Transactions of the

Royal Society of South Australia

Incorporated

Contents

Barker, S. \& Bellamy, C. L. Stanwatkinsius, a new genus of Australian jewel beetles (Coleoptera: Buprestidae: Agrilinae) with a key to known species 1
Conroy, T. J., Cook, P. L. \& Bock, P. E. New species of Otionellina and Selenaria (Bryozoa-Cheilostomata) from the South West Shelf, Western Australia 15
McArthur, A. J. \& Shattuck. S. O. A taxonomic revision of the Camponotus macrocephalus species group (Hymenoptera: Formicidae) in Australia 25
Davies, K. A., Makinson, J. \& Purcell, M. F. Observations on the development and parasitoids of Fergusonina/Fergusobia galls on Melaleuca quinquenervia (Myrtaceae) in Australia - - - 45
Pichelin, S. \& Cribb, T. H. Neoechinorhynchus ningalooensis sp. nov. (Acanthocephala: Neoechinorhynchidae) from Scarus ghobban and S. psittacus (Scaridae) from Western Australia 51
Smales, L. R., Gerhardt, K. \& Heinrich, B. Embryogenesis, culture and description of the free-living stages of two nematode parasites of the northern hairy-nosed wombat (Lasiorhinus krefftii) (Vombatidae: Marsupialia) 57
Vaillancourt, R. E., Boomsma, D. B. \& Nicolle, D. A disjunct population of Eucalyptus globulus ssp. bicostata from South Australia 65
Brief Communication:
Phillott, A. D. Pisonia grandis does not appear to harbour fungi known toinvade sea turtle nests at Heron Island, Eastern Australia -69

TRANSACTIONS OF THE

ROYAL SOCIETY OF SOUTH AUSTRALIA

INCORPORATED

VOL. 125, PART 1

TRANSACTIONS OF THE

ROYAL SOCIETY OF SOUTH AUSTRALIA INC.

CONTENTS, VOL. 125, 2001

PART 1, 31 MAY, 2001
Barker, S. \& Bellamy, C. L, Stanwatkinsius, a new genus of Australian jewel beetles (Coleoptera: Buprestidae: Agrilinae) with a key to
known species
Conroy, T. J., Cook, P. L. \& Bock, P. E. New species of Otionellina and Selenaria (Bryozoa-Cheilostomata) from the South West Shelf, Western Australia15

McArthur, A. J. \& Shattuck. S. O. A taxonomic revision of the Camponotus
macrocephalus species group (Hymenoptera: Formicidae) in
Australia 25
Davies, K. A.. Makinson, J. \& Purcell, M. F. Observations on the development and parasitoids of Fergusonina/Fergusobia galls on Melaleuca quinquenervia (Myrtaceae) in Australia - 4.5
Pichelin, S. \& Cribb, T. H. Neoechinorhynchus ningalooensis sp. nov. (Acanthocephala: Neoechinorhynchidae) from Scarus ghobban and S. psittacus (Scaridae) from Western Australia 51
Smales, L. R., Gerhardt, K, \& Heinrich, B. Embryogenesis, culture and description of the free-living stages of two nematode parasites of the northern hairy-nosed wombat (Lasiorhinus krefftii) (Vombatidae: Marsupialia) 57
Vaillancourt, R. E., Boomsma, D. B. \& Nicolle, D. A disjunct population of Eucalyptus globulus ssp, bicostata from South Australia 65

Brief Communication:
Phillott, A. D, Pisonia grandis does not appear to harbour fungi known to invade sea turtle nests at Heron Island, Eastern Australia -

PART 2, 30 NOVEMBER, 2001

Souter, N. J. \& Williams, W. D. A comparison of macroinvertebrate communities in three South Australian streams with regard to reintroduction of the platypus -
Bailey, P. T., Martin, J. H., Noyes, J. S. \& Austin, A. D. Taxonomy and
biology of a new species of Zaphanera (Hemiptera:

Aleyrodidae) and its association with the widespread death of

Downs, South Australia - papyrocarpa, near Roxby
$\begin{array}{ll}\text { Barker, S. } & \begin{array}{l}\text { Descriptions of twenty one new species of Cisseis (sensu } \\ \text { stricto) Gory \& Laporte } 1839 \text { (Coleoptera; Buprestidae: } \\ \text { Agrilinae) - }\end{array}\end{array}$
Williams, C. R., Kokkinn, M. J., Snell, A. E., Fricker, S. R. \& Crossfield, E. L.
Mosquitoes (Diptera: Culicidae) in metropolitan Adelaide,
South Australia - $\quad 115$
Ferguson, M. A., Smales, L. R. \& Cribb, T. H. A new species, Pretestis laticaecum, (Trematoda: Cladorchiidae) from Emydura krefftii Gray, 1871 (Pleurodira: Chelidae) from Central Queensland, Australia -123

O'Callaghan, M. G. \& O'Donoghue, P. J. A new species of Eimeria
(Apicomplexa: Eimeriidae) from the brushtail possum,
Trichosurus vulpecula (Diprotodontia: Phalangeridae) 129

O'Callaghan, M. G., Andrews, R. H., Davies, M. \& Spratt, D. M. Species of
Raillietina Fuhrmann, 1920 (Cestoda: Davaineidae) from
the southern cassowary (Casuarius casuarius) 133

Beveridge, 1. Cervonemella reardoni gen. et sp, nov, (Nematoda:
Cloacinidae) from the stomachs of scrub wallabies,
Dorcopsis spp., in Papua New Guinea 141
Riley, I. 'T', \& Wouts, W. M. Pratylenchus and Radopholus species in agricultural soils and native vegetation in southern Australia 147

Brief Communication:
Mackness, B. \& Godthelp, H. The use of Diprotodon as a biostratigraphic marker of the Pleistocene 155
Obituary:
Joan Burton Paton AM, BSc(Hons), MSc - 159

STANWATKINSIUS, A NEW GENUS OF AUSTRALIAN JEWEL BEETLES (COLEOPTERA: BUPTRESTIDAE: AGRILINAE) WITH A KEY TO KNOWN SPECIES

BY S. BARKER* \& C. L. BELLAMY ${ }^{*}$

Abstract

Summary Barker, S. \& Bellamy, Cx L. (2001) Stanwatkinsius, a new genus of Australian jewel beetles (Coleoptera: Buprestidae: Agrilinae) with a key to known species. Trans. R. Soc. S. Aust. 125(1), 1-14, 31 May, 2001. Seven species of jewel beetles previously placed in the genus Cisseis (Coleoptera: Buprestidae: Agrilinae) are recognised as different and a new genus Stanwatkinsius is proposed to accommodate them, their synonyms and nine new species. The species ascribed to the new genus are Cisseis perplexa (type species), C. careniceps, C. cincta, C. constricta, C. lindi, C. subcarinifrons ($=$ C. occidentalis), C. uniformis (- C. coraeboides), Stanwatkinsius crassus sp . nov., S . demarzi sp . nov., S . grevilleae sp . nov., S. kermeti sp. nov., S. powelli sp. nov., S. macmillani sp. nov., S. rhodopus sp. nov., S. speciosus sp. nov. and S. viridimarginalis sp. nov. A key is provided for the indentification of these species. The relationships of the genus to other members of the tribe Coraebini are discussed. Key Words: Australia, Coleoptera, Buprestidae, Cisseis, Stanwatkinsius, new genus, new species.

STANWATKINSIUS, A NEW GENUS OF AUSTRALIAN JEWEL BEETLES (COLEOPTERA: BUPRESTIDAE: AGRILINAE) WITH A KEY TO KNOWN SPECIES

by S. BARKER * \& L, BELLAMY ${ }^{\text {* }}$

Abstract

Suminary Buprestidae: Agrilinact with a koy lo kown specjes. Trams. R. Sece 3. Alseg, 125(1), [0.14, 31 May, 2001. Seven species of jewel beetles previously placed in the genus Cissoss (Coleoptera: Buprestidate: Agritinac) are nind new spectes. The species ascribed to the new genta ure (isseds perplena (type species), C. careniceps. C ? Corabini are discussed.

Materials and Methods

Spectinens examined were borowed from or are deposited in the rollowing institutions and colleetions:
ANIC - Australian National Insed Collection, Canberra.
BMNII - The Natural History Musetm, London.
CLBC - C. L. Bellamy collection, Los Angeles, Califormia.
HDWA - H, Denarz, Woodridge, Westem Australa, MGWA - M. Gulding, Beverley, Western Ausiratio, MHSA- M. Hanlon, Sydney, New South Wiles. MNHN Muséum National d'Histsire Naturelles, Paris.
MPWA- M. Powell Mclvilte, Western Australia.
NMVA - Nallional Museum of Victorid. Melbsorne. Vichara.
SAMA - South Australiun Muscum. Adelade, South Australia.
SWLA -S Watkint, Lismore, New South Walcs. WAMA - Western Austratian Museum. Perth. Weslerm Ausiralia.
Type numbers listed below for specimens from the Blackhurn conlection. BMNH, are now type aceession numbets assigned in the BMNH system, bul wister Blackfom collection lype numbers.
All of the specimens were examined under a binecular microscope. They were pholographed with

[^0]a Nikm 35 mm camera will extension tubes and the transpurencies were scanned and digitally inamipulated by computer using Adohe Phowshop. Specimens were prepared for electron mieroseopy hy vacuan coating with gold and then phowgraphed using an Hitachi $\$$ - 450 Stannitge EM.

Introduction

The buprestid getns Cisseix Gory \& Laporte, 1839 (Agrilinae: Coractimi) oceurs thoughout Austratia and its distribution extends horth and cas into New Guinea, the Solomon Iflands, und the Phitippine archipelago. In Australia, mush species of Cissets are associated with Aemik species: the larvae bore into decaying wood and the adults are mostly foliage feeders. Ocensionally the adults visit flowers of the host plants and other locally blooming species. The last revision of Australian Clisels was by Carter (1923): subsequent exflecting has reveuted many undeseribed species. In the course bef re-examining species antributed to the genus, we found that seven species originally placed in Corsens are different from all other deseribed species. Blackburn (1891:300), when describing Cisseis perpleta Blachbum the first of the seven. ourtined the differenes between it and typieall Cisvels species. Stan Wakins a prolific coflector in NSW, drew our attention to an undescribed species attied to Cissems perplese differing from typical Cisseis sppas we have recogmised eight additional species, which fif this sallegory, Some of the species are associated with either Costarina or Alfocensurina spp. Many of the brhers bave been
fisond on the leaves of Girwillea sppo and Ilaken spp. The major morptasharicil depariure foom Ciases is she strucure of the ovepuster: which is smimitar lo that nol identical with the structure sil the avipositor in Mellhocithon Obenherger. Both have incurving selue, sharp in Melibocithoik, blent at tbe lop and sham further down in all apecess of this. slistine group. Cimseis speectes have a tubulat ovapusing withor incurvong setace. This difference . nd othes have prompled lis lo eree it now genes for lleer platement. We propose the natme Srumwathinsius Jor the new gemus:

Stammakkinsizs gen, nov.

Type specties. Cisseis perphexa Blakhom. 1891 ifnesent disignationi).

Diagnoses: Small. length less than 10 mmi. subcylindrical: general form somewhat resembling Astrwers Cory \& LaPorte and Meltheriform, surtace punctate andiat Hansvately bgises. irideseem. sparsely pubsecont, tho sexes are dichromatic in some species.

Descripliem

Head: eycs small. Widcly sepmated, inmer nargins somparallel: frompuertex broud, fronsverse, often with leebte longitudinal inedial costai ammenmal inmertions lates moderately to widely sejnatated. With sintate karimas dowad to each (fig I): ephistome declisous ventrad of antennal insections, gena whth single rmunded acule projection below eye; with nannow depression to receive basal antennomenes in fepkse: kihnompunctate, mandible robust. Antennae Pridngularly secrate from tinennomere \& of 5 , Promoham wider than longe, widest at posterior magion unterior margin evenly arcuate: posterios margin hismuate: hateral margitn narmwing hefore subacute lateroposterior bugle, even hetore marowing 10 anterios margin: dise battened mediully, everly rounded laterally; me preapical sarint to well befoce midpoint extending abdately ilwaty from tateral margin and extending anferior io luteropostecior angle to well heyond mudrumt. Scuselhum moderate sioe, sohcordiform, wider than fong: anterion margin even, ransverse; posserior magein strongly fittonuate. Elytra much longer than whe, widest hear posterion thied. but wider opposite humen than at posterior margin of pronotum: Lateral margeses subparallel from opposite hunceri lo aboul mid-puint whitening (6) pobterion third hefore gradually narrowing to meparatcly subtuncate apices: pusterior pution of lateral magin semate (o) serfubate: egsipleuton shorf, extending apposite lengeh of motepiaternum, soparated from dise by snatl carioa Prosternat process with voncate apox
and Iwos acone latoral projections prosterad bit procoster metepimeron not visible atoteriop matgin of metacesal plate concane mestistly; posturion margian lecbly emarginate ahuominal sterna cach proxerssively shomer than preceding, sutural margins fechly arcuate medlally: sternat 3.5 weith visible Tateral maryins caclo will prelateral stratght groove: complete arouml matein bt 5. Femora lunitarm. tiluike longer than Femora, etuch with pain of spines an disad mpex: mestatibise with setigerts on distal porthon: tarsi 1-4 each with reatral pulvillus. sath putvillas brouder than the previous one those on larsomeres 3 und 4 bilotoed; liasonmere 5 with elaws fechly mppendiculate and notched basally and asymmetrie, subes cfasy thickes than imer claw. Geniatia: male, all very simidar relatives: svipositor: "consebioe type".. simila in than lagured in Bellany

 twe hasal antemotmetes are prebent the otowns indieake the junction hatweon the frons and the enistome. Sisale loar C (L. 1 imm.

Fluttend futco withour ventral setae（Bellamy 1988： 416）．

Remarks

Sombwhimsons diffors from Ciswefs in the following combination of characters and character states．The plamt assoctations of the various ppeciess most are associated with species of Grevillea of Haked．some with either Cavmarina ir Allowasuarime and differ from the gencral Cissefs spectes ussectation with matnly various spectes of Acaciar The morpholngy of the ovipasitor differs heaween shase genera．In Ciswis it is a matrened lube with shorl，paired syli．In Sremwarkinsios it is a serog formed from itcurving setac．Nome of the species of Stamvarinsins has spots on the elynria formed from setae ats in various Cissis．Neospaifes Blischburn and Pedesciseen Thery species．All have plain metaltic colouration．In Sraentuthathsus the mandibles are more mobusb and it dilferent shape liom those in Ciswis：the antennal inserions ane frgher than in Cosseis．all Cisseis the cage bl the froms lack puncturen and is very distinct，there is at step leetween this structure and the epistome whereas in Stanvatkinsime the junction between the frons and eqpistone is indistinet and the liveas surtounding the insertion wo the basal antemomere is less promincont （Fig i），fo Stonwatblusposy the labrum is narrow and has it trush ar stoul adpressed setae along the apion matyin．On the pronotun．the dorsial carimed does met reach the apical margin in any species，whereas in Cissebs the dorsal carina micets the apical margin on all but a lew species．The asymmetrical tatsal slaws ate quite different from Cissetive species and tucomnum in buprestids in gencral．One cxample th tarsal elew akymmerry in corsebines was discessed hy Bellamy（ 5900 ）for the Asian and Philippine genus Coraelmsomm Obenberger．

Key to Stanwatkinsites species

1 Boxly all ereen है \＆O
Bordy mher than green … ．．．．．．．．．．．．．．．．．．．．．．．．．．．
2．解 \＆最 dark green，foumhern species \therefore bright grach．numbern specics kermeds sp，mu．
3．head gecell apically．dark blue basally：of head

（5）head wher lian gredo de blue ．．．．．．．．． 5
4． 3 \＆ 7 pronorum Eoppery ．．yreciosus sp，nav．
\＆pronormm dank blue：pronotum soppery

surfuce purnle ．．．．．．．．．prebelle sp now．
Head other than purple

6． 7 head de promotuin msy，elymai dark blue Whadopes sp nov．
\＆hicud \＆pronotum other than rosy ．．．．．． 7
7．of \＆heai，pronotum sentral surlike bronec．\＆ 8）\＆ 8 hend，promosum ventad surface other than bropore
 8 elyda bles：felyfa bromse with red apical margins．．．．．．．．．．．．．．．．．courniceps（Cartex）
9． 3 \＆ 8 head，ventríl surtace green．phonotome cbera mostly browas，．．mberamifroms（Thenisons） © \＆Plyirat other tham all brown ．．．．．．．． 10
10．Elytra with green latral margits ．．．．．．．．．．．．． 11 Elyifa with sed lateral margins．．．．．．．．．．．．． 12
11．a heat，pronotum blue ．．．macmillati spenev． 6 head green，pronolum medially brown laterally green： 9 head of pransman brown sievidinerightadis sp．now．
12．if \＆P head，pronetun coppery 1．．Iindi（Blackburn）有，pronothm other coppecy ． 13
13．S head．pronotum．ventrat surlice green ．．．． 14 If head pronotum，ventral surface blew ．．． 15
14．$\%$ beud bronze－ycllow：small，5－6 min ．．．．．．．．．．．．．．．imethe（Kerremans） ？head green：lavger．>7 mm．．chas shs sp．nov．
15．Smaller species，hend tinety puthetured；oscuts on WA coastal plain ．．．．．．etemru－i sp．nov： Patriger species，head coarsely punctured：ocouss inkand WA ．．．．．．．．．．．．．．．．grevilleac ap．nov．

Stumwatkinsibs perplexus（Blackhurn．1891）．

> comb. nov.
（FIGS 1b．2ia）
Caseis perplex Blackbum 1891－300．Kercenams 1903：230．Caner 1923：107；1929：279．Obenberger 1934：852．

Holorspe： 9 ，Blackburn（T 2185 ，BMNH， exammed．

Other specmuens examined：WA：\＃，Wannamal． S．ix．1970．S．Barker，SAMA：\％Korrelocking． 22．ix．1970，S．Barker．SAMA：2 o त＂，Quairading， 7ix．1970．S．Barker SAMA：8． 77 km E．T．O．Old
 Soulh Tammin Flora Rese 8xi：1970，S．Barkur
 Barker，SAMA：8． $77 \mathrm{~km} \mathrm{E} \mathrm{T.O} .\mathrm{Old} \mathrm{York} \mathrm{Rd}$.

 ${ }^{3} \mathrm{~km}$ S Isractite Bay TiO．SW Mi Ragged， 10，xii．1974，S．Barker，SAMA；\＆， 3 km E Norsethan， 14，xii．1974，S．Barker，SAMA：F．South Tammin Flora Rew，20．xii．1975．S．Barke\％SAMA：\＆South

35 kirt E Lake Graec. 19.ix. IU79, F.H. Wher Baker. SAMA, SA:4BS, $9,18 \mathrm{kmE}$ Khuba, 8×1979, S. Barker, SAMA: \&. Lake Gifles Cd. E Kioba. H.x.1990. S. Burker, SAMA; s. R. no thata, SAMA

Mule

Size: 8.0×2.9 nmm (20).
Colour: Head mosily coppery-purple, green il hase, all green in a few specimens. Antennae bronze. Pronotum mosily coppery-purple, anterior mangin green. Scutelluon coppery-purple. Elytra bronze. Ventral surface and legs coppery-purple.

Shape and seulpure: Head deeply punctured. selose, low medial carina from apex, projecting into median impressed line post-medially, reaching base. Antennomeres: 1-3 obconic; 4-11 |riangular. l'ronotum snoolate, apical margin projecting medially over hall its Jength, basal maggin bisinuate: doesal catina diverging from tateral margin at base, convex, approuching but not reaching anglo, laterally serose, Sculellum scutiform, without punctures. flat, hasas margin slighty concave. Elyura heavily striolate basally, rugose along suture, scutellate laterally: more or fess paraltel-sided, narowed postmedially to rounded apices, apical margin sul)senate. Ventral surface scutelate, densely covered by long setac as are legs.

Female

Sive: $8.5 \times 3.0 \mathrm{~mm}$ (17).
Colour: Head coppery-purple. Pronolum hromec with coppery-purple reflections. Elylea bronze. Veriral surtact and legs coppery purple.

Shape and seulpiure: as in male.

Distribullon

WA: Common in drier heth areas assectated will Ahocasmarmer spp. SA: Kimba on Allesedsmarina helomsii (Ewart \& M. Curdon).

Remarks

This species is the largest in the genus and the only one that is entirely bronse.

Stanwathinsius caremiceps (Carter: (923). comb. nov.
(FIG. 2b)
Cinseis curenticeps Cafler 1923: 171: 1929:278. Obenberger 1934:843.

Holorype 3 3 syntyper, BMNH, eximined,
Oeher specimens eatmined: WA: 2 B3. 279.48 km E. Geraldtom, 22.ix. 1958, S. Barker. SAMA: ${ }^{\circ}$ Tuttanine, 1,i,68. S. Barker, SAMA: \& . Ballidu.
16.ix.1970. S. Barker, SAMA: z, Payneos Find. 17.ix. 1970, S. Barker, SAMA: \& Wlalki, 19.1x.1970. S. Barker. SAMA: 3 \& d. 53 km W Mullewa, 20_ix 1996 , T.M.S. Hunlon, MHSA: 3 है ${ }^{2}$. Wutheroes. 3.xi.1990. H. Demars, HDWA: of, Tammin Res, 28.x.1975, H. Demař, IIDWA: $6 . f$. 3 km EF Tallering Homesteat, 23.xi.1989. S. Burker. ClaBC; \&. Tallering sin.e 23.ix, 1989, on Alfecastarina campesiris, Barker/Watkins. SWLA:
 compestris. T.M.s. Hanlon, MHSA: 㞼, 39 km N Galena, Kixal99s, on Allorwsuapina rampestris. T.M.S. Haulon. MHSA.

Male

Sive: $8.3 \times 2.8 \mathrm{~mm}$ (11).
Colour: Head antennae, pronotum and scutellum hronze: Jilytras either deep violaceuns with red margin aroond the apiees or grey-blue with red margin around the apices and red along suture on each elytron from middle lo apex. Ventral surface. legs brestac.

Shape and seofpectre: Head deeply punctured, sesose, With u median apical canina extendite to base as impressed tine. Antenommeres: 1-3 obeonic; 4-11 tiamgular. Pronotum decply strolate apical margin boadly projecting medially, hasal margin bisinuate, dorsal carma separated widely from margin exeept at busc, now reaching apical margin; laterally selose, Scutellam flat. without punctures. Elytra striolate. laterally parallel-sided from bose, rounded pastnedially, then naxrowed 10 ronnded apices. Ventral surliace strolate, with moderately long stlac.

Femule

Size: $8.7 \times .3 .0 \mathrm{~mm}$ (8).
Cokour: Head, antennac, scutcllum bronac, Elyba bronee apioal margin red. Ventral surliace and legs bromze.

Shape and scouptores is in mule.

Disminution

WA: most common on the beytienen edge of the whealhell. Assucialed with Allocenumbence cumpestris (Diels)

Remarks

 closely allied species. Mates are easity distinguished by their different colour combination. The feotafes of this species are distinguished from lemates of s. perplexus hy their elylra which have a red apical nawk. ahsent in the other species.

> Stmatokinsius eincums (Kerremans) $$
\text { (FIC. 20) }
$$

Fig. 2. Habitus illustrations of the following Stanwatkinsius species: a. Shanwakinsius perplexus (Blackburn). b. S. careniceps (Canter), c. S. crassus sp. nov, d. S. modopus sp. nov. e. S. powelli sp. nov. f. S. speciosus sp. nov. 日. S. kermeti sp. nov. h. S. constrictus (Blackburn). i. S. limli (Blackbum). j. S. vividimarginalis sp. nov. k. S. grevilleae sp. nov. 1. S. macmillami sp. nov. m. S. demari sp. nov, n. S. umiformis (Thomson) o. S. cinctus (Kerremans). p. S. subcarmifroms (Thomson). Scale bar $=5 \mathrm{~mm}$.

Coincein finmer Kcrmemans 1898：160i：1903：329．
 Chenherger 1934；855 syn．nuw．
 Blucrthu：$B M N H$ ，examined．

Chher sper＂mens eramined：WA： 3 of of．U．Cooresw． W A．245 hm N，sm mom－prickly Hiskou，16．x．38，Du 13．ANIC：of Matoo sllio 1931－1441，A．Guesting． ANIC：d， 17 km S Norlhampion，1．x．1981．1．D． Namman \＆J．C．Cardale．ANIC 28 s .80 hm N Morota，20．8．1996，Kershaw／Golding，MGWA：ó， Weredridge，intelecpe trap，I（）．xi，199）X，H．Demar\％
 Itamlen．MJSS．

Wale

C＂olsur：Hewd grewn．Amentise：antennumeres 1－2 green；3－11 hatek with green reflectons，Pronsotum． weutclum gereet．Elylra dark brown medtally． hronge－red latemally．Vental surlace and legs greers．
Shape and seulpture：Head punctured．shatlow median sukus at the apes exterding as impressed line remelbing hase．Antennomeres： $1-3$ oboonic； $4-11$ （niangular．I＇ronotum striolate：apical margin broadly projesting medially．hasal magein bisinuale：dorsal coarinal diverging from latoral margin all base then chasing towards it post－medially，not reaching the marem，Seublellum lhal，witheut punctures，hasial
 sumber rext sumellate；laterally parallel－sided from bister rounded prest－medially and narrowed 10 semoded anices．Verifial sufface shallowly sedellate： vers thant setioc．

lomole

Sic： 5.0×2.2 mun（2），

 green refiecimas．Punalum．sculcllam yedkem－ bromose Elylta clark brown medially，beromer－red
 green．
Share and seculprure：as in hate

1）iverimurnen

WA：Conkial plaïn and Geraldeme dislrict． assucitited wits Mesherd spp

Rembarlis

genitutia casily separates Whent．In s．bemefon the acdeagus is natrow and the patameres are slighty folded dorsally．In S．，crossas sp．．．nov．the acdeagus os broid arud llatl．

Stannakinsius constriotus（H3achburn．1897）． comb．nov．
（fill．2h）
 1892：224：1903：229．CaHel 1023：167：1024：278 Obenberver 1934：84t．
 1713） 12 ANH ．examined

 Hokerr．Du Bunliny wallechinn．WANA； 4 is． 7 SQ，Conrow，17／R．x．1938，of prickly Hecked．H．W

 30．x．74，K．\＆E．（＇arrathy，ANIC： 2 d．v．
 Findan，22．ix．58，at Cownerime．S．Barher．SAMM
 Amidale．8．xi．77．＇1．A．Weir．ANIC＝ors．İ． 85. 12, xii．1977， 3 kin SW Quairading，R．Kurshas．

 22，xii．91．Gokding／Powell．MPWA：4．，56 km NE
 MPWA；\＆\％， $12 \mathrm{~km}, ~ \mathrm{G}$ Glena Bridge，on A sumpearris，3U．ix．！2，（iendeting／Poncil．MPIVA：ri， Wieherinal Dam，un rifolillper leaves．17．i．9．3．
 Hork．wifurcim，25．x．1997，M．Powcll，MPWA：－ U？． 21.1 km Sll Armidale，Hod．Irifimeroles． 1小．ai．1997．Golding：／Ponvell．MPWA：5，＇1．13 brom N al Galcona．Il，ix．1098，I．M．s．Homlon，NTISA：－ is 5.65 hm W Watherme．wn Helere，2l，x．98．At Powell，MPWA：ズ，G，Swan R．，IUn．SAMA．

M＂h

Si心：6．（1）× 2．4 1 \％1m（333．
Colout Head hluc－grech apically，putple basally．
 purple．Scutellam halie－green．Pilybatheack medialls with red magen corrosehong over hometal callom In basal mangin．Ventral sulisex and hedes puble with blace－grean rellections．

Shape and sealpone：Head etondy panctured． median sulcus ath apex．short median glathous lome at

 medially．bakal margin simate：daskal tatima
diverging from vental carina int base more or lesion paralkel to ventral carima but sinuate．sust reachong apocal mavgio．Scolellem lian，withont punctures Eilybia scutcllate，laterally more or less parallelayked from base，rounded posi－medially and natrowed In $^{\text {m }}$ munded apex．Ventral surlace sebmellate．with short shtst pointing posterionly．

firmede

 \＄－ 11 hatack．Pronmlun and scutellum supporyotyhat blest medially with a coppery marein encoraching over humeral callas los lice basad mation．Vembal whatace and lege copproly．

Shaplemad seulpturce：in in male．

Divrihurion
 SW TVA．

Remarks

 （1923）synnmymised 6：findi wilh C．epmavrivish． Neither form is fonmet in the othere stalle and becallme of diterences it the wracture ol mate genitalia and coblour，forejo we emmider them separate spereises．
 Cebr be divenguished om foc lollowinge S．demarai is matlet thate S ．cimoths：the sentral surface of S ．

Stonnsathimsius crustus ap．18\％ท． （FIC．20）
 C＇arnilhy，ANIC．
 Collection．QMBA．

 D．C．Г．Rente．ANIC．SA：d．f．no datu．SAM1A：\＆． no data．Blackhum cohlection，SAMA；s．wo datid． NMVA：${ }^{2}$ ，ililll．3．NMVA．

Mirlo

Coloun：Heidd gren．Anmmomeres： $1-2$ gicen：3－ 11 blach．Proantum and scutellunt green．Llyara black medially．pupple－nd laterally．．Ventral surbuce． legn grex

Shape and scuppere：Heart pupeured，median
carithat form apex is midelle extending for bine as impressed line：pre－medial glabroth alled on exth sidh．Antennomeres： $1-3$ abconic：$\downarrow-11$ Iriangenhar． Ponotum decply striokte；sunterioe margin broally projecting medially；basab margon bisinuate：elarsal cancina diverging from lateral margin at buse in a curve which approtaches the lateral inargin post－ madially but ders mot reach it．Subsellum that．
 ballowly punctate medially，scutedate latetally： laterebly wore or less frarallel－sided until rommed pest－niedially and then nitronzed bor rentiadeal apicxes． Ventral surface arriohate with aparse shori selate．

Fermall

Siに： 7.9×3.1 m111（4）
Colone：Head purple apically green hatally Antemonneles：I proples：2－11 black．Pronutum dall grech．Scutellun hlack．Filyora hlack medially． puiplertell latcoally，Vential stema petepte with green rellections：dodomerr green exceur for S_{7} purple． Lees purple．

Shape and sexploture：as in mate，

Disribuntom

WA：Latke Grace Batladenial．SA： 180 focallity data available．One yperimen collected sn Cimevile

Remarks

The culour conmbination of this specier is simila to that found in S ．cimoth：Their distinguishing leatures are dienumed earlich：

Entmolloge

This species is maned lor ins shape crassus Lo．brome

Sturnathinsires demarai sp．nsw．

（FIC．2111）
Holarype：© Whasdridge．W．A．interecpt trap． 9．xi．1907．11．Demarro SAMA 121403.
 10．xi．1598．H．Dembare．SAMAI 21.49 d．

Parmopes：WA：क．早，Woondridge．20．x．90．H． Demary，SAMA：b\％军，\＆xi．96，Woodridge， intercepe toon，H．Demate SAMA os ， 7×1.96. Wondridge．intercepl trap．II．Denarf．SAMAt d． 10．xi．90．Wordridgen interwat Lapr．H．Demarmen SAMA： 2 Bis，Woodridge，intereept trap，
 Woodridge，intereept wup．11．Dematr，31）．x．Isey
 Demare，CLBC de SAMA：\＆Wowdridge intercept

Multr

Sict： 5.5×2.2 ma（1）
Conour：llead gren with yellow actlections apically blaceren basally．Antennaneres：I bluc－ green；2－11 black．Pronorem and serteltom bluc－ presm．Blytra dark brown medially with sed maryin encroaching over humeral callus io basal margin． Ventral surface and leg blue－ryecn．
Shapo and sculpure：Head linely punctured，smatl median apical sulcus．Antenmemeres：1－3 shamic：4－ 11 triangular．Ponotum striolate：apieal marein profecting inedially，basal margin simuale：dorsal Lartina diverging firm venteal carina basally then
 sentiform，flat，wrinkled，Elytra scutellate；huterally mure or dene saraigh－sided from hasco．siden gradually sonserging，rombded posi－medially and narrowed os romraded upices，Ventrad surface scutclite wilt apmes bery shom selac prointing powderiorly

Pimmer

siae， $5.4 \times 2.3 \mathrm{~mm}$（3）
Condour：Head，pronolum and scmellum coppery． Llymas in male．Ventral surfine and leges coppery，
Shape and senlphure：as in mate．

Dishinntion

Bonksiamenticsit R．Br．wermilimel on WA crastal plaim．

Remarks

Then sprecies in chovest in S．wherno min．Iluen
 parsindoly．

1 numbers
 WA

Stommatkmsins erewilfene sp，mow （ $\mathrm{F} \mid \mathrm{Ci}$ ，こん）
 M．S．Hambon．SAMAI $21+45$.

 Whker，H．W，Brown，MHSA：\＆，Burmacoppon．

 Wher Baker，WAMA，f，Lake Varloy， 21 ．ix．54，I II Uther Baker，WAMA：do hat kit Yellowatine． 10．x．77：M．Pelerson．M1PWA：6．nu 7 limk，x． 1977.

M．Lenell．MPWA：© N 7 TT Rialis，12．x．77．M．
 Powedt： 2 YP． 34 him E Yellowdine， 13 s .77 S. Wilsor，MIPWA：Q，Carrabin，13，x．1980，（1n
 NNIS Camithus，in Crevilted leaves．21，x．86．M． Powell，MPWA： $7,10 \mathrm{~km}$ E Norscman．24． x .86 o on Converima，M Powell．MPWA；ri． 10 km SW Moir

 Cimrillmaterveq，Cishline／Powell，MPWA．di， 19 hm N Galend，22．ix．90，on Custement，Godding／Powell，
 Cosmurima，T．M．S．Hambon，MllsA；O，for hom N
 （iolding／Powell．AllיWA：is，i2 kill N ciulena
 MPWA： 3 ，$A_{1}, 3$ ？ 2 ，dy kan N Galena Bridge． 10．x．92．Goldinglpowell．MPWA：早－ 53 hm E Yollowdines，23．x．93，Conuarina，N．Ci．／N．H．
 Kershaw／Goudinge，MGWA：if th kmi N Guatena ［3rides． $7 . i x .1996$ ，an Grovilled，Cinlding／Powell．

 $73 \mathrm{~km} \mathrm{E.VE}$ Kumarina，27．viliareq．on（irelilten deaver，ID，Komwlex，MIPWA： 5.59% ，samm datian holotype，MIISA： 2 o d． 2 gt．40 hm N
 MPWA：\＆ 3 P9，to hom ov Koolyamohting．

 （imville keaver．S．Banker．SAMA：

17lle

Sine： $6.2 \times 2.4 \mathrm{~mm}(41)$.
Colem：Head bluc－gicon，cuppery on the apmat
 green spmetimes with medial yethow reflections． Scutcllam buegeex ivith varable yellow rellections．Elytia dark hemyn with red latual onargims continuents for short distance alonge baxal

Shape and sealphere：Head coarscly punctured， median apical fovea．Alhennomeres：1－3 sheranic．of－ 11 themputin．Pronotum striblate aphal magen Aramgh．basal margit sinuale，thersal carina diverging liom ventral carina al base lhen mane ar lens paralled－sided until tembinaling belone resthinge the anterior margin．Seutellam flan．Withous punctures．Eilytra semediate．laterally patalledosded lion hasce rounded pust－medially and natrowed in romaded apices．Ventral surface sedullate with shar いいに。

[^1]Coben: Head pronotuns senellum, veniral surface and kegs, mese-rod. Elytra dark brown with moe-red laterall margin extending for shom distance along busal margin.
Shape and sculplure: is in mate.

Disfributiom

SE and SW WA. assheined will Greviller spp.

Remarks

This species ir closest bo is itemersi spa now. They caul he separated an the following: S. shervillede is
 on the cerastat plaint in mates, the margin dorsad to the sumenall liver is cuprems, hut is not in S. demuras: the head punctation in moliceably coatser in S. spolithere than in S. demar-i

Vormologes

The epectes is maned for its association with (invilleat.pp.

Stanwathinsies kermeli np, mov. (Fl (j. 2!)

Hoterybe: 5 , Foyne R., 120 kmI S Rockhanhtem,
 Banker. SAMAI 2ldy

Paratymes: Qld: 2 ise. Gladmone. 20.xii.45, S. Brock, ANIC NSW: ${ }^{\circ}$, Charity ck, Bridge Manning R. via Kimbricki, 10xii.91. S. Wathims. SAMA.

Melle
Sine: $6.9 \times 2.4 \mathrm{~mm}(4)$.
Colour: 11esd, ankemae, promolom, scmellum Ereen will yollow reflections. Vemal surface green. Legges grent with yethow refleclions
Shaper and seuphore: Head punctured, flat, whith thin glatromes median line from apex be midde. cominuing to hathe as impressed line, with or round glabrous path one eich side chower wapex than basc. Amennumeres: 1-3 sheonic: $4-11$ trimumar. Prambunt sariolute antapion margin projecting medially, hasall margin hisinuale: fitcral carinu
 less paralled to it until aller midtle where it terminatess. Scurellan tlat, withoul punctures. ametor marein cunvex. Llytra with shallow punctures medially, sariolate laterally: marein paralled sided lrom bate until posi-nedial, tapered to minded apices. Ventral surface faintly setullate. will sporse shory setas.

1 immais

TJinhorewn

Disvrihutiom

Qld: Gladsone, nn Casharina cmminghumiama Miq. NSW: Northern coastal, on Cusutrimad rmmingh humemu.

Remarks

This is an elongate speciex, It diflers from all hut S powerlisp. now in the position of the dorsal carima on the pronotum. Viewed from ahove, the sides of the pronotum discrec from the base; they comerge to the apieal inargis at the fuint where the dorsal carina converges on the vental carina. lorming a slight protherance on ead side, Mate gentuliat are is dillerent shape from males of S' , miformis the only othe all green, but smaller species.

Einmmbery

The apecies in named aflem Kermel the green fros from the Muppets.

Sianwatkinsias findi (Blackburn, 1897), comb. nuv ($\mathrm{FlG}, 2 \mathrm{i}$)

Cissem Dinali Blackbum 1887:254: 1891:300. Kerremans 1892:225; 1903:229. Carter 1923:167: 1929:27\% Ohentareer 1934:844.

Indoryme; S. Cisseis Simeli Blackburn, S.A., (T' 319) BSMNH. Lxammed.
 Timunda, $1, x 1.18$ si7. Tepper, SAMA: O. Williamstown. 22.x. 1888 . Tepper. SAMA: 2 \& $5 . ?$ 3?, Lucindale, Fouerlicerdh, SAMA: 2.3 M Wannada, Eyte feninsula, x.lyom, SA. White,
 no data, SAMA: δ. $18 \mathrm{~km} W$ Vivome Bay, Kungatom Mand, 12.x. 14 G6, N. Melarlanel, M. Pate. SAMA: 2 $0^{\circ} \mathbf{B}^{2}$ Verran Hill. Hincks N, P, Eym Peninsul:, 7.x.1979. 12, L.aci?, SAMA. Vic., T, Litule Devert. 11 km \& Kiala, 9, xi.1978. \& Barker SANTA: if. Big Desert. 1] holl N Haben Bucher well. 16xi.IU81.S. Rathe. SAMA.

Mult

Sire $5.9 \times 2.4 \mathrm{~mm}(11)$.
Consur: Heall coppery. Antememeres: I coppery: ב-II black. Iromoturl and sculellun coppery or soppery bromze. Filytaz dark blue medially, red daterally. Ventral sarlice and lens coppery.
Shape and sculpture: Head with chose, shallow punctures. shathow median sulcus at apex soxn projecting into an impressed line reuching base, Antennomeres: $1-3$ ohermic: 4.11 triangular Pronotent strishate upical margin projecting medially uver hall its lenglh, basal margin
bisinwite dorsal tarina convex, widely separated Irom veniral carina except at base, hol rashing apisal maryin. interval between wrinkled. scutellum flut. glabrous, basal margin slighty concave, Elym penctured medially, xcutellatc baterally, margin parallel-sided lrom hase, rounded pust-medially and narrowed to ronnded apex. Ventral surfuce scurlate. with moderately homa selue.

Fenumb

Colonira as mithate
Shape and scolphure ils in matlo.

Dismihnim

SA: Batussu Valleyo SE. Kimgaruen I. Vic.: Bin and 1.ille Deserts.

Remarks

The only species known tu overlap the distribution of S. find is S. miformis. a small all geeen species. Dillerences hetween S. limid and S. imparictens are disensied earlict:

Stonwrakinsius marmilland sp, nov,

(FG. 2l)
 McMillan. SAWA 21497.
 Bejurdinge W, A., 19, xi, 19 Sot R. P. McMillin, WAMA

Mole'

Sle: 0.0$) \times 2.21 \mathrm{~mm}$ (8).
Cohbor: Head green apically with yellow willschions. blete-green basally. Antentmeres: I-2 green, 3-11 black. Promotum and aculellum blucgreen. Iilytra brown medially green faterally. Ventral surlace and legs blue-green.

Shape and sculphure: Head punctured, very small sulcus at apex projecting posit-medially an impressed tine. Amennsmeres: 1-3 obeonic: 4-11 riangulars Pronotum sffolate: apical marsin more or less Mratyht, basal maryin bisinuate, dorsal carina diverging from venfal carina at hasal maryin then more or less parallel-sided, convex post-medially but not reaching apical margin or ventral carima. Scuchlum ilat. withou ponetures, Elyma seutelate: baterally more or less parallel-sided lron base. rounded post-modially and marrowed to rounded apicen. Ventral surface scutellate with shore setas.

[^2]
Disuriturion

Known only from two localities in WA, bolh devastated by land charance lor andeulture.

Remarks

This species is closest (6) S, elemerri sp. nov. They dan be separated on the following: the male genitatia are is differen stracturc: their colour patterns are different.

Etymoless

Named after the collector. R. I'. McMilland K'alliarm.
Stanwathinsits powelli sp. nev.
(FG .2 C)
 Grratlew leaves. M. Powell. SAMA I 21 \& 犬8.

Pormphes: WA: of same datia is lolutype. AlPWA: d. P. Cius. II. W. Brown. MHSA.

Male

Sive: $0.2 \times 2.2 \mathrm{~mm}(3)$.
Conton: Head green or purple with eupreons reflections. Antemaide bromse. Promotam green or porple medially, cupreous laterally. Scutellum cuprenns. Etylrat purple medially, merging into is very narrow vole brand which abuts lateral bente mark anteriorly and lateral blue miork apically. Ventail surface and legs purplo with cupredn. reflections.
Shape und seuppure: Ifead shallowly ponetured. with medial carina at apes projecting of bate as impressed line, with at prouberance on cach side clower to bate than apex. Antennomeren: 1-4 obeonic: 5-11 Iriangular, Pronotum strinlate: apical margin projecting mediatly, batal margin sinnate: dorsal carina diverging firm ventral carina ut have. convex reaching ventral carina post-medially. Seutellun liat. withom punctures. Elytra scuthane. taterally more or loss parallel-sided, round postmedially and harmwed to rounded apiees. Vemtan surface seutellate. with shon setise.

Femule

Siæe: ($4.7 \times 2.4 \mathrm{~mm}$ (2)
Colvorat as in male.
Shape and sculpture: as in male.

livaihmomen

The specimens were collected from lwo thealithes in WA. Thuse From Cuc had greer herds. Lhese fiom near Yalgow had purple heads.

Remarks

The darval carinu en the pronotum is pasilioned in the same wity as in S. hermerl spo mov, as previously discussed. That feature and the colour pattern distinguishes the specties from all therers.

Prampuns

Nianed aller M. Powell. Melville.
Sounwatkinsius rhodopus sp. 16w.
(IGG. 2d)
 26.Lv.199\%, J. \& I! Hascnpusch. SAMAI 21422.

Mirk
Unknown.

Fonme

Sive: $8 \times 3 \mathrm{~mm}$ (1).
Colowr: Head roseale. Amennomeres: 1-2 cupresus; $3=11$ back. Pronotum black medial band. rosedile laterally. Scutedum mainly black cupreons at ends of lateral extensions. Elytra dark blue along suture and all apex, green-blue lateratly Vental surlice and legs cupresus purple.
Shiphe and senptare: Head punctured. small median sarina at apex located in a depression with a glabrous umpunctured area on each side. combinuing 10 base as impressed line. Antennmeres: $1-3$ obconic: $4-11$ triangular. Pronotum punctured medially, striblate laterally: anterior thargin projecting medially hasal maryin bisinuate; dorsal canna diverging sonuodsty from bateral margin basally approwehing Tateral margin pest-medially but mos reathing it. Scutellum that. without punctures, hasal margin stagigh. Elyua punctured medially, soutclate laterally: margin parallel-sided from thase munded pust-medially athel Harrowed tu rounded apices. Ventral surfine shallowly punctured medially. seutellate laterally will very shoul selize.

Distribution

Remarks

This specice wecurs liuther noth than any other hmiman apecies.
Becuse of if unique colsuration if camnor he conlused with any uther species.

Ervinolesy

The species is maned for its rose coloured thead and

Stunwatkinsins speciosus sp. nuw.
(FIG. 217
 all nighl. A. A. Calder. ANIC.

Allorype: P. same data us holetype, ANIC.
 17 kin \& Nothampton. I.x. 1981 . I. D. Nummanno d. C. Cardiale, ANIC.

Malle

Size: Mate, $0,6 \times 2.7$ mun (L).
Coloure flead grewn apically, viole basally. Antennomeres: 1-2 green: 3-11 bronge. Promolum violet laterally brabsy-brome modialty. Scutelom valet. Elylla brassy bomas laterally hromac medially. Ventral surfine and lege violet.
Shape and semptures Head punctured, shathow mediàn sulcus aphically, merging jnto impressed line reaching base, Anemomeres: 1-3 obeonic; $4-$ If triangular. Ironotum striolates, apical margin broadly projecting modially, basal margin bisinuate dorsal carinal diverging from lateral inargin hatsally went mote or less paralled-sided montil post-medial, not reaching apical marein. Scucllum Ihat, without punctures, basal marain conceive. Elytra punctured mediatly, seutellate laterally; laterab margins more or less parallel-sided from base until munded posit-medially then narrowed tor counded apices, Ventral surface scutellite, with shore setare.

Fenule

Sire: $6.7 \times 2.6 \mathrm{~mm}$ (3).
Collents entirety soppery red.
Shape and senlptere: iss in mate.

Disminntion

WA: Coastal plain between Eneabba and Norlhampten associated with Ilakea spp.

Remarks

This species is chesest lo S. comstrietus: th can he distinguished by: being larger species than S consurchus: male genitalia are botader than in S. comavitus: the colour pallem of mates and females of hoth species is elifiterem.

Ermoluse

Stannathinsids subcarinifrons（Thems（M，1879）． comb，how． （FiG．2p）

C＇issels suhnerrinifroms Thomson 1870：53． Kerremans 1802：227（sutocurnaifouns）：1903：230 （wwhedraifoma）．Carter 1923：167（suluarenitrons）：
 （sutrumenifroms．s）．
Ciscels oncridentulis Blackhurn 1887：255． Kermanam 1892：226；1903：230．Cumer 1923：167（？ var：subournitrons）：1924：279．Obenherger $19.3+2551$ ．syon move．
 Georees Somid MNHN．examined．Holnype À．C mecidemalis Blackhum，Western Mmatalia，BMNH caummeal

Other aperdmens cammerd：WA： 11 of d． 3.389 .9 .6 kin W Gomalling．2．sii． 56, S．Barker．SAMA： 2
 SAMA： 4 हd δ ，loM kn N Geralden Hway， I，vii． 1456 ，S．Barker，SAMA：th．i＇，a hm NE
 Norith Bannimer，19，xi．1970，S，Barker，SAMA：？ 58 km W Tammin．Gohffiedds RU1．23．xii．1972。s． barker，SAMA： 3,0, Wondridge intereent trap． 7．גi．14日7．H．Deman\％CLABC；P．Wordridge． Sxai．1997，H，Demare，SAMA：W，Wondridec， 18．xi．19\％8，H，Demar，SAMA： 3 P8．Wemdridge S．xil1998．H．Heman\％，HDWA；as，Swan R．Lea． SAMA．

Mald

Sice 5.9×2.3 mm（19）．
Coblows：Head brewn or areen．Pronalum brown medialty．ween laterally．Scurllum brown．Elytar usually grown，some specimens areen laterally． Ventral surtace thel feas green．
Shape and scelphens：Head penctured，whth sherl median cartha form apex continning（on luase ats 1mpresed lines Antennancres：1－4 oheomic；5．11 triangular．Promotum striohate：anterion maram hasady projecting medially，hasal margin hisinuate：dorsal carma divereing from lateral margin hasally，curving towatras huteral inargin pesw－medially but mot wathing it．Scatellunt flat，without punctures，anterion maryin wraighe Elytrat sevellate，faintly medially，heavily faterally：letcratly paralled－sided until tounded posis medially．then narmewed io remnded upices．Venteal surliate scutellate：with short setare．

Femule

Siss： 6.2×2.4 תוֹm（10）．
© ©lomer：an in male
Shape and senpmure：ats in male．

mistribution

SW WS．assuctaned with Alhocasumrina spp．

Remarks

This apecies is ane of the smallest in the genus．Its collour combination is unique and it cannot be： comfused with any wother speeces．

Stanwarkinsias aniformis（Thonson，1879）．
 comb．nov．
 （Fici． 2 m ）

Chseis unifurmis Themson 1879：53．Kerrenam， 1892：227：1943：230．Cirrter 1923：167：（429：27リ． Ohenherger 1934：85\％．
 1903：229．Carter 1923：167（syn，uniformes）： 1929：279，Obentherger 1934：856．

Hedroppe：MNEIN，nut examined， 4 of symyper （isach mowherider Kurcmams，BMNII，oxamised．
 G．（）．Tepper，SAMA：है，भु，Ardroscan．J．G．O． Tepper，SAMA：K＇，York Peninsula．Jungo SAMA： 3．Adelade Hilm．Cosurimu strita．29．si．6．1．S．
 2xi．1थG7，S．Barker，SAMA：4 is 5 ．P，Summil M1
 Setlichs Serub，24．xi．1979．S，Barker，Clibe \＆ SAMA．Vic．：${ }^{2}$ ．Mombulh，Jarvis，SAMA．

Nute

Size： 5.5×2.2 mim（13）．
Cobler：Mose specimense entively gred．A few will tronve promotum，very few will green head，bome ont the dorsal surlate and green－brome om vental yurlice and leg．．
Shape and sewpture：Head punctured．Mat，Wint median glabrous lome lomon ance to prenwedial conlinuing in apex as impressed line．Abtemenmere： 14 obermic： 511 trimentill Promotum winlate： apical margin straght hasal margin hisinualac；dorsal carma diverging from lateral margin ot have now cominuced past middle：Sculelluni liat，magh withoun pumerares．Elytra strindate；latcrally paralledonded them base remanded posis－metially wad tepored to rounded apex．Venteal surfuce ariolate，will shorm setate．

Permile

Sicc： 0.08 .2 .3 mm（13）．
conower：as in male．
Shape and sculptere：as in male．

Divributhon

SA and Vie．．．imbectialed with Allocmmm，nm vervicillatha（Lame）．

Remarks

This is ane of the smallest spectes in the gems. The only wher all green specien ix the kuger S. hermelf 4p. nov. They difler in live position of the dorsal earina on the promntme visible when viewed trom above in S. kermeti buk win ins 3 .

Stanwathinsius viridimarginalis sp. nov. (FiG. Ii)

Hototym: © 34 kint is Yellowdine. W.A. 16x.1977. A1. Peterom. SAMA1 21501.

Alhmper of barme datia an luhtypo. SAMA $]$ 21502.

Pedralmas: WA: is, Dryandal Shate Berest c. 27 km
 Inoustom, WAMA: "', Drurukuppin Nature Reserve.
 Housthm, WAMA: s. Swam R.o. Lea SAMA.

Mule
Sirce: $6.5 \times 2.5 \mathrm{mmon}(3)$.
Conton: Itead and inncinate green. Pronotum dull puphe medially, brighe green laterally. Scucllum green medially purple lakerally. Elyura dark perple inedially merging inen a marrow enppery band bitheally which abuts at hagh ereen lateral maeion Ventral sugtace and legs grem.
Shaps and sculptenc: hase thosely punctured withour setrac. Ankenmoneren: 1-4 (bernice: S. 11
 projocting medially, batail margin hisinuate; dnisal carlaa diverging fom ventral carina at base then rume or lose parathel to it emial porimedial. now

 from thase, monded prat-misdially and narrowed to roumbed apres. Ventrab surface stllellate will
 female:

Fimule

Sige か. 2×3.2 mm (2).
C"obour: heda athd dinconace dark jumple will
 mate. Vental surlice and leys. Loppry.

Shape ans sculpture: as on mate execp head 8itove.

Disminulim

This species is only kmonn from Yellowdine. Narrogin and Kelle therrin districts. all in WA.

Remarks

This in an clongute species; lis collour combinalien makes in distinct lrom all aher species.

