Transactions of the

Royal Society of South Australia

Incorporated

Contents

Shiel, R. J. \& Koste, W. Rotifera from Australian inland waters VIII. Trichocercidae (Monogononta) 1
Arumugam, P. T. \& Geddes, M. C. Selectivity of microcrustacean zooplankton by Golden Perch (Macquaria Ambigua) larvae and fry in laboratory studies 29
Edmonds, S. J. \& Smales, L. R. A new species of Acanthocephala from the Greenback Flounder, Rhombosolea tapirina Günther, 1862 - 35
Austin, A. D. \& Wharton, R. A. New records of Subfamilies, Tribes and Genera of Braconidae (Insecta: Hymenoptera) from Australia, with description of seven new species 41
Christophel, D. C., Scriven, L. J. \& Greenwood, D. R. An Eocene megafossil flora from Nelly Creek, South Australia 65
Brief Communications:Nobbs, J. M. The response of soil nematodes to environmental stimulii in arid SouthAustralia77
O'Callaghan, M. \& Beveridge, I. Cysticerci of Taenia hydatigena (Cestoda: Taeniidae) in an Entellus Langur (Presbytis entellus) 79

ROYAL SOCIETY OF SOUTH AUSTRALIA

INCORPORATED

VOL. I16, PART I

TRANSACTIONS OF THE ROYAL SOCIETY OF SOUTH AUSTRALIA INC.

CONTENTS, VOL. 116, 1992

PARTS 1 \& 2, 29 MAY, 1992
Shiel, R. J. \& Koste, W. Rotifera from Australian inland waters VIII. Trichocercidae
(Monogononta)
$\begin{aligned} & \text { Arumugam, P, T. } \& \text { Geddes, M. C. Selectivity of microcrustacean zooplankton by Golden } \\ & \text { Perch (Macquaria Ambigua) larvae and fry in laboratory studies- }\end{aligned}$
Edmonds, S. J. \& Smales, L, R. A new species of Acanthocephala from the Greenback
Flounder, Rhombosolea tapirina Günther, $1862-\quad-\quad-\quad-\quad . \quad$
Austin, A. D. \& Wharton, R. A. New records of Subfamilies, Tribes and Genera of Braconidae
(Insecta: Hymenoptera) from Australia, with description of seven new
species
$\begin{aligned} & \text { Christophel, D. C., Scriven, L. J. \& Greenwood, D. R. An Eocene megafossil' flora from } \\ & \text { Nelly Creek, South Australia }-\quad-\quad-\quad-\quad-\quad .\end{aligned}$
Brief Communications:
Nobbs, J. M. The response of soil nematodes to environmental stimulii in arid South Australia-77
O'Callaghan, M. \& Beveridge, I. Cysticerci of Taenia hydatigena (Cestoda: Taeniidae) in an Entellus Langur (Presbytis entellus) - 79

PARTS 3 \& 4, 30 NOVEMBER, 1992
Goonan, P. M., Beer, J. A., Thompson, T. B. \& Suter, P. J. Wetlands of the River Murray flood plain, South Australia. 1. Preliminary survey of the biota and physico- chemistry of ten wetlands from Chowilla to Mannum. 81
Rowett, A. I. Dispersed cuticular floras of South Australian Tertiary coalfields, part 2: Lochiel 95
Beveridge, I. \& Durette-Desset, \mathbf{M}_{2}-C. The morphology of Nippostrongylus magnus, a parasite of native Australian rodents 109
Davies, M. Early development of Limnodynastes terraereginae and L. fletcheri (Anura: Leptodactylidae: Limnodynastinae) 117
Beveridge, 1. \& Durette-Desset, M.-C. A new species of trichostrongyloid nematode, Odilia bainae, from a native rodent, Rattus fuscipes (Waterhouse) 123
Brief Communications:
Green, J. D. \& Shiel, R. J. A dissection method for determining the gut contents of calanoid copepods 129
Boulton, A. J. "Rollers" and "Carriers": Field observations of carrion removal by trogid beetles (Omorgus streeleckensis) in arid north-eastern South Australia 133
Davies, M, \& Watson, G. F. Redefinition of Uperoleia littlejohni Davies, McDonald \& Corben (Anura: Leptodactylidae: Myobatrachinae) 137
Greenslade, P. New records of Mesaphorura (Collembola: Onychiuridae, Tullbergiinae) species from Australia, Macquarie Island and the Antarctic 141
Read, J. L. Ecological and biological notes on the rare plant Hemichroa mesembryanthema F. Mucll (Armaranthaceae) 145
Morley, T. P. Eggs and incubation in the Australian lizards Amphibolurus nobbi and Eremiascincus richardsoni 147
Johnston, G. R. Relictual population of Tiliqua scincoides (Sauria: Scincidae) in north-western South Australia 149
Edmonds, S. J. A note on Phascolosoma turnerae Rice (Sipuncula) - 15.
Tyler, M. J., Aslin, F. W. \& Bryars, S. Early Holocene frogs from the Tantanoola Cave, South Australia 153

[^0]
ROTIFERA FROM AUSTRALIAN INLAND WATERS
 VIII. TRICHOCERCIDAE (MONOGONONTA)

by R. J. Shiel* \& W. Koste'

Abstract

Summary Diagnostic keys are given to the genera and species of the Australian representatives of the Rotifera: Monogononta in the family Trichocercidae (Ascomorphella (1 sp.), Elosa (1 sp .) and Trichocerca (43 spp.)). All species know from Australian waters are described and figured. Distribution data and ecological information also are given. KEY WORDS Rotifera, Australia, taxonomic revision, Trichocercidae, Ascomorphella, Elosa, Trichocerca

ROTIFERA FROM AUSTRALIAN INLAND WATERS VIII. TRICHOCERCIDAE (MONOGONONTA)

by R, J, SHEl* \& W. Koste

Abstract

Sumpaary Jrans. R. Soc. S. Aus. 16001, 1-27. 29 May 1992.

Diagmasie keys are given on the genem and specten of the Nusiralian representatues of the Rorifers, Monoganonta in the farmily Trichociercidue (Ascomorphelda il sp. F. Eloke (I sp. \} and Trichecerca 43 ipp. II. All species kngwn from Austalan waters are described and figured. Distribution datu and ecological information also are given.

Intruduction

There ate sportadic systematic references to the occurrence of trichocetcid rotifers in Australia (cf, Shel \& Kuste 1979), however a review comparable to that of Jennings (1903) for Norts America, or included in Kuste (1978) for Europe, is lacking. A thorough global revision of the family using modern techniques (e.g. SEM) is destrable, particularly in view of recent evidence of species-specificity in rotifer trophi (e.g, Markevitch \& Kulikoval 1990).

Trichocercid rotifers are a common component of plankton and litroral micnolaunal conmunitics in most Australian fresh waters. The family includes three general Elasa, recorded from N.S.W. (Murray 1913b), Asermathphella /A. wheveicola ofken occurs us an inhabitant of Whand colonies in reservoirs (sec Ganf ef al. 1983) and Thichocerce, Trichacerea is the most diverse rotiter genus known from Austraha (46 taxa tecorded). Some species may be found in limno- and tiver plitaktom, however they reach their greatest diversity und abundance in litwaral (vegetated) margirss, espectally in hillabongs. Up to eight species may coexist in hillabongs of the River Mursay where their norphological and/or behavroural adaptations permit cifective revource partitioning (Tan \& Shiel in press).

This paper follows the format of earlier parts clisted in Koste \& Shict 1990) to rovjew the present slatus of the family in Austratia, including available ecological ioformation. Where type localiny information was not avalable of un. the probable country of origin of the material is given in parentheses. Very little holotype material has been lodged for the Rotifera in general.

[^1]
Medhody of shadying Trietucercidac

Taxonomically significant features of trichocercid rotiters are detailed in Fig. 1. Preserved (contracted) individuals generally can be identified, hawever contraction of protruding anterior spines. denticles or folds may vary belween individuals. To observe palpar oggans and sensots on the corona. living specimens atre preterable. Trophi examination also is important in spectes determination (Fig. 10. C). For example Trichocarca parcellur and 1 I: musoulus have similar morphology. fut differ en trophi. The position of the lateral antennae at the from of the striated area is significant. By the addition of Eau de lavelle (KOHCl) or sodium hypactiforite (NaOCl) the aumal is spread out and the position of the lateral antenna is momentanty cleater: rapid observation is necessary. Importam in trophi analysis ate the manutris (particularly terminal morphology). direction of the alulac, number of lecth of unci and rami. Exsessive exposure to hypochlorite destroys the trophi - if can be neutralised by ditute acetic acid. Toe and body lengths should be measured. Substyli al the ene bases sere sometimes stuck together by excretions front foot glands: in view of apparent variubility in number plis is unimportant for identification.

Two subgenera of Trichocerca are distingurshed on one morphology T. (Diurella) Bory de St Vincent has toes sf similar length or right at least $1 / 2$ the length of left; T. (s: str.) Lamarck has dissimilar length loes, right never more than $1 / 3$ the length of Icfr. We have conbined the subgenera in asingle diehousmous kes. but for comvenience in comparing figuned morphology, the two subgenera are treated separately in the systematic section, To date 43 specics of Trichocerces have been identified from Australia. most from littoral yegetation in billabongs on in the open water of billabongs or lakes and rivers as incursion species from marginal vegetation. If similis oceurs commonly in the plankton of Murray-Darting reservoins ind rivers (Shiel हो $\$ 1$. . 1982).
R. J. SHIEL \& W. KOSTE

Abbrevadions used in systematic section:
$\mathrm{TL}=$ total length. BL = body length; LT/RT $=$ left in right loc; ${ }^{T} \mathrm{TR}=$ trophi length: Σ^{2} - fulcrum: L $\mathrm{M} / \mathrm{RM}=$ left or tight manubisum. $L R / R R=$ left or right ranms. RT:SE: $=$ rcsting or subitaneous egg.

Family Trichocercidac Remane, 1933

Body ovaid its bartel-shaped (Elowa Ascomorphelda), cylindrical, spindle or sack-shaped (Trichecereal, often asymmetrical as a resutt of torsion of the body: foot present, short or absent: tocs curved or straight, shon or long setae-like, Fatrely the same length: bsually left toe longer: loes may be rudimentary; toe(s) thay huve substyli; trophi of virgate lype, asynmetrical; corona resembles Notommata type lef, Koste \& Shiel 1991). Nomenclature follows Kaste (1978),

Key to geneta

1. Fowi preseme, ures bristle-fike ofter of considerable Lengh Mrehocerth Lamatik Fisot absent-1, 2
2 Cutcole noth, toes minute, single serebral cyeapon \therefore..............
 spical eyespots................... Eleses Lord

Ascemmenyhella Wisniewski

Accomorphothe Wistuewsiki. 1953, po 340.
The: Herlnigio wheneicola Plate. 1880. Menotypie genus.

- Anemurphella redvacicieta (Plate)

FIGS 2:1. 3

Ascromemphello iminocivia (Plate) Whnizwski. 1953, D. 340.

Type localiz: (Germany).
Holorpe- Not designated.
Descriprion: Sywai truerel-shaped body: enroma Asplamcher type, apeal Field with fingerlike pajps between fonger cilia: wide lips ventrally between shich trophi can be extruded. sumure separates head from trunk, trunk with four longitudinal striac dorsalty, two venirally: short diverging strize between both sets: paired lateval untennae single dotsal antenna, abdimen with smatl terminal hulges twa foot segments fone in
juventen). with wou minute toes: dorsally, small tal overthangs anus. trophi virgate, of Trichnerra type. fulctum long: I.R more robust, with pointed. somewhat clevated alula: subunc: daggertike; unci with three pointed teeth, comb-toothed oral plate in from of unci single medial red cesebral eye; cunspitrent refocerebrat sic: mastax with two aisymrietric salivaty glands; unciliated gut: gastric glands large, vilellarium with six nucleii; REs hrownish witt short. thick. blighty curved bristles: male with invaginated dorsal snlenna, everted penis, large brain and cerebral eyc.

Total length $120-160 \mu \mathrm{~m}$: wadth to $75 \mathrm{\mu m}$, trophi $32 \mu \mathrm{~m}$ (LM 24 $\mu \mathrm{m}$. RM $18 \mu \mathrm{~m}$, F $18 \mu \mathrm{~m}$, rami $14 \mu \mathrm{~m}$) ; nate soum. RE G6 smi long.
Distribudiom: Known Irom Europe. N. America and N. Z. Ohligate parasite of colonial afgae Navox, Uroglenal. Widespread in eastern Australia, reaches high densities during seasnal blaoms of Whlox in reservits and billabong (ct. Ganf el al. 198'), tiemake cats cells of colony from the inside, teaving disnithere damage (Fig. 3). lays eges imside coliony.
Literahre: Kiste (1978).

Elosa Lnod
 Efrase Lord. 1841 |n 323.

Type: Elosa wernili Lurd, 1891. p. 123.
Two taxit are referred to Elosu by Koste (f978: 409) f. typ and var, spinferen (Wisniewski), it is not evidenif that dilferences are more stan ecotypic vat tithon. As "var. is without formal taxonomic status on present evidence. Elosa appears th be Monotypic.

Elose woralli Lord
 FIC. 2:2

Elosá ubalit Lond, 1801. © 327. Fiy. 14
Type tercaliry: (London?)
Holesyore: Nor designared.
Drscriprion: Dorsally rounded in domed, ventrally wider and hitt; body broadly elongate oviform, head demarcated by transverse suture; lorica smooth, caudal shert spincs may be plesent: gri ventral posferiot a semicircutar or elliplical aperture with foot and toe rudiments: corona with long estas: 1.2 palps in apical field, toophi asymmetric, virgate, with distally spatulate fulcrum; RM rod-shaped. LM as red or erocked; LR with hocizonial alula, larger than right: suprarami present, gastric glands relatively small: stomach and intestine indistinctly separated, gut generally orgnge

[^2]

 $5(\mathrm{gam}$, tanpli $10, \mathrm{ctl}$.

Fige 3. Coshny of these showing pesident Akomorphella bofveciola and extenswe namage to cells:
coloured; viletlurium with eight (102) nuelei: bladder small: cerebral eyespot to lefi of brain; second eye displaced to rigbe, lies in ciliary fiedd. near brow border, sometimes lost in separate pigment granules.
Total length $80-100 \mu \mathrm{~m}$ (cinntracted $70 \mu \mathrm{~m}$): width 40 $\mu \mathrm{m}$: Irophi $30 \mathrm{\mu m}$ (F $26 \mu \mathrm{~m}$. manubria $25 \mu \mathrm{~m}$. rami $12 \mu \mathrm{~m}$).
Disnibution: In wet Sphagnum, Repoted from Europe, N, America, Australia and N.Z. Not seen in our collections.
Literature: Murray (1913h); Russell (1960).

Triohocerca Lamarck

Trichmercw Lamarek 1801: 394.
Type: Trichocerca ranus $($ Müller $)=$ Trichoda vunus (Müller) 1776, p. 28I.

Body elongate or squal, more or less curved, in many species somewhat spiraled, or bent from left (tight side concave, left side conver), anterior end of lorica with multiple spines, denticles or tolds (particularly conspicuous after contraction of more or less firmly loricale animals); posterior fo these may be striated area associated with torsion of body, followed by keel or two ridges; caudally, abdomen projects further on feft than right, foot is inserted ubliquely; rudimentary RT lies dorsally, LT often well developed ventrally: eye, brain and lateral antennae also asymmetrically placed; elongated mastax strongly asymetrical; rami have complex alulac; subunci have been described in different species, LM always more strongly developed (terminal shape essential for identification): RM mosity rodlike. Salivary glands and retrocerebral organ are described; intestine generally clearly separate from stomach. Excretory system has a few flame cells and protonephridial bladder, which can readily be confused with reservoir of foot glands: ocelli in living animals distinct on or at end of braind dorsal antennac with short sensory setae (except in T. cylindrica). Lateral antennate vithet at same height in last $1 / 3$ of abdomen, or placed
very asymmetrically, T, cylinderica has been observed in gelatinous sheath. This pelagit species cartics subitancous and male eggs (both smooth shelled; Fig 1: 23, b) at end of the ubdomen. REs of T. rylindrica have blister-1)ke blunt projections of outer shell (Fig. 1: 2c). There is lifle available information an biology of the different species. They appear to be adapied to speczalıaed niehes or their preferred habitat Plankwone species T. capucina and T. cyindrica suck out the contents of eggs of planktonic rotiters, eg. Brachuonus and Kcratelld. Lilloral taxal extract contents Irom algal cells, e.g. T. lungiseta, common in billabongs, breaks filamenes of chlonophyceae re.g. Spirogyral using its dorsal spine and sucks uul cytoplasm contents: T. rimilis grandis takes whole coceoid chlorophytes, e.g. Glneocysiss: I. bidens has developed a specialized pharyngeal basket to suck contents from desmids (see Pourriot 1970 for other feeding speciatties).

Key to species of Trichocerca known from Australia

1. Tines of similar lengh, or KT^{\top} at least /s lenghath 7. Dimallas. 2 RT considerably neduced. always $</ /$ length of ET
2. Loricas ancrios marein withour profections. 3 Cusps. spines or other projectionts preseni 4
3. Anierise lateral rongue shaped plate present.
.I: vernalis Hauct (Fig. 8:5) Latcral plak absem.

T rolluris (Roteselect (Vis. 4:3)
t. Anteriot margin with lateral tongue-shaped plate.

Lateral plate whsent...................
5. Matgin svilh wtuby projections. no spinc(s)
T. subsua derning- (Eig. 811 Margon with one lome spine.
T. weheri Jerminge (Fig. 8:5)
6. Margin with blunt projections, or bluif projecnmin wht two dissimdar lengith spitics. .
 No blunt projections: one or two spines or cuans
7. Marga with bluni projections only.......... 8 Bluni projections. 2 dissimilat Icnull spimes. 8-9 serrations. ... 1 rousseleif (Voigi) (Fig. $7: 11$
K. Dorsal keel present. \qquad No dorsal keel............ 9 9. Toes surved ventaily; LM aith dstmer singte bend ․ T. inermis (Lidder) (Fig. $5: 2$) Toes not curved yencrally;" th weakly surved terminally. T. mathery (Donnerl (Fic. 7.2) 10. Thes eurved ventrally: LM wilh double erook....

Toes fotiow body axis thecasonally lebtly curved (ermonaty): LM only weakly beni.
n T, dix:om-murtalli Jennings (Fig. 4:4)
11. Lower third of body conspicuously narrower, leff wncus with several teeth.
7. brachyura (Gosse) (Fig. 41)

Body not conspictousty narrower; seff uncas with single theth.....T. ravia (Gosse) (Fige 4:2)
12. Lorica antorior margin with single spine. ... 13

Lat with double hend: Icfi uncus single lowthed

I.M Weakly benl: Isll uncus with several leeth
, 7. Insulama (Hauer) (Fig. S:4)

Body squat: pasterior lorica everhangs loot. I 14
Hondy long; pusterion loricas dives swt merhang foot

T. purrecllus (Cossise) (Fig. B: 4)

.................. mirsculus Hauct (Fig. 6. 2)
20. Bolly sonspiewnusly constricted in luwer $1 / 3$: anterior spiges dnferèn lengh $\boldsymbol{I}_{\text {m }}$ mers (Haucr) (Fig. 6:3) Bouly 1 ol constricted: spines similar lenuth
T. insignis (Hsrrick) (Fig. 5:3)
 T. Midens (Luctas) (Fig I:I) Double lieel; pusterion mattein does mot proicer over foun......... fo Nuills (Wierzejaki) (foig, 7:3)
22. Loricad interior margin without projectoons...23 Anseriur margin with blunt projections. spines or cusps..
23 Single dorsal ked present . . 1+т1...... . . 24 Double dursal keel. 25
I-1 IM swith sungle crowiz: alula of LR ongled abous 45° from TR isxis......T. ranms (Müller) (Fige. 13 1) L.M with double crook: afula of LR inythed $>45^{\circ}$ from TR dxas. . . T. Jlodre'/hah Haver (Fig. 10:4)
IS \quad Bouly tupers in prosterior b/3: ines curved ventrally 20 Body sfender or squal. not constricted pmolerionty, fires lillow hody ixis.
$\mathrm{BL}=190 \mu \mathrm{H}=1.7>20(\mathrm{~cm} \mathrm{~m}$.
f. bicrishutd (Gossc) (1ip. 9.21
$\mathrm{HI},<\mu \mathrm{H} \mathrm{h}_{\mu} \mathrm{m}, \mathrm{LT}<150 \mu \mathrm{~m}$.
T: ouncoss (Sjukes) (Fig+ 12-フ)

T. elonsuld (Gosse) (lieg. It:3)

I- becoilicmsiv (Nurrov) (Pig 9:3)
IS Larica amterior margin with spine(s) -t. 13
Loricas margin with blunt projections, no spines.
21. Dorsal keel present

Dirmul kecl absicnt. sracilis (Tessin) (1)!e $11 \cdot 1)$

, 7. asmede Wulliort (tig. 9:1)
Pasterine larica wathoul overhang: LT $<70_{4}$ trn.
T. sitatu (6usic) (17ig 13:5)
32. LT $>B L$ (ratio 0)72-0.83)
"' < ' Bi...'
F. pusilha Jcmange (Fig iz:A)

33
Spine shont $(<1 / \mu \mathrm{n}), \ldots \ldots . \ldots \ldots, \ldots$
Sipinc long ($1+26 \mu!11)$,
T. murmam Noleti (Fus Si-d)

Body long und stendsp. conspicuously marrower in
limer rhird: LM with single ar double bend. Is
Bady nol conviricted pisterinrly. I.M wathly hent
T. scrumior (Gossce) (Fig. 8izl

B5

36
15 TL < 450pu: arterior :pinc shot 3.5
35. Domsil poskerner lorica projects over fom: Fit >30 (an (rigin LT rutio <5.5).
, T. jcmungsi Voigt (Fige H:3)
Pustorior lorics doed not overtang foos: $\mathrm{RI}^{\circ}<10 / 4 \mathrm{~m}$

If marcha (Cinsse) (FIy 12:1)

T. Termis (Gosse) (Fig. Il.2)
37. Two deximidar lengets spines.

Two spines and dorsal cowl-like structure-
f riapucmad Wierzejghi \& Zacharias (Fig. 9:4)
38. Body constricted in prostenur 1/3: phaterion iwerhangs foct: LM weskly iurved termmally.

- γ mesca (Sienroos) \{ig. 13:2]

Bonly thel conilricted; no overthang; 2Ni with single crook.
. T) lumarreved (Schorank) (Fig. II:41

Tiotherefce bidens (l.ucks)
 FIG. 1: 1

Dusella bidens Luchs, 1912, p. 66, Fig, 12-13.
Trichncrea hideny. Ahlmizme 193X, ए-105. Fis. 9. 8-4. Type foewlity: Gernuay.
Holoripe: Not designated.
Deacription: T bidens has (wher contracled) Iwo shatp simular lengde transversely strided cusps on dorsil Korica margin, with striated arca bencath, bul so keel: may be three transverbe folds in nech region; dorsal antenna in midule ot héat, dateral antentate at same theight on posterior $1 / 3$ abdornen; al base uf similat length toes are conspicuous rather long substyli; toes often curved venirally at lips, or signoid. Mastax with dorsal and vental salivary glands; ganglion with long relrocerebral organs and two subcerebral glands; TR: rami and unci multi-toothad at tips. Larger than, bur aften confused with T. cutio (Fig. 4:2). See also T. collaris (Fig. 4!3).

Th. 220-240 mm (kwimming) lorica length 175-205 $\mu \mathrm{m}$; height $65-80 \mu \mathrm{~m}=$ toes $52-66 \mathrm{~mm}$: TR $65 \mu \mathrm{~m}$; ($551 \mu \mathrm{~m}$; manubria 42/31).
Distribution: Cosmopolitan, ivelated hinds in acid Waters particularly Sphagmem. Rare, Tas, Vie. $13.0-27.0^{\circ} \mathrm{C}, \mathrm{pH} 5.4-7.5, \mathrm{DO} 4.2 \mathrm{mgl}^{-1},<10 \mathrm{NTL}^{\prime}$. Literature: Koste (1978). Berzins (1982), Koste ef al. (1988).

Trichocence brachyura (Gosic) FIG $4: 1$

Mmaternat brachura Gosse. 1851. p. 199.
Trichmeera fmeh hawa: Myers 1437, p. 6.
Type Locatity: Englind.
Hololype: Not designated.
Description: Body squah, robust: on contraction, anterior margin has stumpy projections on left side. folds on right; toes of similar length or only slightly different: right lateral antenna notably further to near.
left untenna approximatcly midway belween it and dortal anderna: TR with suprarimi: LM with crook. Similaritien with T. cusva (Eig. A: 3), To dixmanattolli
 8:5).

BL. $73-112 \mu \mathrm{~m}$ - tnes $23-30 / 20-23 \mu \mathrm{~m}$. TR to $36 \mu \mathrm{~m}$ (in al $33 \mu \mathrm{~m}$ TR, LM $26 \mu \mathrm{~m}$: RM $12 \mu \mathrm{~m}$: $\mathrm{F} 26 \mu \mathrm{~m}$).
Distribution: Cosmopolitan, gencrally solitary in psammon and litforal os moset freshwatẹts: pH iolerint. Dupommon; prubahly pancuntinental, but not yet
reconded from S. A. Oceurs in Myriophylham in River Murray billaborngs. $10.0-250)^{\circ} \mathrm{C}, \mathrm{pH} \quad 5.76-7.5$. 4. 5 -218. $0_{\mu} \mathrm{Sc} \mathrm{cm}!^{1}$

Literature: Koste (1978, 1981). Koste eq al, (19831. Kiste \& Shiel (1987).

Trichocerve cavia (Hudson \& Gosses)

$$
\Gamma] G 4: 2
$$

Coctopma ravia Hudson \& Gusse 1886. p. 69. Fige 49:22. Thifheeteca culbe: Myers 1937. p. b.

 (a) lateral; (b) trophus. 1 after Koste \& Poliz (1984); 2-4 after honte (1978), varrers duthors. Scale hnes: adult 50 pm. triphi lifem

Figre focwif.". . near Snacsbrook. Epping Fonest. England.
Holorype: Nor designated
Deacriphon: Body uf enutrikted animal plump. alnmst aroid. The ispect in $11 .$. squationg guinea-nig" 13. H. Gubse if Hadoun \& Gausse 1886), withour kect; lorica antermer margins variathy snooth inul plated (in most eases); seen lateratly, thexc give impressum ul spines. Aarger on right dorsally as pointed projection. reduced on Jelt: foos coniform, stantl, uliset frum wake abdomen: dateral antennac at same level: wes of similar length. usually crossed, Resemtles T, bident (Fig: I:1),
 Dissibution: Cosmopositan, in periphytor in plands in standing Waters. pH 5-10. 5.5-190 ${ }^{\circ} \mathrm{C}$ (hoste 1978).

 Literamre: Kosse (1978). hoste \& Shicl 1980. 1487).

Triohneswed iviluris (Rousnetes! FIG $4-\lambda$

Razmhis cibllary Roussclet, 1896, p. 166. Fig. 13:1
Truthretez colluris Msers 1437. 17 h
Coyes frecalliy: Enghend.
Hotolype: Not destgnated.
Dessuiptions I surica smonth to stippled with sranse erse hulgex 13 .neck regonn cinheacted, head ptojects al acute ungle, somewhat fougueshaped; no thorsal
 recte folds in normal pusition: lateral satennace ar apponimatcly same heigh. 'LR with cnoked fulcimm'. winglike sapratami noer rami pharyngeal hasket anterior to rami apikes: fwo large polpar orgetns, Arbintal can bernd shatrply forwatd to pute the tose lips inco she numith ared.

Disisburion: Cosmopolitan in aced wisters ivath Sishagnmmi cats diatoms and desmids which ure nor swallowed coturely hut dragmented and sucked nat. Hare: several tcends from Jobmatia; fonly one fiom the mamland (Madelat Cho N T.) $22.5-245^{\circ} \mathrm{C} \quad \mathrm{pH}$
 Pilemblure: Kinste (1972), Konle of Shiel (1980), 1987).

 FIG $4: 4$

 iin England"
Holontys: Nor designmed
Dese righion: Fhady cyliodrisal, lapers posimurly: head Whealliseparated by lrausvene constrictions wifl severat longitudimal fobls. short Jorsal furmws (enmaining dorsal antennar) sorrespond to stiared area of othen
specien; corna with dorval palpar organ and several blume pantusions; lateral antennae asyomerrias in pusterion. left turtier kirwand than raghe: LT about hatl BL. RT \%/a length of lett: "TR asymaneicicit: righ nalleus much reduced; left uncus 4 -Loonisd: cyespos at posterior end of brain; resemhles f: brachwors (Fis.
 Fo stoluta (Fig. 13:5) fividenily mont clessely related so Ti mailla.
 27-28 $\mu \mathrm{m}:$ TR $30-32 \mu \mathrm{~m}$.
Disrriburion: Prohadbly cusmupotitun on Iloudplaink. inundation zones, periphyton. tychoplankion. Recorded from Qld (Runsell 196i). In fan. $19 x^{\circ} 9$ propulations were found in several shall pools (Solonovis Jewels) and

Comuncem: Conspecificity of Triahnerew incomis (1.inder, 1904) and \%. divon-riundilli has toeen dehated. c.g. Koste (1478). however Hater (1931) that ctonvinced un the basis of Limopean linds of the dormer which conformed to Linders descripttetm and put bo those of Jenninge, that the distinct tasa were invelved. T. inermsit hos beco distitmuished to date only by a shomer right tot:。
litrewherric Koste et al. (1988).

Trishacerca einedoma (Haturs) IIC $5: 1$

Trichacerca suododu: Koxie 1978. p. 408. ($=$ Thachereforo everdemba. Bewhes 1982, D. 7)
Type localiny: North Sumatita Judonend.
Holonyer. Non desugnated
Dess ripmion: Bady ulmost cylindrical. ced. ax longer than wide symustricitly curved. restated about 90°; strong spmec on right side of hezd left of which at secuid, leftecurying, wider spunt; aboul sty if is length. in detlected ventrally: a shovel-shaped protnision of the head unarget estacs keft bltic hese spening sepatrated fom deds ankron spine by is deep moth:

 fimm rest of bady only on underside; fonn lies in direcrion of body axis. almost as long as wide, bucs of dusimular Icngth., wa akly suryed, widely semarate RT slightly longer than "\& LT ; tho stylets at basc of each lex: IR anymmetric; manubrial Toll shapeal

Distribunon: Known only from Norn sunatea and bne uncontirmed Austasiaun cecord from the Minorahoon River af Balian. Vic. (Berzins 1982).
Comments: Hatuer's hegures and deacriptions arse reprextuced there. The irnphi were nel higured in the seiginal descrintion. Whether dhis spaceses ar 7, iDy. macki (IIg. X:'3). Which at reambles and which is

Fig. 5. 1. Tricherefct fuodonta (Hauer): (a) lateral, contracted: (b) head from right sude: (c) head Imm Iefi sude; (d) furt and toes, 2, T. inermis (Linder): (a) swimming. lateral; (b) toe: (c) fateral, contractet. 3. Tinsignis (Herrick): (a) lateral. coniracted; (be) wophus: 4. T. manfana (Hatuer): (a-b) lateral. contracted; (c) mphus. I after Fatuer (1937): 24 after Konte (1978) (varinus authors), Scale lines: adult 50 mm, ireyphi $10 \mu \mathrm{~mm}$.
confirmed from Australia (Koste \& Shiet 1980), is the record of Berzins, is unresolved. Neither tigures nor description were given by Berzins.

Trichacerca gracilis (Tessin)

FIG. $11: 1$
Acandsuductulu gracilis Tessn, 1890 p. 155. Fig. 2:14. Trehacerca graclis: Curlin 1939, p. 36. Fig. 10a.
Type lacality: Rostock. Germany.
Holotyper Not designated.
Description: Head defined from trunk by suture; no large teeth on occipital margin, low kece on right side of Inrica reaches end of lorica, No trophi
description. May be confused with the similar T: iemis (Fig, 11:2).
TL 210-227 2 m ; LT $81-90 \mu \mathrm{~m}$; RT 26-30 2 n .
Distributiom. Europe, ${ }^{\circ}$, \& S. America: Rare, betweern submerged plants. Single record, Solomon Dam, Palm listind, N. (idd (coll. P. Hawkins).
Literature: Shiel \& Kaste (1985).

Frichocera inermis (Linder)

FIC. $5: 2$
Coclopus inermis Linder, 1414, p. 240, Fig. 4:9.
Trichocerca inermis: Edmondson 1936, p. 219, Fig. 28:10. Type locality: Lake Bret (Switzerland?).

Bholesupe Nont designated

Desuripion: Resembles It dixon-nurtalli, To pusilla umi r. Solveren, Stout hody; light sutare ventrally distugunthes head-shesth: numeroms folds in headsheath on cxmeractioni dorsum may be arched: sugle palpar organ in ciliary licdd: IT < lio howly length; RT 1/6.1.1", tronhi not deseribed.
 Disfribuments Isolated occurences in lakes. Europe.
 Vic.
(Emmarg: Edomondson (1936) nuted that the bouly is shoret and thicker than that of \% divm-mantalli, Nuste (1978) meted that only the shorter right sot vi inermis neprarated the rasis. Until trophi structure ane compatid. the staus of these fwa naxa is unresolved.

Thichmeence insugnts (Herrick)

Fig. 5:3

 Pipe lecalry. U.S.A.
Hellotgro Not dexignated.
 in posterior 怡. Goricatanterior projections usnatly of similar Iengit; foricat heightilength cia. 1:5; ketl hegus betwelo arcuriur tecth and runs to caudal end: paip par organ and twis ciliated papillae in apsical licld; TR: rutcrum dixtully a ate for-shaped. manubria red-likei LM curved inwards distarly: ratoi and upci wish deroichs. right lateral antenna at the end of ginnal keel: vigellariusn with indenations; on average larger than wher species: protahly telated to T moresi (Fig, 6.3).

T1. $320-376 \mu \mathrm{~m}:$ BL $200-257 \mu \mathrm{~m}$, LT $90-152 \mu$ ม1: RT $50-75 \mu \mathrm{~m}:$ TR $62 \mu \mathrm{~m}$ (F $48 \mu \mathrm{~m}$; LM $38 \mu \mathrm{~m}$; RM 12 2 m) , Distribution: Europe, North and South America. New Zealand. In periphyton of standing and flowing witer, uccamonatly in phankcon. Jancontincontal: rate: $13,5-31,2^{\circ} \mathrm{C}, \mathrm{pH} 4.5-80, \mathrm{DO} 7.4-8.1 \mathrm{myy}$!!,

Lifenature: Koste (1978). Shiel \& Koste (1979). Koste d SHicl (1986)

Trichmenter inswland (Hauer) FIG, 5:4

Tipe tecatirge Mour poul near La. Tola. Sumares. Intanestas
Holonype: Not desigmated
Descriphion: Body cyfindrical, dorsally Fumped: prominent ankerior margin spine tron which bong- Jow koel suns diagonally almose in font have: tues ca. th budy lergeth, ofispproximately similar lemeth, ser wide "part be theip base; fiblerum double-crooked, notably longer than namubrit; Lid thin. ciminally stighty expanded, not crooked; RMI shurter than I.MI, rexilike.
more delicate. Remembley 1. Weris (fig, 8:3),
B1. 92μ m: Bes $3335 \mu \mathrm{~m}$: BL meluding anterui spine 100 ann: lateral heighe $34 \mu \mathrm{mi}$: 1 T .38 mm ; RT $35 \mu \mathrm{mH}$ Divtrihutiom: Mud, initnd. periphyton: Sweden. Indonesit, Two rccords: Magclis Ck, N.T. Lo Duivertion, 'Its.a $18.0^{\circ} \mathrm{C}, \mathrm{pH} 7,2,3330 \mu \mathrm{~S} \mathrm{~cm}$ '
Litcrofure: Koste (1978, [981), Kinte \& Shid (1986is.

Trichocercas internedia (sitemrons]
 Fibl fill

Tiye lecality: Fintand.
Hoboryer: Nor designated
Description: Small specses: body cylindrical: head sheath separated by comstriction: when head contracted, nine foldi flentitiable in bead sheath- shogle tooth at dorsal anterfor margin just tor right of midline: striuted area extendis back trombase of woth to dossall midfine; foot very short; tocs of equat length; fateral antenia widely sepatated on dorsum: right in posterior be of atolemerr, left sn the midline teeween it and dunsal ancenne: whorls is just in from ofe head constriction: foot gland meluding reservar very Jong: 'TR notably large:

BL $90100 \mathrm{\mu m}$ (withoul tocs): loes $23-30 \mu \mathrm{ar}$: TR $33 \mu \mathrm{~m}$ (F $25 \mu \mathrm{~m}$: LM $25 \mu \mathrm{~m}$. RM $14 / 12 \mu \mathrm{~m}$.
Distribution! New Zestand, Eurupe, Nurth Americ*s. berween water planss in standing tnd blowing witter. Forur widely separated reends, probalyly nore
 Bromtield Swanp. Gld, and two stock dams in
 $10.5-17.5^{\circ} \mathrm{C}$ ", $230 \mathrm{~m}_{\mathrm{L}} \mathrm{cm}^{-1}$ 。 13 - 110 NTU.
Liferuture: Kunic (1978, 1981), Green (1981), Konte \& Shicl (1987).

Triohnerch musonfus Hatuer

FIG. $6: 2$

Trichuserce umusemhes Cartin 1930, in 34.
Type loralisy: Germany.
Holowye Nol dexignated.
Descerption: Body short. squat: head sheats folds project is "corner folds" (tws dorsal and one wentral denticulate mucrones: mee sitriated approximately $1 / \mathrm{m}$ dorsum lengit; LT longer than right crouk of LM "slaoe hast" shaped: suprarani approximately synametrical.
TL 115-170pm: BL 80-132jami focs 30-43:
 right uncus. $13 \mu \mathrm{~m}$),
Distribulion: Europe, North Amerisat indicator for oligosaprobic waice: in periphyton, in pools. lakes. moors. Two records, Mi Kusciasket, N.S.W. anu southwest W. A.
Librormere: Berpins (1982). Kosater mh (198.2),

 Hautr: (d) lateral, contracted: (b) truphus. 3. T. mereri (Haucr) (a) lateral; (b) trophus, 4, T. porcelhes (Gomse) (at) swintunglateral: رb) Irophus. Alter Kuste (1978) (waruut authors). Scale lines: sdult 50 pinn, frophi 10 ,m,

Trichecerga myersi (Hauei)

Filg. 6:3

Diurctia merosi Hauer. 1931. pe 174, Fiyg 2a. b. Jowhorerai myersin' Carlin 1939. p. 44.
lype fordiey: Germany. Holotype: Not designated.
Description: Anterior lorica spines (nucrones) yery different in length: lorica height:width 1:5; body fusiform, dursal keel runs alnost to height of right lateral antenna (two antennae at different heights):
short head sheath, distinctly ofliset by suture: foot short. sonewhat obliquely placed; L'I weakly curved, reaching about $1 / 2$ body length; RT (tightly placed) to lett, with substylf often cemented together by foot gland becretion and difficull io see. Trophi: LM robust rod. only weakly curved terminally; suprarami with pincerlike innward-directed apices.

TL $270-310 \mu \mathrm{~m} ;$ BL $180210 \mu \mathrm{~m}$; L'T 90-102 $\mu \mathrm{m} ;$ RT 50-57 $\mu \mathrm{m} ;$ TR $50-61 \mu \mathrm{~m}$; Г 36 m m ; LM $38 \mu \mathrm{~m}$; LK $21 \mu \mathrm{~m}: \mathrm{RR} 21 \mu \mathrm{~m}:$ unci $13 \mu \mathrm{~m}$.

Disififnion：Probsably consmopolian，in sanding waters，in perjohyun wh wedy punds．Jabiluka，N．Ti， I．．St Clair Natl Park，Tis，Morerabowl R．。Vic，sare：
 Lifcrature：Koste（1978），Koxte \＆Shiel（1987）．

Trirhoorerce marrellus（Gossel

「16：6：4
Monericive porcerthe Gosse，18．51，5． 199.
fridhemors punvellins．Myers．1937．p， 6
tipe tocediey：England．
Thobotyper Not dexignated．
Description．Short．plump．distinctly cuned body； head sheath scparated by constriction，iwn anterior dorsal cusps，right one slightly larger：when head slightly cuntrackd，lips of a ventral notelb en the lorica margin may protrude at slight＂feeth＂but are not seen in extended animal，writible helght fidge（sometimes absemi），striated：extends backwards frum the largest tooth；foronst with club－shaped palpar orean：foul sniall，parily earilesed within boricat two loes，lefl fonger．ca．the same as body width．Ule righe sunkwhat shorter，usually held againsi ventral abdomen．Trophi very asymmetrical，D－M robust，crooked，RM askender rode LR alduat much longer than riuth．
 mate $56-60 \mu \mathrm{~m}$ long． $32-30 \mu \mathrm{~m}$ wide（a larger rorm， 1．uscior was described by Hewer，1935）．
Distriburion：Cosmupolitan． pH 6．0－6．7，12．1－19．0 $0^{\circ} \mathrm{C}$ ， darger in adkatine than acid waters．Indicator for oligosiphrobic waters：all forms int limotal．in periphytur，necasionally if tyeheplanktom．Moy be pincontinental，not yet known from S．A．，W．A．；
 $16-11201 \mathrm{ps} \mathrm{sim}^{-1}$ ．＜1－120 NTU
Liferuhtre：Evans（1951），Grecon（1981），Kuste（1981）， Koste \＆Shicel（1987）．

Trichocerea ronsseley（Voigs）

HIC．7：1

Type lacaliey：Ilön，Germany，
Holosyre．Not desiguated．
Descivpion：Squar body with arched dorsum：anterior lorica margin with β－9 propecting sertations，the dorso－ dexiral towth largest：striated area of other species replaced by fursow between dotsal recthi head clearly distinguished by transverse sutures； Kl° about $1 / 2$ length of lefi．stender，castly overlonked．Tiophi：：manuhio onsimilar length；left uncus with shor denticles：May he confused with To sholan（Fig．LiJ）．

 palpar ongan to $20 \mu m$ ．SE $46 \times 29_{\mu \mathrm{h}}$ ．
Disuributiore：Proviusly known from Imacanctio and Nearcise bligusaprobic wances，with sporiadic
occurnances in plankton of lakes，where sges－are uttached in Mclosima fibaments．Populatiom naxima in spring．Rare，in our collections invariably assixiatca with llowing walery Darling（N，SW．）Goulhurn （Vici）．Mursery（S．A．），with Meloghte blooms． $14.10-67.9^{\circ} \mathrm{C}, \mathrm{pH} 7.0-8.1$. DO $8.9-9.8 \mathrm{mg} \mathrm{I}^{-1} .47-365 \mu \mathrm{~S}$ Cmio． 281.35 N゙TU．
Lifenture：Shicl \＆Koste（1979），

firichownear rutheri（Dommer）

FIG． $7: 2$

Brhchecervi rustueri Domnes．1953．μ－19－22．Fip，ta－d Tipe leachtry：Nos specsticed：lake phankons，Sumatra and fava．
Holorype：Not designated．
Deseription：Plumper than vesy similar 7．rison nuttalli tubular lateral antenaae at simitar beight： dural aricna displaced in right，LT slighty sigmoid： onc longer substyle． $2 \times$－length of ohters；robust iruph： futerum inverted TV，manubria of similar lengik，bent to crooked in disal w：lefr uncus with four strong teeth

RL 122－200 $\mu \mathrm{n}$ ；height $63-82 \mu \mathrm{~m}$ ；Ll＇ $5385 \mu \mathrm{~m}$ ； KT^{-} 29－40 μ п ：TR 36－43 μ вт．
Dismibution：Widespread in Iropkes，Europe．Known only tron damb near Chilligge，Old（coll HV Timmss．
Litetuture：Shicl \＆Kaste（1985）

Tridnacerca similis（Wicrasjai）

FIG．7：3
Coelopus similis Wierrelski，1893， 4,406
Trichacenca simulis：Edmondsun 1935．p． 30 ：
 Fig．136：ilh．
Type locality：Galicia，Poland．
Holotupe，Not designated．
Descripiem：Fusiform body；head shealto marked by distinct suture（s）；two slendee subequal eccipied spincs somewhat deflected to rjght．flos with Jurica moventent，may be bent acmoss head sperture on contraction：thas be knoth or spinule betwecir spines： two low keels exiend back from spines，with narrow transversely：striate area betweeti dorsal antenna in strine field：knoblite left lateral antema well betore inidlline，tight dateral andenna stighty before foot；end al fump overhames tirse foot segment，two toes
 shorter：torsion of ahdomen has placed RT basc abow LTT，difficult to distinguishs separate tnes in dursal vicus； 1－3 substyli present．Trophis：filerum siraight，knifc－ like in lateral view；manubria asymmertical，tell mone robust than right：right uncus multi－inmbed notrocerchral orginn molibly large，may extend beyond midline；hright red cerobrat eyc，twu lateral ocellis wisible in living specimens，salivary glands theent

 (e) toophus. 4. T. smith grethelis Hatucr: (a) Eateral, contacted; (b) trophus. After hoste (1978) (various duthors). Scale lines: sulult 50 mith, trophi $10 \mu \mathrm{~m}$.

TL $166-300 \mu \mathrm{~m} ;$ BL to $140 \mu \mathrm{~m}$: LT $50-80 \mu \mathrm{~m}$;
 male $68-73 \mathrm{~km}$.
Distribution: Imporlant component of plankton in oligotrophic, hunnic waters, attaches subitaneous ceges to other plankters. Pancontinental, most common Thichocerca in Australian waters, planktonic in lakes, ponds, billabongs, stock dams, Particularly common in humic acid waters in western Tasmania. $7.0-24.5^{\circ} \mathrm{C}, \mathrm{pH} 3.9-8.2, \mathrm{DO} 5.8-11.6 \mathrm{me} 1$, $31-7(x) 0 \mu 5 \mathrm{~cm}^{1} \cdot 0.5 \cdot 120 \mathrm{NTU}$.

Commen: A larger form often found with T, similis has similar morphology including occipial spincs. It is common in Murray-Datling rescrvoirs. ©. L. Hume, L. Darmouth, where it grazes green algad eng. Glococystis. This large form is presently regarded as a ssp.. T. similis grandis Hauer, 1965 (Fig. 7:4). It iss distinguished by larger, more elongate body and relatively shorter toes than the typical form,
TL $400525 \mu \mathrm{~m}$. LT to $44 \mu \mathrm{~m}$; KT to $28 \mu \mathrm{~m}$. Distribuion: Known from Amazonian floodplain waters. Rare; River Murray billabongs in Victuria.

La Perdher, Tas.. probably mote widely distributed. 15.5-20. $81^{9} \mathrm{C}, \mathrm{pH} 6.8-7.0 .50 \mathrm{O} 10.8 \mathrm{mg} \mathrm{I}^{1}$

Litcrature: Kosic (1978), Kone de Shitl (1980, 1967). Kosite as af. (1988).

Trichocerca shleafa (Jennings)

FIG. 8:1

 Thichacerent sukume: Myers 1937. p. 6. Tipe ferverty: L. St Clajr. Micheran. U.S.A. Hoblempes: Not designated.
Descriprem. Body cylindrical. dornum arehed bu liorm hemisplere; two prominem sutures nilark head sheath, which has numerous creases ons contractuon: iwn wnguc-shaped flesby projections from anteriur margin appear briangular in lateral ticw, right most obvious: shallow. 1 tansversely striate furrow adong dorsal medan line: foot and short, equal-length toes curved forwarth under postcrior, heldadpressed to bodyj dorsal antenna
in median lurmox, lateral anternae at similum height an pasterior ${ }^{6}$ at trunk: trophi asynmetrical, robust: lukcom double crooked: LM reaclues end ol fukerum, distally dilated: RM a shoter, slender rod; ramus will enlarged bifureate alula: brain with loneycombes retrocerebral sixc: cyesput at base of brain; fons glands with farge mucus reservoirs.
 LM28 2 m : RR $16 \mu \mathrm{~m}$). Wulfert (1968) zives BL. 2() () am; loes to $35 \mu \mathrm{n}$.
Disfributiem: Pussibly cosmupotitan irr periphyen of suhmerged plants, Recorded by Berzins (1982) trom the Aroca River. Vic. No ecological information, noe seen in our collections.

Thidnucerch perwior (Hudson \& Gosse)
 Fic. $\mathrm{X}: 2$

Coirlnpus vention ludsun \& Gusse.]886. [2. 68, Fig, 20:19

Tiye feculizy: No single lowathy spocified. Whoulston: Subtor Park and Colestinl. Birmingham" England Hollontrer: Not dengenated.
Descriptions, Body elengeted. curvesh, with single geule
 is a Juw pleated plate; transversely striblect low keel comintues obliquely from bate of woth tered midinue: heise wheath marked oft by suture, has longitudinal bods. alicn head withurawn: literal antermase at dillerent heighss lef more anteriar: foot short offect from trunk. loes unequal - left lue ca Hulf horica lerggth, slighaly surved venirally, right more delleate. foall lengit of leti, subsiyli present: trophi asymbelricat: lulerum deruble eromed. LoM almost fulcrumi length. distally with $70-80^{c}$ inward bend: RM Frade straight rod: RK with trangular alula pointing atrmest at right
 renuibs may be conlused with T_{0} gracilis. (Fig, $11: 1$). T. imsignis (Fig. 5:3). To imsermester (Fig. B:4) and \% fugris (fig. 8:3), tisn be separated readily by Irophi morphalogy.

 rami $17 / 15 \mu \mathrm{~m}$) subitaneous cge $65 \times 38 / 4 \mathrm{~m}$.
Birmibunion, Cosmopolitan in detritus. in uftat mats. in periphylun. psatmesn. ocsaswnally in tychoplankinn ul still watere er im beach sand of flowing waters. also in mone pools. Fitte in mataland samples (Vic:) smore
 Mg 1 ${ }^{\top} .70-700 \mathrm{mS}^{\mathrm{cm}}{ }^{1}$. 1.7 NTL

Tristineserce dignis (Müller)

FIG $\mathrm{K}: 3$
Tribunde sipris Mtulter. 1786. pr. 20t5. Fige 29:8.
 Jype herwity: Copenhagen, Dentraitk? Holotrge' Not designited.
Dossriphion: Similar nerphology to T. temmere. with elongate. curved cylindical body, single anterior occipital toonh, longitudimally pleared head sheath. boblique low kect arising fimon butw of soth: dhfier. in usially greater suth, more prominem ketil, redaively latere foot, equisl Jength thes, trophi stracture ict. Fig's
 nonuthrums, double crwoked Iulcrum. Mas also be contused with \%: imsaland, adeain rendily separatat on trophi structure (ct: Figa 5:-7, 8:3).

IL 220-300pm; HL B30-200) 50-80 щ
Distribution: Cosmopolitar, isslated occurrencen in wide range of water quality. in periphyton and bonthems (Kikse (978) Comenogs in biflatoung Vje. Tix:

Librumure: Kirste \& Shiel $\times 1447 \mathrm{~J}$.

Trichurerve mivinater (Vuigu)

FICI. 8.4

Trichasara mosurne Citslm 1939. p. T3.
bye tecalify: Mons. Giemany.
Habripere Not desighated.
Descriphion: Body shon. surved. anterior lorica materm slightly denticulate; actue occipilif curved tarin displaced th right of midtine: low maguc-shaped plate to lef of tooth: ventral striae or pleath rum to weak suture separating heud-sheath from frunk; short forn with two uncqual curyed ines: truphy usysumetrical: left uncus clath-shaped with several meute teeth, righi uncus shorter, plump: bifurcare large red cyerpки.
 27 $\mu \mathrm{m}$; accipitai tooth $14-27 \mu \mathrm{~m}$.
 afgat matho psamumom; Evetoplankton of liesth waters lincontirmed record from Tabrathuca Crech.
 seen in our collections.
Liflerdurfe: Kosie (1978). Betrins (IUs2I.

Triolmerned trmalis Hewer
 -1G. $8-5$

Tipo Iacrality, Gurmany
Holongpe: Not demgnstud.
Descriphim: Squat, visulted io sonical body: kett amberior margin with large jounded plate, formand ones cursed forward: shorl diagonal kecl from striac field: wes of simidar lengets: tuphi strongly asymmetracal; Jeft phanutrium mbust, with "hockey-stick" srook. right natnubriun a slender tragilo nod with medran kink: fucrum double coreked: kest tncus. will two teeth: subuncus witt several (commonly thee tine teeth
 is particular the latter if twphi are lete ton long in catsitic solution - Jefi manubrian maty disolve abray to produce the characteristic hend uf brpalis. I.M.

 20цm. I.M (\% 34 Am).
 America, indonesia. Rore hillabongs and cphemeral
 $\mathrm{pH} 6.26 .85,73-292 \mu \mathrm{~s} \mathrm{~cm}^{-1}$.
Litmature. Berzins (1982).
Tricherever waberi Jenningsi
FIG. 8:6
 $13116-117$
Trimhererca wheters Edmondenn 1915. 12- 20.3
Digne fratith Nom spectifed Takse Éric and vanny. Michigam, Lis.A.
Medersige: Nus denigurad.

Bewripsion: Bexly shent, curved in are: head sheath indispinerly marked by suture: broad, rounded proyecting plate wheft of head aperture. short palpar organ in apical licld, single pronunem exceipital touth to sight of Jocsal median line: uccissionally a spinule: between plate itni texth: hugh, than. transversely striated keel from madian tooth to sia lorical length: twe of similar dength: trophis asymmetrical: LM with distal right-angled hend: RM cos R Length of LM. sligholy stgmosed rod: suprarami distinctly clongatedi ecen with three-four inconspicutus substylf. Kesembles T, ธatva (16ig 4:2) and T. parcelthe (Fig $6: 4$).

B1. $45 \quad 155 \mu \mathrm{~m}$; herght to 50 mm , LT $30-54 \mu \mathrm{~m}$: RT to $42 \mu \mathrm{~m}$: occipital spine to $12 \mu \mathrm{~m}$; Irophi io 52 mm . Dissribution:' P'sobably cusmupulima. nor reconded from airical (koste 197K). In periphyum st lotoral, also moura. Rurc: Old. Tas. Vic., Tasmanian epecjmens slighty larger than those of the maindand: Lit wo folpm. RT U $50 \mu \mathrm{~m}$. Possibly ecotypic variation.

Trimbererese (s. Wh)
 Trichacercw aghama Wulfert

 FIG. 9:1Thrombtre duhuter Wulfert. 1939, p. 73.72 Fig. S
Tyme freculin! "Heykasec bel Koslin". Present Puland Movorpe:- Nos designated,
Bescriphions. Mediun slender body with lighty eonvex dorsum: convex abdoment 12 somewhat similar large buad sreases without fromal process in swimming animals folds not apparent): corona with one palpart atan and two antennae; dorsal aniernise in pit. alightly displaced mitge: left fateral antema medial: right interna at ilisal end at" atudmen: Li' watright, abous B TBI. RT < $1 / 5$ Jength of left. IK: LM lonecr und more strongly buite with curyed dixital end; RM ahorter. mare slemder, ulan eup ved in at distal end. LR with longer poincod stume RR weakly seveloped; suprarimai stanall: Fr bidned dishatly.
 Biarbanom: Europe. Sinule nevon liom the River Murray sat Ehacia, Vic. 15.0². pH 76. DO 90 山ig 10
Liscremmeri Kosic (1978), Kostc \& Shicl (1980).

Trichorenes bierisfars (Gosse)
 lilj $9: 2$

Type localiry: Scotland.
frishoype: Nut designared.
Descriphion: Both stender and plump forms known: in enmond two still projections: in croxs sectien two variable height ridges keparated by wide depression run length of dorsum, vecring slighty io lcft. LI' with triapical tip, median apex inuch loneger than Daicrots; lateral amentace in simular height as snd of abdomen.

TR: burl mamuhria lerminally coroked, one side curved, suprasumi large. LR oszusforally with iwopriated aluli. I. arica linely sippled; whetincs red brasva coloured: RE with irregular "rodict" retsfortemem belucen the shetly. May be confused with I. mucasa (Fig 12.2), but is larger, with longer. nure sbvous hecl sructure:

 uaters: isolated acturrences in litora! in dettitus acasionally in tychoplankton. Ruse in Murray-Durlinge Basin, also Coure tork. (Vhd and Kiskulu Nutl Pk, Nal.
 $59-573 \mu \mathrm{Sm}$. 23.5-40.0 NTU.
Lircramme: Cilledge (1914). Kusie (1981).

Trichacerces brazilicnais (Murriv) FIG 9:3

 Pipe focatity: Wator lily pond, Pratas Republas:a, Ria de Jancira, Prapil.
Hohntyge: Not designated.
Deserimion: Short, जnou budy with distinctive double kete $1 / 4-1 / b$ lenget of dersumi, body trondest belmod kecls. tapert to forsi: kieele hrmagly rounded; IT Inoger than hoxly, continues line of body, widt basal ngnuma tond; RT I/ length left: TR resembles these of To marsmad and fi bicrisfalu, buc whereds Hese laxal have manubria with only as hint of at cromk. in T. brazidicmsis both anc strongly brooked (Figg 9.3b); RR with markedly bifureate aluta, LR with single spinelshe. process

TL. 270275 kn, contractod loricat 120-122 un, kicls $38-40 \mu \mathrm{~m}$: LT L50-153 $\mu \mathrm{m}$: RT $33.50 \mu \pi$: substyles cs
 unci 10 and $\{2 \mu \mathrm{mi}$,
Disuriturim, Rare: previously recorded only from vegetated waters in Suuth Ameritat, 10 30 . ${ }^{\circ} \mathrm{C}, \mathrm{p}$ pll +.5-67 (kuste 1978) Single record. Tasmania, several individuals. frum a modside mash, Delorame (22ix.87) - $38^{\circ} \mathrm{C}$, , $118.9 .106,5 \mu \mathrm{~S}^{\mathrm{c}} \mathrm{cm}^{-1}$. Liferathe: Hauce (1965). Koste et wh. (1988), Comment: Allmugh synomy Koske (1978). Fr brailiensis smaller sime, genarn morphoslogy and specific Itophb difierences (particularly bifurcates aluid of l., Rend more rohosil crosked 1 . M) as ligured. suggest specific status De retrined.

Prichucerca supucom Wierzcjski \& Lachanas FIG. 9:4

 p. 24.2. lig. HIIll ?

Fig. 9. 1. Trichocerca ammata Wulfert. (a) lateral. swimmong, indwidual from Darlıng R, at Bourke; (b) lateral, contracted: (c) trophus. 2, T. bichstua (Gonse): (a) contracted, lateral, from left; (b) Lrophus. 3, T, brazilionsir (Murray): (a) lateral; (b) dorsal: (c) trophus. 4, T. capucinu Werrejski \& 7achartas: (a) lateral, swimming: (b) trophus. I hec after Wulfert

Tipe feradifis (Germany

Hondrym: Not desigmaled.
Deacrintion: Bexly lusifurm: head with 5 palps and zwo

 denarcated from truak by destinct tratmycise suture; laterall unternate at simulat height its almost syתunctical: KM slighty more robust: t'R parn relatively fragile; nate loricate with late red cyespor and rudincotary tocs: RE brown, hard and whelled;
 90-100

Distrburions: Cummopolitan. in plankton of lukes, alson in mure and athatlassie suline watces: attaches ifs egex
 motifers, ex keratila, suching out the contens.

