
For Reference

NOT TO BE TAKEN FROM THIS ROOM

Ex dibris Universitadis Albertaeasis

THE UNIVERSITY OF ALBERTA

RELEASE FORM

NAME OF AUTHOR A. L. Schaefer

TITLE OF THESIS EFFECT OF EXPOSURE TO COLD ON THE

DISTRIBUTION OF BLOOD FLOW IN SHEEP DEGREE FOR WHICH THESIS WAS PRESENTED Master of Science YEAR THIS DEGREE GRANTED SPRING 1979

Permission is hereby granted to THE UNIVERSITY OF ALBERTA LIBRARY to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only.

The author reserves other publication rights, and neither the thesis nor extensive extracts from it may be printed or otherwise reproduced without the author's written permission.

THE UNIVERSITY OF ALBERTA

EFFECT OF EXPOSURE TO COLD ON THE DISTRIBUTION OF BLOOD FLOW IN SHEEP

> by A. L. Schaefer

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE

OF Master of Science

IN

Animal Physiology

Department of Animal Science

EDMONTON, ALEERTA

SPRING 1979

and the second s

and the transmission of the second se

THE UNIVERSITY OF ALFERTA FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read, and recommend to the Faculty of Graduate Studies and Research, for acceptance, a thesis entitled EFFECT OF EXPOSURE TO COLD ON THE DISTRIBUTION OF BLOOD FLOW IN SHEEP submitted by A. L. Schaefer in partial fulfilment of the requirements for the degree of Master of Science in Animal Physiology.

DEDICATION

I wish to dedicate this thesis to my wife Jane, without whose encouragement, assistance, support, and patience, my ability to carry out this work would have greatly suffered.

ABSTRACT

The effects of acute and chronic cold exposure on the tissue distribution of cardiac output and blood flow were measured in twelve, six-month-old wether sheep. Prior to the measurement of blood flow the animals were randomly allocated into one of three treatment groups and exposed to either; (1) near thermoneutral conditions, designated the control group (CON); (2) 12 hr of cold, designated the acute cold group (AC); (3) 10-12 weeks of cold, designated the chronic cold group (CC). The control group as well as both cold treatment groups prior to cold exposure were maintained at temperatures of 18 ± 4.5 C dry bulb (db), 11 ± 2.8 C wet bulb (wb). Both the AC and CC groups were exposed to 3 ± 1.4 C db, 0 ± 0.8 C wb during their cold exposure periods.

All sheep were kept in individual metabolic crates in temperature controlled chambers under continuous lumination. A ration of 1650g of brome-alfalfa pellets was offered daily.

The establishment of physiological cold stress was confirmed by a demonstrated 70% reduction in respiration rates and a 20-30% increase in oxygen consumption in both the AC and CC sheep. A decrease in body surface temperature and a 17% increase in heart rate were also measured in the chronic cold exposed sheep.

Microspheres of 15 m diameter and containing either Ce-141 or Sn-113 were used to obtain duplicate measurements of cardiac output and blood flow distribution in each sheep.

V

1.1

Technical difficulties prevented usage of three of the 24 sets of microsphere measurements and a further eight sets of data were partially incomplete due to displacement of injection catheters.

Estimates of cardiac output for the CON, AC, and CC exposed sheep were respectively 5.5, 6.5, and 6.1 liters per minute. These differences in cardiac output were not significant at the 0.05 level.

Relative to the control sheep, acute cold exposure caused an increase in blood flow (ml/100g tissue/min)to the thyroids, adrenals, and skeletal. muscle, while a decrease in blood flow was measured to the nasal turbinals, diaphragm, lungs (via bronchial arteries), radius and ulna bone tissue, and the gastrointestinal tract. Chronic cold exposure caused an increase in blood flow (ml/100g tissue/min) to the thyroids, nasal turbinals, and skeletal muscles, while a decrease was measured to the radius and ulna bone tissues, lungs (via bronchial arteries) and gastrointestinal tract.

These cold induced differences in blood flow are reflective of adaptive changes involving nutrient and heat distribution in the animals. Increased heat production via shivering or nonshivering thermogenesis in the skeletal muscles of the cold exposed sheep was possibly mediated by increased thyroid and adrenal activity. Evidence of possible increased heat conservation can be seen by the reduced blood flow to the extremities in the cold exposed sheep as well as

vi

the reduction in bronchial arterial flow.

The redistribution of gastrointestinal blood flow in the cold exposed sheep was primarily manifested as a reduced blood flow to the reticulo-rumen, and could potentially be a factor influencing digestive function and the absorption of nutrients in these animals.

ACKNOWLEDGEMENTS

I extend my gratitude to Drs. L.P. Milligan and R.T. Berg, past and present Chairmen, of the Department of Animal Science, for use of the Department's facilities and, as instructors, for their contribution to my education.

Sincere appreciation to my supervisor Dr. Bruce Young is gratefully achnowledged for his support and patience throughout this study. His example as a person and a scientist has been a great stimulant to me throughout my program. Appreciation is also extended to Dr. Young for the many opportunities he has provided me with during my study, not only concerning this specific research project but towards my general development as a graduate student.

I greatfully achnowledge the instruction and surgical advice of Dr. R.J. Christopherson and also extend my appreciation to Dr. R.T. Hardin, Mr. A. Malenbacher, and Mr. R. Weingardt for assistance and advice on experimental design and statistical analysis.

I thank Dr. A. Shish, Faculty of Pharmacy and Pharmaceuticle Sciences, Division of Bionucleonics and Radiopharmaceuticals, for use of radionuclide counting equipment which was of great importance to my study.

A special note of appreciation is extended to Mr. Brian Turner and Mr. Chriss Ediss for their invaluable assistance with the preparation and handling of the radionuclides and the nuclide equipment used in this study.

viii

11 - C

Appreciation is also extended to the following people; Mr. Norm Arbon, Mr. Terry Fenton, Mr. Jack Francis, Mr. Loyed Gedge, Mrs. Jacquie Jones, and Mr. Brian Kerrigan for their valuable technical assistance in many aspects of this study. Also thanks is given to Dr. K. Takahashi, associate professor, The College of Dairying, Hokkaido, Japan,, who assisted with dissection of the animals, operation of the equipment and whose personal character added much to the study.

Appreciation is also given to Miss Susan Smith and Mrs. Wendy Kinisky for their work on data and appendix tables used in this thesis.

Table of Contents

Chapter		Pa	ge
I.	СНА	PTER 1 :INTRODUCTION	. 1
	A .	CHAPTER 2 : REVIEW OF LITERATURE	• 4
		2. 1 General Effects of Cold Exposure	. 4
		2. 2 Effects of Cold Exposure on Blood Flow	• 5
		2. 3 Effects of Cold on Digestive Function in Ruminants	. 8
		2. 4 The Effects of Blood Flow on Digestive Function	10
		2. 5 Technical Methods of Investigating Blood Flow	11
	в.	CHAPTER 3 : DESIGN OF THE STUDY	16
		3. 1 Preparation Period	16
		3. 2 Pre-Treatment Period	17
		3. 3. 1 Thermal Treatment Period	17
		3. 3. 2 Physiological Measurements and Microsphere Injections	18
		CHAPTER 4 : THE EFFECTS OF ACUTE AND CHRONIC COLD EXPOSURE ON BLOOD FLOW DISTRIBUTION IN SHORN SHEEP	22
		Abstract	
		Introduction	
		Methods	25
		Results	
		Discussion	3.3
		CHAPTER 5 : GASTROINTESTINAL BLOOD FLOW DISTRIBUTION IN COLD EXPOSED SHEEP	46
		Abstract	46
		Introduction	47

The second se Constant and a second and and a second secon THE REAL PROPERTY OF THE PROPERTY OF THE REAL PROPE TO THE REAL PROPERTY OF THE REPORT OF THE PARTY OF THE PA the term of the second s THE REAL CONTRACTOR AND A DESCRIPTION OF A

Methods
Results
Discussion
E. CHAPTER 6 : GENERAL DISCUSSION
6. 1 General Effects of Cold Exposure60
6. 2 Skeletal Muscle
6. 3 Internal Organs and Glands
6. 4 Skin and Pat63
6. 5 Respiratory System
6. 6 Gastrointestinal Tract
F. CHAPTER 7: SUMMARY AND CONCLUSIONS
G. BIBLIOGRAPHY
H. APPENDIX I : MATEBIALS AND METHODS (SUPPLEMENTARY)
I. 1 Microsphere Examination and Handling84
I. 2 Injection Solution and Solution Additives85
I. 3 Infusate Temperature
I. 4 Body Positioning During Microsphere Injection
I. 5 Behavioural Considerations
I. 6 Equipment
I. 7 Respiratory Gas Analysis and Respiration Rates
I. 8 Blood Analysis
I. 9 Body Surface Temperatures
I. 10 Dissection
I. 11 Istotope Counting
I. 12 Calculations

the state of the second s The state of the second statement of the second statem - - I as the first of the providence of the second s International International States of the second states of the second states and the sec A REAL PROPERTY AND A REAL the second s The second se the second the second III - IS IF STREAMS IN THE INC.

List of Tables

Table.....Page

- Percent distribution of cardiac output per organ in sheep exposed to near thermoneutral (CON), acute cold (AC) and chronic cold (CC) temperatures......43
- 3. Estimation of tissue and organ blood flow (ml/100g/min) in sheep exposed to near thermonutral (CON), acute cold (AC) and chronic cold temperatures..44

- 7. Percent distribution of gastrointestinal blood flow and relative blood flow in sheep exposed to near thermoneutral (CON), acute cold (AC and chronic cold

xiii

service in the second

and the second second

- A CONTRACTOR OF A CONTRACTOR O

	(CC) temperatures
8.	Blood flow estimations (ml/100g/min) for sheep with
	microsphere injections in the left ventricle and
	descending aorta104

List of Figures

Figure.....Page

xvi

sections in field

I. CHAPTER 1 :INTRODUCTION

An animal's thermal environment has been shown to influence in its efficiency of nutrient utilization and productivity (Kleiber, 1975). Many cold temperature induced changes in thermoregulation and thermoadaptive mechanisms in animals have been documented (Astrand and Rodahl, 1970; Bligh and Moore, 1972; Henshaw, 1978). Observable changes in digestive efficiency, primarily and practically demonstrated as a reduced feed digestibility, in cold exposed animals have also been reported (Warren etal. 1974; Westra and Christopherson, 1976). Ultimately, the energy budget of the animal is affected by these cold induced events which in turn affects the growth and production of the animal (Young, 1975). These factors become important to livestock producers because they affect the economic advantage of animal production in different geographical or climatic areas of the world.

In domestic ruminants, factors such as reticulo-rumen motility, rate of passage of digesta, and the influence or mediation of various endocrine hormones including thyroxin (T4), triiodothyronine (T3), adrenalin, and noradrenalin have been implicated in cold induced changes in animal production (Westra and Christopherson, 1976; Kennedy etal. 1977; Thompson etal. 1977). Also, the involvement of blood flow as it affects nutrient and heat transport and exchange is indicative of the significance of the circulatory system in thermal adaptation (Webster, 1974; Hales 1976a, b).

and any other of the state of t

the second - In the second se


However, due largely to technical limitations, information concerning the rcle of blood flow has been difficult to obtain. Recent development of the radioactive microsphere technique has allowed some progress in measurement of blood flow in animals (Heymann etal. 1977). A few studies have been carried out on domestic ruminants under thermoneutral and acute cold conditions (Alexander, 1973; Hales, 1976a). However, to date, no studies have been undertaken to investigate the involvement of blood flow under long term or chronic cold acclimation conditions, in spite of the fact that major physiological changes are precipitated during cold acclimation.

The purpose of the present study was to use the radioactive microsphere technique to investigate blood flow changes occurring in domestic sheep as a result of acute and chronic exposure to cold. The results of such an investigation should aid in determining if differences in blood flow and blood flow distribution could account for digestive and thermoregulatory changes reported by other researchers. Understanding the nutrient and thermal transportation and exchange mechanisms could provide greater insight into the functioning of animals and consequently be of practical significance in designing or recommending animal feeding and management practices. This understanding may contribute to improving production in climatic areas where cold stress is a factor.

The findings in this thesis are presented in the text

A second se

basically as two papers in a scientific journal form, chapters 4 and 5, with an accompanying review of literature, chapter 2. Appendix I and II contain supplementary methods and results not considered appropriate for inclusion in chapters 4 and 5. A general discussion and the conclusions are presented in chapters 6 and 7 of the thesis. Individual measurements for each animal are contained in appendix III.

A. CHAPTER 2 : REVIEW OF LITERATURE

2. 1 General Effects of Cold Exposure

Exposure of mammals to cold environmental temperatures has been shown to elicit many physiological changes which are discussed in comprehensive reviews by Hardy (1961), Webster (1974), Himms-Hagen (1978) and others. In general, physiological responses to cold include:

(1) peripheral vasoconstriction of blood vessels (Astrand and Rodahl, 1970; Anderson, 1977; Henshaw, 1977).

(2) an increase in heart rate and cardiac output (Thompson etal. 1975; Hales, 1976a).

(3) a decreased respiration rate and lower critical temperature (Webster etal. 1969a, b; 1974).

(4) an increase in the metabolic activity of the thyroid gland and adrenal cortex accompanied with increased circulating levels of thyroid and adrenal hormones (Guyton, 1969; Westra and Christopherson, 1976; Kennedy etal. 1977; Thompson etal. 1978).

(5) an increase in metabolic rate and thus heat production (Webster etal. 1969a, b; Astrand and Rodahl, 1970; Thompson etal. 1975; Depocas and Behrens, 1978).

The primary purpose or function of the above physiological changes is to facilitate an optimum thermoregulatory response to cold stress in order to maintain homeothermy. This is basically achieved by reducing presentation of the second division of the second s

the second distance of the second distance of the second s

heat loss and/or increasing heat production.

The mechanisms involved in cold induced increased heat production are basically two-fold, namely, (1) shivering thermogenesis and (2) nonshivering thermogenesis . An increase in heat production via shivering thermogenesis occurs primarily as a result of increased physical activity of skeletal muscle. Thermogenic effects of thyroid hormones and catecholamines have been reported in some animal species (Guyton, 1969; Depocas and Behrans, 1978; Foster and Frydman, 1978) however, the exact mechanism of nonshivering thermogenesis is yet unresolved.

A reduction in heat loss is primarily a result of reduced peripheral blood flow. Convective and conductive heat loss from the periphery is decreased as a consequence of functionally increasing the effective tissue insulation of an animal.

Although the above thermoregulatory mechanisms apparently vary in importance with different species, they are observed to be mostly universal in mammals. The control or integration of these responses is generally considered to occur via the hypothalamus (Webster, 1974), but again, the specific mechanisms of each remain largely speculative.

2. 2 Effects of Cold Exposure on Blood Flow

One major rcle of blood flow during cold exposure is the redistribution of heat within the body. As discussed by Federov and Shur (1942), Webster (1973; 1975), Hales

100 roths on miners also of pressing 5 of

(1976a), Levey etal. (1977) and Henshaw (1978), the redistribution of blood functions primarily as a heat conservation mechanism. The suggested processes include counter current exchange or, arterial-venous heat exchange (Astrand and Rodahl, 1970) and perhaps more important, vasoactive actions (vasoconstriction, vasodilation), involving arterial-venous blood shunting.

Edwards (1967), Webster (1974), and Hales (1976a) have reported that the vasoconstriction of the skin and extremities is a logical response to reduce conductive and convective heat loss by effectively increasing the tissue insulation of the animal. The extremities compose a large portion of the body surface (approximately 30%) (Webster, 1974; Bal, 1977) and , as such, can account for a large portion of the animal's heat exchange with the environment. Consequently, reducing the heat loss from the extremities is of considerable advantage to animals in a cold stress situation. However, to avoid cold damage, such as frost bite of tissues, a mammal must maintain at least a minimal blood supply to all tissues, including the skin and extremities. This blood supply must be sufficient to meet minimum nutrient and thermal demands to prevent freezing. Consequently, considering the relative lack of metabolically active tissue contained in the skin and extremities (Webster, 1974), and their high rate of heat loss, maintenance of temperature regulation in these tissues must be achieved largely via regulation of the blood supply.

the second

During severe cold exposure, the blood supply regulation to surface tissues is observed via "hunting" reactions, or cyclic vasoconstriction-vasodilation of the extremities (Meyer and Webster, 1971; Levey etal. 1977; Henshaw, 1978).

Cold exposure also affects the blood flow to areas other than the skin and extremities. However, comprehensive information concerning the effect of cold exposure on blood flow in domestic ruminants is somewhat limited. An increase in blood flow to shivering skeletal muscles in acute cold exposed lambs and adult sheep has been reported by Alexander (1973) and Hales (1976a). The increased blood flow to these tissues was assumed to be due to the increased nutrient demand for shivering.

Alexander (1973) and Hales (1976a) also reported an increase in blood flow to the adipose tissue, which in the case of lambs, was interpreted as a direct thermogenic response of the brown fat tissue. In the adult sheep, the increase in blood flow to the adipose tissue is seen as part of a mechanism to mobilize fatty acids into the circulation for metabolic and thermogenic use (Thompson etal. 1975; 1978).

Although a significant increase in blood flow to tissues such as adrenals and thyroids of adult cold exposed sheep, signifying increased metabolic activity in adrenal and thyroid tissue, has not been shown, increased circulating catecholamine levels and T3, T4 levels have been demonstrated. (Webster etal. 1969; Westra and

The second secon

Christopherson, 1976; Kennedy etal. 1977; Thompson etal. 1977). According to a review by Webster (1974), one of the effects of these elevated endocrine hormone levels is, by affecting cell membrane function, to enhance the oxidation of volatile fatty acids (VFA) in metabolically active tissues. Also the involvement of the liver in converting VFA, specifically propionate, to glucose for thermogenic purposes has been demonstrated (Thompson etal. 1975; 1978). The importance of portal blood flow concurrently affecting the distribution of VFA to the liver and the consequent distribution of glucose to metabolically active tissue has also been shown (Thompson etal. 1975; 1978)

Consequently, cold exposure can be seen to influence blood flow in animals via two basic processes; (1) By initiating the transport and redistribution of heat, particularly involving vasoactive and counter current mechanisms of the superficial tissues and (2) by influencing the mobilization and availability of nutrients, such as VFA, for conversion and oxidation in thermogenic tissues.

2. 3 Effects of Cold on Digestive Function in Ruminants

The reduction of digestibility of dry matter (DM), energy (E), acid detergent fiber (ADF), and nitrogen (N) feed components in domestic ruminants as a result of cold exposure has been repeatedly demonstrated (Blaxter and Wainman, 1961; Warren etal. 1974; Westra and Christopherson, 1976; Kennedy and Milligan, 1978). In combination with the

need to maintain body temperature, the reduced digestibility of feed can be one of the major energy costs to the animal in a cold stress situation (Young, 1975).

Reduced digestibility as a result of cold exposure has been shown to be accompanied by several factors. An increased intake of feed necessitated by an increased energy demand has been reported (Baile and Forbs, 1974). An increased reticulo-rumen motility accompanied with an increased rate of passage of digesta, possibly mediated by thyroid hormones, has been demonstrated in cold exposed sheep (Westra and Christopherson, 1976; Kennedy etal. 1977). The concomitant effect of these physiological changes has been to reduce reticulo-rumen digesta volume in the cold exposed animals and to allow the passage of a more nutrient complete digesta to the intestinal regions of the gastrointestinal tract (GIT). One consequence of which , as observed by Kennedy and Milligan (1978), was to increase the apparent digestion of organic matter and non-ammonia nitrogen in the intestinal regions, which in part compensated for the reduced digestion in the reticulo-rumen.

The altering of digesta breakdown and absorption time at the various GIT sites influences the digestive function at those sites (Maynard and Loosli, 1969). The effect of cold exposure on digestive function can hence be viewed as causing an apparent reduction and redistribution of digesta absorption within the GIT.

2. 4 The Effects of Blood Flow on Digestive Function

Digestibility of feed or the amount of nutrients obtained from feed by a ruminant can be affected by many factors (Maynard and Loosli, 1969) . As was previously mentioned, the breakdown of digesta and the absorption of nutrients into the blood are two such factors.

The specific involvement of blood flow in the ruminant stomachs is primarily related to its effect on the transcapillary concentration or osmotic gradient. Hence the absorption and transport of hormones, substrates and nutrients to and from the tissues of the GIT are affected (Renkin, 1968; Engelhardt, 1970; Dobson etal. 1975; 1976).

From the foregoing discussion an interrelationship can be seen to emerge whereby digestive function, measured by feed digestibility, is affected by both cold exposure, and possibly blood flow. Also, blood flow is reportedly affected by cold exposure. Consequently, digestive functional changes observed in domestic ruminants as a result of cold exposure could be influenced by cold induced blood flow redistribution in and to the GIT.

Some studies have been made on regional blood flow in the GIT of ruminant animals at specific sites and under various experimental conditions (Sellers etal. 1964; Bell, 1967; Garbulinski, 1973; Webster, 1972; Symonds and Baird, 1973; Panareto, 1974) . However, there has been no previous information available regarding the capillary blood flow to the entire GIT and fractional distribution therein. This the second second

lack of information is particularly relevant to further understanding of the effects of cold exposure on domestic ruminants. The lack of suitable research techniques has inhibited the study of capillary blood flow in animals. The problem in researching capillary blood flow to the GIT is consequently one of being able to utilize the appropriate investigative tool.

2. 5 Technical Methods of Investigating Blood Flow

As discussed in the previous sections, blood flow to specific areas of the GIT has been studied by several researchers. The more common techniques used in these studies have been: (1) indicator dilution methods involving both radioactive and nonradioactive markers (Symonds and Baird, 1973; Panareto, 1973; Setchell and Linzell, 1974) ; (2) thermal dilution method (Fegler and Hill, 1957; Webster and White, 1972) and (3) electromagnetic flow meters (Sellers, etal. 1964).

With the indicator dilution methods, catheters are placed "upstream" and "downstream" of a particular organ or tissue. A known amount of indicator is then injected or infused at a constant rate "upstream". Hence, by measuring the arterio-venous difference in indicator concentration, and uptake of indicator by the tissue, blood flow estimations can be obtained by calculations based on the subsequent "dye dilution curve". These calculations are based on the Fick principle. (Hamilin and Smith, 1977).

and the second s

The thermal dilution method (Fegler and Hill, 1957; Webster and White, 1972) is basically identical to the indicator dilution technique with the unique exception that the indicator (a thermal difference), is often administered in the form of room temperature saline. Detection of thermal differences are consequently made via the use of a thermal sensing system of thermocouples or thermistors.

Both the indicator dilution and the thermodilution methods have the advantage of being relatively simple, at least in theory, to utilize and with the added option of repeatable measurements on an individual animal. However, catheter placement and patency are chronic problems with these techniques, and phlebitis is often encountered (Webster and White, 1972). Also, especially with the indicator dilution method, the reliability of results has been questionable due to selective uptake of indicator by tissues and apparent differences in measurements obtained by using different indicators (Foster and Frydman, 1978). Of course one of the limitations of these methods is that only one tissue or organ can be measured at one time.

The methodology for measuring blood flow via various electronic sensing systems is somewhat dependent upon the type of flow meter used. In principal these methods (Hamilin and Smith, 1977) involve the placement of a collar or probe around a blood vessel and alterations in the electromagnetic current, which are proportional to blood flow through the probe, can be recorded. The advantages of

these techniques are that instantaneous and accurate measurements can be obtained, repeated measurements can be made on one animal, and an estimation of pulse flow is possible. A few disadvantages are that surgical manipulation of the animal is required, restrictions of the natural vessel diameter are necessitated, the apparatus is somewhat bulky, and usually only one vessel can be monitored at one time.

The recent improvement of radioactive microspheres for use in microcirculation studies has provided a useful method for capillary blood flow research. Basically, this technique involves the injection of millions of radioactive plastic spheres into an arterial system one desires to measure. The microspheres are commonly injected into the left ventricle via a catheter inserted down the carotid artery, or directly via a hypodermic needle. With left ventrical injections, the fractional distribution of capillary blood flow to all tissues of the body can be estimated. The size of microspheres can vary between 3μ m up to 50μ m, however, the size most commonly used to measure capillary blood flow is 15,m±3.0 (mean S.D.) These spheres, behaving similar to oversized red blood cells, then are distributed via the arterial flow to the capillary beds of the body where they lodge. Consequently, by comparing the radioactive counts in a given amount of dissected tissue or organ, to the initial injected dose, an estimate of proportional blood flow to that tissue can be obtained. This technique has the clear

advantage of being able to compare all tissues of the body simultaneously. Repeatable measurements are also possible by making repeated injections of microspheres containing different nuclide labels. Presently, there are commercially available at least eight nuclide labels which can be used in conjunction with microspheres. However, nuclide counting procedures become complex with more than two or three nuclide injections.

Disadvantages with the microsphere technique arise with the need to inject or infuse the spheres into the arterial system. This often requires surgical manipulation of the animal (Hales, 1973b). The need for nuclide counting equipment and the sacrificing of the experimental animals, to obtain tissues for counting, is also a usual disadvantage of the microsphere method. However, animal sacrifice is not essential for all microsphere research. For example, in the study of pulmonary circulation in humans low energy, short half life, serum and albumin microspheres are utilized (Buckberg etal. 1969; Heymann etal. 1977).

Comprehensive reviews and comparison of radioactive microsphere techniques have been provided by several reviewers (Buckberg etal. 1971; Hales etal. 1973b; Faichney and Hales , 1974; Heymann etal. 1977; Foster etal. 1978).

The investigation of capillary blood flows in ruminants utilizing the radioactive microsphere technique have been achieved by several researchers (Alexander etal. 1972; 1973; Hales, 1973b; Engelhardt and Hales, 1977). However, of

these, only Alexander and Hales have obtained measurements of blood flow in cold exposed ruminants. Alexander's studies were on very young lambs while Hale's work involved comparisons on adult sheep exposed to warm and acute cold stress. Measurements of blood flow from the studies of Alexander and Hales are presented in detail in the following chapters where direct comparisons can be made with data obtained during the present study.