Ervmilegs

Named for the lateral green stripe arennd the clywa Wridis L., grect, margino I... furmish with a border

Discustion

Speciss af Stomankinsins, although simitar in EDeral appeatance to several gronps of Australlian huprestids, are Irue corachine and thus Jikely fu have divenged from the lineage inat also gave rive fo Chereis and in relatives. The similarity in ovipositer morphology to Meflemethen is likely Loss diagnomic of sommon alestent than sil the thatity of Nasio organs in respance to aripesition refunconema fron specific plan assuctiations and placement of eygs on
 phylugenelie perspeetive sugented by Bellamy (1988), and subsequent discussion with colleaghes. abone corathine chofuron, it would semm that the use of ox oxposifor monplowlogy an an indicator of Evelulimary divergence is porhaps hol well-handed since in sume gencra, beg. Comatma Gory do Lat'orte. there is a wide range of onpusitur morphollogy, both in the se-called general buprestiat lown and in the "eorachine axiposior which poseses vemtal hrushen. Howerer; in the Australliall conathime genera studied by the authors. cilher one lype or ste wher in present. Since Stemwathensure in olwionsly related to hut divergen from the Cisseds lineage, the diterent orposifor would split the: former genus to the upponite sids of the sugested blybueny (Bellamy 1988) firnan Cissem and its refatives buch as Neorpoulds Blachburn. Alomens Katromans and Perkegessels Thery, Pending the completion of a revision of Cisteiv, there is mercason to vemure into further phylngenctic speculation al his time.

Acknowledgments

We thank the following for assistance: T. A. Weir: ANIC: M Msulds, AMSA: K: Walker de C. Molhtee. NMVA: B. Hanisch \& T. F. Honsion. WAMA: M. Kerley, BMNH: E, G. Mathews. SAMA; J, Menier. ANHN: II. Demark... Wuodridge MI. Golding. Beverley: T. M. S. Hembon. Sydney; d. Hakempusch
 QMBA: M. Powell, Melvilles s. Wathins.
 photograplos. d. Forrest for the scumbing microphongeraphe and S. Walker for the digital illomatrations.

References

BELLAMY, C, L. (1988) The elassification and phylogeny of the Australian Corocbini Bedal, with a revision of the Genera Paracephald, Metiboeithon and Dinocephalia (Colcoptera: Buprestidae: Agrilinae). Invertehr: Taxon, 2. 413-453.
(199()) A revision of the Coroebine genus Coraebosoma Obenberger (Coleoptera: Buprestidae: Agrilinae). Entomologica Scandinarica 21, 197-21().
Biackburn, T. (1887) Further notes on Australian Coleoptera with descriptions of new species. Truns. R. Soc. S. Aust, 10, 177-287.
(1891) Further notes on Australian Coleoptera with descriptions of new Genera and species. Ibid. 14, 292-345.
Carter, H. J. (1923) Revision of the Genera Ethon, Cisseis and their allies (Buprestidae). Proc. Limm. Soc: NSW 48, 154-176.
(1929) A check list of the Austratian Buprestidae. Aust. Zool, 5, 265-303.

Gory, H \& LaPorte, F. L. (1839) "Histoire naturelle et iconographie des insectes coléoptères, publiée par monographies séparées." Volume 2, livraisons 25-35 (P. Duménil. Paris).
Kerremans, C. (1892) Catalogue synonymique des Buprestides décrits de 1758 ì 1890). Mém. Soc. Ent. Belg. 1, 1-304.
(1898) Buprestides nouveaux de I'Australic et des régions voisines. Am Soc, Ent. Belg. 92, 113-182.
(1903) Coleoptera, Fam. Buprestidae pp. 49338 In Wytsman, P. (Ed.) "Genera Insectorum" Fase. 12b; 12c; 12d. (Verteneuil \& Desmet, Bruxelles).
Obfenberglr, J. (1934) Buprestidae 4 pp. 782-934 In Junk, W. \& Schenkling, S. (Eds) "Coleoptorum Catalogus" Part 143 (W. Junk, "s-Gravenhage).
Thomson, J. (1879) "Typi Buprestidarum Musaei Thomsoniani** Appendix 1 A (Paris, Émile Deyrolle, rue de la Monnaie. 23).

NEW SPECIES OF OTIONELLINA AND SELENARIA (BRYOZOA-CHEILOSTOMATA) FROM THE SOUTH WEST SHELF, WESTERN AUSTRALIA

BYT. J. CONROY*, P. L. COOK广 \& P. E. BOCK ${ }^{\dagger}$

Abstract

Summary Conroy, T. J ${ }^{*}$, Cook, P. L. \& Bock, Ps E., 2001 New Species of Otionellina and Selenaria (Bryozoa-Cheilostomata) from the South West Shelf, Western Australia. Trans. R. Soc. S. Aust. 125(1), 15-23, 31 May, 2001 Recent sediment samples recovered from the mid-latitude South West Shelf (SWS) of Western Australia ($23^{\circ}-32^{\circ}$ S) by a scientific team aboard the RV Franklin have produced large numbers of free-living, lunulitiform bryozoans. Among these are three undescribed species, Otionellina boneae sp. nov., Selenaria kayae sp. nov., and Selenaria meganae sp. nov. The Australasian lunulite fauna is both diverse and abundant and the new species bring the total of described taxa to sixty (P. Cook unpub.). Twelve lunulite species have been recorded from the SWS. These findings have extended the known geographical range of several lunulite species. Key Words: Otionellina boneae sp. nov., Selenaria kayae sp. nov., Selenaria meganae sp. noy., new species, lunulite bryozoans, South West Shelf, Western Australia.

NFW SPECIES OF OTIONELLINA AND SELENARJA (BRYO\%OA-CHEH.OSTOMAIA) FROM THE SOUTH WES' SHELF, WESTERN AUSTRAIIA

by T. I. Cunroy ${ }^{-1 /}$ P. L. COOK \& P. E. Bock ${ }^{\dagger}$

Abstract

Summary s(k)I.

Introduction

The middatitude combental margin of Westem
 bomate protuction to wamiwater tropical carbonate
 vides the birst documentation of the mature, deosity and distribulion of Recent tunulite bryoramas tut Lice SWS. Despite extensive researely on the Leenvin Cumenn, the botom sediments of the watwedmnimatcd. aphen iontinental sheff are relatively uncpored upor.

Detailed analysis of the sediments eolleeted by at sciontitic leam ahoard tioe RV Fromklior in 1450 has revesaled the presence of" 12 specties oll lonntite brybaxans. three of which are hillieto bodeseribued. These bryoradas include two species of
 motata (Cook \& Chimomiden 198th). Lhmee of

 1852b). s. fummatur ('Lenison-Wuats 188(0), is. vert-

[^3]ams (Cook \& Chimonides 1087), S. kavere sp. 1mos.
 stuphitis (Busk 1852a) and la rephandat (Mapleatonc 1404) (Table 11.

Lumblite bryosoans may be locally abumdant and dive apon of within the upper katers of the buttom sedimerils, supported and stuthlised by the extended mandibles of the perpheral and sulperipheral aviewlaria. 'The avicularian morphology of' O. hanese sp. mov. make, it whlikely that it is saprable ol colony tocomotion like that of O. symmettriat (Chok \& Chimomides 1984 at . the only spocies of this ganam which has heen observed allive. The ealomies of 5 .
 ularian mamdibles preserval but their skelebal mor phology sogegents that they had the capacity lior loco. motion, as ill all observed species of bublentro. Ohsorvalions on living material of the three new species would assiat in the understandilig of the cen: relation bedween sheletal and mandibular merpholo gy and avicularian function:

Materials and Melmorls

Abbreviations if institutions which ate reposilf, fies ot the apecimens refered to in hois paper ate Sotht Anstratian Musewm, Atetasde (SAMA). Deparband of Geulogey and Gepploybers, Whivernits uf Adelaide (UA). Muscum Victoris, Melbournt (MLI) Britiah Muscum (Nalural libuncy) Londem (BMNH).

Sediment samples were collected by lowity anl eppibenthice sled alomg the sedi floor at at meed of twis knots for three for tive minutes. This provided it mixed sample ol surtince and submotide matterial

lige, J. Malf uf the Snuhh Wesi Shelf, Wextern Aumralia showing, Iranvecth, liwation sites and hathymetry.

T＇Able I Spaciev ramut from the SWS．

Specis	Liling －pecinnens	Non－living spacimens：	Toual
11．wuputa	52	416	468
H．ypurulis	5	I（14）	214
1．cisfultion	3．	Kto	119
d．Erpumeloy	11	10	111
（）．cmathelies	3	134	$1+2$
（1）niprelm．	1	111.3	11 m
（）．lexterece 40． 116 y	4	6.8	72
S．Imire＇tlapla	．114，	7.2	16x5
S．purncietia	12	1924	1リ36
S．l＇eriatms	1	उप4）	401
5．Elders apy ing．	11	156	158
	11	ブロ	758

 sampling was conduciod alung Iransects acrass the comationtad shelfo wetl＂edeco slope and ahyssal finin
 ranging liomm 34－ 314 m（Tahles 2，3）．Meabure－ menth of Ohionerlime inse Srdermain spocies we recorded in Jable 4 ．

 are the dotal number al luntilite bywasms preserth in the savaitable sediment samples．

Specimens were cleaned uftrasomically ill al $1: 50$ golution of commercial strengily bleact and watcr Fotore being tidsed in decomised water，dried and coated wilt a gold－paldadium misture fer scomning clectron microscupy（SEM）．

Idemifisumion of cotemtes

Hany sh the coltmics，proserved whith the Jilice－ gamimed wat botom sediments where they had lised and died．．twere nelatively undamaged and inclouded chlicular stactures suclb as opercula ind avicularoan mandibles intact．Even if the we were atosent，the skele－ lall structure wath bomplets：The amount of wear and breakage depende hofla on the niture of the sedtiment and the inilial robluiness of the specics．Oformelloma hoamere bre bus，colonices ate up to 5 man in dameto ame are leavily calciljed and flat basally．They no se rohus that they tre enencrally found us whole colenties with thetamoned romide and son the aprecies atere rodi－ ty identilied．Colemies of Selemurios halde bo．now．ane allos basally thickened with flatlenced mareine at the periphery of sexablly mature colonies lortued by cal－ cilicel kenorosits．thig helpsto preserve them in their
 are lade axd thinly calcified hasally and ate generully fratike．＂Thes speriges is diffeald to distinguish lionn
 lance th undamaged ancestrulair region，

Systematics

Order Combantonatielat Buak．185？
Pantly Otionellidat Bock de Conk，Iyyx
Gents Orionoblimet beck de Conk．1998
Type species：orionclla wrifouls．Comk de Chimoniden． 1485

Colonics budeled radially from sin dincestrula which hat one diskill and one proximat adjacent aviculari－ unf．Banal surlate flat or concoves，formed by sectors
 small rosuded or wail spenia and wellafeveloped cryptocys．Brooding fomids margenal with ath Lentarged upesia：sheletally distine mate romids unk nown．Avicularia smaller than intersomils，with pairab condylen，which maly twe finsed in stme species；npesiat symmelrical or asymmetrical，epren． or blosed by a purbue eryptocyad lamina Mandibles
 soms and semate margins，Note that Rock \＆Conh （1998）separated thix acomus Ironn Oimmelle devised by Cinu de Bassler（1917）．

Otionellina boncae bp nov．
 （ WIGS 2 $^{2}+1$

Material everminvel

 Ohmer materinf：Sample 10113 ，Transect Q． 25°
 F8642S；Sample 10213，Transect U．$\left.25^{\circ} 18.0\right|^{\prime}$ S． $112^{\circ} 33.97^{\circ}$ 13．121．1 m．23．i．1996．MV，1ik6t29； Simple 102ß．Tramecet Q． $25^{\circ} 18.011^{\prime}$ S． $112^{\text {n }} 33.97^{\prime}$
 Sallmple 102B，Tramseet $\mathrm{Q}, 25^{\circ} 18,01^{*} \mathrm{~S}_{1} 112^{\circ} 33.97^{\circ}$ E．121．1 mi 23．i．1996，UA．

Colonies bun onthaned．stotid bavilly，with is lew irregular scetor termadates and small pures：sexually mattire widr peripheral brosoding romids by the tillit

Tabra: 2. Ecmogical rimges of species from the SW.

Species	Transocts	Depth in m .	Bottom Iemp. ${ }^{\text {C }}$	Salinity: \%
H. scelrow	A,D,I,M,Q,S	77.1-221	18.8-22.8	35-.35.8
11. spirulds	A.D.I.M.N	139-221	17.3-19.7	35,7-35.8
Lo capulhes	A,D.M,N	39-139	18.9-22.2	35,7-35.8
L. repomide	A.D	97.158	18.9-19	35-35.8
O. mustualis	A,D.I,M.Q,S	50.221	18,8-24	35,2-35.8
O. mivicter	N.Q.S	50-100	22,8-24	35,2-35.36
O. brencere sp. nov.	A.N.Q.S	$50-121$	22,3-22.5	.35-35.4
S. menewhater	A,I).M.N,Q.S	$50-221$	18.8.24	35-35.8
S. mestanac sp, moy.	D,M,N,Q,S	50-170	18.4.24	35-36
S. pumistaras	A, D,I,M,N, Q, S	44-203	17..3-22.8	35.2-35.8
5. kutue sp. nov.	A, D, M, N, Q	$66-221$	18.9-23	35.4 .36
S. variants	$A_{4} \mathrm{D}_{2} \mathrm{M}, \mathrm{Q}, \mathrm{S}$	606-158	18.9-23	35-36

Table 3, Detuils of fromsects.

line	Location	Starling latitude and longitude of transect	Finishing latitude and longitude of transect
λ	NW of Perth	$31^{\circ} 45.21^{\prime} \mathrm{S}, 115^{\circ} 24,17^{\prime} \mathrm{E}$.3104.3.36 ${ }^{\circ} \mathrm{S}, 115^{\circ} 00.47^{\prime \prime} \mathrm{E}$
D	Ofl Green Head	$30^{\prime \prime} 09.47^{\prime}$ S, 114*53.50' E	$30^{\circ} 20.31^{\prime} \mathrm{S}, 114^{\circ} 35.57^{\prime} \mathrm{E}$
1	NW of Geraldion	28\% $32.14^{\prime} \mathrm{S} .114^{\circ} 21.40^{\prime} \mathrm{E}$	$28^{\circ} 52.42^{\prime} \mathrm{S}, 113^{\circ} 43.50{ }^{\prime} \mathrm{E}$
M	NW oft Bluff Point	$27^{\prime \prime 27.21}{ }^{\prime}$ S. $11.3{ }^{5} 57.94^{\prime} \mathrm{E}$	27050,18'S. $113^{\prime \prime} 06.1 .3^{\prime \prime} \mathrm{E}$
N	S al Zuyudorp Clifir	$26^{\circ} 54.45^{\prime} \mathrm{S}, 113^{\circ} 42.33^{\prime} \mathrm{E}$	$23^{\circ} 18.18^{\prime} \mathrm{S}, 113^{\circ} 08.65^{\circ} \mathrm{F}$
Q	N of Shark Bay	$25^{\circ} 11.52^{\prime}$ S. $113^{\prime \prime} 35.12^{t} \mathrm{E}$	$24^{\circ} 42.00^{\prime}$ S, $1133^{\circ} 23.00^{\prime} \mathrm{E}$
S	Cape Farquhar	$27^{\circ} 28^{\circ} 89^{\prime} \mathrm{S}, 113937.02^{\prime} \mathrm{L}$	$23^{\circ} 17.11^{\prime} \mathrm{S}$. $113^{\circ} 02.71^{\prime} \mathrm{E}$

Tamle 4. Mcusmements in men of speries of Otionellinat and Selenarja described here.

	Otionellina bomede sp. nov.	Selemaria havae sp- nov.	Selenaria meganue sp. nov.
Lun	0.76-(0.50)	0.13-0.16	$0.18-0.24$
lat	0.23-0.25	().1J-10.13	0.12-0.15
L.	0.30-0.39	(0.21-(1).25	0.24-0.27
I\%	0.27-0.37	(1.25-1).27	(1)24-0.27
Jom	0.11.0.13	0.108-(1). 1.3	$0.08-0.12$
dop	O.ter-(0) If	11.08-0.09	0.08-0. 11
1 , brez	0.28-0.38	0.20-0.26	0.20-0.25
Ibre	0.35-(0.40	10.25-10.31	0.22-0.25
Lhrop	$0.13-0.15$	11.11-0.14	0.08-().10)
lurop	0.13-0.15	0.11-0.13	0.08-0.09
L.m	-	0.23-0.. 35	0.25-0.33
1 m	--	0.29-11.35	0.25-0.26
Linty	-	$0.07-11.09$	$0.18-(1) 22$
Imop		$0.07-0.08$	$0.07-0.08$
Lav	0.1-0.3.3	0.25-0.3.5	$0.22 \cdot 0.37$
lay	(1).15-0.26	0.29-0.40	0. $19-4.25$

Length and width of ancestrula (Lan, lan); Icogth and width of athorooid ($\mathrm{L} \%$, 1) : lengh and width of autucuoid opesial (lop, Inp): length and width nf brooding zooid (Lbra, Ithrz); length and width oll brooding rooid opesiu (Lbrop, Ibrep): length and width af male yootid (Lm . Im); lengh and widh of male awoid opesia (Lmop. Imep); ; lengh and width of avic ularium (Lay, lav).

Fig. 3. Orioncllat botreas' sp. nov. Whole colony with ancestrala, directed to the right and perianesstrula autozooids with long gymnocysts. Scale bar $=0.50 \mathrm{~mm}$.

Fig. 4. Otionelle boneace sp, nov. Autozooids markinal broodine zooids and avicularis. Scale bar $=0.20 \mathrm{~mm}$.
raised margins but rim of cryplocyst deficient distally with small protuberances. Opesia oval. Brooding zooids with circular opesia and no protuberances. Avicularia in contiguous radial scries, symmetrical with elongated open opesia and paired condyles. Mandible elongated with a terminal expansion and slightly serrated margins. Basal avicularia absent.

Etymology

Named for Y, Bone. Department of Geology and Geophysics, University of Adelaide.

Remarks

Otioncllima bonead sp. nov, resembles O. nitida from the southern and eastern coast of Australia in its raised zooids and contiguous radial series of avicuIaria. The avicularia differ in having an open opesia with no cribriform cryptocyst lamina. Another sumewhat similar species, O. zelandica (Cook 8 Chimonides 1984a), has distinctly asymmetrical avicularia which only rarely occur in distal contiguous pairs marginally. The distal eryptocyst protuberances of O, bomeace sp. nov, resemble those of fossil O. cupola (Tenison-Woods 1880). However, O. cupola has distinct brooding zooids with tubereules which O. bonectes sp, nov, lacks (Cook \& Chimonides 1985b).

Otionellina boneae sp. nov. appaars to be a distinct Western Australian species. The two colonies from Site 85 are significantly larger (diameter 5 mm at the cighth astogenetic generation) than those from Site 101 (diameter 2.5 mm at the sixth astogenetic generation). The opercula and mandible are dark brown, the mandibles are Jonger than those of O. zelandica which they otherwise resemble. The longest, from a seventh generation posilion, measures 0.82 mm compared to $0.5-0.65 \mathrm{~mm}$ for O, selandica. No basal avicularia are present at colony maturity.

Family Sclenariidae Busk, 1854
Genus Selenaria Busk. 1854
Type specics: Lumliter maculata Busk. 1852

Description

Colonies budded radially from an ancestrula which rarely has any adjacent avicularium. Basal surface formed by extrazooidal calcification with radial sector boundaries and pores. Autozooid opesia sometimes with paired opesiules. Colonics composed of concentric zones of closed central zooids, autozooids, female rooids and marginal male zooids. Avicularia very large, scattered, with a complex condyle and musculature system and, very often, a complete cryptocyst. Mandibles elongated and setiform.

Selenation appears wo dxe distine from all wher fonulite genera and is mesarded its the suly member alloihulable to the Family Selemandate by Boxck ox Conk (10)

Selenaria kayae spr nov.
(FlGS 5. 6)

Wheremble chennemed

 $112^{\circ} 50.13^{\prime E}$ E. 77.1 111. 23.i.1946, SAMA, SAM 1.sis).

 1.847

Obiner mmertinf: Sample lollk, Trensect 0. 25

 Simple 102RB, Tramed $\mathrm{Q}, 25^{\prime 2} 18.05^{\prime} \mathrm{S}, 112^{2} 33.97^{\prime}$ F. 121.1 mm 23.i.1996, KMNH. 1949.11.18.2:
 E., 121.1 m, 23, i, 149(3, 1/d

Diseriptions

 mosi ul os untogenclic gencrations and sexual matury basal surtace hecomimg ldaternced, wilh thick eakeifi-

[^4]henomands on the trontat sutiace. Sector homblaries very fatint and prowes abwent except at the periphory, Auloreoids with slighly sfongsicd D-shaped opecia. female bronding enobids with hover opesia and wery sligbly raised distal rillo. Male zorids with minute upesia and pared opesiules proximally. Avisulatia linge. with punctate cryplocysi and is smpod condyle aystenn. Colonies have no intact mandibles. which are absumed whave been seliform.
1.1 molver

Named for K. Conroy, the mouther of the pritucipal

Remaths

Selemutid hurve sp. nov. clesely resemblan si minor (Maplestone 1911) which has been redencribed by Cook © Chimomides (I985:) It dil
 linking a raised overhanging flamer at the dental end of the levodeng sersid and in the presence of pained spesiules in the make zoolds. The llat hemororndal "edge" of mature belonies and the lillge avicularia will S-shaprad condyles ate very like thene of S.
 (Madefillivray l895) and S. Wederoi (Conk \&

with opesiules but have quite different autozooidal opesiae. Selonaria pulchella and S. watersi have rounded and trifoliate opesta respectively, whilst S. kavae sp. nov. has elongated D-shaped opesia. Selenaria pulchella and $S_{\text {. }}$ watersi have avicularia with C-shaped, reflexed condyle systems in contrast 10. S. kayae sp. now. which has S-shaped condyle syslems (Cook \& Chimonides 1985a).

Sclenaria meganae sp. nov.
(FIGS 7-9)

Material cexamined

Holotype: Sample 100B, Trunsect Q, $25^{\circ} 17.96^{\prime} \mathrm{S}$,
$112^{\circ} 59.13^{\prime}$ E. $77.1 \mathrm{~m}, 23.1 .1996 . S A M A, S A M$ 1.898.

Poratypes: Sample 100B, Transect $\mathrm{Q}, 25^{\circ} 17.96^{\prime} \mathrm{S}$, $112^{\circ} 59.13^{\prime}$ E. 77.1 m .23 .1 .1996 , SAMA. SAM 1.849.

Other material: Sample 101 B , Transeat $\mathrm{Q}, 25^{\circ}$ 18.29^{\prime} S. $112^{\circ} 48.36^{\prime}$ E. $100 \mathrm{~mm}, 23 . i .1996, \mathrm{MV}$. Fin6425, Sample 101 B , Transect $\mathrm{Q}, 25^{\circ} 18.29^{\prime} \mathrm{S}$, $112^{\circ} 48.36^{\circ}$ E. 100 m. 23.i.1996. BMN11. 1999.11.18.3. Sample 101B, Transect Q. $25^{\circ} 18.29^{\prime}$ S. $112^{2} 48.36^{\prime} \mathrm{E} .100 \mathrm{~m} .23 . \mathrm{i} .1996 . \mathrm{UA}$.

Desriptions

Colonies thinly calcified, basal surface not mach thickened. with radial sector boundaries and numerons

Fig. 7. Selenarim mesamate sp. nov. Whole colony, matume ancestrula directed lett. Scale bar $=1 .(0) \mathrm{mm}$.

Fig. 8. Selenaria meganae sp. nov, Ansestrula arca, directed upwards, with distinct proximal cryptocyst and no adjacent avicularia. Scale bar $=0,20 \mathrm{~mm}$.

Fig. 9. Selematial mestometes sp. nov, Autnzooids, female brooding zooids, raised distally, male zooids with nar row opesia and avicularia. Scale bar $=0.20 \mathrm{~mm}$.
promed Sexually malure at a diameter of 4 mat and the eighth astugenete generition．Ancesmula will ad dis－ finet proxibuil crypeceyst and no adjecont avkeularia． Allesengid eptesia chongated，D－atraped，not becimming． promentimally lomener with asogeny．Femade bronting Aksids very shathly rebed disallys．Imate possids sntall． will at very marrew apesia，slighty comatricted lateral－ Yy．Avicutatia not very larect． $10,22-0,37 \mathrm{~mm}$ in longth amal（），19－0）， 25 min in width，will a durnow rim af gynn－
 Condyle systom reffexed，C－shaped：mandible nos pre－ semved．bul atsamed lo be setilentm．

Enmulesp）

Nanted low M．Smith of Santon I．ed

Remarks

 S．betrontes and s．évesprerana（Cenok of Chimonides 1987）．It differ：liom S ．Lerriars in the comesistency of

Whe threce ypecices of Selontarite appear to he clomely related and form an interestite conples．It is dilli．
 the colony bas a welf－preserval ancestrular areatad
 megemets sp，bew from Western Austratiat Both s：
 Great Austmainm Hight 〔Bock \＆Cook lロリy）but mosel records are Irom Bass Strial．Selonntin virioms is alsos foupat in New Sinuly Wales（Einith is （＇himunides 1687）．

Discenssion

The collections at hryozouns finh Weatens Aunbralia ather an estimate of the diversity and
abomdance of lanalite hryommans Jomothe Siants Wext Sigelf：This indso include range extensions for
 m were previnasly known fom the Jurien Bay dis－
 sumples from the Sculh West Shaft extond the
 （approximately $23^{4}-30^{\prime} \mathrm{S}$ ）and of $/ \mathrm{C}$ ．spratio morih to

 Has bexw becon recorabel Irum Grecen Head（approxi－

 ad hy 7.3 mm 221 m ．Selemaria munnlata and s ．
 Irom the SWS and account for more than 554 at all fanulike recoperesl，If is inferesting ko mote thats．
 lected．The majority（79\％）were nes livnge wher rerrievad（lathe I）

The exwhogical and generaphical ranges on all

 Fable？

Acknowledgments

We sitmild like to thank Y．Bone University of Adelaide）for providing mon of the lionds for this reseanch progect form ath ARC Clinge，S．Hagernan （Appalachian Stafe Universily，（SSN）firn discussions： （an bryouran taxomomy and life toms．N．Spence Jones（Brillista Alaseum Niatural Hisaryy，Lunden）for providing registratom numbers，Lo Tallom atm J．
 the principal whther（CEMMSA）．I？Chinnuch for his suppert during the principal athbor＂s honeurs yatr： the Oceanmeraphy Departmen of the CSIRO，and dice Master and erew ul CSIROS R．V．fromblin for theit cusperation and assistance in the eollection af sum－ ples from the Soulh West Shell an Wentern Auspalfit．

Keferences

 ily of live fres－living，lunnlifiform Is ryona

 430.

 （L．enclawn）．
（1852b）Catulogue of Marine troly／oa in the

 vi－viii，1－54．
（1854）Cumblognc in Alatre Polyasa in the Collection on＇the［sritish Musenm，Hun II，Cheilastomathat

 1－K1

Chapman, F. (1913) Descriptions of new and rare fossils obtained by deep boring in the Mallee. Proce: R. Suc: Virt. 26. 165-191.

Cork. P. L. \& Chmonides. P. J. (1978) Observations on living colonies of Selenaria (Bryozoa Cheilostomata). Cah Bis. Mar: 19, 147-158.
\& \qquad (1984ia) Recent and fossil Lunulitidae (Bryozoa, Cheiolostomata) 1, The genus Otionella from New Zealand. J. Nat. Hist. 18, 227-25t. \& \qquad (1984b) Recent and fossi1 Lunulitidae (Bryozoa, Cheiolosiomata) 2. Spescies of Helixmionella gen. nov. from Australial 2. Ibid. 18, 2.55270.
\& \& \qquad (1985a) Recent and lowsil Lumulitidae (Bryozoa Cheilostomata) 3. 'Opesiulate" and other species of Selemarid, sensu tato. Ibid. 19, 285-322. \& \qquad (1985b) Recent and forsis Lunulitidae (Bryopoa Cheilontomata) 4. American and Australian species of Otionella. Ibid. 19, 575-603.

战 \qquad (1987) Recent and fossil Lunulitidac (Bryozoa Cheilostomata) 7. Selenaria
maculata (Busk) and allied species from Australasia. Ihid. 21, 933-966.
Maplifstone, C. M. (1904) Notes on the Victorian fossil Selenariidac, and descriptions of some new specjes (Recent and fossii). Proc. R. Soc. Vict, 16. $207-217$.
(1911) The results of deep-sea investigations in the Tasman Sea, No, 5, Polyzoa, Supplement, Rec. Aust. Mus. 8, 118-119.
Maccilluvray, P. H. (1895) *A monograph of the Tertiary Polyzoa of Victoria'. Truns. R. Suc. Vít. \& 1-166.
(1909) The Results of the deep-sea investigations in the Tarman Sea, I. The Expedition of HCMS "Miner", 5. The Polyzoa, Res', Aust. Mus. 7, 267273.

Parker, S. A. \& Choo. P. L. (1994) Records of the Bryozoan family Selenaridae from Wentern Australia and South Australia, with a description of a new species of Selenaria Busk. 1854 Rec. S. Aust. Mus. 27.1-11.
Tinnison-Wonds. J. E. 1880. On the recent and fousil species of Australian Selenariadae (Polyzoa). Troms. Philes.: Soc. Adelaide for 1880, 1-12.

A TAXONOMIC REVISION OF THE CAMPONOTUS MACROCEPHALUS SPECIES GROUP (HYMENOPTERA: FORMICIDAE) IN AUSTRALIA

By A. J. MCARThur* \& S. O. Shattuck ${ }^{\dagger}$

Abstract

Summary McArthur, A. J. \& Shattuck, S, O. (2001) A taxonomic revision of the Camponotus macrocephalus species group (Hymenoptera; Formicidac) in Australia. Trans. R. Soc. S. Aust. 125(1), 25-43, 31 May, 2001.

Australian ants in the Camponotus macrocephalus species group are reviewed. The group is defined here for the first time and contains eleven species incluiding three new and one raised from subspecific to specific rank. In addition, five new synonyms are proposed. The species placed in this group are: C. anderseni sp. nov., C. annetteae sp. nove, C. conithorax Emery. C. howensis Wheeler, C. gasseri (Forel), C. janeti Forel, C. janforrestae sp. nov., C. mackayensis Forel (previously a subspecies of C. reticulatus), C. macrocephalus (Erichson), C. sanguinifrons Viehmeyer and C. vitreus (Smith). The new synonyms are: C. gasseri coloratus Wheeler, C. gasseri lysias Forel and C. gasseri obtrusitrumcatus Forel with C. gasseri and C. fictor augustulus Viehmeyer and C. semicarinatus Forel with C. macrocephalus. The queens and major workers of these species display varying degrees of phragmosis from weak to very strong and the worker caste is dimorphic. Most are arboreal nesters. Key Words: Hymenoptera, Formicidae, Formicinae, Camponotus, arboreal ants, phragmosis.

A TAXONOMIC REVISION OF THE C MAPONOTUS MACROCEPJALUS SPECIES GROUP(HYMENOPTERA: FORMICIDAEI IN AISTRALIA

by A. J. McArtink il S. O. Shamucht

Abstract

Summary

Introduction

Species in the gemis Cempomathes Milys are whesespreas in Austratia yel fiw on the 120 descitiod species call be identified with certainly bectume revision of the empup is lacking. Charucters definiage Cammmotes in Australia we deseribed by Shatuk (1099): One ubjective here in fo detine at smal! group nis apparently maded upecies and revise thers it poeres level. Identilitaber of the nkunland species is hated on characters of minar workers as majom seldon! lave the nest and are therefore infrepucnly thenuntered 'This will be especially uselul for thone using ants as environmental indicators paticularly whell mannerring disturbance (Horfinan at al. 2006).

The vilopentus Coluhnpsis.

Aths ate the species oreated here have been plated in tie subyenus Cowtropsisf May by earlier workers.
 mimengensiv Forel which were plated ill suhyellon. Momumblas Forel.

 atthough. Bingham (1903) continued to recombine collofrysif: as a genus. Whecker (1904t suppoticd Limeryss subgensriceoncept and subsequent warkers have bollowed suit. The subermeric classification of Campranhes hats mot moven particolaty thesfill. Encry (18U0) was the lirs of atemph to sutativide

[^5]the semus 1016 sulach by creatige 26 subgenesa. However: Forel (1914) disogred wibs the propesed classifieation ats be fonned if inpossible en "disentatye the natural phylogeny of the genera". Lider. Emery (1025) listed 40 singenera crated by himbell and otbers and produed a key based in murphalugical charatess: He chataterized Colthonaio as "head mone in less ceylindrital and nibligucly truncuted" and Myrmambles as "hend nure of lexs distincily Iruncatal or obluse ankerioriy", He placed comintomes Eimery, fictur Foret, gusserf Fored, samguinifroms Viclomeyer and bitreus Sonith in the
 morksurmsis forcl in the subgenus: Aymmathlys. These placements have heen fodlowed, withoul commento. since.

The subgenvic elassification was queried by Brown (l972). He deacribed it in whenk and incunsiatent". This vicw was repated by Bothon (1995) who shessed that many of the suhgenera in (ixmpsumbs "were weak. poorly dellined ind unvastworthy". We support this siew mud con lind liute utility in the entrent clatsiffuation. This in especially true for the subgenus Colnomas. The subgenus has accumulated specises of Compenianis. which are phragnotic with litsle critual antalysis of how they may be related lo other phrasmencosperes. It is apparent that as number of uncetaled groups has been artiticially assembled withiry this subgenus and the group is undenticedy prolyphydecic. This in based of the nesphology of the mesowntad. cypecially that of the propechetum, the mandibular dentition and the clypeal strecture and its oldationship with phranmotism in major worlater dif sofme spacies the
pocterion regien uf the clypews is angled；in sthere if is Clabl）．Infortunately，resulving the Colfatmosis predicancon will reydne examining a wide range ar taxit on a warld－wide hasis，an fondertaking widl gutside the soope of the curnent poyitet，Because（p）
 into at number of groups in He fiture．Howserar，the purpose of this paper is to resstre the specice－feyed
 fitund，We trelieve the reconghition of this graty is alcerptable as it limom a mederate sided group hat in Well delined，as stuathish mos lisund previonaly．
 dencribed here should mot the conlemed will the r ．

 Workers hate been otmorved bsing hacir hosede to fork soil nest entrances but the frumalled portion of the imererior head in rounded shat not its Clat．Ihe lome

 Whereas C．matrowspholus groups specios gencrally nent in trecs．

Material

C \triangle K $W=$ maximam limmal carina Width：C＇LY W ＝clypens width masasured belween lenlorial pits；Ist． ＝eye length in dussal view：$H W=$ maximum head width in domal view：ILT $=$ maximanar licad theseness． in lateral siew：HI．＝hesd kenglt mensurcet from anterior marein ol 心ypens is verkex：PW＝ maximum pronotal widh in dorsal viess；$N W=$ node

Scalk lines $=1 \mathrm{~mm}$ ．

ANIC＝Abstablian Natomal Insed Conlections． Combertib AL＇T：Curtin＝Curtin Universily，WA： CiANFI＝Musemm d＇llishare Naturelle．Geneva． Switzerland： $\mathrm{MC}^{\prime} \mathrm{G}=$ Masen Civien Ill Storial
 Musenm of Comparative Zoology Hasvand Linicersity．Cumbridge，USA：SAMA：＝Somblt

 Ferlin，Germ，iny：

Conleceroro of manerivel demmined

AC．A．Cuhder：AIN．A．I．McArher：AIII，A．I．． Heroge：$\triangle M 1$ ．A．M．Lea：AS．A．Silvarani：ヘZG． Adelaide Zow Guides：B3BL，B，B．Lowery：Blik．B3． 1：Rogers：13．1W，13，d．Walker：1313M，13．13．M． Hylind；（CDM，（．，D）．Michenger：DIIC，D．IJ．Conlmes： DJC．D．J．Coxok：DPJQ．Deparnment of Primany

 Montëldr：GFC．G．F：Giress：GFH．G．I．Hill：CiT．©
 I＿awrence：JAF：J，\wedge ，Formest：JAH．d，A，Herridec： JAh．J．Ahlors：J［3S，J．B3．Sluchey；JCC，I C．
 Majer JEE，J．te Fechan：JJII）．J．I．Davis；JMce I MeAreavey：1S，J．Scallacek：JT，J．Tomat Klo K． J＇ullen：LHM．L．H．Winchin：I．W．I．，Weatheroll，

 Circemsadae：PSW．P．S．Ward；RAB．R．A．Barren： RAP，R，A，Jerkins：RE， \mathbb{R} ，Easthend，RHM，R，II， Nlew：1RR，R，Robinsom；RSH，R，S，Bungey：RVSs， R．V．Southerut：RWT．R．W．Taylor：SOS．S．O． Shatluck：SED，Sounh Australian Nallomal Parks South East Fanna Survey；I＇AW．J．A．Weir：T（：1． Cront：＂Th，＇J．Gireaves：＂Fur，＂Turner＂：WCC，IV © Crowley：WI．B，W．L．Brown：WMW．W．M． Whecler：WR．W．Risficety：YS．Y．Sikuri．

Comus Comumanomes Mayı｜\＄K｜

Diagnosvis of Cumphotus macerocephalus sporvios graty workeds in Afestretlies
 than iniddle and hind lemming gentrally mare
 1）．Majom wortiers and petens show distine phemmosis．d．s．the anterion of the losad in tranciled

 $=1$ turt．

and Wadtences（ Fige 2）．Wurkers are dimonphic，i．s． magor abl minor werkers have practically now internediaies as shosw by herd medsurenents（Fig． 11）．Spince or brisfles un Alte loswer sultaces wt the libiac lacking，of at momt．（गlly one or two（most Cannpenentes spexics passess two rows of 51010 grincs）（ 5 多．1）．
 cum toe divaded into three complexes sis follows：

 chatratemed by the elepressed metanotal grove and higys．atrehed propexdewn．
2．wataresephtalks Lomplex：comprise anderacmi． herbersis and thre merepherfus；all prosscsasing al lid mesamembal domad surficte and an chevated propedoal allyle
 verncuinifions，all pusacosinge al mure everaly convex

Biolregu

News at these ante are wenerally lound in watlerjes of tunnels which had beed censatructed in lowe sand
 deald ind living banatios where the diancter exactan 40）mim．Nestx umally have only whe entruree which is blekeded in a remarkable way，A major worker buses its head libe a cork of clowe the eirculatrentrance．the diameser af wheh is unly slighly greater then the worker＇s hesed．The heisds al major womens and fucens tue mone of lens circulur in ctases section with We anteriar protion fremeated，hat and bilen deaply
 When it is bocked．When the＂door kecper remores
 a neal mate lo puss．Major workers ate able to acd un living dowis becatue they hitse evolved a chanserimbe liat or phragmotic fiace from Grese phasumess，＂enese＂br＂encing in＂）．Whesker（1904）
hats shown thad workers wishing lo gain bintry appeas
 matioles，is oft other semsitive parts．botably the coyes and antennate，ate loo fan out of reach for peceive
 and Donisthorpe（11）48y stegeest that in Remopes．

 fos theit homes．\＆babit mot found it Numbatialn －phecies whicls show a preference for moten worad ar preforned eavities．In Australia．galleries uned by these ants are poobably excetvated primatily by termices．

Key to the minor workers Campononias mucrocepheales species \＆røup in Australial

1．Number of eree herixe un dorathe of mesosoma Ereder that
 less than S（oflen（）） .6

 Fired setuc and dositim uf incsonnana long（lengelt $>$ hald E, L ）。
3．Lensal surface of propodeum concave fFiges I S． （り） machosomvi Depsal sitiace of proprakem Ilat or contex ．． 4
4．Dostab surlitec of propedeum llat or weutils sonvex（Figs 14，15）．．．．．．．．，，1：．．jumeli Domal surface dr propodedor strongly convea shad donne－like．

 Underside of heud licking brest sctue（Figs It； 251．－．．．．．．．．．．．．．．．．．．．．．．．．vitrous
 angular matanobal grouve ．．．．．．．．．．．．．．．T Hopoadewn and mesonetum in approximately the same platse and loming al contimous

7．Propenteum cone－like，its donsal and posterion Fixces mesting in an angle（Figes 7．K） ．．．．．．．．．．．．．．．．．．．．．．．．．．．© cunithores． Propoudeuin hemiapherisal．ifs wormath allld posterior fracs rounding gradually into exth

N．Dorsal foce of proposdewn fodatively long companed ion posteriot fike dration propodeat dormmidectivity >1.5 ）（Fign 22，23）
somsaimb／om Dorsal fitce of propmebern relatively shont compared to ponterior fate hation propesdeal dorsunddectiviry＜1．5）．．．．．．．．．．．．．．．．．．．．．．． 3
9．Eyes pladed ambronly，much sluxer um madibles
 Eyces placed near mitline at head，sightly clower
to vertex dham mandibies. . $1.1 .16 .6 \ldots .10$
10. Mindibkes in major warkers amonth and what shallow fovace, thgat weak and limited on the anterior region of the dopsith sufface: linnited (1) banimbath nustralial (tigh 20. 211
 Mandibles in majur workers with distine regace

Camponnos anderveni spe nov.

(1)]CS.1.4)

 (SAMA).

 ANill

Whrker afioghonvis

Messmamis glassy with only is lew ereet setio and sery sparse indistine flat-lying setae, libiae will Whadily raisced melake pyen barses. clongated, placert

Wrarker dexcripnirm

 dimmeter Plentilul, short, crect selite Londing sparse

 same cobler at amerioy fread, wellex willo al lew shork thick setace underade of head withonl ereat sedec. bye large. much lonyer than wide. chower 10 mandibles thats vertes. Sromentan: Light red brown? similar to interior hestal, hatly sonvex with distincl promberal stractore, dorsum wibhour selite on putescencs, Mcammoum: Light red brown slightly datker than luad, mosily staight, dorsum withen setike. Aletanotum: Distinel, namow, spirate starcely protruding Dropenteunt Light red lyonen, slighty darker llam rest of mesosomal, dorsam and declivity mosaly straight sepmated by widely rounded light angle, glusby. withour pulsescence, decliviry blom, btraigho. bprighe spiperte sithated lowe or live dianteters iusteribr lo dectivity; Node and gesker: Rerwin, darker hhan mesosomat. Node: Witholl pullestemes, antriot lace einved; summil rambed. prosterion like mostly straight, Giater, Glowsy, bere kmber; Benwo grassly swallern, Mad Libia: Withoun pubescestace, with lew adpressed short setie ousside. without bristles inside... Lor dorsal vitw. Ifead: Sides, parallel mosely sratighti vertex dund angles formine even eronvexity: bape willorut pilesity, thickened unvards tanicutus. Firontal carimus alratight, diverging
 anterior maxyin datinct, mas ItW al eye cemore Clypens, frontal lotes imed mose of fombal area sumken. Clypeusi Anteron masin prajectamy. conyex integnmenf fincly shallowly puntrate wiht plentiful very short, crect sebice- willstu pubexerne. without canila, Jin font of reall view. Nokh sammilShaight, wide with few longs setis. In fop vicw.

Minor wortice, In lateral view, Mesusuma, nuds. gather and pousterion head simitar reddish berwor, amberion lead lighter. Ilend: Side with few small
 Inderside of head withmul bong betac: serape and luniculus satme enlar at anterion head; vertex will one or imos short thick setade eye nearly wice on fong ats wides closer to mandibles thatl verkex. Istumbtom: Abtersar and posterion halves lian. separamed hy widely rounded angle, withogll setac, Mesmottint; Fanly convex, domson will olve ars two fors staps
 prominent, well below dorsual P'oprodeum: Glossy dorsum and declivity tame even converity. dosam whith fiow very shorr idporessed setiole rallio
 semrounded by glomsy integument, withom puhescence, sthated torif or hive diamesers anterion Io dectivity, Nerde: Without pubsecence, anteren finco musdly statight: sumanil momaded: ponterior fine
 bravin. Slighly durke alove. E'me fommse Red

Fore libia and Fore Lirsoms: Red brown same is messobertla. Mid libtu: With few decumbere and adpressed shori setas, without bristles inside. It dorsal view. Itad: Sides and vertes evendy rounded: subse wifheret pilssily, hickenced towards funiculus: limatal canime stragh, diverging Io wider that hall $H W$: Frontal areal diamend shaped wish dishimat anatrior margin; max. HW all eye centrs. Clypenx: Fincly and satrsely punctate. whthoul pubescence. Fow sclate wounal margin. without carina, amerior mateiat projecting. convex. Wjes. In lisont of reat view. Node summit: Widely rounded with at law velides.

Mernvrimema

 CARW $10.45-11.95 \mathrm{mmmi}$ (L.YW 0.15 mm . TI. 0.165. 0.75 mm .

Esmolen!

Nomed alter A N. Andersen who recognined bue mimuenersulthesand.

Remarks

Jhis spectes fras then firmal westing in the mangrove Sombertion athe J. Smith in the Northern Terfitry and Kimherley reginn ol Weskern Australia (Fige. +). At high lide the nesth ure submerged and during the be thmes mofor workers use ther heads 10 blow nese entrances (A. N, Andersem, pertis connm.
 omly a small number of specimens. if is distine freme all othere in this gronp.

Campomentes ammerleae spp. nov. (IIGS S. 6)

Ihstanghe: Omb minor sworker pimbed. Cams. Ouscustand, L/8/75. BBL (ANIC).
 (ANIC).

Winker diagmasis

Whole anf elobted in stront erect setace. Mesusembat wifte it decp. wide depression isticad of the propodeum which is raised info at dome (ligig. 5).

Worket desarturion

Monos wadker: Whate mit eovered with plendefibl White, shorl, tpatandine setace: red Execept for slighly lighter limbs ind dark brown posacrior gaster. In lateral vies. Head: Gkosy, indislinetly reliculate, few punctations. vertex blumly mageined. Pronolum: Fliglo dome with anterios and posterion haltes

 Jisumbuinn. Sconle bar $=1$ mmi.

Straght, dotsum with hew flat-lying additional setals. Eecbly punctatc. Mesonotum!. Statighe long Metanotum: Wide deop (rough 0.25 mm wide with spiracles protrading to level of dorsal sutbace Propordenn: Domed, wedar lomisypherical, angle well rosnded. electivity stratight; spirate prostrading catwated sumounded by smokth, ghesey, imteghment with a fow short crect une lian-lying sedac. Node: High, anterior face srengly wondee, summit shap. lemhing forwand pusterioy lace ennvex. Ciaster: Red anterion blath pusterior, glosisy. showht lime llatlying puhescence, Fore lemur: Swollon. Mid libia: Plentiful sub-ereet setie outside. whthout brinfles inside. In dopsal view. Ilead: Sides, panerior balves slighly conves. taperiner in alighly, anterion batves shaight parallel cheehs wightly swallon, vertex. nearly araight. seape with plentifil shori ered setue. Frontal carinhe very wide divergrag strongly scarcely comverging posteriorly. Amerior externitics ol honlal carinue continuing Iratstomely, foming a slep atonge postenor syphets; fromal atreal nurrow Iransverse: max IIW well ancrior to eye centre, tyen simbated less than hall eye width from corbers. Clypeus: Wide. slighty striate with elongated punctations, bow thatations. glossy with plenifits shore sctace, cuarina distifnet as narrow ridge on tlattish clypers, anterior magin lateral fiths intruding. mbshan ofree lithos projectang evenly comvex. To linut or reir view. Nodes Summit wielely and seeply indenged with plentilul short erect setire.

Mensurnmems

HW I. 4 mim. IIL 1.5 mแn, PW 1.05 Inm. IIT 0.45 mbn, EL. 6.3 mm, CAK W 0.85 mm, 'TL 1.3 mm.

Named after A. Vincenta is seientilic illastranor.

Remairks

Thin rare speces in apparently reatricted to Tifr North Queconand (lijg, (i). B, B. Bowery collected speciumens fienm sheet lreen in Caims and noted that it appeared do mimic ar red species of Podemyrom. Ablotugl (. stmenerse is knows froms omly ewo specimens is in highly distinctive and mintikely fo bx. confised wath ally y ther apecten.

 (FIGS 7. 8)

 $431)$.
fige etemmed! One male labedled "Catop comidnorax lamery" "Pore Sundwich" "Mus Civ (iena" "Muscum Itario Nouv Hethrides III. Malliealo DP Joly 1903" (MCG).

Winker alidshnos

Phopodetht appears čunical when vicwed from side, upper and pobserfor surfaces straight and separated by ant ungle just greater than 90". Scapes
 :angle of alout (0). Very few erect sclace on the outer surtiace of the head and nome on the under side (lijg. 7).

Wurker doscriprion

Mantr worker, In lateral view. Pronulum. interior ménonotum. limbs and zister brown. posterior mestantum. propadeum and mode darher hrown,
 glowing, smouthly reliculate with very sparse lyatlying whor setuce scape dark brown like poseserior hedd; funiculus lighter like anterion head; sertex ivith one or (Wa) erect setike: thderside of head wilhous creet selac. Will lew very shent adpressed selate. Pronolum: Glossy, Chally convex, dorsum with one of (wo bong setac, without pubescence. Dessomotum: Glossy. Evenly cornex withuu setuc or puhescernes. Metarobum: Separated firom mesonnotum anel propochemm by deep transverse couts faised up in econte; spiracles placed well bedow dersum, slighlly protrudnes upward. Propodeum: Powterior dorsin incelined upward, comical, glosky, with fow shont mopressed satires angle approximately 90°, sharply ponmded: declivity mosily serajght: ratiol donsumadeclivily ipproximbaty b; spiracle

 with at lew shast imdistinct llat-lying selde. Node:
 setac: anterior fice corivex abowe: smmomi hhmo: posterior lace straight, Gaster: Dith brown, Ighter posteronty; glasisy. Fore fertur: Swollen. Mid thbia: Hentiful strort, decumbent setade, Willanell frimber. incide, In dorsal view. Head, Sides stratght, paradtel: verlex straighl: scape will sparse whort that-lying sctue: Frontal carinae wide divergiog strongly the"l converginge stigstaly at posperion: trontal unca

 Sides mastly parallel. long, dorterge inderorly. sillt lew lechle ariations and panctations, withoul furmows, glosisy, with fow very shifse, llat-lyme uedae. anterjof marging profecting masily sfonght
 withonf carina, If foom or rear vicw. Nonde Narmow. summat straight sith few ahore selate

Misur worker. In lateral view. Promotum, anterion
 propendems and node dirker bown, limbsi a lithe
 grading on yellowishi brown antereory, side will sparse flat-lying short satit; glowny, smosthly reliculate: sciape dark bown, like ponsterior head; funiculus lighter, like anterim head. vertex with sparse. short. Randyying setise: underside of head without crect sctice, wilh liew very Abrat, indpressied setac. Promotusn: Anterior third convex, wherwine Wraght wihhoul setace of pubstence. Mesonsthon; Evenly datly conrex. dorsun wilbanl sehac of
puhersence Melanotum: Separated from mest notum and propodeum by deep hamsverse sills. raised in the centre: spiracter placed well betow dosemm, slightly protruding up. Propodeun: Dark brown with lew shom adpressed setact dorsum stighty convex, stighty indined upward: ample Blum 90° : declivity very wraight: ratie dorsand declivity near to spiracte promruding to rear survombled by glosiy imtegument whith few shert, aparse selte. Nofle: Ginssy with lew very Alomi, crect elde: petiok will ventril prosuberane: lower latr off anterion face of mate staight, otherwise convex: momid blant: pesterien lace mosty shaght. Gament Glossy. Fore lemur: Swollen. Mid libia; With shent decumhen setare lacking hrishes inside. In slorsab viow. head: Sides lially comsex. tapering to fromt: wertex combex, weape with sparse, short, flat-lying setalte: limatal carrimae wide nearly parallel: fromal atca diamond shapeo. indintinct: max HW it eye eentre- Clypens: Glosey with fow sparae llat-lymes and cred selas, whond carima; anterne margin wide. nowsily shaight, projecting bal mol heyond ehecks. In froni or rear view. Noxle: Nartons sumbit roundeet with icw erect Jong setar.

Atonverimems

 HI' L.2-1.6 mm . EL ($0.4-0.5 \mathrm{~mm}, \mathrm{TL}, 1,(\mathrm{f}-1,4 \mathrm{~mm}$.

Remarks

Emery (J4/4) describud minor workers from Vintunu (hann the New Hebrides). 'The major worker is deseribed here for the liest time. The identify of the Australians specinens in brised on somparimen with the enly known bye spectmen ad mole paratype) and the bried descripton (timery IMJt, inctuding Iig. 18 in Pate 13). BMP cotllectad
 al Buanayy, ©ld.

C'imumums senserf (Fircl)
 (FG.S Y-11)

Compronuma (Cotolopsis) gensseri Forel 1902: 5017 Combination.
Cimpromun (Coubuppis) gasuer Forel 1912:90

 Forel 1902.50 x .
 Emery 1925: 148 Spelline change.
 Wheder 1934: 162.

Peeth, W. A.e major and minor workers. Box 176
 Pypus. Irom Mackay Qlda majer adod miner worker. Bos 17G (GMNH) Compmamb gatseni brizan Typas, from L'Werstone. Tux, thate workers. Bux 176 (GMNH).