 NTU
 (1987)

Trichercen inatomi (Buachanın) HIG. H: 1
 p $15.66 .69 \mathrm{ge}+$
frithocerce thammi: Hatuct 19.38. p. 50.5

 Francel

Hihbtype: Not desighated.
Uemorphome: Bindy cylimirical; contaxted animal has numerous folds in head produsing undulate ur serfatal iruntal margno no pronounced suture at neck, only sligh depressionn distinctive charackristic singte hong serurally cutsed spince lefit of dorsal antenna uriting

 hody shoner LT: less ratuced RT and ration of ridelt Li

 antering spine $26.51 \mu \mathrm{~m}$.
Diareibulfent: Tropicul and subimpieal water, Europe, Arricio Indonesid, Soull Amersea, promably pall-
 Rate. eonfirmed frum da. It fecealities in the Kimberkey, W A. Mugela C'k, N.T. and Cape York.
 Tunnk (Coorantong) and M.J. Tyler" (Adelaide)I,
 48-245 ц' (6n': 0.5-6 NTU Warm stenothern)? Sce simmanth helow for A cylindetick.
Literuftree hiase © Shis l1983):

Trucheoters extimitrion (Imhor)

1/ki. 10:2

Ope localin: Lake in the Black Fonest (Germany), Iolvenge: Nis designated.
Description- Tlongate, cylindrical budy: very tine. ventrallyocunved usate spine from modian dorsal lerica margin, may he folded down and insixible in contracted aminal: Kmidudinal striae in head region in later case: shote keel and striuted field: LT always donger that body: RT reduced to rudimentary shors, saily spac: dursal antenna lone rigidd, Icti lateral antenna im middic of truak, right just tefore funti T'R alto but LR mane tubust: theif nasubria longer than fuicrom. curved distally, with lemestated proximal End (this. 10 :2b) aminal oscasionally in gelatinous sheath: eges carried intiacted he parent, mate locless. RE in striated gelanimous sheath

Dastributhen: Palkenteric and Nearctic lakes pools and moors. Sudeuki (1967) recorded If egtinuticat from L. Sorrell is Tamanis. we subsequentiy found it in L Liscumbers. Snowy Mts, and Lo Dartmouth, Vis
 11.

Commphit: Apparently two ecologically, and taxtmomeally distinct taxa oceue in Ausaralis: The farger cool waterspeciex. T. adindricu, and the tripucall f. :chormi. Kisse (197K) synonymised the later with the former (as on wate), but on the basis of apparem
 distinction until SEM analysis can clarnly the shatus. of both taxa.

frichacerca elongater (Hudson de Goase)

FIG. 10:3
 20.8

Tipe fondedte. Loth near Durdee Scollanist.
Holorypsi Nor designated.
Descriphem, Large species, body lung and slender: heial streash now marked by constrictums: antenor edge unarmad; sthont double keel about 始 length; dorsal
 with median furraw hack to dorsal antenna: corona with hingle palpar mgan: lateral antennae at same level at though forsiun an' he burly means feft anmenta is now bore ventral and tight anterna closer in dorsal line (noly une seen me denal vicu); tonsion has atoo movad we (ts dorsal (right) wentrat deefl positen rather than side by side: Lil nore than $2 / 3$ lorika Ieneith, KT sullimentary: TR asymmericial. Ieft olde muts

 (h) trophus: (c) dorsal. Wafer Beauchamp (b907); 1 after Hauer (1938): 2, 36, 4b after Koste (1978) (Various suthors) Scale lines: adult $50 \mu \mathrm{~m}$. trophi $10 \mu \mathrm{~m}$.
ucveloped: L. $\$ 1$ robust with surongly curved distal end. leneatrated proximal end: KM a delicute rod; fulcrum (\$uble-crouked (imerted T): LR chens in 3-pronged
 reddish-hrowninh: surface may alse appear stippled.
 RT 32-56ц1\%: TR 70.80 1 m : (LM to $63 \mu \mathrm{~m}:$ RM +3 (1tt)
Disuributions: Csommpultara in liturat and yyeht-

Trichazerca firgellaw Hituct
 FICB 10.4

 Tipe haralisy Almati Lake. Madrus. India. Hoburype. Neth desfgtared.
Descriphiom: Busly smmpact, ovoids, head shesth indistinctly demarcated; amerorer nargits ratsed in th sinnoult curve on the right side: the rest umdulating: metially as smonh noth: keel high-valled with wide strithed atcin estends to the beginning of the short font
 midutic of the atydomen: dorsat amenmat near beginninge of second third of trunk: LT" slightly shmoid; tue length: BL index ax. 1.5; [1k mbusi with strongly serooked fulerum and J.M; prain large with lage lerminat exeboral cye.
 60 -79 $\mu \mathrm{m}$ ($44 \mu \mathrm{~m}$ ト $\mathrm{F}, 40 \mathrm{~mm}$).
Dismihnmon: Warm venotherm; Mdit. Malassid. Amaton. Thece losalities knothi' Magelit Cok. NT. Cape Zork, Qud and I Purruminete. Vis $18.0^{\circ} \mathrm{C}, \mathrm{pH}$ 61.006 .7 nus ${ }^{\prime} .63 \mu \mathrm{~cm} \mathrm{~cm}^{\prime}$

Vitratme: Kinste (1978), Koste \& Shicl (1980), Green (168!).

HK. 11:2

Hoblogepig: Nor designated
Descriphom: Body elongute cylindricald hean statath sepatuled liom trunk by tranmecse fohd single very shasll spine on lopicad anterime marging left lateral thtenna insenced higher than right: keet with striae ruas from anternor margin in end of athderomen: LM now \&noked: supraruni small: Jefic uncus bidentane.

 IIf(011),
Distribution Cosmupxlitan, tretween water plamls in littoral standing and slowly-flowing haterses situgle uniconfirmed report from Yarrs K ceer at Warburton. Vic. Literumare: Koste (1978). Wergins (1982).

Frichacerod jenmingsi Voigt

FIG. 11.3

fiper keralisy: (C:S.A.)
Polotyper Not designated.
Description: Buly elongated, ewryed with dorsal arrated keef rising front anterior lurica, pussing acrobs
 with toneth at anterior end whelt andy extend beyond lorica margin in contracred individuals; hedd sheath indistinctly separated, more abvious on ventritl side: Jorial antenna at left side of keel: lateral anterna approsimately equal height in posterior th of lotica: toot bifter from body with posterior dorsal edge all lorica projecting twer lefl side of foot, restricting monement on leff side: $1 . T$ 敢 hody length; RT pudimentary; trophi asymetrical: I, M lober stown. curvent: RM slender stratighe sed.

Disuibutiom: Nerth America. Europe:, Sr Lanku. N.T.
 Siterodure: Koste (1978), Kinste-\& Shicl (1980).

Firichnerpred dangisetrb (Schrank)

FIC j . $1 \mathrm{H}: 4$

Trype horatiow Germany"
Hololeye - Nor deswnated.
Description: Body clongate with fwa long spines an ascipital margin, right alnostiwise length of Jofi. With twas small projectiuns between spores; stalluw keet from longest koold to middle of abdomen. ustally with striase lateral anfentoce it simflar heighe in ponerion is abdomen: head shealh with longitudinal folds in contracted indivituals: in livina anionals, apical fold has dorsal clongate palpar oreur beside a membranelle
 keal, slighty behind constriction separating head and Irumi, 1.T upproximately body lengit: RT rudimenting. Trophi: Lom long, lerminally thickened and evrved inwards: I.R with long porinted aleks: supratami with chatracterixtic mote jupices.

 X $115-127 \mu \pi$ ，
Charihumbu：Cisampolitan in most submerged

 wes recorded fiom S．A．of W，A．common：8．5－200 ${ }^{\circ} \mathrm{C}$ ．
 4－28 NTb
Lifexturr：：Koste（1978）．Koste \＆Shicl 1980．1987）．

Iriodnereran munem（Hudsons．\＆Cosse）

1才（子 12：1
 $20 \cdot 1.1$

Tirchucerce macern：－Harting 1013．p．105
finchumence freiformis Levinder：huste 1988．．1． 104
Tipue frewfin：Fingland？
Hohobype：Not desmgnated
Sestriphimit Elongate rusiform body occasibnally curvat，dorsal sutfice more eronvex than veneral：head Whesth marked off by slight consttiction：smatl theth at itnteriont matgetr fight of midline；broad area curresponding lof location of keel in other species nasy loe noticeable but generally is not：dorsal and hateral artunnte uf usual appearanc：LT straight，ca．1／1／lorica lenget，RT＜J／6 its lengets substyli presern＂；when for－bent forward a spur－like poim extends backwards from distal ent of foot all bine of toex，nor knows lior Wher spectes；traphi not described

TL． $440 \mu \mathrm{~ns}$ ：BL 278－3 $30 \mu \mathrm{~m}$ ；LT 112－140 \quad m：RT 18 зй．
 whtere，Fimope，Nonth Amierica Rare N．I＇（Gud．Vic Sibrwiwn：Kume（1978），Berzins（1982）．

Trichaserca mucound（Stokes） FIG 12：2

 nutour Kivic 1978.
 rocky word ne：ar Trenton，New Jersey．U．S．A．＂

Holongee Not designareat

Descriptions：Body．acen taterally broably oblong：head 5heath with constriction；nu anterior tech or spincs： deep nakrow fokd on velmal side when heat nemeced： two well inarked mriated dursial ridges ue heets with lurrow between them：in swimming animbals ene club shaped palpar ergan on corrona，two stender lateral robls：dorsal atntenoza left of leff ridge in a pit：lateral amenne well behiad midline：foor shor conicali lorica projectes well beyond it on lefi，sestreting toe mowement in that direction：LT may reach BL（Jennings 1903：331 nutad that the enimal oflen switns with the LT carried daganst the right side and appeart toeless＇；RT rudimemmry indisinguishathe timm sulxtyli；TR Hiswote，strongly asyminctricul：Fulchunsuoked．LM
robust．distally eurved．KM such smaller．hom sod： LR with leng downward exurving salula．

TL 300－350 1 ；BL 180－191 μ nt：LT 120－150 $\mu \mathrm{m}$ ：TK
 fismm）：RE $150 \times 130 \mu \mathrm{~m}:$
 record from Q Jd ，not seen in enur collections．

 of differences in morphology＂．in panicular of the erophi．Specitic alutus ix retanced awathig detailed SLEM analysis of the trophi of both taxd．
Jilerwhre：－Coltedge（1911），Koste（1978）．

Jighaceron may Hauer

FIG． $11: 3$

＂Apte＂Iarcalids：Tjighmbong．Java．
Hotoryate：Vot designated
Socmeriphion：－Bedy of Iully conlmeted aminsal Eged shaped：head sheath an series of folds aronusi contmiled head opyering：head ron clearly sephotuted framirunk： wo heel，but shallow groove estends dursallify upas midtine（nos keter：－lornal untennace is in the anterior Fur of this grooys：shon，stout fioti LT whightly kinkad at the base，about 1.5 tumes BL：BT＇afotot $1 / 5$ lengila IS：TR？？
 Distribarionf，Cameda，Iava，ceniral Americu N＇T． ＇Tas．Vic．，rarc： $150^{\circ} \mathrm{C}$ ．pH 7．4，DO 8.4 gng ！＇。103 sk cm^{-1} 。
Litrontre：Koste（1978，1981）．Kose \＆Shicl（1980）．

Tradiocestre pusilla（Jemomes）

FTO．12：4
Remalue prathey Jenning．1003．p 139．Figh．81－85． Trishdecerar pasilla：Harring 6913．p．10．t．
Tyere forcitivy：LiS，A．
Hollobye Not designated．
Deseriphion：Snal］pyritorn to fusiform body［cf．$]_{\text {．}}$ dinron－murralli（Fig．4．4）and Ti numeri（Fig．7：2）］：IT in enutracted nodividuals clevated at right－angles；weak longitudinal kitibe at anterior margin！median groove dorsally：no sudaced field：bright icd cye dorsal to brain；right tateral winema shontly before fonk．defi a heginning of last thirel if hody．Trophti：rami with robust，outwardly dircsied alulac；LM ierminally weakly eurved．KM sibnter，sodlike．

Total Jeneth 110－175 am：body length 69－115 min；LTT
 $21 / 28 \mu \mathrm{~mm}$ ：（eft uncus $8 \mu \mathrm{~m}$ ；rami $6 / 2 \mu \mathrm{~m}$ ）；nrale $60 \mu \mathrm{~m}$ ． Dismibution：Cosmupolizan in plankion ul litkes，ponds． also in mours and brackish water Eggs nten fixed ks boricas of Brachiomus speciess particularly B angulariv．Pancontinental，common in billatorngs： $\left.10.524 .5{ }^{\circ} \mathrm{C}, \mathrm{pH} 5.18,113055-10.0\right) \mathrm{m}$ $28-725 \Omega \mathrm{SnT}-6-120 \mathrm{NTH}$.

Fig. 12 1. Trichncerca macera (ludson \& Gosse): lateral, contracted. 2, T, mucora (Stokes): (a) lateral, contracted: (b) trophus, 3. T. mus Hauer: cuntracled, lateral. 4, T: pusilla (Jennings) (a) swimming, lateral, (bp lrophus: (e) fulcrum. lateral. Alter Kuste (1978) (various uuthors). Scale lines: adall $50 \mu \mathrm{~m}$, iruphi $10 \mu \mathrm{~m}$.

Simenure; Berfe si(1953), Kiale (198), Koste \& Shicl (148)

Thichocerath himes (Millen)

FIG. 13:1
Tricherter rowhes Mulfer. 1776. D. 281. Frishincerra matus: Harring 190, p. ros.
Tipe Incality, Cuphethegen, Dcrenark.
Molonpei Not designated
Descriptiom: Lometa whth low of suedium kecl sas. Hall dersal length, may he Tudimentary". Wide striate-fietd; baterat ankentac in perseribr liunk regron, sight hagher than left: RT shorier than Iongesi substyle. "Trophi; Iuleruin an inverted T; bodi nanubita single-crooked, right more delicate, incessionaliy straight: kef aluta clongate, bifurcate, deflected ventrally, right alula shuriet, more rounded; inmonal may have reddish patcoses: red cerebral cye: mate iocless.

J'L. $260-320 \mu \mathrm{~m}:$ BL $150-225 \mu \mathrm{mI}$: LT $130-192 \mu \mathrm{~m}$; RT to $30 \mu \mathrm{mi}$; TR $60 \mu \mathrm{hi}$; SE $102 \times 51 \mu \pi \mathrm{~m}:$ malc $60.70 \mu \mathrm{~mm}$.
Disrribution: Cosmopolitan, isolated oceurrences in littural of standing and flowing waters, mours and brackish water. Commons. widespread in ceastern Australia and Tusmantas: $8.0-27.0^{\circ} \mathrm{C}, \mathrm{pH} 5.4-10.00, \mathrm{DO}$ $6.2-13,0 \mathrm{mig} 1^{-5} \cdot 15-10801 / \mathrm{S} \mathrm{cm}^{-1} \cdot 3-135 \mathrm{NTU}$.
Comment: A variant, D_{2} sumbs carimum (Ehrenberg) dilfiers trom T. rathus s. silro only by a wider head opening and higher heel; all body measurenments and ecological ranges are withen those of the typical korn. There is no evidence that this is nther than an eentype: il is here symnnymised.
Listrathes: Koste (1978). Shicl de Koste (1979), Kirste \& Shict (1986, 1987).

Thichocerca rowed (Stentrox)

FIO. 13:2

Mduiguceria resea Stentoms, 1898, 14, 146
frichorefca raser: liadecu 1027. p. 12, Fige 2,6-7. Type foculdy, Finland.
Hedurype; Not designated.
De'scription. Dorsal marein with acute pmjection, of variable lenght, resembles. T. Iongiseta, frum buse ol spine, leff of dorsal antenna shatow keel and atriated field teach right latera! antenna; lefl lateral antenna mure pusterior", retrucerebral organ with sat"; kensory papillac in apical field: LT ©a, BL, Trophi: fulerum spalulatic distally: LM .slightly curved distally.

Disributions-Littoral ol 1akes, ninor pools in Europe. North America, New Zcaland. Single recond from Tas.i 18.0 ${ }^{\circ} \mathrm{C}$ pH 6.9. $106.5 \mathrm{ss} \mathrm{Scm}{ }^{\prime}$.
laverature; koste ef af. (1988).

> Trithencrea scipie (Hudson \& Gosse) FlG. $13: 3$
> Mestigocrecte scipio Hudson \& Gosse 1886 , po fil, Fis 20:18.

noln Rotmins scymo: Jenuings 1903, p 322-323, Fy, $5: 5052\left(=T_{\text {- jenningsi Voigt. } 1957) .}\right.$
Tjpe locality: England, "sn Water-moss in poots". Holorypec; Not designated.
Descriprion: Boxdy sub-cylindricat slightly larger al front, thickened, rounded pusteriorly: three spines bar anterior lisfican marging, one occipital, iwat haterad eade continues as at low iddge ontoranteriór lorica: long lôi keel displaced to right; toe falt lorica lenglh; subsiyti ca. 1/A toe length, mastax large, occupying $>1 / 2$ body fength, trophi not described conspicuous crimson cerebral eyespot.

TL to $250 \mu \mathrm{in}$: BL to $948 \mu \mathrm{~m}$; LT to $80-100 \mu \mathrm{in}$. Distriburiou: England, Europe? Probably littoral in habit, in pools. Recorded from three localties in Tesntunia. 160 - 18 (1) $\mathrm{C}_{n} \mathrm{pH} 4.9 .7 .5$.
Commenf: It is unclear from the literature whether sprecies relerred w T. scipion are this species or Jenningo raxon subsequently describert as Ti jenningsic. Three perpulations recorded from L. Pedder region, Tasmama rescmble the animal described by Hudxom at Cusase $16.0-2500^{4} \mathrm{C}$, $\mathrm{pH} 4.9-7.47$.
Liternurei Koste er al. (1988)

Prichencerce- \&ftata (Consc)

FIG. 17.5
Momeceria siviale Gusse, 1851. p 14!
Trichacricas s!ivala: Hartisg 1913, pe 105.
Tipe fecality: '. . Agrden reservair mear Lundars", kngland.
Hodonpe: Not designated.
Destripuion: Budy ircegular in forn. plump, githous: integuntent very hexible; confracted animal has blame. puckered head sheath. masked from trunk by distinct suture; no apparent ridges; lateral antennac in middle wh trunk: cerebral ge nisy be papillate; $L T<1 / 2 B L$. slighely curved; RT rudimentary; ča, $1 / 3$ lengho of IT. held appressed, easily overtooked, un substyli; uophi asymmetrical.

[^3] 31-35 \quad mm: LT $45-53 \mu \mathrm{~m}$: male $60 \mu \mathrm{~m}$.
Dismaiburion: Conmoprolitin in plankton of lakes and pools, where it mitacheg its eges to other planktonte poticts, Rase. Qud. Tiss.. Vic: $10.5-25.0^{\prime} \mathrm{C}, \mathrm{pH} 7.5-8 . \$_{1}$
 Sifermume: Kase (1978). Shict \& Koste (1979).

Orfer buestes of licichocersa

Hic must ate'sh that the keys atrove (and in earlier parts of this series) are bascd on known norphology of muten wo have udentificd, or other syatematists have reconded from Austratian waters Collections which confiinet anly simgle indivaduals not readily iefentiable with knomm asa have beem exeluded. Wmot more matcrial of these faxa hesomes available they cannos he ueated adequately. We are aware ot at Jeasi thece Triohoremon tave in dosal waters which stmol be keyed suctemalially here, Users of sur keys linding animatis whits do not contorm to ste or more of the omophologesal ranges for baxonumically signaficant Featurss, in patticular the Imphi, stoould treat them with saution. Varimes from the 'horm" shoufd not be "stoe-
horned" inco known taxa bectuse they "lsuk a bit like" the ligures in an suthorilative lext! The wide diktribution of such rexts. whil now northern hemisphere us stigin, is the principal reanom fort the assumed cosmopolitan disuribution of many subifers. and the basis of widespresed contusion in the Laxonomb of the group.

Acknowledgments

Thanks again to the many collector facknuwledged in earlier parts) whis contonuted naterial referned 10 in this paper. Alied Wells, N,T Museum, provided constructive criticistl at a drall. Thastike atser to Don
 Deparaten of Zoology. Univessity ot Canterbuty' Christchureh, for providing eomparative New Zädand nutierial. The Dewtschen Fombhugsgemensitafl cominues to sufvort WK with misroncope and phonographic facitilies Support for fieldwork in Tammania wats provided by the Austmation Binhogical Ressurces Study, Lor-Wai Tan typed the drall ranuscript (t) linal lorm om ia tword-processior ant provided combimued b'rmperent ficld assisaatce.

References

 118157.

 VF. 2 4. 112
 dustratia. (University ol Lund. (umb).
Caklas, b (1933) Wher wh Ramaricin anger Seen bei

 5.9250.

Coterait. Wi R, $1(4) 44$) Adutions the the Rotifera of Quecratiand. Prom: R. Sim: Oh/ 27. '(0-75.

 $145 \cdot 13.45$

 Thanawnh: hat. 55, 217 222.
 Micuence Sies Vidn 47.

 |Kusation|

 f mar Hevtmen Pes 3.4, 4889.494
 with decriphons. at lite sew gencra and thirty-(we) new spricies. Aph, Mows nut. Jiss. Ser, 3. R 197-20.3,
-- 18887 . Twanty four new specties of Routera, al. K Mírosic. Suce 1 malle, pr 1-7
 lahes, I Jool. I Amed. 193. 469: 486.
 Nitt. Alus, 81, 1.220
 Zowd. Ans 94. 77.4-184.

 Deurschl. 1. 129 15?
 den Ergehnissen der Beutschen Limushomeinen iundiFexpodimen, Arth. Auvfolyiod Suppl, 15. 296-389.
 nach den Eryehnishen der Deulschen Limulogischen Sunda-Expedition, Jbid. 507 002.
(1456) Romantien aus Vencelicta, und Kolambien
 277- 512
 Int. Reve ger. Ilwewhiod, 50. 341-389.
Hfrkick, C: J. 188851 Notes on Atheric:t matiers. Bull. Si" Lab. Dermaser Un/: 1, 23-63.

 (1andim)

 of the kisulidac. Kull. (is Hish. Comnm. Whathergem. 22,

 . Dmeromictme 3. 258 50s
 Eestimmuneswerk bugrindet vou Mas Vigis, z vilh. (Bornirateghe Stutydri.)
(9086) 7ar Morphologic. Symenamik und Okinogic vin lieven monngonesimen Radertheren (Retatoria) adt dem

 8. 07-1?6
de Pin.ro. WV. (1984) than die Rudericre RRtatoris. Fhylm Avelolminhes dex Dummera, NW Deutshland thill. 11, 91 125
 Tiane R Son: is Awse 104. 133-144
\qquad d (1983) Morphalogy. shatensalics :and

 , \qquad x198(a) Now Runitert (Avendiminthus) from Tasmania, Mrat. 110. 93-109.
\qquad
\&1987) Tasmamar Ronfera- altisuifos with the Austratian finuna. Anvirobindosid. H7, 31-4].
\qquad . $\%$ \qquad (1950) Koticera frohi Ausirallan intand
 Truns. R. Soc A\% Aus 14, 124-143
\qquad [144]]. Kotitera trom Australlan uniand awaters. VII. Nommantide (Rotikera, Monognommat. Thid 115. $111-159$.
\qquad d. Brasts. M. A. (1983) Rniferis fiont Westers Ausiraliun waiduds, wite descraphents ol iwn nisw "pectics. Midmbenhegra 104. 9-17.

1. molm, C. (1904) Ehude de la fiture milagique" du fac de

 J. Mer Not. Sit. Lomkl. 10. 223-3:5
1.1!ck\%. K. (1912) "Rur Kohastorienfuns. Westpreussiers."(Othvi, 1)
 masphology under SEM and is usefuluess in vionsirucime rotifer phylugeny and sustematict. Hycrobioluquite 186/187. 285 2x4.
 animalium Daniat el Nuryegiac . . - (Copkentragen)
 quae derexit systematice deseripsit at as wivunt delineari curavir." (Copenhagets)
Miprat. J, (1913ar Smath American Reviferat of R. Microwe.

__ - \{19130) Australusitat Rutiderat, forid., 455-461.
 Am Mhe Simve 903, 1-17.
 Rotwhrient Jenar Z. Vahtrwiss, 19, 1-120.
 leurs regurber whicnlaites. Ann Ihefrotions 1. 155-171
Rramat. A. (1933) Rotatorien. Gastroteigher u. Kinorly ne hen, In $\mathbf{H}_{i} \mathbf{G}$, Aronn (Fid, "Kiassen und dortrungen
 Akid Verlag. Leipyig.

 Zealand and outying ishand from 1859-1959. Trumb. Re. Ser N2 88. 443-46i.
(1960. The Rotatoria of Qucensland. Australis. Whes. 1. 235.234.

SChrank, f" VON B. (ISUZ) "Briefo naturhisurtisetoen. physikalischen und ökonemisclacm Inhalts an HO BS Nas

\qquad (1485) New apecica 4 nul mew recority ob
 1-15.
 Plankion of the lower River Murray: South Ausiralia- Aras. J. Mar. Freshmus. Res. 33, 301-327.

 17. $1-254$

STokfs. A 1806 'Sunte new limms al Ametian Rutietil .1mu. Mag. Nerl. Hess. Limdion. Ser. 6, 18. 17-27.

 Jafs Sug: Syar Zand 3. 17-19.

 Arch. Fretende Neater. Mecklendarg, Crīs row d3. 133-174 Voret. M. 199021 Diagnumen hishes unhewthrichener Organimmen aus. Ploner Gewasscrn. Zoud the: 25, 3534
\qquad 1904) Rumatufien und Gasmentichen der Ungetounge
von Pligns firsshumgsher. Bind. Sisi Plow 11. 1-180. (1957) Die Radertive Mittclsurupas, (Wiki)ds.se

Berlin)

 Ref: Suis, Wem Tort. 5, 263-785
Wigkiaskt. A. (1843) Laste de Reviteren Doberver an Gulicie (Autriche Hanmries. Bull. Sus Zned. EH: 16, 49-52 - \& Zacharlas. $0 .(1893)$ Neque kuthorien der

 prayleglych. Pat anch Hylmbiul 14. 317-740
WLificki. K. (1939) Einice neuc Rotitarien aus Brandcturg und Ponmern. Cuol. Ans 127, 65-75.
 Firedrichshatern Areht Huwhiot. 51. $457-445$
(1960) Die Radertiere saurer Gewiswer der Dubeme Hedde, II. Wie Retanoner des Resessicheremumpels bul Winkelmühle 1 hid $56,311-3.33$

SELECTIVITY OF MICROCRUSTACEAN ZOOPLANKTON BY GOLDEN PERCH (MACQUARIA AMBIGUA) LARVAE AND FRY IN LABORATORY STUDIES

by R. J. SHIEL* \& W. KOSTE ${ }^{\dagger}$

Abstract

Summary First-feeding golden perch larvae in experimental beakers were able to ingest only the smallest sizeclass $(0.78-0.86 \mathrm{~mm})$ Daphnia. As the laryae grew the size of prey captured increased. First-feeding larvae preferred the cladocerans, Daphnia and Moina, to a similar size-class of the calanoid copepod Boeckella. Ten to 20 mm golden perch were non-selective for the prey species. while larger fry preferred Daphnia, the largest prey. The pattern of predation by larvae and fry changed from gape-limited to size-dependent to large-size selective, consistent with optimal foraging theory. Larval rearing ponds should be managed to provide small cladocerans and nauplii and early stage copepodites for first feeding larvae and larger zooplankters for fry greater than 20 mm . KEY WORDS: Golden perch, Macquaria ambigua, fish larvae, fry, prey. Moina micrura, Daphnia carinata, Boeckella, prey preferences, size-selective

SEBECTIVITY OH NICKOCKUSTACEAN LOOPLAYKIOY BY GOLDEX PERCII (MACQUARHA AMBICRB) I.ARVAE AND FRY IN IABORETORY STLIDIES

Abstract

Summary fotaging theny. Larcal rearing ponds thoukt he managed on provide smath cladocerans and nauplii and carly

 Bumkefla, pres preterencen sireseledive

Introdsction

The Ausimathan treshwater lish gnden perch. Asfequariat ambinua (Richandsom), is maninely spawned in hatchuries askd the laryace reased in eantien ponds which are managed fo provide zooplankton forage for the lartare and fry (Rowland 1983. 1986) Some understanding at the dien of laryate and dry in these pornds has heen achievad by ohserying dilferences between morplank om communimes in endesures with and without fish (Arumugam \& Geddes 1986, 1988). from consiglerathen of mouth gape and lecdrag bchaviour (Arunnugam \& Geddes 1987) und from analysis of gut eonents of larvae and fry fleutver \& Geddes in press). However when studying diet from analysis of gut contents of fisth in natural habitats or nurnery ponds, sire and species preferences of fist firy may be obseuned by mubidity fef: Vinyard \& O'Brien 1976; (Gardner 1981) and prey availability due to successional or seasonal patterns of species stbundanse and sive frastions (Arumugam \& Geddes 198ti. 1988\%, Laboratory studics of the prey preferences of golden perch will provide a beuter undersanding of the diet duting their antogerys, possithy leading to impruved pond management strategles. In the laboratory, Lumbinationn of selected prey can be presented under standard conditions and the renultine predarion can he presented as preferente indices.

Laboratory techniques have been used to sudy prey prefirencen of many plankivorous freshwater fish isece

[^4]Lazam 1987 for review). but fewer sudies have been made on larvae and fry. Cimiter \& Blates (1975) hisum that the distance of visual perception (reactive distance) ne ia lint was proparsional the the size of the pres: Lisually prey size is the major factor in determmine preferences (Brooks 146%), but prey preference can the influenced by light intensity dacobs 1978), dareasing prey densitice (Werner \& Hal! 1974), escape ability of the prey (Drenner \& McComas 198(\%), prey mosion. vistal portions of the prey (cf. Zaret 1980), and prey ratios und feediny durations (Gerking \& P Pantza 19805. In sudying prey preference it is nééssary to consider buth prey siae atud atlernale prey species which have different morpholugies und belaviours. Care needs to the given to the density and prey ration is the feeding experimients.

The objectives of the cursent study were to determine (i) the siae prekerence und (ii) the preference amuny, some comnon inicrocsustaceans species, shown by golden perch (Maczuaria amhigua) larvae and $\sqrt{\text { ry }}$ under laboratory conditions. The prey preferences of golden perch larvae and liy would contribuke further 10 an undersanding of prodation by larval fist and would allow evaluation of difleren preterence anotels proposed for planklivuruus fish tarvac (Karer 1980), Additionally, management options for the improvemeni of golden perch iny culture could be derived from thas stury.

Matcrials and Methods

Lathorathry expronnems wert carried enul at the Inlumd Fintieries Rewearch Slation (IFRS), Nourramders, New Snuth Wales. from Nowember to December 1985.

An expermuntal thantorer in which ten replichetes sould be cun simuloneously af $20-22^{\circ} \mathrm{C}$ was used (Arumugam ! 440). The chamber consisted of tern 250 mil beaker arranged in zwo mows bon a plationn in a $600 \mathrm{~mm} \times 300 \mathrm{nmm} \times 300 \mathrm{mn}$ glith acylistum whech wite proveled with aeration and sub-gratel filtration. Eath beaker had a U-ube connectiog the water nade the beaher with the water on the aquatrum and mantiaming water in the heaker at the 150 ml level A (ot) $\mu \mathrm{m}$ mesh mylon sereets coveted the end of the II tuhe inside the beaker in prevent the larvae, fry und
 ur iry wat, placed info each heaker, A water exchange fate of 6 to 10 fimes hr' was matotained in cach beaker by cominues. fumpenge of water from the aquarium. This water rite ensured that the slower swimmang prey were mot trapped at the nflun semen.

Fish and Eboplunkton

Golden perelt oft sppsoximately 4.6 . 10,20 , 30 athd 38' лmm starklard Jength (Sli) were used. The 4.6 mm harvae were aken front imp aquarium in which the eggs were incubated until the Jatvie commenced leedrug.
 One latyu or fiy of appropriate sise wat placed thrn encls boaker in the expertmental chamber A plastis
 provided as at refuge. The larvie and fiy 1 ssed for the fecding trials were not fed during the acelimationtion perrickl which Wisk esually less than 18 houns.

 from the proxds an the mbatom or cultured in the: latboratory. The intal prey density used in feeding trials wan 90 surdividuals sto 150 est is water 1600 individualshitre). Thim derwity wate shoue the maximom of total mictocrushacensicecuded iot the tarval soariny. porals (Culter de Geddes in presti).

Pro proferesce inder

'Ithe prey preferences of larvare and lity were velermined using Manly index for st ciste when proy
density was limited (Chesson 1983), Ihin ManlyClecsson index takics onto account ctanging prey Tation that may ocear shuring the fecding process if fecdiose in selective. The index rabee is 0 is1 1.0 and the porn \%equal preticrence would be the reciprocal of the number of prey types- Io this study, the yatuc is ohicthan (0.33) since three prey types were used.

Size preferences

Three size-classes of Daphata wore used in feeding wipis to detennime the sive prefenences of golden perch lurvae and fry. Daphmio in the small size-class ranged from 0.78 10 1.04 mms, in the medium sime class 2.00 10.3 .12 mm , and the large class 3.68 to 5.44 mm ; all meastred trom the lip of the rostrum to the base of the apme 〔Tathle 1). Thisty Duphia of each size-class were placed in at holding beaker swivelled to mix thens up und then gensly transferted to ane of the henkern with is fish of the appropriate size. For a particular sizcclas's of fish, ten fooding triak were run simultanenusly, cith trial stitgered at three ko ten minute intervals. For the 4.6 nm larvae, ench feeding trial was rum for 24 hrs; Ior lhe larger larvae and fry. the feeding trial was run for 101035 min depending on the feeding: activity; trials were terminated helore more than abous 30 or of the prey were taken. At the cad of a feeding Whal. the fish was removed and the number of Daphnia remaining in exch size-class wat pecorded. For edch size-clash of tish, the prelerence index values for each wiec-colass of Daphmia were calculated and exprexsed as means (\pm htandard error).

Spectes pateremees

Monna micrura Kurz. Daphnia varinche King and Boeckello flhwalis Henry were used in deternine the spreses preferences of golden pench. Thinty individuals of cach prey specles were used for eaxh leeding frial ats tescribed for the size preterence experiment. For D cominara lengil was neasured to the bise of the apite: lot Af. micrura, lotal length was measured and Lior B. Jhumblis the measurenent was of cephalo-thoras h'ngth An attcmpe was made to present prey ot athens

Fish Longlin (mmi)	13iphathi Lonpliss (mme)			Duration	Comsumpon Rate (Numher h")
	5 mall	Medjum)	1.arge		
7.4 7.8	11.78 .0 .86	2848.312	+15-5.23	346	0.04 - 0.25
1000145	1278. 0.86	2.302 .60	4.15-5.38	$5-32 \mathrm{~min}$	2-36
19.522 .0	0.80-1.04	$2.16-3.72$	4 [2-5.12	10-38 min	$15-48$
24.0-336	075-0.86	2 16-2.7\%	4.22 5.24	$10-35 \mathrm{~min}$	(8-60
15, 1 -41.4	0.76 (186	こת0-2.64	198-5.4	15.25 mm	8.168

 apd consumption rates of feading trials.

Fish Length (m / I)	Muma micruma	Prey Lengets (ritut) Daphnias carthita	Bocikella minvalis	Duratimi.	Consumpliner Rate (Number J^{-1})
4.4-4.8	0.35-10.50	U.78-086	0) 43 -1296	2.4h	(1)0.11
100-10.6	072-0.88	078-086	0.96-1.20	2.75-3.5 h	$8-17$
19.5-22.11	0.881 .04	1.12 .2 .16	0.46-1.28	11.39 min	120-480
29.01-33.6	0.801 .84	1.36-2.56	1,12-1.28	(1). 346 min	60-240

equal size and of a sive appropriate to the different sizes of the fish used in the experiment. Newly hatched Daphnia and Moina and copepodite stage 3 Boetkella ucre presented to the first-feeding larvae while larger zooplankton were presented in the larger laryae and fry (Table 2). The relative sizes of the three prey species were similar for the 4.6 to 20 mme fry, but for the 30 nim firy, large specimens of the various prey lypes were used resulting in the length of Daphonid being greater than Boeckella. which was greater than Mnina The firsi-feeding larsae were allawed to read for 24 hrs.. the 10 mm larvae for about 3 has and the larger fry for from 10 to 39 min. (Table 2).

Results

Gonerally, the larvae and fry responded to the experimental chamber well and fed readity. A few of Hie 30 and 38 mm fry did nol feed within the time duration and were replaced. Two of the 4.6 mm larvac died during feeding trials, with one of them having a Daphnir engorged in its throti. Mortality of the prey. monitored by looking for dead zooplankters at the end of cach trial, was negligible for experiments up to three hes duration and was less than $10^{7 \%}$ over 24 hrs.

The duration of each feeding trial and the consumption rates in the size preference experiment are shown in Table 1, and the relative sires of the three classes of Daphuice are presented in Fig. La. The consumption rate inereased with the size of the fry. The 4.6 mm Larsae ate 1 - 6 Dephnia in 24 hrs, while the $10,20,30$ and 38 mm golden pereh fry ate 2-26 Daphnia in 10 tor 38 min.

Observations of feeding behaviour were made for all siet-classes of firh except for the 4.6 mm darvae which had only a. low rate of predation. Most 10 mum larvac ininially attacked the large and medium Daphaia which. because of their relatively large size, usually escaped. On sighting: at small Daphnia, the larvac would attack and engulf it with ease; huwever latvac continued to attack large and rediurn Daphnia. The 20 mm fry would follow a Daphnia individual first
(a)
Daphnia capinata

(b)

Moina	Daphnla	Bosekolla
micrura	Earinata	fluvialis

(i)
(iii)

Fig. I. Relatve siase and morphology of prey used in the gulden perts prey preference experimenty fall to same stale), (a) Small. medium and large size classes of Duphaios carinata used in the size preference expuriment, (b) Sixs
 flutialis used in the prey preference experiment for (i) JirstReding golden perch larne (4.6 max SL), (iii) 24 mm SI. goluen perch fry and biii) 30 mm SL golden perch fiy.

 rarimete by difierem size \&usses of galden perch lärvae and firw icolumn represents mean anal verlical bar: reprexents a standant errert fie each mean value.)
before attackinge if. In general attweks on targe Duphatios by these fry were unsutcessfol and, with experience fry usually aroided Daphnier that were too large. Foy" of 30 mom and larger could engulf the whwle size range of Duphmio.
The preforences by different siees of gokden perch fry for the three sire-clateses of Denphinia are shown ja Fjg. 2. Firstiveding larvae preyed upon only the samall Daphaid. Prefurence fior the smatl Duphima decreased with increvse in Fry size. "Bell-5huped" profereme cutsers, with the midde size-class of prey most preterred. were ubtained for the 20 and 30 mm fry, The 38 mufiy preferred the targest Duplmizu und ate tew of the smaller sire-classes.

The sizes of the dillerent prey used in the species preference leeding trialh for the 4.6 man larvac und the 20 mm and 30 תиת fry ale shown in Fig. 16 . The 46 nom larvac ane $0-5$ prey items in 24 hrs, the 10 . 0 m litrvise ste 3-6 prey an about three hrs while fry had a higher cunsuthplijen rate (Table 2). The 10 mum larvale captured A Fexines and Dofphuis in nne attempt whale some atlemple phe crapturing Butchella were not successful The 20 and 30 mom dry could capture all three prey species with case-

The species preferences of gulden perch are shown in Fig. 3. The 4.6 mm larvae preferred cladocerans (Moina und Daphmid) with the preference for Moines slightly highor than that for Disphina whereas the corpepted Brockelled was hardly caten. The 10 nom and 20 mm fry showed a similar preference lor all three
species. In these trials. the lengthe of the three prey species were similar (Fig, 1b). At 30 mmo the try: preterred Dophmia Which was the largest of the three prey species (Fig. (b). The preference for Moina decreased with increasing fry size, bor calanoids it increased initially and thendecreused, and for Daphimiu is varied intitally and them increased with fry size.

Discussion

Most golden pereh laryac and fiy attacked large Daphusia on their first encounter even when they were. too large to be engulfed, suggesting that size is an inmontant factor determining prey detection. The buas towards laneer prey means that the probability of Jarger prey species or of laryer individuals within at species being eaten is greater (Eggers 1977). However, the prey preference index is detcrimined by a sequence of prey detection, pursuit and capture, Pursuit and capture abilities of the larvae and small fry were limuted and so they intluenced the preterence reconded for Daphwia of different sizes. Golden perch larvace at first feed have mouth gapes of only 0.5 mm (Arumugam \& Cedites 1987) and sot they were able to capture abdengulf onls

1.ig. 3. Preforences tor Whimi imizum, Daphaia \&urinant and Borekella flurialis by 山iflemen stee clabyes ol ghluen perth farwe and fry, (Column represents incun and vertical bus nepresemis at standard error for each metan vilue.)
the smatlest sizcelass of Duphnia. The middle size class of Depphimio wits 3.8 mm long and with a head
 gape st the lirst-feeding lursate. Gulden perth larvace art cleanly gape lmined predators \&/atet 1480). The 10 mm latvas were anable m eneali the largest siseClass of Duzvinier and so they too were gape dimited. The 20 and $70.19 m$ tify cxhibited a bell shaped siacpretergne cume, as forro asucishert with sine deperulent preduburs 1\%are 1980: Scout \& Murdoch 1983). Tlim model of predanon is generally associated with invertehrite pralators (Scont \& Murdoctr 1983), but (in)ltiths (1975) -ijxated low pretecence valuex at prey size celremes in fioh. Fry of Perru , Iuwescens and Moneric anksiczuld were shown to consincently select anailler Dughinia atal whet aceplankurn thas dicy wers: capathle of camsuming Ilfansen de Wihl 1981: Parrish \& Margrat; 1495). Lanalaterns in allath atboliy ill moderate sive firy along with the increased evasion ability of larger Buphrail wouk produce al preienence fir mid-sized Dephluide. When golden pesch fry wen: 38 num long they prelerred the firgear Disphoiar and so they were-acting as size-selective prodarors in the way reported for most paniculate feeding planhivorous Pish (Laszaro 1487). Cinden perch at 38 mm have a nouth gape of just over 5 mas and so they must hate been unly fust whte lo engult the largest Bhapanise which had a lengtl) of up to 5.5 mm ($o \mathrm{ot}$ including Lail spine) sund at head width of aboul 3.5 nim (lige th). "Thus. as golden pench larvac and fiy develop they pass through shages when they are gape-timited pretators. size-itependent predators and predators with prefenence for largest siad proy.

Experiments on prey prderense ammen difierent pres
 of the altermative prey species. The prey presented to golden perch litvite had only at small size rangen wilh the calanotd copepod Barthella antermodiato betyeen the viadozerins (fige. 1). and su the strong prefersnce for chaducerans probably relates to difterenees in prey belaviour. Cladicerans nay be smore canily delected hecesua of their comerast, henty shape or pattern of movenent (Lase! 1980) and or the ceilanold coperomb may have been mure aucceavul al eluding capture (Conier \&゙ Blades 1975: Drenaer d McComas 1980). The 10 rum larvas and 20 inm ligy had simidar prefenences fior all three spocies suggesting that capure efleciency liad increased and that prey dekectorn wats sumbar for smatar-siand prey from ditierent specses (Cunfer \& Blades 1975: Vinyard \&e OBrien 1976). in the irial with the 30 snm dry, the largent proy species, Duphnid. was preferned, suggesting that prey derections was the major derciminan of prey prederews. Preterences amone prey species secens io vary with lish species whough generally cladocerans ur

Orsi 1941: Mirgish \& Margral 1991) seem in be: pecteried by smill fish one fry

The resulls of she teeding behoniour and reag proferences experimeats prosdue mformation ilat is relevath winarusemett wh gudlen perch latyal neisung pands. Firatifecding larvac sppear oh hite at lom preterefue lur ciatanuid cunepoda compared 160 cladoserans. presumably hocausei ill the higher escape ability of the calnoids. It should be nuted that the smalkes cialanonis tusit in the joesent experiments were shage 3 copepodiaes and it is libely that corpoped nauplii and carly stage cugcpodtex can be laken by the larkat. Rowland (1986) stitell that gelden perch lirvae fied initially on copepod maplii. Leupepuedies tand ssisill copeprodx and chaducerans in pards at IERS. Incriciency its the capture of Janger cahinoids and the limitations imposal ty the shatl mouth gexpenstucts the range of pray items thas can he taken try the larvare. and so pond thandenemens necdy 11 ensure shoundsult shall cladocerans and eatly stage ealanorid copepods Whent tavye are stothed. The possible impontance of
 be considered. When golden pereh ane 10 ti ? () mun long they show abous equal preference for Mominu Desphnith and Perckichle suggesting that shey are
 from th complex and unpredictable floodplain-river environment. At 30 mm , fry show a preterentee for the largest Daphnia, whereas sone other fish fry apparunlly select prey thal are consaderatily hedew the: size they ure capable of ingesting (Hansen \& Whal 5981: Parensh de Matrgrai 1991). This rapild derelopmén Imon eape limited predstion to selection of she larocsi fues is consistent with the optimal foraging model proposed by Werner \&e Hall (1474), Furthermere Mills sf whe (1989) have shown that growth in age zero Penw furviscrus is promoted ly the avaldability of large site prey. Thesefore. the inanagement of gotdent gerell rearing ponds should alson aim if prowiding lange species of zooplankiers loor by 24 mon and bater 70 maximize growth.

Acknowicdgments

We thank the N.S.W. Fisheries lor permikiton fo work at JFRS. Manmadera, the statiof IFRS espectatly S'tuatt Rowland, Steven Thurman amd Juha Dinu fir their help and advics. IDP Australis for at Gratuste Fellowahip to tone at us (P.T.A.) and suppers linun
 Csmpus Bintulu and dic Deparment ot Lonlogy- 'd'hs University ol Adelade fer use in their facilities

References

 studics at prey proteronces of tish lartace. Hodrobirvadia 190. 247251
\& GEDM55. M. C. (1986) An cnclisure liv pxpenmental lied stuiles with lish and asuplankion commumbics. Phid. 135, 215-221.
(1987) Heding and growth of gulden perch larvae and
 4ust 111, 59-65.
 umbigatal fry dr Duphmes chrinak is mursery punds. Australia Verh. Jut. Ver. Limmal. 23. 1773. 1776.
 afod dth telationship is toraging models. Feotogy 64. 1297-1304.
 zioplanklun and plankuvorous lish. Limmof. Occanoger 20 . 571-579.
Cills: Austratian larval tish culsure pords: relationships anwong water quality, phytoplankıon zooplanktos and the growth of laryal fiwh. Auss. do Mar. Freshmar. Res.
 zomplanklec csesupe ability and lish sion selectivity in the selective feeding and ampact of jlanktivorous fish. pp. 587-593. In W. C. Kerfood (Ed,) "Evalution and Ecology of Zooplunkton Communities." (The University Prcsw of New Lingland. Hanover (N.H.). London).
Focark, Id M. (1977) The nature of prey belecton by plandithorous tishi bunkey 58. $46-59$.
GARUNUR. M, B (1981) Mechansims of size selectivity by
 571-578.
 predetion by gila topmintinu foccilfopsis prcidemterlis (Baird \& Girand), Hjambindosia 72, 179-191.
GRiffirhs D. (1975) Pray availability and the rood nf predaturts Ectoxt 50,1209 : 1214.
Hansfar M. J. WaHt. D. H. (1981) Selection af small Duphaid puter by betlow purch iry in Oncida Lithe. Nick Kirk. Trumb. Amer. Forth. Srec 110. 6471.

HflRFATRT, S. H. \& MLHLA, M. S. (1981) Impacts of
 concertectionts. Hydrubiolugier 83, 125. 151.
Jaccose. 1, iy78) Inthence ot prey sire, light intensity, and alternatace prey on the seluccivity of plankton feding tish. Verte. lw. Ver. Limmol. 20, 24613466.
LAAARRO. X (1987) A neview of plunhtivorous fishes: their evolution. Feedine behaviours. telechivities. and impacts. Hydribishonia 146, 97-167.
MENG: 1., \& Orst. J. J, (1991) Selective predation by Jarval striped bass on narive and introduced copepons. Trims Amer. Fish. Sirc. 120. 187-142.
Mllus. E. L. POL. M. V. SuERMAN. R. L. \& Culverr, 'l.' B. (1989) Interrelatuonshiph between prey body size and grouth at uge 0 yellow perith bra. 118, 1-10.
EARR1S1I, D. L. \& MnRGRAF. F. 1. (1991) Prey 3elchlivity by tige 0 , white perch (Mormm amerrcthai) and yellow jerch
 Aqwar. Sci. 48, 607-610.
 spawning of the Australian freshwater fish golden perch. Mécalaria ambigua (Ribhardson) (Percicthyidaed. Aquratralure 15, 22J-338.
(le8671 The hormone-induced spawning and larval rearing of Ausiralian freshwater lish, with particular emphasis on the golden perch, Matcourrias ambigha. Procredthes of the Firat Freshmater Aphactulture Horkshop. Nurronderde, N.SW., 21-25. Fchruary 1983. (Department of Agrictiture, Sydtcy), pp. 2332.
Scotli. M. A. \& MLR[yoch. W. W. (1983) Selective predation by the hackswimmer Whombria. Limmal Ocerstoge 2x , 352-366.
ViNYARIT, D. L. \& OBRIEN, W. J. (1976) Eflects of light and turbidity on the reactive distance of Bluegill lapoinis mactochirms). J. Fish. Res. Bit Can. 33. 28452849.
 the size selection of prey by the bluegil sunfish (Lepomis mak'rechiries). Fcoblagy 55, 1042-1052.
QnRCT. T. M. 1980 -Fredation and Freshwater Conmunisics, Yale University Press, New Haven \& Londan). 187 pp .

A NEW SPECIES OF ACANTHOCEPHALA FROM THE GREENBACK FLOUNDER, RHOMBOSOLEA TAPIRINA GÜNTHER, 1862

By S. J. EDMONDS* \& L. R. SMALES**

Abstract

Summary Aspersentis minor sp. nov. (Acanthocephala: Heteracanthocephalidae) is described from the small intestine of Rhombosolea tapirina Günther, 1862 from Tasmania. Australia. It is distinguished from other species in the genus by the small size of the trunk. proboscis and proboscis hooks. KEY WORDS: Acanthocephala. Aspersentis minor sp. nov.. Australia. Rhombosolea, taxonomy.

A NEW SPECIES OF ACANTHOCEPHALA FROM TIE GREENBACK FLOUNDLR. RHOMBOSOLEA TAPIRINA GÜNTHEK, 1862

by S, J. Edmonds* \& L. R, Smales**

Abstract

Summary by: the mall wize of the Irunk. proboscis und prohsecin hooks.

Introduction

About 30 , matl acumthocephalans. Were collected teon the small intestine of the greenback lounder.
 Di DiLa Obendirf on to June 1986. The collection comained only one drate. These are considened to be as bew apecies and are deberibed here

Materials and Methods

Specimens were stajed ju haematosylits by stonvertional methods and mounted in halsam Illustrations and measurements were minde with the sul on' in ochlar nucrometer, drawing tube and measuring Whed. Mcasurements are given in millimetres unlexs wherwise stated. Where possithle the ringe gi measuments is followed by the neari in parenthosis. Type material has been depusited in the South Austridian Museum, Adelade (SMMI).

Systematics

Phylum: Actnthocephalia Koclruther, 1771
Clitss: Palacacanthocephala Meyer, 1931
Fimily: Hewracantbucephulidae Perrochenkn. 1950 (schus. Aspersentis van Cleave. 1929

Aspersentis minor sp. now. FIGS 1-8

Mols done specimen in mast condtionis: 'lrumk spindte-straped. Jength 1.6, midximum width in mid trunk regimn (128; anterior tegion bearing ntmicrous soxse of softall spines, most noticeuble and largest venrally. Fied ot apines cxiends ventrally for athour as quanter of bialy length. hud less exiensive darsally.

[^5]Remeinder of trunk including genital regiom. witheru spincs. Proboscis (alomest connletely entended), het at angle to trunk, bylindrical to clavale with ammed section 0.23 long and 0.12 wide, bearing 14 rows of $7-8$ hooks per row. Dorsal and ventral hooks differ matkedly in bize and shape. the later beimg moch larger. Short unarmod, truncated neek aboult bis liyng. Two ovoid testẹs randemly placed. Cement glands. pyritiong and pressed closely logether but number not chear. Frobuscis reseptacle domble wullec. 0.32 loag With ganglion pataed news base. Lenmsei about as tong as teceptacle: Mide aperture subterminal.

Femole (bascd on 10 mounted upeciment): Trunk spindle-shaped, length 2,4-4.1 $(3,2)$. maxumum width $0.37-0.75(0.54)$ in mid-irunk region: lield of spine extends for athout a quater ol hody length ventrally. less extensive domally. as lew liny cuticular spines present at posteribr end of whic specimens. Pnobosces. placed at slight amgle to trunk, cylindrical to clavate $0.24-10.32(0.26)$ long $\times 0.10-0.17$ (0.14) wide and armed with 14-15 rows of $7-3$ htok per ruw. Ventrat athd dorsally placed books differ moss noticesthly in size ind shape (Figs 1.2). Longest ventral hook (third in now) matature 0) (062-0.080 (0060), lingest daral howks (0)030-0.035 (0.032). Unarmed truncated neck 0.15-0.28 hong Receplacle. maximum dimensions 0.52 fong x 0.19 wide double walled d_{1}, with ganglion Iy ying neat its base Genitiol complex long. extending in most specimens about half length of irunk. Embryonated
 wish prolongations of middte shell. Shatl termimal papilla fintaginule presem in most speciment female apertute almost termitial

Host greanback flewnder, Riombessonets sdpirime Ci̛nther, 1862 .
Location: small intestine
Locality: Tosmamia, Australia
Type specimens: Holotyer male: SAM V.4150. Puratype female: SAM Valot

 dorsal row, 3. Proboscis. 4. Whole mount. 5. Cuticular spines, dorsal surtace 6. Cuticular spines, ventral surface 7. Vaginat region extended., 8. Egg. Scale bars: Figs 1. 2, 5 \& 6, 50 $\mu \mathrm{m}$, Fig. 3. 0.2mm, Fig. 4, 0.5mm, Fig. 7, 80 mm Abbrevations: b w, body wall: \& p. gonopore; u. uterus: v. vagina.

19iscussion

The specimens of dspersentis minhy apo nov. mast
 Antiretic fish wnd suthecquently tedernbed by
 sut-Andarctic islancs. A furserimus wata also reported by Joyeux \& Baer (1954) . Edmonds (1455 , 1957). Gotvan (1960), Zathewiecki \& Rokosz ($198(6)$ and Zatzowiecki (19\%), Similaritiss include the number
 13-10 (usually: 14) mws of 7ill trooks and for fo. minur It 15 nows of 7.9, and in the size wi the embryophores. Which firt the former is $0060-1008850010-0.025$ and for the later 0,068-0.077 $\times 0.012-0,0) 4$. The specimans differ muse notably in the side of the trunk, whech is 4.4-8.5 for fermate d. ansminus as compared with $24+4$ for female A. minor the prolsoxes iength. which for the lisemer is $0.55-0.73$ and the lather (1,24-0,32, und the lenyth ot the largent wentral hoosk. (1.12-0. Is as compared with 0.06 -0.0)

Golvan (196) considered Evhmofhothus
 if A. stharmimas. ad detcmination that Wids followed by Aollu (1985) in his classification of the Acanthocephala, Amin, hovever, appears to have owetwoked LUritowerekig (1981) redescription ol A anstrimen bused on fore than 1350 specimens conlected Irmu South Georgid and the South Sherlands.

 was "imponsible (o identify with any mone recently

 of the re-esanninathon nt add material and the conlection (1) new material. enofirmed the yathity of A.
 L.matow: 1892 nee d mequphnthus aedsu Golvan. 1960. E. mesarmon has ischa body or cuticular spines and no asymmery in deserihed fior it prohoscis heoks.
4. annomas ased A. minor slifier trom in in hath these characters. A. minher also differs fotm Heverucm thosephatrex pothortromphi (Bisylis, 1944) and H . Burvani Dollfus, Me4, huth of whicts lack body spines.

In his redescription of A. cuastrimes, Zthatowich (1981) commented on the distriburion of spines owe the trouk. Because he found specimens in which ting apoles. ofiten cmbedded in the cuticle. were presen cther aver the middle andior posterior regions of the trum as well as larger mort obvous spines on the anterior trum, he ackimbingly prophed an emendation of the ecneric diaghesis. The armature an the distal fite of the bekly is patticulatly dificoll tex decermine. enspectitly if the materiad is comtracted or neethods of prepatulion have rendered spmex hand to deted. The specimens of A. minur described here were dound on have spines ove the atretrer truak and sparkedy scallered, liny spimes on the posterios of simbe specimen.
"datawiecki (1981) found aphishterable differences in the sige of spectmens from A aurbrima populationth collested from South Geogeia and the Sisuth shetlands. He found thas specinern frim sisuth Geageth where water tenpleraturgs tre higher, were on athage 30\% larger und theip probuscises, receptaclesand lemmisil $10-20 \%$ Harger (Table 13. He sugeested that these differences in body dimentons hught depend on diflerent enviromental conditions, ifor example water temperaturess where howi pepalations arewr Simidar reasoning cannot be used wexplan the difference in size between the Tusmanian ant Simh Gentgian specimens since the annual wither lenperature around Tasmatia varicy from $10-20^{\circ} \mathrm{C}$ and around Soult Georgia frour 5-10 C (Plate 3 The Times Atlas of the Whetel and the Tasmanian specmithe are nes farger but staller. They are also athaller than A, masting
 from Heard ishat (Edanonds 1955). Alhwugh cansiberable variation in measuremems hem been hand

	South Sherlandm	Snuth Geatmed	Texturima
Trumb leney	4.43.6.42(5.79)	6. 54.8 8.54(7.25)	$2.14 .1(.3 .1)$
1runk. widh	1.16-1.74, 14 ${ }^{1}$	1.(14.2.(14, 1.77)	(1.31-11.155(0).54)
Seaborcis latuell	0 0, 1 - 0.6610 .54)	(1, $07.74,7310,769$	(0.24-0.32 (0).2m
Piotumeta widit	0. 24.0 .3210 .309	(1.24-1). 751619	(1).11-01).17(0).1.4)
			15:(03 (1.0.3560.122])
	14,114-4.19760.1261	0.132-(0. 14,40.140)	
meck longt!	19.17-(9) 13.10 .120$)$	(1.22-(1.31, 11.275	0 12-01.25
¢¢	H160) 0.088	(1.071-13.087	1). $605-0.617 / 7$
	20.019-1) L2S	$\times 1046019025$	$\times 0.012-17.096$
howk dispositara			11 Tows sit 7.4 horka/niw

between populations all'A. atarrinus, measurements of A. minor clearly fall outside their range Moreover the smaller size of A. minor goes against the trend, established for A, wustrimes, that specimens from populations from hoste of wamer waters tend to be larger than specimens from cooler waters. Therefore A. minor is considered sufficiently dilferent to be a new species.

A re-cxamination of A. uustrimus from Heard Island showk that in addition to the spincs on the anterior body surtice reported by Edmonds (1955). small spines are
also present on some oher regions of the trunk, a feature previously overlooked.