WHICH PARSING NOT THE PARTY PARTY.

B. CHAPTER 3 : DESIGN OF THE STUDY

The purpose of the study was to measure various physiological parameters, including capillary blood flow, in wether sheep that had been exposed to warm, near thermoneutral conditions, and to acute and chronic cold conditions. A prerequesite for any experiment of this nature includes the standardizing of animals, and the development of a "plan of action" in which a premeditated chronological sequence of events is prescribed and followed. The following is a brief description of the series of events undertaken.

3. 1 Preparation Period

The experimental sheep were from a group of six -month-old wethers raised at the University of Alberta farm. During the preparation period of three weeks the animals were housed in free stalls with free access to a growing ration, water, and an iodized NaCl block. The growing ration consisted of approximately 50% rolled oats, and 50% brome-alfalfa pellets offered ad libitum. Their treatment during this period consisted of shearing (and every two weeks thereafter), treatment for external parasites by a sprayed application of "Lindane" (Benzene hexachloride 0.5%), recording of initial body weights, and the surgical preparation of exteriorized carotid loops (Hecker, 1974). TARGET AND IN TRACTOR & A DESCRIPTION AND

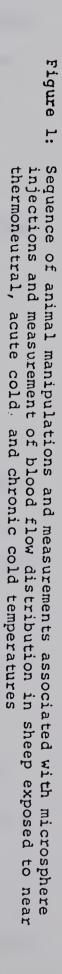
3. 2 Pre-Treatment Period

During this four week period the animals were kept initially for 7-10 days in individual metabolic crates while recovering from surgery. They received penecillin (5cc/day IM for 5 days) and were treated for internal parasites (2g Thiabendazole/45 kg body weight as a drench). An intramuscular injection of retinol, cholecalciferol, and alpha-tocopherol was also given. The surgical sutures used for the carotid loops were removed and the animals then transferred again to free stalls as in the preparation period. The sheep were, over this period of 28 days, introduced to a brome-alfalfa pelleted ration ad libitum and maintained on this diet for the duration of the experiment. One week prior to allocation to thermal treatments the animals were again returned to the individual metabolic crates in controlled temperature rooms (temp 18.7 C db, 11.6 C wb)

3. 3. 1 Thermal Treatment Period

During this phase of the experiment the animals were randomly assigned to one of three treatment groups each of which contained four animals. The thermal treatments consisted of control (CON), acute cold (AC), and chronic cold (CC), the relative temperatures and times of which are given in the methods section of chapter 4. All animals were offered 1625 g (air dry) of brome-alfalfa pellets per day, given in two equal servings at 0800 and 1700 hr daily.

Daily measurements of feed and water intake as well as weekly measurements of body weight and respiratory gaseous exchange were carried out on the CON and CC animals during the 10-12 week adaptation period. The measurement of apparent feed digestibility, via a total feces collection trial, and the measurement of body surface temperatures were also made.


3. 3. 2 Physiological Measurements and Microsphere Injections

Due to the time and equipment logistics, it was not possible to conduct the blood flow measurements on all animals at the same time. The measurements described in this section were consequently done on sheep one at a time, or, on occasion, in pairs.

During this phase, each animal in the three treatment groups, CON, AC, and CC, had been exposed to their respective thermal treatments for the prescribed period. The sequence of events, injection of microspheres and the measurement of associated physiological parameters are illustrated schematicaly in Figure 1.

A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY.

at the second se

Ml= measure		MEASUREMENT	TREATMENT OR MANIPULATION
measurement of blo	AM		
US. DAY	РМ	Body wt. Body temp	Catheter
IN heart rate, and	АМ		Feed removal (0900) Heart lead attach. Flush catheters
JECTION DAY respiratory rate		Ml	PRE-INJ II Cath. plac. Tamb. Halter Quiet period
r rate .	Ма	м2 м1	INJ BETWEEN II 1 INJ II
		м2 м3	INJ POST 2 INJ Blood sample Resp. gas analy.
SUBSEQUENT DAY		Tissue counting	Terminate Dissection

M2= measurement of cardiac output, heart rate, respiratory rate, and microsphere distribution M3= measurement of hematocrit, hemoglobin, blood pressure, heart rate, respiratory rate, blood

gas, body surface temperature, and respiratory gas analysis Cath. plac.= catheter placement into left ventricle and right atria Halter= haltering the animal to the front of the metabolic crate Tamb.= attachment of tambour recording apparatus for the measurement of respiration rate

On the day prior to the microsphere injections, each animal was prepared with injection and sampling catheters. The catheters were inserted approximately 15-20 cm into the right jugular vein and left carotid artery, and thus at this stage were not in the chambers of the heart. Preparing the catheters one day previous to the microsphere injections reduced the need for handling the animals on the day of injections.

During the morning of the day of microsphere injections the animals were further prepared with electrocardiogram (EKG) recording leads, respiration rate measurement equipment, and the injection and sampling catheters were flushed with 10 ml of heparinized physiological saline.

During the pre-injection period (PRE-INJ) final catheter placements into the left ventricle and right atria were carried out. Physiclogical measurements (M1) of blood pressure, heart rate, and respiratory rate were made at this time and the animal was haltered in a fixed position to facilitate a consistent alignment of the head, neck and trunk. The animal was then left undisturbed for 20-30 min before the first microsphere injection was made.

The injection of Ce-141 and Sn-113 microspheres (INJ 1,INJ 2) and the measurement of cardiac output, heart rate, and respiration rate were then completed. Between the injection of the nuclides (BETWEEN INJ) the heart rates respiratory rates, and blood pressures were again measured. This between injection checking was used to indicate any

changes in the "steady state" condition of the animal which may have affected the consistency of the results.

Following the injection of both radioactive microspheres, (POST INJ), final measurements (M3) of heart rate, blood pressure, and respiratory rates were taken as well as blood and respiratory gas samples for the determination of blood gas, hematocrit (Hct), hemoglobin (Hb), and oxygen consumption. Body surface temperatures were again measured at this time.

Sacrificing the animal, tissue dissection and nuclide counting was then carried out as described in the methods sections of chapters 4, 5, and appendix I. Specific individual animal results with regards to physiological parameters and blood sampling volumes are included in detail in appendix III.

C. CHAPTER 4 : THE EFFECTS OF ACUTE AND CHRONIC COLD EXPOSURE ON BLOOD FLOW DISTRIBUTION IN SHORN SHEEP

A. L. Schaefer, B. A. Young, and B. V. Turner Department of Animal Science, University of Alberta, Edmonton, Alberta

Abstract

The effects of acute and chronic cold exposure on the distribution of cardiac output and blood flow were measured in six month old sheep (35-50kg) using 15µm radioactive microspheres containing Ce-141 and Sn-113. Four control sheep (CON) were exposed to 18±4.5C dry bulb (db), 11±2.8C wet bulb (wb) for 10-12 weeks. Acute cold (AC) and chronic cold (CC) treatment groups of four animals each were exposed to temperatures of 3±1.4C db, 0±0.8C wb, for 12 hr and 10-12 weeks respectively prior to and during measurements.

Confirmation of physiological cold stress was demonstrated in the cold exposed sheep by decreased respiration rates and by a 32% and 21% increase in rate of oxygen consumption in the AC and CC groups respectively. Decreased body surface temperatures and a 17% increase in heart rate were also measured in the chronic cold exposed sheep.

Estimates of cardiac output for the CON, AC, and CC

the strend of some price root since a strength

- Junit

have put of the second se

exposed sheep were respectively 5.5, 6.5 and 6.1 liters per minute. Relative to the control sheep, acute cold exposure caused an increase in blood flow (ml/100g tissue/min) to the thyroids, adrenals, and skeletal muscle while a decrease was measured in blood flow to the nasal turbinals, diaphragm, lungs (bronchial arteries), radius and ulna bone tissues, and the gastrointestinal tract. Chronic cold exposure caused an increase in blood flow to the thyroids, nasal turbinals, and skeletal muscles, while a decrease was measured to the radius and ulna bone tissues, lungs (bronchial arteries) and gastrointestinal tract.

Owner & succession of the succ

Introduction

Blood flow distribution is important in nutrient transportation and thermal distribution and exchange in mammals (Kleiber, 1975; Hales, 1976b). During cold exposure heat exchange mechanisms involving arterial-venous heat transfer or counter current exchange mechanisms (Astrand and Rodahl, 1970) and blood shunting by vasoactivity (vasodilation, vasoconstriction) have been reported to be functionally important in thermoregulation (Webster, 1973; 1975; Hales, 1976a; Levey etal. 1977). The resulting transfer of heat from the shivering muscles and viscera to the skin and extremities is thermally advantageous to the animal in maintaining its body temperature (Federov and Shur, 1942; Hales, 1976a). Primarily, these thermoregulatory actions function to optimize heat conservation while concurrently preventing cold tissue damage to the skin and extremities.

The development of metabolic changes as a consequence of chronic cold acclimation is well established in mammals (Webster, 1974). There is however, little understanding of the involvement and influence of circulatory mechanisms of blood flow during these metabolic changes. Suitable investigative methods for measuring capillary blood flow have been lacking. Recently the radioactive microsphere method, see reviews by Hales 1973b and Foster 1978, has been found to be valuable and reliable for investigating

and the second s the second tain the last the same the same time of the same set

capillary blood flow and consequently has received increasing use in studies on domestic ruminants by several researchers (Alexander etal. 1972; 1973; Hales, 1973b; Engelhardt and Hales, 1977). However, only a few investigations have been made on animals exposed to thermal stress (Alexander, 1973; Hales, 1973a; 1976a, b) and to date, no studies have investigated blood flow changes occurring as a result of long term or chronic acclimation to cold. The purpose of the present study was to use the radioactive microsphere technique to investigate blood flow and blood flow distribution in domestic sheep and changes occurring as a result of acute and chronic cold exposure.

Methods

Animals, Preparetion and Treatment

Twelve crossbred wether sheep, six months of age and weighing 35 to 50 kg were used. At the start of the study, all sheep were treated for internal and external parasites and received injections of retinol, cholecalciferol, and alpha-tocopherol. To ensure a relatively constant fleece depth, the sheep were shorn every two weeks to a fleece depth of approximately 1 cm. Six to eight weeks prior to the allocation to treatment groups, carotid skin loops were established on the left common carotid artery of each sheep according to the surgical methods described by Hecker (1974).

All animals were housed in individual metabolic crates

a second second second and second sec

in climatic controlled rooms under constant lighting conditions, pricr to and during the thermal treatments and blood flow measurements.

A ration of 1650g (air dry) of brome-alfalfa pellets (Bromus inermus, Medicago sativa) was offered in equal 825g servings at 0800 and 1700 hr daily (dry matter 91.65%, acid detergent fiber 49.99%, energy 4.493 Kcal/g, crude protein 14.23%). The ration was ground through a 5mm screen before pelleting to 3mm diameter. The sheep had free access to water and iodized block salt.

The sheep were randomly assigned to three groups of four animals each. The temperature treatments were as follows: (1) Control animals (CON) were conditioned for 10 to 12 weeks to 18.7 (range 13.3 to 22.2) C dry bulb (db) and 11.6 (range 10.5 to 16.1) C wet bulb (wb); (2) The acute cold group (AC) was initially conditioned to 18 C db, 11 C wb for six weeks followed by 12 hr exposure to 3 (range 1.6 to 4.4) C db and 0 (range -1.6 to 2.2) C wb; (3) The chronic cold animals (CC) were exposed for 10 to 12 weeks at 3.3 (range 1.6 to 4.4) C db and 0 (range -1.6 to 2.2) C wb.

Catheterization

To facilitate the injection of microspheres, a Tygon catheter (Tygon microtubing, 0.04-0.07mm ID, Norton Plastics, Akron Ohio, U.S.A.) was inserted into the carotid artery of each sheep 24 hr prior to the microsphere injections. The previously established carotid loops allowed catheter insertion under local anesthetic thus avoiding the

And Designation of the local division of the

need for the more radical surgical manipulation used in previous investigations (Hales 1973a, b).

The constant withdrawal of arterial blood, during the microsphere injection phase, as per the artificial organ technique, for the calculation of cardiac output (CO) (Hales, 1973b) was accomplished by inserting a catheter approximately 10cm cephalically into the exteriorized left common carotid artery. In preliminary tests, the femoral artery as used by Hales (1973b) for the artificial organ blood withdrawal was found to be unsatisfactory for providing consistent withdrawal rates of greater than 15 ml/min considered necessary for the present study.

Venous blood sampling for estimating blood flow via arterial venous anastomosis (AVA) was obtained by placing a Tygon catheter (0.04-0.07mmID) into the right atria via the right jugular vein. A mixed venous blood sample was consequently obtained for AVA calculations as described by Hales (1973b).

Catheter placements were established with the aid of a Sanborn pressure transducer (Model 267BC) to identify characteristic blood pressure waves of the respective blood vessels and heart chambers.

Microsphere Injections

Gamma emitting Ce-141 and Sn-113 radioactive microspheres were used in the study (15μ m \pm 3, New England Nuclear, Boston, Massachusetts). Each nuclide injected 5 seperately contained approximately 4 X 10 microspheres per

kg body weight. Later statistical analysis demonstrated no significant difference between tissue distribution of radionuclide type. Each injection of microspheres had approximately 0.22 mci of activity and were contained in 10 ml of 10% dextran with a trace of Tween 80 suspending agent.

Plastic syringes (20ml) were used to inject the spheres over timed intervals of 60 to 90 seconds. Withdrawal of blood for CO and AVA estimates were also into plastic syringes (50cc) and taken over timed intervals of 120 to 150 seconds starting simultaneously with the start of microsphere injections. A Harvard constant infusion/withdrawal pump (Harvard Apparatus, 150 Dover Rd. Mills, M. A.) was used and calculations of CO and AVA was according to the methods of Hales (1973b).

Tissue Counting

Within 24 hr of injection of the microspheres the animals were terminated by an overdose of sodium pentabarbital I. V.. Selected organs and tissue samples were dissected out, weighed and stored at -10 to -20 C before counting for radioactivity.

The gamma counting system used in this study consisted of two 7.5 by 7.5 cm NaI crystals with an Ortec #456 high voltage supply (Ortec Inc. Oak Ridge Tennessee, U. S. A.), Canberra amplifier#1417B, (Canberra Ind. Inc., Meriden, Connecticut, U. S. A.) and a Canberra scaler #1437. The counting system was calibrated using a known activity of Ce-141 and Sn-113 nuclide source. All blood sample and

injection counts were appropriately adjusted for nuclide residue in the injection catheters and syringes.

Other Measurements

Heart rates were measured using a Sanborn physiological recorder model 7714-04A. The lead system was positioned on the right and left thorax and dorsal midline. Blood samples for hematocrit determination were taken from the left common carotid artery and analysed by a microhematocrit method.

Respiratory Measurements

All respiratory gas analysis was done using a Beckman respiratory gas analyser (Beckman Instruments) in conjunction with an open air current system utilizing a respiratory hood, as described by Young etal. (1974). Respiratory rates were measured using a thorax pneumograph and recording tambour.

Skin Temperature

Skin surface temperatures reported as trunk (average of back, flank, and midside) and extremities (average of ears and lower front leg), for the chronic cold and control animals were measured during five consecutive days immediately prior to the microsphere injections. These measurements were made using a thermocouple system (model BAT-8, Bailey Instruments Inc., Saddle Brook, U. S. A.).

Statistical Analysis

Significant differences between means for treatment groups were tested by analysis of variance and Student-Newman-Keuls multiple range test (Steel and Torrie,

1960). Where disproportionate subclass numbers occurred in a treatment comparison, the analysis of variance was conducted according to a least squares unequal numbers analysis.

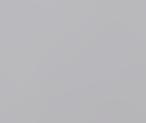
Results

Both acute and chronic cold exposure of the sheep resulted in an increase in the rate of oxygen consumption of 32% and 21% for the AC and CC animals respectively (Table 1). A significant decrease (P<0.05) in respiration rate was also measured in the AC and CC animals. Heart rates were not significantly different between the CON and AC sheep, however, a significant increase in heart rate of 17% was observed in the CC treatment group. A 15% and 10% increase in cardiac output was measured in the AC and CC sheep respectively, although these increases were not stastisticaly different from the control animals at the 0.05 probability level. Increases in hematocrit of 22% and 2% for the AC and CC groups respectively also occurred with the increase in hematocrit in the AC sheep being significantly greater at the 0.10 probability level. Body surface temperatures for the trunk and extremities were significantly reduced in the CC animals.

In the second

the second the second state of the se

Table 1: Cardiorespiratory functions, skin temperature and body weight of sheep exposed to near thermoneutral (CON), acute cold (AC) and chronic cold (CC) temperatures


· ·	CON	<u>AC</u>	<u>CC</u>	SEM		
Body weight (kg)	40.5	44.8	39.8	2:6		
Heart rate/min.	131 ^e	120 ^e	157 ^{.d} .	12.2		
Respiratory rate/min.	73 ^a	22 ^b	22 ^b	7.0		
Cardiac output (liters/min.)	5.5	6.5	6.1	0.79		
Oxygen consumption (ml/min.)	316.2 ^b	465.7 ^a	397.9 ^a	35.5		
Hematocrit %	25.3 ^e	32.3 ^d	25.8 ^e	2.2		
Mean Body Surface Temperatures (C)						
Trunk	34.6 ^a		31.2 ^b	1.23 *		
Extremities	33.1 ^a		20.6 ^b	2.11 *		

Values are based on means from four sheep per treatment group except for the cardiac output values which are from two, four, and two sheep for the CON, AC, and CC treatments respectively. Each sheep mean was derived from one to three observations per animal.

a, b, c Means with different superscripts within rows are statistically different at P<0.05 and superscripts
d, e, f at P<0.10 probability levels.

* Statistically compared using Students paired T test.

SEM is the standard error of treatment means.

For the injection of microspheres, between 30 to 40 cm of catheter tubing was inserted via the carotid artery to position the tip of the catheter in the left ventricle. Furthermore a consistent orientation of the head, neck, and trunk was neccesary, requiring each animal to be haltered in a fixed position during catheter insertion and microsphere injections. Catheter positions were verified during the subsequent dissection of the animal and by examination of the relative microsphere radioactive counts in selected regions of the body. By comparing radioactive counts in the heart muscle, brain, kidney and gastrointestinal tract for example, zero or abnormally low counts in the heart and brain was clearly indicative of an incorrect positioning of the injection catheter at the time of microsphere injections. In eight of the 24 injections, 1cw numbers of counts were found in heart muscle and the brain. On these occasions the catheter was found, upon post mortem examination, to be positioned in the descending aorta. The relative distribution of microspheres to all organs and tissues supplied via the descending aorta were nevertheless found to be consistent with data obtained from sheep with left ventricle placed catheters. However, no blood flow or distribution values could be obtained for tissues from the anterior or foreguarter areas of these animals.

Blood Flow and Blood Flow Distribution

Table 2 illustrates cardiac output distribution to whole organs among the three thermal treatment groups. A the second and the second s comparison of blood flow (ml/100g tissue/min) among the three thermal treatment groups used in the present study as well as values reported by other researchers for acute cold and warm or thermal neutrally exposed domestic sheep are presented in Table 3. An index of preferential blood flow distribution and treatment differences is presented in Table 4, and is referred to as "relative blood flow". Relative blood flow is a comparison of blood flow to a tissue in relation to the overall body average blood flow to an equal weight of tissue (cardiac output/body weight). Hence, a tissue receiving an average amount of blood would have the value 1.00, whereas a tissue with preferential or greater than average blood flow would have a value greater than 1.00.

Discussion

Evidence of physiological cold stress was seen in the cold exposed sheep by observed decreased respiration rates and surface temperatures and a 20-30% increase in oxygen consumption. A 22% increase in hematocrit and a 17% increase in heart rate were also measured in the AC and CC sheep respectively.

Table 3 summarizes blood flow estimates to selected organs and tissues in control (thermoneutral) and cold exposed sheep. Both previously published results found in the literature as well as results for the present study are shown. In the control animals used in the present study

lower blood flow values are seen specifically to the spinal cord, thyroids, spleen, skeletal muscle, skin and nasal turbinals. These differences may be owing to the differences in sampling sites used in the various studies. For example, specific anatomical sites from which the spinal cord, muscle, and skin samples were taken in the various studies is not always reported. Also the coefficient of variation reported in the literature values range from 5% to 30% in these tissues and may in itself be accountable for the apparent discrepancies.

The thyroids of all the animals in the present experiment demonstrated a much reduced blood flow compared to published values. This perhaps relates to the method of microsphere injection. A common procedure in microsphere experiments of this nature is to place the injection catheter in the left ventricle via direct surgical catheterization of the carotid artery, within 24 hr of microsphere injection. Consequently, at least a minimal degree of inflammation at the site of surgical incision would be expected. Hence, as is discussed by Smith and Hamilin (1977), an excessive increase in blood flow due to the inflammation of the ventral neck area of the animals, including the thyroid arteries, would likely result. An increase in thyroid blood flow would consequently occur. This hypothesis might further be supported by the observed higher spleen blood flow in the literature values, possibly indicating an increase in blood phagocytosis occurring in

- LONG - CONTRACTOR - PARTY - PARTY

this organ. In the present experiment, use of the previously established carotid loops may have reduced the inflammatory effect thereby reflected in the thyroid and spleen blood flow measurements. However, the coefficient of variation in the literature values for thyroid and spleen is between 10-25% and could again possibly account for large differences reported in the different studies.

With regard to the nasal turbinals, in the present experiment this tissue sample was inclusive of the bone and upper jaw of the animal, and consequently may account for the comparably lower flow values measured in this tissue. Other authors did not indicate the proportion of bone or epithelium tissue present in their samples.

The liver blood flow estimates deserve a special comment. Although the microsphere technique will give an estimate of arterial blood flow to this organ, this may not be a measurement of total hepatic blood flow. Any microspheres shunted via mesenteric AVA's can, and likely do, lodge in the liver. Consequently, unless the portal vein is catheterized and a representative sample of blood is withdrawn as per the calculation of AVA's in the right atria (Hales 1973b; 1974) the number of microspheres contributed to the liver via mesenteric AVA's is unknown. This may bias liver arterial flow measurements.

An additional point to be noted is that with the control animals in the present study (CON), technical difficulties with the blood withdrawal system resulted in

cardiac output estimates in only two of the control animals. Consequently, care must be taken in interperating control (CON) sheep blocd flow values in Table 4.

Blood Flow Redistribution

Skeletal Muscle

One aspect of cold induced redistribution of blood flow observed in the present study was an increased flow to the skeletal muscles of the acute and chronic cold exposed sheep. An increase in muscular blood flow has also been observed by Hales (1976a) in acute cold exposed sheep and it is suggested by Hales to be due to the energy demand of shivering muscle. Of particular interest is that the continued or maintained increase in nutrient blood flow to the skeletal muscle, observed in the present experiment with regard to the CC animals, may reflect the involvement of this tissue in nonshivering thermogenesis. Skeletal muscle has been reported to contribute to nonshivering thermogenesis in other species (Webster, 1975b; Jansky, 1976; Foster etal. 1978) and may be of significance to adult, chronic cold exposed sheep.

Internal Organs and Glands

In the present experiment increased blood flow to the thyroids and adrenals was the main blood flow alteration seen in the internal organs and glands caused by the cold exposure. The increase in blood flow to tissues such as thyroids and adrenals as well as skeletal muscle in the cold exposed animals suggests an increase in metabolic activity

And DATE OF TAXABLE AND TAXABLE AND TAXABLE AND ADDRESS OF TAXABLE A

And Property and Property lies of the local division of the local

TOO OF SHEEP SHOPS & COMMENT

in these tissues. Although physiological control mechanisms involved in thermoregulation and metabolism will not be discussed in detail in this report, these tissues have been implicated in thermoregulation by several researchers (Alexander etal. 1972; Westra and Christopherson, 1976; Kennedy etal. 1977; Satinoff, 1978; Depocas and Behrans, 1978). The increased metabolic activity signified by increased capillary or nutrient blood flow seen in the present study, would support these suggestions. This occurrence would be logical considering that increases in circulating catecholamine and thyroid hormone levels have been reported in cold exposed sheep (Westra and Christopherson, 1976; Thompson etal. 1977; Christopherson etal., 1978) which would likely involve an increase in metabolic activity in these tissues.

Adipose, Skin and Bone Tissue

The apparent mobilization of fat sources signified by increased blood flow to the adipose areas observed by Alexander in 1973 and by Hales (1976a) was not as obvious in the present experiment. Nor was the reduction in skin blood flow, signifying vasoconstriction, as apparent in the present study despite the decreased surface temperatures.

Reduction of blood flow to the extremities of the AC and CC animals in the present study was only observed in the radius and ulna bone tissues, and the hooves. It is likely that part of the discrepancy in these results is due to the differences in temperature to which the animals were

exposed. In previous studies. Alexander etal. (1973) exposed lambs to -10C compared to 3C db 0C wb in the present study. Consequently it is feasible that a "hunting" response was initiated in the lambs Alexander studied. However, such a response may not have occurred at 3C db, 0C wb in the present study. Hence one might expect that Alexander's lambs were measured at a vasoconstrictive phase of skin blood flow which may have caused a reduced blood flow measurement compared to his control or warm animals. Also, in the present study, both cutaneous and subcutaneous skin layers were measured together. Consequently, if there was a reduction in capillary blood flow to the cutaneous layer, the reduction would not have been measured.

The apparent increased mobilization of fat observed by Alexander (1973) may also be accounted for by the fact that due to the lower temperature and due to the smaller, younger animals, the lambs may have been considerably more cold stressed than the sheep in the present study.

However, the importance of skin blood flow in affecting the redistribution of blood in cold exposed animals is considerable. According to Bal (1977) in terms of bulk, the skin is the largest organ of the body. Consequently even a small change in blood flow to the skin would result in a significant effect on blood flow redistribution. This is clearly stated by Guyton (1969) where he reports that the rate of blood flow to the skin plexus in humans can be altered as much as 100 fold. This would represent a

difference of between 20-50 ml/minute to the entire skin surface, up to 2-3 liters/minute, depending on the degree of vasoconstriction and vasodilation.