Other matorial damined: Aushallan Capital
 Canberra. 1935. TG (ANIC): KOwem. Bimabella Range 1922. TG (ANIC): Red Hill. 1931. TSi (ANIC): Usidrta, 1931. TCi (ANIC). New South Wates, Amidide. $10 \mathrm{Nz}, \mathrm{YS}$ (ANIC): Berrigan Slame Foresh. 1479, BBL. (ANIC); Braidworel Roal, 1935. TG (ANIC): Browkate 193I. TG (ANIC): Rums Bay Lime Cove 1959 BBL (ANIC) $=$ Ciuyra. 2 mi . S 1949. TG (ANIC): Kiobsa stale Firem, 1998, SOS (ANIC) AIL Wug Woge 4 his NE, 1480. TAW
 Macquarie. ly68. KP (ANIC): Ryde Curaval Ib. Ighio, RIIM (SAMA); Wyme National Horest Outmbe ! 467. BBL (ANIC). Quecnstand; Beerwah. 1958. CDM (ANIC): Beenwah, JDM (Curlin). Beorwah State Forest. 1058, CDM (ANIC), Cuims. 1971, BBL (SAMA): Lpper Gaymulah Creck. 19xt. GBM, BIC (ANIC) Sontr Auspalliat: Adelade Bolanic Park, 20\%0. AZci SAMAtit Aldinga, 1487. JAF EGM (SAMA): Aldinga, Z(m) AJM, PIT (SAMA): Aldinean a km SW, 1980, DSW (ANICF Amuricion R., 1973. PIM (SAMA): Bantl, 1975. PIMT (ANIC): Behair. 1994. AJM (SAMAI: Belair.
 (SAMA): Breakneck R., 197.3. PIM (ANIC). Burnvide Undeleatra, (996, MLS (SAMA): Capl

Fige リ, 10. Ciumprem?
 Komwn doxtrimion. Scale hars $=1$ mm,

 10）$K^{\prime}=10,44$ ）．Gucensland specincons wiote smallore．
 Sl：1975．IAH（SAMA！Cluse．1950，dME（ANIC）：
 14h4．FibG 6SAMAI，Fienders I．。 1487．JTE：MJN （ \triangle NIK）：Cilen Ostramd．1978，PJM（ANIC）Cimenly 1．（SAMA）：Kingitnde I．AML（SAMA）：Hinson

 （SAMAA）Kilangatom， 15 km W． 1995. BrK （SAMA）：Kelly Hill Cuwch 1472．P？IM（ANLC＇： Komgorong，1997，SLIH（SAMAgi Litels Dip CF，
 l．acimale，Heu（SAMIA）：Memmete，JIIAI ISAMA）： Venimgic．IS km SW，\｜y7a，IJM（SAMA）：
 Nr： 1907 ，SEF（SAMA）：M1／Compmes，19me，BBL．

 I＇JM（ANIC）．MI Raugh， 5 km W 1672．RリM （ANC＇）：Namanombe Cove C＇P，195N．CiFCi（SAMA）：

 Reverbly 1．1930．JCl（SADA）：Rixeman．1075． PIA1（ANIC）：Rash＇R．．1972．PIM（ANIC＇）：Sindy
 （ANICI：Spaldinge Conc， $197 . \boldsymbol{z}^{2}$ ．FIM（ANLC： Streaky B3ay． 1457. tBBL（ANIC）：Tinfinara， 10 mi．
 （ANIC）：Umberatans， 15 km NES 1975．PJMA

 Athosam Re．I I90，BBL ISAMA）：Buhas Beilch．

 （SAMAL：Gical Baly，Nothle Bruny I．19g2，RBL （SAMA）：Hobart．AMLL（SAMA）；Ilobart．＂I93\％． FAC IANIC 1；Hobret，195\％，NMII（ANIC）；1Jobaw． 14．35．WR VANGO：Lathnestor，Iリ15（SAMA）．
 1992，6BL（SAMA）：Mt Tannet．J991，B6L

 Sorefl．19y2．BiaL（SMMA）；Rocky Cape Sifilery Remelr．149t．B（BL（SAMA），Seal Rocks．Kin！I． 1591，BBL，（SAMA：Suprise Buy， 4 km N，1994． 13B1．（SAMA1：SWanse：｜ 46 2．LIW ISAMA）： Swanseri，Nime Mile lsesch，149h，BBI：（ANIC＇）：

 （SAMA）．Vieloria：Aireys foled．14．fs．JMc（ANIC）：
 BBL（ANIC）：Orhose 1959，GFG ISAMA： Suringsale．．IRVS（SADA）：Utima．JCG ISAMA）． Wexten Australiat C＇underdin，I km Fis 198．5．PSW （SNICH：Darlingtum，｜96y，BRL（ANIC）：19ryandra，

 （ANIC ）：Mt Rugeged，II kin NW by N．1904，RWT （ANIC＂）：Mundaring Weir，dCI（ANIC）：Nombalup？
 KWT（ANIC）：Nomemame＋km NNE，19\％），RW＇I （ANiC）；Northanmom， $5 \mathrm{~km} \mathrm{~N}, 1985$, PSW（A VIC）：

 RWJ（ANIC）：Wirstey．JDM（Curtin）：Yinclegn，JLDM

Werker alisumosis

A lew bred setae ort the pront of the deat and
 propsodeum phised whemispherical drme（Fige es）

Wurher sleserthlö，

Malor warker．Whele ant varich Frome black wallo patctices sh red or red hrowat lo oxcasionally all red．In
 three quarters，very tincely punctate，anterion quarict strista，frumadion 135° abrupt：vertex with if fot

 ＇Tino distinct frallsverse sulures all hontuth sif al｜rotselt． spibate difected upward．placed leclow dobsam． Propardeum：Withaut setale．Ulorsam hemisphericis dunce：angle lomoded：declivity traight：sulth dimsunsdeclivity approximately 1 ：wirate placed midesy between dobsum and coxib sureninded by
 crabse setak．Norde：Fincly reticulate，ghosey．wilmoll
 roumded: pomerior Face mostly sfaight. Giander: Very linely wriate, wo pubsechec. Few shest setace alonge mombranes. Fore femur: Swotker. Mid tibia: Wishaus erect selde, will very sparte, indissincl, Bat-Jyine serae willun briatles inside. In dorsal view. Head:

 eonvex, widely omomed cormets. scapre willorat elect
 anct indistinet max. HW pusterfor to eye cennce: mandiblen with many tone teath. Clypeus: Coarely
 noplaced will gronve: inlernor marym comace. natruw. projecting. In front or near view Noxte: Wide. summil widely hidenteif, vitheut sutac.
Monew borker: Whole ant baties from black will
 Latcial view. Head: Side, thosey, finely peliculate
 lonig setac: imderside off hedd willout sedite.

 fonmage even convexity higher that metanotnm.

 tevel of dornum, Propuxtum: Eilexated, hight. lumped. evenly convex: angle well romalad: dectivily mosily straght: tasio dorstom/dectiathy appoximately i_{i} spirathe placed nidway between thonam and coxas, puintiog rearwand, sarrounded by
 face lower hati whathe. upper bonges: summio
 Microscopically sitriate. Fore lennue: Swostern. Mid
 tristlen inside. It atoral visw. Ifeads: Sides, flatly connex. lapering Io lrunt: vernex and ingeles uniformly cobnvexi heape" willorout erect selte, with indistinct udpressed setace, frontad cathac shopt, vey
 made HW ut eve centre. Clypeus: Wide willaul

 Eablex. Wigk, Withomit serace.

 1.2(1)

Remarks

the subspucies lysink is "dilfering in head shapro liom C. setessmi but otheowise identical with the type". Forel (1902) established the subspectes, ohmmornmeams based an whight dillerences in hearl
 the minor worker "having as shortes head and monfe
 the typieat fonm. We can find litte to suppors the retention st amy of shese subhpectes becouse the difterences are bivial. Cumpenentus gresed specimembernlected al Beerwath, Queconstand weic light brown and amaller tham thosis callected all Cilen

 in diagnosing thene forms ins. Hocy secm for be bated on allomactric variation wish im this tastare rather tham speeven-level difteremecs.

Compmentesy gelssery minor wothber itre oflan observed foriteing on lounk of equalypla ist the Achetaide metronolitan ansa. On 20 San (990, AJM When watclring the remoenal al at large live
 sumbereatern whurb if Adelates, collected as mimh
 blianceter of the foy wat $] 20$ mon and the ants

 egnen the lag. IIty nortiers, three dealate queens. oue aldate mate athd nomernus egges and maked laryate were limnd. The voslunte of dice gallery. measured by filling in with watcer, wats 125 nll . About 10 ml af frass perentulng sinwast wis itse tahen fiom the
 by termites (determined by cexamindions af ate frasis,

 wift the entrane Junnel about cquitisfant from each end. The widh oft the main gallery was aboul 10 nom
 with : litte ded at the unterior head, the amsunt of
 neplaced hy yelinw-lrown.

Wheeler (1933) described nests of CZ. encsery near prorth. Wd in bramelach of varying sizas
 dusd Catlimis spp. Mass by the brectamens ul C adeseri examioned here liave hech soblected white blue aols werk longiny y veretation. except for one collection frum at pillith irap and ance from loal hilles sund theme collected from the sawn wif lege deseribost atherve.

(FKKis I2. 13)
 $1.5 ?$
lypess artumberf: Nine minor werkers from lord Honve Intand. A. M1. Lear (MCL).
 Honse dshand Frakine Villey, 146es, RWT (ANIC): Lord Howe Ishand. Middle Beach ' Irack. 2(M)O. AJM \& PJF (SAMA).

Wimher siodsmemsis

Aiandibles in major workers with distinct rasae superimpused woer shallow lisvac, rugac covering tho entine dorad surface al mandible, A fow longe. trest setace on leand and gater none elabivheres In lakeral view dormal sumfaces of pronolam. messholum und propodeuin form a combintusis beakly comvex surfices proserion properteal tace slielaly comeare (tig. 12).

Worker ikeseripurom

Major warker, lin lateral vicw, Red hrown, gatere gencrally dirker. limbs smilar in colour bue with bami ind libitue stighly lighter. Head: Side with aro brect sexter posterioy glossy. shooth: anterion shanply trumbatcd. anteras striations extending fromb fruncution ond /hired distance foge; ventex with fow loyig selat; boderside wh hod without ereat selate will very sparnc, shorl, flat-lying solecs, MLesosnmat: Wilhour erect selac. Pobuntum and Mebtonotum: Evenly convex. Metanolum: Wide lrisugh, spiretele well below dowsinm. Propadeum: Dosenm evenly curved: ingle, rannded: dectivily slighlly eronciave, rallin dorsum/declivity approximately l: spiracle well forward of dectevity, clones (6) coxal than dorsum stimentaded by indistinetly reticulate glossy inceuncut. without pilesity. Nexde: Witheul sctatc: anterion "ace bamer hall", wathighla apper half evenly

 Sualson, Mid sibia: Without esect setae. With sparsc. llat-lyang pubsescnec, withoul brisiles inside. In
 parablel: isotex shatight anglen blung scape with very spalsce, shome Dat-lying stane. Tonnal carinace musily blaight. Jivergings postorior very wide. Liromial arca, very small, depremsed. Clypeus siden forseded by shamp ridge. narrow, widest al Hitheationto sides nkatly stratght Getpering anteriorly. gromaly rideced fongitudinally, similar to chesh withrece fonatis of clypeus amberior for truncation. Amerion herad enmprising dypeus, manelibles and checeks Jyme on har corcular phance. mat IIW at eye centre: eyes mal. Clypurn: Without crect setse carina presemb, anomge striations: anterior margin narrow, probecting, evenly convex, In tront ay reall vicu. Noke- Stanman wrile slightly indented, withent sctuc.

Minor worker. Head; Real-browit lb dark brown. limbe and minemane slighty lighter colour ammerion enf

Jeak yollow brown, velex with few sedesp thederside of head withouf cose setace. Memosomat Cikosy, microseropically reliculate willomt pilowsy. l'romestur: Anterior and posterior thirds statight, centre third convex. Meromonm: Mosily medight. slightly raised atxote promesturt and properdeanm, Melanotunb: Slight ridges, spirate neine midelle ul sides. Prompedelan: Dorsum whatit in flaty comvex: angle abrepl; acclivity concave: (anios dotsuma declivity ahom $1.5 ;$ spiracle simated midevay between dorsum ant miconsconfically eviculate integnment. Node Witbout pilosaty, ankerter hace lower hall araight,
 Ganter: Foimely striale Fore Icmur; Swollen. Mid libias: With indistincl yrarse storg. liat-lying setac, withoul briallew inaide. In dorsal viesw. Hemit: Siek swaighe slighly dapering on the firsut, verters und angles forming me cen sombxity: scance will
 diverging wílely; frontal ansa indistimes, diamond

 setame carina feehle: matribs margol convex. whde. progectil!g. In front or reas view. Node: Stunmis. Wide, varkelituen indelucd, withoul sctite

Hecremerments

 (1) 45-1.15 mm, NWV U.4K-(1.55 minn.

Remarlis

Wheselev (1427) dencribed cimppunslux dmersmis
based on miner workers Irom Lard Huwe Island. I lis description inclueds compatisengs with at number ald spectes front nearby Pacilic islands hul make me refierence whamband Australian species suct ats of marratephums. A mone recent collection from 1 and Hone litand by RWT includs troth najor and minur workers, minors of which malch Whacker": sypes. The specimens, from Lord Howe Island are very vimitar to manalund specelacns placed an mactaremhollus. They differ in having the dorsal sulf fuce of the mandible of major workers sculpured wial longinudinal sugae superimposed oner shalltuw fovese. The mandibles in C. macrocephaths wre simesth with simblut dovae and with. all homet, weak rugat akne the anterion (labe region away frent the Head capsube) me-hatif or lese. Additionally, the seuphoring on the ancmatateral regom of the head

 estensive and weaker than the scolpuring liound in C . marmephalm. Fimally the solenrof the Lurd Howe [5land material (all eatites) is comsiblently dark brown Whiter maindard naterial varies fromy yellow-brown of dark brown-. No significam differenees evoud bo found betwen the mimer workers fiom these regions. Baned on this, thene has taxal are treated and distinct with ath achowledument thal they ane very clonely rolared and may welt prove fo be combuecilice

(HIGS 14, 15)
Compumnus jemefi Forsio A. 1825b: 417.
 Cumhination
(:
from catminad: Mabiar and minor thorkers labelled "Iypus from Qucenshaud. Mackaly." Box 174 ((iMNH, ANIC)
 Parkiturds. 1975. BBI (ANIC): Mickily. 18.99. TGi (ANIC)

Worker alimgumais

Wanter denstithic.

Major worker: Very dark brown molach all ower exesp red tecth, red hows amennae. lighee linins. In hateral vicw. Head: Side blassy Enely reticulat. fincly ponelume with plendiful mid lenght setae (alxous (1)2 nun heme), vertex whin plentifil creed sedse ind rise pubeseences understale of thend with plentifol shom and longo ctecl setae Promerust; Unitionty

Hally convex. dorsum with plentiful mid tengla ceect and Few Jar-lying setace. Mesonomm: Flatly monves. deretm with plentinal ered setac; siden relicubate. more sitrongly behow flan above. Metamoun Indistinet. Iropudem: Dorsum with plentilut crea setic, umilormly eunves, sides reticulate, mors stongly tekar than aboves angle widely ortunded: Aectivity straight: fatio dopsum/dectiving approximaty l: spiacle progectinge rearvard, wed forward of decliving- and midsay berween cosat and
 Norde: With fonge clect athd shor, hat -ying setak: anterion fice lower half araight, upper comvex: summit blunt: footeriur face: lower hall. Statigh upper Jandernvec. Taster: fincly atriute. Fore femur: Stwollen. Mid lithit: Pleniful upstanding long vetie. without hrisiles imside In dursal thew. Mead. Very Fincly densely punctate widl few cuarse punctalions: sides staight. blighty tapering to frome veritx convex: scape with erect and that-lying acties, Fromban
 half suight: fromal area small, diamond staped. smowher than survinalings: max ItW just pasterior
 Luncalled, siden wides at dentre, less than ane thima HW, will lew erect settie and no pubcocrace, withent carinas anterior margin projecting straigh. marrow In from or rear view. Node: Summit wide, 1 bute thirds convex. centre third straight or slighty concane: with plentiful long setide.

Minor worker: In katral view. Very dark han n to back all over execpl rad mandiblew lighter antentas. darker red trown limbs. Head; Side glosey, Finely reliculate with plentilul mid lengh and lowger setat.

Figu It: 15 Commmumen jommp. 14. Mions worker, ferat

vertee with plentilul, erect setale; mo puhescence: linderside of heitd with plentitul lonyish brest satite. L'ronetum; leatraded datcral maryin, unifonnly thally conves; dorsum with pentilal ereet and tew bate fying setae: Mcannolum: Elally convex, darsunt with plantivel long tive scesc, Melanowem: A slight depresshan. Proppodenm: Dorsum with plentiful sered aciae all various lengits; inifomly eonvex, makinge whole messosthat evenly coonvex; siden hore sarongly piricuhats below than atbove, angle widely rematedi declovity lally cenoven: ralis dorsum/derelivily aboun 1.5: ppirack propucting ourwand. Well forward of declivity and midway between eoxsi and dorsthon, shrrounded by arest and Mat-lyine sester. Norde. lange with long seres and shorl, hat-lying statas atheritr dace lower half" sheteght eonvex above: sumbur rounded with weath fidge: ponacrior lizec komer hall stratght. upper half comvex. Liseter. Glossy shondy limely striate, Fare lemur: Swoller, Mad libiat With plentiful cerarse, mensly decumbent selace, withour briakles inside. Dersall view. Iternd: Vory linely and densely puaketale, sheds sitrdight.
 widely rounded; seape with bred and Jint-lying

 Clybens: Wide, with lew shere decumbent selat: carrmat distinct anterion thatgin projecting mostly convex. Fotent or tear view. Nude: Summit wide. convex, with plemiful linge setiks.

 $1.2(1) 11101$.

Remarks

I'his rate species has bean conleated only at fiew

Campmotus janforressue spt. nov.
(1) 16516.171
 ('llims. Pirklands. 2/8/75, 13. T3. Lowery (ANIC).

Uhter materat examimed: Queconstans: St. Cicorge. mear Balonne Rivey, 196ot, BBL, (ANIC): Si Gearge.

Hiomer dirmemavis

Whate ant fwill the exceplion br the funicelles

shon ion long. Dorsal surface of propodemm strungly convex and dome-like ($\mathbb{E}^{\circ} \mathrm{E}$, 16).

Wowker de wrdipwion

Miner worker. All black exceph for durl brown teell and limbs. In lateral view. Heal: Siele wibh lew enece sctac, without I7at-lyong pubexcence. glowsy, smanil?; veriex with plentidisl lomg eetite"; undersicke of lowal will plentiful longe and short selite. Pronolum: Eivenly convex will plentilill ened selac of varous lemglos. Mecononom: Fialy émvex with plemidel bellas. Melanotum, Deaplrench, with spirates pubicetitle up. inpertures loslow level al domam. Propencam: Pkentiln longe selate glosxy tossam domed, nearly
 spiracle projecting entward, sumbanded by slizholy phatate integument with that-lying and enect wetas. Nonle: Thick with plenliful tony ereel selise: materion Fuces short upright: summir blent: pusterion lice lower halr sumydt: upper convex. Guster: Glasey, hairy fore lemere: Dark real hruwns swollen. Ald thiat: With plemifinl lone and al keqv shori, erect wetae, wilhoul biviles on insade. In dorsat vietv. Head: Sider braight. trongely tapering to front. posterion anges and vertes lenming evensenvexity, scupe svith phentites lame and short. erece sethe, Fromtal carinac whede, divergile sor
 limplal atreal clomgetled sliamonal. whall: mise HW posterior fos cye cemter. Clypeus! Wide, glosay, wnokth, withont dall-Iying puheseence, wilh few ered.
 quarters projecting lorward. median half iondened berweon two teedt. In freme in bar view. Nosde: Sommit flat, hetwach exnvex lomeral thinds, with plentifin long sathe of varying lengh.

 mu, FIL. 0.35 mm , TV 1.7 mı\%.

Named ifler d. A. trimest OAM. SiAM. Artclarde:

Remurks

 limes. The limited hoolegical faformation indicalleng What it was commen on box and gun drecs th blach suil and was lormeing all alfornoon all Si Ceorye. It is haghly distinctive nud milikely fo be confitsed wist wher mernkens of this species yroup.

(14CiS 18, 16)
 506.

Cimpunime (Mymumbles) reticuldas mackasennis Emery 1925: 139 Subgencric issigument.

Type sernmined Najor and minor workers. labelled "typus". Bex 174 (GMNH. ANIC),

Ofher material ramined: Northern Tervitory: Cainan Ck, 1977. TAW IANICy, Darwin, 1961. L.W (ANIC). Howard Springs, 1951, WLB (ANIC): Kahbadu NB: 1994, BBL.(SAMA) Smitl Pomin. 1977. KAB (ANIC): Smith Point. 1977, TAW (ANTC): Smith torm, s mi. E by S, 1977. 'J'AW (ANIC): Wame Falls, !erst BEL (SAMA); Wessel L. Rinthyi 1. 1977. TAW (ANIC), Queensland: Caims, 19) 2 , RW'J'(ANIC): Cams Edge Ilill. I975, BKI. (ANIC), Edge Hill (1 NIC); Lake Eachan Nrs 1972. RIVT (ANIC): Mingela, 1 km It 1977, BBL (ANIC): Missionary Bay, 1977. RWT (ANIC),

Horker dimgutesiss

Ihorsal surtace of propodecm with shallows anneavily. Sparse to plentiful erect, fong atas om mosi surfices, including scape (Fig. IS).

Marker asseriphom

Mapor worker. In lateral view. Head: Red brown. anterior hall cobarsely punctate will plentiful short. Whilish, sutherect sctase posterior hall smooth, glessy. wath few blallow punctaions: beape hown. fimiculas lighter ted brown; vertex with plentilut dors sedate lew shathow punctations: urderside of head wih shore setaes Ironoturn: Red brown. lighter than mesonotum. evenly convex. dorsum with lew fonge and stone setac. Mesonothon: Brown. evenly

 worker, head and meswomal, Underside of head will

convex. dorsum with plentifist shori serac Metanotum: Disminet, wide. shallow groove Propalemm: Brown dossum willz lew lomg seloc, anterior dorsum marhed by narmov ridge, otherwise sraght: angle abrupt; declivity sitraght; ratib dorsum/dedivity apponsmately 1 ; deeply atiate near spiracte. Node: With few long setac, browns amerion face lower hall stridgh. upper convex: summit blunte posterion face almght. Cabler: Brown. findy striate. Fore cona: Mossly rad brown with somic yellow. Fore fentr: Red brown, swollen. Fore lihidand tarsus: Red brown. Mid libiat Outside with sparse Dat-lying, short sette, withour briatles inside. In dursal view. Head: Sides stright tapering of from: vertex staight. slighly concave in some views: Prontal areat smalh, depressed ind extended longitudinally: fromal carinac nearty paralled. unctrior hald ativerging praterior halr wide: plentiful short, suth-erect selate on clypers and choeks. Clypens: Oval shaped, wites al truncalion, coarsely pumetate. similar to cheeks, anterion margin projecting. convex. narrow, less than hailf head width at mandibles. From or rear vicw. Noulc: Summu wide. straight, with fen hong setae.
Minor worher. fil lateral view. Ilead: Red brown. side glossy with sparse short Ilall setace; scape red hrown; funiculus lighter red brown: vernex will few longe setare underside of head withon cred setas, with spathe, short, flittying selac. Promosum: Red brown. ligher than mesonotum. Promotum und mesomothm: Even convexity with few, very lowe selte. Metanotume Distinct vee. Propndeym: Bnown, dorsum will few stallered selits, interior dorsum incloned upward to ridece then shallow concalyity tor

 (4) Komen distration. Siale bats $=1$ mm.
widely fimmaded atogle: decelivity mestly straighl! ranio dursum/declivily abour 1.5 ; glassyo depely surate mest upirgeles Norde: Brown with lew long satac. withoul pubescence: antering fice mastly staight. summir founded: pasterion lace straght. Gister:
 brown with stme yedow, Fore fember, Shotern, Tanstas: Rad housm. Misd libiai Red brown wills sparse. Ifal-lying selas. Without brimes inside. In densal view. Heide: Sides, umerior hall taporing to fimnt: vernex flally somvex berween widely munded burnus: scape sumelines will few long sedne: Frontal carmac diverging wide Fromal area degressed: mas HW posterior lar eye ceaner: live coanse kesl visithe Clypell! Glosty with few kog.
 anderviot magyon conves. projecting. lat font of dean vocw: Nexde: Summit wide. shaigh wilh lew longe elts

Mermaremmens

I'W (0.80)-1.05 min, IIT0 0.7-1 15 mm no. HW $1 .(10-$

Remarks

Wortersat dris spectios have hean foumd ant rees as well is the ground in sanforesth. mangrove ind bill:ampedr woretland. All kenown demb have beed fisunt in dead iwies and branches.

(HICTS 20. 21)

 Symongm Shalluch intu McAblhur I995: 121.
 New Symanym.
 New Synconygn.
 5188 Comblnathon.
 minor workers babelled "'lynas liciol Newcatile New

 *Typur Irom Trial Bay. New Sumth Wates" (ANLC).
 wonkers labelled "Mypus limor Mackity, Ouecosiland" (GMNH).
 'llatory: t3andelf's Farm. 1455. 'TG (ANIC):

 1930, TG (ANIC): Lecs Spring. 1931. 'GG (ANIC\%\%

 15ANA): l:tor, 1973. B13. (ANIC): Gurmme 1962. BBLC (ANIC): Kímdra. 1960. EER (ANIC): Nerriga Bradwome Nowril IRd. 1937. TG raNIC:

 (ANIC): Thmbulgum, 1962, 13131 (ANCC) Tuntw,

 1975. B3131.. (ANIC): Carirs, 1975, BBL (ANIC): C'airms, 30) mi. No lecos, KWT (ANCC): Girt Hatlahton \mathbb{K}. Plisicim. Nuplial Figight. lg94. RTE (SAMA): Miskinatary Bay. Hinchinlorook 1.1 1477. RW'l'
 (SAMA); Lucindals, Feu (SAMA), Tasmania,

 (SAMA): Bridpori. 1945. BBL (SAAA): IJulverisur, 1695, BBL (SAMA): İmital lifinders Io |ye) 1 , H13L. (SAMAR: lipping Furest, 1493, [3BL (SAMA): fitinderen I. Mt Sirealucki. 1991. [3BL (SAMA).

 1SAMA): M! William, 1493, BE3L (SAMA); Norlh

 (SAMA): Seymour; 1994, BIBI. (SAMA). Vicharin: Grecnsbumagh. JMC (ANICI; Lixengalha, 1457.

Wirker dickshova

 proparienm form an continuous weakly canvex -surlace.

Wiorker devempriom

Major wother, in tateral view. Yellony browno gater sumeline darker, limos, especially coxa yery much lighter then mesomomat. Fledd: Side with no erect serte amerion shaply trakentid: josterour elossy.
 usurly hall waty it cye: vertex wild fow long setak: Haderside of head withour erces acties, with sery spareo
 Primoltin and Mcsumbtum, Evenly bonvè.

Metamanal: Wide fonugh. spiracle well belaw dopstm. Propawterm: Dershat evenfy burved, entye
 ilorsumdectivily, approximalely is spirsele wal firward of dectivity. shosel ber Lincil than. dorkust, surfanded by indiatine reticulane antegumen glos.s.
 fower loalf Mrabgh. etpere berchly convex: sumpail
 indisamerly striate fore femmes Swoflen. Mid tihise Withoun ereat sedice will sparse, Jall-lymes

 vorcex suraght. ungles blun: scape with very sparme. shotr, Clat-lying setac. Frontul cishone mosily srught. dicogine pusterior very wide Fromal area. very spasti, depressed, slypets sides bordered by sharp ridere natrow, widest at truncalion. wides nearly strabght. tupering anterionly, gronsty vidgted longitotimatly, similat is elaceks. three fourshos all
 comprising clypers, mandible and sheckis tio un llan circular planse. Inax HW at bye centres cyes ovil. Clyperss; Willasu breat sctace cerrinis present within striatoms, anterior magit matoow, projecting, evenly eronves: In front or rear view. Norde: Summil sicke. slighely indented. widhour actace.

Minns worker. Heas: Brownish yellony 1 b browne limbs and antennde more yellowish, much lighter that mesusiotia; side of head. mesosomad. nure yellbw Imonal: Fefter with fiew setade: underside of head Withomb erect setac. Mesasomb: Glossy. midroscopically reliculate, wiblout pilosity. Promotum: Ankrior und puterioy thinds staight.

Figs 20. 21. Compronarrs marencephatus. 20, Miner worker; head und mesosuma. Dorsum of mesnsomnt is menstly straight 21. Known destribution al C. muneruephedus. Scale trar $=9 \mathrm{~mm}$.
centre thiat contck. Mesonotum: Monily strughn, slighty luised above pronotum ind prophedeurit. Metanisum: Slight ridecespiracle norat madole uf side,
 abrupt: ucclivily nesaly struight. Fatio Unswend declivily aboul I.5; spitacte situaled midway belwern sforsum and cosal. glosay sur ranaded by micraseopis retisulation. Nodes. Without pilonity, anterior Face lower ball straght, convex athove; sumbit shayp: pusterion Face stragha, Guster: Fitibly striate. Tone |conte: Swoulen. Mid tibia: With indissinct sparse short, that-lvime wetak, without bristes inside. In demas view. Head: Sides stright, slighly dapering of froms: sertex and angle, lesm excen convexily: wape with indistined. sparsie, short. Flat semes frontal carinats wide. divereging: fromtal inca indistinet. dramond
 Ghonsy, himety reticulate. few sparso erect stata, catrina indiatiact; anterior magin. convex. wide, projecting. In from ior rear view. Node: Summit wide, sometimes indented, witherat setare.

Mo'csunthtons.

 HW 0.95-1.7 imm, HL 1.1-1.9 mm. CAR W U.5-0. m
 (3. 5 . 5 mı.

Remarks

Forel (1992) dostinguinhed semicorimitus from matrexephofthe (asficter) by differences in the shape off the head. propodeum and pelkblar node and in having the sealpturing on tix leancated portion of the Llypeus "more clearly lengthwinc and not wrinkledreviculate as in the case of sembitarimasus". Vichmeyer (1425) destribed the subspleves n"grspmbles as having "heid of the major worker noliceably narrower than in the type. Hie trumate nolliace ol the anterion tead tess stharply delineaned and less eoncave, and the longitudinal grouven of the head and clypeus smach stronger". However, the carrently avallathe material shows considerable variation in all of these characters and we can lind sw Justification for recognising the subspecies separately from C, mucrocephelus. For sepatation from the closely related C. Henvensir. see Remarks under that species.

Camponobis. macmerephahes is generally found nexting in branches of trees and shrubs in eastern Australia.

Cumponotus sunguinifrons Vielaneyet
(FIGS 2. 22, 23)
Campunotus (Celobopsis) sempuinifrons Vichmeyer 1925: 143.

Tipe etranmerel: Major and minor workers lablecled "Typus." Frons 'Irrial Baly, New South Wales. Box |65/3 (2. A18)

Dumer mathered entmined: New Semult Wales: 1 spphgtom, 196i万, EK (ANIC): MI Wuming, 196t, BBL (ANCC): Thmut. (962. 1363). (ANIC): Lealic
 (ANIC). Nouthern 'lemblory: Kakadu NP, |4922, B13I. (SAMA), Qucensland: Mackay, |9) 72, BBI ($A N N_{C}$): Mingela, 1 km Ei. 1yי7. 13BL. (SAMA): ML Torier, 3 km LNE: 198K, ICTC (ANIC): Macksy (iT (ANIC).

Warher aliaghersis

Minor worker will at lew long eroct sota on Ithederside at head, few merte on giaker and nerse chavoreme Dorbill surfice of propodetm abour the

 2) Parlicutarly wh and near trumeations absent fom
 hond, bexdadnd gaster (F゙ig. 22).

Honker dasererippien"

Majer Wurker. In lateral view. Iteith: Ponteriog dark hown, anterior reds posterior withoul pilocily, aiterier witlo deams. läk, short, white, clavale melace
 red brown: anderside of head with few long setinc. Mesmonna and londe: Dark brown withonh pilosily,
 strangh, mex quatter tounded, then lithly consex.
 and dormumb bl propusdcum form unintervipted gemile curve. Metanotum; Wide, marked by Iwh limastence suhbres. Propodeam: Angke abous 1507: declivily mastly straght: ration dorsum/declivity about 1:5. Nede: Abtering face lowe hall mbagitt. ©hlorswise cornce: summia rounded; posterior fase shapohe, matined forwared. Limbss: Lighter centenfed ban Hessossmat, lime demur swosken. Mid thbide Wirts shott sparso flut-lyine seles, without bistles Bibside. It dursall view. Head; Sides strught, pariallefi vertex mantly blaigels, acaper with indintincl, flat, short,
 dacraing behind: anterior hewd trumeated elypetm Mandilles and checks forming flat circolar urwit ("arscly panctute with few chanse langiondinal

 wisdeat all cemire ol circular areits l'rontal area
 mareiar well ponserion to mandible ibsertionta.
 llad, wiale.
Minor worker, In lifleral view, Dark brown, limbs.
anterioy head and anemnate a litle lightor coloured. Hhath Side gatassy withoul pilosily. linely striate: verter with afeew loug selace. underside of bead without pilowily. Mesomoma: Wirhour piloaity, lamely striatc, reticulite, Fronombit: Anteroro latl contrex. posterion hall staighter. Mesmotum: Antermer and posterion sixilis inelined. cente thally conver. Metanolum: Shallat tretugh, spirncle well helow

 downward; angle rounded 1.35 ; dectivity upper hall shodight, Jower hall strongly wonctave: babis dornum/declivay apposesimately 3; spirache situated wall limward of declivity find midewy leotwoen dorstufs and coxal. Nonde: Withoul pilosity, anserion and posaterior fates parallels attrerior face shom,
 lace stoight, longes than anterior. Gaster, Fincly striatco sealtered upstanting setace wilboul visible pubencence. Fore Jemur: Swallen. Mid lihiar, Spares. fince flat-lying wetae, without bristes inside. In dersal vicw. Head: Shides straight, tapering stightly 10 fibont; vertex that wilh rounded borners; scatpe with
 sarimes shonl whe: frontial area indistmet: max IIW near eyc centre. Clyputs and elochs: Pincly reliculate sith leve setate carina dialinet pumenjorly: anteriur margin projecting, evenly convex, wide. In
 pilasity.

 Jeclivity, 23. Kinwardiswihutiosn Scalle bats $=1$ Imm.

CAR W 0.4 mm, CLY W 0.38 nmm , TL $0.72-0.75$ mm. NW 0.2-0.25 mm.

Remarks

In this species the major workers and queens possess plentilul distinctive short, clavate setae (Fig. 2) on the anterior head. Setae on the anterior head of minor workers are sparse, longer, unitorm diameter and not clavate. (Clavate setac resemble a forest of miniature matches with enlarged extremitics.) Such clavate setae are uncommon in Camponotus although Donisthorpe (1948) refers to similar clavate setac in Camomous (Colobopsis) excavatus from Malfin, West Irian.

AJM and RE collected an alate female at Leslie Dam, Eatonsville, NSW at 10 p.m. on 29 Nov. 1997. This suggests that nuptial flights of this species might occur near the last week in November.

Camponotus vitreus (Smith)

(FIGS 24, 25)
Formica vitrea Smith 1860: 94.
Prenolepsis adlerzii Forel 1886: 209: Forel 1895: 458 Synonym.
Camponotus (Colobopsis) virrens: Emery 1893; 225 Combination.
Camponatus vilreus: Forel 1895a: 455.
Cumponotus vitreus: Viehmeyer 1916: 160.
Canmonotus vitreas: Emery 1925: 148.
Campenotus vitrens: Karavaiey 1933: 319.
Material examined: Northem Territory: Darwin, 10 mile Jungle, WCC (SAMA); Darwin, Holmes Jungle, 1997, AJM (SAMA); Howard Springs, AS (SAMA); Howard Springs. 1951. WLB (ANIC); Litchfield. 1994, BBL (SAMA); Mt Brockinam, Radon Ck, 1979. GBM (ANLC): Mt Gilruth, NE Gorge, 1979, GBM (ANIC), Queensland: Bamaqa, 1983, JS (ANIC); Brisbane, JDM (Curtin); Cairns, 1970, DPIQ (DPIQ); Cairns, 1996, JBS (ANIC); Cairns, 1914. WMW (SAMA): Cairns, 20 km N, Cook Hwy. 1975, BBL (AN1C), Cairns Lake Placid, 1975, BBL (ANJC): Cairns, Parkland, 1975, BEL (ANIC); Cape Tribulation, 1980, GBM (ANIC); Cape Tribulation, $2.5 \mathrm{~km} \mathrm{~W}, 1982$, GBM (ANIC); Cardwell, 10 km NW, 1976, PJM (ANIC); Clump Point, 6 km W, 1971, RWT, JEF (ANIC): Cooklown Bot. Gdn., 1990, BBL (ANIC): Daintree, Cooper Ck, 1971, RWT, JEF (ANIC); Deeral Landing, 1975, BBL (ANIC); Edge Hill, 1971, BBL (ANIC); Etly Bay. 1980, GBM (ANIC); Goodna, 1956. BBL (ANIC): Hayman l., 1996, RSB (ANIC); Heathlands, 12 km SSE, 1992, IDN (ANIC); Hope Vale Mission, 15 km W by N, 1981, JEF (ANIC); Ingham, 1975, BBL (ANIC); Iron Ra., 1971, RWT,

JEF (ANIC); Kuranda, 1914, AML, WMW (ANIC): Kuranda, 1919, FPD (SAMA); Kuranda, 1914, WMW (SAMA): Lake Eacham, 1972, RWT (ANIC), Lakefield, Laura, 1980, GBM (ANIC); Mackay, Tur (ANIC); Magnetic I., 1981, BBL (ANIC); Magnetic I., GFH (ANIC); Mareeba, 1937, TG (ANIC); Mareeba Clahesy R.. 1937, TG (ANIC): Mission Beach, 1962, RWT (ANIC); Missionary Bay, Hinchinbrook I., 1977, RWT (ANIC): Mossman Gorge, 1966, RWT (ANIC); Mt Baird, 3.5 km SW by S, 1981, IDN (ANIC); Mt Cook NP. 1980, DHC (ANIC); Mt Coot-tha, 196I, BBL (ANIC); Mt Tozer, 3 km ENE, 1986, TAW (ANIC): Mt Webb, 1981, IDN (ANIC); Packers Ck nr Portland Roads. 1985, GBM, DJC (ANIC); Palm I.. GFH (ANIC); Palmerstone NP, 1969, RWT (ANIC): Rounded Hill, 1 mile N, 1981, JEF (ANIC); Silver Plains, Massey Ck, 1979, BJW (ANIC); Somerset, 1976. EC (ANIC); Townsville, 1902, FPD (SAMA): Townsville, 1974, JAh (ANIC); Yarrabah Aboriginal Community, 1988, RWT (ANIC).

Worker diagnasis

Whole ant clothed in plentiful long erect setac except absemt on most of underside of head. In lateral view, metanotal groove is depressed, mesonotum and propodeum form high, arched convexities (Fig. 24),

Worker description

Major worker, In lateral view. Dark red brown, limbs and funiculus lighter coloured, gaster darker. Head: Truncation rounded 1.35°; side glossy with sparse extremely short, adpressed setae, without erect setae; few long and short, erect setae on ventex and posterior head, absent on anterior head: underside of head without erect setae. Pronotum and mesonotum: Uniform semicircle scarcely marked by pro-mesonotal suture, plentiful long and short, ereat setae and sparse flat-lying setae. Metanotum: Trough with distinct sloping sides, spiracle directed upward, aperture level with dorsum. Propodeum: Humped high, also forming semicircle, slightly fattened on top; angle near right angle, rounded: declivity straight above, concave below; ratio dorsum/declivity about 1.5 ; spiracle situated midway between coxa and dorsum, directed backward. surrounded by glossy surface with very sparse, short. fine setae. Node: Short longitudinally, few long setae, without pubescence, lower and upper halves of anterior face straight, separated by rounded 135° angle; summit sharp; posterior face mostly straight. Gaster: Glossy. Fore femur: Swollen. Mid thihi: With plentiful sub-erect setae, without bristles inside. In dorsal view. Head: Sides weakly convex, tapering to front; vertex straight; scape with plentiful distinct setae raised 45°; frontal carinae wider than half HW. more or less continuous; with lateral margins of
clypeus: formal areat elsongalted, eliammod shaped. depressed; max HIW sll cye centre; five teeth. C'lypuods stighty suised above cheoks and sephersmed on sides by ridge: anterior third af elypets:, sumpunding checks and mandibles Jimm atrunciled plane separated brom sumoundinges hy rounded angle
 trumation then bipering in from: glossy withon pubescence, with bite of wo crect sctax. without Larmat anderior margerf very naponv: projectime. benvex. Firnit tit reat view. Nodez. Sumbuit sraght smonelones widely indented, with pleneiful, stom, fonce solike.

Minor worktor: Iateral view, Dark red hrowns limhs and lunjeulus ligher, thead: Sule glossy with sparse. extrently short, idpressied sente: verlex will föw longe and short fine setae thaderside of heid without erect setace Mesosomma: Similar (o) major workel Except uperture uf metantal spiracle placed above dorsump. Nome: Shore Iongidudinally with few lnug selae, lacking pubescence; lower and apper thates of anteriof face shaight, separales by rounded 135 ingle: summir sharp bur not as shap no majo: posiceror liace mostly statight. Gianter: Slighty darker than bead, glossy, Fore femur: Lithles lighter colonad thatif coxil, sipollern. Mid libias: Plentilul sub-erest. fong. setac, backinge bristles on jnside. Devsall view. Head: Siden nearly stratght, lapering 10 diomt vertex

Figs 24, 25. Camponotus vitreus. 24. Mnor worker, head and mesosoma. Underside of head lacks erect setae. 25. Known distribution of C. Wierens. Scate bar $=1 \mathrm{~mm}$.
cantex. flattented at centre: seapo with plenlitul distinet setat rased 45° ", frontal catinate wider than halr HW: fromal ared indisemet trinengle: max HW at sye centre, Clypens: Without ntinestisun, fincly punctats, anterier margin sunvek projecting. bery wide: sides of clypeds stritigh glossy. withont puleeseence with lew line erect setse! with indistines carina. Firsult or rear view. Nowle: Solnhmit wide. braight, whth plemitul, shorta dine sebac, somelines, indented.

Méchanmoments.

 TL (1). $8(1-6.9 .95 \mathrm{~mm}$.

Remarks

Compuntobes vierets is conlintel to the tropics and is noten seen foraging on tree trunks and on the ervand in ratio fores. Smith (1860) deseribed this spectes from speciment collected by A. K. Wallace. al "Bachian, rumbing in numbers up and down tree trunks. probably in scarch of Aphides" the lowadity is now Batian. Moledea lslands, Indonesial). Vichancyer (1416) nuted that in Singapore, C. virrew. -nests in thin bambore, in ernen wood and in hollow branctios of Mangiferce. Ficmales frequently on the lampa. One such catught demale had raised of sterile lemates in apluster nese". WCC collected speenmens of C. viltreus from "a hole in a lree" near Darwim. Staff of the Quaratine Service. Department of Prianary Industries, Qucensland collected specimens of C. lifned. (vial Hy77) from a Weroden window sill ill Cuirns, Qld on 5. June 1970. No uttempt has, been made here to determine the distribution of Co virters sutsule Australia. We have been unable tos examine lype material of C, vitrew and the concept uceepted here is based on Smith"s origimal deacription.

Acknowledgments

This work has been made possible by grants from Australian Biological Resources. Study and the Sir Mark Mitchell Trust, and the support of the South Australian Muscum and CSIRO Entomology. Thanks ase dite to the referses A. Andersen, A. Austin and B. Heterick for their helpful comments. A. Vincent for the finest of the drawings. M. Amhony and N_{+}Barnent for library assistance and E. G. Mathews and S. Barker for theit encouragement.

Relerences

 inciuding Cuylen and Bumbis, Hymenomerat, Ants and Comkon Wunps" "laylor \& Francis. Londont.
 the world" (1firvanal Unibersity Press, Cambridgto Mass.)
[BmoNy: W. L. [1972F A somparison of the Hyleats and
 If Meyarerin R. J.. Aychsu E. S. \& Duckworlh W. D. (Eds)"Tranicul lorest cemystems in Alrica und South Americar al comparative neview" (Smithsorsian Invitution P'rex, Waxhiegtion, DC).
 (llym- Jarmiendut) (mom New Guinca wriba few nones.

 renismi vicime 20. Formiche di Birmanial e del
 DIM, (in: Star: Now. 7. +85.521 .
(1893) Voyate de MMI. Bedut er Dieter dials T'Archipel Alulais. Ifrmicides de I'Arclapel Malaisis. Re": suase Pent, 1, 187-234.

(19|4) Les Fommis de la Noulelle-Cialedume

 Nouvelle. Caledone es and Illes Loyally. A. Zenlogy. Vin 1"1(". W. Krendely Vellag, Wiesbaden).
(1925) Ilymenontera, Family Furmicidac: subfamily formicinace $I n$ Wytamam If: (Ed.) "Gennom
 Vertenenil, Brussels).
 Yandiemenslankl. mil bemmalerer Berücksichnignog der geographischen Verbreitung der Insecten. An: Numors. \& 83.297.
 Sinn: hi, Zomb, Meds. 30, 131-21.5.
(1) 20.4) Quelyuen finumia de Medigasan (ptcohess pur M. W. W. Simith): de Nourclle Zelame (recosteces par M1. Sommer) de Queenstand (Australios)

 Beds. 3x, 2231.237.
(1895a) 1der lenmaides de l'Limpire des Inter et de Ceylam. Purt 5. Adjonetion aur Campanminate. 1. Romilan Netp. Hfsp. Sin: 9, +53.472.
 recolteres it The Ridge. Nachaty, Queenstanu par M

(1902) Foarmis munvelles to Australle. Reve Surne Zowl 10. 415.548.
(1912) Fiormiciuded Nuctrppiques. toan (1. 5ine sumblamilic Ciampmarimbe" Forel. Atem. Sixc. Lintomot. Bels. 20. 59-9?
(1913) Foumis de Tismanic ef d'Ausralie
 Sci. Nur. 49. 173-196.
11014) Le (Fence (imupиниия Mayg 以 les gewres roisins. Revi. Suisw \%over. 22, 257-27n.
 (20)(0) Respomses of ant cammmitios fo dry sulfur depositions from mining emissions in semi-arid torpical Austrulia, whith implicanions lor the use of functional groups. Aust Rionl. 25, 653-6663.
Krkavates: Vo (1933) Amencón dus dem findo Australlischen Gishiet. T. Ximmon'u 11. 305-320.
Mayk G. (|şol). "Die Europalischen Furniciden.

 and Identificalion. Monographs din Invertebratic Fixanomy Vil. 3" (CSIRO Publivlinge ("blingward).
\& Als Aknnuk. A.J. (1995) Gemeric placentent (1) Ausmilian unte described by W. Fi Prichson
 121.123.
 conlected by Mr A, R. Watlace in the islands an Bachan, K゙alisiat, Amboyne Gifoln and at Dory in Netw Guineat of limne Soc: Lemid. Zand, 5, 43-14.3.
Silivol A, M. (1808)"Inectorum Ligurite spacticx novae ant ramines" (Gentaca).
VIf:AML:7ER. 11. (1916) Anciben van Singupure, Beakachea und gesimmelf von Il, Ovelteck. Ath. Nuturemeth. 81, $10 \mathrm{~m}^{2} 16 \mathrm{~N}$.
(1925) Formiciden aler (thelratinednen

 1.39-158.
(1927) 'The ants (n' I ard Hows Island and Norliolk Island. Preve Amf. We cad. AuM So\%. 62, 121-1.53.
 Istans, Western Ansmallia No. IX. The ants. f, R. Sim: Wesr duses. 20. 1.37-16i.3.

OBSERVATIONS ON THE DEVELOPMENT AND PARASITOIDS OF FERGUSONINA/FERGUSOBIA GALLS ON MELALEUCA QUINQUENERVIA (MYRTACEAE) IN AUSTRALIA

By K. A. DAVIES*, J. MAKINSON† \& M. F. Purceld \dagger

Abstract

Summary Davies, K. A., Makinson, J \& Purcell, M. F. (2001) Observations on the development and parasitoids of Fergusonina/Fergusobia galls on Melaleuca quinquenervia (Myrtaceae) in Australia. Trans. R. Soc. S. Aust. 125(1), 45-50, 31 May, 2001. The gall-forming Fergusonina/Fergusobia association is being considered as a potential biocontrol agent of Melaleuca quinquenervia in Florida, where it has become a serious weed. This paper reports observations on the development of Fergusonina/Fergusobia galls on M. quinquenervia in coastal and sub-coastal southeastern Queensland and northern New South Wales. The morphology of the gall and the relationship between gall size and numbers of developing cavities and insects are described. Nematodes were found in cavities containing first and second or early third stage fly larvae. Eight species of hymenoptera parasitoids were reared from galls. Key Words: Galls, field surveys, Fergusonina, Fergusobia, Melaleuca quinquenervia, flies, nematodes, parasitoids, gall inquilines.

OBSERVATIONS ON THE DE ELOPMENT AND PARASITOIDS OF FERGUSONINA/FERCUSOBIA GALLS ON MELA/EUCA QUINQUIENERVAA (MYRTACEAE) IN AUSTRALJA

by K. Λ, Davies*, Jo Miakingont \& M: li. Purchat

thummary

Abstract

 (1).45.51), il May, 2ome).

Intruduction

The obligate asteciation belween fergenamina sp7. (Diphera: Ferguseminidacol and Ferzersohior app.
 mumbers of lannly Myraceac is amonest the most
 af, ב(k) . The llymematode sissociation wals lirss deseritid by Curric (1637) and development of the nemaknde was borher clarifiged by Fisher of Nichle
 with a parthenosenelic generation fiallowed by at licternsexual gremeration. In the Jater male and lemale nematudes develop tor the adult stake in the plant sall, where young females are inseminated, and then enter the matum third stage bana of the fenalice fly. They become parasile of the fly. growing and latying cgeg in the huenolymph of the :adull Ty
 hatch and some move inte the fly ovarics. When the adutt fy emerges Irom foc gallo. it depenils ins egex and jusenike nematodes within primordial leaf and flower bud bsteres, where new galls develop and in Which the parthengenetje yendation of the nematerte wesus. Giblim-Davis (unpuh. 20mp has preliminary cyidence suggesting hat in is. quinumenervio ble sentatode mitates gall fomation bulore the fly epes have hatched. The lecting activity of the fly larvale apparenally leads on

[^6]formation of the tharacteristic cavition willion Ne: gall (C'urrie 1937: Giblim-Divvis umpuh-) Asmatiations hed ween the nemanote and ily appeat we pe species-specific (Gibliz-Davin ef ut, 2001).
The 21 specic. of Ferstesemintr destribed froms Australiza are from Eumadynts iTomnoir 19371 wills (me species from India on Svergian (Hathin 1982). Mose reards of Fopsusobion menatodes are Proms
 Gillin-Duvis to al. 2001). Eizht mew species 11 Fergasonima Dies. wall patial descriptions ol another sive un-mamed spectes !'laylor pers. corm. 2h011 and selen new species of Fergherfote, with partial dexcriplisms af ambler thtee wh-maned sjecies (Davies pers come 20101) are currently being destribed fiom Actalemero. Litide is knowa of the biokey and develomment of Fergtamimat

 hrohd-luafed paperbarh nee, is widely distributed alone coastal stronns and in swampe from neat Sydincy to Cape York in Australsa (Hulliday 19x'9) and has bewone a pornate ondmentat aree in mopical and mb-trepical regiens of the Woth (Gagne at al 1997). It was introduced intor Filurida in 1906 (Selmitr of af fryl) and is now reganded ith the most problematic weed there (Fiorida Conservation Lomutatun 1993). It causte extenhac environmental and seonmonice damage (Balciunas \& Comer 190)) and has invaded more tham 200,000 hetares induding wellateds (Bofle ry eff. (r) +). Conventional contrul melherds, includine buming. stashing and applitation of hertheides have proved ineflective, cosily or envicommentally unsound tGigne ef ul.
 will mone than 450 herhivothes Insects (blationas or
 Burrows 19ys) and some hatve polential at

 midges (Diphera: Cecidomydidae) (Oaxeme of ato
 (Batcianias. at ath 1995b). Galls of the forgatem. imarionensamia act us a "moderately puwerful" metatustic sithe, and could poseneially supprens sed phothction and seluse tree siegor IGrolaby ar of
 among a suite of innects ar hiocontrol agents of At .
 cif. 21(6) 1).
 Irwepeaty conain a emoplex of hymemepteran
 inguilines, the there have been few stadies on these
 There is comsisterothle variability between gallo 111
 chargence (Tidyor et itt 19\%). Whateve little is

 be examined.
Thas paper reparts on the develumane an FerghsuminalFergnsohim galls on Mo. aminandnervia ill senthern Qucensland and northerm NSW and the
 surveys: (both the nomatento and the lly we new apectes, and will he dencribed shewhere

Mutcrials and Methouds

Cialls ware eoflected ionm specimens af at
 comben, sedsomilly imindated, sites in soulli-c:astern Gucensland and inoth-easem New South Wates:

 54. En Murayridd $127^{\circ} 07^{\prime}$ ふे. $152^{\circ} 58^{\circ}$ E).

 and July 1098
Gralls hata appeated io consist of living tissue and

plantis bage at 5 • C malit examination (willoin 7
 water under a dissectinis midenserpe. dampe gidn, Here cut in hall and only gom part was dissected Some mature thist bate fly larvice and pupariad extateded were rinsed and then disseded in 10.8 . NaCl fow extractions of parasitic menatodes. The morphestepleal chaticterisices, number of savities. presenee in absence of nematutes. number of fly
 pupies, and mumber af kepidapuran impuilines for Lind gall were recorded. Nemathen were collected and Jixed in hod lirsmalin ate fic ach (f:1) poressed through ateobol/glyeerol ino pure glyecril hy slas cyaporation at $41^{\circ} \mathrm{C}$. and monned in glyerol in glass slides fore examination (Davies be Lloyd (eyph). R'upace and puparia swete eilher preserved in alculay (o) kepl treatr in plustic vials and checked daily for smogence of insects. Adultw enverying from gith were cither preserved in 70\% aherobl or pimed for identification. Lndistected hall' galls were monilunat faremergence of olices parathiterids and inguilines and ally invers enncring were treated ass alwe.
Nematede spesimerns from this stady were

 the United States Department in Agriewture. Agricultural Researcla Services, Australian Riodegical Contel Lathratery (ABCO) insect solfecton.

