circumference, tas eut down in four minntes.

Many, on accomet of their weisht anm size, appear to bave required hoth hands tor theis manipulation. It may therefore be assumed that in skilled hands they dheetively met the demands of thorse who designed and used them.

Although they may seem crude and clumsy to collectors more limuliar with the smaller examples of native eraltsmanship, closer examination will show considerable evidence of ingennity and will of a high order. A study ol the imple. ments deseribed in this paper reveals that the designer aimed at carefnlly primmine the working edge in order to provilo his several requirements, such ous cutting, shoping and seraping, whit the remamber of the material was mughly shaped whly to such an extent as lo provile case in bambling and to give the desided weigh and balance. The athriginal was a practical worker totally imbitroreat to nselegs cmbellishment and wasting neither tims me mergy where not essential,

An examplo of his versatility is stomen in fig. 56, where he has eleverly provided n hoken implement with a further pertod of usplulnesis by skilfully roundiug and trimming the damaged end portion.

Many Kanmaroo lsand pelblo implaments as noted by Tindale (1931), show considerable pithing on the pre-exisiong smonth surfaces denot jng apmarently, then ulilization for ernshine shedfish or bones, and similar twes. This emdition also appears on the flut hases of horsehoof types.

The upper, roughls-shaped mateg of pehble artwacts from that Island often exhibits the smonthing offere resulting from long sustation hase of brutising. The existence of such evidence seems rather to sugerest that, generally, the usor marefolly muncled the trimmed margin of his implement hgainst bnomessary dumage, fuserving it solely for such purposes as he had intended.

In corredly assespang the relative skill and resulting eoncrete evidener of the fihbue of primitive man, it mas he well to bear in mind his requirements, the prade of material drailable and his individual skill as a workman.

The limeraron Istand Lomustre shows a remarkable range in size, and ite products may heronsidered highly officiont and well designed artefacts. The weights uf those collected (given elsowhere in this puper), varied between 6 musecs and 116 пाйes.

The ratio of small implements in relation to the inoidence of the pebhle and horsehonf intustrins on welain hitherto matisturbed camp sites examined by the writer, tends to ennfirm the assumption that on the Island at Jeast, the larger ty ges were" emoneral purpose" tomls. Theres is, imbed, at present nothing to suggest that. even all the smaller implenents were contemporancons with the larger. The latter Then, may brethe prodtrel ut es semarate culture.

Little definit" information is avalable wherewith to allot any of these large implements to their earect entiumal sequener, but the following facts are worthy II note.

No sunt materat wastiscovered hy IThleand Tindale (1930) in their systematio. rxesvations at 'Tartangand Dewo Downs, although they may exist there in haym fol montomed. Honvever, on cevtain eamp sites camined by the writer. inchudine sone completely weathered ont, larger implements trere not arparent.

The existence of horschonf implements at Fulban (Tindale, 1937), on 1ho oht horizon mol umper the pirmian miture, apparently proves them to be older than the pirrie, at least in that region.

With the exeeption of loealites laid hare be drift on where the existing surface is of a sfony mature, the Fimgaroo Inland industry remains hidden until distmed by ploughing and cultivation.

A horsthool implement was uncovered under three feet of dritt duriner roadmaking operatoons in the Parachilua एats, Northern Flinders Ranges, in 1942. Aundeer was enllpeterl hy. Prake and the writer doring 1941 on the rocky foor of - Wanarwing (iave, litherto mexammed. Its inacemaihility and present amditions preelude, for the time being at least, a spstrmatio limt hishly promising field of search.

Horsphonf aud other types discovered by Tindale (1987) and the writer near Tallett 's Cove, wore from land recently uneovered ly ealtivation.

A trimmed horseboof was shown to a group of the older aboriginals at Jay ('reek, Central Australia, hy (.1'. Momutiont, Immorary Ethnugolish at the South Australian Musenm, hat they wern all ignomant ut its existence and uses, meredy remarking thatili was only a stome.

Therufors, althong there seems to be no comsete ovidence available, the above and athole, shequests that at least many of the imploments inder dischession are of considerable age, therr teshouge and morphology beine distinetly arohaic.

A further serice of systematic excavatious in rock shelters could well prove invaluable.

PATINATION; WEATHERING; DETERIORATION.

Patination. Many of the implements reviewed herein have patination developed to a high degree and others exhibit considerable outward evidence of weathering and deterioration.

Acceptance of any of these conditions alone, as proof of age, is apt to be dangerous. Regarding patination, H. V. V. Noone and the writer, experimenting with flint flakes collected at Cape Hart, Kangaroo Island, and attributed to Tasmanian women associated with whalers (Tindale, 1937), and therefore, probably only about 120 years of age, found that considerable patination occurs on the worked faces of some of them, whilst others show none at all.

Weathering and Deterioration. Local atmospheric conditions and soil content have considerable bearing on weathering and deterioration shown by artefacts in a corresponding particular locality (see fig. 93, 94, 95 and 96).

DESCRIPTION of TYPE DRAWINGS.

Horsehoof Series.

The self-explanatory term 'horsehoof" has been applied by Tindale (1937) to the group of implements which may be described as fashioned from fairly large blocks. They are flat-bottomed and neatly trimmed by stepped retouching to form a peripheral working edge at the base, which is usually discoidal or nearly so. Sides and/or crest (apex) are roughly shaped by flaking. When first made the angle formed by this working edge with the crest is relatively acute, the maker thus providing material for future wear and re-sharpening, which gradually caused the angle to become more and more obtuse, until finally the walls and apex might actually overhang the base (see examples which follow). Various distinct sub-types of horsehoof design are included.

Fig. 1 to 27 are all implements derived from blocks.
Fig. 1 illustrates a horsehoof of the pointed apex type and base trimmed around portion of its margin. Old Oratunga station. 58 ounces.

Fig. 1a. 1 mile north-east of Cape Jervis. 68 ounces.
Fig. 2. Base has diminished in area due to wear and consequent retrimming. Overhang of walls is becoming apparent. Mt. Chambers Gorge, Wirrealpa.

Fig. 3. Base much reduced but still a serviceable implement as evidenced by trimming. Overhang pronounced. Brachina Creek, Oraparinna. 12 ounces.

Fig. 4. Similar to fig. 2. Hog Bay River, Kangaroo Island.
Fig, 5 to 8. Illustrate another horsehoof type, relatively plentiful. Here, however, the apex retains the pre-existing surface of the block. It has a flat base which is trimmed around part of its margin only. Angular blocks of any suitable shape were utilized. Maximum weight noted was 80 ounces.

Fig. 5. Fishery, 3 miles east of Cape Jervis. 47 ounces.
Fig. 6. Horn's Camp Creek, Parachilna Pass.
Fig. 7. Showing evidence of wear (overhang). Fishery, 3 miles east of Cape Jervis.

Fig. 8. Overhang appearing, due to base being worn and reduced by retrimming as in fig. 7. Cape Cassini, Kangaroo Island.

Fig. 9 to 11. Advantage has been taken of suitably shaped blocks wherewith to trim two or more base margins on different planes.

Fig. 9. Trimmed on two margins. This type occurs comparatively frequently. Salt Creek, 3 miles south of Rapid Head.

"
1 A

3

Fig. 10. Worked along three margins on a smooth but angular block. Such implements are uncommon. Werta Creek, Parachilna Pass. 27 ounces.

Fig. 11. This implement with base irregular in contour, has been skilfully trimmed around its entire periphery. It is really four sided. 4 miles south-east of Mt. Lyall, Wirrealpa.

Fig. 12. Irregularly shaped horsehoof, rather crudely trimmed, discovered beneath three feet of drift during road-making operations in Parachilna Pass, two miles within its western entrance. 45 ounces. A core, similar in type, was uncovered at the same time.

Fig. 13 to 15. Elongate oval flat base, trimmed along portion of its margin and high narrow crest.

Fig. 13. 5 miles north of Wilpena Head Station. 29 ounces.
Fig. 14. Brachina Creek.
Fig. 15. Discovery Lagoon, Kangaroo Island.
Fig. 16 to 19. Flat base, lozenge shaped with one long margin invariably trimmed. Irregularly chipped crest which is relatively low.

Fig. 16. Emu Springs, Wirrealpa. 29 ounces.
Fig. 17. Brachina Creek.
Fig. 18. Discovery Lagoon, Kangaroo Island.
Fig. 19. Hallett's Cove.
Fig, 20 to 23. Tablet shaped and comparatively thin; flat top and base, the latter trimmed along its margin except where portion of pre-existing surface was retained in the nature of a working platform.

Fig. 20. Fishery, 3 miles east of Cape Jervis.
Fig. 21. Brachina. 21 ounces.
Fig. 22. Hawk's Nest, Kangaroo Island.
Fig. 23. Well worn example, showing development of overhang. 1 mile northeast of Cape Jervis.

Fig. 24 to 27. Characteristically horsehoof in shape, high roughly chipped apex. Flat circular base with margin trimmed around the entire periphery.

Fig. 24. Derived from close-grained quartzite. Discovery Lagoon, Kangaroo Island. 40 ounces.

Fig. 25. Showing wear of base due to usage and re-trimming, causing gradual appearance of overhang. Hog Bay River, Kangaroo Island.

Fig. 26. Worn specimen. 1 mile north-east of Cape Jervis.
Fig. 27. Exhibiting extreme diminution in size and weight, due to long continued use and re-trimming but still retaining a good working edge. Emu Springs, Wirrealpa. 11 ounces.

Types Derived from Flakes.

Fig. 28 to 30. Flat, almost discoidal base but as portion of working platform is retained, margin is not trimmed all round. These are large flakes and therefore, strictly speaking, high crested arapias. Tindale (1931). Horsehoof in shape.

It may be convenient to mention at this point the discoidal adze flake or tula, a typically Australian implement, relatively common throughout large areas in the continent and similar in technique to the arapia of which it is, in reality, a small replica.

After careful study of tulas still mounted with gum on the ends of smoothed wooden sticks and wommeras (spear throwers), in the South Australian Museum and elsewhere, it has been found that the diameter of the largest tulas was in the region of four inches.

It is suggested that such a measurement could be tentatively adopted as a dividing line between this implement and the, presumably, unmounted arapia.

Fig. 28. Highly patinated example in blue quartzite. Hallett's Cove, 35 ounces.

Fig, 29. Showing a little wear (overhang) but good trimming still evident. Old Hookina.

Fig. 30. Fashioned from blue quartzite. Hog Bay River, Kangaroo Island.
Fig. 31 to 33. Flake implements which are distinctive in form and could, perhaps, be termed "comet-shaped arapias". Occur sparingly in areas 2 and 3.

Fig. 31. Typical specimen, considerably weathered but still showing evidence of skilful trimming. Emu Springs, Wirrealpa. 28 ounces.

Fig. 32. Emu Springs, Wirrealpa.
Fig. 33. Hallett's Cove.
Fig. 33a. Emu Springs, Wirrealpa.
Fig. 34 to 36. Arapia (flake) implements. Discoidal base with working platform retained and pronounced percussion bulb. Skilful flaking and trimming.

Fig. 34. Yadlamalka, east of Lake Torrens. 40 ounces.
Fig. 35. Lyndhurst, 20 miles south of Farina. 16 ounces.
Fig. 36. Artipena Water, Martin's Well.
Pebble Implements.
Fig. 37 to 79 are all trimmed pebble implements with the exception of fig. 65 which is a flake.

Fig. 37 to 39. Derived from smooth angular pebbles and retaining the horsehoof shape along the trimmed edge; flat base.

Fig. 37. Made from a smooth triangular pebble of light brown quartzite. Trimmed at broad end of base only. Sellick's Beach. 31 ounces.

Fig. 38. Worked on front and both side margins, producing a very effective implement. A flat, bluish quartzite pebble. Muston, Kangaroo Island.