Analysis of the ratios or male to lemale A - austrinus sp. (Zdzilowiecki 1981; Zdzitowiecki de Rokosz. 1986) has shown that there is both a iwofold predominance of lemales over males and a difference of preferred locution in the host, males preferting the posterior half of the small intestine and females the large intestine. A similar difference may explain why the ratio of miles to females of A. minor collected from the greenback llounder was 1:30.

References

Asun, O. (1985) Classification, in D.W.T. Crompton \& B. B. Nocut (Eda)"Biology of the Acanthocephala" (Cambridec Universtey Press. Cambridgel.
EDMOADs. S. J. (1955) Acanthocephala collected by the Ausiralian National Anarctic Research Expedition on Heard lhand and Macquaric lsand during 1948-50. Trans: R. Soc: S. Aut. 78. 141-144.
(1957) Acambocephata. B.A.N.Z.A.R.E. 1929-1931, Reports - Ser B. \{Zool. \& Bot.) (5), 91-98
Gorvix. Y. J. (1969) Systematique des Acanthocéphales (Achathocephaka Rudolphi. 1801, Premiére partie Lordre dea Palacicanthocephata Meyer. 1931. premier dusicule, la superivémille des Echinorhynchoidea (Cohbold, 1876) Golvan et Houn, 1963. Mcim Muc uatn. Mise. nat., Paris, Serr. A. 57. 1-373.
Joyrus. C. F. \& BAFr, J. G. (1954) Cestodes et

Acanthocéphales réoleés par M. Patrice Paulina alix Iles Kerguelen et. Artisterdam 1951-1952. Mom, Inse. Stiend. Madagascate Sćt A. 9, 23-40
Thf Times Atlas Of The Worla, (1981) Comprchensime Edtion (Times London),
LDit(Mifacki. K. (1981) Redeseription of Akpersentis
 Pol, 28(7). 7383.
(149) Re-examination of five Antarctic and subAntarctic digenean and acanthocephalan species from Profesor Szidats collection- Whid. 35(1), 31-36.
\& Rosins\% B. (1986) Prevalence of acanthocephatans in fishes of South Shelland. (Antarctic) II. Aspersentic anstrmus Vinh Cleave, 1929 and remarks on the validity of Hereracamhocephatus hureaui Dollfus. 1965 Shid $30(17), 161-171$.

TRANSACTIONS OF THE

ROYAL SOCIETY OF SOUTH AUSTRALIA
 INCORPORATED

VOL. 116. PART 2

NEW RECORDS OF SUBFAMILIES, TRIBES AND GENERA OF BRACONIDAE (INSECTA: HYMENOPTERA) FROM AUSTRALIA, WITH DESCRIPTION OF SEVEN NEW SPECIES

BYA. D. AUSTIN* \& R. A. Wharton***

Abstract

Summary Three subfamilies of Braconidae are recorded from Australia for the first time with the description of the following new species from Queensland: Ecnomios stenosoma sp. noy. (Ecnomiinae), Histeromerus clavatus sp. nov. (Histeromerinae), and Meteoridea anic sp. nov. (Meteorideinae). The tribe Muesebeckiini is also specifically recorded from Australia for the first time with the description of Paroligoneurus pallidus sp. nov. (Ichneutinae) from the Northern Territory, Queensland and New South Wales, as is the genus Chrysopophthorus Goidanich, with the description of C. hageni sp. nov. (Euphorinae) from South Australia. A new species of the Australian endemic subfamily Mesostoinae from South Australia and Victoria, Mesostoa kerri sp. nov., is described, as is a new species of the little-known genus Calohelcon Turner (Helconinae) from central Australia, C. dangerfieldi sp. nov. The diagnoses, biogeography and biology of these taxa are discussed and notes are provided on the euphorine genus Stenothremma Shaw, previously thought to be rare within the Australian fauna. Keys to species are provided for the genera Histeromerus Wesmael, Mesostoa van Achterberg and Culohelcon Turner. KEY WORDS Hymenoptera, Braconidae. Ecnomiinae, Histeromerinae, Meteorideinae, Euphorinae, Helconinae, Mesostoinae, Ichneutinae, Muesebeckiini, new species.

NEW RECORDH OF SUBHAMILIES, TRIBES AND GENERA OF BRACONIDAE IINSECTA: HYMENOPTERA) FROM ALSTRALIA, WTTH DESCRIPTIOY OF SEVEN NEW SPECIES

hy A, D AHISTIN* \& R A. WIIARTON

Abstract

Summary May. 1492.

Indroduction

The Braconidac is one of the largest families of parasion Hymenopica. Its members atrich esto- ind endoparasiloids off a wide range of insect hoser, in panticular larval stagen off Lepidoptera. Colerptera and Diptera, Although the fanily has been extensively studed nowherc. the fauna of Australia remains porly known, tespite the existence of a relatively large number of endemic subfamilies and genera. Indeed; the majority of subtamilies in Austrulia have sot been revised, and most genera and species are known only fomm their orginal carly descrations (the niajosity described prior to the 1920 's). Recent taxomanic work urderaken by us on the Microgestrinac and Alysimae (Austim \& Dangerfich 19yz: Whatton it prepa) indicutes that for these two subfarmilies less than 10 発 of Australian species are described, and this is likely in be the general situation across the whole fanmily. Until the Braconidae are better surveyed at the peneric level. quesinons regarding the evoltatom and biogevgraply of the Australian fauna carmot begin to be addressed. Here we make as contribution in this tegard by reporting on a number of significant taxa thit were discovered when sorting matcrial in major Australian

[^6]collections, in particular the Austradian, Nationtal Insect Collection, Canthera and the Depariment of Peinary Indunrwes Collecion, Brishanc. Seven species are newly described, three representing the firse record from Austatia of the Eubfamihes Enmonimac, Histermatiniat and Meteorideinde, and one representing the tirst description of an Australian spucies from the ichnemine tribe. Muevehetkimi. The relationships. diagnoses and biogeography of itl tasa are discussed and noten are provided on their biology where sivailable. Keys to species arse provided for the geners Histermmerns Wesnmel. Meseastou van Acherberg and Calohelern Turner

Abbreviations for collechions are: A IElC, Americath Entomological Instiute. Guinesiville: ANIC Australian National Insect Collection, Canberta: BMNH, The Natural History Muscum, Lemdon: $\mathrm{CNCl}_{\text {, Canadian }}$ National Collection. Ottawa: HNHM. Hungapian Natural History Museum. Budapest: QDPI, Queensland Department of IPrimary Industrics. Brishane: RMNH, Rigksmuseum van Natuullijke Historie Lejden, TAMU' 'lexan A \& M U'niversily. College Station; USNM, United States National Musevm, Washington, DC; WARI, Wate Agricultural Research Institute, Adelaide Terminology fors nworpholngy and sculpturing pattern follow Gauld \& Bolton (19N8) and Wharton (1977. 1986) respectively. While that for venation follows van Achterberg (1979)

Triatment of spacies

Subtamily Eenomiinas yan Achertrerg

Commanhs- The systeminic positiom of the boily inteludad genus, Limonime Mason, Ims been the subjeat of some dethute: Mamso (1074) mitied its superficial fosenblance (1) Microgastrinae, hur excluded it wh the basis ur the acteromed distal fadide sector of the fore wing and the arrangement of stationinat spisacles. Mawn (1979) emphasized seven oher churaclers whath suggested a relationship with ofryithen Lhal iday. and thus meluded Ecumphas in the Ongilinae. Vim Aeluerbere (1985. (488) pul Ecromior it its utm subtamily and tagesered dhat is is best plated halfory between Cheluninte and Nemeurnace. Van Achterbeng (1985) excloded Fincmias from the Orgilinace because "the Orgilinate lack vent 1 -SR of fise Ming, have mirgipal cell long and talher narrow. presence of vein CUlD of fote wing sumbex face. Jarge hind coxac. and small plital hate of how wing: The face is actually as sonnex in kimbnies is if is in many Ogilius. The remaining
 beoween kirmmors and Cheloninae it they are for areuing apzimst the relationship between Echentios and Oryhask. Futhesmote, Emomiar lacks threes of the bur sunaponorplues proposed by van Achterteres (984) for the Cheloninac-Micrugas rinae lineage. The placenuent of tarminns is thus soll unsetiled, as noted IN Quicke \& yan Achterberg (1990): We prefes witreat a probisinnally ans intermedlate hatween Orgilinae and the chelonine-macrogastrine limeage based lagely on wing venation patterns. Howemer. the presence of at Iransverse posstectellat phate in the species alescrihed below opens up the possibility for selithonshys wish the Blacinat and fiaphornat, whene similarly reduced venation accun:

Mason (1979) and van Abluerberg (19x5) provide detaded lists of chafacters defining and dilteremistme Finumion. The naterial wailable so us, representing at least four species, langely conkems, with the original deserphan and redescription, but there atre impurtant exceptians. The follewny remarks are theretore promided to supplement previously nublished information. Maxillaty pulps are ipterspecifically variable cither 4 - ir 5 -segmented. Antemal segmens are also valable in numtore buth inlos- and interspecuically: mosi flagellomeres have placoles in iwo ranke and the apical flagellomere is spinose at the lif. Although van Arhterterg (198.5) states that the apical antennal stegment lachs an apical spinc. Mason (1979) correctly notes that it is acuty pombal (tig. 5), and lhis is true fir all species examined

Van Achterbere (1085) described the phoustum dursally as having a latge, decp, transverse promope. However. Hix is not the saine stucture us the isolated
pit found. for example in some specier of opiines.
 scries of pits ar depressions firming it crenulane sulcus which separtules a weakly based posterior median aren from weakly mised antern-tateral aress (Fie , 1). There
 pattern shoutd prove useful in ustinang species or spectes-gruups. Both Mason (1979) and van Achterbery (1485) deveribed acenspicuous pmjediom in the middle of the anteri-lateral margin the the pruatun (in lateral view). This feature: though very well developed in E раринеяsix Manon, is weah ur virtually absent in some wher specics. and is this of questionathle value bor exenerie ar sublamily charactersabion. It tanomies whe "proycetishi" saccually the ventral porion of in inden ration in the thin, anterion marain of the pronotum. The occijuital carina fits into this indentauts when the head is remacted. The arncture is tus different in trath appearance and function from the angular proiccilem ut ilte margin scen in some species of Ougiths.
The carinaw antcro-lateral margin of the mesumotal dise has some potential for charaterssing higher taxat it acturatly described. Mason (1979) cornectly notes. its presence in the type species, but vism Acherberse (1985) claims that it is atseent in trome of the tegula. It is well-developed and cromplete from the hase of the notauli in well pas the legulis in all Australian spectes we cexamed (tig. 2. arrowed). The franssculal articulation (fiec 1. arrowal) is ater distinet atong the anterior nargin of the scuto-scutellar sulcus it anll species, hut indiatinet latctally. In E papuensis. whe scubellum dacks a miedian postscuellar plate llanswex.e sculellat depression acerse Yatio Achterbecge). In the species uescribed helow, however, at small one in present similat in slupe and position to that in Sigatphus bicolor Cressing und some Centistini. The bicurinate median portion of the metanotum is also similar to that of signlphine wind many cemindines, bus this pathern is tepeated in several other braconid sublamilies. A hrosal propodeal areota is presem posterionly in all species, hut vatwindy whaped, and often baygely obscused by rugose setupture. Masmen (1979) noted ridges on the dorsat surlate of Ue hind coxa in his description or E. papuensir. All apecies have all lust a single ridge in this position. sugecsting a symapomorphy for the genus. The venation of the shurs, broad fore and hind wings (Figes 3, 4) is allor diagnosice for Echnmios, has been dudequadkly characterised by previnus authurn and is enscmially uniform in all species, I-SR warien in lenglh amung species, and its presence may mor be suffictenty reliable for subfamilial diagnngis.

The new species described helone sis as prodictable range extension for Echowios imm Papua New Guinen ints mothera Qucerisland. We have had an oppontuaity (6) exhmine II single lemate from sumatia (CNC'I)

 of amenna. Scales: Fige 1-4 $0.5 \mathrm{~mm} ; \mathrm{Fig}_{\mathrm{g}} \mathrm{s}=125 \mathrm{~km}$.
representing an undescribed species and seven specimens from Queensland and Northern Terrifory (ANiC). which differ primarily in eolour from E : paphensis and the species described below. Based on this distribution pattern, Exmomios should eventually be found in India as well as other Indi-Australian lecalities.

Echamion sterusuma sp. nov.
FIGS 1-5

Matertal camined. Holocype: Q. ANIC. Queengland, "IS 165144.59 E 14 km W by N of lope Vale Mission 0

7-10 May 198i I. D. Naumann ex "hanol", Paralypen: Quecnstiand, 3 O.g. Rex Ranse Lookout: via Julailim.

 I. C. Cardale, ex thanol collected at light (ANIC. TAMU): 1 O. $15^{\circ} \mathrm{Al}^{\prime} \mathrm{S}, 145^{\circ} 14^{\prime} \mathrm{E}$, Shiptons Flat, 16 -18.5, 1981, 1. D. Namam, ex cthanol (WARI); 1 en $17^{\circ} 41^{\circ} \mathrm{S}, 145^{\circ} 26^{\circ} \mathrm{E}$ Aitsire:am Fials Nat. Pk, 24-25v. 1480 , D. Nammann \& d. C. Cardate. ex alcohol collection (rAMU).

Fenale

Hedel, 1.051 .15 broader that mesonotum (betweest segulats; fuce 1.45-1.60 \times wider than high; matar sulcus restricted to a waik impression extending less than hall distance from eye to mandible: malar apace
abour 2 - basal Width of mandible: imandibular tecth minute, dursal tooth, nearly $2 \times$ Jonger than ventral tooth clypeus with shallow widely spaced punctures: twesd whervise latgely shmothated polished. with Jus

 28- to 30-segrmented.

Mfosossmag 1.85205 in $^{\circ}$ bonger than hugh: wedth between tegula $0.95-1.15 \times$ height: pronotum in dorbal viesu with thim medially emarginate anterom humer and imall posterior median plate and transwerse eremulate sulcus cursing antermoty in tront of nedhan plate; indentafion and sscociated mmalar proxtusion abseg ancero-ventrab nargion ol plontrum weak. barely
 disc aldarply carinate. the sculpture cucnding from have of mepati begond icgula io posierior anatgin bi basal Winge pad: dise uniformly and densely short-setose and fincly puratiste; netuli wintow, very shallerw. ©renulatesrugulose, converging postoriarly io form il lame ctescendenaped, rugulose patuh ath 10 E. popusensis:

 flate; sutcrucutellai sulces, parascurilat frelds.
 pupmentis, but with slighly weatier stulpture, ithterobs portion of propotemon rogulose. median hongitmbinill
 unabilly weati, sometimes slmost indiatinguishable afturges backemund scutplune, smaller posterior doclivons portisn arove finely seulpured, mrarked drecriofly by horatily bowed Iransverse carinal himed consa shater than petwle. with at arong diagushal carina shomilly extending neirly from touse thatpes and with 1.2 Whorler weaker ciarinate adjacevill lo this.

 in one paratype the enppoximately tatas in tength 1 os

 2-1A when represcmed by a shon mhular spur as
 getratialias

 and atal panerns nthervise as in E. propueresps.

Colem: Light yellow-brown: ocellar triangle most of
 dipker than rewt of hendy: scusellar region afker sulfused

 Whach is reddiah

Mell

 powithly at lifle broader but imulficien material lio. adegude somparison,

Bioleggy. Unkiown.

Diagnostix: 'This spectes is readily identifice on the basis af its pale coloration. Both f: petprembiy and ato undsercited species trum Quecustand are larecty duth.
 herdy. wath the head somewhat broader that the inesmontam. The mesimotum is broditer them the head ist E. puphorsis.

Sublimily Jchnculnase Ioerndet
 Tribe Mueseheckini Masm

Comments. Stason (1664) plated lhas rine lin the lehncuinae:- lle included six generm, shree of which were transeried tiom the Mioroghstrinac. 'Ihas placement was twerlooked by Shenefelt (1973) bur accepard by othe sworkess (e.g. Marsh 1974: vath Acherherg 1484) ewicn Totsias \& Belohuhylak! (1981) wha later transerred the Mussebeckint os the Mitacomace son the basis of hest relationshins and similaricy in reductions of venation. palp segments. and mate genstaits (Tabiels 1986; Belokobylakij 1989)

The relathonship tuetwen fetmerfes Necs von Fisenteck and the Miessehech imi is bissed lergely on the fature of the sharpiy bent trasal vern (1-M) of the lure where at lasure ned shared by blter ichroculine bach as lehmermanda Ashntend and Pronerops Wesmacl. In Miref Hatiday. I SK gencrally furma a sharp saghe with the parastignu bur the resemblane between this
 not support the inctusion of Meuscbecking in
 shared by Ifherdies and Muesebeckiones, hue forne of these is uniajue of this clade The Muesehechiini lucte the most significant symaponorphy of the intorgastrut greup of sublamilics fes whelo diras betongst; the placement an the spiracle in the membranous lexeral
 theressare not lixed in mumher is they ars in Miero-
 placement. We inchude miracines withimstre rictugatstrine group, and place Adeliinac and Ithseutinac the butter including Muesebeckimi) with the Neoneut fisice
 Meusebeckiincs are moss readily icsogmasd by the

 Oue spocies is dewribed here. but biters will
undoubtedly be found with more imensive colledibl: As interpreted here, Paroligronrurac is is large genus, with numerous undenc rhed species in the New World. Do Saeeer (1944), working on the tropical West Nirsans buna, hiss described the lingest numher of species. hut propodeal differences suggest that at least wome th him species butong elsewthere. Nixom il9(5) previously mated the securnence ol /hmbtigonewms in Quecnsland. but did bot describe any specess. Rishoc 1651) described is species rearad irom Agromyadae in Soncgatl. buf this is idn upine. Ksowin buas ul sue Pumbligonsuras ate leat-minigg Lepridapherd. Musceback (1931) noted the close resemblance between Oigedenens Scepligeli and Puroligoncurax mh his origimaldescription of the latter Ho differentated the Iwa solely on the hasis of the relatively bare cyes and reduced number of theyellomeres in Pardigimmurws,
 scatterd eye hars. Subaequently. De Saeger (19\#4) described sume species onf Parndiusmentus with seatered eye hatro sna Beloksoblak bif (1986) dencrihed in spocics of Ohgoferman with hairy ${ }^{2}$ yes and nelatively fiw (21-23) tlagellomeres. Manon (by69) did nut disens. Eiller genus when he prisnsterred. them th Muesebeckiini. Jut presented a key ta genen in which the wparated Clignmemrus strul Pamigemererus on the basis ol otrother ber not the cyos wese thary. Belokohglskil (1986) noked Ihat prevurus characterisations were inadequate lor diminguinting these stay generd. He therefore shded at slypeas characicr. and menditied the Iraditional eye and antennal diagnovis. The mokerntely hairy eyes of the species descreibed below further bophasize the whatknest of this sharatier state for scpurating Oliemernas and Pamblgoneuras. and we sugevest that st should be abanduned entively. Alohough the tyon species of Oligenerimis is very distinctive, with
 carinate propodeun and petiole. and broad second tereum. wher species which bave bess-atsigued to fligonemers posses donly ane or two of deses braits, and utherwise resemble the lype species of Purollermours. A revision of the large Neotropical lunna is nerded hetore the genera binn he adeyuntrely detined. Until this can be accomplished. We believe that the both characker for separating the wor in the propedeal sculpture, admutredly a beak feature. 'Ihe clypeus is Lvenly mounded in Oliguptrmrus ermentor Szepligeti and P jormsemi Muesehecto ind thut cummo be uned lire separating the twa gencial. Menbers infore distinctive Hulatetie spectes-group with medially protruding clypens mone closely resentbe. Atrohbonterws than Dligencurses, basid the propudeal soulpture and the shate of lereite 2 The placenent of two 5 uch spectes its Ofigencuras. (Bulokehylskif 1986) thus needs to be revivevent

 filenna: 7. Jore want: 8 . hand whe: 9. anterier ylew al

Paroligonearus pallidus spe miq. FIGS 6-11

 N. T. G-10 Nes 1972 J. C, Curdale" Purampes: o y Samm
 six. 1240'S $132^{\circ} 54^{\prime} \mathrm{L}$. Mapala Ck . 9 km SSL' as

 Webl 30 iv. $-3.1981 . \mathrm{J} . \mathrm{D}$. Natumam. bx ethanal. collectec

 13 im ENE Mi Twher 14 wii, 1485. J. C. Eandale, al MV light

Female

Head. Frons bare medially, head otherwine demely sctase: in Jorsal view $2.05-2,20$ of bether than

literal view eye 2.85-4.05 * Ionger than teruple herght of licad between apex of clypeus and base of anterna 10-1, \% marrowest widfollace; cyes hairy (Fig. ©): dinomostypeal suture indistinct. clypeus inus not clearly segraried fiom diace clypus weakly camex in pronile. ventual margin stharn, bevenly convex, bectring al bace of long crect sctace malar space short, in fromal vifw distinctly store thant bevath width of manditle: matar suture sharp. decp: uncrinis 18-segmented, slighlly Jonger that byedy: Magellume broadest at madle. arciulatily narrowiorg apticaligy and hasally: First
 lligellonvere atrou $2.5 \times$ longer ithan nid-xixth: labial piap d-negmented. the third sequent minut-
 high, about as wide ist Jigh: prometum luterally ufter collupsed in dricd material. thes giving mewnesna the appenture of being depresed. susonotal dise weakly
 amd unfurnuly evterd with shorl selpe and assoc iated Weak puntrfics. notull absent cxternally. hut visible internally at thim. stiok siterak heneath pale motewnenl: rukellun denscly sewse fateraily, nearly hare medidily: propordeum polished, umaculptured, eovered with secte. these less densely spaced than on mes unseulprurd: hind femue broid. $20-30 \times 1$ mater thin mised wadifh.

Fore winh: Stigma very large. about $\because \times$ longer than
 Slahty distid in midguint fully silerotised. pigncoted pertion of weakly curved if about halk lejget ol biedacispuits but distiesty bomeer than pigmented. sternimil sub oll $-5 K+M$ anconor portion ul baisil vein sharply bent distally:

Mcrustams. Peliok ncarly lian with mery lesw weak Aosesal sarime hawh ul spiracles, atherwise without :xuprue: petole bruadest st spiractes. surongly notrmed lowards hise ind aspex have and apex of approsomately çutal widtls. Width at spiracles 1.5-1.8 os width ill apes, lenelth 1.1-1:5 \times wadit at sparaclen. 'I2 bare. polished. unseulptured. with trupernital mediair selkerite, its apex riughty $2 x$ witer thas thes basc: Ti hind T. with hrond weakly velerotivend areas hertweet median selerje and laterotergites; hyponyritum burge. abous 2.42 .5 se sunger than petiole. gradually narnowine ewor posterion loalf ro a weathly poineed spex:
 petiole (when dsad): visithe percien notnailly slighly fonger that putiols. with venfal rem of apheal setae oxberming shightly more than half way towish hase.

Corlour, Yellow to ordnge: face varyine from dark btange (t vattrested orange and browbi remander of

pheficel. usually entire hist flacikoncre and sometumes hase of second hagellomere ycllow. nemainder of antenna brown; ontpustor sheathy blach.

Budy lenght 1.7-2.5 nims

Mrle

As for fernale except is lolltows: madian tlage lomeres mbre stender. flagellum dus lers ubvioushs rapered uwards apex, truth To and T7 with adece ansedian pit (Fig. 1t).
 Min arca wia Emm Vale (ANiC): 1 ". Brapmon Beach
 NIV Busbince (IAMU): It cpro: Buņa Mb (ANIC: WARL):

 CR (ANIC WARI).

Bierlost: Unknown.
Diaghous: This species is readily eccognised by its generally pale collomion. all congenters having distinctly darker bodies. The menacapuli is shot relative 10 f. johursomi, and the tramwerse radial wein arises neatrer the midporint of the stignti. The venution of P pullichos thus more closely resembles that of the Nontropical \int_{0} wifu' De Sueger. Additimatly Ite ovipositoj" is longer than in all songenerie speces 'the antennse of the knosin Afrotrupical tpestes are 19- 16 20-segmented, but the antennac are 18 -sceneused in boils P? pullidus and P? johasomi.

Diarusaion. The distimetly selone eyes of P pallidens necessitare a clarisication of the definition for
 sepratringe genera in the Muesebeckinti, and espectially
 clarilicumm, Nearly atl species of Rumbigommons have at least some sctac on the cyes. and severad shon setace
 the sy pe species The mumber, size, and aftangencth
 level diserimination is Pemoligonexrust, Deep median pits, though not previnusly decribed. are firund jna number ul thucsehecksines. 'I hey are uswally hacsted on tergites 6 andior 7 , and nccur in cinly males

The bype series on pallidus hats hewn restrictegise Ho duacrial foon Northorn Territory und far Norts Qucemstard beccause of colour differences in the material from sunth-bastem Quecnsland. The mone southerly specimens are generally darker, whit most of hic melasoula dark brawn. Itowever, there is some nveriap, ond. There ime insulticiens representativeson buth scous fronit any ont lexility of actuputhely assess whellier ar sont males are darher" thom temales.

Subtivmly IIstervanerimac liahringer

 has been yariously freated over the vears. Umil icecnily mose 201 h ecnoury authors placed shertonmefris in the Doryctinate dice to the presence of stout setite or peges of the fore libiad. Fateringes (1930) was the first to modate it as asparate tribe within the Dorycliniee Van Achterherg (1976) initially tansforred Histormmons to the Braconimate but swon realised that it was misplaced ban Achterherg (1984) subsequently regarded it as a separatu subfamily wsth at bser kroup relatiunship to Yosistocerinae + Mesubtoinise. This placemene is based on the shared presence of a llattened petiote, emmpressed hind formos, and fociston of the inetssmal spiracles in the epiplcuron (vin Achecrberg 1984. 1988). Addiunoatly. the transseutal articulation is absent. In the darycline Rhopmucentus Marshall, howeres: tho gaster is sumilarly shaped. with the spiracles loeated on the epiplcurom, The hind fenmon ate alks flattened in Khosproccorrus sthough generally mot as nuch as in Hisheromerds) and the venation bundilar. The petiole shape and absence of the propleural flange, the epienemial $i=p r e p e c t a i)$ carina, and the iransscutual articulaton are thus nure uscful features tor separathny Histcromeres from doryctines. Additional features are discussed by Quicke \& "sh Acherberg (1490). Whon consider the Hiscronicrinae to be one of the most basal groups of Braconidac. The sublamily is readity recognised by the exceptionally long hind basitassus. addly shaped head with long teuples and very shon fice shori antennat and chavale fore lihia with slous setae clustered io st lare patch along the slorsal for oulery surlace.

This is the firsi species of Histeromertas sescribed from oussite the Holanctic Regin.

Kiey to known species of Histenomerus

1. Vein m-ctujust ankefurall: forelitos abrupily widened (Fig. 17) [Ausuralis] .- .- .- H. claverees sp, now. Ventm-cu mistifunsal: Fors (ibia mors gradually enlarged |Figs $14, \mathrm{~m} \mid$
 guall spactes (altiul 25 mbin in kength / Neatkiol
-1f. (whetelolsis Ashntacad Proslernumit tranni: ancenna wish 17-20 segmums; (Anyer specior (at leass in mint in lengif) (fiskeancicl
H. mystuchay Wernsel

Hisrepomerwr clavatus sp. nov. F1035 1217

Thedrype: ANK Ouemsland. "12.43S 143.18FE Q1.D If

Pinmale

 kegulac); (emples ignicały produced in alorninl view $2.25 \times$ longer than we: matar spate ufunt ball ste lieigh; lergeth of froms (belween anterwi beellus amd antenal sacket) 1.7 天" width of ocellar freld: hrome. Vertex. Itmple and yent unseubptured; sehac largely Whesen on ecera. setul bases separuted by length of setae on temple and vertex. more closely 5 pacal on frons: face ahout equal in heigtut to clypeus, aboul $4.3 \times$ wider than high: face transverscty brigose. With sow of deep punctures lakrally; extending Ihrough matas regione clypeus deeply punctate: untcina shon, abous cqual in. Jengit us metasums. 15 segmented; all flagellomeres with multiple placoder. pulpe 5- ind 3-scgmented: apical setic on lakial palp longer thasi 3rd segnent on palp.
Mesonsmmad. Pronotum in dorsal view a narmow unsculprured band; promotum daterally weakly rugulowe except alone anteriop margin. mesonotunt without surali: density ol setae on imerior dectivity similar (o) that on frons, less dense on median part of dise and largely shenet laterolly; scum-sculellar sukus unsculp. nused, without anteriol demarsation, the mesonotal dise sloping gradually to form adcpression along anteroor margin of scutillum; propodeum unsculptured; mesnpleuron bulging, strongly convex; subalar depression deep sitronw unseulptured; mesopleumn lacking crenulate posterior marein: mctapleuron woakly wrinkled dorse-pusicriorly and vertrally
Lest. As in other species of Histerasperns; limid femus nume sinugly compressed that mid lemur; fine coxine fonsdly contiguous; hind coxa fong, bhour $0.75 \times$ legeth of hond licmus. outer surlate of yore litio whilh shout thick setae on itk apical half: fore femur weakly grooved ventally for receprion of thba. fore thas atoruptly bradenod over apical half (Fig 17). nus rowines shghely from mins tihus for hase: hind basikarsus very weskly curved. ahour I \& longer than conthined longth os wimi ?-5. Nighily indfated seet hasial half.
 aboul $2.4 \times$ Ionger (than broud; r vertical: 3-SR athous $5.6 \times$ longer than r, subequal to SRI: SR1 moderately curved, teaching metacarpus somewhal betore win?: lip; Ind submarginal cell hroader distally than proxiItatly: m-cu antefurcal by about (0.3 \% its length; cts is postfurcal: CUlt completely absent, fit subdiscal cell Ithus nnen it kower distal comer; $M+C L 1$ hubular and
 in region of harely visible $2 A$; hind wing with $1-M$ dowit $1.1 \times$ linger than M-CU; moculong, pigmenked but speciral; 15 -sin sharter than cot-il: RI of hind wing distinety shorter dian $\mathrm{Si}^{\circ}+\mathrm{Rl}$.
Metascmus Jretiole nearly that. without dorsal or luteral corinac and associated pits: oypmontor stoongly

Figs 12-19. Histeromerus clawatus sp. now, \& holotype. 12 , lateral view of body, 13, fore wing, 14 , hind wing: 15 , hand leg: 16. anterior view of head: 17, fore libia. 18. Histeromerns canadensis Ashmead, © , fore tibia. 19. Histeromerus myzacinus Wesmacl, 8 , fore tibia. Scales: Figs $12-14=0.5 \mathrm{~mm}$ Fig: $15=375 \mu \mathrm{~m}$; Figs $16-19-250 \mathrm{~mm}$
cumpressed, blate-libue decper basally. buptimg

 setime the selie fonger thitg shesthe tidih.
Coblom- Dark latown; prowernus1. anteriny mateh of
 mid mand thind eoxace, lifise. and all bur exireme if en
 batspusly yellow-brown: exipmsitar sheath whinsh. with upisal one-fifith hrowa: wings hyshne with
 tery shont ind thich, giving ofing is speted ippestancs. Brody Rensth. 2.4 sum

Mar

Unkuman.
 deschibed species inderite parasitism of cofcopteran latrate in mondy sheliss or bsackes lungi.
dicderentis This species is mest cithily sdentiticd by its teanation, with the ex enternge the lirsis submerginal acll, the lis sutalitial coll npen in the lower disest

 and r inelinous. The Australian hpecies is utherwise vels atmilat $\mathrm{ks} H$. candudravis and H. mastocioners as moted aftove in the mumber of unigue texdures usd th deflime the subfamily. Both. H. efervibss and $\%$. cronterensin atre small species; with fewer flagellameres and piles coloration than H. meswrinus: The apieal setic an the palps are ulan honger and cura is posifucetl in the two smatler specses.
Descussonat: The latheple has on morious vein in the second submarzinal cell of the fore wing (Fig. 231. Anomatents venation has alao been recordad lor If mistacimus (Marchall 1885, 1888). Marshalis specimen thowed trices of a second recutcont vein (2m-cu), producing is pattern similap the that in Aperess Mason. The later fontwer has the pethole and prepectal carina more typical oll doryclimes then Histeromertes.

Sulditnily 「uphorimae Focestes

Commentr: Shaw (1985). Iuch provided substantial suppori for the elade composed of Sitenuhrersitur Shaw,
 Arideoms Marshall. Ahhough all but Hesomediue tre well reprecinied int Auseratia (Shenctett 1969; Hukleskon 1983: Shaw 1984: this study). Chrosupuphitumas has not beea previsusly stoported Iront the cominent (wee Masol 1864), and until recently melatively deh. Stomephronmied base heere knowh. Additionat. intormation on these genera is presenfed tere,

Slemohremma Shan

110. 24
 membern of the Fuphonme in Austrithan collections ate varmus species of Siduobhemmer, The genus was recently described frons Austration und New Cadedsmia (Shath 19841, based on three species. Howerer: mont Ausicalian species are undescrited (e, ge appreximately $20-30$ new species in ANIC) and the material at hand considerably broadens the defirtion otigimally ponvided by Shaw (1484, 1985). Since Sleptostremome is such a promment siember of the Australian cuphorine funa, and heopuse maies camul be readily identified using exibung keys, we rake ilfis eqpastunity to present additional morphological dita, Hosts for firmothrommus are unknown, but stes undesonted specic: (ANIC) heve been smape from Acomets and turalaphes, jearpeciively

Staw (1984, 1985) places Stonembramm, within the Aridedus-Hesmerelied Chrasopophtheress lineage, und providey it bet of aynapormorphies lor this emory, The mosis uceful of these for identification pur ruses is the
 3 . 8 busal width) petiole which is completely fused ventrally trom bace wapex. This fealure, lowelher with the compleicly developed, wubular SRI $+3-\mathrm{Sr}$ and $1-S R+M$ of the fore wing, art sufferent for placentern of all Austradian species in this lincage. The median frontal carinn, which Shete (1484) Iosis as is symapnomephy liur this gnop sffenera. is absent in some of the undescribal species of Stomothremmer and weakly developed in athery. It is more whongly develesped in larger apecies

Sunk New said Old World Impical species of Mederrma Haliday might be conlused with members of the Arielelua lineage- and Lest л лust be taken to awoid this error. In these speciet, the arox of the petiofer is often less than 3 * wiser lhan the basc: In ath cituen. irmevers the sides of the petioldr tergum ate widely soparated at least on the apical thord. Addotionally, as nutad by Shaw (1485), Whe namlibles in Meteorits are hrondly overlapping relathe to the suchilc-stased unindibles of Secnoshormmer. The peliohar and mandinular chareters are not always readily visible on pioned specimess. Wiethin the Aridefor, lineengen Aruftus is suasily dientifiad on the texsis of the reticulate or tericulate arcolate scolpturng of the nicsonolum. The ancsonotum of Sfewothremumer varies from punctiake to linely granular Botis Wesmarlies sind Comysopophiffosus have $\mathrm{M}+\mathrm{C}$ (1) ald leas parily' descleruhsed or absent, in all specjes of signopiremunt. $\mathrm{M}-\mathrm{Cul}$ is tubular throughout, and provilen the mos! readily oloserved charater (ar separaino linm these (wa gencrat fofi Fige 23. 24). Australiauspecies of Chrisompophfrosver kmper bus have the bual holf of
the lure woge yellow. and $M+C U$, thounh apperring Weabily develuped hecause al the pate colorathon, in
 behuloun enfy near its mid length. The Austratian ('hryisprephehasus ate lats very simitar la

 dhes leature is not useful for males. armd saries
 arod unather of pencration coge, the motamonas of eritiod-gesirs dred specmens is bequently blested binler thath compressed).

Shasw (1945) proverten an cevellent chatacer see fix

 spesics:
 mesent in whem.

 in others. Absent in somes.
Clatater 8 . apical nateltonere pointed in mioss species exammed. but romaded in at ledse iwa mpecies.
 exalrimed, pal weati amb dillicult to sce 3 ll several.
Cltamoter 16. faciol setace suriable amony specres. sithor thowurny lace or not kas noted by Shatw (1984) is hes originas descriptions of the species but tor rellected in the coding for this chatacter in Sluaw (1485)h.
Chatater 17. shapeof lower clypeal margin: munded (armos) sonvex) in heos species. but acserly proneate in at least one species, The medtatly Budented bundient given by Shaw (1085) fior nther niembers of the tridelus lingage deses not boll los fwo of the: Austatian Aridelles.spectess and the fratentation in the chasopoghthorns specten described kulow is barly perceptible In these species, the dypeux varres Iromb mote of less banate to convex.
 of the species exammed.
 Climantephothorws and therse of amall yellone leged species of Stmanlomemma th wery slight.
© tharscler בh, mesombal scutphere: vasics from fincly gratular. io finely purndate. The mhricutc micruculpture of the mesusomal which Shaw (1984) nosed as whe unasual leature eharactetshy Sereothzemmo is absent in shea species.
(Tharacter 3t, nelatemur kergh/width: short und broad

 (kengtly gtater than 6o maximum whith) in one
species; buth charachorstates and by Straw (IOXSI atw shercfore applicable.
Charaber 4. madian eelf: the sishanc batween the end "f the sudiun and the wing op is quite tariatele and this sariation is nos adequately rellecterd in the charbeter states uned by Shaw 11988 .
Clarmier 62. krgite $2+3$ lenoth the willerenes
 clearly eviden in formalew, mut comsderably leas so in mates.
Charater 65. tateral sume hetween tergices 2-3: His feature iv prewent in at leaxt the Australliut specic's of Chevsapophofom?
 deworped in mafes than lemales.
There is litule dhabs that Stowshrismmathelage in The Arradefos lincasc. and inthough its exact placemem
 Shaws (1984) hypothenis al relutionships. Staty (198.5) treaty Stenothremma as the sister-group of Hesplevelist Chrassmophtherrst aridelfes. With the new dala presented atonero wo lind that swo of the five chasackers supporting the Wesmarhat + Chrsompopho phorw-A-Arideher elade munibers 17 and 19) der nent hakd. and the other three (nunibers 62,63 and 655) form at nimgle shatster womplex ascoclated with lerga 2-3 We treal ithis entite characler complex as is cline, with the plestormorphic sate found in Sievorthemmer sund the ipormorptrice stale fisund in Atadolus. "The condetion

 supplies the sade supporing feature for the Wesmatian
 usione characiors I and 36 to manimiguniovly supposi
 pamially desclerntised $\mathrm{M}+\mathrm{CL}]$ its iss strongick synapamorply, Aridelun had as large number of atoponorphies (Shaw 1985), emphasising its
 relationships anume the other thre general are mow less clear. Intormation on the hoses of Semothremme may help solbe thes probleren. For of the forses ate nevopterom rather tham hemipteroid. Ithis kwald

Chriwopophthorws hayem syr mow flcis 20-23

 AlSTRAJ.IA Adchate Mirr. 11. 20. 1以Y) K. Whartous.
 WhRl)

Fentrale

Pfornd. Tratescerse: th densal view 1.7 2e froader than

 p. fore wing Scales $=0.5 \mathrm{~mm}$
legulac: cyes hufging in dortal view $32 \times$ Ionger than tenples; fenuples convex. rocoding hehind cyen densely cenersel with short decumbens setae:, nceliar field small, widely separated frons eye (tig. 20): pontrion ocelliscpasated by uhout $2.5 \times$ their dianneter: Lifpeens very hrind (Fig. 21): apical natgin thin broadly and weakly truncate medially, vesy weakls emargimate centratly; smonoth. nearly impunctate dorsally, weakly' Pransversely acicule-punctate atong apical margen face punchate medially. transversely striate just béhw antennal bases frome verter, and tẹmples punctute: puinctures narrowly separuted, almose enaleveing medially on froms. more suidely separated ($1-3 \times$ their diumeker) on temples and vertex; malar space rugulose:, amenat 21 -sogmented: tirst llagellomere about 5% lomger than wide, sceond tlagellomere about $A \leq$ on Ionger than witce: filth latgellomere about $1.4 \times$ Jonger Han wide: first flagellomere 2.6 , longer than filth.

Mesonsmer, Eronotum aciculate daterally; mesonotal dise purnctate, punctires weak (stratlow) and les; densely spaced on lateral lobes, then on median lobe.
more dennely spaced medially an anterion decolivity Hhith on dike; notath crenulate. distinct though shalkow: narmon atteriorly. converging and brodening posteriody. the twa sides separated posteriorly by is low median ridge: noteuli not exiending to preseutelar
 slighty beter developed than lateral ridges: seutellum covered with shallow punctures, Iatefat Jotarging cesrinate aniy at extreme busc: propodeum unifermly retculate. wiflout distinct carinae. shatlowly excavaled": mesopleuril dise polished. With diagonal bow of icatuered purseluress. btherwise emnoth; precoxal sulcus stiallow, puretate and irregularly atvolate.
Firn" wing. Sccond-submarginal cell subquadrungular: 2-SR and ron separated at the radial wecfor by abont 4 *) their width: 3-SR nearly equal in length to π^{-}
Alerasomer. Pctioleas Jong as mesmoms. Hz 2 or homer than width at spiracle, stightly deeper at spyracleh thate It sipex and basc, width at spiracle about $1.5 \times$ width it base; periofe without seupture laterally; De ipositu wheath athou $0.8 \times$ length of petsote.
Cobour: Yellow-onanger propodeum, metanolum and margins of sculellum varitusly hrown in dark bown: T2 and apical one-guarter of ovipositor sheath dath brown is blach; renainder of uspositor sheath. ovipositor, protiole, kegs, moss of proroturin, clypeus Vearratly, and nows of moulhparts sexcepl red mondibular leath) whice wo yellow-white: antenna jellow hasally, apsal sever llagellomeres hmwn, darkening fowards tip; fore wing venation yollow basad of slighta. stiguma and vesns burdering second Aubmarginal cell brown; base ot metacapus yellow. Berd lenght. 3.3-3.4 smm.

Afale

As for temale exceptas follows dye smaller, in dursad view 1.8-1.9 x longer than temple; posterior ocelli *tparated by ubout I:5 x heir diameter antenuae 21to 22-scgmented: Fifit nagellomere2.6-2.8 \times longer than wide: first flagellomere $1.3-1,6$ xe lunger thatn fith: scuto-scutellar sulcus with median ridge distimely betice developted than luleral ridges in 2 of 3 specimens: one mate with distincl lateral carinate bordering median excavation of propodenm; 3-SR of fore wing absent or meatly su. the second submarginal cell decidedly petiolate in one specimen: pethile shorter, wbout 0.8 \times length of mesnmma, 6.4-7.7 \times lnnger than width at spiratele.
 (TAMU)

Binhogri Unknown Other monbers of the getius ate partsitoids of adult G'hrysunidac.

Dingrtests; This spécres runs lo couples sin Masoris (1964) key to species, bused on the broud and very

Shitlowly sthatganale clypeus, The discinctive seuptoring of the notauli, the pobisted median regon at dre mesonleutou, and the patern of dask brown mathings of the body readily separate this species Irum ast previously descritod Chnsopophthomss As Mason (IYô4) notek. C upiantafis Mas,on Irom Singapore has at number of musual femures. This Ausuratian species shane wone of these and is thus not closely relater no \mathfrak{c}° uriomulis.

Vischaike: The thospcennens from Cunberva closely resemble those from Adelatde, fout the fermate petione is slightly shomice snd the clypeus is nure exicasively punclare dorsally. We have seen an addifienal species inmil Queenstand (ANIC), but as it is thus far kown only fronrmales, it is not described taeres. The species is named fos Ken Hugen, in recognition ot his contribuliops to chryarpill hiolegy.

Subtanily Mesontuinae van Achterherg

Crusintens: This small endemic subfarmily suk fuevorusly kionkn from only there species and very litule material. Following recogmion of the sublamily by vin sehterberg \{1975\} and deseriptian of the firsi
 Perh. ()uiche de Huddleston \{1989\} described at xecond specics from Adelaide, M, masini Qugeke or Husdicam. These zuthors also placed Tobias monospacific subtamily Pramopterinate (Tubiss 198\$) as a junior synonym ol Mosombinde, hul ratimaimed Pruomupierus havis Toblats, trom Jervhe Bay, A.C.I. as a separate genus bused primarily on diflerences in wing venution.

Menbers of the Mesostomue show it general resemblance to some cyclomienne braconids, purticularty certain doryctines, cxothecines and hommines, hut they cean be ukually separatixd from these laxa by the labrun? being antiy shigluly depacssed. Jore thba evenly and frowly setose, and antennal Mugellomertes hathened. Thaweyer, the species dencrbod below brings two of thest characters into question, in that the lathrum in sanngly eleprosssed and oval in shape and the mandibies arecunced distally to form 4 suheyelosthme noud flige 37). and the fore tibith his two rows of spines (fig.
39). The recognition of these shistuctern tor Mesorion requires firther incerpretation, bul may indjeske a much Lhouse relationsthip with the Doryctinate than hats previonsly heen postulated (van Achacrbers 19:1: Oumbe \& (4an Acturibere 1D90).

Ki's to known species ol Mesusma

 medhal lompituditial strigdose sculphethes. scuarm with only

antemas with iz thagellomeres
M Dromitrosiod vain Achuctbots

 athont comptete inediat hogitudinat grone (Figs 31. 32)
 Qripositur abscon (male) - \rightarrow

1. Ankema with If flagellobmeres:........... M. Unstivie Qurbic e Hudrajevino
 P. 120 N
 Striate Aculpturigu kacrouly, (ransaculat articulation) prexeni buctam. . M. rasthan vilicke \& Hudderton

ap. nino

Mesontoa kerti s@. m, Ficis $25-411$

 \&i Dangerfield ex twig, gill of Buaksia maifinami". Furatypes
 each ir AEIC. ANIC. BMAH, CNCI. HNHM, ODPI.

 Redy Crbi, 3.x.1453. amerged from galls on Burkisia aph.
 (14 19.Q. 2800 WARI).

Female

Hecad. In dural view ponterior part of head broadly emarginate, distinetly trumcate sis that angle between vertex and neciput in ipproximatcly 90°, occipital carina fine hut eamplete throughout: verlex, temples. and Itront moshly smooth winh very sparse short serac: ocellar triangle obbuse arceat whom sum around intage faintly strigosc; occlli of cupht stize; rathen of diatance between postertor ocelli to stortest distance to cee margin (3.4:1.1 (Figg 34): froms broadly depressed: widest part of head behind cyes i.e. remples extending baterally pase finc of cyes. faccoand matar regiou dugose to striate-rugose, with long seattered setae: fixte thenly contex. nutu bi widet of face to head $(2,2,4.3)$; pation al eye height io heighl of head (obeowsured su midline froms margin of labruns) (2.0.3.7): face slightly depreswed at крisumial suture sollist clypcus protudes nutwards. slighty thest seen in antent-bateral viewl: lomer margin of clypeus slighty convex und wrink ked: labrumi depressed and aval in shispr, snandible curved inwards in distal half fo form subcyclostome conditom (scen bext in ankra-ventad View); mutenta with 19 Aagellomeres, Pelative lengths as 17 inellameres. 14

(1.5:1.1:1.1:1.1), proximal 6-8 flagellomeres with very aparse selac, more distal flagellomeres becoming progressively more setosc: distal 6-7 flagellomeres about $1.5 \times$ longer than wide.
Mewosona. Moderately dorso-ventrally flatemed (seen
in lateral view), about $2 \times$ as long as high: sculan narrower than heatd. an wide as long, medial longitudinal line depressed to forma a shallow groove extending almost to posterior margin of scuthin. anterior part of groove smooth, posterior part with few
tine hangitutinet striat merging with surmumdine
 fuguse, posternit nangin stunth, reat linely atgoxe-
 pumetind faces posieriorly which indicathe pontion of butaulf, wher side of these tracts hordered lyy smonth alrip: Whole surfice coweded with shor sedac. ifsiswetal ufticulation distinet fFyg. 30): scuto-
 crenulate this sutcos soparaking datinct suhtribugulat axdlew" medial s.arellunt smonth with dincly striate

 nes of propodeum sery findy sitriale in rugose-striake, Witl asonce very tine backgonand punctations (Fig. Jhz in lukeral view prototun finely taguse medially siriroundest by line striate sculpturise esternding to

 Dine vertical stiate sobpturing: metmporm rugalose
 fihia with irtegalar dibuble riw ot spines (Fig. 39). Wings. Giencrally the amme is M, ratsimand ditlente fresen M. compresser in the fore wing ac follows: $1-\mathrm{M}$ hrondly and binimly windate: anterior past of $1-5 \mathrm{~K}+\mathrm{M}$
 widening diblially.

 pisition bil sparacles. wath fone loomenderal striac.
 athere hetween 12 and 'I'3 adicited by fine eranberse Ime: $12-75$ smeoth with single frataserse nuw of fom Inairs, injuchater and shegthe athout one-thind length ont

 anambiblers yellow with dark lp: legs lathon wish degher

 mertikes somerimes dark yellow-browil. Widges hyatine. sigoter pole.

Mollo:

 (ranec 1. 9 2.7. $\Omega=15$; pusteror medliminuke "Fige $76 i$.

 wing shakly solembised, rest whete is colober. meninamus and without venation: hind wing mbeth:

 acuellum mance elongate; fore sibia withour distinct spinces on outersurface (1 ge. 40): metamome longel than head - meanomal ($\mathrm{a}(\mathrm{e}:+3$ 3) ' 'J't hobider axmss pasition oi spirackes than fong (20:1.4): sufure beftrea
 teraires subequal in Jength: T2-T0 monil), with de les scatored minute faims.

Biokexy: "This mpeces is atsuctared whth gatls on the
 witt this plan gemuls that may bo gereritl for all Mesostou sppe gitien that M. ausimi hus alse been thus neared. However the crite best is not yet hnewn. but pretunably is is the primary pati former op the or the
 curculiomid beesle larvose.
 than it is is M. csmpressad. 'the late species bise the bead and seatum brone extensively scouphared with

 the jemate anksume unly bave 12 flacedtmers.s. and the lateral field sf the scotellum are suriate in Lonparnon. M. Whathi and M. Kerre deneralby have the face rugose for rugose-striate and the scuium tinely bugose-sinate, ife seutum with a lemgirudinal growe.
 with al gecater number af ilugellontacres, ind the laterial fictde of toc scuteldans simeth or dadoty stiate. M.
 number of anternat lagellonmeres ber the lemate ank Bure aubtly on the degree of sculptefring the the bead and suthm. with M. kew penerally beine less extersitely sculpered.
 phesence of abreme of an mectipital catima is atren wed
 Ievel.and in this reapect the ere is sume jutification fion placine M. abasmi and Mt. Aesgi on as sepurate geneus from As immprssia. Howeyer untit more material of
 nos advandage in arranging the lour known specties ons Mesonstoinate in three sepurate getrera
 istagurat bead of the Department of Corp. I'totections at the White lnstituc. and one or rustrulbis lcudtage

Figs 30-33. Alesostha herri sp. nov, Q, pasalype 30, dorsal view of scutum and scuteldum; 31, dorsal tiew of propodeum

Figh 34-4(), Mesostoa keppi sp. nov. 8, patatype. 34, domal vicu of head; 35, anterior view of head. 36. 37, ep, paratype. 36. thorsal view of head; 37, antero-lentral view of head (N.B. Iransverse lines on face are due to specimen charging).
 Figs $38-40=.50 \mathrm{knt}$

Subfamily Merewrideinse Coprek:

Commiross: This small subfamily is definced by its hinloey egregarious larsad-pupal enduparastionds of Lepodoptetal aud highly morlifed metusomar Vixon 1941). Capet; (1970) separated the טumabate genus. Meteardder Ashmew, Irosu the Dioxpilini bre the hasis of larsal murphulagy ind biology and placed it in al subamily of ils.own. Lintil Jecently only iwo seners has been descrithes. Mefornillea and Benaman Nixnm. Shenetelt \& Muesetick (1957) redescribed the previously poocly cltaracterised Atrteoridea, and symaramised Hernama with it. This synonymy was accopted toy Capeh (1970). Vath Acllerbery (1984), howerer impled that the two were distinct hut hes since seversad his spimon (yan Acherbere 1990). L13 indition to the Australian species deserbed belaw, we Isave examinas nriterial af Meteoridea from West Arrica and Vorti Auncncss. In Nurth Ametican astaterial. Itse modian labe iam the apical margin of the clypeus is mone ronth-like that in the Austratian and West Alscint speries. Aldifionully, the adeep hasill pits aff the petiole (dossope) ate bloor lateratly displased in North American spects, and nul qioble in dursal view. However. we do not consider these differemes suffecontly chearecut tist seprarabing fermone from Metearided Van Achterherg (1990) Hiss recently described at thisd genus of Matemridenna Irom New Zealand. Promkia van Achererberg, which his. ad nunber off unustal ficutares that alggit it beast superticitally,
 substamially frem Meterseridea in that it has asmooth pirnoudeunt. dersope athenn. (ourith tergite depressed. Trie witg vein l-SR present and wertical. is shote. $\mathrm{N}+\mathrm{C}$ Ul minclernted. and hitul wing marginal cell slender.

The speseses int Mcterulidiadeacribed here in the dirss recond for the subfamly trum the Australian conlineat Alhough wam Achesherg (1984) has previously stuted
 Isut)\}(eophis. the deacripliun of M. compressivephris Shenelell de Muesetheck fixum Wisconsin. U.S.A.
 Acherherg liom New Realam, clearly show then the quthamily extends info thote temperifte reghons.

> Metcoridea anic <p. Then, ficis $41-44$

 Fi3, Pk, 28-30.ix, I980 J. E. Cardale, ex mhanol (ANIC,

 PASIC. TAMLJ. WAREI: 1 v. 1.5 kn SIP Kurmod,

fimala

Hewd. Jn dinsal view wider than scutan! temples hrowali eyes thulbous and glahrotis: sxelfi forming : compace tribngle. distame berweces persersor dectli HuLh shonter than ulishonce fom them be marein of eye: ncciput vertex. trons and ternplen shomoth and shining, exceps for tew tiry gunctures atsixciated with oceusional tine sctaci, head in ancroior vien alroose circular. fice stringly convex, with brodad nedtal lungtudinal ridge and scaltered punctures assaciatea with long tine sctuc: epistomal suture mpressed: dyperus wowex with acaticrox puncorne and sigehty up surthed lower margin; malar space small. inargin adjacent fomandible slednly cumux: antennal suckets with saised margins: antenna 3-segmented. all flagellomeses longer than wide. reschipg as fise in posteriti cedge of metanoms
Asesesomus Pronolum with large Jorsopes in lateral view witi mediu-disgenal line isenulate, pisterior and vemiral margins enenulane: scutum smooth with necasional scaiteral petnetures and ansuciated finc selase: milati nenurnent ind crenulate. anterior declions portions broady stemukte: transscutal
 2 or 3 dece fineac: seltellum emmex, spooth and shiny. except for as fey scattered puncturew wnd issuciated long setac: lateral frelds of scutclium taintly striace pastector marein of scutellun smouth thisugh wometimes with heint mediat rugesisy! metanoturt with 2 prominent medial longitudimsl caranac amd lexs elshinel tarsnas: lateritliy; propodeal carinae wometimes 4tmewhat irregular but always forming a 山ssinel areala and enclosed lateral and posterior areas whichare punctate in sugose-punctite; surface off gropexhenm and netaplewon covered with long. finte selits precomal sulcus ind pleural surure faimily tremulate: flame shawe epionential area carjnate (nee hanl Aclaterleerg fy791. masyinced hy cremulate or hiventate imprestaivos.
Hingre Firce winge with vein $1-M$ steglely tranced. 1
 auched hasally: shbbasal cell marelwed slightly at midde: subdiscal cell widefcel dimbtly; honit wing ! SK and 2-M mdicated by shorl pigmented spurs busatly, near of these veins deaclemised: $M+C$ C 3 as lone as \& M: $1-1$ d desclershised
 combhined: petiove (TI) slighly comsurad behusd spinicies the whentang alighty in pasperbior halli. widest-across pusteriur Jutagin. 2.5 * Hupger than wide. with distimea arpent-lateral pits. dorso-fateral margins distinclly saremsti. Lhersal surface longildulnally striate with panclite to rugusc-punctac background sculpturing: T2 and all chler nechawomad
 haish chncentrated faterally and on posterior tereites: posterior most tergite senctowat exiended dislatly and

 hind wing. Scales $=$ U.s. nuth.
bilcally to form a eapsule enclusiage oripestor; orporifor and stheathy thider?
 and predicel yellow, lagelloneres brimne mandifter darkened distally: wing hyaline venation evenly coloured. sugna zranslucent gellow-brown:

Mutr
Uんk tomva.

Bhargy: Unknown

Dimsumsis: The unifombly vellow hody serarates thin spectes trom whl bia M. Testacea (Granger) from
 only in mane sculptural fatures of lie petale.

Suhfomly flelominal Fierste

Ciomment: The theomnes represent a rather dochu:
 With the remowat of Comberethens Haldidy. into a aeparale subfanity - \$ceptiget ! (xat), may sull be polyphylens of ill bext paraphyletic (Quickic as vin Acherberg 1990). Vas Acherbetg (1983) rewounised feur tribes: Helcomini Ashnoukl. Brulfeiini vilt Achterbers. Disenpitin Founter and Brachastm Fexster all of which aro represented jn the Australian tauna (Bualleuni mony by undescribed speeles). Or these the Heleortini is the mas diverse with bigu of live recunled genera endemic so Australia. Hofion Niees won tienbeck is veruatty costhopotian in distritution.

 known only irom maindind Australiza and "esmania. Collecrivels, they are repsesented by atie destrited spectes, with the lirst three genera not having heen treated since theif original descriptions (Kokujer 1901:
 and ilivensed hy Ohicke is Followay (1991). The tribe Hollonimi hats been detined by the piesence ot the bellowing characten: frims with a medial hengiludinal carima (lamella). hind fiomur rugose ventrally.
 veims 1-SR and 2A presem (vam Acherterg 1983). As is the of many of the Austration heleonines which have been placed in the Helconmic: Culohelom in anusual in wectrat respects. The species of Calohelon and Trichoblcom which we have examined have a very smenth bovly sand so lick a precoxal sulcus and carinate or rugose proposkempr. Catohelom is partigulariy remark:hks in that the lirat metasomal tergle is
 © Hollowas (1991) also stare that

Culthetcon has retained a number of plessommirphic chariclerss, in particulat a barge number thf hamulio the presence of hind wing vein thesu. and the presence of a costal cell in the fore wing. Clearly, the definition of Helcominif used by wan Acherherg (1983) wath he reasiessed in the ligh of the Austratian latua. but this cannot be accomplished untit the rich heleomine fauna of this continem has been mote horoughly deseribed.

We deseribe below a third species of Cufenctions Irome cenrat Austrata, where the gents has preverusty toen known only front the castern coashat margin of the suntinent. The inclusion of thes species extends the fimits of the genpes slightly und requires the diagnosis
 to he mudified as follows: froms with median longi tudinal carima varying from well-develuped forduced ar mearly absent: propodeal sparate circulan on shaghly. elliptical: fore wing with contal cell opera for athent fwoythirds of Iength of veras C and $\mathrm{Sc}+\mathrm{R}+\mathrm{k}$ s. to athent Ilosed ower: bind wing with vein m-cu present or absent: hanuli number tadiable (5-4): ovjpositost as Inne as of konger than tordy. Culchelfom shates a nomber of features with Trichushefery, but os readils scparated by the inflated, nearly bare lirst metasomat lergite.