Results

Deservipion of gall

Galls (tiges 1,2 anc lound hroughoul the year: fhough they are more prevalem hotwem April and
 vegutaise growit that obsers manly dering the winker munth (Goonshy at at, 2 (Mon). They unalatis develop in terminal husin 1137 off 177 gallo examines
 at Thamer 5 akes (10.26), but wemitually develons ar axtal galls 839 of 177) on at the hatec at a llower

 (4) Iower spikes-swere seseile (dig. I) hul terminat bud gallo were stalked (Fig 2) Some were comenat with line haira (Fig. ?2 onhers appotred smouth and hairtess 178. 1).
Galls apposar ks have arisch from in single hod, willa lhe ventral surtioce of the leafleaves forming the exlefnal fate of the gatld shme galls, described as

 the talted distue was softe excepr around carmits

「in 1

1ig. Z

 hodes. scale har $=1 \mathrm{~cm}$. Fige, - L. Lear bud galls with leal mattrial growing beyont dice gall Scale but $=1 \mathrm{~cm}$.
tromaverse sexforg. galls were mundert in oftline and lissues lequerally had a reddint of pinkish timge. Cavilics combining te developinge Cly larvad wene or al in longitudiat section and appented to ace surrounded by younge white undiffereniated ploml
 moparia umbl womal thome cavities that eomtained laynemopteran inquiline harvae. Giall nodules with catvities contathore puparia had a window-like arca of thin plung cgidermic through which the sklult fly cenuld emerge.

The average momber of nodulen per gall conlecicd it 1407 wis ((1) ean $\pm 80) 7.6 \pm 5.5(n=175$, mange 1 - 27. In duly 1908 . liresh weights and lengibs ind hreadels of 33 galls from Chelmer shad Corinda were mensured. and the mumber of modules for enth getl Widis counted. 'the gatls were then alieced op and Itwe momber and locertiom of the eatities was noted. Regression amalysis stowted at linear gedaionsthip bedteren the mombers uf medules and the actuat
mumber al cavitus $\left(y:=1.8763+1.0353 x: s^{2}=\right.$ 0.716). The everage mamber of modute wand $10.4 \pm$ 5.6 (range 2-24) ind carties $12.6 \pm 6,4$ (range $3-28$), i.c. there wats an average underesthmate of cavilies of 18% resulting frum galls latge enough to contain incronal celvilics. One stmall and some larger yaths contained sonte eavilics not imede an nodule.

There was at linear relationship hetween fresh Weight and number of cavitues per gall $(y=3.7905+$ $70.04 x$: $\mathrm{t}^{-2}=0.5841$. Small, soft galls lackinge clearly dulined modtles ateraged $57.2 \pm 21.7 \mathrm{ing}$ in wsight. $5.0 \pm 0.7 \mathrm{~mm}$ in benglh and $4.8+(1.5$ mun in diameler $(t)=+$). galls with defined modules but lacking "windows" averaged $^{2} 119.0 \pm 55.9$ mge in weight, 6.3 $\pm 1.9 \mathrm{mms}$ is lenglt ank $5.9 \pm 1.6 \mathrm{~mm}$ in diameter on $=12$ and gatls with boll delined modules and "wintows' averaged $151.0 \pm 82.7 \mathrm{ng}$ in weight. 7.5 $\pm 2,3 \mathrm{~mm}$ in lengdt and $7.4 \pm 1.4 \mathrm{~mm}$ in dianceter (n $=\mid 8)$. Smatl, sofl gals combaned 8.7 ± 5.1 catvition (range + - 16), gatls with delined nodules 11.7 ± 7.5 Lavifien (ramge $6-27$) and galls wilh 'windnws' IGA ± 6.9 caviticn (Jathge 3-2K).
In December 1907, very small galls (allowin 311 nin dimmeter) relered for as "curted leal galls" were collected at Moraty ficher, Leane growing beyond the galls were dimbaticteristically small and dimorted The nverage number of cavites in thewe galls was if \pm 1.4 (ringe $1-x ; n=10)$.

Numbur of matiofs prey goll

The 175 galle collected Freme all siten and exammed in July 1907 Jud an average of 6.1 ± 5.2 inhects of all
 the toxal examined) combaned more developing Wasper diath flies. These galls Jiad an average of $4.0 \pm$ 3. 4 wanper per gall frange $1-11$ and 10.8 ± 1.1 flion per gath (ramge () - 4). Etaghy-six galls (40\%) contained mane dies than wasps, with atr average of 6.2 ± 3.6 dlies (trange $1-15$) ind $0.7=1.1$ Wasps (range (1) - (i) per gall. However, regression analywis shonved that there hat a peror delationship beiween the numbere of wasps and numbers ur flises Aevelapints in a

Whiry of these 号alls 617 is comtained lepidopteram inguilnes. elsatlly ithociated with webbing and trass. Only one lephdopteran lanva, Irun either bl two undestrmined spocies, was presient in athy one gall The average number of othes insects (devoloping fice and wasps) per gall containing al lepidopterad larva was $1,4 \pm 2.0$ (range $0-7$) In 33 \% ol the galla. with lepidopteran inguilines the larvat liad eutern out most of the geth and few flies of waps survived. Jn bone gall. six moall bly tarvae were tound in the remaining strell of phant tisate.

Miter, psyllide and ronders were fomed in or assocital with gatls ind thrips mectsionally. Other gatl inguilnes recorded were a colempteran dava
frem unc gatl. and unidentilicel dipteran farvae from three onthers.
 surlis

Nomatoden were found in $5+(30.5 \%)$ galls Endected from all sites in July IMy7. answeiated with first ind second slatge and young thiod shage tly larvad. They were not loand in cavilies with mature third stage lily larvace, puparia, wasp parasitoids of lepidepteratn inuulines. Very lew infertive lemale nemandendex were coslected. and then from maly fonn galls. Examination of intective females liom the galls showed that they were juseminated belore entering the fly larvae. No patasitic nematedes were found lirem dissections of male larsace and puparia (on $=(8)$. Female larvac contained an average of $8.3 \pm$ 2.7 paranitic mematodes (range $3-11 . n=9$) and bemale puparia 3.9 ± 20 (rimge $0-9, n=15$) Unexpectedly. nne $17 y$ larvis contained noss boly parastice lemales but abso several male mematodes. Nomatede eqges were liound in the hatmolymph of seme puparias i.e. egge depowition hegan before the adult tly enterged. and newly emerged fernate flis: enontained marry juvenile nemalodes in the haemolymph.
Cislls collected Irom Meraylied in Ibecember 1997 were gencrally batice in development than those collected in luly and mosily comatamed only first stage fly larvae. Nematode development wats similaty at an carly mage, and must of the galls: examined eonatamed only parthenogenetice femates and juveniles. (0f It gralls dissected, bwo were parasitised by wasps and contained no mematodes. Of thme containing nematodes, enly Iwo hat malles
and these were the only gelles with second slage fly Jatrvae. The average number of parthenogenctic nematodes per ceavity in the galls was $2,2 \pm 0.7$ (range $1-3,0=8)$. I 化 average lental number of nemalodes per cavily wat 8.3 ± 5.6 (range 3-20).

Wasp divervins dismibution tmul shops

In July (997, eight species of Hymsonoptora were reared from pupae dissected jiom 38 gitls from 12 sites (Thble J). Most galls (27) contained wasps of only one species, tine galls confuined Iwh sprecics and fiwo galls contained three species. The wasps where Bratom ap. (Brisconidate), dimryomm spl. (Eurybomidas), Cerlocyber sp. (Pteromadidac).
 (Eulophidac), Megrastrismes sp. (Torymidab), and two unidentified species. Of these, Emryfonn appeired to be the must widely disiribuled, being reared from 16 gatls at 10 sites Cuefory galls) and Necthastmas (from 12 galls) were each crucd from six sites. Brucom (from 4 gatls) fown live sites, Alegrastigmms (from 3 galls) Prom two siles and Ciroospilas (trom 3 galls) from two sites.
Ohacryations wact made of feceding thehaviour and/or emergence of particular wasp fionm isolated pupatia. Coredocy/ne sp. emerged from a puparanm dissected from a gall, i.e. it is a primary parasiond of
 propee, which had developed lrom larvate observed lecding excleparasilically on Forgamomina larvace. Eimbomed larvate hidd long, curved mandibles that were protroded for fecling. In two palls. cavition were noted which comtaned the remains of youngs second instal tlies and which were connected by amall "Iunnels" (6) other cavilies containing fly ind
 in ImM 1997.

(\%แงไแ		I	1				
Cixdlum		1	1			1	
Airleld							
Royers Ruad	I	2					
Mraraytiend				1			
Bracken	1	1	1				
Ridlec							
Nurlyce	1	3	;				
Chelnice	2	,	1	2			
Cormda					,		
Pomtaville		1			?		
Oxlcy l'ark		1		1			
Dumbandella		2	1	?			
Wonelhusit	1	1	1	2			

[^7]Wasp larvie abentical to those which sleveloped into
 dhatiteritic brown marks on heir cuticde. presumably resultiog from wounding. P'epae lhat
 cowon surronaded by liass, and were dinsecred from inslividual caylliz. There was mo bidenee that they moved from cavily do cavily, Itardening of gall ectls, arsuchated with the presence of some liymenopteran inquilines. was obverved in kinu galls.

Discustiom

(iiven that the lengut of the tergensamima life eyste,
 (Balkunits et af. [495b) and the folowering poried for
 it wems. likely that thete are several gencrations of the liy per year. It remains unclear what happene an the fily aver the stmmer periond. It was mon patsible to deatrme it the small curled kew galls collected in becember 1997 comained the sumbe specieso of fly
 comid survive the sammer and would nob requite as diphtus.
The wark deseribed here hale prowded the 1 mos inlomation an manbers of parthenogenevic lemale
 Nhe rambers of juvenile nomptodes deposited by
 combitured that infertive fernalle nemulates whor omber mate fies !Curtic 1937) bot nothine is kubw allubl how they distinguish the sexes. As with Firmensedma apecies on bitculyphes sple, (Figher \& Niskle 1968: Das ies unpub h. infective lemales trum if, panduethervie are inseminated while in the gall. - The mumber of fomale nearatukes paraticic in femate
 higher that for most fergusphina speces but the parasilit ienaleh were smatter than reported fior species on Emadfonis spo \{Curric 1437: Fishler \& Nickle 196x, Davics unpub. \%
Gialls on M. quinquesteptiv are mucly smather llsw

 ceasmable catimate of nesource and heme of carrying capicity of the gall.
The hiokgy of gullasseciated Hymenoptera is
 a wayd hypertarationd or inquiline (Rillinge the restaten insert and then leoding on the gall hisure) (Boucer 1988 . '1atyler es at. 1996). From studics of

bikely te be an inquiline on a primary condoparasituid. Heres its emergence lisan a pupatium fram at isth contribmed its stalles as promary parasibid. Emyymata is a very farye genus, containing species with divergent biologies (Talor of wh. Byn). Ikere. Eurwoma sp, was obseryed fedingectoptandically on Feggasonima Jaryace. Pupae of Brarmas. Weres disseeted from indtividual cavities in gallis,
 ectopurasitgid of Fergutemina larvice. The oscurtence of Neamatrais in these galle was of partionlar mesest, becande him heems of be the first recond of this genus inm firghxmmutherguabia
 (Schmide pers conn. 2001). There are sevetal records of al from whuthem Queenshand (Boucek 1988) il is

Thelye species of Hymonopter were Teund from
 Australia (Taylor et a. 1996) sin irom flonver thal
 (Currie 1437) and foue from sinlls (on Syexgelem in India (Harris 1982). Fight penera haye texel) seducd
 huve been premusly assuciated with. Ferenusonima Felser species of hymenopleran parasiloids wele assucialted with individual galls on M 4winghentervise connpared in those on E:
 attributuble io the smaller sire of the galls. In
 in the field, so that all wath specien emerging wele suttected. Dlere. pupae were collened from diswected galks. en that haryal slisges were generally unidentilicu. and rate sptcies could have hedr missed. Of the gentria collested from Mrwtensors
 appear to be mont andeypread.
Currie (1937) concluted drat parationds have an important rete in the regulation of pagentations on
 study represents as sharl limbe und gives now information ahour temporal variatism. it comlians thar when hymemperan parasibrids: and mpuilunes
 number of flies is mifter reduced. Lepidopleran impulines oflen comsumed the incrive of whole gallas destroying boulb developing flics amo wasp, The elficacy of Fergusmim in pultedial biscontron
 likely to be reduced by parasibsan. predauion and
 However this may be sumewhat cimpensated tion loy the oils und lerpenes cladacterintic of Motedrmad (Alman 1489) which may act at delercoms to patailism and herhivary

Acknowledgnents.

Along will linds from the USDA-ARS Office al International Rescarch Jrogranm, the betogeceal control an Mathaterer projed is tunded hy if US Tederal and State of Forridat Agencies US Amoy Comps of Enenemers (dacksonville Disitiet); National Parh iservice: Florida Department of Natural Resouress: Forida Departanent of Environmental Regulation (West Paink beach and Eurt Myers
ofliess): South Florita Water Management Distriet: Lee Combly, Fi: Datie County, FL. The USDA-ARS Aquate Weed Labrratmy in For Lifuderdale. Fil.. assisted in ohtangerg fums from the above agenems. KiAD shanks the USDA and CSIRO For allowing her Io vinil the Ausiralim Biologital Contern Lalmoraury at Indoonapilly. and fire we of their facilities. C, Burwell (Quecnaland Musemm) idertilied Hes Hymemplesat We thank G. Tiylor arnd A. Austin lior critical reading ol "he manuscript.

RePrencen

 2(35-276)

 bindagical connaz :
 (1409゙at Anstrallion

 R. 12, (ESG) Proceedinge. Jäghalh Internariomal
 1 liniversity. Camsthary, 2-7 relutary, 1042? [DS IR/CSIRO. Methrurtie).
\therefore \{1995str) Insects. Its
 Prom Australide Aepurtica 17, 16.21.

 R, L. K. Whits:ther, (I, I), (Edy) Prococdinge, Symponium
 Nusembera $170^{\circ} 8$ (United Shater Ueprartheme of the [nteriar, Natiomal Park S̈spvice, Denver, Cohntals).

 lesth, Culpaturn.

 lamilies. with a Rectassification of Sperices" (C'MB Imendramal, Wallingtions).
 if assaciation beween fles and momatudes, Pran : fimm. ния: N:'14'62. 1+7-174.

I Otw
 Parh. Moridar

 Fon stalying bisuliverwly and cospsciation on Chero. \%.

 Yiskt (in prese).

 sp. (Diphera: Fergusoninides) ind Its lmpheations hor

 7. 311 ? 18
 (fidmly.n. Port Meltreurne. Australiat.

 (NSW Aericulture, Syedney, NSW).

 pasporetise ind review in the prevent mpathe phan

 Universily os Miami. Forida. 2-t November. 19sk
 Survices. Denver. Ciblorada)
 Biokhyy of the bucalypt eill forming fly fortumanims

 (3meonialict. Trims. R. Sime is dma. 120. 131-14is
 Mill Peme. Vinme Sore NSW lxii. 120. 116.

NEOECHINORHYNCHUS NINGALOOENSIS SP. NOV. (ACANTHOCEPHALA: NEOECHINORHYNCHIDAE) FROM SCARUS GHOBBAN AND S. PSITTACUS (SCARIDAE) FROM WESTERN AUSTRALIA

By Sylvie Pichelin* \& Thomas H. Cribb*

Abstract

Summary Pichelin, S. \& Cribb, T. H. (2001) Neoechinorhynchus ningalooensis sp. nov. (Acanthocephala: Neoechinorhynchidae) from Scarus ghobban and S. psittacus (Scaridae) from Western Australia. Trans. R. Soc. S, Aust. (2001) 125(1), 51-55, 31 May, 2001. Neoechinorhynchus ningalooensis sp. nov, is described from Scarus ghobban Forsskål, 1775 and S. psittacus Forsskăl, 1775 (Scaridae) from Ningaloo Reef, Western Australia. The new species is distinguished by having a combination of the following: three circles of six hooks on the proboscis; anterior hooks equal in size ($66-68 \mu \mathrm{~m}$ long), middle hooks (50-58 $\mu \mathrm{m}$ long), 79% smaller than anterior hooks, posterior hooks ($40-44 \mu \mathrm{~m}$ long) smallest; lemnisci equal in length and extending beyond the proboscis receptacle but not to ovoid testes; terminal papilla absent. This report is the first published account of an acanthocephalan from parrotfish (Scaridae) and the first record of an eoacanthocephalan from the western coast of Australia. Key Words: Acanthocephala, Neoechinorhynchidae, Neoechinorhynchus, parrotfish, Western Australia, Scaridae, new species.

NEOECHINORHINCHUS NINGALOOENSIS SP. NOV. (ACANTHOCEPHALA: NEOECHINORHYNCHIDAE) FROII SCARUS GIIOBIBANAND S. PSITTACUS (SCARIDAE) FROM WESTERN AUSTRALIA

by Syivie Prifarn \& Thomas H. CRubi*

Abstract

Summary s. Amf (2011) I25(1), 5!-55, 31 May, 20(1).

 Sestridat. IEW specita.

Introduction

Nespechinerhymbus: (Neroechinorhynehidac: Acanthocephatal has been recorded from athoul 50 families of hathes world-wide. Three species of Newesthmorymathes. N. usilfs (Rudolphi, 1819), N. of/nuri Famagul.. 1434 and N. addrichellase Ednumats, 1971 are present in Aostralian listhes.
 Mactie, 1925, was deseribed by southwell d Maclic (1925) but Edmonds (1982) considered that it mipht he compecific wilt N. Alonsuri. Netecthinorhyncturs magnes is currenty considered a species inamirenda (see Edmonds 1984).
The now species described here was recovered from two species of parrolishes (Scaridac) from Ningaloo Reef in Western Ausitalia. To bur knowlodec, no acanthocephatan has previously haen pecorded from purrofishes anywhere in the world.

Materials and Methods

Acanthocephalans were removed from the intestures of Searus spp., washed in tapwater compressed slighty between twa glass slides to event the proboscis, fixed in 10% Berlandss nuid (65\% glacial acetic acid and 5% formalin) in Papwater und stored in 70% ethanol, Specimens were examined and measured in temporary glycerol mounts under a

[^8]coveralip. Drawings were made with the tiid of is caumera hecida und added to by hand. Mcasuremients, prexented as the fange with the mearl in parenthesis, are given in micrometres unless otherwise stated. Width measuremems, refer to maximum width. Trunk lengh does not inctude neck, pobosecis or male pursa. In order in compare relailive haok sizer of different species the medtian of each twok length for each species was determined from the fanges given in the literature.
Abreviations used: AHC - Ausimatian Heminhtofogital Collection, South Australian Musetm. Adelaide: WAM - Wentern Ausralian Musemin. WA.

Neoechinorlynchus mingatuoensis sp. nov. (FGS 1-3)

Hohorype or from intestine of Stares thobhan Forskiull, 1775 (Scaridace), Ninguleo Recf WA. (22" f(1) S. $113^{\circ} 37^{\prime \prime}$ E), coll: S. Pichelin, T. H. Cribb, D. Capps and K. Hall, April, 2000), WAM V $4!44$.
 Shobbun Forsskal, 1775 (Scaridue), Ningatoo Reef, WA. $122^{\circ} 40^{\prime} \mathrm{S}, 113^{\circ} 37^{\circ} \mathrm{E}$), coll: S. Pichelin, T. H. Cribb, O, Capps and K, Hall, April, 2000 , AHC 31406-31408.

Other material cxuntined: \& q from intesine of Scourus psifuctus Forsskăl, 1775 (Scaridac), Ningaloo Recf. WA, ($22^{\circ} 40^{\prime}$ S, $113^{\circ} 37^{\circ}$ E), coll: S. Pichelin. T. H. Cribb, D. Capps and K. Hall, April。2(100). WAM V4I45.

Figg, 1. Male (hololype). a. Proboscis, h. Whole mount. Scale bars $=100$. $\mu \mathrm{m}$, it 2 mm , b. Legend: cg. cement gland; tr. cement reservoirt n. nucleus; so Säffigen's pouch; sv, seminal vesicle: 1 , testis.
IFg. 2. Proboscis hooks of holotype, a. Hook in anterior circle $=$ anterior hook. b. Hook in middle circle $=$ middle lronk. c. Hook in posterior circle $=$ posterior hook. Scalc bat $=50 \mu \mathrm{~m}$.
Fig. 3. Female, immature (paratype). al Proboscis. b. Whole mount. ©. Terminal genitalia - the outline of the uterus (represented by a dashed-line) is estimated by considering the position of the selector apparatus and the vaginal sphincter. Scale bars $=100 \mu \mathrm{~nm}$, a, c; 1 mm, b. Legend: gp, gonopore; sa, selector apparatus; sp. vaginal sphincter: u. wterus; v. vagına.
 Searms shohhom
'Irunh bylindrical, tapering powterionly, inermes Probosecis glahular, armed with 3 circters of 6 books.

 routs robust $81-57$ (50) but laking Wisimet mambriam. Hooks in midato vincte 50-58 (5.3).
 shape is ankerior houks: raots leas developedt. sumpier 27-35 (30). Postervior hemas 4($1-94$ (42).
 .Nyme. 78% smiller that midde hookse mots ill-

 Hypadermal nuclei presem in tronh wall. 3 in
 enc. 3^{3} of mome in where extent heyond probtescis
 lemminal in turth sexes. Terminal pupillae uhsent.

Atedrs (n=D apecimenc)

 - 26 mm ($1.8 \mathrm{mmin} \times 128-272(108)$, cxicnd beyord proheschiv neceprate bat not to testere weapying

 Cement tesertuir large pusection to cenent gland. Siafligen"s pouch lony, praterins to wement gitud. adjacent tu seminal veside.

 Probonctis $14+145(1+5) \times 158-197$ (177). Anteribr

 (40). Probumecis receplacte $+42-5551498 \mathrm{o}$ \& $+45-192$

 kenglt. Uterine bell not visible Selector apparatus.
 visihbe. Vagilia llick-walled, 135 bong. Gonupre

Remarkis

 pathous in Wewerm Ausialia, lis. measuremenis are
ax follows. Tronk 28×2.1 mar. Probuseis 188×215 Anterior hooks hot medrarable. Midde hooks 55:

Hive species of scarids were exumined from Ningaline Reef: wo of (wos stomben and one of ane S' parlache were meded but none of seten Lefnencanas magiensis (Quoy \& Gaumand, 1824).
 Seurus chamcleon Chosi de Randall. 1986 was infected. A furltier tho sarrdsw were examined from Henm la Queensland but no ataubhocephalans weri Found. These species of fish were Comseanas bicohar

 185s $(11=1)$. S. mxer Fonskill. $1775 \mathrm{~m}=41.5$

 $18+0(n=71$. s. whemedf $($ Blecher; 1861$)(13=4) .5$. somidns Forsakial. 1775 ($15=27$). 5. spimn (Knel. $(868)(1)=1 \%$ 。

Eivmmines.

The sheilfie mate of the new inpecies reters wo the Austablian loxation in which it was disenvered.

Discussion

Amin (1985. ${ }^{2}$) lists 75 specties wis Nemathormbisturs. A liertice 12 have beed deseribed since- namety: N. carimams Buckner \& Bucknef 1943 swe Bucknel \& Buckner 19y3, N

 REBilqees 1189). N. ifuhmensir Amin de Heckmam 1992 (sed Amin of Itecknams 1902). N. Angulanas Nichol de Emwi. 1987 (adec Nickol de Emal 1987). N.

 Pravallii (9y8). N. magignantrmian Wang © Zlang: 1987 (see Wang \& Zhang 1987). N mherthomeri Amin. 1485 (sec Amin 1985bi, N

 Viacaino 1992). Deschipliuns were examined lom all
 Bitqers. 1472. N-qumghathsis liil, Winge \& Vang

 could now be Fount in the liferature. The owly

 was in the forme of all ubstrake. If thin in the unly reventuce desevihing N. acembhras and N.

 and now trentio spiress. It can be diathengialued litum ait ather speestes hy the bumbination of the followine

 mistille cincle 501.54 653), 74 \% sitaller than innerion

 w'ilhoul a torminal papillas
 the Ancricats in ailloer freshwader fibhes of ourdes ant

 Fish. There ate 15 specios. that oceus solly subtade dusaralia. Which have equal sised twows in . He - thiteriner circle ent the probuse is thel have anferthe
 pectes ibrass. Nine of nese also liave distinerly

 these species). Neobdhimethymehrs ningedoneomsis hus lemmacion equal lengeths ind the ponserior houks.

Six species ate simitar to the new Austratian specses. These are Ni formosamus (Haradat 193ss) Kiw. 1951. N. leagibemmisctas Yamaguti, 1939. N. nigerionsis Furomgi, 198L. N. rightus (Van Cleave,
 Bungham. 1y4y and N, valmonis Ching. 1984 (females conly). The middle hooks of N. formatemus:
 N. salmonis alre about hall the sive of the anterior hooks (middle hook $50-57 \%$ uf antering book lengths) wheneas the middle hooks of N . mingashonensis are about 79% of the lengeth of the unicrior hooks", The very long lemnisci which extend athose to the posterior end of the brank of N. lengilcmmiscus also readily distinguish this species Irom N_{1} ningulonensis. Nenechinortymehus migeviensss is further distinguished from the new species betause its postenor hooks are half the size of its middle hooks.

The original description of N. rigides.s froin an Indian tish (Shehizethorar zarundnyi) by Van Cleave (1928) is brief. Van Cleave (1928) gave the lengths nf the anferior, middle and posterior hooks as 70, 47 and of Hm respectively but very litue other
information.: The similums heeween the nudde ard

 Amin (797 K) deseribed N. rigiders imen llabue as

 paiserior horak kengibs.

 and lialy (type lowallity) (Ledmonde ide7l.

 batl the size bt the matior hooks (Eidmondy (98?) whercas N. Hingetrmennis is mure benmpact has avoid lestes arm its pusterion tonks are shatler thas
 descritod by Ledmond (lys2) thaty be almose tivice the sise of thosse sul N, मingetemeasio.
 gumbex easily from N. rumbaloushisis by the differencese in the shape and sive of the proboseses huohs and the relative lengltos off the Icmaisch. Tine middle and joosterior hooks of N. abdricherfore ato more slender and smatler than is atnieribr rohms
 ate more robhast and larper than its posteriot bwoks.
 long the the bank (bismonels 1982) whereats thowe al
 trunk length.
Nemechimorhwnhtus simsalumensis was recovered frome Scurts ghoblute (type host and 5 psimachs: This is the first recond of an acanthoceptalan infecting species of the tamily Scaridae. It is also the fros record of un ebacandiocephalan from the Indian Ocean sif the coast of Westerm Australiai.

Acknowledgnuents

This study was supported financially by the Australian Biological Resourees Study lo SP. We wish to thank D. Capps and K_{2} Hall for their assistance in collecting and dissecking fish from Western Austrillia

References

Anッ．（．M．（1985a）Classilication गp．27－72／n Cromptom， D．W．T．Ne Nichos，R．R．（Eils）＂Biology of the Acamhocephala＂（Cimbridge University l＇resk． （immbridese）．
（1985b）Acanthocephalat from lake fishes in Wisconsm：（USA）：Neorehimmfomblus mhertbourri n． sp，from Erimsoan sucerfa（Lacépèdes，will a key to \therefore pecies of the genus Neotchmorhyothos from Nolth Ancrican lrewhwaler Jinhes．J．Praravito，71，312－318，
 masrantm sp，n．（Acanthocephala：Necechimorlymelidue） Jronn the eed，Anguilh praveator，in estatime waters of martheastern North Antericu．J．Hefmonhof．Sof：Widh． 65.164 .173.
（R）Jleckudnn．R．A．（1992）Deswriplion ind pathology of Neorehimombenchas Foblemensis 11．ap．
 coltanhomun from Jdaho．J．Puraviforl，78，34－34．
\＆SrY，O．（ 1306 ）Acanthocephala fiofr Arathian

 Ne＇minshul．Sixc．W＇rah，63，201－210．

 ous Lacépede，＂miandj－umpirelo＂（Siluroidei． Pinclodiduc）Jrom the bisin of the Säo Fratnoiscu River． Trés Mirita．Minas Gemis．Brazil．Re1：Browil．Zond．I5． 100131015．
［3c！KN：K．R．L．\＆BuckNTiR．S．C．（1993）Description ail Nerperfimentrmefms corinmes n．sp．（Acanthucephata； Ne＂techinorliynchide）from the sharpfan chabsucker， fillmysom fermain，al Lemisianal and Mississippi．J． Pruavitul．79．32－36．

Enon mba．S．J． 119711 Aestralian Acathtoceplata No．13： three uew specties．Tiouns．K ．Sote．S．A1／s．95．55－60． （1982）Australiun Actanthocephala No．15：four species．Whas．106．71－76．
 their husts．Ace：S，Amst Nus．23，127．1．34．
KIIAN，A．\＆BHQEES，F．M1，（1989）On a new
 precies from at destwater fish，Lethery mhim（Ham．）． Pruat Joke Cungに Zoul，9，259－26t．
－NowR－Un－Nika，Glast．K．K．ג ATA－Uk－RAhiat（1999）Newchinowhnuhas micholi，new species（Acanthocephala：Neocehisombuchidue）from Leshere hrogar（Hant．）al Punjah，Pakisian．Rak．J．Forelo 31． 2．41－243．
Mokavice F，\＆Astin，A．（1978）Some helforinu parebites． exeluding Monogenea，from lishes of Atghanistan．Ach Sc：Nat．Brmu．12，1－45．
Nicmo．B．B．\＆ERNst，C，H．（1987）Nevechimartancturs （improhtans sp．11．（Acenthocephalas Netrechinorhynachidac） 1ronn Pseddemtr amboni（Replilia：Fimydidace）of

 of Nconthucephata in the Liverpows Schond of Tropical Mledicine，Amu．Tray．Med．Perarsit．19．141－184．
VAN CLEAvE，If．J．（1928）Tho new genera and specites al Acunthocephala from listacs of Indiat．Réc．fod．Mus． 30. $147-144$.

 parisita de peces de Argentina．Anales Inst．Biaf．Vain： Nere：Ambin．Mfixicor，Sero Zomi．63，179－184．
WANG．P．Q．de Zlanci．J．－Y．（1987）On tive new species of Acamborephata from Vertebrate tusis in Chiost．I．

Y（t．Y，\＆WU．II．（1989）Studies on the 「auna of Acambumephata of Jishen from midde reaches of the Changjiang（Yimetre）River．Acha Hydmhiol．Stnin， 13. $.36-510$ ．

EMBRYOGENESIS, CULTURE AND DESCRIPTION OF THE FREE-LIVING STAGES OF TWO NEMATODE PARASITES OF THE NORTHERN HAIRY-NOSED WOMBAT (LASIORHINUS KREFFTII) (VOMBATIDAE: MARSUPIALIA)

By I. R. SMALES** K. GERHARDT** \& B. HEINRICH**

Abstract

Summary Smales, L. R., Gerhardt, K. \& Heinrich, B. (2001) Embryngenesis, culture and description of the free-living stages of two nematode parasites of the northern hairynosed wombat (Lasiorhinus krefftii) (Vombatidae: Marsupialia). Trans. R. Soc. S. Aust. 125(1), 57-63, 31 May, 2001. Faecal pellets were collected from the only extant population of Lasiorhinus krefftii, the northern hairy-nosed wombat, at Epping Forest National Park, Central Queensland. Nematode eggs and larvae, extracted from these pellets, representing 24 h.samples from the total host population, were cultured in the laboratory. The eggs, all presumed to be Oesophagostomoides eppingensis hatched as first-stage larvae after $19-23^{1 / 2} \mathrm{~h}$ in distilled water at $25^{\circ} \mathrm{C}$. The optimum temperature for larval hatch in faecal culture was $26^{\circ} \mathrm{C}$. All larvac had moulted to second-stage by day 3 and to third-stage sheathed larvae by day 5. Third-stage Strongyloides sp. larvae, smaller than larvae of S . spearei occurring in Vombatus ursinus, the common wombat, were also found in the cultures. The developmental strategies of O . eppingensis free-living stages, oplimum temperature for hatching and unprotected first and second-stage larvae, are congruent with those of strongylid species native to temperate regions outside Australia but not those of the Australian strongyles Hypodontus macropi, Rugopharynx rosmariae, Labiostrongylus eugenii and Cloacina similis, all of which have protected second-stage larvae and in the case of the latter two species protected first-stage laryae also.

Key Words: Lasiorhinus krefftii, wombat, Oesophagostomoides, eppingensis, Strongyloides sp., nematode life-cycle, free-living stages.

EMIBRYOGENESIS, CUTTURE AND DESCRIPTION OF THE FREE-LIVING STACES OF TWO NEAIATODE PARASITES OF TIIE NORTHERN HAIRY-NOSED WOMHAT (LASIORIINUS AREJFFII) (VONIBATIDAE: MARSLPIMIA)

Simumary

Abstract

 life-cyche, Irec-livines shess.

Introduction

 Masstpialfat) the nurliem loarry-nosed wombat in mese restricted 4 o st single population of atbout ins individuals in E[pping Fotsne National trark (EFND)

 Althergh this species was previously disrihused Lhrongh Qucembland. New Sontl Walles and dermes the berder inta Victorial. the presene rediction in
 He pase 130 ybun (Tisyler ef af: 190 4). The northern hatiry-noned wombat is listed as wetically endengered (Maswell ap af. |gho) and is Recuvery Plan is tring manased through the Envigonment Protectoon

The wambats wecupy a single hurvow system. :
 allong. Whe bithos of at sandy gully (Johnsonn it ('rombman 1991). These anmath spettul $2-61 \mathrm{~h}$, \{ anly at nishl ahose grourd Burrow cotrance ute nhatked with piles ofl firestr tatecal potlees with shaller piles deposited atong the pathe belween the burrows but

[^9] Lhat is sitill maist, pellets callected froms the burmow system at dawts cen theretore proviste a 2411 sample Irum llic lotal extan population of the wombat.
lives spocies of gestro-intestinal nematode

 (Rlabtedifidat Strungylomidace) have been dound inthe norblers liairy-noned wembat (Smales fygs:
 D. efpingensis, prodtces cegse that juss out with the fincect Any cise extricted lrenn whombat lactes bol.
 appinsemas

 hat pegputation in Fil NDP This astivily was suactioned by the Rewovery Team, Jionm these samples we were
 werbathotes. This emabled we me investigate the

Materials and Methods

 and Augunt 1966. and Augusi and Seprsmber 16909 were tranporited os liokthampeon on ice ond stomed
 al from small ammuns of latecal material that had freto wedimented with diwilled water Fibteen egeg
were meanored, placed in haming drops. held an mom icmperature ($25^{\circ} \mathrm{C}$), abserved bourly using in Olympus CH3 dilorential interleance misernscope. and photographed.
The number of cegy per gram on litecen in the pelkets was detemined hy the standiad MeManter technicpue². Fisecosl bultures trere then estahlished nsing
 5 ml water and 5 drops 4% Nystatin. pliced on filte paper in Petri dishes. Preliminary trials werte cerried gut in l996 and cullures were set up at 18°.22", 26" and $2 x^{\circ} \mathrm{C}$ for seven days in l9gy. "The larvace coll lected were texannad live in water of after killine in bot 70\% ethanos and clearing in a mixaure of $70 \% / 4$ athanel and elycerane and being delt until the aleohol had evaportated. Larvise were differempated into Norongyloidd and strongytid forms and the foral number of strongylids hatching atler seven days. al vills temperaturs. Wins rectorded.

Six strongylid larvat were incidured on danching firm the hatnging drey preparations described athove
 culture one day ather its establishment, were tramsFerted jnto a Petri dish and maintained in a incubator :n $2 \delta^{\prime \prime}$ C lor lour days. Jen lapvae were meonvered ind measured om Endablishment ol the cultures and a firrHer folaryac were romosed atha measured cach day for the next three days.

Results

By the lime the teges bad been transported from EFNP extrocied firm laceal pellets and estatblished in flanging drepps, embryonogieat vevelopment hat allowdy conmmenced, with the cembryos having reached aboul a 16 cell stiges Rggen measured $79-42$ (88) fun by 425 (46) $\mu \mathrm{m}$. The stages of develop-
 secpurnce is given in Tathle: 1.

Elongation of the combryo began at atheut 911 , the larvilurm cimbryo began atively moving after 10 h , de eessophagus was chearly vikible after aboul $161 / 2 \mathrm{~h}$ and the intestine cenuld be ditherentiated frenn IS Is. Hathing as first-stage larvace oxturred athe 19 231: h. Hatchang involved the larval lwisting attively in a erontinuma figure-sf-eight pallern followed by : pulsating mosement serallas the side of the exa. 'This pulsating was stosetiated with a hulge in the eggshell lisltonved by the shall rupturing and the larva emerging us a first-stage larval head on tail first, "The hatching process beoh $2-10$ min.

Results from ble preliminary vials inticated that hathehng oceorred sucessfully between 18^{5} and 30$)^{*}$ C bul not at 4^{3} C. The cumblative numbern al nemal rodes that had hamed after four days in laceal cul ture are given, ish the percentige hatch. in fig. 2. and were compared dmong the form femperature Ireatments using at Chi squatred 2×4 combingency table analysis uf the proportion of hathed versus แnthathed. There was ab signilisum difierence amemg trabments $\left(X^{7}=47,49, P<0 .(0) 1\right)$, so an iferative a penterionf athalysis was done by prosremive fentowal (f) the llose extreme reathent group. "libe renuls al Hos analysios showed there wats nu difference in the proprotion hatching in 18 ($\boldsymbol{x}^{2} 22^{\prime \prime}\left({ }^{\circ}\left(\varkappa^{7}\right)=0.27 . \mathrm{N} . \mathrm{S}.\right)$. but lle propention hatching diblered significands among tanpcratures ol" 18,22 and 2s" (\% (whot a sumaller propontion hatching at $28^{\circ} \mathrm{C}: \mathcal{K}^{3} 1=11.72, \gamma^{\circ} \mathrm{C}$ (1,(1) and also atmong (emperatures 18,22 , and $26^{\circ} \mathrm{C}$ (with it Jatger proportion hutching it $20^{\circ} C^{\prime}: \gamma_{0}^{2}=$ 20.36, $\mu<0,001)$. Finatly. Where wat a sigeticant differsuce letween 26 and 28° (${ }^{1}$ in the proportion hatching ($\%_{-1}^{-1}=12.31, ~ \mu<0$)(x)1), Taken together. these tests difforentiated anee stalimicatly signiliceant grsup. Hakching was lowest att 28 C . intermediake at 18 and $22^{\circ} \mathrm{C}_{4}$ and higher than buth on these groups all $20^{\circ} \mathrm{C}$.

Although during collection, Mannonat and storage
 whero-at 2.9" C ?

Stage Time tht	3	6	v)	12	15	18	21	$\underline{-4}$
min)ut.								
changulion hogils								
vermitornt cimbera								
пหиuth sisible								
"6etphagux visible								
turestme well detined								
hatshinge							--	

Fig. 1. Oesophagostomoides eppingensis eggs kept in hanging drops in distilled water at $25^{\circ} \mathrm{C}$. A. After 4 hours. B. After 5 hours, C. After 7 hours, clongation beginning. D. After 9 hours. E. After 11 hours, larviform embryo, elongated to twice the length of the egg, now active. F. After 13 hours, oesophagus forming. G. After 15 hours, larva about three times length of egg. H. After 18 hours, intestine visible. I. After 20 hours, beginning to hatch. Arrows indicate developing mouth. Scale hars $=20 \mu \mathrm{~m}$.

Dige z: Percentage of ()dsophagrostommides epphngemh eggs harvested as barvac from faecial cultures heid an as punge of temperatures lior 7 days $-\cdots=1 \mathbb{K}^{\circ} \mathrm{C}$.
 $28^{7} \mathrm{C}$. $\mathrm{N}=$ the number of egas hatchod dor cush treatment.
faecal pelles were kept moint at atow $4^{\circ} \mathrm{C}$. the time in shorage may have affected the viability of the teggs and bence the overall relatively fow hateling rate it all lemperatures. Further, the logistics ol the exercise precluded both the collection of barge amounts of material at any one time ond multiple collection events. Nutwithatanding these limitations. ant inlormative sef of data has heern conlected.

Medsurements whe strongylid larvate are given in Thate 2. All liarvise had moulted to second-sitige hy day 3 ithel to streathed third-stage by day 5 (Fins 3 \& d). Belore moulting the darvace athethed inemselves to the subatrate by the anterior end. Stasting from the powterior cond, the ceulicular sheath became lexone and the larva wriggled bagkark until ir was free, leav-
 larval sheathe were detected in the culture on day ?. Althangh menalts to third-ituge were nes observed. sembe buticubarisation of the buceal region and greater delinition of the lips was apparent by day 5 . A small genital anlage coluld be seen in the thirst.
stage larvie.
Also delected in all facenl culures on day one Wan a number of Jarvace with mateditiform sessophagus morphology and by day four, forms with a luns lila-
 tive larvate of species of the ecenas sprofestovides. Were adsa apparent. These larvae were 425-470 am Inge with the nesurphages $200-230 \mu \mathrm{~m}$ longe, the tail $+(0-58 \mu \mathrm{~m}$ Jong and the genital anlage 240-300 -3 н Fiom the anterion end (Fig. S).

Discussion

The Austablisun arsmgylide wadied thus fias have fres-living larval stages that retan the cutiche of previous moulls (e) stheath subwequent stages.
 1978 and Hyputontm metrompi Monnig. 1929 both hatech as lirst stage-larvace and retain the sheaths of the first and second moulto so that the second-shage lanval is sheathed and the thind-stage larva hat a don he sheath (Beveridge ex Preshberte 1978: Beveridge

 mondes lo at bird-stage dombie sheathed larva (Simales lo77) and Conaime similis Jolmatom de Mawsen, 1939 hatiches id athird-abye doublewheallued larva (Clark 1971').
 unsideathed larya and rotains unly the wesond-stage cuticle as a single wheath around the third-stage Jarva. These differences in stage of Ibtching are reflected in the dime taken from the beginning of combyygencenis to hatching, $19-23$ h for (0. rppiosgensis. 12 h for μ. macropi. 20 - 40 h for K . Forsmurius and 67-114 h hor l.e ensenti (Smates 1977: Beveridge \& Jresidente 1978: Beveridge 1979). The time O. sppinsernsis look (w hatch and then develop to third-shage sheanhed lave (4 datys at $28^{\circ} \mathrm{C}$) is consistent with the life eyelo patterns given by Andersen

Day	Larval Stage	Lengls	Width	(Surphagux \|engit
1	1	277-323(292)	22-27(24)	$55-77(69)$
1	1	325 - $3(55$ (344)	14 - 25 (22)	$7.3-8.3$ (78)
2	1	355-383 (369)	21-27(24)	$88-98$ (9).3)
3	7		22-28(25)	9.3-10.3 (98)
-	2	4.38-162 (4 S0)	20-30) (2ヶ)	9.5-111 (16).3)
5	3	490) - 545 (52M)	209-+1(34)	119) - 132 (128)

Fig. 3. Oesophagestomoides eppingensis larval development when cultured in distilled water at 25° C. for 4 days. A. Hatching. B. First-stage larva, day 1. C Second-stage larva. day 3. D. Third-stage larva, day 4. Scale bars $=40 \mu \mathrm{~m} \boldsymbol{\mu} \boldsymbol{\Lambda}$ C: $70 \mu \mathrm{~m}$ D.
(2000) for the superfamily Strongyloidea, to which Oexphagosfomoides belongs.

The process of hatching, including increased larval movement, for O. eppingensis follows the basic pattern suggested by Bird \& Bird (1991) as common to all nematodes. The escape of the larva by mechanical disruption of part of the egg shell is similar to that deseribed for L. eugenii (Smales 1977) and could therefore also involve enzyme action to effect a change in permeability of the egg and increase plasticity of the shelf (Smales 1977).
Examination of eggs and larvae confirmed previous suggestions (Sinales 1994: Gerhardt et al. 2000) that only two species of intestinal nematode oceus in L. kreffitio. Measurements of eges in this study (88$92 \mu \mathrm{~m} \times 42-50 \mu \mathrm{~m})$ are consistent with measurements of egges of O. eppingensis and fall within the size range of eggs of other intestinal nematodes
occurring in wombats (Beyeridge 1978). The range of temperatures at which egg hatching occurred. 18$30^{\circ} \mathrm{C}$ is consistent with that recorded for other strongylids. For example, the eggs of Chahertia ovina (Fabricius, 1788) hatels between 6 and $36^{\circ} \mathrm{C}$, Strongylux vulgaris (Looss, 1900) between 8 and 39° C. Oesophagastomum iohumbianum Curtice, 1890 between 15 and $37^{\circ} \mathrm{C}$ and Castorstrongylus castoris Chopin. 1925 between 18 and $25^{\circ} \mathrm{C}$ (Anderson 2000). Given the hot dry climate of EFNP, we expected that the optimum temperature for hatching would have heen at the high end of the range such as, for example, $30^{\circ} \mathrm{C}$ recorded for S vulgaris and O. columbianum (Anderson 2000). The optimum was, however, $26^{\circ} \mathrm{C}$, a temperature reported is optimum for C. ovima and close to the 25° C optimum reported for a number of strongylids, such ass Ostertagia ostertagi (Stiles, 1892), Trichostrongylas arel

b

Ex
E

Fig. 4. Oesophagostomoides eppingensis free-living stages. a. First-stage larva. b. Second-stage larva. c. Third-stage infective larva. Scale bar $=50 \mu \mathrm{~m}$.
Fig. 5. Strongyloides sp. Free living stages. a. Rhabditiform first or second-stage larva, b. Filariform third-stage infective larva. Scale bar $=50 \mu \mathrm{~m}$.
(Cobbold 1879), Syngamous trachea (Montagu, 1811) and Ancylostoma caninum (Ercolani, 1859), found in temperate climates (see Anderson 2000). One possible explanation is that eggs might go into a state of arrested development at high temperatures, as has been reported for the eggs of animal parasitic and plant parasitic nematodes (Waller \& Donald 1972; Bird \& Bird 1991), to ensure survival.

Of the three morphotypes of larvae found in faecal cultures, the first morphotype was a typical strongylid. No obvious differences in size, growth rate or morphology of this type were detected during culture, lending weight to the presumption that these
larvae represented a single species, namely O. eppingensis.

The other two morphotypes could clearly be designated developmental larval stages of species typical of the family Strongyloididae. Although both genera Parastrongyloides and Strongyloides occur in marsupials, only a Strongyloides species has been reported from vombatids (Skerrat 1995). Consequently these larvae are presumed to be Strongyloides sp., possibly S. spearei Skerrat, 1995, occurring in the common wombat (see Skerrat 1995). The infective larvae we found, however, were smaller (mean lengths of $445 \mu \mathrm{~m}$ compared
 comparced with $23(6 \mu \mathrm{~m})$ at shorter lail $(47 \mu \mathrm{~m}$ conipared with 79 pmi) and with the genital andage eloser tor the anterior end ($277 \mu \mathrm{~m}$ compareed with 324 How) that in S. speuref. They may, thecetors. ixe eibler a distincl species or represent a population of amatler wormo thatr popelations of S. sparerei frem the cetmmon wombatt. A mere detailed exanimation af whe stages of the life cyele patecularly by cultoring tarver through fo adultw, is needed belare the specific states af the Sonngytemes sp. From the nombern bairy nowed wombal con be determined
 4age latia was thought by Smatcon (1977) lo be a protective response ion the polential for desiecation of cyge ind larvae under Austratian climatice condiboms.

Neibler this strategy nor a preterence for higher temperatures for hatching success has evolved in (\%. eppungensis. Mundoring for the presence at intestinal helminths in the E[PNP population threnglt 1996 (Gicrharde ef al, $2(000)$ has shown that 0 c"mpingensis is presem throughout the year. Laval musi. nevertheless. be sufficiently mbuse to survive the hot summers and diy winters typical of Central Quesmsland. Further work is needed in determine the level of heat folerance and responses 10 desiecation ol O. sppimsposis and tonw they relate to the lifie-cych strategics of the parasic. A better thaderstanding of the dynamion of the frec-living stages could be wselint when devefopinge management stanegien lor the sumbin how populationi.

References

 brates their deselopment and lramomission ($\mathrm{C}^{\circ} \wedge$ B Iatcruational. Wallingtords.

 26. 5×5 - 6112. (1479) Hyputuras mas品pi Miannig. 1929. a book worm-like paraste of matropertid morsuphats. of theminhul- 5. 1,224 -24t

 (Asatcmic Prexat Sun Diegor).
 fronds in the popalation of the mettiont haty-nomed Wombell Lasiorthenss kemitio in Epping Torest National

 Parabien of the northern hary-nosed wombat Ledworhimes herflif and the implications for conservet lios, Ams. Acmmnad, 22, 17-22.
dalkison C'N. \& Clesssman [D. G. (1991) Dispersall and accial bryanifallism of the nurthern houry noved wombat

 1046 Aclosn Plan for Austulian Marsupialk." Wikdife
 Anstralia, Canthertan.

 32. 81 - 89.
 eergenif at nematode palfolsite of the Katheana Island Wallaby (Ataroyms chesenio): delcoponent and hatehing
 $4+45-456$

 the genus. I. Permsiond. 80, 638 - 043 .
(1098) ficlominth puravites an' wombats pp, 312
 (Survey Iseaty de Sons, Chipping Nartom).
 variation of mierusatellite losi in al butheneck precies: the northern hairy-nosed nonilat basiondumes herfori 1/ni, Eich 3. 277-29).
 in lemperallure and saturation deticil on the surkival ol cges of Trichestronesilus eothbotionmis (Nemanodit: Triclomatragylidaes. Inf. I. Pisursifed. 2. $439-1+7$

A DISJUNCT POPULATION OF EUCALYPTUS GLOBULUS SSP. BICOSTATA FROM SOUTH AUSTRALIA

By R. E. VAILLANCOURT*, D. B. BOOMSMA才 \& D. NICOLLE ${ }^{*}$

Abstract

Summary Vaillancourt, R. Ec, Boomsma, D. B. \& Nicolle, D. (2001) A disjunct population of Eucalyptus globulus ssp. bicostata from South Australia. Trans. R. Soc. S. Aust. 125(1), 65-68, 31 May, 2001. A population of Eucalyptus globulus ssp. bicostata was recently discovered at Mt. Bryan (SA) which is more than 600 km from the nearest other population of this taxon. The aim of this study was to determine whether this population is natural or whether it might have been planted after the arrival of pastoralists to the area. To achieve this aim we used RAPD molecular marker analysis of a large (10 m diam) lignotuberous stand of E. globulus ssp. bicostata that roughly formed a ring. The RAPD analysis indicated no differences between samples taken from the lignotuberous stand, although individuals from outside it were all different from it and from one another. Because the lignotuberous stand of E. globulus ssp. bicostata is likely to originate from a single individual and is very large, it is likely to be very old (possibly as old as 4,000 years) and this would imply that the population was not established by pastoralists. How did the E. globulus spp. bicostata become established on Mt. Bryan? Four possibilities are discussed, namely, natural long distance seed dispersal, seed dispersal by humans before the arrival of pastoralists, long distance pollen dispersal and connection to the Victorian Eucalyptus globulus ssp. bicostata forest in the past.

Key Words: Lignotuber, clone size, RAPD, fingerprinting.