Fig. 39. Working edge on one margin only and showing evidence of removal of material by use and subsequent re-trimming. Matthewson Springs, 4 miles south of Martin's Well.

Fig. 40 to 43. Made from both angular and partly rounded pebbles of no defined shape. These differ from preceding horsehoof types in that working face shows as an acute angle.

Fig. 40. Neatly trimmed and efficient implement with symmetrical working edge. Balcoracana Springs, Wirrealpa. 20 ounces.

Fig. 41. Fishery, 3 miles east of Cape Jervis.
Fig. 42. Artipena Water, Martin's Well. 10 ounces.
Fig. 43. Blanche Point, 1 mile north of Port Willunga.
Fig. 44 to 47. Derived from smooth rounded pebbles, almost invariably of quartzite, having as the apex one pre-existing corner of the stone. The trimmed working edge, which is rounded is therefore, a diagonal cross section of the pebble.

Fig. 44. Artipena Water, Martin's Well. 39 ounces.
Fig. 45. Hog Bay River, Kangaroo Island.
Fig. 46. Boorloo Creek, Callanna, 5 miles west of Marree.
Fig. 47. Discovery Lagoon, Kangaroo Island.
Fig. 47A and 47b. Rather similar to fig. 44 to 47 except that portion of the working edge is trimmed to a point.

Fig. 47A. Sellick's Beach.
Fig. 47b. Mount Chambers Gorge, Wirrealpa. 44 ounces.
Fig. 48 to 54. This series of semi-uniface pebble choppers may be regarded as representative of many hundreds of Kangaroo Island specimens from which they have been selected. Derived from symmetrical elongate oval pebbles, the lower or working edge is neatly trimmed whilst the upper is roughly shaped, forming an

"chte ample in trlation to the former. This angle gradually hecomes obtuse with Wrar amy comsequent retsimming of the hase, the worker having thes anticipated his cominned refuiremonts by corred design. These implements may be termed semi-mbil'acs.

Eis. 48. Isashmar's Isagoon, Antechamlier Bay, KiI.(1) 20 ounces.
Fig. 49. A beantitul example of eraltsmanship in pale blhe quartzite and frobahly two linnded. Red Banlas near Point Morison, K.I. 80 onnces.

Fig. jo. Hog Bay River, K.I. 43 oluces.
Fig. 51. Discovery Latroon, K.L. :30 omees.
Fig. 52. A clever example of pebble trimming. Discovery Lagoon, K.I. 34 untmes.

Fig. 53. Hawk's Ness., İ.I. 18 ourmess.
F'ig. 54. Red Banks near P'oint Morisom, Ki.I, 6 ounces.
Hig. 55. Mauy Kauguros Lstand pebble implements are noted in at broken rondition due apmaratly to healy requiremmons. The breakage generally vecurs at bifhtangles 10 the trimmed enge as shmon in this specimen from Hog Bay liver.

H'ig, 56. Theoken similayly to tig. 55 , but romeding and retrimmiug the broken edge has extended its life, Hoy Bay River, Ki.l.

Fig. 57 10 588. Usage and retrimming gradually redace the length of the pebble-implement working edge, and also make it obtuse.

T'o proloug its uschumess and increase the dength of that working edge, it appears that the emds were 1 rimmed sul)serfontly. Specmens similar to figo 57
 similarly reached with worn horschoof implements. (See amongst fig. in to 27).

Fig. 57. Discovery Lagoom, K.J.
Fig. 5s. 22 miles south of Antechamber Bay, K.I.
Fig, 5y, Similar to tho clongate oval pebble implements, hig, 481054 but Pashioned trom a flattened block. Muston, K.1. 50 ounces.

Fig. 60. Hade trom a large pebble of Whe quartaito bat trimmed across its shont crosen section and possibly it two hamded implement, Represents the largest pehble artmiaet yut reportw from the lstand. 已2 miles south of Antechamber Bay, Ki.I. 115 umnees.

F'ig. ffl. Derived from a flattened disenilal pebble and showing an effective morking edge. Boortoo Creek, Callama, 5 miles west of Marrece 37 omnces.

Hig. 6 : to $64 a_{\text {. }}$ Lmplements made from roma pebbles ocenv on Kamgaroo INand, also sparimgly on the mamband at Artipena, Sellick's lieach and other isolated localities.

Fig. 60. Artipena Water, Martin's Woll. 18 ounces.
Fig. 63. Artipena Water, Martin's Well.
Fis. 64. MeLaren Valo. 9 ounces.
Fig. 64a. Hog Bay, K.I.
Fig, 65. Sebble imblemernl mude from a ftukd The writer has found this type
 fore, a thake implement. Discovery Lagoon, K.l. tia ounces.
 mavim and are, therotore, miface in technigue. Oceurence apparmoty shefly (b)ntined to Kangaroo Istand where 11 is eomparatively rare. Workmanship is gencrally of a high urder and the shape usually an elongate oval. They may be classcel as double edged chuppers.

Fig. 66. Perfect in symmetry, highly patinated quartaite mobble. Irobatly I wo handed. The largest miface yet reported in South Australia. Muston, K.I. 78 ounces.
(1) Kaugitron Istand has gouerally been abioreviatod to K.I.

$\cdots / 4$
59

E2

60

Fig. 67. Hor Bay River, K.I.
Fig. 68. Hog Bay River, K.l.
Fig. 69. Discovery Lagoon, K.I. 53 ounces.
Fig. 70. Hog Bay River, K.L.
Fig. 71. Discovery Lagoon, K,1. 6 ounces.
Fig. 72. Carefully trimmed to produce a rectangular block. The type oceurs sparingly. Hog Bay River, K.I. 26 ounces.

Fig. 73. Fine tronking edge on whole of margin. Hog Bay River, K.I.
Fig. 74. Triangular in shape with all three margins trimmed. Hog bay River, K.I. 33 ounces.

Fig. 75. Uniface implement from Yappala Lagoon. 5 miles south-west of Hawker.

Fig. 76 to 79 . Derived from smosth rectangnlar pebbles which are trimmed on at least two of the longer margins.

Fig. 76. Sellick's Beach. 35 ounces.
Fig. 77. Trimmed around most of margin. Fishery, 3 miles east of Cape Jervis.

Fig. 78. Hog Bay River, K.I.
Fig. 79. Artipena Water, Martin's Well.

Other Implements.

Fig. 80 to 82. Roughly pick form and trinngular in shape with rounded apex, extromities usually buised or polished. Oceur on Kangaroo lsland where marine shellfish abound. At least one possible use may have been the removal of these from the rocks. Similar implements are noted elsewhere in Australia, including some in the Aouth Australian Museum from Mornington Island where they are userd as oyster picks.

Fig. 80. Made from a quartzite pebble. Hog Bay River, K.I. 14 ounces.
Fig. 81. Discovery Lagoon, K.1.
Fig. 82. Blne quartzite pebble, Hog Bay River, K.I.
F'ig. 83. Horschoof type of implement trimmed from a block of poor material; discovered upon the rocky floor of Janarwing Cave, referred to elsewhere in this paper, 52 ounces.

Cleavers or Large Knife-like Implements.

Fig. 84 to 87. These occur sparingly and are fashioned from suitable thin, irregnlar blocks or flakes. No cvidence was noted of any defined industry or of similarity in desim, the native apparently, being eoncerned only with his requirements, that is, an efficient cutting edge.

Fig. 84. Flake of brown quartzite. Coast two miles north of Port Noarlunga. 26 ounces.

Fig. 85. Flake implement. Normanville.
Fig. 86. Angular block. Third Waters, Oratunga. 13 ounces.
Fig. 87. Angular block. Oratunga Old Station.
Site at Cape Cassini, Kangaroo Island.
Fig. 88 to 92. In this paper a short reference is made to the site at Cape (hassini, Kaugaroo lslaud, where material collected resembles crude implementis obtained at Cape Jervis and other places on the mainland, rather than on the Asland. These figures show the types from Cape Cassini.

Fig. 88. Horsehoof type implement. 35 ounces.
Fig. 89. Horsehoof type showing wear.
Fig. 90. Similar design to fig. 15, but roughly worked.
Fig. 91. Made from irregularly shaped smooth pebble and poorly trimmed.
Fig. 92. Pebble implement, similar to the Kangaroo Island industry but showing indifferent workmanship. 58 ounces.

Deterioration and Weathering.
The effect of local atmospheric conditions and/or soil content is discussed elsewhere in this paper. These drawings show the resulting effects of such causes.

Fig. 93. Horsehoof core implement. Hallett's Cove.
Fig. 94. Similar to fig. 15. Hog Bay River, Kangaroo Island.
Fig. 95: Angular pebble implement somewhat similar to fig. 41. Wonoka Creek, 4 miles north of Hawker.

Fig. 96. Characteristic Kangaroo Island oval pebble implement showing partial disappearance of evidence of original trimming. Coastal sand dunes, Pennington Bay, Kangaroo Island.

SUMMARY.

This paper is an introductory survey of approximately 2.000 specimens of some of the larger stoue implements from South Australia.

A rentarive classification, based on a study of those jmplements from three specified regions of the State, is siven.

Horseloof and pehble types have buen sublutivided insofar as seems appropriate at the present stage.

Some comparative figures show the relative fregneney of the eharacteristic Kangaroe Ishand types compared with similar large implements of the mainland.

Emphasis is plared on the ilistinctive enlture exhibited by the imploments of ${ }^{\circ}$
 snidal, somi-mifaer pebble chopper. The unexplamed disappearanee of its former inhabitants is referved to briefly.

Short descriptions of the more impnetan featnre acenmpany drawings of solected represontatisespecmens. Atemtion is drawn to the relatively frespent thetrimning and re-edging of the pieces so that they can be reduced to almost a diffurent tool.

Probable uses, weights, ugr, alsn patination, weathering and deterioration, are briefly discussed.

Experimental study was made by attempting to simulate aboriginal uses of these large implements for chopping, seraping, ete. Their efficiency was readily demonstrated.

ACKNOWLEDGMENTS.

The writer desires to thank Mr. H. M. Male, Museum Director, and Dr, T?, D. C'amplell, for their assistaner, Mr. K. M. Peake for five years' en-nperatim in the ficld, Flight-It. N. F. Tindald, Musenm Ethologist, now on service with the R.A.A.F., and Miss G. M. Bihhop, the librarian. He is also deeply indebted to Mr. II. V. V. Noone for the benefit of his valud experience, and to Miss Gwen Walsh for the excellent surpes of drawings which acompany this paper and their arrangement therein.

REFERENOES CITED.

Hale, H. M. and Tindale, N. B. (1930): "Notes on some Tuman Remains in the Lower Murray Valley, South Australia'". Rec. S, Austr, Mus., iv, pp. 145-218,
Harvey, Alison (1941): "Flint Implements of Tasmanian Manafacture found at Corm Hart, Kangaroo Tsland". Rev. S. Austr. Mus, vi, pp, 363-368.
Iossfeld, Paul 8. (1926): "Aborigines of South Australia. Nativo Occupation of the Eden Valley and Angaston Districta". Trans. Nion. Soc. S. Austro. 1, pp. 287-297.
Howehin, W. (1919) : "Supplementary Notes on the Orentrane of Aboriginal Remains discovered by Captain S. A. White at Fulbum with Remarks on the Geological Section". Tranz. Roy. Soce, N. Austro, xilii, pp. 81-84.
T'indale, No B. and Macgrath, B, G. (19al): "Traces of an extinct Aboriginal Pophlation un Kanguroo Island"' Rec. S. Austr, Muя, iv, pp, 275-289.
'Findale, N. B. (1937): "Tasmanian Aburigines on Kangaroo Island, 8outh Australia". Rec. S_{1} Austr. MHes, 下i, 1n. 2y-37.
Tindale, N, B, (1937a): "Relationship of the extinct Kangaroo Island Oulture with Oultures of Australia, Tasmania and Malayn", Rer, s, Austr, Mus, vi, pp, 39-60.
Whito, S. A. (1919): "Ñotes on the Occurrence of Aboriginal Remains below Marine 1)eposits at the Reedhedn, Fulham, near Adelaide'". T'rans. Roy. Sor., S. Austro, xliii, pp. 77-su.

