For Reference

Ex absais

 adbeichiasis

THE UNIVERSITY OF ALBERTA

RELEASE FORM

NAME OF AUTHOR
Richard Whitkus
TITLE OF THESIS
A Taxonomic Investigation of the Carex macloviana
D'Urv. Aggregate in Western Canada and Alaska

DEGREE FOR WHICH THESIS WAS PRESENTED
YEAR THIS DEGREE GRANTED 1981 Master of Science

Permission is hereby granted to THE UNIVERSITY OF ALBERTA LIBRARY to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only.

The author reserves other publication rights, and neither the thesis nor extensive extracts from it may be printed or otherwise reproduced without the author's written permission.

THE UNIVERSITY OF ALBERTA

A TAXONOMIC INVESTIGATION
OF THE CAREX MACLOVIANA D'URV. AGGREGATE
IN WESTERN CANADA AND ALASKA
by
(C) Richard Whitkus

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH in Partial fulfilment of the requirements for the degree OF MASTER OF SCIENCE

DEPARTMENT
Botany

EDMONTON, ALBERTA
FALL, 1981

THE UNIVERSITY OF ALBERTA
 FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read, and recommend to the Faculty of Graduate Studies and Research, for acceptance, a thesis entitledTaxonomic Investigation of the Carex macZoviana D'Urv. Aggregate in Western Canada and Alaska
submitted by Whitkus
in partial fulfilment of the requirements for the degree of Master of Science.

ABSTRACT

The Carex macloviona aggregate is comprised of several phenetically similar taxa in western Canada and Alaska. The slight morphological differences among the taxa has led to treatments recognizing one more inclusive, or, six less inclusive species. Since the group had not been intensely studied before, a detailed morpho-taxonomic investigation was initiated to delimit species and describe phenetic relationships among them. Results from study of herbarium speciemns from the entire geographic range of each taxon, and various numerical analyses of Canadian and Alaskan material, indicated the taxa C. microptera Mack., C. festivella Mack. and C. Limmophila Hermann comprise one species, C. haydeniana 01 ney another species, phenetically similar to the first, and that C. macloviana D'Urv. and C. pachystachya Cham. ex Steud. are two similar but distinct species. A statistical analysis of 47 quantitative characters indicated that the species do not differ appreciably from one another but there are a few characters which either alone or correlated with others, can be used to diagnose each species. The species were also determined to have different chromosome numbers, geographic distributions, and ecological preferences. During the course of the investigation, a previously unrecognized taxon, designated 'stubby', was found and included in all the analyses to determine its phenetic position within the aggregate. It was concluded that 'stubby' represents an extreme form of the variable C. pachystachya, differing not only in morphology but in chromosome number as well.
\qquad

I would like to express my gratitude to Dr. J. G. Packer for not only suggesting this project, but for his support, guidance, humor, and thoughtful discussions. I would also like to thank Drs. G. E. Ball and L. L. Kennedy for their critical review of the manuscript and helpful suggestions. I am also indebted to Dr. J. W. Carmichael for his assistance with the numerical analyses. Thanks are also extended to Dr. R. A. Stockey, who could not be present at my oral exam, but was there in spirit.

My appreciation is also extended to G. S. Ringius for his poignant questions and hours of intriguing, if not always relevant, discussions; and to my fellow graduate students J. Bain and (now Dr.) S. J. Wolfe, for providing moral support and a role model of what a student is all about. Thanks are also extended to the curators of the various herbaria who provided loan of specimens for examination.

A special note of appreciation is extended to M. Kobayashi for not only being a pillar of support throughout this project, but for typing the manuscript and making numerous spelling and grammatical corrections.

Finally, an unending expression of my appreciation is given to Dr. G. H. Morton. A few lines cannot express my feeling of gratitude; suffice to say this work would never had been started without him.

This research was supported by NSERC Grant No. A-2582 to Dr. J. G. Packer and by a Grant-in-Aid from the Boreal Institute for Northern Studies.

TABLE OF CONTENTS

Page
INTRODUCTION 1
Description and Taxonomy of the Genus 3
Systematic and Biosystematic Research in the Genus 5
Classification of the Section OvaZes 9
The Carex macZoviana Aggregate 10
Taxonomic Procedure 19
MATERIALS AND METHODS 22
Morphology 22
Herbarium Studies 22
Collections 22
Morphological Analysis 22
Cultivation 32
Cytological Studies 33
RESULTS 34
Morphology 34
Herbarium Studies 34
Statistical Analysis 42
Numerical Analyses 61
a) Analysis of OTU's 61
b) Taxa Analysis 73
Further Analysis of 'Stubby' 77
Cultivation 83
Chromosome Numbers 90

Page
DISCUSSION AND CONCLUSIONS 99
Taxonomy 99
Taxonomic Treatment 110
Carex macloviana sensu lato 111
Key to The Species of The Carex macloviana aggregate In Western Canada and Alaska 113
Carex haydeniana 01ney 114
Carex macZoviana D'Urville 121
Carex microptera Mackenzie 127
Carex pachystachya Chamisso ex Steudel 134
Doubtful or Excluded Taxa 142
SUMMARY 144
LITERATURE CITED 149
APPENDIX 1. SYNONYMY OF THE GENUS Carex 156
APPENDIX 2. FORMULAE FOR STATISTIC AND NUMERICAL ANALYSES 158
APPENDIX 3. DATA MATRIX FOR 191 OTU's 161
APPENDIX 4. DATA MATRIX FOR 7 OTU's 165
APPENDIX 5. STATISTICS OF THE 47 QUANTITITIVE CHARACTERS 166
APPENDIX 6. CLUSTER MEMBERSHIP FOR TAXMAP ANALYSES OF OTU's 182
APPENDIX 7. PHENOGRAMS OF CLUSTAN ANALYSES WITH OTU's LABELED ..packet

LIST OF TABLES

Table Page

1. Comparison of Kükenthal's (1909) and Mackenzie's (1931-35) treatment of the Carex macZoviana aggregate for North America 15
2. List of taxa initally investigated for the present study 17
3. Reported chromosome numbers for members of the Carex macloviana aggregate 18
4. Reconizable morphological units (taxa) and subunits in the Carex macZoviana aggregate for western Canada and Alaska 24
5. Suite of characters used in scoring specimens and for the analyses 25
6. Characters and their respective states used in separating taxa in the Carex macloviana aggregate in the herbarium study 36
7. Grouping of the 47 quantitative characters into three sets evident from the statistical analysis 57
8. Tabular results of TAXMAP analysis of OTU's of the Carex macloviana aggregate using all characters, showing cluster groups and single member clusters 62
9. Tabular results of TAXMAP analysis of OTU's of the Carex macZoviana aggregate using reproductive characters, showing cluster groups and single member clusters 63
10. Nearest neighbor distances for clusters in TAXMAP analyses of taxa of the Carex macZoviana aggregate 78
11. Morphological indes values for 'stubby' and characters for which 'stubby' is intermediate in comparison to Carex pachystachya and C. macZoviana, and to C. pachystachya and C. microptera 82
12. Meiotic chromosome counts determined for members of the Carex macloviana aggregate 91
13. Comparison of cytological races of Carex pachystachya with morphological subunits recognized for the taxon 95

14. Comparison of divergent characters from original descriptions of Carex microptera (Mackenzie, 1909) and C. festiveZZa (Mackenzie, 1915)105

LIST OF FIGURES

Figure

1. World distribution of the Carex macZoviana aggregate, based on data from Hultén (1958), Moore and Chater (1971), Porsild and Cody (1980) and herbarium specimens
2. Graphic representation of three OTU's (A, B and C) plotted in a three-dimensional character space
3. Histograms showing the frequency of the various character states for scale color and perigynium color for taxa of the Carex macloviana aggregate38
4. Histograms showing the frequency of the various character states for inflorescence shape and perigynium shape for taxa of the Carex macloviana aggregate
5. Results of the statistical analysis of 47 quantitative characters for members of the Carex macloviana aggregate for western Canada and Alaska

45
6. TAXMAP analysis of OTU's of the Carex macloviana aggregate using reproductive characters65
7. TAXMAP for analysis of OTU's of the Carex macZoviana aggregate using reproductive characters, redrawn to show only cluster centers and nearest neighbors, indicated by arrows
8. Phenogram produced by CLUSTAN analysis of OTU's using all
characters
9. Phenogram produced by CLUSTAN analysis of OTU's using
reproductive characters
10. TAXMAPs for analyses of taxa of the Carex macZoviana
aggregate
11. Phenograms produced in the CLUSTAN analyses of taxa of
the Carex macZoviana aggregate using average linkage
clustering
12. Ordinations produced by CLUSTAN principal components
analyses of taxa of the Carex macZoviana aggregate
13. Range of Carex pachystachya and C. macloviana, and
distribution of 'stubby' in western Canada and Alaska 85

14. Range of Carex pachystachya and C. microptera, and
distribution of 'stubby' for western Canada and Alaska 87
15. PMC meiosis phenology observed in specimens of the Carex macZoviana aggregate for the year 1979. 89
16. Distribution of cytological races of Carex pachystachya for western Canada and Alaska 94
17. Camera lucida drawings of Metaphase I in pollen spore mother cells of Carex microptera (A, $\mathrm{n}=40$), C. festivella ($\mathrm{B}, \mathrm{n}=40$), and C. Zimnophiza ($\mathrm{C}, \mathrm{n}=40$) 96
18. Camera lucida drawings of Metaphase I in pollen spore mother cells of Carex haydeniana $(A, n=41)$, C. macloviana ($B, n=43$), and 'stubby' $(C, n=41)$ 97
19. Camera lucida drawings of Metaphase I in pollen spore mother cells of Carex pachystachya 98
20. Distribution of the taxa Carex microptera (A), C. festivella (B), and C. Limnophila (C) for western Canada and Alaska 104
21. Type specimen (left) of Carex haydeniana 01ney 110
22. Distribution of Carex haydeniana for western Canada and Alaska 119
23. Distribution of Carex macloviana for western Canada and Alaska 124
24. Type specimen of Carex microptera Mack. 129
25. Distribution of Carex microptera (including C. festivella and C. Zimnophiza) for western Canada and Alaska 132
26. Type specimen of Carex pachystachya Cham. ex Steud. 137
27. Distribution of Carex pachystachya (including 'stubby') for western Canada and Alaska 140
28. Summary of phenetic relationships, geographic distribution, ecological preferences and chromosome numbers for taxa of the Carex macZoviana aggregate in western Canada and Alaska145

INTRODUCTION

The genus Carex L. ${ }^{1}$ is the largest and most widespread genus in the family Cyperaceae with approximately 1500-2000 species. Like most genera in the family, Carex is comprised of grass-like perennial herbs with highly reduced, wind pollinated flowers. Along with the genera Kobresia Willd., Schoenoxiphium Nees, and Uncinia Pers., Carex is a member of the tribe Cariceae Nees of the subfamily Caricoideae and is interpreted as having true unisexual flowers which are laterally arranged in spiciform inflorescence units, and as possessing a prophyll which partially to completely surrounds the gynoecium (Holttum, 1948; Koyama, 1969; Eiten, 1976). These features, which have proved useful in the classification of the family, distinguish the tribe Cariceae from other members of the Cyperaceae. The remaining tribes of the subfamily Caricoideae have terminally disposed flowers and a bract which surrounds the female flower that is not homologous to the prophyll (Koyama, 1965; Eiten, 1976; Meert and Goetghbeur, 1979). The subfamily Cyperoideae possess pseudanthia in the form of bisexual flowers (Koyama, 1969), while the subfamily Mapanioideae possess pseudanthia and cymose inflorescence units (Koyama, 1969).

Within the tribe Cariceae, the genus Carex is distinguished by possessing a completely fused perigynium and a rachilla which does not extend beyond the perigynium. Since the reproductive structures of Carex are unique in relation to other angiosperms and play an important role in the taxonomy of the genus, it is desirable to first review these structures and the terms which apply to them.

[^0]The flowers of the genus Carex are unisexual and most species are monoecious. The flowers, adapted for wind pollination, are highly reduced and lack a perianth. The male flower simply oonsists of three stamens subtended by a scale. Although this is the common interpretation, evidence based on anatomical studies has shown the male flowers may actually be pseudanthia composed of three single-stamen flowers (Smith, 1966; Smith and Faulkner, 1976). The female flower consists of a bi- or tricarpellate, unilocular, single ovuled, superior gynoecium completely surrounded by a sac-like organ, the pergynium, and the whole structure subtended by a scale. It has long been thought that the female 'flower' is a reduced inflorescence, consisting of the gynoecium, placed laterally on the floral axis, the rachilla, and the perigynium which is homologous to a prophyll, a reduced leaf found at branch bases in many monocots (Blaser, 1944; Holttum, 1948; Eiten, 1976). In Carex, the rachilla aborts and does not extend beyond the perigynium, except in one species, C. microgZochin Wahlenb. However, in other genera of the tribe Cariceae, the rachilla extends beyond the perigynium, and in Kobresia and Schoenoxiphium has one to several distal male flowers. Thus the 'flowers' of Carex are actually spikelets reduced to such a degree that they appear and function as true flowers (Smith and Faulkner, 1976). For taxonomic purposes, however, the interpretation of these structures is not a serious matter and throughout the present investigation they are referred to in the vernacular sense as flowers, a convention used by most workers in the genus.

The flowers are variously arranged into spike-like structures, which are subtended by a bract which may be reduced. These spike-like structures are secondarily arranged into spiciform or racemose
$-4-2$
inflorescences, or they may be single and terminal on the culm or stem. In those instances where the inflorescence is capitate, it is usually referred to as a head. The spike-like structures are sometimes called spikelets (Lawrence, 1951; Smith, 1977), however, as discussed above, this is erroneous, and for the purposes of this work, these structures are referred to as spikes. ${ }^{2}$ The spikes may contain flowers of only one sex or may have both. Bisexual spikes which have female flowers above the male are called gynecandrous, and those with male above the female are called androgynous. In species with unisexual spikes, the distal spikes are usually male and the proximal female.

Description and Taxonomy of the Genus

CAREX L. ${ }^{3}$

Grass-like perennial herbs. Culms (stems) solid, triangular or terete. Leaves narrow, linear, three-ranked, with closed sheaths. Plants monoecious or rarely dioecious. Flowers borne in spikes; spikes one to many, unisexual or bisexual, when bisexual, staminate flowers terminal (spikes androgynous) or basal (spikes gynecandrous), subtended by a large and leafy to much reduced bract, or bract wanting, sessile or pedunculate, racemosely arranged in a loose to compact terminal inflorescence, sometimes, some wèll removed from others and axillary to leaves near base of culm. Flowers unisexual, subtended by a scarious bract (scale); perianth none; staminate flowers of three, rarely two stamens, filaments free; pistillate flowers surrounded by a sac-like structure (perigynium) from the mouth of which the style or stigmas protrude; pistil one, superior, of two or three united carpels, locule one, ovule one, style one, stigmas accordingly two or three. Achenes lenticular or triangular, sessile or stipulate, completely surrounded by perigynium or rupturing it in ripening. (Mackenzie, 1931-35; Lawrence, 1951; Cronquist, 1969).

[^1]保

Abstract

A cosmopolitan genus with over 1500 species, most abundant in the North Temperate zone and Arctic; the tropical species occur mostly in montane habitats (Cronquist, 1969). There are 504 species currently recognized in North America and Greenland (Kartesz and Kartesz, 1980).

Linnaeus included twenty-nine Carex species in his species

Plantarum. By the mid 19th century, however more than 500 were described by F. Boott, through four publications (cf. Robertson, 1979). With this increase in the number of species, the need to arrange the included species into less inclusive taxa became evident. In 1819, Beauvois, in Lestiboudois's Essai sur Za Famizle de Cyperacees (cited by Bailey, 1866), working with European material, placed the species in two genera: Vignea, with bistigmatic ovaries and lenticular achenes, and Carex, with tristigmatic ovaries and trigonous achenes. These taxa were later accepted by workers as subgenera (cf. Bailey, 1886). Kükenthal (1909), who was the first to monograph the genus Carex on a world-wide basis, recognized four subgenera: Primocarex Kükenth., with single, terminal spikes and bi- or tristigmatic ovaries; Vignea (Beauv.) Nees, with several bisexual sessile spikes, and bistigmatic ovaries; Indocarex Baillon, with several pedunculate, bisexual, and terminal staminate spikes, and tristigmatic ovaries; and Eucarex Cosson et Germain, with several pedunculate, unisexula spikes,and bi- or tristigmatic ovaries. Kukenthal's system is still in use, although Smith and Faulkner (1976) have pointed out that there is a tendency to recognize two subgenera, only, with Eucarex, Indocarex, and most Primocarex (those with tristigmatic ovaries) placed in the subgenus Carex, and the Vignea of Kükenthal, plus the remaining Primocarex (those with bistigmatic ovaries) placed in the subgenus Vignea.

In addition to subgenera, numerous sections have been proposed as a way of grouping species into what appear to represent natural assemblages, based primarily on the reproductive structures. The first attempt to classify the genus Carex in this way, was that of Tuckerman in 1883, in Enumeratio Methodica Caricum quamundam (cited by Bailey, 1886). Although previous workers had proposed sections, these were considered more or less artifical since they were based primarily on the sex of the spikes (Holm, 1908; Robertson, 1979). An alternate system of sections or 'greges' was proposed by Drejer in 1884, in Symbolae Caricologicae (cited by Holm, 1908), and completed by Holm in 1903. However, Drejer's system, considered natural and unique for its discussion of natural affinities among the various 'greges', has not been accepted. Robertson (1979) points out that Drejer's discussion of natural affinities was one of evolution influenced by Lamarckism and not fully understood by contempory carciologists. This is a possible reason why Drejer's system has been over-shadowed by the slightly earlier system of Tuckerman.

Systematic and Biosystematic Research in the Genus

Research in Carex has been concerned, to a large part, with morphological investigations, from which information useful for classification has been attained. However, additional data for classification and for understanding interrelationships among the taxa have become avaiable.

Initial cytological studies reported chromosome numbers (Heilborn, 1922, 1924, 1928, 1939; Tanaka, 1939; Wahl, 1940) but these showed pecularities. Among these, three are important in
understanding the cytology of Carex.
The first pecularity concerns the behavior of the chromosomes during meiosis. This was first documented for Carex by Wahl (1940) and later described as post-reductional meiosis by Bataglia and Boyes (1955). In this process, the first anaphase of meiosis is characterized by the homologous chromosomes remaining paired while the sister chromatids of each homologue separates, thus giving an equatorial division. During the second anaphase, the homologous chromosomes separate, resulting in a reductional division. This method of meiosis is the reversed condition for most organisms where the first anaphase is a reductional division, splitting homologous chromosomes, and the second is an equatorial division, separating sister chromatids (Bataglia and Boyes, 1955). This method of meiosis is possible because of a second pecularity of Carex cytology: the presence of diffuse centromeres, a feature shared by some of the other genera of the Cyperaceae, the Juncaceae and the insect orders Heteroptera and Hemiptera (Grant, 1971).

The chromosomes of most organisms possess a localized constricted region, the centromere. The centromere attaches to the spindle apparatus during mitosis and meiosis and splits during anaphase, dragging behind the sister chromatids towards opposite poles of the spindle (Strickberger, 1976). In those organisms with diffuse centromeres, there is no differentiated centromeric region: instead the chromosomes align themselves at the equator during metaphase, and the entire length of the chromatid migrates toward the poles of the spindle during anaphase (Bataglia and Boyes, 1955). Because the whole chromosome possesses centromeric activity, fragments are not lost during meiosis, but migrate along with the rest of the chromatids, and cells with fragments

remain vaible, but possess different chromosome numbers. ${ }^{4}$
This leads to the third pecularity of Carex cytology: the aneuploid chromosome numbers exhibited by the genus.

A series of haploid chromosome numbers from $n=6$ to $n=56$ with every gametic number from $n=12$ to $n=43$ is represented in Carex (Davies, 1956). Basic numbers of $x=5,6,7,8$ and 9 have been proposed for the genus (Wahl, 1940; Löve, Löve and Raymond, 1957). Following the lead of Grant (1971), a number of authors prefer to limit the term aneuploidy and exclude aneuploid series produced through the action of diffuse centromeres. Thus, strict aneuploidy refers to numerical differences with respect to individual chromosomes, while the differences in the number of independently assorting pairs of chromosome fragments is referred to as agmatoploidy(Malheiros-Gardé and Gardé, 1951).

It is generally held that agmatoploidy has played a major role in the evolution of the genome of Carex (Davies, 1956; Grant, 1971; Faulkner, 1972). The series of numbers observed for the genus is a result of successive fragmentation of the chromosomes. This is corroborated by the fact that those species with low numbers have the largest chromosomes, while those with higher numbers have successively smaller chromosomes (Heilborn, 1932, 1939; Tanaka, 1949; Davies, 1956; Wahl, 1940). In addition, normal polyploidy and hybridization have been demonstrated (Löve, Löve, and Raymond, 1957), but are considered to have played minor roles in the evolution of the karyotype of the genus (Grant, 1971; Faulkner, 1972). Faulkner (1972) concludes that the presence of unlocalized centromeres imparts a great deal of flexibility to the

[^2]
genome of Carex by allowing fragments and interchange heterozygotes to remain chromosomally balanced. Thus the large number of species in the genus as well as in the c. macloviana aggregate, may be due, in part, to this genetic flexibility.

Many workers have studied reproductive structures in Carex, but usually as part of a study of the systematics of the Cyperaceae (see Koyama, 1965, 1969; Eiten, 1976; etc.). Walter (1975) has used scanning electron microscopy to study the achene epidermis, in characterizing the sections Pseudo-Cypereae and Vesicariae, and placed into them two problematic species, C. schweinitzii Dewey and c. Zurida Wahl., respectively. In another study using SEM, Toivonen and Timonen (1976) included the perigynium epidermis in characterizing some northern European sections in the subg̣enus vignea. In both investigations some characters proved useful at the supraspecific level, while some perigynia characters (i.e. teeth on beak or perigynium) were species distinct (Walter, 1975; Toivonen and Timonen, 1976). Vegetative structure has been studied by Metcalf (1971). He suggested that some characters, such as prickle variation, distribution of papillae, and sclerenchyma patterns, may be useful at the species level, but called for further investigation. Chemical studies have been initiated by Clifford and Harborne (1969), Harborne (1971), Kukkonen (1971) and Williams and Harborne (1977) to characterize the flavonoids in the genus and the family. Biosystematic studies by Toivonen (1974) have used flavonoid spotting patterns of two dimensional paper chromatograms to identify the parents of putative C. canesces L. hybrids and in characterizing other species in the section Heleonastes.

Northwest European species of the section Acutae have been investigated biosystematically by Faulkner $(1972,1973)$. In conjunction with
(
cytotaxonomic studies, Faulkner hybridized species of the section Acutae and compared seed set, pollen grain viability and seed germination results. The most notable results of this work showed that C. juncella (Fr.) T. Fr. and C. nigra (L.) Reichard are conspecific, even though they are separated by a distinct morphological character, the lack of creeping rhizomes in C. juncezza. However, the two species share the same chromosome number $(2 n=84)$, and their F_{1} hybrids showed completely regular meitoic pairing. A second result of this study showed C. recta Boott to be a hybrid taxon between C. acuta L. and C. paleacea Wah1., with F_{1} hybrid of C. acuta $X C$. paleacea indistinguishable on morphological and cytological grounds.

Classification of the Section Ovales

In Mackenzie's (1931-35) monograph of the genus Carex for North America, the largest section recognized was the Ovales Kunth with 73 species. Since then, a number of these names have been synonymized and a number of new species have been described, leaving the ovales with approximately 70 species. Mackenzie subdivided the OvaZes, gave each subdivision a name with the stem taken from presumably typical species, and added a plural adjective ending, thus ranking his subdivisions equivalent to subsections or series. This lead had been followed by Hermann (1970, 1974), who followed Mackenzie's treatment closely, by ranking Mackenzie's subdivisions as subsections. However, since Mackenzie had not specified rank, nor had he, or anyone else validly published the names, they cannot be given nomenclatural recognition at present.

The species of the section Ovales are fairly distinct and like other members of the subgenus Vignea possess several sessile, bisexual

spikes in the inflorescence, perigynia which are incompletely fused towards the apex, forming a suture on the dorsal (abaxial) side, and bistigmatic ovaries which mature into lenticular achenes. The section Ovales is separated from other sections in the subgenus Vignea by cespitose growth form, gynecandrous spikes, and flat to plano-convex, beaked perigynia which are noticeably winged margined. The section shows its best development in North America, with several speices reaching into or occurring in Central and South America, three species extending to Greenland and Eurasia, two in Japan, one in Siberia and one in Hawaii (Kükenthal, 1909; Hultén, 1927; Mackenzie, 1931-35; Krauss, 1950; Hermann, 1974).

Although the species in the Ovales comprise a distinct section, they are not clearly separated from one another. While the species of Carex are separated by small, differences, the differences are distinct and consistent, resulting in sharply defined species. However, it has been noted that in some sections, most notably the ovales, the distinctions between species are vague and tend to overlap, resulting in a series of taxa in which specific status of the members is questionable (see discussions in Cronquist, 1969; Hudson, 1977; and Boivin, 1979). One such group of taxa in the section Ovales is the Carex macZoviana aggregate.

The Carex macloviana Aggregate

Carex macloviana sensu lato is one of the larger and more complex aggregates of the section ovales. This complexity is a result of the similarity and overlap in variation among the morphological characters used to delimit the taxa within the group, which in turn has led to the

description of many species, subspecies and varieties in North America. Today, it is generally agreed that the aggregate comprises seven species in three groups: an inland, montane to alpine group, comprised of C. microptera Mackenzie, C. festivella Mack., C. haydeniana 01 ney, and C. ebenea Rydberg; a coastal lowland to montane species, C. pachystachya Chamisso ex Steudel, which shows similarities to other Cascadian and Californian species, which taken collectively, may be best treated as a complex in itself; and a boreal to subarctic, montane to subalpine species, C. macZoviana D'Urville (Cronguist, 1969, 1977).

All but two members of the Carex macloviana aggregate are restricted to western North America. Carex pachystachya grows also in thermophilous habitats on the Kamtchatka Peninsula of Sibera (Hultén, 1927, 1942; Krechetovich, 1935). Carex macZoviana has long been known as a bipolar disjunct,occurring in western North America, the eastern Canadian Arctic, Greenland, Iceland, northern Fenoscandia, South America in the Andes from $32^{\circ} \mathrm{S}$ latitude to Tierra del Feugo, and in the Falkland Islands (Mackenzie, 1931-35; Moore and Chater, 1971). A map of the generalized distribution of the C. macZoviana aggregate is shown in Figure 1.

Carex macZoviana was described in 1826 by Dumont-D'Urville from specimens he had collected in the Falkland Islands while on the Antarctic expedition of the La Coquizze. Ten years later, Dewey (1836) described some specimens of Carex which Dr. Richardson had collected at Great Bear Lake on the second Franklin Polar Sea Expedition, as C. festiva. Since the Carex macloviana aggregate is best developed in western North America, all the taxa which were described from

Figure 1. World distribution of the Carex macloviana aggregate, based on data from Hultén (1958), Moore and Chater (1991), Porsild and Cody (1980) and herbarium specimens.

Gooves saniar or 3^5: MAIs

\square

specimens collected in that area were allied to C. festiva, while the Europeans had allied their material to C. macloviana. This situation remained for seventy years, although some caricologist noted the similarity between the two species (see Holm, 1903). In 1909, Kükenthal placed all of the North American material of C. festiva under C. macloviana. Kükenthal recognized five varieties, and two forms, as well as typical c. macloviana for the North American continent (Table 1). This interpretation of the group represents one taxonomic extreme, where all previously recognizable taxa are combined under one species. In the years following Kükenthal's work, a number of species were segregated from the 'Festivae' group, by the American caricologist, K. K. Mackenzie. Between 1909 and 1916, Mackenzie proposed ten species which showed similarities to C. macloviana sensu lato, five from California. In his monograph of North American carices, Mackenzie listed 23 species in his 'Festivae' subdivision, 13 of which showed morphological similarities to C. macloviana, and five of which remain as members of the aggregate today (Table 1). Mackenzie's treatment represents the other taxonomic extreme, one which recognized every deviating type as a species, and it the procedure followed in may modern treatments. More recently, a few species of the 'Festivae' assemblage have been combined while Hermann (1945, 1956, 1968, 1971) has added four species and two new varieties, and Kelso (1953) a new variety. Cronquist $(1969,1977)$ synonymized C. preslii Steud., C. platylepis Mack. and C. pachystachya. However, Hudson (1977) has discussed the differences between C. pachystachya and C. preslii and concluded the two are quite distinct. The status of Carex preslii and C. platylepis are discussed in subsequent chapters. Looman and Best(1979)

Table 1. Comparison of Kükenthal's (1909) and Mackenzie's (1931-35) treatment of the Carex macZoviana aggregate for North America.
C. macloviana
var. subfusca
C. macloviana
var. stricta
f. viridis
C. microptera
f. decumbens
C. haydeniana
var. haydeniana
C. haydeniana
var. pachystachya
var. gracilis
C. pachystachya var. gracilis
included C. Limmophila F. J. Hermann with those species that have been distinguished as members of the Carex macloviana aggregate. Table 2 is a listing of all the species which were initially examined in this study. Work on the aggregate so far has been morphological, especially by authors of floristic studies who have tried to deal with those members of the aggregate which occurred in a particular area (see Hultén, 1968; Cronquist, 1969, 1977; Hermann, 1970; Hudson, 1977: and Boivin, 1979). Other studies have been concerned mostly with the report of chromosome numbers, and are listed in Table 3. However, two investigations have included material from the aggregate as part of a larger survey. Clausen, Keck and Hiesey (1940), reported that clones of C. festivella grew well in all three of their experimental gardens, with the individuals at the Mather station (1400 m) the most vigorous. They concluded that these species preferred the sunny, well drained situation which the Mather station provided. In addition, the karyotype of C. festivella was found to be very similar to Swedish material of C. macloviana, although the chromosome numbers differed (see Table 3). Moore and Chater (1971) studied amount of morphological divergence between the various population of bipolar carices. The results showed that Northern Hemisphere and Southern Hemisphere populations of C. macloviana did not exhibit enough differences to warrant taxonomic recognition.

The present investigation was initiated to study the Carex macloviana aggregate in western Canada and Alaska. This excludes the peripheral species of the Cascade Mountains and California, and C. ebenea which is distinct except for some intermediates between it and
(ansen

Table 2. List of taxa initally investigated for the present study.

Carex macZoviana D'Urv.
Carex microptera Mack.
Carex festiveZZa Mack.
Carex haydeniana Olney
Carex pachystachya Cham. ex Steud.
Carex Zimnophiza Hermann
Carex presiii Steud.
Carex platylepis Mack.

Table 3. Reported chromosome numbers for members of the Carex macloviana aggregate.

TAXON	n	2 n	REFERENCE
C. ebenea	42		Wahl (1940)
C. festivelza	45		Clausen, Keck and Hiesey (1940)
C. macloviana		ca. 82	Böcher (1938)
	43		Heilborn (1939)
		82-86	Clausen, Keck and Hiesey (1940)
		86	Löve and Löve (1956)*
		86	Jörgensen, Sörensen and Westergaard (1958)
		86	Engelskjön and Knaben (1971)*
		86	Engelskjön (1979)
C. microptera	41		Wah1 (1940)
C. pachystachya	38		Taylor and Mulligan (1968)

*As reported in Löve and Löve (1975)

C. haydeniana (Cronquist, 1977). The main research objective was to study the morphological variation in the aggregate as a method to resolve the classificatory difficulties encountered in the past. In addition, cytological and phytogeographical aspects were investigated and used in conjunction with the morphological analysis.

Taxonomic Procedure

In any taxonomic work, the treatment of the taxa and the conclusions reached about them, reflect, in part, the philosophical views the researcher holds in regards to taxonomy. For those who review these works, an understanding of the researcher's concepts add insight as to why certain lines of investigation were followed and how some conclusions were reached. Therefore, I would like to explain some of my views about some philosophical contentions in taxonomy.

First is my species concept. The literature is replete with the philosophical foundations of the various species concepts, and I will not go into the pros and cons of each. Suffice to say that I agree with Cronquist (1978) that a working consensus among plant taxonomists has developed, which in effect states, "if you can't tell the things apart, they belong to the same species, regardless of reproductive or cryptic morphological differences that might exist" (Cronquist, 1978: 14). Cronquist goes on to formulate a definition which reflects this attitude: "Species are the smallest goups that are consistently and persistently distinct, and distinguishable by ordinary means" (Cronquist, 1978: 15). Critically reviewing the definition, smallest groups means the group under study cannot be further divided and still meet the criteria of the definition. Consistent means the features exhibited by
any individual fits into the range of variation of the whole group and that the group variation has a discontinuity with variation exhibited by other such groups. Persistent means a reasonable assurance that offspring of members of the group will show the same pattern of variation. And finally, ordinary measn are those commonly used by the investigator to study and delimit species. Therefore, a bacterial taxonomist may ordinarily use an electron microscope to distinguish species while a vascular plant taxonomist uses only a hand lens.

The definition is admittedly one which stresses phenetic discontinuity over all other criteria. However, as Cronquist points out, it is understood that phenetic discontinuity cannot be maintained in the absence of a barrier to interbreeding. Therefore, reproductive isolation is implied by this definition.

If species (or taxa) are defined on a phenetic basis, then the delimitation of taxa should also be based on phenetics. A powerful tool which has been developed to deal with the phenetic relationship among groups of organisms is found in numerical analysis (numerical taxonomy of Sneath and Sokal, 1973). As Reyment (1973) has pointed out, quantitative analysis plays an important role when it is necessary to examine the variation within a group of organisms. Sneath and Sokal (1973) have also shown that quantitative methods can be more discriminating among a number of characters than human neural assessment. As previously discussed, a large part of the confusion in the Carex macloviana group results from incomplete understanding of variation in morphological characters used to delimit the taxa. Because the main research objective of the present investigation was to study the

morphological variation in the aggregate, a large part of the analysis was carried out using numerical methods.
(

Morphology
Herbarium Studies: Morphological and distributional studies were based on herbarium specimens from the following herbaria: University of Alaska (ALA) ; University of Alberta (ALTA) ; Liberty Hyde Bailey Hortorium of Cornell University (BH) ; Brown University (BRU) ; The Clinton Herbarium of the Buffalo Museum of Science (BUF) ; National Museums of Canada (CAN) ; California Academy of Sciences (CAS) ; Biosystematic Research Institute, Department of Aariculture (DAO) ; The Gray Herbarium of Harvard University (GH) ; Lyon University (LY); United States National Arboretum (NA) ; The New York Botanical Garden (NY) ; University of Oregon (ORE) ; Oregon State University (OSC) ; Rocky Mountain Herbarium of the University of Wyoming (RM) ; Rancho Santa Ana Botanic Garden (RSA); Swedish Museum of Natural History (S) ; The W. P. Fraser Herbarium of the University of Saskatchewan (SASK); United States National Herbarium of the Smithsonian Institution (US) ; The University of British Columbia (UBC) ; Washington State University (WS) ; University of Washington (WTU). The abbreviations follow those used by Homlgren and Keuken (1974).

Collections: In addition, collections of the Carex macloviana aggregate were made throughout most of western Canada and Alaska, to augment herbarium collections, to obtain live material for cytological studies, and to observe any ecological differences among the taxa. Most collections included pressed specimens, live plants and inflorescences preserved for cytological investigations.

Morphological Analysis: Herbarium specimens from the entire range of the Carex macZoviana aggregate (see Figure 1) were examined, as well as type specimens and original descriptions. Included were specimens

-

(

\qquad

\qquad
(20)

$+$ $=$
-
$+$
$\sqrt{2+5}+2$ *
2
5 $14=$

and types of taxonomically peripheral taxa. This was done to gain a concept of each taxon and to erect limits to the aggregate. Once the aggregate was characterized, all specimens from western Canada and Alaska were critically examined ${ }^{1}$, separated into groups of more or less recognizable subunits (Table 4), and mapped to seek correlations among the morphological variants and their geographical distribution. The subunits were then examined and specimens picked to sample the morphological variation and geographical range of each subunit. This resulted in selection of 215 specimens (OTU's of Sneath and Sokal, 1973 ${ }^{2}$)which became the basis of the statistical and numerical analyses.

On the basis of previous authors' treatments of the aggregate (Kükenthal, 1909; Mackenzie, 1931-35; Cronquist, 1969, 1977; Hermann, 1970) and on examination of the taxa within it, a suite of 55 characters was selected for scoring the specimens (Table 5). Each specimen was scored a maximum of three times for each character by examining each specimen sheet and choosing three fertile culms which exhibited most of the variation on that sheet and scoring each culm for the suite of characters. In this way, scoring specimens required, on the average, 45 minutes.

For the statistical and numerical analyses, only those characters which were quantitative were used, resulting in the selection of 7 vegetative, 34 reproductive and 5 ratio characters, of which 1 was vegetative and 4 reproductive (see Table 5). The quantitative characters

[^3]

Table 4. Reconizable morphological units (taxa) and subunits in the Carex macloviana aggregate for western Canada and Alaska.
C. pachystachya
a) typical
b) greenish upper perigynia body
c) long beaks
d) reddish beaks
e) small heads
f) small perigynia, brown beaks
g) small perigynia and heads
h) few-flowered, loose heads
i) slender heads, red scales
j) dark colored perigynia and scales
k) macloviana body color

1) stramineous perigynia
'stubby'
a) typical
b) coppery perigynia
c) reddish perigynia
C. macloviana
a) typical
b) coppery perigynia
c) broad perigynia and heads
d) depauperate
C. festiverla
a) typical
b) keyed
C. Limnophila
a) typical
b) \pm large heads
c) Targe perigynia
C. haydeniana
a) short beaks
b) long beaks
C. microptera
a) typical
b) \pm widely winged perigynia
c) Ғ darkly colored, + widely winged perigynia
d) $\overline{d a r k l y}$ colored perīgynia
e) large greenish perigynia

Table 5. Suite of characters used in scoring specimens and for the analyses. Characters 1-41 were used for scoring specimens and for the analyses, characters $42-47$ were ratios derived from characters $1,2,17,23,26,34,35,39$ and 40 and used in the analyses, characters 48-55 were additional characters used to score specimens but excluded from the analyses.

1) Divergence of uppermost blade, height.
2) Culm height.
3) Culm width, above point of emergence from uppermost sheath.
4) Culm width, above first sheath.
5) Leaf blades, number per culm.
6) Leaf blade, width.
7) Leaf blade, length.
8) Inflorescence type.
9) Inflorescence length.
10) Inflorescence width.
11) Inflorescence lst internode length.
12) Inflorescence 2nd internode length.
13) Spikes, number per inflorescence.
14) Spike length.
15) Spike width.
16) Orientation of perigynia tips in spikes.
17) Scale length.
18) Scale width
19) Scale apex.
20) Scale margins.
21) Anther length.
22) Perigynium cross-sectional shape.
23) Perigynium length.
24) Perigynium width.
25) Perigynium margin, \% serrulate.
26) Perigynium margin width.
27) Perigynium base.
cm.
cm.
mim.
mm.
mm.
cm.

1 (loosely aggregate, spikes overlapping, internodes visible), 2 (aggregate, spikes overlapping, internodes hardly visible, spikes distinguishable), 3 (densely aggregate, spikes not easily distinguishable).

mm.

mm .
mm.
mm.
mm .

1 (appressed), 2 (ascending), 3 (spreading̣), 4 (divergent).
mm.
mm .
1 (acute)-3 (obtuse).
1 (concolorous with scale)-3 (hyaline).
mm.

1 (flat and distended by achene), 2 (concave-convex), 3 (plano-convex).
mm .
mm.
$1(0-1 / 3), 2(1 / 3-2 / 3), 3(2 / 3$ or greater).
mm.

1 (acute)-3 (obtuse).

+

Table 5. (Continued)
28) Perigynium, number of dorsal nerves.
29) Perigynium, degree of dorsal 1 (faint) -3 (evident). nerves.
30) Perigynium, number of ventral nerves.
31) Perigynium, degree of ventral nerves.
32) Perigynium, extension of ventral nerves.
33) Perigynium, number of ventral folds.
34) Beak length.
35) Beak tip length (terete or marginless portion of beak).
36) Beak tip margins.
37) Beak tip (size of teeth).
38) Spongy filling in base of perigynium.
39) Achene length.
40) Achene width.
41) Achene stipe length.
mm.
mm .
1 (same texture as beak)-3 (hyaline).
1 (erose), 2 (0.1 mm), 3 (0.2 mm), 4 (0.4 mm).
1 (none)-3 (abundant).

mm .

mm .
mm .
42) Ratio of $1: 2$ (\%of culm leafy).
43) Ratio of $34: 23$ (relation of beak length to perigynium length).
44) Ratio of $35: 35$ (relation of beak tip length to beak length).
45) Ratio of $39 \times 40:(23-34) \times$ (24-2(26)) (relation of achene area to perigynium area).
46) Ratio of 17:23 (relation of scale length to perigynium length).
47) Ratio of $39 \times 40: 23 \times 24$ (relation of achene area to perigynium area).
48) Inflorescence shape.
49) Inflorescence color
50) Scale color.
51) Perigynium shape.
52) Perigynium body color.
53) Perigynium upper body color.
54) Perigynium margin color.
55) Beak tip color.

Standard shapes in Radford et al., 1974:131.
Green or stramineous, red, red-brown, brown, coppery, red-coppery, copperybrown, blackish.
Same as in character 49.
Same as in character 48.
Same as in character 49.
Same as in character 49.
Same as in character 49. Same as in character 49.

are readily amendable to statistical treatment. The classed characters were also analyzed statistically since it is arguable that they represent continuous characters, but were classed for ease of recording observations. In addition, it is known that grouping observations into classes has little effect on the statistic unless the class intervals are unevenly spaced or unequal in size (Sneath and Sokal, 1973). A basic data matrix was formed by calculating the arithmetic mean for each of the 46 quantitative characters (see Appendix 2 for all formulae) for each OTU, and treating each character from that point on as a continuous quantitative character.

The statistical treatment consisted of calculating the mean and standard deviation of each of the taxa recognized in the first part of the morphological analysis, using the MIDAS statistical package and the computing facilities of the University of Alberta. From these data, the standard error of the mean and the coefficient of variation were hand calculated for each character. This analysis provided a means of evaluating characters which have been used in the literature and in finding new characters of diagnostic value.

The numerical analysis was an attempt to objectively evaluate the taxa which had been recognized in the first part of the morphological analysis, and to illustrate the phenetic relationships among them. Thus, the numerical analysis was run on two levels: on the individual OTU's for evaluating the validity of the taxa, and on the taxa for evaluating the phenetic relationships. In the individual OTU study, those OTU's which had missing data values were left out. This gave a new data matrix consisting of 191 OTU's with ten type specimens inclusive (Appendix 3). For the taxa analysis, the mean values from the

statistical treatment were used, producing a data matrix of seven OTU's (Appendix 4).

All numerical classification programs consist of two parts. The first is calculation of the relative similarity or distance between every pair of OTU's. There are a number of these similarity coefficients, based on structure of the data and on assumptions about relative phenetic relationships. Sneath and Sokal (1973) give a detailed review of the more widely used coefficients of similarity. The second part of a numerical taxonomic program is to find clusters of OTU's, based on their relative similarity or distance. Again, a number of algorithms have been formulated, based on type of similarity coefficient used, and on ideas of how clusters should be formed. These clustering techniques try to mimic the decisions a taxonomist makes in formulating taxa. The most commonly used strategies for biological classification are sequential, agglomerative, hierarchic, non-overlapping clustering methods, or SAHN techniques (after Sneath and Sokal, 1973). The basis of these techniques is that clusters are sequentially built into a hierarchial pattern, and that at any one level of hierarchy, the clusters are mutually exclusive. Again, Sneath and Sokal (1973) give a review of these techniques.

Two different classification programs were usedized for the present analysis, both of which are programs in the public file library of the Univeristy of Alberta computing facilities. The first of these was the TAXMAP classification program developed by J. W. Carmichael of the University of Alberta. The similarity coefficient is based on relative proximity and is the complement of similarity formulated by Carmichael, Julius and Martin (1965) and is similar to the widely used Gower (1971) coefficient (Sneath and Sokal, 1973). This coefficient
automatically standardizes the character scores by range normalizing (Gower, 1971) and allows for mixed data types (i.e. qualitative and quantitative). An option in the program, which was utilized, allows for weighing the characters according to their relative information content (see Carmichael, 1980 and Appendix 2). Values range from 0 for identity to 1 for complete dissimilarity.

The clustering procedure starts with the two nearest OTU's (based on relative proximity) forming the nucleus of a cluster. The next nearest OTU is added to this cluster and the average distance of this OTU to the OTU's already in the cluster is calculated. Four criteria are used to terminate clustering (see Carmichael, George, and Julius, 1968, and Carmichael, 1980) which uses elements of single linkage and average linkage clustering methods. The results are illustrated by means of a taxometric map (Carmichael and Sneath, 1969) which is a twodimensional image of the multidimensional hyperspace the OTU's exist in, with circles representing clusters and lines joining circles the undistorted phenetic distances between clusters. Taxometric maps were drawn with the aid of the Calcomp plotter of the University of Alberta computing facilities.

The second classification program used was the CLUSTAN program developed by D. Wishart of Edinburgh University. CLUSTAN allows the user to choose any of 40 different similarity coefficients and 8 different clustering methods. For the present analysis, the Pearson productmoment correlation coefficient was chosen for the computation of the similarity matrix, with all characters give equal weight. Correlation coefficients are angular functions which measure the proportionality and independence of OTU vectors, and are meaningful with continuous

quantitative characters (Cormack, 1971; Sneath and Sokal, 1973). They are widely used in numerical taxonomic studies and "when the interpretation of taxonomic structure is made on the basis of phenograms, correlation coefficients are usually the most suitable measure when the results are evaluated by conventional taxonomists" (Sneath and Sokal, 1973: 140). Because correlation coefficients are angular measures, they are a measure of shape differences between OTU's, as opposed to other similarity coefficients which generally measure size differences between OTU's. Figure 2 is a graphic representation of this difference. Before computing correlations, all character scores were standardized so that they would have a mean of zero and a standard deviation of one. As in ranging, this is done to standardize the variation exhibited by each character. The resulting values ranged from -1 for complete dissimilarity to +1 for identity.

The clustering strategy employed was average linkage or unweighted pair group method using arithmetic averages (UPGMA, following Sneath and Sokal, 1973). Average linkage has widely been used, and gives the least amount of distortion of the original similarity matrix (Rohlf, 1970; Sneath and Sokal, 1973). Average linkage clusters by taking the average distance of an OTU to all members of an extant cluster. Clustering continues at progressively higher and higher levels until all the OTU's are joined into one larger cluster. The results are illustrated in a phenogram, and it is left up to the investigator to decide at which level the clusters make the most biological sense. Phenograms were produced with the aid of the Calcomp plotter.

Figure 2. Graphic representation of three OTU's (A, B and C) plotted in a three-dimensional character space. Correlation coefficients measure similarity between OTU's as a function of the angle, θ, between the lines connecting the OTU's to the origin, other similarity coefficients measure similarity between OTU's as a function of distance, d, between OTU's. (Modified from Sneath and Sokal, 1973).

Numerical clustering techniques are known to preserve the smaller phenetic distances (i.e. within cluster distances); however, Rohlf (1970) and Sneath and Sokal (1973) have pointed out that numerical clustering techniques show a tendency to distort the larger phenetic distances (i.e. between cluster distances). Since an aim of the present investigation was to attempt to understand the phenetic relationships among the various taxa, the results of the cluster analysis could not be used to show these. A technique which does faithfully represent the larger phenetic distances is that of ordination. However, since ordinations distort the smaller phenetic distances (Sneath and Sokal, 1973), both an ordination and cluster analysis should be used to produce an overall view of phenetic relationships. A principal componene analysis was performed on the taxa using CLUSTAN. Principal components plots OTU's (in this case, the taxa) into a multidimensional hyperspace, with each character representing an orthogonal axis. New axes are found which represent the variation expressed by the OTU's in as few dimensions as possible. The results are a listing of the OTU's and their coordinates on the new axes (principal components). The taxa were hand plotted onto the first three principal components to illustrate the phenetic relationships among the taxa.

Cultivation

Live plants collected from the field were transplanted into 5 inch pots and grown at the greenhouse facilities of the University of Alberta. The plants were kept outside in beds of moist peat moss and allowed to go through a natural cycle. This was sufficient to induce flowering. During the flowering period, plants were checked periodically (on a daily basis during the peak flowering period) and immature

inflorescences collected and preserved in a mixture of methanol, chloroform, and propionic acid $(6: 3: 2)$ for cytological investigation. It has been the author's experience that inflorescences of Carex which are just emergent from the sheath possess the highest meiotic activity, especially in the early morning hours (possibly a phytochrome effect). Squashes of pollen spore mother cells were made in the evening (see below), and if Metaphase I could not be found, inflorescences were recollected the following morning and the procedure repeated.

Cytological Studies

Meiotic chromosome counts were made from pollen spore mother cells, following the procedure of Cooperrider and Morrison (1967). Anthers were dissected from immature inflorescences, placed on a glass slide, and a drop of 2 percent lactic acetic orcein was applied for staining of the chromosomes. A cover slip was applied, the slides inverted on a paper towel, and thumb pressure was applied to squash the material. The slides were then examined under a microscope for Metaphase I plates. Those slides which contained the proper stage were made semi-permanent by ringing the coverslip with nailpolish. Chromosome counts were obtained from Metaphase I plates under the oil immersion objective of an American Optical microscope. Drawings of the Metaphase I plates for the taxa were obtained using the oil immersion objective of a Zeiss microscope and Zeiss camera lucida.

Morphology
Herbarium Studies: Of the eight original taxa examined, six were considered to be within the circumscription of the Carex macloviana aggregate as understood by previous authors for Western Canada and Alaska (Moss, 1959; Cronquist, 1969, 1977; Hudson, 1977; Looman and Best, 1979). The Carex macloviana aggregate was recognized as members of the section Ovales which possess inconspicuous bracts that are shorter than the inflorescence, or scale-like, dark colored scales which are shorter than the perigynia, terete tipped perigynia beaks, and achenes generally shorter than 1.75 mm . Carex preslii was excluded because it possesses large, oblong-quadrate achenes which are $1.7 \times 1.3 \mathrm{~mm}$. in size or greater, flattened perigynia beak tips, and scales which are subequal to the perigynia (Mackenzie, 1931-35; Hermann, 1970). The general aspect of the heads and perigynia of C. prestii resemble more closely those of C. multicostata Mackenzie and C. straminiformis Bailey in Mackenzie's 'Festucaceae' group of the Ovales. Carex platylepis was also excluded since it possesses large achenes ($1.75 \times 1.0 \mathrm{~mm}$.) and scales which are subequal to the perigynia (Hermann, 1970). Some forms of C. pachystachya possess scales which are subequal to the perigynia and may be confused with C. preslii or C. platylepis (see Cronquist, 1969, 1977 for a treatment of this nature). However, C. pachystachya does not have perigynia as plump in appearance as C. preslii, due to the smaller achenes, and the beak tips of the perigynia of C. pachystachya are terete in comparison to the flattened beak tips of C. preslii. Carex platylepis is quickly distinguished from C. pachystachya by the white hyaline margins of scales and perigynia tips. However, the type specimen of C. platylepis
正
bears a resemblence to C. macloviana in the features just mentioned, and for this reason, it was included in the numerical analyses.

In examining material of C. macloviana and C. pachystachya, specimens which resembled C. pachystachya, but had shorter, darker perigynia were noted. At first it was thought these were misidentified specimens of C. illota Bailey, a species in the section Ovales which is characterized by its small, dark heads and perigynia. However, the perigynia of C. illota lack noticeable wing margins, especially on the beak of the perigynium (Mackenzie, 1931-35; Hermann, 1970; Boivin, 1979), while the specimens under consideration had perigynia with wing margins throughout. Because of their smaller, darker perigynia, these specimens may have represented intermediates between C. macloviana and C. pachystachya, therefore, they were treated as a separate taxon (designated 'stubby') in the statistical and numerical analyses to further explore the relationships they shared with the rest of the aggregate.

The characters found useful at this point of the study to distinguish the taxa are listed in Table 6, and are the same characters which have been used by previous authors to differentiate the taxa. Of these, four are qualitative which could not be used in the statistical and numerical analyses. In light of the fact that the four qualitative characters in Table 6 were useful in separating the taxa, they were further analyzed to see if certain character states were of diagnostic value. Figure 3 and Figure 4 present the results of the analysis.

Shape of inflorescences throughout the aggregate were ovoid (Figure 4), with the heads of C. pachystachya and C. festivella exhibiting a tendency to be more elongate. However, this was not absolute as most of the heads of these two taxa were ovoid, and all
(
Table 6. Characters and their respective states used in separating taxa in the Carex macloviana
aggregate in the herbarium study.

$$
2
$$

Figure 3. Histograms showing the frequency of the various character states for scale color and perigynium color for taxa of the Carex macloviana aggregate. For scale color, the character state 1=red, 2=red-brown, 3= brown, 4=red-coppery, 5=coppery, 6=brown-coppery, and $7=$ blackish. For perigynium color, the character state 1=stramineous, 2=red, 3=red-brown, 4=brown, 5=redcoppery, 6=coppery, 7=brown-coppery, and 8=blackish. The taxa are represented as abbreviations so that PACHY=C. pachystachya, STUB='stubby', FEST=C. festivella, LIMNO=C. Iimophila, HAY=C. haydeniana, and MICRO $=C$. microptera.

Figure 4. Histograms showing the frequency of the various character states for inflorescence shape and perigynium shape for taxa of the Carex macZoviana aggregate. For inflorescence shape, the character state l=elliptic, 2=elliptic-ovoid, $3=0$ oblong, $4=0$ blong-ovoid, $5=0$ void, $6=$ wide-ovoid, $7=0$ obovoid, and 8=triangular-ovoid. For perigynium shape, the character state l=elliptic, $2=$ elliptic-ovate, $3=$ oblong-ovate, $4=1$ anceolate, $5=$ narrow-ovate, $6=0$ vate, $7=$ wide-ovate, and $8=0$ bovate.

of the remaining taxa possessed, in low frequencies, oblong- or ellipticovoid heads. Carex haydeniana showed a marked shift towards triangularovoid heads, but this character state was also present in C. microptera, C. Limophila, C. festivella and 'stubby', although to a lesser degree.

The differences between the taxa for perigynia shape was even less pronounced than for inflorescence shape (Figure 4). All members of the aggregate have ovate perigynia, with C. haydeniana, C. macloviana and 'stubby' exhibiting a tendency toward more elliptic or elongate perigynia.

Unlike the shape characters, the color characters showed a bimodal distribution of states (figure 3). Carex macloviana and C. pachystachya have been characterized in the past as possessing coppery colored scales and perigynia. However, actual color is quite variable and it would be more accurate to describe them as possessing a metallic luster. Thus, Carex pachystachya, C. macloviana, C. festivella, C. Limmophila and 'stubby' have a high frequency of lustrous scales, and Carex pachystachya, C. macloviana, C. haydeniana and 'stubby' were shown to have a high frequency of lustrous perigynia. From these data, two groups of taxa were evident: Carex pachystachya, C. macZoviana, and 'stubby' with lustrous scales and perigynia, and the remaining taxa with one or none of these character states.

The final aspect of the herbarium study was an attempt to discover additional taxa before commencing with statistical and numerical analyses. The morphological subunits which were recognized for each taxon (Table 4) were mapped to seek geographical correlations with structural features. All subunits, however, were within the
(
geographic range of their taxa's typical subunit, and it was assumed that no new taxa could be recognized.

Statistical Analysis: The sample statistics were calculated to estimate population parameters from which the samples were drawn, since the overall population is of interest (Carex macloviana aggregate) and not the samples per se. Thus means and standard deviations are unbiased estimates of population parameters. However, size of sample clearly affects how reliable the estimated parameters are: a larger sample will tend to reflect the population parameters more reliably than a small sample (Sokal and Rohlf, 1969). Because the estimated population standard deviation is based on the sample mean, it becomes important to know how reliable an estimate the sample mean is. This was accomplished by calculating the standard error of the mean which is effectively the standard deviation of a number of means calculated from repeated sampling of the same population (Sokal and Rohlf, 1969), or, as Radford et az. (1974) put it, it is "the range within which the mean of another random sample from the same population would fall in two cases out of three" (1.c.: 427). Thus, it was expected that C. haydeniana, C. Iimophila, C. festivella and 'stubby' would have the larger standard errors because of their small sample sizes. But since sample size was a reflection of variation observed in each taxon, and geographic range of each subunit, those taxa with a greater geographic range and more subunits would have larger sample sizes (i.e. c. pachystachya, C. macloviana and C. microptera). Therefore, the sample statistics with large standard errors are viewed cautiously, but are still considered valid since it is assumed the samples adequately expressed the variation exhibited by their respective taxa. Finally,
保
the coefficient of variation is a statistic which expresses amount of variation exhibited by a sample for a character. It is similar to the standard deviation, but unlike the standard deviation, which cannot be compared between populations which vary appreciably in their means, the coefficient of variation is readily amendable to such comparisons (Sokal and Rohlf, 1969).

Results of the statistical analysis are presented in Figure 5 and Appendix 5. These results provided a grouping of the quantitative characters into three sets (Table 7). The first set consisted of six characters which exhibited enough difference in their variation to be of some diagnostic value for a taxon. All of these were reproductive characters and have been used previously. For character \#8 (inflorescence type), C. haydeniana showed a noticeable shift towards tightly aggregate inflorescences, although Carex festivella and C. microptera also included some individuals with tightly aggregate heads. Because the character is a subjective one, it is not, by itself, adequate for distinguishing Carex haydeniana. However, taken in conjunction with the taxon's tendency towards triangular-ovoid heads, the combination is useful.

Analysis of character \#20 (scale margins), showed that C. macloviana possesses a greater frequency of hyaline margined scales. However, the range of variation for the taxon overlaps with that of C. pachystachya and C. festivelza, and some individuals of 'stubby' and C. Zimnophiza possess hyaline margined scales. What is not shown by the analysis of this character is that C. macloviana has noticeably white hyaline margined scales, while the scales on the other taxa are not as noticeably white hyaline. This distinction, correlated with the white
$20 \cos$

Figure 5. Results of the statistical analysis of 47 quattitative characters for members of the Carex macloviana aggregate for western Canada and Alaska. See Appendix 5 for actual values. Horizontal line indicates range, vertical line indicates mean, and solid bar is plus and minus one standard deviation from the mean.

?

-
+um
\pm
\qquad -
-
4

$+$

H

\qquad

$4-2-24$

\qquad

$$
-
$$

\qquad

(h)
$\square$$+$

8

\qquad 1 $\sqrt{42}$ 4
\square

$=-$
-
\qquad
为

Table 7. Grouping of the 47 quantitative characters into three sets evident from the statistical analysis.

Characters which can be used to distinquish a taxon: \#8, 20, 23, 36, 45, 47

Characters which separate taxa into two groups: \#16, 39, 41, 43

Characters too variable or too constant to be of diagnostic value:
$\# 1-7,9-15,17-19,21,22,24-35,37,38,40,42,44,46$

I島
 1)

hyaline perigynium beak tips of C. macZoviana (character \#36), has proven to be a good diagnostic character.

Character \#23 (perigynium length) has proven useful in separating C. haydeniana from the remaining taxa. Figure 5 shows the perigynia of C. haydeniana are larger than the other members of the aggregate, with a mean length greater than 5.0 mm . Although some individuals of C. pachystachya have large perigynia, this character correlated well with the cross sectional shape of the perigynia (\#22), for which C. haydeniana was shown to possess only flattened perigynia, while C. pachystachya had only convao- or plano-convex perigynia.

Analysis of character \#36 (perigynium beak tip margins), showed that C. macloviana possesses a high degree of hyaline tipped beaks. Figure 5 also shows that some individuals of C. pachystachya and 'stubby' possess hyaline tipped beaks. However, the beak tips of C. macloviana are again, noticeably white hyaline margined while the other taxa are not hyaline tipped to the same degree.

Characters \#45 and 47 expressed the relation of area of achene to area of perigynium. Character \#47 did this by expressing area of the perigynium as its length and width. Character \#45 took into account beak length and perigynium margin width and subtracted these from the perigynium length and width, respectively. Both characters showed that Carex haydeniana has smaller values, due to larger perigynia of that taxon. Overlap of range of variation of Carex haydeniana with some individuals of Carex microptera, Carex Zimnophila, Carex macloviana and C. pachystashya, indicates this character would best be employed in a relative sense (i. e. achenes small in relation to perigynia). However,in a numerical analysis, redundant char-

acters are inadmissable and, therefore, one of these had to be excluded from further analysis. Since character \#47 was dependent on only four other characters, and thus had two fewer sources of error, and exhibited a slightly lower coefficient of variation for all the taxa, it was chosen for the numerical analyses.

The second group of characters which was evident from the analysis, consisted of four which could be used to arrange the taxa in two groups. Again, all were reproductive characters, but only one, \#16, had been reported previously. Although a number of authors (Mackenzie, 1931-35; Moss, 1959; Hermann, 1970; Looman and Best, 1979) have used the orientation of the perigynia tips in spikes to distinguish Carex festivella, with appressed tips, from Carex microptera, with spreading tips, Figure 5 shows that the range of variation for this character was nearly identical for these taxa. Two groups of taxa can be distinguished however, Carex haydeniana and C. macloviana as one group with ascending perigynia tips within the spikes and the remaining taxa with ascending to spreading perigynia tips. The value of 1.5 for the low end of the range of C. macloviona was represented by only a single specimen, while the rest of the specimens measured had a value of 2 .

Character \#39 (achene length) was shown to distinguish Carex pachystachya, c. macloviana, c. haydeniana and 'stubby', with achenes generally more than 1.4 mm long, from C. limnophila, C. festivella and C. microptera with achenes generally less than 1.4 mm long.

Analysis of character \#41 (achene stipe length) showed that Carex macloviana and Carex haydeniana possess larger stipes than the rest of
the taxa, although there is some overlap in the range of variation for these two taxa and the remaining taxa.

Although character \#43 (ratio of beak length to perigynium length) showed C. pachystachya, c. macloviana and 'stubby' to have relatively short beaks in comparison to the perigynium ($2 / 5$ the length), and C. microptera, C. Limophila and C. festivella have relatively long beaks in comparison to the perigynium ($1 / 2$ the length), the low end of the range for the latter group overlapped with the former group to some extent. When the character was tried on a group of specimens, it was not helpful in distinguishing the two groups. Therefore, the character alone is not useful for diagnostic purposes. However, combination of this character with relative size of achene to perigynium (\#45 and 47) was useful. The relatively short beak length and large achene size results in the distance from the top of the achene to the perigynium tip one half or less than the overall perigynium length for the taxa C. pachystachya, C. macloviana and 'stubby'. For C. haydeniana, C. festivella, C. Iimmophila and C. microptera, this distance is one half or greater than the overall perigynium length. This combined character became very useful for diagnostic purposes.

The third group consisted of 37 characters which exhibited too much overlap in their range of variation among all the taxa to be of any diagnostic value. It is interesting to note that seven of these have been used by previous authors to separate taxa within the group, especially characters \#22, 30, 31, and 32 which have been used by most major authors who have treated the aggregate (see Mackenzie, 1931-35; Moss, 1959; Cronquist, 1969, 1977; Hermann, 1970; Looman and Best, 1979).

Numerical Analyses: Results of the numerical analyses are presented in two parts, one dealing with the analysis of OTU's and the other with the analysis of taxa. For each program, two analyses were used, one with all 46 characters, and a second with 38 reproductive characters. Reproductive characters were analyzed separately in light of the generally high variability exhibited by the taxa for vegetative characters (see Appendix 5, coefficient of variation), and general utility of reproductive characters in classifying members of the genus.

To distinguish between clusters and taxa, clusters are referred to by either their number or an abbreviated epithet of the most frequent OTU in the cluster.
a) Analysis of OTU's: TAXMAP analyses formed groups of clusters consisting of a primary cluster, and clusters linked to it, or to clusters linked to the primary one (Table 8 and Table 9. See Appendix 6 for cluster membership). Linked clusters would have become part of the clusters to which they were linked had clustering not terminated. Clustering terminated in these instances because the next OTU to be added to the cluster under formation (the linked cluster) was already a member of another cluster (the primary one or one linked to it). Additional clusters were formed which were not linked to the cluster groups, but shared with the cluster groups their next closest OTU. In these instances, clustering terminated because the single linkage criterion of the program was not met. Finally, each analysis had a number of single member clusters which, like the additional clusters, shared their next closest OTU with a preformed cluster. Table 9 shows the clusters these single member clusters were nearest to in the analysis using

$=-1$

上= $-\sqrt{2}+5$

\qquad

$4-2+2+2+2-2+2$

Table 8. Tabular results of TAXMAP analysis of OTU's of the Carex macloviana aggregate using all characters, showing cluster groups and single member clusters. Clusters in brackets are subgroups. Clusters with subscripts are linked to the cluster represented by the subscript. Clusters with subscripts in parentheses share their next closest OTU with the cluster represented by the subscript, but are not linked to it. See text for further explanation and Appendix 6 for cluster membership.

PRIMARY CLUSTER
1 (PACHY)
$4,5,8$, (9), (11),
${ }^{6}(1),{ }^{22}(5),{ }^{25}(15)$,
$12_{11}, 13_{5}, 14,15_{5}, \quad 30_{25},[34]_{(11)}, 35_{6}$,
$178,19,20_{8}, 23_{17}$,
${ }^{39}(38),{ }^{42}(22),{ }^{46}(19)$,
$(26)_{23}, 28_{15}, 32_{12}$,
${ }^{49}(46),[50]_{34}$
$36_{5}, 38_{11}, 47$; [48]
2 (MICRO)
$7,10,18,44,[45]$,
[51]
$[27](45),{ }^{29}(2),{ }^{31}(7)$,
${ }^{33}(41), 41_{33}, 43(2)$

3 (MAC)
16, 21, 37
${ }^{24}(3),{ }^{40}(16)$

SINGLE MEMBER CLUSTERS
$52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67$

Table 9. Tabular results of TAXMAP analysis of OTU's of the Carex macloviana aggregate using reproductive characters, showing cluster groups and single member clusters. Clusters in brackets are subgroups. Clusters with subscripts are linked to the cluster represented by the subscript. Clusters with subscripts in parentheses share their next closest OTU with the cluster represented by the subscript, but are not linked to it. See text for further explanation and Appendix 6 for cluster membership.

PRIMARY CLUSTER LINKED CLUSTERS ADDITIONAL CLUSTERS

1 (PACHY)
$[4], 6,8,10,15,16$,
${ }^{(14)_{(1)}, 25_{(1)},[29]_{(4)} \text {, }}$
$17_{15}, 22,23,24,(27)_{4}$,
$[30]_{4},[31],(32)$

2 (MICRO)
3, 5, 7, (9), 11, 12,
${ }^{(19)_{(2)},[21]_{(18)},{ }^{26}(2), ~}$
$13,(18)_{7}, 20,28$

SINGLE MEMBER CLUSTERS

$$
\begin{aligned}
& 35(5),{ }^{36}(4),{ }^{37}(2),{ }^{38}(18),{ }^{39}(34), 40(2), 41(21), 42(11), 43(2), \\
& 44(4),{ }^{45}(1), 46(1), 47(10),{ }^{48}(10),{ }^{49}(1), 50(25)
\end{aligned}
$$

reproductive characters. This information for the analysis using all characters was not available because more than 50 clusters were formed in that analysis, and this exceeded the capacity of the program; thus, the mapping aids, from which the information is gathered, were suppressed.

The TAXMAP analysis of all characters produced three cluster groups (Table 8). The most inclusive consisted of OTU's of Carex pachystachya and 'stubby' in pure and mixed clusters, and a number of disparate clusters. These consisted of some OTU's of C. macloviana, one of C. limophiza and two (HAYMICO1 and HAYMICO2) from a population in Waterton Lakes National Park, which were thought to represent hybrids between C. microptera and C. haydeniana, and were included in the analyses to see where they would be placed. The second cluster group consisted of OTU's of C. microptera, C. festivella and C. Limmophila in mixed clusters, and a subgroup of C. haydeniana clusters. The third group consisted entirely of C. macZoviana OTU's. Because more than 50 clusters were formed, the plotting of the TAXMAP was suppressed.

The TAXMAP analysis for the reproductive characters produced two cluster groups (Table 9). The most inclusive consisted of OTU's of C. pachystachya and 'stubby' in pure and mixed clusters and a subgroup of C. macloviana clusters. Disparate clusters consisted of two mixed clusters of C. macZoviana and C. pachystachya OTU's, and a cluster of one C. Limoophila and three c. festivella OTU's. The second group was comprised of OTU's of C. microptera, C. festivella and C. Limmophila in mixed clusters, and a subgroup of C. haydeniana clusters. A mixed cluster consisted of HAYMIC OTU's and a C. microptera OTU. Figure 6 presents the TAXMAP for the analysis, with clusters represented by circles, the diameter of which represents the distance between the two furthest OTU's
保保

Figure 6. TAXMAP analysis of OTU's of the Carex macZoviana aggregate using reproductive characters. See Appendix 6 for cluster membership.
in the cluster. Because of the large number of clusters, the TAXMAP was difficult to intrepret, and was redrawn with only the cluster centers plotted and connected by lines with arrows to indicate the nearest neighbor of each cluster (Figure 7). From this figure it was evident that there was a great deal of cohesion within each cluster group or subgroup, with only a few clusters crossing over the boundaries of cluster types.

Results of the CLUSTAN analyses are presented as two phenograms in Figure 8 and Figure 9 (see Appendix 7 for enlarged version with OTU's labelled). The names on the stems indicate the level at which clusters were chosen. The level was picked to approximate the cluster groups produced in the TAXMAP analyses, and to maintain the maxinum homogeneity of each cluster.

The CLUSTAN analysis using all characters produced three large clusters(Figure 8). The PACHY cluster consisted of a mixture of OTU's from C. pachystachya and 'stubby', with two C. macloviana OTU's. The MAC cluster consisted of only C. macZoviana OTU's. The MICRO cluster contained OTU's of C. microptera, C. Zimnophila and C. festivella freely mixed. Cluster ' X ' was a mixed cluster, comprised of the type of C. soperi (TYPE03) a synonym for C. macZoviana, the type of C. microptera var. crassinerva (TYPEO4), the HAYMIC OTU's and an OTU of C. pachystachya. Cluster ' Y ' was also mixed and consisted of all the C. haydeniana OTU's, the type of C. festiveZZa(TYPEO9), the type of C. platylepis(TYPEO5), two OTU's of C. pachystachya, two of C. macloviana, one from C. Zimophila and three from C. festivella.

The CLUSTAN analysis using reproductive characters produced three extensive, relatively homogeneous clusters, and one that was mixed(Figure 9). The PACHY cluster consisted of OTU's of Carex pachystachya and of 'stubby', and a single OTU of Carex macZoviana
直 $=\sqrt{2}$
1 \qquad

nen

－8
而 \qquad $=$ － x＋m

$=$ 最 $2+1$ $1-2$ （－7） $\square \log$ 1
目
$4{ }_{4}^{2}$ $1+8$ ， 電
15 2正
（－N－
5$--=$$=-1$
$=-2$
2
Hent
4
$y=$1
lant 4 I $=$
1axt$4=\square \square+\square$－2
11
$x=$
$z=1$
1． 5 를
8$\log$$\square$

$$
x=\frac{2}{2}+\operatorname{cosen}+2
$$

$$
18+=
$$

$$
1
$$？

$$
x_{0}
$$

$+$$|\overrightarrow{1}| \vec{y}$－

Figure 7. TAXMAP for analysis of OTU's of the Carex macloviana aggregate using reproductive characters, redrawn to show only cluster centers and nearest neigbors, indicated by arrows. Dashed lines separate cluster types (i.e. HAY, PACHY and STUB, etc.).

Figure 8. Phenogram produced by CLUSTAN analysis of OTU's using all characters. See Appendix 7 for OTU labels.

Figure 9. Phenogram produced by CLUSTAN analysis of OTU's using reproductive characters. See Appendix 7 for OTU labels.

OTU. The MAC cluster consisted entirely of OTU's of C. macloviana. The MICRO cluster was comprised of OTU's of c. microptera, C. festivella, C. Limnophila, C. haydeniana and the type of C. platylepis, all freely intermingled, although the OTU's of C. haydeniana remained clustered as a small unit. The mixed cluster ' Z ' was comprised of the type of C. soperi, the type of C. microptera var. crassinerva and the two HAYMIC OTU's.

Alteration in technique in a numerical study can lead to different clustering results (see Gower, 1967; Cormack, 1971; and Rohlf, 1970 for a review of techniques, and Ehrlich and Ehrlich, 1967; Sokal and Michner, 1967; Moss, 1968; Schne11, 1970; Baum, 1978; Small, 1978; and McNeill, 1979 for specific examples). This can occur when different character sets, different similarity coefficients and different clustering algorithms are used. To understand if the OTU's which occured in disparate clusters or in single member clusters were due to a function of technique or were truly intermediate or misidentified specimens, this set of OTU's was compared among all four analyses. The OTU's of this set which were shared among three or four analyses were considered significant since their postions were probably not due to technique. It was found that five OTU's (HAYMICO1, HAYMICO2, TYPEO4, TYPE05, TYPEO9) were placed in disparate clusters in three or four of the analyses. It was not expected that the HAYMIC OTU's would cluster well with other OTU's since cluster membership is based on overall phenetic similarity, and the HAYMIC OTU's were recognized as being morphologically different. Also, it was not expected that the numerical analyses would indicate which clusters the HAYMIC OTU's were intermediate to since previous studies have found the hybrids do not usually lie on a line in

phenetic hyperspace that joins two parents (see references in Sneath and Sokal, 1973: 372). Thus, the wandering of the two OTU's throughout the analyses indicated the phenetic distinctiveness of them. Although a detailed study of the population from which the HAYMIC OTU's came from would be interesting, it was not the intent of this investigation to study population systematics, and so the HAYMIC OTU's were disregarded for the remainder of the study. The type for C. platyZepis (TYPE05) was also not expected to cluster well with other OTU's since it represents a member of a different species. Even though it was included because it shared some features with C. macloviana, it was in the MICRO cluster or linked to it at lower coefficient levels in CLUSTAN. The position of the type for C. festiveZZa (TYPEO9) and the type for C. microptera var. crassinerva (TYPEO4) will be discussed in the next chapter.
b) Taxa Analysis: The results of the cluster analyses on the taxa are presented in Figure 10 and Figure 11. As in the previous analyses, clusters for the phenograms were chosen at a coefficient level which reflected the clustering implied by TAXMAP. The 0.5 coefficient level in the CLUSTAN analyses was found to best approximate the results of TAXMAP.

All four analyses showed a cluster of the taxa Carex microptera, C. festiveZZa and C. Zimnophila, reflecting the clustering of OTU's in the previous analyses, and four single member clusters for the remaining taxa. At lower resolution levels, however, differences did become apparent. Carex pachystachya and C. macloviana were each other's nearest neighbor in TAXMAP while C. pachystachya and 'stubby' were each other's nearest neighbor in CLUSTAN. In TAXMAP, the nearest neighbor to C. haydeniana was the cluster which contained C. microptera,

Figure 10. TAXMAPs for analyses of taxa of the Carex macZoviana aggregate.

ALL CHARACTERS

REPRODUCTIVE CHARACTERS

ALL CHARACTERS

REPRODUCTIVE CHARACTERS

Figure 11. Phenograms produced in the CLUSTAN analyses of taxa of the Carex macloviana aggregate using average linkage clustering.
C. festivella and C. Iimnophila, but this cluster would first join with C. pachystachya (based on nearest neighbor distances in Table 10), while in CLUSTAN, C. haydeniana would first join with the three taxa cluster. These differences may be attributable to the use of different similarity coefficients, or to the distortion of large phenetic relationships which cluster analyses are noted for. Therefore, the principal component analyses, presented in Figure 12 was a more faithful representation of the larger phenetic relationships. Three groups of taxa were evident, a tight group which contained the taxa C. microptera, C. festivella and C. Iimnophila, a loose group comprised of C. pachystachya, C. macloviana and 'stubby', and an isolated C. haydeniana. The implications of these phenetic relationships will be discussed in the next chapter.

Further Analysis of 'Stubby': When the specimens of 'stubby' were first noted, they were thought to represent intermediates between Carex pachystachya and C. macloviana. This idea was formed on the basis of morphological intermediacy and on labels which showed that the specimens had been identified as either C. macloviana or C. pachystachya. Published reports of intermediates between the two taxa had not been previously noted. However, Cronquist $(1969,1977)$ reported that where the geographic ranges of C. pachystachya and C. microptera overlap, the distinction between the two was not always clear. Therefore, to test if 'stubby' represented an intermediate taxon between C. pachystachya and C. macloviana, or if it represented the implied intermediates between C. pachystachya and C. microptera, two further analyses were conducted.

One test for intermediacy is provided by the Andersonian hybrid index. Although this was first developed to check for hybrid individuals

Table 10. Nearest neighbor distances for clusters in TAXMAP analyses of taxa of the Carex macZoviana aggregate.

ALL CHARACTERS			REPRODUCTIVE CHARACTERS		
CLUSTER	NEAREST NEIGHBOR	$\begin{gathered} \text { DISTANCE } \\ \times 1000 \end{gathered}$	CLUSTER	NEAREST NEIGHBOR	$\begin{gathered} \text { DISTANCE } \\ \times 1000 \end{gathered}$
1 (MICRO)	5	358	1 (MICRO)	5	375
2 (HAY)	1	439	2 (HAY)	1	382
3 (MAC)	5	294	3 (MAC)	5	242
4 (STUB)	5	340	4 (STUB)	5	337
5 (PACHY)	3	294	5 (PACHY)	3	242

Figure 12. Ordinations produced by CLUSTAN principal components analyses of taxa of the Carex macloviana aggregate.

within a population, Radford et al., (1974) have shown that it can be used for determining morphologically intermediate taxa. A search for those characters used in the statistical analyses in which the mean value for 'stubby' lay between the mean values of C. pachystachya and C. macloviana, or C. pachystachya and C. microptera was conducted. For these characters, the value for C. pachystachya was given an index value of 0 and the value for C. macloviana or C. microptera was given an index value of 1 , and the index value for 'stubby' was calculated by interpolation. Table 11 presents the results. It was shown that the mean value of 'stubby' was intermediate between the mean values of C. pachystachya and C. macloviana in six characters, with the index value of 'stubby' being 2.68. Between C. pachystachya and C. microptera, 16 characters were shared in which the mean value for 'stubby' was between the means of the two taxa. In this instance, an index value of 7.12 was calculated for 'stubby'. The results are not conclusive, however, since 'stubby' has an intermediate index value in both comparisons. The number of characters for which the index value was calculated is greater for the comparison between C. pachystachya and C. microptera and may lead to the conclusion that 'stubby' is a hybrid between these two taxa. However, if additional characters which suggest intermediacy (by adjusting the mean values of the characters within the standard error of the mean) are included, then the total number of characters in both comparisons are nearly equal with a total of 21 between C. pachystachya and C. macloviana and a total of 25 between C. pachystachya and C. microptera.

If a taxon represents a hybrid between two other taxa, it would be expected that the hybrid would occur most frequently where the geographic ranges of the two putative parent taxa overlapped. The distribution of

Table 11. Morphological index values for 'stubby' and characters for which 'stubby' is intermediate in comparison to Carex pachystachya and C. macloviana, and to C. pachystachya and C. microptera.

TAXON	INDEX	CHARACTERS	ADDITIONAL CHARACTERS WHICH SUGGEST INTERMEDIACY	TOTAL
C. pachystachya	0.00	1, 2, 7,	$4,5,6,13,18,19,25$,	
C. macloviana	6.00	16, 36, 42	27, 29, 31, 33, 39, 40,	21
'stubby'	2.68		43, 46	
C. pachystachya	0.00	8, 12, 20,	4, 5, 6, 7, 16, 17, 18,	
C. microptera	16.00	21, 22, 24,	19, 33	25
'stubby'	7.12	27, 29, 37,		
		38, 39, 40,		
		41, 42, 43,		
		46		

'stubby' was plotted for western Canada and Alaska, along with the geographic ranges of C. pachystachya, C. macloviana and C. microptera. Figure 13 and Figure 14 present the results. In Figure 13, 'stubby' is shown to be located where the ranges of C. pachystachya and C. macloviana overlap, but is also frequently located outside of the region of sympatry, especially along the coastal regions of British Columbia. Figure 14 shows that 'stubby' again occurs in the region of sympatry between C. pachystachya and C. microptera, but also outside of this region, especially along coastal British Columbia and Alaska. One observation provided by these maps was that the geographic distribution of 'stubby' is sympatric, for the most part, with the distribution of C. pachystachya in western Canada and Alaska.

Cultivation

Plants growing on the greenhouse roof provided an indirect source of evidence of flowering phenology. Whenever inflorescences were collected for cytological study, the date of the collection was noted. These data were plotted and the results, which indicated initiation of pollen meiosis, roughly indicated intiation of flowering in the taxa. The results are shown in Figure 15.

Of the five taxa under cultivation, Carex macloviana initiated mother cell (PMC) meiosis the earliest, on April 18. On April 28, a peak period was reached where all the taxa were undergoing PMC meiosis, and this lasted until June 2. Throughout most of June, no flower initiation was observed until June 25. At this point, a second period of flowering began and continued until July 10. After this, all the plants went through a period of maturation, and no further flower initiation was observed for the remainder of the summer. Except for the slightly

Figure 13. Range of Carex pachystachya and C. macloviana, and distribution of 'stubby' in western Canada and Alaska.
C. pachystachya
C. macloviana
'stubby'

Figure 14. Range of Carex pachystachya and C. microptera, and distribution of 'stubby' for western Canada and Alaska.
C. pachystachya
C. microptera
'stubby'

Figure 15. PMC meiosis phenology observed in specimens of the Carex macZoviana aggregate for the year 1979. All specimens were collected by the author and kept in cultivation. Numbers in parentheses refer to the cytological races of C. pachystachya with each number the haploid number determined for that specimen.

earlier start of C. macloviana, it was evident that no significant differences existed for initiation of flowering among the taxa.

Chromosome Numbers

Meiotic chromosome counts were determined for all the taxa, and the results are presented in Table 12. From the data it is evident that an aneuploid series (sensu lato) is present in the aggregate. Carex pachystachya was found to contain three chromosome races, with $n=37,38$, and 39. Mapping of these cytological races and comparison of them with the morphological subunits in C. pachystachya did not reveal any strong correlation with distribution or morphology (Figure 16 and Table 13), except two plants which contained the number $n=37$ were from the Vanderhoof, British Columbia area, and were found in those morphological subunits in which red scales or perigynia beaks were prominent. Examination of Figure 15 shows there is no difference in flowering times for the cytological races. The taxa C. microptera, C. festivella, and C. Iimnophila all had numbers of $n=40$. Carex haydeniana and 'stubby' had counts of $n=41$, and C. macloviana had the highest number with $\mathrm{n}=43$.

Small size of the chromosomes (1.5 micrometers or less) made karyotypic analysis difficult. However, using the descriptions of chromosome morphology for the genus provided by Wahl (1940) and Faulkner (1972), it was determined that all the taxa exhibited normal pairing, with no univalents present. Figure 17 through Figure 19 shows camera lucida drawings of Metaphase I for all the taxa and chromosome races of the C. macloviana aggregate.

Table 12. Meiotic chromosome counts determined for members of the Carex macloviana aggregate.

TAXON	n	LOCALITY AND NUMBER*
C. pachystachya	37	58 km E. of Vanderhoof, B. C. 1879.
	37	Vanderhoof, B. C. 1871.
	38	Vanderhoof, B. C. 1870.
	38	Ten Mile Lake Prov. Park, B. C. 683.
	38	28 km S.E.of Dawson Creek, B. C. 1911 \& 1912.
	39	75 km N. of Prince George, B. C. 1884.
	39	Skeena Mts. B. C. 1788.
	39	73 km S. of Meziadin Jt., B. C. 1826.
	39	Moose Pass, Kenai Pen., Alaska 1513.
	39	Milepost 38, Seward-Anchorage Hwy. Alaska 1540.
'stubby'	41	76 km S. of Cantwell on Rt. 3, Alaska 1463.
c. macloviana	43	2.4 km S. of Ram falls, Alta. 943.
	43	140 km S. of Haines Jt., B. C. 1694.
	43	74 km S.E. of Teslin, B. C. 1730.
	43	16 km S. of Dease Lake, B. C. 1760.
	43	91 km S. of Haines Jt., Yukon. 1661 \& 1662.
	43	1.5 km E. of Haines Jt., Yukon 1703.
	43	23 km N. of Paxson, Alaska 1384.
	43	Milepost 21, Denali Hwy., Alaska 1406.
	43	48 km E. of Cantwell, Alaska 1411.
	43	Dry Creek Campground, 5 km N . of jt. of Rts. 1 and 4, Alaska 1591 \& 1592.

Table 12. (Continued)

TAXON
C. haydeniana
C. festivella
C. Limnophila

40
40 Lower Kananaskis Lake, Alta. 908 \& 909.
$40 \quad 57 \mathrm{~km}$ N. of Nordegg, Alta. 951.
$40 \quad 93$ km N. of Nordegg, Alta. 905 \& 906.
4064 km N. of Coleman, Alta. 900.
401 km S. of Burns Lake, B. C. 1864.
C. microptera

Reesor Lake, Cypress Hills, Alta. 809.
87 km N. of McLeod Lake, B. C. 1902.
Whitehorse, Yukon 1186.
25 km S. of Haines Jt., Yukon 1651.
*All collections were made by the author.

 \qquad $1+$

1
$1=1$
$+\frac{1}{2}$
$-$
$412-2=-1$

2
\qquad

Figure 16. Distribution of cytological races of Carex pachystachya for western Canada and Alaska.

4 $n=37$

- $\mathrm{n}=38$
- $\mathrm{n}=39$

Table 13. Comparison of cytological races of Carex pachystachya with morphological subunits recognized for the taxon.

Figure 17. Camera lucida drawings of Metaphase I in pollen spore mother cells of Carex microptera $(A, n=40)$, C. festivezla ($B, n=40$), and C. Iimnophiza ($C, n=40$).

C

Figure 18. Camera lucida drawings of Metaphase I in pollen spore mother cells of Carex haydeniana $(A, n=41)$, C. macloviana ($B, n=43$), and 'stubby' ($C, n=41$).

$$
\begin{aligned}
& \text { क) } \\
& 4 \\
& \text { (2) } \\
& 11
\end{aligned}
$$

Figure 19. Camera lucida drawings of Metaphase I in pollen spore mother cells of Carex pachystachya. A $(n=37), B(n=38)$, C $(n=39)$.


```
\[
\begin{aligned}
& 0 \mathrm{atin}
\end{aligned}
\]
```

$$
\therefore
$$

The results of this investigation indicated that the six taxa which were analyzed, comprise four species: C. macloviana, C. pachystachya (including 'stubby'), c. microptera (including C. festivella, and C. Limmophila), and C. haydeniana. The interpretation of the evidence which led to this conclusion is presented in the section on taxonomy, followed by the proposed taxonomic treatment for the aggregate.

Taxonomy

On a phenetic basis, Carex macloviona and C. pachystachya are very similar to one another. In the numerical analyses of OTU's, this was expressed by C. macloviana forming subgroups within the C. pachystachya cluster group in TAXMAP, and by the C. macloviana cluster joining the C. pachystachya cluster at lower coefficient levels in CLUSTAN. In the taxa analyses, the two taxa were each others nearest neighbor in TAXMAP, while C. macloviana joined C. pachystachya and 'stubby' at lower coefficient levels in CLUSTAN. In addition, both taxa share lustrous scales and perigynia which are generally coppery colored. This phenetic similarity led Hultén (1942) to conclude that C. pachystachya is a high-grown race of C. macloviana. Based on this conclusion, Hultén included C. pachystachya and C. macloviana in a single species. However, the distinctiveness of the two taxa has been demonstrated. The integrity of the taxa was maintained in the clustering of OTU's, and they remained distinct in the cluster analyses of taxa and in the ordinations. Cytollogically, c. pachystachya is variable in chromosome number, but the highest number recorded for C. pachystachya (excluding 'stubby') was $n=39$,
and differs significantly from the uniform numbers observed for C. macloviana of $n=43$. Figure 13 shows that C. pachystachya is confined to coastal areas in Alaska and northern British Columbia, and extends inland in moist regions of central and southern British Columbia and Alberta, while C. macloviana is mainly an inland boreal element in the north and is confined to subalpine or alpine habitats in the Rocky Mountains. It may still be argued that these differences are not enough to overcome the similarities, and that Hultén's concept of these two taxa is still valid. If we take a modern interpretation of a subspecies as:
...a considerable segment of a species with a distinct area and more or less distinct morphology, often showing some intergradation... Also extended to cover regional ecotypes, and cases where taxa differ in chromosome number or are partly or incompletely intersterile and exhibit some correlated geographical or ecological differentiation but have an insufficient degree of morphological differentiation to permit satisfactory treatment as separate species. (Davis and Heywood, 1963: 99-100),
then Hultén's concept is valid, but only if we accept his interpretation of the distribution of the taxa. Hultén(1942, 1958: Map 185) envisioned the subspecies pachystachya occupying all of western North America, and the typical c. macloviana occupying its generally accepted bipolar range minus western North America. Viewed this way, there is a distinct geographic separation of the subspecies, with individuals in the subspecies pachystachya exhibiting some morphological intergradation with the subspecies macloviana. However, specimens from western Canada and Alaska which not only were shown to be phenetically distinct from C. pachystachya but were virtually identical with specimens of C. macloviana observed from Scandinavia, Greenland, eastern arctic Canada, South America and the Falkland Islands, indicated the presence of typical C. macloviana in
?
western North America, which agrees with the reports of Mackenzie (1931-35), Hermann (1970), and Porsild (1939, 1951). Therefore, Hultén's interpretation must be rejected as an artifical delimitation of the subspecies pachystachya. In a more restricted sense, C. pachystachya should not be recognized as a subspecies since there are no demonstratable intermediates between the two taxa in areas of sympatry (including 'stubby'), which indicates intersterility, and there does exist sufficient morphological differences indicating separate species (primarily with white hyaline margins of the scales and beak tips, characters \#20 and 36 , and secondarily with characters \#16, 22, and 41). If anything, these distinctions place the two taxa into an aggregate species:

The aggregate is a device employed to group together, for convenience, a number of species. The component species (binomials) are in taxonomic terms morphologically closely related and difficult to discriminate. The characters distinguishing them, although less pronounced and perhaps fewer in number than those that serve to distinguish between other species within the same genus, are constant and the species appear to be effectively isolated from one another. (Davis and Heywood, 1963: 101).

Thus, the two taxa, though morphologically similar to one another, show indication of isolation by virtue of their distinct chromosome numbers and absence of intermediates. Therefore, the two are maintained as species.

The taxa C. microptera, C. festivella and C. Limophila comprise one species. This was evident in the statistical analysis where the taxa either share the same range of variation, or form a continuum of variation, for all 47 characters. In the cluster analyses of OTU's the three taxa consistently formed mixed clusters, while in the cluster analyses of taxa, they formed a

4isil -2
 \qquad In
3 \qquad $5+2$ $4+4$ \qquad
4
$18=4$ \qquad $\square-$ -

2

4 \qquad
14

\qquad
14
14
14 min Humbly
8 Inim
$1=$
\qquad

12
14
4

nex

(ars
a single cluster, and in the ordinations, the three were in closest proximity to one another. In addition, the taxa share the same chromosome number and the same distribution in western Canada (Figure 20).

A number of recent authors (Cronquist, 1969, 1977; Scoggan, 1978; Boivin, 1979) have proposed that C. festivella is conspecific with C. microptera. Cronquist (1977: 165) has stated : "the characters by which C. festivella is purportedly to be distinguished from C. microptera are not well correlated among themselves and do not individually display any obviously bimodal distribution". However, Hermann (1970) has maintained the recognition of the two Mackenziean species, but pointed out that the ubiquitous C. microptera is generally confused with the more infrequent C. festivella. A comparison of the divergent characters in Mackenzie's original descriptions is presented in Table 14. An examination of these characters, along with comparisons between specimens shows that C. festivella is no more than a larger version of C. microptera. The types of the two are indeed distinct enough to warrant the separation of the taxa into two species, however, the bewildering array of intermediate forms suggests otherwise. Therefore, c. microptera can be interpreted as a variable species which, at the small end of the scale, is represented by Mackenzie's concept of Carex microptera, and at the large end of the scale, by C. festivella. This variation within the species appears to be clinal, since in the southern part of its range, c. microptera is represented by all forms, with the C. festivella form frequent. Northwards, the C. festivella form becomes less frequent. In the Canadian material studied a typical C. festivella group was recognized, but was comprised
e
\qquad
4 － － \square 48

\qquad \square
ute
\square \qquad ． \qquad －
W1
－

-1

－

\qquad
14
－
$-$
$4-10$ \qquad

- Figure 20. Distribution of the taxa Carex microptera (A), C. festivella (B), and C. Limnophila (C) for western Canada and Alaska.

Tabel 14. Comparison of divergent characters from original descriptions of Carex microptera (Mackenzie, 1909) and C. festiveIZa (Mackenzie, 1915).

CHARACTER	C. microptera	C. festivella
Culms	$5-10 \mathrm{dm}$ tall	3-6 dm tall
Leaf blades	2.0-3.5 mm wide 1-3 dm long	2.0-4.0 mm wide 1-2 dm long
Inflorescence	ovoid or suborbicular $12-18 \mathrm{~mm}$ long $10-16 \mathrm{~mm}$ wide	ovoid or oblong-ovoid 12-25 mm long $10-18 \mathrm{~mm}$ wide
Spikes	ovoid 5-8 mm long 4-6 mm wide perigynia tips ascending or somewhat spreading	oblong-ovoid 5-12 mm long 4-8 mm wide perigynia tips erect ascending
Scales	ovate-lanceolate acute brown margins scarcely hyaline	ovate obtuse or acutish dark chestnut to brownish black margins narrow hyaline
Perigynia	lanceolate $3.5-4.0 \mathrm{~mm}$ long 1.0-1.5 mm wide plano-convex brownish or straw-colored minutely sharp margined	ovate 3.75-5.0 mm long $1.5-2.0 \mathrm{~mm}$ wide flat, distended by achene light green or stramineous strongly thin margined
Achenes	1.25 mm long 1.0 mm wide	1.5 mm long 1.0 mm wide

of mainly large intermediate forms. Only four 'good' C. festivella specimens were present in all the Canadian material studied. Two of these were included in the numerical analyses of OTU's (FESTO6 and FESTO7), in either additional clusters in TAXMAP (cluster 33 in the analysis of all characters and cluster 14 in the analysis of reproductive charaters), or in a mixed cluster in CLUSTAN (cluster ' γ ' in the analysis of all characters, and a subgroup in the MICRO cluster which contained OTU's of C. haydeniana and the type of C. festivella, in the analysis of reproductive characters). The peripheral position of these OTU's, as well as the types of C. festivella and C. microptera var. crassinerva (which is essentially a typical example of C. festivella) are due to size differences. However, the overall similarity in morphology (minus the size difference), same chromosome number, similar distribution, and numerous intermediate forms, indicates that C. festivella is indeed conspecific with C. microptera. Thus, it is preferable to expand the concept of C. microptera to include C. festivella, than to maintain C. festivella as a distinct taxon, arbitrarily delimited on size which does not show any clear discontinuity.

The situation for C. Limnophila is similar to the one just discussed. Hermann's (1956) description of C. Limmophila leads one to believe that a distince species exists with small ($7-12 \mathrm{~mm} \times 5-10 \mathrm{~mm}$), dark colored heads, lustrous brown scales, and small (2.5-3.25 mm X $1-1.3 \mathrm{~mm}$), brown perigynia. However, examination of the type specimen showed, essentially, a small, darker version of C. microptera. The heads are indeed smaller, due to smaller and fewer spikes, and to the
保
20.20

$$
\frac{x+10}{x}-\sqrt{8}
$$

$=-1$ E
fact that most of the perigynia have fallen off. With the perigynia gone, color of inflorescence is derived from the remaining brown glossy scales. The type specimen of C. microptera shows the same properties, with the perigynia fallen, off, leaving behind brown scales which give the heads a darker appearence. Scale color in C. microptera is by no means restricted to dull brown as shown in the frequency distribution of scale color (Figure 3) and, conversely, not all C. Limnophita specimens possess lustrous scales. In addition, color of perigynia in C. microptera and C. limmophila is very similar (Figure 3) and can vary even in a specimen (as it does in the type of C. Limmophila from brownish-black to stramineous). Perigynia size for the two taxa is similar, as shown in the statistical analysis (character \#23 and 24), with C. Limnophila possessing slightly smaller perigynia. Thus, the continued recognition of C. Limophila would be arbitrary, again, based mainly on size, and it is more reasonable to expand the concept of C. microptera to include C. Limmophila, on the basis of similar morphology, same chromosome number, similar distribution, and presence of intermediate forms.

Carex haydeniana was shown to be similar to C. microptera on a phenetic basis. In the cluster analyses of OTU's, C. haydeniana formed subclusters or subgroups within the MICRO cluster or cluster group, and in the analyses of taxa, c. microptera the nearest neighbor to C. haydeniana. Although the statistical analysis showed that ten characters separated C. haydeniana from members of C. micropteral $\# 7,8,17$, $21,23,34,41,45$ and 47), nine of these were size characters, giving the same situation that was present for C. microptera, C. festivella and

C. Zimnophiza. However, there was one important difference in that notable intermediate forms were rare or absent. Of all the Canadian material studied, only one population in Waterton Lakes National Park, Alberta, contained intermediate forms. Also, in the cluster analyses of the taxa, and in the ordinations, C. haydeniana consistently formed an isolated cluster; and finally, there is a sharp ecological distinction, with C. haydeniona occuring in alpine habitats and C. microptera in lowland to montane habitats. Cronquist (1977: 165) noted the similarity between C. haydeniana and C. microptera and commented: "Carex microptera, C. haydeniana and C. ebenea form a trio with a complex pattern of relationships. C. haydeniana is not sharply distinguished from C. microptera, of which it might with some justification be treated as an alpine ecotype". Cronquist then suggested that C. haydeniana, along with the other members of the aggregate, might best be treated as infraspecific taxa of C. macZoviana. Taylor and MacBryde (1978) proposed such a treatment for C. haydeniana by ranking it and C. macloviana as conspecific subspecies. However, Cronquist, and Taylor and MacBryde did not mention occurrence of frequent intermediates between the two taxa, the presence of which would be needed to reduce C. haydeniana. This brings us back to the Davis and Heywood concept of aggregate species, those which are not easy to discriminate, but, nonetheless, appear to be isolated from each other. If there is an absence of isolation between two taxa, it appears to be between C. haydeniana and C. ebenea, which Cronquist (1977: 165) noted:

However, toward the southern part of the range of C. microptera, the position of C. haydeniana as its alpine correlative is largely taken over by C. ebenea, which is fairly sharply distinguished from C. microptera but intergrades to some extent
保
with C. haydeniana. Occasional specimens from far north of the range of C. ebenea, which apparently represent merely the extreme variation in C. haydenaian, would probably pass as C. ebenea if they had been collected in Colorado.

A number of Canadian specimens would indeed pass as C. ebenea if they were collected further south and the continued recognition of C. ebenea and C. haydeniana as distinct taxa seems dubious. However, until C. haydeniana and C. microptera are shown to possess frequent intermediate forms, the status of C. haydeniana as a species is maintained.

Status of 'stubby' was more difficult to determine. The morphological index and comparison of distributions did not show 'stubby' to be intermediate between C. pachystachya and C. macloviana, or between C. pachystachya and C. microptera. Comparison of distribution of C. pachystachya and 'stubby' in western Canada and Alaska, however, did show 'stubby' to be sympatric with that species. Also, a comparison of qualitative and quantitative characters showed 'stubby' was quite similar to c. pachystachya, except for the greater frequency of darker scales and perigynia of 'stubby', and its more entire margins (2/3 or less of the margin serrulate for 'stubby' as compared to $2 / 3$ or more for C. pachystachya). This suite of differences brings back the similarities first noted between 'stubby' and C. illota. Examination of these two taxa shows that they are similar in appearance except for the winged perigynia margins of 'stubby', as compared to the nearly marginless perigynia of C. illota, larger perigynia in 'stubby' ($3-4 \mathrm{~mm}$ measured as compared to the 2.5-3.2 mm reported by Cronquist $(1969,1977)$ for C. illota) and the slightly larger heads of 'stubby' ($7.5-15.5 \mathrm{~mm}$ measured as compared to the $8-13 \mathrm{~mm}$ reported for C. iZlota (1.c.)). However, c. illota has only been reported as far north as 53° in Jasper

National Park, Alberta (Scotter and Hudson, 1974), and 'stubby' ranges as far north as Alaska (Figure 13). In addition, Moore and Chalder (1964) reported C. illota has a chromosome number of $n=32$ while 'stubby' has been counted as $n=41$. Therefore, it is not likely that 'stubby' is an intermediate between C. pachystachya and C. illota, or an extreme form of C. illota. The other choice is to consider 'stubby' as an extreme form of C. pachystachya. This is backed by the cluster analyses of OTU's where 'stubby' formed clusters with C. pachystachya. However, the failure of 'stubby' to cluster with C. pachystachya in the cluster analyses of taxa, the separation of 'stubby' from C. pachystachya in the ordinations, and the different chromosome numbers, suggest that 'stubby' should be given some form of recognition. Because 'stubby' did not show clear separation from C. pachystachya in morphology, and intermediate forms are frequent, it would probably be considered a variety of C. pachystachya. However, in an aggregate species group, the recognition of an infraspecific taxon would prove difficult since the differences on which the taxon would have to be based would be almost as great as the differences which distinguish the species. In light of this, and the fact that 'stubby' cannot be clearly distinguished from C. pachystachya (as a survey of the character data shows), it is concluded that 'stubby' should not be give formal taxonomic recognition. Taxonomic Treatment

The following proposed taxonomic treatment is based upon taxonomic conclusions that are discussed above, which, in turn were based upon available morphological, cytological, distributional and ecological data. It must be reiterated that although this
investigation was concerned with the Carex macloviana aggregate as it appears in western Canada and Alaska, an understanding of each of the species as they exist throughout their entire geographic range had to first be attained before decisions concerning them could be formulated. Thus, the following treatment may be applied to material outside of the area of this study, but caution must be advised since members of the group which do not occur in Canada or Alaska can cause some confusion, and the descriptions and key are based primarily on Canadian and Alaskan material.

The following is a detailed description of the aggregate as it appears in western Canada and Alaska. It is based on specimens examined in this investigation and is given to delimit the group and to provide descriptions of structural features which are essentially uniform throughout the aggregate.

Carex macloviana sensu Zato

Plants perennial, cespitose; rootstocks fibrous; culms stiff to \pm lax, erect or \pm decumbent, striate, $0.5-10 \mathrm{dm}$ tall, conspicously exceeding the leaves, sharply angled and scabrous above, becoming obtusely angled and smooth below; leaves $3-9$ per culm, clustered on lower 1/8 to $2 / 5$ of culm, lowest one or two bladeless soon turning brown, upper ones with well developed blades, straight and ascending or curved, 4-30 cm long, flat, 1.5-4.0 mm wide, margins scabrous, upper portion of blade channeled, grading into attenuate, terete tip, sheaths tight, white hyaline ventrally, short ($\leq 2 \mathrm{~mm}$) extended at collar, continuous with ligule, ligule joined to blade, $\leq 3 \mathrm{~mm}$ long, acute to obtuse; inflorescence generally captite, usually dark in appearance, ovoid to oblongovoid or triangular-ovoid, $7.5-26 \mathrm{~mm}$ long, $7.5-18 \mathrm{~mm}$ wide, sometimes lowest spike separated from the rest though first internode rarely exceeds 3 mm ; spikes $3-10$, sessile, gynecandrous, loosely to densely aggregate, ovoid to widely ovoid, $4.0-10.5 \mathrm{~mm}$ long, $3-8 \mathrm{~mm}$ wide, perigynia tips appressed-ascending to spreading within the spikes; bracts scale-like, membraneous, concolorous with scales, dull to lusterous, reddish to dark brown or coppery, acute to obtuse, margins concolorous with bracts or narrowly to widely white hyaline, midrib differentiated, scabrous, keeled, lower bracts sometimes aristate prolonged, the awn shorter than the inflorescence; scales membraneous, generally dark colored, dull to lusterous, reddish to dark brown or coppery, oblong-

$-2=$

\square4
\square
\qquad
min妾妾 5 1 － $1+\frac{1}{2}$
？ P
\qquad保

$$
4
$$

\qquad 4 B

＋inn

\qquad

\qquad
\qquad
\qquad
\qquad

14
\qquad
\qquad
\square
\qquad
\qquad

$$
\begin{equation*}
=-4 x+\frac{1+2}{n+1} \tag{1}
\end{equation*}
$$

1
Tansin
 1 －
\qquad
Cunctan
lanceolate to ovate, $2.5-5.0 \mathrm{~mm}$ long, $0.9-2.0 \mathrm{~mm}$ wide, shorter ($3 / 5$ to nearly as long) and narrower than the perigynia, exposing the beaks and upper margins, acute to obtuse, margins concolorous with scales to widely white hyaline, especially the lower (male) ones, midrib generally paler or green, somewhat differentiated to scabrous keeled on lower ones, undifferentiated on upper ones; anthers 0.9-2.3 mm long, appiculate scabrous; perigynia membraneous, generally dark colored, dull to lusterous, stramineous or light green to dark brown or coppery, sometimes paler or green on the margins and distal portion of the body of the perigynia, flat and distended by the achenes to plano-convex, generally ovate, $3.0-6.5 \mathrm{~mm}$ long, $1.2-2.4 \mathrm{~mm}$ wide, margins winged nearly throughout, serrulate scabrate, $0.1-0.4 \mathrm{~mm}$ wide, widest towards middle of perigynia, body of perigynia nerved dorsally, nerves 5-11, faint to evident, nerved ventrally, generally towards base but a few extending the length of the body, nerves $0-8$, faint to evident, infrequently 1 or 2 ventral folds present, base of perigynia acutish to nearly truncate, spongy filled or spongy filling absent, beak of perigynia gradually contracted from the body, generally darker than the body, $1.0-3.1 \mathrm{~mm}$ long, $1 / 3$ to $1 / 2$ the length of the body, serrulate-scabrous and winged in proximal portion, dorsal side with a suture the margins of which are concolorous with the beak or white hyaline, distal portion terete, smooth marginless, darker than the body of the perigynia, 0.3-1.2 mm long, $1 / 8$ to $4 / 5$ the length of the beak, apex concolorous with tip or white hyaline, unevenly angled or bidentulate, the teeth ≤ 2 (2.5) mm long; achenes light to dark brown, dull or shiny, lenticular, ovate to oblong, 1.1-1.8 mm long, $0.7-1.3 \mathrm{~mm}$ wide, filling up to $4 / 5$ of the body of the perigynia, stipitate, stipe $0.3-0.8 \mathrm{~mm}$ long, apiculate, apicule $\leq 0.6 \mathrm{~mm}$ long; styles straight and jointed with the achenes; stigmas 2.

Two factors correlate well with distibution of members
of the aggregate: preference for open, seral, or disturbed habitats, and for soils with a generally low organic content. These observations are based on field experience and on herbarium label data, and indicate that members of the group are pioneering or seral species. Further work is needed to test this hypothesis and to quantify the habitat requirements of the species. A third factor which correlates with the distribution of the group, at least in Alaska and Canada, is the occurrence of the aggregate in predominantly calcareous regions. Again, further work is needed to determine how well this relationship holds for the remainder of western North America.

Key to The Species of The Carex macloviana Aggregate In Western Canada and Alaska ${ }^{1}$

Distance from top of achene to perigynium tip one half or less the total length of the perigynium; perigynia reddish to dark coppery-brown.

Scale margins, perigynia tips, and dorsal suture margins noticeably white hyaline; perigynia wings darkened, contrasting with the body of the perigynia.

C. macloviana

Scale margins and perigynia tips not diferentiated or narrow hyaline margined; perigynia wings concolorous with the body of the perigynia, wings at most dark edged.
C. pachystachya

Distance from top of achene to perigynium tip one half or more the total length of the perigynium; perigynia stramineous or light green to dark brown.

Perigynia (4.0) 4.5-6.5 mm long; achenes $1.4-1.7 \mathrm{~mm}$ long; achene stipes(0.4) $0.5-0.7 \mathrm{~mm}$ long.
C. haydeniana

Perigynia 2.9-4.3 (4.7) mm long; achenes $1.1-1.5 \mathrm{~mm}$ long; achene stipes $0.3-0.5 \mathrm{~mm}$ long.

C. microptera

[^4]Carex haydeniana 01ney in S. Wats. Bot. King Rep. Geol. Explor. 40th Paralle1. 366. 1871.
C. festiva var. haydeniana (01ney) W. Boott in S. Wats. Bot. Calif. 2: 234. 1880.
C. macloviana var.haydeniana (01ney) Holm, Amer. J. Sci. 160: 266. 1900.
C. macZoviana var haydeniana (Olney) Kükenth. in Engl. Pflanzenr. IV. 20 (Heft 38): 196. 1909. nom. illeg.
C. macloviana ssp. haydeniana (Olney) Taylor and MacBryde, Can. J. Bot. 56: 190. 1978.
Type: Mount Dana, California, BoZander 5074 (BRU!, lectotype).
Carex festiva var. decumbens Holm, Amer. J. Sci. 166: 20, 26. 1903.
C. macloviana var. stricta f.decumbens (Holm) Kükenth. in Engl. Pflanzenr. IV. 20 (Heft 38): 197. 1909.
C. nubicola Mackenzie, Bull. Torrey Bot. Club 36: 480. 1909.

Type: Pagosa`Peak, Colorado, Baker 232 (NY!, lectotype by Mackenzie, 1931-35; POM!, RM!, isolectotypes).

Cespitose; culms stiff, (1) 1.9-4.0 dm tall, exceeding the leaves; leaves with well developed blades $3-6$ per culm, clustered on lower $1 / 5$ to $1 / 3$ of culm, blades stiff, straight to curved, $5.5-10.5 \mathrm{~cm}$ long, $1.5-$ 3.3 mm wide; inflorescence triangular-ovoid to ovoid, base usually truncate, (11) 13-19 (21) mm long, 13-17 (18) mm wide, first internode up to 2.5 (3.4) mm long; spikes 5-7, densely aggregate, $6.5-10 \mathrm{~mm}$ long, $4.5-$ 8.0 mm wide, perigynia tips ascending within the spikes; bracts scalelike, concolorous with scales, mostly dull, reddish-brown or occasionally dark coppery-brown, acute to narrowly obtuse, the lowest sometimes short-awned, margins concolorous with bracts to wide white hyaline; scales mostly dull, reddish-brown or occasionally dark coppery-brown, $3.0-4.8 \mathrm{~mm}$ long, $1.3-1.7 \mathrm{~mm}$ wide, $1 / 2$ to $3 / 4$ the length of the perigynia, acute to narrowly obtuse, margins concolorous with scales to narrow hyaline; anthers 1.5-1.9 mm long; perigynia dull to lusterous, light red-dish-brown or tan, occasionally coppery-brown, paler towards the upper margins, sometimes turning purplish-black on the beak and upper medial portion of the body of the perigynia, flat and distended by the achenes, ovate to wide-ovate, occasionally narrow-ovate to elliptic-ovate, (4.0) $4.5-6.5 \mathrm{~mm}$ long, $1.7-2.4 \mathrm{~mm}$ wide, margins winged to the base, serrulatescabrate up to $2 / 3$ of their length, 0.3-0.4 mm wide, dorsal nerves $7-9$, faint to evident, ventral nerves $3-6$, mostly faint and basal, a few extending the length of the body of the perigynia, ventral folds essentially absent, spongy filling in base generally lacking beaks $1.8-2.1 \mathrm{~mm}$ long, suture margins concolorous with beaks, beak tips $0.3-0.6 \mathrm{~mm}$ long, $1 / 8$ to $1 / 3$ the length of the beaks, distance from the top of the achenes to the apex of the perigynia $1 / 2$ or greater than the overall length of the perigynia, apex concolorous with beaks to narrow hyaline, erose to bidentulate, the teeth up to 0.1 mm long; achenes $1.4-1.7 \mathrm{~mm}$ long, $0.8-$ 1.1 (1.3) mm wide, relatively small in relation to the perigynia, filling up to $2 / 5$ of the body of the perigynia, stipes (0.4) 0.5-0.7 (0.8) mm long; $n=41$. (Figure 21).

Figure 21. Type specimen (left) of Carex haydeniana Olney.

Lectotype

Carex haydeniana Olney
determintd R．Whitkus Dave July， 1981

v．ins．

Distribution: From the Rocky Mountains of Alberta and British Columbia as far north as Sunwapta Pass, Mt. McLean near Lillooet, and the Ashnola Range of British Columbia. Growing in rocky meadows, slopes, and thickets, and on moraines, ledges and stream banks, in subalpine to alpine conditions from 1750 to 2400 meters elevation. Occurring in similar habitats as far south as Colorado in the Rocky Mountains, and in California, east of the crest of the Sierra Nevada to 4300 meters. Reported from Arizona by Hermann (1970) and as being apparently absent from Washington by Cronquist (1969). (Figure 22).

Discussion: Holm (1871) listed two specimens in his description: Bolander's specimen from Mt. Dana in California, and one collected by Dr. F. V. Hayden in 1870 from the Uinta Mountains of eastern Utah. The sheet from Olney's herbarium (BRU) contains both plants mounted side by side, with Bolander's specimen exhibiting the characteristic habit and, to a lesser extent, inflorescence, while Hayden's specimen exhibits the characteristic color in its more mature perigynia, but appears to be depauperate. Olney's description, however, incorporates characteristics of both plants, such as spikes ovate (Bolander) or nearly round (Hayden), perigynia yellowish (Bolander), dark purple at top or finally throughout (Hayden), and culms 4 (Hayden) to 8 (Bolander) inches high. Because Hayden's specimen is depauperate, and most of the description fits Bolander's specimen better than Hayden's, Bolander's specimen is chosen as the lectotype.

The species is distinguished from other members of the aggregate by its large perigynia and densely aggregate, triangular-ovoid heads, and to a lesser extent by its relatively small achenes in comparison to the perigynia. Some forms of C. pachystachya have large (5 mm)
(

Figure 22. Distribution of Carex haydeniana for western Canada and Alaska.

perigynia, but are plump and spongy filled in the base while c. haydeniana possesses flattened perigynia with little, if any, spongy filling. In addition, the inflorescence of C. pachystachya is aggregate to loosely aggregate, with the tips of the perigynia ascending to spreading. The inflorescence of C. haydeniana, however, is densely aggregate, and the perigynia tips are ascending in the spikes. In the southern Rocky Mountains, some forms of C. microptera (C. festivella) possess large (5 mm), flattened perigynia and inflorescences with a truncate base. Cronquist (1977) noted that C. microptera and c. haydeniana did not appear to be clearly distinguished and was probably reffering to these large perigynia forms of C. microptera. However, C. haydeniana is further distinguished from C. microptera by its larger achenes and achene stipes. The relationship of C. haydeniana to C. ebenea is in further need of investigation, as well as Cronquist's (1977) idea that C. haydeniana is no more than an alpine ecotype of C. microptera.

Representative Specimens: CANADA: ALBERTA: 1.3 km . southwest of Lawson Lake, Kananaskis Provincial Park, Brunton and Paton 1467 (DAO); Bertha Lake, Waterton Lakes National Park, Kuijt and BZais 2281 (CAN); Highwood Pass, Moss 10908 (ALTA); 5 miles northwest of Mt. Head, Highwood Pass, Packer 2969-395 (ALTA); Plateau Mt., Whitkus 1994 (ALTA). BRITISH COLUMBIA: West end of Quiniscoe Lake in Ashnola Range, Calder, ParmeZee and TayZor 19595 (RM); Mt. McLean near Lillooet, CaZder, Savile and Ferguson 15558 (RM); Paradise Mine, Windermere, August 28 m k844m Hardy s.n. (UBC) ; Yoho Valley, Yoho National Park, McCalla 7630 (ALTA, UBC); Wall Lake, TayZor 8970 (UBC).

UNITED STATES OF AMERICA: MONTANA: Goose Lake, Cooke City, Conard 1914 (RM); Pioneer Range, Hitchcock and Muhlick 12958 (RM); Mineral Park, Glacier National Park, August 8, 1910, Jones s.n. (RM); Logan Pass, Glacier National Park, Peivson 11970 (ORE).

WYOMING: 1 mile northwest of Beartooth Pass, Johnson 54 (RM); Above Crater Lake, Lofgren 115 (RM); Brooklyn Lake, Medicine Bow Range, Nelson 5188 (RM) ; La Plata Mines, Nelson 5190 (RM); Roaring Fork Mountain, Wind River Range, Scott 329 (RM).

COLORADO: Mt. Kelso, near Gray's Peak, Holm 465 (S); Arapanoe Park, Weber 3680 (RM).

IDAHO: Peak east of Castle Park, White Cloud Range, Hitchcock and Muhlick 10846 (RM).

UTAH: Gunsight Peak, Maguire, Hobson and Maguire 14560 (CAN); Henrys Forks Basin, Maguire, Hobson and Maguire 14686 (RM); La Sal Mountains, Payson and Payson 4049 (RM).

OREGON: Steens Mountain, Chambers 3354 (OSC); Wallowa Mountains, Cusick 13311 (ORE); Wallowa Mountains Cusick 3133 (ORE, RM); 2 miles south of Aneroid Lake, Wallowa Mountains, Peck 18004 (OSC); North slope of Eagle Cap Peak, Wallowa Mountains, Sharsmith 3917 (OSC).

Carex macZoviana D'Urville

Carex macZoviana D'Urville, Mem. Soc. Linn. Paris 4: 599. 1826.
Type: Not seen, presumably at CN.
Carex festiva Dewey, Amer. J. Sci. 29: 246. 1836.
Type: Great Bear Lake, Northwest Territories...."Bear Lake, Dr. Richardson" (NY!, isotype).

Carex soperi Raup, Sagentia 6: 129. 1947.
Type: North of Brintnell Lake, Mackenzie District, Northwest Territories, Soper and Raup 9534 (CAN!, holotype; ALTA!, isotype)

Carex incondita F. J. Hermann, Leafl. W. Bot. 8: 112.
Type: 40 miles south of Nordegg, Alberta, Hermann 13347 (US, holotype; ALTA!, CAN, CAS, NA, isotypes). 4.5 miles south of Cadomin, Alberta, Hermann 13444 (ALTA!, CAN, NA, paratypes).

Cespitose; culms stiff, (0.9) 2-4.5 (6.0) dm tall, exceeding the leaves; leaves with well developed blades 2-6 per culm, clustered on lower $1 / 8$ to $2 / 5$ of culm, blades stiff, straight or slightly curved, (4) 6-12 (18) cm long, (1.5) 2-3.5 (4.0) mm wide; inflorescence ovoid to oblong-ovoid or wide-ovoid, (9.5) 12-18 (20.5) mm long, (8.0) 10.5-14.0 (18.5) mm wide, first internode up to 2.5 (3.7) mm long; spikes $3-8$, aggregate, $5.5-8.5$ (10.5) mm long, (3.0) 4.5-6.0 (7.0) mm wide, perigynia tips appressed-ascending within the spikes; bracts scale-like, concolorous with scales, lusterous, reddish to dark brown or coppery, acute to obtuse, the lowest occasionally short-awned, margins narrow to wide white hyaline; scales lusterous, reddish to dark brown or coppery, (2.7) 3.0-3.5 (4.0) mm long, $1.0-1.5 \mathrm{~mm}$ wide, about $3 / 4$ as long as the perigynia, acute to obtuse, margins narrow to wide white hyaline; anthers 1.4-2.0 (2.3) mm long; perigynia lusterous, reddish-brown to copperybrown, upper portion green to dark green or pale, flat and distended by the achenes to plano-convex, ovate to elliptic-ovate, $3.5-4.5 \mathrm{~mm}$ long, 1.4-2.0 mm wide, margins winged to the base, generally darker than the perigynia, serrulate-scabrate up to $2 / 3$ of their length, 0.2-0.3 (0.4) mm wide, dorsal nerves 7-11, faint to evident, ventral nerves $3-8$, faint to evident, generally basal, ventral folds $0-1$, spongy filling present to abundant in base, beaks 1.3-1.8 mm long, suture margins white hyaline, beak tips (0.4) 0.5-0.8 (0.9) mm long, ($1 / 4$) $1 / 3$ to $1 / 2$ the length of the beaks, distance from the top of the achenes to the apex of the perigynia $1 / 2$ of less than the overall length of the perigynia, apex white

\qquad
为
保

hyaline, erose to bidentulate, the teeth up to 0.1 mm long; achenes 1.4-1.6 (1.7) mm long, $0.9-1.1 \mathrm{~mm}$ wide, relatively large in relation to the perigynia, filling up to $3 / 5(3 / 4)$ of the body of the perigynia, stipes $0.4-0.6 \mathrm{~mm}$ long; $\mathrm{n}=43$.

Distribution: In the Northwest Territiories from Great Bear Lake and Richardson Mountains, south and west to southeastern Alaska and northern British Columbia, discontinuous into the Rocky Mountains of Alberta and British Columbia, and the Itcha Mountains and Ashnola Range of British Columbia. (Figure 23). Growing in clayey, silty, sandy, gravelly soils of lake and river shores and banks, thickets, moist meadows and slopes, moraines, bogs and swales, depressions and openings in poplar, spruce, or pine woods, and disturbed habitats along roads, embankments, ditches, and coal spoils, in boreal-montane to alpine conditions from near sea level to 2400 meters elevation. Also found growing near Ft. Chimo on the Ungava Peninsula, Gaspé Peninsula, and Torngat Mountains of Quebec, among rocky crevices of the Labrador coast, meadows and fjords of Greenland, meadows and openings in the woods of northern Fennoscandia, meadosw, slopes and dwarf Nothofagus woods in the mountains of southern Chile to Tierra del Fuego and Falkland Islands. Reported from the Medicine Bow Mountains of Wyoming by Hermann (1970), and from Iceland by DuReitz (1940) and Hultén (1958).

Discussion: Although the type was not seen, the description provided by Kükenthal (1909), who presumably saw the type (under his list of specimens examined: "Falkland Inseln (D'Urville)"), as well as material examined \mathfrak{n} this study from the Falkland Islands and South America, matches the material present in North America, Greenland and Europe. D'Urville provided only a short diagnosis which could fit almost any member of the aggregate, but apparently was sufficient for describing

Figure 23. Distribution of Carex macZoviana for western Canada and Alaska.
20,
$5-2+2$
his new species, since it is the only member of the ovales that reaches the Falkland Islands. An additional taxon has been recognized from South American material by Kükenthal (1909) as variety pseudoleporina, distinguished by its approximate spikes and lighter colored sclaes. Material of this variety has been seen and it appears that the problem of closely related taxa which are not clearly distinguished on a morphological basis, may be present in South America as well.

The species is distinguished from other members of the aggregate by its very dark colored inflorescence, lustrous scales and perigynia which are generally coppery colored, and noticeable white hyaline scale margins, perigynia tips and perigynia dorsal suture margins. It is further distinguished from C. pachystachya, with which it shares some of these features, by noticeably darkened perigynia wing margins contrasting with lighter color of the body of the perigynia, and paler or green upper portion of the perigynia body. Carex pachystachya has either dark edged wing margins or is uniformly colored throughout. Also, the perigynia tips of C. macloviana are ascending in the spikes, while those of C. pachystachya are ascending to spreading.

The chromosome number of this species has not been previously recorded for North America. Counts of $n=43$ determined in this study agrees with those reported for Greenland and European material. The report of Böcher (1938) of $2 n=c a .82$ is apparently erroneous.

Representative Specimens: CANADA: ALBERTA: Saskatchewan Glacier, Banff National Park, Boivin 5077 (DAO) ; Mercoal, Malte and Watson 1886 (CAN, RM) ; Clearwater Trunk Road, south of Sundre, McCalla 12272 (ALTA, UBC) ; Mt. Shunda, north of Nordegg, A.E. Porsild 20694a (CAN); Plateau Mt., Whitkus 1975 (ALTA).

BRITISH COLUMBIA: Along trail to Ashnola Range, Calder, Parmelee and TayZor 19820 (DAO); Itcha Mts., 26 miles northeast of Anahim Lake, Clader, Parmelee and Taylor 20220 (ALA); Mountains 10 miles south of Telegraph Creek, McCabe 8835 (DAO); Apex Mt., 15. mi les northeast of Keremeos, Senn, Frankton and Gillett 5779 (DAO); 72 km . southeast of

Teslin on Alaska Highway, Whitkus 1730 (ALTA).
NORTHWEST TERRITORIES: East slope of Richardson Mts., A. E. Porsild 6759 (CAN, S); MacMillan Pass, Canol Road, A. E. Porsild and Breitung 11211 (CAN, S); Hole-In-The-Wall Lake, Mackenzie Mts., Scotte 17431 (DAO); Sawmill Bay, Leith Peninsula, Great Bear Lake, Shacklette 3068 (CAN).

YUKON TERRITORY: 24 miles east of Little Atlin Lake, Raup and Raup 11372 (ALA, CAN, S, UBC); 1 mile east of Haines Junction, Raup and Raup 11956 (CAN, S, UBC); Mile 36, Canol Road, Porsild and Bretiung 10763 (CAN, S) ; Mile 1022, Alaska Highway, Schofield and Crum 7642 (CAN, UBC) ; 70 km . north of Klondike River Lodge on Dempster Highway, Whitkus 1211 (ALTA).

QUEBEC: Fort Chimo, CaZder 2357 (DAO); Wakeham Bay, Ungava Peninsula, Duman 2623 (CAN); Fort Chimo, Dutilly and LePage 14726 (CAN, DAO, S) ; Mt. AuClair, Tabletop Mts., Gaspé Peninsula, Fermald and Smith 25521 (ALA, CAN); Mt. AuClair, Tabletop Mts., Gaspé Peninsula, Raymond, Kucyniak and Rune 1900 (DAO, S).

LABRADOR: Cape Mugford, Porsild 174 (CAN); Torngat Mts., Rousseau 1023 (S) ; Rama, Stecker 372 (RM).

UNITED STATES OF AMERICA: ALASKA: Savage River Camp, Mt. McKinley National Park, Henderson 14792 (ORE); 4 miles north of Paxson, Pegau 131-70 (ALA); Mile 196, Richardson Highway, Smith 2160 (ALA, CAN, S); McKinley Park R.R. Station, Mt. McKinley National Park, Viereck 1739 (S); 30 miles east of Cantwell on Rt. 8, Whitkus 1412 (ALTA).

GREENLAND: Scoresby Land, Einarsson 31 (ALA, CAN); Igdlorssuit, Prince Charles Sound, Gravesen and Hansen 66-1844 (ALA); Anivia, Hansen 66-1045 (CAN, DAO); Majut, Hansen, Hansen and Petersen 145 (ALA, CAN, DAO) ; Kong Oscars Fjord, Raup and Raup 794 (CAN).

NORWAY: Fredheim, Øvergygd, August 2, 1955, Gjaervolz s.n. (ALA); Sivertskardet Pass, Mälselv, July 9, 1949, Norrman s.n. (DAO); Rundhaug, July 14, 1949, Norrman s.n. (DAO).

SWEDEN: Mt. Nuolja, Jukkasjorvi Parish, Alm 1899 (DAO);
Salmijärvi, Jundsuando Parish, Alm 2783 (DAO); Erkheikki, Pajala Parish, Alm 2614 (DAO) ; Albisko, Clausen 1389 (DAO); Tornetrask, Jukkasjärvi Parish, SomueZsson 349 (ALA, DAO).

FINLAND: Kilpisjärvi, Alava, Alho and Kause 4388 (DAO); Kolari, Sieppijarvi, August 4, 1935, Auer s.n. (DAO) ; Muonio, Kemensis Parish, July 17, 1916, Montezl s.n. (DAO); Kilpisjärvi, August 16, 1958, Roivainen s.n. (DAO); Kaaresuanto, Sakkara, July 11, 1939, Segerman s.n. (ALTA, DAO).

CHILE: Punta Arenas, Barros 6015 (DA0); Between Morro Chico and Carpa Manzana, Kalela 2142 (S); "Magallanes", Kalela 1987 (S); O'Higgins, Looser 4606 (DAO); "Magallanes", Valentin 269 (S).

ARGENTINA: 20 km . east-northeast of Ushuaia, Tierra del Fuego, Santesson 472 (S); Mendora, Wall 69 (S).

FALKLAND ISLANDS: Skottsberg 117 (LY, S).

\author{

- - - $=$
} Sex Hont -
$\square-$

$11_{1}-2=-=-1+=-1$

Hitenit

(

\qquad

$+$

$=$

\qquad
电

Carex festiva var. vixidis L. H. Bailey, Mem. Torrey Bot. Club 1: 51. 1889.
C. macloviana var. stricta f. viridis (Bailey) Kükenth. in Engl.

Pflanzenr. IV. 20 (Heft 38): 197. 1909.
Type: Park County, Montana, Tweedy s. n. (BH!, lectotype).
Carex microptera Mackenzie, Muhlenbergia 5: 56. 1909.
C. macloviana var.microptera (Mack.) Boivin, Naturaliste Can. 94: 523. 1967.

Type: Deeth, Elko County, Nevada, HeZler 9067 (NY!, holotype; CAS!, isotype).

Carex festivella Mackenzie, Bull. Torrey Bot. Club 42: 609. 1915.
Type: Laramie, Albany County, Wyoming, A. Nelson 3275 (NY!, holotype; NA!, isotype).

Carex Zimnophila F. J. Hermann, Leaf1. W. Bot. 8:28. 1956.
Type: 7 miles northeast of Pinedale, Sublette County, Wyoming, Hermann 12252 (US!, holotype).

Cespitose; culms stiff, 2.0-6.5 (9) dm tall, exceeding the leaves; leaves with well developed blades $3-7$ per culm, clustered on lower $1 / 7$ to $1 / 3$ of culm, blades stiff to lax, straight to \pm curved, (6) 8-19 (23) cm long, 2.0-4.1 mm wide; inflorescence variable, from elliptic-ovoid to trangular-ovoid, the base frequently truncate, (11) 12-19 (20)mm long, 9.5-16 (17.5) mm wide, first internode up to 2.5 (3.0) mm long; spikes 4-10, aggregate to densely aggregate, $5-9 \mathrm{~mm}$ long, (4.3) 4.5-6.5 (7.0) mm wide, perigynia tips ascending to ascending-spreading within the spikes; bracts scale-like, concolorous with the scales, dull to lusterous, generally brown, but also reddish-brown to coppery-brown, acute, the lowest occasionally short-awned, margins concolorous with bract to hyaline; anthers $0.9-1.7$ (1.9) mm long; scales dull to lusterous, generally brown, but also reddish-brown to coppery-brown, acute, 2.4-3.5 mm long, $1.0-1.5$ (1.7) mm wide, $3 / 5$ to $4 / 5$ the length of the perigynia; perigynia mostly dull, stramineous or light green to dark brown, medial portion and beak generally darker, flat and distended by the achenes to low plano-convex, mostly ovate, occasionally narrow-ovate or wide-ovate, (2.9) 3.4-4.3 (4.7) mm long, (1.2) 1.4-2.0 (2.3) mm wide, margins winged to the base, though frequently becoming obsolete towards the base, serrulate-scabrous for up to $2 / 3$ or more of their length, $0.1-0.4 \mathrm{~mm}$ wide, dorsal nerves $6-10$, faint to evident, ventral nerves $1-8$, faint to evident, mostly basal, ventral folds $0-1$, spongy filling present to abundant in base, beaks (1.3) 1.5-2.1 (2.5) mm long, suture margins concolorous with beaks tips $0.2-0.6$ (0.8) mm long, $(1 / 8) 1 / 6$ to $1 / 3$ the length of the beaks, distance from the top of the achenes to the apex of the perigynia $1 / 2$ or greater than the overall length of the perigynia, apex concolorous with beaks, erose to bidentualte, the teeth up to 0.2 mm long; achenes 1.1-1.4 (1.5) mm long, 0.7-1.0 mm wide, relatively small in relation to the perigynia, filling up to $3 / 5(2 / 3)$ of the body of the perigynia, stipes $0.3-0.5 \mathrm{~mm}$ long; $\mathrm{n}=40,41,45$. (Figure 24).

Figure 24. Type specimen of Carex microptera Mack.

Distribution: In the southern Yukon and Mackenzie Mountains of the Northwest Territories, through interior British Columbia, the mountains of British Columbia and Alberta, the aspen parkland of Alberta through Saskatchewan and into Manitoba, disjunct in the Cypress Hills and in favorable habitats in the prairies (Figure 25). Growing in generally local, moist, open conditions, in clayey, silty, or gravelly soil of river and lake shores and banks, moist meadows and slopes, thickets, edges of bogs and swamps, depressions or disturbances in poplar, spruce or pine woods, and in disturbed habitats such as embankments, ditches, roadsides, and coal spoils, generally in montane conditions, but also from near sea level to 1800 meters elevation. The species is also bound in simialr habitats south of the 49th parallel, up to 3000 meters elevation, as far south as California and Arizona. Reported from New Mexico and the Black Hills of South Dakota by Hermann (1970) and Cronquist (1977).

Discussion: Bailey listed two specimens after his description of C. festiva var. viridis: Scribner 315 from 16 Mile Creek, Montana, and Tweedy s.n. from Park County, Montana. The sheets from Bailey's herbarium (BH) show that the two specimens are similar to one another, and match the original description equally. However, Scribner's specimen is incomplete, consisting of two loose culms, while Tweedy's specimen consists of a tuft of culms attached to the rootstock. Because it is more complete, Tweedy's specimen is chosen as the lectotype.

The species is distinguished from others in the aggregate by the smaller achenes, and to a lesser extent, by the generally smaller, lighter colored, dull perigynia. The large forms of C. microptera which resemble C. haydeniana are distinguished by features discussed
促

Figure 25. Distribution of Carex microptera (including C. festivella and C. Iimnophila) for western Canada and Alaska.
5kas anan \}

2
in the section dealing with taxonomy of the aggregate.
The published reports of the chromosome number of C. microptera do not agree with those determined in this study. Wahl's (1940) count of $n=41$ was from Colorado material and suggests a link between this species and C. haydeniana. Another alternative is that the specimen was actually C. haydeniana, however, since the voucher was not seen, this can not be concluded. The count of $n=45$ by Clausen, Keck and Hiesey (1940) seems too high, but in light of the cytological condition in Carex, it is plausible. ${ }^{2}$

Representative Specimens: CANADA: MANITOBA: Road to Audey Lake, Riding Mountain National Park, Lovaas 60-4033 (DAO); Mouth of AuAppelle River, Macoun and Herriot 66629 (CAN); Wellman Lake, Parker 2895 (CAN); Edward Creek, Riding Mountain National Park, Scoggan 11338 (CAN).

SASKATCHEWAN: Candle Lake, Boivin and Breitung 6243 (DAO); Farewell Creek, Cypress Hills, Macoun 10743 (CAN); McKaque, Breitung 15 (SASK); Mortlach, Hudson 1680 (DAO); Cypress Hills Park, RusseII, Budd and Bozton 32 (SASK).

ALBERTA: 1 mile east of Waterton River Bridge, Waterton Lakes National Park, Breitung 16528 (DAO); Porcupine Hills, August 18, 1915, MaZte s.n. (CAN, DAO); Widewater, Lesser Slave Lake, Moss 8267 (ALTA, DAO); Ma-Me-0 Beach, Turner 7833 (NA); Burnt Timber Creek Campground, Rt. 940, Whitkus 2065 (ALTA).

BRITISH COLUMBIA: Lizard Creek, Fernie, BeII and Davidson 7 (UBC); Okanagan, Copley 8 (UBC); Above Gray Creek, McCalla 8319 (ALTA, UBC); Vicinity of Buckinghorse River, Alaska Highway, Raup and Correll 11597 (ALA, S, SASK, UBC); 87 km . northeast of McLeod Lake, Rt. 97, Whitkus 1906 (ALTA).

YUKON TERRITORY: Fish Lake, 7 or 8 miles east of Whitehorse, CaZder 4663 (DAO) ; RCAF Station at Whitehorse, Mitchell 128 (DAO, NA, S); Pine Creek, Nowosao 142 (DAO); Vicinity of Pine Creek, Alaska Highway near Mile 1019, Raup, Drumy and Raup 13278 (ALA, CAN, S); Road to Fish Lake, 3.7 km . from Alaska Highway, by McIntyre Creek, Whitehorse, Whitkus 1185 (ALTA).

UNITED STATES OF AMERICA: MONTANA: Rat Lake, 5 miles southeast of Squaw Creek Ranger Station, Hitchcock and Muhlick 15243 (WTU); Ninemile Bridge, Rimrock Ridge, Little Belt Mts., Hitchcock and Muhlick 12271 (RM); 15 miles north of Gibbons Pass, Hitchcock, Rethke and van Raadshooven 3667 (RM).

WYOMING: Jenny Lake, Grand Teton National Park, Bailey and Bailey 4243 (RM); Jackson Hole Wildlife Park, Beetle 1628 (RM); Towner Lake, at

[^5]

Beaver House, 9 miles west of Centennial, Hermann 17785 (RM) ; North Fork Road, 10 miles north-west of Centennial, Porter and Porter 9205 (RM, SASK); 20 miles west of Big Piney, Payson and Payson 2614 (RM).

COLORADO: Gunnison, Baker 589 (RM); Lake Eldora, Clokey 3219 (CAN, RM) ; Tolland, Clokey 3682 (CAN, ORE, OSC, RM, S); Small lake one-quarter mile below Tolland, Rameley and Robbins 5710 (RM); Headwaters of Pass Creek, Rydberg and Vreeland 6453 (RM).

IDAHO: 25 miles east of Lowman, on Payette River, Hitchcock and Muhlick 9784 (RM) ; Twilight Gulch, MacBride 978 (RM); Mackay, Nelson and Macbride 1541 (RM, S); Palisade National Forest, Ryder 54 (RM).

UTAH: Marysvale, Jones 5387 (RM); 2 miles north-west of Tony Grove Lake, near trail to Mt. Naomi, Maquire 16096 (CAN); Lake Martha, 2 miles south of Brighton, Maguire 17415 (CAN); Inlet, Tony Grove Lake, Maguire, Hobson and Maguire 14239 (CAN); La Sal Mts., Walker 262 (RM); Dixie Forest, head of Mill Caynon, Woodbury 22 (RM).

NEVADA: Little Falls, Charleston Mts., CZokey 5414 (RM); Rainbow Falls, Charleston Mts., Clokey and Clokey 7035 (CAN, OSC, RM); Snake Range, Humboldt National Forest, Holmgren and Reveal 1614 (OSC); Uintah and Ouray Indian Reservation, Florence Creek, Holmgren, Reveal and La France 2324 (UBC).

ARIZONA: Black River, White Mts., Gooding 582 (RM).
WASHINGTON: Chumstick Lookout, Thompson 14963 (CAN).

Carex pachystachya Chamisso ex Steudel

Carex pachystachya Chamisso ex Steude1, Syn. PI. Glum. 2 (Syn. PI. Cyp.): 197. 1885.
C. festiva var. pachystachya (Cham. ex Steud.) Bailey, Mem. Torrey Bot. Club 1:51. 1889.
C. macloviana var. pachystachya (Cham. ex Steud.) Kükenth. in Engl. Pflanzenr. IV. 20 (Heft 38): 197. 1909
C. macloviana ssp. pachystachya (Cham. ex Steud.) Hultén, Fl. Alaska and Yukon 2: 138. 1942.
Type: Unalaska, Aleutian Islands, Alaska, Chamisso s. n. (LE?, holotype; GH!, isotype).

Carex festiva var. gracilis 01 ney ex W. Boott, in S. Wats. Bot. Calif. 2: 234. 1880.
C. multimoda L. H. Bailey, Bot. Gaz. 21: 5. 1896.
C. macloviana var. gracilis (01ney ex W. Boott) Kükenth. in Engl. Pflanzenr. IV. 20 (Heft 38): 197. 1909.
C. pachystachya var. gracilis (Olney ex W. Boott) Mackenzie, N. Amer. F1. 18: 136. 1931.
Type: Oregon, 1871, Hall 589 (BUF!, presumably an isotype).
Carex pyrophila Gandoger, Bull. Soc. Bot. France 60: 420. 1913.
Type: Kamtschatka Peninsula, Siberia, Komarov 3286 (LE, holtype; photo, ALTA!; LY!, isotype).

Cespitose; culms stiff to \pm lax, (1.5) 2.5-7.0 (11) dm tall, exceeding the leaves; leaves with well developed blades $2-6$ per culm, clustered on lower $1 / 8$ to $2 / 5$ of culm, blades \pm stiff to lax, straight or curved, (6.5) $9.0-18$ (26.5) cm long, (1.5) $2.0-3.5$ (4.1) mm wide; inflorescence ovoid to elliptic-ovoid, oblong-ovoid or wide-ovoid, (7.5) 10-19 (26) mm long, (7.5) 9-14 (16) mm wide, first internode up to 3 (7) mm long; spikes $3-8$, loosely aggregate to aggregate, (4.0) 5.0-7.5 (9.0) mm long, $4.0-6.5$ (8.0) mm wide, perigynia tips ascending to spreading within the spikes; bracts scale-like, concolorous with scales, lusterous, reddish to dark brown or coppery, acute to obtuse, the lowest ocassionally awned, the awn shorter than the inflorescence, margins concolorous with bract to narrow hyaline; scales lusterous, reddish to dark brown or coppery, 2.4-3.6 (4.3) mm long, 1.3-1.7 (1.9) mm wide, nearly as long as the perigynia, acute to obtuse, margins concolorous with scales to narrow white hyaline; anthers $1.0-2.0 \mathrm{~mm}$ long; perigynia lusterous, reddish to coppery-brown or nearly black, margins sometimes lighter or green, concavo-convex to plano-convex, ovate to elliptic-ovate, 3.0-4.5 (5.0) mm long, $1.3-1.9$ (2.2) mm wide, margins winged to the base, often dark edged, serrulate-scabrous up to $2 / 3$ of their length or more, 0.10.3 mm wide, dorsal nerves $5-11$, faint to evident, ventral nerves $0-8$, faint to evident, basal or some extending the length of the body of the perigynia, ventral folds $0-1$, spongy filling present to abundant in base, beaks 1.1-1.8 (2.3) mm long, suture margins concolorous with beaks to narrow hyaline, beak tips (0.3) 0.5-0.9 (12) mm long, $1 / 3$ to $3 / 5$ (4/5) the length of the beaks, distance from the top of the achenes to the apex of the perigynia $1 / 2$ or less than the overall length of the perigynia, apex concolorous with beaks or narrow hyaline, erose to bidentulate, the teeth up to 0.1 (0.2) mm long; achenes $1.4-1.6$ (1.8) mm long, 0.9-1. 3 mm wide, relatively large in comparison to the perigynia, filling up to $3 / 4(4 / 5)$ of the body of the perigynia, stipes $0.3-0.5 \mathrm{~mm}$ long; $n=37,38,39,41$. (Figure 26).

Distribution: Occurring in Alaska on Unalaska Island, Kodiak Island, and the southeastern portion of the state, especially along the coast, although extending as far inland as the Alaska Range, in southwestern Yukon, northwestern British Columbia, and the Alaskan panhandle, the Queen Charlotte Islands and Vancouver Island, central and southern British Columbia, excluding most of the Fraser River drainage basin, east to the aspen parkland and foothills of Alberta, and disjunct in the Cypress Hills of Alberta and Saskatchewan. Growing in almost any moist or wet, open area, on clayey to gravelly soils, in meadows, marshy areas, depressions in open woods, on open slopes, lake and river banks and shores, or disturbed habitats such as talus slopes, ditches, roadsides, embankments, trails, clearings, logged areas, and gravel pits, in coastal

Figure 26. Type specimen of Carex pachystachya Cham. ex Steud.

to subalpine conditions from sea level to 1800 meters elevation (Figure 27). Found in similar habitats in the contiguous United States, from Idaho and Wyoming west to Washington, Oregon and California, up to 2700 meters elevation. Reported from Colorado by Hermann (1970), and from western Montana and Nevada by Cronquist (1977). Also found on the Kamtchatka Peninsula, commonly around hot springs (c. pyrophiza) (cf. Hulten, 1927).

Discussion: The problems encountered with trying to recognize 'stubby' as a variety were also found in dealing with the variety gracilis. The variety was first proposed by $07 n e y$ in 1872 under C. festiva (as a nomen nudum) and validly published by W. Boott in 1880. It was distinguished by its slender habit and oblong inflorescence. Bailey (1896) elevated the variety to specific status under the name C. multimoda, but this did not meet with much success, probably because of Bailey's vague description, and more likely because it could not be clearly distinguished from typical C. pachystachya. Mackenzie (1931-35) recognized the relationship between 01 ney's variety and C. pachystachya and placed it as a variety under that species. However, Mackenzie stated the following in his short note on the variety: "it (var. gracilis) is often well marked and distinct in appearance, but it is connected with the higher mountain plant (typical c. pachystachya) by a perplexing series of intermediate plants, and I have so far found no constant differences' (l.c.: 136; parentheses mine). Thus, Mackenzie ran into the same dilemma as I did with 'stubby'. For the same reasons, therefore, the variety gracilis has not been considered taxonomically distinct from C. pachystachya.

la

Figure 27. Distribution of Carex pachystachya (including 'stubby') for western Canada and Alaska.

From other members of the aggregate, the species is distinguished by the lusterous scales and perigynia, and more or less elongate inflorescence in which the perigynia tips are ascending to spreading. It shows the greatest amount of similarity to C. macZoviana, but is distinguished from that species by those features discussed under C. macloviana and in the section of the taxonomy of the group.

This is a very variable species which may be a species complex in itself, and shows some similarities with the Cascadian and Californian species of Mackenzie's 'Festivae' category. Further investigation is needed to elucidate the relationship between C. pachystachya and these other species (i.e. C. subfusca, C. teneraformis, C. mamiposana, C. integra). and to understand the biological reasons for its morphological and cytological variability.

This is the only member of the aggregate which shows a preference for coastal conditions. Aside from the factors which affect the distribution of the group as a whole, C. pachystachya may also have a requirement for either greater precipitation or humidity.

Representative Specimens: CANADA: SASKATCHEWAN: Cypress Hills, Brietung 4355 (DAO); Cypress Hills, Fraser 25 (NA); Cypress Hills, July 23, 1941, Ledingham s.n. (DAO); Cypress Hills, Newsom 493-64 (SASK).

ALBERTA: Entwistle, Hermann 12739 (ALTA); Lake Louise, Marte 107692 (CAN, DAO) ; Dutch Creek, Livingston Valley, Malte 107905 (CAN, DAO); Wabamun, Moss 506 (ALTA, CAN); One-half mile west of Buck Lake, Tumer 7787 (ALTA, NA).

BRITISH COLUMBIA: Victoria, Anderson 524 (UBC); Glacier, Brown 633 (S); Imperial Street, West Point Gray, Eastham 8935 (DAO, UBC); Hazelton, Skeena River, Macoun 97980 (CAN); 129 km . south of Haines Jt. on Haines Road, Whitkus 1681 (ALTA).

YUKON TERRITORY: Onion Lake, 46 miles south of Haines Jt., Kluane National Park, DougZas and DougZas 7098 (ALA).

UNITED STATES OF AMERICA: ALASKA: Mendenhall, Juneau, Anderson 6198 (ALA, CAN, DAO, RM, S, WTU); Between Lost and Situk River mouths, Baten and Murphy 77-190 (ALA); 2 miles north of Steward, Kenai Peninsula, Calder 6615 (ALA, DAO); Port Hobron, Kodiak Island, Eyerdam 92 (CAN, S); Milepost 2 on road to Hope, Kenai Peninsula, Whitkus 1497 ALTA).

保

WYOMING: Little Snake River, Goodding 1718 (RM); Jackson Hole, Wizliams 310 (RM).

IDAHO: 1 mile west of Bovill-Elk Rivers summit, Cronquist 5881 (CAN, S).

WASHINGTON: Upper valley of the Nesqually River, Allen 164 (RM); Deer Lake, 01 ympic National Park, Eyerdam 6328 (CAN); Stevens Pass region, August, 1929, Grant s. n. (S); 20 mi les west of Colville, Hitchcock 17630 (WTU); Flat above Trapper Creek, Wind River Valley, Ingram 1833 (ORE, OSC).

OREGON: Mt. Head, Eastwood and Howell 3545 (S); Soda Meadow, IreZand 2673 (ORE); Breitenbush Hot Springs trail, Leach 4444 (ORE); Loewi, Nelson 2212 (OSC); Near Mackenzie Pass, 7 miles west of summit of Cascade Mts., Peck 9808 (OSC).

CALIFORNIA: Drakes Bad, Howel2 35653 (OSC); Drakes Bad, Howe 22 359858 (OSC).

Doubtful or Excluded Taxa

Carex microptera var. crassinerva F. J. Hermann, Rhodora 70: 240. 1968.

Type: Basin below Engineer Pass, Ouray County, Colorado, W. M. Johnson 594 (US!, holotype).

Hermann (1968) distinguished the taxon on the basis of several strong nerves on the ventral side of the perigynia. Although the type is quite distinct in this character, the degree of the ventral nerves has been shown to be variable for all the species in the aggregate. In light of the difficulty that has been encountered in recognizing a variety in this aggregate, and as Hermann (1970) noted that the variety is infrequent, its status is doubtful. However, until further work is done on this taxon in Colorado where a number of problems have been uncovered (see discussion under C. haydeniana and C. microptera), it is not combined with C. microptera.

Carex olympica Mackenzie, Bull. Torrey Bot. Club 43: 610. 1916.

Mackenzie was normally very careful in noting the type of the species he described. However, for this species, he did not designate

a type, and so the 17 specimens that he listed are syntypes. In his 1931-35 monograph, Mackenzie synonymized C. olympica and C. pachystachya var. gracilis, and noted the type for C. olympica came from the state of Washington. The only specimen from Washington that was collected in the Olympic Mountains (and presumably gave the name to the species) is Elmer 2700 (ORE!, NY!), however, examination of this specimen shows that it is C. prestii, a species recognized by Mackenzie. Mackenzie (1916) noted the similarity between C. prestii and C. olympica, but separated the two by the reddish color of the scales and perigynia tips of C. olympica. However, C. preslii varies in color and can have either reddish or brownish scales and perigynia tips. Because of the ambiguity of the type for C. olympica, and since all of the syntypes from Washington could not be located and compared with the original description, the inclusion of this name in the aggregate is considered doubtful.

Carex pachystachya var. monds-coulteri Kelso, Biol. Leafl. 64: 2. 1953.
C. pachystachya f. monds-coulteri (Kelso) F. J. Hermann, Leafl. W. Bot. 9: 16. 1959.

Type: Not located. Aspen, Pitkin County, Colorado, Kelso 6662.

The same problem in recognizing other varieties in C. pachystachya applies here. However, since the type was not seen, a decision could not be reached concerning the status of this taxon.

The present investigation treats the Carex macloviana aggregate in a manner intermediate to those proposed in the past. Neither a single species, with numerous infraspecific taxa, as proposed by Kukenthal (1909), nor numerous, poorly delimited species, as proposed by Mackenzie (1931-35) has been recognized. Instead, grouping of taxa which failed to show consistent discontinuity in several rigorous morphological analyses, and continued recognition of taxa which maintained their idenity through the same analyses, as well as additional evidence from geographic distribution, ecological preferences and chromosome numbers, resulted in recognition of four species in western Canada and Alaska. Figure 28 presents a summary of this information. Carex microptera is expanded to encompass C. festivella and C. Zimnophila. Although it might be argued that the two latter taxa should be maintained at least at an infraspecific rank, evidence from this study failed to indicate a discontinuity in the continuum of morphological variation between them and "typical" C. microptera. Carex haydeniana possesses a number of similarities to C. microptera, but is maintained as a separate species until further evidence can show that there is a genetical base to these similarities. Carex macloviana and C. pachystachya are similar to one another as well, but maintain themselves, despite the opportunities the two species have for interbreeding (i. e. microsympatry).

Anyone who has intensely studies a group of organisms, and who has an interest in evolutionary theory, accumulated evidence naturally leads to speculation of the historical aspect of those organisms. For the present investigation, information for historical reconstruction may be viewed as inadequate, but certain lines of evidence provide a

Figure 28. Summary of phenetic relationships, geographic distribution, ecological preferences and chromosome numbers for taxa of the Carex macZoviana aggregate in western Canada and Alaska. Size of circles approximates the relative abundance of each species.
basis for some deductions. Low chromosome numbers, chromosome variability and morphological variability, suggest Carex pachystachya may be similar to, if not the progenitor, of the aggregate. From this species, fragmentation of chromosomes and reduction of morpholocical variability seems to follow a trend through C. microptera, C. haydeniana and C. macloviana. the problem with this trend is C. macloviana which is most similar to C. pachystachya on a morphological basis, and is the most widespread species in the aggregate. Younger species might be expected to occupy a smaller area, although they do not necessarily have to diverge a great deal from an ancestral species, expecially if they are directly descended from the progenitor. Actually, the progression of evolution within the aggregate is by no means fully understood, though C. pachystachya appears to be closest to the ancestral species.

Additional historical information can be drawn from the ecology of the group. All members of the aggregate perfer open, seral habitats, and occur frequently in mountainous regions, especially in the contiguous United States. Taken in conjunction with the diversity of the aggregate in western North America, and the fact that the species are very similar to one another, the following interpretation is plausible. During the Pleistocene glaciation, the ancestor of the aggregate existed in one of the refugial areas of the Rocky Mountains, or south of the ice sheet. With the retreat of the ice sheet at about 20,000 y.b.p., vast open areas became avaiable for plant establishment. Along with these open areas, the mountainous terrain provided a number of different environmental conditions which resulted in different selective pressures. With the opening of new areas, the progenitor of the group could have rapidly expanded into many different areas. This rapid ex-

pansion, along with varying selective pressures, may have been the impetus for the divergence of populations and establishment of discreet taxa. This proposal provides an explanation for two notable features present in the aggregate. First, the small amount of morphological differences among the various taxa may be a result of recent divergence (20,000 y.b.p.) without a concomitant loss of all intermediate forms (the 'stubby' form of C. pachystachya, for example). Second, the preference of the species for not only seral habitats, but glaciated regions as well. In Canada and Alaska, the aggregate is almost totally confined to glaciated areas (which precludes any likelihood of survival north of the ice sheet), while in the contiguous United States, it is generally restricted to mountainous areas where mountain glaciation was known to have occurred. Since the Pleistocene, the aggregate has expanded beyond the glaciated areas, but only to a limited degree: even C. macloviona occurs only in glaciated region of Greenland, Iceland, northwest Europe and South America.

Although this study in not complete, it has thoroughly examined the aggregate on a morphological level and provides a treatment which can be tested by other lines of investigation. Chemical studies can provide one means of testing, but crossing experiments would be the definitive test of the valididy of the proposed species. More cytological work on Carex pachystachya may provide an understanding of its variability in chromosome number, which may, in turn, explain its morphological variability. Further work in also needed on the two species complexes which are related but geographically peripheral to the aggregate, i. e. the C. pachystachya-C. subfusca-C. teneraformis-C. mariposana-C. intergra group, and the C. microptera-C. haydeniana-C.

ebenea group. A thorough understanding of all these species may not be attained, but it is felt that research towards this goal will not only contribute to a better understanding of the genus Carex, but may also provide information of taxa that have recently diverged and the processes involved.

LITERATURE CITED

Bailey, L. H. 1886. A preliminary synopsis of North American carices. Proc. Amer. Acad. Arts 22: 59-157.

Bailey, L. H. 1896. Notes on Carex. XVII. Bot. Gaz (Crawfordsville) 21: 1-8.

Battaglia, E. and J. W. Boyes. 1955. Post-reductional meiosis: its mechanism and causes. Caryologia 8: 87-134.

Baum, B. R. 1978. Taxonomy of the tribe Triticeae (Poaceae) using various numerical techniques. II. Classification. Canad. J. Bot. 56: 27-56.

Blaser, H. W. 1944. Studies in the morphology of the Cyperaceae. II. The prophy11. Amer. J. Bot. 31: 53-64.

Böcher, T. W. 1938. Zur zytologie einiger arktischen und borealen blütenpflanzen. Svensk Bot. Tidsǩr. 32: 346-361.

Boivin, B. 1979. Flora of the prairie provinces. Part IV. Monopsida. Phytologia 43: 55-215.

Carmichael, J. W. 1980. The TAXMAP classification program. 13 pages, mimeographed, obtained from the author, Dept. of Medical Bacteriology, Univ. of Alberta.

Carmichael, J. W., J. A. George and R. S. Julius. 1968. Finding natural clusters. Syst. Zool. 17: 144-150.

Carmichael, J. W., R. S. Julius and P. M. D. Martin. 1965. Relative similarities in one dimension. Nature 208: 544-547.

Carmichael, J. W. and P. H. A. Sneath. 1969. Taxometric maps. Syst. Zool. 18: 402-415.

Clausen, J., D. D. Keck and W. M. Hiesey. 1940. Experimental studies on the nature of species. I. Effect of varied environment on western North American plants. Publ. Carnegie Inst. Wash. 520: 1452.

Clifford, H. T. and J. B. Harborne. 1969. Flavonoid pigmentation in the sedges. (Cyperaceae). Phytochemistry 8: 123-126.

Cooperrider, T. S. and J. H. Morrison. 1967. Lactic-acetic-orcein as a chromosome stain. Michigan Bot. 6: 176-178.

Cormack, R. M. 1971. A review of classification. J. Roy. Statist. Soc., A 134: 321-367.

Cronquist, A. 1969. Cyperaceae. In: C. L. Hitchcock, A. Cronquist, M. Ownbey, and J. W. Thompson. Vascular plants of the Pacific northwest. Vol. 1. Univ. Washington Press, Seattle.

Cronquist, A. 1977. Cyperaceae. In: A. Cronquist, A. H. Holmgren, N. H. Holmgren, J. L. Reveal and P. K. Holmgren. Intermountain flora. Vol. 1. Columbia Univ. Press, New York.

Cronquist, A. 1978. Once again, what is a species? In: Beltsville Symp. Agric. Res. No. 2. Allanheld, Osmun and Co., Publishers Inc., Montclair, N. J.

Davies, E. W. 1956. Cytology, evolution and origin of the aneuploid series in the genus Carex. Hereditas 42: 349-365.

Davis, P. H. and V. H. Heywood. 1963. Principles of angiosperm taxonomy. Oliver and Boyd, Edinburg, London.

Dewey, C. 1836. Caricography. XXIX. Amer. J. Sci. Arts 29: 245-253.
DuRietz, G. E. 1940. Problems of bipolar distribution. Acta Phytogeogr. Suec. 13: 215-282.

Ehrlich, P. R. and A. H. Ehrlich. 1967. The phenetic relationships of the butterflies. I. Adult taxonomy and the nonspecificity hypothesis. Syst. Zool. 16: 301-317.

Eiten, L. T. 1976. Inflorescence units in the Cyperaceae. Ann. Missouri Bot. Gard. 63: 81-112.

Engelskjön, T. 1979. Chromosome numbers in vascular plants from Norway, including Svalbard. Opera Bot. 52: 1-38.

Faulkner, J. S. 1972. Chromosome studies on Carex section Acutae in north-west Europe. J. Linn. Soc., Bot. 65: 271-301.

Faulkner, J. S. 1973. Experimental hybridization of north-west European species in Carex section Acutae (Cyperaceae). J. Linn. Soc., Bot. 67: 233-253.

Gower, J. C. 1967. A comparison of some methods of cluster analysis. Biometrics 23: 623-637.

Gower, J. C. 1971. A generalized coefficient of similarity and some of its properties. Biometrics 27: 857-874.

Grant, V. 1971. Plant speciation. Columbia Univ. Press, New York.
Hàkansson, A. 1954. Meiosis and pollen mitosis in x-rayed and untreated spikelets of Eleocharis plaustris. Hereditas 40: 325-345.

Häkansson, A. 1958. Holocentric chromosomes in Eleocharis. Hereditas 44: 531-540.

Harborne, J. B. 1971. Distribution and taxonomic sianificance of flavonoids in the leaves of the Cyperaceae. Phytochemistry 10: 1569-1574.

Heilborn, 0. 1922. Die chromosomenzahlen der gattung Carex. Svensk Bot. Tidskr. 16: 271-274.

Heilborn, 0. 1924. Chromosome numbers and dimensions, species formation and phylogeny in the genus Carex. Hereditas 5: 128-216.

Heilborn, 0. 1928. Chromosome studies in Cyperaceae. Hereditas 11: 182-192.

Heilborn, 0. 1932. Aneuploidy and polyploidy in Carex. Svensk Bot. Tidskr. 26: 137-146.

Heilborn, 0. 1939. Chromosome studies in Cyperaceae. III-IV. Hereditas 25: 224-240.

Hermann, F. J. 1945. A new Carex from Colorado. Leafl. W. Bot. 4: 194195.

Hermann, F. J. 1956. A new Wyoming sedge. Leaf1. W. Bot. 8: 28-29.
Hermann, F. J. 1957. New carices from the Canadian Rocky Mountains. Leafl. W. Bot. 8: 109-114.

Hermann, F. J. 1968. Notes on Rocky Mountain carices. Rhodora 70: 419421.

Hermann, F. J. 1970. Manual of the carices of the Rocky Mountains and Colorado basin. U. S. D. A.Agric. Handb. 37, Washington, D. C.

Hermann, F. J. 1971. New species of Carex from Mexico and Guatemala. Brittonia 23: 144-148.

Hermann, F. J. 1974. Manual of the genus Carex in Mexico and Central America. U. S. D. A. Aric. Handb. 467, Washington, D. C.

Holm, T. 1903. Studies in the Cyperaceae. XIX. The genus Carex in Colorado. Amer. J. Sci. 166: 17-44.

Holm, T. 1908. The history of caricography. Ontario Nat.Sci. Bull. 4: 105-111.

Holmgren, P. K. and W. Keuken. 1974. Index herbariorum. Part I. The herbaria of the world. Ossthoek, Scheltema and Holkema, Emmalaan 27, Utrecht, Netherlands.

Holttum, R. E. 1948. The spikelet in Cyperaceae. Bot. Rev. (Lancaster) 14: 523-541.

Hudson, J. H. 1977. Carex in Saskatchewan. Bison Publishing House, Saskatoon, Saskatchewan.

Hultén, E. 1927. Flora of Kamtchatka and the adjacent islands. I. Pteridophyta, Gymnopsermae, and Monocotyledoneae. Kongl. Svenska Vetenskapsakad. Handl. 5: 1-346.

Hultén, E. 1942. Flora of Alaska and Yukon. Vol. 2. Acta Univ. Lund. 38 (1): 131-412.

Hultén, E. 1958. The amphi-Atlantic plants and their geographical connections. Kong1. Svenska Vetenskapsakad. Handl. 7: 1-340.

Hultén, E. 1968. Flora of Alaska and neighboring territories. Stanford Univ. Press, Stanford,

Jörgensen, C. A., T. Söresen and M. Westergaard. 1958. The flowering plants of Greenland. A taxonomical and cytological study. Dansk. Vid. Selsk. Biol. Skr. 9, 4: 1-172.

Kartesz, J. T. and R. Kartesz. 1980. A synonymized checklist of the vascular flora of the United States, Canada, and Greenland. The Biota of North America Vol. II. The Univ. of North Carolina Press, Chapel Hill.

Kelso, L. 1953. The Rocky Mountain flora. VI. Carex species. Biol. Leafl. 64: 1-38.

Koyama, T. 1965. Interrelationships between the tribes Lagenocarpeae and Sclerieae (Cyperaceae). Bull. Torrey Bot. Club 92: 250-265.

Koyama, T. 1969. Delimitation and classification of the CyperaceaeMapanioideae. In: J. E. Gunckel (ed). Current topics in plant science. Academic Press, New York.

Krauss, R. W. 1950. A taxonomic revision of the Hawaiian species of the genus Carex. Pacific Sci. 4: 249-282.

Krechetovich, V. I. 1935. Carex. In: V. L. Komarov (ed). Flora of the U.S.S.R. The Bot. Instit. Acad. Sci. U.S.S.R., Leningrad.

Kükenthal, G. 1909. Cyperaceae-Caricoideae. In: A. Engler (ed). Das pflanzenreich. Heft 38, IV. 20. Leipzig.

Kukkonen, I. 1971. Flavonoid chemistry of the Cyperaceae: A premiliary study. Mitt. Bot. Staatssamml. Muchen 10: 622-638.
Lawrence, G. H. M. 1951. Taxonomy of vascular plants. Macmillan Publishing Co., Inc., New York.
Looman, J. and K. F. Best. 1979. Budd's flora of the Canadian prairie provinces. Res. Branch, Agric. Canada Publ. 1662.
Löve, A. and D. Löve. 1975. Cytotaxonomical atlas of the Arctic flora. J. Cramer, Vaduz.

Löve, A., D. Löve and M. Raymond. 1957. Cytotaxonomy of Carex, section Capillares. Canad. J. Bot. 35: 715-761.

Mackenzie, K. K. 1931-35. Cyperaceae: cariceae. North American Flora 18: (parts 1-7) 1-478.

Malheiros-Gardé, N. and A. Gardé. 1951. Agmatoploidia no genero Luzula D. C. Genét. Ibér. 3: 155-176.

McNeill, J. 1979. Structrual value: a concept used in the construction of taxonomic classifications.

Meert, M. and P. Goetghebeur. 1979. Comparative floral morphology of Bisboeckelereae and Cariceae (Cyperaceae) on the basis of the anthoid concept. Bull. Soc. Roy. Bot. Belgique 112: 128-143.

Metcalfe, C. R. 1971. Cyperaceae. In: C. R. Metcalfe (ed). Anatomy of the monocotyledons. Vol. 5. Oxford at Clarendon Press, London.

Moore, D. M. and A. O. Chater. 1971. Studies of bipolar disjunct species. I. Carex. Bot. Not. 124: 317-334.

Moore, R. J. and J. A. Calder. 1964. Some chromosome numbers of Carex species of Canada and Alaska. Canad. J. Bot. 42: 1387-1391.

Moss, E. H. 1959. Flora of Alberta. Univ. Toronto Press, Toronto.
Moss, W. W. 1968. Experiments with various techniques of numerical taxonomy. Syst. Zool. 17: 31-47.

Porsild, A. E. 1939. Contributions to the flora of Alaska. Rhodora 41: 141-183, 199-254, 262-301.

Porsild, A. E. 1951. Botany of southeastern Yukon adjacent to the Canol Road. Natl. Mus. Canada Bull. 121: 1-400.

Porsild, A. E. and W. J. Cody. 1980. Vascular palnts of continental Northwest Territories, Canada. Nat7. Mus. Canada, Ottawa.

Radford, A. E., W. C. Dickison, J. R. Massey and C. R. Bell. 1974. Vascular plant systematics. Harper and Row Publishers, New York.

Reyment, R. A. 1969. Biometrical techniques in systematics. In: Systematic biology. Natl. Res. Council Publ. 1692.

Robertson, A. 1979. History of the classification of the genus Carex. Taxon 28: 535-548.
Rohlf, F. J. 1970. Adaptive hierarchical clustering schemes. Syst. Zool. 19: 58-82.

Schnel1, G. D. 1970. A phenetic study of the suborder Lari (Aves). II. Phenograms, discussion and conclusions. Syst. Zool. 19: 264-302.

Scoggan, H. J. 1978. The flora of Canada. Vol. 2. Natl. Mus. Nat. Sci. Publ. Bot., Natl.Mus. Canada, Ottawa.

Scotter, G. W. and J. J. Hudson. 1975. Carex illota L. H. Bailey in Alberta. Canad. Field-Naturalist 89: 74-75.

Small, E. 1978. A numerical taxonomic analysis of the Daucus carota complex. Canad. J. Bot. 56: 248-276.

Smith, D. L. 1966. Development of the inflorescence in Carex. Ann. Bot. (London) 30: 475-486.

Smith, D. L. and J. S. Faulkner. 1976. The inflorescence of Carex and related genera. Bot. Rev. (Lancaster) 42: 53-81.

Smith, J. P., Jr. 1977. Vascular plant families. Mad River Press, Inc., Eureka, California.

Sneath, P. H. A. and R. R. Sokal. 1973. Numerical taxonomy. W. H. Freeman and Co., San Francisco.

Sokal, R. R. and C. D. Michener. 1967. The effects of different numerical techniques on the phenetic classification of bees of the Hoplitis complex (Megachilidae). Proc. Linn. Soc. London 178: 59-74.

Sokal, R. R. and F. J. Rohlf. 1969. Biometry. W. H. Freeman and Co., San Francisco.

Strickberger, M. W. 1976. Genetics. Macmillan Publishing Co., Inc., New York.

Tanaka, N. 1939. Chromosome studies in Cyperaceae, IV. Chromosome number of Carex species. Cytologia 10: 51-58.

Tanaka, N. 1949. Chromosome studies in the genus Carex, with special reference to aneuploidy and polyploidy. Cytologia 15: 15-29.

Taylor, R. L. and B. MacBryde. 1978. New taxa and nomenclatural changes with respect to Vascular plants of British Columbia: a descriptive resource inventory. Canad. J. Bot. 56: 184-195.

Taylor, R. L. and G. A. Mulligan. 1968. Flora of the Queen Charlotte Islands. Part 2. Cytological aspects of the vascular plants. Res. Branch Canada Dept. Agric. Monogr. 4., Ottawa.

Toivonen, H. 1974. Chromatographic comparison of the species of Carex section Heleonastes and some Carex canescens hybrids in eastern Fennoscandia. Ann. Bot. Fenn. 11: 225-230.

Toivonen, H. and T. Timonen. 1976. Perigynium and achene epidermis in some species of Carex, subg. Vignea (Cyperaceae), studied by scanning electron microscopy. Ann. Bot. Fenn. 13: 49-59.

Wahl, H. A. 1940. Chromosome numbers and meiosis in the genus Carex. Amer. J. Bot. 27: 458-470.

Walter, K. S. 1975. A preliminary study of the achene epidermis of certain Carex (Cyperaceae) using scanning electron microscopy. Michigan Bot. 14: 67-72.

Williams, C. A. and J. B. Harborne. 1977. Flavonoid chemistry and plant geography in the Cyperaceae. Biochem. Syst. Ecol. 5: 45-51.

APPENDIX 1. SYNONYMY OF THE GENUS Carex*

Carex Linnaeus, Sp. P1. 972. 1753.
Ulva Adans. Fam. P1. 2:496. 1763.
PhysigZochis Neck. Elem. 3:245. 1790.
Cyperoides Tourn. Elem. Augm. 3:196. 1797.
ScheZhammeria Moench, Meth. Supp1. 119. 1802.
Triplima Raf. Am. Mo. Mag. 4:195. 1819.
Scuria Raf. Jour. de Phys. 89:106. 1819.
Triodex Raf. Jour. de Phys. 89:106. 1819.
Vignea Beauv. in Lestib. Ess. Fam. Cyp. 22. 1918.
Trasus S. F. Gray, Nat. Arr. Brit. P1. 2:53. 1821.
PhyZZostachys Torr. Ann. Lye. N. Y. 3:404. 1836.
Olotrema Raf. Good Book 25. 1840.
Loxotrema Raf. Good Bood 25. 1840.
Loxanisa Raf. Good Book 25. 1840.
Anithista Raf. Good Book 26. 1840.
Edritria Raf. Good Book 26. 1840.
Olamblis Raf. Good Book 26. 1840.
Facolos Raf. Good Book 26. 1840.
Deweya Raf. Good Book 26. 1840.
Diemisa Raf. Good Book 27. 1840.
Onkerma Raf. Good Book 27. 1840.
Loncoperis Raf. Good Book 27. 1840.
Kolerma Raf. Good Book 27. 1840.
Termemis Raf. Good Book 27. 1840.
Neskiza Raf. Good Book 27. 1840.
Osculisa Raf. Good Book 27. 1840.
Itheta Raf. Good Book 28. 1840.
Forexeta Raf. Bood Book 28. 1840.
Maukschia Heuffel, Flora 27:527. 1844.
PsylZophora Heuffel, Flora 27:528. 1844.
Leucoglochin Heuffel, Flora 27:528. 1844.
Callistachys Heuffel, Flora 27:528. 1844.
Genersichia Heuffel, Flora 27:528. 1844.
CryptogZochin Heuffe1, Flora 27:528. 1844.
Pseudocarex Miq. Ann. Mus. Lugd. Bat. 2:146. 1865.
Vignantha Schur. Enum. Pl. Transsilv. 705. 1866.
NeiIreichia Kotula. Spraw. Kom. Fizyogr. Krakow 17:136. 1883.
Caricina St. Lag. in Cariot. Etude F1. ed. 8. 2:854, 872. 1889.
Caricinella St. Lag. in Cariot. Etude F1. ed. 8. 2:855, 880. 1889.
EchinochZaenia Borner. Abh. Nat. Ver. Bremen 21:265. 1913.
Dapedostachys Borner. Abh. Nat. Ver. Bremen 21:265. 1913.
Kukenthalia Borner. Abh. Nat. Ver. Bremen 21:266. 1913.
Proteocarpus Borner. Abh. Nat. Ver. Bremen 21:266. 1913.
Limivasculum Borner. Abh. Nat. Ver. Bremen 21:268. 1913.
Bitteria Borner. Abh. Nat. Ver. Bremen 21:269. 1913.
ManochZaenia Borner. Abh. Nat. Ver. Bremen 21:271. 1913.
LamprochZaenia Borner. Abh. Nat. Ver. Bremen 21:272. 1913.
Rhaptocalymma Borner. Abh. Nat. Ver. Bremen 21:272. 1913.

Rhynchopera Borner. Abh. Nat. Ver. Bremen 21:272. 1913. Leptovignea Borner. Abh. Nat. Ver. Bremen 21:273. 1913. Desmiograstis Borner. Abh. Nat. Ver. Bremen 21:274. 1913. Thysanocarex Borner. Abh. Nat. Ver. Bremen 21:274. 1913. Indocarex Borner. Abh. Nat. Ver. Bremen 21:275. 1913. Vigniduza Borner. Abh. Nat. Ver. Bremen 21:275. 1913. Chionanthula Borner. Abh. Nat. Ver. Bremen 21:275. 1913.

APPENDIX 2. FORMULAE FOR STATISTIC AND NUMERICAL ANALYSES

Statistics

Mean (unbiased population estimate):

$$
\bar{X}=s x / n,
$$

where S is sigma, X the sample values, and n the sample size.
Standard deviation (unbiased population estimate):

$$
s=\left[S(x-\bar{X})^{2} / n-1\right]^{1 / 2}
$$

where $n-1$ is the degrees of freedom for the sample.
Standard error of the mean (unbiased population estimate):

$$
\text { s.e. } \bar{X}=s / n^{1 / 2}
$$

where s is the unbiased estimate of the population standard deviation.
Coefficient of variation:

$$
\text { C.V. }=100 \mathrm{~s} / \bar{X} .
$$

Similarity Coefficient
TAXMAP: The distance coefficient, which is the complement of similarity (Dist. = l-Sim.), is calculated as the relative difference ($D(i, j)$) between the $i-t h$ and j-th $0 T U ' s$:

$$
D(i, j)=S[(d(i, j) k) \times W(k)] / S[W(k)], k=1 \text { to } n,
$$

where S is sigma, $d(i, j)$ the relative difference between the i-th and j-th OTU's for character k (see below), and W the weight of character k (see below).

The relative difference, $d(i, j)$, between the $i-t h$ and j-th OTU's for a single character is given as:

$$
d(i, j)=x(i)-x(j) /[x(\max)-x(\min)],
$$

where X represents the states of the character. The difference between

the two states is divided by the range of the character states to initally ensure each character has equal weight.

The weight of of a character is equal to its relative information content (I), which, for continuous, quantitative characters is given as:

$$
I=\log 2(n)
$$

where n is one more than the number of 95% confidence intervals in each character. In this study, the size of the 95% confidence interval was chosen as the largest power of 10 contained by a character. Thus, if the minimum and maximum values observed for a character are 2.5 and 37.9 , respectively, the size of the 95% confidence interval is 10 . With a range of 35.4 , there are 3.54 confidence intervals, giving an n of 4.54 for the character, and an I of 2.18.

CLUSTAN: The correlation coefficient (r), which is a measure of similarity between two OTU's, is given as:

$$
r(i, j)=\frac{S[(x(i)-\bar{X}(i)) k x(x(j)-\bar{X}(j)) k]}{\left[S(x(i)-\bar{X}(i))^{2} k \times S(X(j)-\bar{X}(j))^{2} k\right]^{1 / 2}}, k=1 \text { to } n \text {, }
$$

where X is the character state value of the $i-t h$ OTU for character k, and \bar{X} the mean of all character state values of OTU i. To ensure equal weighting of all characters, the raw values were standardized to give each character a mean of 0 and a standard deviation of 1 .
4 CHO
4ind
$x=4 \sqrt{1+1}$

20
-$\because-1+2=-1$
-2
$=2$
保

APPENDIX 3. DATA MATRIX FOR 191 OTU's

TYPEO1 O9504070617315080121570952724050057502533161020162351520012308730502310001505171730151004023042033055092028 TYPEO2 O6003371321325065201531031520045070482031131730172351420032308030503027001507301030150904015043047084083028 TYPEOJ O8703091323:25091281131151510047060532028121720151391220033003330473027001506231323141005028038040097072030 TYPEOA TYPEOS TYPEOS TYPEOG TYPEOT 7 TYPEOS TYPEOS $1810611162833111720185147181706308263253116171015145192003301003050303000210910132514110503 C 045043047057018$ $136055314254291442520814732210730856220421213202014918200320073305327130 C 2208303025170905021045036047085017$ 20307451325430152281421181513067068522525091020131391420022307030503017001904132025120604027049021036064013 20307551625331162251571231613077058552030111020121371320012306010501710032006131710110803027054030047081018 02000670819220048251151031813040050553040171010181462525042011030853010102003101015151005030043015034087013 10004861323336132201571472218053080522035161023161462127042008330502310002306102018151010021050026050076016 309804201025425089251401171511060062582526101013112341427022008317572017001603101727120803023047019053076020 MICROOA $211072218254331542715313519140600676325280910101014314200220070206020100020 C 5102723120805029047025042065016$ MICROOS 09403961321328100251421202011063062522027111017101351523022007017602710031505101725120803024043033044077018 MICROCS $11205161222328127251471223018067 C 65572528101010121381520022008027473010071805101725130803022047028047074018$ MICROO7 08503801423333085251481421511067070582525101010121371323022006717371010001805101025120903022049028063068022 MICROAO111304751230429124251331251516073062502028111010112381630032007320471710031705101025140904024045029060074021 MICROAO2 10904531528430083251431381411077065502526101020111361523032008013671010031706101725110803024047035051072016 MICROAOJ 15306491931535152291581481309083073622528121010141411827032309330573010072106102323130904024051029049058016 MICROAO4O8803531222325117251601451914067012582529121017101411620022007723501010002005102325140903025049025050071019 MICROAOS 18706241727331148251631551514087073572028111010121411727022005013571710032008103025131004030049040048068019 MICROAOSC8005111521337182281331251415057072622032121010131411620022007010571010002005102725120903016049025043078016 MICROSO 105302600928731137251251051813060055552024121323132351520022010020371020001603101028120803022046019046059020 MICROBO2772048512214230752515213313150700735325301310201314216270320077135710100020051010251409030150480251957071017 MICROBO $32130783122433421025153140150908 C 0755825271010171113815200320080175013100019 \mathrm{C} 132023120803027050032055071017$ MICROBO 22507371422431184251401201510970060552530101013101401623022009020401010001904102027120904031048021043075017 MICROCO1C8504131323331109251381321411063057582027091013141381523032308713771710001904102323130803021050021C61071018 MICROCO2055033514273340982514212715200530625225251010171213214230220070132010100016104101025:20903019050925053078024 MICROCOJ 10203461527428:57301331181608057053472028111020101331420022008010271007001504101720110303029045027049085019 MI CROCO 407403041025432173301121051508050055522524091020092331320022007717371010001604101327110803024049025053073021 MICROCOSC65034S1119324121271381371410063062522028121010121361527022007717371013001703102025110703019047018037078014 MICROCO 008304131121521088251181251315040068622029111013132381423022309727431010001705101725130904023045029055076022 MICROCOTO4002540922322062251181181311053057482027111013102361327022005013131010001905101323130803016053032058075022 MI CRCOO 124407151924436180301371321715067062582030101020141411527022307720301010002004101025130804034049020045073017 MICROOO21820752132343618330153143140805707270253110101014i471423022308020501317032505101323140805024053020051066017 HAYAO1 OSOO1701323429055301571531412067090602030151020181452420042009010501010051805201020151006029040028035067014 HAYAO2 10303811327333103282051333414067093552037172020171522320032007025351010002105101520171306027040024042071018 HAYAO3 O6402141221526085301231421108050075652034131010151461920032008027572310031904101723140905030041021036074014 HAYBO1 O3701720924316058281331301514060068482032132010171491720032008317471010002306102020140806022047026039065013 HAYBO2 O9703951328626091301551431312053097752048141010161651923042008023601017003104101715151007025048013040074012 HAYBO3 10003891426430092301681781409063088772042141013171571720032007330301017002505101012150908026046019040074014 HAYBO4 07703481430529080301631681508070082622039142015191611723032009023533030002503101015150805022041012030064012 HAYMICO108 103311118325083251301101511053072432033131710161451420022009030532030001905101318150905024042026052073021 HAYMICO2OS502511017223080281331201814050070482033121310172411420022709030473030001905101025150904022046026061080024 LIMNOAO109804521431533127281401421713067072552029171023141361523023009323772010001603101025130803022044019047081019 LIMNCAO20880 +06143J441124251421421115080067552528111027122361523022009013571013001604101323110803014044025040078016 LI MNOEO 108404321330436111201831322820070077532035171330222402130032007010601310101904131022151004019048021048088018 LIMNC80220008851429436152251831732015083082552528131020151431827032008710771013002105172725151004023049024057055019 LIMANOBOJO9 104121425433125271451421617070078622530131010102391723022008013671010101907132020141004022049037054077021 LIMNOBO4 16206551632529144251481251412085070532028151010111381627022006013531710031905101725130904025050025051074019 LIMNOBOS05802710924420146231601083019070060472026111010102351523032708313471010001702101330120803021049012059074018 LIMNOBO6 10704571223526158281371351510063057602528111320131381623032307710571010071805102025131004023047028065074021 LIMNOBO705702501329424063281301131510063063432528111317142371530032008330573010071703101727120803023046018053076017 LIMNOBOB11704801427525088251581501520070073502529121013122401623022007317572310071908101725140904024048042050273020 LIMNOBO9 12405351728331106251421381622063070582528111010151391523022009030573010001906102325120804023049032044072016 LIMNOCO 107602370825522161281130971413043057482025101013102341620022307713501010001503131330120903032047019050074020 LIMNOCO2O60 22880 15 1 23126231130981611048050432024101010132361523022008717631010031806102027130804021050033053067019 LIMNOCO30880383 1 123428096251151051210057055452025101020102291223012005010531310071304131325120703023045031053086024

[^6]STUBO7 16205581124325140201321131311060055552528162010162371520022007730253030001709101325161003025046053073075029 STu803 STUBAOI STUBAO2 STUBAOJ STUBAD STUBAD4 STUBAO5 STUBA06 STU8407 06402 091023425122251101051412040058552029151010182371420022006730202727001508171325151004022041053068078029 STU8407 09903571222328122231171131112053060472025151020172301720022006317371010031105231728141003028C37045057083027 STU8801 14604291523330143201381221009067072502030191020152351720012007030373010001407102021161004034040050051096027 STURBO2 O8404301520430151251521201410053075502532161713172402020022307723432310001310101025151104020033077041080022 PACHYOt 14005841424431138201531181312053060532533151020152391520022007020531317001505131030151005024038033057085026 PACHYO2 $1550534152533711717153128151006 C 078703035151320172421820032008030502310001705101030161104029040029059083023$ PACHYO3 19605591121327161201671172925050068623035171723192391820022009723572310001504202030151105035038027052090025 PACHYO4 10503741522225101171571132015053058532530141020192341620022308730571710001303131030151104025035023065088030 PACHYO6 18305491931341233201721421725063073533031151020172381720022008027471010001505101030161104033039033059082027 PACHYCS 13004811726325075201601231720060067523032151320152381720022007720401010001505101030151104027039033C55084025 PACHYO9 1O50369142433511420163133202,063077572535:5172019240162502200732337272000160610103016100402804C038055088025 PACHY 10040027009162250701313209323160430624820311610171523615200223073235730130014041010251409 C 4015039 C 29052 C 86023 PACHY11 13805321222330145171521131820053070502037151030162441620022707730673010001607101729151104026036044049084023 PACHY 1307103010923429115231451082014050665532036151320182421720032308023572010031908101727141205024045042056086024 PACHY 4 15806361321333150231501021410053053533027142730142391620022307027602010031505201028151004025038033052063024 PACHY 1510303701320431142201331121815047060532534131020152401520022007330471010001706101030151004029043035053085025 PACHY 17 2090545152743414920180122201006706 5553030141320192401620012007730331327001505101330161104038038033050075028 PACHY 18 C5502730813321093171551032327057060553032151720202371920032307323572313031405101030151105023038036055085023 PACHY 1909507281522425145201521501508050073703033151020152391720022007030532710001406171030171105013036043052093028 PACHY2O 1090451111832409423167127231706007053253416:720172411420022008327673010001707131030151004024041041063023026 PACHYAO10830428133043514023140123151705707353253115131715235172003270533053231003150610132715100401704224C065035025 PACHYAOJO35013902:S423081201100971715040053472027131720152331520012005730571717031304131330151004020039031053032030 PACHYAOS08303821224327102251171051715060057422527141713142371520022006320131310001407101027151004022038050052073027 PACHYBO $116005531832435132201521401520063073572531151320172371720032008313431710001405101025151104 C 29038036065084025$ PACHYBO2 12 8045 21525329127201351133015043068572531142015192381820032008730573013031405101029161104028037035061082026 PACHYBOJ 12105011421331109201421351812047073622535151010152461920032007320531317001808102022151204024039044043076021 PACHYBO505503371117224071201331072316047058533032141313172361720022005723401713031306101030161205016036038064089031 PACHYBO6 12504251420325141201781183018050067582033141710172381720022307310331010001508101023151104030039053055087026 PACHYSO724710141726528173292101582530065090732538161020172452020022307023701710031805101325181305024039033052083025 PACHYBO8 $1550620172032511420153152151405307868253513132016239182 C 02200732334101000160610103016110402404103805509 C 025$ PACHY81111502971225532183201431331918047067623034151320152402020032007727371010001807101327151204039045039058085023 PACHYB 1210903551419426103201481072219057058522027152020172351620032009330532010001405101027141004031039043054075024 PACHYCO2 14104341625232141201601381310073078622031151720192391820032006330333023031508101025150904032038053047079019 PACHYCO309903201523329104201181171009057063552029132020152371520022008030402023031408131028150904031038057053078024 PACHYDO1 10006131628432074171631381435053077552539171010162462020032008020532310031907101330151105016041037044085018 PACHYOO 110003751230533153231621151820053055553033151720152431720032008017371710031806101027151004027042033055077021 PACHYOOT20007111822422173152001202223053075723035151320192421420012008030402713001805101030161004028043028056083027 PACHYEO 111604930817422171201751102715063062602530141023192371620032306730501010001405101330151005024038036065081025 PACHYEO2O5302820914321094181520982827040065582532152020182351520022307030471710001305201030151004019037038062091029 PACHYEOJO5803071015315074171551052823050060502032161330162361620022007030471010101405171030151004022039036057089026 PACHYEO4 14205291118316146172081254733047078722033151710162391820022008717271010001405101030151104023035036047085024 PACHYEOSO74O2OS 1120324085201620383122053060502533172020152441320022008320533010001608201030151105035036050039075020 PACHYEO605902711023325102201350921618057053492533152020172391720022006023371010031405131323161104022036036054085027 PACHYEOT1190424121932 195201731071717050067522531151720182391720022307027332525001405101025151004029036035046079023 PACHYEOBOJ701641019317065201401032525060063572530141720172391520022008330533010001305171330150904023033038047017023 PACHYFO1 18506311422525170231731202517073073602035151020142361520022009027603010001504171330141004029042027051097025 PACHYFO223907861220432192201231172820073073572038141020132401520022008030733023001607201030141004030040044053095023 PACHYFOU 12906221021526125201881233218073070572035151020152381420022008023572010001603201025141004021042019064092026 PACHYGO1O7804291219527192171821152922053067623033151010182411720022305723471020031507201730151204018037047053080026 PACHYGO208703541324427116251300952315047047473030151010162391420022007327501710001507101027141004025038047058077026 PACHYGO3 17104511522425132201901301925047082582531142010192371920022708013271020031406101022151304037038043057084028 PACHYGO4 15905181324428234202381223025073010652532141323152371720022007030501710001506131025151104033041040058086026 PACHYGOS 24506521825435213201751101717063068552033141023152361720022008017401023001607101320151103037044044063092027

PACHYGC6C5702741222428097201581072020050065572530172310152101520022007730531030001605101322141003021040038053075023 PACHYG1110101330915415035181631082610043062552032152030153411720022005323171010001705131325151001023041029051073023 PACHY LO 114105322025335110121631371315053080532535162017182391820032008330331010001505101323151004027038040052090021 PACHYJO 105202190915320074201521002720050053522529151730152351520022007330371017071405131727151004024030038065093029 PACHY VOGOS 103331327636172231521082225053060522530141317142361520023009323231010001306101025141003024036046055053026 PACHYUO 7O8204571223426119201250921813043050503029141320102341520022008030401010071205101030151003018035042052085029 PACHYJO90\&803751125428127201481232011055065552032161010172391627022707730501710001307102725141105023033054049082025 PACHYKOJ 10403721320425122201581137014063065633035141020152451720023008030401010001505101023151104028033033042078022 PACHYKOS24410732028340164202581474028073090802540191720212482020023009713571010001810101330181304023038055049083024 PACHYKOS 11705961415323166231481202115053067603031141027102391920022008030471010031505131323151104020039033045079022 PACHYKOG 11705961415323166231481202115053067603031141027102391920022008030471010031505131323151104020039033045079022
PACHYK 1010004921425430121201451252115050057633030131020152361720022009030572317001205101330141004020033042045083023 PACHYK 1119705421523333166201871171821053072582530151010212351520022308323201010001306131327151104036037046068086031

APPENDIX 4. DATA MATRIX FOR 7 OTU'a

MICRO 11694773133245377302129426314201291161125655653562227278107101148117123382150 232023206794180482141104011184048101177245124084034023704820260052007300184 HAY 07542956126256443270080629415771510166110614847636200374143143140170100536194 209033200809221474147149011233046114141179150096061025904330204037406990139 LIMNO 10104453124266413288122925314211271167143659669533222280122106158119156374158 238023216796164599154106038177046112163251129087036022404730261051507530189 FEST $\quad 12585130144271386298142623216021422151131728751567225290119123176134150396174$ 237028206763149524131124055190051102174222133091039024104790272050107360178 MAC $\quad 07453236131252405280090520115351232204150537734521199324132197274177215404173$ 199028232880263559225120014154065295128280151098052023303820423051708050213 STUB O9193772115215341269125921912071057131125504592494221275151151168153200351154 198018209742253305247191018139074140150259149098037024503990528060207860272 PACHY 12254761133223356284134520315631182207179548668582251328150148195164201395168 203022215777256471177124014153062120126273152107041025503860405055108310248

APPENDIX 5. STATISTICS OF THE 47 QUANTITATIVE CHARACTERS

CHARACTER	TAXON	N	RANGE	\bar{X}	S.D.	S.E. \bar{X}	C.V.
\#1	PACHY	94	$3.3-27.9$	12.25	5.62	0.58	45.9
	STUB	17	$4.6-16.2$	9.19	3.78	0.92	41.1
	MAC	39	$2.7-13.5$	7.45	3.04	0.49	40.8
	FEST	14	$6.9-20.0$	12.58	4.36	1.17	34.7
	LIMNO	16	$5.7-20.0$	10.10	3.88	0.97	38.5
	HAY	7	$3.7-10.3$	7.54	2.61	0.99	34.6
	MICRO	26	$4.0-24.4$	11.69	5.82	1.14	49.8

$\begin{array}{lllllll}\text { PACHY } & 94 & 16.4-107.3 & 47.61 & 18.53 & 1.91 & 38.9\end{array}$
$\begin{array}{lllllll}\text { STUB } & 17 & 19.1-65.8 & 37.72 & 12.89 & 3.13 & 34.2\end{array}$
$\begin{array}{lllllll}M A C & 39 & 9.5-58.6 & 32.36 & 12.04 & 1.93 & 37.2\end{array}$
FEST $\quad 14 \quad 37.6-75.8 \quad 51.30 \quad 12.06 \quad 3.22 \quad 23.5$
$\begin{array}{lllllll}\text { LIMNO } & 16 & 23.7-88.5 & 44.53 & 17.25 & 4.31 & 38.7\end{array}$
$\begin{array}{lllllll}\text { HAY } & 7 & 17.0-39.5 & 26.56 & 10.52 & 3.97 & 35.6\end{array}$
$\begin{array}{lllllll}\text { MICRO } & 26 & 25.4-78.3 & 47.73 & 16.52 & 3.24 & 34.6\end{array}$

\#3 | PACHY | 94 | $0.8-2.1$ | 1.33 | 0.30 | 0.03 | 22.6 |
| :--- | ---: | ---: | ---: | :--- | :--- | :--- |
| STUB | 17 | $0.8-1.6$ | 1.15 | 0.24 | 0.06 | 20.9 |
| MAC | 39 | $0.8-2.1$ | 1.31 | 0.27 | 0.04 | 20.3 |
| FEST | 14 | $1.0-2.2$ | 1.44 | 0.28 | 0.07 | 19.2 |
| LIMVO | 16 | $0.8-1.7$ | 1.24 | 0.27 | 0.07 | 22.1 |
| HAY | 7 | $0.9-1.4$ | 1.26 | 0.17 | 0.06 | 13.7 |
| MICRO | 26 | $0.9-1.9$ | 1.33 | 0.28 | 0.06 | 21.3 |

Comen
lem^{2}

CHARACTER	TAXON	N	RANGE	\bar{X}	S.D.	S.E. \bar{X}	C.V.
\#4	PACHY	94	1.2-3.2	2.23	0.43	0.04	19.4
	STUB	17	1.6-2.7	2.15	0.31	0.07	14.3
	MAC	39	1.6-3.6	2.52	0.46	0.07	18.1
	FEST	14	2.0-4.7	2.71	0.67	0.18	24.6
	LIMNO	16	1.6-3.3	2.66	0.43	0.11	16.0
	HAY	7	2.1-3.0	2.56	0.31	0.12	12.1
	MICRO	26	1.9-3.1	2.45	0.32	0.06	13.1
\#5	PACHY	94	2.0-6.0	3.56	0.87	0.09	24.5
	STUB	17	2.0-5.0	3.41	0.71	0.17	20.9
	MAC	39	2.0-6.0	4.05	0.97	0.16	24.0
	FEST	14	3.0-5.0	3.86	0.77	0.21	20.0
	LIMNO	16	3.0-5.0	4.13	0.72	0.18	17.4
	HAY	7	3.0-6.0	4.43	1.27	0.48	28.7
	MICRO	26	3.0-7.0	3.77	0.91	0.18	24.1
\#6	PACHY	94	1.5-4.1	2.84	0.60	0.06	21.1
	STUB	17	2.1-3.6	2.69	0.40	0.10	14.8
	MAC	39	1.6-3.9	2.80	0.51	0.08	18.3
	FEST	14	2.3-3.9	2.98	0.45	0.12	15.1
	LIMNO	16	2.0-4.1	2.88	0.62	0.15	21.5
	HAY	7	1.6-3.3	2.70	0.54	0.20	20.1
	MICRO	26	2.1-4.1	3.02	0.50	0.10	16.6

CHARACTER	TAXON	N	RANGE	\bar{X}	S.D.	S.E. \bar{X}	C.V.
\#7	PACHY	94	$6.5-26.4$	13.45	4.38	0.45	32.6
	STUB	17	$7.1-18.9$	12.59	3.37	0.82	26.7
	MAC	39	$4.0-17.9$	9.05	3.07	0.49	34.0
	FEST	14	$8.4-22.9$	14.26	4.65	1.24	32.6
	LIMNO	16	$6.3-16.1$	12.29	2.65	0.66	21.6
	HAY	7	$5.5-10.3$	8.06	1.79	0.68	22.2
	MICRO	26	$6.2-21.0$	12.94	4.10	0.80	31.7
	\#ACHY	94	$1.2-2.5$	2.03	0.24	0.03	12.1
	STUB	17	$2.0-2.5$	2.19	0.23	0.06	10.4
	MAC	39	$1.7-2.5$	2.01	0.18	0.03	9.1
	FEST	14	$2.0-3.0$	2.32	0.34	0.09	14.5
	LIMNO	16	$2.0-2.8$	2.53	0.22	0.05	8.6
	HAY	7	$2.8-3.0$	2.94	0.10	0.04	3.3
	MICRO	26	$2.5-3.0$	2.63	0.19	0.04	7.4
	PACHY	94	$10.8-25.8$	15.63	2.47	0.25	15.8
	STUB	17	$7.8-15.2$	12.07	1.89	0.46	15.7
	MAC	39	$9.8-20.3$	15.35	2.70	0.43	17.6
	FEST	14	$13.2-20.0$	16.02	2.17	0.58	13.6
	LIMNO	16	$11.3-18.3$	14.21	2.13	0.53	15.0
	$7 A$	$12.3-20.5$	15.77	2.64	1.00	16.8	
	MICRO	26	$11.2-17.5$	14.20	1.49	0.29	10.5

CHARACTER	TAXON	N	RANGE	\bar{X}	S.D.	S.E. \bar{X}	C.V.
\#10	PACHY	94	$8.7-15.8$	11.82	1.54	0.16	13.0
	STUB	17	$7.7-13.0$	10.57	1.50	0.36	14.1
	MAC	39	$8.2-18.3$	12.32	1.88	0.30	15.2
	FEST	14	$12.3-16.8$	14.22	1.47	0.39	10.3
	LIMNO	16	$9.7-17.3$	12.71	2.11	0.53	16.6
	HAY	7	$13.0-17.8$	15.10	1.86	0.70	12.3
	MICRO	26	$10.5-15.5$	12.91	1.29	0.25	10.0
	PACHY	94	$1.0-7.0$	2.07	0.82	0.08	39.5
	STUB	17	$0.7-2.0$	1.31	0.32	0.08	24.7
	MAC	39	$1.3-3.7$	2.04	0.61	0.10	30.0
	MEST	14	$1.0-2.0$	1.51	0.35	0.09	23.0
	HIMNO	16	$1.1-3.0$	1.67	0.53	0.13	31.6
	HAY	76	$1.1-3.4$	1.66	0.78	0.29	47.1

CHARACTER	TAXON	N	RANGE	\bar{X}	S.D.	S.E. \bar{X}	C.V.
\#13	PACHY	94	$3.0-7.3$	5.48	0.91	0.09	16.6
	STUB	17	$3.3-6.7$	5.04	1.17	0.28	23.2
	MAC	39	$3.0-8.0$	5.37	0.96	0.15	17.9
	FEST	14	$5.7-10.0$	7.28	1.42	0.38	19.6
	LIMNO	16	$4.3-8.5$	6.59	1.17	0.29	17.8
	HAY	7	$5.0-7.0$	6.14	0.75	0.29	12.3
	MICRO	26	$4.0-8.7$	6.55	1.03	0.20	15.8
	PACHY	94	$4.7-9.0$	6.68	0.81	0.08	12.1
	STUB	17	$4.2-7.5$	5.92	0.81	0.20	13.6
	MAC	39	$5.7-10.5$	7.34	1.03	0.16	14.0
	FEST	14	$6.5-9.3$	7.51	0.83	0.22	11.1
	LIMNO	16	$5.0-8.2$	6.69	0.91	0.23	13.5
	HAY	7	$6.8-9.7$	8.47	1.03	0.39	12.2
	MICRO	26	$5.5-7.5$	6.53	0.59	0.12	9.0
	PACHY	94	$4.2-8.0$	5.82	0.64	0.07	11.0
	STUB	17	$4.2-5.7$	4.94	0.48	0.12	9.7
	MAC	39	$3.3-6.8$	5.21	0.65	0.10	12.4
	FEST	14	$5.2-6.3$	5.67	0.37	0.10	6.6
LIMNO	16	$4.3-6.5$	5.33	0.67	0.17	12.7	
	HAY	7	$4.8-7.7$	6.36	1.05	0.40	16.5
	MICRO	26	$4.7-7.0$	5.62	0.53	0.10	9.5

CHARACTER	TAXON	N	RANGE	\bar{X}	S.D.	S.E. \bar{X}	C.V.
\#16	PACHY	94	$2.0-3.0$	2.51	0.36	0.04	14.5
	STUB	17	$2.0-2.5$	2.21	0.25	0.06	11.5
	MAC	39	$1.5-2.0$	1.99	0.08	0.01	4.0
	FEST	14	$2.0-2.5$	2.25	0.26	0.08	11.5
	LIMNO	16	$2.0-2.5$	2.22	0.26	0.06	11.6
	HAY	7	2.0	2.00	--	--	--
	MICRO	26	$2.0-2.5$	2.27	0.25	0.05	11.2

\#17 | PACHY | 94 | $2.7-4.3$ | 3.28 | 0.32 | 0.03 | 9.8 | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| STUB | 17 | $2.4-3.2$ | 2.75 | 0.21 | 0.05 | 7.7 | |
| MAC | 39 | $2.7-4.0$ | 3.24 | 0.26 | 0.04 | 7.9 | |
| FEST | 14 | $2.5-3.5$ | 2.90 | 0.25 | 0.07 | 8.7 | |
| LIMNO | 16 | $2.4-3.5$ | 2.80 | 0.25 | 0.06 | 8.9 | |
| HAY | 7 | $3.0-4.8$ | 3.74 | 0.62 | 0.23 | 16.6 | |
| | | 26 | $2.4-3.2$ | 2.78 | 0.20 | 0.04 | 7.3 |

\#18	PACHY	94	$1.3-1.9$	1.50	0.11	0.01	7.3
	STUB	17	$1.3-1.9$	1.51	0.16	0.04	10.4
MAC	39	$1.1-1.5$	1.32	0.11	0.02	8.2	
FEST	14	$1.0-1.5$	1.19	0.21	0.06	17.5	
LIMNO	16	$1.0-1.7$	1.22	0.24	0.06	19.7	
	$7 A Y$	7	$1.3-1.7$	1.43	0.14	0.05	9.7
	MICRO	26	$0.9-1.3$	1.07	0.11	0.02	9.9

CHARACTER	TAXON	N	RANGE	\bar{X}	S.D.	S.E. \bar{X}	C.V.
\#19	PACHY	94	$1.0-2.7$	1.48	0.43	0.04	29.0
	STUB	17	$1.0-2.3$	1.51	0.47	0.11	31.2
	MAC	39	$1.0-3.0$	2.00	0.59	0.09	29.8
	FEST	14	$1.0-2.3$	1.23	0.41	0.11	33.7
	LIMNO	16	$1.0-1.3$	1.06	0.12	0.03	11.5
	HAY	7	$1.0-2.0$	1.43	0.53	0.20	37.4
	MICRO	26	$1.0-1.3$	1.01	0.06	0.01	5.8

\#20 | PACHY | 94 | $1.0-3.0$ | 1.95 | 0.56 | 0.06 | 28.8 | |
| :--- | :--- | ---: | ---: | :--- | :--- | :--- | :--- |
| | STUB | 17 | $1.0-3.0$ | 1.68 | 0.55 | 0.13 | 32.7 |
| MAC | 39 | $2.0-3.0$ | 2.74 | 0.38 | 0.06 | 14.0 | |
| | FEST | 14 | $1.0-3.0$ | 1.76 | 0.70 | 0.19 | 39.7 |
| LIMNO | 16 | $1.0-3.0$ | 1.58 | 0.68 | 0.17 | 42.7 | |
| | $7 A Y$ | 7 | $1.0-2.0$ | 1.40 | 0.45 | 0.17 | 32.2 |
| | MICRO | 26 | $1.0-2.3$ | 1.48 | 0.45 | 0.09 | 30.1 |

$\begin{array}{lllllll}\text { \#21 PACHY } 82 & 1.0-2.1 & 1.64 & 0.21 & 0.02 & 12.9\end{array}$
$\begin{array}{lllllll}\text { STUB } & 17 & 1.0-2.0 & 1.53 & 0.28 & 0.07 & 18.3\end{array}$
$\begin{array}{lllllll}M A C & 39 & 1.4-2.3 & 1.77 & 0.23 & 0.04 & 12.9\end{array}$
$\begin{array}{llllll}\text { FEST } & 14 & 0.9-1.9 & 1.34 & 0.35 & 0.09 \\ 25.9\end{array}$
$\begin{array}{lllllll}\text { LIMNO } & 15 & 1.0-1.5 & 1.19 & 0.19 & 0.05 & 16.3\end{array}$

HAY	7	$1.5-1.9$	1.70	0.13	0.05	7.6
MICRO	26	$0.9-1.4$	1.17	0.16	0.03	13.5

 \qquad $+=$ \square
 18 12 \qquad 1
$=$
$1+$

I

\square \square

\square
5 B

I

4in
-
0
+$=$

$$
\sqrt{2}
$$

=

(1)
20

$14=1$ \qquad

48$1 \times$ -
\qquad
$-$
\qquad -

e
$+$

CHARACTER	TAXON	N	RANGE	\bar{X}	S.D.	S.E. \bar{X}	C.V.
\#22	PACHY	94	$2.0-3.0$	2.01	0.10	0.01	5.1
	STUB	17	2.0	2.00	--	--	--
	MAC	39	$1.0-3.0$	2.15	0.59	0.09	27.2
	FEST	14	$1.0-3.0$	1.50	0.76	0.20	50.6
	LIMNO	16	$1.0-2.0$	1.56	0.51	0.13	32.8
	HAY	7	1.0	1.00	--	--	--
	MICRO	26	$1.0-2.0$	1.23	0.43	0.08	34.9

\#23
PACHY 94 3.3-5.0
3.95
0.36
0.04
9.2

STUB 17
3.51
0.29
0.07
8.2

MAC 39
3.5-4.4
4.04
0.25
0.04
6.3
$\begin{array}{lllllll}\text { FEST } & 14 & 3.5-4.4 & 3.96 & 0.29 & 0.08 & 7.2\end{array}$
LIMNO 16 2.9-4.3
3.74
0.32
0.08
8.5

HAY 7
4.5-6.5
5.36
0.77
$0.29 \quad 14.3$

MICRO 26
3.2-4.7
3.82
0.35
0.07
9.2
\#24 PACHY 94 1.3-2.2
1.68
0.18
$0.02 \quad 10.6$
STUB $17 \quad 1.3-2.0$
1.54
0.17
0.04
10.8
$M A C \quad 39$
9 1.4-2.0
1.73
0.16
0.03
9.3

FEST 14 1.4-2.3
1.74
0.21
0.06
12.3

LIMNO 16 1.2-2.1
1.58
0.19
0.05
11.8

HAY
7
1.7-2.4
1.94
0.29
$0.11 \quad 15.1$

MICRO 26 1.3-1.8
1.50
0.12
0.02
8.1

CHARACTER	TAXON	N	RANGE	\bar{X}	S.D.	S.E. \bar{X}	C.V.
\#25	PACHY	94	2.0-3.0	2.03	0.14	0.01	7.1
	STUB	17	1.7-2.0	1.98	0.07	0.02	3.7
	MAC	39	1.5-2.3	1.99	0.09	0.02	4.7
	FEST	14	2.0-3.0	2.37	0.35	0.09	14.7
	LIMNO	16	2.0-3.0	2.38	0.31	0.08	13.1
	HAY	7	2.0-2.3	2.09	0.15	0.06	7.0
	MICRO	26	2.0-3.0	2.32	0.32	0.06	13.6
\#26	PACHY	94	0.1-0.3	0.22	0.05	0.01	22.5
	STUB	17	0.1-0.2	0.18	0.04	0.01	24.8
	MAC	39	0.2-0.4	0.28	0.04	0.01	15.2
	FEST	14	0.2-0.4	0.28	0.06	0.02	20.8
	LIMNO	16	0.1-0.3	0.23	0.06	0.02	26.0
	HAY	7	0.3-0.4	0.33	0.05	0.02	15.0
	MICRO	26	0.2-0.3	0.23	0.05	0.01	20.4
\#27	PACHY	94	2.0-3.0	2.15	0.27	0.03	12.4
	STUB	17	2.0-3.0	2.09	0.25	0.06	12.0
	MAC	39	2.0-3.0	2.32	0.32	0.05	14.0
	FEST	14	2.0-2.3	2.06	0.13	0.03	6.2
	LIMNO	16	2.0-3.0	2.16	0.30	0.07	13.8
	HAY	7	. 2.0	2.00	--	--	--
	MICRO	26	2.0-2.3	2.06	0.12	0.02	5.9

CHARACTER	TAXON	N	RANGE	\bar{X}	S.D.	S.E. \bar{X}	C.V.
\#28	PACHY	94	$5.7-10.7$	7.77	0.94	0.10	12.1
	STUB	17	$6.3-8.3$	7.42	0.54	0.13	7.2
	MAC	39	$7.0-10.7$	8.80	0.88	0.14	10.0
	FEST	14	$6.0-9.7$	7.63	1.12	0.30	14.7
	LIMNO	16	$6.0-9.3$	7.96	1.07	0.27	13.5
	HAY	7	$7.0-9.0$	8.09	0.77	0.29	9.5
	MICRO	26	$6.0-10.0$	7.94	0.92	0.18	11.6

\#29

PACHY	94	$1.0-3.0$	2.56	0.53	0.05	20.7
STUB	17	$1.7-3.0$	2.53	0.44	0.11	17.6
MAC	39	$1.3-3.0$	2.63	0.48	0.08	18.3
FEST	14	$1.0-2.7$	1.49	0.51	0.14	34.4
LIMNO	16	$1.0-3.0$	1.64	0.76	0.19	46.3
HAY	7	$1.0-3.0$	2.21	0.67	0.25	30.2
MICRO	26	$1.0-3.0$	1.80	0.51	0.10	28.3

PACHY 94 0.0-7.7
$4.71 \quad 1.39$
$0.14 \quad 29.5$
STUB 17 1.7-5.0
$\begin{array}{llll}3.05 & 1.00 & 0.24 & 32.4\end{array}$
MAC 39 3.3-7.3
$5.59 \quad 0.96$
$0.15 \quad 17.2$
FEST 14 2.0-7.3
5.24
1.57
$0.42 \quad 30.0$
LIMNO 16 4.7-7.7
$6.00 \quad 0.84$
$0.21 \quad 14.1$

HAY $7 \quad 3.0-6.0$
4.74
1.11
$0.42 \quad 23.5$
MICRO 26 1.3-7.7
$4.82 \quad 1.57$
0.31
32.6
保

CHARACTER	TAXON	N	RANGE	$\bar{\chi}$	S.D.	S.E. \bar{X}	C.V.
\#31	PACHY	93	1.0-3.0	1.77	0.76	0.08	43.6
	STUB	17	1.0-3.0	2.47	0.59	0.14	23.9
	MAC	39	1.0-3.0	2.25	0.70	0.11	31.0
	$F E S T$	14	1.0-2.3	1.31	0.48	0.13	36.4
	LIMNO	16	1.0-3.0	1.54	0.52	0.13	33.6
	HAY	7	1.0-3.0	1.47	0.83	0.31	56.4
	MICRO	26	1.0-3.0	1.41	0.64	0.13	45.3
\#32	PACHY	93	1.0-3.0	1.24	0.47	0.05	38.1
	STUB	17	1.0-3.0	1.91	0.83	0.20	43.8
	MAC	39	1.0-2.3	1.20	0.36	0.06	30.0
	FEST	14	1.0-1.7	1.24	0.28	0.08	23.0
	LIMNO	16	1.0-1.3	1.06	0.12	0.03	11.5
	HAY	7	1.0-3.0	1.49	0.74	0.28	50.1
	MICRO	26	1.0-2.0	1.10	0.27	0.05	24.2
\#33	PACHY	94	0.0-1.0	0.14	0.22	0.02	162
	STUB	17	0.0-0.7	0.18	0.28	0.07	156
	MAC	38	0.0-1.0	0.14	0.29	0.05	207
	FEST	14	0.0-1.0	0.55	0.43	0.12	78.4
	LIMNO	16	0.0-1.0	0.38	0.39	0.10	103
	HAY	7	0.0-0.5	0.11	0.20	0.08	178
	MICRO	26	0.0-0.7	0.11	0.21	0.04	188

\#HARACTER	TAXON	N	RANGE	\bar{X}	S.D.	S.E. \bar{X}	C.V.
\#34	PACHY	94	$1.2-2.3$	1.53	0.19	0.02	12.5
	STUB	17	$1.1-1.7$	1.39	0.16	0.04	11.2
	MAC	39	$1.3-1.8$	1.54	0.11	0.02	7.4
	FEST	14	$1.3-2.1$	1.90	0.21	0.06	10.9
	LIMNO	16	$1.3-2.1$	1.77	0.19	0.05	10.5
	HAY	7	$1.8-3.1$	2.33	0.45	0.17	19.3
	MICRO	26	$1.5-2.5$	1.84	0.22	0.04	12.1

\#35	PACHY	94	$0.3-1.2$	0.62	0.16	0.02	25.4
STUB	17	$0.5-1.1$	0.74	0.17	0.04	22.5	
MAC	39	$0.4-0.9$	0.65	0.11	0.02	17.6	
FEST	14	$0.3-0.7$	0.51	0.11	0.03	22.5	
LIMNO	16	$0.2-0.8$	0.46	0.17	0.04	36.1	
HAY	7	$0.3-0.6$	0.46	0.10	0.04	21.4	
MICRO	26	$0.3-0.8$	0.48	0.12	0.02	24.7	

\#36	PACHY	94	$1.0-2.7$	1.20	0.37	0.04	30.6
STUB	17	$1.0-2.3$	1.40	0.43	0.11	30.9	
MAC	39	$2.0-3.0$	2.95	0.18	0.03	6.2	
FEST	14	$1.0-1.3$	1.02	0.08	0.02	7.9	
LIMNO	16	$1.0-1.7$	1.12	0.20	0.05	18.2	
HAY	7	$1.0-2.0$	1.14	0.38	0.14	33.1	
MICRO	26	$1.0-1.3$	1.01	0.06	0.01	5.8	

CHARACTER	TAXON	N	RANGE	\bar{X}	S.D.	S.E. \bar{X}	C.V.
\#37	PACHY	94	$1.0-2.7$	1.26	0.37	0.04	29.3
	STUB	17	$1.0-2.3$	1.50	0.40	0.10	26.6
	MAC	39	$1.0-2.0$	1.28	0.34	0.05	26.4
	FEST	14	$1.0-3.3$	1.74	0.57	0.15	32.6
	LIMNO	16	$1.0-2.7$	1.63	0.49	0.12	30.4
	HAY	7	$1.0-2.0$	1.41	0.41	0.16	29.3
	MICRO	26	$1.0-3.0$	1.77	0.61	0.12	34.6

$\begin{array}{llllllll}\# & \text { \#38 } & \text { PACHY } & 94 & 2.0-3.0 & 2.73 & 0.28 & 0.03 \\ 10.3\end{array}$

STUB	17	$2.2-2.8$	2.59	0.17	0.04	6.4

$\begin{array}{lllllll}M A C & 39 & 2.2-3.0 & 2.80 & 0.20 & 0.03 & 7.2\end{array}$
$\begin{array}{lllllll}\text { FEST } & 14 & 1.5-2.7 & 2.22 & 0.35 & 0.09 & 15.7\end{array}$
$\begin{array}{lllllll}\text { LIMNO } & 16 & 2.0-3.0 & 2.51 & 0.26 & 0.06 & 10.3\end{array}$

HAY	7	$1.2-2.3$	1.79	0.39	0.15	21.8

$\begin{array}{lllllll}M I C R O & 26 & 1.8-2.8 & 2.45 & 0.22 & 0.04 & 8.8\end{array}$

\#39 | PACHY | 94 | $1.4-1.8$ | 1.52 | 0.09 | 0.01 | 5.7 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| STUB | 17 | $1.4-1.6$ | 1.49 | 0.08 | 0.02 | 5.3 | |
| MAC | 39 | $1.4-1.7$ | 1.51 | 0.07 | 0.01 | 4.6 | |
| FEST | 14 | $1.2-1.4$ | 1.33 | 0.07 | 0.02 | 5.5 | |
| LIMNO | 16 | $1.1-1.5$ | 1.29 | 0.11 | 0.03 | 8.7 | |
| HAY | 7 | $1.4-1.7$ | 1.50 | 0.10 | 0.04 | 6.7 | |
| | MICRO | 26 | $1.1-1.4$ | 1.24 | 0.09 | 0.02 | 7.6 |

?