A IIS.JUNCT POPULATION OF EUCJIYPTUS GIOBUI.US SSI. BICOSTATA FROM SOUTII AUSTRAI.IA

Summary

Abstract

Introduction

 (M1nten, Blakely \& J. Simini) Kirhpars: was reconrly
 by 13. Bates. This perpulatien is anusual in that it is nowe than foof km from the neares knowh E.
 Victorian and is the mily population of that specter west of the Murruy-Darline dranage system. The population is situated on the slopes inf at high ridge seath-west at lla summe ol Mi Bryan, at an allithate between (680 and 890 m. The entire population combint of approximacly 80 apparemly very ald, baree individuals and between Iont and lko "appliog stuge" individuals wint a sten diameter ol fess Usan 3(k) mun just ahove ground level, Small seedlings at the colyledon th the ifith leat-pair stage were ohsersed at the site in 1996/67 but secdlinges were now observed in Augune 2600. They may have been remosed by sheep. The pupulation has a range of apprexumately 1000 In and forms thre sub. popalations separated by c. 200 mide cach, the western sub preputation benge the birgess, Sapling Aage

[^10] sestrited to, the relatively lower shevallions within
 ranged in height from lews than 51018 m . The moderstorey was duntinated by hative patases and forthe. allhangh some thacasuarina bernirillath (Lam.) L. Johnsom atod bersaria spimose Cia. oneurred within the population, Six plank apecies: aceurting at the site are classificed as rave of endangered. manely. Asplontum flohnollifahmm Cisv.
 Ehrende fomenamherze dembifor. Bro sk DC. Lépüdinm pasudr-7asmemanm Thell. Mlaria pumbese Hook. syp. phmbases, and Rhodisulie amumbides (Sprenuel) Pranl G. Witsm (P. J. Lunn, perse comm. $20(0)$ Nomber ancalyphecured will
 Bryan the sap. hicosteth population is grastand down to midway on the soulh-weyem shope.. Below this gratisland is apen E. Iftandym F. Nuell. It:
 The lexal area is one wo the colden in south Austratia, with the nealcest iemperattere-roconding weather station at Yomatal ocerding average winter minumat $25^{\text {? }} \mathrm{C}$ and atimextreme (July) minitmum of minus $82^{2} \mathrm{C}$, the lowest in SA (Bureall of Hetcoroldyy huth:/Nw W. BuM.GOV.AL/alimate/).
In tuealypls. vegetative propagation accurs through lignotubers. A lightuber is a semisuhtervanean wornty mass of siem-jike tissue that gives protection te a latece teseree of epicormic budk. These athony rapid regencration after stern desirucelion of danalge by fire or oher culuses (Jacobs 1955:

 foce eatn rebull it extensive lignntuher develnpment imd formation eft a mulli-stemmed shand (Latere \&

 l'dysell ef at. 1448)

 plamed wher the arrival oll pastoraliate in the areal, 1
 Formed et rimg. shape wids liund at the site ath about
 sinnd is very lange, being 101 m in diancele ancl pentemially could have minem I'ronis lignoutheraus Embith. Diber lignumberous manden ot a similat sine and prossibly even duger are alsor presen tat the ville. bur are more dificole ios idemily vecastise af ligmather fraganentaifon and athocimeulas

Molenthat markerth me exaclutial in ulansiyns:
 proprealion hecallse the chomil mature aif some regetation sadnan he cestistbinhted wath conficterne by morpholegeisal astessment alfores. Randenn Ampliticed
 Weloh de Mcclelland lyen) is it beclal lype bl mondeculat mashel for the hedty of gemeric varialion

 linestyrintiny studien (keil \& Grifint lyey: Neshill
 frecedure systems (Gedumb of af. 1097) amed in stwilish

 The din of llis aludy was to devermine whether alue
 Is slomid. If is is then its large size wethdimply hean
 hatve buen esatalisheal hy pabloralisits.

Mlaterials and Metlonets

 samplen were lisom the pexsitale clone and four bther
 fignosubelades siand. The firse wamples form the
 Hue legnenters. Tonal deromis DNA was isolated
 methend of Doryle de Dosyle (190)期.
 Armplified Polymorphe DNA (KAL'S) matkers
 Anplificatiom samdilion were ah in Nehbme of ah.

 (6174 University Buulewarl. Vaneouwer. V3.G. Vil 173). "Twemperour primes provisusly shaw su

 UBC 214. LiBC 266 and U , BC 290. Amplitiod Iragments were electrnploretianlly weparated in as 1.5% w/v itgatise gel. Hsing 1 X 'I BE butier. rutal piontographed affer saming wifh ehtidata bramide. Comsintency of interputation wish extablished by
 bands were not woled if they were lation or dilfises.
 runge. Only hands that were present in 258 (10 7.5%
 it Skaho ct al. 19yx.
 calcolate a similarity matrix of sinpple matchons

 conelficient (SM) in eselthed as the total momber of mateles (shated , themed of presemed between swa iirdivadualos sdivided by the whil number of bands
 He celustornge of trees with the UPGMA abgorithm and it dendrogran showing the relatedness of alto samples thas proreluced

Results and biscusxion

 Actextor wheria were bated for the eight DNA samples. Simples $1-t$ frum the prosbithe

 onse amother and fonm samples of the lignotenterenes wand (Fig. 1). The Iree monat elosely related lo lles lganduberos band, tree 5 , joined the lignoluberams stind sumplec all it Jovel ($\mathrm{SM}=0.58$) chat shows that it is mat closely relatsd 10 it. Neshitt of al. (1ty97) Fenmed that KAPO Varidtiom willin clanes was tricias comprard for the Valiation found even betweoth lisll. sibling and that nanibuty decreused with pedighe (tisnane . The lach al any variblion belweren samples From the lighotulncrosm stomat and the mith lower

Sannle number inar.)								
กบ.	1	2	3	4	5	¢	7	8
1	1.191							
2	1.19)	$1 .(6)$						
3	1.1010	1.001	1.141					
4	1.101	1.100	1.00	$1.10)$				
5	11.11	11.54	11.57	11.57	1.101			
19	(1). 31	10.35	0.34	11.34	1117	1101		
γ	11.43	12.43	11.43	11.43	(1.) 11.1	11.41)	1.101	
8	0,32	11.37	0.34	11.3. 4	11.30	11.411	. 1106	1.161

Samples I - Aare firmr the lom wide limnotuberoun stand. while samples $5-8$ are trom individual foes in the vicinity of lle vembl

 Alsatulia bused un at simple muthoing cuetricient thin) measure di' similanty mealeulated with RAPD marhers. Sunples 1-4 are lion the bon wide ligumberous anand. while samples 5 -s atre from individual trees in the vinnity in the alimed.
a felatively large number of polymumphie bands. in very strong evjdence for the clomality of sample: ! 4. Assuming the growth rate sll the E. gherbeters sap. fiecosater lignotubor was simnila to that given by
 ump, elaliner Labsill, of abosul $2.5 \mathrm{~mm} / \mathrm{ycar}$, then is woud have taken 4000 years for ine E. ghotatherser. hisentate lignonther to achieve ith present sime. This growith rate was comparalale io that observed in E.
 but getciter than that obtained for at two motre
 \& Latcey 1988). We camot baly how ohe this individual really is. but it is probably much mose than 200 yeatr old. 'this population of for whothes sisp. breaspate is therctione most likely to be nitherat abd indeed an interesting remman that deserves
conservation. Alhough the ste is heing gramd by sheep (which would affect the rime tunderstorey specios and lloe cucalypt regencration), the (reen ars long lived and not nowiceably affected by graping. Thus the popmation is not under any shore ferm riak fion the curvent land practices.
 swathished om MI Bryant' (One ponsihility is than if moved to this site through hatural long distance secd dispersal. However, this eucalype taxom, like most encalypts, Jacks adaptation for long uistance sed dispersall (Potis \& Willation 19y7). A relares possibility is that this population was estatblished from seed Irunsported by aborigines. Aoother prossibility is that if conde have moved as ssp, hirossorat pollen combing from atior and hybridising with and unhowow resident cucalypi specties, suctr its the related \mathscr{L}. gomionalys: 15: Muell. ex Mig. which vecurs within 60
 of this cyolumionary mechanism). This weold explain Why the chloroplasi DNA of this pophtation is of as sype very different from that enconntered in oher populatons of E. ghohuhis so lar surveyed (lach son ed (fl. 1999). Nome of these bypetheses ean the disproved. Hoprever, perbaps the simplest explatation for the
 is llsal the Victerian E, delotherbes ssp. Dicersdersed populations were onse connedted bis Mt Bryan al shats time in the past. When this would have encourted is it matter lor speculation. It is unlikely to bave been in the lant 35.000 years sine the current aridity and the even greater aridity around fle glaciad maximunt make it unlikely that the Momay Basin conld have
 ofler been atsumed thall this aridity may have been fairly constant from the Eocence to mid Mincene martice incursion into the Muraly Bastn (Marginson \& Ladiges 198 K$)$. However, resent ividence from Lake Fyre suggests that there might have been weller
periods between 50.000 and 35.00 y years 181^{\prime}（Magec \＆Miller 1998 ）．Therefore it is posisible that during these or other previous wetter periods．ant E．ghedullers isp？hirenstafla forese could have been more or less cominuaus from Victoria to Mt Bryan in Soult Australia．

Acknowledgments

We are grateful to B, M ．Peyts for providing the impetus for this project，some of the intimmation on the site and for helping with the crollection of specemens，and S．Skabo for teclonkeal aswistances．

References

 lonmation in éucalyple．Ama，ther，6， 113.3 .115.
 trim frơh rissue furle 12．1．－15．
 1－atimatisen of coutcrossing rate in a brecdine popatation
 markers．Phorn of Apph．（ady．95，842－844．
 determinations from lignotubers．Aus\％．D．Bos．36．93－ toks．

 for reticulate cyolution in Luccolyphes（Myrtaccats），Amod． fon，8． 734.751.
frethes．M．R．（19555）＂Giruwhth Hathits of the Fucalypts＂ （Goverament printer，Canberpa）．
 IDNA lingerprimting supports notions ol cknality in it
 （1） 1 ）

 chivironmental fictors Alasp．J．Fon．31．105－118．

Mati：a：J．W．\＆Mattik．（i，H．（1998）Lathe Eyre paberng drukgey from folta to the presens，beach ridgen and glacial maximbm arridily．Palacospogig：

 shofulus（Myriacsate），／hereel，74，628－6，17．
（ R゙い11，J．13．（1097）
Fingerprinting int pedigree analyus in Emcotypms syhnulus．แsing RAPDs．Silme Generiod 46，（1－11．
 dispercial mectianiant．Livil．42，1245－1355．
 and genacology pp． $50-91 / m$ Williams．J．\＆Woinarski．
 （Cambridge University Irsso，Caminidge）．

 －A critically sndangered relich species or a rate hytrid． Henerl．74，310－318．
 （1999）Conservasion genctiox and chanality in twa eritically codiangered encalypis frosn the highly enteonis 4outh－western Australian flowa．Amel．Combern！88．321－ 731.
 multivariate analysis 5yaten（V）．8．（Theparment of conlagy und evalution，state Univeranty of New Vink． New lork）．
Sitk 11．K．K．\＆Sinall，\＆！H．A．（1963）＂principles of

 （Iリリf（）Mofectabe differentation willon and between
 using RAPD markers．Alost is Hett．44．559－589．

 Determination of clone sife and age in a mathe cucalyp unily RAPDs．Thid the．161－172
 Pingerprinting for guality control in beeding and deployment．Ans，Fon：61．207－210

 Romonyphes．simath 110．252－2k3．
 genomes using leCk with arhitrary primers．Naded dends Rev．18．721．3－7218．
 1．A．\＆Tincily，S．V．（1990）DNA palyommphamis amplified by arbilary primets are aselul the genctic markers．Thill 18．6531－6．535．

PISONIA GRANDIS DOES NOT APPEAR TO HARBOUR FUNGI KNOWN TO INVADE SEA TURTLE NESTS AT HERON ISLAND, EASTERN AUSTRALIA

Brief Communication

Abstract

Summary Hatching success of loggerhead sea turtle nests is significantly lower at Heron I. ($23^{\circ} 26^{\circ} \mathrm{S}, 151^{\circ} 55^{\prime}$ E-Capricorn Group, southern Great Barrier Reef), than on the adjacent mainland ${ }^{1}$. Fungal invasion appears to play a major role in inter-specific and inter-habitat variation in egg mortality between loggerhead (Caretta caretta L.) and green (Chelonia mydas L.) sea turtles at coral cay and mainland rookeries ${ }^{1}$, and hawksbill (Eretmochelys imbricata L.) and flatback (Natator depressus Garman) turtles at other major rookeries in eastern Australia*.

BRIEF COMMLINICATION

PISONIA GRANDIS DOES NOT APPEAR TO HARBOUR FUNGI KNOWN TOINVADF: SEA TURTI.E NESTS AT HERON ISI.AND, EASTERN AUBTRALIA

Whehing succent of logecrlead sed turte news is significandy lower at Heron I. $\left\{23^{\prime 2} 26^{\prime} 5,15\right\}^{\circ} 55^{\circ}$ 点 Capricorn Groupo mothern Greai Barrier Reef), (than on the adjacent maintand'. Pungal invasion appears tu play a major role in inacr-spectite nad inter-hathat variation in ege monality between loggerhead
 stat turles all coral cay and maindand mokeries", and

 rookeries in catierm Australial
The lungi finsarime otyspunum Schechn. R whani (Mart) Sisco. and Proulallescherith bosidi Negrom und fiselar have heen isolated from biled luthe- eges al Heron !.- Psendullestherm boylio is an copportumistic invectant of humans and other animals' but there is no recod of its bemgetwolved in plant discanc. Itowever. numerous strails of f. nevsparam are wilt prothogens and E sutani may ctube ratel rot. canker and wits'. Since one of the mos dixingumhing feature of Heron I. is the dence.
 ble that this might be exting as a neservoir for dothenemose matia which are alsa able to inverde seat turlle nents.

In ith wild state P ? gromdis (Nyctaginaseate) is almos exclusively comfined oo small eninhabited istands with farge seabird coltajies", Ifronghou the Indian and Pacilic Decams mom.8. In the Caprisoral Bunker group of the smuthern Great Barrier Reef, P : gromedis is found on all of the ithands. Λ central limest is usually surmounded by natural linging vee. chuion, athengh eronson may bring the liotes be llice beachlimm". The presence of such ferests appears heavily felian upon abundant seabind -and a speesil. ic sail and rock base ${ }^{6,4.4}$. The Jemo Seriess ${ }^{111}$ ane rich'y nryanic. acidis, phomphatis, soik in assuchation with at hardpan or enoul conglomerate banderoned into cakium phosphate". This exaphe comdifion weats conly ofl conal and coral debris trexath fird colomios and in almont exclusive for liverath tominated by P? sromalic",

Pisente graplis is offen atsinciated with istames hosting pigeons. yanciels (Sukt sp.) ar nodely lems (Aumsespe). It the hive rolonies desert the ishands. for whatever reasom, the P ? grondis fore disappears as in seems unshle us survive without the phophate ensiched sult that ands.germination and early devel opment". It is helieved /? grandis mitises seathinds for

Previously, the only lungus essociated with of greudis at Hepoin I. was ant emidentiticed hasid. ionycece ecomycormival symhimuls "This fungus appary to be unique to P^{2}, promatix or al lease have as limited hout range ${ }^{\text {et }}$, and cinuld not heons of the lhee furte nest myedlora feported as mote of these is an basidiumycete.
To detemine whether ta growds bartorored any ol
 turite neses, five individual I! gramdiss treen at the
 showed anthracroses, were examined. Two 1saves from eath tree were collected and washed wills sterile, distilled water tormme hird guan helore refigented storage, Lead tragments (Lemb) were sur face sterilisad in tir $\mathrm{A}_{2} \mathrm{NO}_{3}$ for 2 min then rinsed in
 water for 3 min wats undertaken 16 remave any ressid bill silver cations. Fragnents were cultured as a een trat meculum mind hastrength Potato Dextrose Agan ar $2 \mathrm{~S}^{\prime \prime} \mathrm{C}$ for 7 days prior in islemificalion.
Collctentishom glordsporiohides (Peme.) Penv. and Sace. was ivolated from all leaf trayments with leal gots. Culture of unblemished tragment did inn rebell in any dungal growth. Collcholrichum is ane at the most important gencta of plamt pathogenic lungi workwider and can affect steme, sheots, fruit, perds. flowers and leaves" It han non been iselated from fated sea lurlle cerys and on it semen unlikely that the

R. Shivas, Quenstand Depathent of I'rimary Industries, is thanked fior the identilication of ec whecospmonides.

[^11]${ }^{\prime}$ Limpus, C. J., Reed, P. \& Miller, J. D. (1983) Islands and turlles. The influence of choice of nesting beach on sex ratio pp. 397-402 In Baker, J. T., Carter, R. M., Sammarco, P. W. \& Stark, K. P. (Eds) "Proceedings: Inaugural Great Barrier Reef Conference, Townsville, Aug. 28-Sept. 2" (JCU Press. Townsville).
${ }^{3}$ Phillott, A. D., Parmenter, Cn J. \& Limpus, C. J. (2001) Chel. Conserv. Biol. In Press.
${ }^{\text { }}$ Rippon, J. W. (1982). "Medical Mycology. The Puthogenic Fungi and the Pathogenic Actinomycetes $2^{\text {nd }}$ Edn" (W. B. Saunders and Co., Philadelphia).
+Booth, C. (1971) "The Genus Fusarium" (Commonwealth Mycological Institute. Surrey).
${ }^{3}$ St John, H. (1951) Webhia 8, 225-228.
${ }^{7}$ Airy Shaw, H. K. (1952) Kew Bull. 1952, 87-97.
${ }^{7}$ Stemmerik, J. F. (1964) Flora Malesiana Ser. 6. 450-468.
${ }^{8}$ Hunt, D. R. (1967) Kew Bull. 21, 251.
${ }^{9}$ Cribb, A. B. (1969) Qld Nat. 19, 110 -114.
${ }^{11}$ Fosberg, F. R. (1954) Soil Sci. 78, 99-107.
${ }^{11}$ Christophersen, E. (1927) Bishop Mus, Bull, 44, 1-79.
${ }^{12}$ Walker, T. A. (1991) Atoll Res. Bull. 350, 1-27.
${ }^{13}$ Ashford, A. E. \& Allaway, W. G. (1982) New Phytol. 90, 511-519.
${ }^{14}$ Cairney, J. W. Ge, Rees, B. J., Allaway, W. G. \& Ashford, A. E. (1994) Ihid. 126, 91-98.
${ }^{15}$ Sutton, B. C. (1992) The Genus Glomerella and its anamorph Colletorrichum pp. 1-26 hn Bailey. J. A. \& Jeger, M. J. (Eds) "Colletotrichum: Biology. Pathology and Control" (CAB International. Wallingford).
${ }^{16}$ Dodd, J. C., Estrada, A. \& Jeger, M. J. (1992) Epidemiology of Colletorrichum zloerosporioide's in the tropics pp. 308-325 Ibid.

ANDREA D. PHILLOTT. School of Biologicat and Entiromental Scicnces Central Quc゙onland University Rockhampton Qld 4702. E-mail: phillota@Iopaz.cqu,edu,au

Transactions of the

Royal Society of South Australia

Incorporated

Contents

Souter, N. J. \& Williams, W. D. A comparison of macroinvertebrate communities in three South Australian streams with regard to reintroduction of the platypus - 71
Bailey, P. T., Martin, J. H., Noyes, J. S. \& Austin, A. D. Taxonomy and biology of a new species of Zaphanera (Hemiptera: Aleyrodidae) and its association with the widespread death of western myall trees, Acacia papyrocarpa, near Roxby Downs, South Australia - 83
Barker, S. Descriptions of twenty one new species of Cisseis (sensu stricto) Gory \& Laporte 1839 (Coleoptera: Buprestidae: Agrilinae) - 97
Williams, C. R., Kokkinn, M. J., Snell, A. E., Fricker, S. R. \& Crossfield, E. L. Mosquitoes (Diptera: Culicidae) in metropolitan Adelaide, South Australia - 115
Ferguson, M. A., Smales, L. R. \& Cribb, T. H. A new species, Pretestis lati- caecum, (Trematoda: Cladorchiidae) from Emydura kreffiti Gray, 1871 (Pleurodira: Chelidae) from Central Queensland, Australia - 123
O'Callaghan, M. G. \& O'Donoghue, P. J. A new species of Eimeria (Apicomplexa: Eimeridae) from the brushtail possum, Trichosurus vulpecula (Diprotodontia: Phalangeridae) 129
O'Callaghan, M. G., Andrews, R. H., Davies, M. \& Spratt, D. M. Species of Raillietina Fuhrmann, 1920 (Cestoda: Davaineidae) from the southern cassowary (Casuarius casuarius) 133
Beveridge, I. Cervonemella reardoni gen. et sp. nov. (Nematoda: Cloacinidae) from the stomachs of scrub wallabies, Dorcopsis spp., in Papua New Guinea 141
Riley, I. T. \& Wouts, W. M. Pratylenchus and Radopholus species in agricultural soils and native vegetation in southern Australia 147
Brief Communication:
Mackness, B. \& Godthelp, H. The use of Diprotodon as a biostratigraphic marker of the Pleistocene 155
Obituary:
Joan Burton Paton AM, BSc(Hons), MSc - 159

TRANSACTIONS OF THE

ROYAL SOCIETY OF SOUTH AUSTRALIA

INCORPORATED

VOL. 125, PART 2

A COMPARISON OF MACROINVERTEBRATE COMMUNITIES IN THREE SOUTH AUSTRALIAN STREAMS WITH REGARD TO REINTRODUCTION OF THE PLATYPUS

By NICHoLas J. SOUTER*中 \& WILLIAM D. WILLIAMS*

Abstract

Summary Souter, N. J. \& Williams, W. D. (2001) A comparison of macroinvertebrate communities in three South Australian streams with regard to reintroduction of the platypus. Trans. R. Soc. S. Aust. 125(2), 71-82, 30 November, 2001. The macroinvertebrate benthos of Scott Creek, an intermittent stream in the Mt. Lofty Ranges, was assessed to determine whether it could sustain a population of platypus (Ornithorhynchus anatinus), a species that has been locally extinct for about 100 years. The benthic fauna was compared to that of Rocky River and Breakneck River, two streams on Kangaroo Island where platypus have been introduced. Little difference was observed in the abundance and biomass of macroinvertebrates in the three streams, suggesting that Scott Creek in common with the two island streams contracts to pools in late summer/early autumn where the platypus populations are limited by this habitat truncation. Further assessment is needed of the physical suitability of Scott Creek for platypus reintroduction (e.g. consolidated banks, overhanging plants, permanent pools) and the risk of predation by foxes. Key Words: Macroinvertebrates, platypus, reintroduction, Onkaparinga River, Mt. Lofty Ranges, Kangaroo Island.

A COMIPARISON OF WACROINVERTEBRATE COMMIUNITISG IN THREE SOLTH ADSTRAIIAN STREAMS WITII REGARI TO REINTRODUCTION OF THE PLATYPLS

Abstract

Smmmary Vinctither, 30101. linces

 1.1.1141

Introduction

The lust moliabte recurd ut a platepusis

 Denny'). P'ollumian. river resulationt abriculats forestey amb wrhan development maly have condritumed to the fexal extinetion of the platyples. Predallon by the los (Comsiv (binjues) todpers l.) inal wher innusuced inimats is prohahly ulso signitisumb.

 platypus remmaluction indo the Alt Lesty ramgen

 platyput in marginal atreas. A possible sitc for platypus peintrodection in scoll Crech. :lll
 comacersation park iand it protected SA Wather sald homen

[^12]An of first shep foward the assersment on labibith bubability for platypuncs. we invertigated fix

 haticyed to be the man factor limither plalypua atfundance (Cibant de Carrick 197K: Farseher ef ad
 catmitame agencratly selectine invertebrates in direct proportion to their aldandance in the formbos (Faragher ef uh. 1979; Cirame 1982). Fatmehere ef of

 riffes (surbor simplinge with the erontents of

 it the phatypuses check proches. wion sonthe welection lon larger invertebralles and selection dations smatler oncs. We comparest the
 in Rescky River and Brwakerh Riber on Kangarma Isham. where platypanes were intmotaced

 -pring the they are times of wes lise the platypume liarly autumb gentrally sees an combiderable reatueriun ior platypus habitat (oll Kimuarou fatand oth the iwo
 Demmy'). This fesults inl widespened dippersin and

Sipring is seem as the harshest season fur platypuses (Cirat lays) an late winter and early spring raintall cansic flondinge and scouring of feeding areas and an inereare in fonm maker leeding difticult. At the end of' winter platypuses are in par physital condituo (Grant \& Dawsom 1976: Grant 1995), with juvenile male being the most affected ats they powsess nedigithe reserves al body fat (Hurlbert \& Cirant 1983. To make up for this hoss of condition platypuses need an athundance of food in the ammon.

Materials and Methods

Shudy Sipes

Scoll Creck ($\left.35^{\circ}(6)^{\prime} \mathrm{S}, 13 \mathrm{R}^{\circ} 42^{\prime} \mathrm{E}\right)$ is ant iutermittent, spring-led stream will at 27 km : citchanemt that is partly deated for urhan development and pasture (Fig. 1). Thre 2(0)-m sites, were chosen as representative shram sections in arder to sample a broad range of microbabitar types ('lible 1). Site SCl was on the border of Scott Creeh Conservalion Park, where the stream bank arre dominated by the exmic weeping willow (Salis ondyymict L.). Sites SC2 and SC3 were in the Mt Bold Reservoir calchment, in messmate Gringy-
hark) woodland (Ethedypmes obliqum Lifler. Hydrobogical reends for 1970-9) 4 (15ept Enviromment \& Heritage (DEDI), Adelaide, unpuht.) indicate ancan annual discharge of 3 . 501 M 1 , with pariods of no how in November (2t of ommity records), Decminer (4%) danuary ($8 \% / 4$. Fchruary (16\%). March (10\% and April (2\%)

Rocky River (35 $5^{\circ} 57^{\prime} \mathrm{S}, 136^{\circ} 42^{\prime} \mathrm{E}$) drains $190 \mathrm{~km} \mathrm{~m}^{\prime}$ of' eucalypt selerophyll lonest in Hinders Chase Nathonal Hark. Kingarms laland (Fig. I). Here , me sampling site (RRI) was chessen (Table 1). Hydrological data lior 1974-94 (DEH, unpub.) indicate a matn annal discharge of $17.620 \mathrm{M1}$, with no-ilow periods in December (fer of monllils recomas), January (22\%). Fehruary (62%). March ($58 \% / \%$) April ($26 \% \%$) and May ($6 \% \%$)
Breakneck River ($35^{\circ} 56^{\prime} \mathrm{S}, 136^{\prime 3} 35^{\prime} \mathrm{E}$) draim 92 km' af encalypt sederophyll ferest in the southwesern area of Flimers Chase National Park. Sines, BNI and BN 2 were 50 m and 1 km downstream. respectively, from a road crossing (Table 1). Whils no hydrological data are available. Breakneck River is honwon to dry to a series of isenated peruls at the end of summer (Grant \& Denay').

Ifis. I, Sample siles an Soatt Crech, Rochy Rower and Breahnech Riner.
Table I. Habitat und marphological parameters from each of the six sites sampled on Scont Creek and the Kangaruon Island streams.

	Sco	Creek		Rocky River	Breahnec	River
	SC1	SC2	SC3	RR1	BNI	BN2
Microhabitats sampled for macroinvertebrates	Pool. large woody debris. riffle. run (spring only)	Pool. riffle	Pool, run	Pool. macrophytes	Pool, large noody debris	Pool, large woody debris, riffle, run
Riffle substrate	Willow roots	Cobble	-	-	-	Bedrock
Pool substrate	Sand, clay, gravel, CPOM	Bedrock/cobble	Bedrock	Silt, CPOM	Sand, CPOM	Silt. CPOM
Run substrate	Sand, gravel	-	Cobble	"	-	Bedrock
Riparian/emergent vegetation	Salix babylonica	Phrogmites. australis. Ruhus sp.	Phragmites australis, Rubus sp.	Grasses	Melaleurnsp.	Melalenca sp.
Submerged vegctation	-	-	-	Mriophrylum sp.. Isolepis fluituns		Triglochinsp.
Altitude (m)	240	210	200	50	10	10
Max depth (m) (autumn)	1.73	0.47	1.09	0.94	0.75	0.88
Mean depth $(\pm$ SD) (m) (autumn)	0.49 ± 0.43	0.22 ± 0.13	0.65 ± 0.27	0.39 ± 0.24	0.37 ± 0.18	0.33 ± 0.20
Max width (m)	9.65	3.90	7.20	9.60	3.80	5.20
Min width (m) (autumn)	5.00	1.30	1.80	6.60	2.40	2.80
Mean (\pm SD) width (m) (autumn)	7.03 ± 1.57	2.72 ± 0.88	4.32 ± 1.90	7.98 ± 1.13	3.11 ± 0.46	4.19 ± 0.71
Undercut banks	Absent	Present	Present	Present	Present	Present

[^13]

 rifile). Sample gratrim itre denurad A-E:

Simplins

The benthis macronvertebrate samplang programme was designed with the aswomption that platypus will lake food in proportion los its abondance in the benthos (Faragher eq al. 1979) Thus at wide ratnge of microhahitats was sampled line macrevinverthrates using al range of sampling Wechnigues. Five replicate samples were taken from up to live michohabitals at exach site (Tahte I) in abtumn (22 Mar - 5 Apr.) and spring (28 Aug. - U

 diameder PVC lute (ancal 0.018 mm^{2}, volunk $1.8 \times$ $10^{-3} \mathrm{~m}^{\prime}$ ' or, when this was dot possible, with at mondited 0. Is trin 2 Surber sampler and sieved botugh a 250 mon mech dip met. Large wooly dehris wan simploded uning a dip net byer $8.3 \mathrm{~m}^{3}$ Cor I min. ithe bated "yabbic traps" allso were sel Spriong samples Were reduced in size to expedice sampling. Species . Hzil surves wate generated for samplen collected in athamo to emsute that no fors di iaformation sectured with reduced sample areas. This change in sample atrea should not have impacted on the resulth ats no attempt wals made (o) comparte kemporall difierences. (Coren were lianted 10 . 0.115 ml depth (volumte 9.0 \& $10^{-1} \mathrm{mi}^{3}$) and Surber and dip-nel

 mesh) prior (os determination of the numbers of organisms per sample. Matominvertchates wate identilied to al level according los their importinne ath platypus foxd, following the rewnltion Faragher ef al. (1979). Where possible, latge insertebaten were identilied tuspecier, Smaller laxa, those identifed in

 family. Large imertebrites were selected subjectively on the basis of si/e and ats signifieance
 atre listed in the Appendix. Conversions (t) bomats were mide after drying samplen (antuman only) in sis C for 2 days 10 constant weight. Waller temperathes were radoded on wite usiny abn alcohol themometer: conductivity (Kadiometer CDM2e meter) and lurbidity (Hach Turbidimeter) were determined in the labmallory.

Durn cunthssis

All abundance and hiomans values were eonverted (o) a common tmil (number of individuals per I m: and grams per $\left(\mathrm{m}^{2}\right.$) prior to analysis. Abundantes datal were lene $(x+1)$ transommed la reducc skew, rangec-atimelardised and rendered als it Bray-Curtion diatance matrix betore Tivo-Way INdicater SPecies

ANalycis (TWINSPAN) (tintranstomed pseude)species were delined hy the cut levels of $0,25,100$. 200 and 1000): delatil values were employed dsewhere) and ardination by Semi-Strong. Hybrid mulictinsensiontal scaling (SSH) (PATN: Belbin (1)4,3). Ordination solutions were derived from $5(0)$ randems satts. A Aconte Courto provedure (AICSSH in PATN, was used to detemine whether the threedimensional SSH orditations produced reliatbe patterns, The PATN Principal Axis Correlation procedure (PCC) was used to examive the relationship between ordination peeters and convimumenal variahles fanductivity. surent ishocity (at a fanked variable: 1. rillte: 2 , ran: 3. poul), Balifude, Ioneitude, turhidity and temperature). PCO conredations were tested for statistical
 proveluc (MCOA) over ! 09 runs (Finth \& Nomtis 1989). Cormps of sumples were compared using Amalysis of Similaritics (Clarke 190) (ANOSIM in D'Al'N), Saluples were grouped according (o) river. sike microhabitall (large workly dehris, peol, rillle. tallo, macruphyte bed) substratum (large woody delris, satudgravel. combles, hadrock, willow ronts, line sill: and curtent selocily istill. poolfarge woody dehn wamaconphy bedt medium, run and fast, tilite).
Median invertebate ahondarces. the athondaneen of hated beat and hionnass in poon and rittle samples (see Appendix) were compared hy Kiriskal-Wallis

ANOVA ats the data were non-normal. Between-site diflerences were located using Zart's (1084 pp. 194) "Tukey-lype' multiple comparison test. a son. parametric analogene to the Tokey lest.

Resulis

Solt Creeh yielded 35,245 specimens in 35 samples. Sixdy seven taxa, monty inseets (70\%) were recorded. with the amphipod Ausornhilhming atistralis (Sayce) heine the most abundamt daxum in the greatest number of samplen collected (Table 2) Rocky River and Breakneck River yiclded $9,+15$ specimens in 45 samples. Fifly six taxa Were retorded: these were mainly insects ($74 / \%$) , with chironomids being the mose abloundant taxom in the largent number of samples collected from both Kingrarow Islanal fivers (Table 2).
TWINSPAN analysis (Fig. 2) Jist separaled groups correlated with current wehocity and site (groups 1). Fe were rifte samples from SCO^{\prime} and BN2 plus bun-rifile samples firm RR1 and BN2). TIs rensaining separations were comelated with location (groups A-B Jrom Kangarow) Istandt; group C from Scont Creeh) and site within loceation. SSH ordination yielded in 3-1) model (stress (0,19) (Fing. 3a-c). As the
 from the MCSSH procedure (stess 0.28) the original

İaun	Asturn			Spring		
	Scoll Croch	Rexky River	Hixakseck River	Scoul Come	Rexty Riner	Brataledk River
	(35) samples)	(15) samples)	1301 samples)	(4) simuplen)	11.5 samples)	(30) samples)

1matichtrentu						
athwarlis	(6)	t		5	-	
	7		3	S		
	?	-		.	.	
(hırimednal, 心	,	11	11	(1)	1	191
Dimbltul le:	\}		\cdots	1	?	-
Kiktlidind gentus / MV spo. 5	1					
	1			1		
Siviterdernm ap.	1					
1 111+4.a*			$+$			
			1		-	
Itsolatmilla smalmilultal	-			\pm		
						4
	-	-		:	1	
Vematoda	-			*		
()liewolicku				*	7	
()arratzal	-			1		
Culsmalas	-	-	-	1	-	-
	-	-		-	1	

ordination is credible. Samples from Scott Creek and the island rivers formed two groups on the third axis, and sites tended to aggregate within these groups. PCC indicated significant correlations for all environmental variables (Table 3). Vectors show two main gradients; an altitude/geography gradient comprising allitude, latitude, longitude, conductivity and temperature and, at right angles on axis three, a current velocity gradient also comprising turbidity (Fig. 3a-č), The altitude/geography gradient delineates the geographically distinct and high altitude Scott Creek samples from the geographically

Table 3. Maximum PCC correlations and significance of environmental variables and sample ordination scores' in (Iutumn and spring l^{*} significant at $\mathrm{p}=0.05$; ** significant at $\mathrm{p}=0.01$).

Habitat feature	Correlation	
	Autumn	Spring
Conductivity (minho)	$0.916^{* *}$	$0.649^{* *}$
Turbidity (NTU)	$0.519^{* * *}$	0.345^{*}
Water temperature (${ }^{\circ} \mathrm{C}$)	$0.872^{* * *}$	0.552^{*}
Current velocity (ranked)	$0.672^{* * *}$	$0.507^{* *}$
Altitude (m)	$0.927^{* *}$	$0.92^{* *}$
Latilude (decimal degrees)	$0.900^{* * *}$	$0.885^{* *}$
Longitude (decimal degrees)	$0.907^{* *}$	$0.893^{* * *}$

closer and lower altitude Kangaroo Island river samples, whilst conductivity and temperature were higher in the Kangaroo Island rivers. The gradient of decreasing current velocity corresponded with an increase in turbidity. This gradient delineated groups of samples from riffle, run and pool sites. ANOSIM results revealed differences between each group of samples analysed: significant differences were located between river ($R=1.240, p<0.001$), site (R $=1.356, p<0.001)$, microhabitat $(R=1.158, p<$ 0.001), substratum ($R=1.226, p<0.001$) and current velocity ($R=1.096, p<0.001$) sample groups.

Differences in median total macroinvertebrate abundance in the three streams were not significant for microhabitats within and between sites $\left(\mathrm{H}_{7}=\right.$ 13.72, $p=0.057$) (Fig. 4a). There were no significant dilferences between the numbers of large taxa from habitats within or between sites, with one exception (Fig. 4b). The exception was that the number of large macroinvertebrates in the macrophyte beds at RRI was greater than that in the run at $\mathrm{BN} 2\left(H_{7}=21.95\right.$, $p=0.003)$. With regard to biomass there were no significant differences between sites or habitats (Fig. 4c), with the exception that the median biomass from a rocky pool at SC 2 was higher than that from a rocky pool and bare sediment pool at $\mathrm{BN} 2\left(\mathrm{H}_{7}=\right.$ $19.62, p=0.007)$.

Fig. 3. SSH ordination (a: axis 1 v. 2, b: axis I v. 3, c; axis 2 v .3) for all samples collected during autumn. The site of origin is marked $\mathbf{0}, \mathrm{SC} 1 ; \square, \mathrm{SC} 2 ; \Delta, S C 3 ; \boldsymbol{\Delta R 1}$: BNI:■, BN2. Significant $P C C$ vectors are superimposed on the ordination plot (Al, altitude; Cn , conductivity; Cv , current velocity (ranked); La, latitude; Lo, longitude; Tp, water temperature; Tb , turbidity).

Fig, A. Mager patch tppe elonparison (median - 75-2i

Sprimes

The fil samples from Seot Creds yieded 13.419 mvertehates in 54 taxa, the maturily being insects
 Were the nowil athodant fata in the latgess number ol mimplen (Talite 2). A (6tal of 2904 invertebrater in -4 lata (8) 4 insects) wase collected in 45 samples fran Kingaron) Istasd. Oligethates were the noss alandant taxon form lie lages bumine of samples

most abundant it the greates monther al bamples collected frem Breakneck Kiver (Thale 2). Barwix thatorinvertobrime were represended in boh somel
 reduced sample size in spring were blicelive in collecting farouratble forst items.

 with conrent velocily. Pronl and maccophyte samples from RRI. IBNJ and BN2 (groups \wedge-BS) xepatrated

 Gowation. then site. SSH mdination yiedded as . $3-1$) solnions (aross (0.19). As the Aresh al ilic 3-1) inodel wate less thath that derived from the MCSSA
 eredible Simples Irom Scovt Crech sepurated limm lle two nther sitex at an anyle ahnge Axis. I (tige 6:tb). Sites rended to chuster withom these gronpsi (Figt

 3). The vectors show tho main groulichls: all
 velaciry gradient. The allitudesengraphy gradicnt. L゚omprising allilludt, batilnde. Iongeilede and water bemperature separates the highur altitmater geographically separate Sent Creck samples Itom the lower altiande and gerogepaphically chomer Kingaribe Island fiter samples (Fige (ba-e). This glatdient alson conerspurals with ens incronse in water
 groups ol rifles ato and porsl stmples, whilsi th increase in corrent selocity correspomels with a tecreane in sunductivity. The oricobatisen of mothidity does bot courespond with the othee twos gradients actross the three axes and its level of significance is lewer ("Tather 3), ANOSBM results peveated difistences bettreen cach group ol simples analyond (with the exception of current solocity): signilicam differences were lexated helwen river ($R=1.23 .3,1$) <0.0011, site $(R=1,273, p<0,00) \|$, mishothatital $(K$ $=1.17 \mathrm{~K}, 11<11,001)$ ind sulbotrallum $(k=1,28+0.11<$
 < (1.16) was net signilicimb.

Aledian invertebrate numbers in the matorophyte poeds at RRI and bare sedinent firon BNI were gyealer than those firm the richy pooth at BN2 ant
 there was the significan! difference leotween median numbers fome hathitas subin of leetweel sites. Itse

 sediment peol of RRI than the rocky oun at SCD ann there wore lewer large taxas in the pert al BN2 than sither the fischy tun at SC2 or matrophyte lods at

 riflley. Sumple sroups ate denoted $A-G$.

RRI. Thene was un tiflerence in the abmatance at latose organisms from ohber bahitals, withins or between siler.

Discussimn

There were monajor diflerences in the hiomass or the ahondame of total latma of larger tata in Scont Croek and the Kangaroo fand rivers. This finding - Hgegests that Scoul Creck is a pultential platypus reinionduction site. batsed on the availathe foom nesource in alulunal and apring. However furtion inlinentation is needed on the ford resturce durines at dry year and over a wides area before rempoduction of the platypus into the Scon Crech areat is considered.

The key food groups for platypus in the Shoalhatven River, New Sontly Wales. Were Wivchoptera, Odonata. Dipherat and Ephemeroptera (Firasher et at. 19)79). These are well-represented in Scont Creck. amd the decapods Cherex deverneros Clark amd Proman anstrafionvir Kemp alsos are
potential prey (ci. Fandgher et ol. 1974; Krueger el af. 1992). The dominant macronnertelnote in Scon
 amother potential food souree. In eontrast. Hes Kangaroc Island rivers (abd Sonts Creck in aprage) were dominated by chironomids. considered it less substimtial fond for platypus by firagher at af. (1479).

The matronvertehathe communty in Sunt Ched, diflered from that in Rocky River and Brazkneck River, with samples droms similar streams and sites (Fios example Rocky River and Breakneck Kiscro and sites within Scoll Creck respectivelys show ing greates aflinity to mas another. Dilferemess in community srotuture between Scott Creek and the Island rivers were consistently complated with a number of river specilic habitat and environmental variables, such als altitude. latitude and fongitudes. Seont Creek and the (wo Kimparen) Istand rivers afe exegrapheally distinct (separated by mome than 20 on kmo and difter markedly in alltatude and miorohathitat ypos. These ibree lactors have bean showar to

 2 x. i for all salmples collected during spring. The site of

13N1: \mathbb{Q}. $13 N 2$. Significan PCC vectors are nuperimposed (3) the urdination plor (Al. altitude: Cn. conductivity: Cl:
 waier temprature: Th, lutbidity).

1.ig. 7. Major pradel fype comparivon fomedian +75.25 percentile) al spring simplene (a) athumdance. (b) abundance of large drgancoms, (p, peol; m, makrophytc hed: J. riml

Explain dilferences in addatice macroinvertebate structure of spatially distinct sites (et. Corkum 149)?: Marchant af al. 1994; Marchant at af. 1999).

Despite the differences in eommonity structure between strams. samples from similar microhabilats and substrates were similar. This similarity was also related to differences in eurrent velocity. Autumn alfle samples from Scoul Crack and Breaknech Kiver showed mote similarily to one atonther than to other microhabitats at the simme siles (eli. Delucchi 1ysis: Boultor \& Lake 1992). Samples from Rocky River and Brakined River were more similar to one another than to samples from Scont Crech but were also ditterent from one another.

The two istand stream communities are likely to difter from those of Scot Creek sinee they hate been subjected to prolonged platypus predation. In this study, chiromomids and other small organisms deminated in the streans subjece to platypus prodation and bateer organions dominated in Scon Creck. There was litle differene in total 「atmal abondance or biomatss between the there sites. suggesting that platypuses may mot have at great intluence in that regand. It is likely, hamever. that

 would hecerne more the than in the 1 wh istand rivern There atre dess likely whe diflererese in prodation preshare betwery the three stisimis. dese for
 cexample. cuaser hufavinural clangees in lonic

 'Archopletal. promblitise smatler ames Pag.

 Jenybs) and shmbing galidias have heen reconded

 dians (an Killagrow thand in the lygots. If is mon pabsible lor exaluate liulloer the percontial lexud

 It when apgedel likely that phatypuses world nom the sachaded trant sion Crack lor want ol fomd.

The throe sections al scon Crech mventigated in Hos study arse insulticient for evalome finly Sonst Crees in bsmos of plitypus hathitas. As the Jrome

 presear (o) कuppust is vialske platypuis poppulation. 'Tle

 expanded tudy of Scou C"rech and sumomadills Water londies is requirex itt at the wh motnw. Thio survey is requited be conlirat the preselsee ol commalidated banks, overtyanying vagedationt.

 eximfortaction is combidered.

deknembledgrsenis

 NIS, shpervined by WIJW. We ate indetsed of he

 and s. l'aul for helpin lie dishd.

References

 2101.

 Fonlogy, (93lverni).
 intermittent alveatis in Victoria. Ausisatia. II

 t.on 18. 117-17i

 1812-15"

 34. 189-147.

 171171 .

 Twidals: C. R. © Lime J. K. (Wals) "Natmrat Mistory of
 Alebiniste).

 vartus water berlies ill New Soult Walles. Ams. Ahumatl. 5. 235-236.

 Sodney).

 20. 185 (m)

 Production and lims at mestabsice heat in ait and water. Phuval, \%ra), 51. 31.5-332.
 (1080) Translacation ats aspecics conservalion too):

 Soull Auseralia. S. Auss. Nof. 21. 11-12
 trady entalition and waller lumass in a lice living

 for ersmenvaltar. Binsionere 34. 152-161

 L'0nmunitics, (heradogin 95, 210-219.
 died and hehavious of platypus drmihurhanchm
 71.

 nunning watters in Victerial Australiah dest. .I. Mas: Froshm: Rers. 45.945.142.

 cantacyucrees of sampting on as broad spatial sade for

 Interpopadation yariation in may fly anti-pardaller takiens: Difterential effect on wantaming predatory fisht. tecolesy 75, 2078-2090).

 Vistorian sifstam. \&. /ard. fand. 232, 117-131
 breanom maylics express helavioural ilexibility in

 (Dremice-llall. Nuw derseyl.

Appendix

Mayor Cinum	Latrge	Tixon	Suchicamm
TEMNOCEIHIALIHEA		Firmuraphlalarav	SCOM, BNics
TURBELILARIA			
Ingersiidac		C'mm dingus Wcisso 1910	SCity Rhs
NEMAATODA		Unidemilied spl.	SCus, RRs. $\mathrm{BN}^{\text {cus }}$
ANNELIUS			
OLICOOCIIALMA		Unideminted tppo	SCich, RRalc, BNas
difethinlia		Unidentilised «pp.	SCas
Hol.lisisel			
GAS゙JR(10)			
Ancyctidace		Purissin spp.	SCus, RRa, I3Nals
1 lydrobiidas		Promatyargas yo.	SCas, RRas, BNas
I'limorbidiac			SCus, BNan
BIVAIVIA Comat ene			
Splateriidase		Sphaterinm hersmenir men (Tenisen-Wineris. 1876)	SCas
HYDRAEAIRINA		Thidentilied app.	
CRUSTACFA			
AIPPIIP(HDA			
(cenidar DICCAPODA	-		SCun, R13ix, I3Nal
Atyidic			Stir
Taraichaciulat	-	Sheren deavmeter Clarh. 1936	SCas. NRa
OSTRACOMA		Unidenatilied ippp.	SCus, RRata, BNam

（CITFOD）
（CNDOCLRA
ISOP（HDA
Janirid．te

INSECTA

DIPTILRA

> Chironnmidao

Simuliadace
Ceratopsogunidate
Empididate
Tipulidate
Mfucidate
Stratiomy idice
Culticidace
EPIIEMI：ROI DERA

I．emophlachidac
Cimnida
TRICHOPTERA
Cialcocidac
Leptocervidae

． tuiplectidae
Eencomidate
11 atroptilidac：

Hydropaychinatas
Hydrothiosidiat

C（OMEOHTFARA
Elmilate
D）tiecidate

Gyrimadae
Cicmbice
Chrysumelidac
Hydruphalidate

Ciripopterymidace

N．1．SOUTER \＆W I．WILLIAMS
Unidentidied appr．
Unidemifled appro
Uniderniticed apt．
SCH．RRa，13Na
CCa，13N：I
SCu_{4}［3N．

I Inidentiliced sppa．
I nidentitied spp．
1 Indentified s．pp．
Unidentilied spp？
I Thidentified spp．
Unidentilied app．
Unidentified spp．
Unidentitied app．
Batidat Cients 1 MV sp 5
Commoprilum slongatum Suter：1986
（lencene sp．

Nonsist imemspicucd（Exton，1871）

Unidentilied ypp．
friplerciuters．pp．
（heretes spp．
Noralima 4 pp．
Anisucentropus bicolorolus（Martyma．1414）
Unidentilied spp．
termmas spp．
He＇lyethirue spp．
Orahmenlichion ע．
Oryedlioses sp．
Thafropsila beromandra Nehoiss． 1977

Apsibuthomematip．
U／merocharbemat sp
Paschopemt spacties complex．
Thidemtitied yp．（larvac）
Unidentitied ypp．（larvate）
Аптірития ар．
－Vectermasama spr．

Unidentidied 4p．
Unidentified spo（adults）
Unidentified spp．（Jaryame）
Unidentified ap．
Unidentified spp．（adults，fartace）
Thidentified sp．
Dimetrmerte stams Kinmine，（t） 51
Nownammerter therevi（Bamhe，1020）
laptoperfa primitiva McLallan． 1971
Ifienoperter mayi（10erkins．1958）

Mewnelias app．
Wiensurctaspp．
Siscara 4 ．
Unidentilited spp．

Auspmasonphus metruccus（Sclys．1869）

Unidentilied will

SCan，RRals，［3Nath
SCar，RR：1s，13N：L
SCas，RREM BNas
SCia，RRA．［3Nas
SCar．RRa，BNar
SCat RRs．I3N4
$\mathrm{SCO}, \mathrm{BNa}$
X：
SC＂a
SCia，RKik． 13 Nith
Sく，
SCHS，RRA，BNan
SCB4．RRas，BNas
SCat．RRa，13Naか
SCas，RR：1，BN：
SCim．RRas，BNas
SCa！，RRシいと，13Nols
SC
SCis．BNas
BNa，
SCas，RRa．BNa
SCac．KRU，13Nal
SC＂
RRa，BNas
SCils．BNas
8 SO
BNa
$\mathrm{SC}_{\mathrm{Ca}}$
SCas，RRas，RNats
SC：
SClas．I3N：M
SC：in
SCia
SCs．RRAI．BNAI
SC：
RR：
SCik．RKan，BN：ls
RR4
SCir．BNal
SC＂に，RRa，BNas
SCバ，RRs．13Nan

SCs，RRS
SC，KRs，13N
SCal4．13Nat
Scos．KRa，BN
SCiss，RRos，13N：1
SC．．．RK．．
S＂：1ヶ．RKa，
SCu，RRa，H3N
SC＇as，Rにa
SC＂A RRa．BNa
がa
SC＇ia，RRTa，BNaIs
BN．
RR：I، 13 Na
Sく＂は，R1々ン，BNは，
RRa

TAXONOMY AND BIOLOGY OF A NEW SPECIES OF ZAPHANERA (HEMIPTERA: ALEYRODIDAE) AND ITS ASSOCIATION WITH THE WIDESPREAD DEATH OF WESTERN MYALL TREES, ACACIA PAPYROCARPA, NEAR ROXBY DOWNS, SOUTH AUSTRALIA

By P. T. Bailey*, J. H. Martint, J. S. Noyest \& A. D. Austin.f*

Abstract

Summary Bailey, P. T., Martin, J. H., Noyes, J. S. \& Austin, A. D. (2001) Taxonomy and biology of a new species of Zaphanera (Hemiptera: Aleyrodidae) and its association with the widespread death of western myall trees, Acacia papyrocarpa, near Roxby Downs, South Australia. Trans. R. Soc. S. Aust. 125(2) 83-96, 30 November, 2001. An outbreak of western myall whitefly, a new species of Zaphanera (Hemiptera: Aleyrodidae), is associated with dieback and death of western myall trees, Acacia papyrocarpa Bentham, in a desert area of about $10,000 \mathrm{~km}^{2}$ in South Australia. Both young and mature trees up to several hundred years old are affected. Death of foliage appears to be related to large numbers of the whitefly fceding on phyllodes. A new species of the parasitoid Zarhopaloides (Hymenoptcra: Encyrtidae) emerged from whitefly pupae and appears to be the first encyrtid authenticated as a true parasitoid of aleyrodids. Possible causes of this outbreak are discussed and include (1) a temporary parasitoid asynchrony with its hosts population, (2) the possibility that western myall whitefly has been newly-introduced to the area on another plant host and has adapted to western myall trees and (3) that the outbreak is symptomatic of a widespread decline in the health of trees. All life-history stages of the new species of Zaphanera and the new species of the parasitoid Zarhopaloides are described. Key Words: Zaphanera, Zarhopaloides, Acacia papyrocarpa Bentham, western myall whitefly, western myall tree, outbreak, tree death.

TAXONOMY AND BIOLOGY OF A NEW SPECIES OF ZAPHANERA (HEMIPTERA: AIEYRODIDAE) AND ITS ASSOCIATION WITH TIE WIDESPREAD DEATII OF WESTERN MYALL TREES, ACACLA PAPYROCARPA, NEAR ROXBY DOWNS, SOUTH AUSTRALIA

by P. T. Bailey", J. H. Martin, J. S. Noyes" \& A. D. Austin*.