SOME ABORIGINAL CAMP SITES IN THE WOAKWINE RANGE REGION OF THE SOUTH EAST OF SOUTH AUSTRALIA

By T. D. Campbell, D.D.SC., and H. V. V. Noone, F.R.A.I.

Abstract

Summary Little has been written on the life of the aborigines who in modern times occupied the South-East of this State. One of the present writers has, in two previous papers (1933, 1939) briefly recorded published and other collected data; his survey showed that our knowledge of the social and material culture of the Buandik people-who occupied most of the South-East-is exceedingly scant.

Some ABORIGINAL CAMP SITES in rhe WOAKWINE RANGE REGION of the SOUTH EAST of SOUTH AUSTRALIA ${ }^{1}$

Uy T. D. CAMPBELL, D.D.Sc. And H. V. V. NOONE, F.R.A.I.

Fing. 1-157.

INTRODUCTION

Titete las been writtin on the life of the ahorigines who in modern times menpica Hhe Sonth- Fast of this State. Gne of the present woters has in two previous papers (199:, 1939) briefly remorded phblished and other collerem data : his survey showed that our knowledge of the somial and material mullure of the Buandik people-who occupied most of the Sonth-East-is crecedingly seant.

The present notes sive an aceomi of a brief visit to this sonthernmost part of the State in April of this year. The main ohjocts were the examination of somo already known camp sites in the Millicent distrid. and an attempt fo add to our knowledge of the southerly oceurrence of microlithic and other special typers of implements anch as the South Anstmanan prat, the pastern Bondi point and the (Ammbimian hifare implements. A preliminary investigation of a nomber of sites was earried out and useful data and many implements were collected.

The South-East is gencrally dofined by the gengrapher as a natural region lying south of a line approximately from Kingston across to Naracoorte. It was prohahly the lower two-thirds of this area which formed the territory of the Buandik people-whon hemme extinet with the close of last century. Some of their camp sites known to molfoctors omen in the constal strip of this country and are mainly associated with the enastal duness and the Woakwine Rance. This latter is a consolidated samd dune range lying about thre to five miles inland from, and parallel to, the coastline. Tt is also me of the series of similar, more or less parallel riflges. wheh constitute a striking emeraphoal feature of the Somth East. As stated by Wade (1915) these ridges are mostly covered with a hard crust of travertines and "under the hard cover the consolidation is very iumerfect and the sands very loose".

On weathered or "blown ont" sand areas in or near the Woakwine, relies of native neenpation almost invariahly necur: the position and nature of these camp sites, thin relation to the smrombling features, water and stone soures, all form facets of an interesting study. The whole Sonth-Easi, presents an important story in recent geulory ; and the hearing of this ou the age of the camp sites and relics is an intrigning pooliom, for students of paleontolugy. paleothongy and geophysies.

Sites cxamined. For comvenionco, Millicent was made our headquarters, as a umber of known campsites were readily accessible in that district. The following notes give a brief description and fairly precise data of their location.
A. Near Mt. Muirhead, at a cutting on the main road to Penola and Kalantadoo. Situated at the junction of Sections 406-110-108 in the Hundred of MEt. Minirhead. Here a limestone rise, sectioned by the main road cutting, is covered by
(1) A short account in the collection of stone implements made and the sites concerned was Fiven at the meeting of tho Suthropological Society of South Sustralia of 97 th May, 18.43.
now drifting sand. The nafive relies in the form of worked thaterial were rather sparse; nevertheless, they afforded some specimens of interest.
R. At the north-west extremity of a buw sandy ridge on whith tho settlement of Tatherlcigh is located about 1wn to threse miles to the south-pasi. Tha eamp site is mot fan from the main hichvas and lies in Soetion 18 in the Thndred of Symon. For introduction to thise rich and striking sile wre are indebled to Mr. Divid Selale of Rebdelsham. T'he sand ridge is not many feet ahove the present plain leted and dues not seem to have been originally muth higher. The ubviung eamp expnsme nempise probably it heast two acres and is divided inion two portions; separated by a low subsidiary overgrown ridge. On most uf this camparea, wind demmation has expuseli rounded masser of rock, which mas have heen the souree of implement materiat. Between and about these outcrops, the stone jmploments nceur in tairly considorable quantily. Many lie clearly exposed; some partly burved in loose sand drift, One interestonge featner on the western area of the sitc is a spme of the lest disturhed part of the mann sami pidge which juts out on to the flat oroded area. The nurth-west lace of this spur has collapsed and exposes a section of a smallish lwayth, Iying somen aight to ten feet below the erest of the ridge. In the time available atare and varied enllection was matle from this site-nme which merits further and intensive study, of the parions features of interest it presents.

The situation of this camp area is interesting in that it is in a somewhat isolaterl position between both the Waakwina and Mt. Muirhead-Mt. Bure Ranges. It onchms on a luw sandy ridge which on all sides-excepting the south-pasterly extension of the ringe-is surrolmded by broad Hat plains which, hefure the days of the artificial drainage system, must have hemen antremely wit and probably water-envered for quita a prition of the year. The food production possibilitins of the immediate enviromment ennld unt have heen so favemable - maless the aquatic life of the wet season holped-as the higher range enmontry. The outcroppine stome material on the site maty have beer a strong determining factor iu its कccupatiou.
E and D. These vectur in the Whakwina Range lietween Millieent aut the north and of Lake Lonney in the Hundred of Maymra. Both are on open madwaya: the former mear teetions 205 and 360 , the latter about a mile further east, near Sretims $227-309$. They are not typical "blown-out" sand areas, but omen on dises whith have heest "loosened"' somerwhat ly road traffe. The implemente. here were sparse and seattered; mostly of the medinm to large sized fakes or pieces, with but little variety of interest.
F. This extensive interesting pamp area oseurs on the iutaud slopes of a series of large, partly-ensolidated, but now disiotegroting sand-dunes which lie ahout theer miles to the west of hendelsham. It is not far from levilaque's Ford whidh lies in ut duression between the Woakwine and the hig sand-dinnes in the Hundred of Rivoli Bay. Sections have not been established in this part of the Hinarked; but tho site lies to the south-west of Sectious 6 and 7. These prominent danes show obrions evidence of previons partial induation ame cunsulidation; but thes aro now maderguing active disintemation, so that a continuons series of camp areas is almost completely buried benegth the loose sad which is waking an intand drift. The implement covered atess ato ehbionsly whitespread, hut it is only on the necasional harder, bared pateles
 uselitl assortment of pieces.
1.: This site oceurs on a sandy outcrop in a low elevation called Jacob's Rame : this latter, however, is merely an millying part of the main Woakwiue lange and lies nis the edge nf the hroad flat cuntry lying north of that range. The eamp
site is in Section 9W, Ilundmo of Rivoli Bay- Moch material is mobahy bneied below lonse sand wheh has drifted or heen washeal down on to lower levels; but the exposer, firm patuhes yielded many interesting speeinmens and the sifu tombl be tesmed moderately rich.
Q. This eamp arma is sillated a mile or two trest of site F and lips partly ourur a roaldagy in the Woakwime Rance alomt oue mile uorth of Mt, Ilope, in Seption SE. Hnndred of Rivoli Bay. How again, the lowsumd sam! from highor levels of the site has drifted und been wathed down possibly envorinu wrehaen-
 colluetion of specimens whiuh were sufferent in qutintity to style the site ns modrentaly rich. Oun of the writers (T.D.C.) had previonsly worked on this site, and F' also, some years ago.
11. Mr. Gambiel. Them roadway immedintely above the Valley Lake; on its somth side. unts over this small site, which in spite of vears of intense disturbance by the whepls of traffie, still prodnces not careful seareh a fow odd preces of interest.
P. Cape Northumberland, near Pf. Naedonnell in the Tandred of Maedsmedl. A. enesmy examination uf this rupom was madr possihle through the opportamity of in brief risit to Mt. Gambier. This wra has been examined hy collectors for many rears past = hot seattered material still necurs ons the flat cliff tops immediately above the sea and on some inlaud stopes of the sandrlunes adjacent to the allffs. The mapority of the mieces fomd were of the
 pointed blade from this area which is inchuded in our illustrations.

1. The eamp irva hove, like $\boldsymbol{E}_{\text {, als }}$ alsomsists of quite a mumber of eamp sitps extending along an inland sand-dume ridge. This latter appears to be sonth-pasterly portion of the partly consolidated sanduills constituting site \mathbb{E}_{2}. Both thase sand ridees have the samurelation to the Wuakime and to the cuast. Site t is in the Thundred of Menyrua, hut this mastal portion is not sectionet and is lobally knom an the Commonage. The eamp areas examined extended over abont a milo of this sancl ridge in at regim lying a little wesf of the woth-west copmer of Taku Bonney. It promma fairly prontuctive sitc. in spitc of the fact that here again the loose drift sand probably covered much grod material,
The abose denorihod sites, most ut them associated with the Woakwine Range. were all of the usual cliss such as are now found nerar the sea hoard the implements
 the ramp areas nem on the infanh un notheth faces of the ridges. thus beng somewhat sheltered firmu the prevailine wiuds-westerly and south-westerly-from the ocenn. While they show the geteral charactoristies of camp inceds, ydmely, nu an elevated, shellered portiom ol' \boldsymbol{n} simbl-hill or sand onterop. Well dramed. with the recoverable implements on the harder., eroded portions of the area. there were alsn nther lowerl teaturns affectum them. For example, om some areas desirothle enflerting conditions had twen disturhed by mabit burnwing baving loosened the sand and eansing dritt, or allowing it to become opermown with vegetation. Also, in some places. Incal weather conditions had baused considerable washiwe roms of toose matreial from higher pate of the slope thus probably a enering what might wherwise have been gokul aroded anleeting patrohes. Sites E and I , on the esteusive inland semdhild rideresituated inland between the Woakwine and the poastal dunes, were much affeden by drift. This strikine ridere had obvionsly mulerone, at sume previmes period, a partial induration and consoldation; hat is now mofortunately rapiely disintorenting. This breakine up mocess has definitely prodneed at fairty recent and copinas inlund drift of tomsumed sadd, which in flates has almont enmpletely covered extensive camping areas.

Materials Used.

Very little quartz or quartzite has been utilized. While the authors had insufficient time thoroughly to study the material used and its sources of supply. there are some pieces of evidence which are interesting.

The main material upon which the implements were made though classable prologically as flint, for the purposes of prehistoric stone implement study is usually distinguished as a cherty material. In discussing the considerable limestone formations which are frequent in the South-East. Wade mentions the occurrence of flints, which, he says "are indistinguishable from the flints in the Fnglish chalk. In some places near Port Macdonnell and south of Cape Banks the formation becomes practically a mass of flints interbedded with layers of chert. Where the travertine rests unon it the upper formation contains derived water-worn flints associated with fossils of recent types". One of us (H.V.V.N.). however, is unable to reconcile this statement with the flint that has been used by the so-called Gambierian culture as shown by the specimens now in the Museum. In other places the outcropping calcareous boulders-conspicuous on Site Bcontain highly silicified material which was eminently suitable for working. Although these materials at times vary in quality, the aboriginals showed obvious appreciation of the better texture and used it to good purpose.

Mr. P. S. Hossfeld. M.Sc., has kindly examined our collected material and supplied the following notes.
"The implements with few exceptions consist of the mineral known as flint. Flint is a cryptocrystalline variety of silica which in its fresh or unweathered condition is dark in colour, commonly greyish black, and practically opaque.

The special characteristics of flint which are advantageous for toolmaking are its toughness and ability to take a fine edge, the marked conchoidal fracture, smoothness of fractured surfaces and absence of grain or cleavage.