Host records for the Helconinae show thet they have only been mared as crudoparasteoids of cotenpterau laryone We treat with-scepticism the secord for 6 owsoripentis Turner in Qucke de Holloway (1991) 11 ㅁ. ANIC "probing tree trunk with cossid lunvac"? wevidence that the howt bulogy of ible genus depativ Irom that known for wher helconine genera, Jn our experience, tinculymus and domiatreescan he heavily anfested with bouth colenpteran and lepradoptran las vac.

Key to known specisy of Criondicom

 in anteriet pati and Malsened poneromely (ffer 48):

 or lomece.

 Lakeral stargins on Tl in Uursal view only slighty counsencted io anterner mite seurum anl T5 TY तhang. Willig eventy lighl thatur
c. Madel guiche at Hollhway

Calohelcon dangerficidi sp. nov. FIGS 45-50

Matrial examiner, Holatype: I?. AEIC, Nurthern Terrimny "Yucnduma N. I-, Austriblia August", no collector or date ghen.

Femuth

Head. Completely smowh and shiny: tertples and face with minute punctures and assinciated fine serae; vertex and trons virtually barea in dorsal vicw oecipital carina argled slighty so as to be obtusely pointed medially; it Jateral view occipisal carina extending ventrally to mert hypostornal catinar welli firming equilateral rriangle distance between posteriur acellif shighty less than distance from them to eye margin (2.0:2.3) in anterior view vertex convexly rounded so that lateral ocelif iare above dorsal margin of the eyes: lace evenly convex. node between antenal sockets extending
dorsally into short faint earina which fades out before reaching frons; eyes more than half height of head (2.5:4.3 - measured in lateral view from vertex us base of mandible); malar sulcus absent; clypeus moderately Hansverse, sllghtly less than $2 \times$ wider than lone: mandibles short, only overlapping slighty: amennae reaching to about midpoint of $\mathrm{T} 2+\mathrm{T} 3.41$-segmented

Mesasoma. Slightly narrower than head: pronotum well exposed dorsally. coarsely crenulate around pronope, crenulaie line lading on stresth lateral pronotum. laiern-anterine margin of pronotum finely crenulate: scuturn scutellum and propodeuni smovih and shiny, with a few scattered fine setae: antero-lateral mateins of seutum slightly enarginate at point of notaulis notauli crenulate and reaching posteriorly to about middle of scutum: nculellar sulcus developed as 2 deep foveae; 17ange abreve epicnemial area carinate

 flange above epicnemal area, arrswed): 49. Core wing: 50, hind wing. 51. Calohelcon obscuripemmis Turner, ? , lateral view of head, mesosoma and anterior metasoma. Scales: Figs $48-50=10$ umm, Fig, $51 \quad 1.5 \mathrm{~mm}$
(Fig. 48. arpawed) and renching anteriotly wouch dorsal piar of propectal curinas.
 shoner than $1-\mathrm{M}$ so that discot cell marruwn distally,

 $r-m$: $S R-1$ stratght: hitid wing wiltut wein in-cu ariving fom 2-M: Rl with 5 humuti.
 houdernme panternarly. with broad shallow medial Jongitudinal depression in atnterom one thmd, litkeral margins potually straight. is latcral vicw cemeexly rounded in inferior part and natkened pusteriorly. latckug bate sntero-dateral pits: suture between T2 and

Cirlour: Heabl. mesumatiancluding coxede and T2-rs ofange-brown: antennite and legs black; laterv-anterjor hall of pronesum hlack: propletra yellow-browni wing cvenly and darkive infuscanc; Tl white: SI white widh 2 briad datheranstrese hands: laterotergites of T2 and
 sheathes blach.

Math

As for temale except ist lillows: stighty larger in size. body length 8.0 mm . Ti larger, in dorsioh view wider Han rest of metasomat, Jakral margins bounded: $2-5 K+M$ of fore winy almost as lomg ins 2-SK; costal cell stighty mure thwous: tlange above cpicnemial
 propectal cuxina, lateral gronotum more externively hiack, ankerior mesopleuron and distal hatf of alf covere hlusk.

Biologs: Unknown.

Referrerp miterial ewaminced: south Musuralial, 1\%. Dallsnusic Sproms, I4 $883, G$ A. Holloway (ANIC).

 sculpuring and at cisrion on the bice dad frous. shape
withe promum (in lateral viewt fore wing venation number of thamuli and length of the oviposior Althugli this is the firs record of s male for the genus, we have nor included the simgle male specimen in the by pe serics hevause there is a possibility thak the slight ditfetences between the sexes. descrihud here an nepretentative of fwo spereh. not inmapecile sexut dhaophism. Until more material hecomes mwalable this problen will not be sutisfictorily resinved.

Pitamblogy: This spectes, is named after Put Dasgerfield in recognition of the illustristions foe tas prepared for un.

Subtithily Alysintac Stephens

Commente in at recemtly published paper by the athors revising the Australian members of the Trite Dacnusini (Wharsun \& Austin 1991), several typesetting errors-were oyertooked which could result in significant laxmomit contusion. We therefore take thes opportunity io correct the most serinus of these, ils Follows: 1) p. 19\%. Line 30. subheuding " Chueprusid
 p. 201. line $50^{\circ} 1$ of 2^{24} should read " of $2 "$ atal 3) [-205. line 17. "arrolis" storald reast "rwestaris":

Achnow ledgments:

We thank lan Naumann and Jo Cardate (ANIC). Bewn Cantrell (QDPI), Paul Marsh Midshington. D.C.), Jenï Frapp (Budapest). Uavid Wahl (AEIC). Tom Huddeston (BMNH) and Mike Sharkey (Ottawi)
 assistance and for the line drawings. and Leon Practorms for axwistance woth the drawings of Hiserimerres legs. This work whis supponed by agram from the Australian Biological Resinnces Study participatory programme for A.D.A; and was undertaken white R.A.W. Was ar Distinquishod Visitiny: Restarch Schular do the Wate lastiute from Oeroher 1989 in March 1960.

References

 Ausualionkin Micomastrinae (Itymenopera: Bracwnidac).
 Bitem (s. 176.
 (Hymenoptera. Braconidatel From the Ansace Paft of the USisR, In. "Hymenmplera of Eustern Siberia ant the Fan
 Iin IRussiant.
(1989) fathestric braconid aptcees oll the geners Diprhoyre" and Miroter (Hymennptera, Braconidate. Miracinacs. Vosho Zago, M98)(4). 34-46, lin Russian]

 latyae and thological evidence. C'an. E'm. 102. 846-675
 Apucrits) Fums, Bumbondae, Hare Nahonal Alhert Miseion G. Fi de Wille 1933-143.5. 47, 1-342.

I＇alikutitike d．（1430）Opusculat Bracomblagicas 1IT． Padatuklische Region II（1－2）．12－123．

 3川表－420．
Kuhtsem N．（tyolt Braconides nouvealus d＇Auxralle I

 Krombein，K．V．，Hurt 』i，P．D．Simih．D．R．\＆Burk． B．D italah．＂Catalug an liymempterat in Americas narth
 DC．I．

（1888）If Andre，$\left.\right|_{i-}$ Specke deq．Hymenopteres dFurope et dAlgere，Bracomiles to 60% pp．（Betune． （insedthl．
 Godanich（Hymenmmera Reaconidite）．Can．Ent．96． 1005－1817．
（19n9）Muesoberkinn，a new tribe Uf Bracouidate

（1979）A new genus and spectes ni：Orgilini AHymenuperal Braconidacs Irund New Guines，Mid 86. $640-644$
 tight new specres of klmechmen－Dits with raxamomic notes． Fins：If：S．Nets．Mus．79（16）．1－10．

 Res．32． 93101

Quere i）I \＆de Hurnextion：T．r1989）The Australian laractumb wasp sublanily Mesostoinase（Hyruenoptero： Braconidste）with the sefoription of a new aptectes of Mresostrme．I．Nors．Hine 23． 314 Q 1317.

 Whithe dencriptien of at new species and discussion of the suenficime of cerain chatacter scates in the Heferninate Siv：Alws Mhe 43．113：－121
 oif the suhfamiles ot the tambily Braconidue（Hy meneptera： （ctmectrunteded）．Foml with．258，3－95．
 fronce Afi：Noire 13，411－473．

 Heshl．86． 8 ก甲 876．
（14855）A phyfogencia stuty ul the sublamile． Mescerimac and Luphorinue（Hymenoptera；Bracondedae） Ememmarupht 3，277－670．
Surneretto K D． 113691 Biscoundate i．p．ik
 Hastoe 1 ．
（1973）Parg al Finconndue 5 Miẹnginterinste of
 R，D，IEJy）＂Hymenepteroran Caslogas：（D，W．Junk． \＆V．The Hague）．
－MLEstBE（＇K．C．E．W．（19．5．7）Nitmead：
 Hast，5\％，129－1．34
Shamatiob．G．（1902）Tmpurche Cenomelniniden ink
 Muscumbs．Fimmes．Fix－25，39－84
 USSR．Vill III，putt V，Bymenoptera，Braconidac P， 499,
 Russian］．
（1988）A new subfanity nf hruwnids（1tymenoplera．
 Rusisian！．
 genera（Hymenoptere，Brwennulae）new for the LiSSR and descriptiuns of netw gurnera Irom the Himorye Regoht Eat Ohar 60．354－363｜ha Russian］．

 Mag．Nits．（11ss．9（2），16，3－173．

 （Hymempresta，Reacousdae），Ent．Berreh．35．158－100．

11976）A prelimimary hey wo the subthomilics of the Bracmidae（Hym．）．Tijdsche：Lint．119． 3378.
（1979）A revisions of the Subfimily Letinate fuci （Hymenopteria，Bracomidae）．Stidl 122，241－474． －（1983）A revision of the now whe Brulteind ¿Hymenuprera：Braconndae）（＇meft Am．EAM，Ins）． 20. $2 \mathrm{RI}-3 \mathrm{Kk}$ ．
（IO84）Essay on the phylomeny of Bracunidac

 povilon of the gencra Exemomios Mason and Pschophinams Széplipeti（Hyıperwplera：Braconidac）．Aned．Mcal Leider 59． 34 4－ 348 ．
 with special teference ro the istology pp－85－ils in Gupla． Yoi ［t，d，＂Advancen in I＇drasitic Hynuenopterd Reteanth （H．J．Brill．Loidert）．
（1840）Rembiata，new henus ot the Matenrideinae （Hymenoplerat：Braconidae）from New Zealand．Zawl Meded．Luden 64．15y－175．
Whartos．R．A．（1977）New World xpocien of Aphaered （Hymenciptera：Rracontade Adscinate，with a discussipn of Lerminology used in the tribe Alysum，Am，Ent，Serf Am 70，782－783．
（1986）The hraconisf gersus．Afosra（Hymepoplerus：a deseription of the subgeneri and a tevisim of the subusenus Alstia Siva．Eive．11：453－504．
\＆．Austhn，A．D．（1491）Revision of Ausprallan Dacmusim（Hymenoplera：Bratomedse，Alywnso）， parasitode of Cyclorthaphosas dipeerd．\＆．Alas？cos sidel 30． 193206 ．

AN EOCENE MEGAFOSSIL FROM NELLY CREEK, SOUTH AUSTRALIA

by D. C. Christophel*, L. J. SCRIVEN* \& D. R. GREENWOOD***

Abstract

Summary Clay from the Eyre Formation in Nelly Creek in far north South Australia contains the first Middle Eocene mummified leaf flora reported from the interior of Australia. The 269 leaves collected are placed in 16 parataxa, with one angiosperm parataxon of unknown affinity providing 64% of the flora. Eleven of the 16 parataxa can be assigned to extant families which include Proteaceae, Myrtaceae, Araucariaceae, Podocarpaceae, Casuarinaceae and Lauraceae. Myrtaciphyllum eremeaensisi sp . nov. is formally described. Comparison with Middle Eocene megafossil floras suggests that the Nelly Creek flora is taxonomically distinct and physiognomically more sclerophyllous than the other south-eastern Australian floras. However. Sampling programs in extant rainforests and other Eocene deposits suggest that the number of parataxa (16) recorded at Nelly Creek from this first collection will likely increase markedly with further collections. Comparison with the silcrete floras of northern South Australia, in particular the Poole Creek flora. Demonstrates that while some taxa, including a possible Proteaceae infructescence, are common to both deposits, the majority of both floras do not correspond.

KEY WORDS: Fossil, Eocene, Nelly Creek, Silcrete, Myrtaceae,

IN COCENE MEGAFOSSIL FLORA FROM NFIIY CREFK, SOLITH ALSIRALIA

Abstract

Summary and ghysikumbuičully

Introduction

 Thene incinde the Anglesea flota (e g. Ciminompel 1984: Chriswophel \& Lys 1986; Chesterphel ef of. 14K7. Hill 1980: Rewett © Christoptige 1490%, the Contuen
 \& Gnemwond 1989). The Maslin Bay lora (Lange 1970: Christophel \& Blackburn 197\%: Blackburn d981) ind the Nerriga flora (Hill 1978, 1983). These wecur netre the coast. with the tirse three sonsideried to be dowtand and the last (Nerrige) to the uplind (Figg. 1). All of these thotiv have been interpheded as represemine Isupical to sub-tropical (or very Warsu kenperate at the minintat) raintorest communities (Christophel 1989: Christuphel \& Grecmuond 1484 and atl combith well preserved. bompressed our manmified leates allowins midxtump putemial for urserpesation.

A secornd source of dita on Fiarly 'bertiars. Ihoras in southerat Austiatia comes from the extensive smpreskion and cast flotas of mteriut sentitern and cernirial Australia, colleatively knerw is the siberule Dorath. White komwn for at relatively Jong lime (Chapmain 10371, these flores thate not platyed in noajor mbe in interpering Tentary vegelation heculuse of the Lick of surnitraphic cantrol. Mose reconty. Ambrose 6\% af. (1974) suguented an Ensene age lor torme al These sileretes. including those dencribed by Lange (W978)

[^7]corndinint Icpaspermeid Myrtaceave Iruits. Recern
 from the foole Cerech aneat bof South Australia amb placed the : fidnostatiegraplic borrefatross. Fossil padten tras nol bece preserved in these witerctes and treme palyrublogy cibuld not be nsed to enofirm their age

The thacovery in 8986 by $R=$ Cablern of Somibiternus date in nerthern South Austrab ial wheh conkined well preserved. compreshed and mammilied leaves and Which wath interpreted as Middle Fifoene dalley 1989^{-}) whe impartant lon soveral roasons. Firstly it greatly extend the getyraphic ranew of wall-preseraced. Didale Embene megafossil foras. Sarobkly: if providen binstratigraphically datable evidence her at truly indand. lowiand flote of that age, and binally in prowides the possobility of better chanoblogial control erver the merpretation of the numernus silerete florus of the imberior (Ambrise a e el. 1979: Greannond at ofl. 1990) The wims sll this repart are therabure to prowide a

 from this depsevit, and to compare the paratasas fronn Nelly Creek with the known silerete clements.
 the curretaison and deprovitional enyitumbens of Tertiary
 South Nustralian Si. Departorent of Minen ant Energey Rajhat 9i'f. 1-57. Plater \{-7.

- Alley, N. F. (1989) Pretiminary Palynilegital dathog us maconfuras Iman F.y re Jormation. Nelly Creck, Lake Lure Basin. Depr. uli Mones and I:nergy wisumh Ausaralia Repi

Fig. I. Map of southeastern Austalia showing the location of Nelly Cowek and other Midde Encenc plant megafossil Incalties.

Materials and Methods

The Nelly Greek flota is contained in the liyne Fontation located at $29^{\circ} 99^{\prime} \mathrm{S}, 137^{\circ} 98^{\prime} \mathrm{E}$, approximiately 1 km south of the southern shore of Lake Eyre South (Fig. 1). The deposit consists of sands, silts and grey, carbonaceous clays forming a portion of the bed of Nelly Creek. Overlying strata consist of partially silicififed sediments, disaggregated sands, and a saltpan crusi. The deposit is restricted to the stream bed and is only accessible when little or no water is found in Nelly Creek. The fragility of the material, as well as the terrain and gencral inaccessibility have severely limited the amount of material collected to date. The uxtent of the fassiliferous clay horizon suside the stream changel is unknuwn. alhough fossiliferous clays have been intersected in a number of bore holes in the region (N . Alley pers. comm.), The width of the deposir within the stream bed is less than 3 metres, and jis thickness less than I metre.

The high water table and the high salt content of the gnound water result in freshly excavated, moist blochs drying quickly with a salt crust. Mast southern Australian clays containing mumnified leaves can be
disaggregated by inthersion in approximate 7% w/v $\mathrm{H}_{2} \mathrm{O}_{2}$ which has been heated. Salt in the Nelly Creek matrix interferes with diagegregation, and maceration is only successful if the blocks have been either presoaked in distilled water to remove some of the salt, or if a detergent such as Quaternary O is added in the maceration mixture. Approxinnately 40% of the leaves obtained from a given macerate are translucent (Fig. 2, A-C) while other specimens are black/opaque and much more britte: Leaf remains oblained in this fashion are contained in complete cuticular enyelopes and tratment with hot $\mathrm{H}_{2} \mathrm{O}_{2}$ (e.g. Scriven \& Christophel 1990 followed by staining in crystal violet yields clean, easily photographed cuticle specimens. Culicles from this deposit prepare easily and are in a better stake of preservation than thuse of any uther Eocene deposit previously examined by the athors, Two frequent causes of cuticular abrasion ur fragility are alkalinity of the matrix (or ground water) and presence of excessive fungal activity during, or prior to fossilization. Based on the excellent presctpation, both of these factors were either absent or minimal during the burial and subsequent fossilization of the Nelly Creek leaves. All specimens. Iigured in this paper

 $B=$ specmen NCIOI2 and is an example of Parataxon ? (Proleaceac): $C=$ NClO17 and is an example of Parataxon 3 (Myrtaceac) - it is the lolotype of Myrtaciphylum eremeaensis: Scale bars $=1 \mathrm{~cm}$.
have been mounted in phenol glycerin jelly and are housed permanently in the Palacobotany Collection, Botany Department, Adelaide University.
The Middle Eocene age is based on the well preserved pollen flora contained within the sediments (Alley 1989°). As he reported, the Nelly Creck palynoflora correlates with the Lower Nothofagidites asperus Zone of Stover \& Partridge (1973) and with the Proteacidites pachypolus Zone of Harris (1971), and the Nelly Creek flora is correlative with the floras at Maslin Bay and Golden Grove.

Horistics of the locality

Collections made by N. F. Alley in 1986 and by the first and third authors and others in 1988 have been macerated to yield a collection of 220 broadleafed specimens (each representing 50% or more of a leal) and numerous small specimens including Gymnosfoma (Casuarinaceae) twigs, Podocarpaceae twigs, and various unidentified fruits and seeds. Broken leaves and detrital sievings from the macerations have also been kept for dispersed cuticle analysis.

Table 1. Leaf megafossil compasitom of the gliss bloks maceruted from the Nelly Creek chev lens.

Paralaxon Number	Number of Specimens (\% of the Flura)		Afinities
1	172	(64)	UNKNOWN
2	16	(6)	PROTEACEAE
3	15	(5.5)	MYRTACIPHYIIUA
4	3	(1)	AG.ATHIS
5	1	(0.5)	LAURACEAE
6	1	(0.5)	BRACHICHITON
7	2	(1)	PROTEACEAE
8	3	(1)	MONOCOT
4	3	(I)	PROTEACEAE
10	1	(0.5)	UNKNOWN
11	1	(0.5)	UNKNOWN
12	1	(0.5)	PROTEACEAE
13	!	(0.5)	UNKNOWN
14	25	(9)	PODOCARPACEAE
15	14	(5.5)	GYMNOSTOMA SP A
16	10	(3)	GYMNOSTOMIA SP B
TUTAL	264	(100)	

ID

 morcencisco 308 ?
 , A, y^{\prime}, a

 xa, 4 x^{\prime}

The 220 speciately rearnend could be divited into 13 paratixa based on bath muenumurphopogical features and cuticular structures (fable 1), The analysss of the makerial clearly stonved a dommance uf the sample by one paralason (Piratuxon 1. Ejg-2A, 3A-B). The Leaves of Parataxon 1 are generally microphylls with a lew being ctassed us notophyls (wensu Wehb 1959). All are entire margined and noss display apicer with as enteral uyate to elliplicall shape. Fintowing the deseriptive terminolngy of Hickey (1979), primary veration of Paralavon I is pinnate with thenchideden. mums secondary venation and reticulate kentiary veins. Liefreatly, tive onders of vein branching are present.

The curicte of Pariluxen I is hypustomatic widh buncrous stomater difplaying either two or thres sulsididiary cells. Both abasial and adaxiat surfuces are densely conered with simple, cullured trichomes (Fig. 3A-B), This collared appsarame could represent torn tissue from glandulat apices in the trichomes. but the gencral excelleme preservaiton of the cuticley and the large number of specimens sampled does not suppors that hypothesss
It has fout bex a prassithe to determine the attitrition of this duminame paratakor, Several lange Austalian rainforest famities san be easily recognisad ty their cuticular arvecture. Such identifying teatures have been discussed for the Latraceat ($\mathrm{H}_{1} 1 \mathrm{l} 1986$). Proteactare (tange 1470) and Mynaceac (Christophel \& Lys 1986). Theretore it is possible to climinate these famblies in the idenilication process. However, several ofher laryes lamilites inclading the Fabiceds, Euphorbiaceac, Sapindacean and Oleacese all have taxa with leaves appoximaluge the vemation patterm and general macromorophology of the Nesly Creek dommant. It is alsu possible that the fossil could represent is family or lower level taxon which is now extinct, and this. mu reasonable match could the forthoming.
There ary welse orber broadleufed parataxa. Parataxion 2 is al lobed, sertate lcar which, while quipe Parge, is very tritte und has mot heen recovered as it complete leaf (fige, 2B), It usually uccurs a a pinnaicly lebed apectmen with luree apparent lohes. These lahes are mulhesd mear their apex. Secondary senation is hoochitaimmons near the base of cach lobe and semkeranpedodromous near the apex when teeth are nresen. Culicles preparad front these leaves show that the leat as hypustornatic with numerinus tonater on the abaxial surlace passessing a paracytic subsidiary cell arrangement PFig. 3C) This, coupled with the numerous fint-celled trichone buses observed on buh surfices of the leaf (Fig. 35, D) places the paramoion in the Proteaceas: While mure detailed comparisons
will be pequired for final identifelliss, proliminairy
 species al Grestleas.

The ve in pallerm of farataxum 3 shntsing numerines. close spaced. high angle secondary venis lormung a dusinct iutermargital weon suggests that the paratuxion belongs in the Myraceac (Fig. IC. Examination of the aticle-sunfinis this with the presence of diannestic. lis or cupping cells on hoih surfaces (Fig 2F. F). This leaf type is one of the most variable in srac and shape. However, C"hristophel de Lys (lysind demonstrated that such inferspecific vartation is common within the tarmily, They also demonstrated that no ohviuus filliar charicter us suite it characters delined genera withio the lamily, und that the capsular fruitad taxa and herry Erunted laka nfitin numetrically clustened together I wete merphotingically similar). It is inceresting to note that whle the Nelly Cretk Myrlaccae bour some geneml similarity to genera of buth capsabar ic.g Lephastememi) und herry fruiced (c.g. Sizwium) groups in the farmly, there is in close similariy to firederver. The Nelly Creek Myrkerphyllum is fimgatly dexcribed in the followag aectica. Capsulat fruite with likedy Myraceae allinitics have becn recovered froma Nelly Creek makerate (ITy. SC), and will be describal when more material becones available.

The remaning 10 paratuxs are all relatively rane in those samples procested bo Jasc, All but four are represented by unly one specimen. Surne of these remaining parataxa are distinctive: and assignable th fitmilies. und in same caves genters, so atre worth discussing in the owerdl Imaristif conext of the paper. The lirs of these broudenfed taxa is assignable of Agouthis (Arawcariaceac) hased on general forto amt culicular structure (e.g. Hill \& Bigword 1487: Srockey \& Kij 1486).
A axougarisum of all the lewe.s examined 220 hrosdlasted and 49 microphyllous) aun te seen lathable 1. Parataxion 5 (one specimen) can be placed in the L. Auraccar based on the size and mallue ol the diturnal ledees and also the subsidiary cells (Hyg. 4C. D) (Hill 198(6). Patatason 6 (ene specimen) can be assigned th Bruch hrititm (Sternuliacede) based on the hair hases and somatal arrangentent. Bucause the specimen is Tragmenlary (one lobe) very litlle can be suid ins to ith specitio aftinities. Juterestugly, three thl the wher parutas: (two nom-cntire and one entire margin) can he placed in the lyoraceuc. A lithal prarataxom (Parduxnm 8) is represented by three spectuens and ha cileasly a monocolyleden based on the parallel yenaition and the stomital type

[^8]

Fig, 5. Miscellaneous structures from the Nelly Creek and Poote Creek deposits; $A=$ NC1501 twig of Jarataxom 14 (Pidocarpaccae) Irom Nelly Creek K8; B = possible Probaceat infructencence from Poole Creek Silurete depmot X2: $\mathrm{C}=$ NCI500 - leptosperinois Iruit (Mynaceae) from Nelly Creek XIO.

In addition to the 13 broadleated parataxa, three microphyllous parataxa were collected. These include one conifer and two distince species of Gymmosfoma (Cusuarinaccac). Based un macromorphological features, the conifer could the either Cupressaceae or Podocarpaccae (Fig. 5A). However, the cuticle clearly shows that this parataxon helongs to the Podocarpaceae (Fig. 4F),

Approximatcly 20 Iwigs were recovered which were assignable to Gymmostomer. It has been shown that culicle features are dislinclive in extant species of this genus (Dilcher at al. 1990; Scriven \& Christophel 1990), and examination of the Nelly Creck specimens revealed that two species were present. A cuticle of one ol the two Nelly Creek types is shown in Fig. 4E. No fertile material has been recovered thus far.

Although the toxnonomic study of the flora is preliminary, 12 of the 16 parataxa recognised can be assigned to some formal taxonomic level. This means that at least is very generilized comparison may be made with other tloras and with modern vegetation types.

Tavonomic Description

Order: Myitales
Fumily: Myraceac
Genus: Mynaciphyllum Christophel \& Lys. 1986

Myrtaciphyllum eremeaensis sp. now. FIGS 2C. 3E-F

Diugnosis

Architectural features: leaf shape elliptic, ovate or obovate. Size range: $3.5-13 \mathrm{~cm}$ long by $1.5-4 \mathrm{~cm}$ muximum width. Leaf tip acute or attenuate, rarely acuminate. Lecaf base acute, rarely obtuse. Primary venation pinnate, secondary veins straight, brochidodromous with a prominent intermarginal vein,
Cuticular features: leaves hypostomatic, stomatal complex anomocytic, with between three and six subsidiary cells (three or four most common). Anticlinal epidermal cell walls angular - straight to slighty curved. Cells of both upper and lower epidermis equal sized; no striations visible on periclinal walls. Simple hairs infrequent (less than threc per mm^{2}) on both surfaces. Hydathodes rare on lower

[^9](abaxial) cpidermai surface, apparently absent in ablixial Iuppert surtace, I ide selts numerous on troth sulfaces "ith ©-shouned in straight sinus showing no headed thickeninge ar pertruraturns (Fig. 3H-inser). Epidermial cells sursuunding lid cells frequenty undificudimes soniewhat radlal pattent - particularly an upper epidermis.

Hoterope: Specimen NC 1017, housed in the Palaenhnany Collectitum, Boany Depanment, Adelaile Unumersily, anture munmaifed leaf and one curicle slide (NC-C $10 \mid 71$
Tiphe Lamatione Nelly Creer, S.A. (2y 19 'S. 13718 'F. 1
Culteetors D. C. Chistophet
Eifomblagy: from Eiremean, relerring to the large. central Austatian arid vegertion prosince used by 1., A. S. Johnaon and B. Bragen as as distributional rcgion for Anstralian Mynaceae and Prikenceac (e,g. fohnson \& Briges 1988\%. The type locality aceurs within this region
 $\$ 1$ thon buite by 22 mm wide at position of maximum width. Elliptic. symmencal with uthenuake aptex (apex angle $35{ }^{\circ}$) and acule base (579), Secondary vermatse tragghto average angle 37°.

Cuticse typical lire the speries. Stumates located an ahadial turface with three to six subsidiary cells. Averige length of sthmatec 20 um mean $1 / / W=1.0$). Anlicinal cpidernas sell twalls angufar - strigghe to slighty curvel will no thickening or heading. Cells of louth abaxiul and adarial curicles cyual size (mean $20 \backslash 20 \mu \mathrm{~m}$ - Fange $15-30 \mu \mathrm{~m})$. No st ataions visible an periclinal walls Sirtiple harss rare on brath surfaces. 1-arye multicellulas hats trases present, and no bytaturdes visible (in kample prepared trum hutatype:
1.idf celly numerous an buth surtaces with S-shaped to strught sinuspr, showing no headed hickeming or perfhrations. Lipidernal cells surtounding lad cells incquenty modified into nidish pattern. Lid cell size $=20$ ar $20 \mu \mathrm{~m}$. Density af lid cella 12 per 1001×100 $\mu \mathrm{ml}$ section.
 deserited for the gerns sould font be distimguishat in Jeaf arehinertural fearures, amd cuticular chamaters wene used (Chrisuphe! \& Lys 1986). The same siturting applies io Myraciphylum cremearensis, ist the specimenta inctuded overdap both previnusiy desceritod specer in maciomorphological and venation fextures. In cuticular features, however. M. eromouensis is dixtures lion M. unduranm from the reocene al Angláda in that fo hacke the sinuous antuctinal wath of the crudermal cells exhibjed by the fatter spectics. 11. recencmase diflera froni M. denedus/i from Anglesea in having numernus lid cells un bouth surlaces as banpared in is complete lact: of lid-cells in the latrer ywic.

Physiognomic Interpretation

Shristerphel \& (Sreenwoud (|989). in cliscusting liter depensitum in Austratiant raindureqs. denonstrated that thene was a predictable physiognomic signature fir the brest types categorized by Webd (1959). Of the 220 brodedeared specimens recusered frum Nelly Creek. sumples. it is prossible to meatsure (or estimate) the lengith and fllishoum width for approximately 1 (G) Resules sthmed that there were no mesophyits prevent. white approximately 20 券 of the leates 140 者 of haxal were notuphyll:s and sof wh the leaves (60) of of its Laxs) wete mucrophylts. The discrepancy berween apecies and total Jeaves retlects the high frequency of one microphyll parataxum and the attendani ravie of most utice parataxa. This single parataxem dominatisen wat reflected to a lesser degree in the margin typu pencenaye with 88.5 of leaves (75% taxa) entiremargined. If Nelly Creek leaf lenyth, Inaximum widut and position of naximum width are superimposed on the bux dlagram of physiognomene vignatures lrom Christophel \& Greenwood (1988, Fig. 3) it becomes apparent that the Nelly Creck Mora dues nut tesemble Gover Grwe ir Anglesea, having much smaller leaves than either of them. Even remembering the caveat concerning interpretatuon of small sumple numberes. there are several ineresting subjedive observations that cam be coupled with the above physugnomic data. Unlike the other Middle Fixcene depusits. mentioned carlicre there is no eyedence ut drip tips in the Nefly Creek flora. Additionally, very lew germlings rasurn Lange 1976) are present on Jeaf cuacles and ill geverad the leaves from Nelly Creek car be considered tuore stlerophylhous. This includes such te eatores as gencrally wisker cuticles, denser trichonjes, and smatlel. more coriacenus or wondy leaves, Thewe features would lend 10 suggest a driet lise cemainly mone seasomally dey) climate than the other reported Eucene megafasil depusits, ur athematively a much mote depauperate sobil numient level (Beadle 1963).

Conparisun with other Eocene Floras

The first Impression of the Nelly Ereck flore with its total of 10 parataxa is une of clear dominance and low diversity. However, some of this can be most likely auributed to the smalt sample siac and limited portion of the clay Jens sampled. For the better known Austrulan Eocene Dora4, the diversity is higher. For example, the niosi Iharoughly studied clay Ions al Anglesca has over 40 paratakn (Christophel of at 1987), Golden Gruve has wer 30) paratuxa (Barrell \& Christophel 1900) und Mastin Bay is estimated all approxirnatuly 200 paratasa (Christophel \&e Blackhum
 Lutas).

Sputiex Presell	Quandral Ont l.cal Numbers \# (\%)	Quadral TVM Leaf Numbers \# (\%)
Ceruspuedulam		
musistrperulutn	6813351	Sis (24)
- Aevries enflacekarpa	29 (13)	241111
Buckimylamia		
	21 (10)	31185
Pinessocmeryms		
brachnandrus Midscormire	Mrdruramis	33111
sessidilfone	12 (6)	$10.15)$
Chuspiceras muyter	12 (6)	J4 (7)
Beilndunedios uigyandra	4 CH	5123
Ii Dmapyms		
hereceapmel	K (\$1	7 (3.7)
Dissiliurim		
karhenvs	© (1)	7 (13)
Ezentua traterisos	S (2)	8 (4)
Bemilh matemons		
Finumisurderverum		
(oriter) up mov.	2 (1)	1 (0).51
5 rayg ium kurunstas	2111	1. (10.5)
Simpepperar aft. mumposams	2 (1)	i 1.5
(', Mlaphilluer		
nfistowlumem	1 (1.5)	0
Stergume		
eryhemidux	1 (U, 5.	1
Unknown -	2 11.	0
	111.51	n
Unkmown C	$1)$	$\pm 12)$
1/nkwowric	0	7 (1)
Cokimonn $\mathrm{F}^{\text {b }}$	1	1 (0.5)
	$1)$	1 (10.5)
	19	
IXIAAL LEAVES	zat (im)	202 (100)

It is ponswhe to test ithe relithonship betweon siniple size and diversity in both fossil deposits athd extant rainforests whese the dives sity is knuwn. When four rundom samples of 250 leaves each were laken Frum the Anglesea lens mentionct above, the stern diversity was 18 ± 3 DU. Chrastophel unpuhi, data). Similarly, recent collections from an extant Giymmensomas community on a bull ficchare island in Nowh Creek in the Ditinlses icgion of north Queensland showed that. allhough 75 different tree species wecurred un the island, two hitter wamples (ermaining 206)-3(0) leaves) had if diversity of less than 20 species per sample. (Table 2). Thercfore, the 16 preliminary pirdaxa rewnered it Nells Crech could easily represent loxa than half of the expected total diversity for the lissil
flotas and ancenen smaller fraction of the diversity of the lirest firnn which it was derived.

A more acourate estimation of the diversity of at fora may be hatd from a sudy of jus disperaced cuficle (Kuwelt \& Chriktophel 1990). Samples of elay frous Nelly Creck had wil wherage alversity ni 26 cuikle paratara, while similar sized sumple from Golken Grove yicided 25-32 paralaxa (A. Rowell pers. commit. Royest repored that the samplest were dominated by ifagnents in Myriaceat leaves prohathly all belonging to Mirtasiphallum eronuensis.

At higher taxunomic levels. the flora hats many clements commmon is mher Middle Eocene foras. Golden Grove. Angleseas and Nelly Creck contain abundant (greater than 10%) Myratecte leaves. Similady, Anglesea has approximatcly the same procentage of the llora made up al Proteaceate species as does Nelly Creck Gimmosronter is found at Nelly Creck. Anglescs. Vertiga and Manlin Bzy. Brachschimm is known from all of the Encenclocatitics except Nerriga. and Agrehis is fôtud at Maslin Biay and Nutly Creck. One interexting fioristic difference. hrowever is in the representation of the laturaccate. At Maslin Bay, Nerriga, Anglewen and Golden Grove this family is both plentiful and diverse, while at Nelly Creck only one leaf has, been rosuvered. Similasly. the Elacocarpaceate (all. Stonmed/llevecorpus), which is well represented at Anglcsea, Golden Grove and Maslin Bay, has nut been recovered at Nelly Creek.

At the specific Jevel, the differences are more pronounced. The entire stargined microphyil (Paratyxon 1) it Ne)ly Creek is not known frism any wher locality, Paratax on 2 (lobed Protcaceac) in atso athent Jronk all wher forats. The two Nelly Creek Givmmostomer species are taxonomically distinet Iremn the coumman spectes at Anglesea. The Podocarpaceac purataxom it Nelly Creck is different to any reported froun the other localities. Comparisons of the Brarhyohiom ind Juathis species have yee to be nade. The Nelly Creek MIyraciphyllum speckes is definitely different from either species in Anyleses.

While a trijef conmparison of the foliar physiognomy was made th the preceding section, the generalization tan be made that the floristic clenents ai Anglencat, Golden Grove and Maslin Bisy all show more fropical and for high moisture regime firutures. Ihese three Middle Eacene deposits all have leaves with drip tipk, probific. high rank gernlings, and noticeahle quantities of Jeaves if Webb's (1959) nesuphyll size class. in direct comtant io Nelly Creek. Although certain Gondwanic fomilies are shared between Nelly Crech and the other Middte Encene deposits (c.g. Myrtactas:Psoteaccae, Castariosceaz, Podos specsific floristic composition and the physiognomice signature is different for Nelly C'rect.

Cimplanison with Silerete Fhoras

 Shoult. Australla cantentrated on the destriphion and
 (C7ramasn 1937. Lunge 1978. 198?", Ambrose to al W7y: More cacm stidics have nitmpled ti) addrens the imporland aspecta al the atraberaplity of the deposits and it ther comparative firnstice (Giceenword ot at. 1990). A mapor fublem with these silt rete floras las hees the lack of stratidenthic continuity with data strold, und thus the atee has berndificult to determine.
 where a pumble Mincene sige is sugestad carly in the paper and later in lise same paper ant tocenc age is supponfed hathes ucent vadies Greenworl af at. (tiones in the Phate Creek vilcrete localuty amb based on their taxsomone stumposion and on the stratigraphy al hese orys sedimentary units they deturmined that unc Horm whas restricted to the uper Eyto Formation (Midile fincenel and the wher th the Faduma Finmation (Oligu-Miscene) sediments Conoparisun between the Lyme Fimmation silerete flotar Eiwenc) and Jic Velly Creet fossils of puly nothgically determand Midale Fiscenc age therelore lewnew important

Powlinifnay camparisan sbo mon tesull in the definute
 Nolly Creck flotal reprevent the sarme nagelathos. Honetre mare cenmult wasa are present and the cosmpanmen nows certamly nedds on he mande mure Reourvisty whetr additional Nolly (reek maternal is

 it cuanmoly uecus un lemate intrusterences in the fovorer and orly in vegetution remans in the later.
 Ercek. wompectificiy cimnol he determmed, simitarly. athued broneacac leal very similar in Nutly Creeh Putidaton 2 entomenly wesurs in the sideretes. Teve wher patama from Nelly Creck in narow linear.

 widetennuc exsmpeeficity - parricularly withe Nelly Creck Brathedima of mily as sulule lobe. and hence even a rudimentary character, like the number of hotes phenem. cannot be compared.

Withon the sikenete thene alson communly secum at Ratenod, woody Teproductive strusture (Fig. 5 B). Based on sifocte impressions alone, the structure has now been idemiliathe. and has mar besa reconded form any suher publithed fostif pland docality knewn to the :uthurt. However ande specimen of this structure has now heen recovered from al Nelly Creek unsecrate. Altheigh the specimer has itagmened. It can be seed

Mathened, appressal woxdy bracts. More decuited stods is still required, but it would appear shat the structure bus sume similatity to a Protearede conc - c.ge like
 It the uriginal paper describing silente nhaterial. Chapman 19371 ligured a spectmen and latelled it as a "Banksha flowering tip," That specimen, however. dues nor resernble them: iliselussed here.

Some credence is given to the interpretation of the woody reproduetive suctures, as Banksiae Tribe (Protewceac) infructescences by the fact that the silcrets. forms contain serrate foliage atentilied by Grecnwood (a) al. (1990) as Ranksiacfiomis Hill \& Christophel. which could have atfinities with Dovandra Unforturately, no such Bumksiacformis Ieaves late hern reeowered at Nelly Creck.
Odict evidence does not support the cornelatirm. In addition fo the connmon bermasicoldermis leares in the siteretes, other reothed leaves with prossible aflinitiex to ejither the Cunonaceste or flatzarpascac ufe sepusted from there fareenworde atal. 1990 and ark missing finm Nelly Creck. Of particular thtereses, the marow, sumctimes falente Myracese leaves which bear
 ane allor shene from Velly Creck. Finally, the
 Creck has not been sepurtad in the siterele deporits (Ciresnwond et ial 1990).

Physiugnomically, que silereten comain larger leaves than Neilly Cneek has thus far yieldet, and also a highes percernage ol non-entive margined laves. It is reponted (N. F. Alley pers. contum, that hlecks of clay whth latere keaves peclinge inf thern were unearthed on atn earty expalition th the terality. Linfortunately these borks did nol survive iranyport to Adelaide, and inur mone nazat maternal has jot contained such leaves However. this serves io dinstralle the portentially mosare dutributimut haxa within the clay, and alsin highlighes the need for ind litiontal collections. It is eetainly the cusc, lumever, that home of the selermphyllous nature (i) The Nelly Creck leaves is murored in the portion of the Poole Creek sitcrete flertas cinnsaleced ioy (ireenwikn et at. (1990) to be Midalle Forsene.

Dischscinn

The porendial on ille Nelly Creek Itoras doy add ho pur hmader knowledge of Midule Eocenc Australia Dolas has heen mentaned in the introduction. Examination an that flura mowe elesely hatr enuphasidad this imporiance. Firstly, the prchiminary caxomoric assessment has shoun that the florat has a wery different composition to that of the other well known Alaseralisal Midate Euecne madrofersil floras. While smme of the mainor Gondwenic larnilits, meluding Ihé Protsactac.

Mynticede, Cousuapiaceae, Pindocurpiceac and Aranthatraceate are presemf int all floras of that ages the generic und apecific semposition of the floras is differeut. Prysiognomically, the Nefly Creck ltore is different trom the Golden Growe, Anglesert. Mostin Bity und Nerriga flofas, being decidedly sumbler leated and lacking the numeroms reinlorest indicalors (driplips te: shown by these floras. The inland pesition ot the licality is perhaps resprasithe foe the differener in florissics and physiogtumly seen at Nelly Creek, afrd our cmetview of Middle Encene Australia must be rempered accordingly.

The posential imponance of the Nelly Creck kexality forout undersanding ur South Auntratian sikerate flopas mast also be emplasized. While the evidence for positive correlation is proos. the puenence ont certain undsestor lises. such ith the disk-shaped woody reproductive structure and tie hutrow koted Prounacear Jeaf on both deprositis and in tho others., mast bespaliniy be taken as cncourngenent tor further eotlecturts and comparisuns.

Greenwood el all. (tycn) suggented that the axsumed Encene elements of the silcicte floras might well noptescot decuduous nessumal vegetaton types miked With of wetter tiparian element such as thonse associated with monsoonal vine thickets in Uuetustend foday. Such an merpresation tor the Nelty Creek Incality in consistent with borb the known clements if the fins und allses the physingmunice inkerpreation, and anvore thurough search of modern firmest lypes sot thin description will be made it she hope of idestity hag further eltments in die Nelly Crech morat particularly the duminam purataxon.

Achnowledgments

 of Mines and Energy and Dr A. I. Rowett, Bhany Department, Adelaide University, for their asbistuce in the original collertwo of material for this wudy and for crutically reading the manuacript. "The project was funded by ARC (irant A 38931389 ks D. C. Chn intuphel.

Referencts

 Ausisulfo. Nasure 28015721). 387 389.
 itupheat compunems of (wo Austratan 「ernary plant magaforsil depasits. pp. 77-4h th Dumlas. I. G. 战 Chissoplet is ((rids) Procecdinger of the 3 nt
 (A. 7. Printers, Melbsuluc).

 Trans: R. Sine S. Ams, 61.1-15
("hRMMCTPHEL. O. C. (198t) Early Tertiary Protenceac: 'Ihe'
 32. 177146
(1488) Levolutan at the Amatalian fora through the

 Hicheruiged $2,311-114$.

 PF: 1.9-488, let Kitchinge Re (Ed. The Lectloge or
 Soesely of Australia is isufrey Hectly \& Soas Ity Lud. charpitg Nouthen, N. S.W.).

 95-164.

 11. 303-323
 species of Myracese Inout the Eivecone of Vichoria. Ausbralia Ansp. Jo Birs. 34. 049-6n2.

 urorphological comparisons of soms extant unectien, Auter J. Вн. 776.3), 334.355

HARKW, W. K (147b Tertiary straligraphis malynology:
 (Edsy"The oftury Bown an Shutherstcon Austratisi" Sprecial Bulfenn of the Genkgical Surveys of South Australis and Victerial.

 Motealle. C. R. Le I. W. Chalk (EDdes. "Anatomity of the Dicatyledonst Vol I. C K (Clartaden Prens. Oxapd).

 Bra. 26. 837.846

(1)80). Three new Eocence Lacady frant Fandern Ausiriatid, Alass J. Bill 28. J0S 122.
 Tasmania. Acherimed 7. 164-10;
 Now Susuth Wales. Ithid. 10,.327. 351.

 nuthern fansilics - Myrisear, proteutede mond Restonaceas, pp 427 470, Sh Keass, A. (tisf) ticologteal Bingengraphy of Austrolia." (W Juph, Nuthetlinsis)
 in The :msemblage of Russils. Newes dehth Ciopl. Histermed 1/h. 8. $486-490$
\qquad (1976) Fonsil epiphylous "germlings", their lixing cquivalents and their palacohabitat valuc. Neues Jahrb. Gcol. Palfontol. Abh, 151(2), 142 165.
(1978) Carpological evidence for fossil Eucalyptus and other Leptospermeae (subfamily Leptospermoideac of Myrtaceac) from a Tertiary deposit in the South Australian arid zone, Auss, J. Bor 26, 221-233.
(1982) Australian Tertiary Vegetanon. pp. 49 89. In Smith, J. M. B. (Ed.) "A history of Australasiant vegetation." (McGraw Hill, Sydney).
Rowntt, A. 1. \& Christofhel, D. C. (1990) The dispersed cuticle profile of the Eocene Anglesea clay lenses. pp. 115. 122. In Douglas. J, G. \& Christophel, D. C. (Eds) "Proceedings of the 3rd International Organisation of Palaeobotanists Conference." (A-Z Printers, Melbourne).

Scriven. L. J. \& Chris rophel. D. C. (1990) A numerical taxonomic study of extant and fossil Gymnostomat. pp. 137-147. In Douglas, J. G. \& Christophel, D. C. (Eds) "Proceedings of the 3rd International Organisation of Palaeobotanists Conference." (A Z Printers, Melbourne).

Stockey, R. A. \& Ko, H. (1986) Cuticle micromorphology of Araucaria de Jussleu. Bot. Gaze 147, 508-548.

Stower, L. E., \& Partriven, A. D. (1973) Tertiary and I.ate Cretaceous spores and pollen from the Gippsland Basin of southeastern Australia. Proc: R. Soc. Vic. 85, 237-286.

Wrise, L. J. (1959) A physiognomic classification of Australian rainforests, J. Erol. 47, 551:570.

THE RESPONSE OF SOIL NEMATODES TO ENVIRONMENT STIMULII IN ARID SOUTH AUSTRALIA

by JACQUELINE MARY NOBBS

Summary

BRIEF COMMUNICATION

TIIE RESPONSE OF SOIL NEMATODES TO ENVIRONMENTAI. STIMULII IN ARID SOUTH AUSTRALIA

Nemalode dre kónown to foom an anhydrobioticecoiled state in response to desicamion in smil'. From investipationt of nemalonder oncourring in arid areas rMojave beson. Nevada.
 mpreseoted by "coding". The uctivity of nenatudes can then be related wo form, with "revilel" nematode beloge indetive
 predminaly study sas set up to insertigate if "torling" sas is gond indicalur of nemarode actuyty within arid soils, Also under investgation was the oweratll effect of cavirommenal stimulif on the diflerent nematode trophac groups.
A site Lutated on Plumbago Sistion pastoral preperty incar Yunti, Sruth Austratial) was betected for sampling The vegeation somsised ot a low Chennpod shrubland donimated by Arripher besturiu. Sond saytiples i $\pi-10$) were laken every wer monits from August 1985 (M2) wotwer 148n (Mif) to a depth of 25 cm . Nemarodes, wure extracted from sol ml of soul per sasmple.
The mondified Baermann's tumel technique ${ }^{3}$ wat used is exirset the diftercul neazathote trophic groups. Ather extraction (taer a thate day period), the nematextes wele heal hilled and fixed in Ine dirmatia (40 g fonnaddehydel The differmit troptike yroups swere then counted. The Irophus yroups coatistes at:- omanveres (mwinly dorylaina), tmuterial feaders (muinly rhandituds), fungal feeders (omainly aphelencho and

 19(s) Sididqi, 1963). The extraction efficiency was tound fo tre atoul 65 察 and the counts were adjested atcurdingly.

Anhydrobiotic ("coiled") and active ("hraight") nentatoder were extractod Lising the Hot Furnalim method". The methend involved killing the nematndes in the sail with hos formation

 (It 759/V cap water). The nemathodst were then separated inen "tailed" und "struiphr" forms and counted. The extraction etriciency of the Hot Fiomalis method was found th the thout 75 㐌 and the counts were adjusted accordingly Due ke lems of marerial it hats not pussible to extract nenatodets imm the August 1985 (M2) and Fchruary 1986 (M8) sumples uning the Hot Firmatin method. The Hot Formaten methoul lended Lit exurate nutre nemathodes than the mediticed Bdemann funnel
 diccelly from soil while the moditied Ratemanis funnel method relied un movement of nematodes into a collocting dish.

As with inher arid tepinas ${ }^{5}$, bacterial fieders were the most abundane treuphic group found in the samples thoughout the sadripling pertod (Fige. 18. The otiger trephic gruups wecured in much lower numbers. Itrom Auguat I9wse (M2) Io April $1986(\mathrm{MW})$ the wal mean number of nematoies exfraced was telatively conshat, averaging amount $3(x) 301$. Over the same period lise incinn nuriber of" "eoned" nemutodes With much geater than "uraight" nemaiodes (Fig. 2). tluctuating batween 300 (M4) and 600 (N6) with the nean number of "atright" nematoales venainuy farly constant thmughout.

Fig. 1: Mearn mumbers of omnivones (0), bacterial feeders [D), fungal feeders (Δ). plant parasites (∇) and totsil nematodes (i) extracted from 50 ml of soil ($n=10$) using the mendifient Baermannos funnel lechnique from samples collected every swas months trom Augusi 1985 (2) wo October 1986 116 \%.

Fig. 2. Mean дumbers of "coiled" (0); "traight" (■) and lotal nematodes (4) extracted from 50 mil of sin) $(n=10)$ using the Hent formalin methux from sumples collected every two months from October 1985 (4) LI) Oetwher 1986 (16) exclucting Februairy 1986 (8),

Huweser. from Jume 1986 (M12) to Coteber 1986 (M16) there whan increase in the mextr mumber of ill fomphic groups (execpt plant purnsites), with the basterial leeden showing the greatest increake. During the sanse periged thene was also a lante nucrease in the medn number of "straight" senvatules with ar harp tecrase in numbers of "chiled" nematodes (M12) Which remamed fairly censtant atterwards. The change in fiom Wh the manalontes wat, therefore closely correlated witt the |ncheime in numbers of nematodes, particularly the hacterat feeders- The change in form and increase in numbers of
 whin the wat ecorsystem.

Rumball may have heen the Irigget for the ingreased detivirs of the nematioder, The regoon umber staty usually has the

Fine. 7. Monlhby rainfall (mun) recorded al Plumbago Station homevead from July 1985 (1) to Ditoher 1986 (16).
highest rainfall and towest temperatures during the mondhe April ho Oetionser anal the dricst and hothest months Iman Sowember us March. Fgg, 3 shows the ruinfill rucorded oven
 If kn from the sample siste). Over the firm 10 mondes of sampling there were large fluenations in ranfill white the firtai sir months had is more eyer disuntoution, The liwal month Thad the highest ratifall of the sampling periond. The more
 was marched with increased numbers of nemmotes and incriaved numbers of "straight" ar active nenutoden.

In uther arid ureas the ackivity of the nemathedes was liourd to be extribited as a "pulse" phemomeron", with ath teny irmmentol trigger" (i,c. țainfall) causing rupid mereane in nunbers foblewed by is rapid decreane when the saih drich nut. The bucterial feeders were paricularly well adapred m a cyele of delydration and rehydration. The rapid rexponse of the food sumbe (bacteria) io appropriate envirommental stimulio and the shont life cycle of the nenatodes fin same cases only 0.7 days) allows bacserial teeders he ifrerease in numbers when conditiong are ravourable. In this suidy, the c!nvironmental "trigger" was found to be raintall.

Nutrient hurnewer in soils or wher arid ftetont were fond To he influerved by nematodes as consumers of hacteria and yeast (during the tirst stages hf decompositions) and fungi (as decomporition advansedf ${ }^{7-4}$. Further stidies on the roike of nernatordes, in nutrient turnower may he helptul when lowshlue at the beology of arid regun with and may be usclul in ascesintig the impate of overgsazing and mintny tha swif ealogy. Nemamdes could be used la monitor jevels on microbial activity withit the sain as activily of nematoders can be measured through extraction of "curiled" and "braight" formes, which could tellect activity of the found serurec.
${ }^{\prime}$ Demeure, Y. Freckman, D. W, \& Van Gundy, S. D. (1974) Joutrad of Nematnlongy $11,189195$.
-Fieckman. D. W. \& Mankati, K. (1986) Pedobiviogial 29. 124-42.
Sthinder A. F. (1961) Plant Discase Reparter 45, 747-748.
${ }^{4}$ Freckman, D. W., Kaplarr, D. T. \& Van Gundy, S. D. (1977) Juurnal ne Nemarnkgy 4. 176-181.
${ }^{3}$ Frechman, D. D. \& Mankau, R. (1977) Foology Bulletin (Sexekhochne 25, 511-51\%.
${ }^{\text {br }}$ Whitford, W. C., Fireckman, D. W, Elkins, N. Z.s, Parker, L. W. Parmales, R., Phillips, I. \& Tucker ${ }_{9}$ S. (1980) Soil Biology and Binchemistry 13, 417-425.

Whitford, W. G., Frecknan. D. W., Santos. P. F., Elkins. N. J. Marker L. W. (1982) in D. W Freckman (Ed.) "Nemdodes in suil ectrystems" 98 1|6.
"Santor, P. F. Phillips, J. \& Whitford, W. G. (1981) Exolayy 62.664 -664.
${ }^{9}$ Whitford, W_{i} Go, Freckinan, D. W., Parker, L. W. Schacfer, D., Santos, I2 F. \& Steinberger, Y. (1982), Proc
 Neure (Belgium) 4y-59.

CYSTICERI OF TAENIA HYDATIGENA (CESTODA: TAENIIDAE) IN AN ENTELLUS LANGUR (PRESBYTIS ENTELLUS)

by Michael O'CaLlaghan

Summary

BRIEF COMMUNICATION

CYSTICERCI OF RAENIA HYDATIGENA (CESTODA: TAENIDDAE) IN AN ENTELLUS LANGUR (PRESBYTIS ENTELLLUS)

In May 1982 in adult temale Entellus dangur monke (Preshovic entelles) dicd at the Adelaide \%oologhal Gardens. following rupture of the uterus in the terminal stages of pregnancy. Durng aulopsy. thres large cyst $1.7-3.1 \mathrm{~cm}$ in diameter were found altached to the greater omenum. Each syat conained a single cestove cysticereny with a large bladder 1.6 cm in dianter (Fig. II.

The fostella were dissected from each seokex and mounled en fine in Detaures neditum lor examination of the rostelar hekhs, Liech rostellum was armed with if darge hooks 183-189 $\mu \mathrm{m}$ (mcant $188 \mu \mathrm{~m}$) in length and fourteen whall hemks 129-144 mm (mean 132 pm) in length. Imorphologically resembling those of Faenia hatarigent (tigs 2, 3). In addition the size of the hooks conformed fo meaturements of adult specimens of the same species fron dogs in Austrolia ${ }^{2}$ and it wits concluded that the cysitiserei recovered trom the monkey are meacestodes of Tarwh / welwigenes. The ecoleces have heen leposited in the Australian Helmintholugical Cullection. South Ausiraliam Museum (AHC.S 42153)

The metacestude ol T : hudugena has an exceptionally wide host ranges principally in antiodactyls but occasionally also in perissudactyls. endents, lagenorphe, marsupials und primates ${ }^{84}$. Abuldase (1964) listed species of Cerempinhious, Macacus, Papio and man as hoss of T. medarigener, however his and subsequent reports of this parasite in primates ${ }^{50}$ do nul record Prestovis as a host. Cysts from Mecercus comomolgus in Vienam iccently dewcrited us \%\% suigomi appear to be similar to $\%$. hydatisena?. Recenty, soenuri morphologically simidar to T. multieps or T, seriolis were reported in Preshais obscura raised in captivity in a number of 250 m in the U.S.A. ${ }^{6}$
The more familiar langurs belonging in the genus Presthris are from India arral Sowtheat Asia. P, enellus the Hanuman, Sucred or Entellus langur) the largese of the longurs, is mative to India, Sri Lanka and Nepal and is krown to live close to towns and villares. The langur examined at the Adelaide Zoo Wats imported from Sri Lanka ten years prier to its death and may have acquired the infectien cither here or overseas. There way no pathological reaction associated with the presence of the parasite. This finding constituter a now hoof record for T. hadatigena.

Figs 1-3.1. Cyat of Tacmu hodatigem lrom the greater omentum ul Predoris cmellus: 2 \& 3. rostellar hurak (Bar scale $=0.10 \mathrm{mmi}$.

[^10]${ }^{4}$ Presidente P. J. A. (1979) Int. J. Pirasitol. 9, 351-355.