In the present experiment, the varying skin temperatures in the CC animals (Table 1) would be indicative of a certain degree of skin vasoconstriction occurring. This is likely a significant factor influencing blood flow redistribution in these chronic cold exposed sheep.

Respiratory System

The respiratory rate in both AC and CC exposed sheep was observed to decrease. However, oxygen consumption increased in these groups. Consequently, one can argue that although the respiration rate in these animals is reduced in frequency, that oxygen extraction and depth of respiration in increased.

It was also observed in the present experiment that both the AC and CC exposed sheep demonstrated a reduced blood flow (ml/100g/minute) to the lungs (bronchial capillary flow) although this would seem to be in conflict with enhancing oxygen absorption from the lungs, reduced bronchial blood flow would perhaps result in a reduced heat loss from the upper respiratory passage, which may be more of a priority to the animal. This may be especially relevant for the AC stressed sheep. Furthermore, microspheres measure only bronchial capillary flow, which is not a direct measurement of alveoli blood flow and oxygen exchange.

Gastrointestinal Tract (GIT)

As was observed by Hales (1976a) and is supported by our findings, blood flow (ml/100g/minute) to the entire or whole GIT (reticulo-rumen, omasum, abomasum, small intestine, and large intestine including colon) did not change appreciably in the AC stressed sheep. However, redistribution of GIT blood flow can be seen. In both the AC and CC exposed animals the present experiment demonstrated that the percent distribution of CO to the GIT was reduced. This seems to be owing primarily to the reduced percent distribution of CO to the reticulo-rumen in these animals. Also, this reduction to the reticulo-rumen is a real reduction in terms of blood flow (ml/100g/minute), as can be seen in Table 4. The implications of these GIT blood flow changes or redistributions are discussed in more detail in Chapter 5.

Arterial Venous Anastomosis (AVA)

In the present experiment, AVA blood flow was significantly reduced in the AC and CC sheep. This would seem logical, especially in the case of the CC sheep where a measured reduction in peripheral AVA blood flow signified by reduced surface temperatures was measured. However, the total amount of blood being shunted from the capillary circulation via AVA's in all treatment groups represented a relatively small percentage of CO (less than 1%) Consequently, in the present study, the AVA blood flow can be considered of lesser significance in the cold exposed

Units and Agent and an and an and an

sheep in influencing thermoregulation, or blood flow distribution. Conversely, as is pointed out by Hales (1973a, 1976b), AVA blood flow may be of considerable influence under different environmental conditions, such as heat exposure.

Acute Cold Exposure versus Chronic Cold Acclimation

The present study has shown certain differences or magnitude of changes in organ or tissue blood flow between the 12 hour, acute cold exposed and chronic cold acclimated animals. Compared to the CC animals, blood flow differences are illustrated in the AC animals by notably higher blood flow (ml/100g/minute) to the adrenals and abomasum and lower blood flow to the lungs (bronchial arteries), diaphragm, nasal turbinals, and skeletal muscle. These differences between AC and CC exposed animals may reflect the relative metabolic activity and functional importance of these tissues between the two cold exposures. As was previously mentioned, the involvement of skeletal muscle in nonshivering thermogenesis may be of increasing importance in the cold acclimated sheep. Also, especially in the case of reduced blood flow to the lungs (bronchial arteries), diaphragm, and nasal turbinals, these differences would seem to be indicative of heat conservation mechanisms in the AC animals.

Relative Blood Flow

A relative comparison of blood flow values (Table 4), illustrates the preferential blood flow supply to the

and the second s

the second particular

various tissues as a result of the cold treatments. Although the relative blood flow values reflect the most metabolically active tissues, to be totally comprehensive of the cold treatment effects, the total tissue or organ weights must also be considered. For example, although the skeletal muscles demonstrate comparatively lcw relative blood flow values the fact that they comprise approximately 27% of the body weight (Hales, 1976b) may indicate that a small increase in blood flow per gram in this tissue is relatively significant.

Achnowledgements

The authors express their appreciation to Mr. N. Arborn, Mr. C. Ediss, Mr. T. Fenton, Mrs. J. Jones, Mr. B. Kerrigan, and Dr. K. Takahashi, for their technical assistance. Appreciation is also extended to Mr. J. Francis, and Mr. L. Gedge for their care of the animals. Partial financial support from the National Research Council of Canada is also greatfully achnowledged. NOTE: References for this chapter are contained in the

thesis bibliography.

i and i a

Table 2: Percent distribution of cardiac output per organ in sheep exposed to near thermoneutral (CON), acute cold (AC) and chronic cold (CC) temperatures

Internal Organs and Glands	CON	AC	<u>cc</u>	SEM
brain heart lungs (bronchial arteries) liver kidney thyroids pancreas adrenals gall bladder urine bladder spleen	1.08 3.77 6.20 1.89 4.18 0.06 1.48 0.20 0.03 0.03 0.04 1.29	1.39 2.35 0.65 0.18 6.25 0.13 ^a 1.12 0.07 0.02 1.98 ^a	1.69 3.97 1.19 ^b 1.02 4.45 0.10 ^a 1.63 0.15 ^{ab} 0.02 0.03 1.43 ^b	0.111 0.265 0.255 0.674 0.756 0.015 0.280 0.034 0.005 0.037 * 0.391
Gastrointestinal Tract esophagus reticulorumen omasum abomasum small intestine large intestine	0.15 _d 6.95 1.63 3.56 8.55 5.70	0.16 3.36 1.17 3.61 7.71 4.63	0.10 4.21 1.06 3.13 6.70 4.25	0.039 0.536 0.174 0.558 0.867 0.439
<u>Other</u> back hooves front hooves ears	0.012 0.013 0.02	0.007 0.007 0.02	0.005 0.005 0.11	0.002 0.001 0.032

a, b, c Means with different superscripts within rows are statistically different at P $\langle 0.05$ and superscripts

d, e, f at P<0.10 probability levels.

* Statistically compared using Students paired T test.

SEM is the standard error of treatment means.

Table J: Estimatus of tissue and organ blood flow (ml/100g/min) in sheep exposed to near thermoneutral (Control), Acute Cold and Chronic Cold temperatures

			Control			Acute	<u>610</u>	Chronic C	010
	Hales	Hales	Hales	Engelhardt	Present	Hales	Fresent	Freent	
for all a red hos	1973a As, 1-34	1973b As, 1-34	1976a AS, 2-JY	1977	study *		study	Etudy AS,6M	SEH
Species and Age Body Weight	22-32kg	22-32kg	AS, 2-JT 23-28kg	AS,1-JY 22-J2kg	AS, 6H 35-50kg	AS,1-3Y 23-28kg	AS.6H 35-50kg	35-50kg	
Environment Temp. C	190	190	19C	160		SC SC	30	30	
Internal Organy and Glands			(),			61+ 3.2		113.8	
brain apinal cord	63+ 4.5	70+ 4.9	61 <u>+</u> 7.2 16+ 0.7		63.9	16+ 0.7	83.1	22.1	13.80
heert	161+47.1	154724.5	108+ 8		116.7	156-15.0	70.7	103.3	15.60
lungs (bronchial arteries)					57.5*		5.9	12.2	2.93
liver					6.9		1.5	6.2	6.82
kidnay		551+46.8	382+53		187.6	411+40 265+42	319.3d	18).8 88.1	39.52
thyrolds	195445:6	462+97.9	302 - 71		48.8	10741	97.6	100.1	35.17
pancreae adrenale	158+34.8	219+22.1	204+26		140.5***	245+26	202.4ªd	108.2 ^{be}	31.50
call bladder	130-3410	····			4,8		8,3	7,1	1.72
urine bladder					12.3			5.9	4.85
epleen	198+22.5	234 <u>+</u> 33.2	147 <u>+</u> 35		68.7	123+28	115.1	79.9	25.56
								•	
Muscle longisimue docei	4 4 7 7		2.3+.4		1.7	5.1+1.	4 5.9 _b	8.2	0.10
gluteus maximus	6 <u>+</u> 2.2 6 <u>+</u> 2.2	5+ .8	2.54.4		1 00 1		5.6	14.34	1.30
triceps		<u> </u>			1.2	•	5.0	16.6	1.30
diephragm		8.7+1			28.6	12.9 <u>+</u> 1	.5 11.3 ^b	28.2	2.60
		_				•	•	1	
Gastrointestinal Tract					14.1		22.4	15.5	0.55
esophagus reticulo-rumen	72+21.0	68+10.4	37+ 5.7	73.3+21	14.1 56.1d	· 33.5+ 2	.8 34.0*	37.8	6.41
Duesnu Leficato-tauel	124224	00110.4	68+16	85.1+63	69.9 .	46+3.9	57.0.	54.1	9.32
abomaeum			117-26		88.1	* 137 <u>+</u> 23	136.04	73.2	17.89
small intestine	128+13.5	130+13.8			71.2	101+17	83.3	50.1	10.35
large intestine	59+17	64+10.7	70 9.2		63.3	1 72 5.4	44.0	53.1	7.21
<u>Skin</u> midside	14+ 1.3	18+ 1.5	16+ 3.7	7	5.6	1 12+ 1.6	12.0	7.4	1.20
midside nasal	14	1 10 403			11.0	• -	7.1	11.5	3.10
lower front leg	7+ 2	5+ .8	7.8+ 3	2.5	1.1	0.5+.	1 1.1	0,9	0.60
			_			1		1	
fat							1.6	1 2.8	0.77
subcutaneous					4.2	1 31.3+6.		5.1	1.75
kidney fat		5.3 <u>+</u> 2	2		74.*	n			
						1		1 •	
Bone					1.3 ^d		0.2 ^E .4 4.2 ^E	0.5° 19.74	0.05
radius and ulna	22+ 2.3	28+ 5.2	24+ 5.5	J	12.36	7.841		1	3.40
nasal turbinale	•••					1		•	
Other					1.0	1	0.5	0.4	0.05
back hoovee					0.8 8.5 ⁸		0.5	0.4	0.05
front hooves	9+ 1.5	6+ 1			8.5 ⁸		2.7	1 8,5"	3.30
845	<u> </u>								

AS = adult sheep, H = month, Y = year

a, b, C Heans with different superscripts within rows are statistically different at P<0.05 and superscripts

d, e, f at P<0.10 probability levels.

SEM is the standard error of treatment means in the present study.

the second se

Table 4: Relative blood flow in sheep exposed to near themoneutral (CON), acute cold (AC) and chronic cold (CC) temperatures [ml blood flow per 100 g tissue weight divided by ml blood flow per 100 g body weight (average tissue = 1)]

	CON	AC	<u>cc</u>	SEM	
Internal Organs and brain spinal cord heart lungs(bronch.art.) liver kidney thyroids pancreas adrenals gall bladder urine bladder spleen	Glands 4.77 0.37 8.61 2.57 0.49 13.55 3.78 11.79 9.83 0.84 0.92 5.16	5.84 2.06 4.41 0.41 0.10 21.49 7.15 15.88 14.10 d 0.53 7.30	7.31 1.25 6.76 0.87 0.40 11.83 5.82 12.19 7.08 e 0.46 0.39 5.14	1.32 0.46 1.10 0.78 0.15 2.53 2.02 2.12 2.25 0.11 0.69 1.68	
<u>Muscle</u> longisimus dorsi gluteus maximus triceps diaphragm	0.14 0.24^{b} 0.10^{c} 3.01^{a}	0.33 0.36b 0.38bc 0.38b 0.78b	0.59 0.99 ^a 1.19 ^a 1.12 ^b	0.18 0.10 0.27 0.41	
Gastrointestinal Tr esophagus reticulorumen omasum abomasum small intestine large intestine	act 1.07 4.00 ^a 5.04 6.36 5.17 ^d 4.53 ^a	1.40 2.17 3.86 8.84 5.47d 2.88 ^b	1.02b 2.45 3.54 4.72 3.24 ^e 3.48 ^{ab}	0.30 0.36 0.59 1.06 0.61 0.42	
<u>Skin</u> midside nasal lower front leg	0.44 0.83 0.09	0.73 0.54 0.05	0.52 0.68 0.05	0.22 0.22 0.02	
<u>Fat</u> subcutaneous kidney	0.30 0.74	0.12 0.50	0.19 0.32	0.06 0.13	
Bone radius and ulna nasal turbinals	0.10 ^a 0.93	0.01 ^b 0.37	0.03 ^b 1.18	0.01 0.28	
<u>Other</u> back hooves front hooves ears	0.08 ^a 0.06 ^a 0.18	0.03 ^b 0.03 ^b 0.17	o.o3 ^b 0.03 ^b 0.57	0.01 0.01 0.23	

a, b, c Means with different superscripts within rows are statistically different at P<0.05 and superscripts

d, e, f at P<0.10 probability levels.

SEM is the standard error of treatment means.

D. CHAPTER 5 : GASTROINTESTINAL BLOOD FLOW DISTRIBUTION IN COLD EXPOSED SHEEP

A. L. Schaefer and B. A. Young Department of Animal Science, University of Alberta, Edmonton, Alberta.

Abstract

The influence of acute and chronic cold on the distributions of cardiac output to the gastrointestinal tract were measured in six-month old sheep (35-50 kg) using radioactive microspheres containing Ce-141 and Sn-113.

Groups of four sheep were exposed in controlled temperature chambers to either (1)Control temperature, 18C dry bulb (db), 11C wet bulb (wb) for 10-12 weeks ; (2)Acute cold, conditioning to 18C for six weeks followed by exposure to 3 Cdry bulb for 12 hr immediately prior to measurement ; (3)Chronic cold, 3C db, 0C wb, for 10-12 weeks.

In the control, acute cold and chronic cold treatments respectively 26.4%, 20.5% and 19.4% of cardiac output was distributed to the gastrointestinal tract. The percent of cardiac output reaching the reticulo-rumen, omasum, abomasum, small intestine, and large intestine (caecum plus colon) were respectively 6.5, 1.3, 4.3, 9.3, and 5.0 for the control group ; 3.4, 1.2, 3.6, 7.7, and 4.6 for the acute and a second sec

TRUE TOUR

cold exposed group; and 4.2, 1.1, 3.1, 6.7 and 4.3 for the chronic cold exposed group.

Estimates of cardiac output were respectively 5.5, 6.5, and 6.1 liters per minute for the control, acute cold and chronic cold exposed sheep. Consequently, considering the differences in cardiac output, the average total amount of blood flow (ml/100g tissue/min) to the total gastrointestinal tract was not significantly different among the three groups. However, there was a significant decrease in blood flow to the reticulo-rumen of the acute cold and chronic cold exposed sheep (34.0 and 37.8 ml/100g/min for the acute and chronic cold sheep versus 56.0 ml/100g/min for the control sheep). Conversely an increase was observed in blood flow to the abomasum of the acute cold exposed sheep, (136.0 ml/100g/min versus 88.1 ml/100g/min for the control sheep).

Introduction

Cold stress in domestic ruminants has been seen to cause several physiological changes. Among those changes, the alteration of nutrient metabolism and utilization of feed or, digestive functional changes have been suggested to be of particular significance to livestock production (Young, 1975). Westra and Christopherson (1976) suggested that the cold induced changes in ration digestibility may be due at least in part, to a measured increase in the rate of passage of digesta and increased reticulo-rumen motility.

ALCO DOLL

This increased rate of passage of digesta and motility has been most recently demonstrated by Kennedy etal. (1976); (1977) and Kennedy and Milligan (1978) in cold exposed sheep. A reduction in retention time of digesta in the GIT could consequently reduce or change the nutrient absorption time at specific gastrointestinal sites, with the resulting reduction in feed digestibility.

The absorption of nutrients from the digesta or the movement of nutrients across epithelial linings at various sites of the GIT has been shown to be parallel to, or largely dependent upon blood flow to the absorption sites (Renkin, 1968; Dobson etal. 1976). There have been several attempts to study the circulation dynamics of metabolites absorbed from the GIT in ruminants (Conrad etal. 1958; Conner and Fries, 1960; Renkin, 1968; Katz and Bergman, 1969; Anderson etal. 1969; Levin, 1969; Webster, 1975; Dobson, 1976a, 1976b; Edrise, 1977). However, the measurement techniques employed by researchers, such as thermal or dye dilution, radioactive and non-radioactive markers, and flow meters for example, have been technically restrictive and thus limited progress.

Only more recently, the use of radioactive microspheres (Hales etal. 1976 and Engelhardt and Hales, 1977) has enabled a more complete measurement of capillary blood flow.

The present study was undertaken to investigate the effects of acute and chronic cold conditioning on the distribution of blood flow to the GIT in sheep. The

influence of blood flow on digestive functional changes in cold exposed domestic ruminants is discussed.

Methods

Animals, Preparation and Treatment

A detailed description of the methodology in the present experiment has been previously described (chapter 4). Twelve crossbreed wethers, six-months of age and weighing 35-50kg were used. At the start of the study the sheep were treated for internal and external parasites and recieved injections of retinol, cholecalciferol, and alpha-tocopherol. All animals were shorn at two week intervals to a constant fleece depth of about 1 cm. The sheep were housed in individual metabolic crates in climatically controlled rooms under constant lighting. Carotid skin loops were established on the left carotid artery of each sheep following the procedures described by Hecker (1974).

Diet

A near maintenance diet was provided, consisting of 1650g (air dry) of brome alfalfa pellets (<u>Bromus inermus</u>, <u>Medicago sativa</u>) offered in 825g servings at 0800h and 1700h daily. (D.M.=91.65%, A.D.F.=49.99%, energy=4.493 kcal/g, protein=14.23%). The ration was ground through a 5mm screen before pelleting to 3 mm diameter. Free access to water and iodized block salt was also provided. .

100000

A DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER OWNER

and the second s

and the second s

The second secon

Territ

Thermal Treatments

The sheep were randomly assigned to three treatment groups, the treatments being: Control (CON) 10-12 weeks exposure to 18.7 (range 13.3-22.2)C db 11.6 (range 10.5-16.1)C wb Acute Cold (AC) Conditioning to 18C db, 11C wb for six weeks, followed by 12h exposure to 3 (range 1.6-4.4)C db 0 (range -1.6-2.2)C wb Chronic Cold (CC) 10-12 weeks exposure to 3.3 (range

1.6-4.4) C db, 0 (range -1.6-2.2) C wb.

Catheterization

Catheter placement into the left ventricle and right atria as described by Hales (1973b) and chapter 6 of this text, was completed using surgical Tygon Microtubing 0.04-0.07mm I.D. (Norton Plastics, Akron, Ohio, U. S. A.), utilizing the previously prepared carotid skin loops. Catheter placement was accomplished with the aid of a pressure transducer and verified upon anatomical dissection and tissue radionuclide counting.

Microsphere Injections

Radioactive microspheres (15 m diameter) containing the nuclides Ce-141 and Sn-113 in doses of approximately 0.22mci were used in the experiment. The microspheres were contained in 10 ml of 10% dextran with a trace of Tween 80 suspending agent. Plastic syringes (20ml) were used to inject the spheres over timed intervals of 60 to 90 seconds. Withdrawl of blood samples for the calculation of cardiac output (CO)

and you will be a set of the set

where the state of the state of

which is apply to a second sec

and an O. Incolours and Streetweet and an operation

state and the second se

and arterial venous anastomosis (AVA) measurements were also into plastic syringes (50cc) and taken over timed intervals of 120 to 180 seconds. Withdrawal of samples at a rate of 15.7 ml/minute were started simultaneously with the injection of the microspheres.

Tissue Counting

Following the injection of the microspheres, the animals were subsequently terminated using an overdose of sodium-pentabarbital I. V.. All organs or tissues were dissected within 24 hr and counted in one of two large volume nuclide counters utilizing 7.5 mm by 7.5 mm NaI crystals, with an Ortec #456 high voltage supply, Canberra amplifier #1417B and Canberra scaler #1437. The wet weights of organs or tissues were obtained at the time of dissection.

Ration Digestibility

During a ten day period just prior to the microsphere injections, a total collection of feces was carried out daily between 0900 hr and 1200 hr on the CON and CC animals. The samples were analysed for percent moisture, nitrogen, fiber, and energy, from which estimates of digestibility for dry matter, protein, acid detergent fiber, and energy were obtained.

Respiratory Measurements

All respiratory gas analysis was done using a Beckman gas analyser (Beckman Instruments Fullerton, California), in conjunction with an open air circuit respiratory hood, as

And a second sec

18

Transferrent Constants

successful to do the

has been described by Young etal. (1974).

Statistical Analysis

Significant differences between means for treatment groups were evaluated by analysis of variance and Student-Newman-Keules multiple range test (Steel and Torrie, 1960).

Results

Cardiorespiratory and Metabolic Rate

Detailed information regarding cardiorespiratory and metabolic values for the three treatment groups is given in Table 5. Primarily, both acute and chronic cold exposure caused a 20-30% increase in oxygen consumption, or metabolic rate, and a 10-15% increase in cardiac output, although cardiac output was not significantly different at the P<0.05 level. Chronic cold exposure also caused a 17% increase in heart rate, while a decrease in respiratory rate was seen in both the acute and chronic cold exposed sheep.

Digestibility

The effect of cold temperature on digestibility of dry matter, energy, nitrogen, and acid detergent fiber are shown in Table 5. Cold exposure reduced the digestibility of these feed components up to 0.08% per degree C.

Blood Flow and Blood Flow Distribution

As illustrated in Table 6, cold exposure caused a 22% and 27% reduction in the percent of cardiac cutput (CO)being distributed to the gastrointestinal tract in the acute and

LUNGT

TO I STOLET IN COMPANY, A

1021201-000

sent and some from the set of the second sec

to a cost of a cost of the

chronic cold exposed animals respectively; the main reduction occurred in the reticulo-rumen.

When expressed as ml of flow/100g tissue/minute, Table 6, the blood flow to the total GIT was not significantly different among the treatment groups. However, the specific reduction in blood flow (ml/100g/min) was still evident in the reticulo-rumen in both cold groups measured as a 51% and 39% reduction in reticulo-rumen blood flow in the AC and CC sheep respectively. The relative blood flow values (Table 7) also support these trends and furthermore demonstrate the blood flow in the various GIT tissues in general to be between 2 to 8 times the body average.

Discussion

Cardiorespiratory and Metabolic Measurements Cold exposure in the present study precipitated cardiorespiratory and metabolic physiological changes including an increased oxygen consumption, or metabolic rate, an increased heart rate, and a reduced respiratory rate. These changes have also been observed in similar studies with cold exposed sheep, (Westra and Christopherson, 1976; Christopherson, 1976; Hales etal. 1977) and seem to be representative of a consistent adaptive response to cold stress in these domestic ruminants.

Digestive function and Blood Flow

A reduced digestibility in cold exposed sheep has been documented by Westra and Christopherson (1976), as well as

The Parks

and the set of the set

in other recent studies (Kennedy etal, 1977; Kennedy and Milligan, 1978). The digestibility results of the present study follow this same pattern and seem indicative of digestive functional changes occurring in these animals as a result of cold exposure. However, the magnitude of reduction was less in the present study.

Furthermore, Westra and Christopherson (1976) have demonstrated that cold exposure can induce an increased reticulo-rumen motility and an increased rate of passage of digesta, possibly mediated by thyroid hormones, which consequently reduces the retention time of digesta in the reticulo-rumen. These observations would suggest, as is supported by Kennedy and Milligan's study (1978), a greater concentration of less digested or nutritively more complete digesta being passed to the intestinal sections of the GIT.

Kennedy and Milligan (1978) have demonstrated that in cold exposed sheep, the amount of organic matter and non-ammonium nitrogen digested in the intestines was higher than in warm exposed or control sheep. They further report that the increased digestion in the intestines of the cold exposed sheef compensated, to a degree, for the reduction of dry matter, organic matter, and cell wall constituents digested in the reticulo-rumen. Kennedy and Milligan (1978) also suggested that blood flow to the absorptive sites in the rumen wall in sheep may be one factor affecting urea transfer measurements between sheep given two different levels of feed intake in their study. This may be especially

relevant considering that on a tissue basis it has been pointed out by Hoffman (1973) and Engelhardt and Hales (1977) that GIT mucosa in particular, because of its vascular supply, seems to have a prime involvement and importance in the ruminant in terms of nutrient absorption and metabolism. The role of stomach blood flow and environmentally influenced blood flow shifts also has been discussed by Dobson etal. (1976a) as being influential in terms of affecting nutrient flow, and can be a limiting factor in substrate exchange across the gastrointestinal epithelial membranes.

In the present study, the increased nutrient and thermal demand of non-digestive organs and tissues in the acute and chronic cold animals, as a compensating thermo-regulatory response to their environment is likely the basic cause of reduced cardiac distribution to the GIT. However, of the blood distributed to the GIT, the present study has demonstrated that the cold exposed sheep show a proportionately reduced blood flow to the reticulo-rumen, and an enhanced blood flow emphasis to the intestinal regions. The reduced reticulo-rumen blood flow seen in the present experiment is possibly the result of increased reticulo-rumen blood shunting.

According to studies such as those by Renkin (1968), Engelhardt (1970), and Dobson etal. (1976a), capillary blood flow affects the absorption of nutrients from the GIT. The present study has demonstrated a reduction of GIT capillary

blood flow, emphasizing reduced reticulorumen yet maintained intestinal blood flow as a result of cold exposure. Consequently, by influencing nutrient absorption, this altered or redistributed GIT blood flow emphasis in cold exposed sheep is perhaps, at least in part, responsible for the reported digestive functional differences.

Achnowledgements

The authors express their appreciation to Mr. B. Turner for his skilled assistance with the radionuclide equipment. Thanks is also given to Mr. N. Arborn, Mr. C. Ediss, Mr. T. Fenton, Mrs. J. Jones, Mr. B. Kerrigan, and Dr. K. Takahashi for their technical assistance. Appreciation is also extended to Mr. J. Francis and Mr. L. Gedge for their care of the animals. Partial financial support from the National Research Council of Canada is also greatfully achnoweldged. NOTE: References for this chapter are contained in the thesis bibliography.