The source of supply in the South-East appears to have been twofold; one being the plentiful flint nodules occurring in some of the Tertiary Age limestones of the region, and the other being accumulations of beach pebbles derived by wave action on these limestones where they are, or were, exposed on the coast.

Although, as stated above, flints are dark in colour, if obtained in an unweathered condition, only few of the implements collected exhibited this colour. Nearly all the specimens appear to consist of a hard white material, marked in many instances by a slight yellowish stain. This white material is derived from the original dark flint, as can be seen by the presence in it of similar organic remains, and also by the existence, in those specimens which were fractured for examination, of a central core of unaltered flint. The change has been produced by atmospheric weathering resulting in a bleaching of the dark colouring matter, the removal by solution of any calcium carbonate and possibly alterations in the texture of the material, which is, however, still a form of silica. That this atmospheric weathering took place after the implements had been manufactured from the fresh material: is shown conclusively by the fact that the central cores of unbleached flint reflect in their outlines the outer faces of the implements, faces which were given to them by the aboriginal craftsman. The time that may have elapsed since any particular implement was manufactured cannot be determined at present by the study of the depth to which atmospheric weathering has penetrated. Such reactions vary so much with climatic and other factors, that special determinations are necessary for any given set of conditions.

The planned exposure of a large number of freshly chipped flints in this area, and their examination from time to time over a period of years together with measurements of the depths to which alteration will have gone, would be an interesting and valuable experiment.

Many of the specimens beyf sligh yellow stains. These apparently consist of levadrated iron oside and problably wate pendereat by demidal dequsition from water ju whinh the implementy wer immersed flange wot periods. of from tiet sands in which they weve huried."

'Trchnique of Manteacture.

Defails in rearat to ame of the lemm heal herein will he found in Tindale and

 Nast of the implements are marlo form flakes, which thongh in many erses appear-

 stailfill frimming,

A reoms ktriking platform was Prequently detached with the geker anemm.
 of about 129°, whith is high for the nedinary sige of implement. In eontrast to this the mimeliths pollected slone a majority of diffused buthe and a platformacour-imer-f"ace angle of nbout 107° to 122°, but most of them are linapped at arnmad

 for detanked the lass the slope necessary an the anclens plationm. for the sume

 angle is reached, the detached pieces nematly being thinner at the end than the butt.

Mattjple bulbs and eraillu'es wero infrequent.
The trimminer whe often dome by detaching lome respilar small ehipg, or seates. and finishing nff by ertefinly evening the edere removing the horns between the
 m the snmewhat stont jmplements. Ocensinnally the picinity of the outpur surface erler of the piese. where it adioins the striking platorm. is treated by the memenal of small thin hatalets sn as to thin tho butt. A reasm for this may he to mane the implement more sutit ibe for hattinge. On the other homd it may be to emahe more acenrate striking tol he done when knapping. Another noticeable feature is on readiness to resort to inverse trimmines, in using the outcr face of the flaks as the base or platform, tur the rumaval of himming seales from the inner face, This was in order to maks ise of nart of the implenment where it was difficult to sronove the Primming reales in the orthodox way, i.e. by detachug them Prom the outer frem. Thw Woakwinn stone workers whald sem to late elerended more on their tritumine than their knapping skill, in makine their urdinary size of imblennent.

In forming the monenliths, hesides pronetising the katpping techninne of cape folly proparing a suitable torm of prismation nelens which wnid enahb the pro.
 Was cmploged to eomplete tho implement. The ponsistent form of the 98 TV natzwine points cebleseted, whinh piece is ahrant-1 rimmed almast invariably on the laft hime

 in the hope of dimelins smue intisations of the procedure. Some 24 specimenk ol' a dimilar mint-tike shape weve sorded out, and then fotmot to have at steen anged margin on the body as alsw on the shligan that formed the point. In the ease of
 lett mininished and watrimmert and the emmelnsion was that they were "blanks" whith for one rasun or mother had been discarded. They revealed, however, that the blades intended for the lashming of Woakwitne points were far promed
of a special form of nucleus. It womt he penhaps namow with a lomerish cumbre

 eorner.

Tha rule of trimming on the left himi margin of the piece is also striotly ohserved in the makime of the genmetrinal mintolith types such as the trapeze as also in the fashinning uf the Sooth-Past Bombis points. It womld spem to he a fixert tratlition of the Woakwine miorolithir worlemm. We suthmit the sumedestion that on
 converient for trimming. When a nieen is to he trimmed to a proint Iy shenine one maregn it is, we lind. more compenimot if the niepl is hold so as in lio with that margin bel ween the holdine ham? wad thatrimming hand, su that the work is dowis from loft to right rowards the point on vice persa from moint to bity. Followind the arthodox manmer of trimming with the innere face us hase the left band marain nf the piece wonld thes he the on trimmad.

 point. Alone the left hand margis from looth immpr and onter fintes is follonver ofs many of the Woakwine tvon. Wy trimmine the outer face alma mart of the oblions in the vicenity of the pointed tip. Th the ease of the Sonth-Enst Bomeli point this trimming, which is rorked from the onters fates, we sonelude. was done prion to the "blank" heing detached from the molens. This eons. olusion was arrived at beconse ammest thr similar pieces collected are 20 abront trimmed hamblats. of somewhat irveundan form, which were not pointed at the and nor finished uff ly trimmine from the inmer faec. Ty fact thes atpere to he

 primary frimming on the madens wonld serve the morpuse of forming a bioter sut Ion account of the midime control of suct a ridge, whon that part of the nalelens was detached, the bladelet should be of the recuived size and shape. This wombl suem to have heen the ohject of such trimminy done from the outer face. In adrlition to the 20 abrupt trimmed failures. showing such preparatory trimmine, there were
 finish and final drimmene the orthedex sharp poim. They bore. like the ahron arimmed blatelets, sonat frimming done from the oufer face not, hawever, for the fall length of the marein hat only alone part of the oblighe shaped emt. Thesa alan
 wine point. If this is currect the Whakwine point would appear to be the wromet of an improvement in the techmigue ol' making the Pombli point. Thu nolingoly

 porting this inferences is the taet that amonerst the 5 es examples of the South-Enst Bondi point there ate sis specimens which have heen trimmer to form a som of whigue form of tip to the point; in fact they ure a kind of intermediate atame belweas the londi and the Woakwine types.

If the Wnakwins workers' methods have been eonrectly interpoeted then thog
 of limope and Africa whe are said to have nbtained their traperas slaped implemunts also of asymmetrical form, by trimming an ortinary, nore or less sym-
 is calleal a micro-kurin as a by-proflact.

workers farther north to produce the South Anstralian pirci. They used a plain controlling ridge and a somewhat flat faced nucleus so as to get a leaf shaped symmetrieal blade with a ridge approximately equi-distant from both margins, all three of which meet and end in the pointed tip.

As at other sites some of the geometrical pieces and Woakwine points were found in groups which would suggest they were caches of an expert worker though imother explanation is that they are the stone components of a decayed composite implement, or the isolated remains of a very small group of people only using small stone implements.

Classification.

The implements found on the sites being of much the same facies are treated as one collection, and as so many types are found in both ordinary and micro sizes, it is comventient, except for the geonetrical microliths, to classify them also together. This does not mean, however, that we wish it thought that all the pieces are confemporancous and of one and the same culture.

Based to some extent on the system of classification by technique and the terms employed in our general survey of the South Australian microliths and points, we have found the following types and varicties. Some of these have already been deseribed by us, so in several cases we shall confine ourselves to little more than enumeration. On the other hand, as we find it necessary to record several types and varicties hitherto not differentiated or deseribed, we shall deal with them more fully. As is our practice the report is accompanied by simple line drawings detailing only the more characteristic features of the specimens.

BIFACE WORKED COROLD IMPLEMENTS:

Semi-biface.
Discoid.
Semi-discoid.

FIJAKE AND BLADE IMPLEMENTS:

Kinives and saws.
Cleavers.
Abrupt trimmed bladelets.
Points-asymmetrical-Woakwine. South-East Bondi. Oblique.
Piercers.
Burinate pieces.
Scrapers-ordinary, ogival, discoid, squat, casual; butt-end, nosed, sidescrapers, concave, carinate, slugs, semi-discoidal.
Elonera.
Lrreqular edge pieces.
Battered picces.
Sundry flakes and blades.
Scrap.

GEOMETRICAL MCROLITHS:

Segments-crescentic, ordinary, narrow, half-moon, rudder, cocked, semisegment.
Discoidal-micro-scraper.
Triangles-equilateral, obtuse, scalene, isosceles, bracket.
Trapezes-symmetrical, asymmetrical.

POLYHEDRAL IMPLEMENTS:

Percuters and trimmers-pebble, nucleiform, trimmers.
Nuclei-polygonal, discoidal, conical-prismatic, prismatic, semi-cylindrical.
Sundry-slabs and milling stones.
Pounders.
Sundry implements.

BIFACE WORKED IMPLEMENTS (22).

One semi-biface implement, which shows the chipping restricted to the formation of the edge, like some of those that have been called Gambierian, was found on the Cape Northumberland site. It is much weathered.

A few (8) discoid picces, biface worked, including an oval form made from a thickish flake, were collected, as also one small specimen showing a pyramidal form on one face. (Fig. 114, Micro, C. \& N.).

There are also some (15) of semi-discoidal shape, a few of which are much like the stones used in the Western Australian flaked hatchet (Fig. 28, "Some Aboriginal Stone Implements of Western Australia", and Fig. 116, "South Australian Microlithic Stone Implements"). Two of these specimens are of micro dimensions.

FLAKE AND BLADE IMPLEMENTS.

Knives and Saws (61).
We have included in this class the ordinary acute edge knife form and also several pieces somewhat like the side scrapers, which have been trimmed to a sharper angle acute enough to be quite effective for stout cutting work. They appear to be made either for this purpose, or are re-edged cutting implements. We have here in quantity a carefully prepared form of tool unusual for Australia.

There are some (15) pieces with Saw margins, a few of small size.
Cleavers (8).
Like large size knives these heavy specimens have more or less acute work ing edges and may be conveniently separated into a cleaver type by themselves.
Abrupt Trimmed Bladelets (20).
None of these bear any evidence of being broken Bondi points. As mentioned above under the discussion on technique, we look upon them as failures in attempts to knap off a bladelet suitable for the formation of a Bondi point. Being found unsuitable they were not finished off by further trimming from the inner face. In conformity with the technique followed in making their small implements, they are, with the exception of two specimens, all abruptly trimmed on the left margin and whilst still part of the nucleus. There is, of course, a possibility that they may have been found useful for odd work.

Points.
Symmetrical (9). As this was not a form of point favoured by the Woakwine people it is possible these specimens, being untrimmed, are of no more significance than knapping blades.

Asymmetrical. This is the type of point, with an abrupt trimming, that was preferred in the locality. One of these is of the well known Bondi type and the other which is more numerous is of a new type that has not hitherto been differentiated. This latter is so characteristic of the region that we have

Wiven it the amme of the Woakwine phint, Ahout 70 per eent. of the 08 examples collected were fonnd on site B_{s} but E, J, G, F and A respectively all eontributed it few. The form of this new point is that of and arymmetro (ratpeas clougated to a tine oblique point. Ordinaty liapezes of usual miernlithes size and proportiont were alse tomst but the Woakwinc puint reaches
 especialdy produced to serve a partioular mopose such ns say a spoth barlh. The extended shape of the hotly as whll is the abrupt trmond obligne maryin Which forms the pointed meil are the main charateristies of its type. Tisually it hats ane of anore ringes on the anter fate whilst it is mont olten made of a comparatively thick blatcled. Host examphes arn haperoidal in transperse segtion but towneds the printed end thisphanges to a stronger Iriangular seotion. With two exceptions none of the specimens shm anty monlss ol' rough contact on the Uhim margin. Theother Jnargis, the (Jieker, is almont invariably (96 por cent.) on the left (i, w, when the pointed end of the pieen is held nowards sud the inmer
 extemb beyond the ohlique marginom the body. Tos some extwh the trimming of the obligue is dona ferm buth fares. I few sperimens show trimmine the full longth of the loft hand edge, suggestive of an affinity with the South-East Bomil point. The butt is quite drequently (75 per cent.) fombltimmed to as loremow the plat torm and hath-topand also fo shape the base to a (1) strainha,
 (mints (:0) per cent.) ane left untrmmed at the butt. and are, therefore, like the ordinary ubliquely pointed bladolet. These paxticular speoimens show a mationity of diffused hulhe went erd about the middlo of the base whilst the platform inner angle is about 107".