"Kuntze, R.E. \& Myets, Bo J. (1967) Primates 8, 83-88. ${ }^{7}$ Le Van Hoad. (1964) Bull. Soc. Path, Fxol, 57. 23-27. "Price. T. C., Dresden, M. H., Alvarado, T, Flanagan, J. \& Chappell, C. L. Am. J. lırp. Med. Hyg 40 (5). $514-520$

Transactions of the

Royal Society of South Australia

Incorporated

Contents

Goonan, P. M., Beer, J. A., Thompson, T. B. \& Suter, P. J. Wetlands of the River Murray flood plain, South Australia. 1. Preliminary survey of the biota and physico-chemistry of ten wetlands from Chowilla to Mannum. 81
Rowett, A. I. Dispersed cuticular floras of South Australian Tertiary coalfields, part 2: Lochiel 95
Beveridge, I. \& Durette-Desset, M.-C. The morphology of Nippostrongylus magnus, a parasite of native Australian rodents 109
Davies, M. Early development of Limnodynastes terraereginae and L. fletcheri (Anura; Leptodactylidae: Limnodynastinae) 117
Beveridge, I. \& Durette-Desset, M.-C. A new species of trichostrongyloid nematode, Odilia bainae, from a native rodent, Rattus fuscipes (Waterhouse) 123
Brief Communications:
Green, J. D. \& Shiel, R. J. A dissection method for determining the gut contents of calanoid copepods 129
Boulton, A. J. "Rollers" and "Carriers": Field observations of carrion removal by trogid beetles (Omorgus strzeleckensis) in arid north-eastern South Australia 133
Davies, M. \& Watson, G. F. Redefinition of Uperoleia littlejohni Davies, McDonald \& Corben (Anura: Leptodactylidae: Myobatrachinae) 137
Greenslade, P. New records of Mesaphorura (Collembola: Onychiuridae, Tullbergiinae) species from Australia, Macquarie Island and the Antarctic- 141
Read, J. L. Ecological and biological notes on the rare plant Hemichroa mesembryanthema F. Muell (Armaranthaceae) = 145
Morley, T. P. Eggs and incubation in the Australian lizards Amphibolurus nobbi and Eremiascincus richardsoni 147
Johnston, G. R. Relictual population of Tiliqua scincoides (Sauria: Scincidae) in north- western South Australia- 149
Edmonds, S. J. A note on Phascolosoma turnerae Rice (Sipuncula)- 151
Tyler, M. J., Aslin, F. W. \& Bryars, S. Early Holocene frogs from the Tantanoola Cave, South Australia 153

TRANSACTIONS OF THE

ROYAL SOCIETY OF SOUTH AUSTRALIA

INCORPORATED

VOL. IIG. PART 3

WETLANDS OF THE RIVER MURRAY FLOOD PLAIN, SOUTH AUSTRALIA.
 1. PRELIMINARY SURVEY OF THE BIOTA AND PHYSICO-CHEMISTRY OF TEN WETLANDS FROM CHOWILLA TO MANNUM.

by P. M. Goonan, J. A. Beer, T. B. Thompson \& P. J. Suter*

Abstract

Summary Qualitative data were collected on the water chemistry and aquatic invertebrate fauna from ten wetlands between Chowilla and Mannum on the River Murray flood plain in South Australia. Sites were separated into two main groups that corresponded to freshwater wetlands connected to the River Murray, and wetlands with TDS concentrations $>1000 \mathrm{mgL}^{-1}$ that were isolated from the main channel. Wetlands with TDS concentrations $<1000 \mathrm{mgL}^{-1}$ were generally low in nutrients, and characterized by the dipteran Cladotanytarsus sp. and the shrimp Paratya australiensis. The more saline wetlands were high in nutrients and characterized by the presence of dipterans such as Proclaims sp., Ephydridac and Culicidae. Phosphate and nitrogen concentrations from most sites exceeded critical levels for eutrophication. Nutrient enrichment was indicated by the high chlorophyll concentrations recorded from most wetlands. These results indicate that nutrient levels entering the flood plain need to be reduced to minimize the risk of nuisance algal blooms during low flow conditions. KEY WORDS: Wetlands, River Murray, biota, aquatic invertebrates, physico-chemistry. nutrients, salinity, multivariate analysis, South Australia

HETLANDS OF THE RIVER MURRAY FLOOD PLAIN, SOUTH AUSTRALIA. 1. PRELIMINARY SURVEY OF THE BIOTA AND PHYSICO-CHEMISTRY OF TEN WETLANDS FROM CHOWILLA TO MANNUM.

by P. M. Goonan, J. A. Beer, T. B, Thompson \& P J. Sutra*

Abstract

summary Chonnan. P. M. Beler.J A , Thimpams. T. B. \& Sulek. P. J. (1992) Wellands of he kiver Murcay thont phan. Trans. R. Suc. S. Ausi $116(3)$, K1-04, 30 Noweriber. 1992, Chowilla and Mannum on the River Murvay thoad plath en Seuth Austratia. Sices were separated intor two main grougn then surrepponded te| Ireshwater wetlands connected to the Rever Murray, and wetlands will TDS enncentrations >10 to mgL' that were isolated fonst the anain ctimencl. Weliands with TDS cencentratons: Shimp Pumpea cusinalichsis. The more saline wetlands were high in murients and tharackerized thy the presence of dipterans such: an Prectoctius $s p$. Iphydridae and Culicidne. Phosphate and nitrogen comentrations from most sites exceeded tritcal levels for cutmphication. Nurrient hlooms during low flow comblions.

 analysio. South Australia

Introduction

Over 1600 wetiands are disribured throughout the River Murtay fluod plaitn, fower lakes and Coromg in Somth Austrulia (Pressey 1986). Whereas many of these were included in a recent survery of River Murray weilande (Thmmpon (1986), little has been published on their biota and physen-chemistry. Thempson (1986) provides some information or the water quality and dominant flora and fauna of the 248 wellands included in bis suedy, Gedtes (1984a \& 5 , 1988) gives a detailed account of the limbology of Lake Alexandrina ewer several years, whereas O'Malley \& Sheldon (1990) describe the results of a survey of the bolesical communities of the Chowille flowd plain, Birds have been described from sone areas (Tubbe 1428 : Schexde \& Galover 1955; Mack 1961; Cone 1973; Simpson 1973a) and Simpsons (19736) discussed the distribution of athe mammals. reptiles and amphihians hetween Mildura and Renmark. Lloyd \& Walker (lysb) reported the distribution and conservation status of the small fresthwater Jish throughoul the lower River Murray nood plaim.

This paper preserits the results of is preliminary survey conductal during May-June (199) on the aquatic inveriebrate assemblages and physica-chemistry of 10 wetlands distributed from Chowilla to Mannum. The

[^11]uinse of the survey were in describe and compane the limnology of thond plain wellands whith different bydrology and genmophology, including anabranches. swamps and fakes. The cmphasis of the work wets to study the biota and water chemisiry of regulated wctlands.. focussing on evaporation basins. This survey is patt of a larger study which ains to of sinerase a comprchensive baseline and coniparative daabase on the squatic hiota and physico-chemistry of selected wetlands throughout the River Murray flood plain in South Ausiralia, and (2) investigate the effects of various changes in the hydrological management of regulated wellands.

Materials and Methods

Selection of stuch simes

The Jneation of alidy silte wass bascd on those previously Investigated by Thernspom (1956) and Liend a al. (1984) to cruble sume cesmparison with the avilable data from previous surveys. Additional sites Were surmpled liven sunc wetands to examine between-site variation.
Pilby Creck was the only welland inclueded in this survey not previously sudied by the ahowe workers, Sites were located on cither side of a causeway which restricted water flow, enabling cisuparison between two sites in close pruximity with different hydrology.

Hetands sumered

The wetlands sampled in this study were distributed from the Chewifla tlowd plain to norm of Marnurn.
 Absemdia during May-dere 190(!

Site Swhy	Wethand	Acrinym	L_6\%ation		Area (1as)	Hydrology and ficomorphology
1.2	Pilly Creck	PILC	35"59'5	$1405.3 / \mathrm{P}$	9	Permanent flood plain anabranch Intermittent hood plain swamp Pernakerat regulared thons plain lake Permanem regulisted lound plaiz anshroulch
!	Cliover Lathe	Cl, O1	34.789	$140^{6} 96 / \mathrm{C}$	140	
.	Lake Merreli	LAMER	34 "01's	340.45%	390	
6. 2	万osher Ck Exaps Buhu	DISC	341 +'S	$1411^{\circ}+2^{\circ} \mathrm{N}$	200	
810	Kotarapku: Evap, Risuit	KAlS, KATN	34065	$140^{2} 3 \mathrm{~s}^{\prime} \mathrm{E}$	42,36	Complex of permanem regulated tiood plain takes
11	Berce Livap. Basm	BERB	38.9818 .5	$14903+18 \%$	325	Permaneral regulated food plan 4Whnty
17.15	Ratmea laghen	KAML	$34 \times 10 \cdot 5$	$139.55^{\circ} \mathrm{E}$	41	Permanent regulated firax plath lake
20. 71	Devon Davis North	DEVD	3438.5	$13936^{\prime} \mathrm{E}$	120	Pefuament trand ptain lake
14	Whygula tagon	WONT.	$34^{\circ} 43^{5}$	$13933{ }^{\circ} \mathrm{E}$	120	Pembanent Heod plaiss swarnp
$15-18$	Late Carjet	ICAR	34*52!S	$13931{ }^{\text {c }}$ E	330	Permantent food plain swarrp

Detants of the location, area. hydrology and geomorphology are given in Table 1.

The location of sampling sires is shown in Fige 1 . Specific: site: conodinates and descriptons of the dominant vegetatinn are given in Appendix 1, Each site wan desigesated with an acronym and number.

Cibllection curne cunculates of sumples

At cach site. the sampling atra comsistal of a 20 in scetion of shoretine represencative of that part of the weiland. Sites were Nampled in May-June 19yo dunitg a rise in the River Murray hydrngraph. with in flow of ahour 30000 MI /ID reciurded at the S: Aust. botder IUnpubl, Murroy-Darling Basin Commission recorda)

Fieh meawurcaconts made at each site were pH $(\mathrm{ICl}$ 211 porable pH meter), conductivity (ICI 303 ATC comduchvity meter), watur temperature, dismolved anggen (YSi moudel 54 dissolven oxygen merer), and Secehi dise transparency. Sufface water samples were ciallected and stored in ait trecen artight butles on ice betons laberatory analyses for nutriens pritrogen; phosptorus and carbon fractions), pesticides. and misur ions (Ciat Me ${ }^{+-} \mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{CO}^{2}, \mathrm{HCO}^{-}$ SO_{8}^{*} - and $\mathrm{Cl}^{\circ} \%$

Anslyses of NH_{3} : oxidised ritrogen $\left(\mathrm{NO}_{3}-\mathrm{N}\right)$. rifanolved reactive phosplotus (DRP), $\mathrm{SO}_{4}{ }^{3}$. unit Cl were made using a Skalar automated flow analyser. while $11 \mathrm{COO}_{1}^{-}, \mathrm{CO}_{1}{ }^{2}$ and alkalinity were determined

[^12]using litration idginst it HCL . standard solution. Total Kjcldahl ritrogen (TKN) and total phosphorus (TP) analyses were made with a Technicon inulodnalyser und specirophotonicter. Cations were anslysed using a Lablest mudel $\mathrm{V}-25$ inductively corrpled plakina emission spectrometer fitted with a polychromator Dissolved and total urganic carbon were meaxured with a flame ionization detector. Pesticides were extracted in herane and analysed using a Varian $33(0)$ gas chnomatngraph. All procedures are descrihed in detail in two methods nemuals produced by the E. \& W.b. Department. Sonth Austrabia ${ }^{\text {T }}$

Aquatic invertebrates were sampled from the litoral zone at cach site using a 30 s swecp sample with a $200 \mu \mathrm{~m}$ mesh dip net. Samples were preserved in 5% formadin and rectirned to the laboratory for sorting and idenification. Invertebrater were identitied is the lowest practical taxononuic level using CS1RO (1970). Smith \& Kershaw (1979), Wiltiams (1980as), Mathow's (1980), 1982), Smirnov \& Timms (1983), Wiederhalm (1983). Mersitt \& Cunmins (1984). Hawking (19863). ard several unpublished keys preprered by one of us (PS). A voucher collection is maintained for all raw recorded fomm the River Muray fleod plain in South Australia ut the E. \& W.S. Dept, State Watcr Laboratory, Rolivar. S. Aust.

Whter samples lior analysik, of chlorophyll were processed it the field by passing a known volume of water shriugh a $1.2 \mu \mathrm{~m}$ Whatman GF/C Filfer dish. The GF/C filter was placed in a centrifuge tubs sonlarining 95% tithanent. whech was then wratpect in allinil anms stored on ice, Samples, were centrifuged innd then analysed in the laboratory using a Pye SP8-100 ultavarelet spectrophotommeter at wavelengths of 750.

Fig. 1. Map of the River Murray flood plain in South Australia with site locations and numbers.
were calculated using the equations developed by Wintermans \& de Mots (1965).

Collections of macrophytes and riparian vegetation were made at each site (see Appendix 1), and representative samples retained as voucher specimens. Identifications were made according to Aston (1973) and Jessop \& Tuelken (1986).

Data analyses

All biological analyses were based on the presence/absence of the aquatic invertebrates recorded
from the 20 sites sampled. The sampling technique used in the survey resulted in the collection of many semi-aquatic and terrestrial species that were associated with vegetation in the littoral zone. These were omitted from the analyses.

Sorensen's index of community similarity (cf. Hellawell 1978) was used to group the sites on the basis of the composition of the fauna at each site. Clustering of sites was summarized in a dendrogram showing the degree of similarity in aquatic invertebrate composition among sites.

${ }^{\text {a }}$ Analysis of major wons not conducted for BISCn. K.ATS9. RAMLI2. RAMLIH. ICAR17 and LCARI8.
Whysico-chemical icatures not measured at sites 17 and 18 from Lake Carles.

Site	Water Depth (m)	pH	Comducturity ($\mu \mathrm{S}$ col ${ }^{1}$)	TDS	Disuolved O,	Succhi Dese (cm)	Water Temp. (${ }^{\circ} \mathrm{C}$)	Ammonia	$\mathrm{NO})_{i}-\mathrm{N}$	TKN	DRP	Total ${ }^{P}$	litul Hardness	Alkulinity	DOC	TOC
PILC 1	0.45	7.1	7870	4+10)	11.0	35	14.0	0.85	0.01	3.43	0.09	0.44	1181	112	-	
PILC 2	>1.00	7.6	501	280	9.8	40	16.0	0.07	$<0,01$	1.35	0.04	(1.18	109	95		-
CLOL 3	17.08	8.8	4560	2500	9.7	*	15.5	<0.01	<0,01	6.65	0.06	0.91	420	434	63.0	81
I.MER 4	0.65	8.0	421	230	9.8	18	15.0	<0.01	0.01	1.10	0.04	0.30	81	71	5.1	9
DISC 6	0.62	7.9	120)	660	9.6	24	15.5	. 0.05	0.01	0.89	0.04	0.18			5.2	8
DISC 7	0.80	8.8	42 Kl	2410	9.8	76.	14.5	0.01	<0.01	0.95	0.011	0.69	477	71	5:8	8
KATS 8	070	9.0	3430	1906	16.2	22	14.5	<0.01	(1.02	3.20	0.03	0.22	366	462	16.0	32
KATS 9	0.95	9.1	3430	1900	4.8	20	15.0	<0.01	<0.01	2.90	0.01	0.20			$1 \ddagger .2$	36
KATN 10	0.75	9,2	3980	2200	10.0	26	15.0	<0.01	<0.91	2.07	0.02	0.13	372	52.5	12.1	29
BERB II	1). 05	8.8	39800	25000	7.6	*	17.0	0.16	0.01	9.68	0.65	0.51	1989	379	91.10	108
RAML 12	0.37	7.7	1250	690	9.2	18.	17.5	0.09	0.07	1.33	0.02	0.32	-		5.4	9
RAML 13	0.30	8.2	1200×8	6960	8.4	26	18.6	0.09	0.01	3.93	0.02	0.31	978	299	28.0	29
RAML 14	0.38	8.1	12300	7100	4.7	16	17.5	0.04	0.01	4.69	0.04	0.42	-	-	25.0	31
RAML 15	0.30	9.0	11700	6700	9.5	*	12.5	0,43	0.02	4.48	0.08	0.30	1008	29\%	19.6	24
LCAR 16 ${ }^{\text {a }}$	1.10	8.1	504	280	10.0	26	13.0	0.01	0.01	0.80	0.02	0.10	95	71	5.9	8
WONL 19	0.45	9.0	1260	700	9.8	28	9.9	0.01	<0.01	1.21	0.01	0.08	183	123	10.6	12
DEVD 20	0.43	7.7	6.55	360		20	13.2	0.07	0.09	1.07	0.02	0.28	125	90	6.3	10
DEVD 3	0.55	8.0	826	450)	-	15.	13.5	0.01	0.02	1.83	0.01	0.26	145	98	8.8	14

l'be difference in aquatice invertebrate species composition within and among wetlands was analysed by multivariate procedures. Relalionshiph among sites were examined by the ordination procedure of detrended correspondence analysis (Hill \& Cisuch 1980: Gauch 1982), using the progrun DECORANA (Hill 1979a). Salinity measurements uere superimposed onto the DECCORANA ploty to reves relatimshipy hetween cummunity composition and salinity (cf. Williams et d. 1990), The bierarchical classification procedure of iwn-way indicatar species analysis (Gauch \& Whitaker 1981; Gauch 1982), using The progran TWINSPAN (Hill 1474 b), was carried nul to group simular sites together in clusters. Indicath species. nofer to the preferential taxa used by TWINSPAN 10 distinguish the clusters. The TWINSPAN program was run using the defauli options.

The data generated by Thompson (1986) and Lloyd er ar. (1984) were not included in stitistical comparisons with the results from the present survey due in tifferences in the meithods and otjectives off eath study. Only general trends in the data from atusic earlier stuhties are discursed.

Renults

Harer diemisp

The physice-chemical data are given in Tahles 2 and A As the pretmenary survey consisted or ornly one sample per wite, tio data are available concerning fluctuations of the various physico-chemical parameers with season and changes in water level. Consequently. only major tends in the data will be highlighted as this slage-

tone concentuation

Williams (1967) ctassified any water with u concentratiofi of totat dasholved solids (TDS) greater than $3000 \mathrm{mg}\left[.^{4}\right.$ " as "saline" Based on this definition, Berri Eyap, Basin, Ramco Lagoon and Pilby Ck (PILCI) were saline when sampled. Oher wetlands to spprnach this level included Clower Lake. Disher Ck Erap. Basin (DISC7), and Kararapko Evap. Basia. Conventing iunics sencentrations anto ionic exuivalents, waters 1 inm these wetlands were dominated ty sodium athl chlorde. and had unic atuichiurnetries similat in that or sewwater i.i.e. $\mathrm{Na}^{+}>\mathrm{Mg}^{2+}>\mathrm{Ca}^{2+}>\mathrm{K}-$ $\mathrm{Cl}>\mathrm{SO}_{2}^{2}>\mathrm{HCO}_{1}$), the only deyiations in iond trends among this group of wellands were Kalarapkn Evap. Basia and Clover Lake. which had anionte stoichomerries similar toithe nore freshwater group.
The semaining wetlands had TDS concentrations of less than 1000 gigL- ${ }^{-1}$. Sowlium and chloride were atso
the dominant sons. although they represented smaller fractions of the total cations and amions respectively. Cumbic stoichionetry wats the warne as the meres satine wellands, but the anionic stoichiometry differed in that biecrobotate domillated sulphate inn (i.e. Cl $>$ $\mathrm{HCO}_{5}^{-}>\mathrm{SO}_{4}^{2 \cdot}>\mathrm{CO}_{8}^{2-}$.
lonic composition
An inverse relationship was evident between sodium ion and calcium/magnestum ions, with sodium lsecoming more duminant with jncreasing TDS, Potassiun ions represented very low fractions of the total cations from all welainds. The proportion of chloride to total anions increased with increasing TDS, white the proportion of bicarbondate decreased. Sulphate contrihuted $10-24 \%$ of the total anions, with the higher proportions generally being tecorded from the more caline wetlands. Carthonate inns were detected from the nore atkaline wedands ($\mathrm{pH} 8.8-9.4$), iefleeting the efiect of pH on the dissolved CO_{2} equilitrium

Nutriemis

Ammonia was presers in higher concenrations than $\mathrm{NO}_{3}-\mathrm{N}$ at most sites. stithough at same the evnentralions af boin forms of diswlved nirrogen were negligeble (i.e \llunt mgL. '). The hughes NH_{3} Jevels were roconded $f \mathrm{~mm}$ three of the more saline sites (PILCL RAMLIS, BERBII). The hyghest $\mathrm{NO}_{3}-\mathrm{N}$ cuncentation Was reconded at DEVDZU which also had a high NH_{3} concentration conpared with the other trechwater siles. TKN values were generally higher at the more saline sites although low concentrations, were recisded firsim Disher Ck Fivap Basin.
DRP levels were telatively bow al all welland sites. hus were highest at the more saline sites nf PILC. KAMLI5, CLOL3 and BERBII. Tolal phosphorus cincentratums showed as similat rend as DRP and TKN levels, with the mone saline wetlands generally lasving bigher concentrations of phosphorus than the jreshwater wedands.
Nittogen was mostly present as nrganic formu at all weland sites. 11 is difficuts to conmem on phosiphores. lowneyer, as unty the dixsolved fraction of the total neactive phosphorus was measured during this study. Despite that the DRP resulth indicate that inorganic phasphorus was a significant cometrikutor in antal phosphorus for RAMLIS. DISC6, and PILC?
The sites DEVDII, KATS, KATN, DISC7, LCAR and WONL were depleted of both nitroger and phosphorus in dissolved inorganie torms. The laner three sites also had the lowest TKN and TP concentrations recorded during the survey.

Ofganic Eartion

Concentrations of total organic carbon (TOC) and dissoteed organic carbon (DOC) were highess al the

TABI.E 4. Chlorophth eoncentrations recorded from 17 sites from Chowilla to Mannum in Snuth Australia. (Units in $\mu \mathrm{gL}$ ')

Site	Chlorophylla	Chlorophyll \mathbf{b}	Site No.	Chlorophyll \mathfrak{a}	Chlorophyll b
PILC 1	114.8	31.4	BERB 11	60.0	22.8
PILC 2	17.2	10.8	RAML 12	32.3	7.0
CLOL 3	42.1	7.6	RAML 13	9.8	5.9
LMER 4	27.7	4.1	RAML 14	99.6	37.1
DISC 6	17.1	16.9	RAML 15	255.8	1.2
DISC 7	37.2	9.6	LCAR 16	83.8	
KATS 8	39.1	15.8	DEVD 20	10.8	0.2
KATS 9	69.3	9.4	DEVD 21	3.5	2.5
KATN 10	44.1				0.6

"Dala not available for LCARI7, LCAR18 and WONL 19.

TABLE 5. Occurrence of aquaric invervebrate faxa from 20 sites surveved from Chowilla to Mannum during May-June 1990.

Taxon	Occurrence (Site No.)	Total No. of Occurrences
TURBELLARIA	2	1
GASTROPODA		
Unidentified snail	6	1
fotometprges niger	16,18	2
Ferrissia petserclif	4,16.19	3
Physa actata	4,9,10,12,15,16,17,18,19,20	10
Asidorella newcombi	16	1
BIVALVIA		
Sphaerium tasmanicum	16	1
OLIGOCHAETA	1,2,4,8,12,13,14.15,16,17,19,21	12
CRUSTACEA		
OSTRACODA	$2,3,4,6,9,10,11,12,13,14,15,16,17,19,20,21$	16
COPEPODA : HARPACTICOIDA		
Afthevella australica	1	1
COPEPODA : CYCLOPOIDA	3,6,7,8,11,13,14,17,18,19,20	11
COPEPODA: CALANOIDA	2,3,4,6,7,8,4,10,11,16,17,18,19,20,21	15
AMPHIPODA		
Afrochiltonia ausiralis	9.11,12,13,14,15,16,19.21	9
ISOPODA		
Austroargathoma picra	6	1
CLADOCERA		
Leydigia custralis	3	1
Ifyocryptus sp.	17,18	2
Daphnia lumholsi	2,16	2
D. carinata	1	1
Daphniopsis pusilla	11	1
Ceriodaphnia sp.	17,19	2
DFCOPODA		
Macrobrachium australiense	20	1
Parasya australiensis	2,4,6,8,9,10,13,14,16,17,18,19,20,21	14
ARACHNIDA		
HYDRACARINA	. $4,6,13,15,16,17,18$	7
INSECTA		
EPHEMEROPTERA		
Cloeom fluviatile.	19	1
Thsmanocoenis tillyardi	9.16	2
ODONATA		
lschmura hererostricka	4,9,10,16,19	5
Austrolestes sp.	21	1
Juvenile Zygoptera	2	1
HEMIPTERA		
Anisops sp. Anisops thienemanni	4,8,9,10,14,19,20	7

Tuxon	Occurrence (Site No.)	Total No. of Occurrences
Micronecta robusta * M. grachis	3,4.6.7,10.11,12.13,14.15,16,18,19,20,21	15
M. annae	16,19 ,	2
Agraprocorixs eurnome	1,3,10, 12, 13, 14, 19,20	8
Hidrometrasp.	16	I
Mesomelia sp.	16	1
COLEOPTERA: IYDRAENIDAE		
Ochthebius sp.	12,20	2
COLEOPTERA: HYDROPHILIDAE		
Hydrophilid larvac	4	1
Berovzes sp. larvae	3	1
Hudrochus sp.	16	1
Helochares mustralis	16	1
COLEOPTERA: DYTISCIDAE		
Sternopriscus sp.	3	1
LEPIDOPTERA: PYRALIDAE		
TRICHOPTERA: LEPTOCERIDAE		
Triplectides sp.	2,4,9,16,21	5
Juvenile leptocerid	18	1
TRICHOPTERA: ECNOMIDAE		
Ecnomus pansus	16	1
TRICHOPTERA: HYDROPTILIDAE		
Hydroptila acinacis	16	1
DIPTERA: CHIRONOMIDAE: TANYPODINAE		
Procladius sp.	1,3,4,6,7,11,12.13,14,19,20	11
DIP''ERA: CHIRONOMIDAE: CHIRONOMINAE		
Chironomus cloaralis	15,17,18	3
C_{1} dupler	12,13	2
Dicrotendipes sp.	3,8,9	3
Chironomus sepperi	1,2,4,11,14,15	6
Cladopelma sp.	3	1
Kiefferulus intertinctus	4, 10, 11, 14,20	5
Polypedilum sp.	1,2,18,19	4
P. nubifer	3.4.13.14	4
Purachironomus sp.	4,6.8,9,10,14,19,21	8
Cryprochironomus sp.	3,20	2
Cladotanytarsus sp.	4,8,9,10,16,17,19,20,21	9
Tanytarsus. sp. 4		1
T. barbitarsus	1,2,4,11.21	5
DIPTERA: CHIRONOMIDAE: ORTHOCLADIINAE		
Corynoncturasp.	4	1
Cricotopus sp.	1,3,4,8.9,10,16,19,21	9
C. albitibia	3,4,8,9,10.16,19,20,21	9
Limnophyer sp.	2,4,16,20	4
Parzmetriocnemus sp.	4	1
DIPTERA: CERATOPOGONIDAF		
$\mathrm{SR}^{\text {a }}$ sp.I l	3.10.11.12.13,15	6
SR sp. 6	11,13,14,16,19	5
SR sp. 8	3 3	1
SR sp. 16	14	1
SR. sp. 18	7.13	2
DIPTERA: PSYCHODIDAE	11,12,13,14	4
DIPTERA: STRATIOMYIDAE	$4.10,11.14 .15,20$	6
DIPTERA: TABANIDAE	4	1
DIPTERA: SCIOMYZIDAE	8,16,19	3
DIPTERA: EPHYDRIDAE	1,7,11.12,13,15	6
DIPTERA: MUSCIDAE	4,6,7,14	4
DIPTERA: CULICIDAE	3,10,11,13,14,15,20	7
DIPTERA: DOLICHOPODIDAE	1.13	2

${ }^{4} S R$ - refers to voucher specimens in the collection the State Water Laboratory, Victoria.
muse maline weelands. The fration of TOK represented
 47 留 at RAMLI3.

Penticides

Nu pesticides were defended in any of the water saniples (detection limit of (0. 2 2 $\mathrm{\mu g} \mathrm{~L}^{\text {. }}$).

Chhoregh hyll conterurameens

The cancentration of chlomptyylf Was high at most weldand siles (Tuble 4). indicating that significant phytoplankton production was nccurring during the wampling periol. Chforophyll is concentrations varied consideribly anong wetlands, ranging from $1.2 \mu \mathrm{gL}$ al LCARI6 to $255.8 \mu^{\prime} \mathrm{L}^{\mathrm{J}}$ at RAMLI5. Chlomphyll b followed a similar trend.

Cldorophyll concentrations also varied markedly within wellands. The nowt noted difference oceurred at Rancon Lagoon where chlorophyll of ranged Irumb $4.8 . \mu \mathrm{gL} .1$ th the more sheltered western sife (RAMLI3) to $255.8 \mu \mathrm{gL}{ }^{\prime}$ in the expresed. downwind site (KAML15). Similar rends occurred at Piby Ck; Devom Downs Nith. Katurapker Evap. Bamm, and Dishees Cok Evap. Basin. where difficences in the morpholugy of the wetland, water llow, und the dominant wind dinection thay result in large variations: in chlorsphyll concentrations wishon weslands.

Agmaric imvetehrate rompresition

Seventy-cight squatic invertebrate taxa were recorded from the 20 sites (Table 5). Insect laxa predonninated (69%), and the snost diverse componem of the fauma were diplerths with 32 species, including 14 species of thirnoonids. Crustacea contributed 18% and Gusiropoda 6 密 of the rotal taxa recurded.

Ontacod taxa were the most widespread (16 sites). followed by Microntecta robusta-M. grucilis (15), calanoids (15) : Paratia ausmelathsis (14), oligeochates (12). cyclopoids (11), Procludius sp. (11) and Plowae encwat (10). In contrast 31 taxin swere recorded from only ume. site.
The taxumomy for many invertebrate groups is dicomplete (Willams 1980b: Camplell 1981; Bennison et at 1989), making it difticult io assign some specimens below the generic ar family leyel. Comsequently, not all taxa wate identified to species. which underestimates the species comprsition and richuest of some sites.

LCARIG had the highest Apecies richness wath 30 taxa and [DSC7 the lowest with 7 taxh. Considerable variation oceusted within wedlands, particularly Lake Curlet where 11.11 ind 30 taxa were recorded from the three sites sampled. Of the wetkands that were sampled from more than one site, Lakc Carter was the mose diverse with a totul of 36 laxit, followed by Ratmen

 cubticicots ar 20 sitcs bised ont the akjutice inveticbrate distá.

Lagoon (29), Devon Downs Nth (25), Kataraphot Evapa Basir (23), Pilby Ck (18), and Disher Ck Evap. Basin (14).

Gruupings of the sites
Cluster analysis inititilly separated the sites into two main groups that generilly correspund th more satine wellands with TDS concentrakions $>10000 \mathrm{mgl}_{2}{ }^{\prime}$ and less saline wetands with $\operatorname{TDS}<1(00)$ mgL' (Fig 2). Exceptions included the clustering of the saline anabrancli PILCI and sites front Katarapko Evap. Basin with the freshwater group, and DISC6 and RAMLI2 with the more saline wetlands.
Within the more saline group, sites from within the same welland were more similar to each oher then sites from different wettands. In the freshwater group. however. sites from the same wetland did non necessarily cluster rogether indicuting that some hetergeneity existed within some wetlands (e.g. Devon Downs Nit).

Multivaribte smalyses

The DECORANA ordinutions of the sumples an illustraled in Fig, 3, and show the centroids for exts

Fig. 3. DECORANA mrdination of sites bated on the aquatic invertehrate data, with TWINSPA V groups superimposed. (Ejgenvalues: Axis $1=0.46$. Axis $2=0.28$. Axes in standart deviatom units).
of the 20 sites (i.e, the average score for each axis). Superimposing the TWINSPAN groups onto the ordination plots results in two groups that also correspond to more salize wetlands with TDS concentrations >1000 ngg L^{\prime} and freshwater wetlands with TDS $<1000 \mathrm{mgL}^{-1}$. This trend was contounded by the inclusion of sites from Kararapko Evap. Basin in the freshwater group, and DISC6, RAML12 and DEVD20 in the more saline group.

The two sites from Pitby Ck were outliets on the ordination analysis and tended to "compress" the other stites on the second ordination axis. Deletion of these sites from subsequent analyses did not alter the orientation or spacing of sites appreciatbly. so the original results based on all sites are presented herein.

The projection of sites onto the first ondination ax is is shown with their TDS concentrations in Fig: 4a. Sites to the left were characterized by having freshwater with TDS $<1000 \mathrm{mg} \mathrm{t}^{-1}$ and were comnecied lo the River Murray (Table 6). These included the permanent flood plain lakes and swamps, and two sites from regulated wetlands. The freshwater site from Pilby Ck also grouped with the other frestwater wetlands despite being isolated from the main channel when sampled. Sites with TDS concentrations befween $1000-2999 \mathrm{mgL} \mathrm{L}^{-1}$ formed intermediate groups. Katarapko Evap. Basin and Disher Ck Evap. Basin (DISC7) were connected to the River Murray through their regulating structures when surveyed, while Clover Lake was isolated due to its location high on the flood plain. Site, to the sight were saline with TDS $>3000 \mathrm{mgL}$ ' and were isolated from the River

Fig. 4. Scaltergram of DECORANA undination fron fig. 3 showing TDS concentration recorled at each site: (a) Axis I va TDS (b) Axis 2 vs TDS

The groups encinsed in dotred lines are described in the classitication of tites in Tahte h. (Ordmation axes in thandard deviation units. TDS in mgL- 1 , LCAR 17 and LCAR 18 onitted due to absence of chemical data).

Murray. These included the western reach of pilhy Ck (PILCi) and Rameo Lagoon in one group, and the hyper-saline Berri Eyap. Basin in the most extreme group.

The same general pattern resulted when the points from the second ondination axis were ploted against their TDS concentrations (Fig, 4b), although PILCZ split from the other freshwater wetlands, and the two antermediate groups merged together.
Superimposing the nutrient data onto the ordination plens tevealed as sinilar, shough less distinct, gradient between wetlands with/without ary connection to the River Murray. TP showed increasing concentration with isolation from the River Murray along the first ordination axis, but nu interpretable pattern for the second axis. The remaining physico-chemical variables displayed no obvious pattern along either axes.

TDS (mEL ${ }^{-1}$)	0-999 Fresh Waters	$10 \times 100-2999$	$\begin{gathered} 3000-9999 \\ \text { Saline } \end{gathered}$	$10000>$ Highly Saline
Cornected to River Murray	$\begin{gathered} 4.6,12.16,19,20.21 \\ (\mathrm{GROUP} \mathrm{~A}) \end{gathered}$	$\begin{gathered} 7,8.9 .10 \\ \text { (GROUP C) } \end{gathered}$	-	
Isolated firm River Murray	${ }^{2}$	(GROLP D)	$\begin{aligned} & \text { I.13.14.15 } \\ & \text { (GROL:P E) } \end{aligned}$	$\begin{gathered} 11 \\ \left(\text { GROUI }^{2} \mathrm{~F}\right) \end{gathered}$

The TWINSPAN clawsification (Fig. 5) deseribes a similar pattern to the ordination results and highlights the indicator taxa that are unique to cach groupinge. The freshwaler group was characterized ty the dipteran Cladobaryarsus sp. and the shrimp Puratya austratiensis. The more saline group was distinguished by the presence of the dipterans Prmeladius sp.. Ephydridae and Culicidat.

Discussion

Water shemistry

Like most inland waterbodies in Australia, all wellands included in the present study were dominated by sodium and shtoride (Williams \& Wan 1972). The differences in ionic concentration and dominance betwern wetlands were largely the result of dilution and concentration. The freshwater group were permanent waterbodies comected to the mainstream, where water level fluctuationss are less extreme than in the more saline group of isolated wetlands. The regulated wetlands, ephemeral swamp, and saline reach of the Pilby Ck anabranch had higher salinitles due
to the cflect of evapocnncentration. Seepage of saline groundwater and the inflow of saline irrigation water allos added to the high levels of dissolved salts in the evaporation basins and Ramca Lagoon (Unpubl. E. \& W.S. Dept records). Recent and proposed changes in the managettent of these wetlands by the use of out of the flood plain evaporation basins (e.g. Noora, Stockyand Plains) and groundwater interception schemes, should lead to a reduction im salinity of these wetlands in the long-term. We should note, however, that mear sellinity levels would probably need to be reduced to at most $4000 \mathrm{mgL}^{-1}$ before significane changes in the biota of these wetlands would be evident (see Centre for Steam Ecology $1989^{\text {t }}$ for references).

Comparison of TP and TKN concentrations recorded in this study (Table 2) with Wetzel's (1975) classification of lake productivity (after Vollenweider 1968), reveal that the 10 wetlands were eutrophic or hyper-eutrophic with respect to TP, and meso-eutrophic or europhic with respect to TKN, Levels of DRP and
${ }^{4}$ Centre for Steam Ecology (1989) "Biological Effects of Saline Discharges in Streams and Wellands" (Chisholm Inst. Tech. Unpubl. Reporl lor Salimity Bureau, Vict

Fig. 5. TWINSPAN classification of sites based on the aquatic invertebrate data. Indicator specics names are ineluded with each dichuronay.

NO, - N I Lowever, wene gencrally fous sugecsinge that mest at the hutnenis were in particulitic fums thal may be unavailatle Io phytoplankton ISmith 1982: Gcodes 1984al.
Nuisent enicentrations of the wetlinds fellect thesic in the lower River Moursig: Valtes of TP. DRP TKN. and $\mathrm{NO}_{3}-\mathrm{N}$ Were within the ranges repurted from Louck 5 (1) Murnty Bridge (Mackoy real 1988) with some exceptions. These inciudd the higher 't P watnentabion firm Clower Lake and the higher TKN concentrathons from Repri Evip. Basilı, C'lener 1, ake, Ramso Lutgooll and Kataranks Fewa Basin These ure strathest and/or regulateal sverlands subject to consuderable evapuration: resuling in high concentrationo of Tulriente and dissolved salts the mapocuncentration.

Cimplarison or nutnont levels with olher werlands finm the Rises Murray is difficult ess few studess have been puhlished om the chesuisery of these waters. Shicl (1980) reponted the mithent contenarutions from three billabohg hear Wisfonga during 1975-77, and found thal nitrate varied formm $2-685$ mes 101^{-1} - and
 irom) Lahe Alexandrina (Geddes. 1984 abl. Lathe Hume and Lake Mulswala (Walker \& Hillman d977: Brymner 1982h. Murrumbidgil Swamp and Lake Herrimmjecl 1 Brigge el al. (4985) were wll within Shiels ranges, Large fluctuations in , puriem concealrations were reconded fion cadt wethath. In the presem sludy. nutite and dissolved phosphate enmcenerations wite has ammparad (ty Shect's (1980) vatues. Law leiels of imerganic hirngen relative to the high TKN conceptrations indicatc that N was cither present in llie sedinients of hid been assimilated hy phyooplankion. The high chloroptryll emuenmalions ('timbe 4) lirnon nuss sites support the latter suggession Based on Wetrelts (1975) chlorophyll as carcgories. LCARtf DEVD21, RAMI. 13 and DEVD 20 were meso-cutrophis, whereas the other sites were cutrophic. Althuugh meaningful critical concentanhons ul nutrients hate nos been defined for Ausiratian witers (Wood 1975: Cullen 1986), the Joord plain wethands indedad in the present sworey were clearly unriched in betil N ind P : Future shork: will devermine whether the high levels of nuruents and algal biontaso the sustained, as this could nesule in the alteration of phybuplinkton commonnities sol lavour subauce apecies of ©yanobacteria (Walker \& Hillman (977),

The aquatic invertehrate fifund was diverse flable 5) considering the small 刀untier ot samples collocted ivind that sampling oceurned turing the evol. wet mumths of May-Sunc At leasp 78 wxa wene recanded form-the 10 ovedamuls, with insects bird crustacediss domitating the inversctrate communitics at every sitic.

Itse majority of insetts were dipterans (32 taxa). lemipterans 17) and culcopterens (6). Sites from the permsthent jrestuater lakes and swamps (LCAR/G. LMER4 and WONI. (9) had the most laxa. while a permanent regutated Wetland (DISC7) hard the least.

The unpublistoed database compiled by Thompson
 end aquatic rouscoptryles from the wellands included int has study. This was prohahly dues in part to the high llows of very suthid water- Tront the Darling Rivel into the River Murnay at the end in 1983 (Mackery el of. 1958), ncusteing in nrast wetlands boing thothd when wamgled ty Thempson in 1483-4. Apart from notiry antratoods from DISC7, no new data enuld be derived Irom lhis database.

Loyd af ad. 11984$\}^{\prime}$ cullected 71 aquitic invertebriks lana durnge a 12 month alludy of the flucluations in the dyuatic invertebrate enmmonities and waster chemistry or three wetlands, including Berri and Disher Ch Evap. Basims Comprarisolt of resulis frem she same fame of the year show that the founa and water chernisisy havs net chanzed appreciahly ar BriRBII, while the sniticial manipulation of water levels in. DISCOG led to a laster salinuly and a more diserse fuma in the present study. A umal of 28 taxa Mere fourul at BIERB11 hy Lloyd a 8\%. (1484) with 12 laxa heing reconied during May 1984: The same faunal asscmblage whis present during May 1990 , with the addition of Afmedrilontio arsprolis,
 sarusilix. OI the ' 35 taxis recordod from DISC6 in the carlier work, only four were found during May 1984. In May lysud if species were cullected, dominated by crustacesus and dipherans. Future work will determith Whether stre wasonal irends destribed by the earlier sudy are maintained. This will provide a useht means. of predicing haw smmerestive ane the different parameters that were measured in these cyaporatoon basins, and cstablish a databestse upitn which any thanges in the manderenent of these setands can be сеяпратed,
Lloyd \&e Bowlon (1990) reconded 96 macroinverLebrate bixas during it recent short-term survey of 13 wetlands from the Chowilla florel plain. Wethands were sunnled as river levels fell in Octoper lysi A s in the present study, most tat were insects. with dipterans (31 taxa) domitating thelianss. Few crustaceans were cullected: partiy becrase a larger meshod dip net was used and did nor sample the tricrocrustatcans. The Majol dinierence in the fana between dee twil studies hiss the large number of bectles (22 taxa fecorded thy LJoyd \& Boulton (1990). Dytiscids and bydruphilid. are most cummonly collected during spring-summer from monst intand waterbodies (Mathew's 1980, 1982), With shallow temporary wetlands offien having a varicty of species (Lleyd \& Boulton 1990: pers, whav.), The (imine of oul suncy nisy accontil for the Ewer specics of treeten- recunted,

Comparsem uf the fanal communities in the zoll sites using DECORANA ordinatum Fig. 4 and Tahle fis illustrated the ingnolance ar connection to the River Murtay on both she water chemintey sad liguatic inverchrac assemblapes. Weilandisildes woth ditecy Connectune to the River Murray were charaterined by
 Eencrally low jumpent concentrations. and the presence on the dipleranc Cludunumedises sp. and the shrimp
 from the main channel formed at secind greap. sharacterized hy higher alimitas (TDS cencentration S $1000 \mathrm{mg} \mathrm{L}_{-}^{-1}$, tugh nutient concenraplions. and the
 Fphydridac and Culicidac.

The sites misallexulat by the analywes deserve spectas mentim. Hydrolengial mampulations of thece regulatad wetandes prier in the survey, contounded the salinity gradient. Kathrapko Evap. Basin. Dieher Ck Sivap, Basin. und the intea site at Rameo Lagoun were netwide walte from the River Murray when suinpled, as their tegulaing arouctures had becn opened two. seren and 10 davs respectively, prios lo sampling (1)rpuht. U \& W.S. Dcpt records). Sulinity readings from these wethands jndicute thal some mixing and ditumen hat uscurrat is Katarapko Evap. Basin and Dester Cl. Evap. Baxin XC'mpubl. IS. \& W.S. Deph recondり. White liute to her dushing had wecurred beyond the infolonter wite an Ramed Laghon Tisble 21. Thisappears to hate allered the fathon of Katarapke Evap. Basim us resemhte a mute ficeshyater assemblage of invertebrates. Siues from Disher CE: Fvag. Basin and Rimed l.agoon, hiswever, retalled invertebrale isacmblagen typisat of the mure saline sitesfuelands.
the high nutient onkensatiens reconded al LSeVUZO may have conn buted 10 an assemblage of invenchrates lypiced an saline camditimas, derpice havane a HDS concentation of only 360 mgL ! This site wow hevily grazed by sheep, with the boek having direct incers to the waterhaly. Biolugieal decompesition of the nefnure in the wate coult have prowluced the hag NH_{3} concentration. whisb mould then axidise fo

NO, -N by basterial uction (Bioly waillians W973).
Sites from Pilby Ch icnded to form sullier positions in the data matyses, emphakiang a difference in the: buma from shis anabranch compared with the othes wetknds. Pithy Ck is is sinull anabranch in the Chewills region, churacterized by narmow banks with River Real Gums exiending ower the water. As nonv of the other wetlands resembled this macrohatitat. the distinetiveness of this wethand within the andyser wass not renurkitle. The cuuseway acioss Bitty Ck has clearly roduced the watee quality of the western reach to favour ompanisms adapted to saline, organicatly enriched cunditions. Placement of a colvert with : regulator under the causeway iwhuld provide a smple means of manipulating water leveds to teduce the salinity and nutrient concentithons of the westem resth

Thee arre the prolimntrary results of an ongoing stady of the water shemistry and hiota ol ituan phain wetlands in Soult Aurisalat. They provide an initial database and demonstrate the influencee of the River Murray on the water chemistry and aquatic- invertebtates of the wetlands sampled, Future work will describe the inguence if scason. flow and requlation on the limnology of some of these wellinds, and provide ewaideliues for the manaterment of weilands throughou the Murtiv-Darling flual plain.

Achnowledganeuts

This sworl: was funded by the Murray-Darling Basin Ministerial Conncil thmuch the Natural Resourcex Mandement strategy. Chemical analyses were conduced hy varinus tatif trom the State Water Labomathry, E. or W.S. Dept. Mrs R. Condrey and Ms S. Bryd prepared the tables, and personnel from Drulling Services, E. \& W.S. Dept, drew the figures. MrG, Wout, Dr D. Steffensen, Mr P. Christy and hus anmymora icferes provided valuable comments on an earlier drall of the manuacriph.

Refrenees

 finiv. Presk, Methourses).

 "Muspunmertehiater of the Riter Murrag ¿Sursey and
 (Commussion Water Dualiey Report Nin, 3),

 5967.

 Dev. Curp Tach. Repl).

 26. $103-14$.
"SikO (1970) "J he Insects of Auxtralia." SMeth, Univ, Fresa. Melbourns')
 curophication problen. Pp, 534-54 th Y, De Decheer as W. D. Williarms "Lirnmology in Aushadia." (CSIRO © Dr W. Sunk. Mathourne \& Bordrecht!
 Lisslogy." Canthridge Univ Peen Caniondect

* Whll lami:R. R, 11 . (1981) Hicrarchical

 River Murray, south Ausiathis, stal the efiects of nutriens:
 15. 340.45
___ 148 hh) Seasonat mpadien of the dumplank(ion (vanmunity at Lake Alexandrina, Riber Murray, Souit Austrufia. and the role iol lurbidity in deverminang Fooglathute eonsmunty structure. 7hid, 35, 417.30.
(HNK) Ther role if tutbidity in the limnology of lake Alezendrina. River Murray. South Augralid conyper isons. belueen chear and surbid phases. (bide 39, 201-4),
Howdinc.. J. H. r1986, "Imanntly Larvae of the River Murtay Sycten." (Peger 'Till Envitum, Lato., Albury" Winsenga Develop. Corp. Tech Kept Nis. Gi.
 - A Biological Momimring ffandanok" iWher Rescareh Cember Stevenage Herth).
Hila.. M. O. (1474 in) "DECORANA: A FORTRAN program for defrended surrespondence atoalysion and rectprocal

\qquad (19796) TWINSPAN: A FORTRAN progrant fir arranging nuturarime data In an ordered whevaly tatic ty
 Univ. Ithacu, New Yopk).

 47.58

 inverictrates. $\mathrm{PO} 157-67 \mathrm{lt} \mathrm{C}$. OMalley de F Shetston "hosuilla Floodplain Biologicat Srody" (Niture Comsr. Sive. S. Aust. Inc.. Adelander
 bonsertacion satu of wind Jeathuater fish in the River

Mack, D. B. (H6ty Birds of the Spper. Mursay of Suth Aesseralia, 5. Auss. Bmitho 23. 6478.
Mackat. Vi. Hillasn. I. \& Keste J. (1488)-Wher Quality wf the Riwer Murray: Review of Monikring 1978 (n) 1986- (Murray Ditring Baxin Commtision, Waver Quality Repurt so. I).
 inf South Australia. Pirl 1. Achusicmatu und Adephaga," (IS. A. Muscum. Adekider.
_- (1982) A Cruide wo the Cencra of Beetle of Somb Ausiralia. Patt 2. Foolyptagya Staphylimoidest and Hydrophilsidetio (S A Museum, Adclaitic).
 Io the Aquate Insect of Nofth America: Ind Edm (Kendall/ Hums. Iowas
OMabler, C. SHIND(3) F. (Edy) (1990) "Chomilla Fhoorplain Hishowhtit Sudy." (Nature Combe Sex. S. Alaw. Jnc., Atchaides.
Pkissti, R, 1. (198tin "Waliandi of the-River Munay helow Libe Hunle" (River Mulfay Cormimsibe Reporl 86/1)
 5. Jetr. Onmi. 21, 65-72
 Pp, 376 -90 br W D. William An Ecolegical Gasin fior Water Rewnice Mandigersem." (A.N.U. Presa, Cunberran), Sumson. K. N. \{1973a) Rinds of the Murtay River 1 ceion between .Mitdura ing Rennark. Austrulba - laceding
 35.8.7.
(197.b) Amphibianm, septiles and mammals of wo Murriv Kiver ragiens between Middura ind Renomialk, Alespalist. Uhid. 34, 275-4
Smheme: N. N. \& Cinats, \boldsymbol{H} V (1983) A revision of the
 1. 1.1.32

 Hesss Cistiturra).
Smitu, V. H. buxz2 Predicting the eflecis of euruphathim resposnues ot the plykrolimkisn, Pp. 24h-ht If E.M.
 (Aust. Acad. Sel. Camhertu).
Thenmisan. M. 8. 1480) "River Murray Werlands. thein Chatactorivics Sgenthance and Mithagemenh " (bept Finvimis. \& Plarivintere Cionst. Soce of S. A1. Adelader)
 Alss, Ormils, 9, 170-I.
 Fultrophication dif Likess and filothina Wilers. with
 in Euptophititur," (OLCD Rent. Paris).
 Survey of the River Murray in relation to Albury-Wimdingea. 1473. 1476 ." 1 Albury-Widange Devehop. Ciefp and Geatsridge. Heskins de Duvey... Alburys.
Withlo. R. fi. (1075) "P imnoloyy" "Saurders. Phitulelohist.
 region. Keye and diagnmew, form I. Lutvad. Lntomot Scaud Suppl. 19. 1-457.
Whleas 45. W. [). (1407) The chematal shanacketistise of femic Sulface willers in Australia. Tp. $18-77$ II A. H Wcatlierdey Auwralian mandal Waters und there Hama" (A.NiLl. Preato Canberrul
 (MucMillan. Methournes).
(1980h) Bioldgicat manitoring. Ppo 192-204 /f W. I). Wiblang "An Reghlagicat Basios for Water Resurere Munagement." (A.NiL, Premo Cunherras
\qquad - Bow tha A. J. \& Tasfe. R. CF. (iggo) Samity gh a dercuninant of sumt lake forms: a queston of suate. Hultholdufongin 197, 257066
- \& Win. H. E. |g972) Sorme distinctive festures of

 Spectrophenemestic ehardelerisficy nir chloruphyll as and $1 /$
 109. $448-453$.

Werm. G. (1975) AAn Axsmament of Eubrophication in Austratisan Inland Wikem" (Aust. Water Ress. Crounch, Teat Pesper Nor. 15\%.

Stite No.	Wetlind	Mup (1:50000 Topographic Serics)	Site Coordinates	Dominant Vegelation
1	Pilhy Ck (baline Western reach)	CHOWILL.A 7030-II \& PT.7130-Ill	489550E. 6239200S	Istacalypus scmulitufensus (dead). (dead)
2	Pilly. Ch (freshwater edstern reach)	CIIOWILLA 7030-11 \& PT7131-11]	489550E, 6239300S	E camatiduthsis. M. Alorulenta, Jipha sp. Myriophithem sp., A. folicutuides
3	Clower Like	PARINGA 7029-1	$478600 \mathrm{C}, 6237550 \mathrm{~S}$	E. laryiflorens, Acacia stcmophtita. Cyperas gimencatles.
4	Lake Merrel	PARINGA 7029-1	477800E. 6234400 S	E. canaldatertisis, E. targiflorend. A, stenophilla, M. Horalena, C. gamosatulos.
6	Disher Ck Evaporation Basin (souk\|z of basme)	LOXTON 7029-111	472100 E .6209700 S	E. camatiolensis (dead). K. bargiflercos.s. M. florsilenta, Phrugenites riustralis.
7	Disher Ck Fivaporation Basmen (maddle of hasm)	RENMARK 7029-IV	471800E. 62113005	E. canaldulensis (dend), E largiftomens. M. fromulente.
8	Katarapko Evaporation Basin (south lagoon)	LOX'GON 7029.11I	460100E, 6189500S	E. cumaldintervix (livine and dead). 11. florulenta, P. australis, C. gymaoraulas.
4	Kalarapkn Evaporilion Biasis (south lagwors)	LOXTON 7029.[1]	460100E, 6190300S	F. "umaduldensis (tiving and dead).
10	Katarapko Fivaporation Bilsin (north lagoon)	LOXTON 7029-III	45990)(JE. 6191000S	E. commidulumsis (living and dead). M. Alaridemer, P. austrafis, C. gy\%norcaulos. Typhas sp.
11	Rersi Evaporation Basin	LOXION 7029-116	462100E, 62057005	Sinacda austhlis, Padaworniad ip. .
12	Ramcas Lageron (inletoutlei)	CADELL 6829-1	399800 E .62198005	P. wasmalis, Paspulun vaginumex
1.3	Rumes Lagonn (western hank)	CADELI. 6829-T	$394750 \text { F. } 62197505$	Bare bank.
14	Rimmeo Lagoon (eastern bank)	CADELL 6829-1	$399900 \mathrm{~F}, 6219750 \mathrm{~S}$	C. gуmmectuler, P. raginaths.
15	Ratrico Lagoon (southern bank)	C.ADELL 6829-1	400900E. 6218500 S 365500 E 6130900S	P. uasitralis, Prspahum sp. P austrulis. ML. florulanta.
16	Lakit Carlet (inter)	CAURNAMONT 6828-1II	365500t. 6139900 S	C. gimmeroules, Schoretoplerfus tetides., A*stla spp.
17	Lake Carket (willows near thallets	MANNUM 6728-II	$357600 \mathrm{E}, 6141800 \mathrm{~S}$	Sala bahilonitst.
18	Luke Carlet (pont hetween willous and R.Murtays	MANNLM 0728-11	357600E. 61418005	Typha sp., M. fimelenta. C. s.mmenvulos. S. validus, Trigher him procered. Asolla spp. C: dimerazm.
14	Wringulfa Liggoon	SWAN RFAC.'H 6828-IV	367400E. 6157100 S	E. comaddulensis. Afoprorton itcuminatum, M. florstrma. C gimuocombes, 5 , valdus. B. caldwellii. Ajoslla spp. Vo spirzis.
20	Devan Downs North Lagenot (southern reach)	SWAN REACH 682K-IV	$372150 \mathrm{E}, 61661005$	E. cemmaldulensis, M actminutum.
21	Devon Down, North Latcono (nurthern reach)	SWAN REACH 6828.IV	372400E. 6167750S	M. flomulenha, E. camaldulensis \{dead). C. gimnocaulos, Erugrestis $\$ p$. Paspulum sp.

DISPERSED CUTICULAR FLORAS OF SOUTH AUSTRALIAN TERITARY COALFIELDS, PART 2:LOCHIEL

BY A. I. ROWETT*

Summary

Dispersed cuticles were recovered from two lithotypes (Facies Ia, IIa) within the G seam of the Kooliata Coal Zone of the Lochiel Coalfield. The floras are distinct. The younger lithotype (IIa) contains a monospecific flora, represented by a robust, coriaceous non-stomatiferous cuticle whereas the older lithotype (la) contains thirty-seven cuticle types. The major contributors are Agathis (Araucariaceae) which dominates the flora and Podocarpaceae, Proteaceae and Myrtaceae. KEY WORDS: Palaeobotany, Tertiary, Eocene, dispersed cuticles, Lochiel, South Australia.

IMSPERSED CUTICULAR FLORAS OF SOUTH AUSTKALIAN TERTIARY COALFIELDS, PART 2: LOCHIEL.

by A. 1. Rowetls

Abstract

Summary Truss. R. Soc, 5 dust. 116(3). 95-107, 30 Nevernber. 1992. Zune of the Lochiel Coaifield. The floras are distinct. The younger lithotype (lla) contains s monospecilie flora. represcnted by a mhust, soriaceous mon-somatiferous cuticle wherens. The ofder litholspe (la) contains thirty- Ptulocarpaccac. Protcaccac and Myrtacenc.

Riby Worns Falaeoborany, Terriary, Itocene, niaperied enticles, Lachiel. South Australia.

Introduction

This is the second paper on the dispersed culicular floras of Sesuth Australian Tertiary coalfeetes and follows the format used in Rowell (1991).

The Lochiel conifield, located 130 km nurth of Adelaide (Fig. 1), at the heisd of the Gulf St Vincent ($33.56^{\prime} .138^{\circ} 10^{\prime}$), is ame of five separate lignite deposits whin the Norhem Si Virkent Basin, i.e the Beaufort: Bowmans, Clinton und Whiwarta deposits. It was tirst discovered in 1982 by geologists of the Electrinity Trust of South Ausitatias.

The Northern St Vincent Basin is claracterised by north-wusth tenting laults, considered responsible for controlling Terriary sedimentation (South Australian Department of Mines and Energy 1987). The Ardmssar and Whitwarta Faults (Fig. 1) delineate the Lochiel deposit in the west and east.

The lachiel cosal-bearing sediments are members of the Clinton Formation which has been subdivided into three units in the nonthermonst part of the basin, Irom the base. the Bumbunga Sunds, Condowie Silt and Kooliata Coal Zone (ETSA 19888^{\prime}). Smalt lignitc lenses occur in the Bumbunga Sands hut are of Jiuke economic importance. Thee major lignite seams ($F_{\text {, }}$ G and H seams) occur in the Koroliata Coal Jane (Kremar \& Sprimgbett 1542). which arerdge thicknesses of 2.65 and 25 metres respectively. Casbonaccous lacustrine sile, sand and clay of the Conduwic Sill scparatc the Bumbunge lignttes from those of the Kontiatia Conal Zone, Unconsolidated Oligecene clay, silt and water-saturated sand of the Watrindi and Tarella silts, ranging in thickness from 2070 m , unconkomably overlie the lignite.

Patynological evidence from these lignites suggests a Late Lixcene-Oligocene age (Harris 1965, 1971; Allcy

[^13]\& Lindsay 1491 pers. comms.). The palynoflora from the Burnbunga lignite are the time equivalents of the Middle and Upper Norfofugidices asperus Zones of Stover \& Partridge (1973, 1983), which are Late Eocene iv Early Oligocene in age (Kremor \& Springbett 1992). The Kooliata lignite is somewhat younger, prabably Early Oligocene, and the palynofloras are time equivalent to the Lower Pnotevcidifer fubenculabes Zone (Stmer \& Partridge 1973, 1983).

Matcrials and Methods

Cignite samples were recovercd from a trial pit (Fig, i) excavated during the initial resource assessment in 1987. Only the lignite scams of the Kooliata Coal Zone were exprosed in the pir (Sptingbert pers. comm.) but limited acecss (1 hour) to University of Adelaide, Botany Department colleciors prevented comprehensive sampling, Sampling was therefore undertaken uf those lignite seams noted to contain considerable amnunts of heavily carbonised dispersed cuticte and wood fragments. The two samples selected for this study were taken from Facies la and lla of the central G sean (Springheti pers. comm: Fig. 2).

Dispersed cuticles of the Lochiel deposit were processed and analysed using icchniques outlined by Christophet ef al. (1987), Rowent \& Chris1ophel (1990) and Renvell (1991).