(2)

CHARACTER	TAXON	N	RANGE	\bar{X}	S.D.	S.E. \bar{X}	C.V.
\#40	PACHY	94	0.9-1.3	1.07	0.09	0.01	8.3
	STUB	17	0.9-1.1	0.98	0.05	0.01	5.4
	MAC	39	0.9-1.1	1.00	0.05	0.01	5.5
	FEST	14	0.8-1.0	0.91	0.06	0.02	6.8
	LIMNO	16	0.7-1.0	0.87	0.09	0.02	10.9
	HAY	7	0.8-1.3	1.00	0.17	0.06	18.0
	MICRO	26	0.7-1.0	0.84	0.06	0.01	7.6
\#41	PACHY	94	0.3-0.5	0.41	0.05	0.01	13.3
	STUB	17	0.3-0.5	0.37	0.07	0.02	18.5
	MAC	39	0.4-0.6	0.52	0.05	0.01	9.8
	$F E S T$	14	0.3-0.5	0.39	0.05	0.01	13.9
	LIMNO	16	0.3-0.4	0.36	0.05	0.01	14.4
	HAY	7	0.5-0.8	0.61	0.11	0.04	17.4
	MICRO	26	0.3-0.5	0.34	0.06	0.01	18.8
\#42	PACHY	94	0.13-0.39	0.25	0.06	0.01	21.9
	STUB	17	0.17-0.39	0.24	0.06	0.02	25.4
	MAC	39	0.13-0.42	0.23	0.05	0.01	22.9
	FEST	14	0.17-0.36	0.24	0.05	0.01	21.2
	LIMNO	16	0.14-0.32	0.22	0.04	0.01	16.2
	HAY	7	0.22-0.30	0.26	0.03	0.01	12.1
	MICRO	26	$0.15-0.34$	0.24	0.05	0.01	19.7

CHARACTER	TAXON	N	RANGE	\bar{X}	S.D.	S.E. \bar{X}	C.V.
\#43	PACHY	94	$0.31-0.47$	0.39	0.03	$0.00+$	7.5
	STUB	17	$0.33-0.47$	0.40	0.04	0.01	9.4
	MAC	39	$0.34-0.44$	0.38	0.02	$0.00+$	6.1
	FEST	14	$0.37-0.51$	0.48	0.03	0.01	7.2
	LIMNO	16	$0.44-0.50$	0.47	0.02	0.01	4.3
	HAY	7	$0.40-0.48$	0.43	0.04	0.01	8.2
	MICRO	26	$0.43-0.53$	0.48	0.02	$0.00+$	4.9

$\begin{array}{llllllll}\# 44 & \text { PACHY } 94 & 0.19-0.67 & 0.41 & 0.09 & 0.01 & 21.4\end{array}$
$\begin{array}{lllllll}\text { STUB } & 17 & 0.40-0.79 & 0.53 & 0.11 & 0.03 & 21.4\end{array}$
$\begin{array}{lllllll}M A C & 39 & 0.27-0.56 & 0.42 & 0.07 & 0.01 & 15.6\end{array}$
$\begin{array}{lllllll}\text { FEST } & 14 & 0.16-0.46 & 0.27 & 0.08 & 0.02 & 29.5\end{array}$
$\begin{array}{lllllll}\text { LIMNO } & 16 & 0.12-0.42 & 0.26 & 0.08 & 0.02 & 31.5\end{array}$
HAY
7 0.12-0.28
$0.10 \quad 0.06$
$0.02 \quad 30.3$

MICRO 26
0.16-0.40
0.26
0.06
0.01
22.3
\#45
PACHY 94
0.34-0.80
0.55
0.08
0.0115 .3

STUB
17
0.60
0.12
0.03
19.4

MAC
39
0.36-0.75
0.52
0.08
$0.01 \quad 15.7$
$\begin{array}{lllllll}\text { FEST } & 14 & 0.41-0.57 & 0.50 & 0.05 & 0.01 & 10.6\end{array}$
$\begin{array}{lllllll}\text { LIMNO } & 16 & 0.40-0.65 & 0.52 & 0.06 & 0.01 & 11.5\end{array}$
HAY
$\begin{array}{lllllll}\text { MICRO } & 26 & 0.37-0.68 & 0.52 & 0.08 & 0.02 & 15.3\end{array}$
$7 \quad 0.30-0.42$
$0.37 \quad 0.04$
$0.02 \quad 11.0$

CHARACTER	TAXON	N	RANGE	\bar{X}	S.D.	S.E. \bar{X}	C.V.
\#46	PACHY	94	$0.69-0.97$	0.83	0.05	0.01	6.5
	STUB	17	$0.72-0.87$	0.79	0.05	0.01	6.3
	MAC	39	$0.68-0.95$	0.80	0.06	0.01	7.1
	FEST	14	$0.60-0.91$	0.74	0.08	0.02	11.0
	LIMNO	16	$0.65-0.88$	0.75	0.06	0.02	8.0
	HAY	7	$0.64-0.74$	0.70	0.04	0.02	6.4
	MICRO	26	$0.65-0.85$	0.73	0.04	0.01	6.1
	PACHY	94	$0.18-0.34$	0.25	0.03	$0.00+$	12.9
	STUB	17	$0.22-0.33$	0.27	0.03	0.01	9.8
	MAC	39	$0.16-0.27$	0.21	0.03	$0.00+$	11.9
	FEST	14	$0.14-0.20$	0.18	0.02	0.01	11.3
	LIMNO	16	$0.16-0.24$	0.20	0.02	0.01	10.6
	HAY	7	$0.12-0.18$	0.14	0.02	0.01	14.7

APPENDIX 6. CLUSTER MEMBERSHIP FOR TAXMAP ANAYLSES OF OTU's

MAP CLUSTER ANALYSIS:-CLUSTER ANALYSIS ON OTU'S, ALL CHARACTERS, LOG WEIGHTED
(MINIMUM NUCLEUS 0.166 , MAXIMUM DROP 0.0183 BOTH ARE 110% OF NORMAL) ATTRIBUTES WEIGHTED BY CALCULATED INFORMATION CAPACITY

CLUS TER NO.	OTU	DIST BEST LINK	OTU BEST LINK	$\begin{array}{cc} \text { AVGOF } & \text { DROP } \\ \text { NEW } & \text { IN } \\ \text { LINKS } & \text { AVG. } \end{array}$	$\begin{aligned} & \text { FAR } \\ & \text { OTU } \end{aligned}$	$\begin{aligned} & \text { DIST } \\ & \text { FAR } \\ & \text { OTU } \end{aligned}$	FLAG	Name of	OTU
1	166							PACHYEO3	
	183	0.07						PACHYJO1	
	165	0.08	166	0.0910 .019	183	0. 10		PACHYEO2	
	144	0.09	165	0.1110 .020	183	0. 13		PACHY 18	
	171	0.09	165	0.108-0.003	166	0. 12		PACHYEO8	
	169	0.10	183	0.1140 .006	171	0. 12		PACHYEO6	
	1	0.10	166	0.1180 .004	169	0. 15		TYPEO 1	
	153	0.10	169	$0.130 \quad 0.012$	1	0. 16		PACHYBO5	
	146	0.10	171	0.1410 .011	153	0. 16		PACHY 20	
	137	0.09	146	0.1440 .003	1	0.17		PACHYO9	
	170	0.09	137	0.131-0.012	1	0.16		PACHYEO7	
	136	0.10	137	0.127-0.004	1	0. 15		PACHYO8	
	135	0.08	136	0.1660 .039	183	0.20	1000	PACHYO6	
2	17							MICROO7	
	29	0.07						MICROCO2	
	21	0.08	17	0.1030 .030	29	0.12		MICROAO4	
	25	0.08	21	0.1050 .002	29	0.13		MICROBO2	
	73	0.08	25	0.1140 .009	29	0.15		FESTAO6	
	53	0.07	73	0.109-0.005	29	0.15		LIMNOBO6	
	71	0.09	73	0.1160 .007	29	0.15		FESTAO4	
	19	0.09	53	0.106-0.010	29	0.12		MICROAO2	
	12	0.09	19	0.1300 .023	29	0.16		MICROO2	
	64	0.09	73	0.125-0.004	29	0.17		FESTO4	
	72	0.09	25	0.112-0.013	71	0.13		FESTAO5	
	18	0.08	72	0.1230 .011	64	0. 14		MICROAO 1	
	16	0. 10	21	0.1270 .004	64	0. 15		MICROOG	
	60	0.08	16	0.1300 .002	29	0. 15		LIMNOCO4	
	56	0.09	16	0.1320 .002	12	0.16		LIMNOBO9	
	15	0.09	16	0.115-0.017	64	0. 14		MICROO5	
	13	0.10	15	0.1280 .014	71	0.15		MICROO3	
	54	0. 10	13	0.1520 .024	71	0.19		LIMNOBO7	
	51	0.10	18	0.134-0.018	54	0. 19		LIMNOBO4	
	22	0.09	51	0.1640 .029	54	0.25		MICROAOS	
	70	0.10	25	0.136-0.028	22	0. 19		FESTAO3	
	27	0. 10	71	0.1360 .000	54	0. 18		MICROBO4	
	35	0.08	27	0.1530 .017	54	0.21		MICRODO 1	
	32	0. 10	13	0.130-0.023		0.19		MICROCO5	
	26	0. 10	71	0.1380 .007	54	0.21		MICROBO3	
	28	0. 10	19	0.123-0.015	22	0. 16		MICROCO 1	
	61	0. 10	28	0.1450 .022	22	0.21		LIMNOCO5	
	69	0.10	29	0.139-0.005	22	0. 19		FESTAO2	
	47	0.10	19	0.1470 .008	22	0.20		LIMNOAO2	
	23	0. 11	21	0.134-0.013	54	0.20		MICROAO6	
	20	0.11	56	0.1760 .042	29	0.25	1000	MICROAO3	
3	$\begin{array}{r} 80 \\ 108 \end{array}$	0.08						$\begin{aligned} & \text { MACO6 } \\ & \text { MACB } 14 \end{aligned}$	

97	0.09	80	0.091	0.015	108	0.09	MACBO3
75	0.08	97	0.097	0.006	108	0.11	MACO1
105	0.09	75	0.105	0.008	108	0.11	MACB11
101	0.09	105	0.108	0.004	108	0.13	MACBO7
89	0.09	105	0.121	0.013	80	0.13	MAC15
107	0.10	75	$0.116-0.005$	89	0.15	MACB13	
81	0.10	101	0.118	0.002	89	0.13	MACO7
103	0.08	81	0.125	0.007	75	0.14	MACBO9
76	0.10	103	$0.122-0.003$	75	0.14	MACO2	
87	0.10	105	0.132	0.010	103	0.16	MAC13
82	0.08	87	0.152	0.020	76	0.18	MACO8
79	0.10	103	$0.133-0.018$	82	0.18	MACO5	
111	0.10	97	$0.130-0.003$	82	0.17	MACB17	
77	0.10	97	0.131	0.001	79	0.16	MACO3
98	0.08	77	0.141	0.010	79	0.18	MACBO4
95	0.10	98	0.166	0.024	79	0.21	1000

------- 950.10 980.1660 .024 79 0.21 1000 МАСВО
-
174 P. 08 PACHYFO3
$1730.11 \quad 1720.1280 .049 \quad 1740.14$ PACHYFO2
$146 \quad 0.12 \quad 1720.130 \quad 0.002 \quad 1730.14 \quad 4$ PACHY20 LINK TO CLUSTER -1
(annem

\cdots

$=$ ล上าำ
$=$

	1440.12 LINK TO	$138 \quad 0.1650 .015$ CLUSTER - 1	$44 \quad 0.19$	4	PACHY 18
10	$\begin{array}{ll} 50 \\ 55 & 0.09 \end{array}$				LIMNOBO3 LIMNOBO8
	$\begin{aligned} & 720.11 \\ & \text { LINK TO } \end{aligned}$	$50 \quad 0.122 \quad 0.031$ CLUSTER -2	550.13	4	festaos
11	$\begin{array}{rr} 2 & \\ 102 & 0.09 \\ 117 & 0.11 \end{array}$	1020.1210 .029	20.14		TYPEO2 MACBO8 STUBO4
	$\begin{aligned} & 146 \text { O. } 10 \\ & \text { LINK TO } \end{aligned}$	1170.1280 .007 CLUSTER -1	20.14	4	PACHY2O
12	$\begin{array}{ll} 122 & \\ 127 & 0.09 \\ 118 & 0.09 \end{array}$	$1270.1150 .022$	1220.14		STUBAO 1 STUBAO6 STUBO5
	$\begin{aligned} & 117 \text { O. } 11 \\ & \text { LINK TO } \end{aligned}$	$1270.1300 .015$ CLUSTER -11	1180.15	4	STUBO4
13	$\begin{array}{ll} 157 \\ 1620.09 \end{array}$				PACHYB11 PACHYDO4
	$\begin{aligned} & 142 \text { O. } 10 \\ & \text { LINK TO } \end{aligned}$	$157 \quad 0.105 \quad 0.012$ CLUSTER -5	1620.11	4	PACHY 15
14	$\begin{aligned} & 156 \\ & 1820.10 \end{aligned}$				PACHYBO8 PACHYIO1
	$\begin{aligned} & 137 \text { O. } 10 \\ & \text { LINK TO } \end{aligned}$	$\begin{aligned} & 156 \text { O. } 1070.011 \\ & \text { CLUSTER }-1 \end{aligned}$	1820.11	4	PACHYO9
15	$\begin{aligned} & 151 \\ & 190 \quad 0.10 \end{aligned}$				PACHYBO2 PACHYK 10
	$\begin{aligned} & 131 \text { O. } 10 \\ & \text { LINK TO } \end{aligned}$	1900.1190 .017 CLUSTER -5	1510.13	4	PACHYO 1
16	$\begin{array}{ll} 96 \\ 99 & 0.10 \end{array}$				MACBO2 MACBO5
	1050.10 LINK TO	960.1160 .014 CLUSTER -3	990.13	4	MACB 11
17	$\begin{array}{ll} 121 \\ 148 & 0.10 \end{array}$				STUBO8 PACHYAO3
	1600.11 LINK TO	1210.1340 .031 CLUSTER -8	1480.16	4	PACHYCO3
18	$\begin{array}{rr} 14 & \\ 36 & 0.10 \\ 6 & 0.11 \end{array}$	$140.1280 .025$	360.15		MICROO4 MICRODO2 TYPEO6
	$\begin{aligned} & 73 \text { O. } 11 \\ & \text { LINK TO } \end{aligned}$	$140.123-0.005$ CLUSTER -2	60.14	4	FESTAOG

** NEEDED . GT . FOUND FOR NEXT OTU **
$970.12 \quad 110 \quad 0.250 \quad 0.120 \quad 68 \quad 0.46 \quad 1004$ MACBOЗ


```
        27 41 H2 0.13 HAYBO2
        42 0.13
        HAYBO3
        390.15 41 0.166 0.041 42 0.18 1000 HAYAO3
```



```
        190 0.13 139 0.138 0.013 129 0.15 4 PACHYK10
        LINK TO CLUSTER -15
    2949
        68 0. 13
        62 0.14 68 0.142 0.013 49 0.14
        200.14 62 0.142 0.000 49 0.15 MICROAO3
** NEEDED .GT. FOUND FOR NEXT OTU **
27 0.14 62 0.236 0.094 112 0.46 1004 MICROBO4 
    1 4 7 0 . 1 3 \quad 1 8 6 ~ 0 . 1 3 5 ~ 0 . 0 0 6 ~ 1 3 0 ~ 0 . 1 4 ~ 4 ~ P A C H Y A O 1 , ~
        LINK TO CLUSTER -25
    3133 MICROCO6
        34 0.13
    MI CROCO7
** NEEDED .GT. FOUND FOR NEXT OTU **
\begin{tabular}{|c|c|c|c|}
\hline 32 & \[
\begin{aligned}
& 114 \\
& 120 \quad 0.13
\end{aligned}
\] & & \begin{tabular}{l}
STUBO 1 \\
STUBO7
\end{tabular} \\
\hline & \[
\begin{aligned}
& 118 \text { O. } 13 \\
& \text { LINK TO }
\end{aligned}
\] & \[
120 \quad 0.147 \quad 0.018 \quad 114 \quad 0.16
\] CLUSTER - 12 & 4 STUBO5 \\
\hline 33 & \[
\begin{array}{ll}
66 \\
67 & 0.13
\end{array}
\] & & \[
\begin{aligned}
& \text { FESTO6 } \\
& \text { FESTO7 }
\end{aligned}
\] \\
\hline & 650.15 & \(670.1710 .041 \quad 660.19\) & O FESTO5 \\
\hline 34 & \[
\begin{array}{r}
92 \\
1090.13
\end{array}
\] & & MACAO2 MACB 15 \\
\hline
\end{tabular}
* * NEEDED .GT. FOUND FOR NEXT OTU **
\begin{tabular}{|c|c|c|c|c|c|}
\hline & 20.13 & \(1090.294 \quad 0.163\) & 680.46 & & TYPEO2 \\
\hline \multirow[t]{4}{*}{35} & \multicolumn{3}{|l|}{143} & & PACHY 17 \\
\hline & \multicolumn{3}{|l|}{1790.13} & & PACHYGO5 \\
\hline & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\(\begin{array}{lllllll}150 \text { O. } 13 & 143 & 0.133 & 0.001 & 179 & 0.13 \\ \text { LINK TO CLUSTER } & -6 & & \end{array}\)}} & 4 & PACHYBO 1 \\
\hline & & & & LINK TO CLUSTER -6 & \\
\hline \multirow[t]{2}{*}{36} & \multirow[t]{2}{*}{\[
\begin{array}{ll}
152 & \\
1610.13
\end{array}
\]} & & & & PACHYBO3 \\
\hline & & & & & PACHYDO 1 \\
\hline
\end{tabular}
```



```
    142 0.13 152 0.150 0.017 161 0.17 4 PACHY 15
        LINK TO CLUSTER -5
    M7---------------------------------------------------
        77 0.14 90 0.162 0.026 113 0.19 4 MACO3
        LINK TO CLUSTER -3
-----------------------------------------------------------------------
        134 0.14
        PACHYO4
        117 0.14 134 0.157 0.020 133 0.18 4 STUBO4
        LINK TO CLUSTER -11
    39 116 % 14 STUBO3 
        134 0.14 185 0.168 0.027 116 0.19 1004 PACHYO4
\begin{tabular}{|c|c|c|}
\hline 40 & 78 & MACO4 \\
\hline & 1000.14 & MACB06 \\
\hline
\end{tabular}
** NEEDED .GT. FOUND FOR NEXT OTU **
\begin{tabular}{rrrrrr}
99 & 0.14 & 78 & 0.301 & 0.157 & 188 \\
0. & 46 & 1004 MACBO5
\end{tabular}
4148 LIMNOBO1
            6 5 0 . 1 5 ~ F E S T O 5 ~
            67 0.15 65 0. 151 0.005 48 0.15 4 FESTO7
            LINK TO CLUSTER -33
        4 2 1 7 5 ~ P A C H Y G O 1
        180 0.15
    PACHYGO6
** NEEDED .GT. FOUND FOR NEXT OTU **
```



```
** NEEDED
GT. FOUND FOR NEXT OTU **
\begin{tabular}{|c|c|c|c|c|c|}
\hline 44 & \[
\begin{array}{ll}
24 \\
46 & 0.15
\end{array}
\] & & & & \begin{tabular}{l}
MICROBO1 \\
LIMNOAO1
\end{tabular} \\
\hline & \[
\begin{aligned}
& 320.15 \\
& \text { LINK TO }
\end{aligned}
\] & \[
\begin{aligned}
& 240.1520 .002 \\
& \text { CLUSTER }-2
\end{aligned}
\] & \(46 \quad 0.15\) & 4 & MICROCO5 \\
\hline 45 & \[
\begin{array}{ll}
39 & \\
40 & 0.15
\end{array}
\] & & & & HAYAOZ HAYBO 1 \\
\hline & \[
\begin{aligned}
& 530.15 \\
& \text { LINK TO }
\end{aligned}
\] & \[
\begin{aligned}
& 39 \text { O. } 1590.007 \\
& \text { CLUSTER }-2
\end{aligned}
\] & \[
40 \quad 0.17
\] & 4 & LIMNOBO6 \\
\hline 46 & 145 & & & & PACHY 19 \\
\hline
\end{tabular}
```


	$178 \quad 0.16$				PACHYGO4
	1770.16	$178 \quad 0.178 \quad 0.023$	1450.20	1004	PACHYGO3
47	$\begin{array}{ll} 184 \\ 187 & 0.16 \end{array}$				PACHYJO6 PACHYKO3
	$\begin{aligned} & 169 \text { O. } 16 \\ & \text { LINK TO } \end{aligned}$	$1840.157 \quad 0.001$ CLUSTER - 1	1870.16	4	PACHYEO6
48	$\begin{aligned} & 83 \\ & 840.16 \end{aligned}$				MACO9 MAC 10
	$\begin{aligned} & 139 \text { O. } 16 \\ & \text { LINK TO } \end{aligned}$	840.1710 .015 CLUSTER -28	$83 \quad 0.18$	4	PACHY 11
49	$\begin{aligned} & 155 \\ & 1880.16 \end{aligned}$				PACHYBO7 PACHYKOS
	1780.16	$1550.199 \quad 0.037$	1880.24	1004	PACHYGO4
50	$\begin{array}{r} 85 \\ 1040.16 \end{array}$				MAC 11 MACB 10
	$\begin{aligned} & 109 \text { O. } 16 \\ & \text { LINK TO } \end{aligned}$	$104 \quad 0.179 \quad 0.015$ CLUSTER - 34	$85 \quad 0.19$	4	MACB 15
51	$\begin{array}{ll} 37 & \\ 38 & 0.16 \end{array}$				HAYAO1 HAYAO2
	$\begin{gathered} 21 \text { O. } 17 \\ \text { LINK TO } \end{gathered}$	$\begin{aligned} & 380.1720 .008 \\ & \text { CLUSTER }-2 \end{aligned}$	$37 \quad 0.18$	4	MICROAO4

ISOLATED OTU'S (SINGLE MEMBER CLUSTERS)
CLUSTER OTU LABEL
524 TYPEO4
535 TYPEO5
547 TYPEO7
558 TYPEO8
569 TYPEO9
5743 HAYBO4
$58 \quad 74$ FESTAO7
5993 MACAO3
60101 MACBO7
61102 MACBO8
62112 MACCO 1
63125 STUBAO4
64141 PACHY 14
65167 PACHYEO4
66168 PACHYEO5
67181 PACHYG11

MAP CLUSTER ANALYSIS:-CLUSTER ANALYSIS ON OTU'S, REP CHARACTERS, LOG WEIGHTED
(MINIMUM NUCLEUS O.161, MAXIMUM DROP O.O198 BOTH ARE 110% OF NORMAL) ATTRIBUTES WEIGHTED BY CALCULATED INFORMATION CAPACITY

CLUS TER NO.	OTU NOS	$\begin{aligned} & \text { DIST } \\ & \text { BEST } \\ & \text { LINK } \end{aligned}$	OTU BEST LINK	AVGOF DROP NEW IN LINKS AVG.	$\begin{aligned} & \text { FAR } \\ & \text { OTU } \end{aligned}$	$\begin{aligned} & \text { DIST } \\ & \text { FAR } \\ & \text { OTU } \end{aligned}$	FLAG	NAME OF OTU
1	135							PACHYO6
	136	0.05						PACHYO8
	150	0.07	136	0.0700 .021	135	0.07		PACHYBO 1
	131	0.08	136	0.0960 .026	150	0.11		PACHYO1
	142	0.08	131	0.096-0.001	150	0.13		PACHY 15
	157	0.08	142	0.1010 .005	131	0. 13		PACHYB 11
	156	0.08	136	0.091-0.010	131	0. 11		PACHYBO8
	162	0.08	136	0.1050 .013	156	0.13		PACHYDO4
	137	0.08	156	0.104-0.000	157	0. 12		PACHYO9
	189	0.08	136	0.1120 .007	137	0. 16		PACHYKO6
	170	0.09	137	0.1210 .010	157	0. 15		PACHYEO7
	146	0.09	137	0.119-0.002	189	0. 14		PACHY20
	182	0.09	156	0.1230 .004	131	0.15		PACHYIO1
	164	0.09	142	0.120-0.004	146	0. 14		PACHYEO1
	132	0.09	136	0.111-0.009	170	0. 14		PACHYO2
	163	0.09	132	0.1350 .024	164	0.16		PACHYDO7
	172	0.10	146	0.1490 .014	182	0.18		PACHYFO1
	174	0.07	172	0.145-0.003	182	0.19		PACHYFO3
	143	0.10	136	0.132-0.014	172	0.17		PACHY 17
	171	0.10	146	0.1340 .002	182	0.17		PACHYEO8
	165	0.09	171	0.1400 .006	143	0.17		PACHYEO2
	166	0.09	165	0.140-0.000	143	0.17		PACHYEO3
	183	0.08	166	0.1420 .002	172	0.19		PACHYJO1
	1	0.10	165	0.1460 .004	157	0. 18		TYPEO1
	190	0.10	171	0.126-0.019	174	0.16		PACHYK 10
	158	0.10	171	0.1340 .008	163	0.18		PACHYB 12
	169	0.10	183	0.1390 .004	172	0.20		PACHYEO6
	151	0.10	171	0.135-0.003	174	0.17		PACHYBO2
	145	0.10	132	0.1400 .005	183	0. 18		PACHY 19
	153	0.10	169	0.1440 .004	172	0.20		PACHYBO5
	117	0.10	171	0.141-0.004	143	0.18		STUBO4
	102	0.10	117	0.1560 .015	143	0.20		MACB08
	2	0.10	102	0.1730 .017	169	0.20		TYPEO2
	185	0.10	183	0.152-0.020	174	0.21		PACHYJO7
	134	0.10	131	$0.130-0.022$	2	0.17		PACHYO4
	119	0.10	170	0.1590 .029	172	0.21		STUBO6
	160	0.09	119	$0.155-0.004$	1	0.20		PACHYCO3
	115	0.09	160	0.1730 .018	163	0.23		STUBO2
	120	0.09	119	0.1830 .011	174	0.24		STUBO7
	127	0.10	120	0.1860 .002	174	0.23		STUBAO6
	122	0.09	127	0.1950 .010	182	0.25		STUBAOI
	118	0.09	127	0.178-0.017	174	0.24		STUBO5
	149	0.10	115	0.164-0.014	174	0.23		PACHYAO5
	126	0.09	149	0.156-0.008	174	0.21		STUBAO5
	176	0.10	149	0.148-0.008	172	0.19		PACHYGO2
	173	0.10	172	0.1710 .023	169	0.22	1000	PACHYFO2
2	25 73	0.06						$\begin{aligned} & \text { MICROBO2 } \\ & \text { FESTAO6 } \end{aligned}$

(1) .

$-\square=11$

20

$+$


```
        20.15 94 0.164 0.009 168 0.17 4 TYPEO2
        LINK TO CLUSTER -1
        33 141 PACHY14
        181 0.15 PACHYG11
** NEEDED .GT. FOUND FOR NEXT OTU **
```



```
ISOLATED OTU'S (SINGLE MEMBER CLUSTERS)
CLUSTER OTU LABEL
            35 4 TYPEO4
            36 5 TYPEO5
            37 7 TYPEO7
            38 8 TYPEO8
            39 9 TYPEO9
            4 0 \quad 3 7 \text { HAYAO1}
            4 1 4 3 ~ H A Y B O 4
            4 2 5 8 ~ L I M N O C O 2 ~
            4 3 ~ 6 3 ~ F E S T O 3 ~
            4 4 ~ 1 1 2 ~ M A C C O 1
            45 116 STUBO3
            4 6 ~ 1 2 5 ~ S T U B A O 4
            4 7 1 6 7 \text { PACHYEO4}
            4 8 1 7 5 \text { PACHYGO1}
            49 187 PACHYKO3
            50 188 PACHYKO5
```

B30322

[^0]: ${ }^{1}$ Derived from Greek charaktos, meaning toothed, karcharos, meaning jagged, and keirin, meaning to cut (Robertson, 1979).

[^1]: ${ }^{2}$ Again, following convention, although it is realized that since the flowers are really spikelets, then the spikes are really reduced panicles.
 ${ }^{3}$ See Appendix 1 for synonymy.

[^2]: ${ }^{4}$ This ability has been demonstrated experimentally by inducing fragments with X-ray treatment and observing their activity. This was first accomplished by Hakansson $(1954,1958)$ with the genus Eleocharis in the Cyperaceae.

[^3]: ${ }^{1}$ This involved examination of each specimen's inflorescence under a dissecting microscope, followed by an examination of a perigynium and achene.
 ${ }^{2}$ Operational Taxonomic Unit: lowest ranking taxon employed in a given study (Sneath and Sokal, 1973: 69).

[^4]: ${ }^{1}$ Note on the use of the key: To gain an understanding of the variation exhibited by individual specimens, a number of perigynia should be measured or observed before a decision is reached for each character state. This key, as almost any key for species of Carex, is intended for use with mature specimens only. Immature specimens do not contain enough diagnostic characters to allow proper identification with the use of a key; species descriptions, herbarium specimens, or workers familar with the group should be consulted if immature specimens must be identified.

[^5]: ${ }^{2}$ The vouchers for these two counts are not avaiable at this time but have been requested to check their identification.

[^6]: LIMNOCO4 13005521225333123251281251211070072532029111010101381520022007030632013071805101725130803020047033047076018 LIMNOCOS0760330092432111725137108!610053058522028111010101401520032309310631010001803101023130904023045017053070012 FESTO1 189065 $7152533221525175160171508 \mathrm{COYO502531111010101401720032009717732017072004101323130904029050020053078017}$ FESTO3 155043414254261552018313218:8063080552029101010142411523022005010501717001905103325130903036045025048071019 FESTOA EESTOS
 1020437122152.104201551481810063073522523101010151401723032006720631313001903102023140904023048016055070019 $099049715263250992017314810100800785820351510301934+2327042008710501010102107101717141005020048033041080014$ 17607581329531229201881471715083087552032152023191351930032007010202010101805101020120904023051033049091016 2032009310701013002105101720140904030049024052063017 0890441423339148271431331515057065552530121023092381420022307717271010001905101727130803020050032055079020 6903861022323084231471281416080058552527101027111381623032007710471010101903102023120904018050016057071018 0840376132412215251321321007063070552527121020111411620022308017501013032005102025130804027049025041056016 13405961220426152314015150605552030141010101401827032005717571010101905101327140904022048025050075015

 1530433120201931352714060092532033151327202421720022210330532020001505301330161005026038038047079022 (1020 05002190925622083201551072122053067432033121330181391815032008025702515001406251029161004023036043053085023 10104871327631179181831282918060075532033121720193422020032008327502710071705301025.151005021040035043079018 08203381731430091201731422317053085622035142030212422020032008330672313001708301028161005024040047046083019 09804321525328157202031352417063033532033132030152431920032010030532310031706301029151006023040035044077018 06802181126421070231331121611047067482029123025153371720032208730332317001406301725150905031038043053078021 06003491425333078201731122013053082502037142730212391720032007727572023071609301330151005017041056053095023 1330586142553312518198108353005008054204015203019313182003200703045301500160730102516110502303701.1051033023 09503801536633138201401301510045083562031151323193421320032003727701310031501301025151005025036047043074021 10204321124521092201181051311043053502029131030162401820032308730673010001627201330151005024040044052073021 $06802551 / 26528075231521181912047073522032132730193419620032009030471720001807301730150905027044039053073021$ 02302231018422049201031051316040057132029131030173371720032309317603013001405301729151005013039043053076021 07502711124631115231521322019043072552035121530202431820032310723671310001505301723151006028037032046291019 13504581529334130201771522118070082572033143030202421620023008727571310001505301730161005029035040049079024 02801871116322054201231071911047057482030141730152351720022707330601010101508302030141005015043053054085024 04000951021424057201301132020045060532033131030152411420032008730432013001708301727150905042041047070090024 02701090816316040170980821810030055331531111720143401620033009030502510001506301029161006025038040064078025 03401790822425062171270922418037053452029142730152381620032008013573010001505302030140905019039033055076021 04902841224324056231321122010047065452027143020162401420032708730471010001508301330151005017038053075068027 07203531327432072201581481510060078532034142020182371720032309330571710001405301729151005020038036059092021 06803191625435081201601251816053072532034122027202441820032308030472713071507301030151005021036041045077019 04502801419328078201551332017053075572029132330172381620022708027431010001508301030141005016039053051076023 05102321125330081231231201411055073602030131723152371520032308330631710001306301030150905022035046063081024 04901811225429072251231121307053058482034131020152391720032009330732710001504301025151005027038027057087023 08303291430427071201481321619057082502032132330153441920032010030673010001505301027150905025034040036073016 06103401623422086201430981615053060452031111723202351420022007727503010001406301027140905018040043060089026 10004701628331126171951073018060075532034121727172421820032009723572010001605301328151005021038031048081020 12205591219423098201531302217050073582033131720153411920032708323573010101605301730141006022039038043080018 08503211331529073201481322013063073502032132730182421920032308727702310001606271728151006026038038041075019 06702371323425097201331152110050070522033122730161401720033008730603010001405301022150906028035036047083020 09403601223433091171801273713057072502033152330181431920032709023573020001507301028151005026035047041077012 07003031528427085201731502016057070622035142030202411820032308313602317001407301030151006023034050046085020 $05301951226 \$ 27063201481121717063072422029132030152361520022308720401710001405301028140904027039036057081023$ 03402191117219059201481202320050072572031132727152421820032709730533010001608301030151006016038050048074020 10203851729433118231581271310067070522033142030192431823032710023473010031709301725151005025040053048077019 11005322134539108201901831810080105682035152030232442020042310023632710001506301025171106021034040054080021 12104531428433131182021453518070093572033132030193381820032307717431710201506301027150905027039040049087020 13703521225426163201431231215067055572026152320182351520022006723202317001506101027151003039043040058074029 09904541526330071201201131109063050482525142320122341520022008327172010031207171328141004021035058058074027 08303501018422189201281022018053052482524141030162331620022007323203020071207171725151003024036058060085029 09704131122425142201331101518050062552529151317182351620022008027503010001408171022141004023040057056083025 05803291019322086201031001110033060532528161013142351320022007030233023001506102025151004018043040083080033 10804431627236173201381301313060052532530181720202371720022007327272028071508101325161004024041053056081025