Table 5:	Body weight, intake, digestibility, cardiorespiratory,
	and metabolic measurements in sheep exposed to near
	themoneutral (CON), acute cold (AC) and chronic cold
	(CC) temperatures

				and the second
·		Treatment		
Intake (g/day)	CON	AC	<u>22</u>	SEM
number of animals	4	4	4	
water (end of treatment)	3200	190 0	2750	
feed(air dry) dry matter	1512	1512	1512	
protein	234.8	234.8	234.8	
Digestability (%) *				
dry matter	54.03		52.84	1.28
energy	54.29		53.35	1.23
protein	63.98		63.68	1.36
acid detergent fiber	51.06		50.12	1.44
<pre>body weight(kg) (end of treatment)</pre>	41	45	40	3.75
Heart rate/min	131 ^e	120 ^e	157 ^d	12.2
Respiration rate/min	73 ^a	22 ^b	22 ^b	7.0
Cardiac output (liters/min)	5.5	6.5	6.1	0.79
Hematocrit %	25.3 ^e	32.3 ^d	25.8 ^e	2.2
Oxygen consumption (ml/min)	316.18 ^b	465.65 ^a	397.85 ^a	35.47
Mean Body Surface Temper	atures (C)			
Trunk	34.6 ^a		31.2 ^b	
Extremities	33.1 ^a		20.6 ^b	2.11*

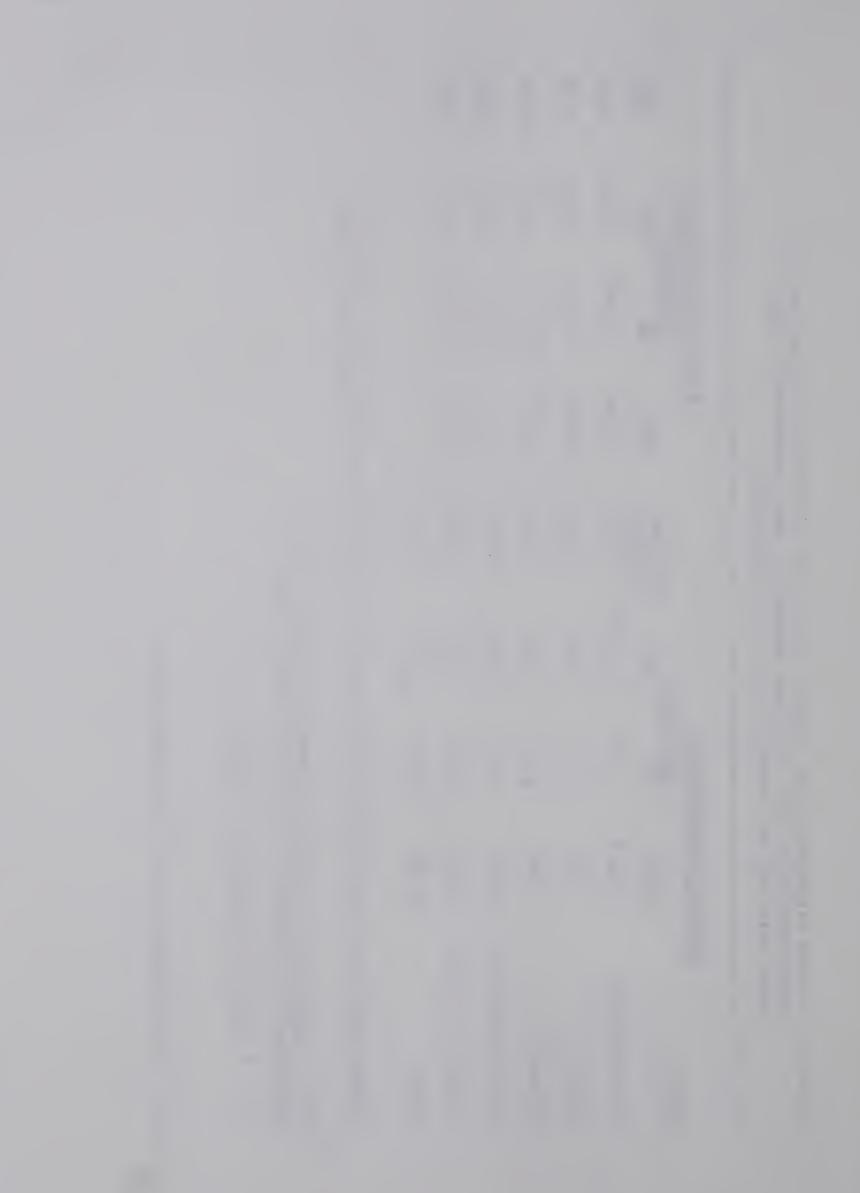
a, b, c Means with different superscripts within rows are statistically different at P<0.05 and superscripts

d, e, f at P<0.10 probability levels.

* Statistically compared using Students paired T test.

SEM is the standard error of treatment means.

		(


Percent distribution of cardiac output and blood flow/100 g/min to the gastrointestinal tract of sheep exposed to near themoneutral (CON), acute cold (AC) and chronic cold (CC) temperatures .. 9 Table

	SEM	6.41	9.32	17.89	10.35	. 7.21		
ntm/p/		37.76 ⁰	54.10	73.2 ⁰	50.1	53.13		
Blood Flow/1009/min	AC	33,95 ⁸	57.80	136.0 ^d	83.3	44.76		
Bloo	CON	56.04 ^d	69.94	88.1 ^{ed}		63.27		
			•• ••	••••	•• ••	•• ••	•• ••	
	STANDARD.	ЕККОК 0.536	0.174	0.550	0.867	0.430	2.12	
	U U	4.21 ^e	1.06	3.13	6.70	4.25	19.4 ^b	
bution	Treatment	 1.36 ^e	1.17	3.61	7.71	4.63	20.5 ^b	
Percent Distribution	CON	r ard		2 2 C	8.55	5.70	26.4 ^a	
Perc	Tissue		namp.totpotpay		small Intestine	Large Intestine		

Large intestine includes section from ilio-cecal junction to rectum, including colon.

a, b, c Means with different superscripts within rows are statistically different at P<0.05 and superscripts at P<0.10 probability levels. d, e, f

SEM is the standard error of treatment means.

		Table 7:
temperatures	xpo	Percent distribution of gastrointestinal blood flow and relative blood flow in
	0	•

Large Intestine	Small Intestine	Abomasum	Omasum	Reticulorumen	Tissue	
20.86	33.36 ^b	13.77	5.59	26.42 ^a	CON	Percent 1
22.53	37.77 ^a	17.75	5.93	16.02 ^C	AC	Percent Distribution of GIT Blood
21.98	34.64 ^b	16.29	5.48	21.61 ^b	s 27	on of GIT
1.5	1.6	1.9 1	0.8 	1.6 1	STANDARD ERROR	Blood Flow
4.53 ^a	5.17 ^d	6.36	5.04	4.00 ^a	CON	
2.88 ^b	5.47 ^d	8.84	3.86	2.17	AC	Relative Blood Flow Treatment
3.48 ^{ab}	3.24	4.72	3.54	2.45 ^b		lood Flow Treatment
0.42	0.61	1.06	0.60	0.36	SEM	

a, b, c Means with different superscripts within rows are statistically different at P(0.05 and superscripts

d, e, f at P<0.10 probability levels.

SEM is the standard error of treatment means.

59

•

E. CHAPTER 6 : GENERAL DISCUSSION

A discussion and interpretation of the various circulatory and metabolic changes occurring in shorn sheep in the current study as a result of acute and chronic cold exposure are presented in chapters 4 and 5. The purpose of the present chapter is to expand on the discussion in these chapters, and to further hypothesize on the significance of the data obtained in the study.

6. 1 General Effects of Cold Exposure

The general effects of cold on mammals was given and several characteristic physiological responses were reviewed in chapter 2. The cold exposed animals in the present experiment demonstrated many of these characteristic responses.

A 20-30% increase in oxygen consumption and a 70% decrease in respiration rates were observed in the AC and CC sheep as well as a 10-15% increase in cardiac output, (although cardiac output failed to reach significance at the 0.05 level). A 17% increase in heart rate was also measured in the CC animals. An increase in metabolic activity of the thyroid gland may be inferred from the 95-100% increase in blood flow to this gland demonstrated in the AC and CC animals, and an increase in adrenal gland activity could be inferred from the 31% increase in adrenal gland blood flow

real and advertised : a setting as

and the strategy is the second state of the se

in the AC sheep. Although a reduced peripheral skin blood flow was not detectable by the microsphere measurements in the present study, reduced surface skin temperatures as well as reduced blood flow to the radius and ulna and hoove tissues was detected, hence, indicating a degree of peripheral vasoconstriction.

In general, these physiological responses indicate that these animals responded in a characteristic manner to the cold treatments.

6. 2 Skeletal Muscle

The present study has clearly illustrated an increase in blood flow to the shivering skeletal muscles as a result of both acute and chronic cold exposure. This was observed in the AC animals whereby a 2 and 4 fold increase in blood flow respectively to the gluteus maximus and triceps was measured. These increases were even more pronounced in the CC animals where a 5 to 15 fold increase in blood flow to the gluteus maximus and triceps respectively was measured. As mentioned in chapter 4 this observation has also been reported by Hales (1976a) and was suggested by Hales to be due to the increased energy or nutrient demand of the shivering muscle in acute cold exposed sheep. The suggestion that skeletal muscle may be important as a heat producing tissue in chronic cold exposed animals as well as acute cold exposed animals has been previously hypothesized by other researchers (Webster, 1975b; Jansky, 1976; Foster etal.

stand harden a

1978). Foster and Frydman (1978) have recently demonstrated the involvement of skeletal muscle in thermogenic reactions in cold acclimated rats. In the present experiment, the increased blood supply to the skeletal muscle of the chronic cold exposed sheep is suggestive of non-shivering thermogenesis in these tissues in sheep. Feasibly, the observed increase in blood flow to skeletal muscles in AC and CC exposed sheep facilitated not only nutrient demands of the muscle, but also heat removal or exchange for the maintenance of homeothermy. In the present experiment, between 5-6% of cardiac output in the CON sheep versus up to 30% of the cardiac output in the CC sheep was distributed to the skeletal muscle, (based on a calculation of skeletal muscle equal to 27% of body mass; Hales 1976b). Even considering that all muscles may not have the same flow rate as those particular muscles measured in the present experiment, nor may all muscles be involved in shivering and nonshivering thermogenesis, this nevertheless suggests the importance of this tissue to these cold exposed animals.

6. 3 Internal Organs and Glands

The increase in blood flow to the thyroids and adrenals of the cold exposed sheep was the main alteration in blood flow seen in the internal organs and glands. An increase in metabolic activity in these tissues and hence an increased output of thyroid and adrenal hormones could perhaps be concluded. According to the comments put forward by Webster

the second and an entrance that has not addressed as and the second s

harden that because hitsenful & all

(1974) the significance of increases in thyroid and adrenal hormones, as a result of cold exposure, is still receiving much speculation. However, catecholamines, in conjunction with a "mediating" effect of thyroid hormones, do seem to play a role in cold induced thermogenesis via an influence on cell membrane function and volatile fatty acid metabolism (Hardy, 1961; Sellers etal. 1971; Webster, 1974). Consequently, an increase in adrenal and thyroid gland activity, indicated by an increased nutrient blood flow, as seen in the present experiment, may be a reasonable consequence of cold exposure. However, a direct thermogenic effect induced by catecholamines has yet to be proven in sheep (Webster etal. 1969).

6. 4 Skin and Fat

The mobilization of fat or fatty acids in sheep as a result of cold exposure has been reported (Alexander, 1972; 1973; Hales etal. 1976a; Thompson etal. 1978). The vasoconstriction of the extemities and skin vasculature functioning as a heat conservation mechanism has also been reported (Alexander, 1973; Hales etal. 1976a). The involvement of these mechanisms as a cold response is seen to be of less magnitude in the present study. As mentioned in chapter 4, the cause of this difference between the present experiment and similar cold studies on sheep is perhaps owing to differences in exposure temperature and in the age and size of the animals concerned. Also, the fact

COL ME SAM IN SH

that the cutaneous skin blood flow was not differentiated from the subcutanious blood flow may have masked any reduction in cutaneous blood flow.

6. 5 Respiratory System

The increased metabolism in cold stressed sheep necessitates an increase in oxygen consumption (Kleiber 1975). However, increased oxygen consumption does not seem to be synonymous with increased respiration rate, as can be seen in the present experiment and also by Hales (1976a) observations. The increased oxygen consumption in the present experiment is possibly due to an increased alveoli absorption time, and hence increased oxygen extraction, feasibly enhanced also by an increased red blood cell count. The present study illustrated a 22% and 2% increase in hematocrit in the AC and CC animals respectively. Although only the 22% increase was significant at the P<0.05 level.

The current reduction in ventilation rate as well as the reduced lung (bronchial artery) flow in the cold exposed sheep is perhaps effective in reducing conductive heat loss from the upper respiratory tract. However, lung blood flow measurements can be biased by AVA flow and should be viewed in light of this blood shunting. As discussed in chapter 4, this may especially be relevant in heat stressed sheep where AVA blood flow can be of considerable magnitude (Hales, 1973a).

CINERAL CONTRACTOR AND

6. 6 Gastrointestinal Tract

A redistribution of blood within the GIT of cold exposed sheep has been demonstrated in the present experiment. The effects of this redistribution are discussed in chapter 5, however, the reasons for the redistribution seem to be unclear.

Blood flow is responsive to the nutrient and thermal demands of the animal. Consequently, GIT blood flow redistribution would be the effect, rather than the cause of physiological stimuli inducing this redistribution. The question then becomes what factors are causing the redistribution?

The existence of neural, mechanical, and chemo-receptors affecting the flow of digesta in the GIT of ruminants has been demonstrated and is discussed in detail by Iggo and Leek (1970). However, a simultaneous stimulation of GIT blood flow by these particular factors has not yet been documented .

Some evidence exists supporting the operation of either neural and/or chemical receptors as blood flow mediators. Duncan (1953) has demonstrated that severing the vagal nerve supply at the diaphragm in sheep will cause a stoppage of motility in the GIT, hence, indicating a possible neural control system in the GIT. The possible role of catacholamines in GIT blood flow control may as well be reasonable. Dobson and Phillipson (1956) and Garbulinski (1973) have demonstrated that GIT vasculature is responsive

to vasoactive agents including adrenalin. Although there is little or no evidence of an elaborate nervous supply to the epithelium or sub-epithelium cell layers of the GIT (Steven and Marshall, 1970) the existence of dopamine containing cells in the intestines of sheep has been shown (Atkins etal. 1971). Consequently, these reported literature findings would suggest that catecholamines, or other vasoactive agents, may have an influence on GIT blood flow in ruminants.

Further speculation as to the cause of blood flow redistribution in the GIT of cold exposed sheep would possibly suggest the involvement of digestive end products, or Krebs intermediate metabolites, including acetate, citrate, fumarate, maleate, alpha-ketoglutarate, oxaloacetate, and succinate. The influence of digesta or digestive end products such as acetate, propionate, butyrate, and cabon dioxide on GIT blood flow is discussed by Dobson and Phillipson (1956) and was demonstrated by Sellers etal. (1964). Giachetti etal. (1977) also refers to vasoactive intestinal polypeptide as playing a role as a vasoactive transmitter or modulator of synaptic function. However, the specific influence of this agent in GIT blood flow in cold exposed sheep is not determined. The influence of volatile fatty acids on portal blood flow as a result of cold exposure is also reported by Thompson etal. (1975; 1978). Consequently, digestive end products do apparently influence GIT blood flow. However, determining what specific

A DECK OF THE ADDRESS and the second s the second secon

end products may be involved in influencing GIT blood flow and if they work in conjunction with such other factors as microbial and GIT tissue metabolism effects on a local level remains to be investigated.

The fact that the GIT accounts for 20-25% of the cardiac output signifies the importance of this tissue, and in particular, the mucosa or absorptive tissue layers, under any thermal environment. Any factors, environmental or otherwise that reduce or adversely affect this obligatory blood flow to the GIT would have a significant detrimental influence on nutrient attainment in the animal.

F. CHAPTER 7: SUMMARY AND CONCLUSIONS

The present study demonstrated changes in blood flow distribution and other cardiovascular and metabolic parameters as a result of both acute (AC) and chronic cold (CC) exposure of shorn sheep. The most significant aspects demonstrated by this study can be summarized as follows: (1) Increased blood flow to the thyroids of 100% and 95% in the AC and CC animals respectively and a 31% increase in blood flow to the adrenals of the AC sheep is indicative of the metabolic significance of these tissues during cold exposure. However, the precise mechanism of thyroid and adrenal hormonal action in the cold exposed sheep is as yet uncertain.

(2) A two to four fold increase in blood flow to the gluteus maximus and tricep skeletal muscle in the AC sheep and a five to fourteen fold increase in blood flow to these respective muscles in the CC sheep suggests the involvement of skeletal muscle in cold induced thermogenesis.
(3) The present study has demonstrated a cold induced redistribution of GIT blood flow showing a reduced reticulo-rumen, and maintained intestinal blood flow emphasis. Although the reasons are unclear at this time, the decreased reticulo-rumen blood flow seems not to be just a temporary "cold compensation" mechanism as was proven by the response of the CC sheep. The blood flow changes in the

International State Statements of Automatics and

gastrointestinal tract are likely influential in digestive functional changes observed in cold exposed ruminants. (4) The reasons for or causes of many of these observed cold induced blood flow redistributions, although often speculated, remain to be proven.

G. BIBLIOGRAPHY

- Alexander, G., A. W. Bell, and B. P. Setchell. 1972. Regional distribution of cardiac output in young lambs, effect of cold exposure and treatment with catacholamines. J. Physiol., 220:511.
- Alexander, G., A. W. Bell, and J. R. S. Hales. 1973. Effects of cold exposure on tissue blood flow in the new born lamb. J. Physiol., 243:65.
- Anderson, W. D., and A. F. Weber. 1969. Normal arterial supply to the ruminant (Ovine) stomach. Amer. J. Anim. Sci., 28: 379.
- Andersson, B. E.. 1977. Temperature regulation and environmental physiology. pages 686-695, <u>In:</u> Dukes physiology of domestic animals. <u>Edited by</u> M.J. Swenson, 9th ed. Comstock Pub. Associates, Cornell University Press. London.
- Asplund, J. M., and L. E. Harris. 1970. A technique and apparatus for the study of rate of passage of feed residues through the digestive tract of sheep. Amer. J. Anim. Sci., 31:1199.

Astrand, P. O., and K. Rodahl. 1970. Textbook of work physiology. McGraw-Hill Book Comp. Inc. New York, N.Y.. Atkins, A. M., G. C. Schofield, and N. G. M. Wreford. 1971. Dopamine Containing cells of sheep intestines. J. Anat., 110 :497

WINDOWSKI +F

- - · OTTO A CONTRACT OF COMMAN

 - - second a second se
- A set of a second secon
 - A REAL PROPERTY AND A REAL PROPERTY.
 - and the second s
- A second se
 - - A DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER OWNE

- Bal, H. S. 1977. The skin. pages 493-503 <u>In</u>; Dukes physiology of domestic animals. <u>Edited by</u> M. J. Swenson, 9th. ed. Comstock Pub. Associates, Cornell University Press. London.
- Bell, P. R. F., 1967. Arterio-venous shunts. Scand. J. Gastrolent., 2:59.
- Blaxter, K. L. and F. W. Wainman. 1961. Environmental temperature and the energy metabolism and heat emission of steers. J. Agric. Sci., 56:81.
- Bligh, J. and R. R. Moore. 1972. Essays on temperature regulation. North Holland Pub. Comp.
- Buck, A. R., L. Zolle, J. W. Buchanan, and H. N. WagnerJr.. 1969. Radioactive albumin microspheres for studies of the pulmonary circulation. Radiology, 92:1453.
- Buckberg, G. D., J. C. Luck, D. B. Payne, J. I. E. Hoffman, J. P. Archie, and D. E. Fixler. 1971. Some sources of error in measuring regional blood flow with radioactive microspheres. J. of Appl. Physiol. 31:598
- Chopra, I. J., 1972. Radioimunoassay of thyroxin in non extracted serum. Clin. Endocrin. Metab. 34:938.
- Christopherson, R. J., J. R. Thompson, V. A. Hammond, and G. A. Hills. 1978. Effect of thyroid status on plasma adrenalin and noradrenalin concentrations in sheep during acute and chronic cold exposure. Can. J. Physiol. Pharmacol. 56:490.
- Christopherson, R. J. 1976. Effects of prolonged cold and the outdoor winter environment on apparent digestibility

- - and the first of t
- - the second second
- the second secon
- - -----
 - ------
- A REAL PROPERTY OF A REAL PROPERTY AND A REAL PROPERTY A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROP

in sheep and cattle. Can. J. Anim. Sci. 56:201.

Conner, G. H. and G. F. Fries. 1960. Studies of bovine portal blood establishment and maintenance of portal and mesenteric vein catheters. Amer. J. Vet. Res. 21:1028.

Conrad, H. R., H. R. Smith, J. H. Vandersell, W. D. Pounder, and J. W. Hibbs. 1958. Estimating gastrosplenic blood flow and volatile fatty acid absorption from

forestomachs of caves. J. Dairy Sci. 41:1094.

- Depocas, F. and W. A. Behrens. 1977. Levels of noradrenalin in plasma during thermogenesis induced by cold exposure or by noradrenalin infusion in warm and cold acclimated rats. pages 135-146 <u>In:</u> Effectors of thermogenesis. Proceedings of a symposium held at Geneva on 14 to 16 July 1977. <u>Edited by</u> L. Gerardier and J. Seydoyx, Birkhauser Verlag, Basel und Stuttgart, 1978.
- Dobson, A., and A. T. Philipson. 1956. The influence of contents of rumen and of adrenalin upon its blood supply. J. of Physiol. 133:76P.
- Dobson, A., A. F. Sellers, and V. H. Gatewood. 1975. Osmotic gradient, blood flow and water exchange acroos the rumen epithelium of the conscious cow. Fed. Proc. 34 :469.
- Dobson, A., A. F. Sellers, and V. H. Gatewood. 1976a. Absorption and exchange of water across rumen epithelium. Amer. J. Physiol. 231:1588.
- Dobson, A., A. F. Sellers, and V. H. Gatewood. 1976b. Dependence of Cr-EDTA absorption from the rumen on luminal osmotic presure. Amer. J. Physiol. 231:1595.

A second se and the second s and the second s

The second second

- Duncan, D. L.. 1953. The effects of vagotomy and splanchnotomy on gastric motility in the sheep. J. Physiol., 119:157.
- Edrise, B. M.. 1977. Absorption of volatile fatty Acids in different compartments of rumen stomachs. Proc. of Nutr. Soc. 36:149.
- Edwards, M. A.. 1967. Physiology of temperature regulation. Physiol. Rev. 41:521.
- Ellis, W. C. and Huston, J. E.. 1968. Ce-141-Pr-144 as a particulate digesta flow marker in ruminants. J. Nutr. 95:67.
- Engelhardt, W. Von. 1970. Movement of water across the rumen epithelium . Session 2, p123. <u>In</u>: Physiology of digestion and metabolism in the ruminent. <u>Edited by</u> A. T. Philipson., Oriel Press Ltd. Newcastle, 1971.
- Engelhardt, W. Von. and J. R. S. Hales. 1977. Partition of capillary blood flow in rumen, reticulum, and omasum of sheep. Amer. J. Physiol. 232 : E53.
- Faichney, G. T. and J. R. S. Hales. 1974. Unsutibility of an H-3 water technique for measuring muscle blood flow. Pflugers Arch. 349:109.
- Faichney, G. T.. 1975. The use of markers to partition digestion within the gastrointestinal tract of ruminants. In: Digestion and metabolism in ruminants. <u>Edited by</u> I. W. McDonald and C. I. Warner, eds., University of New England Press, Armidale. N. S. W. Federov, N. A. and E. I. Shur. 1942. The role of the visera

- - DIST I WE REAL AND A REAL AND A REAL PROPERTY OF A REAL PROPERTY.

- - TO I A COMPANY IN THE R. P. LEWIS CO., AND AND ADDRESS OF THE PARTY NAMES OF TAXABLE PARTY NAMES OF TAXABLE PARTY NAMES OF TAXABLE PARTY.
 - the beating states which a second second second second second

in regulating the temperature of the body of an animal under physiological and pathological conditions. Amer. J. Physiol. 137:30.

- Fegler, G. and J. Hill. 1957. Measurement of blood flow and heat production in the splanchnic region of the anaesthetized sheep. Quarterly J. Exptl. Physiol., 43:189.
- Foster, D. O., and M. L. Frydman. 1978. Comparison of microspheres and Rb-86 as tracers of the distribution of cardiac output in rats indicates invalidity of Rb-86 based measurements. Can. J. Physiol. Pharmacol. 56:97.
 Frolich, E. D., 1965. Vascular effects of the Krebs

intermediate metabolites. Amer. J. Physiol. 208: 149. Garbulinski, T.. 1973. The blood flow in the intestinal, ruminal, and femoral arteries of sheep under the influence of vasoactive agents. Polish J. Pharm. and Pharmacol. 25:496.

- Giachetti, A., S. I. Said, R. C. Reynolds, and F. C. Koniges. 1977. Vasoactive intestinal polypeptide in brain. Localization in and release from isolated nerve terminals. Proc. Nat. Acad. Sci. U. S. A. 74:3424.
- Goodman, L. S. and A. Gilman. 1975. The pharmacological basis of therapeutics. MacMillan Pub. Comp. Ltd. Toronto, Canada.
- Grovum, W. L. and G. D. Phillips. 1973. Rate of passage of digesta in sheep. Br. J. Nutr. 30:377. Guyton, A. C.. 1969. Function of the human body. 3rd

the second secon

edition, W. B. Saunders Comp. Philadelphia.