1)ispersed Culicle Flora

Analysis of samples revealed 4 diverse cuticular flora of 38 parataxa which are unevenly represented in the two liacies, i.e. 1 (Facies $11 a$), 38 (Facies Ia).
"The cuticle flora of the upper highly gelilied lignite (IIa) consists solely of the parataxon No. AW 007, which is very distinctive despite the absence of sinmaters, The mbust, thick, coriacems culicke, sinuous.

 Spingher ($1,1 / 2.7$) ami the appoxinate fosation of the

 fo'; relancly ungelifed wosdy makerial while likics Ifa
 scilll in approximatcly 6.5 m thick and in a depth of 30 nerres.
epidermal cells (types 3 -4 ol Withinson 1979) and Jsminctive trichome clusters distinguish this cuticte from all somatiferous paratuxa (Fig. 3). This mounspecific llora may provide at uxeful sratigraphic mather in the eopretation of the Lochiel lignites. Parataxom No. AW (007 is also present in the underlying factes (Facies lit).

The dewer lignite facies, with ant ahundance of wood ranging from twigs io large diancter Joges, contains at dispersed curicle Mora characterised by a large Arameariaceme component 1290% at well ds
 and Proleacese (12,9\%) smmponents (Table 1). Unknown cuticle types represent id lage persentage of the Lachict Mora $(33,5 \%)$. Casuminaceac.
 represented $\{0.5 \% .0 .6 \%$. 0.45% and 0.2% respectively,
The Araucariadeace is represenced by at single parathen No. LC (00.3 (Fige 4.5) with in ouggesied allinity to the modern Agathis. The fragmentary cuticley, atommen leature of this lexality, makes at more delinite identification impossible,

The Podecurpaccie in represented by three paratuxa of which Ner. I.C (002 (9.9\%) is most abundant (Eyys 6-7). Stomutes have a variable appearance which makes it difficule to astign the enticle type to a known podecatre genus. The citcular appoarance of numerous vormatcos suggests a prossible allinity lo Falcuiffalum (Greenwood 1987). Parataxa Nos i.C (115 and ABP (00) are also combuon, representing 4.0% and
 to Dafracorpus on the hasis of smooth-wallod Lpodernal cellm and atrangement and collowlat
 ABP 001 (EFigs $10-11$) is idemitied as the sutele of Poderarpas playyhthem: (Grecnwond 1987),

The Myraceac comprises two eutele byen Nos. L.C U011 (I20\%) and LC Oll (3,2等). Both appoar

LYCALIIY	POD	ARAUC	MYK1	1:I.AFO)	PROT	LALIR	CAS	7.AM	(HTIERS
tonchicl (tactes lat	15.5	29.0	15.2	0.0	12.4	11.4	11.5	0.2	25.7
Luched (Ficke Ifa)	-	-	-	-	-	-	-	-	1705

[^14]
 eproternas sell shapeo stomulat arramemont and spidetmal cell，samate and bil gland lid cell dimensiona．Egataron No．LC（0）（Figs 12－13）is tharatherised ty mandat in usdulate epidermat cells． an anisecytic er stararyofic stomatal arrangenent of 3－5 sumbablary cells and had cells that may be comsiricted at the simus．Paratiaxon No LC Oif on the other hand． is characierined by undulate to sinuous epidernal sells． a keveloeytic（6）staurocytic sthuatal arrangement of 3－6 dark－6isinine subsidjary pells sod large lid cells．
 paradaxa are elnely enmparathle with cuticles of the speries of Myncuiphollum described by Chrisuphel战 Lyy（1966）from Angletea．
The Protesceac is a diverse group of nine eutiche typer the majonty scturnge in fow frequencies

 the Late Eucene ligniles or the Sedan deposil（Rowell 149ip．Two ofiner common culicte sypes are parataxa
 to Bomkstedepforlmem with the fotmer suticle type idemilied as Boakkiedephothom aff．Be fartigutam Cookson \＆Dotigan（Figes 14－15）．The cultele can be idenlifind by the well－tefined arentes，the relatively low frequency of stomatakanote．slighty suised stomata，a pair ol penrly delined sabsidiary＇cells surmumal ty $3-5$ darkly shined epidermal cells and long unicethatar trichumes with a poral base．The culicte of B．Jos diganum xas described by Cookson \＆ Duigan（1950）from the Oligocenc brown coals of Yallourth theether with five other spectes of
 b．lacere，B．pimbuhm and B．fasibgatum，The distributinn or flesere anecies has been discussed by Rowers（1990）
Purataxon Nis LC 012 may have am affinity（o B obatartan Cooksun 路 Dugan（tigs 16－17）．
 similar．the distinguishing feanureappears to te position of the sennates ine sliphtly taned in the former and Slighly unken in the biter（Corokson \＆e Duigan 1950）． Another cutcele use．paratakon Ner LC 013，Fiys．18）． is also ansugned to Bankriederphythens．It is possible the paratiaxen may represem anoflice fragmen of

Casuarinactac．Elacocstractac，Dataraceat and Zimiaceat ane of minor impurtance in the Jemer Lochiel floria．Casumbuceac is represented by Gymmestemas（paratalum NO DM（א）7），which also accurs in the fover lignite seam of the Schan deposid
 that the genus was more widespread turing the Late Exente－Enty Oligne ene，nol restricted to south－cawtern Austratia as would appear was the case during the Midde Encenc（Christophel 1980；Ruwcil \＆ Christophel 140（）．

Zamiaceac is represented hy parathxishi Nor．ABD OM？
 （Figs 19－20），This tentalive assaciaten is prompied by the ratily and poot preservation of the Lochict specimens．

Elaturarpacesc and Lauraceat art represemed by ceticte typer ABD 005 and AG 010 （Fige $21-22$ and Figs 23－24 respectively）．

Dispersed Cutide Descriphtums

As in Rowere（1ヶ9n）only paratam of Hophefic． Arallgraphe and laxnomic significance are dexmbet． Sorne parataxa have been previously idemitiod by the author from wher Encene localities（Rowetn is Christophel 1990；Renwell 1991）．Thest and many arme are included in the National Energy Researeta Development and Demonstrations Councal relesenee cuticle catalogue of Ausiralian Eocene curicles types （kowett in prep）．All paratiano numbers are preceded hy an ahhreviation of the 19 pe lacalify． Terminology used on these wencriptitons follow，that of Rowetl（1991）which was derived from Stace（1905）． Dilcher（197t）and Wilkinsom（1979）．

Cuticle Parataxon No．AW （6）
 Hig 3

 imly：Adaxial epidermal cells undulate teype $3-4$ ．

[^15][^16]

 thekenced. ograntulde 10 strate. Trichome hakes
 to many silige cell thishomes. appear us tulls.
 ot liance.

(innle Pathuma Nos. L.C 003 rlfis +5

 (6) nunded, arranged in longitudinal uows. $24-44$ an
 thickened. smox)th in beaded. Phrielinal wall granulate.
 longe $8-16$ an wide. Shathat wricnation ranges from paraliel. Whligue to perpendicular to long astis at tpidermal cell rows. Stumatal intangencol teracyic
 lateral ceths gencratly Jager thath potar cells. Antelinad Hatlsmenth to headat. Periclinal will grandatc. Cuand celloshheidiary cell wall heavily cutiniad. Stghtly paised. Forim ratig cvident.
Affinis: The puration is absigned (0) the Aratenficcat. The predonmantly oblique ornemation oll stonnatis, rounted epidermal celle and uniseriane stomatal rows buggest ant alfinity with Agwhin (Cimhsom \& Duigan 1951: Stockey de Thylor 1981: Bigwhed de Hill 1985; Hill \& Bigwnod 1987.

Cuticle Parataman No. L.C (moz FICS 6.7

Stomaticonds surface only. Epterinal cells anyutar. at ranned in lemeidudinal rown miented purallel to vein dimation. 32-60am long. 8-28put wide.. Anticlnal wall irnegulatly thickened. nourth be beuded. Perictital wall irngularly thickened, mooth to grantate wh pitted. Sonditid thenged intmacriate bown. naty be discobjontore presed paraildel lo vein direction. mows gnouped in hmad bands. I-4 epidetmal cells apart. Stomatal atromement tetrastic. Guard celly sunker potal thichenints. Ouker blomatal ledge, promibent.
 livel, polar cells wedge-shapmed to mounded foccasionally congutel tanely shared. Laterial cella creswen-shaped. Antichimal wadl irmegulaty thickened,
 of pular sells. Pericthad wall irregutarls thicheried. biterotts or granulate.

Affinity" The parataxum is sustemed is the Potocarpaciese with a ponsible allinity co fishomifolinom hut shay equally helboz for one of the ntay cextuct Austratisu Tertiary nemerie.

> Cuticle [aritaxam No. LC' OHS
> HCS X-9

Stombatiforos surface only. Vipidermal Lelle gencrally rectangular. Cells 25-125رnulonge 12.5-27.5un wide. Anticlinal wall undulate. smoth of shownes somes butreshed thickenng. Perictinal wall irfeguldaty thickened. pranulate fosthate. Stonata mbonal bande. ormented paratlel to the lome ano of the leall. Stomatal bands sontain on atverage sis uniscriate rows of stomata. Stomata generally separated by more than a single epidernal cell. Shmatat arshnsement partetracytic: Guard eetho shighty sunken. Subsudiary celle lour (rarcly live), Polar cells much smaller man lateral cells. Lateral cells arched. Anticlinal wall tounded. - mouth w beaded thichening, weessiknally butressed. Periclinal watl very thisk. Japher stahing. Thickening extend over guard cells. Shomatal ledge crident.
Affinity: The partason is ussignted to Difrrawrpus (Pidocampacae). Distinguishing features of this cuticte mainly ure relatel to subsidiary vello ie, shared potar subsidjary cells. thicker cuticle ower the prolar subsidnary cells and laneral subsidiary ceells that strmond the base of the polar subsidiary sells.

Culicle Prataxun Nor ABP won fIGS 10 -11

Stomatiknous sul fice unly. Epidembl cells rectangular (13 istrdiametric between stomatal rows, becoming elongate over veios, brienced paraled whog sois of the !eaf, some groups of cells ebliquely mriented 10

[^17]

 Antuctinat avall irrepularly theckeved, beaded to bultressed: Perislinal mall irregularly thickened. strongly striute io reticulate. Solonatia in distinct unservate rowitoricnted parallet to the long axis of He lethe, 92-144 pun lomg, 2\$-32 fm wide. Rous 2-6 cells apaf, Somatal suramement paractacylic.
 Athictinal wall irregularly thichened: smonts 10 butressed. Penelimal wall irregularly thickened, sanouth to reticulate. Polar subsidiary cells square to rectungular Antichinal wall irregubarly thickencal. zmbobl to butiosked. Rericlinal wall irregularly thickenct, rericulate. Polar subsidiary sells nuy be shatted. Fitatin tine prominent.
. Iftimity The parataron is idemical to cuticte described ty Greenwiod 14987) For the Anglesea fossil
 The distinctive beatime of the anticlinal walls and stiatuon of the periclinal walls of the epidermal bells are diaspmostic of the specice. Paratax Non ABP OO2 is thelefore identified ith Pefocespmer affe. P. motiphinlitem.

Culicle Parmaxan Nor. F.C 0 OI FIGS 12-13

Slomatilerous sulfice rems; Abaxial cpidermal cetls remiriced (o undulate 13). becorning elongate over veint. 12-36m, lorg. 8-20hm wide. Anticlinal wall thin. sntooth. Lerichnal wall thin. smovoh. Siomata risudanly wricnled, uniform distribution, 20-28 $\mu \mathrm{m}$ long, 20 - 34 fom wide, $\mathrm{S}, 1,11,4$. Stomatal arrangement disomytic lo stauncylic. Gumd exlls not sunken, poral thickening T-atiaped thickening polar nods present. Outer homatal ledge prominent. narrow: Subsidary celle 3-5. Andichal wall thin, sthmoth. Periclinal wail thin. smonth. Hydatheres rare, over veins dimensions 32am dong. 241 m wide. Oil gland lid cells rare. isodianuteric, 32gun in dianteter. constrictad at sinus. Sims undulate (single unfulation), dark-staning dimular testion of thichened cuticle centres on simus.

Lideell surrounded by a cyclecybic arranement of an moclified epidermal iclla

A/finit: The til gland Jid cell.s and general sumbald morphology (Rowed 149) conalirm alfinuty of the cuticle matataxen to Myrabses.

Cuticle Parataxon No. I.C 1044 IIGS 1+-15

Stonsatiferous surface only: Absxial epidermal eedls undulate (3), becoming elongute over veins, $28.4(1)$ am long, th-32pm wide, Antictinal watl thin. somboth. Periclinal wall irregularly thickened, smovth to linely granulate. Stomata randomly briented. unitors distribution within well delined ureoles. $16-2 t$ an linge. $12-16 \mu \mathrm{~m}$ wide. Stomatal arrangernent brachyparacytic. Guard cells sunken. 3-5 dark-staining. Atarocytically arranged epideronal cells surround stontatisl apparatus. Raised cuticular folds that encirele and ower-anch summata may be presem. Outer stanatal ledge promment, delicate narme E'eristomal rim may be pressent Subsidiary cells two, inconspictords. Amiclinal wall thin, smoth. Periclinal wall irngularly thekened. smooth fo granulate Trictome bases ctmmous. wet reins. pural. heavily cutinised pore, \&-6 scancely modified epidernal sells surnound pore.

A/fifily: The paratuxu is athigncd or the Protaczate shi the batsis of the brachyparatyotic stomatal arrangement (Cookson \& Pike 1950; Blackbum 1981). The rather inconspicunus. small subsidiary cells. encircled by a statorytif ring of dark-staining tepidermad cell.s. stomatal denstly and sumken monnata indicale an aflinity th Bankienephahmm fassinamm
 B. fustigamum.

Cuticle Parataxon No. LC 012 FIGS 16.17

Hypostomatic. Adaxial cpidermal cells undulate to sinuous $(3-4)$, becoming clongate ower vein9, 20-4диm long; 16.40 km wide, Anticlital wall thim, smokth. Pericilnal wall thin, smuert.

[^18]

Fige 21-24. 21. Parataxon No. ADB 005. Elaeocarpaceac, Shows high degree of omamentation (fine striations) that characterises this parataxon. Scale $1 \mathrm{~cm}=60 \mu \mathrm{~m} .22$. Parataxon No. ABD 005 . Etaeocarpaccae, Shows guard cells without omamentation, other than a line apiculate outer stomatal ledge. Scale $1 \mathrm{~cm}=30 \mu \mathrm{~m}$. 23. Parataxon No. AG 010. Lauraceae. Shows random arrangement of stomates. Scale $1 \mathrm{~cm}=40 \mu \mathrm{~m}$. 24. Parataxon No. AG Ol0. Lauraceae. Shows paracytic stomates. highlighting the prominent, narow outer stomatal ledge, and absence of a guard/subsidiary cell wall, all of which are common features of the famils. Scale $1 \mathrm{~cm}=30 \mu \mathrm{~m}$.

Abaxial epidermal cells rounded to undulate (3). becoming elongate over veins, $24-44 \mu \mathrm{~m}$ long, $12.32 \mu \mathrm{~m}$ wide. Areoles well-defined. Anticlinal wall thin, smooth. Periclinal wall thin. smooth. Stomata randomly oriented, uniform distribution, $18-20 \mu \mathrm{~m}$ long, $14-20 \mu \mathrm{~m}$ wide. Stomatal arrangement brachyparacytic. Guard cells not sunken to very slighty raised. Outer stomatal ledge prominent, narrow. Subsidiary cells two. 4-5 dark-staining staurocytically arringed epidermal cells surround stomatal apparatus. Anticlinal wall irregularly thickened, smooth to
beaded. Periclinal wall granulate. Trichome bases common, over veins, poral, some thickening around pore, up to six surrounding cells. Trichomes simple. unicellular, acute apex. Small poral trichomes. common within arcoles. four radially arranged surrounding cells.
Affinity: The cuticle parataxon has been assigned to the Proteaceae on the basis of the brachyparacytic stomatal arrangement. The rather inconspicuous, small subsidiary celts encircled by a staurocytic ring of darkstaining epidermal cells, stomatal density and raised
shamata indicene an affinity to Bonksicarghivlhme مbowatum (Cookson \& Dugan 1950), i.e. Bunkseucphollum alif. Be obovarmin. 'The leature that distinguixhes this fossil species from the related \mathbb{E} fontixarmen is the supesticiad pasition of the stomata, i.c. they are slightly raised.

Cuticle Purataxon No. ABD OHD FIGS 19-20

Hypostomatic. Aldasial cuidermal cells sinuous (8). hecuming clongale mer veins. $40.72 \mu \mathrm{~m}$ long, $32-44 \mu \mathrm{~m}$ widts. Anticlinal wall irsegularly thickened, smooth to headed to bultressed, Periclinal wall irtegularly thickened, striate to reticulate. Striations follow cell nurlinc. The euticular ornamentation may obscure cell surtine.
Abaxial spidermal cells sinuous (6), becoming elongate over veins. $44-80 \mu \mathrm{~m}$ tong, $20-40 \mu \mathrm{~m}$ wide. Anticlinal wall integulatly thickened, thin, beaded. Beading may uppear slightly ralsed. Periclinat wall irregularly thickened. granulate in striate; reticulate. Stomata randomly oriented, arranged in broad bands between veins. S.1. 27.3. Stomatal arrangemene haplocheilic. Guard eells sunken. Subsidiaty cells $4-5$. Anticlinal wall irregularly thickened, beaded. Perichual wall irregularly thickened with prominem stiation in radiating pattern. Short cuticular folds common over the enlire stomatal region. often associated with the stomata, Duter stumatal ledge prominent, raised over lateral subsidiary cells narrows to produce thin aresoner polar subsidiary cells. Gives nuter stomatal ledge a "bor horo-like appearance. Often absent from pular subsidiary cells.

Affinity: The cuticle has been asitgned to extinet Pretrishma (Hill 1980) of the Zamiaceae due to simous epidermal cells cuticular ridges/folds on the abaxial sufface and a prominentand distinctive stomatal ledge ("bot-bom"-like appearance). The apparent regular venation pattern of the Luchicl specimenc suggests a poxsible allinity to "P zamiotdes.

Cuticle Parataxon No. ABD 005
 FKii 2l-2?

Sumatifcrous surface only, Abaxial epidernal cells rounded to undulate, becoming elongate over veins, $16-28 / \mathrm{mm}$ Inge, $8.20 \mu \mathrm{~m}$ wide. Anticlinal wall thin, smooth . Periclinal wall irregularly thickered, smonth ta striatc. Striations nhecure most coll detail. Sionstas randemly oricnted, uniform distribulion. 16-24um long, $16-20 \mu \mathrm{~m}$ wide. S.I: 13.5, Stomatal arrangenem shanneylic? Guard cells not sunken, polar ruds present: Subsidiary cells 4-6? Outer sionatal ledge evident. nst rew. T-shaped thickening occasionally present.

Hydathondes rate over veips. $35-44 \mu \mathrm{~m}$ kong. $2(1-28 \mu \mathrm{~m}$ Wide. Siriations radiate out from hyduthende.

Affintry: The culicle parataxon is assigned to the Elacocarpaceae on the basis hydathondes and what arpears io be a staurocytic stomatal arrangement.

Cuticle Purataxon No. AG OlO FIGS 23-24

Stomatifermus surfacc only, Abaxial epidermal cells angular in rommed, bcooning elongate over veins. $24-44 \mu \mathrm{nt}$ long- $12-28 \mu \mathrm{nt}$ wide. Anticlinat wall thin. gnovits. Evriclinal wall thin, smooth. Stoniala $20-24 \mu \mathrm{~mm}$ long, $=0-36$ um wide, sandomly oriented, uniform distribution. S.7. 11.1. Sinmatal arrangement paracytic. Cilard cells slighlly sunken. Guard cell/subsidiary cell wall absent. Cuticular scales prominent, narrow. Subsidiary cells two. Anticlinal wall then, smonth Periclinal wall thin, imooth.
Affinuty: The cuticle type is assignot to the Lasuraceae due to the paracyic stomstes and inconspictous. sunken guard cells.

Floristic Cunsparisan of Samples

The older lignite flara crmprising 38 dispersed cuticle paratixan is characterised by as abundance of Atancariaceae, Modocarpaceae, Myrtaceac and
 Cisharinaceac, Elacoturparceuc. Lauraceae and Zamiaceae culicles which easily distinguishes in from the younger monospecific flora.
The flozistic difference is also reflected in the wo lithotypes. The lignite of the older sample (Escies 1a) is defined is an earthy textured coal conlaining more than 40% sulatively ungelified woody materis) (Springhett 1980 pers. comm.). Facies fia is a darker fibrous. lignite consisting of gelified twigs (Fig. 2),
Correlation between flota and lithotype indicates that the two floras wsme deposited in different sedimentary envirommentx, and as the Kooliata Coal Zone consists of peatswamp and lacustrine sand and silt cycles (Kicmor \& Springbett 1992) the changes in the sedimentiary enviromments are most likely due to Huctuations in water levet. The degree of gelification also gives an indication of changes in water levels (Springbett pers: comar-); high degere of gelification - low water level and vice versa.

Comparison with Other Australian Turtiary Deposits

The dispersed cuticle noras of the Lochiel depusit ineluder parataxa that occur in as numbet of other

Australlan Tentary Uleposiss Bunk shatphyfum all. In fiece, the primeipal paratexan of the Sedan lignires is ewell represented al linchiel. This expantls the hnown distribution of the spectes and establighes a florasie lint: between the Northern St Vincent Bayin and Latrabe Valley, from where she typre species was originally deacribed. This assuchaion is funther sirengthened by the presence of Bankricarphylhmaff.
 (Cookron \& Duigan 1950) boll reported oulside the latmbe Valley for the first time. Bunksieracphollunn nbonumen has also heen identified in the Miocene coals at Mirwall where it nccurs in low frequencies its the medium light coloureat coats, the culour values 90-116 IState F:lectucity Commission of Victrria Cinal colour classification scheme, Blacekburn 1985'). All three suticle lypes have affinitics to the mudern genus Burdsiu (Blactibuin 1985). Hill \& Christophel 1988).

Paracaxon No. LCOll in both the Lachicl and Sedan deponits tras sud atfinity to the Myriaceac, It is a minur component in the thoras of both localities but is most abundant at Lachiel. The cuticle sype has alsu heen iscneified Prom the Middle Eoccnc Maslin Bay sedimerts.

The occurtence of Pherosroma alf, ${ }^{\text {PP }}$, zomiondes fpurataron No. ABD OO2) at Lochiel as significant in that is represcuts the firse report of Pecravtoma specimens uutside of south-eastern Australia fand Tasmsnia. Premosomis is teported from a number of Tertary localititw, including Anglesca (Eocene, P. zomialders Hill 1980), Nerriga (Eocene, P. anasumenarms Hill 1980) Ccthana (Oligncene, Campenter 1991) and Buckland (Exacte, Carpenter 8991) and has a known stratigraphic range from the Cefacenus so Larly Otigucene (Hill pers. comm.). With suct a extensive age range for Plerostoma paralakon No. ABD 002 is of Jittle biostratigraphic sigmficance.

Similarly, paratexm No. LC 015 with an affinity to Decrecapms. is of little biostratigraptsic imponance. Dhingedrpis is the most commen podocarp genus in Tertiary sediments in south-castern Australia which is known from numemos deposits tanging in age from Eosene in Oligocene-Miocenc (Anglesea. Vegerable Creek. Yallourn, Bacchus Marsh iss mainland Australia and Regatla Point, Luch Aver and Cethinal in Tasmaniit) (Hill \& Carpenter 1991), Thercfore cuticles assigned to Dacrycarpus are unstitable as biastratigraphic indicators. However, indentification of Duerncorpus cuticles at Lachiel Joes expand our. kintwledge of the distribution of the genus during the Late Encenc.

There are n number of Anglesea parstaxa qresem in the Luctice florg, including No. ABP ©NIL (Podocarmar abf. Palayphithem), all representatives. of the Eldeocarpaceae and Lauraceac and several of the wnkrowit cuticle types.

In sonclusion, analysis of the dispersol whele flemas. orl Facies Ia and ltis. of the Lachisl lignice show that rwo distinct floras exist, ice, the diverse. Aracariaceacduminared flora of the older ungelified, woody lignike and the monospecifice flora (parataxon No. AlV 007) of the younger dark, gelified lignite. The finhoiype send flomal dilfcrences hetween lignites are most likely due so fluctuations in the hydrological cyele; changing from a lacustrate to peatswamp envimomment. These differances may prowe useful ln stresa-basin cormbation

The disperied cuticle composition of the lachiel lignixs provides valuable information on the distrihution of a number of Tertiary plant taxa, including Agafian, Banksfoucphyllum aff. B heve, Bonknetsephyllunt aff. B. fastigatum and Bunksieaephylleen aif. ?\& wovatusn. Dikrvearpus. Gymmosroma. Rodocarpes platyphyllum and Pierosinma. The presence of the ihree Latrobe Valley Bunhsieciephy/hmm species prowites a interestitge floristic link between the depersits and may he of some biostratigraphic signilicance. Rowell (1991) discus5ed this point in relation to Bembsioaephylum aff. B. daeur at Sedan and concluded that iss occunence could cither imply a younger age for the deposit or an eatendad lower limit to the age of the fossil. These comments could apply to the Banksicaephyllum eudicle types ell Lochiel. However. as the dispersed curicle Mord is without any known Eucene, Oligocene or Miocerx indicators little can be concluded regarding the age ot the Lochiel lignites in additon to that provident ty palynology.

Acknowledgments

The author is graveful for she support provided by N.E.R.D.DC erant No. 17174. Thanks go to David Christophel for bis encoutagement and assistance throughout shis project, to the Electricity Trust of South Australia for access to the deposif and to Andrew Kremut and: particularly Gavin Springbest for infurmation on the Loctiel geology and valued comments on the manuscript, To Neville Allcy of the South Australian Deparment of Mines and Energy for assistance in palynologeal stratigraphic information. and to Anchony Fox sno Sennifer Clart for theas assistance with phutugraphy.

[^19]
References

Blaworn. A. J. .e Hild.; R. S. (1985) Temiary Araucarian Macrofossid, from Tasmania, Ausy, J. Botw, 33, 645-656.
Blackeurs; D. Tc (1981) Tertiary Mewaforsil flora of Maslin Bors. Sounh Ausitralia: numerical taxomomic study of selected leaver Alcheringt. 5. 9-28.
Carrentlr. R. J. (1991) Macrocrannia from the Early Teniary of Tismania and a Nudy of the cuticles of exiant species Aus. Six. Bot. 4, 433-444.
CHkwтинн:т. D. C, (1980) Occurtence of Casuarima Megatossils in the Tertiary of south-catsern Austrahis. Aust. A. Bof. 28. 249-259.
\& Lrs. S. D. (1986) Mummified lawes or iwa new species of Myrtaceac from the Eocene of Victoria. Austratia. Thid. 34, 439-441.
, Harres. W. K., \& Syber, A. K. (1987) The Eocene Flora of the Anglesea Locality, Victoria. Alcherimga, 11, 303-323.
\& GReenwooso, 13. R. (1987), A Megafossil flora from the Eocene of Golden Grove. South Ausiralia. Trous. R. Soc: S. Altst: 3 (3) , 155-162.

Cookson, I.C. \& DULAN. S. L. (1950) Fonsil Banksieat from Yallourn. Victorta, with notes on the mis) phology and anatomy of living specien. Alusi. Si Res. Ser B. 3. 133-165.
. 8 \qquad (1951) Tertary Arucariacene from southtadern Australia with rotes on living species. Mid. 4, $415-449$
DILCHEK. D. L. (1974) Approtactrey to the identification or angiosperm Jeat remains. Bon Rev: 40 (1), 2-154.
Cikfimood, D. R, (1987) Early Terliary Podocarpaceat: Mcgatossils from the Anglesea Locality. Victoria. Aldsi. J. Bot 35, 111-133.

Harkis, W. K. (19t5) Basal Tertiary inicroflores from the Princetown arers, Victoria, Australia. Pulueontographica B. $115,75-106$.
(1471) Tertiary Straligraphic palynology, Otwsy Basin. In The Otway Bastit of south-cast Australid. Speec: Bull Gemb Surat S. Aust a Vict 67-x7.
HuL. R. S. (1980) Three new Eocene cycads from eastern Australid. Alest. J. Bus. 28, 105-122.
\& Blcwiola, A. f(1987) Tertiary Eymmospermis from Tasmaniat, Araucariaceae, Alcheringa 11, 325-335. \& Carpenter. R, J, (1991) Evolution of Acmepyle and Dacyrarpus (Podowarpaceac) foliage as interred from macrotossils in snuth-eastern Australid. Ausf. Sin. Bot. 4. 449-479.
\& Christophel. D. C. (1988) Tertiary leaves of the tribe Banksieue (Proteaceac) from south-eastern Alssiralia. Bot I Limm Sir: 97, 205-227.
Krfayoß, A. G. \& Springbeli, G. M. (1992) Si Vincent Basin eastern Ausirala. Bureau of Mineral Resources, Bicentennial Monograph of Australian Cisal Deposits. (Australian Govenmen Publishing Scrviçes, Canherm). In press.
Rowhe: T, $A_{i} I_{-}$(1991) The Dispersed cuticular floras of South Australian Tertiary Covalfields, Part 1: Scdan. Truns. R. Sinc. S. Ausi. 115 (1), 21-36.
\& CrIRISTOPHFI.. D. C. (1990) The Dispersed Cuiticle Profile of the Anglesea Clay Lenses. In Christophel. D. C \& Douglas, $\$$ (Eds) Proceedings of the 3 rd International Organisation of Palaeotionmisis Cinference, (A-Z Printers. Mẹloourne, Victoria,
Stace, C. At (1965) Cuticular studies dis an aid to plant laxonony. Bull. Br, Afus (Nat. Hiv., Ber. A(1): 178.
Suith Australian Departmenf Of Mines And Energis. Mineral frformation Series (1987) Coal Deposits in South Australia, $1-27_{6}$ (Wholman, S, A, Govt Printer, Adelaide.)
Stockey, R. A. \& Taiubr. T. N. (1981) Scanning electron miemseopy epidermal patterns and cutcular structure in the genus Agahtio. Scamming Electron Microserpy 3. $207-212$.
Stowtik, L. E, \& Partrioge, A. D. (1973) Tentiary and Late Cretaceous spores and pollen from the Gippsland Basin. wruth-castern Aistraliat Proct R. Sore. Vict. 85(2): 237-286.
\qquad \& \qquad (1983) Spore-Polleni of the Werrillup Formation, Westés Australiad Pedpedegy 4: 69-95. Wukinsovi H. P (1979) The Plant Surface (Mainly Leat) pe97-165. If Metcalfe, C: R. \& L, Chalk (Eds) Anatomy of the Dicotyledons. Vol 1 2nd ed. (Clarendon Press. Oxtord,)

THE MORPHOLOGY OF NIPPOSTRONGYLUS MAGNUS, A PARASITE OF NATIVE AUSTRALIAN RODENTS

by Ian Beveridge* \& Marie-Claude Durette-Desset \dagger

Abstract

Summary Nippostrongylus magnus (Mawson) (Nematoda: Trichostrongyloidea) is redescribed from specimens from naturally-infected Rattus fuscipes from Blackwood, Victoria and from experimentally infected R. fuscipes and R. norvegicus. The asymmetry of the bursa, a characteristic of the genus, is matched by asymmetry of the spicules and genital cone. The synlophe is similar to that of N. brasiliensis but includes some variable features which appear to be of specific value. The morphological differences in N. magnus are discussed in relationship to the estimated period of separation from its congener, N. brasiliensis. KEY WORDS: Nematoda, Trichostrongyloidea, rodents, Nippostrongylus

TIIE MORPHOLOGY OF NIPPOSTRONGYLUS MAGNUS, A PARASITE GF NATIYF. AUSTRALIAN RODENTS

by Ian Beveridge \& Marie-Claide Dlrettr-Dessfti

Summary

Abstract

 Australian molents. Trims. R. Sere S. Auss. 11603). 104-115, 30 Nowember 1992, and genitad conc. The synlophe 16 simbar to that of N brusiliensin but includes sone variable leatures wheh estionaled periud of steparation froms tis enngener. N, bmasiliensds.

Intruduction

During a study of the helminth parasices of the bush rat. Rourus fusciper. a particular nematode species. Nipmosymangyles magnus (Mawson) was encountered commonly ir the deodenum. The spectes wats described uriginally by Mawson (1961), wlthough features of the complement of suticular ridges, the syrilophe, were not described. Some features of is synlophe were described by Durette-Dessct (1969) and by lichuenfels (1974), bised in as small number of specimens, and in the latter paper their use for taxorumic purposes al the species level was. consideved. N, makness has never been descrited in detail, and the use of the synlophe to ldemify specits. of Nippostrongyius as suggested by Dureite-Dessel (1970) and Lichrenfels (1974) has not been fully explored.

It was evidens therefore that a detailed redescription of the nematerte, particularly features at the synlophte. would allow a more definitive assessmens of whether it provided useful raxouomic characteristics at the species Ievel, as is the case in other trichostrongy loid genesa. It would also provide a basis for subsequent ull rasiructural and life-bistory atudies of ithis parasite.

Materials and Metheuds

Nematokles were bhtsinad finm naturally intiected Karus fiescipes collected su Blackwoud. Victoris $\left(37^{\circ} 29^{\prime} S, 144^{\circ} 19^{\circ}\right.$ E) and from laboratory raised R. fiscipes and R. nonegicus which had been infected experimentally with third-atage barvae el the species.

[^20]Nemaluden were collected live, washen in 0.9% maline and fixed in hot 70% ethanol. Additional specimens. were fixed in 2.5% glutaraldelyde in phosphate buffer at $4^{\circ} \mathrm{C}$ and embedded in resin. Sections $\mathrm{l} \mu \mathrm{m}$ thich, were statined with soludine blue, examined under the light microsorope and photographed. Whole specimens were examined using Nomarski interference contrasi microscopy after clearing in lactophenol and drawings were made with the aid of a drawing whe attached to an Olympus BH microxcope. Apical views and transverse sections. of the nemabude body were prepared bry hand using a cataract scalpel. Morphological terms for the complement of body ridges or synlophe and the: numbering sysiem for bursal raty follow Durcuc-Desset (1971, 1985).

Numhering of symbophe rideges was based on relationship to the axis of orientation of the synfophe as described by Durette-Vessel (1971). Ridgen dorsal in the akis were numbered from left to right 1.2.3 etc.: ridges veniral to the axis Were numbcred from leff so right $1^{\prime}{ }_{n} 2^{\prime}, 3^{\circ} \ldots$, ete, Measurements are given in sum as the range folluwed by the snean of Five specimens in paremineses.

Specimens examined have been deposited in the South Australian Museum (SAM), Adehide.

Nippostrongylus Magnus (Mawsun) rics 1-20

 46-47, Firsm Resines fisscipes. Ro rollers: R. somalus, \vec{R}. norvegicws att Aferenny cerninipes: Durctie Dessct 1969). p. 737, tig 3 \{as A. magna from Rumus sp,),

Niplensmenpy/as maxars. Dunctic-Desset (147), p, 818:
 p. 868.890 .

Material enamined: From Rallus fuscipes: natural infections: 2000,2099 . Blackword, Vic. $30^{\circ} 0$. 489. depowited kisam HC22m77): experimertal intections:

Deacrophont: Smaill. sigiserally-coiled nomatoden. red in sulour when live: prominent slighty any mnetrical cephalic vesicle presens, buccal capsule testigial: mouth apening sub-rrangular, surnounded liy aix dim habid) papillat: lour douhie submedian papiflae und plared sumphids present. external to labiol papillise: osurharus clavikerm; nerve ring in mid-ucmphageal reeiun: deirids dume-shaped. st reyion of crevetosy prite

Sirmbighe- cnmposed uf 14 fidgex in mid-body region: svis of orientasion finons rizhe-ventral hield to left dormal field. is aptraximately 60° to sagitial axis (Fig 15): corrace, ir culicular swelling present in left donal field between ridges 2° and 4: eight ridees an domal Fichd: theser I-4 diminishing in sife, ridges 5 and 6 larger than 7 and $8:$ sis zidges in thorsal tichs: ridge 1 very larye. dinnobing in size to ndge bi all ridges arise ummedisely josterior io cephalio vesicle except lior pidges 3.2 . which urise propressively between resicte arnd excretory pore. ridges sometimes onteriuptal in mudbudy reghon. number and oricntanion uf ridges alten in pusceriol exteniliy of body.

Miste Length $3.3-4.2$ (3.7). max murn widh \cap 10-0.14 (0.11): cephate vesiche $000-0.07$ (0.3651 longe:
 arilerior end: exerêturg pure 0.25-0.32 (0.281 . Irom unterior tnd: Jcirid, 0.26-0.32 (0.29) from ameriser end: spitules $0.50-0.54$ (0.57): gubernaculum 110.5 long Sy nlophe: additional ridge arises in right ventral fied in negigon of spicules. between 114.5 and 0.95 from prostcrior end; mmediatcly anterine on hursa- addituonal dorsial ndge present, with cight dursial and eight ventral ridges; ridges reduced in size, orieminion burely discemible ridges of similar size: irragular abustrmansing and bruhching of ridges seen alose to bursid. Bursid asymmelrical, right lateral kobe longer than leni dorsal lobe reduced. Darsat ray with lays Bariming at diflerent levets; lět ruy 8 noure robust and stsinge pesierior tur right: majoy bifurcturn of dorsal pary in poaterior thitu of its lenglt: Tings as long ath incemal tays (IU): latter with suggestion of becondary liticras lober; on left, nioy 6 robush. arining chase kodorsal Lrunh, reathing matgin ul burst; mavs 5 and 4 stender. not reaching "wargin ot hursa, common lateral brunk Wits proshinent bulec at orgein of roy 5: Teyss. 3 and 2 elngeatc. slectuer, reachnge miurgin of huss: on right, fiy 6 shost slemuer, urising frons lateral truaki; rely 5 slender, reaching matgin of bursit: ray 4 extremely
whast at thate. extromity shender. reucting margis of' bursidi nyth 3 and 2 slender, reaching margin of bursa, Gental tone prominen, clongite, conicul, lighriy selerolisedi venteal lobe simple with globoid, monsckemtised apical apperndage dirsal lobe with imo uncquat pointed ends. lip surrounded by clongate appondage. Spiculcs elorgate. triquctrous in minsverse soction: spicule tips disvimilar;" tip of leff spieute knobbed with ala arising near lip; lip if right spicule iny, ala arisite at tip: gubernaculum present. lighty sclerntised

Fermale: Leñth 4.6-4.8 (4.7) tmaximun wilth in midbody: Iegion (212-0.14 $\{0.13)$, is posterion exiremity ($3.14-0.17$ (0.15): ecphalic vesicle 0.0600 .08 (0.07) longnesophatess $0.46,(0,50(0,48)$, nerve ring 0.20 from anterior end: exiretory pore 0.26-4.31 (0.29) from anteriser end: deinds $0,27-0.31$ (0.29) from anderior end. Hil 0.13-10.16 (0.05): vulva to posteriop end 0.99-0.23. 10,10): ege 0.07-0.08 (0.07) is 003-0.05 (004). Syslophe: sante number of rages in passeriur end al budy: ridges become more prominum in region of ntejector. tesminate inmmediately anteriot to vulya: ridges of almost equal size. orientation atomes low in posterior segom. fosterior extemity of female with swelling uf cuticle, virliuble an shape. atien formung sherve imer sip of call. Tail short conical. vulva chowe to anus: mursudejphic, ovejector leads (o short intuntibulum, then into uerus: egg thim-shelted. tllipsoidal.

Discusston

In anite of the lisct lhat the sute-family Nippostrongylinise is cesmopolima in distsburon, and that the type species of Nijpmetenteriters. A. frasiltoush", bas treen widely used is a model in monunolngical recarch. fety of the specter .s. recognised by Durelle-Desset (1970) have bectn dexcribed in detail. Features of the syulople in the mid. body reginn have becn deacribed for surious specita by Chabaud \& Durete-Desset (1966), Durello-15essel (1969. 1970). Creenberg (1972) and Likhtentels (1974) Features sf the syolophe which migh the usefol in yxecies stepatation have been invesrigated by Lichernels, (1974) following a dcailed examintion ot the synlophes in lalormory sitams of N. braslicisisis and limited observattons an several additional species. Equally

[^21]
detailed studies however have not heen made nil shy congeneps. Thus, apart from provideng is hasis lisr ultrasiructural studies currenty under way, the clentifed destription of N a nebpus is considered vatuathe as a compasison with studies aficady sarricd ont in N. brawilhasis.s.

The itsymmetry of the hursu has teen noted in each canneruer. The bursa is bent studied 1 a appicat or xentral views (Durctic-Dessel 1485), however in specjes of Nigpmastromgyths in is extrenacty difticult ko aren the bursa. hecnuce of iss asymmetry. Ivor this reason. Icfi and righn sateral views ance prowided (figs x y) av well bis an unical view (Fige 10), wheh was obsained using a live mafe specimen prior to fixation. The greateat morphological asymmetly oceuts in fays fond for, bouth nI which ate muct iarger on the left side on the bursa than un the right. though ruy 4 is lareger on the ight side. Apart from the burss dinelt, the spusules und gental conc athe cxhbu sume degree of asynnmetry: The lin st the leli spicule is much fonger and mome complex suructurally than that of the right spicule. Which terminates in it simple point. parallelinse the Gsymmerry of the burss. Delats of the spicule tips have nul been proyided lier congeners excepr for the ups of The spicules of N. brusilionals fee Mawson 2961). In the cave trille gemial ate. the iventral tohe. Dearisg papilla 0 is symunctrical, Whike the dansat liobe, bearing the pairud paspllae 7 j. asymmetrisal. With the right paipillar longer wad hence mose posteritur thats the left (Fies 1A 14). Comparible norphatogical dethils are Evenerally lacking for other spocies, although the gemisal conne uppears to be asymuchical atho m Fig. If of N raterchif (ace Chabaud \& Durette-Desset 1966). Some of these characters maty prove useful as genetic erveria when dexcribed in all species

The synalopthe is resorited fully for the from tine and confims the preliminury abservations of DuretteDewel 11969) and 8 .ichenfels (1974). It rescnobles that tif congeners (Chataud \& Durette-Deswet 796\%: Burntc-Deaser 1970, 1971; Cireenbery 1972) in pascessing 14 ridges in the mid-hody negon with an whlique saxis of oriestatime direcled from righe-ventral (i) Icft-dorsid and a contirent gradern in ridge sure. The thajarity of ridecs arise ibmedialely pnateriar in Uhe seppatic vewcte, with ridges $1,2,3$ in the leti-dorsal licid (ridges 23.3 on lichienfels 1974) arisigg inmediately anter are so the deisid (o). hallwaty helween deirid and wephatie vasicte (Z) und poxierior in the besick (.3). These bigeins are consistemt in naten and foinales and resemble the shastion found in N
 slighely mone pusteriarly at the level of the excemory prote (Lichicnicis 1974J In the postecioif reztor uf the Miale, twen suditional ridees sppest in the lefi-ventral fich. alser sesemblinge the arrangemene deseribed in
 Q.5.1.8 min from the pusteriof extreminy and a herond Hoge in the prehural reging. In the pastedion regen of the femate the number of rideses remains constam. theught the ridges become more similar in :aze and the rriembetion is nore difficulf po exathlish. The extre ridge described in fenale N. brasiliersin toy Lechatenfel. (1974) is athecot in N. maknur. Thus ile syolophe of N. bexgnes resembles that of N_{0} brestiflewsh very chawely.

The syslem for numbering sidges empleyed here differs Journ than uned by Lichentele (1974). I' attempts In show the axis of istientation and the hamology of ridges on either side nif the uxis. It demonnrates that in both the make and fernale of N rempume the asymnetry of ridges and the sixe gradient are lost in the pasterior parts of the body with is symmetrical arrangement of shmonsi equal sized ridges montly arranged perpendicular to the body of the nematade This atrangement whold bs comsidered in "hyper"volvad". Mate in the sense of Durerte-Desset (19855). It is of interest that in make N. Menemas. mi the posterion rceion of the body, not moly is: there a roduction in size af body ridges and ol lass of particular orientakion, hut also the synmetry tif the number of ridges is restored with eught dursal and eight ventral ridges.

Features at lhe sy nloptse of N. mongous which mugn be useful al the specific level are the anterrupton of ridges in the mu-body region and the irregular brinching and unastomosing of ridges in the region of the mate bursa. noted by Lichenfels (1974). In the present sludy, the interruption of ridges (Fig. 6) occurred in both male and femate semutodes, white hranching and anastomoxinge (Fige 5) was seen in males. Thus Ijchnenfels (19741 observaions have been confirmed but sudice ul the remaining congeners are required so entablith their uscrulness.

Lichtenfels (1974) examined speciment of lahorakory strains off N. orastiensis adapted to the rat, mouse und namester and shorwed that the synfophe war constant. indeparden st the hasp spectes in whlth the nematode dewhoped. Althougl smuch munt limutod irt their extent. the obscrvalion thal the syniuphe sif N magmus is inktitial in specimens from the natural host. R

[^22]
adds weight io his conclusions on the stability nf syblophe ellasateles in ditterent host species.
The unfinitics of N. magates with congeners have nol been fully inve:ngated. Mawson (1961) considerel it, diffetentiation from $N_{\text {, }}$ riphtisi thatts is species af Ansmbeligmmenes Mawson, 19大il hased on the shaple if the spicules, number or ridges and mevall size and from No brasiliensis, due to the greater asymmetry in ifs hursta. and the form of the dorsal tay. Greenbery (1972) provided n comparative tatbe of measurements of all species, but not of other murnholozical features. Because of the: ntomplete nature of the deseriptions of several species. comparisons are limutad to the synlophe and hursal rays. The syntopte is apparently simular in maxis species of Nippostrongytur, but ridge I is substantially /erger than piluge 2 in N, magmes, the mate if N . Pypicus. and N. rausche. with the qualitisstems that A^{\prime}. rausche is described as having 14 ridges, bur only 13 are illustratad (Chabaud \& DureiteDesset 1966, Fig. 2A) In the cate of the dorsal ray of N. mugnis, the asymmery of rays 8 owith a slender right ruy urising before a more rohust leff ray resembles No ispicus, bul differs from N. rouschi. N. brisiliensls and N d diumechent which have rays of ansong bymunerneally, though with the left day more robust than she right. and fromi N. risuryw in which the tett ray 8 anses firke and is more slender than the right ray (Ethanfona 1959: Mawsun) 1961; Chabaud de Duretts-Dessel 19óro; Tenora 1969), In No vitenbargi, the foranching pattern of tle 山orsall ray resembles that Df N. nymnyi, but rays 8 are slender (Greenbetg 1972),

Thus. N memma can be differentiated fromicomgencers by seseral morphological features, in addition th the measurements templated by Witenberg (1972), hut tic features dlseussed indicate a close relatonshin with No. ipiones, also a parasice of endemic Australiun moderim.
N. mugnus to el biugcographical interest becuuse is is an endemic Australian species occuring in various species. of Rathes and occasionally in Melomys cervinipes. The lull hosi runge may be greatel than this as a number of endemic fodent species in Australia have not yes been examined for helminh parasites (Mackerras 1958). The endemic species of Rathus probatoly arrived in Australia ahout une milliun years agu (Watts \& Aslin 1981), hence the nurphological differemiation between N. hrasiliensiv/N. faw ind sod N. .numemsiN. sypicus has probably oecurred sher thes same petioud of times. Therc are few inslanes whene a. time scale can be placed on morpholagital difterentiation tetween specters of parasitic nematodes.

Ackuowledguments

We wish to thank Christine Andereen for excelicilis technical assustunce and DF D. M. Sprett for cummens on the mamuscript. This work was supported financlally by the Australian Researsh Crunch. Rus were trapped under a perant from the Vistorian Departuren of Conservation and Emvitohnemt IRP 91.19 .91.

Refcrences

 Nippestrowgiths remseht nsp. Nchashote parabite لe derimplenes et considerationg suf N_{0} brersifierpis pitasile cosmopolfte dee rais domastiques. Ary. Rumisimi. duet, čmmp 11, 243-249.

 Muridés sustraliens /hid. 4. 733.747
1970) Is qente Nippasтronewhus Lanc. 1923. (Neimistode-Heligmoxematide), shit, 45, 815-821
_ 11471 Emsal de thanaifheation then nemacudes betignosuntes. Corpelstiuns avec la puleobingogeraphie des hotes. Men. Afur. natn. Hish nar. Biwis sor. it Dowhogle. 69. 1.12 t .
(1985) Trichastrongyloid nenmatodes and lhine Verrehrate hostis: feconstruction br the phylogery of a

 Víntella whinensir n.sp. (Nemanoda: Heligmusomatidac)

 Hirdwicke, 1832 (Rudentia-Murdac). Isracld. Zueli 11. 63 -70
I.E'HI'EVEELS, \&, R. (1974) Niunter and distribution of sidgen in the cuticle of Nipposstrong whus brusi/iema/s (Truvansion
 285-288.
Maskuv, Y. M. \{1961) Trichoamongyles (nemit rodents in Oucensland wub comments sth the genus Longhariana (Nemstoda: Heligmewrustidue). tas\% J. 7noi. 9. J9/-x26
 and their reaunded merfral paidsites. II. Eulteria. Promb: Linn. Sire. N S. Híle" 83. 101-60
Oqtivoukt. D. L. (1979) The helminth parasites of Rulns Ascipes (Waterhouse) from Viccoría enclading description of twon new nernatode species suri_ J. Zovi. $\mathbf{2 7} .867-879$.
TENURA. Fi (1969) Farasilic nemaludes of cenall indenia from Atghsuistan. Venimik Ciouph spol. Zowi, 33. 574-192.
Watrs. C H. S \& Aiv. 15. J. (i981) The Rodenis of Aus(ribist (Angus ek kobertson, Australia).

 of stane namber ul fidgos. Scale line: (a,Di inm

TRANSACTIONS OF THE

ROYAL SOCIETY OF SOUTH AUSTRALIA

INCORPORATED

VOL. IIG. PART 4

EARLY DEVELOPMENT OF LIMNODYNASTES TERRAEREGINAE AND L. FLETCHERI (ANURA: LEPTODACTYLIDAE: LIMNODYNASTINAE)

by Margaret Davies*

Abstract

Summary

The development biology of Limnodynastes terraereginae and L. fletcheri is described. Life history data generally conform with those of congeners in the same species groups. Tadpoles show lentic adaptations and have a generalized body form. At $30^{\circ} \mathrm{C}$ L. terraereginae completed its development in 71 days and L. fletcheri in 60 days. KEY WORDS: Anuran larvae, development, Limnodynastes terraereginae, Limnodynastes fletcheri, Limnodynastinae, tadpoles, foam nests.

EARIY DEVELOPMENT OF LIMNODYNASTES TERRAEREGINAE AND I. FLETCHERI (ANURA: LEPTODACTYLIDAE: LIMNODYNASTINAE)

by Marcareit Davies*

Abstract

Summary Limnodynastinae). Truns. R. Soce S ALASt. 116(4), 117-122, 30 Novenber 1992. contionm with those of congeners in the same specich groupr. Tadpoles show lentic adaptitions and have a generalized body form. At $30^{\circ} \mathrm{C}, \mathrm{I}$. serruereginae completed its development in 71 days and 7. . flefotieri in 60 dayy.

 iadpoles, fuam nests.

Introduction

Linnodyrastes Fitzinger comprises 12 species (Tylor 1992) that can be grouped into thrie morpholypes: burrowing species with short hind limbs and a rotund body, $29-46 \mathrm{~mm}$ in body length (two species: L. ornarus gnoup), larger hurrowing species ($52-90 \mathrm{~mm}$ length) characterised by well-developed tibial glands (four species: L dorsalis group) and more streamlined non-burrowing. species found in marsh and flooded grassland, and ranging from $31-75 \mathrm{~mm}$ in body leagth (six.species: Lo tasmaniensis group) (Tyler et al. 1979).
Limnodynastes spp. lay foanny egg masse' (but see Ruberts \& Scymour 1989), but the entire developmental biology has been described only for L ormanus (Tyler Et al. 1983). Wnisun \& Martin (1973) described tadpoles of $1-$ inuerioris, one of the large burrowing species and examined larvae of L dumerilii, L. terruereginae. L. permi, L. salmini, δ_{6} rasmaniensis and $L_{\text {n }}$ fletcheri to permit a generic definition. However, these authors did mot describe these larvae specifically, nor did they provide complete developmental data for L interioris.

Martinn (1965) described tadpoles and early stages of L. dumerthi, L. peronl and L. tasmuniensis whils Tylet of al. (1983) described tadpoles of f .. comveximsculus. Here I describe the developmental biology of Limnodynasies zerraereginae Firy, (!.. dorsalis group) and that of L. fetcheri Boulenger, (L. masmuniensis group).

Materials and Methods

Spawn of 4 terruereginae was collected 7 km SW Pentiand, Qld and transparked to the University of Adelaine after cight days, where it was reared at $30 \pm{ }^{\circ} \mathrm{C}$ in acrated dechlurinated iapwater contained in glass aquaria $25 \times 25 \times 8 \mathrm{~cm}$.

[^23]Spawn of L. fletcherg was ublained fromi individual adults from Deniliquin, N.S.W., that spawned in the laboratory. This material was rearod in the same manner.
Developing laryae were fed lightly-boiled, organically-grown mignonette bettuce leaves supplemented with SERA bioflakes pond fish food. Water and food were changed daily.
Samples of eggs, embryos and larvae were collected as shown in Tables 1 and 2 and preserved in Tylet's fixative (Tylet 1962). Cuts were made with a scalpel

TARIE 1. Dinmensioms of devclopmental stages of Limuodynastés ierraereginae.

Age (approx: days. date)		Body Length x_{0}. ratige in parentheyes	Totel Length x_{0} rane in parentheses	π
$\frac{1}{27 . i .1991}$	20	$\begin{gathered} 2,37 \\ (2.24-2.4) \end{gathered}$	$\begin{gathered} 5.24 \\ (5.2-5.68) \end{gathered}$	5
$\begin{aligned} & 4-17 \\ & \text { 28.i, 1991-12.ii. } 1991 \end{aligned}$	25	$\begin{gathered} 4.19 \\ (2.48 .7 .2) \end{gathered}$	$\begin{gathered} 11.12 \\ \langle 7.12-19.52\rangle \end{gathered}$	62
$\begin{aligned} & 17-22 \\ & 10.41 .7991-15.11 .1901 \end{aligned}$	26	$\begin{aligned} & 0,69 \\ & (5,67,2) \end{aligned}$	$\underset{(15,84-19,52)}{1 \times 18}$	18
$\begin{aligned} & 21-28 \\ & 14.1 i 1.1991-8, i i i .199! \end{aligned}$	27	$\begin{gathered} 4.27 \\ (7.04-11.97 \end{gathered}$	$\begin{gathered} 25.15 \\ (18.4-32.13) \end{gathered}$	14
$\frac{28}{27.11 .1991}$	28	872	. 34.45	1
$\begin{aligned} & 55 \\ & 19 . \text { แ..1991 } \end{aligned}$	29	$\begin{gathered} 11.03 \\ (10.5-11,55) \end{gathered}$	$\begin{gathered} 29.72 \\ (294.30 .3) \end{gathered}$	2
$28-55$ 21.ii.1991-19.iii.1991	31	$\underset{\langle 8.72-12.45\}}{\stackrel{11.07}{ }}$	$\begin{gathered} 35.69 \\ (34.03-38.18) \end{gathered}$	3
$\begin{aligned} & 55 \\ & 19 . \text { iii. } 1991 \end{aligned}$	52	$\begin{gathered} 74.12 \\ 113.7-14.53 \end{gathered}$	$\begin{gathered} 38.81 \\ (38.18-39.4 .3) \end{gathered}$	2
50-70 14. iii. 1491-7.iv. 1991	14	$\begin{gathered} 15.13 \\ (11.53-15.8) \end{gathered}$	$\begin{gathered} 42.94 \\ (41.5-44.6) \end{gathered}$	5
$\begin{aligned} & 55.718 \\ & \text { 19.iii.1991-7.iv.1991 } \end{aligned}$	36	$\begin{gathered} 15.5! \\ (14.0 \cdot 16.5) \end{gathered}$	$\begin{gathered} 43.77 \\ (39.5-46.7) \end{gathered}$	7
$\begin{aligned} & 55-70 \\ & 19 . \mathrm{iii} \text { 1v.91-7.Jv. } 1991 \end{aligned}$	37	$\begin{gathered} 15.98 \\ (14.0-17.6) \end{gathered}$	$\begin{gathered} 45.84 \\ (41.74 .8) \end{gathered}$	12

in the presumptive regon of the tibial gland of L. terrueregethere in the netamorphosing specmens.
Measurements of developthental stages werc miale usity an cyepiece mucromter or venier calipers (reading to 00.5 mm . Illustranins were made with the and of a Wild Mis sereodissecting mierosecope and camers lucidd.

Developmental stages ofe those at Ginaner (1960)

Kesuhts

Spann was collected from a heisyly-vegctated. deep. noalside depression it. Hpproximuately 0800 ont 2fi_1991. Adule al Le. verruesergete, had been heard callinge at this bite the previnus night, just before milunighe under an solated parch of vegetation. The linam nest was large. bul an ege count wis not chained, not were teges prescrved.

A 21.30 on $28 . i,|99|$. ctrbhryon wate ut stage 25 (Fig If, Adhesve glasuds were reduced to prominent pigmen patches, "The horny beak and one upper and one lower somplete footh rows were keratinized. The amal operning was modian and the spiracle had formed. Fondryom remained at stage 25 for a tuther 24 hr . Feeding lisd summinicul (farces ware in the anal tubc). famm pigmentation was delectable on the adhesive ylands. One complexc and one divided upper and iwn complete lower labial tonth sows were keratinized.

Embrys sampled on 30.i.1991 and l.ii. 7991 rembisined at stage 25. Pigmentation on the adhesive glunds wh detectable athough considerably reduced in the ohder embryon. Funther keradinizations sf fouth rows was mot apparent.

Adhemve gland pigmentation had vanibhed by 4.ii. 1491 , although embryos were still at stage 25 . The body was more heavily pigmentod kether with the tail

 in stage 30 of fratuhe. Scate harx - 1 mm
musculature and a lighter dussing tht the tall lins. A second diy ided uppor labaial footh mes wes keratinized.
Embryos samplad in 7 il . 1991 remuincd at stuge 25, the only change being an increase in pigmentation particularly on the tat slos. Mcastrements are given in tatile 1 .

A aingle stage 26 larva was sumpled on $16,3 i, 1991$ and a second on 12.ii.1991. Piementation had increased in these laryac. Stage 37 larvae sumpled on I4 is 1991 had strongly pigmented buxlies, cail musculature ind zail Fins. By 15.ii. 1991 stage 27 larvae had it further divided upper and a divided Iower tooh row keratinized,

By 21,iii 1991, laryae had reached stage 28 und pigmentation of the body and upper tail musculature had darker nigment parches superimposed over the uniform background. Most of these pigment patches surrounded the neuromasts of the lateral lipe organs.
By 8.1if.199!, a single shage 31 larva had welldifferentiated lateral lime organs and the hitud limb paddle was pigmented dorsally, extending along the mediolateral surface of the hind limb bud by stage 34. Larvae attained stage 37 by 14.iii, 199 ,

Measurements of all larvac sampled are given in Table 1.

A larva al stage 36 is xhown in tig. 2. The body in owoid and widest behind the eyes; The snomt in Eventy rounded in dursul and tareal views. The nares are dorsolateral and sessile, opening laterally. The eyes ane lateral and relanvely large. The spiracte is sinisural. short and ventroluteral with a small orifice directed posterodersatly. If is attached along its medial edge to the body ol the larve. It is visible from above and is shighlly tupered towand ins orifice.
The anal tube is medial and opens at the extremity ot the ventral fin. 'the tail fins are poorly anched and rounded terminally. The dorsial fin commences in the posterior $1 / 10$ of the body, being decepest about haliway mong its length, "The tail musculatue is thick, tapering 10 a subacuminate terminus.

Tadpoles are moderately heavily pigmented and chocolate markings usually surrounding neuromos cells of the laterat line are superimposed on the background pigmentation. The mouth is ventral and the oral dise is surmunded by lateral and posterior labial papillae interrupted by an umcronedial gap. There are five or six upper und three Inwer labial swolt rows, 'The first upper and second and third lower rows remain undivided. The hurny beak is moderately robuss. The oral dise of 5 lurva at 5 tage 36 jis khown in Fie. 3. The tirst larva reached sidge 42 un zive 194y and stage 46 on 7.14 .1991 having taken at total of 71 days one morphose from spawning. Froglets at atage 46 measured 1800 mm S.V.

Supralahial glands were apparent at stage 42 and although not apparent externally, glandular tixsuce Wan detceted by cye in cut skin in the region of the пresumplive tibial gland.

Linmodinasies. fletcheri

Spawn twas laid in the laboratory in a chamber of recyling, continuously-flowing water described by Chapman (1987). Two spawh clumps deposited overgight on $16 / 17 . \times 1.1991$ and 21/22.xi-1991

 at Sugee 3h, Scale har $=1 \mathrm{~mm}$,
despectively were collected. Data are mosily derived from the first clump, Spiwn was laid in a foamy nest and twelve eggs from the second chump had a mean diameter of 1.39 mm (range 1.28-1.56). Mean capsule diameter was 1.80 mm (range 1.72-1.88).

Within 24 hours the embryon had reached stage 18 (Fig. 4) und hatched at stage 14, 24 hr later on 20.xi. 1991 (Fig. 4), Gills were poarly developed. The mouth was peribritted but the nares were תot. Tail musculature was poorly delincated.

At 48 hr, the gills hadd disappeared, but the embryo remained at stage 19.

Embryos reached stare 25 four days after hatchingThe anus was median. Slight protrusions of the adhesive glands remained, the base speckled with pigmentation, Over the next threc days, the adtesive glands disappearct. The anus moved from a median to a dextral position and the horny beak, together with firstly one and then two upper labial tooth row's and three lower footh rows, keratinized.

Measurements of stage 25 embryos are given in Table 2 and one is illustrated in Fig. 4.

Stage 26 and 27 larvae were sampled on the seven days aftet hatching. By stige 27, al! (onth nows were keratinized. The body of the larva was irregularly pigmented and a faint dusting of pigment was apparent on the dorsal tail musculature and tail tins.

Fig. -. Fubryon or Limnodunerstes fetcheri: a. Staye 18; b. Stage 19 at hatching:.c. Stage 2. Scale bars - 1 mim.
l arvae reached slage 30, 14 days affer hatching. The anles was median and patches of chocolate pigmentation were appearing, superimposed over the background coleration of the body and tall. Mcasurements are given in Tabte 2.
Larvate reachad stage 3323 days ather hatching and stage 35 after 27 days.

A larvant stage 37 is illustrated in Fig. 5. The body is ovoid and widest behind the eyes. The snout is evenly rounded in dorsà! view and slightyly truncated laterally. The nates are dorsolateral, not elcyated, opening anterulaterally. The spiracle is sinistral and relatively whor and is visible from above. It is altached to the body wall along its medial edge with the diameter of its orifice being less than the diameter of the tube The spiracle tapers towands its orifice. The anal tube is median und opens along the ventral edge of the ventral tail fin. The tail fins are arched, the dorsal fin commencing in the posterior $1 / 10$ of the bowly. Both are deepest approximately half way along their length. The tail fin is slightly rounded at its terminus. Tail musculature is moderately thick, tapering to a point posteriorly. Bloschy chocolate pigmentation on a cream baekground is tocated on the tail mosculature with weaker metanic patches on the fins. The budy is

TABLE 2- Dhmentoraz. of developmentel stanes as Limnudynastes, fletcherii.

Aye (approx. days. date)	Stage	Boxly Lengeth x_{1}, range in parentheses	Total Length x. range is parentheses	л
${ }_{23.11}^{6 i} \times 1991-28 . \times i .1991$	25	$\begin{gathered} 1.97 \\ (4.06 .24) \end{gathered}$	$\begin{gathered} 12.49 \\ (9.76-15.2) \end{gathered}$	27
$\begin{aligned} & 10-17 \\ & \text { 27.xi. } 1991-\text { xiii. } 1991 \end{aligned}$	26	$\begin{gathered} 7.01 \\ (6.4-8.0) \end{gathered}$	$\begin{gathered} 18 .(17 \\ (12.01-22.0) \end{gathered}$	6
$\begin{aligned} & 10) 26 \\ & 27 . \times i .1991-15 \times x i i .1991 \end{aligned}$	27	$\begin{gathered} 725 \\ (6.51 .8 .61) \end{gathered}$	$\begin{gathered} 19.83 \\ \{17.22 \cdot 23.31) \end{gathered}$	12
$\begin{aligned} & 17-26 \\ & \text { 4. xii. } 1991-13 \times \times 1 i .1991 \end{aligned}$	28	$\begin{gathered} 9.74 \\ (9.13-1029) \end{gathered}$	$\begin{gathered} 26.48 \\ (24.9-27.46) \end{gathered}$	3
$\begin{aligned} & 26 \\ & \text { i. } \\ & \text { xi. } 1901 \end{aligned}$	29	$\begin{gathered} 16,49 \\ (9.96-10.79) \end{gathered}$	$\begin{gathered} 27.73 \\ (26.56 .28 .59) \end{gathered}$	4
$\begin{aligned} & 17-26 \\ & \text { 4. xii. } 1901 \text {-13. } \times \text { xii. } 1991 \end{aligned}$	30	$\begin{gathered} 11.91 \\ (11.62-12.06) \end{gathered}$	$\begin{gathered} 30.71 \\ (29.88-31.54) \end{gathered}$	3
$\begin{aligned} & 47 \\ & 1.5 .1 .1992 \end{aligned}$. 31	$\begin{gathered} 10.85 \\ (10.3 \cdot 11.4) \end{gathered}$	$\begin{gathered} 30.85 \\ \{30.2-31.5\} \end{gathered}$	2
$\frac{23-52}{9 . x i i .691-15 . \hat{1} .1992}$	32	$\begin{gathered} 13.83 \\ (10.8 \cdot 17.43) \end{gathered}$	$\begin{gathered} 36.96 \\ (27.6-46.07) \end{gathered}$	18
$\begin{aligned} & 26-47 \\ & 13, \times 15.149+15.1 .1992 \end{aligned}$	33	$\begin{gathered} 13.35 \\ (12.014 .8) \end{gathered}$	$\begin{gathered} 37,20 \\ (34.4-40.26) \end{gathered}$	10
$\begin{aligned} & 47.52 \\ & 15 . x i i .1991-15 . i 1.1942 \end{aligned}$	34	$\begin{gathered} 14.36 \\ \{13.1-15.8\} \end{gathered}$	$\begin{gathered} 38.8 .3 \\ (34.12-42.0) \end{gathered}$	1.4
$\begin{aligned} & 47-52 \\ & \text { 8.i. } 1992-15: i .1992 \end{aligned}$	35	$\begin{gathered} 16.23 \\ (15.3-18.0) \end{gathered}$	$\begin{gathered} 44.23 \\ (4(06-48.7) \end{gathered}$	4
$\begin{aligned} & 52-70 \\ & 8 . i .1992-26 . i .1992 \end{aligned}$	36	$\begin{gathered} 17.04 \\ (160.18 .18) \end{gathered}$	$\begin{gathered} 48.32 \\ (44.2-52.4) \end{gathered}$	5
$\begin{aligned} & 70 \\ & 26.1 .1992 \end{aligned}$	37	$\begin{gathered} 18.86 \\ (17.5-211.5) \end{gathered}$	$\begin{gathered} 52,24 \\ (48 . \times-5600) \end{gathered}$	13
$\begin{aligned} & 70 \\ & 26.1 .1992 \end{aligned}$	38	$\begin{gathered} 19.0 \\ (18.1-14,9) \end{gathered}$	$\frac{57.1}{(56.3-57.4)}$	2
$\begin{aligned} & 70 \\ & 26 . i .1992 \end{aligned}$	34	22.11	58.5	1
$\begin{aligned} & 70 \\ & 26.1 \% 22 \end{aligned}$	40	24.2	68.5	1
$\begin{aligned} & 6.5 \\ & 21.1 .1992 \end{aligned}$	42	22.0	67.9	1
$\begin{aligned} & 78 \\ & 3.1 i .1992 \end{aligned}$	43	26.1	43.5	1
$\begin{aligned} & 80 \\ & 5 . \mathrm{ii} .1992 \end{aligned}$	43	23.5	60.1	1
74 30.6 .1992	44	22.9	34.8	1
$\begin{aligned} & 79 \\ & 4.3 i .1992 \end{aligned}$	44	22.5	29.6	1
$\begin{aligned} & 60 \\ & 1.4 . i .1992 \end{aligned}$	46	21.2	--	1

nuderately pignented with it paler cream posterodorsally. Chocolate freckles and smaller blotches tire superimposed on the background plgmentation.

The mouth is anternventral. The coral dise is surrounded laterally by a single row and pasteriorly by a double row of labial papiltae Pipillue areabsen anteronedially. There are three upper and three lower rows of labial teeth. Only those rows udjacent to the beak, which is moderalely keratinized. are divided (Fig. 6),

Many of the arol discs examined were abnormal in developmen with split beaks and neomplete or distorted tooth rows.
Measurements of larvac are provided in Table 2.
By 12.i. 1992 a Jarva hiud reached stage 42 and by 15.i.1992 it had reached shage 46. 60 days after spawning, Apart from at further three or four individuals, the remainder of the spawn clump did not melamorphase until about 30 days later: i.e., about 10.ii.1992.

Body lenelh at metamorphosis wat 21.1 mm.

Discussion

(8) the tadpoles af large burrowing species of Limmuliraszes, only shose of L. interioris and L.
themeriliz hate been described and illustrated (Watson \& Martin 1973; Martin 1965). lurwac of L. terraersuinup described here have a similar morpholngy ut that these species although the inner cdee of the spiracle may be frec in L. clumervili and these lasvae are usually larkly pigmented. with older tiedpoles being generally lighter (Martin 1965). The

 37. Scale har $=1$ mm:
gencral lentic hody form of the three species is similar (described as generalized by Watson \& Martin 1973).

A looth row formula of five or six upper and three kower fabial tooth rows is consistent within the group and the pattern of labial papillae is common to the three species.

Of the nuarshy and flooded grassland specties, Iarvae al L. EfR"maniensixa and L. peromi have heen described by Manin (1965) and those of I. comberumenifus by Tyler el ul. (1983).

Tail fins of these species and of L. jlewheri tend to be more strongly arclicd than those of the L. dersalis group. δ_{-}peroni has four upper and thrẹe lọwer labial tooth rows, L. zasmaniensis have five upper and three lower rows and L somexiusculus has five upper and three lower rows of lahial teeth (Martin 1965: Tyler et al. 1983). Watson \& Martin (1973) recorded al least four and usually live to six rows of upper labial teeth for L. peromi. L. sammini, L. masmaniensis and L. dlercheri.

The presence of only three upper tooth raws in the L. Jletcheri examined here may be ad result of the high proportion of abnormal mouths in the two spawn clumps reared. Only one male was present in the colony of adults from which the spawn wars obtained and given that larvae of I. temmeregince and L. snlmini teared under identical conditions did not show the same
phenomenon, in in pussible that the problem is a genetic one. Ridges lacking in tecth were apparent in the L. fleteheri tadpoles and it is possible under other circumstances that 1soth rows form on these. It is known that larvac reared in the laboratory tend not to have tooth rows that are as well developed as those that are collected from the field but the deficiency in the rearing methods has not been identified (M) Davič. M. J. Tyler \& (i. F. Warson unpubl, data).

Whilst secognising the anomaly in the looth row Eormula recorded for L, flewchert here, larval characters are consistent with the species groupingx baved on adult morpholagy.

Acknowledgments

Michtel J. Tyler und Leanne Seller helped with the reasing of tadpoles. Graeme \mathbf{F}. Watson and Keith R McDonakl provided lield companionship and Michacl 1. Tyler collected the L. fletcheri adults and critically read the inanuscriph. Their assistance is appreciated. The comments of A. A. Martin and G. F. Watsor are appreciated. This study was supported by an Australian Reseurch Grants Scheme grant to the author and M. J. ryler.

References

Cltapalavi. J. E. (1987) Rcaring and mantenance of the Austrulian adnuran fimmorfonasmes gasmaniensis under laboratory cunditinss Animal Techmology 38(3)= J75-182_
Gusnti. K. L. (1960) A simplified tante for shaying unuran embryns and larvare with notes on identification. Herperstospices 16. 18.7-190)
Manien. A. A. (G655) Iadpulers of the Melboume area, Wif\% Nirf. 82(5). 139-149.
Koblets, J. D. \& SEsMourn R. S. (1989) Non-framy egy masses in Limundondses pasmaniensis (Anura: Myobalrachidae) Trum Suush Ausisalia. Copeia (1989), 4ix- 192

There. M. J. (1962) On the preservation of anman ladpoles. Ans7. J. Sris 25, 222. (14y2) Encyclopedia of Australian animals. Froge." (Angut \& Runertion. Pymble).
-_. Cr(x)k, G. A. \& Davif.S. M. (1483) Reproductive brolugy ot the fiog of the Magela Creek System. Northern Terribory Ret: S Ausp. Mus, 18(18). 415-441) - MAKTLN, A, A. \& DAYIES, M: (1979) Bjology and ystematics of a new hmodynastine genus (Anuta: Leptodactyidae) from north-western Australia. Aust. J. Znol, 27. 13,5-150.
Wrikis, (i. H. Maktin. A. A. (973) Lile history. Litval murphology and relationshipsi uf Australian lépocolactylid

A NEW SPECIES OF TRICHOSTRONGYLOID NEMATODE, ODILIA BAINAE, FROM A NATIVE RODENT, RATTUS FUSCIPES (WATERHOUSE)

by I. Beveridge* \& M. C. Durette-Desset \dagger

Abstract

Summary Odilia bainae sp. nov. is described from the duodenum of Rattus fuscipes (Waterhouse) from Blackwood, Victoria. The new species differs in having shorter spicules than any congener ($0.26-0.28 \mathrm{~mm}$), in having a symmetrical bursa and in the number of body ridges. KEY WORDS: Nematoda, Trichostrongyloidea, Odilia, new species, Rattus.

A NE：W SI＇ECIES OF TRICHOSTRONGYLOID NEMATODE，ODILIA BAINAE，FROM A NATIVE RODENT，RATTUS FUSCIPES（WATERHOUSE）

by 1．Beveridge＊\＆M．－C Durette－Desset \dagger

Abstract

Summary Qeveridee．1．\＆Durette－Desset．M．－C．11992）A new species of trichostrongybid nematude，Odilia hainac． from a nutive rodent．Ratrus fuscipes（Waterhouse），Trous．Re．Sec：S．Allss，116（4），123－128，30 Nouember， 1492. The new apeciey difies in having shonter spicules than any coneener（ $0.2(\mathrm{n}-0,2 \mathrm{R}$ mm），in having a symmetrical bucis ond in the momber of body ridges．

Key Worrss：Nematoda，Trichastongylurdeis，Rdilit，new specier，Ramus．

Infroduction

Very lew studies have been undertaken io atweertuin the parasite fauna of the various species of the genus Ratius endemic in Ausiralia（Mackerras 1958）．The most extensive survey to date on the parasites of Romus fuscipes in Victoria（Obendorf 1979）revealed several undescribed species of nematodes including twa which were dexcribed．A third species，referted to by Obentorf（1979）as＂Lamgistrintas sp．（undescribed）＂ was found at a single locality（Blackwond）in Vicrotia． In this paper，we descrithe and name the new species as a precursor to studies on its ultastructure and life histary．

Materials and Methuds

Nematcxics collected from the duxdenun of naturally infected Rattus frasciper Irom Blackwood．Victoriat （ $37^{\circ} 29^{\prime}$ S． $144^{\circ} 19^{\prime}$ E）were washed in 0.9 每 saline and fixed live in cither bot 70% ethanof be 2.5% glutaraldehyde in phosphate buffer at $4^{\circ} \mathrm{C}$ ．Additional specinems were obtained from laboratory－reared Rarms fuscipes infected either orally or subcutancously with the thind－stage larva of the nematode and from laboratory rats（Ratucs norvegicus）infected via the same routes．Specimens fixed in cthanol were cleared in iatopphenol and examined using Nomarski interference microscopy．Drawings and measurements were made using as drating lube ataached to an Olympus BH microscope．Transyerse sectionsis of the body of male and female nematontes were prepared using a calatact sealpel and were mounted in lactophenol for examination．An apical view of the cephalic extremity was prepared by the same means． Morphological terms for the body ridges and bursal

[^24]rays follow Durette－Dessel（1985）．Ridges dorsai to the axis of oxientation of the synlophe were numbered from left to right， $1,2,3 \ldots$ eic，while ridges ventral to the axis were numbered from left to right $1!, 2!, 3^{\prime}$ ．．etc．Measurements were made on five male and five female specitnens and are presented，in millimetres，as the range followed by the mean in parentheses．Specimens fixed in glutaraldehyde were embedded in resin，sectioned at＂ithickness of $1 \mu \mathrm{~m}$ ； stained with toluidine blue and examined under the light nucroscope．
Type specimens and specimens from experimental infections have been deposited in the collections of the Souht Australian Museum（SAM），Adelaside．

Odilis bainde sp．now． FJGS 1－18

Lenmistion sp．（illodeserthed）of Dhendert＇\｛197）

Types：Holutype male，from duodenum in Ratus fuscipes（Waterhouse），Blackword，Victorita。15：X． 1991. SAM V4181：allutype female．SAM HC22890； paratypes， 1200 ơ， 10 qㅇ，SAM HC22879，22883，

Material examined：From k ．fiescipes enatural intection）：types：（experimental infections）： 2600 ． 249^{-9}（SAM HC22881）．From K norvegleus （experimental infections）： $140^{\circ} \circ^{\circ}$ 17马 马．（SAM HC22875）．

Descriptioni Small，sinistrally－coiled nematodes，red in colout when live；prominent cephalic vesicle present， gymmetrical in shape；buccal capsule vestigial． teeth absent；mouth opening sub－triangular，surrounded by six liny labial papillac；four double sub－median papillac and paired amphids present，external to labial papillse；ulorstil vesuphageal gland small but distinct in apical views or head；resophagus claviforns；nerve ring in mid－ocsophageal negion：deirids dome－shaped．

is reguon all cxisetiry pure. Synfuphe compaved ot 18 longitudinal sidges in miu-body region: axls ot orientation (Fig. 13) fmin right-ventral ficid io leftdorsal lieh at "pproximately $40^{\prime \prime}$ to horizontal: diminutive carene, or cuticular dilation. present an left dorsial ispect belureen ridece 2' and 5 (Figs 14, 17 y: raine ridges in dorsal field, ridecs 1 to 5 small, ridges 6 and 7 lafger, ridges 8 and y small: cipht ridges in ventral hield, ridges 4 and 5 lamer thas cither I to 7 оr 6 Lo 8 ; wome valiation in relative size of ridees occun. along body of mematode. with ridges 1 (1') and $2(2)$ dimunishing in size in mid-hody region (for cxample. compare Eyge 13 and 14); most ridges arise Immodiately poslcrior to cephalic sésick., single ridge on lefs side ariacs it lovel of nerve ring; single ridge on fight sude trisen postersur 10 excrenny pors: number and orientation ul ridges varisble in pasterios extremiey of body.
Mals: Lergeth 3.5.4. 1 (3.8). Bitxinxum widh 009-0.16 60.09). cephatic, vesicle 0.014-005 (0005) long: enanplagus ($331-0.36$ (0.34) long; nerve ring 0.16 from anternor extremuy: cxcretoty pore $0.23-0.24$ \{ 0.23 \} from anterior extremity; dcirids (0.23-0.25 (0.24) from anterios extremity: spicuks $0.26-028$ (0.271 long: eubernexulum lighty scleroised, visible only in few sperimens. $0015-1607$ (0006 lang Synkople: ridges branch and andstomase irnegularly in posterier region of bisty: up to 19 ridges at leval of spicules ridges refuced but relatively uniform in size, most oriented perpendicukir to body synkephe orientation difficult In discem.. Bursa symmetrical. dorsal lobe reduced. Donsat ray symmetrical, divided neat orgein, kerminal suhdivisions shuth, symmelrical: rays 8 urisjne with Horsel irunk, papillac 8 close to margin ul bursa; mys 4. 5. io grouped ugether: $13 y$ siender. sharply recutved hesr extremity: my gi robust: ray 4 rubusi, almost secuntrate; rays 2 and 3 slender, reaching margin of thursi, Genital cone extremely prominent, lughty sclemfisedi venisel lip conical with simgle sipical pupilla. donsal lobe with pasired papillac 7 . Spicules changatc. alate, iriquetrous in iransverse section: similir: tips whth slightly expanded flange of clear spicubar miternal in dursi-ventad view: gubernaculum present: very lighty sclematised. nint visible in all spocimens.

Femate. Length 4.3-4.9 (4.6). maximum wadth a.10-0.13 (0.7)): cephalic vesidete 0.04-6,06 (005) long: vssuphagus $0.33-11.44(0,38)$; nerpe pling 0.19 from anteriur extremity; excretory pore $0.23-0.27$ (0.25) from anterior extronty; deirids 0.25-0.27 (0.26) from anternor exlremity:; tail 0.03-0.07 (0.05); vulva is posterior end 0.09-0.17 (0.12) - egg 0.07-0.0S $\{0.08\}$ by $004-0.05$ (005). Monodelphic; intundibulum shot: egg thin-shelled, ellipsoidul. Synlopte: Ridges interrupted in postcrior part of hody, diséppear al level of vulva; up to 19 ridges present at level of inlundibulum. ridges reduced in size and uniform in sire, most urientad perpendicular to body: orsentainon ot syrlophe difficult so discern. Tiil short, conical: vulval close for anus.

Discunsion

The species described above cfearly belongs to the Nipposirongylinae Durette-Dessct. 1971 is passessing a syntriphe oriented between 45 and 67° from the saginal axis and a latern-median griatient in ridge size. In possessing at carcme, or swelling on the leff dorsal aspect of the body; with a moderately hypertrophied luft lateral ridge and an obvious size difference between the left lateral ralge and the left dorsal ridges, the mematode belones to one of series of relaled genera, Nenkelignmarlelio Dunate-Dessei. 1971. Carolinensis Travassios. 1937. Rifilior Durcte-Desset. 1973 and Nippornongevur Lane; 1923 (sec Durette-Desset 1983). The ponsiession of a dorsal ray divided close to its origin and a common ongin for the dorsal and externo-dorsal rays exclude this species from Neohefigmonella and Caresinensis. while the symmetry of ins bursa, and in particular rays 6, exclude it from Nipposiromgyhus. Gencre evected since the publication of the bey of Durette-Desef (1983), Malaistrongylus Ow Yang. Durcte-Denser \& Ohbayashi. 1983. Rarmas minghur Ow Yange Durette-Desset \& Ohbayashi, 1983. and Sabanema Ow Yang, Durettc-Desset \& Ohbayashí, 198.3. all differ Irmin the speciex described abore in bathing a trypertrophied lefi dateral ridge (see Ow Vang ef uf. 1983). The species described above thercfore belong: tó OLilia.

 Tareral siew. let tail of female.
 cone in the sume syetem.

the genus Ouilice was estahlished to contain seven species of trishostrongyloid nematudes belonging to the Napprispongylinace parasitic in Ausitralion murid rodents. The genus is clearly related k Nipparfoneneves, which is cosmopolation in nidents. particulanly Ratrus кpp. (see Durette-Desisel 1970), Nersheligmonctles in Arrican morid indems and Corclinesus in holarctic arviculid and gerbillid rodenss. hut is distinguished primarily by the charasicristic term of the donal ray (Dureme-Desset 1971) whach is Leeply divided and arises at the origin! of the externodorsal rays. The new species desenbed here was intsilly identified is "Longistriana sp.. undexcrited" (scrsser Mahson 1961) by Ohendorf 19999). The specie, described above can be differentiated fmm all congeners by is exvemely shom spitules (026-(1)28 mim). Te differs frum O mackermasue. O mansonae, O. brachubursat, O. pobrhabdate and O. cmanuelue in possessing a symmetrical caudat hursa. The remaimug species. O. melongsas and 0.1 urombens have at symmerrical bursu. The new species also differs from all songeners in which the syilophe has been describes in the number of sidees in the mid-body region, 17 in the new species cumpared with it in 0 hruefigbarsa, 18 in O. emanuelae. 16 in 0. mackerrasue. 15 in 0 . metonnos. 36 ina a polyrhabdoin and 31 in O mansenpere, whthodeh O. mavsemere tas 17 ridges in the anterior part of the body (DureveDesset 1969). The number of idees in O. arombos is nol known. Thus the material described confirms the olservation of Obendorf (1979) tha it is a new species. which we here name O. bainae; aller Dr Odile Bain. in whose hunurur the genus was enecurd.
The presence on an addatonal species of orthia in an endemic spectes of Rapras is of interest in view of eurrent hypotheses an the evolutionary relationships of the genus. Mawson (1961) observed that the lrichostrongyloid genera presem in endemic nurite rovents, that is the species of Ramus, belong primarily to Nippusinengyster and dustroheligmonema Mawson. 1961, although Ahstrohellgmementa is now reganded as 3 synonym of Nippostrongytus (sec Durcut-Dersel 19711. Those nematodes present in the "Old entemic" modenes bedorgeng tu the sub-Canily Hydromyinate were mamly species plscod in the geners Lungisariata Schulx, 192 and Hefighumphes Baylis, 1928 , although all of them ane now included in a single genus adilio. In a reexarnination af the mesphulogy of Australian species by Durctre-Desser (1969); a trend in syalophe
arupholoyy was obsurved from species with a carene, hypertrophied lett, latetal ridges and a side gradent 11 ridges from right to keft towards synlophes sueh as that liound in O. pellorkabdere in which the number of ridges wast increased, hut their sizes diminished and the distinctive orienration was lust. Bocausc the former bype of synlophe necurs in penera such as Nippostrongylus which occur in south-easi Asid, Durete-Desser (1971, 1985) comsidered these finding: consistent with the hypothesis that the hydrumyine rodenis reached Australis with nematenles resembling Nippastrong whes, and that the genus Odflied ewolvod in isolatiun in the Hydromyinac. The more recent arrival of species of Rathux in Australia about one millian years ago (44aths \& Astin 1981) probably intmduced or reintrnduced Nippaserongylus. and lead 10) the development of the two endemic species. N. sypicus and N. magnus in Rutlus fiesecipes. According of this tropothesis. species of Odilia presem on endemic Austratian Rancus. spp nepresent ifansfers from hydromyine rodente.
With respect in synloptic: morphology, the new species fits within the transtion series envisaged by Durene-Desset (1969). The number of syntopher ridges (17) is greater than that eapected in the supposed ancestral siate $\{14$) and althrough a size gradicm in the tidges remains, the carene is not prominent. Two species nt Odilla dexur in Ratius species in addition 10. 0 . bainae; these being Q emanuefar in \mathcal{R}. conatur and O, polyrumbdare in R. fuscipers (syn R, assimilis). In each instance, the species of Routus thvelval is broudly sympatsic with hydromyine rodents, principally Melomys spp. (Watt ace Aslin 1981) which cuuld have acted as durors in the transfer to Ronus sppr At Blackword, the onty known locality for a brainde, no other hyurmyine modents other than she water rat,
 batinue is extusovely u pansite of Ramus Spp. and that iranster of the species of R. furciper occurrad some lime in the past, ether when hydmuyine nodents oceurred in the area. or prior to the extension of R. fustipes into this regiun. However, of the Australian bydrumgune rodenis. only the parasiter of thythomys. Uromys and Metomess have thus far been studied, ind for many spocies and generd. there are as yet no recurds (see Mackerras 1958), Thertfore amp conclusions un the hast of geographic distributions of individual nematode specie, within then need ur he lreated with sume caulion.

[^25]
Acknowledgments

We wish to thank Christine Andersen for expert technical assistance and Dr D. M. Spratt for comments on the manuscript- This work was supported financially by the Australian Rescarch Council.

Kats were trapped under a permit from the Victorian Department of Conscrvation and Environment (RP 91-095).

References

Dirkivit-Di:Sset. M-C. (1969) Len systemes darêtes culiculaires che les nématodes heligmosomes parasites de Murides australiens. Anh. partusitol. hum. comp. 44. $733-747$ (1970) Le genre Nippastrongylus Lanc, 1923, (Nématode-Heligmusomatide). lbid. 45, 815-821.
(1971) Fstai de classification des nematodes heligmosones. Correlations avec la paléobiogéographie des hotes. Mcm. Mus. natm Hist, nat , Paris ser, A. Zoologie. 69. 1-126.
(1983) ClH Keys on the Nematode Parasites of Vertebrates. No, 10 . Keys to genera of the superfamily Trichostrongyloidea: (Commonwealth Agricultural Bureaux, Farnharn Royal. England).
(1985) Trichostrongyloid nematodes and their vertebrate hosts: reconstruction of the phylogeny of a parasilic group, Adiwan. Purevsitol, 24, 239-306.

Mawson, P. M. (1961) Trichostrongyles from rodents in Qucensland with comments on the genus Lomgissriata (Nematoda: Heligmosomatidac), Aust. J. Zocol. 9, 791-826.
Mackerras, M. I. (1958) Catalogue of Australian mammals and their recorded internal parasites. II. Eutheria. Proc, Lim?. Soc N.S.Wales. 83. 101-60.
Obfendorf; D. L. (1979) The helminth parasites of Ratus fuscipes (Waterhouse) from Victoria, including description of two new nematode species. Ausf. J. Zool. 27, 867-879.
(Ow Yang, C. K., Durette-Desset, M. C. \& Ohbayash, M. (1983) Sur less nématodes parasites de rongeurs de Malaisie. II. Les Trichostrongyloidea. Ann. parasitol. hum. соид. 58, 467-492.
Watls. C. H. S. \& Asliv, H. J. (1981) "The Rodents of Australia." (Angus \& Robertson, Australia).

A DISSECTION METHOD FOR DETERMINING THE GUT CONTENTS OF CALANOID COPEPODS

BY John D. GREEN

Summary

BRIEF COMMUNICATION

A DISSECTION METHOD FOR DETERMINING THE GUT CONTENTS OF CALANOID COPEPODS

The examimation and teoarding of gul contents has prevea to be a useful aid in the snudy of the diels of zonoplankton. The mathod sennol gives complere picture of the dict of os particular species as some tood iems urc more delisate than thers and are more rendily brulen during mastication ant dissolvod ty thgestive enzymes. Houvever, many thgac and allimals. In the liets of copepnde remuin sulficiently undamaged, or hane sulequate idculifiable parts that ane resistinte meroy matic hreskdown, wa allow a reascrably good нsyessmen of diel from gut contenty analysis 1.3, It is preferable so base the anatysis on the contenis of the fore-gut [Fig. 7), it which mach of the ingested material has boen less ailiscted by enzymatic ption and is Ifss compacted, than on the compacied and well digesied bolus, in the hind-gut. or the juccal pulless.

11 is not a simple mstice, however, to dissas nut the entire gut contents of a oupepod, largely hecause of the itaripulagive delicucy required. The contents of the foregul can be particalally sifficult to extact in their enirety beizuse of their diffusenuss: Thase who have used it dissection inethod may thus chones wo remowe unly the hind gut halus ${ }^{5}$. The nethods most used for examiming eut contenes avind direct dissecivon. In the squash techumue, the gut cantents so extracted imm either live on plaserved spesimens by pressing iown on is coverslip over the snimal ${ }^{120}$. This method has lie advanlage of both neleasing the matesial fon the gue snd dispersing it 80 that individual items may be idemified and connted. Another method is to render the whole anixcal transperent by clearing If it lacue acid, or in cuparal or canads bulsan after pussing if through an aloohol seriest. The drawhack here is that the gut contents are nut dispersod, amd even when the gut cluses can be clestly seea the indivisoal food tems are musty difficult w identify prsinively or woune. One *sy of nvenoorting such difficulties is to place che spocinnen uxuler it cuves ship and erode auny most of the lissues with weat sodium bypochtorite". The hypochloritc is then flushod wary before the gut contents are oxidised. and 11 is ususlly possible os identify many of the individual food items by gently moving the cover slip, which parly redistritutes the gut ampents. The method has been used successtully in Australis witecrmine maximum gut food-purticle sizes of the copepuds Cabomvetia
 Reservoirt.

Duing a study ol carnivory by three large ommivinous calanoid mpepous (Boctiedth mu/nt. B. fseudoctredec and Hembicclella scoriti Irom temporary ponds on the upper River Mursy flacighaic, we sried all the above netheds of gul cuntents analysm. None of Hent proved entirely katitactary particularly lor revexling the remains of anmbily In the eul contents. This appeared to be onninly due lo UTc large size and thick bodies of the copepods, and hecause wh. had enailate onty speclunens preyerved in 4 哭 formalin and 70% alcotroi. The sqush method oppeared reasonably satislactory for small specinticns, but in larger animals (and pariculas ty ethose proserved in 4% formalin) the gur contens Werc sites dificuli to ahcerve clearly. amongst the rasss of thisruped croskelean and muscle lissue. Clearing in lacrio
acid was only putuly rucucessful. The bopepouts did filt stiar very well, again appareatly becullse of their large size Whenever the ford tholuses could be seen clearly, animal remains (c g. cuticlo, setse) uere difficule or tipussible ω rcoognise w they urually Wefe crushed sal compacted within the holux The typuctlorive erosion merhod was slen not entinely successful. Evan though the gut cumcris could be parly manipulated. the lant that the gut holuses ware nat tully disperned made animal material difficuli an see. As well. it Was found that bubbles of oxygen pmaluced during lissue crosion accumulated within the body and abscured the gat contents, and thal care had to be daten to ensure that lie gul cuntents ihcuselves were an oxidised.
la onder is avericome these difficultics we developed the mhlowing dissection method, which enibley the Entire gui cuntents of both small and langc copeprods io be remulved The canieats of both foom- and hindzuis can be cleanly exiractod without incerference inm most surrounling tincucs, sispersed. and fettnamently mouried.

Noedies for disscction are misde- from 2 con lengths ol A3 man cungsiten wire, which is nigid enought us allow some. pressure 2 he applied during dissectson, and muy be sharpened w a fine print. For dissectify large cupopods a shap saough point can be produced with a fine dtamond whetsone (e s "Eusiap"). For small copepodis ic is bethet 0 prodese the desirad point by enomion, cithes in molten NaNO ${ }_{2}$, theated over a tumsen burnet in a crucible ${ }^{10}$ or by elatrolysis in $10-20 \%$ KOH. For electmlysts, the wire is clampad ba che verminal of a 6 V alternating current elecrical cincuir (a micmscope-alluninstion transformer is sulable) and sipped intu the $\mathrm{KOH}^{11,12}$. In either case, the wire is moved in and out of the nuid, and the elipth io which she wite is inseried yoverns whether the resulting pxint if ahort and stoul or long sind slender. The sharpened noodic is then maunted io a holder. Satixiaciory holders mily be made fram pall ylies (small fiuger-uperaded drill holders svisiable frum mode] shops) that have been lengthened. if anceskary, by the addition ot a section of brass rud (Fig. 1,6). The bingsten becdle is hert at a slight angle to the suss of the holdes (Fig. I.inl. IU aid kocping the needie parallel to the slide surface ofuring disnection. Jcweller's forceps, with vinely sharpencd feims, are used for transesrige copcpods, or their pars.

Disxeutun can he tonc in wates, but ir is easier if a note viscous medium is used, Polguhtyl alcuhol-hactophenol mountur (PVA) ${ }^{13}$ is wery suigble as it can toe used in make permianent mounts of the gut cantents. Lignta pink may be suded to tite PVA io swill chicin.

Fig L. A dissecling seedle, consistine of a privice holding a Tisely pointed rangsten needle (tr). The commercially avilahle pin tioc has been extended by the gudition of a section of trass rod (e), Scale har -1 cm .

Fig. 2. Dissection of gut enntentr. Orientatiun of speciniens is that for a right trated person. A. Lateral vjew of boockethe majev shmwing the fore gut (fgh) ant hind gut (hgb) boluses. The firstand second dissection cule-lines are shown by dashed lines I and 2 ; reopecuively, B. Orientation of the topegod and dissection technique for removing the sntero-ventral portion of the possome. The right ncedle is placed with its point betweer the Inaxilliped and first swimninis less and pressed firmly down und held azainst the slide. Back and lunth movements of the left needle then sever the antern-ventral surlace, which is pulted awizy to the lef. C. The thody i cady for transfer ca the second dronp of PVA. The optional cus-lime for rentoving the remaining venimil sultace is shown by 2 dashed line, D. Eximecrion of the fore gut winken's. The body is held with the leff needle While the fore gut bolus is gently gulled cut with the riglut meedle. Scale has $=1$ mms.

Using the forcens, twu drops of PVA are placed on a slide. The copepod is preked up with the forceps and plated in one amn in which must of the dissection (i.e. renroval of urseme, antem-ventral surface and mouthparis) is donce. The body is. then transierred wo the second drop for the rensuval, ceatineput and mounting of the gut ewnenes.

Dissection is done using os sterco dissecting microweupe at it magnificution of ca. $30-40 \times$. The copepod is urientated with its ventral surface partially inclined to the left and away from the dissector, and, for a righorantel person, with is anterior end so the left 1 Fig. 2a). Firsuly the urosome aral terminal segment of Ute pruseme are removed by cutting afors dashed line I (H_{jg}, 2a), and then the antcro-yentral surface of the ccphalusume plus mournpares, by cutuing along dashed here 2 (Fig. 2a). If desired, ithe swimnung limbs ($\mathrm{P} \mid \mathrm{P} 4$) may alsu be renoved (by cutting ailung diabhed lige 3, Fig. 2c). Thix is sot absulutely nooessary but may be uselul if the owaries are well developed. Swellen overioles make removal of the gat contents difficult, and removal of the swimming limbe and remaining ventral surface usually results in the consontian remnval of much of the ovary cissuc
The first cut is made with the anmat orienbaled ay shown in Fig. 23. The body is held with the lefr needle and the cut made wath the right needle by pressing stuwn fimily afong line 1 , using a forwird and backward sawing action of the righty needie if necessary. For the secont cut, the animat is reorienatest to the masition shown in Fig. 2b. The animal is held with the left needle (ncap the base of the first antennae is a saitable point) and the right needle firmiy prossed down over the bovy (rigs-2b), with the proint of the needle between the maxillipeds and firse pair of swimonag limbs. While the right needic is pressed firmly dowa against the sfide, the antero-vertral sutface and mourhparts are severed by back and forth cuting movesmeals by the op of the tefi needle (Fig. 2b). The procedure usualify pushes the fore-gut bolus slightly dorso-posteriorly towandy the tear ot the fore gut, and very occasionally may resuat in the rear-gut bolus being extmeded. If this happens, the rear-gut bofus can be setrieved with the foreceps and trasferred to the sccond drup of PYA. The body should now look 3e shown in Fig 2c. If necexsary, the swimning leg. may now be remened by cutring along liae 3 (Fig. 20), pressing down on the hody with the tight needle.
Using the tonecper, the body may now be tratisferted to the secondidrop of $P V A$, atd held by the left needte with ventral side uppermost and anterior end facing right (Fig, 2d), The fore-gut conienis are thien carctully scraped out with the fight nexdle (Fig. $2 d$), the body rotated 180°, und the near-gur bolus removed in a similar manner. Pinally, the bocly is remowed with the forceps and discarded.

The thod boluses may now be cancfully reased apant wish both needles and a smali cwerslip added. 10 mum or smaller dismeter coverslip is bener than the standard 24 mm size, tu reduce the area that has to be searched during mesoscope examinalion. The gul contents can he fully dispersed by the applicstion of light pressure, and perhaps also small side-moside movernems, to the top of the cover slip will a needle or the forcses.

The gut conterus of both small ($0, \mathrm{E}$, Bererkelta symunarica, burly. length ca -1.5 mm) and lagge ($e . \mathrm{g}_{\mathrm{n}}$. B napior body leneth ca. 3-5 man) (reshwater calanoid copepods can be easily exiracred uxing this dissextion method. Because hath the gut twiuser can bee extmeted and teased aparn we found that the
 a. post-abdomens. b, unasibles. c. curicle and thoracic limbs. B. a, calanoid copepodite limhs: b. calaruid copepodito
 sp: b, indet indeom

method reveals animal remains in the gut contents better than the whole-sinimal squash and clearing techniques mentioned abowe. It is possible to pick out both very small animal remains (c.g. rotifer trophi, Fig. 3), and the diaphanous cuticular remnants and setae of cladocerans and copeprads (Fig. 3). The visibility of cuticular fragments is enhanced by the lignin pink thain in the PVA, and also by the use of Nornarski interference roptics. Algae, fungi, detritus and inorganic material in the guts are also cleurly visible (Tig, 3). It is possible to make quantitaive counts of the gut contents.
Animals preserved in 70% alcohol proved to be casier to dissect than those in 4 每 formatifn. Alcohol preservation results in the dissolution of much of the muscle tissue and the softening of the exoskeleton. The body is thus easier to sever and to manipulate than when preserved in formalin, and there is less tissue "rubbish" in the linal gut contents preparation.

The dissected linbs and other body parts remaining in the lirst drop of PVA can be put to good use. The mouthparts can be dissected off the remnant antero-ventral surface more readily than they can be Irom the whole animal. To do this, the apodemes at the bases of the mouthparts are anchored solidly against the slide with the lefl needle, while the mouthparts are easily dissected off with the right needle. Moreover, eygsacs removed with the unsome can he used for clutch-size determinations and measurements of egg size.

We are grateful to Dr I. A.E. Bayly for his helpful comments on the manuscript and for bringing two recondite papers to our attention. This work was done whule JDG was on sabbatical leave at The Murray-Darling Freshwater Research Centre, Albury, N.S.W., and the use of lacilities there is gratefully acknowledged.
'Fryer, G. (1957) J. Anim. Ecot. 26, 263-268.
${ }^{2}$ Gliwič, Z. M. (1969) Ekol. Polska, Ser, A. 25, 663-708.
${ }^{3}$ Infante, A. (1978a) Arch. Hydrobiol. 82, 347-358.
${ }^{4}$ Kobayashi, T. (1991) Ausi. J. Mar. Freshwater Res. 42. 399-408.
${ }^{5} \mathrm{Hart}, \mathrm{R}, \mathrm{C} .(1487)$ Arch. Hydrobioh. 111, 67-82.
${ }^{6}$ Clarke, N. V. (1978) Freshwat. Biol, 8, 321-326
${ }^{7}$ Yen, J. (1985) Limnol. Oceañogr. 30, 577.597.
${ }^{8}$ Green, J. D. (1976) Arch. Hydrobiol, suppl. 50, 313-400.
${ }^{9}$ Infante, A. (1978b) Trans. Amer. Micros. Soc. 97, 256-258.
${ }^{W}$ Cannon, 11. G. (1941) J. Roy. Microscopical Suc. 61, 58-59.
${ }^{11}$ Brady, I. (1965) Bull. World Hith, Organisation 32, 143-144.
${ }^{12}$ Frey, D. G. (1986) Cladocera analysis. Pp. 667-692 In B. E. Berglund (Ed) "Handbook of Holocene Palacoecology and Palacohydrology". (Wilcy, London).
${ }^{13}$ Chapman, M1. A. \& Lewis, M. H. (1976) An introduction to the freshwater Crustacea of New Zealand, with a chapler on the Arachnida by V. H. Stout. (Collins, Auckland).

Jolin b. GREFN. Dept of Bological Science. Lnisersity of Waikato. Powate Buy 3105. Hatmlon, New Zealand. RUSSELI, J. SHIEL. Murray-Darling Freshwater Research Centre, P.O. Box 921 , Albury N.S.W, 2640.

"ROLLERS" AND "CARRIERS": FIELD OBSERVATIONS OF CARRION REMOVAL BY TROGID BEETLES (OMORGUS STRZELECKENSIS) IN ARID NORTH-EASTERN SOUTH AUSTRALIA

by Andrew J. Boulton

Summary

BRIFF COMMUNICATION

"ROLLERS" AND "CARRIFIS'": FIELD OBSEKVATIONS OF CARMON REMOVAL BY TROGID BEETLLS (OMORGUS STRZELECKENSIST IN ARID NORTH-EASTERY SOUTH AUSTRALAA

Deapure suhstantusl advances tin the timoumy of Australian beetles \{Coleopteras! Iillie is known abour the bioingy and ecology of moss of nur specien especially those considend of linie eoonomic significunce. Mithews suggested thar maturatise tan make saluable comriburions by invesigating and describing aspocts if ine nutural history of bectlec Ofter such obser valionnt are opportunistic and represem situations dillicull to replicate in the labomiory With a mintmutn if equipment, inarne ugrfoi aspects of behaviour cass be nosed and simple experiments used to elarify ohservations.

During if fecent limiokgecal field stip of the Coungie Labes arcu an opporturity arene ti study groups of carplon beetlex (Togidaci cranspunting faecal peltech and regungitated kgests along a siatid-dume on the western shor of Lake Guelangirie (26053'S $\left.140^{\circ} 01 h^{\prime} \mathrm{E}\right) 12 \mathrm{~km}$ NW of Inmamincka, in the innamireka Regienal Reserve The lake fills as as sesult of overbank thows in the North-West Eranch of Conper Creek: This lake, and miany orners neanty, out their irregular shapycz to the entensive duse systems tunning dppraximateiy nowhsouth, and vegeiaied by an open tull thruhland of tomoia Insulata A: Lubn, ex Renih. in the wider swales, sthummoch grossland donninsted by Triodfci büreatowif E. Prizad anong the major dune systems and sand-hill ayne-gress (2)yochious paminat |R, Bril| us lise mobile Aune cresir. ${ }^{3}$.
The bretles. Were nemilied at Dmangur sereleckensis (Blackbum, $7895^{\text {t/ }}$ descritad Irom specinnens collected near Lshe Callabunma and Strolock! Ereek. The species is widespread thmughout manland Austallit, hecurring in lisen rainfall ineux of all States except Vicioria' ${ }^{3}$, it is dustingushed from congenens thy the comtination of thape urthe clytral costa and the single large median twint on the fore tibis. Sctiolizs moted that specimens hud never heen collected in Janiyary, April. Jusco or Dcecmber - л上у observations were trude in Deatraher (early bunimer)
Life history data on the Anstralasian Trugidue are few atthough some $\$ 3$ species have been sencritued, of which (uta ure ineroduced ${ }^{5}$ The only published rcoord of a particulat iceding hatir appests io be thal by leefmans whis reporod
 its the Celebess (Sulawesi). In Africa and America, tregin adults and lanvae are facuttative nevruphages and gencrathy appoar lats in the succession of invasions of cancasses in the arid zoncs of these continems.
rinee bpand anategics lor coprophagy and necrophagy in arid zones are Jetugniscd. The first is tu tap the latent monsture of the pmicte and to brod as quichly as powsible
 Alicrnatively. the material maly be comminuted and buried to cunserve its moisture an to the case with dung-bectics (Scarabacinae') In arid arese the lack of reliable rain leaves some specien tof dung-beetles undererfod becouse thoy can Pury defiecated faecul pelfers hat rehydrate fram simb moisture ${ }^{7}$, Finully, sotme grouph "Eermizes, tenehrionids. ragids) we atce b) eat dry faces find mummified carrion. Arnurgus (Thar) ipph can complete their life cyele con suly woul clippiness or even discarded whal ciontues'!

Omorgus. spp. In the Kalanarn Desern sre murthotogically, mehaviourally and physiologicaly adapued wo survive long periods of aridity interspersed wirh bricf savousable pernishs when feeding and cupulullen wasuri. Adults and larvac yuicsce utulte adversc arnhicut conditions, renewing activity within hours of amelioncion. Imunailune slages ilevelop spgidly (3-- Week ${ }^{3}$) whereat the stut If fespan is long cnough to allow over lappung generations. The avalability of mummificed carcasses of large andilope hor keveral years allows pupulations si) buik up below the remains withuut the risks involvat in dispernd io seet forad os mates ${ }^{*}$

The following observalions were made nover iwo days plo. 11 -xil ly91\%. Trache cansistime of numerous small depressions in a hand $3-1 \mathrm{~cm}$ nide were noliced running eascwest alcmg a dume face soon affer elmise (0630 hours) on $10 \times 11,91$. They were made by iwo bectles sarryine a tapenet dings faccal gellet measuring apporainizacly 3 cm long and 1 cm in diameat (table 1). The boiles were nuving westward. and a light easterly breerg was hiowing when detalled ahservations comniencal al 0645 Iro. Subsequernily. six uther truyps wit heetles were discoverad carrying or nuling egesti from tha base of in lone Coolibah tree (turndumus mictrathecer \mathbf{F}, won Meulles! gnowing frat hway up the dune face. These groups, noted at about 0700 hr , wher the hreese has sirengthened slighty ambl xurusis a mantheriy. were movitus anuthwards and had unvellod only several गnerres.
The must striking leature was the two different motes in cartion transpor adopred by the gnupp of bectes. They citict carned or rolled the segesta, depending upon its shape, Irregular piecese of carriun were physically cartied upon the tadks of the hecales with the load being spread fairly evenly between individualk. The pieces of carrim uere stabilized by madules and groowes po the pronubia and elyta of the beelles. More cylindrical pioces were rolled stong. Beetles propged their stout forelegs against the camem or tueked their pronnam under the edge of the paricle, lifing the is heads white pushinge forwards with their middie and hind palrs on leys. Althungh the heeiles were always is the trailing edge of the rolling pioce ol carrion, they often appeared mpush each other frorwands and a was not unusual for a beatle th walk, ower the backs of others 80 moll the paricle.

If in imgnisyt to distinguish between these two gypes of carrion tramspani by irogid beetles and the classineation of resounse relocarion that in frequently applied 10 the rajority of dung beetles Duns bcetes are separated into guidd is sonnelliers (paracuprids), dwellers (endekapride) and rollicrs
 the dung and push piects of it into the unnels. Uwellers five and feed within the tung heap itself, and follei's mike batls of dung thar they soll away from the food source anul other bectles before concealing them in the sail'. In the sase of the trogids thal I observed, sll the beetles-would be in the moller guild" but exhibit cither carrying or rolling behaviour. In dung bectles, the guidds are species specallic whercas the imoles of partele transgint evileat in the fiogids in noy sudy In wh nexur in the one spoxies.

Grnup	No. if heatles.	Sice of burvers (cha)	Shape	Traniport mode	Track length (mi	Mean gradient (z)
1	2	3×1	Tapered	Carrier	31	20
2	4	A $\times 1$	irregular	Currict	35	10
3	5	6×3	Cylindrical	Rupller	25	I
4	3	8×2	mregular	Castier	15	18
5	3	5×2	irregutar	Camier	10	11
\%	5	2×2	Cylindrical	Fulles	4	7
7	5	9×2	frregilar	Currier	45	1
Mean	7	6×3			3h, 33	11.67
SE.	0.45	$190 \times 0 \times 3$			$2: 95$	1.96

Thie nelimes up which the catrion was, rolled or carried were measured by holutig in onctre stick horizontally level Withone ens renting on the lrack and Une stek pointiig siong the path taken by the freelles The elevation of the free end ot the arick meaxured live rise (in cm) aver 1 mt and was expressed zs a percenage (Trathle \%. The maximum incline us which beetles rolled cantion war 30% whereas garticies were cartich up a slope of 42%. The shspe of the carnon particte appeared to determine ita mode of transport rather Than the slope at the inclise or the number of hectles involved (Table 1) In genera), there were rore beeles associated with langer pieces de carriun hul ather factors suct as particle shape wre pmbably also imporaal. By placing small flags along the tracks at 30 or 801 second intervits and measuring the length of the path. I was able to conisvice the speeds of carrion trampunt by the two differem mexdes. At lemperatures ot $26-23^{\circ} \mathrm{C}$ and traversing simular terrain. five heetles carrying egatu (Group 2, Table I) moved fasier than agroup (3) nol ing a smaller piece (Table 0. "Carriers" averaged 042 cmo.3" (11 $=10$ determimations. $5 E=0003$) whereas "rotlers" nowed al $0.28 \mathrm{~cm}^{-1}(n=9 . S E=0.02)$.
The puthways were nist straighr bul meandered in a gencral dirextion. When the egextum became walged dgainst a stick or embedded in a fullow, ine haerles somn retraced their stepe ambercling around, tried ad slighly new besuring. These circles never excecded 30 cm in dinmetes and I only found one pieve aff sarrion that became inexiricably trapped in a clump of Enchylaemad (omenmasa R. Ar. (Group 5), The fisllowing day. this particle way convered in ams and there was no sign of the carrion heetles nearby or buricat below.
Al limes. individast beetles would wander away from the carrion or becone disludened afier a particularly vigorous roll. livariatly, they would cirele le the downsinge side inf the earrion and then travel with the wind, maving uphitl mint they were directly downwind uf the particle. Immediacely, the treutc would tum towards the cantion and watk in a straigh liae up to it, even If lice partiale was out or the direst line of sight due to hollows atid sand ripples. I observed this behrviour several times. and successiful renniuns cheurnodicwer distances of 2 m . When a memser of the group wandered nway or was diskodged, the nest of she group did not allex behavkrut sind continued moving the egesta.

Beetles were able wo senve carrion froma radius of $10-15 \mathrm{can}$ cven if upwind (as. "mollers" afien werv) und moned direstly uverande the preticle. 'This was confrmod experimentaily using
both "rulters" and "bartices" and was possibly visual. Shubeck ${ }^{13}$ observec that sarion beetes in the Eamily Siphidse could devect wours et distances of approximately I th when aur sowement was negligible bull at greater diskanes $(5-75 \mathrm{~m})$, he cuncluded that ocimation ro carrion was che a) randont wandering

If bectles go po such lengthn to wansport carrion, dey grours exhibil uny possesziycness. perhaps defornling their fanticles from other conspecificse Anecfolal cyideace from field oheservations indicates that incer-and imra-specific compection among dung-bectes sari be intenke, ranging from direct whineat when becties fight awer the possession of dung to seramble competition when the beethas antivity at high densities prevents mosi individualy acquïrine sufficient resources for breeding ${ }^{\text {/4 }}$
What happens if a watucring beelle rying in recover itw catrion timds itself downwind of another group's particle and themes in urt that. Can a wavering "roller" readily switch to "carrying" if an itregular piece of carrion is encumbered: To examine these pussihilaies. I planned a series or transters of beatles fiom one group to ancuther, within und ectoss motes uf trangmon. Houching the beelles cewsed them to leigri death instintly, becoming immobile and rucking their limbs righty under their hody. Thus, it was necessary or alluw them to walk onto a strategicatly placed leaf ond then transfer the beetle whickly, placing it jusi downwind of the tarrjon in alt trials,
In all transices. in -5), thare was no change in the behaviour of the recipient group and I was umatle to detect any physical aneagopism. Newcomers oftent crawled wer ithe carrion tor severas acconds before joining their lellows either rolling or carrying the partiste. I felurned all bectes to their originat posinons at the end of the expetiment, where they resurned then behavtour, seemingly unaffocted by their bries fransfer Thus, it semm that groups ot bectice of this species ate nut efjecially protective of their catrion resulrces. If wnuld he interesting w add beetles comnnually to a particie iu see if inurasperific competition could be indured. Berelles had nio apparent jilficully switching modes of transport to match that of their fellows - in no case. did they try moll a particle that was being carsied er vice versa. Furthermune, Inever obscrved is group ot heetles switch modes of transpost in reaponse to as change in grade ar substratum particle sixe.

I also bound an eighth group of (wu betley miling à cylindrital pixce of egeora $2 \times 3 \mathrm{cmi}$) souhwands. 1 sacrificed these two beetled for identilication. and will three nrhere,
they are lexlged in the Snuth Ausralifin Buxevim（ciassitied with the Trogidae．Dr Enc Mauhews．Snuth Austmilian Museum，peric comfn－）

Could beetles be conicead assiy trum incir carrion by anotherf seemingly patalaute picee of egertum，espertally yiven thicis sppanent tuck of possehsmeness＂Wher this was dune，groups of bcalles carsied or rolled their particics pist the new picte， exen whers it wax palaced in the path of the group．However， If a sungle heetic became saparated tomet the group and the particle was placed in us path，the beetle erawled over the carion in a similat explunatory fashion to hial bebserval earlict and then proceeced to ether roll si io ki burmen below．it．

The mornite I made these observations Has overcest hut sind icmperstures nase gradually from $18^{\circ} \mathrm{C}$ ．ar omon the we $34^{\circ} \mathrm{C}$ ty INOO hr．By $0,00 \mathrm{hr}\left(26^{\circ} \mathrm{C}\right)$ ，Group I tarrying the dingo liectat pellet th the rop of she dune had burrowed helow the pellet leaving it experbed．Ilowevcr，sand blown by the wind had balf－buried the pelies and completely obliserated I｜xe lracks by IISO br．Al 1115 hr－samil icuperaure reuchat $40{ }^{\circ} \mathrm{C}$ and the other ni groups of teeles ceased activity almosi insiznsmeausly．The wind han sleregthenet and air Iemperature was $35^{\circ} \mathrm{C}$ ．In all cayes，hestlef ather sheltend below the carriosi or had burrnwed inro the sand bencith the paricle to a depith of $3-5-\mathrm{cm}(\mathrm{n}=31$ ．Otseryations of depil of burmwing were 1 estricted in groups 2 and 3 （＂cemtics and ＂sotters＂respectively）．For the pest of the day，the bettles remained inarive
At 1910 hr，acrivity around beveral particies（2，3，4，5 And 7）resunied Air kemperature uus $28^{\circ} \mathrm{C}$ C surnd bempersture was $27^{\circ} \mathrm{C}$ ，and the wind hul diopped．However，humbitity wals exrrenly hith and introse elecirical actwiry iwerthead horaldea a thundersurn which broke at alwut 3000 hr ．Up ti his vimic， bestles in groups 2 and 3 had moved theip earmun several meves sinuth，and gnup 4 had carried their purticle 12.3 m ooth．The beetles in group 7 had hueved arrund in a ciscle
 burrowed．leaving pack－marks several mom brusd in the ground．Activity ccased empletely during the rain from the ohundershomet which effectively ended my observations．

There were los tracks in activity the hophiwing morning． which was sunmy and $18^{\circ} \mathrm{C}$ at（uf）hr with a gentle soumerly The Pein lind naaked to 1.5 cm and alihnugh I way able to nerver Scveral faifi－burned，bedragglod pieces ol egesta，I was unable to find any heelles even though I dexiructively crervanal each sput where the observatinns had ceased during the stoms． It was nut clear wherher the eecesta had been inuried by the peetles on，mure likdy．wisd－biown sumd and rains．

Presumably，the teettes frad either dispersed indivilually ur hasd cartied atrud buriod the carriont in the muterseming． 10 hours．

Why in rhese beciles go to suich lengths fo transport the egestar Une itdaplive explanafion for this furm of behaviour in dung betles is that the achen resuces competition fer che resource from rivals of the same species or other specten thet cometne Jumus．Alcock suggeses that hat the bectles retruined at the siec af deponit，the conisentsalion of materiat might have hiwl a higher probability of atracring vertebrate ＊eavequery of ants ithat could consume the egesta before the trogids．Possibly，the barles themeelvex would then be pur at nisk 日合a ncarly foud resource．

Anuther explanutinn has heen applied io dung bectes in the wanneller and ouller guildy that need to eransport the raticle imm an ares where it may have tallen an ground that is unsuitisble fior burrowing or that is too expersed to lianate amhient condhtions ${ }^{\text {ib．}}$ ．This does nor nrulualy edelude the lirst dyyputiesis and may al on be a valld explanation for the trogid behavinur ubwervad in the preseni sudyi Dn an vaskable sonuf dunc，truriced egesta are likely to bo exposed by wind whereas in areus stabiliscd ly vegetituon．this risk is lesseneal Funtier；focat soil moisture is likely no be greater．purkaps Enhaccurg the ford qualisy of the cuerrion，Relative humndity is un imponand tactor cundralling the behwiour of two apecies at Kalabiari Cmorgusi．High relanive hunidity restricu． respiralory nater los，mupenes food（moist hair and herant qualify and nisy umprensate fir faecal water logsth Pettaps the trogids I obseried were cronsportiese their parnicles long distances umpil they found clumps of shnulity regetation where Ichituve humidity and sand stability were higth and ferad qualiny would be enhanced when the particle was buricd．＂This hypothesis awaily vesting．
1 am qrateful for the eoprulugical encouragement by the ather members of the Expedzion（Fran Sheldon，Philippa Kneebune Leslic Doddridge，Wendy Marth and John Slade） and especially the organiser，Jim Puckridge，whose Incal knowledege and enthusiasme greaty enriched the trip．Dr E． C．Matthews（South Ausiratian Museuri）provided keys． encouragement and helpful discussion，Phof，Dohn Alcock （Aricona Suse Unwersiy）guided my reading on animal behaviouts and Dr C．IS．Schetuz（University of Pretorim．Suwh Alrical kinuly sene me repriats of his work on African Orvergus．［thank Des Margaret Davies，Alice Wells and Shelfy Bapker，Mr Jim Puckridge and fames Wallmant，amd ala shanymous referee for comments on in early dratt af this

Heferences

＇CSIRO（1991）－Inseers nf Ausiralia＂2nd Ealn（Melbourne University Press．Melbuupme）．

- Matheus，E．G． 1981$)^{\circ}$ A Guide of the Gentre m Bectles． nt Suuth Aimuralia Purt I Archesteruplat and Adcphaga．＂ Special Liducstion Bullctin Scries（Suuth Ausimalian Musemai，Auchadey．
${ }^{3}$ Sirittin．＂I．\＆Mctaskill，M．（H．0．）（1986）＂Ailas of South Ausurlia．＂（South Austrijuan Guycroment Printing Divssinn． Adelande）
ABlacklvurn．T．（1895）Trops Re Suc．S．Auss． 99.2700
${ }^{2}$ Schuitz．C．It．（1986）Aust J．Zoul．Supel．Ser．125，Ming
Tcefirany，St（1932）Tidi．Enipmu），75，36－43（ciled by Schol（ 2^{5} ）．
${ }^{3}$ Mathows，En（is．（1976）＂Insect ECuluey（Oucensland University Presin．Brishame）．
${ }^{8}$ Schoite，C，11．\＆Carenty 5．（1988））Arid Enh is 174－191．
${ }^{4}$ Scholtz，C．H．（1991）．Inverichr：1axan，5，827－835
＂Haiffer，G．\＆Manthews E．G。（19tioj）Hi Ehomel，Mex． 12－14．1－312（cited by Camberfort \＆Hangkil），
＂Canthertorl．Y．\＆Hanski．I．（1990） $36-50 \mathrm{in}$ I Hanski \＆．Y．Camberont（Fds）＂Uung Beelle Exislugy．（Princcion Univenity Presy，Now Jersey）．
 Ficol 20，349－356
${ }^{13}$ Shubeck, P. P. (1966) J. New York Entomol. Soc. 76, 253-265.
${ }^{14}$ Lumaret, J. P. \& Stiernet, N. (1990) 242-254. In I. Hanski \& Y. Cambefort (Eds) "Dung Beetle Ecology." (Princeton University Press, New Jersey).
${ }^{15}$ Alcock, J. Arizona State University, pers. comm.
${ }^{16}$ Hanski, 1. (1990) 5-21. In I. Hanski \& Y. Cambefort (Eds) "Dung Beetle Ecology," (Princeton University Press. New Jerscy).
${ }_{18}^{17}$ Scholtz, C. H. \& Caveney, S. (in press) Ecol. Entomol. 17. ${ }^{18}$ Loreau, M. (1990) pp 31-38. In N. E. Stork (Ed) "The Role of Ground Bectles in Ecological and Environmental Studies." (Intercept, Hampshire).

ANDREW J. BOULTON, Dept of Zoology, University of Adelaide GPO Box 498, Adelaide, S. Aust. 5001.

REDEFINITION OF UPEROLIEA LITTLEJOHNI DAVIES, MCDONALD \& CORBEN (ANURA: LEPTODACTYLIDAE: MYOBATRACHINAE)

by Margaret Davids \& Graeme F. Watson

Summary

BRIEF COMMUNICATION

REDEFINITION OF LPEROLEIA LTTTLEJOHNI DAVIES, MCDONAID \& CORIBEN (ANURA: LEI'IODACTVLIDAE: MYOBATRACHINAE)

 bratogical dath were athent lom the descriphinn, of were ephemertal atala such ab collour in life

 $145^{\circ} H$ ' E) , man in the White Mountalios Nathonal Patk, near

 further hiok mical data. A seetond visil coñmideal with heary

Mricerial in depusilad in the South Ausiratiarn Museung. Adelaide (SAM) and the Univerate ol Adelade Batenhgical

 and samed liot osaetogical examinalom ${ }^{\text {Td }}$

Fate recudings were made using a Somy TCD-5pRO

 elledtbe temperature of a brog talling im land were meshand all the sillmes site ay esth individual unng an elcemmic
 Recordinge were malyad on a IISP 5500 digital Sind Graph (hoy I:dsthetres Corph) using the in-built sel-up atu, with

 the relevant hequency rimge thased on the natmulatherer's apecificalionns.
Fry ceth culf- thae primary alishuten were determined:
 pulace to the end ol the last pulse lins: (ii) number ta pulkes
 :avife llakinum watue whe spedrum of pewer heween the curmens of the whole nute. Two derived atributes wews therenzned: (i) puike repertion rate (pubesis), calculated the
 Fulculated by twing the enly Jncaswable characterivtics of covelope anplitute? the mazonum anplitude isis and the

Difonition A mundrately large specos |ntule 20.32 jum
 maxillary seeth. fiouer unwebled. gheriy fringed, hasial la no the whhing lers fifinget; dernal glandy prombinen:

Akaterind ewamhod: LIAZ A1712. A171-A, A1717, B1713. B1715-6. SAM R卫4802-9. 260 km SW Pembat. Berra Rantes.

 All Domald
 descrpunn wher thin an increase in the sire sante of male (Fis. 1)

Ciffur in fifer Dorsutn grty with Well-ckelined warh thocolate matkinge. Promiment nuberdes tipped with aprocot or steme.
 crealm. Flastess in the inguinal segon and the hacka of the thigon are chetme athoter
 double statned and three singhesterinel) but varbablity was minimat and thes not add the the manil Jeseroptivn.

 mullo is whem Pived.

Altithute	4)	+2	H3
Tenperature (r)	202	264	2 n .7
Call duration mins	47,92	52.73	80, 04.4
	2080	$20.81{ }^{2}$	2¢1010
Va) -6l pulses.	K	*	
Pulse sepelifion rater (pulses/s)	146.1	132 8	114.4

 a summary of the esth eharacteristics is listed in Table I The

 rate 131.27 puiveve) "The depth of implatule mindulation Jecreases Jroughout the rath so that individual mulice are diticult to diseerm, cxapt at the breiming of the call, aiblisugh may calla alao had a distive limal pulse (17ye-2).

Tahke 2 shnos the changing levels of anpplitude mindulatum in the three calls analywed. Th the cape the call is a shaty louel
 balls/min. Amsiny other specice of epperabehe whome colls lave

 lat $256^{\circ} \mathrm{C}$; Juration 30 - 35 mas ficquelney $2050-29011 \mathrm{H} \%$

TABLE 2. Putterns of amplinude modulation (\%) throughout calls of three individucls of Uperoleta littlejohni reconded on 25.i.1991, 26 km SW of Pentland. Qld.

Pulue No.	\#1	\#2	\#3
1	95	75	100
2	87	78	90
3	66	31	36
4	15	6	35
5	13	4	19
6	17	42	20
8	27	28	29

Dissribuion amd habitut: The distribution records of Uperoleta limlejohm are within the Einasleigh Uplands, northern Desert Uplands, and the north-western Brigatow Biogeographic regions of Queensland". The geology of the collection sites ranges through Quaternary alluvium and collavial sands. Triassic sandstones. undifferentiated Pabaeoroic and Triassic?/Permian granites, and Upper Silurian/Lowes Devonian granodiorites. No records are known from the Recent ($<3 \mathrm{My}$. BP), extensive hasalts of the McBride Plateau and associated lava flous of the Einasleigh Uplands ${ }^{(1)}$.
Vegetation types at collection sites are predominantly Iron Bark and Bloodwood (sometimes with Box) woodlands and open woodlands with tussoch grasses on granites or sandstones.

Fis. 2. Power spectrum and wave form ol an advertibement call of Uperole fa lithegomi recorded on 25.i. 1991.26 km SW of Pentland, Qld, at at wet-bulh air temperature of $26.2^{\circ} \mathrm{C}$ (\#). Table 1). Note that the ordinate of the wave-form display is not labelled because it depich a relative linear seale in volts
of the Einasleigh Uplands and northern Deseri Lelands ${ }^{112.13}$; Lanceword (Acacia shirlevi) tommunities with an understory of Spinifex (Iriodia sp.) on dissected Warrang sandstone of the Descri Uplands, and the Eucalypus puppinea or E. microtheca woodlands along drainage lines in the northwestern Brigalow belt.
Altitudes af collection sites range from 150 m at Caerphilly Station $\left\{21^{\circ} 03^{\prime}, 145^{\circ}, 32^{\prime}\right.$) to approximately 1000 m near Herberton ($177^{\circ} 23^{\prime}, 145^{\circ} 23^{\prime}$), with most rectrds within
${ }^{1}$ Davies, Mo, McDonald, K. R. \& Corben, C. (1986) Proc. R. Soc. Vict. 98(2), 147-188.
${ }^{-3}$ Tyler, $\mathbf{M}_{\text {r }}$ J. (1968) 7osil, Verhandl Rijksmus. Nat, Hist. Leiden 96. 1-203.
${ }^{3}$ Davis, I. D. \& Gore, V, R. (1947) Fieldàna Tech. 4, I-16.
${ }^{*}$ Dingerkus, G. \& Uhler, L. D. (1977) Stain Technol. 52. 229-231.
${ }^{5}$ Dorbuck, T. (Ed.) (1978) "The Radio Anateur's Handbook". 55th Edin (American Radia Relay Leaguc. Newington).
"Smithe, F. B. (1975) "Naturalists Cokor Guide" (American Museum of Natural History, New York).
${ }^{7}$ Tyler, M, Jo, Davies, M. \& Martin, A. A. (i981) Aust. J. Zool. Suppl. Scr: 79, 1-64
${ }^{*}$ Tyier, M. J., Davies, M. \& Martin, A. A. (1981) Rec W. Aust. Mus. 9. 147-172.
"Stanton, J. P. \& Morgan, M. G. (1977) Project RAKES - a rapid appraisal of key and endangered sites. Report No. I: The rapid selection and appraisal of key and endangered sites: the Queensland case study. (University of Now England. Sichool of Natural Resources: Armidalc).
altitudes of $300-900 \mathrm{~m}$. Rainfall tanges from $480-1150 \mathrm{~mm}$, with most eollection locations found within the $500-800 \mathrm{~mm}$ rainfall isohyels. Rainfall is strongly seasonal, concentrated in the summer months from December to March 14,15 .
The recorded frogs were calling on a steep scree slope. or at the edge of as stream at its base. They were located at the base of, or benween, Triodia tussocks. A second chorus was found around the edge of a roadside scrape, and individuals were calling at the bases of grass tussocks.
${ }^{10}$ Day, R. W., Whitaker, V. G., Murray, C. C., Wilson, 1. H. \& Grimes, K. G. (198.3) Geological Survey of (Old Publication 383. 1-194.
"CSIRO (1967) Lands of the Nogod - Belyando Area. Queensland. Land Research Series No, 18.
${ }^{12}$ CSIRO (1970) Lands of the Mitchell - Normanby Area, Queensland Iand Research Series No. 26.
${ }^{13}$ Perry, R. A. (Compiler) (1964) General Report on Lands of the Leichhard - Gilbert Area, Queensland, 1953.54. Land Research Series No. 11.
${ }^{14}$ Lee, D. M. \& Gaffncy, D, O. (1966) "Districk Rainfall Decilet - Australia" (Bureau of Meteorology \& A.G.E.S., Canberra).
${ }^{15}$ Bureau of Meteorology (1977) "Rainfall Stutistics for Australia". (Bureau of Meteomlogy \& A.G.P.S. Canberra).

MARGARET DAVIES, Department of Zoulogy. University if Adelaide. G.P.O. Box 498 , Adelaide. S. Aust. 50M, GRAEME F. WATSON. Department of Zoology, University of Meltourne. Parkville, Vic: 3052 and K. R. McDONALD. Queensland National Parkst and Wildife Service. Pallarenda, Townsville, Qld 4810.

NEW RECORDS OF MESAPHORURA (COLLEMBOLA: ONYCHIURIDAE, TULLBERGIINAE) SPECIES FROM AUSTRALIA, MACQUARIE ISLAND AND THE ANTARCTIC

by P. Greenslade

Summary

BRIEF COMMUNICATION

NEW RECORDS OF MESAPHORURA (COLIEMBOLA: ONYCHIURIDAE TLLLBERGIINAE) SPECIES FROM AUSTRALIA, MACQUARIE ISLAND AND THE ANTARCTIC

The Tullberginac is a subhamily of strongly reduced Collembola lacking osetti. pigment and furca, which is adapted for suil living. Within this subliasily the genus Mesaphorum currenty comprises oyer 20 described species mast of which are only Inown lion the Northerm Hexuisptern: Speciment helanging to the genus Mesaphorura are commonly found in Australla in moist msil under arable and grazing Tegimen, and also, nore rarely, in soils under native vegeuvion. Mesupharuna kroushuneri Borner 1901 way vecurded from Austrah ia ${ }^{2-3}$ and specimens delermined as Mesaphopurn sp-kraushaund group were recorded from couthern Ausiralia and Mutuparic Island ${ }^{6}$. There spccies of Mesaphonnx already known froms Eumpe have heen identified from Aunralia. and they have all probably been intmduced refatively recently with Europeans. Alt material discused is deposited in the South Australian Museum collection.

Meraphorum Bürnef, 1901

Diagnosisi elangate podurumorph Collembula nhour $500-500$ unn dong, lacking ocelli. pigment and turat, and possessing pseutocelti in head, thoracie and abdominal segmences with the formula $1 / 011 / 00010$ or 11/01/40011: anternal 111 organ normally with two curved cylindreat clute sind two smalf pegs, only a sunal! cuticular swelling in front of pegs withoul enlargecf granules; ant iV without greatly milarged sensilla; postruennal smgan slongate corsisting of huo parallel rowe easth of 10 to. 20 simple clongate vesicles atranged al righr angles kr longitudinsi axis of the organ; athe VI with is puir of srescentic cuticular ridges sneriorty and two fostexior anal spines shorter than claw.
*Abbreviations Collectors, KK. K., King. PY, P. Greenstiude, HW. H. Mumersky.

Key to Auxirulian spocies (aller ${ }^{780}$ 析)

d. $3+3$ median microchaetive in sinterior, row between a_{3} un abd V (a, present); a either as micru- or a matrochitely on abd IV. lay presem inn anal lobes: is ot and V no dinplaced anterionly: pseutoselli un thorax close w mid lines behind on berween p_{3} and p_{q}
 20 naf micruchaetae in anterior row hetween as
 missing an anal lohers: a_{3} of and V displaced anecriorly: pseudocelti of thorys between mi_{5} and $\mathrm{P}_{5}, \ldots \mathrm{M}$. chtica
2. M_{5} presenc on abd IV; long macrochactia (i, e, as, on ahd IV) over twice the Ingits of misrochaeis. (a_{1})
 p_{1} a mecro- and P_{2} a mucrochaeta on abd IV.
.M. marroisarya
M_{5} abseni on atd IV, macrochacts (r, $\mathrm{M}_{2} \mathrm{a}_{7}$ on abd IV)
 a_{4} on abd V longer thas $\eta_{2} \div j_{2}$ a mactochaeta and p_{1} al microchaets on abd TV.
A. soulii

Mesuphomunt macrochnaeus Rusek.
Masaphorura matrocticiera. Rusek 1976 a 3.3

FIGi I
Matcrial examined, Australian. Antanctic Teivitory, Mawson Sution, pot plant sail (Coleus; Philodendmar?). lanuary 1989, PG, Co. 200 exs; Macquaric island, fithmus. in greenhuuse, xnil and muss, 2 xii 8 fi, PG: New South Wales, Armidale, Chiswick native pasruse plut 8, 21.viii.78, 26.ii.73. KK, 2 ex; Chiswich improved pasture, ungrazed. 26, it.72, Kk, 2 exs: Cambecwarra Ranges, 10 kW of Naroona, leaf inter, Scpt 1990 PG, 5 ex: South Australia, Me Lofy Renges. Bridgetwater, Engelbrook Reserve, |caf Hter, JG.v.71, PG, 2 exwi Belait, jn ınus, Apr) 1438, HW, 1 ex: Belair, grass mowings; 27., 1971, $\mathrm{PG}_{2} 2$ exs; Corrong, Coolaton, pufall traps in grags beside road, 28.ix-8.x.75, PG. 1 ex 15 k N Mit Gambier, Pinas radkalu leal liter, 19.v, 1975, PG. 2, exs.

Disthbution: described from Cannda hut common in Noth Americisand Europe. Mescuphorura macrochoria is amondant in improved pasture in suuthenstern Alstratia and has been infroduced to an Ansrrahian Antarctic Territery .Station aikd 10 Macquarie Istand in imporied soil, probably from Tasmania.

Mesaphorara crizea Ellts.
Mrsaphomura crilicu Ellis 1970 p. 230.
fll 2
Material examined: South Australia, Fux mamore Station, 340 kng NNE Adelaide. Black Oak Creek, leal litter, 25.vii.1971, PG, 1 ex,

Distribution: previously onty known lion Eutope"

Mcsaphormen ywivil (Rusek)
fulliarsise yosial Kusek 1907 p. 191.
FIG. 3
Materal examined: New South Wates, Anmidale, Chiswick nacive pasture plote, plot y, 2i,viu78, KK, 2 cxs : Chiswick improved pasture, ungrazed plots, 2ti.i.72, KK, / ex, Quernsland, 17 km cast of Kiflamey, wet gelemphyll fofest, tear limer, 16.v.76, PG, 1 ex; Great Barrier Rect, Swain's Reel, Firigate Cay, 22 vif 1983. KK, 1 exp South Australis, Rion tamore, 340 km NNE Adelaide Black Oak Creek Icaf htuer, 25vibi.73, $\mathrm{PG}_{\mathrm{v}} 2 \mathrm{exs} ; 10 \mathrm{~km} \mathrm{~N}$ Whyalla, Midalleback Sirs, under Castarina stricter, 8.x.79, PG: 1 ex

Distribution: Europe, North Anrerics, Chins ${ }^{12}$. Ausmalia. New Culedonia ${ }^{13}$

Figh 1-3. 1. Mesaphorum mactochactac Rusek. Dorsal chaetotaxy of abdomen IV-VI. 2. M. chifica Ellis. Dorsal chaetotaxy if abdomen IV YI. 3. M. wasiii Rusek. Dorsal chaetotaxy of abdomen IV-VI.

Both M. yoxiii and M. macrochaeta are found together in improved pastures in southeastern Australia, generally M. yosiii is found on warmer sites and M. macrochaetae in cooler, more southerly regions. Is likely that both were intruduced to Australia with Europeans. Morphological differences between the species arc given by Rusek ${ }^{8}$ and are cited in the key. The specimen from Darlington, Western Australia, determined by Womersley as M. kraushaueri, is not in good enough condition t be identified, but other specimens from Belair, South Australia, also determined by Womersley as M. krausbaueri, are in fact M. macrochaeta. It seems probable that M. krausbaueri does not occur in Australia.
${ }^{1}$ Börner, C. (1901) Zool. Anz. 24, 1-15.
${ }^{2}$ Womersley, H. (1935) Trans. R. Soc. S. Austr 59, 207-218,
${ }^{3}$ Womersley, H. (1939) "Primitive insects of South Australia". (Government Printer, Adelaide).
${ }^{4}$ King, K. Greenslade, P. \& Hutchinson, K. (1986) Aust. J.Ecol 10, 421-427.
${ }^{5}$ Greenslade, P. \& Ireson, J. E. (1986) J. Aust. ent. Soc. 25, 273-291,
${ }^{6}$ Greenslade, P (1990) Pap. Proc. R. Soc. Tas. 124(1), 35-50.
${ }^{7}$ Rusek J. (1971) Acta ent. bohemoslov. 68, 188-206.
${ }^{8}$ Rusek, J. (1976) Canad. J. Zool. 54 (1), 19-41.

All three species are likely to be more widely distributed than these scattered records suggest. In Canadian forests M. yosiii and M. microchaeta can occur together but have slightly different vertical distributions with M. macrochaeta markedly aggregated in the humus layer and upper soil horizon from 0 to 5 cms in depth, and M. yosiii concentrated lower in the soil profile and more randomly spaced ${ }^{14}$. In another Canadian forest where M. macrochaeta was absent, M. yosiii occupied the whole soil profile. This suggests possible compctitive exclusion of M. yesiii by M. macrochaeta on some sites. Mesaphorura critica may have been included with the species M. yosiit in these ecological studies. In Australia, M. critica has been found only under arid native vegetation.
${ }^{9}$ Rusek, J. (1986) pp 73-78. In Dallai, R. (Ed.) " 2 ad International Seminar on Apterygota," (University of Siena, Italy).
${ }^{10}$ Fjellberg, A. (1973) "Identification keys to Norwegian Collembola". pp 1-152. (Norwegian Entomological Society, As-NLH, Norway).
${ }^{112}$ Ellis, W. N. (1976) Tijdschr, Ent, 119(8), 221-326.
${ }^{12}$ Rusek, J. (1967) Acta ent. bohernoslov. 64, 184-194.
${ }^{13}$ Weiner, W. \& Najt, J. (1991) Mem, Mus.natn. Hist. nat. (A), 149, 19-130.
${ }^{14}$ Rusek, J. (1979) Acta ent. bohemoslov. 76, I-9.

ECOLOGICAL AND BIOLOGICAL NOTES ON THE RARE PLANT HEMICHROA MESEMBRYANTHEMA F. MUELL (ARMARANTHACEAE)

by John L. Read

Summary

BRIEF COMMUNICATION

ECOLOGICAL AND BIOLOGICAL NOTES ON THE RARE PLANI HEMICHROA MESLMBRYANTHEMA F. MUELL (ARMARANTHACEAE)

The succulens shrub. Henichtmal Nexesembrwanhema, was, deseribed in 7873 after being collected in the previous yeas by the explorer Ernest Giles in the vicinaty of Lake Eyre, South Ausiralis. No further South Ausiralian specimens were collected until 1984 when a gecimen was collected from Strangways Sprimgs, 112 years after it was first discoverwd ${ }^{2}$. It was suggested that the popalation at Stranuwyys was likely In be the source of the specimen collected by Ernest Gilex".
dil Okwber 1991 the Roxhy Downs Fiefd Napuralist Clut located H. mesembryanthemes al the base of Mt Kingstan in the Ulenison funges, South Ausiralia ($28^{\circ} 02^{\prime} \mathrm{S}_{3} 135^{\circ} 54^{\prime} \mathrm{E}$). A colleclion was louged at the Srate Hertariung of South Australis. © subsequent scarets of the region by the author in Aprat 1592 reveated that the population of H . Nesembpsianthema was apparently reaticiod io a suall rexion between the base of Mit Kingston and the Willparocona Springs (Hig. 11. Thus papulation is only 5 km from the site ol the feake Overland Telegraph Station which was also visiled by Ernest Gilcs!, Thus cussing doubt on the provenance of the ornenal zotlection. H. mescmbrammermes has beeu seconled From eight sites in Quecnsland and populations apparendy. imermedtate beween H. mesembryanheina and ffo shicsuint have been reworded in Wersern Australia?

Tig. 1. Major locintions nerutiuned with respect we Hemichona mesmendownthetma in South Australis

The Willparcord Spring: population of ca. 150 mature Hemichrosa mesembrounthemma shnobs was located in a subcircular parch measuring tw. $150 \times 160 \mathrm{~m}$. These shrubs were located 120 m from the nearesa spring as detined by at bed of Cyperus gymnocuudus. The population was growing on powdery sation clay sni] (3.14% (C^{-}) with a capping of angular feidspar rich gronite und quartz gravel. approximately two metres sbove the spring sediments. Although H. mesembryanthema was the tallest sirrub in the segion, Hathsatrins spp. dominated the chenopers shrubland, Aeripley vesicuria, Nirrara bullisudiert, Counsiopsis spuderfida and a Fronkenia sp were also present. Two small streams supporting produminandy Acracia cambuget. A. victoriae and A. Rerragoneyphylia divided the population. The rentainder of the hillside atwo the springs was dommated by chenopod shrubland while the majariny of the drainage line associated with the springes was unvegexaled.
All of the H. mesembryunthinva bushess sppcared to be mature and the largext individual was approximately 0.8 m tall and over 1 ni wide. A full descriptien of this spacies is presented elsewhere ${ }^{2}$. Mast of the individuals were llowering in April 1992 und the small whice Mowels with trilliant red siamens produced a beautiful perfume. Misny insecte Including wasps, butterflies and flies were attractied 10 these llowers. The wasps, panticularly al itge blaud species, were cuvered with a cunsideratle Jase of yellow pollen and are probshly an importast pollinomer of H. mesemion anathema.
No evidence of browsing was detected on any of the sthrubs although cartle, doukeys and rabbitx all inhabit the region. This supperts the ohservation that the Sisonusways population of H. mesembryaminema was not tauched by cither catle or rabbits ${ }^{2}$. Interestingly it was presumed that H. mesembryanthema had been forced to extinction by domestic stock and rabbit grazing. Although introduced berbivore grazing on seedlings cannot be dhecounted, il is unlikely that the appuent fartity of this spectes is selated to grazing pressure.
The discovery of a further pipultation of H. mesconhryanhturna In close proximity to mound springs raises the possibility that there is some form of assocation betwcens H. nescmbryanthemu and antesian springs. Most yegetation associated with springe grows directly on the vent, mil or scepage zone of the spring. However, it is prossible that IL, mesembrizuthernua retics on certain edaphic ur hydrological properies which are found in s zone it a grester distance lrum the springx. H. mesernbryanhiema ts evidenty not obligately tied wo springs in alt parts of its range since the Queensland collcctions ste fromn alluvial rus on areas in hilly country, or saline aneas ${ }^{3}$. The cummon factur with all of these tocalitice 19 that they all appear to be conntined to comparatively moist regions which suggest that water stress may be limiting.
Although the Wilipnanana population thas significandy increased the vecordat Scuth Aubirstian range of H. mescmbly yumporm, this spresics nuust still be seganded as
rare in South Australia, with only two known populations estimated to comprise a total of less than 1500 plants. The main population at Strangways Springs was under some threat from road building activities ${ }^{2}$ and is potentially threatened by off-road driving, since the Oodnadata track and station tracks pass through it. However, grazing is not believed to be a problem. The Strangways population also appears to have
spread to limestone mounds in recent years ${ }^{7}$ where it was not observed in 1984^{2} or in 19788^{5}. Since the discovery of the Queensland populations, the status of the species has been lifted from presumed extinct ${ }^{4}$ to "poorly known",

Further research is required on the physiological and ecological requirements of H. mesembryanthema to establish a meaningful management plan for this rare species.
${ }^{1}$ Giles, E. (1899) Australia Twice Traversed, vol. 1 (Sampson Low, Marston, Searle \& Rivington: London).
${ }^{2}$ Chinnock, R. J. \& Badman, F. J. (1986) Muelleria 6, 205-209.
${ }^{3}$ Ralmer, J. pers. comm.
${ }^{4}$ Leigh, J., Boden, R. \& Briggs, J. (1984), "Extinct and Endangered Plants of Australia." (Macmillan, Australia).
${ }^{5}$ Symon, D. E. (1985) Botanical notes on Mound Springs and Bores pp 27-43. In J. Greenslade, L. Joseph \& A. Reeves (Eds) "South Australia's Mound Springs" (NCSSA, Adelaide).
${ }^{6}$ Briggs, J. D. and Leigh, J. L. (1989) Rare or Threatened Australian Plants 1988. Revised Ed. Canberra, Aust. N.PWHS, Special Publication No. 14.
${ }^{7}$ Badman, F. J. pers. comm,

JOHN L. READ, P.O. Box 150. Ruxby Downs, S.A. 5725.

EGGS AND INCUBATION IN THE AUSTRALIAN LIZARDS AMPHIBOLURUS NOBBI AND EREMIASCINCUS RICHARDSONI

By T. P. MORLEY

Summary

BRIEF COMMUNICATION

EGGS AND INCUBATION IN THE AUSTRALIAV LIZARDS AMPHIBOLURUS NODBI AND EREMIASCINCUS RICHARDSONI

Reproductise biology, particularly egg-fyying, incubariou and aconate sizes, is proily known in Australlan lizands!. Here I present data on these parameters ins atse Australian lizard Amphiholorus nobbi cogkeri and Enemascinera richardsoni.
Amphibolurus nubbl Willen. 1972 includes two subspecies, and atl available cenlogical data relate to the nomumate subspeciess ${ }^{3,4.45}$. No studies have been conducted on A. n. coggeri. and in South Australia the species is poorly collected and little known ${ }^{6}$. The Desert Banded Skinks or Sandswimmers (Eremiascincus spp.) are distributed ower mosist nf arid and semi-arid Australiai 7, , and are abundant in suitable habilals. The biology of the genus is perorly known and securate reproductive dala are only syailable for oviparous E richardsuni recording its elutch size. ${ }^{\text {l. }}$. The accuracy of the available information on E. fusciolatus is in toubt, having been reperted as a viviparous species ${ }^{19}$.
Since fate 1987, my collcetion at at Swar Reach Conscrvation Park and those of Mark Hurchnson it Brooklield Conservation Park have included four gravid A. nobbr coggerl (Table 1) and one Enemidscincius richandsoni. Affer collection all Sernales were placed in individual cages, tarnished with a hide box and ia nest box jilled with moist sphagnum musk. Fresh water was available, and a climbing branch provided. lizards were offered various insects and feeding often occurred until the day before oviposition.
The eggs were marked and measured, with vernier celiperss. to the nearest 0.1 mov (Table 2) and were placed on a medium of vermiculite and rainwater ($50: 50$ by weight), in a small
plastic contuiner, whe 12 small holex drilled into the hid to allow for air exchange. The first two cluches of A. T. coggeri eggs were incubated ul room cernporaure $\left(20-34^{\circ} \mathrm{C}\right)$. The whers. and the E. richardsom eges, were incubated in \& temperature controlted $\left(27-31^{\circ} \mathrm{C}\right)$ snake sage. The ceggs were cheched daily, and the medium sprayed, as necessary, with rainwater that was the same temperature-

Euch A_{1}. n. onggeti laid a clutch of 5-7 eggs (24: $\times 1.1987-30.11 .1991$) (Table 1). Fernale SVL ant clach siax were not significantly corrclatod ($8=0.8465,0.1>\mathrm{P}>0.05$). The ness hoxes were not used: all cggs were lid on the flow of the cige. The female E. richurdsoni (SAM R37015, SVL $90 \mathrm{~mm})$ fald four eges in the afternoon of 18 , xii:1990. These eggs were laid in the sphagnum moss, and cach adhered to one other egg in the clutch.
Hive. A. hi kagseri eggs from the second clutch were slightly collapsed and peas shaped (vs. oval) upon laying, and went mouldy during the first week of incubation. These eggs ivere opened, prior to disposal, to establish feritity. All were infertule the A. B. coggeri eggs maintained in the more controlled environment were more successtisl in both hatching rate, and as shopter incubation period. All eggs incubated by this nethed, successfully hatched after $\bar{x}=47.25 \pm 2.71$ $(4+50)$ days. whereas the eggs in the uncontrolled conditions. rook $\bar{x}=62.57 \pm 2.71$ (56-73 days), and two embryos were dead or severely dctormed.
On the $27 \times$ xii 1990 it was apparent that only two of the E. ricthardsoni eggs (mos. 2 and 3) were fentic. They thad increased in size, had a pinkish tinge and bloud-vessels were

TABLE 1 Source und clutch sizes for gravid jemale Amphibolurus notabi coggeri,

Female Nu	SVL.	Locality	Date Collected	Date faid	Clutch Sixe	SAM Reg. No
1	80	Swan Reach CP	9. 21987		7	-
2	84	Swan Reach CP	9.x.1987	28-xi. 1987	7	-
3	74	Swan Reach CP	18.81. 1989	10.1.1990	5	R36316
4	80	Brookfield CP	1.xii. 9990	12. 1 13. 1990	54	R36997
5	69	Tî Tree Wel!	8.xil. 1977	-	4	K10567

* Two of these cggs were laid in the bag following collection. When discovered they were not vable and were discandat.

TABL_H 2. Eixs and nematue sizes in Eremiascincus richardsoni and Amphibolunus nobbi coggeri expressed as $\bar{x} \pm$ SD if
appropriate with range in parenthesis.

Spectiey	Egg Sizcs.		Neunate Sizes	
	Length	Width	SVL	IL
F-richurdsemi	$\begin{gathered} 15.58 \\ (66.5-19.5) \end{gathered}$	$\begin{gathered} 9.95 \\ (9.9-10.1) \end{gathered}$	$\begin{gathered} 32.5 \\ \{31-3.4\} \end{gathered}$	$\begin{gathered} 78.5 \\ (77-80) \end{gathered}$
A. No exageri.	$\begin{aligned} & 16.0 \pm 1.49 \\ & (12.1=18.3) \end{aligned}$	$\begin{aligned} & 9.12 \pm 03 \\ & (3.7-9.6) \end{aligned}$	$\begin{gathered} 28.53 \pm 0.74 \\ (27=30\rangle \end{gathered}$	$\begin{gathered} 80.67 \pm 2,97 \\ (76-87) \end{gathered}$

louming on the inside walls. Eggs 1 and 4 had not changed in size or colour, and were thought in be infertilc. Measurements of the eggs coutd not be taken at this stage due to the adherence and shape of the mass. Alter 36 days incubation, on 23.1 .1991 the shell on egg no. 2 had split. This was noticed at 1935 br, but the lizand did net emerge until 0315 hr the next morning. The shell on egg no. 3 was split at 2020 br on 23.1 .1991 and full emergence occurred at 0922 the the next day after 13 hnurs in the open cegg shell. The other 1wo eggs (I and 4) were mouldy, and were opened before discarding, wo cunfirm tham ube inferile. Too few egge were avaluble to permit opening an egg to determine at what stige of embryonic development this species lays its eggs. The incubation period shown here is similar to that for Cicnonus, Bueniolatus', a similar sized skink, whose eger, were laid at stage $30^{\text {to }}$., All trennares were measured at hatching (Tahle 2).
Most of the A. n. coggeri ncotates were relcased at the collection sile of their respective parens. The deformed specimen and four neonates were placed in the South Ausiralian Museum (SAM R35843-44, 36318-19 and 37451). The E, richarlsmi neanates were mainmined.
To supplement the observations reporied here, specimens held in the South Ausiralian Museum were examined for gravid females: Greer examined all specimens of Eremiascincus in State Museum collections prior in $1979^{\text {a }}$. therefort only specimens of Eremiascinarus registered aftes that year were examined.
Only the specimen of A. n. coggeri (R 16587) bad कwiducal egess (Table 1). The largest ege in this specimen
${ }^{1}$ Greer, A. E. (1990) Biolugy and Evolution of Austratian Lizards" (Surrey Beaty \& Soas, Chipping Nontor).
${ }^{2}$ Witten, G. J. (1972) Herpetrikgicas 28(3), 191-195.
${ }^{3}$ Witten, G. J. A Study of Ampphibolusus nobhi Witten, 1972. Unputh. M.Sc. Thesis Lniversity of New England.
${ }_{5}^{4}$ Witten, G. J. (1974) Aust Zool. 18(21, 129-132.
${ }^{5}$ Witten, G. J. \& Heatrole, H. (1978) Copeia $1978(2)$, 362-364.
${ }^{6}$ Houston, T. Fi (1978) "Dragon Lizards and Goannas of South Australiai". Special Educulional Builetin Series (South
$(16.8 \times 8.2 \mathrm{~mm})$ suggests that these eggs werc near ovipnsition. The only data fur clutch sizes in A. nobbi are related to the nominate subspecies $(3-4)^{\frac{3}{3}}$, which has a smaller viluth size than reported here for A. n. coggeri (4.7). This suggests a cormetation between fermale size and clutch size. as A, M. cogyen is larger than the nominate race? The clutch size repurted here for A. n. coggeri is, however, similar to thusé reported for A. muricaus and A, norrisi (3.8 ans 3-7 sespectively) ${ }^{6}$. 4 , mobbi's closesf relatives ${ }^{1.11}$, and buth these species are reported to be larger tham A. n. coggeri (75 vs 100 and 10 mm SVL respectively ${ }^{7}$.
No turther spectmens of gravid ξ_{i} richurdsoni were found, bui two E. ferciolarus (R3(1948 and R36137) were found with well-developed oviducal eggs (5 and 3 respectively). These eggs were surounded by a thin shell membrane, the appearance of which suggests that the cggs would have been voided.
The egg-laying reported here confirms observations on oviparity in E. richurdsomin ${ }^{-18}$, and the findings from dissected Museum specimens supports the suggestion that previnus, repont of viviparity in E fasciolarus may be in errot

The S.A. National Tarks \& Wildife Service provided collecting permity, Dr Mark Hutchinson collected two of the specimens on which these observations were madc, allowed me to examine Museum specimens and read dratus of the manuscrip. Adricnne Edwards provided 山ate for Muscum specimens and Brian Miller assisted with weighing the neonates. David Lungdon and Ed McAlister read the final dratis of the manuscript, which was lyped by Judy Woolman.

[^26]
RELICTUAL POPULATION OF TILIQUA SCINCOIDES (SAURIA: SCINCIDAE) IN NORTH-WESTERN SOUTH AUSTRALIA

by G. R. Johnston

Summary

BRIEF COMMUNICATION

REIICTUAL POPLLATION OF THIGLA SCINCOIDES (GNURIA: SCINCHDEF IN NORTH-WESTERN SOL'TH AUSTRALIA

The ntwuntin ranges uf citural Allstralia ure koown mu provide localised. mesic tepusia list several groups of
 reptilest.5. While some populations isolates in eentral Abstratia hate dierged consulerahly and represent endenuc prectes ${ }^{2} 4$ the whers ate trlictual populations of seeves uccusting in wher parts of Australeit ${ }^{7-4}$ - all arc of comsiderathle bisgeographie interest.
If liat long been recognised that some twa nocurring as isolates incentral Australa have herr shobest relatives in the
 chinate in the past ${ }^{\text {t/s }}$. 16 is now clear that there ane alse signifient links bettieen the faura and trora or the central ranges and temperite sesuthern Austratia ${ }^{2} 3$ Br 7.

The aciucid livand. Tiliquou semomdess is one of the mose butritiar specten of reptile in Auseratia, In Soulh Ausiralia it has tutherto bery regarded us in inhabiant of the cing, wel soulherm arean, extending as a series ol reliciual pupulations inta the more meste valleys in the Flinders and Gawter Rangen
 New South Walles und Uueenstard, and the norite of the Nuribern Territury and Wetern Ausuralian".
This paper repmots tixe besurence of Tiliqua se:mordes-in the arid muthwest of South nustralia. 740 km NNW if ith
 been lodgeal in the Simuth Austratian Muscum (SAMI to verify this report

Fig. I. Distribution al Tiligme seghemides in South Alstralia. Suld eredes desute S.A. Museum sperimens. The stars shuw the new records fron Mimill and Pukatia.

One speciment (SAM R3533/ wir culleeted on the baxc

 12.iy. 969 . A second specimen (SAM $8+1$ t?30) was entiected

 sighed basking among triks and wene removed from crowno intu whidy thes lad moyed when disturberd "The mok oucrops of the Everand and Muserwe Ratues pronde localised mesic relugta which are surmunded hy hasdi, jons sindplains and mulgey couniry: the romes suppon wry Inculised. dense stands of Auwien and rëters. A porther sik
 Furthernare, the Aburiganal people whe live an Mimili telld
 of the gramitice hills in that area".

There was no doubs as on the questile fomeny of these secimezs as ther tuterior terxporals Wete much Ionger than
 Anstralath All wher Austrabient spescies of Thigut hume Irugmented lemprail scales. However both of the specimens. colledted diftered Inim typeal southern South Ausialian porpulations at $\%$ scimomides in several respects (Fip. I) They were latge animals (SVI, $=280$ Itrin. $325(m 01)$, and considerably more monst ins touly form than sumbern yrecomens. The dossum was pale grey bith hate tircgular. hrown, transyeme trands on the lxaly compared with siti tank on the budy of onter South Austalian spasimens. IGali lacked the distinet black kemporat streak lypieul of enfoct South Austratan specimens and the tail was variegated wath blats arnd pute erey which lended to form very haliminct hamds
 Australas have a derese of distine hateds on the hand

Two other species of Fildou ocelr near Mimili and fukslyil and both are kiknofin ind dishinguished frome each

 and is ralled "llingkarkara". Jihequa wipermifes' is called "Illillyarka",

It seems likely that the T, simernides in notithent South Australiat ure inolatel from the rest of that spectes fange and represent the remmana of a formerly mote chlemave destihution which may have hatome reviletal by increasing arridity to isulated patches of suibalo habilat during the Pleisocene ${ }^{4 n}$. The pussibility existes that rurther landated populations of $\%$. semevides may be tound in whes ranges which may provide surable meat refuge in the nomit of llos state

The fact that J. stimentes duen for (xacor -n the Macthonald Ranges ${ }^{13}$ may indicute thal this specios did not cross the Imen ant sand phain and dunes between the Mossurdve and MacDumald Ranges, Panka ${ }^{14}$ idemified this lract of Land as
 reptiles. The sance trat may have heen s farre for fongitudimat dispersal by at least some tumbuls with different trabual requirements as atown by the occurrence on several apecion

Fig. 2. Tiliqua scincoides from Mimili in the Everard Ranges, South Australia (SAM R33939) showing the robust habitus, greater number of bands on the body, indistinct temporal streak and variegated tail which distinguish central Australian specimens from those elsewhere in South Australia. SVL $=325 \mathrm{~mm}$.
which find their geographic limits on either side of it (e.g. Litoria gilleni, Pseudophrnne occidentalis, Ctenotus rufescens, C. (audicinchus) ${ }^{8}$.

The occurrence of T. scincoides in central Australia represents a significant range extension for this species and provides further evidence that the mountain ranges of that area provide an important refuge for non-xeric adapted organisms. More importantly, this record represents a most
unexpected occurrence of a very familiar species, underscoring our ignorance at a fundamental level about the Australian fauna.
Adrienne Edwards provided data on the distribution of T. scincoides in South Australia. Mark Hutchinson made helpful comments on the manuscript. Jenny Wendelbourne and the people of the Mimili and Pukatja communities are thanked for their hospitality.
'Jessop, J. (ed) (1981) "Flora of Central Australia." (Reed, Sydney).
${ }^{2}$ Koch, L. E. (1977) Rec. West. Aust. Mus. 5, 83-367.
${ }^{3}$ Tyler, M. J. (1972) Trans. R. Soc. S. Aust. 95, 215-217.
${ }^{4}$ Cogger, II. G. \& Heatwole, H. (1981) pp. 1333-1373, In . Keasi, A. (Ed.), "Ecological Biogeography of Australia." (Junk, The Hague).
${ }^{5}$ Storr, G. M. (1990) Rec. West. Aust. Mus. 114, 547-552.
${ }^{6}$ Crocker, R. L. \& Wood, J. G. (1947) Trans. R. Soc. S. Aust. 71, 91-136.
${ }^{7}$ Schwaner, T. D., Edwards, A. \& Miller, B. (1985) Trans. R. Soc. S. Aust. 109, 55-56.
${ }^{8}$ Cogger, H. G. (1986) "Reptiles and Amphibians of Australia." 4th edn (Reed, Sydney).
${ }^{9}$ N. Yanima, pers. comm. 1989.
${ }^{10}$ Mitchell, F. J. (1950) Rec, S. Aust. Mus. 9, 275-308.
${ }^{\text {" }}$ Shea, G. M. \& Reterson, M. (1981) Aust. J. Herp. 1, 27-28. ${ }^{12}$ Lietzke, S. \& Davis, M. (1987) "A Basic Pitjantjatjara/Yankunytjatjara to English Dictionary". (Institute for Aboriginal Development, Alice Springs).
${ }^{13}$ Martin, K. (1975) Herpetofauna 7, 6-7.
${ }^{14}$ Pianka, E. R. (1972) Copeia 1972, 127-145.

A NOTE ON PHASCOLOSOMA TURNERAE RICE (SIPUNCULA)

by S. J. EDMONDS

Summary

BRIEF COMMUNICATION

A NOTE ON PHASCOLOSOMA TURNERAE RICE (SIPUNCULA)

Hhascolosunh tumerne Rice, 1985 was described from 104 specimens of à sipunculăn found boring into submerged wood and was eollected at depths of 1135 -1184 m in the Straits of Florida, south of Key West. U.S.A. and also Irom 366-412 m int the northern area of the Gulf of Mexico. Alabama, U.S.A.' This record is the first of a sipunculan living and boring in wood. P murnerue is distinguished from other congeners by the shape of its introvert hooks (Fig. 1), and the structure of its body papillae.
Phascolessma kupulum Edmonds, 1985 was described from three specimens dredged at 710 m off Sydney, N.SW. Australia during a cruise of the "Kapala" in 19777^{2}. Edmonds in 1985 was unatware of Rice's 1985 species. On compating material of the two species in 1988, it became clear that P. urnerue and P. kupalum were conspecific, the latter being a junior synonym. (The date of publication of P. rumerac was 20 March 1985 and that of P. Rupalum was 28 June 1985). No wood. however. was associated with the "Kapala" specimens, nor did the collection records report the presence of any at the time of collection. It seems probable. then, that the specinoms had been dislodged either during dredging or surfing,

Recently a single specimen of P. numerae was found in some material sent for identification from the Northern Territory Museum. Darwin. The specimen (NTM WS87) was collected during trawling operations of "SOEL.A" in Queensland waters (17 $7^{\circ 59.2} \mathrm{~S}-17^{\circ} 558^{\prime} \mathrm{S}, 147^{\circ} 04.5^{\prime} \mathrm{E}-147005^{\prime} \mathrm{E}$) at 259-260 m by H . Larson. 16.i.1986. The collectun label

FIg. 1. Phascolowoma nurnerap, introvert hooks from Queenskand specimen (Scale line $=0.05 \mathrm{~mm}$).
reports thal the specimen was collected from a piece of rolting wood" and a piece of the wood was included in the collecting tube along with the sipunculan.
The purpose of the present note is threefold: I to record the synonymy of P - furtierue and P. kapalum, the former name having priority. 2. to confirm that P, turnerue is associated with submerged wood and 3. to record the wide disiribution of P turnexae now reported from the Atlantic Ocean (Straits of Florida and the Gulf of Mexico) and the south-west Pacitic Ocean tuft Sydncy and of the Great Barricr Reef. Australiat).
${ }^{\prime}$ Rite, M. E. (1985) Prow. Brol. Soc: Washington 98(1)+ 54-60.

Edmonds, S. J. (1985) Trars. R. Soc. S. Aust. 109.(2). 43-44.

EARLY HOLOCENE FROGS FROM THE TANTANOOLA CAVE, SOUTH AUSTRALIA

by Michael J. Tyler, Fred W. Aslin and Simon Bryars

Summary

BRIEF COMMUNICATION

EARLY HOLOCENE FROGS FROM THE TANTANOOLA CAVE, SOUTH AUSTRALIA

Five extant species oll froges are represented in the Quaternary record of the southeast of South Australial. constituting one of the best krown components of the Australian Qualernary frog fauna². Here we report a further site and add one more species.
In 1982 a quantity of tossil vertebrates and invenctorates was recovered from a pocker of sandy clay fill at the entrance to the Tantanoola Tourist Cave ar Tantanoola, S.A. The material was uncovered in the process of excavation of the floor of the entrance to permit wheelchair access. included in the vertebrate material were 185 frog ilia. Here we report the identity of the ilia and place them in the context of the Austrafian Quaternary record.

Ilium Length (mm)
Fig. 1. Length of ilia of Limnordynastes masmantensis plotted against snowt to vent lengh. Assumed snout to vent length of largest and smailest representidves of the fossil materiat indicated by broken lines, 1 -value for slope $10.395, p<0001$, For $x=18,6, y=41.1195 \%$ confidence limits $=$ 37,8-44.4). For $x=106, y=27.9$ (95\% confidence limits $=25,4-30.4$). Of the 21 complete ilia in the sample $\bar{\pi}=$ $13.6 \mathrm{~mm}, S . D= \pm 1.7$, range $10.6-18.6 \mathrm{~mm}$, median
13.4 mm . 13.4 mm .

Five species were collected at Tantanomla. They, and the quantities invelvod are listed in Tahle 1. From the maximum number of left or of righr ilia in each sample it is apparent that a minimum total of 100 individual specirnems is included The very large number of Limnadynastes tasmaniensis Giunther necovered permits an sccurabe extrapolation of the size of the individuals compared with modern representatives

[^27]of the species (Fig. 11. The size ranges of modern individuals are $31,1-39.5 \mathrm{~mm}$ (males) and 32.0 .47 .2 mm (females) ${ }^{3}$, hence the fossil material clearly is comparable in size.
The faunal composition is almost identical to that represented at Victuria Cave and Henschke's Quarry Cave near Naracoorle. S.A. I Liroria ewingi, Limnodynastes rasmupiersis, L. dumertlit and Crinia signifera ane conmon to the three sites. A single Geocrinia laevis from Victoria Cive is not represented at Tantanoola, whilst a single Neobarruchus pictus at Tantancola is nor repsesented at the other sites, so increasing to six the number of taxa in the fossil record of the southeast.

TABLE L: The frog illa excovered ar Tannonvole Cave*:

Specics	Tolal Hia	Lefit Litia	Right Hia	Registration Numbers
Limnodynastes	137	66	71	P32111,
tasthaviensis				P32239
Limnódyrastes Dumeriliz	2	1	1	P32237
Crinia	42	24	18	P32112.
sujnifera				P32240
Nevbatractus	1	1	0	P32241
pictar	2			P32038
forngi	2	0	2	P32238
unidentifiable	1	0	1	
Thals	185	92	93	

*All specimens are deposited in the South Ausiralian Museum.
It has been suggested that the accumulation of so many frogs in cave deposits does not reilect the use of caves as diurnal or scasenal refuges, but rather is a consequence of the disgurgement of pellets by uwls, which are predators of trogs '.

The age of the material as determined by © ${ }^{+1}$ diting of charcoal is 9860 ± 190 years B.F. The anmlyys was undertaken by Beta Analytic Inc: Beta referenes Saloud: EW. A. Areal 2").

We are indebted to. . Callaghan and 1. Aslin for their askistance during the excavation and collection of the materia! reported herc. The participation of S. Bryars was made possible by an Australian Research Council grant to M. 1 Tylet. The excavation was undertaken under Permit 63/ granted hy the National Parks and Wildlife Service to F. W. Astin, and the C ${ }^{14}$ datang was funded by the N,PW.S.
"Tyler, M. J. (1978) "Amphibians of South Australis." (Handbooks Committece, Adelaide).

ROYAL SOCIETY OF SOUTH AUSTRALIA INCORPORATED

Patron:

HER EXCELLENCY THE GOVERNOR OF SOUTH AUSTRALIA DAME ROMA F. MITCHELL, D.B.E., Q.C., L.L.B., D.Univ.

OFFICERS FOR 1992-93

President:
W. D. WILLIAMS, B.Sc., Ph.D., D.Sc., Dip.Ed., F.A.I.Biol.

Vice-Presidents:
N. A. LOCKET, M.A., B.M., B.Ch., Ph.D., D.O.
M. DAVIES, B.Sc., M.Sc., Ph.D.

Secretary:
R. H. FISHER, E.D., A.U.A.

Editor:

Librarian:
M. ANTHONY, A.L.A.A.

Minute Secretary:
A. J. McARTHUR, B.E.

Members of Council:
R. I. JAMIESON, B.Sc.
D. J. WILLIAMS
M. J. WRIGHT, R.D.A.

Treasurer:
R. H. WATERS, J.P., F.A.I.M.
M. DAVIES, B.Sc., M.Sc., Ph.D.
E. M. CAMPBELL, B.A.(Hons), M.A., Ph.D.

Membership Secretary:
G. A. CROOK, B.Sc.
A. J. BOULTON, B.Sc., Ph.D.

[^0]:

[^1]: * Murny-Darling Frewhwiter Research Cenfres POB Bes 921, Atbury, N', S.W. 2 640 fit whom reprioi sequests should be addrosed).
 1 Ludwie-Brill Strase S, Vukkerbtack. D 4570 . Federal Republic of Germany.

[^2]:
 dorah. (el trophus. ventral (su subuncus; tif lett uncus; ru right uncus, rit tamus: srad suparamus, Ia fulcrim: Im lett

 Sicak- hase whll 50 yith. leopti and egge 16 pom

[^3]: Fig. 13. 1 Thichoccea pums (Muller); (a) typical form, hateral; (b) (ruphus: 2. T. rences (Stenrows): (a) lateral, coniracted:

[^4]: * Cientre of Applicd Science Shudics, Universiti Pertanian Malaysia Campus Bintula ESS. 3969700 Bintulu. Sarawak. Malmsib.
 t Demerment ix" 7 ralugy. University ght Adelaide. GT PO Rios 198. Adelaide, 5. Aust, 5001. To whon reprim requests should he tirected.

[^5]: - Souh Australian Museum, North Terfuce. Adclaide. \& Ansf, 5000
 gh 9702.

[^6]: * Department of Cron Protestion. Waile Campus Dhersity (S) Atlelande, (ilen ßamond. S. Aust, 5unt.
 an Departarent ai Bintomahngy, Texas. A \& M Universiry, College Slatiun, TX 77843: 2475, USA.

[^7]: - Departitem of Bohany. Thiversity of Adshande, G.PO Bro tys. Autelande s. Aust 5001

[^8]:

 $=5 \mu \pi$ excem the lnien where bar $=35 \mathrm{~mm}$

[^9]: Fig. 4. Mincellanenus cuncles from Nelly Creck parataxa. $A=$ abaxial cuticle of NCluo3 (Parataxon 7 Proteaceac),

 Scale bars $=5 \mu \mathrm{~m}$.

[^10]: ${ }^{1}$ Verster; A. (1464) Onderstepoort J. Vet.. Res. 36, 3-58.
 ${ }^{2}$ Beveridge, 1. \& Gregory G. G. (1976) Aust vet \&. 52 364-373.
 ${ }^{3}$ Abuldase, K. I. (6ont) Tacniata of inimals and man and diseases caused by them. Essemtials of Cestodology Vol, 4, Ed. K. I. Skrjabin. Akademis Nauk SSSR. Enylish 'lranstation by Israel Program for Scienlific Translations. Jerusalem, 1470.

[^11]: * Ausiralian Centre for Whet Quality Researth. Privite Matl Bas, Salisbury, S. Aust, 5108

 LInyd. I.., Mulker, J. \& Balla, S. (1984) Berll fivalynation Batil) Study" (Dent Zurlugy. Univ. of Adelaids. Unpubi. Repon for Y P.W.S.)

[^12]: Chemissy:" (Stale Wher Laborasmy, E. \& W.S Dcpu, S Aust. S.W.L. Repori No. 30.1
 ${ }^{3}$ Anon (1990) Analytičal Methrods Miunarl - Organic "flemustry" (Stute Water laboratory. E. \& W.Ś Dept, S. Ausi. S.W.L. Repurl Nis, 32;

[^13]: F Dept of Botany, University of Adelaide, G.PO. Box 498. Adeluide, S. Aust. 5001.

 - Figere on pige 5 of ETSA 1988 , Lemtuel report shoms E-W stasigruphic cruss-section of -jeposil.

[^14]:

[^15]: Austadiato Eekenc Dispersed Cutcele Cathlegue．Appentis A to ROWE＇II＇，A．I（1940）．Nationall Inergy Rełwerch
 No． 3.

[^16]:

[^17]:

[^18]:

 46ils Scale $1 \mathrm{tm}=57 \mathrm{~mm}$.

[^19]: - Blachburn. It. T. (9985) Palacoboany of the Yallowrn and Morwell coal seams. Pilaenlumanical Report Nin. 3, Sile itectrinty Commission of Vichora.

[^20]: * Department al Veterinary Scionce. University of Melhournex, Parkville. Vic. 3052
 * Brolngle parasitaire. Protistolegie et Hemmonolagic, Muneum nalional d'Histrime nalurelte, fil rue Buffion, Parix, 7500.5 Prance.

[^21]:

[^22]:

 IE, latio ris right.

[^23]: * Department of Zoology. University of Adclaide, GPO Box 49K. Adelside. S.A. 5001.

[^24]: ＊Department of Veterinary Science．University ul Mctbourne．Parkville，Vic 3052．
 t Biologie parasitaite，Protistokegle ef Helminthologic Museum national diHistore maturfle，of rus Bulion．75chs Paris．France．

[^25]:

[^26]: Australian Museum, Adelaide,)
 ${ }^{7}$ Cogeger, H. G (1986) "Reptiles and Amptibians of Australia" 4th Ed. (Reed, Sydney).
 ${ }^{*}$ Greer, A. E. (1979) Kec. Aust. Mus. 32(7), 321-338.
 ${ }^{4}$ Taylor, 1. A. (1985) Herpctonlogicis 4i(4), 408-418.
 ${ }^{10}$ Dufaure, I. P. \& Hubert, J. (14gi) Arch Anat. Microscop. Morphol, Exp-50. 309-328.
 "Witten, G. J. \& Cowentry, A. J. (1984) Proc: R. Soc. Vict. 46(3), 155-59.

[^27]: ${ }^{1}$ Tyler. M. J. (1977) Trans, R. Sox. S. Aust. 101 (3), 85-89.
 "Tyler, M. J. (1989) "Australian Fmgs." (Vikirg ONeil,
 Melboume).