Abstract

Summary Banis, P. T.. Martiv, J. H., Noybs, J. S. \& Austiv, A. D. (2001) Taxonomy and biology of a new specics of Kuphanem (Hemiptera: Aleyrodidac) and its association with the widespread death of western myall trees. Acociut papyrocuph, near Roxby Downs, South Australia, Trans: R. Soc: S. Aust, 125(2) 83-96, 30 Novenber, 2001.

An outbreak of western myall whitefly, a new species of Zaphanera (Hemiptera: Aleyrodidac) is associated with dieback and death of western myall trees, Acaria papyrocurpa Bentham, in a desert area of about 10,000 km^{2} in South Australia. Both young and mature trees up to several hundred years old are affected. Death of foliage appears to be related to large numbers of the whitetly feeding on phyllodes. Λ new species of the parasitoid Zahopaloides (1fymenoptera: Encyrtidae) emerged from whitefly pupae and appears to be the first encyrtid authenticated as a true parasitoid of aleyrodids. Possible causes of this outbreak are discussed and include (1) a temporary parasitoid asynchrony with its host population, (2) the possibility that western myall Whitelly has been newly-introduced to the area on another plant host and has adapted to western myall trees and (3) that the outbreak is symptomatic of a widespread decline in the health of trees. All life-history stages of the new species of Zaphomefor and the new species of the parasitoid Zarhopaloides are described.

Kla Worns: Zaphanera, Zumhopatoides, Acaciu papwocarpa Bentham, western myall whitelly, western myall tree, outbreak, tree death.

Introduction

Westem myall, Acacia papyrocarpa Bentham, is a desert adapted tree of chenopod shrublands on calcareous soils in the $150-300 \mathrm{~mm}$ (predominantly winter) rainfall zones of northern Spencer Gulf, along the margins of the Nullarbor Plain of South Australia, and in the Eastern Goldfields of Western Australia. Much of this area is used for grazing sheep and catle for which the trees provide shelter. Western myall shares the eastem parts of its range with mulga, Acacia ancura F. Muell., to form a mixed species woodland.

Western myall trees are slow-growing and may reach $5-6 \mathrm{~m}$ before becoming recumbent (Lange \& Sparrow 1992). Age estimates of mature trees vary

[^14]from 250 ycars (Coleman et al. 1996') to $350+$ years (Ireland 1997^{2}). Foliar growth flushes are produced by the tree during summer (November to February) and appear to be independent of rainfall (Ireland 1997')

This paper describes an outbreak of an apparently native whitefly species in the genus Zaphanera on western myall which has killed trees over a wide area of north-castern South Australia. There is no historical evidence of previous outbreaks of this species on western myall trees anywhere in Australia (nor of any other insect capable of killing so many trees so quickly). We are not aware of previous reports of any whitefly species causing widespread death of perennial trees. Both the whitefly and its encyrtid wasp parasitoid are deseribed as new and possible reasons for the outbreak are discussed.

Materials and Methods

Ta

Terminology for whitelly morphology follows that of Martin (1999) and that for the encyrtid parasitoid is after Noyes \& Hayat (1994). The following abbreviations are used for institutions:
ANIC. Ausiralian National Insect Collection, CSIRO Entomology, Canberra;
BMNH, The Natural History Muscum, London, UK: USNM, US National Museun of Natural History. Washington, DC :
WINC, Waite Insect and Nematode Collection, Waite Campus, SA.

Itwe lombonage ahbreviations are lesed in lio paratsitod descriphom:
A. - aceleagus lementh

I:L. - masimuma cy lenglt
FVY - thaisimum cye vaidd

\therefore :"ghcols aller Hw podicel

IWI. - Inee wing length
f'WVW - toke wing widll

IIW - lead widis
IVWL - hind wing lougls
HWW - hind wage whath
M.I' - mid sibia longed

M15-matar satce
 and occipital marem

 and cyentatyes
「(t)1. - minimum distance betheen postenion ocedji
SL - atance lcugth
Stl' - masximunt scapo is idf
Prentus
The lite eycle bl wentern myall mhitetly was
 approximatsly monthly intervals durine SeptemberApril and lesis fiequciblly during May-August sinet Hic periosi Deectaber leye do December 2000 Whitefly poppulation samptes were batien firm 20 manme trees. individually marleed, gusi sutside Roxby Downs Iownsthip. At each samplinge time. at hoalthy gowving shoot was cut from badi Isen as approximately 2.5 m focight and indivjelatly stomed in a paper hag. The samples were examiend within IWo days of culleclion. On each shonat, live subNerminal mannee phyllodes were exammed and the number and satige of whiteifics were moded using x 20 magnititation under ar binewentar microscops.

Thix inkensify on samplise yiedded estimates of mean mambers of whilelly wills the followinge standard emons: for ceges, 20% of the mean pos phyllode. lour enels of secobd and third insar larvias, 250, al' mean and for the pupal stage, Igy, of the mean sumber per phyllode. Fibse imstar (mabile) tarvac were barely observed, The presence of ans andultr llying around ireces wats also noted.

1 2 uning the your 2000), ground surveys atongs. station thachs delimited the extent of the whitelly Intestanoon. Jites with symptomalice dieback were inspected und hic presence ofta whitelly noted. Nousymphomatic erest vere sxamined in every copace encountered along the mate, gencrally allorving at Leans Skil aller tach pusitive record helore ratuming

track but beyond this. inu special sampline cibeomb
 with the aid $u 0^{\circ}$ a diand leas and if any standel of

 examined, a nearby Hece wass salripled. If Ilve was

Zaphuncer puphrociramae Martin sp. man (11) iS 1-4.7-17)

 (slide-mounted. ANIC')

 loglotype (ANIS: BMNII, USNM. WINC:) 3 Lै
 27.iv2000 (d. II. Marlio) (13MNHI. WINC'). 2s puparia, of thim-instar larvale I secomal-instat lara a, vicinity of Roxby Downs, V.) 4e4 (J. Zwar) (AN'lC):
 farvac. 11 first-instar larvace. vicinily ul Roxby Downs 20x. 1909 (P. Bailcy) (I3MNII. WINC): 1at

 vicimily ol Roxby Duwns. 14,ii,2000 (I?. Bailey)
 larsac, 37 second-jnstat larvace 5 dirst-instan larvac. Rexhy Downs townahip. 25.iv. 2000 (1,11 . Martin) (BMNII).

Gher'meterme : Altrge amount offley material al ult larval slages fom the above collection sites is herd in RMNII and WINC.

Sluraly after llee L. $7 / 1$ \& moull shining black. almost flat, lyu with incerasing maturity becoming markedly canvex and developing servering of aparsie greysh meal (away upan entergence of adulls (Гige, 3); sextally
 0.96 nnm wide. widest apposice conlluthee of knginudinal and Isamsverse monting sulumes (Figy. 7): intennad appocs undertying medan part of ahatominal
 x $1.05 \mathrm{~s}-1.18$ mom, widest ablominally: intennal
 $(10=14)$; puparial al buth sexes 1.5()$=1.8(0) x$ as lenge ans wide: mation crenulate throughout, (ypitally o-8

Figs 1-6. Life history stages and damage of western myall whitetly, Zaphoneru mopyocolpue Martin sp, nov, 1. Eggs on a phyllode of western myall. 2. One second instar (on left) and third instar larvae on a phyllode, 3. Adult female emerging from puparium. 4. Eggs and pupacencruting phyllodes. 5. Damage by Z. papyorarpue. A western myall tree in Roxby Downs township with carly symptoms of diehack associated with Z. papyrocarpue on phyllodes (this tree died six months: later). 6. Deud (left) and dying (right) western myall trees in pastoral land, of South Aumralia. Scale bars $=0.5 \mathrm{~mm}, 1 ; 1$ mm. 2-4: 1 m. 5. 6.

1"igs 7. 8. Zaphamera papyrucupue Martin sp. nov., puparium. 7. Complete puparium with expanded detail of capitate setae and geminate pore/porette pairs. 8 . Dorsal detail of vasiform orifice region (drawn from at teneral puparium). Scale ball $=0.5 \mathrm{~mm}$.

 10. Second-instar larvit dorsum. 11. First-instar lary at, Scale hats $=0.5 \mathrm{~mm} .9 ; 0.1 \mathrm{~mm}, 10$. 11 .
margin: feeth rather irregular but not modified at caudal and thoracic tracheal openings at magein: anterior and posterior marginal setac present: dorsal chactotaxy diflicult to discern in mature puparias: all dorsal seta short, capitate: single pair ul sth ahdominal setac placed anterior and slighty lateral 10 vasiform orifice: abdomen usuatly with ob suter submargimal pairs, cephalothorax usually with a
single outer nubmarginal pair and 2 subdorsal pairs of setue (Fig , 7) , but cephatic (submedian) setac abbent: dorsum with longitudinal moulting suture reachinser puparial margin: transverse moulting sulures curving anterolaterally and reaching margin: ablominal segmentation as shown, the intersegmental divisions ol abdominal segments II/III to VI/VII exaggerated, thickened, suture-like,
atl anpving sizarply amberind and ahomas reaclathe

 - whomedian preskets vabiably marhed deprembing son

 ditker - - $^{\prime \prime}$ ligurcs; submedian aldenminal Acprossithos prexedit hat cimbenflaged by these
 marked ly irtcoular rillga wh paller markingen

 Specimens: similar pences decen of suball grompor
 Lordate. slightly edevated posternateratly. dilly

 vasiform onflice albun 0.06 mon done in make. 18.107

 fonate. smadill liorow stelined by shathow pidge to

 with apical asthessun prad: madelle and hind lege sath sibh liny hithall seda and apine: yentral ahdominat

 darker ovait mathings: when stonker acpatalled from

 A1, hhem:'..

 anterior or 1mog mesm-medadorncice division (canty Mistaken for bephatothoracis-abdominal division hut ford lexes blearly underlic apparend list abdenmiand steghente. al which jouill evathe marginal
 Hhect-install -exmian wherved to fold at this meth. suctathoraco division, sexat dimopthism appatent.

 vasitorm orilice and ahdominal divinan VIJ/VIII: anterior and posterior marginal setate presente darsall chatefataxy same as 1 pupatra- selat blum and blunt of sery cigholy eapifate: abolosminal intescegnemal divistons $11 / \mathrm{J} \|$ it VIVII pronesumed, exterdiad intu
 distinet. thoracie equisalonts manked is in pupariaz submedian eone thechistomats, subnnargin wish fow do geminate poreprectes: legs typeat for third-instar. rallher lrianmedar, lore sund middle pairs with appad pale dineced laterad hut hind pant direseded
 bitises ulf fore led.

 intersegenental devision extendinge imte sumatorsmm: entiche mosbly male bur with sumue dusky pigmentapion on phathisform suhmedian atborside

 instar. but unly - paits or thomesic and single pair of
 specimeths: wher indiyduals wish of pains ol
 bases always visible hut sciac themselyes variadry.
 peston atobind periphory of phathis k:

 marein will la pairs of finger-like prormsinmo,

 hesiney lang and lan-like: Jiomander hlort. shaghb

 ancorih margin, pasmed fo be the anterber margensl
 as in second and dhird instans, rowst pronouncest inderscegmental division is belwern meser- and
 and 7 pairs sut abdominal subdorssil capitale setat; ventrally. appendages relloch mobility of shis stacere.

 from lobia hut distal scemment of leg whth ippariont singe ctaw-like upts and disfint'y clubtred suhapical diefule: each antembe with 3 distinet segments.

Figs 12-17. Zaphonem paprocoropoie Martin sp. nov...adult characters. 12. Male antennal segment 1II. 13. Male antennal egement IV, with single convoluted sensorium shown. 14. Female antennal segments III-VII. 15. Lateral view of matio qental segment. 16, Lateral view of male aedeagus. 17. Dorsal view ol mate ahdomen, with expanded detail ol operculum and lingula.

 1.11 : 11 ~.t.e.c.

Piluft musts \{figes 12.13.15.17)

 astablly disthosily imgeded in its hatal hard and with

 chatractera as in mate; abdomen bearines unly 2 paiss

 seganemed. IV and V much silurter than remainder of 17agellar sedglens: fisually will weyment VII beatiog

 Jll woll 14 sulhapicall sensnrian al istegular oullons bul not ejongeate.

111 maders 1

 liom which is lakes hoth its specetice namus and

Amonger the bian deserotred Abstanian species of

 such in Mastins (lyyy) key. Jepphammet
 submedian elambular patches, presenew el subonedian pairs al aboutinge abdominal luberele: dad Loxceptonally proncomaced intolscencomal disisions

 suspected than the new species mieho he a varime al

 indicanded severall ather. bambiaterte. chatracters that

 displaceel inlos subelorsum (\%.0 Higer has sis) cephabothoracie pairs all buhmarginall, in 1101

 Whathis completely undevelopod in 8 be mign

 He intersegtmental divisions. Wherest the
 givelr lle grante development of the summedian

 subnediatr pigmentation (completely palce in $\%$ H/g'r') ind clongatce ruhnucdsan ahdolmonal depressoms (wimelar in $\%$ Higed and with in
 11 $\% 111 \%$

 anly two pairs of abdonnimal witr glands in the Pemates is not nistal in the Neyrodinate and the
 seses are simularly penarkuble.

Weatern myatl whilstly hatel lime distine gencraions per your daring the study fige, I is). An

 inter mohike lirat instar larvice that comblemetines he secon dispersing of phyllodes. The serkentars secomal and thad instar lanstic (tig. Z) dereloped mote slowly in winter than in the sumbas: The fourls

 Whid develog the atumn wimer and spriase tammer

 casconod the phyllade（hige 4）．This sage wate chady
 frnisydew exudate sas abserved assoctated widt inty
 associated with whitetly larvac．Adtuls（Figh ，3）lived
 the lathomatory it $24^{\circ} \mathrm{C}$ and provided with 1 moristure．
 following rain and the adults were ubserved fying in

liming of generations and life history stages can bu bughly estimatad from Fig．18．Taking into aterount the period belwew egg layings，the atutum－ winter gentration takes approximately sevent monelos and the spring－sumaner ginnがation five monthe Liges appear to batels ower a perion of no more than fiver Wechs．Duralient af the seevold instar is about or－e wecks an March－April and $4 \cdot 6$ weeks in September－ November．Duration al the thad instar is about 20 weske in Aprilesteplember and sight weeks in November－1December．Duration of the pupal stage is Pour wecks in S＇plember but up to eight weeks in Aunary－ficbruary．

Jimatrearion of fullucah

 Trees showing symptome af dichach and death aswactinted with westeral myall whitely propulations

 any ．I．puparesernat the

Within the ances of micestations．malga mexe（．1
 wilh weasern myall．as sume cises wilh lonching foliage，Thene mulgon trees were examined but 7
 （umescribed）spectice of Zefphotore was accalsionally for und on thean．

1）．はルばば

 handred tices cxamined duting the study ahose with dishase symptoms were always assuciated with 1 Ins presene of western myall whitetly，Symptoms on mature Ireces inclated initisl vedsming of ploy lodeso on small atos of the tree，followed hy death of fillage th brandan（t゙ig． 5 ）and INen deand ol woudy
 mathe or young tees death of the whote tree maty ocear willin onc yeitr．As at rough csimatco abeas at foliage with an atrage al $3-5$ papace per phyllode were：likely los slic．

 （1FICS 2（）－27）

1／11＂uh
1．tngit 1．1．3－1．40 man（1．－10 mm an holotypes）． fitmonertex pale onange－yellow，paler in ocellat ared fixe genae and temples concolorous bus
 yollow：radicle and most af scape comedorous with laces，bub outcr fixe of＇swape with brouel，dark bronvo dorsal stripe extending atong most ol＇dorsal margin． predicel with basal two thideds dorsally and laberally dark brown，almost black，ventrally and int apes dosky．pale orange：thagellum testaceous brown． proximal sequments durker：amberior hallo wl pronsotuns black，posterior half translacent palde．yellow on white nome shothed in fragsitucent white selac：mesosedtum

Fig. 19. Surveys of western myall trees on which western myall whitelly. \%aphanera pupyrocurpac Martin sp. nov. Wans detected between Noyember, 1999 and July, 2000), The northern edge of the outbreak was not delimited.
shining, metallic blue-green in anterior two-thirds. yellow in posterior one-third and along lateral margins, extreme posterior margin black; axillac yellow; scutellum mostly shining, metallic bluegreen mixed, posteriorly purple, apex and lateral margins posteriorly yellow; tegula white witl brown apical spot; dorsum of thorax clothed in dense.
translucent, white setae; metanotum medially yellow, laterally black; prepectus translucent white, anteriorly dark brown; mesopleuron with small yellow spot below tegula but generally metallic green, bluish posteriorly, slightly purplish dorsally: prosternum metallic green; fore leg with coxa and femur yellow, tibia ycllow mixed dusky and
 hrown nsised yellow: pretarsus dark hrownt: mesorsfornam metallie yren; and coxa metallie

 seflow with an inconspictous brown stripe atony most uf dersal marem. tarsus pale ysllow with
 mised with pungle and clothed seith Iransluectil palco
 sellow hul with marron browo band al base and swe
 kontif respertively: tarsus desky yellow. protarsus dark brown: wines completty byatione, veniabon bronvit; medapleuron metailic green and elathed in
 medially hack with slight sheen. gicenish lowards Egracters, shibing blucegreer intside sprotele berte

 blue-green or purphisil sheer and chathed in fairly

 sobetes. encelle forming int weule tange of shoul 70 :
 lither losy than 5 a as lone ars braded: KI-5

 distime etrine apex slightly mbligucly mancitb:
 ntandibles (1 ior 21) midentale, upper looth sormewhas

 1.ilf: 39, SI, 29, SilV-6,5 Visible part of mesobcutum about 2 xa brond as longe seuthlan huthly shother that !nesoseutum and sidighty bresder Htan lang: Vore wing about 2.6 x is lome is brebl);
 lines al sefac near pesstarier wing margin; basal bell donsely and exenly prlase: venatuon ats in Fige I2!
 IIWI. 1.35. IIWW-42: girster ubout lirecelillis als fong as thoras: ovipessitor as in I'ig2. I4 exserted pand

VRa,

 encnitabliat colour as in lernale but for simall, medallic.

Higeslum gencrally yallow will cevreme apes wl dava brown: mesoseutum. :xilltue and seblellan complecty metallic bife-gecen; time libis with onls
 ollacmise fore and mid tibia yelloms: hatily markid with hrown: head shome 2.3 o its browd sis

 posterion occlli: seroltes broad, subparallel and moderately devp: a small depression betwedy bato scrabe dursilly and eye ahich pessaibly

 mouth matein by slighly mone than 1.5 \& ins bubs Jergetl with vertral magein it lide abouse luwer cye

 clearly longet thom diameder of scogitacols: Il

 der刀e as broad but giving the now of the fantel心 at slighty strpate nppearance: claty subcylindrical and
 or less tramversely tuncater relative measibemodis.
 NIS 20, 1:1 35. $1=12-30$. SL=20, Sill 4.5 : Fma
 comspicuousty less dense thatr in apical luat of winge will distinel maked wreas near hase athel belona
 IWW - 3T. $111 \mathrm{~L}-47$. L1WW=14; dedergen abomil folf is lones as mid ubsa, ils upex browly spablata

Howil

Fervememic ndations:hipas

 llayar: (1984) alad 1rabluts de ciardis (1997) und includes foter previsusty deseribed spectics. Fabalen

 culdediation of the latad and dorsam of the tharax. The iwo species coll be distinguishod on the distribution of fincar semsilla on the funsele and colduration of the liond sibide alnd fore wing. In Z

 the fore withe is complotely byatiose whereas is zo
 sensilds. the hioul thru is alansil cumpletely hromn without any disfore hande and the fore wiote has :

 untemand lake ellam lilitorm with fil umandified and
 (distmedter at the segments.

 be emoneols ohscevations of ohe-utt 'atedents

 licyucrily reared |romithoultes in South Americis

 alleyrulid.s.

 bxit hale and predated puphe by a jagend hole. The billy parasalund thial simerased from simples ul \&

Tritle billceded	lいか piotpar (ii)		pred!nim,
	18. 4	t	<16
2900. 2014	201	10	-1\%

1)ixcussion

the uubtomat ur western inyall whitedy and eloc

 certanily bering this slakly. A sumber of persithe cemses are diserusced betow.

 mumbtars of his ypecers.

There was mes exdence llat the nullmadi at z

 hat predation al bemene siages af whiselly was unlikely to have heen defected bexatue evodence ul

 I lemerohiidtas) were frequently observed bits sampled phyllodes. Thas. the intlenee of genctal predatom
 lesults. Howeres, any failure of llese preditors whould trase been on evoderect on Hher apecite of trees, At an number of sites in the Kowhy Downs anen.
 whigefly grow in close proximity to moted (!. (thertori), somestimes wilh overlappling catneprids. Cureful mearching alf such mulgat Irexe yielded if different speetse al whiteply but in vely last in

I Ineli intraduction

Ihis stedy has not stiminated the possibility that the urgemal planl hest wh the whately was an specis:
 naturally-wesuring Acracis specises th the area of
 hosats sther than wastorn myall, It is possible thas Jem id species wertic for the Rasby Downs rewon surty latve been introduced and carried the whatefly to the urea. "Ihis whitefly may then have siviteled 6

 related apecies Z.. miget bas llaee recorded hows:

 Icst the dypothesis Itat this whitsolly has ressonds athapled lod mep!rencurph.

jise hrollin

Dying evestern myall arese were lime maniced in the
 Rexby Downs as at mining lowa conslructed daring the pata 20 years anound existing commanilics of
 mine is located seyme ? 20 kin from Roxby Downs and beyond the limits of the mine abe itself. there is no

 lusullin

Some trees within the township had their extensive root systems disturbed by road works and other twees had changed water availability, mainly an increasc. resulting from garden irrigation. While the western myall fiecs in Roxby Downs township live in at disturbed enviromment the same is not true of the symptomatic trees up to 100 km distant in the pastoral areas to the north and norti-west of the tom where land use has changed litute during the past 100 years, with sheep, catle, rabhits and red kangaroos as the matin grazing and browsing macrofauma. White (1993) argues that nutritional status at host plants may cathe outbraks of insect populations. In the present ease, westen myall trees under some form of stress may have provided oplimum conditions for the hitheros uncommon Z. papyurucotrpae to increase its reproductice rate temporarily to outpace its natural enentes. However, the atea containing symptomatic Irecs covers about 10,000 kmº. including both recently distuthed township areas and pastoral arcas whose land use has remained unchanged for many yeats. Age of trees does not appear to be a factor, ats
both younger ($1-2$ in high) and older trees, up 106 m high, and at least 160 years olet (Lange \& Sparron 1992) or older (Culeman ét ul. 1996). sustain high whitelly numbers and exlibit dieback and death. There have been no discemible changes in minkiald patterns for the past 70 years. Therefore since conditions for tree growth have remained mucle the same, there is no eyidence to support the suggestion that poor tree health was a contributing tactor to the oubreaks n) "western myall whitelly and consequent death of trecs.

Acknowledgments

We wish to thank WMC (Olympic Dam) for their inlerest and co-operation during this study. In particular, J. Z.war, K. Ashby and J. Rend provided encouragement. support and critical comments in cqual amounts. Our thanks also to J. Hardy who hulped with Jield and laboratory Work. M. Lqbal wher assisted with the preparation of digital images and plates. E. Kasslor who compiled fiegure 1 and N. Sehelthom who kindly read the manuseriph.

References

 of Ausiralian Encymidace (Hymenoptera: Claikédoideal deneribed from Australia by Λ, Λ. Gifand with ab checklist ot included species. Mem. fint. Dm, 9, $1-518$.
 western myall (Aremior popanacorpat Bentls.) during its main phase of canopy spresiding. dess. I, Etent. 17, 315 $323)$

 L.brary CDrom Serice ETI/The Natural Hintars Мияенит.

Whats. T. C. R. (1993) "The Inadequate Linvironment.
 Verlac. (Berlin).

DESCRIPTIONS OF TWENTY ONE NEW SPECIES OF CISSEIS (SENSU STRICTO) GORY \& LAPORTE 1839 (COLEOPTERA: BUPRESTIDAE: AGRILINAE)

BYS. BARKER*

Summary

Barker, S. 2001. Descriptions of twenty one new species of Cisseis (sensu stricto) Gory \& Laporte 1839 (Coleoptera: Buprestidae: Agrilinae), Trans. R. Soc. S. Aust. 125(2), 97-113, 30 November, 2001.
A redefinition of Cisseis is given and the following twenty one new species of Cisseis (sensu stricto) are described: Cisseis aberrans sp. nov., C. adusta sp. nov., C. armstrongi sp. nov., C. augustgoerlingi sp. nov. C. brooksi sp. nov., C. broomensis sp. nov., C. chalcophora sp. nov., C. corpulenta sp. nov., C. cupreola sp. nov., C. cyanea sp. nov., C. derbyensis sp. nov., C. excelsior sp. nov., C. kohouti sp. nov., C. macmillani sp. nov., C. macqueeni sp. nov., C. pulleni sp. nov., C. septuosa sp. nov., C. speciosa sp. nov., C. stellata sp. nov., C. trimentula sp. nov. and C. watkinsi sp. nov.
Key Words: Australia, Coleoptera, Buprestidae, Cisseis, new species.

IESCRIPTIONS OF TWENTY ONE NEW SPECIES OF CISAESS（SENSL STRICTO）GORY \＆I．NPORTE 1830（COISOPDERA： BUPRESTIDAE： （ BRII INAE）

by S：BヘRFR：N

Abstract

Summary

Introduction

 member of the tribe Agrilimi，sublamily Aenilinate．It

 gentus thas liss revised by（darter（1923）and mens
 number at new onceles beplected recently．As it limo stap I examined the mondable typer and derigitated

 （2001）．

Blathburn \｛1887，1891）dewstibed sumbe Sisulh

 kionwol Lo Blacklourn，have remained umdesevibed．

 great alruntames＂，＂Morialia＂is problathly a

 years of collceting in South Australiat I havecuptorisl
 debribed thirly nime spocies．apparently without roference（1）previon wark on the gentes and shby elghtestrate valid．

[^15] which dillewed liang Giascis in having compreshed Pars with the basal metatimall segment harely lomger Hath the second joint and alse in havines the tarnal claws stomgly divided．Curter（1923）followed Hatachburn haf bater（Cimber lyzy）relowated

III Furure paplers I shatl desbrilo nure new specien
 all species and a chech list．

Materials and Mefords

Specomens cxamined were borrowed form of ate depmited in the following ithetifutions and coitlections：
A．MSA－Ansumatian Musioum，Sydney：
ANIC－Amblralian Natiomal Insece（＇ullecelom． CSiro Canle maid
BWNIf－The Natural IListory Muscumb．Jemadon． GNLS－G．Nelosm，Blac Sjprings．M10．
HDWA－II，Demary．Wamereb，WA． HLIMS－I Itmbulde Universlly Museum，Beplin． BBOA－J．Batdersom，（qeanheysan，NSW， MGBA－At Conding．Besenfoy，WA． MIHSA－I＇M，S．Hamkol，Syelncy NSW： MNAG－M1．Niehtim，Albersweiler，Gormamy MNHN－Natural IDistory Mosenm，Pat is． MPWA－M．Pomed，Melville．WA．
 NDVA－Musent all Victorith，Melhowne． NRSS：Naturhishorinka Rikumbeed，Suchloblm．
 QNJBA－Qucomyland Museum，Brisbante． RMBIB－Royal Muscum，I3／ms．ats． SAMA－Senilf Australian Muscoum．Adelates． SWLA S．Watkins．Tismone．NSTV．

All of tha speciname werr examined under al

 Wake wentaria wero disucced，mentered on cand and

ノいいぐいいい。
Very sumall in mederime in kengeth， $3-1.5$ mons：

 pritlerns olif the dornill surtiace in many spacien the

19，1．liphor

 dedply divided is in related generat Eilnom Gory do
 amesmall incertesen fery large clemely formoderaty

 vantrad to ankental insortions：gerna with atolle

 s． S．1：medially pronetate lakeratly briolate：amaterion
 preysclong diceltaldy，basal marging sintrate；laterally
 from ventral barimat hase，reachises anderior magyan． in a kew soxes athoptly ending post－medially

 punctured inkl when selose，Stundlum scutifism，

 Uatiolly whopallallel，posit－medially remalded．apices，
 will clumps al puhcecemt setace forming sposs or patlerise Veatrabl surdixe laindy scuteltatco lightly tor
 lifterally for form pulbeseent white syuns wh thomacic

cither single on with samall imber lexuth．In Cosorns

 semsury vilhissate al apes wilhomi bllatr

 fanction in the form al hateral panced shomgitc

Cisseis atherrans sp．mav．

（10）（i）1 A．211）

 \＄3nhtury．1．11842．1：L．Whitkech，ANIC：6 （3chmath，20）．i．196れ，K It．MeMillam，WAMA：ri－

 Demar\％．HDWA：？．Wondfidecs increspl trap\％

U17i

Sinc． 5.7×2.4 mu（6）

 rellections．Venmal butaice and lege cuprenus，Setios
 p．1ll：\％．

Shape enod souplure lisent wifl meddinn whens．

 fiom ventaial carimat base concetging at midale then mere on lews parallel，diveteing lor atgical mityin hat

 scuteltate，with the followimg bathed at eltmped bette firming the following markings alonge bate werms
 Ventsall surlice with moxkrately long yellow solith clamped at batcrall edger oll deracic and athetaminal
 linith．
 towardin the upxy（lig．1

 Scale har $=1 \mathrm{~mm}$

Fig. 2. Habitus illustrations of the following Cisseis species: a. Cisseis stellat sp. nov, b. C. matmillani sp. nov. c. C. derbyensis sp. nov. d. C. armstrongi sp. nov. e. C. cupreola ヶp. nov. f. C. broomensis sp. nov. g. C. excelsior $\llcorner\mathrm{p}$. nov. h. C. corpulenta sp. nov. i. C. brooksi sp. nov. j. C. septuosa sp. nov. k. C. augustgoerlingi sp. nov, 1. C. cyanea sp. nov. m. C. chatcophora sp. nov. n. C. kohouti sp. nov. o. C. aberrans sp. nov. p. C. speciosa sp. nov. q. C. adusta sp. nov. r. C. pulleni sp. nov. ᄂ. C. macqueeni sp. not. t. C. mimentula sp. nov. u. C. watkinsi sp. nov. Scale bar $=5 \mathrm{~mm}$.
1.11moll

Sisc: 5.8 $\times 2.4$ m (3).
(dolmo: as in malle.
Shapes and sexppoter, as in mate

Kemarks

This sposece is ungut in baving yellow setac formin! paticits on the elytat.
lamilloge

Cisseis adusta sp. non:

(FIGS ID. 24)
Phohnyme: d. Lukindale, S.A., Fecucheredt, SAMAI 21.505

 SANA: Timsimatio on Monksior. N. I3, Tindale 1+.1i.145(1. SAMA.

Mak'
Sive: 5.8 - 2.3 num (+1)
Colsur: licad manaly green. conppery all bitac: antenomatres: 1-2 coppery; 3-11 bronge fromotum and seutellan froman with eroppery reflections; elydra lorown with coppery reflections and faist white maths lermed from clumped setace. Veatrall sultace and leges buma with copplery rellections
Shape and sculpture: lead will shome inypressed
 antermall bridge 0.15 inter-acular widlin. L'ronotums strientale. anterion mategin projecting medially: dorsal curinas simate, bliverging firom ventrall carina hasally then appoakching it just hefore mecting amerions margin. Scultulum suliforns. Hat withoul puncturesi
 Wibl foblenving linn white manks meach elytron: fosur in semi-corzle lizon pre-medial to pens-anealial
 second and thiod closer to margin than sature, with an leats one medial at suthre. Ventral surface with shont :clace medially arnd champs al kng deme selace un lateral conxate and laterally on abdominal sternal. I cens: tamsal claws with small inner toold
Acelcergus: heavily chiomised, blort and hatakd Lowards itm aplex (Fig. (D).

Femente

Sise $5.9 \times 2 .+1$ min (2).
 as ill mule.

Shape and stalpture: an in mate.

Reminks

 (Hopre) which is the the same sifes Howeter that species does not hatse elyaral makimes formed tron clumped selate and male genitaliat are distinct (Fig. 16\%. The mily known specimens alle old and abmaded. Plant assucialionn unknown exclopt Hat sma spocimen wace collected on bamhsias ap.

1/.1/rilos:

The species is named fort its coblent mb/ns/us: |... trown.

Cisscis armstrongi np. imot. (FICS |R, 2d)

flolotype: \&. Bogean River. N.S.W. Iaken on A pernelules. Myall, J. Armbloong, NMIVA.

Parotypes: NSW: 2 bủ Samm datal as loololypx.

 Ambarolag AIHSA.

Mole'

Sirc: 9.6. x 3.4 m (5).
Colsour: atl grosa: pronollom wilh yellow rellectonis. Elytra with white spots fimated ly clumped pubescent selde.
Shape ithd sculpure: head ilat, inter-athembal bridge (0,2 inter-tcular width. Pronolum stronates apical margin projectiog medially: dorsal carina divereinge a thort distance liom ventral carinal all batal magin then gradually comerging towards it. not peaching apical margin. Scutellum centiform, punctured. Extending laterially is apex. anterior matrein conver. Etytrat somedate, with sery shont setate printine posteriarly exanly distributed ane whole surface ant numertus white spots formed by stmall clompo of lomger pubesecht setake apical mangin suth-atrate. Ventsal surface with evenly distributed setare projecting posteriony except al lateral margion ol athdominal sternat where they atre foneer and clumped. Leges: tarsal clatwo with inmer towtli: metnihal sedigeris formed from three clumph af selar. the mindale ance clevaled.

1. $11.1 / 1$

Sirc: 11.3×4.1)
(.blour: all blach: lead with hanme rellections: proustum with purple fellections, Elylla will whits
spots lommed lirmin ciumped selac.
Shapre and semplure: as in male.

Remarks

This apectes is shose (a) Copmimp Cortor, which has simitat esoloured tratkes and leanales. Dout it is at farge specice than (? preprime with distinet make genitallia (lig. 1 (0) .

The sperics is named afier the lated. Armetrone of" Pialulni Sillion. Nyngan. NSW.

Cisseis augustgucrlingi sp. nov. (IICS |F: 2k)

 14.4. A. Caserling. ANIC?

A/honthe', 'f', simme data dis holotyper, ANIC

Malk
 Sive 6.3×2.6 mm: (25)

Cinlont: bead blete, coppery-purpte all base.

 blach witl copprer-purple dellections ind white pubewent setane Ventral surface and legs conperyputple. White puheweot setice un lateral mangins of abdonninal seymumb.
Shance and bealpouse: herad fist, inter-antennal
 Probstumf lainily strionate mediatly, ekepar faterally.
 apisal mayem projecting brodely medially: deysal

 matyin: dound fowe ton each side mear base billed
 punctures, exphathed litherally near straght anterior margin. Jilyera sewellate with single shom seta
 pusterionly: 20 white spetir lonaxed dionn clumps al pubsencent sedite in the follonwing onder on cach Clymon: the along anterion margit, at diad beneath

 sonear apex fotot trranged incercukat pattern and one
 Venarial sumbiace amedially ylatorous bol shallowly punclured. laterally serutellats. with clampe al
 texominge progressively smaller fowards apex. Leges:

Acdeages: mosely heavily chiminined, bromdest pusif-meditilly, clongate ill apex (lige, \|if

Prmak

Sive: 7.1) $\times 2.8$ mm (25)
Colsur: ls:ul seppery-purples, Resi in in mals:
Slupe and seulptare: an in male. except apex ai lias visible ahtaminal sternite heavily spined.

Rembarks

The combinstion ol disariluthon, cosent and shatge of the mate gennitatia make this species matus. In as
 plank species with which it is asistecialed js anknenvor.

This spectes is maned for the lite A. Charling of Marlen Stalish, Wuratgat and lomarrat. Wentern Ansiralial.

Cisseis hrowkei aly now. 180.3S IW. 21

Homeryse: di. Marcelta, i.47.... G. Brasks. ANIC.

Parmmpor: Qld: 6, U, Marecha, N.Q., xii.52, (i, 13., SAMA: © ? ? P. Mitrectat xil.58. J. G. Bromk.
 NMI ${ }^{\prime} \mathrm{C}$.

Nhila

Sis: 7.4×2.8^{2} ונו
Colour: head, attennace promanm geren with
 bromes Ventral shlibse and kegs green wills yoblens rellections.

Shape and scouppurc: hated heavily punstured and setose with prominent median sulcus; inter-intemal

 sadel side extending lateratly: finterior margin progectius medially; donsal canmad dixerging limon ventral cathata all bisal marying then mere or less phatallel, diverging (es and reaching anterior matrgin. Scutcllum sebliform, wish lew pumbores, laterally cextended, antertion mongion more or kess wrajght. Blyba heavily seatellane, with the forlowing white
 medial at base: Itrece irregutar mediad: Iwo bitegula
 apical in middke. Ventral surface semtertate will
mexderately dong sctice and laticral clumps of whice
 claws will small inner townt

Acdengas：moderately chitinised，chomgate． hoinalest towation spex（Fig．IW）．

limind．

Sire：K： 1×3.2 minn（ 0 ）
Colone：las in mate．
Shapreand acolpiture；de in miles．

Remarks

 piok refledians．Tho sfociment in ote Prage Maseatm diate all ohenberger nimaseripl name whichif hase preserved．This spesties is distand from
 Hediall sulcom son the head．

Pintmosfogs

The species is fatmed abler the late d．© B Bramks． Cintrm．

Cissecis brommensis sp，mos． （IACS｜X 21）
 ？ $15(\mathrm{~m})$.

 ic lobstyper MISN：if 3 \＆G，Derby，W A．11．W．

Alull
Sive：8． 3×3.2 n n（ 10 （1）．

 copplery red with areen relledions．Lelytur blath witl white bputs farmod frant clanped setike． Vemeral surbace and lege blach with porple

Shape ind sedpturs：Itead decply poncturd． median sulcus frem apex to midelle then projecting（as bise int innpreshed line：inter－antemat hridge（1．2

 matedir sinuales，dorsal carina divergeng from ventrat Lamina badelly，then staight and mote of lew parallel

 felerally at eombeave basal mangin．wisto a fow
 poojecting posterionly bencath wach plats，lateralls anged out from margill rounded an fomerall callom then more wr kes parallel－sided until poyd－medially
 the lallowing prominent white s．fors formod from clumped setace on each clytron：largest in midde：al buse，shatler mund spot immediately posterion（o）it， one close for batgiof leneath lmoneral callus．lour in senticirele lioum pre－medtial lo prosespical．liant und fourd eloser to suture than margin．secost and thiod
 －bl bree small．laint spots．Ventsal surface lainlly
 are clumped to form white spols on the meta－cosabe： and on ald abdominal shemed．Leys：latsal slaws with prominent joner lowht：dretat－libual seffecrio cemsishing of three raised clempe froms pre－medial fo fubt before distat end．

Acdeagus：mustly heavily shmimised，herades pre

Fimilo

Sisc：9．1＋ 3.5 mon（21）．
Colows：ato in maine
Shape and sextpoure：as the malde

Remarks

J＇tie amly ather prominently spobled spection
 Matcosy which has been conlecterd af Derhy．It is as lateder specties than C．broumernsis sp，now ithere is
 gentilia are distine（lige INA）．There has been waly bite specinel of this apecion sulleted mace H．W．Brawn made the lirat cablection in November．リリ\＆゙．

A Promerose

Nomed allse tha lyane lexalily．
Cirseis chatcophura ap．now．
（FICSS III．2m）
Hohosypere of， 39 k．m NW Kapunda．S．Atest． 29，xi．ゆりふ．S．Buther SAMAI 21507 ．

P＇monypes：\＄A：\＆，Y，2 kmm NW Ǩupunda．

 Kimpemda．30，xi，1948．S．Banke SAMA： 7 is do 2 ？

Male

Si／心．5．5：？ 111 m （23）

 atsdominal sobuments ycllow－erem．

 anterion margion projecting medially．dorsall sarima eradarally diverembe fism wontral carina from basal margin reaching apical maryen．Scollellam
 convex．Elytat sculellant with lonlowinge vary lialin Whike aprotinge on Lach clycrent foxtued by smath

 cloned ws sumbe forming fains，iryegula liseja close

 firom midelle wdiatal and is Lwo prominent clantpo．

1．：nnir
S＇ic：（0．3 x 2.2 mon（1．3）
（6）（ヵ）
Shatpe inn hculpature：ass in malle．

Remarkn

 N．SW，Vic．and＇lis．Malle ementalia are distine（Fige．11）

 and promalum rtmelkes Cik．conper：

Ciswos courpulenter sp．mut．
（FICS 1S．2l1）
 S Thenther．SAMAI 21.511 ．

 SAMIA；Wialki，12．xii．145\％．R．P，McMillan． WAMA： 2 ぶ G－Mogumber．12．i．52，R，P．Mchlillam．
 N Wckemma．WAMA：P，Wannamail．15，xil，1670．s．

 Followdine，13vi．77，M．Bowell，MflWis：\because ．
 70.75 kin liNE Naracmin．I（）－161．81．1478．J．J：

 1：Jlyden．«．ii．s．5．W．Puwell，M1PWA：i． 33 km s

 G．no latia，ANIC

Merle

 Whate maths．Ventral sultace and lege brame of coppery－hroma

Shbope and seulplure：hevad with broad median
 dromethor shatlowly punctured medially，striostate thimally and lateratly：anturior matan projectiog modially：dorsal eation diveroing fomm ventrai catrina ibl hase mure or less paralled to it then contacging jus betore reaching allertar mation． Sibutdunt scutilism．large．with kew panctute coatendine latsorally af beblex ambern mangen．
 progecting posheriorly and longer white state forming the Iollonving yputs oft cach elytron：hatal chonco 10 margin thall suture large pre－mediat． lane preapheal，apical，soveral matl irrogular in middes akng suture：apes subrescotatc，Ventral surfice scutclate with shonl projecting seltac，
 abdanmat smonat．Legs：tamsal claws with small immer lox）

Sedestru＊：mexerately chitinincel，cilongetc．widemt near apex．penis divided（fig．IS）．

Fimuld

Sise：4．6 ※． $3.7(29)$ ．
Cobmu：as in male
Shape and woupture：is in mals．

Renlaths

 This is a habad ypecies．Nake gembalia the very

 ypecics with gecel howd and pronomme and black

1 19mbless

＂this specits is mamed lin its hroad shance （arpulérnils．I．．．«（oun．

Cisscis cupreola 乡p．now

（1）

Vhmper＇i．hame datit ab holotype，ANIC

 B．ANIC： 3 ，Rochhampton xii． 44.6, V．NNIC：$_{3}$

 S．P＇anson．QMBA： 19 is ex．\＆ 9 P－ 16 km W Pallumia，locizomor，＇T．M．S．Hathon，N．I＇owell， MHSA．MIPWA：is，$T, 5$ hin W bliden Valley bli
 MHSA．MIPWA： 5 ．Ino dath，RMIBIB．

． 1 Rho

Siic： $7.8 \times 3.111 \mathrm{~m}$（55）．
 esppery．Dilytra biach wilh while matkings lermed
 legs expplory．

Shape and sulpture：Ikead with prominent median sulats．Inter－antennal hridege（ 1.3 inter－acular widh． Promolemen striolates apical margin progecting

 closer wos sume than margen．Veneral surface dexply striotate of thoricic semat batcly on abominal stemib．with shom selace excepl lileaully un meta cosac and abdominal stema where dense domps al Jonger sctac listo whise math hecoming
 clatw with smail innser lowlt．
Acoleagus：Inewily thitimised it apex．mokeratels
 iper（Fiys．IP）．

I mide

（olour：ins jn male．
Shape and sculptures us in male．

Remarks

Whe s．pecimens from liatley Vals．NisW，were all
 succien has at diblerent coblour combination limem any pher hathed speries．

fromolos

 coppos：

Cisseis cyanere s．Hew．

Hommpe：t．4．8 kim W Wialki，W．A．21．ix．70．S． Barher，SANTA 121512.
 Wher Bunce．SAMTAl21513．

 SAMIA：G Mingendew，2fi．ix． 50 ，IF，II．Wher Batiers

 Ei II．Uilker Baker．ANIC＂：＂P．Inwill．II ix，67．I＇If．

 b：H．Ulter Baher，SAMA： 5 解合，Comal Ray．

1115

ANIC Eneabla 12ix，1480，R．MAMtlan． WAMA：3．2日 29.29 .125 115．1010，23 Mm E by N Dompakir 30 dx（lax），I，D．Nitumann，J．C．Cardale．
 R．Pe NoMillam：WAMA：\＆ 10 km \＆Enealha．

 MuMillan，WAMA：\＆，N7T： 32 km EE of Yellowaline． 21．x．1991．I．M．S．Italm，MISA： 2 ㅇ．

 Brownc MTHSA．

Misla＇
Sisce 10.5×2.4 mm（39）．
Cothous：heall，ankennace prombum and seukellun

 line：inturanmonil bridge 0.2 incerocular width． Pommand wrishats anterior margin more on less shaghta，Hatal maryin sinuate．darsal carima diverging from ventral catina at basal margur，ham mope of lew paralles mad reaching interiom margin． S＇entum semifiom，puncured．extended taterally． ：anterion margin stover Filytia sembellate with the
 medial at base，cme medial mear margan，wasy pre－ apical fuscia from margin lo suther and spast！
 Vertual surface heavily scutellate on theracie stermat． laintly on atdominal storna，conered will very shasi stac．Leess：finsal chaws singlo．

 melented at the thate（big．16）．

Pianmer

S゙ぱ 7.1×2 亿 1 mm （32）
Colsoll：M8 in male．

Remarks

1amblug

 Cibl，datli blue．

Cisweis derlyensia sp．mos （AICSS IAB．20）
 Arfina I2ii．1947．H，W．Brom，SAMAI 21519.

 beremer．If W．Browni，MISSA．

Malle

Sise 110.5 x 4．2 $11 \mathrm{~m}(\mathrm{H})$.

 oul will liant white spots formod lemm cempen ol

 laim impressed lime lomm midelle whate inter antenail bridece 0.15 mes ucubar width．Anternate
 Pronntum punchate medially，sprinate laterally，sith （sea）furnly defined forcis ant each side the anterios

 diverging from ventral carima then more of lews shaidat atod eradually diverging from ventral carima
 lew punctures．siden extended laterally atl trabal

 leas patrallel－sided unsil rounded pins－medially ind natronved to sub－serfalles．remoded apex，with the beibswing whice marks on each clybon lionmed lomen clumpon wistisc：Pillerally lour smatl spols．pre innd porsi－medial，sub－apical and apicall and a mumber of

 weta hur with patcoles of lime literal setac an circh of
 woth：metatibial stigeris fionm midelle on bofore dimal end in lesur ramecd chanpos．
 It base，clongute，wieds post－medially batered in
 （line．IA13）．

1．1 1 ． $1 / 1 /$

Sise： 11.5×4.4 m！ 111 （12）．
（＂olsur＂：entirely dish copprery－nd．

Remarks

This spectes estlo only be comlaned will (.

 fialgidforolfis hats a meditel sukes on the beub,
 gentibliat diller (ligg. I $\wedge \wedge$). All kmown specomens were collected blt the same time by H. W. Brown

The speries is maned aller its lype lexality,

> Cinseis exechaior 4p, nuw. (1 ($\mathrm{Ci} \mid \mathrm{AD}, 2 \mathrm{~g}$)

 MISA. MPWA, SAMA.

Mille
Sine: K. 1 צ. 3.1 Imm (5).

 lease copplery-hrom/e
Shape end sebprome: bead with mediant foveas:

 ventrid cathat at base bere of less stlatght and diverging lion il, mon reaching anturb margin.

 fishowing white maks an canch slytrong formed from

 claws whith small inncs woult.

Nedesgun: heatsily chithind it apex. moderatsly all hases, widest neal apex. penis divided apieally

I collule

bronse or grean-bronce. Exylaa as in malc. Ventrall sultice amillegs bronze.

Shape ind scolpoture: its in mate

Remarks

This is a very distintr species, difticulb to bentuse with any onfer.

frinula!

 specion encepheat L. higher

Cimeis kohouti wh. nus.
 (f)C3S 113, 2л)

Hollotype: of. Wriara Rid. Ilkn WSW Cillimeta 23x1i.1973, K, R. 13ullen, ANIK.

 11_1.1472. R.J. K゙ohout. OMBA: + if s. 大amme data in
 Sultw, OMBA. NSW: 2 of \& Now rit, 12/52, R, D. I. G. Buroks trepuent. ANIC.

Athl

Cobleur: lued excen apically, blach busallys.

 und legs green with yollow seflestions.

Shape and scouplofer: head with median impressed line at trase projecting inter median suleths. mations and deep medr duex: imer-imbermal bridge (). 15 inter ocular wheth. Jronotum striolate anterion magole projecting medially, latge shallow limea near cach
 bas:ally, widely separated but more or less parallel

 apical magein. caclo clytorn with follonatime white
 henesth humeral callos, four in semi eime around pre

 Ventral surfite sebtellate with shome betace medially und longer clumped sedice latorally an
 Glaws with prominem inner lexth.
dedeagus: moderancly chithised, shom. widest fre-apically. tapered bo atpex (Fige, 1B).

Fornule
Sire: 6.1×2.4 mme (5).
Catome: heal coppery unically. hate hasally Amennomeres hromes. Promotum blach. Seutellum hrome oll cuppery. Elytra hack with whike mathe
 legs black with peen-blue rellestoms
Gillape und aculpture as in mate.

Renararks

Males of thio species have a similan colem
 are sualler and hate duflerm shaped mate genitulia (17is. 183)

Cissers macmillani ap. nuv. (FIGS IC, 2h)

Holmype. E. Winnergo, W.A.. on Xombthenthed. 11. iit. 1949, R. B. MeMillan. SAMA 121516.

 MCMIIIan. SAMA: S. Xh/n W ML Bather, 28,ii.56. 1. A. L. Watsin, SAMA: ?, Darlington. J. Clark. SAMA.

Malk

Colour: head and antennae coppery. Promoum and vencllum brome. Elytra brown with white marking formed fione clumign of setue. Ventral surfice and lege bronze.
Shape and heulpture: head will very simall
 bridge 0.2 inter-ocular widill. Prommum punclate medially. stmonate laterally, uptial margu progecting medially: dorsal carina diverging from ventral carina at batal matgin then more or less paralled until diverging an it approaches atpical mamen which it mects: setale present dorsal to dersal carima. Scuellum scutiform, with few punctures. extended haterally anterior margin convex. Elytra scutelate. sub-sertate apically. with following chumps of thite vetice on sach clytron forming in irreathar patherm: oma if hate the near margin posterior to humeral caltus; one ifregular medial. pre-apial faseia with sthert side angled anterionty From margin and tonyer side ingled pesteriordy reaching suture. Ventral
 ald dominath sterna, with moderately fong single setate
seatered over whok sulace adpensed and pomme poneriotly except atome lateral deden where they am
 lewill

Acderoms: monkrately chitinised. hant witest pust-medially, lupered to apex (d'ys. I ')

Peoneris

Sine: 100.7×4.4 man (t)
 ventral surfice atal legs homae. Alytra brown with What makkinty.
Shape and sculpture: its in male.

Remiarks

 heavily chitinised adedeagus: ©: mmomilhmi has im obseare clyyall pathern and lightly chitinited
 specimens examined from Winnerom were colleded

The spectes is named afler R. P. Mentilan, Kullarm.

Cisseis macqueenis. mow
(FIGS IL. 2s)
 McQueen, ANIC

Altuyper: 's. same diat in hototyps. ANIC.

 Mo.Oneen. ANIC.

Mitro
Sire: $4.7 \times 1.7 \mathrm{~mm}$ (3).
Cohour: head and antenale green. Promoun and seutellum browre-green. Elyrab black with hronc meflections abong suture firm base to middle and inegular white spols. Ventrall surlite blach. Lesk blach with bromae-reten reflections.