- Hales, J. R. S. 1973a. Effect of exposure to hot environments on the regional distribution of blood flow and on cardiorespiratory function in sheep. Pflugers Arch. 344:133.
- Hales, J. R. S.. 1973b. Radioactive microsphere measurement of cardiac output and regional tissue blood flow in sheep. Pflugers Arch. 344:119.
- Hales, J. R. S.. 1974. Radioactive microsphere technique for studies of the circulation. Clinical and Experimental Pharm. and Physiol. Suppl. 1:31.
- Hales, J. R. S.. 1976b. The redistribution of cardiac output in animals during heat stress. Progress in Biometeorology. Ser. B., Animal Biometeorology. Vol. 1, part 1:285. Swets and Zellinger, Amsterdam.
- Hales, J. R. S., B. W. Brown, and P. E. Mattner. 1973c. Blood flow in brain , liver, fat, and muscle, measured by microsphere and iodoantipyrine techniques. No.

11-1-4, International Research Communication System.

- Hales, J. R. S., J. W. Bennett, and, A. A. Fawcett. 1976a. Effects of acute cold exposure on the distribution of cardiac output in the sheep. Pflugers Arch. 366:153.
- Hamlin, R. L. and C. R. Smith. 1977. The heart as a pump, hemodynamics, and regulation of cardiac cutput, pages 81-94: and regulation of the heart and blood vessels. pages 102-120, <u>In</u>: Dukes physiology of domestic animals. <u>Edited by</u> M. J. Swenson. 9th. ed. Comstock Pub.

and a second sec

- - - the second secon
 - a second action of the second se

Associates, Cornell University Press. London.

- Hardy, J. D.. 1961. Physiology of temperature regulation. Physiol. Rev. 41, 521.
- Hecker, J. F.. 1974. Experimental surgery on small ruminants. Butterworths, and Comp. Toronto.
- Henshaw, R. E., 1978. Peripheral thermoregulation: haematologic or vascular adaptations. J. Therm. Biol. 3:31.
- Heymann, M. A., B. D. Payne, J. I. E. Hoffman, and A. M. Rudolph. 1977. Blood flow measurements with radionuclide-labbled particles. Progress in Cardiovascular Diseases. XX:P55.
- Himms-Hagen, J., J. Cerf, M. Destautels, and G. Zaror-Behrens. 1978. Thermogenic mechanisms and their control, pages 119-134, <u>In</u>; effectors of thermogenesis. <u>Edited by</u> L. Girardier and J. Seydoux. Birkhauser Verlag, Basel. 1978.
- Hofmann, R. R.. 1973. The ruminant stomach. East African Literature Bureau, Vol. 12. Nairobi.
- Iggo, A. and B. F. Leek. 1970. Sensory receptors in the ruminant stomach and their reflex effects. pages 23-34, <u>In:</u> Physiology of digestion and metabolism in the ruminant. <u>Edited by</u> A. T. Philipson, Oriel Press. Ltd. Newcastle.
- Jansky, L.. 1976 . Effects of cold and exercise on energy metabolism of small mammals. pages 239-256, <u>In:</u> Prog. in Biomet. <u>Edited by</u> H. D. Johnson. Swets and Zellinger,

Amsterdam.

- Katz, M. L. and E. N. Bergman. 1969. A method for simultaneous cannulation of the major splanchnic blood vessels of the sheep. Amer. J. Vet. Res. 30:655.
- Katz, M. A. and R. C. Blantz. 1972. Geometric error in tissue gamma-counting: methods for minimization, J. Appl. Physiol., 32:533.
- Kennedy, P. M., R. J. Christopherson, and L. P. Milligan. 1976. The effect of cold exposure of sheep on digestion, rumen turnover time, and efficiency of microbial synthesis. Br. J. Nutr. 36:231.
- Kennedy, P. M., B. A. Young, and R. J. Christopherson. 1977. Studies on the relationship between thyroid function, cold acclimation, and retention time of digesta in sheep. J. Anim. Sci. 45:1084.
- Kennedy, P. M. and L. P. Milligan. 1978. Effects of cold exposure on digestion, microbial synthesis, and nitrogen transformations in sheep. Br. J. Nutr. 39:105.
- Kleiber, M. 1975. The fire of life. Krieger Pub. Comp. Inc. New York, N.Y.
- Koldovsky, O., J. Jumann, and M. Palmieri. 1974.
 - Thyroxin-evoked precocious decrease of acid hydrolases in the ileum of suckling rats. Proc. Exptl. Biol. Med., 146:661.
- Levin, R. J.. 1969. The effects of hormones on the absorptive, metabolic, and digestive functions of the small intestine. J. Endocrinol. 45:315.

- Levy, B., A. Ghaem, J. M. Verpillat, and J. P. Martineaud. 1977. Effects of ambient and local cutaneouse temperatures on hand blood flow. Intl. J. Biometerol., 21:341.
- Lyster, D. M.. 1971. The potential use of Zn-EDTA in nuclear medicine. Ph. D. Thesis. Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton.
- Maynard, L. A. and J. K. Loosli. 1969. Animal nutrition. 6th. ed. McGraw-Hill Book Comp. New York, N.Y.
- Mertens, D. R.. 1977. Dietery fiber components, relationship to the rate and extent of ruminal digestion. Fed. Proc. 36:187.
- Meyer, A. A. and A. J. F. Webster. 1971. Cold induced vasodilation in the sheep. Can. J. Physiol. Pharmacol. 49: 901.
- Miller, J. K., E. W. Swenson, W. A. Lyke, B. R. Moss, and W. F. Byrne. 1974. Effect of thyroid status on digestive tract fill and flow rate of undigested residues in cattle. J. Dairy Sci. 57: 193.
- Ørskov, E. R., C. Fraser, V. C. Mason, and S. O. Mann. 1970. Influence of Starch digestion in the large intestine of sheep on ceacal fermentation, caecal microclora and faecal nitrogen excretion. Br. J. Nutr. 24:671.
- Panareto, B. A.. 1974. Relationship of viseral blood flow to cortisol metabolism in cold stressed sheep. J. Endocrin. 60:235.

- and the second s

. .

Phillipson, A. T.. 1970. Physiology of digestion and

metabolism in the ruminant. Oriel Press Ltd., Newcastle. Rattray, P. V., W. N. Garrett, H. H. Meyer, G. E. Bradford, N. Ninman, and N. E. East. 1973. Net energy requirements for growth of lambs age three to five months. J. Anim.

Sci. 37 :1386

Renkin, E. M.. 1968. Transcapillary exchange in relation to capillary circulation. J. Gen. Physiol. 52: 965.

Satinoff, E.. 1978. Neural organization and evolution of thermoregulation in mammals. Science, 201:16.

- Sellers, A. F., C. E. Stevens, A. Dobson, and F. D. Mcleod. 1964. Arterial blood floe to the ruminant stomach. Amer. J. Physiol. 207:371.
- Sellers, E. A., K. V. Flattery, A. Shum, and G. E. Johnson. 1971. Thyroid status in relation to catacholamines in cold and warm environments. Can. J. Physiol. Pharmacol. 49:268.
- Setchell, B. P. and J. L. Linzell. 1974. Soluble indicator techniques for tissue blood flow measurements using Rb-rubidium chloride, urea, antipyrine (phenazone) derivatives or H-3 water. Clin. Exptl. Pharmacol. Physiol. Suppl. 1:15.

Shipley, R. A. and R. E. Clark. 1972. Tracer methods for in vivo kinetics. Academic Press, New York.

Smith, C. R. and R. L. Hamlin. 1977. Microcirculation and lymph; pages 121-132. <u>In</u>: Dukes physiology of domestic animals. <u>Edited by</u> M. J. Swenson. 9th ed. Comstock Pub.

and the second sec

THE OLD COMPANY ST

· TO write stream

A REAL PROPERTY AND AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY.

The second second

Associates, Cornell University Press. London.

- Steel, R. G. D. and J. H. Torrie. 1960. Principles and procedures of statistics. McGraw-Hill Book Comp., New York. N.Y.
- Steven, D. A. and A. B. Marshall. 1970. Organization of the rumen epithelium. pages 80-100. <u>In</u>: Physiology of digestion and metabolism in the ruminant. <u>Edited by</u> A. T. Phillipson. Oriel Press Ltd., Newcastle.
- Swenson, M. J., 1977. Dukes physiology of domestic animals. 9th. ed. Comstock Pub. Associates. Cornell University Press. London.
- Symonds, H. W. and G. D. Baird. 1973. Cannulation of an hepatic vein, the portal vein and mesenteric vein in the cow and its use in the measurement of blood flow rates. Res. Vet. Sci. 14:267.
- Thompson, G. E., J. W. Gardner, and A. W. Bell. 1975. The oxygen consumption, fatty acid and glyserol uptake of the liver, in fed and fasted sheep during cold exposure. Quarterly J. Exptl. Physiol. 60:107.
- Thompson, G. E., J. M. Bassett, and A. W. Bell. 1978. The effects of feeding and acute cold exposure on the viseral release of volatile fatty acids, estimated hepatic uptake of propionate and release of glucose and plasma insulin concentration in sheep. Br. J. Nutr. 39:219.
- Thompson, J. R., R. J. Christopherson, V. A. Hammond, and G. A. Hills. 1977. Effects of acute cold exposure on plasma

- - - And the same show a second second second
- - Collins a comment of the start starting

concentrations of noradrenalin and adrenaline in sheep. Can. J. Anim. Sci. 58:23.

- Warren, W. P., F. A. Martz, K. H. Asay, E. S. Hilderbrand, C. G. Payne, and J. R. Vogt. 1974. Digestibility and rate of passage by steers fed tall fescue, alfalfa, and orchardgrass hay in 18 and 32 C ambient temperature. J. Anim. Sci. 39:93.
- Webster, A. J. F., A. M. Hicks, and F. L. Hays. 1969a. Cold climate and cold temperature induced changes in the heat production and thermal insulation of sheep. Can. J. Physiol. Pharmacol. 47:553.
- Webster, A. J. F., J. H. Heitman, F. L. Hays, and G. P. Olynyk. 1969b. Catacholamines and cold thermogenesis in sheep. Can. J. Physiol. Pharmacol. 49:268.
- Webster, A. J. F.. 1970. Direct effects of cold Weather on the energetic efficiency of beef production in different regions of Canada. Can. J. Anim. Sci. 50:563.
- Webster, A. J. F. and F. White. 1972. Recent developments of a method for measuring portal blood flow ans viseral thermogenesis in the consciouse sheep. Proc. Physiol. Soc. 227:4P.
- Webster, A. J. F. and F. White. 1973. Portal blood flow and heat production in the digestive tract of sheep. Br. J. Nutr. 29:279.
- Webster, A. J. F., 1974, pages 33-70, and, Physiological effects of cold exposure, pages 71-106. Adaptation to Cold. M. T. P. International Review of Science,

- and a second sec and the second of the local second and the second sec The second se the second secon

Environmental Physiclogy, Series one, Vol. 7. Edited by

R. Shaw. Butterworths and Comp. Ltd., London, England.
Webster, A. J. F., P. O. Osuji, E. White, and J. F. Ingram.
1975. The influence of food intake on portal blood flow and heat production in the digestive tract of sheep. Br. J. Nutr. 34:125.

- Weston, R. H.. 1977. Metabolic state and roughage consumption in sheep. Proc. Nutr. Soc. 2, 88.
- Westra, R. and R. J. Christopherson. 1976. Effects of cold on digestability, retention time of digesta, reticulum motility, and thyroid hormones in sheep. Can. J. Anim. Sci. 56:699.
- Wong, J.. 1954. Hemoglobin determination. Practical physiological chemistry.pages 617-619. 13ed. McGraw-Hill Book Comp. New York, N.Y..
- Yeh, K. Y. and F. Moog. 1977. Influence of the thyroid and adrenal glands on the growth of the intestine of the suckling rat, and on the development of intestinal alkaline phosphatase and disaccharidase activities. J. Exptl. Zoo. 200:337.
- Young, B. A., B. Kerrigan, and R. J. Christopherson. 1974. A versatile respiratory pattern analyser for studies of energy metabolism of livestock. Can. J. Anim. Sci., 55:17.
- Young, B. A.. 1975. Some physiological costs of cold climates. Report #175, June, 1975. Agriculture Experimental Station, University of Missouri, Columbia.

- a set and the set of the second sec a set of the set of th
- and the second second

the state of the s

the second secon

I THE ADDRESS AND ADDRESS AND ADDRESS ADDR

APPENDIX

/

H. APPENDIX I : MATERIALS AND METHODS (SUPPLEMENTARY)

The methods sections of chapters 4 and 5 contain a description of animal use, measurement techniques, and analysis procedures which are more appropriate for the inclusion in a paper for publication in a scientific journal. This appendix primarily contains supplementary details of the methodology and procedures used in the experiment and not included in the papers (chapters 4 and 5) or, where more detail was considered appropriate for thesis consideration.

I. 1 Microsphere Examination and Handling

The radioactive microspheres used in the present experiment were obtained from New England Nuclear, Boston, Massachusetts. The spheres were shipped in 10 ml volumes of 1 millicurie (mci) each, contained in 10% dextran with 0.01% Tween-80 suspending agent. An aliquot of the shipping medium was drawn off and assayed for radioactivity as a possible indication of nuclide leaching in the spheres. No "above background" radioactivity in the shipping solution was found. The spheres were stored in lead shielding until the day of injection at which time they were made up to a volume of 45 ml by the addition of 10% dextran. This solution was homogenously mixed with an ultrasonic mixer (type Sonic 300 Dismembrator, Artec Systems Corp., Farmingdale, N. Y.) and

1 million for subscription president & est

 approximately 10 g of solution was then weighed out into 20 ml tared plastic syringes for injection into the sheep.

The physical diameter of the microspheres used in the present study was guaranteed by the supplier (New England Nuclear) to be $14.6\pm1.0\mu$ m, for the cerium, and $15.1\pm1.1\mu$ m, for the tin. Microscopic examination of a representative sample of the spheres with a micrometer grid demonstrated that the average diameter was of 15.08μ m with a range of 14.7 to 15.5μ m. However, 98% of the spheres measured were within .3 μ m of the average. The mean cerium and tin diameter values were not statistically different from each other (15.09 μ m for cerium, 15.08 μ m for tin) and later analysis showed no statistical differences between nuclides in terms of distribution within a tissue.

I. 2 Injection Solution and Solution Additives

In the present study the microspheres were contained in a solution of 10% dextran with 0.01% Tween 80 suspending agent. Foster etal. (1977) reported that dextran was not used in their experiment to retard the settling of microspheres because of reported anaphylactic reactions to dextran in rats. It is also reported by Goodman and Gillman (1975), that when used as a plasma extender, dextran can cause an antigen reaction and sensitivity in some people. However, in the present study, no anaphylactic reactions were observed to either dextran or the Tween agent in the sheep, nor have any such reactions been reported in the

successful and the second seco

literature with respect to sheep. This point may warrant further research specifically with regards to ovin sensitivity to dextran or Tween agents.

I. 3 Infusate Temperature

Bligh (1963) discusses several experiments in which cold saline injected into the vena cava reduced or suppressed panting in sheep. He concluded the existence of thermal receptor sites in the venous trunk. Consequently, it might be inferred that the injection of a room temperature microsphere solution into the left ventricle could affect thermal regulation in the animal and hence the distribution of blood. This factor is seldom mentioned in the methods descriptions of microsphere experiments discussed in the literature.

In the present experiment measurements on additional sheep showed that approximately 50cc of room temperature saline was required to be injected into the left ventricle, within a five minute period before any noticeable changes occurred in thermoregulation (shivering or postural movements). Consequently, considering that the microspheres in the present experiment were contained in only 10cc of room temperature saline, we assumed that the injection quantities used in this study would not affect thermoregulation. However, the effect of injectate temperature should be considered in interpreting microsphere data where it is potentially an influential factor.

_ D_ HI KONGAN C HI

I. 4 Body Positioning During Microsphere Injection

Pre-experimental tests, showed that an animal's body movement could influence its blood pressure when measured via carotid artery catheters. For example, movement or exercise within the metabolic crate increased blood pressure by increasing heart rate and cardiac output. Conversely, if the animal layed down, blood pressure was reduced due to a reduction in heart rate and cardiac output. An altered blood pressure could influence the distribution of the microspheres, hence biasing the treatment or temperature effect on blood distribution. Consequently, all animals were trained several weeks in advance of the microsphere injections to stand in a relatively constant body position, by haltering them to a bar at the front of their metabolic crates. Halter training sessions were maintained for about one half hour to one hour, or approximately the same time period required to inject the microspheres and to take the associated measurements described in Figure 1. A consistent alignment of the head neck and trunk was consequently obtained.

I. 5 Behavioural Considerations

Human movement within the animal rooms appeared to affect the behaviour of the sheep. This was probably due to the animals psychological conditioning to feeding and handling by humans. This induced behaviour could influence blood flow in the animals by affecting catecholamine release The Party of the P

The statement of the st

and hence influencing blood pressure. Therefore, where required, the animals were screened off from the equipment area and also were subjected to a low volume radio background noise, for several weeks in advance of the microsphere injections. Consequently, because all sampling and measurements were made from outside the animal room and because the animals were given a 20 to 30 minute "quiet period" prior to experimentation, the noise and physical disturbance caused by the researchers appeared to have little influence on the sheep.

I. 6 Equipment

The technical description of the equipment used in the present study is given in the following listing. Additional discussion of equipment and methods of equipment use are also given in chapters 4 and 5.

(1) Temperature recorder, model BAT-8, Bailey Instruments Inc., Saddle Brook, N. J., USA; used for the measurement of body and surface temperatures.

(2) Drying oven, Despatch Oven Comp., style V-31, The Partlow Corp., New Hartford, N. Y., USA; used for obtaining tissue dry weights.

(3) Infusion/withdrawal pump, Harvard Apparatus, 150 Dover Rd., Mills M. A., USA; used for the withdrawal of blood samples for CO and AVA estimates.

(4) Respiratory Gas Analyser, Beckman Instruments, Fullerton California USA, Printer model, Honeywell. Ft. Washington, P.

Decide a al

And the state of t

A.. CO2 anolyser model 215A S/N; used for the measurement of respiratory gas.

(5) Sanborn Physiological Recorder, Carrier pre-amplifier
350-1100C, high gain pre-amplifier 350-2700C, recorder 7700
series. Hewlett Packard, Watham, Mass. USA; used for
recording heart rate, and blood pressure traces.
(6) Pressure Transducer, Model 267BC, Hewlett-Packard,
Waltham Mass. USA; used for measuring blood pressure.
(7) Blood Gas Analyser, Blood Micro System type BMS 3a, Acid
Base Analyser, PHM71. Radiometer/Copenhagen, Denmark; used
for measuring blood pH, pC02, and p02.

(8) Tygon Microbore Tubing, Formulation S-54-HL, I. D. 0.04-0.07 mm. Surgical and hospital use, Norton Plastics and Synthetics Division, Akron, Ohio, USA; used for injection and withdrawal catheters.

(9) Isotope Counters, NaI crystals, 7.5 cm. Ortec high voltage supply # 456, Ortec Inc., Oak Ridge, Tennessee, USA., Canberra amplifier # 1417B, Canberra Industries Inc., Meriden, Connecticut, USA., Canberra scaler # 1437; used for radioactivity counting.

(10) Ultrasonic Mixer, Sonic 300 Dismembrator, Arteck Systems, Corp. Farmingdale, N. Y. USA; used in the preparation and mixing of microsphere solutions.

I. 7 Respiratory Gas Analysis and Respiration Rates I. 7. 1 Respiratory Gas Analysis The rate of oxygen consumption in the sheep was

Address of the second s

the second secon

measured in an open circuit respiratory gas analysis system (Young etal. 1974). Respiratory gas was collected via a hood enclosing the animal's head. This method of respiratory gas collection was preferred because it disturbed or emotionally upset the animal less than the available alternative of a more restrictive face mask. Oxygen consumption was used to calculate metabolic heat production assuming a caloric value for oxygen of 4.89 Kcal/liter.

I. 7. 2 Respiratory Rate

Respiratory rate was measured in the present experiment with the use of a tambour recording device. This system involved essentially placing a flexible, convoluted 2.5 cm rubber tubing around the thorax of the sheep. Consequent breathing action moving the rib cage and diaphragm would, hence, cause distention and contraction of the tubular belt. By connecting this belt to a flexible 0.5 cm I. D. tubing, which was in turn connected to a manometer, respiration rate could be monitored by deflections in the manometer.

I. 8 Blood Analysis

Following the injection of the microspheres, two separate 10 ml samples of blood were taken from the carotid artery, one into a heparinized syringe, the other into a non heparinized syringe. The blood samples were immediately transferred to glass test tubes. From the heparinized blood

The second secon

Land have been a shi

sample, duplicate aliquots were drawn into capillary tubes for hematocrit determination as described in chapter 4. The test tube containing heparinized whole blood was then sealed with parafilm (parafilm "M" American Can Company Wisconsin, USA) and frozen at -5 to -10 C for later use in hemoglobin analysis. The unheparinized blood was allowed to clot at room temperature and was then centrifuged at approximately 3000-5000 rpm. in a GLC-1 General Lab centrifuge for 10 to 15 min.. The serum was drawn off into a glass test tube, sealed with parafilm, and frozen for later thyroxin (T4) analysis.

At the same time as the above blood samples were taken, additional 2 ml blood samples were obtained from the carotid artery and right atria with heparinized 5 ml plastic syringes. The needle ends of the syringes were then sealed by inserting them into a rubber stopper. These two samples were immeadiately used to measure blood gases (p02, pC02) and pH (Blood Gas Analyser, Blood Micro System, type BMS 3a).

Values for T4 were determined by the method described by Chopra (1972); T4 antibody was purchased from Calbiochem-Behring Corp. LaJolla, California. Hemoglobin concentration was determined according to the method of Wong (1954).

I. 9 Body Surface Temperatures

Temperature values for the flank, midside, dorsal

itempter part and a later

midline, ears, and lower front leg of the CON and CC sheep, were taken with thermocouples and temperature recorder (model Bat-8, Bailey Instruments, Saddle Brook, USA). Each thermocouple was placed on the skin surface, and held in place until a constant temperature readout was obtained. The thermocouple wires were insulated from the operator's hand heat by a synthetic foam covering.

I. 10 Dissection

After being killed with an overdose of sodium pentabarbital (Nembutal) the carcasses were placed in a room kept at 3C db. They were moved to a larger dissection room within 24 hr and placed on a stainless steel dissection table. Dissection was carried out primarilly by two technicians, each generally responsible for dissecting specific body areas. A third technician was responsible for weighing, recording, and storing of tissue samples. Tissue and organ samples were sealed in separate containers and then frozen at -5 to -10 C until tissue nuclide counting was done. Whole organs such as liver, heart, and gastrointestinal organs were placed in cylindrical containers measuring approximately 5cm by 8cm. Smaller organs and tissues such as adrenals, thyroids, and skin tissue were placed in smaller (4cm by 6cm) cylindrical plastic containers. Blood samples (collected for cardiac output (CO) and arterial venous anastomoses (AVA) estimates) were transferred to 50cc glass beakers for gamma counting. A

Lass de la re

the second secon fourth person (the author) coordinated and supervised the dissection procedures with regard to decisions on sampling sites, and storage of samples. Care was taken during dissection not to disturb the injection and sampling catheters until the catheter position had been photographed and verified by internal examination of the heart.

The tissue wet weights reported in the appendix were obtained at the time of dissection. Dry weights were obtained after nuclide counting was completed by either freeze drying or oven drying the samples to a constant weight. Tissue nuclide counts were corrected for half life decay to the day of nuclide injection using the formula ;

Activity = (activity at time zero) (0.5) ,

where t = days, or parts thereof since injection and t.5 = the half life of the nuclides (32.5 days for Ce-141 and 115 days for Sn-113).

The injectate cpm were also corrected to the day of each injection; consequently, all tissue counts could be compared directly with injectate counts.

I. 11 Istotope Counting

Two gamma emitting nuclides Ce-141 and Sn-113 were used in the present experiment. The cerium and tin nuclides were two of the most compatible tracers available in terms of energy separation, spillover, and half life accordance. Isotope choice was also based on the limitations and resolution capability of the counting system available for

and the second of the second s

the study.

When measuring the radioactivity of an nuclide, a random scattering of the emitted radioactive particles occurs and as such, collecting or measuring all of the emitted activity. The percentage of nuclide that is measured, which varies according to the type of equipment used, is termed the counting efficiency.

In the present experiment, two large volume radionuclide counters were used (see section I.6 for equipment description). A description of this equipment is given by Lyster (1971). The use of a large volume counting system and whole organ counting was expected to ensure more reliability than more commonly used subsampling or representative sampling procedures. The measurement of counting accuracy and efficiency in the counters were estimated by placing in the counters an "nuclide source" container similar to the containers used for tissue collection, containing a known amount of either Ce-141 or Sn-113 nuclide. Consequently, by comparing the counts per minute (crm) obtained with the actual amounts of nuclide in the containers, the efficiency value could be estimated.

The nuclide counter used to measure all the tissues from the AC sheep (counter#1)demonstrated counting efficiencies shown in Figure 2. Use of this efficiency curve facilitated the adjustment of nuclide counts to allow for geometric differences in the different tissues. Katz and Blantz (1972), felt that the establishment of an efficiency

curve was essential when using counting procedures of this nature in order to eliminate counting biases due to tissue height differences.

Isotope counter number 2 used to measure the CON and CC sheep tissues utilized dual detection crystals and demonstrated uniform counting efficiencies of 4.59% and 3.01% for Ce-141 and Sn-113 respectively.

When using two nuclides, due to the width of the photo peak or peaks, there is often an overlapping or interference of one nuclide with the other. This phenomena is known as "spillover". In the present experiment, essentially no cerium spillover occurred into the tin "window", however, the tin, being of higher energy, did spillover into the cerium "window". This spillover was measured as the percent of cpm in a mixture of cerium and tin that was in addition to the cpm contributed by a single nuclide when measured in one of the nuclides "counting windows". The spillover values for counter number 1 are shown in Figure 3. The spillover value of Sn into Ce for counter number 2 was constant at 22.2%.

I. 12 Calculations

The proportion of systemic output distributed to an organ can be estimated with the radioactive microsphere technique by comparing the number of microspheres (or radioactivity) in that organ to the total number of microspheres (or radioactivity) injected. However, an actual

and the demotes his state

quantitative determination of flow rate to an organ can also be determined. Hales (1973) and Heymann etal. (1978) describe various methods for calculating cardiac output using radioactive microspheres. The most common method, and the one used in the present study, is that of a "surrogate organ flow", or what is often termed a "reference sample technique", or "artificial organ technique". This method involves the withdrawal of blood from an artery at a constant rate via a plastic syringe. The withdrawal of blood is started simultaniously or within 5 seconds of the microsphere injection, and continued for approximately one minute after the injection of microspheres. Consequently, the withdrawal syringe or "artificial organ" will contain a proportion of the injected microspheres. Assuming that the flow rate or withdrawal rate in the artificial organ is proportional to the cardiac output, just as the radioactivity in the artificial organ is proportional to the injected radioactivity, then cardiac output can be calculated using the formula described in the following paragraphs.

This same reasoning can be used in estimating the arterial venous anastomosis (AVA) flow, which is also ilustrated in the following paragraphs. However, AVA flow estimated in this way provides only an overall or total body estimate of AVA flow. This gives no estimate, for example, of the mesentary AVA flow which, if significant, could bias the radioactivity (or number of microspheres) attributed to

the liver capillary flow.

A description of the calculation methods used for cardiac output (CO) and arterial venous anastomosis (AVA) estimates is given in the accompanying examples. The terms used in these calculations are defined as follows: "syringe right heart" or "right atria" refers to the mixed venous blood sample taken from the right atria which was used in AVA calculations. "Syringe carotid artery" or the "artificial organ" blood sample refers to the blood sample taken from the left exteriorized carotid artery for calculations of cardiac output.

The calculations of cardiac output and arterial venous anastomosis were as follows;

(1) Cardiac output (CO) = (F) (cpm D')/d' in ml/min. Where, F = sampling rate in the artificial organ (carotid artery) in ml/min.

Where, D'= injectate cpm

Where, d'= cpm in artificial organ withdrawal sample. example: F= 16.8 ml/min, D'= 25995281, d'= 79695 therefore, C O= (16.8) (25995281)/79695 = 5479.9 ml/min. (2) Arterial Venous Anastomosis (percent of CO through AVA)

AVA= (d''/D') (CO/p) (100) d''= cpm in the withdrawal sample from the right atria p= flow (ml/min) or withdrawal rate for AVA sample.

and the second s

And a second sec

the second secon

1000

A REAL PROPERTY AND A REAL PROPERTY AND AND AND A REAL PROPERTY AN

Figure 2: Relationship between radionuclide counting efficiency and sample volume of counter #1 calculated with known quantities of Ce-141 and Sn-113 radionuclide source

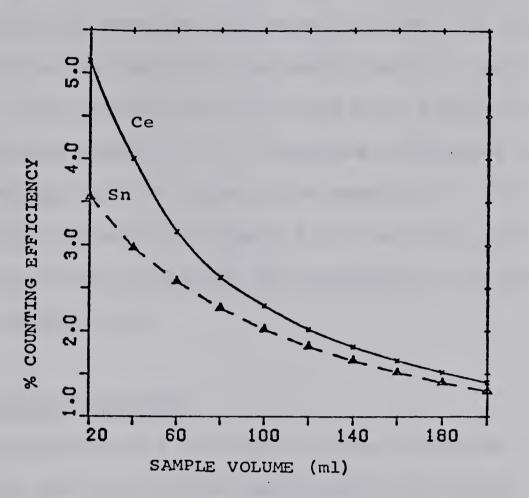
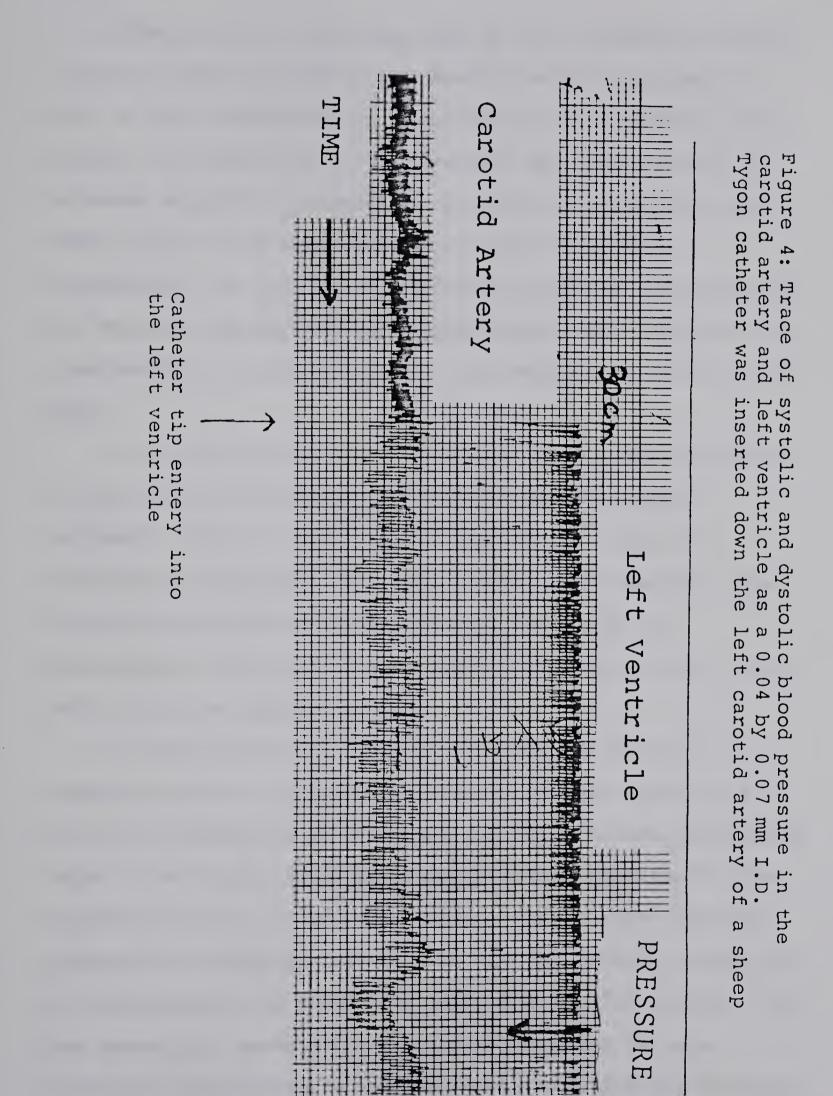


Figure 3: Relationship between percent "spillover" of Sn-113 radionuclide into the Ce-141 "counting window" and sample volume of counter #1 calculated with a known quantity of Sn-113


I. APPENDIX II : RESULTS (SUPPLEMENTARY)

The results sections of chapters 4 and 5 as well as the appendix data for individual animals contain a more complete account of the results obtained from this study. The purpose of the present appendix is to describe additional reasoning or methodology used to analyse the results. As with the supplementary methods in appendix I, the additional detail of the supplementary results was considered appropriate for thesis consideration.

II. 1 Catheter Placement

As was previously described in the review of literature, the radioactive microsphere technique, as used in the present experiment, requires the placement of a catheter into the left ventricle to facilitate the microsphere injection. Left ventricle catheter placement can be estimated by connecting the saline filled catheters to a pressure transducer in order to indicate the blood pressure changes in the various vessels and heart chamber sites. As the catheter is inserted down the carotid artery, the point at which the catheter enters the left ventricle is indicated by a drop in diastolic pressure. A trace of this characteristic is clearly illustrated in Figure 4. trate strangents and the strangent of

1. 1 M. 1

However, due to the dynamics of the circulation system , such as heart movements and blood pressure changes, as well as the possibility of human error, the catheters can be subject to misplacement. Misplacement can occur either by improper original placement or by subsequent movement from their initial position. If misplacement by either circumstance occurs, the microspheres would be injected into the vascular system at a site which would not facilitate the distribution of microspheres to the foreguarter areas of the body.

The verification of catheter placement upon dissection of the animal and analysis of tissue nuclide counts decidedly reflects catheter position at the time of microsphere injection. The misplacement of a catheter from the left ventricle can result in the injection of microspheres into one of two anatomical sites (1) the dorsal aorta, (2) the carotid artery.

In the present experiment, 2 of the 24 catheter placements were determined to be in a carotid artery and 8 of the 24 placements were determined to be in the descending aorta. The results from the carotid artery placements were rejected for use in this experiment, even though valuable information concerning blood flow via the carotid artery may be interpreted from these two sets of data. The results from the descending aorta injections were utilized in some treatment comparisons by comparing the relative distribution of microspheres to all tissues receiving blood via the

descending acrta . These tissues included subcutaneous fat, spleen, pancreas, gall bladder, liver, adrenals, kidney, kidney fat, reticulo-rumen, omasum, abomasum, small intestine, large intestine, and urine bladder. Organs or tissues cephalic to the descending aorta flow were rejected.

An injection of microspheres into the descending aorta resulted in a greater number of spheres being distributed to the capillary beds of tissues receiving blood from the descending acrta; or, stated another way, this had the same effect as using a larger injection dose. To quantify how much larger the numbers of spheres were, an adjustment factor was calculated by comparing the GIT counts in "aorta injected" sheep versus "left ventricle injected" sheep within the same treatment group. An example of such a comparison would be as follows:

(1) Compare the total percent distribution of microspheres to the entire GIT (reticulo-rumen, omasum, abomasum, small intestine, large intestine) in the "aorta injected" sheep, to the treatment average percent distribution of microspheres to the entire GIT in the "left ventricle injected" sheep.

(2) Divide all percent distributions in the "aorta injected" sheep by the ratio.

specifically:

For the chronic cold treatment group (sheep#87, 78, 74, 80), the average GIT percent distribution of microspheres for the "left ventricle injected" sheep

A DESCRIPTION OF A DESC

=19.36%.

The Ce-141 injection in sheep #78 was determined to be into the descending aorta and the percent distribution to the GIT was 30.97%.

Therefore, the ratio is 30.97/19.36=1.6.

Hence, percent distribution values for sheep 78 for the Ce-141 nuclide were divided by 1.6.

As a test of validity for this adjustment method, a statistical comparison of tissue counts obtained via "left ventricle" catheter placement versus "adjusted aorta" placements demonstrated no statistical differences within treatment (Table 8). Consequently, the adjusted values for the tissues and organs mentioned were used in subsequent treatment comparisons.

This same method of comparison could be used by comparing radioactive counts to any of several larger whole organs such as spleen, pancreas, or omasum between "left ventricle" and "aorta injected" sheep, and in fact similar results are obtained by doing so. However, by using the entire GIT, the adjustment factors are based on a larger pooled reference value and as such can be used with more assurance.

the first house a second second second second second

		ntricle Pl		ed Aorta		
	CON 2	AC 7	<u>CC</u> 4	SEM :	CON 4	<u>CC</u> 4
Observations/mean	2	/	*	2	*	-
Internal Organs an				1		
brain	63.9	83.1	113.8	13.8		
spinal cord	4.6	18.5	22.1	5.6		
heart	116.2	70.7 5.9 ^b	103.3 12.2 ^b	15.6		
lungs(bronch_art.)	57.5 ^a 2.7 ^e	2.2 ^f	8.2 ^d		9.8	4.2
liver	225.4	338.9	193.7	4.2 <u>.</u> 36.5 .	168.7	173.9
kidney thyroids	48.8 ^e	97.6 ^d	88.1 ^e	24.5		27300
pancreas	165.7	219.6	182.4	. 31.4	169.8	193.8
adrenals	84.5 ^f	202.4 ^d	140.1 ^e	37.7	177.9	76.2
gall bladder	7.7	9.1	5.7	1.2	13.9	8.5
urine bladder	5.6		6.5	3.1	15.7	5.2
spleen	78.8	120.1	92.5	26.6	63.6	67.2
				:		
Muscle				:		
longisimus dorsi	1.7	5.9 5.6 ^b	8.2	0.1 :		
gluteus maximus	3.0 ^C	5.65	14.3^{a} 16.6^{d}	1.3		
triceps	1.2 ^f	5.0 ^e 11.3 ^b	28.2 ^a	1.3 , 2.6 .		
diaphragm	28.6 ^a	11.3	28.2-	2.0 1		
Gastrointestinal I	Sract			1		
esophagus		22.4	15.5	5.5		
reticulo-rumen	14.1 45.9 ^d	31.9 ^e	31.7 ^f	6.5	61.6	43.9
omasum	56.8	55.4	48.5	7.5	76.5	59.7
abomasum	103.5	137.6	70.0	16.7	80.4	76.5
small intestine	83.1 _f	84.5 _a	60.6	8.3	65.3	39.6
large intestine	43.2	67.6 ^d	51.1 ^e	8.7	73.3	55.2
_				:		
Skin	5.6	12.0	7.8	1.2		
midside	11.0	7.1	11.5	3.1		
nasal	1.1	1.1	0.9	0.6		
lower front leg	*•*			÷ *		
Fat				:		16
subcutaneous	3.0	2.0	3.9	0.4	4.8	1.6 4.7
kidney fat	10.0	.7.7	5.6	2.7 :	10.3	4.7
Bone		- f	o re	0.05		
radius and ulna	1.3 ^d	0.2 ^f 4.2 ^f	0.5 ^e 19.7 ^d	5.2	•	
nasal turbinals	12.3 ^e	4.2	19.7	J.2 8		
				2		
Other	3.0	0.5	0.4	0.05		
back hooves	1.0	0.5 _b	0.4	0.05		
front hovves	0.8 2.3 ^b	2.7 ^b	8.5ª	3.2		
ears	2.0			1		
				n TOWS ATE		
				B TOUTE ALL		

Table 8: Blood flow estimations (ml/100g/min) for sheep with microsphere injections in the left ventricle and descending aorta.

a, b, C Means with different superscripts within rows are statistically different at P<0.05 and superscripts

d, e, f at P<0.10 probability levels.

SEM is the standard error of treatment means.

Left ventricle placements refer to statistically adjusted means obtained via unequal numbers least squares analysis of variance.

Adjusted aorta values were obtained via the descending aorta adjustment proceedures as described in the text.

J. APPENDIX 3 : INDIVIDUAL ANIMAL DATA

The following appendix section contains values from individual animals for the various physiological measurements taken during the study. The sheep are listed according to treatment group starting with the control (CON) animals and followed by the acute cold (AC) and chronic cold (CC) animals. Within each treatment group, the animals are listed from lowest to higest identification number:

Control (CON) #8282, 8284, 8285, 8298 Acute cold (AC) #8265, 8270, 8271, 8279 Chronic cold (CC) #8274, 8278, 8280, 8287

Microsphere injections containing the radionuclides cerium-141 (Ce-141) and tin-113 (Sn-113) were carried out with measurements of heart rate and respiration rate made immediately befor the first injection, between injections, and after the second injection. The interval between injections was approximately 15-20 minutes. During the microsphere injections, blood samples were withdrawn from the right atria for calculations of arterial venous anastomosis (AVA). This blood sample was termed "syring right heart". Blood samples were also withdrawn from the carotid artery for the calculation of cardiac output. This blood sample was termed "syringe carotid artery". Blood sample withdrawal rates are shown in the appendix. Catheter placement into the left ventricle (LV), descending aorta A THE OWNER CONSTRUCT OF THE PARTY OF THE PA

(DA) and carotid artery (CA) are also indicated in the following appendix tables.

APPENDIX

CONTROL	*()		Serum T4 Serum T4	Skin Temperature (OC)	Back Flank	Midside	Lower Front Le	Right Ear	Left Rar	
8282	(34.0)*									
SHEEP	35.0	299.4	×	10.1	2.9		54.1	64.0	54.5	50.2
	Body weight (kg)	Oxygen consumption (ml.min ⁻¹)	Hematocrit (%)	Hemoglobin (a.100 m]-1)	Water intake (litter.day -1)	Digestibilities %	Dry matter	Protein	Energy	Acid detergent fiber

35.65 35.85 33.88 33.35 33.70

Leg

35 • 55

4.9

* pre treatment measurement


MICROSPHERE INJECTION

After second	114	40			
141 _{Ce}			J.5.6	15 .2	DA
Between injections	120	52			
113 _{Sn}			14.8	15.8	DA
Before first	96	55			
Injection Order	Heart rate (min-1)	Respirațion rate (min ⁻)	Syringe right heart (ml·min ⁻¹)	Syringe carotid artery (ml.min-l)	Catheter Placement

SHEEP 8282 CONTROL

	DPM 141 Ce	DPM 113 	Wet weight (g)	Dry weight (g)
Gastrointestinal Tract				
esophagus reticulum reticular mucosa** rumen rumen mucosa** omasum omasal mucosa** abomasum small intestine large intestine Internal Organs and Glands	92489 10149439 1728 26814175 8752 10150190 1329 26196596 40264139 43010239	1158161 18126677 10967 54737419 25193 18916774 3322 27369741 61676483 77172612	44.9 116.8 8.9 469.9 30.8 128.9 23.9 219.3 592.4 582.4	13.2 27.8 0.7 101.7 3.3 30.3 3.0 43.7 122.3 107.8
brain	18830	112000	88.0	16.5
<pre>spinal cord** heart lungs liver kidney thyroid pancreas adrenal</pre>	0 94250 2249466 4947378 8541694 354 11963219 1006675	1741 59935 15519548 8901419 39490709 9258 22709806 3104322	5.9 153.9 566.4 601.3 101.8 6.3 45.4 8.1	0.7 47.3 100.6 149.5 19.7 1.0 10.2 1.3
gall bladder urine bladder	80642 63955	196516 249645	6.4 15.2	0.8 1.8
spleen	11057053	13792580	231.8	70.0
Other Tissue and Organs				
Muscle				
longissimus dorsi** gluteus maximus** triceps** diaphram	1184831 1279410 3686 4355140	1036870 2690516 3258 9747096	42.6 56.7 44.7 129.4	10.6 14.7 11.4 32.6
Skin				
midside** nasal** lower front leg**	359720 5610 2196	1003322 12774 5806	30.7 43.6 9.3	13.6 13.7 4.7
Fat				
<pre>subcutaneous** kidney**</pre>	215199 319299	266612 1015870	26.8 35.9	9.8 7.4
Bone				
radius and ulna** nasal turbinals	4586 47340	12354 60935	22.4 95.7	14.3 33 .4
Other				
back hooves front hooves ears	74444 15482 5348	372354 12903 5516	73.9 82.7 36.2	39.0 44.8 14.4
Additional Measurements				
syringe right heart (Sn) syringe right heart (Ce) syringe carotid artery (Sn) syringe carotid artery (Ce) injectate	0 33824 0 11085 471194804	547580 0 35000 0 820092645		

** Representative tissue sample, not whole organ or tissue.

			2.1		35.80	35 . 26	35.78	33.70	32.84	31.10		
CONTROL			Serum T4 (µg.100 ml ⁻¹)	Skin Temperature (OC)	Back	Flank	Midside	Lower Front Leg	Right Ear	Left Ear		*
8284	*(0°6E)											
SHEEP	-40 ° 0	۲ ۰ / ۴۵	28.9	9°8	3.0			54.4	63.6	54.7	52.4	
	Body weight (kg)	UXYGEN CONSUMPTION (ml.min ^{-l})	Hematocrit (%)	Hemoglobin	(9.100 ml) Water intake	(litter.day ⁻¹)	Digestibilities &	Dry matter	Protein	Energy	Acid detergent fiber	* pre treatment measurement

•

MICROSPHERE INJECTION

After second	×	×		
113 _{Sn}			×	×
Between injections	140	87		
141. Ce			12.6	18.0 LV
Before first	150	126		
Injection Order	Heart rate (min-1)	Respiration rate (min ⁻¹)	Syringe right heart (ml·min ⁻¹)	Syringe carotid artery (ml·min ⁻¹) Catheter Placement

SHEEP 8284 CONTROL .

	DPM 141 Ce	DPM - 113 	Wet weight (g)	Dry Weigh (g)
Gastrointestinal Tract				
esophagus	549152	x	45.9	11.
reticulum	4353217	x	146.4	27.
reticular mucosa**	1086	х	x	X
rumen	22713586	х	763.5	159.
rumen mucosa**	521	X	38.9	3.
omasum	2460108	Х	145.4	38.
omasal mucosa**	1173	Х	9.9	1.
abomasum	11268130	Х	229.3	48.
small intestine	34762782	X	590.3	63.
large intestine	16552978	х	579.3	98.
Internal Organs and Glands				
brain	6498282	x	92.8	17.
spinal cord**	18652	X	4.0	0.
heart	24903956	X	176.3	52.
lungs	1760043	X	534.1	105.
liver	227847	X	673.1	194.
kidney	38636782	X	148.2	28.
thyroid	121434	X	6.3	1.
pancreas	1658630	X	48.8	9.
adrenal	514260	X	6.8	1.
gall bladder	29434	X	13.6	1.
urine bladder	57456 172239	X X	10.5 49.8	1.
spleen	172239	•	43.0	
Other Tissue and Organs				
Muscle				
longissimus dorsi**	3913	х	33.8	8.
gluteus maximus**	21717	x	31.6	8.
triceps**	27086	X	49.3	12. 15.
diaphragm	1986913	X	61.8	15
Skin				
midside**	75891	x	29.3	11.
midside** nasal**	75891 548347	X	29.3 58.2	
midside** nasal** lower front leg**	75891 548347 8586	x x	29.3 58.2 17.8	19
nasal**	548347	X	58.2	19
nasal** lower front leg**	548347	X	58.2 17.8 12.7	19 9. 5.
nasal** lower front leg** <u>Fat</u>	548347 8586	x X	58.2 17.8	19 9. 5.
nasal** lower front leg** <u>Fat</u> subcutaneous**	548347 8586 1347	x X X	58.2 17.8 12.7	19 9. 5.
nasal** lower front leg** <u>Fat</u> subcutaneous** kidney**	548347 8586 1347 22760 23282	x x x x	58.2 17.8 12.7 26.0 41.6	19 9. 5. 14. 28.
<pre>nasal** lower front leg** Fat subcutaneous** kidney** Bone</pre>	548347 8586 1347 22760	x X X	58.2 17.8 12.7 26.0	19 . 9 . 14 . 28 .
<pre>nasal** lower front leg** Fat subcutaneous** kidney** Bone radius and ulna**</pre>	548347 8586 1347 22760 23282	x x x x	58.2 17.8 12.7 26.0 41.6	11. 19. 9. 5. 14. 28. 52.
nasal** lower front leg** Fat subcutaneous** kidney** Bone radius and ulna** nasal turbinals Other	548347 8586 1347 22760 23282	x x x x x x	58.2 17.8 12.7 26.0 41.6 127.9 66.3	19. 9. 5. 14. 28. 52.
nasal** lower front leg** Fat subcutaneous** kidney** Bone radius and ulna** nasal turbinals Other back hooves	548347 8586 1347 22760 23282 1461760	x x x x x	58.2 17.8 12.7 26.0 41.6 127.9 66.3 84.9	19 9. 5. 14 28 52. 35 44
nasal** lower front leg** Fat subcutaneous** kidney** Bone radius and ulna** nasal turbinals Other	548347 8586 1347 22760 23282 1461760 36826	x x x x x x	58.2 17.8 12.7 26.0 41.6 127.9 66.3	19 9. 5. 14 28 52. 35 44
<pre>nasal** lower front leg** Fat subcutaneous** kidney** Bone radius and ulna** nasal turbinals Other back hooves front hooves ears</pre>	548347 8586	x x x x x x	58.2 17.8 12.7 26.0 41.6 127.9 66.3 84.9	19. 9. 14. 28. 52.
nasal** lower front leg** Fat subcutaneous** kidney** Bone radius and ulna** nasal turbinals Other back hooves front hooves ears Additional Measurements	548347 8586 1347 22760 23282 1461760 36826 56978 65630	x x x x x x	58.2 17.8 12.7 26.0 41.6 127.9 66.3 84.9	19 9. 5. 14 28 52. 35 44
nasal** lower front leg** Fat subcutaneous** kidney** Bone radius and ulna** nasal turbinals Other back hooves front hooves ears Additional Measurements syringe right heart (Sn)	548347 8586	x x x x x x x	58.2 17.8 12.7 26.0 41.6 127.9 66.3 84.9	19. 9. 14. 28. 52. 35. 44.
<pre>nasal** lower front leg** Fat subcutaneous** kidney** Bone radius and ulna** nasal turbinals Other back hooves front hooves ears Additional Measurements syringe right heart (Sn) syringe right heart (Ce)</pre>	548347 8586 1347 22760 23282 1461760 36826 56978 65630	x x x x x x x	58.2 17.8 12.7 26.0 41.6 127.9 66.3 84.9	19 9. 5. 14 28 52. 35 44
nasal** lower front leg** Fat subcutaneous** kidney** Bone radius and ulna** nasal turbinals Other back hooves front hooves ears Additional Measurements syringe right heart (Sn)	548347 8586 1347 22760 23282 1461760 36826 56978 65630	x x x x x x x x x x	58.2 17.8 12.7 26.0 41.6 127.9 66.3 84.9	19. 9. 14. 28. 52. 35. 44.

** Representative tissue sample, not whole organ or tissue.

.

.

			5.6	36.35 34.73	35.90 34.18	33.75 32.93		After second		108	52			
			0 m1 ⁻¹) re (°C)		e Front Leg	aar ar			11,1,3 sh			×	15.0	DA
IX	CONTROL		Serum T4 (µg.100 ml ⁻¹ Skin Temperature (°C	Back Flank	Midside Lower Front	Right Ear Left Ear	INJECTION	Between injections		140	80			
APPENDIX	8285	(44.0)*					MICROSPHERE		141 _{Ce}			×	15,8	DA
	SHEEP	43.0 253.3	28.5 9.8	ີ. ເ	52.2 62.2			Before first		144	72			
		Body weight (kg) Oxygen consumption (ml·min-l)	Hematocrit (%) Hemoglobin1.	(g•100 ml ⁻) Water intake (litter.day ⁻ 1) Digestibilities e		Energy Acid detergent fiber * pre treatment measurement			Injection Order	Heart rate (min-1)	Respirațion rate (min ⁻ 1)	Syringe right heart (ml·min ⁻¹)	Syringe carotid artery (ml·min ⁻¹)	Catheter Placement

111

1


APPENDIX

SHEEP 8285 CONTROL

· ·	DPM 141 Ce	DPM 113 	Wet weight (g)	Dry weight (g)
Gastrointestinal Tract				
esophagus reticulum reticular mucosa** rumen rumen mucosa** omasum omasal mucosa** abomasum small intestine large intestine large intestine	45058 7867943 x 30734722 2126 10602125 141 17177439 55720707 25733134	167580 8366548 3612 44709354 6709 11161322 5741 16285935 64337032 29010580	65.9 144.5 1.1 5811 35.5 134.2 6.8 222.6 794.8 336.8	20.8 28.3 0.1 126.7 4.0 28.9 1.1 44.0 145.7 65.1
brain spinal cord** heart lungs liver kidney thyroid pancreas adrenal gall bladder urine bladder spleen	4880 921 65421 1543764 6531529 9907814 1629 2395423 1663951 371906 235382 12263816	71419 6483 150774 5058387 50295064* 36375258 9741 5874677 11173096* 343258 943096 23353161	91.2 5.6 208.3 684.1 495.2 108.0 7.4 49.8 8.3 25.3 20.5 181.6	16.9 0.9 58.8 131.1 135.5 22.4 2.5 12.7 1.3 2.1 4.7 53.4
Other Tissue and Organs				
Muscle longissimus dorsi** gluteus maximus** triceps** diaphram	477171 503499 1158 6688459	1050000 1385645 8096 20276354	59.3 31.6 34.7 201.2	15.1 7.2 1.0 59.1
Skin midside** nasal** lower front leg**	210003 931.1 815.6	234064 7580 10387.1	18.1 46.6 22.3	7.4 14.7 9.2
Fat subcutaneous** kidney**	54751 365235	31741 426645	13.4 42.9	9.6 12.9
Bone radius and ulna** nasal turbinals	1397 3871	. 5483 13064	41.6 113.4	27.8 46.9
Other	•			
back hooves front hooves ears	198267 12227 87	92225 2548 5225	65.2 77.6 55.5	35.4 43.2 21.7
Additional Measurements				
syringe right heart (Sn) syringe right heart (Ce) syringe carotid artery (Sn) syringe carotid artery (Ce) injectate	0 0 3605 533677304	0 37806 0 797982645		

** Representative tissue sample, not whole organ or tissue * liver and adrenal Sn counts for 8285 possibly high due to contamination

	9 ° 9	34.38 34.86 35.86	32.60	After second	126	55	
JL	Serum T4 (µg.100 ml ⁻¹) Temperature (OC)	Back Flank Midside	Lower Front Leg Right Ear Left Ear	INJECTION Between <u>injections</u> 141 _{Ce}	120	84	9.6 11.4 CA
SHEEP 8298 CONTROL	(43.0)* Skin	Ω, L	о ц. г. ю.	MICROSPHERE I - 113 _{Sn}		a	16.4 18.8 LV
SH	ption 3	(g.100 ml ⁻) Water intake 3 (litter.day ⁻¹) Digestibilities % Dry matter 55	Protein 66.1 Energy 55.7 Acid detergent fiber 51.5 * pre treatment measurement	Before first Injection Order	Heart rate 105 (min-1)	Respiration rate x (min 1)	Syringe right heart (ml·min ⁻¹) Syringe carotid artery (ml·min ⁻¹) Catheter Placement

SHEEP 8298 CONTROL

	DPM 141 Ce	DPM 113 Sn	Wet weight (g)	Dry weight (g)
Gastrointestinal Tract				
esophagus reticulum reticular mucosa** rumen rumen mucosa** omasum omasal mucosa** abomasum small intestine large intestine	0 2243 0 2939 239017 2032 1513999 4604851 760294	1446354 14356193 13483 45202161 15225 15973580 5161 49931709 89734064 52648419	69.8 158.2 5.9 566.5 25.6 119.5 8.9 233.2 639.2 691.1	16.5 31.9 0.3 114.6 2.0 23.4 1.1 49.1 112.8 125.1
Internal Organs and Glands brain spinal cord** heart lungs liver kidney thyroid pancreas adrenal gall bladder urine bladder spleen	17643079 18338 228962 90284965 1035723 9923852 16835 1555671 23490 7835 4680 1304825	6544806 36096 19267032 49576806 6284322 34870935 674451 22645903 986838 158322 90193 22610580	95.9 6.6 189.9 560.6 869.9 159.9 6.3 54.6 8.4 8.6 12.7 103.8	18.4 1.2 52.8 113.4 191.6 25.3 1.3 12.0 1.8 1.2 1.8 22.7
Other Tissue and Organs				
<u>Muscle</u> longissimus dorsi** gluteus maximus** triceps** diaphram <u>Skin</u>	6251 8409 6810 84945	178064 219000 139161 3652354	37.6 29.6 51.6 125.5	11.3 7.1 -14.7 33.2
midside** nasal** lower front leg**	1714 12400660 629	544774 1232871 26451	46.2 77.1 10.7	19.0 25.6 5.0
Fat subcutaneous** kidney** Bone	2216 28293	106516 1281387	12.7 47.6	6.7 14.7
radius and ulna** nasal turbinals	5625 16089611	77774 1601258	28.1 97.4	18.0 32.5
Other				
back hooves front hooves ears	19 5141 4912925	128903 108612 259580	66.9 90.2 57.9	33.1 46.8 21.2
Additional Measurements				
syringe right heart (Sn) syringe right heart (Ce) syringe carotid artery (Sn) syringe carotid artery (Ce) injectate	0 130952 0 29126 612705260	114677 0 1390838 788749250		

** Representative tissue sample, not whole organ or tissue.

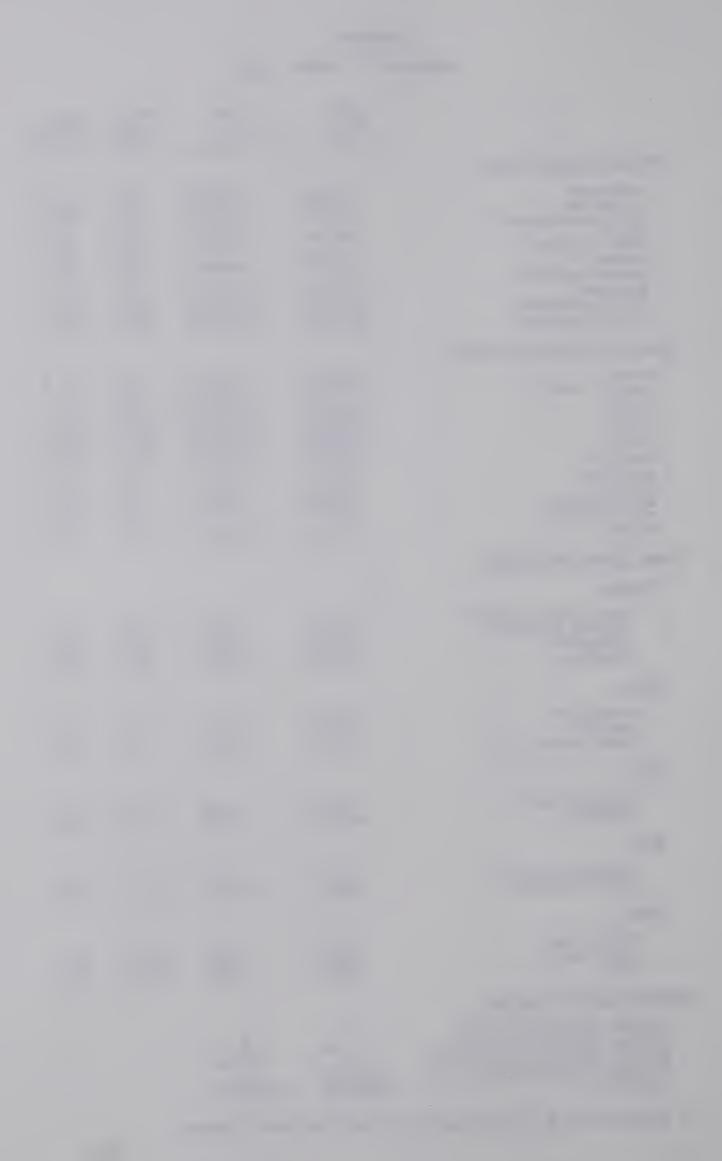
SHEEP 8265 ACUTE COLD

78.6	42.5	58.2	69 • 8	6 * 99	
Arterial blood pO ₂ (mm Hg)	Venous blood pO ₂ (mm Hg)	Arterial blood pCO ₂ (mm Hg)	Venous blood pCO ₂ (mm Hg)	Venous blood pH	
36.0 (41.0)*	407.4 (252.2)*				
36.0	407.4	35 • 5	10.3	7.17 ement	
Body weight (kg)	Oxygen consumption (ml.min ⁻¹)	Hematocrit (\$)	Hemoglobin _1) (g.100 ml ⁻¹)	Blood pH (arterial) pre treatment measurement	

MICROSPHERE INJECTION

*

After second		105	18			
141.	မ			0 •	19.0 [°]	P
Between injections		120	24			
511	uS 244			×	0°.01	Νī
Before first		132	20			
	Injection Order	Heart rate (min ⁻¹)	Respiration rate (min ⁻¹)	Syringe right heart (ml·min ⁻¹)	Syringe carotid artery (ml.min ⁻¹)	Catheter Placement



SHEEP 8265 ACUTE COLD

	DPM 141 Ce	DPM 113 Sn	Wet weight (g)	Dry weight (g)
Gastrointestinal Tract				
esophagus	833576	1701106	46.8	13.4
reticulum	3783444	4622878	88.7	20.2
reticular mucosa** rumen	¥ 9881621	¥ 12885485	¥ 439.2	Ү 96.7
rumen mucosa**	Y	12885405 Y	435.2 Y	y
omasum	3873795	5139601	97.9	18.7
omasal mucosa**	Y	Y	. Y	Y
abomasum	11271313	22011704	110.5	28.5
small intestine	40453161	40192319	491.9	54.3
large intestine	24370537	29749714	410.0	109.3
Internal Organs and Glands				
brain	4971095	5315601	86.5	16.8
spinal cord**	22900	27080	0.7	х
heart	13169254	11159930	159.7	75.3
lungs	4379699	6395008	619.8	104.6
liver	638716	1099375	770.3	174.9
kiuney	25002368 330110	36400219 425476	106.3 6.0	21.9 1.3
thyroid pancreas	X 330110	425476 X	X	X X
adrenal	627312	782557	5.0	0.8
gall bladder	104020	173270	12.3	2.8
urine bladder	X	X	x	x
spleen	36 3 2 9 4 4	6551594	37.7	8.6
Other Tissue and Organs				
Muscle				
longissimus dorsi**	187131	82511	17.9	5.4
gluteus maximus**	275182	135840	28.9	5.4 8.0
triceps**	784306	405082	69.0	18.9
diaphram	556385	643709	65.0	18.9
Skin				
	05040	141750		<i>с</i> ,
midside**	95042 304338	141759	18.3	6.4 16.3
nasal**	76098	411724 25630	44.0 15.6	16.3
lower front leg**	76096	23030	12.0	0.0
Fat				
subcutaneous**	14613	12566	18.1	17.7
kidney**	462340	73768	41.6	32.9
Bone				
radius and ulna**	13426	10216	27.7	23.8
nasal turbinals	814617	1032832	173.9	74.8
Other				
back hooves	72965	28302	103.9	17.5
front hooves ears	6157 4 8097 2	99200 72850	103.0 49.5	17.5 36.0
Additional Measurements				
syringe right heart (Sn)	x	x		
syringe right heart (Ce)	398	Ô		
syringe carotid artery (Sn)	0	2066710		
syringe carotid artery (Ce)	1836490	0		
injectate	646763387	67185303 2		

** Representative tissue sample, not whole organ or tissue. •

•

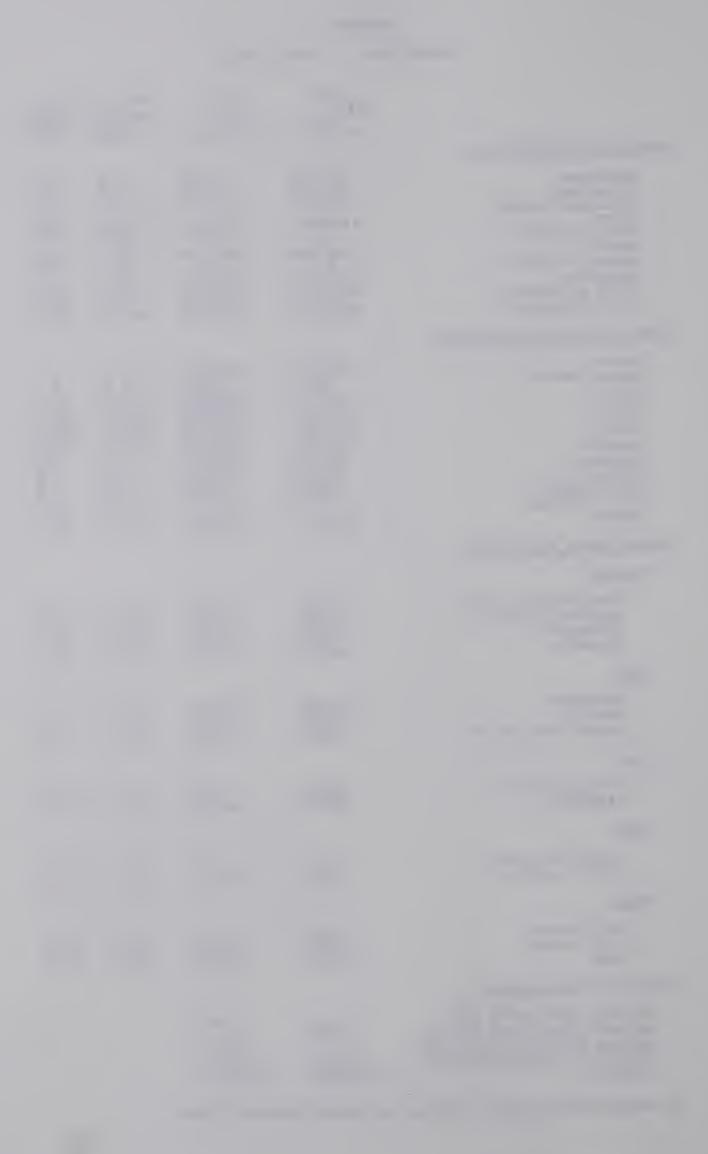

Ĥ
END
Д
AP

ACUTE COLD SHEEP 8270

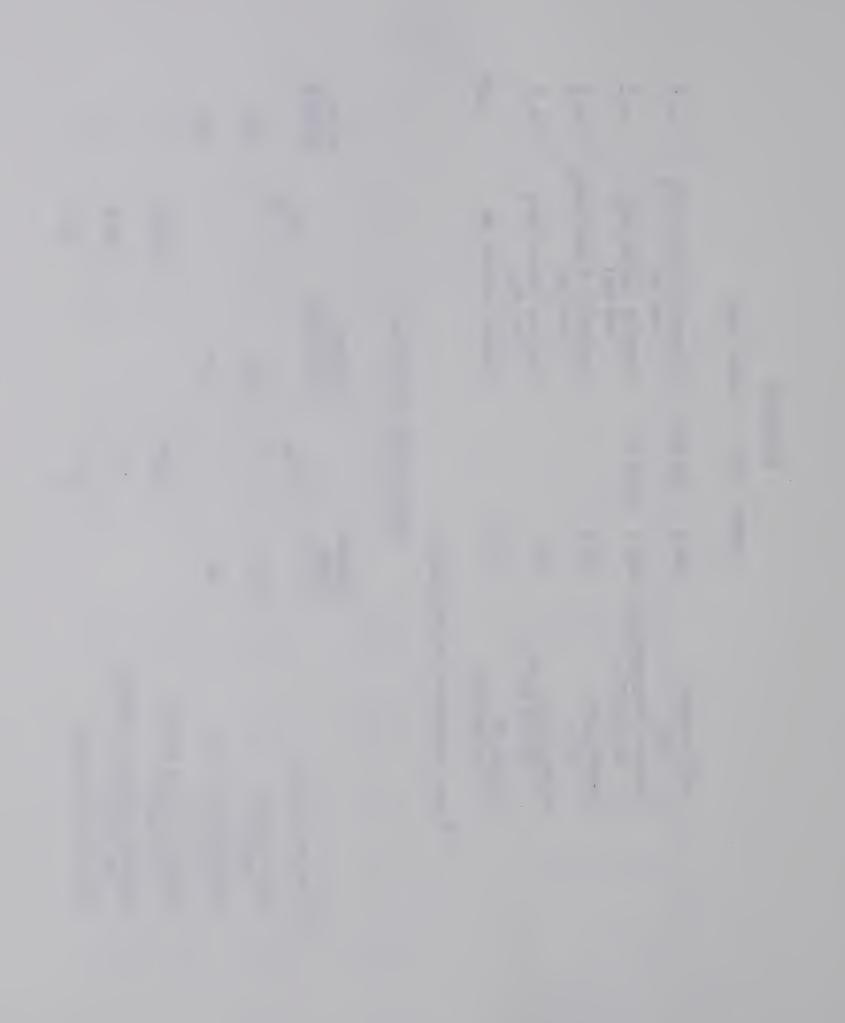
Body weight (kg)	49.0	49.0 (52.0)*	Arterial blood pO ₂ (mm Hg)	81.9
Oxygen consumption (ml.min ⁻¹)	502.0	502.0 (292.5)*	Venous blood pO ₂ (mm Hg)	28.8
Hematocrit (%)	30.8		Arterial blood pCO ₂ (mm Hg)	70.4
Hemoglobin [g.100 ml ⁻¹]	7.1		Venous blood pCO ₂ (mm Hg)	73.5
Blood pH (arterial)	7.15		Venous blood pH	7.21
<pre>k pre treatment measurement</pre>	surement			

MICROSPHERE INJECTION

After second	108	21			
113 _{Sh}			17.0	19.0	LV
Between injections	128	21			
141 _{Cq}			18.5	19,5	LV
Before first	96	30			
Injection Order	Heart rate (min ⁻¹)	Respiration rate (min ⁻ 1)	Syringe right heart (m1 min ⁻¹)	Syringe carotid artery (ml·min ⁻¹)	Catheter Placement



SHEEP 8270 ACUTF , COLD


	DPM 141 Ce	DPM 113 	Wet weight (g)	Dry weight (g)
Gastrointestinal Tract				
esophagus reticulum reticular mucosa** rumen rumen mucosa** omasum omasal mucosa** abomasum small intestine large intestine	1174565 6051039 Y 18300014 Y 6889354 Y 15836722 42195121 22114057	762757 7642776 Y 20241447 Y 10321189 Y 23796580 61878269 31817881	72.8 124.7 Y 638.4 Y 159.6 Y 176.8 765.4 497.6	41.4 29.5 Y 103.1 Y 32.5 Y 45.5 97.0 112.0
Internal Organs and Glands				
brain spinal cord** heart lungs liver kidney thyroid pancreas adrenal ** gall bladder urine bladder	3957819 6075 7209978 4543048 725014 28252641 271236 2942425 172748 46980	6327408 13168 10593266 4010502 1380008 42515335 669448 5102947 400999 133457	104.5 7.5 223.2 782.2 801.4 147.8 6.9 21.8 0.9 13.6	X X 77.1 142.8 156.1 28.1 1.5 7.1 0.6 1.5
spleen	X 5219691	X 19757804	x 98.5	x 25.4
Other Tissue and Organs				
Muscle				
longissimus dorsi** gluteus maximus** triceps** diaphram	125891 110620 63739 821723	188044 174061 162884 1104144	131.8 56.5 73.5 176.6	39.8 20.9 X 49.8
<u>Skin</u>		20.0203		
midside** nasal** lower front leg**	222159 391478 10331	308391 358773 13279	28.9 69.5 27.7	13.1 X 11.8
Fat				
<pre>subcutaneous** kidney**</pre>	14281 198790	16558 244262	25.8 91.0	23.8 81.8
Bone				
radius and ulna** nasal turbinals	2723 332090	35 07 451532	30.5 116.8	28.4 45.1
Other				
back hooves front hooves ears	26441 24092 112153	31295 20742 80620	68.4 87.2 50.9	41.0 46.0 31.5
Additional Measurements				
syringe right heart (Sn) syringe right heart (Ce) syringe carotid artery (Sn) syringe carotid artery (Ce) injectate	0 6807 0 784146 362423167	4653 0 1310092 0 518686115		

** Representative tissue sample, not whole organ or tissue.

•

	74.5	36.1	62.3	104.0	6 • 9 8			After second	132	24			
ACUTE COLD	Arterial blood pO ₂ (mm Hg)	Venous blood pO2 (mm Hg)	Arterial blood pCO ₂ (mm Hg)	Venous blood pCO ₂ (mm Hg)	Venous blood pH		INJECTIÓN	Between injections 113 _{Sn}	120	18	1020	15.0	CA
SHEEP 8271 AC	48.0 (52.0)*	364.8 (302.8)*	27.8	8°3	7.19	measurement	MICROSPHERE IN.	Before <u>first</u> 141. <u>i</u>	150	20	0°2T	X	IV
	Body weight (kg)	Oxygen consumption (ml.min ⁻¹)	Hematocrit (%)	Hemoglobin _1) (g.100 ml ⁻¹)	Blood pH (arterial)	* pre treatment measu		Injection Order	Heart rate (min ⁻¹)	Respiration rate (min ⁻¹)	Syringe right heart (ml·min ⁻¹)	Syringe carotid artery (ml·min ⁻¹)	Catheter placement

•

APPENDIX

SHEEP 8271 ACUTE COLD

	DPM 141 Ce	DPM 113 	Wet weight (g)	Dry weight (g)
Gastrointestinal Tract				
esophagus reticulum reticular mucosa** rumen rumen mucosa** Omasum omasal mucosa** abomasum	823148 3496389 y 9642854 y 4170557 y 31381553	1237 4043 Y 13028 Y 3284 Y 27129	36.9 187.5 Y 670.7 Y 133.9 Y 296.8	11.7 36.9 Y 138.5 Y 27.4 Y 53.1
small intestine large intestine	43769619 25062871	44695 29587	584.7 452.7	68.6 80.7
Internal Organs and Glands				
brain spinal cord** heart lungs liver kidney thyroid pancreas adrenal gall bladder urine bladder spleen	7992558 16378 20184820 1936834 1372556 44355910 505217 5557533 382238 155484 x 6173386	1876515 49 19363 11096321 54311 86947 322 5870 495 310 X 9252	104.4 X 254.4 808.1 940.6 125.1 7.3 44.8 5.8 17.7 X 104.9	21.5 x 87.3 111.4 235.5 26.1 1.6 9.5 0.8 5.1 x 22.7
Other Tissue and Organs				
Muscle				
longissimus dorsi** gluteus maximus** triceps** diaphram Skin	646195 277868 306455 1513600	654 327 327 3230	68.8 77.9 111.4 134.1	19.8 23.0 30.7 41.4
midside**	275086	667	17.0	5.9
nasal** lower front leg**	313966 7406	3647345 1856	58.7 20.2	20.1 8.5
Fat				
<pre>subcutaneous** kidney**</pre>	157315 1215349	217 2168	40.5 126.1	23.9 53.6
Bone	2222	2267	32.6	26.3
radius and ulna** nasal turbinals	3232 230171	3367 14987036	170.3	74.4
Other				
back hooves front hooves ears	54644 18226 52837	2474 1746 1393405.	96.2 96.0 64.2	54.6 48.6 25.4
Additional Measurements				
syringe right heart (Sn) syringe right heart (Ce) syringe carotid artery (Sn) syringe carotid artery (Ce) injectate	0 1645 0 470834017	13223 0 16906 0 469650947		

** Representative tissue sample, not whole organ or tissue.

SHEEP 8279 ACUTE COLD

74.2	32.5	54.2	81.8	6.88
Arterial blood pO ₂ (mm Hg)	Venous blood pO ₂ (mm Hg)	Arterial blood pCO ₂ (mm Hg)	Venous blood pCO ₂ (mm Hg)	Venous blood pH
46.0 (53.0)*	(285.6)*			
46.0	588.4	35.0	7.1	7.12
Body weight (kg)	Oxygen consumption 588.4 (285.6)* (ml.min ⁻¹)	Hematocrit (%)	Hemoglobin _1) (g.100 ml ⁻¹)	Blood pH (arterial)

* pre treatment measurement

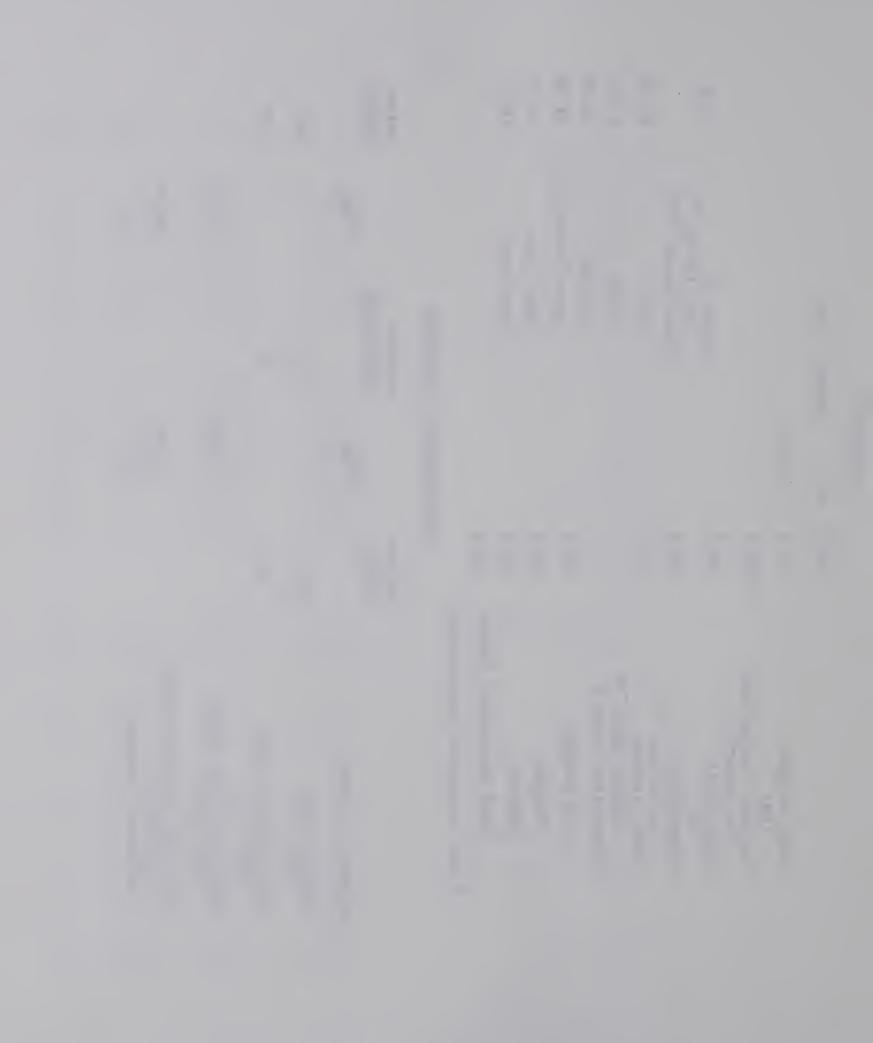
MICROSPHERE INJECTION

After second	126	24			
· 113,54			19.0	19:0	LV
Be tween injections	102	20			
141°ce:			18.5	14.0	ΓΛ
Before first	113	20			
Injection Order	Heart rate (min ⁻¹)	Respiration rate (min ⁻¹)	Syringe right heart (ml.min ⁻¹)	Syringe carotid artery (ml.min-1)	Catheter Placement

SHEEP 8279 ACUTE

COLD

	DPM 141 Ce	DPM 113 	Wet weight (g)	Dry weight (g)
Gastrointestinal Tract				
esophagus reticulum	313915 2884000	222667 2469411	25.1 117.0	9.0 25.3
reticular mucosa** rumen rumen mucosa**	¥ 12656137	Y 8906126	¥ 573.7	Y 143.1
omasum omasal mucosa**	Y 8724936 Y	¥ ~5548406 ¥	Y 139.8 Y	Y 26.5 Y
abomasum small intestine large intestine	19267970 33718640 19468049	12656548 27222713 18098538	215.7 618.8 427.3	54.9 85.4 75.9
Internal Organs and Glands	13400043	19039229	427.5	13.3
brain	12194394	12958236	106.7	20.1
<pre>spinal cord**</pre>	41902	61625	X	20.1 X
heart	7732113	8167907	189.0	61.4
lungs liver	3344587	2803634	688.0	112.7
kidney	874106 32133510	835974 30531217	886.3 139.8	210.1
thyroid	1742708	1685488	10.6	27.9
pancreas	9392732	8653339	45.5	10.7
adrenal	340077	360874	2.2	0.7
gall bladder	69908	48085	53.3	3.5
urine bladder	X	X	x	X
spleen	3420838	2998009	98.2	36.3
Other Tissue and Organs				
Muscle				
longissimus dorsi**	439456	178115	83.9	24.8
gluteus maximus**	4 39 7 32	594077	59.7	17.7
triceps**	471362	966923 1738173	92.5 105.5	. 27.2
diaphram	1546848	1/381/3	105.5	20.2
Skin		·		
midside**	78044	70945	16.8	5.5
nasal**	424331	321385	49.8	18.9
lower front leg**	4230	3267	15.7	7.9
Fat				
subcutaneous**	18887	43173	16.6	X
kidney**	266504	1180576	71.9	66.2
Bone				
radius and ulna** nasal turbinals	2378 1178372	2604 935482	24.6 133.9	21.9 61.6
Other				
back hooves	12901	17402	86.8	50.4
front hooves ears	27464 173382	37624 243014	76.2 56.8	43.6 35.1
Additional Measurements				
syringe right heart (Sn)	0 ·	6663		
syringe right heart (Ce)	4419	0		
syringe carotid artery (Sn)	0	2893706		
syringe carotid artery (Ce)	1843126 663555516	0 722767767		
injectate				


** Representative tissue sample, not whole organ or tissue.

.

		Т • Л	30.75 33.53	23.25 23.30	18.81		After second	102	28		
		00 ml ⁻¹) ure (°C)		Midside Lower Front Leg	ear Bar		113 _{Sh}			7.2	16.8 LV
CHRONIC COLD		Serum T4 (µg.100 ml ⁻¹) Temperature (OC)	Back Flank	MIDSIDE Lower F	Left Ear	INJECTION	Between injections	112	26		
8274 0	(42.0)*					MICROSPHERE	141 			8°.5	(15 .4 LV
SHEEP	34.0	456.9 30.0 10.2	3.1	52.2	53.2 49.6		Before first	135	24		
	Body weight	Oxygen consumption (ml.min ⁻¹) Hematocrit (%) Hemoglobin _1	<pre>(g•100 ml ⁻) Water intake (litter.day ⁻l) Digestibilities %</pre>	Dry matter Protein	Energy Acid detergent fiber	* pre treatment measurement	Injection Order	Heart rate (min ⁻¹)	Respirațion rate (min ⁻)	Syringe right heart (ml.min ⁻¹)	Syringe carotid artery (ml.min ⁻¹) Catheter Placement

123

۰.

.....

SHEEP 8274 CHRONIC COLD

	DPM 141 Ce	DPM 1 13 Sn	Wet weight (g)	Dry weight (g)
Gastrointestinal Tract				
esophagus reticulum reticular mucosa** rumen rumen mucosa** omasum omasal mucosa** abomasum small intestine large intestine	284017 1912836 538 5512669 589 2427647 1048 12423289 20557498 11156616	828419 9216290 1774 25489419 1871 9080967 1419 37482225 76956129 40556032	29.0 111.2 5.8 533.6 13.9 117.9 4.9 307.0 878.4 374.9	6.8 16.1 0.3 90.6 1.2 17.9 0.1 51.5 132.5 51.0
Internal Organs and Glands				
brain spinal cord** heart lungs liver kidney thyroid pancreas adrenal gall bladder urine bladder spleen	3606276 159538 10470127 2038373 903201 7500695 114158 2186396 564060 40546 53256 1561926	13749096 659871 34707516 12107354 39909580 44904387 571161 12374709 3242838 244677 488258 18619935	92.9 9.2 173.8 494.2 930.8 138.9 7.4 36.3 7.9 17.4 24.2 70.3	18.2 1.5 37.7 92.7 224.7 26.4 0.9 7.0 0.9 1.3 3.5 15.2
Other Tissue and Organs				
Muscle				
longissimus dorsi** gluteus maximus** triceps** diaphram	268582 275412 410645 3624039	356903 529064 629225 8745451	19.8 19.8 15.8 182.8	4.1 4.3 2.8 40.4
Skin				
midside** nasal** lower front leg** Fat	87155 27108 0	261677 110000 4838	17.5 27.2 22.0	5.8 7.8 9.7
subcutaneous** kidney**	40 05 4 95 25	54419 87451	7.8 5.8	3.2 0.9
Bone	2453	27483	40.9	26.4
radius and ulna** nasal turbinals	515523	3302516	168.2	58.5
Other				
back hooves front hooves ears	15109 10631 479505	35161 38935 2667354	64.1 78.6 66.1	31.7 40.1 21.6
Additional Measurements		663.00		
syringe right heart (Sn) syringe right heart (Ce) syringe carotid artery (Sn) syringe carotid artery (Ce) injectate	0 4022 0 1589740 401279456	56129 0 2562225 0 838557451		

** Representative tissue sample, not whole organ or tissue.

COLD
CHRONIC
8278
SHEEP

*
0
Þ
(44
_
C
36
-

		6.5		29.48	30.88	31.08				+
		Serum T4 (ud.100 ml ⁻¹)	Temperature (°C)	Back	Flank	Midside	Lower Front Leg	Right Ear	Left Ear	
36.0 (44.0)*										
36.0	366.6	20.0	7.6	2.4			52.1	63.6	52.3	50.0
Body weight (kg)	Oxygen consumption (ml.min ⁻¹)	Hematocrit (8)	Hemoglobin1.	(g.iuu m.) Water intake	(litter.day ⁻¹)	Digestibilities %	Dry matter	Protein	Energy	Acid detergent fiber * pre treatment measurement

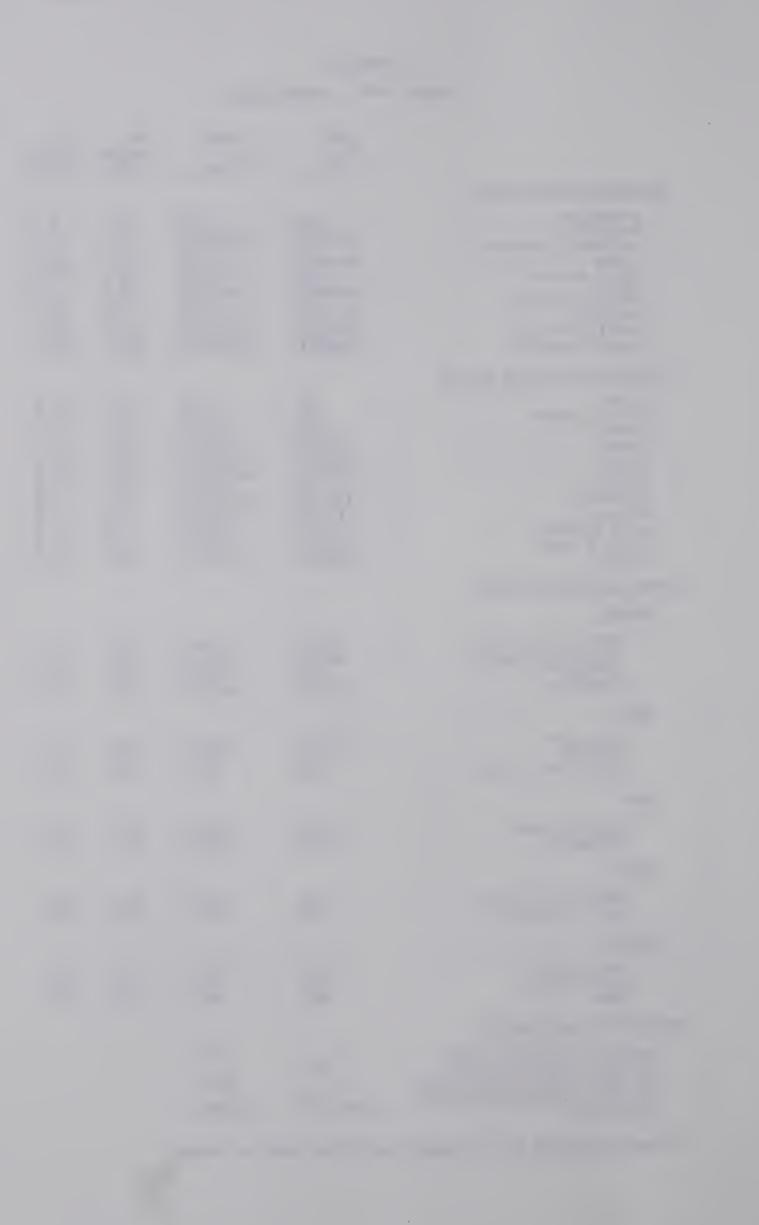
ω ω

ω ω

ω 10

MICROSPHERE INJECTION

After second	145	53				
141 _{Ce}			14.8	15,2	DA	
Between injections	197	18				
113 _{Sn}			1640	16.4	DA	
Before first	190	17				
Injection Order	Heart rate (min ⁻¹)	Respirațion rate (min ⁻)	Syringe right heart (ml·min ⁻¹)	Syringe carotid artery (ml·min ⁻¹)	Catheter Placement	



. .

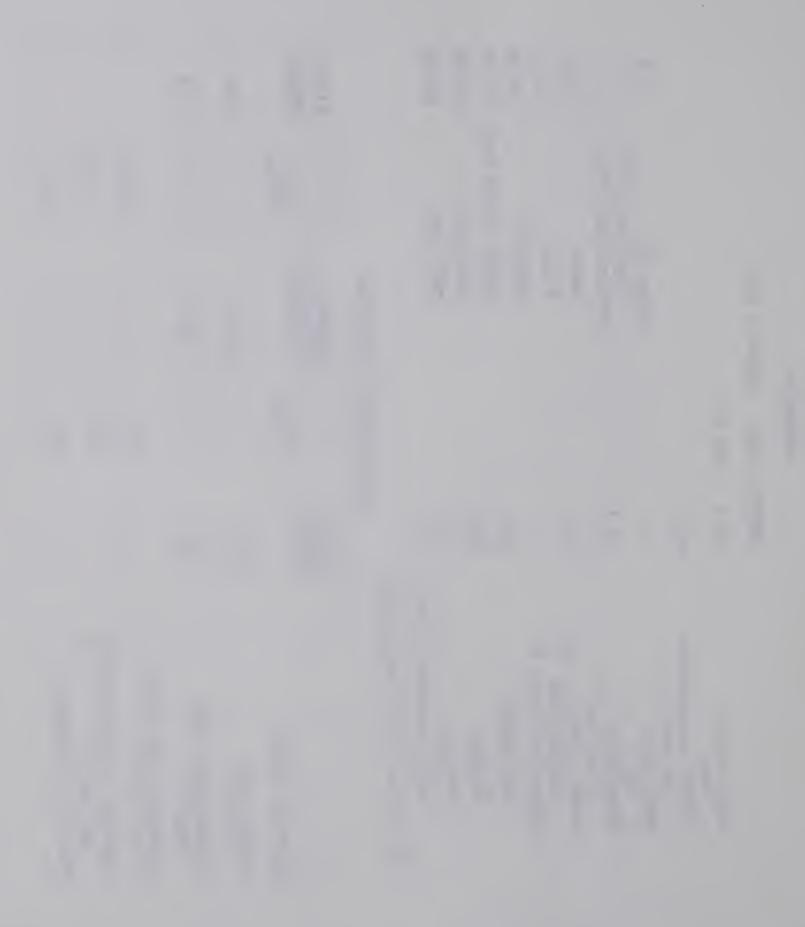
SHEEP 8278 CHRONIC COLD

	DPM 141 Ce	DPM 113 	Wet weight (g)	Dry weight (g)
Gastrointestinal Tract				
esophagus reticulum reticular mucosa** rumen rumen mucosa** omasum omasal mucosa** abomasum small intestine large intestine Internal Organs and Glands	894 12278620 413 38587999 4459 11326554 186 27089462 65607677 36093843	3612 17982193 2612 59334645 18871 16060225 2096 56348258 109057225 53349193	32.2 150.0 3.6 544.7 30.8 132.5 4.6 185.6 990.4 430.1	8.9 28.9 0.1 124.3 4.8 23.4 0.4 39.4 210.7 81.0
brain spinal cord** heart lungs liver kidney thyroid pancreas adrenal gall bladder urine bladder spleen	266 459 12204 119411 3159810 27877883 26 11621519 501310 122961 94036 18161935	2871 2741 39612 1346419 5638580 81559774 2290 22710709 1087000 226064 275838 31732483	97.3 4.6 184.7 43.9 919.3 149.7 6.3 38.9 5.8 7.5 22.0 139.4	18.6 0.9 52.1 7.4 210.2 28.4 1.8 7.6 1.0 0.9 3.3 39.3
Other Tissue and Organs				
<u>Muscle</u> longissimus dorsi** gluteus maximus** triceps** diaphram	163130 343062 403 300584	143709 623387 2677 1113354	11.6 26.9 29.5 66.9	2.7 6.4 .7.1 18.7
Skin				
midside** nasal** lower front leg**	173360 1099 1058	373354 4129 3677	29.6 39.7 38.5	9.1 13.7 17.2
Fat				
subcutaneous** kidney**	9670 40904	23129 233129	21.6 11.1	12.5 7.5
Bone radius and ulna** nasal turbinals	1189 6316	4258 19096	42.4 112.0	28.5 48.6
Other				
back hooves front hooves ears	25394 2411 3466	69290 4516 4290	56.5 74.8 53.3	28.0 37.8 19.5
Additional Measurements				
syringe right heart (Sn) syringe right heart (Ce) syringe carotid artery (Sn) syringe carotid artery (Ce) injectate	0 7667 0 3863 616912456	51871 0 31419 0 825033095		

** Representative tissue sample, not whole organ or tissue.

SHEEP 8280 CHRONIC COLD

		Serum T4 (ug.100 ml ⁻¹)	Temperature (OC)	BackFlank	Midside	Lower Front Leg	Right Ear	Left Ear	
(52.0)*									
43.0	422.4	×	8.1	2.6		54.6	65.2	54.7	52.5
Body weight (kg)	Oxygen consumption (ml.min ⁻¹)	Hematocrit (%)	Hemoglobin (q.100 ml ⁻¹)	Water intake (litter day -1)	Digestibilities %	Dry matter	Protein	Energy	Acid detergent fiber

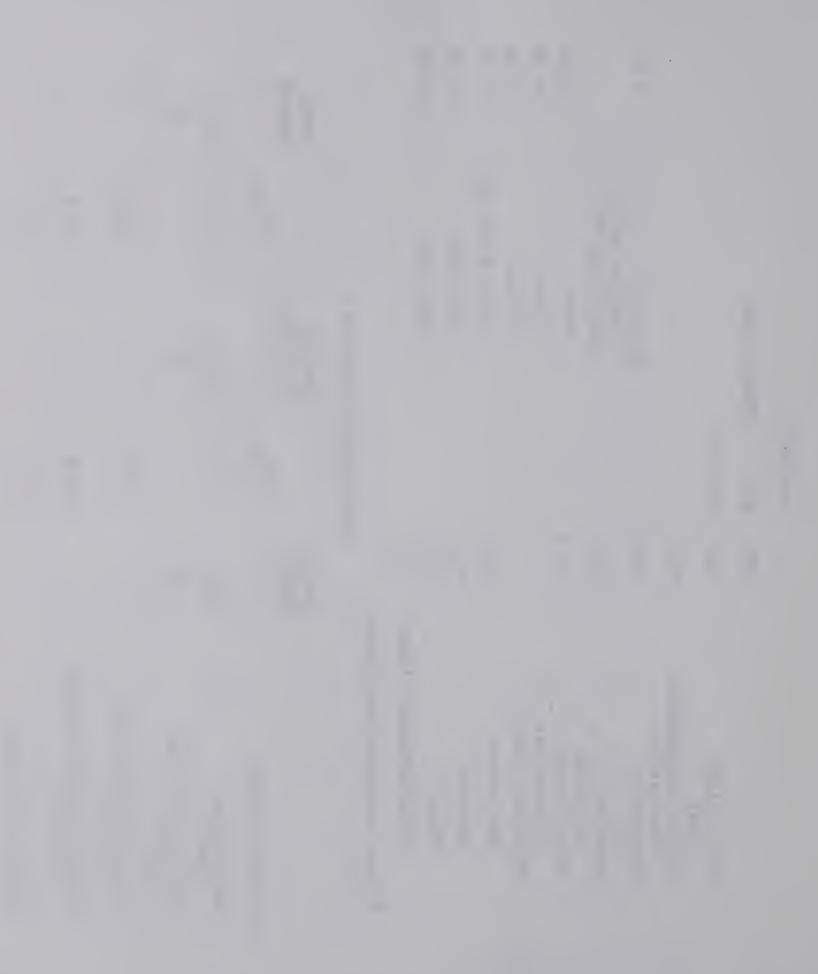

29.85 32.80 32.25 24.66 20.88 20.88

9.8

* pre treatment measurement

MICROSPHERE INJECTION

After second	180	18			
			15.0	3,6	DA
Between injections	180	20			
141 ₀₆			15.0	6.2	DA
Before first	210	20		•	
Injection Order	Heart rate (min ⁻¹)	Respiration rate (min ¹)	Syringe right heart (ml·min ⁻¹)	Syringe carotid artery (ml.min ⁻¹)	Catheter Placement


SHEEP 8280 CHRONIC COLD

	DPM 141 Ce	DPM 113 	Wet weight (g)	Dry weight (g)
Gastrointestinal Tract				
esophagus reticulum reticular mucosa** rumen rumen mucosa** omasum omasal mucosa** abomasum small intestine large intestine	248012 13433746 3251 29344072 507206 9118388 5984 7576987 50664265 37454759	644645 24354354 2967 49886903 1234161 17274064 6935 36805806 88305258 82072225	55.2 192.6 5.6 529.2 19.9 100.8 6.8 204.2 993.0 511.7	16.2 41.4 0.5 110.2 2.5 20.4 0.6 43.3 197.4 101.1
Internal Organs and Glands				
brain spinal cord** heart lungs liver kidney thyroid pancreas adrenal gall bladder urine bladder spleen	819 99067 20024 760232 4548261 30222928 1205 17871582 785905 91057 225667 5739008	2806 239741 31516 5374064 21261548 79569064 1677 26387419 1560064 241838 571096 31704677	111.0 7.8 251.7 729.6 967.8 148.5 6.8 66.9 6.9 13.6 30.3 167.7	21.2 1.4 72.1 118.6 244.4 27.4 1.4 12.4 0.9 1.5 4.6 49.2
Other Tissue and Organs				
Muscle				
longissimus dorsi** gluteus maximus** triceps** diaphram	1042035 3850706 2007 1166644	879741 3123580 2419 1850677	56.4 50.8 46.9 135.1	16.9 12.7 11.7 43.5
Skin		•		
midside** nasal** lower front leg**	112196 778 287	264161 4096 2580	15.6 61.9 35.5	4.7 20.8 13.3
Fat				
<pre>subcutaneous** kidney**</pre>	66259 175136	149677 557645	19.6 42.4	8.8 17.6
Bone		_		
radius and ulna** nasal turbinals	1531 5394	0 23806	45.0 101.0	30.8 36.4
Other				
back hooves front hooves ears	11532 1606 3268	38870 1612 2129	64.1 81.1 29.7	31.6 41.7 10.4
Additional Measurements -				
syringe right heart (Sn) syringe right heart (Ce) syringe carotid artery (Sn) syringe carotid artery (Ce) injectate	0 4559 0 3450 786418150	36903 0 4032 0 869167090		

** Representative tissue sample, not whole organ or tissue.

		4 ° 0	29.68 30.26	20.30 23.33	19.72		After second	150	22			
		0 m1 ⁻¹) 1re (°C)	<u>_</u>	Front Leg	ar		14100	u L		16.2	17.2	ΓV
CHRONIC COLD		Serum T4 (µg.100 ml ⁻¹) Temperature (°C)	Back Flank Mideide	Lower Front Bight Far	Left Ear	INJECTION	Between injections	150	29			
8287 CI	(57.0)*					MICROSPHERE INJECTION	113 _c ,	5		17,6	18:4	ΓΛ
SHEEP	46.0 345.5	25.8 8.9	2.8	52.6 62.9	53.4 r 48.4		Before first	132	23			
	Body weight (kg) Oxygen consumption	<pre>(ml.min⁻¹) Hematocrit (%) Hemoglobin,-1,</pre>	(9-100 ml) Water intake (litter day ⁻¹) Digestibilities &	Dry matter Protein	Energy Acid detergent fiber	* pre treatment measurement	Tniaction Order	Heart rate (min ⁻¹)	Respiration rate (min ¹)	Syringe right heart (ml·min ⁻¹)	Syringe carotid artery (ml·min ⁻ l)	CAtheter Placement

129

SHEEP 8287 CHRONIC COLD

	DPM 141 Ce	DPM 113 	Wet weight (g)	Dry Weight (g)
Gastrointestinal Tract				
esophagus	540218	908451	46.8	12.0
reticulum reticular mucosa**	4520230	8085645	130.4	24.1
rumen	0 13075709	1516 24559483	6.3 541.8	0.4
rumen mucosa**	13075709	24559485 6161	541.8	7.4
omasum	5613503	10200645	137.8	30.5
omasal mucosa**	628	4806	9.4	1.0
abomasum	18169762	35701967	355.7	72.5
small intestine	33636847	57823451	613.8	87.0
large intestine	23556591	38546902	654.0	105.1
Internal Organs and Glands				
brain	10739639	17785322	97.6	18.5
spinal cord**	70638	104419	8.0	1.5
heart	24165908	37004967	304.3	90.0
lungs liver	4832011 838974	12234741 3086774	63 3. 6 952.6	115.7 240.2
kidney	29523797	46793709	165.5	32.2
thyroid	599221	1605032	7.6	1.7
pancreas	9317879	21148290	70.2	6.7
adrenal	743872	1357580	10.2	2.1
gall bladder	85600	183870	24.6	1.6
u.ine bladder	91691	167709	25.8	5.4
spleen	4040293	1182890 3	89.3	20.1
Other Tissue and Organs				
Muscle				
longissimus dorsi**	42657	99064	18.9	4.5
gluteus maximus**	332100	847483	45.4	12.0
triceps**	104003	246419	23.8	.5.4
diaphram	2944371	5191354	141.5	38.2
Skin				
midside**	196137	337354	34.9	10.5
nasal**	806863	669903	43.9	14.2
lower front leg**	29442	68967	44.7	15.8
Fat				
subcutaneous**	73254	85774	29.8	15.8
kidney**	137482	173903	32.9	15.4
Bone				
radius and ulna** nasal turbinals	200 35 4 8 4 7 5 9 4	44225 3953161	49.0]76.5	32.5 67.3
Other				
back hooves	23868	54345	73.9	36.7
front hooves ears	33478 3022	62774 7838	94.9 26.9	48.3 8.9
Additional Measurements				
syringe right heart (Sn)	0	40161		
syringe right heart (Ce)	10230	0		
syringe carotid artery (Sn)	Ō	2475870		
syringe carotid artery (Ce)	1022557	0		
injectate	523948326	816559677		

** Representative tissue sample, not whole organ or tissue.

B30238

ţ

,

. .

. .

.