A eensug of the microlithie pieces and points eollected by ns gives aut ider of the predominant position of the Whakime priut: Trianghes it6. Tranezes 35, Scgments 34 , Thumbunil scrapers ins, South-East Bondi point 53, Woakwine points 98.
 Jithie: Stone Implements" can now lue classed as Thrietics of the Woakvine. point, they having been dound in utat area.

South-East Bondi Point (53). These were mostly found on sites B, E and d. Not many ane well made a few are brokenoff tips. The South-East Bondi diflers frem the Woakwine point in nsually being trimmed the full length of the margin and from both taces; atso ridges on the unter face are not found on the former so that its transverse seation is in shape like an isosceles triangle. Like the Woakwine theabrupt-trimming, with very fow exceptions (t), appearis on the left hath margin. Not many (18) bave trimmed butts, the outline being short oblique, rounded or straight. The range of leugth is from 1.5 to $1-5 \mathrm{~cm}$. Some (9) of indifferant workmanship are not fully trimmed along the uargin. Six of the sperimess show aspecial trimming near the tipgiving then ab, nure ublique shape to the pomb, 'They are ol' some interest in that they seem to be intermediate hetroun the Lomdi and the Woakvine just as are the filly trimmed Woakwiue specimens.
ghligno Point. In vies of the Jocality in which foume, the similarity and froportions of those oblique abript trimued bladelets collected have heen takern fo judicate they arce really varictios of the Woakwine point.
l'iercerrs (19),
The lew examples were all from sites 1 B and G. One of miero dimemsions
 A mother, though earefully trmmed, ome marpin showing the smatl uibble trim-
ming, and bearing a fine point, tor some reuson has been left with the eontex ou down to the tip. We know of (wo other similar examples from this locality, A third specimen is similar (o) hatt shown as Fig. 34 in our "South Australian Microlithic Stone Implements".

Jurinate Pieoes (32).
A varied assortment of these was collected showing to some extent a rough idea of specialization in form, Of the spalled order there are six somewhat Like the Numaform type, and thene like the Contral type. Font examples were found of the "fwin" and six of the single, S'caled rectanghlor" type, as also four of the Scaled oblique, one of which, a large picec, is a double. There are nine cxamples of the Clomitorscaled.

Eight fragments like Spulls were found, one shmving wear on the outer ellge of the striking platform.

Sirmarers (482).
This class of tow, in its many varieties, stems to be the major prodnction of the induatry. The emmone use of the term "xemaper" Io designate these tooks, althongh followed by ns, does bet mean we consider them all to be only. or even mainly, used for scraping work.

End (37). Of the ordinary type, formed on the end of a longish flake or hade, not many examples were fond. Except for six of mismo size they are mostly heavy Lools, some showing usage alse along one or both margins. A fev are of ogival working edge shape.

The true "duck bill" shape is absent but there are ten made on short flat flakes.

There are no examples ol dombles.
Six specimens of discoil fom in ondinery maceolsthic size were found.
Anabundant variety (92) isol'sometwat semi-clisenid form made on a stout more ur less squal flake, several sumemuns being like the "tula" form of adze-flake, with which thers would seem to be some sort of relationship. Many have been trimmed to a move on less acute cutting edge and some show a stouter Norking enlye which has the appearance of being the outcome of re-edging. Some out this sumat varicty rise to in sort of peak behind the working emp ; few are nearly straight edged. A kind of (oul like this variety used nowadays in Australia, flxed in wum to at wooden handle, is utiljzed mainly for cutting, chopping withat regular jolly movoment much an that in which an adze is used, and engraving. Only very occasionally is it used as a scraper. Much worn adze-flakes suth as are found further morth are not in evidence in the Woakwine area, possibly because of the seemingly abundant supply of suitable material. One of us (T.D.U.), however, tumd one such wom tula in the Whakwine area some gears ago which, becanse of the matarial of which it was made, mast be considered as having origmated in some mortherly region.

Several (35) stontish pieces of various shapes show that a small area of a usuble edge has beun utilized in a casnal way for rough hacking of seraping, as if", hemg opportuncly nean at hand, they hud been lemporarily pressed into service. Judging by the dututity of material, at site I3 for instance, such an cochrrence could be a commonplace event.
some somewhat similur piceco with signs of more drustic use we look upon as probably used for trimming.

Only a lew (13) buhtobil scrapers were found, several of which are micen. lith size.

There is a large number (96) of Foscd serapers, some having the noge
 voriets has a kind of twin nosed form, hernsess heing at the two enmers of the splayed mod of a sumat tiake. In may tases there would seem to be mone attenfiom given to the formation of the nose than of the concave wingr. On the other hand someshecimens show more wear of the enneaves. It is not inupussible that this fool was tidbricated for use as as small hand adze for delicate world on
 Monking edge is usilally garl of a comparatively large piced, such ins would aturd gripping surface. The nose is not always aecompanies by two coneaves and sometines hore than obe bose meenrs on a specimen. It. would not seems 10 tue a commen form af thot in olher parts of Australia though sume examples have been found in the - delaide zones.
A. form of edge which is usually elasised us that of an seriper oceurs on the side margins or margios of yuite a number (74) of pieces which we thersture differentiata as Sido-serapars. Several of them are of small sizo and a number of otbers are trimwed on both side mangins. Of these latter some are trimmed on whe marein trum the bute lace in the orthodox manner but on the where margin from the outer late (juverse trimangy). A fow fpeciment are evan fore nuox hodox in showing on one side margin part trinmed in the onthodux and the remander of the sane margin in the inverse manner. 'The side seraper is another uncommon tool for Australia when, an in most, of the above nentioned examples, it is in a form not particulaty suitable for hatimg to make n thake-adre.

Another largeseries (62) of the seraper chass is the Cumave seraper, fur Which presumably a lot of use was tound, possibly in shapmog trouden shictids, chats, etc. The range in width of the concave is from 1 to 2 cm. Sevetal of the examples atre heavy toohs. There are lour doubles. The existence of the single enteave in quatity like this whal seems to emphasize the prowary inportauce of the mose in vite much more ahumdant nosed suraper.

A type of ton which is usually included in the scraper class is the fiurimbe. Fixamplas we not very plentitul (a4). Besiden the ordinary crested form some have flat tops and one or two are stakingly tike manature "horsehoots". Two specimens show at the other end a pointed working elge mued like pixeses found further morth in the State and identitied by us in "Souths Austratian Microlithie stone Implowents'. I'his pointed (darimate appears to be a well standardized variety. A linceample has beco found as Lar atield as Eucla and nearer at hamb at Morphet Vale. Another interesting variety is found in three examples which have three working edges, if form found by one of. us in the Upper Palwhithic deposits in France. A kew miniature examples of the carinate wore fond.

We include in the scraper class some pieees which we call dauts. Ther are long, stont ridged specimens of rough blug-like form. Some tend to have a pointed eud. As diftierentiated by us, under the description of the carinate sermper, in "Sontb Australian Microlitbic stone Implements" this picee shoth not be oombsed with the wom rulat adze-thake which is desernbed in "Some Aboriginal Stone Implements of Western Australia" (Noone).

A mot particularly well wade varicty of seraper is the small sem-discoidal, also called the thumbnail. Of those (i3i) found suost are the large sizu for this type. One shows inverse trimming. There are six doubles, one an exceptionally good little specimen worthy of the Moonta eraftamen. Another double shows at twin combination. Two show iuverse trimming, one combined with the orthodox.

Elouera (8).
No regular examples of these were found, only some pieces of somewhat similar form. Of these four also show trimming and use on the thin margin, some bearing the edge serrated. A fine example of the typical elouera was found on another occasion by one of us (T.D.C.) in this Woakwine Area. It is possible this type of tool was produced in much the same way as we have outlined for the knapping off of the Bondi point.
Irregular Edge Pieces (17).
A few variously shaped pieces with more or less irregular edges, mainly due to coarse trimming, are perhaps tools in preparation that have been left in their preliminary stage.

Battered Pieces (4).
There are a few stout blades showing a crevassed ridge, but no example of the pièces esquillées such as is shown by Fig. 47 of our paper on South Australian microliths.

Sundry Flakes (1), Blades (2) and some Utilized (27).
Twelve pieces have already been mentioned in dealing with technique. There are also 15 other pieces, but of small size, which bear signs of trimming or use, of which some appear to be snapped off working edges.

Scrap (137).
Some of these pieces have been referred to under other headings.

GEOMETRIC MICROLITHS.

Segments (34).
Crescentic (1). Only one of a somewhat crescent moon shape was found. Ordinary (11). Most of the examples are fairly well made.
Narrow (3). Very few and not well made. One is a large example. Half-moon (7). Some well made.
Rudder (4). All are good examples.
Cocked or Cupid's-bow (3). Specimens have one tip retroussé or cocked. Semi-segment (5). Most are poor examples.
Discoidal Micro-scraper.
No examples found.
Triangles (36).
Equilateral (5). These are all small examples.
Obtuse (5). Not well made.
Scalene (8). These are a little longer than the other triangles, a feature noted by one of us when recording the microliths of Ceylon.

Isosceles (10). All but one are trimmed at butt and all are trimmed on left margin in accordance with the Woakwine tradition.

Bracket (8). All poor examples; one is a large specimen.
Trapezes (35).
On the whole the trapeze is fairly well made.
Symmetrical (21). An unusually large specimen was found. Both the partly trimmed and fully trimmed occur.

Asymmetrical (14). Both the partly trimmed and fully trimmed were found.

POLYHEDRAI IMPLEMENTS.

Permitiers and 'tremmars (36).
Brepht for lom fragments of which two are of flint the Pebble form was not lownd. The dueleiform type with prowinent points and edges is moro in eridence (13). One is of milly gtart\% and is a fine example. Sizes range from a wainat to a tomis hall size.

Certain (19) blocky tlakes und some small piuees showing $18 s 0$ of a perenssive nature on portions of their prominent parts may have been used as trimmers.

Nuchet (18).
These are not abundant althourh site B especially had all the appearance of's atone-working camp. 'Three specimens of polyonal shape are small and appen to be residnal nuclen buttin。 which may mean that the Woakwinn workman's hahit was to work for lomg periods and make l'ull ase of a mucleus of good matering. There are ouly three of the discoidal type and one a small eximple of the conical. Two medium and six small prismatio types were probably used for the production of mierolithic implements. Three pieces of peculiar form being rather of semi-cylindrical shape may also be of this type but on the other hand they seem to bear some relationship to the twin form of sealed Imrinate. There are a few instances of a blocky flake being used as a nucleus for production of flakes.

I'unclues (6).
Including two small pieces these are characierizen by a terminal edke fimmet by the meeting of two flaked converging faces, the edge showing signs of forcible contact.

Giending Slatis and Millina Stones (4).
A slab and three fragments of milling stomes were found. The slab is 7 险 $\times 6$ inches and of a D-shape. It is made of silicified sandstone ($\%$) and the greater portion of one tace is evenly worn into a slimht depression. There are no ruddle stains on the slab. The lack of these grinding slabs suggests that seeds did not bulk largely in the diet.

Pounders (1).
Ouly a fragment of what appears to have been a thick discoidal flint pounder was found. This may have heen used also as a percuter.

Sundry Implearents ! 8).

One large flake has been carefinlly adzed at the thick butt ond, so as to give it andighly jneurved sterp cutting edge like a gouge.

While in the districh we received the following on behalf of the South Anstralian Museum. Three edre-ground are-heads of hasalt (?), shaped by Heking, and fonnd in the vicinity of Lake Leake, were presented by Mr. R. N. Campbell of Mt. Gambies. From Mr. Stewart of Rendelsham, an oval flattish pitted stone of tufa or basalt (9) found near Mt. Graham. It was said to have bean used for the crackimg of bones for the marrow. An ornamented boomurang, non-returuing, was presented by the Clerk to the Millicent District Commeil. This has an interesting design in the form of an intertwined, doublelined ongraving like a snake with a tail at each end, and suggestive of tronized death writhings. A Lionile Chab or usual Victorian lorm with worn ont grooves at the bend was presented by Mr. G. Willshire.

COMPARISON.

The absence of certain stone implements found on similar sites but mainly to the West of the Lower Murray, allocated to the Pirrian, Murundian and Kangaroo Is. or Kartan Cultures by N. B. Tindale, is noticeable, especially the South Australian pirri and Adelaide type of abrupt trimmed point, and the discoidal micro scrapers, the Adelaide variety of adze-flake, the large pebble implements and coroids like the horsehoof, and the kidney-shaped slate implement. Some of these, however, may come to light when more intensive collecting is undertaken. Little is known, unfortunately, of the stone implements to be found on the stretch of territory between the Lower Murray and the Woakwine area.

The abrupt-trimmed South-Eastern Bondi point and varied geometrical microliths show some relationship between the Victorian and Woakwine industries but lack of available records of the nature of the West Victorian stone culture limits turther comparison.

The large proportion of "scraper" tools in various forms, especially the nosed and concave varieties, the knapping technique which favoured a well-sloped, roomy, striking platform, giving a high angled platform, inner-angle, the frequency of a salient bulb, the mediocre class of blade technique (except for the microliths), the long facetted form of trimming and the habit at times of using inverse trimming, are all features that the Woakwine industry has in common with that of the extinct Tasmanians. In view of the contention sometimes emphasized that the stone industry of the near Australian mainland shows no affinities whatever with that of Tasmania, the above facts have a special significance. On the other hand, N. B. Tindale (1937) has told us that certain distinctive stone implements of the Kangaroo Island culture, i.e. the karta, the horsehoof and "Sumatra-like" types (the latter in the form of a sort of semi-uniface worked pebble) may be found in the Tasmanian deposits. As far as our search went, we found no such pieces in the Woakwine industry.

ANTIQUITY.

The problem of assessing the age of these camp sites and their material relics is obviously a difficult one, nevertheless all the more intriguing because certain peculiarly local factors provide some tantalizing pieces of evidence. The nature of these sites, occuring as they do on moving sand areas, almost completely rules out stratigraphical assistance. From information gained from persons whose memory took them back to the days of still persisting aboriginal occupation, we know that the Woakwine and Mt. Burr Ranges definitely were the camping haunts of the Buandik people. Thus some of the material collected was possibly made and used at the very latest about a century ago. Lack of food debris which is very noticeable deprives us of another possible means of arriving at some idea of the age of the culture or cultures. As to the implements and the material upon which they were made practically all the evidence of value left to us, the factor of patination is one on which the present writers place no reliance. Observations have shown that patination varies so much with material and with local environmental factors, that it serves no reliable guide. An interesting point is raised by Mr. Hossfeld in his remarks on the chemical changes undergone by the particular South-Eastern material used for most of the implements. If this line of study can be followed up and proved we should be provided with some valuable data as to the period when the Culture flourished in the Woakwine area.

Another feature bearing on the age problem lies in the fact that this particular part of the South-East is a fine example of post Pliocene geology. There is much evidence to indicate a general land uplift and ocean recession during comparatively

Farent grolowion times. Associated with his prompessive land uplift and ocean
 and subsidiay ocean trunsgressions. These happenings have becu naturatly recorded he the series of stmaded inland dumes which dhow varyinge stages of induration and soleditication-fossil remeesentatives of the conatal sandhills. In platers, cobshat "rowion and disintereration of some of the imland rideres show the reverse process-a breaking Iown of puevously built-mp, hardenen structures. Althomgh it eanont be ingladed bere, there has been some disenssion by Tindate (1938) and Warid (1041) on possible corroation betwern these ridge formations and Plestenenc osean levels. More recently, Prolessor Coiton (Mcharthy, 1948) iin monsinutation of Nuw South Wales shore-line elionges, due to post-ghecial condi-
 yours agn. Tt will bo interesting to learn whethem these egstorn stome tratures cau
 const. Lack of intensive stmily of thense interesting features of the South-East leaves

 to provide as solution to the problem ennmornine the early human necupation of thege urma.

Another interesting point un tho age prohlent is whether fny time difference

 intensito studyr, aicled, we hope, by opportunitics fur exeavation, will help to clarity such matters.

GFNERAL.

In vien of the pussihilit that no systematic enllection has hitherto been under-
 For what of full opportunity the collection made by us mite mossibly does not embrace all lypus and varicties producerl. When thes tre fortheoming statistics ram be andeat in the cerisus from lime lo tims and wa true representation of the stomesonplembent exidenese of the entiore will be attained. The alze in which the same Lypo of tom is foment show the considerable rance on which we eommented in nur paper om Mieroliths. The mopldyment of omass of materinh, i.e flont or ohert almost exclusively, is probably an invirmmental bestrietion. The stome working rembigum is mut of hist spalle and generally queaking the Woakwins eraptaman
 on shaping his tool by secondary than primary working. Neverthaless, the mipro-

 terestinm, juplying as it dots, comsiderable necupation in the trorking at worl and animal skink: it fint ther fuggests, as far sag site [3 is roncerned. that it was jmpular low a happy romhination of stome, wrod and food supplies. There are so mans Itilized mat finisted tonk on this site that it wowld not semu to be a stone working
 might finvone une.
 been mentioned, Looked al as a whole hovever, the Woakwint facies has reached a theyer stage of alevelopmont.. Slthough there is a low proportiou of bladps we have a developed bladelet jmlustry practised to produce miceolithes, a Bonsi point abe the distinetive Woakwine point.

A eurioun dat is that whereas the jadustry shows anecimplas compatable to the

nse even "1, 10 to-day, this kind of adze-flate is nof much in *vidence in the intervening teritury and atomul Adelatide. 'This may, on some extent, be due to the lack there of such supplios of suitahlo material as the Woakwine and far northern remions enjoyed.

Here we would mention that in the Muselm there is gluite a mumber of interest-
 Choland ind W. П. Mownhin, Messts. N. B. Timdale, M. Sheard, P. Staphann, F. Secker, 1I. A. Lindsay anil A. M. Morgan, to whose enthasiastie work we are indebted as this usufnl material has afforded us the opportumity of making a comnarison with the implements colleded by us. We are ablo to saty they support the alassificution and interpretations of the industry as outlined by us above.

Ourlimited time gave butlittle oppory unity for investigating the question of the

 class of Sonth-Eastern implementa, hat mantormately no definite eamp site was dis. covered. It is very regeretahle that mand unscipntifie and unrecorded eollecting of these interesting pieces las so far precluded their enrrolation with other data poncerning South. Eastern bygone aboriginal stonecraft.

For valughle assistane which contributed so much towards making this briof tripsonsatisfactory to us, we are indehterl to the following: Mr. IT. M. Itate. Director of the Sonth Austrolian Nusemm, Messre. C! Willshire of Millieent. Davirt Schulz of Rentelaham and R. N. Camphell of Mt. Gumbier. Miss Gwon Walsh of the Musemm staff has devoted enmest work to the illustrations: ams Mics (y. M. Bishop In the mamseript, whilst Mr. MI. M. Cooper, as alwava, bas heen most helpful. Mr. Lossfeld has given assistancu on many points.

SUMMARY.

Tanation and description of ten lomalities of the South-Eastern region of the Stato wherr old aboriginal camp sites are situated are supplied.

Some indication is given of the genlogieal and greographical features of the enviromment and probable conditions of liring of the stone workers.

An authoritative report is included dealing with the material utilizod in the prowhetion of the stone implements.

A deseription of the technique practised in stone implement making is furbisherd, insofar as cam he inforred by witwal examimation of thoser pieces cotlectert. and doductions thereby reached.

A slassiffeation and deseriplion of the piaces coltected $(1,175)$ by norting them imin classes in aceordance with their form and technique of manufacture so far as practienble.

Than illnst mating of the various types and varieties to frefitute identifleation.
The reording of ceptain sew types and varicties which hitherto have escaped lafinte didforentiation.

The remperting and deseription of a wew tyme of stampardizad point to which The name of "Woakwine point is siven.

The defining of an area with its onvo distinctive stone working faejes which is named tho Woakwine indusiry.

A compurison is made of the Wonkwe stome-vorking techigue with that of ather industries,

The sparse ovidence available in regard to the possible antiquity of the pieces is lonathent uron.
Δ census of the implements chassifiad nocording to onm symem.

CENSUS.

Bifaces 22
Knives and Saws 61
Cleavers 8
Abrupt trimmed Blades 20
Symmetrical Point 9
Asymmetrical Point Woakwine 98
Asymmetrical Point South-East Bondi 53
Piercers 10
Isurinate Pieces 33
Burinate Spalls 8
Scrapers, End 37
, Squat 92
" Discoid 6
" Semi 33
" Butt-end $1: 3$
,, Casual 35
,, Nosed 96
" Side 74
". Concave 62
", Carinate 34
Slugs 9
Elouera 8
Irregular edge Pieces 17
Battered Pieces 4
Sundry Flakes and Blades 27
Scrap 137
Segments 34
Triangles 36
Trapezes 35
Percuters and 'Trimmers 36
Nuclei 18
Punches 6
Grinding slabs, etc. 4
Pounder 1
1,175

LITERATURE.

Campbell, T. D. (1934-1939): "Notes on the Aborigines of the South-East of South Anstralia.", I and IL. Trans. Roy. Soc., S. Austro, Iviii, pp. 22-32 and Ixiii, pp. 27-35.
Campbell, T. D. and Noone, II. V. V. (1943) : "South Australian Microlithic Stone Implements". Rec. S. Austr. Mus., vii (3), pp. 281-307, fig. 1-117.
Tindale, N. B. and Noone, H. V. V. (1941): "Analysis of an Australian Aboriginal's Ifoard of Knapped Flint'". Irans. Roy. Soc., S. Austr., lxv (1), 116-22, fig.2.
Nocne, II. V. V. (1943) :"Some Aboriginal Stone Implements of Western Australia". Kec. S. Austr. Mus., vii (d), pp. 271-280, fig. 1-31.

Harvey, Alison (1941): "Flint Implements of Tasmanian Manufacture found at Cape Hart, Kangaroo Island"' Rec. S. Austr. Mus., vi (4), pp. 363-8, fig. 1-14.
Tindale, N. B. (1937) : "Relationship of the Extinct Kangaroo Island Culture witl Cultures of Australia, Tasmania and Malaya'' Reo. S'. Austr. Mus., vi (1), pp. 39-60, fig. 1-16.
Wade, Arthur (1915): 'Geological Survey of South Australia'", Buill., Dept. of Mine.s, Nu. 4. Smith, Mrs. J. (1880): "Boandik Tribe, South Australian Aborigines".
McCarthy, F.D. (1943): "Trimmed Pebble Implements of Kartan type from ancient Kitchen Middens at Clybucca, New Sonth Wales's, Rec. Austr. Mus., xxi (3), pp. 164-167,

Explanation of Figures 1-157.
1 Semi-uniface worked implement.
y-3 Biface worked discoids.
4-5 Biface worked semi-discoids.
6-9 Flake Knives, first is a double.
10-12 Trimmed Knives.
18-15 Saw-Knives.
16 Cleaver.
17-19 Bladelets.
20-1 Abrupt trimmed bladelets (failures).
22-3 South-Eastern Bondi points, rounded and straight butt.
24 South-Eastern Bondi point, obliqne formed tip.
25 Symmetrical blade.
26-7 Blanks for Woakwine point.
28 Blank for Koakwine point, outer face trimmed on oblique.
29 Woakwine point, plain butt.
30-2 Woakwine points, straight trimmed butt.
33 Woakwine point, rounded butt.
34 Woakwine point, short oblique butt.
35 Woakwine point, incurved butt.
36 Woakwine point, margin fully trimmed.
37-8 Piercers.
39 Piercer on Bondi point (failure).
40 Double piercer, one tip fractured.
41-2 Spalled (Central) Burinate pieces.
43-4 Spalled (Nucleiform) Burinate pieces.
45 Scaled (Rectangular) Burinate picce in twin form.
46 Scaled (Rectaggular) Burinate piece in twin form.
47 Scaled (Oblique) Burinate piece.
48-9 Counter-scaled Burinate pieces.
50-1 Spalls.
52-56 End-serapers, with side trimming.
57-8 End-scrapers, ogival.
59-63 Squat end-serapers like tula adze-flake, last showing repeated re-edging.
64 End-scraper, straight edge.
65-6 Flat end-serapers.
67-8 Discoid serapers, small one iuversely trimmed.
69 Semi-discoidal or thumb nail seraper.
70 Double scraper inverscly trimmed.
71 Butt-end scraper.
72 Casual scraper.
73-5 Ordinary nosed serapers, last with mnels wortu nose.
76-9 Small nosed serupers, last shown more use of concaves.
80-1 Twin form nosed serapers, last with one nose inversely trimmed.
82 Pointed nosed seraper.
83-6 Side-serapers, last shotws inverse abrupt trinming.
87 Side-scraper showing prolonged use.
88-9 Double side scrapers, last inversely trimmed.
90-1 Side scrapers with ordinary and iuverse frimming.
92 Triple side scraper with nose and two sides inversely trimmed.
93-4 Side scrapers with ordinary and inverse trimming in line.
95-9 Concave serapers.
100 Double concave seraper, inverse trimming.

101 Triple concave scraper with nose.
102-4 Carinate scrapers, last like miniature "horsehoof" with a burned crest.
105 Pointed carinate scraper.
106-8 Triple edged Carinate scrapers.
109-10 Pointed "slugs'".
111-2 Elouera, last with plain butt end.
113-4 Irregular edged pieces.
115 Battered ridge piece.
116-7 Miero semi-discoidal scrapers, first inversely trimmed.
118 Micro double scraper.
119 Exceptionally large pointed blade from Cape Northumberland.
120 Crescent segment.
121-2 Ordinary segments.
123 Narrow segment.
124-5 Half-moon segments.
126-7 Rudder-form segments.
128 "Cupid's-bow" segment.
129-30 Semi-segments.
131-2 Equilateral triangles.
133-4 Obtuse triangles.
135-6 Scalene triangles.
137-8 Isosceles triangles.
139-40 "Brackets".
141-2 Asymmetrical trapezes.
143-4 Symmetrical trapezes.
145 Nucleiform quartz percuter.
146-7 Trimmers.
148 Conical nucleus.
149-51 Prismatic nuclei.
152 Flake nucleus.
153 Discoidal nucleus.
154-5 Semi-cylindrical form nuclei (?).
156 Punch made on flake.
157 Gouge made on large flake.
All illustrations are one-half natural size excepting numbers 116 to 118 and 120 to 140 , which are shown natural size.

Fig. 1-24.

Fig. 25-58.

Fig. 59-86.

Fig. 87-116.

Fig. 119.

Fig. 117-118 and 120-157.

A NEW AUSTRALIAN SHARK

By Gilbert P. Whitley, F.R.Z.S.

Summary

Family Triakidae
Fur Whitley 1943.
Fur Whitley, Austr. Zool., x, 2, April 30, 1943, p. 167, Orthotype F. macki Whitley from Mordialloc, Victoria.
A new species of this genus has recently been found in Western and South Australia, which may be named and diagnosed as follows.

Fur Ventralis sp. nov.
Head. Snout bluntly rounded. Most of interorbital flat, sloping laterally over the dorso-laterally situated eyes which are elongate oval, with long horizontal pupils. Nictitating fold distinct from and slightly longer than orbit. Spiracles small, slit-like. Nostrils large, nearer mouth than tip of snout, each with a broad, long (16 mm .) cirrhus overlying a triangular lobe. No nasoral groove. Width of mouth nearly equals preoral length. Upper labial folds longer than lower.

A NEW AUSTRALIAN SHARK

By GILBERT' P, WHITLEY, F.R.Z.S.

Family TRIAKIDAE.

Fur Whitley 1943.
Fur Whitles, Austr. Zool., x, 2, April 30, 1943. p. 167, Orthotype F. macki Whitley, from Murdialloe, Victoria.
A new species of this grous has recently been found in Western and South Australia, which may be named and diagnosed as follows.

Fur ventralis sp, nov.

Ifead. Snout blumtly rounded. Most of interorbital flat, sloping laterally over the dorso-laterally situated eyes which are elongate oval, with long horizontal pupils. Nietitating fold distinct from and slightly longer than orbit. Spiracles small, slit-like. Nostrils latge, nearer mouth than tip of snout, each with a broad, Jong (16 mm .) cirrhus overlying a triangular lobe. No nasoral groove. Width of month uearly equals preoral length. Upper labial folds longer than lower.

Teeth compressed, subtriangular. Teeth of upper jaw all acute, with the centre fang inctinm wutwards, inner shoulders smooth, outer margin with four thick and rather blunt elusps. Symphysial pair of teeth in upper jaw entire, consisting of a solitary broad central fang with wide shoulders and no cusps. Teeth in suidde of lower jaw also entire with broad triangudar central faug, wide shoulders, and no cusps. Latcral teeth of lower jaw becoming less actute witil the outermost are minute, flat, vestiges in pavement formation No symphysial tooth differculiated in lower jaw.

Dental formula $\frac{14 \cdot 1 \cdot 1 \cdot 14}{\text { c. } 42}$. Three functional rows of teeth in midelle of upper jaw and five or six in middle of lower jaw.
'Tongre rugose, broadly romaded. Ampullae of Lorenzini rather sparse. Endolymphatic openings inconspicuous.

First three gill-slits of equal length (27 mur.), fourth smaller (25 mm .), and the fifth, which opens over the pectoral, is nutably the smallest (19 mm .) ; spaces between slits subequal.

Body. Form elongate, subeylindrical. l'redorsal profile not markedly gib)bons. Greatest depth lithe torward of origin of lirst dorsal. Greatest width of
 Dinterdursal and precaulal pingres present. No predtarsal ridge. Shaypeen consists of tine, closessef on imbriente, hard demides, which vary from tricarinate on back To smonth un belly and over candal where they are not notably enlarged. Lateral line system conspicuous; thas is a downward dip, followed by an upward trend in the course of the lateral line between second dorsal and anal fins. Pit organs inconspicuous. Abdominnt porstarge. No caudal pits.

Fins. Dorsal fins buth large, the firs wer the pectural-ventral interspace, the second shighty smathor han the tirst. Anal tin smaller than second dorsal, its origin and ent slightly hehind levels of those of second dorsal. Pectorals moderate sized, reaching below anterior part of first dorsal when adpressed, their
$t i p s$ acutely rounded. Pectnral augle well hefore Ievel of first dorsal. Ventrals mallur than dorsals and situated well hehind level of first dorsal. Caudal fin with large terminal upper lobe ant pointed lower subeandal fin with large terminal tuper lohe and pointed lower subeandal lobe; its lower lobe originates slightly belore level of origin of upper.

Dimensions. The detailed measurements in millimetres are as follows:
Longth of head to first gill-slit, 179.
Length of head to fifth gill-alit, 220 .
Tip of snout to anterior margin of eye, 71 .
Breadth of smout immediately befors eyes, 90.
Snout to origin of pectorals, 230.
Buout to origin of ventrals, 584 .
Lye: horizontal diameter, 27.
Eye: rertical dinmater, 11.5 (outaide nictitating membrane).
Interordital, 69.
tyo to spiracle, 13.
Length of nostril, 21.
Internarial, 82.
Preoral leugth, 85.
Width of mouth (distamee hetween angles), 6\%
Labial fold: upper, ab; lower, 15.
Huight of first gill-opening, 27.
Hoight oft last gill-opening, 19.
Length, suout to upper caudal root, 1,021.
Lenglh of suout to vent (midalo), 611.
Predorsal leugth, 380.
Depth at origin of first clorsal fiu, 17 .
Breadth below origin of first dorsal fin, 147.
Depth of eaudal peduncle, 30 ; breadth, 30.
N'irst dorsal fin: auterior margin, 129; base, 126; last זuy, 52.
Interdorsal space, 312.
Socond dorsal fin: anterior margin, 140; base, 114; last rays 41.
second dorsal fin to caudal base, 119.
Anal fin: anterior margin, 105 ; base, 90 ; last ray, 3 ㄹ.
Anal base to caudal base, 104.
Pectoral: length, 166 ; base, 60.
Origin of pectoral to that of ventral, 371.
Ventral fin: length of anterior margin, 80 ; basc, 66 ; length of last ray, measured ex. ternally, 46 .
Ventral origin to anal origin, 243.
Caudal: upper lobe, 228; lower lobe, 115.
End of upper caudal lobe, 80.
Upper edge of subcaudal motch, 49.
Colour, when fresh (frozen) : Ashy grey above, with slight bronze tinge on hack and sides, and shading to parchment white below. Eye grey, with the pupil dark grey-blue; iris surrounded by a smoky-grey ring. Inside of gill-slits milky White. Fins similar in colour to adjacent parts of body, without any light or dark marks at tips; axils of fins not much lighter than ground-colour. No conspicuous body-markings, such as spots or bars, but diffuse darker tones occur over eyes and gills, and here and there along flanks after thawing and preservation in formalin.

Described from the holotype, a female specimen, $1,250 \mathrm{~mm}$. or 4 ft . "3 in. in total length; weight, 19 lb . Western Australian Museum, registered No. P2451.

Locality. Oli Bumbury, Western Australia, hooked on loug line in August, 1943, by Mr. Nicholas Soulos.

Affinities. The new species is distinguished from the only other one in the genus as follows:
A. Ventral origin below posterior lobe of first dorsal fin. A marked gibbosity predorsally, No interdorsal ridge. Coloration transversely barred and with light spots Fi, macki $\therefore A$. Ventrals behind lovel of first dorsal tin. Predorsal profile not markedly gibbous. Interdorsal ridge present. Coloration uniformF. Mentrakís

There are other minor differences in proportions, in size of anal fin, and outline of caudal.

In addition to the holotype from of Bunbury, other specimens have been examined or reported from varions Western and Sonth Australian localities, and it is cvident that this species is the one which was regarded by Zietz, Waite and other Australian anthors as the Japanese Triakis scyllium, which I (Fish. Austr. i, 1940, p. 115) removed from the Australian list. These extra (paratype) specimens have not all been preserved:

1. Λ mounted skin in the Western Australian Mruseum, from the Abrolhos Islands.
2. A male, 3 ft. 9 in . long, from off Socond Valley, Rapid Bay, Fleurieu Peninsula, South Australia; January 2, 1942. Specimen not seen but a description and sketehes by Mr. Keith Sheard, who obtained the shark, leave me no doubt as to the identification. He states that the species is common off the Fleurieu Peninsula in summer.
3. A cast of a South Australian example in the South Australian Museum at Adelaide.
4. The old skin recorded as "Triakis scyllium" by Zietz and Waite from South Australia, and housed in the South Australian Museum. Total length, $1,220 \mathrm{~mm}$. Head, 220 mm . Interdorsal, 320 mm .
5. A head seen amongst shark offal at Bunbury, Western Australia, and caught by N. Soulos on long line, July 17, 1943.
6. A butchered carcase of a female from Fremantle in Perth market, August 26, 1943.

Range. The new species ranges from Fleurieu Peninsula, South Australia, to the Abrolhos islands (Pelsart Island, December, 1913), Western Australia, and is of sufficient abundance to be of commercial value as food for man.

Vernacular Name. This species was at first called by the Bunbury fishermen the "Gummy with teeth", to distinguish it from the ordinary Gummy shark with blunt crowns (Emissola), from which it can also be separated by the nasal cirrhi. I therefore suggested Whiskery Shark as a vernacular name, and this has been adopted by the Fisheries Department, Perth, and the fishermen themselves.

ON ASTACOPSIPHAGUS PARASITICUS VIETZ 1931 (ACARINA-HALACARIDAE) PARASITIC IN THE GILL CHAMBERS OF EUASTACUS SULCATUS CLARK M.S.

By H. Womersley, F.r.E.S., A.L.S., South Australian Museum

Summary

In 1922 Haswell (Proc. Linn. Soc. N.S.W., 47 (3), 329) described a very interesting acarid, Astacocroton molle belonging to the family Hydrachnellae, from the gill chambers of the eastern Australian fresh water crayfish Euastacus serratus (Shaw). From Europe another species of mite, Lohmanella violacea (Kram.), belonging to the Halacaridae, is known to inhabit the gill chambers of the crayfish Potamobius astacus. In 1931 Vietz (Zool. Anz. 96. 115) described a second species of Halacarid, also from the gill chambers of the Queensland crayfish Euastacus serratus (Shaw) from Moran's Creek, Roberts Plateau, MacPherson Range, Queensland National Park, December, 1926 (A. Musgrave). For the species, parasiticus he erected the genus Astacopsiphagus and a new subfamily, Astacopsiphaginae. All his material, however, consisted of nymphs only, and consequently his generic and subfamily characters would be subject to modification upon discovery of the adult stages.

On ASTACOPSIPH AGUS PARASITICUS VIETZ 1931 (ACARINA-HALACARIDAE) parasitic in the gili.

 chambers of eUdastacus sulcatus Clark m.s.

Fig. 1.
In 7922 Maswell (Prop. Limm. Sow, N.S.W., 47 (3), 329) (lescrihed a very impresting acarid, fetarocroton molle belonging to the family ITrdambuellate from the mill chambers of the eastern Anstralian fresh water erayfish Eunstanes servatus (Shaw).

From Finope another species of mite, Lohmanema violacea (Kram.), belonging to the Halacaridne, is known to inlahit the gill chambers of the aray-fish Potamobius astactus, Tn 1931 Virtz (Zool. Anz. 96, 115) described a second species of Halacarid, atso from the rill chambers of the Queensland mar-fish Eudsturus serralus (Shaw) from Moran's ('rpek. Roheris Platean, MarPhersom Range, Queens land National Park, December. 1926 (A. Musgrave). For the species, parasitious. hu erected the eremus Astucopsiphagns, and a new subfamily, Astaronsiphaginne. All his material, howeyor, consisted of nymphs only, and ennsequently his gemeric and subfamily characters wonld be subject to modification upon diseovery of the ndult stages.

Throngh the kindness of Mr. E. F. Riek of the Biology Demartment, Thaiversity uf brishane, Quecnslant, I have received a mumber of nymphs of the third state. labelled as from the gill chambers of Euastorus sulcatus Clarke m.s. From Tamington National Park, Quecusland, January, 1943 (E, F. Rick).

A food many of these nymphis were so far advanced that the dark well chitinized adnld stages were visible through the nymphal skin, and could casily he dissected out.

It is thus possible in this papor to desuribe the adult of hoth sexes, and to inolify Vietz's smeifie, generic and subfamily diagnoses.

Subfamily Astacopsiphaginae Vietz 1931.

Palpi with two large distinct segments and two small globular soments apically: placed anterin-laterally on the maxillar. Maxillae short and massive, torether forming a dise-like oral opening. Mandibles with recurved teeth. Adalt with well developed antero-dorsal, oenlar and post-dorsal plates: nymph III with two small antero-dorsal plates only. Legs of adult with normal fine setae; of nymphe on segments III-VI with a double row of shorl stont curved spines. Claws paired, long, and slender with a short hook-like empodium between; class in nymphe combed or finely ciliated. Genital valves with area of many small acetabiula.

Genus Astaropstifhagus Vietz 1931.

Large, over 5 imm . in length. Dorsally in adult with four large well chitinized plates, 1 antero-dorsal, 2 ocular and 1 post-dorsal; in $11 y m p h$ with only two small intero-dorsal plates. Eyes absent. Cuticle fincly winkled between doral plates.

Fig. 1, A-J. Astacopsiphagus parasiticus Vietz 1931. A. dorsal view; B. ventral viow: C. mandible: D. palp: E. male genital plate: $H^{\text {. female internal genitalia: G. male internal }}$ genitalia: H. leg I of female: I, dorsal plates of nymph III in relation to capitulum: J. leg I of nymph III.

Maxillac short and massive, anteriorly together forming a large disc-like oral opening. Mambihles with two strong, more or less recurved teeth. Palpi strongly reduced, placed in front of the maxillae near the upper dorsal edge of the nral opening ; 4 -semmented, 1 and II Iarge, medio-laterally strongly flattened, III and IV small, globular and inconspicuous, IV with three stout short setae. Epimera I and II forming is siugh anterior plate in the nymph; III and IV in nympli large and separated; in adull, epimera 1, II and II are united and form a single anterior plate posteriorly deeply excavated from III forwards to between I and IT, botwen coxae I and II the plate is laterally expanded to form subquadrate and large expansions or tectopodia, at smaller similar ixpansion occurs behind coxae II ; the epimera IV of adult is not differentiated. All coxae with one seta, which are very fine in the adult, stronger in nymph (of. Veitz, fir. 4); the median posterior pair uf setae on anterior ventral plate of the nymph and between epimera IV shown by Tritz could not be seen in the adult. Legs 5 -segmented in nymph I, 6 -segmented in nymphs II and III, and in adnlt ; in arlult with normal very fine setae, in nymphs with a double row of small stont look-like spines. Tarsi with sessile paired eurved long and slender claws. which in the nymphs are internally finely comped or ciliated: between the claws is a small stout eurved hook-like empodium. Genital valves with many small acetabula. Sexes only differing in the internal genitalia.

Astacopsiphagus parasiticus Vietz 1931.

Fig. 1, A-J.
Description of Adutt. Length fo $3,360 \mu$, width to $1,640 \mu$, Dark hrown with the dorsal shiclds and capitulum well chitinized. Antero-dorsal plate ronghly hexagonal, ahout $\frac{1}{3}$ length of hody; ocular plates subtriagonal with the outer margin curved; posterior plate elongate (of. fig. 1A). Eyes absent. Mamdihles and palpi as in fir. 1 C and D. Leegs long and thin, I and II $1,200 \mu$ long. IIT and IV 1.440.. Ventrally with the epimera I. II and LII united to form a plate with rloeply: excavate posterior margin. All roxap with a single fine and minute seta. Femate genital plate with the valyes united posterior of the opening, with numerous aertabula; internal genitalia as in fig. 1F. Male genital plate with the valves cutirely separated (ef, fig, 1E) ; internal genitalia as a pair of processes, each with four stont spines (fig. 1G).

Vymph. As described by Vintz, except that the antero-dorsal plates are I wo. not one, the anterior being somewhat crescent shape and wider and narrower than the postrriur which is rmughly quadrate. The nymph III containing fully developed adults measured ap to $4,300 \mu$ in length and $2,100 \mu$ in width.

INDEX TO GENERA AND SPECIES

INDEX ro GENERA AND SPECIES

			Page
ehalinolobus, Myobia	-	-	5i)
chnlybeata, Endoclita.	.	.	\bigcirc
Cheletiella		\cdots	59
(heletomorpha		.	
Chelctonella			60
Cheletophanes	.	--	89
Chelycymana		.	344
Cheyletia -			130
Cheyletus..			58
chilensis. Caudina	-	\cdots	930
chineusis, Ovatipsa	. .	\cdots	32.
chlorizans, Erosaria		'.	314
chrysopters, Endoclita			313
Mhrysopterygius, Pspphn			14.3
Chyzeria + -	. .	.	169
ricercula, Pustularin			310
clandestina, Palmadusta		.	[31
clara, Myobia			5.8
clavigern, Ophiacanthn		1:	210
Cliunstomum .	.		187
Clypeaster			298
colleta, Amphiophiurn			214
Colochirus ..			230
Comanthus.			231
Comatula			231
Comatulella			231
complanatum, Clinoston			189
Comprometra	..		232
compsus, Microeyphus	.		219
Conocladus	.	\cdots	209
consobrina, Staphylea		.	311
constricta, Amphiura			211
Contrasaecum .			239
cordatum, Echinocardiu			227
Coscinasterias ..			206
Cosmocephalus	-	*	185
caniolaria, Fibularia			225
crassus, Hesperaster	.		293
Cribrarim . . .			318
cribraria, Cribraria	-	-	318
Crinia		. .	114
Crossothirombium			174
Cucumaria			229
cyclius, Ammotrophus		\cdots	223
cylindrica, Palangeosa	.	\cdots	323
Cypraea . +	.	.	332
Cypracovula ..	,	\cdots	332
damor, Endoclita	.	.	21
decanus, Plectaster	.	-	204
decipiens, Porrocaecum		-	238
depressa, Arabica			309
diemenensis, Platycercu			13 S
Diosaccopsis	.	.	89
Diosaccus.			90
Dispharynx .	\cdots	\cdots	18.5
dissimilis, Psephotus			143
docta, Acaropsis			61
doliolum, Colochirus			20%
dranga, Monetaria	.		3113
Dromeothrombium			176
dübeni, Pentagonaster	\cdots		197
dobia, Coscenasterias			206
dundasi, Barnardius			126
rlyserita, Uniophora	.		808

[^0]:

[^1]:

[^2]:
 and has been meluded in the key wifle that puasibility in riew if as is mord grobable, the dext in currect, then this specius is a synonym of qurerenain.

[^3]: (v) The one exception (referred to on page 86) is chesapeakensis, of which only the male nppendages have been described.
 (0) One exception, Rnoxi, whose seta formula is given by Gurney (1927b),

[^4]: (0) The inclusion of these suocies in this subgenus misy low opent to question. In latipes

 to have benu the cuse for tho first two legs of Qumtrmes. Wilsom (1932); If this is so than teripes fits uaturally into thes subgenus. Similarly it has been assumer that T, Scote (1894) has drawn
 uf the 3rt endopod in this subgemus. I'lim sime is presumed to hava happened with inormath

 betatice Mounrd (1835a, fig. 7(i) whoms fi setae, in the text, however (1,63), it is strted that tho 4th mondond has 4 rutat' The figure is, therefore, brestined to represcrit the third leg.

[^5]: * Rainbow (loc. cit.) p. 269 gives the dimensions in mm. of the palpal segments as: "trochanter 10.2 ; patella and tibia $9 \cdot 8$; radial joint 1 ; total 21 ', thus making the palp considerably longer than the legs; which is not the case in the type or in 3 other male specimens.

[^6]: at ifs meeting hold on 10th March, 1942.

[^7]: (1) We womld strongly andocate that where material is sufficient, all collectors follow the prustice of not only picking up known forms und sll trimmed pieces, but lof fore learimg o site,
 How kmatler piecses of stone