Shape and seulpture: head with taint medial impresed line: inter-antenaal bridge 0.3 inter-ncular width. Pronotum suriolate anterior margin projectine medially, shallow trasal foyear on cach side Irom middle for darsal carina with moderately long whins netice diosal carina diverging from sentral cersina it base. licon more or less parallel, reathing anterior margin. Sculdtum seutiform, expanded laterally. punctured. anterior mangin ennvex. Elytra ncutellate, apical margin suhacerace with white seta boming
 spol it anterion matein，medial apon at margin abl

 abuominal seroad．Leeres：tarsal ctaws with shom innel ほ以りね．

ficmonk

Sicco fif \＆ 1.7 mm （ 11 ）

 Hegentar white spors．Vemmal sultace hatek．Lecest hack with bromes milectoms．
Shatpe ind woulpoure：is lim mate．

Remarks

 ：and promenton and make genitalial ate dillerent fFig． （K）．

The specices in manced alter lhe late J．Maxtyeent． Milanvram and Tirnvomalx．

Cisseis pullemi sp．now．

（IIGS IM．2r）

 121514.
 spp．．K．Pullen，ANiC．

 Adans．ANLC：צ＇．Milmemem．iii．IリsI．J．Mactueen．
 19．14S 145．24E12 km SE of Detimires，I．Ralderash，

Methe

Si／c：＋．8：2．1 10 m （．34）．

 coppery：2． 3 all suppery．

Shape ame sculpores：Read satriohate hisally，median
 ibllemaal hridere 0.25 interocular width．Promotum stristate．with few selak．inturior maryin projecting medially；dansal carinar diverging lism vental cearina Poms hasal mangin refohing anterion marein．space between punctured．Sculellum seuthom，closely puncturd．basal margin convex．Elybra subolat babally．chacwhere swallole with following thacure
 is middle closed 10 marent lhan sulure，Iwo pre－
 tentrad la it and choner bosuture than maxyin．Windsal
 Vers shom，spaced selac，Lees，tatsal datho with juncer t（x）ht．

Acdergen：lighty chithised．moderately clongate． witleat pre－upicilly will a lomg．monned．pre－apical selal buish ot ciach parancer（Fois．（M）．

F＇tmule

Sice： 6.0 ）x 2.6 （ 1 m（ $1+1$ ）．
Coblour；head，minfonnac，promotum and seupellam hroblec．Elytrat bomace bisolly，black buedially， soppery apically．Vontal surlime and legs coppery．

Shape and setuprowe as in male．

Remarks

This mpecies suparlicially resemblect C ，mamanla Kerremans．However．it is unaller and the malle genitalian clearly diatinguiah it form the wher apecies
 stoctures（Figy．16）．

Cisucis rephorasa sp．nov．
 ｜FIGS｜N，21｜

Hobolype： 3 ，Charity Ch Bridge via Mount Cicorge Mammen River N．S．V． 7, v． 91 S．Wathins，SAMAI 21521.

 14．xi．1983．is．Willsion，ANIC：Es Sockyard loome

 SAMAE | S. Charity Coek wia Kimbrichi Manming |
| :---: |

 ('hamity C'h Bridge via Monnt Conego Manmong

 Creck via Kimhricki Manning River, 14.xi.19991, on
 ©harily Ck Bridge via Mount Cisorge Manning
 CK Bridge via Monnt Cuarge Manning River.
 Walkins, ANIC: Mamnine River all Tinence Rd. vial Wiaghame exii-1995, Triatemionasis.s. Wubkins, ANIC: Qld: f. Hertortom, xii.52. (1. B.. ANIC: है.

 s. Barkero, SNMA.

Mrido

Sus: $0.4 \times 2.6 \mathrm{~mm}$ (1.3$)$
 grecn: 2-11 dalth brown with yellow reflections. Prombum and whellum yellow- Hecon. Ldytat Wack.

 sceyments loromac.
Shape ankl scolpture: hearl with decp medtan

 probecting medially. with shatlow baxal hoseds shat Lasch side dorsall čarina diserging loma ventas

 fatornlly extended at straight anterior margion
 following? lain while marks for call clytront variatsle momber of small spots alome surtace.
 and rennad prosepiend spos. Ventrin! surfince
 conale and athedemmal sternas where channs of Wonger sedace form white apots, Latge: barsal claws with small inner momit.
Acdeagus: lightly chitinised. SJom\% widest pre-
 stronely puinted (tig. IN).

J rimult

Sis心: X() - 3.3 mm (7).

 black will horome kilections.
Shope and stulpures as in male.

Remarks

The males at "this anecies hate similar cohburation

 slistins (fige 1O).

Eshandengy

 whacture.

Cisseis speciosa sp moy(flCSINに.2p)

 McMillim, S̊MAI 21523.

 McMiltin, WANIA.

Mhlir

Siac: 5.7×2.2 mim (.3).
Coblene: heal grect with yellow sellectants.
 yollow deflectoms. Elylta black with white apols
 dill

 Ponoothon stiobate. anterpor marein projecting nkedially. dorsad čarinal diverging Irom vental carina

 coxterding laterally at erontex anterior materin. punctused. Elytha scutibom, with following whit

 sculsellatc. with shot sctats. Leeger taral blates willonut inner fosits.
 base, moderaty lang, whest pre-spically and rombded to apex, penis divided and pointed ilig. I AE?.

limult

1.11k.nowna.

DMwhmion

 plain of WA.

Remarks

This apecict as aly mecurs in WA and hats it dillereme
 WA specis．

1－n1multus

The shecies is bathed for in beatuly speremen dow

Cisseis spelleter sp，120w．

 （ Fic：）Y 2al）

Penenf）

 Vallis．SAMIA：ч．timkenom K．，M1，Mat SAMA：－
 i．Comma，In A．Amdernom．QMBA：\％Mll Spacis 13，i，65．J．Bi．Bromks，ANIC：工，Aぶ，Black MI．RUl Kurithed，i，1470，UM13 $;$ 子。 \because ，12illumin，12．j17979，

 1：I：Adams，MISA，\＆，Cap Youk，Dimome

 18．i－｜995，I，Eallessmon，B，Pr Monere，P．K．
 Kemnealy phyy．Lall

 fromed，MHSSA．MPWA：\＆Dives creck

 Bronvir MIISA．

．Whlir

Si／e： $1(1.4 \lambda+.3$ IIm (43).
 ＂uppery or grocen wilt yallow refleclisms．litybri

 17mich
 sulets inter－antemal bridge 0.17 inter wedar wisth． Pronotum punchosed medially，driolits litecolly： apiaal matgia projecting incdially：domsall carnith diverging from ventral darinal at babal margin then move as lens parallel entit post－8ncolially then converging lowards ventrill cariat fou nom mecting il．
 catrina and antergor maryin billed with dense．
 puncomes．Elytru midedially punctate，fancralls stucelate；with lohlowing white spots bit tetch celyoron．lesur in carcle Iron pre－medial lo pre－ipical with ane of twa somall in eente and five or loree
 Ventabl surlike mediadly glatoreas，laterady lamely Wioshter，with short betace exsept in gatarous bedgen
 seme an alvemminal sterna．Lecges：Iarsall claws with
 （10）Near distal end on thoo pronnment rillues．
Aedeagus：mombly heavily chiminised．liphaty an

Fimula

Siルハ： 13.10×4.5 man（35）．
Colont：an in make．
Shape and sealphure：as in malle．

Remartis

 the only sther larges spoted spectes with black
 shaped dermal samina and a round foncad filled with pubrescend setae on cither side of the mid－line elose

 shithosed and their structure is similar（lign IZ．）．

R．11molos

The species is matmed for in elybral markimges．

 3.1.1987. W.arn limmolid, \& Warkins, Sidlld

 \because Sydncy. SAMA: 3 \&s, Sivdney dim.o K. J.

 Milmertati, 12.xii. 73. J. Macyucen. ANIC: f.

 SA: ©, Qumon, Blakkhonm, SAMA

Mank

 and alsme baxal maryin, rebl with blace reflectiont

 with ohscare markings ligromed front selitas. Vinlrial
 dorsal atrfitce sal lemmora.

Shape and sedfontare; hesd prometored with deep median laseir, inter-antental bridge 0.3 inler-
 majoceltre medially. hatsil margin smothe, with at
 basal Han upical matyin, dasal conion diverymg

 sentellate. winh champe oll shar selate forming

 with shend setac. Leges: Larsal chaws witt inmer wouls.

Aedergens: heavily chitinised it aptex, merterabely
 ciash side allathed Jaterally fomands buse, eath conding in at selal hrush prenis whollong puint (lig 16)

ILonts

 ()las"Mise sus in hank.

Silupue and heapplare: an in mails:

R(m)arlis

 Kollouh:

1 ת Mm: has

Cimseis wakinsi sp, mer.
(IFGS U. 2!)
Holofrpe: 0 . Manning River ill 'limenese Rel via
 Warkins, SAMA1 21528.

Pemmapes: NSW: ${ }^{\prime}$, Charigy th bridge thin Monemt

 Brus Mamming River, Wimethonved, 3/M, xi, 1993, S.

 S. Wathins, ANIC: 2 od . Wmghan Brush Manning Kiver, Whre hermeer 1atxi,1993, s. Walkins, ANIC:

 Wingham Brash. Damming Rivor: Wutermomed.

 Walkins. S $\triangle M A: \geq$ Y' Winglani Brush Monmme

 ${ }^{\circ}-$ Minming River ull Tinonce Rd via Winglanm.
 f6. Mannine River ill Timoter Rd via Winglam.

1hah

 3 dull ereen or blue: +11 blach with green of hlas

 wack.

Shatpe amed sculphore he:ded setosee, with derep nxelian sulcus and medial fixca on cach sude, inter.

 vantall barinat peat incilially, thel reashinge dutcrion margin. Scutellame cordiform, punctareal. abateron

 1wnit

Acdergus: beavily chitioned. moderately tome.
 (Fie. 引J)

f. mills

Sime: 5.2. 2.1 mint (1H).
 blinch. Promembin blich will yold rellectemos

 dambal liemoras with geld violloctions.

Shape and sedepture: ats in male.

Remarha

 specices. We size of the inter-intental bridene - latere
 the promotum which strongy diberges liom the laltoral margin lo bleet the apical margin in (:

Jinallores

The speries in named atore the tare S. Wankins who

deknowledgments

I wish tor hatak the following pasple whor hate assisted with my resemeh: M. Brendell. M. Korkey.
 Qucanleyan: C. L. Bellimy, Lem Angelen Connly
 H, Lremall\%, Wabnerow: M. Eiolding. Bencoley: J. Combs, RMBBZ: J, A. (iardmero Adelatele: 13. Gontafismon. NRSS: 7. AT. S. Hanhon, Sydricy: G. B. Monleith. QMits: T. A. Wers. K. Pullsn, ANIC: M. Morolds, AMSA: © ', Mellest. K. Wather. N:MVA: M. Nichuis, Alhermbeiler; R. Peweri, MSNG: S. Smith. Werrince: S. Wallins. Lismone: E. (i. Mallmews. A MeArthur. J. Parrebt. T. Pelers. SAMA: R. P. McMillian, l'erth; S. Bily, PMCE: M. Uhlig, HUNAR; I. J. Menier. MNHN: S, Walker, Adedaide: J.

Relleranes

 - Wu\%. 123. 15.5.

 thiv. 125 1-1.4.

 $-113.45 .3$
(fygk) Iype sextist desipatitom in the lamily

 Sin. is Auv, 111. 177.257.

 292.3-5.

 1.90-176.
 Auvp, Ferf. 5. 2(55-30.3.

 Dutaciull. Jitiv.

 218.220

MOSQUITOES (DIPTERA: CULICIDAE) IN METROPOLITAN ADELAIDE, SOUTH AUSTRALIA

By Craig R. WilitaMs*, Michael J. Kokkinn*, Amy E: Sneli ${ }^{*} \neq$ STEPHEN R. FRICKER* \& EMMA L. CROSSFIELD*

Summary

Williams, C. R., Kokkinn, M. J., Snell, A. E., Fricker, S. R. \& Crossfield, E. L. (2001) Mosquitoes (Diptera; Culicidae) in metropolitan Adelaide, South Australia. Trans. R, Soc. S. Aust. 125(2), 115-121, 30 November, 2001.
The diversity and seasonal abundance of mosquito communities in metropolitan Adelaide were studied from 1998-2000. Dry-ice baited miniature light traps set at 10 sites captured adults of 16 mosquito species, while the larvae of nine species were collected from water bodies. Despite spatial and temporal heterogeneity both within and amongst sampling sites, Culex quinquefasciatus Say and Ochlerotatus notoscriptus (Skuse) were the most common species, comprising 46.9\% and 27.8% respectively of the entire catch. These two species utilise man-made water bodies for larval habitat. Only Cx. Quinquefasciatus, Oc. notoscriptus and Oc. vigilax (Skuse) occurred in sufficient numbers to warrant population control measures.
Key Words: Mosquitoes, seasonal abundance, urban, Adelaide, South Australia, Ochlerotatus notoscriptus, Culex quinquefasciatus.

MOSQUITOES (I)HPTL:RA: CUIICIDAE) IN METROPOIITAN ADELAIIE: SOUTII SUSTRALIA

Abstract

Summary 2(t)

Introduclion

Ahaspritues (Dipteral: ('ulicidate) puse at matance and diseatic rinh for twils boman and sther animat paplulations. In Australia, setcral moseguite species act as vectoro for (mosily remontic) viral illacsises in
 Mackemste et al. |hys lor reviews) and for camime heartworm ebased by the libarial nematode Simenferm imminion Iocidy (Rusecoll 1985: Russell do
 Ituman intecrian wity monymito berme virus is
 speces fresent, Henste the management ol
 aporn an materspabsling of mesquite commandaity dynambes ennel diversity In this study, mosepuitacs Were invertigated in the Adebaide metropplitan artew where mest ot the South Australtian pepabalion is contcentralced.

In the last puthliched investgadem of Netelade:
 rexurded in prarkhade hear the carrear Ciondad
 conamon trecies hate been made enly periondically'

[^16] nine mospuite species litull urhat Adelate have
 To date there har lesen bue systemalibe mosguites sampling in Adefaides, prolvibly due to the latco of messquifo-berne human illacs there
fir these sudses we shmed for detormine the diversity and sedarmall ahondance bif mosefuifo
 -pallat S.arationt.

Maderials and Mewhods

 surmounded hy a frate of suburbag (here nemmed medropulitan Adelaide) extemdine ipporexinatcoly of
 (100) 13,
 majority of latadscapte types presens in mefropulitan Adelate were sampled lis mumquilases. The he were is suburl)an residence (King haithd), at catavan park

 manicured parklands leaturinge sireams. drains. ansfor consinucied pronde (South Piakianas adiacent in the Adelainde ('isi) and Oaklamds P'ark).

 (Fiig. I)

 sites and extem of metropolitan arta

Adult mosquib populationso were sampled using
 (1979). These tripss predonnimamly capruce hostsceking adult lemale mosquitoes. The lraps were set 1.5-2 in above ground kevel in breen approximately onte bour prien tos sumsed and retrieved one hemer after Sunlise to consure that erepuscular spectice were sidmpled. Msosquitoes were identitied usimg the hey:

 flatatitalise hampling of laryal musquitues wis pertormed all cach site wing a standard dipquigy
 combalmers at listo ressidences in meuropolitan Aclelaide (not shown in Eig if were alser made I anvac were identilied using the hey ol Russell (1) () (1).

Southern Hemisphere spring. summer and athomm

 mate at Globte Derby Park during watimityos. del

 Adelaide netropolitan areat (C. R. Williants de M. I. Kiskinn unpub. S. This ulovialed the need for funther wimer trippuing.

 heverem sites. When several traps were used all once. they weme het at several Iocations withis 0.5 him:
During. 1998-1999. one trap wis llaed at cach wibe (Fiadataff llill, Badford Park, Kingsuome and Whest

 sitco () itklands Park. Norphertville. Adelaide. Anpent. St Peters. Over the same period, six Arapos were lawed ath calch of weven nighti at both Flatestafl Hift and Badford Park. Dilla collected from there atw site its gy94. z(x) were used to detemmine specicen čumpasition but were ritat used its ithundance itnct scasmal Lumparisons hetween sites. Trapping was spreade exemly aceross the seasonns.
 per trap par night att exth silce was uncd for all statimicall abtayses. For edach sife musumito abundance for each seasun wis exnmbared Lsinge Lither dxe Manm- Whitney L-tuht with the Normat Apposaimation, Z or an analysis ol pamambe be ranks. namely the Kiruskith-Wallis test (with the CluiSquare Approximallien. x^{-1} (Zant [98t). There analyses were perfomed uning dAfP-[N" Amistical nestware (SAS mblute 1097\%. When sigailicant sedsomal effects nere delected by Krushal-Wallis
 1904: Zar 1987t was used to determine Where differnees lay. For each season and year. mospulth dhondance wath compared between siles usille ths aforenemtioned stanistical techniefues.

Results

 These emempassed bive general matmely Amphades.

While up to 12 species were lapped at any one
 by very lew taka, with others present jo rety suall numbers. Culas eminumetersciellas Sily amot
 and 27 se\% resperively of the fotal catch (Talsk I). althutgh the dominall apecico variad herwern sites.

Species，	South PuNKund	Reviderat Kincesword	Sturt R．Gorme Flagstalf Hill	Hatripathea Bedtioul Purk	Curavar Pusk Wey Beach	Billatun： St Peters	Brownhill Ch Adel．Airport	Purhlands Ouklunds Piuk	Racecturse Monphellualle	TOTAL
tumpleker amictur	．		$1(0.3)^{4}$		－	－	．	－	－	$1(1) .0 \mid 1$
Eluards										
Ans ennulines col．	10 （1） $1 / 4$	i 110.0	1321330	$112(43.4)$		$378(210.13)$	$106(8.3)$	3ればい	1915．81	$7(x)+10.91)$
Wadher Cinuilletudie tuteruls										
（Skuse）		－		－		$13(1) .7$	\cdot	（60．9）	－	19 （0．20）
Culex mamurnatis	$2(0.1)$		$1.1 .0)$	＋11．61	1 （0．21	（x）（13．2）	$31(2.4)$	$3(0,4)$	$3(0,9)$	108 （1．47）
Skuse										
Ci，unstalicas	1018.01	－113）	$5(1.3)$	$8(3,1)$	511.21	＋612．4）	5.3 （4．2）	6 （1）．9）	72.11	23030．3．25）
Dubrotwerh！d										
Drummond										
Cx．stobocenitus	110.0 （ ） 1	1 （102）	$5(1.3)$		？（0，5，	－	7415	1（1）．1）	$79(24.1)$	Y6（1，31）
Dobrownorky										
（ is．male tur	．	－	－	1 （1）．4）	$31.5176 .6)$	．	－	6 （0）．9）	5 （1．5）	$327(4.47)$
Fornkial										
（ i．cturuméax intus	1.351 （87．6）	． 3917.21	23 （7．0）	59 （22．4）	7＋118．0）	581 （3）．7）	988 （77．5）	77 （25．8）	141 （4．3．0）	34.35 （－46．93）
Say										
Oiheromutis		$2(1)+1$	$3(4)(1)$	1164.31	－	1310.71	$1(0.1)$	？（1） 3 ）	－	63 （0）．86）
clltreammidetis										
（Mcicipuart）										
Oc：alteryams			－	－			L（0．t）	－	－	$1(0.01)$
（Westursod）										
Oc：crmptornunclus	$5(1) .31$	1 （1）．2）	511．31	$10.4)$	10（2．4）	1210.61	（0）（4．7）	S10．4）	$2(0,9)$	1（k），1．37）
（Thomson）										
Or，cidsorulensis					－			－	$1(0.3)$	1 （0．01）
（Mucherras）										
Ot：notasctiptus	SO15．0）	$478(8) .01$	1.38135 .21	61 （23．6）		758 （40）（0）	268208	＋23101．8）	70 （21．3）	2 （13．4（27．76）
（Skuse）										
O．mivtlumis		－	393 （10）0）	$1(0,4)$	－	－				H）（0）．5．5）
（Mbaçuart）										
Oc．vigilas	－			\cdot	1 （1）．？			13311．3）	－	1＋（0．19）
（Shure）										
Triplermider atripes （Skise）	－	＋110．7	1 （1）．3）	\cdot	－	31 （1．6）	2119.5	9（1．3）	－	47 （1）．（7）
total mosejuiters	15591）	53.5	392	258	411	1892	1275	685	328	7326
trap nights ${ }^{\text {B }}$	25	14	53	53	1.4	66	610	64	64	419
meinn mosyluitiov	6ごさ 25.11	20．2	7.41 ± 3.61	$4.9(\pm 0.8)$	29.4 ± 10.41	$28.7(\pm 4.4)$	1931 ± 3.5	10．） $1 \pm 1.3)$	5.1 ± 1.11	$17.51+2.81$
1 （rap（ \pm SEM）										

[^17] with the Kimgswoud residence which was dominated
 ('lible I). Nomericald dominance was demonstrated by Culle molestus Forsakal at the Wen Beach
 at Adelaide Airpurl 177.5 体). Coblections from the

Lim April byys an Glolx Derhy Park, 6,395 mosyuilses (then included in the atorementioned lenal) Were captured using six traps per night ovel

 111.6).

Starstoally signiticant seasonal effects were observed at the South liathlands $(\%=6,90, p=(1,0) .3)$. Sit Iseters $(\angle=2.46 .11=0 .(1))$ and Ackenide Aimpor $\left.(2=2.01 .17=(0,1)-1)(10)^{2} 2.3\right)$. Abundatnec जas Ereances ins sumane at all three sites. Nor distinct

 ((met signilicaut ditlionルé)

 captured (meatt \pm Sl: M) at esch sarmpling site dering

 (10은2. 3).

Mosepulathandance diflered betweern sifes, In the
 labRlands and all Kingswomd was signidicamly
 In the following atutumn, Soulh l'arklands mompaiss numbers were significamtly higher that at fogetafl Hill $\left.\left.\%^{2}=12.61 .1\right)=0.01\right)$. In the sumber of 1944 2(x) x, fhomatance at St Pelers and Adelaide Airport was signilicantly higher than att Morphettvilte ${ }^{\prime} \%^{\prime}=$ $1+83 . p=0.002$. No signifianot differences were deteced between situv during the dollowing etmunn $\left(y_{v}^{2}=3.97, p=0,26\right)$

Nine specks of daryate were dentitied in 102 collections from water boties (Tathe 2). The mos

[1isenssion

The mosepuitu fomat of Melation is predominated
 fonmer is mosis commona in metropolitatr parkland (5.5 per trap per night in the South J'irklands). The

 populated essadential areas (11.5 prov tapp per math it St l'elers). Beth yeeres we able lo une artitisial

 and latge Water-lilled centaines while (lo. mentencriphes is fonond in a wide variely ol sinall water-lilled vessels. "ituden accoutrements and
 1082. 16x): Table 2).

 Wablher (all lidgestall Blll. Bedleral Path and Si

 uhriquitom thanghonh Adeliade.

White mospute abundance wats grearest durimg

 sites thene was rav discernetible sumoter peak in moxabuito abumdanece.
 mabinas in metropolitan Adelabe. In addition of man-nate vessels. drains and wetands. imgation of

Table 2. Mosquito larvae identified from different aquatic habitats in metropolitan Adelaide, South Australia from 1998-2000.

Sample site	Habitat type	Species collected	No. of positive collections
South Parklands	Creekline pools	C.x. quinquefasciatus Oc. albormnalatus	$\begin{aligned} & 3 \\ & 1 \end{aligned}$
	Pools in earthen drain	Cx. quinquefasciatus	4
	Pools in concrete drain	Cx. quinquefasciatus	1
	Water-filled grassy depression	Cx. australicus Cx. quinquefasciatus	$\begin{aligned} & 2 \\ & 3 \end{aligned}$
	Water-filled tree-holes	Tp. atripes Oc. notescriptus	$\begin{aligned} & 1 \\ & 2 \end{aligned}$
Sturt River Gorge, Flagstaff Hill	Vegetated fringes of Sturt River	An. unnulipes Cx. annulirostris (x. australicus Cx. globocoxitus Cx. quinquefasciatus Oc. albounnulatus Oc. rubrithorax	$\begin{aligned} & 3 \\ & 1 \\ & 2 \\ & 1 \\ & 2 \\ & 1 \\ & 1 \end{aligned}$
	Water-filled grassy depression	Cx. unnulirestris Cx. australicus Cx. quinquefasciatus	$\begin{aligned} & 1 \\ & 2 \\ & 2 \end{aligned}$
Warriparinga, Bedford Park	Vegetated fringes of constructed wetland	An. annulipes Cx. cinnulirostris C.. quinquefasciatus	$\begin{aligned} & 8 \\ & 4 \\ & 1 \end{aligned}$
Brownhill Ck, Adelaide Airport	Rock pools, Brownhill Ck	Cx. quinquefasctatus	2
	Water-filled car tyres	Cx. quinquefasciatus	1
	Pools in concrete drains	An. annulipes Cx. globocoxitus Cx. quinquefusciatus	$\begin{aligned} & 1 \\ & 1 \\ & 3 \end{aligned}$
Racecourse, Morphettville	Pools in concrete drains	(x. quinquefasciatus	6
	Water-filled grassy depression	Cx. quinquefasciatus	1
Globe Derby Park	Samphire swamp (predominantly Sarcocornia sp.) inundated by tides	Oc: campto-rhynchus Oc. vigilax	$\begin{gathered} 7 \\ 15 \end{gathered}$
Urban residences (includes those at sites on map and five additional homes)	Water-filled tree holes	Oc: notoscriptus	1
	Water-filled ceramic plant pots	Oc. notoscriptus	2
	Water-filled car tyres	Oc: notoscriptus	1
	Disused fixh ponds	Cx. custralicus	2
	Water-filled buckets	Cx. quinquefasciatus Oc: notoscriptus	$\begin{aligned} & 3 \\ & 2 \end{aligned}$
	Rain water tanks	Oc. notoscriptus	5
	Concrete drains	Cx. quinquefasciatus	1
	Concrete bird-baths and fountains	Cx. quinquefasciatus	2
Total no. of positive collections			102

 mature st their larval habitats. Vigilanse hy revidens

 Alemathrely, habibal modilicaltion may be

 prevenced fram forming. This may he achered by

 F゙okk inat mapult.)
 landmas and that of wher Ausprablath ciles with

 101 3122 apocics identifice in wortan Perto (in amother

[^18]

 unlikely vector al artoviruses in Austmatiat
 Ross River virus (RR) (Wabson © Kay 1y98).

 (1s Latry Murray Villey Iinctophallitis virus in lahorany studien (Aledsan 1953) its frome vechor

 at. 1985) and m not considered an immadiate siah bo bแman healib

 of Us: wigifat at Cilohe Derthy Park there wre fex
 Adelate $\mathbb{C O}^{1}$. Howwoul, Sionth Ausmalian
 Nomeltesess. : iny developplating of land and waterwass in metropolian sdedate mant 10

Ackısulledgtments.

The Pallawaltmya Cialshment Watcr Managencoul
 these sedities. B. Willians. K. Gilhert and d. Sment assixied in the field and latwmatory ind ic Siace provided Lechnisal support. J. Clanky (IC'IMR. Westanead Flompilal. Syatney) confinmed stans mesequite idenfilicallisns. N. Souter provided
 Wat in cicocipl al' at Univeromy all Sourl dublialat Pomgraduate Rescanch sivard.

Refiencherem

 Soreme (owherms.

- DramitiM. M. I... Graflims, M..
 "The Culicidae of the Australlasian Region Volinne VII" Nomograph Scrits, Limomology Monogruph No. 2 (Austratian Government Publishing Service. Conherra)

 the Austratian region. 1990 be 1998. Comman. Dis. Jrictl. 22, 93-10\%).

 Med. Sci. 31, 481-46\%.
 "Ausbralian Mosquiter Control Man山al" (Mosupuito Comtrol Association of Auntratia Inc., Redland Bay).
Kuna, 1). L. ed Fads. R, P. (1979) A miniature battery powered (O)-bated light trep) for mospuito-borne coneephalitis surveillance. Bull. Sus. Vect. Líal. 4, 24-27.
Rtssicu. R. C. (1985) Report of a field study on morquitu) (Diplesa: Culicidete) vectors of shos heartworm. Dimathräa immitis Leidy (Spirurida: Onchocercidac) ncar Sydney, N.s. W., and the implications lor teterinary and public heallt eomeern. Aust. J. Zool, 33, 461-472.
(1995) "- Morquithes and Moqquito-hornc 5) iseame in South Eustern Autralia (revised edition)" (Department of Medical Lintomology, Westmead Hospital and University of Sydney, Sydney).
(1005) Arboviruses and their vecomers in Australiat: an updite om the ecology and cridemiohong ol some mosguilo-horne arboviruses. R'4: Med. Vors. Simhumal 83. 1+1-154.
(1298) Mesquito-borne arboviruses in Ausiraliat: the current becne and jmplications of climate change for human health. Im, 1. P'anasirol, 28, 955.964. \& Gearr. M. J. (1092) The susceptibility of the
 10 infection with dog leartwom Dirofilaria imminis and

SAS INSTHMTL: ING (1997) "JMP IN(B)" (compuler program) (Duxhery Press, leelmunt. Californiat.
SNELL. A. E. K KURKins, M. J. (2001) Pre- and pust establishment monquito studien of the Warsiparitiga econstructed urban wetland in Adelaide, Sonith Austrathia. Arborims Hes. Juss, 8. 362-365.
 Aodes monescriphas (Dipterat Culicidac) for Rose River Virus in Quecmisand. Aislmalias. A- Med. Simbund. 35, 104-106.

स \qquad (1999) Vector competence ot Aciles munosatimes (Diphera: Culicidae) lia Barmah Forest virus and of Jodex astypi (Dipterat Conlicide) For Dengue 1-4 viruses in Uucenstand. Australia. That. 36. $508-514$.
 Spatial haterogencity in owiposition preference of the mosquito Aceles surmeripers) (Shuse) iDiptera: Culicidae in Adelaide. Sulsth Australian Austo I. Einemol. 38. 354-358.
Wishart E. (1999) Adult measquik? (IDjptera: Culicidate) and virus sursey in inctropolitan Melbourne and surrounding arwas. Mod. 38. 310-313.
Zak, J. H. (19\%4) "Biontalistical Analysis" Ilventice-Hall, Linglen ood (liffin, New Jerney).

A NEW SPECIES, PRETESTIS LATICAECUM, (TREMATODA: CLADORCHIIDAE), FROM EMYDURA KREFFTII GRAY, 1871 (PLEURODIRA: CHELIDAE) FROM CENTRAL QUEENSLAND, AUSTRALIA

By M. A. Ferguson*, L. R. Smales* \& T. H. Cribbt ${ }^{*}$

Abstract

Summary Ferguson, M. A., Smales, L. R. \& Cribb, T. H. (2001) A new species, Pretestis laticaecum, (Trematoda: Cladorchiidae) from Emydura krefftii Gray, 1871 (Pleurodira: Chelidae) from Central Queensland, Australia. Trans. R. Soc. S. Aust. 125(2), 123-127, 30 November, 2001. Pretestis laticaecum is described from the small intestine of the freshwater turtle Emydura krefftii. The new species can be distinguished from its congener P. australianus by the following characters: significantly smaller ovary, main lymph vessels reach anterior to posterior testis, genital atrium in mid-oesophageal region, small vitelline follicles clumped around the ovary and significantly larger caeca overlapping. The position of this species and related genera in fish, the life cycle of P . australianus and the presence of P . laticaecum in turtles suggest that it is a relatively recent host capture. Key Words: Emydura krefftii, freshwater turtle, trematode, amphistome.

I NEW SPECIES, PRETESIIS LATKCAEC(MA.(TRENATOD): CIADORCIIIDAEF. FIRON EHFDURI KREFFFII (:RAY, 1871 (PLLURODIRA: ('HELIDNEJFROM CHNTRAI, QUEENSLAND, AUSTRALA

Sumblary

Abstract

Intronduction

Only 11 specises 40° andphistome trematodes halle
 emaderic: (Sey 1941). Of the shademic speces
 1479 (Kyewcotylidite Scy. 1988), and Gemedicons/i

 Cladordiindte Soullwall es Kimbner. 1932) wesur in

 Claterishidater watur in tunthes (Sey 1991). Themes

 Ausmailian freshwatar burtes belonge whe Oreler Pleurndiva, charackerised by horizonalal lkexton sit the neck varehrac duting thad restaction, fanily Chelidases. as genp that hat mas fonsial record outside its present disitibution, Australiat and Someth America

[^19] billatomgs anel assicialled flomplains (Cogerer 1942). Juversile A mbdura spesies are mainly eambivaroun but inciease the prophertions of ather ford typer dhe they mature (Georyes lexz) and becomre smanisortuls. opportunistic ceders whish

Duming as survey al festivater sumpes fiom the Fiberoy River caldhnent in Centsab Quednatamd. thece of 51 filf, hraffit were found to hatores : previously andestribes imphisfome species. Dedmination showed thes to be at new specios wion Preqevis. which is described foclow.

Materials and Methods

 lines hated with ox licarl. Tinflen were cathanalsed whit at Eervital injertion of Nemhutal findium peotubarboteme) and all shgans examined under a dishectigy mictomeope fior helmmins. 'I'remataden were fived unflatloned in mear-hosibing fombalim.
 Cambeda balsitn. Drawinge were matk With the did of at Iratwiug fabe. All meatousmentio stre in micrometres given at the mage listhenved by the nress in parsentheses.

All work for this proyber was cerried unt undel Centrall Oteensland University Abimal Lithiss

 Agency prornils $N(0)(0) 662 / 47 / S A \Delta$ and

 and the Queensland Muedur. Brabtunt (QNB).

Pretestis laticadermsp，mown

 （FICS 1－5）

 （1）113218゙30）

Leserpmarn of math

 decturne $187-3741251$ ）if widest punt．Doharyons 1112－1．32（1111 Jong X 6（1－82 175 ）witke．Lup－shaped

 （197）long $x \quad 201-208 \quad$（1．30）widt．Well

 pumberiof westes．Exaterary madeler y－shapged．

 speneng on dorsal surface pasterion of sovary Vitelline fallistes intacaceal．extendilay Fom just

 sate with wencula seminalis interna．Cirus spancol． Gonoprore midlinc：171－204（221）bent anteriur，all

 some．

Jesmiphonn uf redtar

 pharymx 1＋2－165（1－4）long x $112-13$ ）（12－1）wide．
 （3tor）lomg \＆ $134-260$（230）wide，Up lo six

 （74）．Orsoplagetls halig．107－147（129）wilh

 in papillat at ventral susker，Veabral maches ventrokerminal．Genital park all anterior marein of
 lames．

1．smbleres

The species nathe veles to ite elatateristic wide じにじいった。

Kemarks

 imal primary platyoterl sates．is clearly almember on the lamity Cladoceloidace Sublamily Sandeminate

 as it has at eylindrical hesly shape．vethod sutheo

 1959．｜rectanse the akewhbllems is smaller dian the

 hecallace the baceat tembinstion and uvally are

 the sxaty，whereas the math lympht tesuets in P ？ lenticuecomen reach a proins in fromb ste the pesterion

 I？Inticercematre very ardednd，in many shecimens，
 slender and distinctly separate．IThally，the vitelline （t）lictes wh the new species atre mes＂enonsiderathly

in two distinct fields which align with the catesa and are not confluent posteriorly. A single papilla can be seen in the base of the ventral sucker (Fig...3).

Figs 1-3. Pretustis laticatcum sp. nov. 1. Adult, ventrul view. 2. Cirrus sac, lateral view. 3. Ventral sucker papilta, lilleral view.

Angel de Manter (1970) membion "ecreatial eyespuls* in theit specimens, ind anterion pigmentation in this atea, prestumaty as ar result of disrupted eyespots. The specimens we examined had large amount of sperm shored in the vesicula seminalis imena and at single egg has been recorded. All of the specimens we examined had eyespots and we therefore consider them to be a feature of adults.

discussion

The subtamily Sandoninac comprises three monotypic genera plus Pretestir. all species with the exception of P. Faticuectem, occurring in fixh (Sey 1941). Sandonia sudanensiv MeClelland, 1957 and

Bensidiodisch achorchis Fischthal \& Kunte. I959 are From North Alrica (Egypt, Cihana, Niger and Sudan), P anstraliants and A. brishamense are from Australia. This moderm disjunct distribution suggesis Giondwanan origins for the group (Sey 1991). As illl other representatives of the Sandoniinae oecor in fish. Dretestis laticocemm may be an axample of recent host capture.

The fish hosts for P? ausforlames commonly aceur in coatal rivers and esturies in Queensland (Grant 1982). Angel \& Manter (1970) observed the metacereatiac of P. dustralicmits encysting on filamentous algac. Probably the fish become infected when they eat such algac and presumably furtes become infected the same wily.

 burs $=1.3 .5200 \mathrm{mmi}: 2.50 \mathrm{~mm}$.

The rediae (Fjg, 4) and cercariac (Fig, 5) were recovered lirom the shail host Thiard bulonemmis. Conrad. The cercariae especially have many of the beatures of the adult, focluding the distinetive pharyngeal sač, byespots. alignment of the testes. smalt ovary, short caeca and papilta in the vemoral sucker:

Emydura krefitio han at sympatric distribution with Eim. martuarii Gray, 1830 in southern Queensland,

[^20]Whe nothers part of Em, Macgutrii's ramge (Cann 1998), and the two species have similar dietary tubits. No anphistomes however have heen found in Eim. Macculurii.

All other amphistomes known from furtles, also cladorchids, are included in the sublimmiles Nematophiljnas, Schisamphistominae and Cabitlcrodiscinae. The previously known Australian representatives, L australionsis and E, microacctabularis, ante placed wiltin the fatter two subfamilies, and are thought to represent both a Gondwanan distribution (Elseryotrema) and paratlel cvolution (Lobatodiscti) (Sey 1991).

References

Amita. M. A. \& Manills. H. W. (IV70) fretentis austrafiamms gen. el sp. nov. (Digenea: Paramphistomidae) from Austratian tishs, and a closely related
 matsont the life history. An. Imbe Biol. Unis. Nate- Amme. Me:. 41. 1-16.
Chno. d. (1998) "Australian Fieshwater Turtles" (Beaumont Puhlishäng, Singapore).
Cowitatr. H. G. (1992) "Reptiles and Amphibians of Australia" (Reed Books, Chatswood).
LirnsI. C. H. \& BAR1BOUR. R. W. (IO89) "Turtles of the World" (Smithomian Inslitute Prenc. Lomdent).

Gtorges. A. (1982) Diet of the A astralian freshwater furtle Emydtura kreffiit (Chelonia: Chelidace) in an unproductive Ientic environment. Copeia 2, 3.31-336.
Grant. F". (1982) "Guide to Finhes" (Depurtment of Harbouts and Marine, Brisbane).
Romini: K, (1984) Two amphistomes, Lephatediseus. cansaraliensis n.g., nas. and Elselamtrema miorn"rotabularis n.g.g., insp... from the Australian lurte Flacra dentutn (Gray), Syw. I'makite). 6, 219-227.
Ster, O. (1991) "Handbook of the Zoology of Amphistomes" (CRC Press, Boca Ratont).

A NEW SPECIES OF EIMERIA (APICOMPLEXA: EIMERIIDAE) FROM THE BRUSHTAIL POSSUM, TRICHOSURUS VULPECULA (DIPROTODONTIA: PHALANGERIDAE)

By Michael G. O'Callaghan* \& Peter J. O'Donoghue†

Summary

O'Callaghan, M. G. \& O'Donoghue, P. J. (2001) A new species of Eimeria (Apicomplexa: Eimeriidae) from the brushtail possum, Trichosurus vulpecula (Diprotodontia: Phalangeridae). Trans. R. Soc. S. Aust. 125(2), 129-132, 30 November, 2001.
A new species of Eimeria is described from the brushtail possum (Trichosurus vulpecula). Fifty (24%) of 212 faecal samples were positive for coccidia. Sporulated oocysts of the new species are ellipsoidal to cylindrical, slightly pointed at one end, $41.4 \times 22.7 \mu \mathrm{~m}$, with a double oocyst wall, micropyle, oocyst residuum and refractile polar granule. Each oocyst contains four ellipsoidal to pyriform sporocysts 15.6×9.9 $\mu \mathrm{m}$, with a Stieda body, sub-Stieda body and sporocyst residuum. Each sporocyst contains two sporozoites completely filling the sporocyst and containing a large and small refractile globule.
Key Words: Coccidia, Eimeria, Eimeria trichosuri sp. nov., brushtail possum, Trichosurus vulpecula.

I NEW SPECIES OF ELMERIA (APICOMPIEXA: EIMERIIDAE) FROM THE BRUSHTAIL POSSUN, TRICHOSURLSS IULPECULA (DIPROTODONTIA: PHALAN(iERIDAE)

Abstract

Summary

Introducisun

The common lowshail possum is one of the maxil
 stificy. Thace genera belonging on the Fommily
 chseases, of which here are two spectes imbathing

 18.1(s), jubtabits high country in comern Austratia
 (79)? it the mas widely distributed, acenpyine
 incloding Tasmania imal also New /ailland. Where it thas hecon intraluced (schiok of al. 1492). It is antume:

Although Litmeries species hate been reported in latisatail proswams if sustrallat (loresidente if eff.
 1945) and in New Zealand (Sibankiewic/ at at. 1996.
 described nue natmed from brashatals noer any momber of the Fannily Malimgeridace. Hene we descailo at new spection ul Eimberith lound in

[^21] Atmballiat and New \%evilated.

Materials and Mellonds

Mose fiecal stmples examined were tollected from live-irapped possuman cappered in Quesensland.

 dead animals in New Zealand and firom the ground in
 (t) the latwotary and examined for the preseme al
 magnesimm sulphate solutith (SG 1.30). Possitive samples were placed into 2% ayucous (w/v) potabssium dichronmate and shred is resons
 Were recovered in mithonesitum sulphate mblation and examined ander an enil immersion lofs bbjertive in im Olympus microncopre lilled with it Vmmarki ditherential inferference Lonntaかt syatem Meashenkerts were made with in eycpice gratucuk coilibrated with an enculat nimbometer. AH meisuremenk in the text atce given in micrometers (fin) , ath mean \pm stamand deviathon with ramge in parendieses. A photenype of tumphotulated and sporulathed sexyst has been deposited in the U/S Natiomal Muscom, Beltsviller, Marylama, Marabike ((ullectum (USNDC N(1. 11554)

Resulls

Oncysts Were recosered tion fineat simplen af 50

I．ucenliny	Year	No．colleeted	No，positim
Timmantia，Latnreston			
Suburbiul	｜ツリ1820リ1	11	3
Ruaal		3.4	5
LTples［31encinguon	これ）	6	3
Victertia Summ Grame	194．1	19	5
Axe Cotech	194． 4	1	11
Cotsoxa Mallee	19494	＋	1
Tang Swantip	193）+	12	3
anidernilical	19）+	4	1
Sourh Aumralia			
Adelarite	1995	10	0
Kangarm Isand	1995	30	6
Qucenstund			
Brintane	1945	14	$1)$
Rechatupron Tombusillo	1945	23	0
I＇allerentit	1995	1	1
Cily	1995	181	4
New \％cilams			
134174	2（x） 1	12	11
Tusiha	$2(x) 1$	5	2
Inlal		212	511

Zaaland（Table 1）．Morpholoyical chatacters contomon wh thene of the genas Eimervia in llat they contain fon
 yorocyst．The coccidia were identified as a men species nl Eämeria which is described below．

Eimeria trichosuri sp．100w．
 （FICS 1－4）

Wateriar examined

Ooverss in facees brom four anmals．Iroms Surom （iramge．＂hansville，Lanncesion and Bulls．
 Tommasilles．Queconsand；paralype liman lieces of Γ

Spontated nocyar（ $n=120$ ）elliproiedal 10 cylinelrical：$-11.4 \pm 3.20(34.4-49.2) \times 22.7 \pm 2.67$ （18．t－27．8）with at lengithiwidth rallon 1.8 （1．3－2．6）： whuble suryst wall，outer watl smomit．axcansionailly stippled at micropylar end，colourless to yeltow，1．6－ 2.11 in thichness：inner wall cleatr．colluntess． 1.11 Whick，oneyst residumm consisting of globules up）to

 3．2－t．（ wide $1-2$ relractile bodies presens． （xcoasionally disinkegtated；\＆allipsondal（o）pyriform

 Scale hair $=1.4 \mu \mathrm{~m}$ ．

 Suale hats：$=1+\mu \mathrm{Hn}$ ．

 2．0）：Nighlly psinted all omb end with il cup or knelo－ like Sticdab budy：sub－Sticat touly prescont：suroreyat

 refretile ylathule 2.5 in diameler．

Rembarks

 lanaly Ishalangersdace moil mow．Of she limemed

 of the propromed species diller，fusweter．by belopy

 I ．patmentifi is thinther than thate of the new spectes
 10がは。

Digu how

Nys ducwion

Poretlom in bros

 apecices have been fonnd proviousily with in

1．11mato：？

Sipecific hanne derived fron the genactic name of the bemt．

Diseransion

Most Eünerikt spectes deseribed fiom mamomals

 Devince mome tarialion in sise whape and colour：
 （mitioners in their morphohogicall shatackeristies Herspective al sumplogis hexality or statsont．We conclude，therefore．（hat litey reprewerat in single

 in roral and urhan ancas of Melbounner correyprlad
 beres．Alophometric aboervations made on ancysts
 Were ebthos simitar（o）Hosse reporiced in this inveragation．sugecesthy that they may．te con apecilis．However，lather stablas on the itentity and distributbon af kimerfe spectes intecting donely related how species are aspuired before the lsiongegical
 sunlirmed．

Presidente（1982）did not comsider erceidia

 ill jusemik po．s．
 Prexidente，unputh，sited by Prosidente lest and
 Inlections by conccidiat in Γ ，whforember in Naw

Whether intuctions maty be pathegenie under specilic conditions.

Acknowledgments

The antbers wish wh thank B. Comsan and [J.

Ohendort for providing the majority of samples used in this study, K. Jakes and D. Ward for collecting additional simples from 'Tusmania and I. Cammehan and J. Conper for collecting samples in New Zealand.

References

Bakkt. I. K. OCallaglati, M. G. \& Beversge, I. (1988) Eimerias spp, (Apicomplexal:imesiidser) [zarasilic in the rat-

 955.
 In (ruldsmith. M. (F.d.) "Opossum F"the Day" (Minisury ot Agriculture iusd I'sherves. Rangiona).
 P. $1+/$ Lomg. P. L (Lid.) "The Biology of the Cocejdia" (Uniscrsity Park Presso Maryland).
 sevological survey of the conmon brushtail poshun
 Aualalial. J. Wifll, Dic, 22. 589-591.

 values, diseases and parasites pro. 55-60 $/ n$ livanss, D. (Ed.) The Mamagement of Ausiralian Mammals in Captivity" Proceedmes of the Scientific Mceling of the Aublralian Mammal Society IThe Zhorlogical Board of Victoria. Methourne).
(1984) Parasites and diseases of brushmail
 3P. 171-19(1) Smith, A. P. \& Hume, 1, D. (Echs)
 Surrey Beatey ind Sons, Sydney).
, Bernitit J. L... How, R. A. \& Illmates, W. F. (1982) Effect of hathitat, host hex and age on the parasiten of Trichenatus. Ethentes (Marsupjaliat: Phalageridae) in morth castern New South Wafes. itust. d. Kunl. 30. 33-47.

 R. (Ld.) "Encyclopedial of Ansitalian Animals. Manmals* (Anges and Robertson, NSW).
 Ciark, J. M.. Jombid, J. \& C'harlfotom, W. A. Gi (1990) Jotermal and extemal paratsites of posmans (Thichosurus infuectiot) from firesa abd farmland, Wanganui, New Lealand, No Z. J, Zool. 23, 345-353.

 Kuwau dalad, Chathant Island and Stewart lshand. N. Z. Vif. . I. 45. 247-250.

- (cowan. H. E. \& Heath. D. D. (19り7h) Endopatusitç of hrushtail possum (Trichosarms bulpreala) from the Sinutid Inand. New Zealiuld. Mist. 45. 257-26t).
d
(1998)
[indoparasites of pownenk lrum sesected arcas of North INland. New Zeadand. N. Z. I. Zonel. 25, 91-97,
Vigicres. K. L. \& Sprett. D. M. (loys) The parasites reconaled from Tribhowrins specier (Mursupialid: Phalangeridate), Willll. Res.22, 311-332.

SPECIES OF RAILLIETINA FUHRMANN, 1920 (CESTODA: DAVAINEIDAE) FROM THE SOUTHERN CASSOWARY (CASUARIUS CASUARIUS)

By Michael O'Callaghan* ${ }^{*}$, Ross H. Andrews*, Margaret Davis* \& DAVID M. Spratt \ddagger

Summary

O'Callaghan, M. G., Andrews, R. H., Davies, M. \& Spratt, D. M. (2001) Species of Raillietina Fuhrmann, 1920 (Cestoda: Davaineidae) from the southern cassowary (Casuarius casuarius), Trans. R. Soc. S. Aust. 125(2), 133-139, 30 November, 2001.
A new species of Raillietina is described from the intestine of the southern cassowary, Casuarius casuarius, from Australia. It is a small cestode and differs from cestodes previously described from cassowaries in the size of the scolex, rostellum, rostellar hooks, suckers and cirrus sac. Raillietina casuarii is redescribed from specimens collected in Australia. Raillietina casuarii and R. infrequens were identified in a southern cassowary from New Guinea.
Key Words: Cestoda, cassowary, Raillietina, new species Casuarius casuarius.

SPECIES OF RAILLIETINA FUHRMANN, 1920 (CESTODA: DAVAINEIDAE) FROM THE SOUTHERN CASSOWARY (CASUARIUS CASUARIUS)

by Michael G. O’Callaghan*", Ross H. Anibrews", Margarit Davirs' \& Davil M. Spratt

Abstract

Summary O'Caliaghan. M. G... Andrems. R. H., Davies, M. \& Spratt, D. M. (200) Species of Ruillictima Fuhrminn. 1920 (Centoda: Davaineidat) from the southern cassowary (Casmurtus conmarims). Trums. R. Soc: S. Anst. 125 (2), 133-139, 30 November, 2001.

A new species of Raillietinn is described from the intestine of the southern cassowary, Cisumfins canumitus. from Australia. It is a small cestode and dillers from cestodes previously described from cassowaries in the size of the scolex, mstellum, rostellar hoohs, suckers and cirrus sac. Raillictima casmarii is redescribed from percimens collected in Australia. Reillietimu casumrii and R. infrequens were identified in a nouthern cassowary from New Guineal.

Introduction

Two species of Raillietina have been reported from Casuariidae by Kollan (1923) who described Raillictina castarii and k. infrequens from a lage collection of parasites belonging to the Hungarian naturalist, Lewis Biró, accumulated during the years 1897-1899 from Custarius bennetti picticollis Sclater, 1874 in New Guinca, More recently, Sclumidt (1975) identified the same cestode species. from C. bementi Gould. 1858 at another location in New Guinca. The related southern cassowary, C. casuarius (Linnacus, 1758), inhabits northeastern Australia and New Guinea (Pollock 1992). In 1917. Macgillivray recorded the presence of unidentified tapeworms in the intestine of C. casuarius jofnsonii Mueller, 1866 "bagged" on the upper Claudic River during an ornithologists' excursion to Cape York Peninsula, Qucensland. In this study, we have examined the cestodes collected from nine C. casuarius; one from New Guinea. seven from known localities in Australia and one with no collection data. Three cestode species have been identified and all are assigned to the genus Raillietima Fuhrmann, 1920 (sensu Jones \& Bray 1994) on the basis of the possession of two rows of numerous, hammer-shaped rostellar hooks, unilateral genital pores, a small cirrus sac which does not cross or just cronses the osmoregulatory canals and ege capsules containing several cggs. Here we describe at

[^22]new species of Raillictina and report the presence of R. casuari and R. inffrequens. for the first time in C. casuarius.

Materials and Methods

Southern cassowaries, C. cosulurins, were collected as road kills by staff of the Queensland National Parks and Wildlife Service and froren. At a later date, the birds were transported to CSIRO Sustainable Ecosystems (formerly Division of Wildlife and Ecology) in Canberra where the cestodes were recovered from intestines and preserved in 10% formalin. Some of the material examined consisted of cestode fragments only. Proglottides were stained in Celestine Blue and Heidenhain's haematoxylin, dehydrated in ethanol, cleared in cloye oil and mounted in Canada Balsam. Scoleces were mounted and cleared in De Faurés medium. Measurements of the cestodes examined are given in the text, in mm, as a range followed, in parentheses, by the mean and number of observations. Illustrations were made with the aid of a camera lucida attached to an Olympus 13 H microscope. Type specimens have been deposited in the Australian Helminth Collection (AHC) of the South Australian Museum, Adelaide (SAMA) and in the CSIRO Wildlife Helminthological Collection, Sustainable Ecosystems, Canberra (W/L HC),

Raillietina geraldschmidti sp. nov. (FIGS 1-6)

Holotype: Scolex on slide, 2 specimens on slides, 3 specimens, Mission Beach, Qld ($17^{\circ} 52^{\prime}$ S. $146^{\circ} 06^{\prime}$ E), coll. D, M, Spratt, 3.ix, 1999, SAMA AHC 28397. 31475.

 and dictal waina. 6. Gravid proglotis. Scale hats $=0.1 \mathrm{~mm} 1.4 \cdot\left(30^{0} 0.01 \mathrm{~mm} 2,3\right.$.

 Spratio. 4i-1008. SAMA AllC 31478: mature prowlentides on shde. Aliswion heacho, call. İ Crome \& 1). М. Spall, 7.vi. 1987, SAMA ABC 28.399 .

Mid-region harmow, leading medially pasmin to vas delerens. ()wary bitubed. cish lette circular, tother

 (1).053. $n=10$). Gravill proghthiden (Iig. (1) nides

 0.080 (0.066, $n=5$) splervidul, 1 (1-20) in weth

Descripsion

Deseriptism frased on memated specimens of liree Wrobilas, cestode fragmenth consistinge of mature proghotites amb two seokeces. Small cestode. naximum lengll to in revined ynecimens, maximum Width 0.76a). Stmailice comain apmoximately 4.50 progkthiders scolex (13.155-(0.180) (10.166) $n=31 \quad 111$

 will 21s-23s (22s. $n=2$) hatmacr-shaynd lowsk in

 atcensory spines (0.chn in length visinfe under high namikituatien suly. Suchers (0.052-0.072 (0.059.
 lengilh (Fige 3). Proythtides acraspedone Jombatme prowntides fomer than wide, 0.112-(0.152 ($(0,1,30)$ a 0. $0.30 \cdot 0.0 .072$ ($0.0000, \mathrm{n}=1(0)$. Mature progknildes

 uniateral Latcral dorsal whomeghatary camak 0.028-0,0.36 in diamerer joined by mansverse
 bl proghtiden, Ventral osmoregulatory camall mot
 $\left(10,14^{4}, 11=10\right)$ (Fig. 5) extonding amteromedially to but mon crossing literial osmonegulatery cantal. Distal

 diameter. Bisternal acmimal verich absorm. Via delerent naturaw, greally cuiled, paswing madially towsards sentre of proplentis, 'diestes 5.7 in number. lying withime area bounded by lateal asmeregulatery camalh, usailly overlying oviry and vitelarimma
 and aporal groups. 2 pural and ${ }^{3}-4$, ustaninnally 5. aprorat
Vagina inw cirrus opering into commor esnidal

 0, (1) 8 - $10,(122+(10.022, n=10)$, with a seminal recentiacte

	 Koutan (1427)	R commuri Mrtutu, N. G	R. (y) mentil Ll Atinl. Qld	R. infornacts 	K. insrequens: K Amแน. N. ©.	axerulidishnidell
Sǐe (mon)	740 $\times 3$	11011.5	210) $\times 3.4$	$81 / \times 1.2$	507×10.920	40) $\times 11.7011$
Limmanionm of bealex (tima	1.0) 1.2	0.910	10.961?	(1).5016)	1). 456	1). 1 tit
	(1)(1) $\mathrm{K}-1) .654$		(12.138-1) (1)	(1.627-0.1124		() $008-0.609$
	(1,8)4(1)-0.1)-16	$(1,0) 38-0.046$	$0.033-0.0 .3,37$	$0.021-0.025$	14.017-0.111	12.510)7-0.(0) 3
Numberol reatelict heoks	25()	$176-212$	172192	2(61)	-	$218-238$
Diameter nti suchers (itmm).	(1) 4 MK	$11.1+2$.	11. $9+4$	1). 1.311	11.124	(1), (15 5^{1}
	(9.2.85) < (1). (100)	11.3100 11.192	(1).250 4 11.1.40		$10.17+\times 1.1150$	(1.110, 11.0149

$111 \cdot \mathrm{a}$.

Parmaina mblume

f．11mulesis

 じじくらにばが，

Cimparison with ofber specien

 （lablale 1）．（0）the spectes of Ratlivimat deacritued in
 resemblas d．mimhelli described reecently liy

 lonoks 1228：3161．

HISCS 7．1．3）

Revilliosimm deavmati：luhrmian．1924

 Old．Libll，I）．M．Spaill，3．jx－1yug SAMA NHC

Recused deestrymione

 diamerter armed with $161-13$ rown wh herotin bions－

 $17=10$ ）（Fitis， 1 （h）．Cienital proves single，milateral

 Lablals．cemmeet right and lall dorsial and ventrall

 umoregulatury samalis．Distal rexgon bil cirrum of

 large internal seminal vesishe maded densally， 10,096 －

 $n=121$ in dianterer，mumber $+\overline{5}-51$ per proglonion，
 peral lick（木，31－37（．35）apural．

Vagina opening to genital atritum pustenter wh make
 wall（1）028．0．0．030（ $10,113.3, n=101$ wide Mid reginh with thechemed wall sextending．laseraled，medially and pasterior in vas deferens region intermal tor dambregulatery camals dilated and lilled with apernos， proximail region cosiked．Owary hilohed，pored lote （1）2（1）．11．2111（1）．214）＊ 0.112 .11 .121 （11．115． $11=51$ ．
 （11．122．$\quad 1=5$ ）with $.1-4$ lohulce in cath lobe．
 $0.15 \pm(0.144) \times 1) .09(2-0.13(1(6) 110, \quad n=16)$ ．Litorine duct jainsing emberiboly fo developing urens（Jïg．

 Capsules contaning unce egg（0．052－0．072（0．0）（2）

Figs 17-21. Refllierima inferquens from New Guinea, 17. Scolex. 18. Rontellar hoohs. 19. Sucker houks. 20, Ciirrus and distal vagina, 21. Gravid proglotides. Scale bars $=0,1 \mathrm{~mm} 14,17,20,21: 0,01 \mathrm{~mm} 15,16,18,19$.

Herse

fanomions in hers

latestine.

Remar\%

These spacimens of R ecusmati are smaller than these reperted prevorasily (140 v. 3-10) (Talle 1). Hontever. forlfoll (102.3) in dexcribing lle Jargese cestodes irom one locality, showery ad mere contracked amd shatien eesodden than thome described.

(IIGS.S 17-21)
 Piarisimol. 17. +5.57.

 SAMA AHC"12878. 2234!.

Revised desertipdiom

 and sume uphear lo be mishing. Lidrede interion rimellar howhs $(1,1023-(1) .(12+4(0.023,11=10)$ in lengeth: smalley, praceriop roncollat hooks ((0.017-0.010) (0.018.

 sice tund vityina which tomborm with the deswription and dimensions reporled by Kollan (1423). ©irron

 (10,078 . $11=101$.

IIOM

 mifommes: Casuatictac).

Ionewtiont in hro.s

Intestine

Rembiatis

(itural progghtides were mavaibato in the material examined by kohlan (1823) and conaseguculy to wath thatgas to connplere the description of K. infizeymem. Therefore, at destopmion
 of byecimsens is presented here. Konlan (16) 3) abso
 liaghents that appormeldy helonges wethers The
 here ane in semicomatiod finn.

Discuscion

The new species on Rediliefined dencribed in this stady appeats to to restuicted to the sumberon

 previonsly been reported loon cals, matries in Now Guineat. few trirds have been examined lio cestoden. Similarty. R. infreefrens was mot fisund in the hirds examined trere and may be limited bo cossomaries in New Gouncas. Sudes of addifional malerial will be wequired belore the dimbibulion of Ruillionime xpece in the: Castariodate cen le determineal.

References

 ((' A Is Intrimational. Willnglenc. UK).

 firmathed. 17. 15 57.
 (Sucerinlanus timu 17, ne.3-87

 and Robrertson. NSIVI.

CERVONEMELLA REARDONI GEN. ET SP. NOV. (NEMATODA: CLOACINIDAE) FROM THE STOMACHS OF SCRUB WALLABIES, DORCOPSIS SPP., IN PAPUA NEW GUINEA

By I. BEVERIDGE*

Abstract

Summary Beveridge, I. (2001) Cervonemella reardonì gen. et sp. nov. (Nematoda: Cloacinidáe) from the stomachs of scrub wallabies, Dorcopsis spp., in Papua New Guinea. Trans. R. Soc. S. Aust. 125(2), 141-145, 30 November, 2001.

Cervonemella reardoni gen. et sp. nov. is described from the stomachs of Dorcopsis hageni Heller, 1897 and D. luctuosa (D'Albertis, 1874) from Papua New Guinea. The new species and genus are allocated to the Cloacininae Stossich, 1899 on the basis of having a large, cylindrical buccal capsule, four branches to the dorsal ray of the copulatory bursa and the externo-dorsal ray arising close to the lateral trunk. The bipartite submedian cephalic papillae indicate that the species and genus belong within the tribe Cloacininea (Stossich, 1899). The buccal capsule which is as long as wide, but lacks internal teeth, together with the anterior extensions of the intestinal cells, around the oesophageal bulb differentiate the new species from Cloacina von Linstow, 1898, Arundelia Mawson, 1977 and Beveridgea Mawson, 1980, the other genera of the Cloacininea.

Key Words: Nematoda, marsupials, wallabies, new genus, Dorcopsis.

FROM THE SHOWACHS OF SCRIB WWI．IABIES，DORCOPSIS SPID．IN PAPUA NIUC GUINEA

b）1．13FTVRUMi

Abstract

Sumbmaty 29011

ドに Wink

Introduction

＇Fike helminht burasites an＇forest wallatrien al the
 knossh（\＄prall st al．｜4001）with clarent colldections limited st is smand range bl specimens obtained From sombe all the more coblmon species，Among the existing conllections．Sprall ef $18 .(1941)$ listed inn แudeseribed genum bebmging la the mematende wibe Cloatinine（Stussith． $189 y$ ）deporsted in the somth Anstatian Mascum．The specimens were derived from material sonlected by T．Keardent form the white－striped storbopsis．Donsognsis hergerni Heller．
 New Ginine：a in 1487．Rewent examination nf nematores liom the grey domerspsis，formemper
 Nathrall lisatery Muscumn，Limblon．Pevealed an additional specimen of the genus．The new faxon is described in this paper and iss alfiliations wish onther egenera in the wibe clowanienca are disedshed．

Materials and Methods

 fixad in 10 婉 formadehyde following the death of the host In the labreatory，Im materes were rentoved limm sumbich contemt．Washod in water insl cleared in lactophenest．Drawings were made uning adrawing

[^23] Drawinges sf apical views sh the hededs of nematudes．
 drawings of the harsia have the sentral surface แрpormest．Mcatarconents were nade will and ocular misermeter．All mextmonemis are in millimeltes and
 specemens lollonwed by the mean in patronlleswo． Types of the new species have been seposited in the South Australlian Muveum，Aelelaide（SAMA），He Natural Ilistory Menceun），London（BMNED）and the
 Bellsvilke Maryland（ISNP（？）．Fhast momemelatue follows Ginves \＆Flamery（ $19 \mathrm{x}^{\circ} \mathrm{O}$ ）．

Cerronemella gen．mow．

 （1／．，1941，p． 63 （SAMA AIIC 16999）．

I．smolug

 liguraively by sumue Lation ithbom lo mean＂lonmed＂ and alloudes to the born like appearabee of the incursed submedian ecplantise papillits．

Diegnowis

Strongybideal Weinland， 1863 ：Chatemonat
 mentatodes，body cowered swill numerous bine

 Sutmedian papilla, bateral view. 5. Cephatice extremity, dorsth tiew. 6. Cephalic extremity, dorsal view, median optical section. 7. Cephatie extremity, apisal view. \$. Ceplatic extremity, apical view, optical transerae section throughanterior region of hatcal capsule. リ. Cephalic extremity. apieal view, optical tratswerse section through posterion region of buccal
 section through gubernaculum. 1.3, Dikal tip of spicule, lateral vies. 14. Female tail, lateral view. 15. Female gentital system. laterall view, Scale hars $=0.1 \mathrm{~mm} 1,10,14,15 ; 01.01 \mathrm{~mm} 2-9,11-1.3$. Legend : \wedge. amphid: B. buccal caprule: D, deirid: DL, dersal lip of genital cone: L , secretory-excretory prove; G , gubernaculum; I, inlondibulum: It, intestimal extension: L. Dateral thichenting of spicule sheaths: M, median thickening of spicule sheaths; NR. nerve ring: ().

 baty wilh it brathedes．（icnital emate with combers antsin lip foaring single semtal papilla ans pesterior lif wial pained papillite：median and lateren thishenings af－\＆picule sherethe present：
 datco．Iemale tail conical：talsa immodiately

（likis 1．15）

 antll lumai SAMA AHC 283りI．

 1981．210

Sifre in llow
Siルのnがた。

1 Pamblas

 lypes．I Re：udaty nl（he Sionth Aumbalion Muscum．

12．5． 1 1911＂M

 submedian prapillate and ？amplods．Suhuncedims parpillace clatgates．Livided intor poximtal and thatal

 approximblely hexagenal int ancal view near anterion

 atcinder sedibom．in anleriby senphageal regiont．
 hetween beres time and ucsuphago－itiostinal jonktion．Ambrior inmextilal bedls enlarated，lorming patred elongate oppendades extemding anterienty

Malli

 （1）．251；sccelory－exctetory phe to ambrion end 0.25.

 Ventrall lobes joined wentrally＝lakeral lenoes ank

 givitg riae bo paired external hrancinders．everemat bambhtes difected posacro－laterally，wot rawhinge

 theral amb vemen－sental ratys spposed．Rathiny

 latkeal thickenhag present at junclion al apicule sheallos．Genital cone prominent；antorjor lipatmical．

Femulo

 Mulerism ent ().12-().14 (0.1.3).

Diseroscion

The nomadodes asereribed athere lowemg the the

 coppulateny humsa in the mate white the presence of four branches to the doseal ray and at cyliadrical

 frank, plates the spectes within she sulofamily

 (1, ischtembels lyser). Wibhin the suts-family
 (Beveridge 1087). The pacsence of at simples shongate sesuphagus lacking obvious sivisinn into coppers, isthmus and hulb, wgerther with bupatile submedian ecphalis papilane, places the speceices in Hese fribe Clossinines, which suredely contains these
 and the manorypie genera Admadefles Mawson, 1477 and therevolest Mawsorn. 1980. 'The speceles
 in hasing 16 rehatively deep bucsal capsule. In
 allad is arned materally with fecilh (Maswan 1980). Which ato lacking in the speceses deseritred ubove. In

 cinter side al the nesophatereal toulls. This ehsatacter
 the thanymamuronglined Popuva, |952 in the

 distiantive diverticula bedwerth toe wesmphages and

 ate enlarged. They do not extend unteriony (o) thevelep the acsuphageal bulth. The structues soen in the
 these fomed in the Pharyngestromgline bo the are
 the puecen dencriliced bere is elearly differem lion

 acemmomedatce il.
The material deserithed somest from iswe chowely relased specice al asobl wallaby helongiog to the adele Drmeopsis. "The single apectinen in I3MNII has

 lle "old. wetermin" of the falvel.

 supprising geivels the limited exten to whict the

 will uncrover additimal nowel chakinine yenera.

Ackimmledgments

 Lechnicall itsumbance ans li. I larrim for the lobet of
 Limulesil.

Relerences

 Strongyludeat Irem the padentelon. Thelosah stigmaticar (Marsupiatia) in Austratia, with tion nes
 J. Parusitod. 67. 69-100.
(1982) A tanomomic bexision af the
 Sirmigyloided firsm matraporid marsupials. Abse. I. Zoup, Suppl, Ser: No. 83, 1-151
(1985) Mactopustronsylus Yorke \&

 t- ár. 7. 761-78).
(1986) Alocrastomat propituput sp. II.
 (Marsupialial from Queensland, Australis, with il redeseription ol'A atchandi (Johnston ix Maxaon, 1939). floid. 8. 50.5-512.
(1487) The myntmatic status of Austalian Sirongyloulea (Nemallodia). Jbid. 9, 107-120.號 Joningon, P. M. (1981) Three new general of mematodes (Strongyluidea: Cloacininac) frons the vedlegeed pademelon, mowoghe stigmation Gould (Marsupialiat Macropodider') from eastern Australia. Siver, I'amatol, 3. 77-89.

 $12 \mathrm{~K} / \mathrm{m}$ Gigeg. (i., Jarman, P. \& Hume, 1. (Ede)
"Kangatrooc. Wallabics and Rat-kangaroos" (Surrey Beatty \& Sons, New South Wales).
IICHTPNFE:S, J. R. (1980) Commonweallth Inslitute al Helminthology Keys of the Nematode Parasites of Vertebrates, No. 7. Keyn to genera of the supertamily Strongyloidea (Commonwealh Agricultural Bareaux. 1"urnham Royal).
MAWsen, D. M. (1980) Beterfidgen, wew gema (Nematonda: Strongylida) from the agile wallaty from notherm

 Durcopasa beternm Lesuma, 1827 from Papaia New Guitesal. Thid. 106. 31-34.
(1)94) A taxonomic rexkion al
 Maplestone- 1926) imd fetbioverngeytas (Lathiomultiplex) It sulrg. (Nematodat: Chacinidat) from macropodid marsupials. Syat. Pufasion. 29, 181-216.
(1095) A revision of the uubecnus. labiostrengylte (Labiosimpler) (Nematoda Cloacindac) from macropodid marsupials, with descriptions of twelve new specties and it key to species af the subgenus. Imer. Taxam. Y, 181-242.
 citalaguc of Austalasian monotremes int marsupials and their recorded helminth parasites, Rect. S. Amst. Mus Momerg: Sel: No. 1, 1-10.5.

PRATYLENCHUS AND RADOPHOLUS SPECIES IN AGRICULTURAL SOILS AND NATIVE VEGETATION IN SOUTHERN AUSTRALIA

By IAN T. RILEY* \& WIM. M. WOUTS \dagger

Summary

Riley, I. T. \& Wouts, W. M. (2001) Pratylenchus and Radopholus species in agricultural soils and native vegetation in southern Australia, Trans. R. Soc, S, Aust. 125(2), 147-153, 30 November, 2001.
Pratylenchus species were found in 105 and Radopholus species in five of 284 samples taken from agricultural soils and native vegetation in areas of southern Australia. Pratylenchus crenatus (2 samples), P. neglectus (80), P. penetrans (3), P. scribneri (1), P. teres (10), P. thornei (13), Radopholus nativus (4) and R. crenatus (1) were identified. Pratylenchus teres has not previously been recorded in Australia and its widespread occurrence in agricultural soils in Western Australia may have important implications for crop production. Morphometrics and diagnostic features for P. teres are presented to facilitate its distinction from the morphologically similar P. thornei.

Key Words: Nematoda, Pratylenchus, Radopholus, distribution, species diversity, Pratylenchus teres.

PRATYLENCHUS AND RADOPHOLUS SPECIES IN AGRICULTURAL SOILS AND NATIVE VEGETATION IN SOUTHERN AUSTRALIA

by IAN T. RILEY \& WIM. M. WOUIS'

Abstract

Summary RIIBY. I. T. \& Wouts, W. M. (2001) Pratylenchos and Ratopholus species in agricultural soils and mative veqetation in southern Australia. Tinus. R. Soc: S. Aust, 125(2). I47-153, 30) November, 2001. Pruylenchus apecies were found in 105 and Radopholus species in five of 284 samples taken from auricultural seils and native vegetation in areas of southern Australia. Profylenchus crenams (2 samples), P. neglectur (80), identified. Proftenchus fores has not prevously been recorded in Australia and its widespread occurrence in intricultural soils in Wetcrin Australia may have important implications for erop production. Morphometrics and dingnostic features for P. teres are presented to facilitate its distinction from the morphologically similar P ? thermei.

KI Y Worsus: Nematoda, I'rarylenchews, Radophohur, disuribution, qpecien diversity, Pratylenchus teres.

Introduction

Praflenchus Filipjev, 1936 consists of migratory endoprarasitic nematodes that feed in the roots of plants and are important pests of dryland agriculture in soulhern Australia. Protylenchus neslectus. (Rensch. 1924) Filipjev \& Schuurmans Stekhoven, 1941 and P. thomei Sher \& Allen, 1953 have been identified as jimportant pest species in south-eastern Australia and have been the subject of much researeh since the late 1980s (Vanstone 1991': Taheri et al. 1994: Farsi é al. 1995; Potter et al. 1998; Vanstone 't al. 1998: Nicol et al. 1999: Taylor et al. 1999; Holtaway et al. $2(000)$. In response to the findings of this renearch, interest developed in determining the significance of Pratylonchus in Western Australia (WA). This prompled an extensive survey of the wheat growing areas of that State (Riley \& Kelly in press). This survey revealed that potentially yicldlimiting populations of P. neglectus and P. thornei occurred in much of the WA wheatbelt. In addition. the study found an unexpectedly high level of Pratylenchus species diversity. Although P. neglectle: was most commonly detected, populations identified as I? brachpurus (Godfrey, 1929) Filipjev \& Schuurmans Stekhoven, 1941, P. penetrans (Cobb. 1917 Filipjey \& Schuumans Stekhoven, 1941, P. srribneri Steiner in Sherbakolif \& Stanley, 1943, P. thomati, P. Eoce Grathan. 1951 and an undescribed species similar to P. thomei were also found. Concurrently with this survey, Radopholus. nutimus

[^24]Sher, 1986 was found in 10 of 300 diagnostic samples with migratory endoparasitic nematodes (Riley \& Kelly 200t), further highlighting the diversity of migratory endoparasites in cropping areas of WA.

The species diversity in WA has significant ramifications because, until now, all eflorts 10 establish resistance of crop species and cultivars grown in southern Australia have been limited to P ? neslectus and P? thornei (Taylor et al. 2000; Hollaway ot al. 2000). Also DNA based quantification of root lesion nematodes in cropping soils, provided initially by the South Australian Research and Development Institute (SARIDI) and now by C -Qnetec Diagnostics (a division of Aventis CropScience) is restricted to P. neglectus and P. thornei. The work ol Taylor, Hollaway and their coworkers has already shown that resistance to either P. neglectus or P. thornei does not always provide resistance to the other (Taylor et al. 20)0); Hollaway et al. 2000). This means that suceessful managenent of P. neglectus and P. thomet could be undermined by a shift 10 predominance of other Pratylenchus species for which the crops grown are not resistant. It is, therefore, important that in population monitoring all Pratylenchus species occursing in cultivated fields and native veqetation in agricultural areas are identified, either by conventional diagnosis or DNA tests, so that effective options can be determined for sustainable management.
Taxonomists examined only a limited quantity of material from the cartier survey in WA (Riley \& Kelly in press). Combined with the limited number and nature of surveys for Pratyenchus in soulbeastern Australia, this means that the diversity of species of Pratylenchms in southem Australia is largely unknown. For the present study soil and root simples were therefore collected in areas ol southern

 below

Materials and Methods

 － 10 es and in W．A．I 12 s smples from 38 simes，Siles．

 （b）

 Forke Peumbalat and Fiyre Peninsuld．In IVA，is

 Wde hameno for exceur．A luther nine sumples from
 Were provided ly G．Hullawny（Agriculture Vis．），

Nematode＇s wera extribled fizm soil hy well sevine

 Nomatruber were heat killed，lixed in lomadin and

Resulls

 segeramon．mome were present in cultivalkel sonlx

 foumel on the de bess dintathed hathitals．

 ineluding same that are comsidered pors or men lemas．

 Wbedy hiassica 11 IVA．

 ＂になしたいい．

 ＂ith cartice acosriptions and allagranm low shom
 if mont clasely resembles．
 masilly in croppong sulds but alla in matise cegelation

 Hentaci was fonnd in a malively manor propxitan
 simples were entlected nume randennly．Io WA．
 likely forelled the difierent himplinge cratar．

 yoceces was foxbed in minad papulatioms

 ：

Table 1. Species of Praty lenchus fonnd in association with crops, pasture, weeds and native vegetation in southem states of mainland Australia, indicating the number of samples and associated plants for each species.

Prutilenchurs species	Auntralian State					
	South Australia		Western Australia		Victoria	
	Samples	Plants	Samples	Plant,	Sample,	Plant
P. crenatus	0		0		2	wheat
P. neglectus	71	barley, canola, lupin, native, oat. pea, setch. wheat	8	mixed pasture, oat, weeds, wheat	1	wheat
P. penetruns	1	native	2	lupin, weedy brassica	0	
P. scribneri	?1'	barlcy	0		0	
P. teres	0		10	canola, native, oat, pasture, weeds. wheat	0	
P. thornei	5	native, pea, wheat	6	lupin. oat. wheat, weedy brassica	2	lentil, wheat
Pratylenchus sp.	3	native, vetch	2	wheat, weeds	0	
Total samples with Praslenchus'	75		25		5	

[^25]TABLL 2. Morphometrics of Pratylenchus teres. (Measurements in $\mu \mathrm{m}$).

	Western Australia		Khan \& Singh. 1475

 Rowhypholas batiods ind Radophethes memames Colbran. 197| were liound in native vegetalton: the sallupher bath of R. noriters in SA and WA atrod one sample no \mathbb{K}. crepretms in WA. One R. marives population from SA necurred in absociation with I" negheche. Althugh $R_{\text {r }}$ matinas was not round in (croppiney sojls, as reported hy Riley \& Kelly (? (MO1). a small number of Redruphollus jurenites was lound all the sames site neatr Wyalkatehem that they had investigated. This site stas demminated by eapeweed
 proporaion of grasses (stuch as Loliom rigidhm (ialudin. Jtordermu lequrrinum Link and Brommes sp.) in 1904 . It appean's that capeweed and these earasses are not losts bor sither 1 ? meglecerms nur K. amforms. Which were absent an scarce ins the elevern samples collected at the sile. This ehbervation is comsistern whth the bodings of Vinnsone de Rusis (20)lat, b\% who haves bown the plants specien round at this sile to be largely renswant to 13 meglechers.
figente 2 sherss the gengraphice distribution of the

 the trest and sould where annual fatind in is higher: In

[^26]

 and Vic. C. D. Other meecer C. In WA. D. In SA and Vic.

SA and Vice, P. westersms was widespread and.
 theouglout most of the areas sillupled. The sthes species present ja castern $S A$ were mostly in mative vegestation. Proflyenchars stenerbes becurred in cropping soild of a high rabliall areat of Vic.

Discussion

This study eonlirms the diversity of Praldharhon speciks in WA cropping atrils (Riley de Kelly 111 press) and the relative lack al diversity in SA (Nicol
 tharme' in cereal saik is connmenn with than in wher

 Italy (Balmisano 1ロリ2). In Portugal, bowever, P ? penctions and I? rerotates were moris common in
 hormai (de 0. Abtantes 1987). Similanly, in ontior
 hecone predominamt in cereal crops, for example I ? serfiharpi is predominatal in Atkansas. USA \{Roblans
 Istantl. C'antada (K'impissha ef ed. 1489).

Australat and simitar the ge wordwides ame suntwe repart wide specian biversigy als noen in Wh. For

 (1imputhendel of oh. (1978).
 heconded in Alustralian However, in the canler survey of WA. Riley de Kelly (in press) found in mitantitied apmeen similar of P ? Morwa with

 fere stomely fies the ariginal dexerimion of the species (kiban \& Singll 1975) and material fom the

 ylewinens seem in he sthmewhal denser... hu lit
 valles. The he vilue is combidetally beghet $10,2-7,78$. +.1.5.5) but ilma mity he the fo distortiong of the

 andewhat ameriad resultime in menaring:

 manno it budy. sylet and biil lenglt, the shape of He-lippegion and the atylet holls and ate pusition al

 Where the latler is comphan, The mbulated bail. the
 valiable and apecimens wilh only a light cudatiomon

 (1)komman in hat speces. Cencrally thayd when

 panted cranste lad. It was bather moderved that the

 didicill fo muature ban in difee conmarisuln is

dryland errppong sents of WA RRiley \& Kells: in (Wesis) were collested, we addition of P ? seres to she
 pectes collected in WA and wesulted in at varicty in

 dillerences III hus bange distrihulion and inhat bxing limuse. It is likely thall I ? treen will differ firm both of the eve ind drop management sanceres
 he urdermined hy P Fore. Since its dexcrphem lown mustard in 1975 whe have been matively fen

 information tram which to pualict if impantinico in WA.
 bectutse the fupin mats were exceptionally heably

 assessed. so it apprails that the nessistanece in 10 ol

 impontand as if neticates hat it haty not tre caraly combental by ersen mation (esperially if its hows

 will lupin in Queensland (Uld) and hrabsicio in vartion Sumer,

Prosilemfus arefmenthas heon identified revomly

 whibnat in Australa are required th andirm is peronice.

although less common than some Pratylenchus spp.. it is found widely dissributed (Riley \& Kelly 2001). If particular fictors, such as high frequency of lupin cropping, are contirmed to contribute to the dommance of R. mativas over Pratylenchus under certain circumbtance in WA, a search based on this intormation may also find R. nafinas in derticultural soils in SA.

Acknowledgments

A Grains Research and Development Corporation (GRDC) Visiting Fellowship for W. Wouts, with additional funding provided by Agriculture Western

Australia (AgWA) and SARDI, enabled this work to be undertaken. R. Loughman (AgWA) and S. Taylor (SARDI) are thanked for their support and provision of laboratory facilities and $\$$. Kelly is thanked for assistance with lield work in WA. GRDC salary support for the senior author is also acknowledged. P. A. A. Loof" (Agricultural University Wageningen. The Netherlands) is thanked for examining a representative range of specimens. Samples from mative vegetation in WA were collected with the permission of the Department of Conservation and Land Management. M. Hodda and V. Vanstone are thanked for their critical review the manuscript.

Reforences

 Arten der Gallungen Protylenchus. Dratshenchoider und Hirschmemniella (Nomateda: Pratylenchides) in der DDK. Ifchmintholoria 15, 829-8.34.
in (). Abranits. I. M., di Faria. C. A. T. \& de A. Suntus. M. S. N. (1987) Root-lesion nematode (Pratytenchiss 4pp.) in Prortusal. Nematologia Mediferraned 15, 375378.

Finch. M.. Vanstonli: V. A., Fishler J. M. \& Rathmin. A. J. (1995) Genetic variation in resistance to frombinchus negelertus in wheal and triticales. Aust. I. exp. Agrite 35. 597-(x)2.
Heniaway. (i, J., Taytor, S. P., Eastwerol), R. F. \& Hind: C. 11. (2000) Effect of fied crops on density of Protylenchas in south-eastern Ausitalia; Part 2: P. thomein. Simph, J. Nemtatol. 32, 600)-608.
fortoana. E. M.. Van dea Bizg. İ. \& De Walle, D. (1992) Plant-parasitic nematodes on lied erops in South Alrica. 5. Wheat. Fiundem. Appl. Nemutol. 15, 531-5.37.

KuAs, 1: \& Sincia, D. B. (1975) Five new speries of Pronythehus (Nematoda: Pratylenchidae) from India. Indicit J. Nematol. 4. 199-211.
Kimpinski. J., Animerson. R. V., Jominsion. H. W. \& Martin. R. A. (1989) Nematodes and fungal disemes in barley and wheat on Prince Edward Istand. Crop Pratectom 8. 412-416
 nomatodes of Australia listed by plant and by penus" (NSW Agricuture, Sydacy).
Nicon., J. M., Daties, K. A., Hancock. T. W. © Fisher, J. M. (1999) Yield losh caused by Pratylenchus thomete on wheat in Sonth Australia. I. Nemutol. 31. 367-376.
P'Al Misano, A. M, (1992) Nematodi litoparasciti associati :1 collure di grano dure nell'italia centrale e meridionale |flant parasitio nematodes associated with durum wheal in central and southern laty). Redia 75. 501-515.
 plant-parasitic mematodes in fied erop soils of soutbuestern and central Ontario. Cum. P\%, Dis, Surt: 53. 34-48.
 Suppressive impact of glucosinolates in Brassiog vegetative tissues on root lesion nematode Pratytenchus neglectus. J. Chem. Eicology 24. 67-80.
Rua.Y. 1. T. © KıaIY, S. J. (2001) Readophotus nativus (Nematoda: Pratylenchidae) a potental economic pest of wheat in Western Australial. Nematology 3. 25-30.
… (2002) Lendoparanitic nematodes in cropping soils of Western Australlial. I Ims. J. Exp. Asric' 42. (in press).

Robbins, R. T., Ruigs. R. D. \& von Sterin. D. (1989) Phytoparasitic nematode surveys of Arkansah wheat fields. 1986-88. Suppl. J. Nematol. 21. 62+628.
Solthey, J. F. (1986) "Laboratory methods for work with plant and soil nematodes" fith edition (Minintry ol Agriculture. Fisheries and Fond Reference Booh 402, Her Majesty"s Stationary Office, London).
Tahert, A., Hehlamizy, (i. J., Vanstomid. V. A. \& Ni:Nita, S, M. (1994) Interation between root lesion nematode. Pratlenchus neglestus (Rensch 1924) Chitwood and Oteifa 1952, and root rotting fungi of wheat. N. Z. J. Crop Hort. Sci. 22, 181-185.
Tayior. S. P., Hell. tWay. (G. J. \& HL NT. C. H. (2000) Elfect of field crops on density of Protyenchu: in south-eastern Australiat Part 1: P. neglothm. Suppl. J. Nemutod. 32. 591599.

- Vanstoni. V. A.. Warli. A. H., Me Kay, A. C. Szot, D. \& Riss, M. H. (1999) Measuring yicld los in cercals caused by root Jesion nematode (Prantlendm. neslectus and P. thomei) with and without nematicide. Aust. J. Agric: Res. 50, (617-622.
Townshiend. J. L.. Poitle. J. W. \& Whlis. C. B. (1978) Ranges of distribution of species of Protylenchus in Northeastern North America. Cint. Pl. Dis. Sum: 58. 80 (1-82.
VAA den Berg. E. \& Otenehlrve. P. (2000) Hirshmanniella caribbeana 4p. n. and nes records of Pratlemhus spp. (Pratylenchidac: Nematoda) from Guadeloupe. French Went Indies. Nematology 2, 179. 190.

Vanstomia, V. A.e Ratimin. A. J.. Wibrt.. A. H. \& Wilidaf. R. D. (1998) Relationship betw cen root lesion nematodes
 wheat varieties. Ausf. J. esp. Agric. 38, 181-188.
\& RLSs. M. H. (20)(a) Host suitability of weeds to poot lesion mematodes (Praty/enchm no alectus and P, thomei) Part One. Gravs weeds. Austratas. Pl. Path. (in press).
\& (2001b) Howt untability of weeds on root lesion mematodes (Praty/enc/us negle'tus and P. thomei) Part Two. Broad leaf weeds. Ibid. (in preshs.
Wours. W. M. \& Sher. S. A. (1971) The genera of the subfamily Heteroderinae (Nematoda: 'Tylenchoidea) with a description of two new genera. J. Nematol. 3, 129-144.

THE USE OF DIPROTODON AS A BIOSTRATIGRAPHIC MARKER OF THE PLEISTOCENE

Brief Communication

Abstract

Summary Diprotodons are the largest marsupials ever to have lived with individual masses of some animals estimated to have reached up to two tonnes ${ }^{1}$. They are amongst the most common animals identified in palaeontological literature with more than 240 citations ${ }^{2}$. Although seven different species have been described in the genus Diprotodon, most workers contend that there are probably only two or three valid taxa ${ }^{1}$. All Diprotodon species have been assumed to be Pleistocene-Recent in age ${ }^{3}$. As a result they have been used as biostratigraphic markers for various fossil sites that lack firm dates ${ }^{4,5}$. There are several reports in the literature however, that suggest the presence of Diprotodon in Pliocene deposits ${ }^{6,7,8}$. This note reassesses two Diprotodon specimens recorded from the Pliocene Chinchilla Sand in light of their preservation and historical collection data. It also examines other Pliocene records for the genus and concludes that Diprotodon is still a valid marker of the Pleistocene.

HRIEF COMMMUNICAIION

OF THI: PDELSTOCENE:

 Workson collent that there ate pobably mily lwo the the

 Morascoll

 would loe called imbertuestion.

 yecciment that ane lisad dion flimathils baving beon

[^27]

 Simreggrame demerne in the Chinchilla Sand wambl atons

 Gespor the sariatility at these lecoly in dipumbontines it is

 maderstandinge of the thathromblagy al differcon

 (1) the yecimells. 'f. Jeich imd h. Blath photded helpolal

Murray, [P. (1991) The Pleistocene Megatama of Anstralia pp.1071-116t In Vickers, Rich. P.. Baird. R. E., Monaghan. 1. de Rich, T. H. (Eds) "Ventebrate Fallacentology of Australasia" (1'ioneer Design Studio and Monash University Publications).
: Rich, T. H. (I491) Appendix 11: Literature Reforences to the Fossil Terrestrial Manmals of Austrilia pp. J(058-1069 thind.

- Stirton, IR. A. Woodhurne, M. O. \& I'lanc, M. I). (1967) Bull. Bur. Mitt. Resour. 85, 149-160.
${ }^{1}$ Archers, M. (1982) Review of the dasyurid (Marsupialia) iossil record, integration of data bearing on phylogenetic interpectation. and suprageneric classilication pp. 397-44.3 I/ Archer. M. (Ed.) "Carniverons marsupials" (Surrey Bsalty of Soms Ply Lid and Royal Zoological Socicly of New South Wale"ヶ).
- Mackness, B. (1909), Trans, R. Soc. S. Aust. 123, 153154.
${ }^{6}$ Woods , J. TV, (1960) J. Geol. Soc. Aust. 7, 393-4033.
'Stirton, R. A., Tedford, R. H. \& Miller, A. H. (1968) llmiv. Calit. P'uld. Gonl. Sci, 77, 1-30.
${ }^{2}$ Tedford, R. H. Wells, R. T. © Barghoom, S. L. (19y2) The Beagle, Rec, N.T. Mus, Atts Sci. 9, 173-104.
" Hand, S. Jo. Mackness, B. S., Wilkinson, C. E. \& Wilkinson, 1). M1. (199(9), Ikec. West. Aust. Mus. 57, 291298.

11) Bartholomai, A. \& Woorls, J. T. (1976), [3ul]. Bur, Min. Res. Geol. Gcophy. 166, 151-152.
Molnar, R. E. \& Kurz, C. (19y7) Proce, Lima. Sow: N.S.W. 117, 107-1.34.
${ }^{2}$ We Vis, C. W. (1887) Jroke. R. Sike. Qld 4, 9y-10).
Black, K. \& Mackness, B. S. (1999) Diversity and relationships of diprotodontid marsupials I/I Archer. M.. Arena, R., Bassarova, M. Black, K. Brammall. J. Cors. B., Creaser. B?. Cronby, K., Gillespie. A.. Godticlp, H.. Gintt. M. Hand. S. J., Kear, Iz.. Kirkman, A.. Muckness. B.. Muithead, J., Menser, A., Myers, T., Pledge, N.4 Wang. Y. 政 Wrose, S. (Eds) The cyolutionary history and diversity of Australian mannmals. Aust. Manmal. 21, 1-4.5.
It Archer; M. (1977) Mem, Qd Mus, 18, 37-39.
${ }^{14}$ Marshall, L. G. (1973) Mem. Nott. Mus. Vict. 3H. 151.177

BRIAN MACKNESS ${ }^{\dagger}$ \& HENK GODTHELP, School of Biological Sciences, University ul New South Wales Kensington NSW 2052. TPresent address; PO Box 560 Beerwaht Qld 4519.

OBITUARY

JOAN BURTON PATON AM, BSc (Hons), MSc

1.ix. 1916 - 28.iv. 2000

Abstract

Summary Joan Burton Paton died in Adelaide on 28 April, 2000, after an outstanding career as scientist and teacher. She was the fifth and youngest child of John and Dora Cleland. When her father was appointed to the Chair in Pathology at the University of Adelaide in 1920, the family moved to Adelaide and after a number of years took up residence in what is now regarded as the family home - 1 Dashwood Road, Beaumont, where Joan spent the rest of her life. Her schooling began at Miss Dutton's Kindergarten, Fullarton and than at Presbyterian Girls' College (now Seymour College). Joan began her science degree at the University of Adelaide in 1934 graduating BSc in 1937 followed by an Honours degree in Biochemistry in 1939 and an MSc in 1947. Her career as a Biochemist commenced at the Institute of Medical and Veterinary Science in 1940, where she worked for 12 years. She published the first of her many papers in the South Australian Ornithologist in 1939 and this was followed by contributions to the South Australian Naturalist.

JOAN BURTON PATON
4 M . BSce(thens), MSc

At Coolgubbin Camp, Connie Sue Highway, Great Victoria Desert, June 1974. Photograph courtesy of Mrs A. Hardy

OBITUARY

JOAN BURTON PATON AM, BSC(Hons), MSC

$1 \times 1910-28.5 v, 2000$

Jomen Burtem Paben died in Aideticte on 28 April, z(M). atter an sutstanding career as seientist and leweher: She was the fifith and youngest child of Johon and Doma Clabland. When her tather was apponeted io the Chaif Ia l'athotogey at the University of Adelade ior IVzo, the Cimily moved to Adedathe and ather as Dumber bif years rusk 씨 rehidence in what is now pegariced at the lanily home-I Dashword Rosut. Beaumom, where Joan spent the reat of hev lite 1let schoshling bexath il Miss Duthon's Kindergatten. Fiultartom and then ift Deshyterian Ciots Collage Lonw Seymutu (billege). Joan hegan her science degree ist the l flinemsity of Adefaide is 1934 gradtating BSC in 1937 followed by an Honton's decrec in Biochanisiry in 1939 and an MSe in 1947. Her katcer us at Biochemist smmmenced it the Insthute of Medical and Veterinary Scienec inf 1940, where she worked for 12 years. She published the lifst of her many papere in the Sermbe dersubtion Grnimhengise in 1930 and lisis was liflossed by controhutiogs te the South Awatratian Nomurediay

In 1951 Jown natrice Pat l'atom and with hime wats d) dikecor of ath ongincoring lirm making scientific espippachs. The demands of mariage shiddent and caming lior she elderty lather svere all baken in her atride. She inspired many people do stody natural
 complexities of the cerviromment and its cemservation. particularly through the Wonkers Fstucation Assceiation and the Deprament of Continuing Education at the Eniversity of Adebate. It was dupine the 1990 s thal i became fother asquarmed with Jom. She would lequently visil Pat Thomar in the Souts Australian Muvemm at londs lime and smanctines the three of bis woold cat wegether in Pa's laboratory where- plentiful supply it sweet vertoweth waskep. This Pat served to us in beakers and seven thotgh we koem that the satme beakershad contanmed in kangaroo 's liver on sabmon 4 pall sonly minuten bofure, we apprecianed the gencrosily and the purifying eflects of aleahos! It Wan lere that we heard deall describe bow wo mantge wildile sensibly. Sle was agereat conservaitonest and decepted the gan de s mathagement bool. Joan was is Workere a hefper and a bern Eender.

Atbe lalking with Joms l'riends. I enompiled a linde atrout ber persmal life. This folleave.

Heribige Joan combithed a lone periond of voluntary service to Natonal Parks and Wildlite. SA. She wus appointed it member of the National Parks Commission liom 146y ns 1472. With the winding up tif the C'ammioston she was appuinted of National Pasks and Widhtie Advisery Commilese from 1972 10 1979. In 1480, the Minister for the Fuvirumment apprinied Joan ats a bunding member of the Stut Comaulative Committes on which she s.erved umill her deans.

Russell Thomas. I wabrook: Her love of thinge ornithological was pramanount. At a esteler she Sisplayed gieat patience kistudents of itll ages. Sho was a trae leader - she had kyowledge and drive.

Barbara Hardy MO. Seaclim: Justr was quest ima 7umble but Jots of fun to be wift in the Austritiant Bush. On sum linsl cemping trio, Rex Ellos had in his velhele. as smath retrigerater stacked with heen hut when Jobr coflected at rate birat spobies dut went she beser and in went the bird carcassers- 10 . quentions. Joan had a great amderstanding of nowore and fos eomservation needs and she was inf eflective lubtoyist for hetter matagement ot the natural envimmment.

Hans Mincham: I herved as Informinion OMicer at the South Aastrabian Muscum for twelve yeus from 1964. During that time. Jomer Paton was nly source of intortation for answeriby questions on Omithological matters Virm the publie. She fimght simengly to satve native hishitat.

Anne Dow, Mexdindic: My ramily and I ascompranted Joan on several expeditions. Jom was brilliant. batented, dealicated to Ormitmbery whith at greal semse sil humour.

Enid Rolecrison. Blackwood: "The blids are Where the plande ate se satid Jown on the livet of sur many shared campige tripa. We shared sleeping ywaters in many mnorbodox places: Kahadin. a sehom-roxan in Meningie and we shared many sfrange hedfollown like cane hade near Maunt lsat and mosquinses. which had sorit lammed the rules ahout being put of hy insed repeltima at Foge Datm.

Mangaret Ker. Colonet Lisht Gardens: / lïrst met foat at her bird classes in 1968. Impressed upon me

Wise whenever I came acrose it fieshly killad bord hy the ravdride if was to the pieded up. fupera and handed on wo doan. I itrented mamy Comsulbative Commites meethys in the country with Joan ind whe wals us deflegh to bo with.

Lee tharkin AO, Lealwnok: Jwan leavch at lnges'y of dedisated biet-watehers whane lives are emichat by foran s infechous fove of these beantiful ereatures In all her many imvolvements she was always conseismious. hand wreking and cantiatent in hey appeoseh to conservalion materes. She billon presented one with gigantic pears, Jerasalem wilichokes and for sluck eggs foom her ranhling hisbitieg gation. She was much Toved imd adnericel by all who krew her.

Parry Hutchins OAM Northimeld! Jown wats pati Hesaiden and lite Member of the" Adetafide Omilholigists Cloh fote and she mainkimed ar stous interes in sluf activitien until tee denits. She was always keen 10 debate comservabion ismbes and published her apinionts. Conservation in Soulth Austabla benclised greally form her help.

Mustel Reid, Hackney: LIfst emanmoned Joan on the hoekey liek when wo plaved for I/niversaly seants ind later as as student al Joinis WEA clase lor heginneas ill Ornithnlogy A. lian and I were nembers of the Tater's C'lab). Here her papers and shorl willy precms weto well reccived. Her memory lat reciting pheily. leamed us a chold was legendary.

Ross Reid. Hackmey: My memories of His wonderfis woman begatm at the Imtitute al Medical and Vaternary Science where she was a delameal hinchemisd und I was a socured yebr madical student foul if was hef leblures on Otnishothege whicis kmelfed Iny somtimuring interest in hord-watehing. On som expedilions. she alevays had the studemis up und about it lifst light the the best purt of the day ${ }^{\text {tr }}$. irrespective of the weuher: "Recond Ifrose ohservalions" she would saty, She was an atecurate whaserver unil it Jemder in bologisal conseryatoht.

Joan antended mectinge rif the Soull Aushallath Omithological Asserebom with her lather whem she Wats as sudent at Preshbgorian Gifis" C'allege. Glem Obmond know Scymour Colloge), She hatpal bet liather by akinnine birds and even displieyed srome af Hese specimens if at mecting of the Associgtion it 1932. If was in than year 6 m . that silse wax presented With a pair at camaties and at sum bil nomey lis whaning em cosay compoctithon en bonde-she had seen during her holiditys. It wis during this perind that her lifu lones interest in bieds was kindlod.
drim what alse a keen spotswonmat, gamity it

Lhaversity Blace in Thmekey ind playing the the Suate I Jockey hearn. A tealn mate desumbed her ahe "yrilly and determined", qualitics Hzal presaifed itl every endeavaner throgetoou bee life-
'Theughati hor child-reaning yeas doind did mos give un work and in 1453 with two hathers sisll it beass do continted teaching ut the Lhiversaly al Adelainde, If wath commomly aceepted that she mamaged to leed fie fwins, boit and read ath at the same lime. She wat pari-fone ther ant itemenstrator in Biowhomisty and then in Binkeg and did non refire untit 1987 . 34 yedre Gater. She jugeged her life marvellously durimg these periods and when reyuired. as summar womld have it locked the
 University and asked Dall. Wer tather on the dere me kecp itn eye on thom. When chaflenged uhsun hais she replial shernty will grilted teeth : "It dish them 16 . hativ".
 What giving entirses on mutrition. 10 . 1967 she started whill hecante her steatest passion Fershing bunthokey - sumedinge fhaf she continued entil 1099.

Sir toho Cleland, her fallect used to bill the lamily forme with plant specemens und fongi, fown. sh the wher hand. would tifter the verandiats and attic wiff skeletenve and willges of humb Eadedilly pionned ent for
 sombinth athel intestincs were baved and dispatelocal (i) Pat Thomas of be cximmed for parasilas. And. mamaminge the lamily traditonn. several parmites wate subscquenty mamed ilier Joan - ato honour she shared with her fuhter.
Jown Palon became increasingly involved in the hind clubs of the State and Nattiont. servine as a Vice Prosudem and then as President Firmo 1979-1482 of Whe South Australian Oroulselogical Assmütion. She Was the Reghonal Represemtative of the Royal Australusian Omithologisis" Whion foon 1978. 1077 hefore juming flec Cinmotil of the RAOU ferm larz? 1ty87 und also served ik. Viec Prestdent and then
 1991-1993. And, on wo wh thas. the spent 17 years an Dle Schoof Commil of the Presbyterian Cirly Cullege (now Seymour College), regularly attended weenmen of the Royat Sucicely of South Amarithit. Koyal Gengraphical Sobicty of Sontf Austratia und Medieal Söenees Cluh, wrote chapters for booke ons the Birds an the Heysen Trail the Flimbers Rampers. the senty histury of Encumner Bay and many stientific papers on South Ausuralitu birds, She was also an Honotary Research. Assuciate it the South Australian Muscum for 25 yems.

These collective contidbumione womitholaty chlusation and sonservation पent recoghmal whan

(AM) in 1996. Her greatest contribution and greatest asset were her ability to teach, enthuse, encourage and inspire others. She had great patience - never losing her temper, never responding abruptly, always trying to aid that person's learning and enjoyment. She treated all people as equals, never fussed over anyone, and never expected anything in return. She did herself and her family proud and touched and
moulded the lives of her children. A generation of science students and doctors fondly recalls her teaching them biochemistry.
Joan was the author of Pearson Island Expedition 1969. Birds. Transactions of the Royal Society of South Australia 95, 149-153.

ROYAL SOCIETY OF SOUTH AUSTRALIA INCORPORATED

Patron:

HER EXCELLENCY MARJORIE JACKSON-NELSON, AC, MBE

 GOVERNOR OF SOUTH AUSTRALIA
OFFICERS FOR 2001-2002

President:
N. F. ALLEY, BA(Hons), MA, PhD

Vice-Presidents:

M. A. J. WILLIAMS, BA(Hons), MA, PhD, ScD
O. W. WIEBKIN, BSc, PhD

Secretary:

C. R. WILLIAMS, BSc(Hons)

Editor:
K. F. WALKER, BSc, PhD

Treasurer
J. T. JENNINGS, BSc(Hons), PhD

Assistant Editor:

Programme Secretary:
N. J. SOUTER, BSc(Hons)

Minutes Secretary:
Membership Secretary:
M. DAVIES, BSc, MSc, PhD
A. J. McARTHUR, BE

Members of Council:
J. E. PATTISON, MA, BSc, MSc, Grad Cert Ed
P. A. PARSONS, BAgSc, PhD, ScD, FLS
A. PRING, BSc(Hons), PhD
M. J. WRIGHT, RDA
R. D. SHARRAD, BSc(Hons), PhD, DipT(Sec)
M. IQBAL, BSc(Hons), MSc, PhD
c, $\mathrm{BSc}($ For $), \mathrm{PhD}, \mathrm{DSc}$

[^0]: Sn 50n00.
 Blad fas Aneeles Cr vonot USA.

[^1]: 1 amith
 Sice： 0.5×2.5111（4）

[^2]: rempale
 Unk buewn.

[^3]: 『मा5

[^4]:

[^5]:

[^6]:

[^7]: Figures indicale the number al galle combinang the particular inmect.

[^8]: * Deparment of Microbiology and Hanatolegy. The University of Queensland Brishane Qld 4072

[^9]:

[^10]:

[^11]:

[^12]: ©010

 1...11 - 1.0.4. 1.1 .

[^13]: CPOM (Coarse Particulate Organic Matter) $>1 \mathrm{~mm}$

[^14]: Soull Abstralian Research ※e Development Insitute. Entomologs Sexton. Waite Campus, GPO Box 397 Adelade SA 500) L-mult: batley.peter T" a suugov rel.govatu
 Department of Entomology. The Natural History Musem Cromucll Roid London SW7 5BD UK
 P Deparment of Applied \& Molecular Ecology and Centre for tivenulionary Biology \& Biodiversity, Adelade University Wait. Campus Private Bag 1 Glen Ommond SA 5064.
 We゙tern myall (loctrad peppyacarpa Benth.). "Rangelabds in at ustainable biosphere". Proceedings of the Fath Internatronal Rangeland Congress Salt Lake City, LItah, USA 23-2X July, 1995 Volume I contributed preventations. 1996.99-100. (Socrety for Range Management, Denver, Colotado, USA) (mpub,).
 conlogy and management. PhD Theris, Department of linvirnmental Science and Rangedand Mandegment. Adelaide University (umpub.).

[^15]: 4．जा⿵⺆一

[^16]:

 © Cumsial :
 simaly bew $/$ Coidatiol

[^17]: ${ }^{+}$The percentage of the catch that etch species comprises is given in parentheses．
 ${ }^{3}$ Two traps set for one night and I trap set for two nights both constitute two（2）trap nights．

[^18]:

[^19]:

 (3) 1407?

[^20]: - Jul Sil. (1976) Studer on trematmen (tlagiorchiala) from

[^21]:

[^22]: Departaient of Eavironmental Biology, Unatersity of Adela de $\$$ A 51015
 397 Adelaide SA 5(\%).
 2(f)1.

[^23]: l＇ilh villd You：HIs？

[^24]: Department of Applied and Molecular Ecenogy, The I Iniver ity of Adelaide Gilen Owmond SA506t.
 E mail: iannory (atdeladeedu, an
 Landeater Rewearch. Private Bag 92170 Aucklamd New 7ealand Vinstace. V. A. (1991) The role of fongi and the 1 (60) lasion
 South Auswatia. Pho thesm faivercity of Adelaide (umpub, I.

[^25]: Populations of mixed Pratylenchus spp, were found in some samples, ${ }^{2}$ Identity uncertain

[^26]:

[^27]:

