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PEEFACE TO THE SECOND EDITION
OF PART II.

The present edition of this volume has been carefully

revised and corrected throughout. The principal alterations

will be found in the Theory of Series; which has been

developed a little in some places, with a view to rendering

it more useful to students proceeding to study the Theory

of Functions. In the interest of the same class of readers,

I have added to the chapter on limits a sketch of the

modern theory of irrational quantity, one of the most

important parts of the purely Arithmetical Theory of

Algebraic Quantity, which forms, as the fashion of mathe-

matical thinking now runs, the most widely accepted basis

for the great structure of Pure Analysis reared by the

masters of our science.

I am indebted for proof-reading and for useful criticism

to my friends Prof. G. A. Gibson and Mr. C. Tweedie, B.Sc.

It is but right, however, to add that the careful and

intelligent readers of the Pitt Press have rendered the

work of correcting the proofs of this volume more of a

sinecure than it often is when mathematical works are

in question.

G. CHRYSTAL.

Edinburgh, 3rd March, 1900.



PEEFACE TO FIRST EDITION.

The delay in the appearance of this volume finds an apology

partly in circumstances of a private character, partly in

public engagements that could not be declined, but most of

all in the growth of the work itself as it progressed in my

hands. I have not, as some one prophesied, reached ten

volumes ; but the present concluding volume is somewhat

larger and has cost me infinitely more trouble than I

expected.

The main object of Part II. is to deal as thoroughly as

possible with those parts of Algebra which form, to use

Euler's title, an Introductio in Analysin Infinitorum. A

practice has sprung up of late (encouraged by demands for

premature knowledge in certain examinations) of hurrying

young students into the manipulation of the machinery of

the Differential and Integral Calculus before they have

grasped the preliminary notions of a Limit and of an

Infinite Series, on which all the meaning and all the uses

of the Infinitesimal Calculus are based. Besides being to

a large extent an educational sham, this course is a sin

against the spirit of mathematical progress. The methods

of the Differential and Integral Calculus which were once

an outwork in the progress of pure mathematics threatened

for a time to become its grave. Mathematicians had fallen
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into a habit of covering their inability to solve many-

particular problems by a vague wave of the hand towards

some generality, like Taylor's Theorem, which was sup-

posed to give "an account of all such things," subject only

to the awkwardness of practical inapplicability. Much

has happened to remove this danger and to reduce dfdx

and jdx to their proper place as servants of the pure

mathematician. In particular, the brilliant progress on the

continent of Function-Theory in the hands of Cauchy,

Riemann, Weierstrass, and their followers has opened for us

a prospect in which the symbolism of the Differential and

Integral Calculus is but a minor object. For the proper

understanding of this important branch of modern mathe-

matics a firm grasp of the Doctrine of Limits and of the

Convergence and Continuity of an Infinite Series is of much

greater moment than familiarity with the symbols in which

these ideas may be clothed. It is hoped that the chapters

on Inequalities, Limits, and Convergence of Series will help

to give the student all that is required both for entering

on the study of the Theory of Functions and for rapidly

acquiring intelligent command of the Infinitesimal Calculus.

In the chapters in question, I have avoided trenching on

the ground already occupied by standard treatises: the

subjects taken up, although they are all important, are

either not treated at all or else treated very perfunctorily

in other English text-books.

Chapters xxix. and xxx. may be regarded as an

elementary illustration of the application of the modern

Theory of Functions. They are intended to pave the way
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for the study of the recent works of continental mathe-

maticians on the same subject. Incidentally they contain

all that is usually given in English works under the title of

Analytical Trigonometry. If any one should be scandalised

at this traversing of the boundaries of English examination

subjects, I must ask him to recollect that the boundaries in

question were never traced in accordance with the principles

of modem science, and sometimes break the canon of

common sense. One of the results of the old arrangement

has been that treatises on Trigonometry, which is a geometri-

cal application of Algebra, have been gradually growing into

fragments more or less extensive of Algebra itself: so that

Algebra has been disorganised to the detriment of Trigono-

metry ; and a consecutive theory of the elementary functions

has been impossible. The timid way, oscillating between ill-

founded trust and unreasonable fear, in which functions of a

complex variable have been treated in some of these manuals

is a little discreditable to our intellectual culture. Some

expounders of the theory of the exponential function of an

imaginary argument seem even to have forgotten the obvious

truism that one can prove no property of a function which

has not been defined. I have concluded chapter xxx. with

a careful discussion of the Reversion of Series and of the

Expansion in Power-Series of an Algebraic Function

—

subjects which have never been fully treated before in an

English text-book, although we have in Frost's Curve Tracing

an admirable collection of examples of their use.

The other innovations call for little explanation, as they

^ipi inerely at greater completeness on the old lines. In
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the chapter on Probability, for instance, I have omitted

certain matter of doubtful soundness and of questionable

utility; and filled its place by what I hope will prove a

useful exposition of the principles of actuarial calculation.

I may here give a word of advice to young students

reading my second volume. The matter is arranged to

facilitate reference and to secure brevity and logical

sequence; but it by no means follows that the volume

should be read straight through at a first reading. Such

an attempt would probably sicken the reader both of

the author and of the subject. Every mathematical book

that is worth anything must be read "backwards and

forwards," if I may use the expression. I would modify the

advice of a great French mathematician* and say, "Go on,

but often return to strengthen your faith." When you come

on a hard or dreary passage, pass it over ; and come back to

it after you have seen its importance or found the need for

it further on. To facilitate this skimming process, I have

given, after the table of contents, a suggestion for the course

of a first reading.

The index of proper names at the end of the work will

show at a glance the main sources from which I have drawn

my materials for Part II. Wherever I have, consciously

borrowed the actual words or the ideas of another writer

I have given a reference. There are, however, several

works to which I am more indebted than appears in the

bond. Among these I may mention, besides Cauchy's

"Allez en avant, et la I'oi vous viendia."
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Analyse Algdhrique, Serret's Aigihre Supirieure, and Schlo-

milch's Algebraische Analysis, which have become classical,

the more recent work of Stolz, to which I owe many indica-

tions of the sources of original information—a kind of help

that cannot be acknowledged in footnotes.

I am under personal obligations for useful criticism, for

proof-reading, and for help in working exercises, to my

assistant, Mr. R. E. Allardice, to Mr. G. A. Gibson, to

Mr. A. Y. Fraser, and to my present or former pupils

—

Messrs. B. B. P. Brandford, J. W. Butters, J. Crockett,

J. GOODWILLIE, C. TWEEDIE.

In taking leave of this work, which has occupied most

of the spare time of five somewhat busy years, I may be

allowed to express the hope that it will do a little in a

cause that I have much at heart, namely, the advancement

of mathematical learning among English-speaking students

of the rising generation. It is for them that I have worked,

remembering the scarcity of aids when I was myself a

student; and it is in their profit that I shall look for my

reward.

G. CHRYSTAL.

Edinbubqh, let November 1889.
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CHAPTER XXIII.

Permutations and Combinations.

§ 1.] We have already seen the importance of the enume-

ration of combinations in the elementary theory of integral

functions. It was found, for example, that the problem of finding

the coefficients in the expansion of a binomial is identical with

the problem of enumerating the combinations of a certain

number of things taken 1, 2, 3, &c,, at a time. Besides its

theoretical use, the theory of permutations and combinations

has important practical applications ; for example, to economic

statistics, to the calculus of probabilities, to fire and life assur-

ance, and to the theory of voting.

Beginners usually find the subject somewhat difficult. This

arises in part from the fineness of the distinctions between the

diff'erent problems, distinctions which are not always easy to

express clearly in ordinary language. Close attention should

therefore be paid to the terminology we are now to introduce.

§ 2.] For our present purpose we may represent individual

things by letters.

By an r-permutation of n letters we mean r of those letters

aiTanged in a certain order, say in a straight line. An w-permu-

tation, which means all the letters in a certain order, is sometimes

called a permutation simply.

Example. The 2-permutations of the three letters a, b, c are be, cb;

ac, ca; ab, ba. The permutations of the three letters are abc, acb; bac, bca;

cab, cba.

By an r-comhination of n letters we mean r of those letters

considered without reference to order.

Example. The 2-combinations of a, b, c are be, ac, ab.

C. II. 1
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Unless the contrary is stated, the same letter is not supposed

to occur more than once in each combination or permutation.

In other words, if the n letters were printed on n separate

counters each permutation or combination could be actually

selected and set down before our eyes.

Another point to be attended to is that in some problems

certain sets of the given letters may be all alike or indifferent

;

that is to say, it may be supposed that no alteration in any

permutation or combination is produced by interchanging these

letters.

§ 3.] The fundamental part of every demonstration of a

theorem in the theory of permutations and combinations is an

enumeration. It is necessary that this enumeration be systematic

-and exhaustive. If possible it should also be simplex, that is,

each permutation or combination should occur only once ; but it

may be multiplex, provided the degree of multiplicity be ascer-

tained (see § 8, below).

Along with the enumeration there often occurs the process

of reasoning step by step, called mathematical induction.

The results of the law of distribution, as applied both to

closed functions and to infinite series, are often used (after the

manner of chap, iv., §§5, 11, and exercise vi. 30) to lighten the

labour of enumeration.

All these methods of proof will be found illustrated below.

We have called attention to them here, in order that the student

may know what tools are at his disposal.

PERMUTATIONS.

§ 4.] The number of r-permutations of n letters (nPr) ^

n{n-l){n-2) . . . (n-r+l).

1st Proof—Suppose that we have r blank spaces, the problem

is to find in how many difterent ways we can fill these with n

letters all different.

We can fill the first blank in n different ways, namely, by

putting into it any one of the n letters. Having put any one

letter into the first blank, we have «- 1 to choose from in filling
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the second blank. Hence we can fill the second blank in n- 1

different ways for each way we can fill the first. Hence we can

fill the first two in n{n- 1) ways.

When any two particular letters have been put into the first

two blanks, there are n — 2 left to choose from in filling the third.

Hence we can fill the first three blanks in n{n- 1) times (w — 2)

ways.

Reasoning in this way, we see that we can fill the r blanks in

n{n—l){n-2) . . . (w-r+l)ways.

Hence nPr = n{n-l) . . . (n-r+l).

2nd Proof.—We may enumerate, exhaustively and without

repetition, the nPr r-permutations as follows :

—

1st. All those in which the first letter ai stands first

;

2nd. All those in which «2 stands first : and so on.

There are as many permutations in which «! stands first as

there are (r— l)-permutation3 of the remaining w— 1 letters, that

is, there are n-iPr-i permutations in the first class. The same

is true of each of the other n classes.

Hence nPr = nn-iPr-i •

Now this relation is true for any positive integral values of

n and r, so long, of course, as r ^ n. Hence we may write

successively

n-i r = Tlfi-il'^r-it

n-lPr-i = {n— l)n-2Pr-2t

n-r-i

If now we multiply all these equations together, and observe

that all the P's cancel each other except „P^ and n-r+iPi, and

observe further that the value of n~r+iP*i is obviously n-r+l,
we see that

„Pr = n{n-l) . . . {n-r+2){7i-r+l) (1).

The second proof is not so simple as the first, but it illustrates

a kind of reasoning which is very useful in questions regarding

permutations and combinations.

1—2
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Cor. 1. The number of different ways in which a set of n

letters can be arranged in linear order is

n{n-l) . . . 3.2.1,

that is, the product of the first n integral numbers.

This follows at once from (1), for the number required is the

number of ^^-permutations of the n letters. Putting r = w in (1)^

we have
,,Pn^n{n-l) ... 2.1 (2).

The product of the first n consecutive integers may be re-

garded as a function of the integral variable n. It is called

factm-ial-n^ and is denoted by n\*.

Cor. 2. ^Pr = n\l{n-r)\.

For nPr = n{n-\) . . . {n-r + \),

n{n-l) . . . (n-r+l)(n-r) . . . 2.1

{n-r) ... 2.1
nl

Cor. 3. The number of ways of arranging n letters in circular

oi'der is (w-1)!, or {n-l)lj2, according as clock-order and

counter-clock-order are or are not distinguished.

Since the circular order merely, and not actual position, is

in question, we may select any one letter and keep it fixed. We
have thus as many different arrangements as there are (n - 1)-

permutations of the remaining n—1 letters, that is (w— 1)!.

If, however, the letters written in any circular order clock-

wise be not distinguished from the letters written in the same

order counter-clock-wise, it is clear that each arrangement will

be counted twice over. Hence the number in this case is

(w-l)!/2.

§ 5.] When each of the n letters may be repeated, the number

of r-permutations is if.

* This is Kramp's notation. Formerly In^was used in English works, but

this is now being abandoned on account of the difficulty in printing the |_.

The value of 11 is of course 1. Strictly speaking, 0! has no meaning. It is

convenieijt, however, to use it, with the understanding that its value is 1 ; by

so doing we avoid the exceptional treatment of initial terms in many series.
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Suppose that we have r blanks before us. We may fill the

first in n ways ; the second also in n ways, since there is now no

restriction on the choice of the letter. Hence the first two may
be filled in n x n, that is, n' ways. With each of these »* ways

of filling the first two blanks we may combine any one of the n

ways of filling the third ; hence we may fill the first three blanks

in n^ X n, that is, n^ ways, and so on. Hence we can fill the r

blanks in n^ ways.

§ 6.] The number of permutations of n letters of which a

group of a are all alike, a group of P all alike, a group of y all

alike, &c., is
,

w!/a!y3!y! . . .

Let us suppose that a; denotes the number in question. If

we take any one of the a; permutations and keep all the rest of

the letters fixed in their places, but make the a letters unlike

and permutate them in every possible way among themselves,

we shall derive a! permutations in which the a letters are all

unlike. Hence the effect of making the a letters unlike is to

derive xal permutations from the a; permutations.

If we now make all the /? letters unlike, we derive xalftl

permutations from the xa\.

Hence, if we make all the letters unlike, we derive xa\fi]y] . . .

permutations. But these must be exactly all possible permuta-

tions of n letters all unlike, that is, we must have

a;a!/3!y! . . . —n\.

Hence a; = w!/a!^!y! . . .

Cor. The number of ways in which n things can he put into

r pigeon-holes, so that a shall go into the first, p into the second,

y into the third, and so on, is

n\ja\p\y\ . . .

N.B.

—

The m'der of the pigeon-holes is fixed, and must be at-

tended to, but the oi'der of the things inside the holes is indifferent.

Putting the things into the holes is evidently the same as

allowing them to stand in a line and affixing to them labels

marked with the names of the holes. There will thus be a
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labels each marked 1, (3 each marked 2, y each marked 3, and

so on.

The problem is now to find in how many ways n labels, a of

which are alike, )8 alike, y alike, &c., can be distributed among

n things standing in a given order. The number in question is

w!/a!)8!y! . . ., by the above proposition.

Example 1. In arranging the crew of an eight-oared boat the captain has

four men that can row only on the stroke-side and four that can row only on

the bow-side. In how many different ways can he arrange his boat—1st,

when the stroke is not fixed ; 2nd, when the stroke is fixed ?

In the first case, the captain may arrange his stroke-side in as many
ways as there are 4-permutations of 4 things, that is, in 4! ways, and he

may arrange the bow-side in just as many ways. Since the arrangements of

the two sides are independent, he has, therefore, 4! x 4! (= 576) different

ways of arranging the whole crew.

In the second case, since stroke is fixed, there are only 3! ways of

arranging the stroke-side. Hence, in this case, there are 3! x 4! (= 144)

different ways of arranging the crew.

Example 2. Find the number of permutations that can be made with the

letters of the word transalpine.

The letters are traannslpie, there being two sets, each containing

two like letters. The number required is therefore (by § 6) ll!/2!2! =
11. 10. 9. 8. 7. 6. 5. 8. 2= 9979200.

Example 3. In how many different ways can n different beads be

formed into a bracelet?

Since merely turning the bracelet over changes a clock-arrangement of the

stones into the corresponding counter-clock-arrangement, it follows, by § 4,

that the number required is (n - l)!/2.

COMBINATIONS.

§ 7.] The number of ways in which s things can he selected hy

taking one out ofa set ofn^ , oiie out ofa set ofn^, &c., is Wi«2 • • • w«.

The first thing can be selected in Wi ways ; the second in n^

ways; and so on. Hence, since the selection of each of ihQ

things does not depend in any way on the selection of the others,

the number of ways in which the s things can be selected is

»1 X ^ X . . . X w,.

§ 8.] The number of r-comhinations of n letters (nCr) is

n{n-l) . . . (w-r + l)/1.2 . . . r.
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1st Proof.—We may enumerate the combinations as follows :

—

1st. All those that contain the letter «i

;

2nd. „ „ „ a.,;

nth. „ „ „ an.

In each of these classes there is the same number of

combinations ; namely, as many combinations as there are

{r - l)-combinations of w - 1 letters ; for we obviously form all

the r-combinations in which a^ occurs by forming all possible

(r— l)-combinations of aaj «3> • • •, «» and adding ai to each

of them.

This enumeration, though exhaustive, is not simplex ; for

each r-combination will be counted once for every letter it

contains, that is, r times. Hence

TnCr = rin-iCr-i (l).

This relation holds for all values of n and r, so long as r:^n.

Hence we have successively

—

p —- r

C — ^~ ^
(^

ft_ll^,._l
—

^ n-'V^r-'it
r — L

If we multiply these r - 1 equations together, and observe that

the (7's cancel, except nCr and n-r+i^i, and that the value of

„_r+iCi is obviously n-r+1, we have

p _ n{n-l) . . . (n-r+l) . .

"^^ ~
1.2 ... r

^^^•

2nd Proof.—Since every r-combination of n letters, if permu-

tated in every possible way, would give r! r-permutations, and

all the r-permutations of the n letters can be got once and only
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once by dealing in this way with all the r-combinations, it follows

that JJ.,r\ = nPr- Hence

„a- = «i^r/r! = w(w-l) . . . («-r+l)/1.2 . . . r.

Cor. 1. If we multiply both numerator and denominator of

the expression for „C,. by {ii -r){n-r-l) . . . 2.1, we deduce

nGr = nl/rl{n-r)l (3).

vOr. Z, n^r — ti^n—r'

This follows at once from (3). It may also be proved by

enumeration ; for it is obvious that for every r-combination of

the n things we select we leave behind an (n — r)-combinatiou

;

there are, therefore, just as many of the latter as of the former.

Cor. 3. n^r = n-lC^r + n-lGr-l (4).

This can be proved by using the expressions for „Cr, n-i^r,

n-iCr-i, and the remark is important, because it shows that the

property holds for functions of n having the form (2) irrespective

of any restriction on the value of n.

The theorem (when n is a positive integer) also follows at

once by classifying the r-combinations of w letters aj, ag, • • • , «»

into, 1st, those that contain «i, „-iC,-i in number, and, 2nd,

those that do not contain ai, n-iCr iw number.

Cor. 4. n-\Gs + n-iC!s + n-zCs"^ ' • • + s^s = nW+l \p)-

Since the order of letters in any combination is indifferent,

we may arrange them in alphabetical order, and enumerate the

(s + l)-combinations of n letters by counting, 1st, those in

which Ui stands first ; 2nd, those in which a^ stands first, &c.

This enumeration is clearly both exhaustive and simplex ; and

we observe that ai cannot occur in any of the combinations of

the 2nd class, neither a^ nor a^ in any of the 3rd class, and so on.

Hence the number of combinations in the 1st class is n-\Gs ',
in

the 2nd, n-aC'* ; in the 3rd, n-zGs ; and so on. Thus the theorem

follows.

Cor. 5.

If we divide p + q letters into two groups of p and q re-

spectively, the p^qCg s-combinations of the p + q letters may be

classified exhaustively and simplexly as follows :

—
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1st. All the s-combinations of the j9 letters. The number of

these is pCg.

2nd. All the combinations found by taking every one of

the {s — l)-combinations of the p things with every one of the

1-combinations of the q things. The number of these is

3rd. All the combinations found by taking every one of

the {s — 2)-combinations of the p things with every one of the

2-combinations of the q things. The number of these is

And so on. Thus the theorem follows.

It should be noticed that Cor. 4 and Cor. 5 furnish proposi-

tions in the summation of series. For example, we may write

Cor. 5 thus

—

p{p- 1) . . . (^-.9 + 1) ^pjj>-})
1.2 ... s 1.2

pip -I)

1.2

^p q(q-l)

1 1.2

. (p-s+2) I
. is-l) -1

. ip-s + 3) q(q-l)
. {s-2) ' 1.2

• ' ig-s + 2)

. . (5-1)

(7).

1.2 ... g

^ {p + q)ip + q-l) . . • ip + q-s+l)
1.2 ... s

It is obvious that (7) is an algebraical identity which could

be proved by actually transforming the left-hand side into the

right (see chap, v., § 16). If we take this view, it is clear that

the only restriction upon p, q, s is that s shall be a positive integer.

Thus generalised, (7) becomes of importance in the establishment

of the Binomial Theorem for fractional and negative indices.

Cor. 6. If we multiply both sides of (7) by 1 . 2 ... 5, and

denote p(p — l) . . . (p-s+ 1) by jt?,, we deduce

(P + q)s =Ps + sCiPs-iqi + fys-iq-L + . • + 5'» (8),

which is often called Vandermonde's theorem, although the result

was known before Vandermonde's day.
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§ 9,] To find the number of r-combinations of p + q letters

p of which are alike.

1st. With the q unhke letters we can form gC,. r-com-

binations,

2nd. Taking one of the p letters, and r - 1 of the q, we can

form qCr-\ r-combinations.

3rd. Taking two of the p, and r - 2 of the q, we can form

gCv_2 r-combinations; and so on, till at last we take r of the

p (supposing p > r), and form one r-combination.

We thus find for the number required

qCr + qCr-\ + qCr-'i + . . . + qC^ + 1

"^'
lr!(^-r)!"^(r-l)!(^-r+l)!'*'" * "^ 1! (g- - 1)!

"^ ^ J

'

Cor. The number of r-permutations ofp + q thingsp of which

are alike is

^'^'
\r\{q-r)\

"^
l\{r-l)l(q -r + 1)!

"*"

2!(r- 2)!(g'-r + 2)!

'*'

1_ 1 ]

• •
''^

{r -ly.V.iq- 1)1 '^ rlqlj'

For, with the qCr combinations of the 1st class above we can form

qCrrl permutations

;

With the gCr-i combinations of the 2nd class, qCr-i r! per-

mutations
;

With the qCr-2 combinations of the 3rd class (in each of

which two letters are alike), g(7r_2r!/2! permutations: and

so on.

Hence the whole number of permutations is

qCrr\+qCr.,r\/V. + qCr-,rll2l + . . .+qC,rll{r-l)\ + l,

whence the result follows.

A similar process will give the number of r-combinations,

or of r-permutations, when we have more than one group of

like letters ; but the general formula is very complicated.

§ 10.] The number of r-combinations of n letters (nffr), when

each letter may be repeated any number of times up to r, is

n{n + l){n + 2) . . . (w + r- 1)/1 . 2. 3 . . . r (1).
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In the first place, we remark that the number of (r + 1 )-com-

binations, in each of which the letter ai occurs at least once, is

the same as the number of r-combinations not subject to this

restriction. This is obvious if we reflect that every (r + 1)-

combination of the kind described leaves an r-combination when

tti is removed, and, conversely, every r-combination of the n

letters gives, when ai is added to it, an (r + l)-combination of

the kind described.

It follows, then, that if we add to each of the r-combinations

of the theorem all the n letters, we get all the {n + r)-corabinations

of the n letters, in each of which each letter appears at least

once, and not more than r+ 1 times. We may therefore

enumerate the latter instead of the former.

This new problem may be reduced to a question of permuta-

tions as follows. Instead of writing down all the repeated letters,

we may write down each letter once, and write after it the letter

s (initial of same) as often as the letter is repeated. Thus, we

write asssbsscs . . . instead of aaaahhhcc . . . With this notation

there will occur in each of the {n + r)-combi nations the n letters

ai, a^, . . ., ttn along with r s's. The problem now is to find

in how many ways we can arrange these n + r letters. It must

be remembered that there is no meaning in the occurrence of s at

the beginning of the series ; hence, since the order of the letters

fli, ttj, • • ., «»i is indifferent, we may fix ai in the first place.

We have now to consider the different arrangements of the n-1
letters a^, a^, . . ., a„ along with r s's. In so doing we must

observe that nothing depends on the order of ^a, «3, • • •, <*n

inter se ; so that in counting the permutations they must be

regarded as all alike. We have, therefore, to find the number of

permutations of w - 1 + r things, w - 1 of which are alike, and r

of which are alike. Hence we have

(n + r-l)l
" * (w-l)!r! ^^^'

_n{n+ I) . . . (n + r-l)
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L/Or. 1. nttr ~ re+r-iW»

This follows at once from (2).

Lor. 2. nJ^ir — n-\'Jr + n'Jr-l-

For the r-combiuations consist, 1st, of those in which a^ occurs

at least once, the number of which we have seen to be nHr-i ;

2nd, of those in which aj does not occur at all, the number of

which is n-\Hr.

Cor. 3. Jfr = n-Jir + n-JIr-l + n-JIr-2 + . . . + n-1^1 + 1-

This follows from the consideration that we may classify the

r-combinations into

1st. Those in which a^ does not occur at all, n-iHr in

number

;

2nd. Those in which ai occurs once, n-iffr-i in number

;

3rd. Those in which «! occurs twice, n-iHr-i in number :

and so on.

Cor. 4. The number of different r-ary products that can he

made with n different letters is n{n+\) . . . (w + r - 1)/1 . 2 . . . r

;

and the number of terms in a complete integralfunction of the rth

degree in n variables is (n + I) (n + 2) . . . (w + r)/l . 2 . . . r.

The first part of the corollary is of course obvious. The

second follows from the consideration that the complete in-

tegral function is the sum of all possible terms of the degrees

0, 1, 2, . . ., r respectively. Hence the number of its terms is

1 + „//i + „//2 + . . . + »//,-.

But, by Cor. 3, tliis sum is n+iffr-

We have thus obtained a general solution of the problems suggested in

chap. IV., §§ 17, 19. As a verification, if we put n=2, we have for the

number of terms in the general integral function of the rth degree in two
variables 3.4 .. . (r + 2)/1.2 , . . r, which reduces to (r + 1) (r + 2)j2, in

agreement with our former result.

Exercises I.

Combinations and Permutations.

(1.) How many different numbers can be made with the digits

11122333450?

(2.) How many different permutations can be made of the letters of the

sentence Ut tensio sic vis ?
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(3.) How many different numbers of 4 digits can be formed with 0123456?

(4.) How many odd numbers can be formed with the digits 3694?

(5.) If 2„<^„-i/2n-2C»= 1^2/35, find n.

(6.) If m= „C2, show that ^C2 = 3„+iC4.

(7.) In any set of n letters, if the number of r-permutations which con-

tain a be equal to the number of those that do not contain a, prove that the

same holds of r-combinations.

(8.) In how many ways can the major pieces of a set of chess-men be

arranged in a line on the board?

If the pawns be included, in how many ways can the pieces be arranged

in two lines ?

(9.) Out of 13 men, in how many ways may a guard of 6 be formed in line,

the order of the men to be attended to ?

(10.) In how many ways can 12 men be selected out of 17— Ist, if there be

no restriction on the choice ; 2nd, if 2 particular men be always included

;

3rd, if 2 particular men never be chosen together ?

(11.) In how many ways can a bracelet be made by stringing together 5

like pearls, 6 like rubies, and 7 like diamonds ?

How many different settings of 3 stones for a ring could be selected

from the above?

What modification of the solution of the first part of the above problem

is necessary.when two, or all three, of the given numbers are even ?

(12.) In how many ways can an eight-oared boat be manned out of 31

men, 10 of whom can row on the stroke-side only, 12 on the bow-side only,

and the rest on either side ?

(13.) In a regiment there are 10 captains, 20 lieutenants, 30 sergeants,

and 60 corporals. In how many ways can a party be selected, consisting of

2 captains, 5 lieutenants, 10 sergeants, and 20 corporals ?

(14.) Three persons have 4 coats, 5 vests, and 6 hats between them ; in

how many different ways can they dress ?

(15.) A man has 12 relations, 7 ladies and 5 gentlemen ; his wife has 12

relations, 5 ladies and 7 gentlemen. In how many ways can they invite a

dinner party of 6 ladies and 6 gentlemen so that there may be 6 of the man's

relations and 6 of the wife's ?

(16.) In how many ways can 7 ladies and 7 gentlemen be seated at a

round table so that no 2 ladies sit together?

(17.) At a dinner-table the host and hostess sit opposite each other. In

how many ways can 2n guests be arranged so that 2 particular guests do

not sit together?

(18.) In how many ways can a team of 6 horses be selected out of a stud

of 16, so that there shall always be 3 out of the 6 ABCA'B'C, but never AA',

BB', or CC together ?

(19.) With 9 consonants an,d 7 vowels, how many words can be made,

each containing 4 consonants and 3 vowels— 1st, when there is no restriction

on the arrangement of the letters ; 2nd, when two consonants are never

allowed to come together?

(20.) In how many ways can 52 cards, all different, be dealt into 4 equal
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hands, the order of the hands, but not of the cards in the hands, to be

attended to?

In ho'.v many cases will 13 particular cards fall in one hand ?

(21.) In how many ways can a set of 12 black and 12 white draught-men

be placed on the black squares of a draught-board ?

(22.) In how many ways can a set of chess-men be placed on a chess-board?

(23.) How many 3-combinations and how many S-permutations can be

made with the letters of parabola?

(24.) With an unlimited number of red, white, blue, and black balls at

disposal, in how many ways can a bagful of 10 be selected ?

In how many of these selections will all the colours be represented ?

(25.) In an election under the cumulative system there were p candidates

for q seats ; (1) in how many ways can an elector give his votes
; (2) if there

be r voters, how many different states of the poll are there?

If there be 15 candidates and 10 seats, and a voter give one minute to the

consideration of each way of giving his vote, how long would it take him to

make up his mind how to vote ?

BINOMIAL AND MULTINOMIAL THEOREMS.

§ 11.] It has already been shown, in chap, iv., § 11, that

{a + b)''--a'' + r,Cia''-^b + . . . -t- ^O-a""'"^'' + • • .+b\

where „Ci, nOi, . . ., nOr . . . denote the numbers of 1-, 2-,

. . ., /--combinations of n things. Using the expressions just

found for nCi, JJ^, &c., we now have

(a + hf = a" + wa"-^ h + ^-^^ dJ'-^h'' + . . .

+ -i /-t: -^ ^a" '^b'^+. . . +b'' (1).
1 . 2 . . . r ^ ^

This is the Binomial Theorem as Newton discovered it, proved,

of course, as yet for positive integral indices only.

§ 12.] We may establish the Binomial Theorem by a some-

what different process of reasoning, which has the advantage of

being applicable to the expansion of an integral power of any

multinomial.

Consider

{ai + a2+. . . + amY (2).

We have to distribute the product of n factors, namely,

(ffli + aa + . . . + am){ai + a.2 + . . . + a^) • • • («i + ^2 + • • • +a,n) (3)

;
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and the problem is to find the coefficient of any given term, say

a^'^^a^'^ . . . am"'- (4),

where of course a-^ + a2+ . . . + a,„ = n. In other words, we have to

find how often the partial product (4) occurs in the distribution

of (3).

We may write out (4) in a variety of ways, such as

aiaia2a2a2«3«4«4 • • • (5),

there being always a^ ai's, a^ Uz's, &c.

Written as in (5) we may regard the partial product as

formed by taking «! from the 1st and 2nd brackets in (3) ; aj

from the 3rd, 4th, and 5th ; as from the 6th ; and so on. It

appears, therefore, that the partial product (4) will occur just as

often as we can make different permutations of the n letters, such

as (5). Now, since a^ of the letters are all alike, a^ all alike, &c.,

the number of difierent permutations is, by § 6, nlja^la^l . . . a„!.

Hence we have

(ai + 052 + . . .+am)" = 2-r—j

—

,«i»-a2"^ . . . a„> (6):
a^Iaa! ...aj.

wherein «!, a2> • • • «m assume all positive integral values con-

sistent with the relation

ai + 02 + . . . + a^ = n (7).

This is the Multinomial Theorem for a positive integral index.

The Binomial Theorem is merely the particular case where

m-2. We then have, since 01 + 03 = n, and therefore oj = w - a^,

(ai + a2r-=S ^^,^;i^^^, ai».«2—

,

= 5 n(n-l).. (n-a,^l)
^^^_ ^^„_

ail

which agrees with (1).

Cor. To find the coefficient of x^ in the expansion of

{h, + hx + . . . + bmx'^-^f (8)

we have simply to pick out all the terms which contain a?*". The

general term is
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Hence we have to take all the terms which are such that

a2 + 2a3 + . . .+(m-l)a^ = r (9).

The coefficient of x^ in the expansion of (8) is therefore

w!
^-i^'Ja Urn >« (10),

where a-^,a.^, . . ., a^ have all positive integral values subject

to the restrictions (7) and (9).

Example 1. The coefficient of a%^ in the expansion of (a + fe + c + d)" is

3!2!0!0!

Example 2. To find the coefficient of a;' in (1 + 2x + x^Y.

Here we must have oj + aj + 03= 4,

02 + 203= 5.

Hence 01= 03 — 1, o,= 5 — 203.

Since Oj and 03 must both be positive, the only two admissible values of 03

are 1 and 2. We have therefore the following table of values :

—

«1 a.. «3

1

3

1

1

The required coefficient is therefore

4! 4!Jll— 102311 ,

^•- 112112 = 56
0!3!1! 1!1!2!

The correctness of the result may be easily verified in the present case

;

for (l + 2a; + xY=(l + a;)8, the coefficient of a;^ in which is gCj^SG.

Example 3. To find the greatest coefficient, or coefficients, in the

expansion of {a^ + a.^+. . .+a^)'".

This amounts to determining x,y,z,... so that nl/xl ylzl . . . shall be a

maximum, where x + y + z+ . . .=n. This, again, amounts to determining

x,y, z, , . . so that

u= xlylzl ... (1)

shall be a minimum, subject to the condition

x + y + z+. . .=n (2).

Let us first consider the case where there are only two variables, x and y.

We obtain all possible values of x\yl by giving y successively the values

0, 1, 2, . . ., n, X taking in consequence the values n,n-l,n-2, . . ., 0. The
consecutive value to xly\ is (x-l)\{y + l)l, and the ratio of the latter

to the former is {y + l)/x ; that is (since x + y-n), {n + 1- x)/x, that is,
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{n + l)lx - 1. This ratio is less than unity so long as (;H- l)/x<2, that is, so

long as x>(w+l)/2. Until x falls below this value the terms in the series

above mentioned will decrease ; and after x falls below this limit they will

begin to increase.

If n be odd, =2A; + 1 say, then (n + l)/2= fc + l. Hence, if we make
x= fc + l, the ratio (n + l)/x-l= l, and two consecutive values of x\y\, viz.

(k + 1)1 k\ and k\ (k + 1)1 , are equal and less than any of the others.

If n be even, —2k say, then (« + 1)/2= ft + ^. Hence, if we make x= A-,

we obtain a single term of the series, viz. klkl, which is less than any of

the others.

Eetuming now to the general case, we see that, if u be a minimum for all

values of x,y, z, . . . subject to the restriction (2), it will also be a minimum
for values such that x and y alone are variable, z, . . . being all constant.

In other words, the values of x and y for which x\y\z\ ... is a minimum
must be such as render x\y\ b. minimum. Hence, by what has just been

proved, x and y must either be equal or differ only by unity. The like

follows for every pair of the variables x,y,z, ... Let us therefore suppose

that 2? of these are each equal to | ; then the remaining m-p must each be

equal to $ + 1. Further, let q be the quotient and r the remainder when n is

divided by m; so that n=viq + r. We thus have

p^+ {m-p){^+ l)~mq + r.

Hence m^-\-{m-p) = mq + r\

so that ^ + {m-p)lni= q + rlm.

Now (m-p)lm and r/m are proper fractions ; hence we must have

^ = q, m-p = r.

It follows, therefore, that r of the variables are each equal to q + 1, and
the rest are each equal to q. The maximum coefficient is therefore

n\l{q\r-'-{(q + l)l}r;

that is, nlKqlyiq + iy (3).

This coefficient is, of course, common to all terms of the type

«l'«2« • • • am-r««m-r+l«+' • • • ««.«+'•

As a special case, consider (Oi + a^ + a^)*. Here 4 = 3x1 + 1; q = l,r= l.

Hence the terms that have the greatest coefficient are those of the type

a^a^a^, and the coefficient in question is 4!/(lI)32i = 12, This is right; for

we find by distributing that

(fli + aj + a^Y

=

Stti*+ iZa^a^ + QlUi^H^ + 12'Lai^a^a3 .

Example 4. Show that

^ n \+x «(n-l) l + 2x n(ra-l)(ra-2) l + 3x

1 1 + nx ~lT2~ (iTnxp 17173 (T+ni)» + •••-"•

(Wolstenholvie.)
The left-hand side may be written

- _ n 1 w (n - 1) 1 n h. - 1) (n - 2)
+

1 1 + na; 1.2 (\ + nxf 1.2.3 (l + nxf
n X n(n-\) 2x n (n - 1) (n - 2) 3x

"ll + na: 1.2 (l + jiip" 1.2.3 (1 + nx)*"'"
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_ , n 1 n
(
n-1) 1 _ n(n-l)(n-2) 1

~ 11 +nx^ 1.2 (l + nx)2 1.2.3 (l + «x)3

nx
f

(n-1) 1 (n-l)(n-2) 1 1

~l +nx\ 1 (1 + nx)"^ 1.2 (l + nx)'^ •
• -p

I
l + nx] l + nx\ l + nx\ '

_ \ nx )" nx i vx \"'~^

~ [1+11x1 l + nx\l + vx] *

_ j nx \^ j i)x
I

"

~
|l + «a:) (1 + 7(J-J '

= 0.

13.] The Binomial Theorem can be used in its turn to

establish identities in the theory of combinations ; as the two

following examples will show :

—

Example 1. We have

l=^(T+x-xY

= (l + xY-^CiX(l + xY-''+^C2x'^{l + xY--^- . . . {-Y^.c^x'-.

On the right-hand side of this identity the coefficient of every power of x

must vanish. Hence, s being any positive integer less than r, we have

rC, X 1 - r-iC,_i XrC, + r- 2C._2 x^C^-. .. + {- )»-V_H-iCi x ^C,.^ + ( - )VC,=

Example 2. To find the sum of the squares of the binomial coefficients.

We have (l+x)2'*= (l + x)"x (a;-|-l)»

= {l + nGiX + „C^''+ . . . +„C7„.T")

x(x» + „CiX»-i+„C2.T'»-2+ . . . +„C„).

If we imagine the product on the right to be distributed, we see that the

coefficient of x™ is 12 + „Ci2-t-„C'2-+ . . . +„C„2 ; the coefficient of x" on the

left is 2„C„. Hence

l=' + nCi' + nC/+ . . . +„C„2= 2„C„= 2nI/H!«!.

Since

2nI = 2/i(27i-l)(2rt-2) . . . 4 . 3 .2 . 1:=2™. 1 . 2 . . . jixl.B . . . (2;j-l),

wehave V + nCi' + nCi'+ • • +„C„2=2™.1.3 . . . (27i-l)/n!.

A great variety of results can be obtained by the above process of equating

coefficients in identities derived from the binomial theorem ; some specimens

are given among the exercises below.

Exercises II.

(1.) Find the third term in the expansion of (2 + 3x)'".

(2.) Find the coefficient of x'' in the expansion of (1 + x + x-) (1 -x)".

(3.) Find the term which is independent of x in the expansion of

(x + l/x)=».
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(4.) Find the coefficient of a-"*" in the expansion of (x - l/.r)2»».

(5.) Find the ratio of the coefficients of x-" in (l + x)^" and (l + .r)-".

(6.) Find the middle term in the expansion of (2 + |x)".

(7.) The product of the coefficients in (l+x)»+i : the product of the

coeflBcients in (l + x)"=(7i + l)" : n\.

(8.) The coefficient of a;'- in
{
(r - 2) x^ + nx - r} (x + 1)" is n „Cr-2-

(9.) If I denote the integral part and F the proper fractional part of

(3 + ^5)", and if p denote the rational part and o- the irrational part of the

same, show that

I=2{3" + „C2 3»-2.5 + „C^3«-^52+ . . .}-!,

F=l-(3-V5)",

(10.) If (^2 + l)2'»+i = I+i^, where F is a positive proper fraction and I ia

integral, show that F(I+F) = 1.

(11.) Find the integral parts of (2^3 + 3)2"', and of (2^/3 + 3)2»'+i,

(12.) Show that the greatest term in the expansion of (a+ 3;)" is the

(r + l)th, where r is the integral part of (n+ l)/(a/x + 1).

Exemplify with (2 + 3)J« and with (2 + 1)9.

(13.) Find the condition that the greatest term in (a + a:)" shall have the

greatest coefficient. Find the limits for x in order that this may be so

in (l + x)ioo.

(14.) If the^jth term be the greatest in (a + x)"*, and the qth the greatest

in (a + x)", then either the (p + q)th. or the {p + q- l)th or the (p + 2-2)th is

the greatest in (a + a;)'"+".

(15.) Sum the series , .

•£i+2»^2^3 4!''+ . . . +n~f-'^-.

(16.) Sum the series

l + 2„Ci + 3„C2 + 4„a,+ . . .

(17.) If jPr denote the coefficient of x^ in (l + x)", prove the following

relations :

—

1°. Pi-^P2 + ^P:i- ' • • +n(-l)"-'i^„ = 0.

(-1)"-! n
2°. hPi-lP2 + • •

+ —rr- Pn=—,-T-iri. jx-j
jt + 1 ^" 11+1

3.1+2 + 3 + • • • +„^i -
,^^.i

•

(18.) lipr have the same meaning as in last question, show that

(-l)»-i ,11 1

Pi-\P-2 + lP,- • •
+—„-:P"= 1 + 2 + 3+ • • • +«•

(19.) Show that

^C^xl+r-iGs-iX r(^l + r-2Cs-2^r(^2+ • +r-m^l X r^^s-l + 1 >< r<7«= r^82'.

(20.) Show that

• (l-nC-2+ nCi- r- + LCi-,fi,+ . . . )'^-l + „C^i + „C2+ . . .

2—2
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(21.) Show that

lx„C2 + „CiX„C3+ . . . +„C„_2X„C„= (2«)!/(n + 2)I(n-2)l.

(22.) Showthatl-n^4.("J^)y-(
-^"-^3V"-^y

4- . . . =0 if n

be odd, and = ( - l)'"2(n + 2) (n+ 4) . . . 2n/2.4 . . . n if n be even.

(23.) Show that

l.n(n + l)+jj(n-l)n+-5-2J— («-2)(n-l)+ -^
gj^^ -'(n-3)(n-2)

+ . . . =2(2/i + l)!/(n + 2)!(«-l)!.

(24.) If Wr stand for «' + l/x*", show that

TV+i+ r+lCi«r-l + r+lC2"r-3+ • • • =«! (l«r+ rCiMr-2 + rC2 Wr-4+ • • • )•

(25.) If a^ denote the coefficient of x'' in (l + x)2('»-'")(l -.t)-'", show that

<^o-n^i<'i + n^2<'^2~ ... =0 for all valucs of p except p — n, in which case

the right-hand side of the equation is 4".

(26.) Show that

x + 1 x + 2 '
'

'

x + n X (x + l) . . . (x + n)'

(27.) Findthe coefficient of x*" in (l + x + x2-t- . . . )^.

(28.) Find the coefficient of x^^ in (1 + x^ + x« + x^)*.

(29.) Find the coefficient of x» in (1 + X + 2x2 + 3x3+ . . . )\

(30.) If Oo, ttj, , . ., ttjii he the coefficients of the powers of x in

(l + 2x + 2x')", show that
<'o''2>»

~ "i^'an-i + • • • +^2nflo— ^ ^^ " ^^ odd,

= 2"n!/{(4n)!}2 if n be even.

(31.) If ttj. be the coefficient of x*" in (I4 x + x2+ . . . +xP)", show that

a^ - „Ci a^i + ^Cj a^_2 - ... =0, unless n be a multiple of p + 1. What
does the equation become in the latter case ?

(32.) Find the coefficient of x" in (1 + 2x + 3x2 + 4^3^12.

(33.) Write out the expansion of (a + 6 + c + df.

(34.) Show that

^
1''2*

. . .
nfc ^ 1 ( ?t(ri+ l)]P

rl»l . . . fil~ p\\ 2 f
'

where r, «, . . ., A; have all values between and p, both inclusive, subject

to the restriction r + 8+ . . . +k =p.

(35.) If „J/y have the meaning of § 10 above, prove that

2°. l-„(7iX,,Hi + „CjX„H2-„C3X„H3+ . . . +(-l)\(7„„Jf„=0.

(36.) IfXr=a;(x + l) . . . (x + r-1), show that

(x + r/)r= Xr + ,.CiXr_i2/i + ,C2X,._2y2+ . . . +yr'

(37.) Find the largest coefficient in the expansion of (a+ 6 + c + d+ e)^.



§§ 13-15 LAW OF DISTRIBUTION USED 21

EXAMPLES OF THE APPLICATION OF THE LAW OP

DISTRIBUTION.

§ 14.] If we haver sets, consisting of Ux^n^, . . ., n^ different

letters respectively, the whole number of different ways of making

combinations by taking 1, 2, 3, . . . up to r of the letters at a

time, but never more than one from each set, is

(wi + 1) {no, + 1) . . . (Wr + 1) - 1.

Consider the product

(1 + cfi + &i + . . . 7?i letters)

X (1 + rt2 + ^2 + • • • ^2 letters)

y. {1 -v ttr + br + . . . nr letters).

In the distributed product there will occur every possible com-

bination of the letters taken 1, 2, 3, . . ., r at a time, with the

terra 1 in addition. If we replace each letter by unity, each

term in the distributed product will become unity, and the sum

of these terms will exceed the whole number of combinations by

unity. Hence the number required is

(1 + Wi) (1 + W2) . . . (1 + ih) - 1

= SWj + 2Wi7?2 4- . . . + Wi?i3 . . . Wr.

This result might have been obtained by repeated use of § 7.

§ 15.] If we have r sets of counters, marked with thefollowing

numbers—
°-ii Hit ' ' -> "ii

02, /3o, . . ., /fo,

a
J. , p ,.

, t . • , Kry

the number of counters not being necessarily the same for each set,

and the inscribed numbers not necessarily all different, then the

number of different ways in which r counters can be drawn, one

from each set, so that the sum of the inscribed numbers shall be n,

is the coefficient of x^ in the distribution of the product
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{af^^ + iT^i + . . . + x"^)

X {x^ + x^'- + . . . + X"').

This theorem is an obvious result of the principles laid down

in chap. iv.

Cor. 1. If in the first set there he a^ counters marked with

the number a^, h marked with Pi, &c., in the second a^ marked

with ttj, ^o marked with P^, <^c-, the number of ways in which r

counters can be drawn so that the sum of the numbers on them is

n, is the coefficient ofx^ in the distribution of

(«ia^i + hiX^' + . . . + kiX"^)

X. {a^^ + b.^^-2 + . . . + Z'._wr«2)

X (a,^"r + bi^^r + . . . + k^^r).

Cor. 2. In a box there are a counters marked a, b marked /3,

&c. A counter is drawn r times, and each time replaced. TJie

number ofways in which the sum of the drawings can amount to

n is the coefficient ofx'^ in the distribution of

{ax°- + bx^ +...)'".

DISTRIBUTIONS AND DERANGEMENTS.

§ 16.] The variety of problems that arise in connection with

the subject of the present chapter is endless, and it would be

difficult within the limits of a text-book to indicate all the

methods that have been used in solving such of these problems

as mathematicians have already discussed. The following have

been selected as types of problems which are not, very readily at

least, reducible to the elementary cases above discussed.*

§ 17.] To find the number of ways in which n different letters

can be distributed among r pigeon-holes, attention being paid to

the order of the pigeon-holes, but not to the wder of the letters in

any one pigeon-hole, and no hole to contain less than one letter.

Let Dr denote the number in question.

* For further information see Whitworth's Choice and Chance.



§§ 15-17 DISTRIBUTION PROBLEM 23

If we leave s specified holes vacant and distribute the letters

among the remaining r-s holes under the conditions of the

question, we should thus get Dr-s distributions. Hence, if rCs

have its usual meaning, the number of distributions when s of

the holes are blank is rCgDr-a-

Again, the whole number of distributions when none, one,

two, &c., of the holes may be blank is evidently r", for we can

distribute the n letters separately among the r holes in r" ways.

Hence

Dr + rC,Dr-i + rC^Dr-..+ . . . + ,C,_iA = r" (A).

The equation (A) contains the solution of our problem, for, by

putting r = 2, /• = 3, &c., successively, we could calculate D^, D^,

&c., and Di is known, being simply 1.

We can, however, deduce an expression for Dr in terms of n

and r, as follows. Writing r - 1 in place of r we have

Dr-, + r-.0,Dr-,+ . . . ^ r~^C,-,D, = {r - l)^ (B).

From (A) and (B), by subtraction, remembering (§ 8, Cor. 3)

that

we derive

Dr + )—iW Dr-i + r-iPi Dr-2 + . . . + r^^Cf-i Di

= r''-{r-\Y (1).

From (1), putting r- 1 in place of r, we derive

X'r-i + r-2^1 -^r-2 "t" • • • "^ (•-2^r-2 -^1

= {r-lY-{r-2f {!').

From (1) and (1'), by subtraction, we derive

X/r + r-2^1 -^r-l "* r-2^2 -^1—2+ • • • + r-2^r-2 -^2

= r"-2(r-l)"+(r-2)" (2).

Treating now (2) exactly as we treated (1) we derive

Dr + r-S^i Dr~\ + r-3^2 -^r-2 + . . . 4- r_sCv-3 D3

= r''-3(r-l)'' + 3(r-2)»-(r-3)" (3).

The law of formation of the right-hand side is obvious, the

coefficients being formed by the addition rule peculiar to the

binomial coefficients (see chap, iv., § 14). We shall therefore

finally obtain
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= r^.^(r-ir + '^^^{r-2r-. . . (-^^^1" (4).

Cor. Ifthe order ofthe pigeon-Jwles he indifferent, the numb&r of

distributions is Dr/rl. In other words, the number ofpartitions of

n different letters into r lots, no vacant lots being allowed, is Dr/rl

We shall discuss the closely-allied problem to find the

number of r-partitions of n—that is, to find the number of

ways in which n letters, all alike, may be distributed among

r pigeon-holes, the order of the holes being indifferent, and no

hole to be empty—when we take up the Theory of the Partition

of Numbers.

§ 18.] Given a series of n letters, to find in how many ways

the order may be deranged so that no one out of r assigned letters

shall occupy its original position.

Let n^r denote the number in question.

The number of diff"erent derangements in which the r assigned

letters do all occupy their original places is {n-r)\. Hence the

number of derangements in which the r assigned letters do not

all occupy their original places is nl-{n-r)l Now, this last

number is made up of

—

1st. The number of derangements in which no one of the r

letters occupies its original place ; that is, „A^.

2nd. The number of derangements in which any one of the r

letters occupies its original place, and no one of the remaining

r-1 does so; that is, rCm-Ar-i-
3rd. The number of derangements in which any two of

the r letters occupy their original places, and no one of the

remaining r-2 does so; that is, rO-in-Ar-z- And so on.

Hence

n\-{n-r)l = ,Ar + rOin~Ar-l+r02n~Ar-2+ • • .

+ r6>_i n-r+Al (A).

If we write in this equation w - 1 for n, and r-1 for r, and
subtract the new equation thus derived from (A), we deduce

n\-{n-l)\=n^r + r-lCin-Ar-l + r-l0.n-Ar-ii+ • • •

+ ,_iC/y_j J^_r+Al \1).
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We can now treat this equation exactly as we treated

equation (1) of § 16. We thus deduce

n^r = nl-[in-l)l + '^^^{n-2)\-. . . (-nn-r)\ (2).

If we remember that {n — r)l, above, stands for the number

of derangements in which the r letters all occupy their original

positions, we see that, when r = n, {n — r)l must be replaced by 1,

Hence

Cor. T/is number of derangements of a series of n letters in

which no one of the original n occupies its original position is

The expression (3) may be written

n( . . . (4(3(2 (1-1) + 1)-1) + 1) . . .-(-i)») + (-l)».

Hence it may be formed as follows:—Set down 1, subtract 1

;

multiply by 2 and add 1 ; multiply by 3 and subtract 1 ; and

so on. The function thus formed is of considerable importance

in the present branch of mathematics, and has been called by

Whitworth suhfactorial n. He denotes it by \\ii. A more con-

venient notation would be n] .

SUBSTITUTIONS.

§ 19.] Hitherto we have merely counted the permutations

of a group of letters. If we direct our attention to the actual

permutations, and in particular to the process by which these

permutations are derived from each other, we are led to an order

of ideas which forms the foundation of that important branch of

modern algebra which is called the Theory of Substitutions.

Consider any two permutations, becda, beads, of the five letters

a, b, c, d, e. The latter is derived from the former by replacing

a hy e, b by b, c hy a, d by d, e by c. This process may be

represented by the operator (77); and we may write

febadc\ ,7,7
I 7 7 I becda - bcade :

\abcdej
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or, omitting the letters that are unaltered, and thus reducing the

operator to its simplest form,

( ] hecda = heads.
\acej

The operator
( )

, and the operation which it effects, are called

a Substitution ; and the operator is often denoted by a single

capital letter, S, T, &c.

Since the number of different permutations of a group of n

letters is n\, it is obvious that the number of different substitu-

tions is also 7i\, if we include among them the identical substi-

tution ill "

j '
(denoted by S'^ or by 1), in which no letter

is altered.

We may effect two substitutions in succession upon the same

permutation, and represent the result by writing the two symbols

representing the substitutions before the permutation in order

from right to left. Thus, if >S^ = {^^^\ , T =
(^^\ ,

STaebcd = ecabd.

We may also effect the same substitution twice or three times

over, and denote SS by ;S^^, SSS by S^, &c. Thus, S being as

before,

S'^aebcd - Sceabd = becad.

It should be observed that the multiplication of substitution

symbols is not in general commutative. For example, S and T
being as above, STaebcd = ecabd, but TSaebcd = caebd. If, when

reduced to their simplest form, the symbols S and T have no

letter in common, they are obviously commutative. This con-

dition, although sufficient, is not necessary ; for we have

(dcab\ (badc\ , , „ (badc\ (dcab\ , ,

\ I. j) ( 7 J aocde = cdOae =
( , , ( , , abcde.

\abcdj \abcdj \abcdj \abcdj

§ 20.] Since the number of permutations of n letters is

limited, it is obvious that if we repeat the same substitution, >S',

sufficiently often we shall ultimately reproduce the permutation

that we started with. The smallest number, /a, of repetitions

for which this happens is called the order of the substitution S,
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Hence we have S'^ = l, and >S^^'^ = 1, where p is any positive

integer.

We may define a negative index in the theory of substitu-

tions by means of the equation S'"^ = S^'^''^, n being the order of

8, and p such that j9/a > q. From this definition we see that

S!iS-'^ = S^S^"-^ = S^'' = 1. In other words, S'^ and S''^ are inverse

to each other; in particuUir, if

^^ _ /dahc\ 1 o-i _ (ahcd\ _ /hcda\

\abcdj' \dabcj \abcdj'

A set of substitutions which are such that the product of

any number of them is always one of the set is called a group
;

and the number of distinct substitutions in the group is called

t/ie order of the group. The number of letters operated on is

called the degree of the group.

It is obvious from what has been shown that all the powers

of a single substitution, >S^, form a group whose order is the

order of S.

§21.] A substitution such as i i/i f)>
where each letter

is replaced by the one that follows it, and the last by the first, is

called a Cyclic Substitutmi, and is usually denoted by the symbol

(abcdef).*

The cyclic substitution (a), consisting of one letter, is an

identical substitution; it may be held to mean that a passes into

itself.

The cyclic substitution of two letters (ab), or what is the

same thing (ba), is spoken of as a Transposition.

The effect of a cyclic substitution may be represented by

writing the n letters at equal intervals round the circumference

of a circle, and shifting each through Ijnih. of the circumference.

Thus, or otherwise, it is obvious that the order of a cyclic sub-

stitution is equal to the number of the letters which it involves.

§ 22.] Every substitution either is cyclic or is the product of a

number of independent cyclic substitutions {cycles).

Consider, for example, the substitution

* Or, of course, by (bcdefa), (cdefai), &c.
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o _ fhfdcgaeh\
~ \abcdefgh)''

This replaces ahyh, h by/, /by a; these together constitute

the cyclic substitution {ahf). Next, c is replaced by d, and d by

c; this is equivalent to the cycle {cd). Again, e is replaced by

g, and ghj e; this gives the cycle {eg). Finally, h is unaltered.

Hence we have the following decomposition of the substitution

S into cycles

—

8={ahf){cd){eg){h).

The decomposition is obviously unique; and the reasoning

by which we have arrived at it is perfectly general. It should

be noticed that, since the cycles are independent, that is, have

no letters in common, they are commutative, and it is indifferent

in what order we write them.

§ 23.] Every cyclic substitution of n letters can he decomposed

into the product ofn — 1 transpositions.

For example,, we have (abed) = (ab){bc)(cd) ; and the process

is general.

Cor. Every substitution can be decomposed into n-r transpo-

sitions, where n is the number of letters which it displaces, and r

the number of its proper cycles.

= (ab)(bf){cd)(eg).

This decomposition into transpositions is not unique, as will

be seen presently, but the above gives the minimum number.

§ 24.] The following properties of a product of two trans-

positions are of fundamental importance.

I. The product of two transpositions which ham two letters

in common is an identical substitution.

This is obvious from the meaning of {ah).

II. In the product of two transpositions, TT', which have a

letter in comnfion, T' may he placed first, provided we replace the

common letter in T by the other letter in T.
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For we have {ah){hc) = Q^) ,
{hc){ac) =

(^^^)

,

therefore {ab){bc) = {hc){ac).

Cor. 1. {ef){af) = {ae){ef).

Cor. 2. {ae){af) = {af){ef).

Ill, If two transpositions, Tand T', have no letter in common,

they are commutative.

This is a mere particular case of a remark already made
regarding two independent substitutions.

§ 25.] The decomposition of a given substitution into transpo-

sitions is not unique.

For we can always introduce a pair of factors {ab){ab), and

then commutate one or both of them with the others, in accord-

ance with the rules of § 24.

In this way we always increase the number of transpositions

by an even number. In fact, we can prove the following im-

portant theorem

—

The number of the transpositions which represent a given sub-

stitution is always odd or always even.

We may prove this by reducing the product of transpositions

to a standard form as follows

—

Select any one of the letters involved, say a ; take the last

transposition, T, on the right that involves a, and proceed to

commutate this transposition successively with those to the left

of it. So long as we come across transpositions that have no

letter in common with T, neither T nor the others are affected.

If we come to one that has a letter in common with T which is

not a, we see (§ 24, 11. , Cor. 1) that the a in jT remains, the other

letter being altered, and the transposition passed over remains

unaltered. If we come to a transposition that has a, and a only,

in common with T, by § 24, II., Cor. 2, T passes to the left un-

altered, and the transposition passed over loses its a. Lastly, if

we come to a transposition that has both a and its other letter

in common with T, then both it and T may be removed. If

this last happen, we must now take that remaining transposition

containing a which is farthest to the right, and proceed aa

before.
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The result of this process, so far as a is concerned, will be,

either that all the transpositions containing a will have dis-

appeared, or that some even number (including 0) will have done

so, and one only, say {ah), will remain on the extreme left.

Consider now b. If among the remaining factors b does not

occur, then we have obtained a cycle {ab) of the substitution

;

and we now proceed to consider some other letter.

If, however, b does occur again, we take the factor farthest

to the right in which it occurs, and cominutate as before ; the

result being, either that all the transpositions (even in number)

containing b disappear, or that an even number of them do, and

we are left with, say {be), in the second place. We now deal

with c in like manner ; and obtain in the third place, say {cd).

This goes on until all the letters are exhausted, or until we

come to a letter, say /, that disappears from the factors not yet

finally arranged. We thus arrive at a product {ab}{bc){cd){de){ef)

on the left.

Now {ab){bc)(cd){de){ef) ^
(^'^'^^^)

= (abcdef).

We have, in fact, arrived at one of the independent cycles of

the substitution. If we now take any other letter that occurs in

one of the remaining substitutions on the right, we shall in like

manner arrive at the cycle to which it belongs, after losing an

even number, if any, of the transpositions ; and so on, until all

the letters are exhausted, and all the cycles arrived at. Since

the whole number of transpositions lost is even, the truth of the

theorem is now obvious ; and our proof furnishes a method for

reducing to the minimum number of transpositions.

It appears, therefore, that we may divide all the substitutions

of a set of n letters into two classes—namely, eve?i substitutions,

which are equivalent to an even number of transpositions, and

odd substitutions, wliich are equivalent to an odd number of

transpositions.

Cor. 1. Ifn be the number of letters altered by a substitution, r

the number of its cycles, and 2s an arbitrary even integer, the number

offactoi's in an equivalent product of transpositions is n-r+ 2s.
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Cor, 2, The number of thd even is equal to the number of the

odd substitutions of a set of n letters.

For any one transposition, applied in succession to all the

different odd substitutions, will give as many even substitutions,

all different. Hence there are at least as many even as there

are odd substitutions. In like manner we see that there are at

least as many odd as there are even. Hence the number of the

even is equal to the number of the odd substitutions.

Cor. 3. A cyclic substitution is even or odd according as the

number of the letters which it involves is odd or even.

For example, {abc) = {ab) (be) is even.

Cor. 4. The product of any number of substitutions is even or

odd according as the number of odd factors is even or odd. In

particular, ajiy power whatever of an even substitution, and any

even power of any substitution whatever, form even substitutions.

Cor. 5. All the even substitutions of a set of n letters form a

group whose order is n\/2.

§ 26.] If we select arbitrarily any one, say P, of the nl per-

mutations of a set of n letters, and call it an even permutation,

then we can divide all the nl permutations into two classes

—

1st, w!/2 even permutations, derived by applying to P the 7i!/2

even substitutions ; 2nd, w!/2 odd permutations, derived by

applying to P all the 72!/2 odd substitutions.

The student who is familiar with the theory of determinants

will observe that the above is precisely the classification of the

permutations of the indices (or umbra?) which is adopted in

defining the signs of the terms in a determinant.

It is farther obvious, from the definitions given in chap, iv.,

§ 20, that symmetric functions of a set of n variables are un-

altered in value by any substitution whatever of the variables ; or,

as the phrase is, they are said to " admit any substitution what-

ever." Alternating functions, on the otlier hand, admit only even

substitutions of their variables, the result of any odd substitution

being to alter their sign without otherwise affecting their value.

§ 27.] The limits of the present work will not permit us to

enter farther into the Theory of Substitutions, or to discuss its

applications to the Theory of Equations. The reader who desires
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to pursue this subject farther will find iuformation in the follow-

ing works : Serret, Cours d'Alg^bre Superieure (Paris, 1879) ;

Jordan, Traite des Substitutions (Paris, 1870) ; Netto, Suhstitu-

tionen-theorie (Leipzig, 1882) ; Burnside, Theory of Groups

(Cambridge, 1897).

Exercises III.

(1.) There are 10 counters in a box marked 1, 2, . . . , 10 respectively.

Three drawings are made, the counter drawn being replaced each time. In

how many ways can the sum of the numbers drawn amount—1st, to 9

exactly; 2nd, to 9 at least?

(2.) Out of the integers 1, 2, 3, . . .,10 how many pairs can be selected

so that their sum shall be even ?

(3.) How many different throws can be made with n dice?

(4.) In how many ways can 5 black, 5 white, 5 blue balls be equally

distributed among three bags, the order of the bags to be attended to?

(5.) A selection of c things is to be made partly from a group of a, the

rest from a group of b. Prove that the number of ways in which such a set

can be made will never be greater than when the number of things taken

from the group of a is next less than (a + 1) (c + l)/(a + 6 + 2),

(6.) In how many ways can p + 's and n - 's be placed in a row so that no

two - 's come together ?

(7.) In the Morse signalling system how many signals can be made
without exceeding 5 movements ?

(8.) In how many ways can 3 pairs of subscribers be set to talk in a

telephone exchange having n subscribers ?

(9.) There are 3 colours, and m balls of each. In how many ways can

they be arranged in 3 bags each containing m, the order of the bags to

be attended to ?

(10.) If of ^ + g' + r things p be alike, q alike, and r different, the total

number of combinations will be (p + 1) (g + 1) 2^ - 1.

(11.) In how many ways can 2n things be divided into n pairs?

(12.) The number of combinations of 8« things {n of which are alike),

taken n at a time, is the coefficient of x" in (1 + x)-"/(l - x).

(18.) ^boat clubs have a, 6, c, 1, 1, . . ., 1 boats each. In how many
ways can the boats be arranged subject to the restriction that the 1st boat of

any club is to be always above its 2nd, its 2nd always above its 3rd, &c. ?

(14.) If there be p things of one sort, q of another, r of another, Ac. , the

number of combinations of the p + q + rJr . , . things, taken k at a time, is

the coefficient of x* in (l-a;'^i)(l-a;3+i) . . . /(I -x) (1 -x) . . .

(15.) In how many ways can an arrangement of n things in a row be
deranged so that—1st, each thing is moved one place ; 2nd, no thing more
than one place ?

(16.) Given n things arranged in succession, the number of sets of 3
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which can be formed under the condition that no set shall contain two things

which were formerly contiguous is {n -2){n- 3) {n - 4), the order inside the

sets to be attended to.

(17.) In how many ways can m white and n black balls be arranged in a

row so that there shall be 2r- 1 contacts between white and black balls?

(18.) In how many ways can an examiner give 30 marks to 8 questions

without giving less than 2 to any one question?

*(19.) The number of ways in which n letters can be arranged in r pigeon-

holes, the order of the holes and of the letters in each hole to be attended to

and empty holes admitted, is r(r+ l) (r+ 2) . . . (r+n-1).

(20.) The same as last, no empty holes being admitted, n!(n-l)!/(n-r)I

(r-1)!.

(21.) The same as last, the order of the holes not being attended to,

hI (n- 1)1/(71 -r)Ir!(r-l)!.

(22.) The number of ways in which n letters, all alike, can be distributed

into r pigeon-holes, the order of the holes to be attended to, empty holes to

be excluded, is „_i(7^_i.

(23.) Same as last, empty holes being admitted, n+r-i^r-i'

(24.) Same as last, no hole to contain less than q letters, „_i_^(g_i|Cy_i.

(25.) The number of ways of deranging a row of n letters so that no letter

may be followed by the letter which originally followed it is 7i] + (« - l)i

.

(26.) The number of ways of deranging m + n terms so that m are dis-

placed and n not displaced is (m+ n)Imj/wi!n!.

(27.) The number of ways in which r different things can be distributed

among n+p persons so that certain n of those persons may each have one at

least is

Sr={n+pY-n(n+p-lY+^^-^(n+p-2y-. . .

Hence prove that

Si= Sf2=. . .=-S„_i = 0, S„=n!, S„+i = (^|+i>)(n + l)l.

{Wolsten?iolme.)

(28.) Fifteen school-girls walk out arranged in threes. How many times

can they go out so that no two are twice together? (See Cayley's Works, vol.

I., p. 481.)

Exercises IV.

Topological.

(1.) The number of sides of a complete n-point is i|n(ra-l), and the

number of vertices of a complete n-side is the same,

(2.) The number of triangles that can be formed with 2n Unes of lengths

1, 2, . . ., 2nisn(ra-l)(4n-5)/6.

(3.) There are n points in a plane, no three of which are collinear, How

* Exercises 19-25 are solved in Whitworth's Choice and Chance
;
q.v.

0. n. 3
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many closed r-sided figures can be formed by joining the points by straight

lines?

(4.) If m points in one straight line be joined to n points in another in

every possible way, show that, exclusive of the m+n given points, there are

mn {m - 1) (n - 1)/2 points of intersection.

(5.) On three straight lines, A, B, C, are taken Z, m, n points respectively,

no one of which is a point of intersection. Show that the number of triangles

which can be formed by taking three of the Z+m+ n points is |(7n+n) (n+Z)

(Z + m) - mn -nl- Im.

(6.) There are n points in a plane, no three of which are coUinear and no

four concyclic. Through every two of the points is drawn a straight line and

through every three a circle. Assuming each straight line to cut each circle

in two distinct points, find the number of the intersections of straight lines

with circles.

(7.) In a convex polygon of n sides the number of exterior intersections of

diagonals is ^^^2^1 (71 - 3) (n - 4) (n - 5), and the number of interior intersections

i8^^n(n-l)(7i-2)(n-3).

(8.) There are n points in space, no three of which are collinear, and no

four coplanar. A plane is drawn through every three. Find, 1st, the num-

ber of distinct lines of intersections of these planes; 2nd, the number of these

lines of intersection which pass through one of the given n points ; 3rd, the

number of distinct points of intersection exclusive of the original n points.

(9.) Out of n straight lines 1,2, . . .,n inches long respectively, four can be

chosen to form a pericyclic quadrilateral in { 2n (n - 2) (2n - 5) - 3 + 3 ( - l)"}/48

ways.

(10.) Show that n straight lines, no two of which are parallel and no three

concurrent, divide a plane into \{rfi->i-n + 2) regions. Hence, or otherwise,

show that n planes through the centre of a sphere, no three of which are

coaxial, divide its surface into n^-n + 2 regions.

(11.) Show that two pencils of straight lines lying in the same plane, one

containing m the other n, divide the plane into mn+ 2m+ 2ra - 1 regions, it

being supposed that no two of the lines are parallel or coincident.

(12.) If any number of closed curves be drawn in a plane each cutting all

the others, and if ??,. be the number of points through which r curves pass,

the number of distinct closed areas formed by the plexus i?

l + n3+ 2?i3+. . .+r«r+i+. . .



CHAPTER XXIV.

General Theory of Inequalities.

Maxima and Minima.

§ 1.] The subject of the present chapter is of importance in

many branches of algebra. We have already met with special

cases of inequalities in the theory of Ratio and in the discussion

of the Variation of Quadratic Functions of a single variable ; and

much of what follows is essential as a foundation for the theory

of Limits, and for the closely allied theory of Infinite Series. In

fact, the theory of inequalities forms the best introduction to the

theory of infinite series, and, for that reason, ought to be set as

much as possible on an independent basis.

§ 2.] We are here concerned with real algebraical quantity

merely. As we have already explained, no comparison of com-

plex numbers as to relative magnitude in the ordinary sense can

be made, because any such number is expressed in terms of two

absolutely heterogeneous units. Strictly speaking, there is a

similar difficulty in comparing real algebraical quantities which

have not the same sign ; but this difficulty is met (see chap.

XIII.
, § 1) by an extension of the notion of inequality. It will

be remembered that a is defined to be algebraically greater or

less than h according as the reduced value of a - 6 is positive

or negative. An immediate consequence of this definition is

that a positive quantity increases algebraically as it increases

numerically, but a negative quantity decreases algebraically as

it increases numerically. The neglect of this consideration is a

fruitful source of mistakes in the theory of inequalities.

§ 3.] From one point of view the theory of inequalities runs

3—2
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parallel to the theory of conditional equations. In fact, the

approximate numerical solution of equations depends, as we have

seen, on the establishment of a series of inequalities*.

The following theorems will bring out the analogies between

the two theories, and at the same time indicate the nature of

the restrictions that arise owing to the fact that the two sides of

an inequality cannot, like the two sides of an equation, be inter-

changed without altering its nature. For the sake of brevity,

we shall, for the most part, write the inequalities so that the

greater quantity is on the left, and the sign > alone appears.

The modifications necessary when the other sign appears are in

all cases obvious.

I. jyP>Q, Q>B, R>S, then P>S.
Proof.—{P -Q)+(Q-B) + (B-S) =P-S, hence, sinceP - Q,

Q-B, E-S aie all positive, P-S is positive, that is, P>S.
II. IfP>Q,thenP±B>Q±B.
For (P±B) - (Q±B) = P - Q ; hence the sign of the former

quantity is the same as the sign of the latter.

Cor. 1. JfP+Q>B + S,then

P+Q-B>S, -B-S>-P-Q, -P-Q<-B-S.
It thus appears that we may transfer a term from one side of

an inequality to another, provided we change its sign; and we
may change the signs of all the terms on both sides of an inequality,

provided we reverse the symbol of inequality.

Cor. 2. Every inequality may be reduced to one or other of
the forms P>0 or P<0.

In other words, every problem of inequality may be reduced
to the determination of the sign of a certain quantity

III. JfP,>Q„ P,>Q,, . . ., P„>Q„,
thm Pi + P,+ . . . +P„> Qi + Q,+ ...+$„;
for {P, + P,+ . . . +Pn)-iQ^+Q,+ . . . +Qr,)

^{P^-Q^) + {P.-Q.)+. . . +(Pn-Qn),
whence the theorem follows.

It should be noticed that it does not follow that, if Pi>Q,
P^> Q„ then P^ - P,>Q, - Q„

* See, for example, the proof that every equation has a root.
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IV. If P> Q, then PE>QE, and P/B> Q/E, provided E
be positive; but PE<QE, P/E<Q/E, if E be negative.

For (P-Q)E and (P - Q)/E have both the same sign as

P—Q HE be positive, and both the opposite sign if E be

negative.

Cor. 1. If P> QE, and E>S,then P> QS, provided Q be

positive.

Cor. 2. Every fractional inequality can be integralised.

For example, if P/Q>E/S, then, provided QS be positive,

we have, after multiplying by Q8, PS> QE ; but, if QS be

negative, PS<QE.
If there be any doubt about the sign of QS, then we may

multiply by Q^S^, which is certainly positive, and Ave have

QPS'>Q'ES.
V. IfPi>Qi,P2>Q2, . . . , Pn>Qn, ctnd all the quantities

be positive, then

P,P, . . . Pn> Q,Q, . . . Q,.

For P,P,P, . . . P^>Q,P,P, . . . P„,

since Pi> Qi and P2P3 . . . P„ is positive
;

>Q.Q.P. . . . P„, •

since P2>Q2 and Q1P3 . . , P,j is positive ; and so on. Hence,

finally, we have

P,P, . . . P„> Q,Q, . . . Q,.

Cor. 1. If P>Q, and both be positive, then P'>Q'',n being

any positive integer.

Cor. 2. If P>Q, and both be positive, then P^"'>Q^"', n
being any positive integer, and the real positive value of the nth

root being taken on both sides.

For, if P'^"^ Q^"", then, since both are real and positive,

{pvnY^{Qvn)n^ by Cor. 1 ; that is, P? Q, which contradicts our

hypothesis.

Cor. 3. If P>Q, both being positive, and n be any positive

quantity, then P-"<Q-", where, if the indices are fractional,

there is the usual understanding as to the root to be taken.

Eemark.—The necessity for the restrictions regarding the
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sign of the members of the inequalities in the present theorem

will appear if we consider that, although — 2> - 3, and - 3> - 4,

yet it is not true that ( - 2) ( - 3)>( - 3) ( - 4).

These restrictions might be removed in certain cases ; for

example, it follows from - 3 > - 4 that ( - 3)^>( - 4)^ in other

words, that - 27 > - 64 : but the importance of such particular

cases does not justify their statement at length.

Cor. 4. An inequality may be rationalised if due attention he

paid to the above-mejitioned restrictions regarding sign.

§ 4.] By means of the theorems just stated and the help of

the fundamental principle that the product of two real quantities

is positive or negative according as these quantities have the

same or opposite sign, and, in particular, that the square of any

real quantity is positive, we can solve a great many questions

regarding inequalities.

The following are some examples of the direct investigation

of inequalities ; the first four are chosen to illustrate the paral-

lelism and mutual connection between inequalities and equa-

tions :

—

Example 1. Under what circumstances is

(3x - l)l(x - 2) + (2x - 3)l(x - 5) > or < 5?

1st. Let us suppose that x does not lie between 2 and 5, and is not equal

to either of these values. Then (x -2)(x- 5) is positive, and we may multiply

by this factor without reversing the signs of inequality.

Hence F=(3a;- l)/(x-2) + (2x-3)/(a;-5)><5,
according as

(3a; -l){x-5) + {2x - 3) (x - 2)>< 5 (x - 2) (a; - 5),

according as Sx^* - 23x + 11>< 5x2 - 3ox + 50,

according as 12x5> <39,

according as x><3J.
Under our present supposition, x cannot have the value 3J ; but we con-

clude from the above that if x>5, F>5, and if x<2, F<5.
2nd. Suppose 2<x<5. In this case (x-2)(x-5) is negative, and we

must reverse all the signs of inequality after multiplying by it.

We therefore infer that if 2<x<3J, F<5, and if 8J<x<5, then
J'<5.

The student should observe that, as x varies from - oo to + oo , the sign of
the inequaUty is thrice reversed, namely, when x=2, when x = 3^, and when
x= 5; the first and last reversals occur because F changes sign by passage
through an infinite value; the second reversal occurs because F passes
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through the value 5. The student should draw the graph of the func-

tion F.*

Example 2. Under what circumstances is

i?'=(3a;-4)/(x-2)><l?

Multiplying by the positive quantity (x - 2f, we have

(3x-4)/{a;-2)><l,

according as (3a; - 4) (x - 2) > < (x - 2)^,

according as { (3x - 4) - (a; - 2) } (a; - 2)>< 0,

according as 2 (x - 1) (x - 2) > < 0.

Hence F>\, if x<.l or >2;

F<1, if l<a;<2.

Example 3. Under what circumstances is x* + 25x > < Sx^ + 26 ?

x3 + 25x><8x2-(-26,

according as x' - Sx^+ 25x - 26 > < 0,

according as (x-2){x2-6x + 13)> <0,

according as (x-2){(x-3)* + 4}> <0.

Now (x -3)2+ 4 is positive for all real values of x ; hence

x»+ 25x><8x2+ 26,

according as x><2.

Example 4. If the positive values of the square roots be taken in all

^(2x + l)+V(x-l)><V(3x)?

Owing to the restriction as to sign, we may square without danger of

reversing the inequality. Hence

V(2x + 1) + ^{x - 1) > < V(3x),

according as 2x + l + x-l + 2;^{(2x + l) (x-l)}> <3x,

according as 2^{(2x + l)(x-l)}> <0.

Now, provided x is such that the value of ^y{(2x + l) (a;-!)} is real, that is,

provided x>l,
2^{(2x + l)(x-l)}>0,

therefore »y(2x + 1) + ^(x - 1) >^(3x), if x > 1.

Negative values of x less than -\ would also make ;^{(2x + l) (x-1)}

real ; but such values would make ;^(2x + l), J{;x-1), and sj{dx) imaginary,

and, in that case, the original inequality would be meaningless.

Example 5. li x, y, z . . . be n real quantities (n - 1) Sx^ <t 2Sx?/.

Since all the quantities are real, S (x - y)^ <t 0.

Hence, since x will appear once along with each of the remaining n -

1

letters, and the same is true of ?/, z, . . ., we have

(»i-l)2x2-22x!/<tO,

that is, (n - 1) Sx^ <t 22xi/.

* The graphical study of inequalities involving only one variable will be

found to be a good exercise.
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In the case where x= y=z= . . . . we have Sx*= na;^ 2S.Ty= 2„C2.t'^

= n(n-l)x2, 80 that the inequality just becomes an equality.

When n=2, we have the theorem

x^ + j/^ <t 2xy ;

or, if we put x=^a, y—sjh, a and b being real and positive,

a theorem already established, of which the preceding may be regarded as a

generalisation. A more important generalisation of another kind will be

given presently.

Example 6. Iix,y,z, . . . be 7i real positive quantities, and ^J and g any
two real quantities having the same sign, then

xP+<j + yP-t-9
<t xfy'i+ x'iyP,

n2xP+9<2xPSx9.

We have seen that x^-yv and afl-yi will both have the same sign as

x-y, or both opposite signs, according as p and q are both positive or both

negative. Hence, in either case, (xp - yf>) {sfl - 2/«) has the positive sign.

Therefore
(xP - y'P) (x9 - 1/9) <i 0,

whence xp+9 + j/P+"9 <f xP(/9 + x'j/P.

If we write down the JJ^ inequalities like the last, obtained by taking

every possible pair of the n quantities x, y, z, . . . , and add, we obtain the

following result

—

(n-l)2xP+9<t2xPj/9.

If we now add 2xp+« to both sides, we deduce

?i2xP+9<t2xP2x9.

N.B.—If^ and q have opposite signs, then

n2xP+9>2xP2x9.

These theorems contain a good many others as particular cases. For
example, if we put q= -p,vfe deduce

2xP2x-P<t:n2,
which, when n=3, p=l, gives

(x + 1/ + 2) (1/x + 1/y + 1/z) <t 9 ;

whence (x+ y + z)(yz + zx + xy)<t9xyz;

and so on.

Example 7. If x, y, z be real and not all equal, then 2x5x3x^2,
according as 2x><0.
For 2x» - 3x2/2= 2x (2x2 -2x?/),

= |2x2(x-j/)2.

Hence the theorem, since 2 (x - y)"^ is essentially positive.

Example 8. To show that

1 1.3 .. . (271-1) V(n+1)
V(2k + 1)^ 2.4 ... 2»

'^
2n+ l '

where n is any positive integer.
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From the inequality a + 6>2^(a6) we deduce

(2«-l) + (2n + l)>2V{(2ra-l)(2n+ l)};

whence (2rt-l)/2w<V{(2n-l)/(2n+ l)} (1);

similarly (2re - 3)/2 {n-l)<J{(2n- 3)/(2n - 1)} (2)

;

5/2. 3 < ^{5/7} (»-2);

3/2.2<V{3/5} - (rt-1);

l/2.1<^{l/3} (n).

Multiplying these inequalities together, we get

1.3.5 ... (2n-l) 1 .^.

2.4.6 . . . (2n) J(2n + 1) ^
''

Again, n+{n+l)>2^{n(n+ l)},

that is, 2n+ l>2^{7i{n+l)}.

Hence we have the following inequalities

—

{2n + l)/2n>v/{(n+ l)/n} (1)',

(2n-l)/2(n-l)>v/{n/(n-l)} (2)',

' * 7/2.3>^{4/3} (n-2)',

5/2.2>V{3/2} . (n-1)',

8/2.1>V{2/l} (n)'.

Multiplying these n inequalities together, we get

1.3.5 . . . (271+1) ,. ^ ,,

Hence
1 -3.5 . . (2n-l) ^^/(n+ l)

^^^
2.4.6 . . . 2n 2n+ l ^ '

(A) and (B) together establish the theorem in question.

Since J(n + l)l(2n + l)>^(n+ l)l(2n + 2)>ll2J(n+l), we may state the

above theorem more succinctly thus,

1 1.3 .. . (2n-l
)

1

^(2n+ l)^ 2.4. . . 2n ^ 2J(n+ l)'

DERIVED THEOREMS.

§ 5.] We now proceed to prove several theorems regarding

inequality which are important for their own sake, and will be

of use to us in following chapters.

If hi, 1)2, . . .yhnhe allpositive, the fraction (^1 + ^2 + . . . + a^)/

(61 + ^2 + • • . + tn) «s not less than the least, and not greater tlmn

the greatest, of the n fractions a^jbi, a^jh^, . . . , cinlK-

Let / be the least, and /' the greatest of the n fractions,

then

aijbi<if, a^/bi^if • • •> ajb^^i^f
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Hence, since hi,h^, . . ., &„ are all positive,

ai^fbi, a2<^fb2, . . ., an^fbn.

Adding, we have

(ai + «2 + . • • +a7i) <t:/(^ + ^j + - • • + ^n);

whence

(«! + ^2 + . . . + «„)/(&! + &2 + • . . + ^») -^f'

In like manner, it may be shown that

(«! + «2 + . . . + a„)/(6i + &2 + . . . + ^n) ^Z'-

Remark.—This theorem is only one among many of the same

kind*. The reader will find no difficulty in demonstrating the

following :

—

Iftti, Ui,. . ., a„, bi, bi, . . .,bn be as before, and k, h, - , k
be n positive quantities, then "^liai/^libiis not less than the least,

and not greater than the greatest, among the n fractions ai/bi , a^jb^,

. . . , an/On

.

Ifai, a^, . . ., a„, bi, h, . . .,bn, h, k, • • -Jn be allpositive,

then {U^a.'^ltkbrYi'' and [a.a^ . . . ajb.b, . • • bnY'"" are,

each of them, not less than the least, and not greater than the

greatest, among the n fractions ai/bi, a-^jb^, . . ., ajbrn-

Example, to prove that

1 » /
(
1.3 .. . {2n-l)

}

2'^\/
I

2.4 ... 2n J*^'

Since the fractions 1/2, 3/4, . . . (2n - 1)/2« are obviously in ascending

order of magnitude, we have, in the second part of the last of the theorems

just stated,

«/ (1.3 . . , (2n-l)) 2n-l

i<7i' 2.4 ... 271 ( 2ra

Now, (2«- l)/2rt= l - l/27i<l, hence the theorem follows; and it holds, be it

observed, however great n may be.

§ 6.] If X, p,q be all positive, and p and q be integers, then

{a^ -\)lp><{afl- \)lq according aspXq.
Since p and q are positive,

{aP-l)/p><{afl-l)/q,

according as q(af-l)><p{afl- 1),

* See the interesting remarks on Mean Values in Cauchy's Analyse

Alg6brique.
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according as

(a;-l){q{af-^ + xP-' + . . . + l)-p{af-' + af^-'' + . . . + 1)}><0.

lip>g, we have

X = {a)-l){q(af-'' + a;P-^+.
. . +l)-p{afl-^ + afl-^+ . . . + !)},

= {a;-l){q{xP-' + af-^ + . . . +0/^)- (j)-q){afl-' + afl-^ + . . . + 1)}.

Now, if a;>l,

afi-i + afl-^ + , . . + 1 < qafi-^
;

X>{a;-l){q{p-q)af^-{p-q)qafl-%

>q{p-q)afl-'{w-lf,

>0.

Again, if a:<l,

-^;5-i + ^-2 + , , , + 1 > qa^-^
;

but, since ^ - I is now negative, the rest of the above reasoning

remains as before.

Hence, in both cases,

{a:'-l)/p>{^-l)lq.

By the same reasoning, if q>p,

{afl-l)lq>{aP-l)lp,
that is, '\ip<q,

{af-l)/p<{afl-l)/q.

§ 7.] I/a; be positive, and +1, then

m^"-^ (a; - l)>a;'^ - l>m (x - 1),

unless m lie between and + 1, in which case

mx""-^ {x -\)<x'^ -\<m{x -I).

From § 6, we have

{^'-l)><{plq){^'^-\) (1),

according as jpXg, where I is any positive quantity + 1, and

p and q positive integers. In (1) we may put x^i'^ for ^, where as

is any positive quantity + 1 (the real positive value of the gth

root to be taken), and we may put m for pjq, where m is any

positive commensurable quantity. (1) then becomes

x'''-l><m{x-l) (2),
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according as m> <1, which is part of the theorem to be

established.

In (2) we may replace a; by 1/^, where a; is any positive

quantity 4=1, and the inequality will still hold.

Hence (l/a;)™- l><w(l/^- 1) (3),

according as mxl.
If we multiply (3) by - af^, we deduce

ic'^-lomaf-^iv-l),

that is, ma;™-^ (w-l)><x'^-l,

according as mxl.
We have thus established the theorem for positive values

of m.

Next, let m = -n where n is any positive commensurable

quantity. Then
a;-»-l><(-w)(a;-l),

according as 1 - a;"><- nx'^ (^ - 1 ),

according as a;" - 1<> naf (a; — 1 ),

wa;'*+'-wa;''><a;'*-l.

Add af''^^ - af" to both sides, and we see that

a7-»-l><(-w)(a;-l),
according as

(w + 1) a?" (a; - 1) ><a;"+^ - 1.

Now, since n is positive, w + 1 > 1, therefore, by what we
have already proved,

(w + l)a;"(a;-l)>a;''-''-l.

Hence a;-"-l>(-w)(a;- 1) (4).

In (4) we may write 1/a; for w ; and then we have

(l/a;)--l>(-7i)(l/a;-l).

If we multiply by - a;-", this last inequality becomes

a;-"-l<(-M)a7-''-^(a;-l),

that is, (- n) a;-"-^ (a; - l)>a;-" - 1.

Hence, if m be negative,

ma;'"-^ (a: - 1) >a;"' - 1 >w (a- - 1) J

which completes the demonstration.
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Cor. If X and y be any two unequal positive quantities, we
may replace a; in the above theorem by a^/y. On multiplying

throughout by y'^, we thus deduce the following

—

J[fa! and y be positive and unequal, then

mx^~^ {x-y)>x^'^ — y^>my^~^{x-y),

unless m lie between and + 1, in which case

mx^~^ {x - y)<x'^ -y^< my^~'^ {x — y).

We have been careful to state and prove the inequality of

the present section in its most general form because of its great

importance : much of what follows, and many theorems in the

following chapter, are in fact consequences of it*.

Example 1. Show that, if x be positive, (1 + a;)"* always lies between

1 + wix and (l + a;)/{l + (l-wi)x}, provided mx<.l + x.

Suppose, for example, that m is positive and < 1. Then, by the theorem

of the present section,

m (1 + x)"*-i a;< (1 + «)•* - 1 < ma;.

Hence (1 + x)™< 1 + mx.

Also, (l + x)"'-l>mx(l + a;)'»/(l + a;),

{1 - wia;/(l + x) } (1 + x)»»> 1.

If mx<l + x, l-mx/(l + x) is positive, and we deduce

(l + x)'»>l/{l-wix/(l + x)},

>(l + x)/{l+(l-m)x}.
The other cases may be established in like manner.

Remark,—It should be observed that

(l±x)"»> <l±mx,
according as m does not or does lie between and + 1.

Example 2. Show that, if m^ , Wj . . . , u„ be all positive, then

{1 + Mi)(l+Ma) . . . (1 + M„)>l + Ui + M2+ . . .+u„;
also that, if Uj , u^ • • > ^n ^ ^^ positive and each less than 1, then

(l-«l)(l-"2) • • • (l-"n)>l-Wl-'«2- • • • -"n-
The first part of the theorem is obvious from the identity

(1 + Mi)(l+M2) . . . (1+M„) = 1+SMx + SUiU2+ SUjM2Uj,+ . . . +?<il/2 ...«„.
The latter part may be proved, step by step, thus

—

1-Mj= l-Uj.

(1 - Ml) (1 - Wj) = 1 - Ui - 1*2 + MjMs,

>l-til-M2.

* Several mathematical writers have noticed the unity introduced into

the elements of algebraical analysis by the use of this inequality. See

especially Schlomilch's Handbuch der Algebraischen Analysis. The secret of

its power lies in the fact that it contains as a particular case the fundamental

limit theorem upon which depends the differentation of an algebraic function.

The use of the theorem has been considerably extended in the present volume.
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Hence, since 1 - Uj is positive,

(1 - Ui) (1 - M2) (1 - "3) > (1 - U3) (1 - "1 - "2).

>l-Ui-W2-M3 + Ws(Ui + W2)f

>l-Wj-M2-"3'
And so on.

These inequalities are a generalisation of (1 ± x)" > 1 ± wx {x<l ,and n a

positive integer). They are useful in the theory of infinite products.

§ 8.] The arithmetic mean of n positive quantities is not less

than their geometric mean.

Let us suppose this theorem to hold for n quantities

a, b, c, . . ., k, and let I be one more positive quantity. By

hypothesis,

{a + b + c + . . . + k)ln^{ahc . . . kf'",

that is,

a + h^ c^ . . . + k<^n (abc . . . ky\

Therefore

a + b + c + . . .+k + /<}:% (abc . . . ky"" + 1.

Now,
n (abc . . . ky"" + H{n + 1) {abc . . . H)^/("+'),

provided

n{abc . . . k/l"}"'' + l-^in + 1) {abc . . . H/Z«+^p+'),

<i;{n+l){abc . .
.^ ^•/^T("+'),

that is, provided

ne^^ + l<^{n+l)e,

where $''^''+^) = abc . . . A//»

that is, provided

which is true by § 7.

Hence, if our theorem hold for n quantities, it will hold for

n+1. Now we have seen that (a + 6)/2<{:(ai)*, that is, the

theorem holds for 2 quantities ; therefore it holds for 3 ; there-

fore for 4 ; and so on. Hence we have in general

{a + b + c+ . . . + k)/n<^{abc . . . ky'\

It is, of course, obvious that the inequality becomes an
equality when a = b = c=^ . . . =k.
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There is another proof of this theorem so interesting and

fundamental in its character that it deserves mention here*.

Consider the geometric mean {ahc . . . ky\ If a, b, e, . . .

be not all equal, replace the greatest and least of them, say a

and k, by {a+k)l2; then, since {{a + k)/2}^>ak, the result has

been to increase the geometric mean, while the arithmetic mean

of the n quantities {a + k)/2, b, c, . . ., (a + k)/2 is evidently the

same as the arithmetic mean oi a, b, c, . . . , k. If the new set

of n quantities be not all equal, replace the greatest and least as

before ; and so on.

By repeating this process sufficiently often, we can make all

the quantities as nearly equal as we please ; and then the

geometric mean becomes equal to the arithmetic mean.

But, since the latter has remained unaltered throughout, and

the former has been increased at each step, it follows that the

first geometric mean, namely, (abc . . . ky'\ is less than the

arithmetic mean, namely, (a + b + c+ . . . + k)/n.

As an illustration of this reasoning, we have (1 . 3 . 5 .
9)^*

<(5 . 3 . 5. 5)i<(5 .4.4. 5)i<(4-5
. 4-5. 4-5 . 4-5)i<4-5<(l + 3

+ 5 + 9)/4.

Cor. Ifa,b,...,kben positive quantities, and p, q, . . .,tbe

n positive commensurable quantities, then

^a + qb + . . -^tk
X;.v/(p+,+.

. .+o

p + q+ . . . +t ^^ • • • /

It is obvious that we are only concerned with the ratios

p : q : . . . : t. Hence we may replace p, q, . . ., t hy positive

integral numbers proportional to them. It is, therefore, suffi-

cient to prove the theorem on the hypothesis that p, q, . . -, t

are positive integers. It then becomes a mere particular case of

the theorem of the present paragraph, namely, that the arithmetic

mean oi p + q + . . . + t positive quantities, p of which are equal

to a, g' to ft, . . . , ^ to ^, is not less than their geometric mean.

• See also the ingenious proof of the theorem given by Cauchy {Analyse

Algebrique, p. 457), who seems to have been the first to state the theorem in

its most general form.
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Example 1. Show that, ii a, b, . . ., khen positive quantities,

V a+b+ . . . +k J
/a + b+ . . .+ky+^- • •+*

The first part of the proposition follows from the above corollary by taking

p = a, q = b, , . ., k= c.

The second inequality is obviously equivalent to

WJ Wb) •••[^) ^^'

which again is equivalent to

\npa J ynpbj \npk J

where p is a positive integer which may be so chosen that pa, pb, . . ., pk are

all positive integers. We shall therefore lose no generality by supposing

a, 6, c, . . ., A to be positive integers.

Consider now a positive quantities each equal to 'S.ajna, b positive quantities

each equal to "Lbjnb, &c. The geometric mean of these is not greater than

their arithmetic mean. Hence

V^^Vf—

Y

/SayiVS" a (T^alna) + b CLafnb) +. . .+Tc (Zaink)

\\naj \nb J ' ' ' \nk J j
a+ h+ . . . +k

(sy(sy- •(!)'-•
Example 2. Prove that 1.3. . . (2n - 1) <?i".

We have {1 + 3+ . . . +(2n-l)}/n>{1.3 . . . (2n-l)}'/'»,

thatis, n2/w>{1.3 . . , (2n-l)}V'».

Hence n«> 1.3 . . . (2n-l).

§ 9.] If a,h, . . ., k be n positive quantities, and p, q, . . .,t

he n positive quantities, thsn

pa"^ + qlf+. . . + tk'^ .^

/

pa + qb + . . . + tJcV^ /.v

p + q+...+t ^^\ p + q+ . . . -\-t ) ^'*

according as m does not or does lie between and + 1.

If we denote

Pl(p + q+ ... +0, q/(p + q+' ' '+t), &c.,

^YKh-,- • ', T, and

a/(\a + tib+ . . . + T^), bl{Xa + fjJ)+. . . + rk), &c.,

l>y ^j y> • • • >
"^j so that

A. + |A + . . . + T = 1 (2),

\a! + iJ.t/+ . . . +TW==^l (3),
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then, dividing both sides of (1) by

{(pa + qb+ . . . + tk)/(p + q+ . . . + #)}"•,

we have to prove that

\aS^ + iiy^-v. . .+TW"»<^>>1 (4),

according as m does not or does lie between and + 1.

Now, by § 7, if m does not He between and +1, x^-\
^m{x-\),'ip-\ <^m {y

-

1), &c. Therefore, since A, (x, &c., are

positive,

<{;m {2A^ — 2A},

by (2) and (3), that is.

Hence ' 2Aa;™<fl.

In hke manner, we show that, if m hes between and + 1,

Cor. If we makep = q = • . . -t, we have

«'" + &'" + . . .+k'^ /a + b + . . .+kY (r\*

n
'^ -ry ^ J

\ f i

that is to say, the arithmetical mean of the mth powers of n positive

quantities is not less or not greater than the mthpower of their arith-

metical mean, according as m does not or does lie between and + 1.

Remark.—It is obvious that each of the inequalities (1), (4),

(5) becomes an equality if a = & = . . . = A;, if m = 0, or if ;» = 1.

Example. Show that 2Xa;"*, considered as a function of m, increases as m
increases when m>+l, and decreases as m increases when m<-l,
\ IX, V, . . ., X, y, z, . . . being as above.

Ist. Let m>l. We have to show that S\x^+'">2Xa;"*, where r is very

small and positive, that is,

2Xx"*(x'"-l)>0.

Now, ZXx"* {af - 1) > SXx'»rx»-i (x - 1)

,

>rSXx"»+'-i(x-l).

* The earliest notice of this theorem with which we are acquainted is in

Eeynaud and Duhamel's Prohlhnes et Developmens sur Diverses Parties des

Mathimatiques (1823), p. 155. Its surroundings seem to indicate that it

was suggested by Cauchy's theorem of § 8. The original proof rests on a

maximum or minimum theorem, established by means of the Differential

Calculus ; and the elementary proofs hitherto given have usually involved

the use of infinite series.

C. 11. 4
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Since m>l, 7Ji + r>l, therefore (m + r)x'"+''~^(a;-l)>(m+ r) (x-1), that

is, a;'"+'-i(a;-l)>(x-l).

Hence SXx™(a;'--l)>rS\(x-l),

>r{2Xa;-2\),

>0.

Therefore S\a;"'+'-> S\x"*.

2nd. Let m< -1.
I,\x'^ (x'- - 1) < rSXa;"* (x - 1)

.

Now (m + l)x'^{x-l)>(m + l){x-l), since m + 1 is negative. Hence,

dividing by the negative quantity m + 1, we have

x'^{x-l)<{x-l).

Hence SXa;™ {x' - 1) < r2X {x-1),

<r(2Xa;-SX),

<0.

Therefore, 2Xa;'"+'-< 2Xx"*.

Exercises V.*

(1.) For what values of xjy is {a + b) xyl(ax + by) j» (aa; + by)l{a + b)?

(2.) If a;, y, z be any real quantities, and x>y>z, then x^y + j/^z + z^x

>

xy* + yz* + zx*.

(3.) If X, y, z be any real quantities, then 7:,(y - z) (z-x)>0 and 2j/«/

2a;'' >1.

(4.) If x^ + j/2 + 22 + 2a;?/2 = l, then will all or none of the quantities x, y, z

lie between - 1 and + 1

.

(5.) If X and m be positive integers, show that

a;2m+3< a; (a; + 1) (2a; + 1) (3x2 + 3^; ^ i)my2 . S*"< (x + l)2m+3_

(6.) (a2/6)i+ (62/a)i ^ ai + i<i.

(7.) If Xi,a;2' • • •> a^n 8.11 have the same sign, and 1 + Xj, l + Xj, . . ., l + a;„

be all positive, then

n(l + Xj)>l + 2xi.

(8.) Prove that Qxyz >ll{y-\-z)> 12x3.

(9.) If X, J/, 2, . . ., a, 6, c . . . be two sets, each containing n real

quantities positive or negative, show that

2a22x2<i:(2ax)2;

also that, if all the quantities be positive,

2(x/a)/2x-t2x/2ax;

and, if2x = l, 21/x<tn2.

(10.) If Xj, Xj, . . ., a;„ and also ^i, 2/2' • • •> J/n be positive and in

ascending or in descending order of magnitude, then

2xi2i/i/2xi?/i> 2xj2/2xi

.

{Laplace.)

* Unless the contrary is stated, all letters in this set of exercises stand

for real positive quantities.
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(11.) Iia,b, . . .,lhe in A. P., show that

a^b^ . . . P>aH\

(12.) For what values of x is {x-S)l(x^+ x + l)>{x-i)l{x^-x + l)?

(13.) Find the limits of x and y in order that

c>ax + by>-d,

a>cx +dy>b;

where ad- be =\= 0.

(14.) x^-x'^y + 4:X*!/^-'2x^y^ + ix^y*-xy^ + y^>0, for all real values of

X and y.

(15
.
) Is 10x2 + 5y^ + 13z^> = <8yz + 2xy + 18zx

?

(16.) If ^42-^^2, ihGn^{x'^ + y^) + 'p^(xy)>x-vy.

(17.) lssj{a'' + ab + h'^)-sj{a^-ah + b'')>^<2^{ab)-!

(18.) If X and a be positive, between what limits must x lie in order that

x + a>V{i(a:2 + xa + a2)}+^/{i(x2-xa + a2)}?

(19.) If x<l, then {x + J{x^-\)]^ + {x-^{x"'-\)}^<2.

(20.) If all the three quantities ij {a{b + c-a)}, sj{b{c + a-b)}, sj{c{a^-

b - c)} be real, then the sum of any two is greater than the third.

(21.) If the sum of any two of the three x, y, z be greater than the third,

then f2x2x2 > Sx' + xyz.

(22.) 21/x>2x8/xV'2*.

(23.) If fr denote the sum of the products r at a time of a, b, c, d (each

positive and < 1) , then f^+ 1^p^> 2p^ .

(24.) 2x*<tX2/z2x.

(25.) If s = a + b + c+ . . . n terms, then 25/(8 - a) <t n-/(n - 1).

(26.) If wi > 1, X < 1, and 7«x< 1 + x, then 1/(1 =f mx) > (1 ± x)'" > 1 ± mx'.

If m<l, x<l, mx<l + x, then (l + x)/{l±(l-m)x}<(l±x)"'<

1 ± mx.

(27.) If 2"=x"+ 7/", then z^> <x"' + 7/"* according as m> <n.

(28.) If X and y be unequal, and x + y<2a, then x"* + ?/"*> 2a"», m being a

positive integer.

(29.) n{(7H-l)'/»-l}<l + l/2+. . .+l/n<n{l-l/(n+ l)V» + l/(n + l)}.

(Schlomilch, Zeitschr.f. Math., vol. in. p. 25.)

(30.) IfxiXa . . . x„=j/», n(l + xi)-t(l + y)«.

(31.) If a, 6, . . . , fc be TC positive quantities arranged in ascending order

of magnitude, and if Mr= {2a'-/n}iA-, 2^r={2a>A}'-/n, then

{ab . . . kyi^<Mi<M2< . . .<k,

{ab . . . /<;)'/»<. . .<Ns<N^<:Ni.
(Schlomilch, Zeitschr.f. Math., vol. in. p. 301.)

(32.) Up, q, r be all unequal, and x + 1, then 2px«~'*>2p.

(33.) If n be integral, and x and n each > 1, then

X™ - 1 > 71 (x(»+l)/2 - X ("-l)/'^)

.

(34.) Prove for x, y, z that (22^2 - 2x2)2x^ (2x)2*n (2x - 2x)*.

(35.) If 8 = ai + cJa + . . . + «„, then H {sla^ - If' >{n- 1)'.

4—2
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(36.) 3;)i(3m+ l)2>4(3mI)iA".

(37.) If s^ be the sum of the nth powers of a^, a^, . . • , «„> ^^^Pm *^^

sum of their products m at a time, then {n - 1)1 s^<i {n - m)\m\p^.

(38.) Ifai>a2>. . . >a„, then

K-«n)"~'>("-l)"~M«l-«2)(«2-«8) • • • K-l-«n)-
Hence, or otherwise, show that {{n-l)\}^>n^~^.

(39.) Which is the greatest of the numbers 4/2, ;^3, ^/4, . . . ?

(40.) If there be n positive quantities Xi, x^, . . . , a;„, each>l, and if

?i. ?2> • • •
1 In be the arithmetic means, or the geometric means, of all but

Xi, all but X.2, . . . , all but a;„, then Jlxi^i>Il^j^i.

(41.) If a, h, c be such that the sum of any two is greater than the third,

and X, y, z such that Sa; is positive, then, if Sa^/x=0, show that xyz is

negative.

(42.) If A = ai + a^+ . . . +(1,^, B= bi + h.2+ . . . +&,i, then 2i{aJA-
h^jB) [a^jb^^ has the same sign as n for all finite values of n.

(Math. Trip., 1870.)

APPLICATIONS TO THE THEORY OF MAXIMA AND MINIMA.

§ 10.] The general nature of the connection between the

theory of maxima and minima and the theory of inequalities

may be illustrated as follows :—Let ^ {x, y, z), f{x, y, z) be any

two functions of w, y, z, and suppose that for all values con-

sistent with the condition

f{x,y,z) =A (1),

we have the inequality

<i>{x,y,z)1^f{x,y,z) (2).

If we can find values of x, y, z, say a, h, c, which satisfy the

equation (1) and at the same time make the inequality (2) an
equality, then </> {a, b, c) is a maximum value of

<f>
(x, y, z). For,

by hypothesis, ^{a, h, c) = A and «^(a;, y, 'z)1^A\ therefore

^ {x, y, z) cannot, for the values of x, y, z considered, be greater

than A, that is, than ^ {a, b, c).

Again, if we consider all values of x, y, z for which

<f>{x,y,z) = A (1'),

if we have f{x, y, z)<\:<l> (x, y, z)

<^ in
it follows in like manner that, if a, b, c be such that <^(a, b, c)=A,
/{a, b, c)^A, then /(a, b, c) is a minimum value oi/{x, y, z).
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The reasoning is, of course, not restricted to the case of three

variables, although for the sake of brevity we have spoken of

only three. The nature of this method for finding turning

values may be described by saying that such values arise from

exceptional or limiting cases of an inequality.

§ 11.] The reader cannot fail to be struck by the reciprocal

character of the two theorems deduced in last section from the

same inequality. The general character of this reciprocity will

be made clear by the following useful general theorem :

—

Iffor all values of x, y, z, consistent with the condition

f{^,y,z)=^,

{x, y, z) have a maximum value
<f>
(a, b,c)=B say (whereB depends,

of course, upon A), and if when A increases B also increases, and

vice versa, then f&r all values ofx, y, z, consistent with the condition

<l>{x,y,z)='B,

f(x, y, z) ivill have a minimum valuef {a, b, c) = A.

Proof—Let A' <A, then, by hypothesis, when/(ir, y, z) = A',

<j> (x, y, z)1f>B' where B' < B.

Hence, if <fi (x, y, z) = B, f{x, y,z)<^A', for suppose if possible

that /(a?, y, z) = A' <A, then we should have <t> (x, y, z)^B', that

is, since B' <B, ^ (x, y, z) could not be equal to B as required.

Hence, if a, h, c be such that ^(a, h, c) = B and f{a, b, c) = A,

f{a, b, c) is a minimum value oi fix, y, z).

By means of the two general theorems just proved, we can

deduce the solution of a large number of maximum and minimum

problems from the inequalities established in the present chapter.

§ 12.] From the theorem of § 8 we deduce immediately the

two following :

—

I. Ifx,y,z, . . . be n positive quantities subject to the condition

%x = k,

then their product Tlx has a maximum value, {JcjnY, when x =

y—. . . =kln.

II. If X, y, z, . . . be n positive quantities subject to the

condition

Hx = k,
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thsn their sum %x has a minimum value, n¥'"', when x = y-. . .

= F".

The second of these might be deduced from the first by the

reciprocity-theorem.

From the corollary in § 8 we deduce the following :

—

III. If X, y, z, . . . he n positive quantities subject to the

condition

%px = k,

where p, q, r, . . . are all positive constants, then '^aP has a

maximum vahie, {k/2p]^^, when x-y-. . . = A;/2/?,

IV. If X, y, z, ... be n positive quantities subject to the

condition
UxP = k,

where p, q, r, . . . are all positive constants, then ^px has a

minimum value, (%>)F^^, when x-y = . . .-k^'^^.

From the last pair we can deduce the following, which are

still more general :

—

V. IfX,ix,v,. . ., I, m, n, . . ., p, q, r, . . . be all positive

constants, and x, y, z, . . . be all positive, thsn if

%\x' = k,

Ux^ is a maximum when

IXx^Ip - mixy'^jq^nvz^jr = . . .

VI. And if nxP = k,

SXa;' is a minimum when

l^a^/p - mfjiy'"^lq = nvz^fr = . . .

Proof.—Denote j9//, qfm, r/n, ... by a, /8, y, ...

;

and let W = a$, fiy'" = p-q, vz"" = yC, &c.

So that X - {a^/xy, &c. ; ^ = (al/A)", &c.

We then have in the first case

2a^ = ^ (1),

Uaf^U (a/X)»n^» (2).

Hence, since (a/X)", (^/yu.)^, ... are all constant and all positive,

Hx^ is a maximum when n|" is a maximum. Now, under the

condition (1), n^" is a maximum when ^ = >? = . . .^k/^a.
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Hence Tla^ is a maximum when Xa^/a = fiy^jP = . . . , that is,

when lka^\'p = mix.y'^jq = . . .

The maximum vahie of Ux^ is n (a/A)" (^/Sa)-", and the

corresponding vahies of x, y, z, . . . are given by

x = {ak/\:Zay\ . . .

Applying the reciprocity-theorem, we see that, if

n^p = n(a/A)»(>t/2a)2«,

the minimum vahie of ^Xa^ is k, corresponding to

x^{a]cl\taf^ . . .

Whence, putting ^ = n (a/X)" (^•/Sa)^-, we see that, if UxP=j,

the minimum vaUie of %\id is 2a {y/II (a/A.)"}'/^", corresponding

to

x=\a{Jin{ai\Yyriamvi . . .

Cor. If we put l = m = n= . . . =1, p = q = r= . . . =1,

we obtain the following particular cases, which are of frequent

occurrence :

—

Jf l,Xx = k, Ux is a maximum when \x = /jii/ = . . .
;

JfUx = k, %\x is a minimum when Xx = iiy = . . .

Example 1. The cube is the rectangular parallelepiped of maximum
volume for given surface, and of minimum surface for given volume.

If we denote the lengths of three adjacent edges of a rectangular parallele-

piped by X, y, z, its surface is 2 (yz + zx + xy) and its volume is xyz. If we
put ^=yz, r)= zx, ^=xy, the surface is 2(| + ?; + f) and the volume Ji^rji).

Hence, analytically considered, the problem is to make ^ijf a maximum when
f + 1? + f is given, and to make f + t; + f a minimum when ^ijf is given. This,

by Th. I., is done in either case by making ^= v = t, that is, yz=zx=xy ;

whence x=y = z.

Example 2. The equilateral triangle has maximum area for given peri-

meter, and minimum perimeter for given area.

The area is A= >Js{s-a){s- b) (s - c). Let x = s-a,y = s-b, z=s-c;
then x + y + z=s ; and the area is Jsxyz. Since, in the first place, s is given,

we have merely to make xyz a maximum subject to the condition x + y-\-z = s.

This leads io x=y = z {hy Th. I.).

Next, let A be given.

Then {x + y + z)xyz=A* (1);

s = A^lxyz (2).

If we put ^=x^yz, 7)= xy'-z, i^=xyz^, we have

»= AWr,i)y* (2').
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Hence, to make s a minimum when A is given, we have to make ^lyf a

maximum, subject to the condition (!'). This leads to ^= 7? = f, that is,

x^yz = xy'^z=xyz'^ ; whence x= y — z.

Example 3. To construct a right circular cylinder of given volume and

minimum total surface.

Let X be the radius of the ends, and y the height of the cylinder. The

total surface is Iv (x^-^xy), and the volume is iry^y.

We have, therefore, to make u— x'^-Vxy a minimum, subject to the

condition x^y — c. We have

u=x^ + xy = cly + clx (1);

xV = c (2).

Let l/^= 2f, 1/2/ = 7?;

then M= c(2^ + 7?) (!');

f'77 = l/4c (2').

We have now to make 2^ + r] (that is, ^ + f+ t;) a minimum, subject to the

condition f2^= constant. This, by Th. II,, leads to ^ = ^= 7), which gives

2x=y. Hence the height of the cylinder is equal to its diameter.

By the reciprocity-theorem (applied to the problem as originally stated in

terms of x and y), it is obvious that a cylinder of this shape also has maximum
volume for given total surface.

§ 13.] From the inequality of § 9 we infer the following :

—

VII. Ifm do not lie between and + 1, aiid ifp, q,r, . . . he

all constant and positive, then, for all positive values of x, y,z, . . .

such that

Ipx = Jc,

'Xpx^ {m unchanged) has a minimum value when x =y-z = . . .

If m lie between and + 1, instead of a minimum we have a.

maximum.

In stating the reciprocal theorem it is necessary to notice

that, in the inequality, ^px occurs raised to the wth power ; so

that, if m he negative, a maximum of '^px corresponds to a mini-

mum of {'^pxy. Attending to this point, we see that—
VIII. If m> + \, and if p, q, r, . . . be all constant and

positive, then, for all positive values of x,y, z, . . . such that

^px"^ = k {m unchanged),

'^px has a maximum value when x = y = z = . . .

Ifm< + 1, we have a minimum instead of a maximum.
Theorem VIII. might also be deduced from Theorem VII. by

the substitution $ = x"', -q^y^, C= z"', &c. . . .



§§ 12-15 DEDUCTIONS FROM § 9 57

§ 14.] Theorem VII. may be geaeralised by a slight trans-

formation into the following :

—

IX. Ifmin do not lie between and + 1, and if p, q,r, . . .,

X, fjL, V, . . . be all constant and positive, then, for all positive

values of x, y, z, . . . such that

2Xa^ -k {n unchanged),

%px^ (m unchanged) has a minimum value when px'^l\x^ =

Ifmjn lie between and + 1, instead of a minimum we have a

maximum.

The transformation in question is as follows :

—

Let Xaf = p^, i^f = <^V, ' • . (IX

px^ = p^, qr = <Tt]f, . . , (2).

From the first two equations in (1) and (2) we deduce

^-1 =j9a;"*-"/X,
//-I = Va;-^-'"/jt7, &c. Hence, if we take fn = m,

that is, /= m/n, p, a-, . . . will be all constant and obviously all

positive ; we have, in fact,

^^{par--l\f^-'\ v={qr-Vt'y'^-'\ ' ' ' (3),

P = {>//py'^-'\ T = (//gy/tr-i), _ (4).

and we have now to make 2p^ a maximum or minimum, subject

to the condition

^P$ = t

Now, by Th. VII., 2p^ is a minimum or maximum, according

as /does not or does lie between and + 1, when ^= •»? = . . .

Thus the conditions for a turning value are

which lead at once to

parl\af = qy'^lp.y"
= . . .

Cor. A very common case is that where n=l, X = fx. = . . .

= 1.

We then have, subject to the condition 2x = k, Ipaf^, a

minimum or maximum when px^~^ = qy^~'^ = . . ., according as

m does not or does lie between and + 1.

§ 15.] We have hitherto restricted p, q, r, . . . in the in-
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equality of § 9 to be constant. This is unnecessary ; they may

be functions of the variables, provided they be such that they

remain positive for all positive values of x, y, z.

"We therefore have the following theorem and its reciprocal

(the last omitted for brevity) :

—

X. If p, q, r, . . . be functions of x, i/, z, . . . which are

real and positive for all real and positive values of x, y, z, . . .,

then, for all positive values of x, y, z, . . . which satisfy

%px = k,

C^px"^) (2/))"*"^ (m unchanged) has a minimum or maximum value

wJien x = y = . . . , according as m does not or does lie between

and + 1.

For example, we may obviously put p='Kx'', q=ny\ • • •

We thus deduce that if m> +1 or <0, then, for all positive values of

x,y,z, . . . consistent with SXa;"+i= A;, (2\a;"'+«) (SXa;»)"»-i is a minimum
when x=y= . . .

Theorem X. may again be transformed into others in appear-

ance more general, by methods which the student will readily

divine after the illustrations already given.

Also the inequalities of § 8 may be used to deduce maxima

and minima theorems in the same way as those of § 9 were used

in the proof of Theorem X.

Example 1. To find the minimum value of u=x + y + z, subject to the

conditions ajx+ bjy + c/z= l,a!>0,2/>0, z>0, a,b,c being positive constants.

Let a'=/)f. y = (T-r/, z=T^f;

ajx= p^, bly = <r7], cIz= t^.

Hence pf~'^ = afja/+^. If we take/= - 1, we therefore get

alx=ija^, by=sjb7), cz^^c^.

The problem now is to make u=2^a$~^ a minimum subject to the con-

dition S^af = l. By Th. VII. this is accomplished by making $= ?;= f.

Hence f = t; = f= 1/S^a. The minimum value required is therefore

(S,ya)2 ; the corresponding values of x, y, z are »JaI,^a, fJb'Ei^a, iJcZ^^a

respectively.

Example 2. To find a point within a triangle such that the sum of the

mth powers of its distances from the sides shall be a minimum (m>l).
Let a, b, c be the sides, x, y, z the three distances; then we have to make

«= Sa;'" a minimum, subject to the condition Saa5= 2A, where A is the area

of the triangle.
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If p^=x^, p^=iax, then /)»»-i = a"», p= a'»/("'-i).

Hence, if we put aa:= a'»/('"-i)^, by = b"'/['^-^)r), c«= c'»/('"-i)f, we have

The solution is therefore given by f= >;= f= 2A/Sa'»/('"-J).

Whence a;= 2AaV("»-i)/Sa'"/('»-i), y= &c., z=&c.

Example 3. Show that, if x^ + y* + z^= 3, then (x* + y'^ + z^)(x- + y^ + z*)

has a minimum value for all positive values oi x, y, z when x= y = z= l.

This follows from Th. X., if we put nj= 2, p = x^, q = y'\ r=z*, which is

legitimate since x, y, z are all positive.

Example 4. If x,y, z, . . . he n positive quantities, and m do not lie

between and 1, show that the least possible value of (2a;'"~i) (21/a;)'"-i is n"*.

This follows at once from the inequality of § 9, if we put p= llx,

q = lly, . . .

§ 16.] The field of application of some of the foregoing

theorems can be greatly extended by the use of undetermined

multipliers in a manner indicated by Grillet*.

Suppose, for example, it were required to discuss the turning

values of the function

u = {ax+pY {hx + 3')'" {ex + r)" ( 1 ),

where /, m, n are all positive.

We may write

u ~ {\ax + KpY (jibx + (Mq)"^ (vex + vr)7^V"«'" (2),

where X, /x, v are three arbitrary quantities, which we may sub-

ject to any three conditions we please.

Let the first condition be

l\a + mfib + nvc = (3)

;

then we have

/ {Xax + \p) + m {fibx + fiq) + n (vex + vr)

= IXp + mfiq + nvr = k (4),

where k is an arbitrary positive constant.

This being so, we see by Th. III. that II {\ax + XpY is a

maximum when

Xax + \p = fibx + fJ'-q = vex + vr

= k/^l (5).

* Nouvelle$ Annales de Math., ser. i., tt. 9, 16.
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The four equations (3) and (5) are not more than sufficient

to exhaust the three conditions on X, fx, v, and to determine a:.

"We can easily determine a) by itself. In fact, from (3) and

(5) we deduce at once

la/{ax +p) + mb/{bx + g) + nc/{ca; + r) = (6).

This quadratic gives two values for ie, say Xi and w^ ; and the

equations (5) give two corresponding sets of values for X, fi, v,

in terms of k, say X^, fx^, v^ and Xj, fx^, v^.

If, then, ^ifj-i^vi"' be positive, Xi will correspond to a maxi-

mum value of w ; if ^iHi^v^^ be negative, Xi will correspond to

a minimum value of u ; and the like for Wi.

Example 1. To discuss u= (a; + 3)^ (ar - 3).

We have u= i\x + 3\y^ {fix - 3/u)/XV.

Now 2{\x+d\) + {iM-Sfi)= k,

provided 2X + At=0 (1),

6\-3fi=h (2).

Therefore {\x + S\)'^{/jlx-3/jl) will be a maximum, provided

\x + 3\=fMX-3ij. (3).

Hence, by (1),

2/(a; + 3) + l/(x-3) = 0;

which gives x= l. From (2) and (3) we deduce X= fc/12, /t= - A;/6 ; so that

XV is negative.

We therefore conclude that m is a minimum when x = l.

The student should trace the graph of the function u; he will thus find

that it has also a maximum value, corresponding to a; = - 3, of which this

method gives no account.

Example 2. For what values of x and y is

u= {a^x + b^y + c^Y + (a2X + \y + e2f + . . . + (a„a; + &„?/ + c„)2

a minimum?
LetXj.Xo, . . ., X„ be undetermined multipliers. Then we may write

u=SXi2{(a^a;+6jy + Ci)/XiP (1);

and k= SX^^
{
{a^x + \y + Ci)/Xi

}

(2),

where It is an arbitrary positive constant, that is, independent of x and y,
provided

2aiXi=0, S&iXi=0, SCiXi=fc (3).

This being so, by Th. VII., m is a minimum when

{<h^ + \y + e^)l\^(a^+ h^ + c^l\=. . . = ft/SXi2 (4).

The n + 2 equations, (3) and (4), just suffice for the determination of
Xj, Xj, . . ., X„, X, y.

From the first two of (3), and from (4), we deduce
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2ai (a^x+ feji/ + Ci) = 0,

26i (ttjX + b^y + Cj) — 0.

Hence the values of x and y corresponding to the minimum value of n are

given by the system
Scij^x + Sajfti?/ + SajCj= 0,

Sajftio; + Sftj^y + SftjCi= 0.

This is the solution of a well-known problem in the Theory of Errors of

Observation.

§ 17.] Method of Increments.—Following the method already

exemplified in the case of a function of one variable, we may

define

I=^(a; + h,y + k, z + l)-<f>{a:,i/, z)

as the increment of <^ (cv, y, z). If, when x = a, y-h, z-c, the

value of / be negative for all small values of h, k, I, then

(f>
(a, b, c) is a maximum value of ^ (a:, y, z) ; and if, under like

circumstances, / be positive, ^ {a, b, c) is a minimum value of

«^(«, y, z).

Owing to the greater manifoldness of the variation, the ex-

amination of the sign of the increment when there are more

variables than one is often a matter of considerable difficulty

;

and any general theory of the subject can scarcely be established

without the use of the infinitesimal calculus.

We may, however, illustrate the method by establishing a

case of the following general theorem, which includes some of

those stated above as particular cases.

Purkiss's Theorem*.

—

If <f){x, y, z, . . .) f{x, y, z, . . .) be

symmetric functions of x, y, z, . . ., and if x, y, z, . . . be

subject to an equation of the form

fix, y,z, . . .)^0 (1),

then <f>(x,y,z, . . .) has in general a turning value when x-y = z

= . . . ,
provided these conditions be not inconsistent with the

equation (1).

In our proof we shall suppose that there are only three

variables ; and so far as that is concerned it will be obvious that

there is no loss of generality. But we shall also suppose both

• Given with inadequate demonstration in the Oxford, Cambridge, and
Dublin Messenger of Matheviatics, vol. i. (1862).
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<t> (a?, y, z) and f(x, i/, z) to be integral functions, and this sup-

position, although it restricts the generality of the proof, renders

it amenable to elementary treatment.

We remark, in the first place, that the conditions

x = y = z and f{x, y, z) =

are in general just sufficient to determine a set of values for x, y, z.

In fact, if the common value of x, y, z be a, then a will be a root

of the equation /(a, a, a) ~ 0.

Consider the functions

I=ff>{a + h, a + k, a + 1)- ^{a, a, a), and /(a + h, a-^k, a + l).

Each of them is evidently a symmetric function of h, k, I, and

can therefore be expanded as an integral function of the

elementary symmetric functions ^h, "^hk, hkl. We observe also

that, since each of the functions vanishes when A = 0, k = 0, 1=0,

there will be no term independent of k, k, I.

Let us now suppose h, k, I to be finite multiples of the same

very small quantity r, say h-ar, k = Pr, l = yr. Then ^h = r%a.

= ru say, %hk = r^^a^ = r^v, hkl = i^w. Expanding as above in-

dicated, and remembering that by the conditions of our problem

/{a + h, a + k, a + l)-0, we have, if we arrange according to

powers of r,

/= Aur + (Bu' + Pv) r" + &c. (1),

= Pur + {Qu? + Ev)r' + &c. (2),

where the &c. stands for terms involving r' and higher powers.

From (2) we have

wr = - (Qu^ + Rv) r'/P + &c.,

wV = + &c.,

22a)8r' = - ^^t"" + &c.,

&c. as before including powers of r not under the 3rd.

Hence, substituting in (1) and writing out only such terms

as contain no higher power of r than r^, we have

I={C-AE/P)vr' + &c.,

^-^r'(C-AR/P)'S,a? + &c.

Now (see chap, xv., § 10), by taking r sufficiently small, we

may cause the first term on the right to dominate the sign of /.
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Hence /will be negative or positive according as {CP-AR)IP
is positive or negative ; that is, <;^ {a, a, a) will be a maximum or

minimum according as {CP - AR)IP is positive or negative.

Example. Discuss the turning values of </> {x, y, z) = xyz + b(yz + zx + xy),

subject to the condition x^ + y^ + z'^= 3a^.

The system
x= y=z, a;2 + r/2 + 22_3a2_o

has the two solutions x= y = z= ^a.

If we take x=y=z= +a, Vfe find, after expanding as above indicated,

1= (a2 + 2ab) ur + {a+ b) vr^-i-&c.,

= 2aur+{u^-2v)r^.

In this case, therefore, ^ = aH2a6, C=a + b, P=z2a, R= -2
; a.n6i{CP - AR)I

P=2a + db.

Hence, when x=y = z=+a,(piaa maximum or a minimum according as

2a + Bb is positive or negative.

In like manner, we see that, when x = y = z= -a, is a maximum or a

minimum according as -2a + 3b is positive or negative.

Exercises VI.*

(1.) Find the minimum value of bcx + cay + abz when xyz = abc.

(2.) Find the maximum value of xyz when x^Ja^ + T/^lb'^ + z^jc^— 1.

(3.) If I,x^—c, llilx is a maximum when x : y : z : . . , =1 : m : n : . . .

(4.) Find the turning values of Xa;""»

+

fiy^^+ vz'^, subject to the condition

px"'+ qy^+ rz''=d.

(5.) Find the turning values of aa;^+ 6i/«+ m*" when xyz= cP.

(6.) li xyz= a^{x-i-y + z), then yz + zx + xy ia a, minimum when x= j/=2=
s/3a.

(7.) Find the turning values of (x + l) (y + m) {z + n) where a%Vc*=zd.

(8.) Find the minimum value of ax'^+bjx'^.

(9.) Find the turning values of (3x -2){x- 2f {x - 3)2.

(10.) If ex {b-y) = ay {c-z)=: bz (a-x), find the maximum value of each.

(11.) Find the turning values of a;"*/!/" (m>n), subject to the condition

x-y — c. (Bonnet, Nouv. Ann., ser. i., t. 2.)

(12.) If x^yi+ xiy'P— a, then x''+9 + 7/P+9 has a minimum value when x — y =
(a/2)V(P+«) ; and, in general, if ^xPyi=a, Sj;P+« has a minimum value, al{n - 1),

when x=y = z=: . . . ={a/(n-l)n}V(p+9), Discuss specially the case where

p and q have opposite signs.

(13.) If xPyi + x'^y'=c, then x'y^ is a maximum when xv-^jipi - st)=y'-^j

(qt-pu), the denominators, ru-st and qt-pu, being assumed to have the

same sign. (Desboves, Questions cfAlgebre, p. 455. Paris, 1878.)

* Here, unless the contrary is indicated, all letters denote positive

quantities.
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(14.) It p>q, and xP+yP= aP, then x^ + y^ is a minimum when x=y =
a/2^/P. State the reciprocal theorem.

(15.) Find the turning values of {ax'^+ln/'^)IJ{a^z^+ bY) ^ben x^+y^= 1.

(16.) If Xj, OTj, . . , , a;„ be each >a, and such that (xj-a) {x^-a) , . .

(x„-a) = fc", the least value of XjXj . . . x,^ is (a+ 6)", a and 6 being both

positive.

(17.) If f{m) denote the greatest product that can be formed with n

integers whose sum is m, show that /(m+l)//(m)= l + l/3 where q is the

integral part of mjn.

(18.) ABCD is a rectangle, APQ meets BC in P, and DC produced in Q.

Find the position of APQ when the sum of the areas ABP, PCQ is a

minimum.

(19.) is a given point within a circle, and POQ and. EOS are two per-

pendicular chords. Find the position of the chords when the area of the

quadrilateral PRQS is a maximum or a minimum.

(20.) Two given circles meet orthogonally at A. PAQ meets the circles

in P and Q respectively. Find the position of PAQ when PA . AQ is a

maximum or minimum.

(21.) To inscribe in a given sphere the right circular cone of maximum
volume.

(22.) To circumscribe about a given sphere the right circular cone of

minimum volume.

(23.) Given one of the parallel sides and also the non-paraUel sides of an
isosceles trapezium, to find the fourth side in order that its area may be a

maximum.

(24.) To draw a line through the vertex of a given triangle, such that the

sum of the projections upon it of the two sides which meet in that vertex

shall be a maximum.



CHAPTEE XXY.

Limits.

§ 1.] In laying down the fundamental principles of algebra,

it was necessary, at the very beginning, to admit certain limiting

cases of the operations. Other cases of a similar kind appeared

in the development of the science ; and several of them were

discussed in chap. xv. In most of these cases, however, there

was little difficulty in arriving at an appropriate interpretation

;

others, in which a difficulty did arise, were postponed for future

consideration. In the present chapter we propose to deal

specially with these critical cases of algebraical operation, to

which the generic name of " Indeterminate Forms " has been

given. The subject is one of the highest importance, inasmuch

as it forms the basis of two of the most extensive branches of

modern mathematics—namely, the Differential Calculus and the

Theory of Infinite Series (including from one point of view the

Integral Calculus). It is too much the habit in English courses

to postpone the thorough discussion of indeterminate forms

until the student has mastered the notation of the differential

calculus. This, for several reasons, is a mistake. In the first

place, the definition of a differential coefficient involves the

evaluation of an indeterminate form ; and no one can make
intelligent applications of the differential calculus who is not

familiar beforehand with the notion of a limit. Again, the

methods of the differential calculus for evaluating indeterminate

forms are often less effective than the more elementary methods

which we shall discuss below, and are always more powerful in

combination with them. Moreover the notion of a limiting value

can be applied to functions of an integral variable such as n\ and

to other functions besides, which cannot be differentiated, and

are therefore not amenable to the methods of the Differential

Calculus at all.

c. II. 5
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§ 2.] The characteristic difficulty and the way of meeting it

will be best explained by discussing a simple example. If in

the function (;r^-l)/(a?- 1) we put x = 2, there is no difficulty

in carrying out successively all the operations indicated by the

synthesis of the function ; the case is otherwise if we put x=\,

for we have 1^ - 1 = 0, 1-1=0, so that the last operation in-

dicated is 0/0—a case specially excluded from the fundamental

laws ; not included even under the case a/0 (a 4= 0) already dis-

cussed in chap, xv., § 6. The first impulse of the learner is to

assume that 0/0 = 1, in analogy with «/a = l; but for this he

has no warrant in the laws of algebra.

Strictly speaking, the function {o^-l)l{x-l) has no definite

value when x=l\ that is to say, it has no value that can be

deduced from the principles hitherto laid down. This being so,

and it being obviously desirable to make as general as possible

the law that a function has a definite value corresponding to

every value of its argument, we proceed to define the value of

{a^- \)l{x-\) when x=\. In so doing we are naturally guided

by the principle of continuity, which leads us to define the

value of {x'^-l)l{x-\) when ^=1, so that it shall differ in-

finitely little from values of {x^ —l)l{x -I), corresponding to

values of x that differ infinitely little from 1. Now, so long as

a; =1=1, no matter how little it differs from 1, we can perform the

indicated division; and we have the identity {a^—l)l{x—\) =

a? + 1. The evaluation of a? + 1 presents no difficulty ; and we

now see that for values of x differing infinitely little from 1, the

value of {ic^-l)l{x-l) differs infinitely little from 2. We there-

f(yre define the value of {x^-l)/(x-l) when, x=l to be 2 ; and we

see that its value is 2 in the useful and perfectly intelligible

sense that, bi/ bringing x sufficiently near to 1, we can cause

{o^- i)l{x- 1) to differ from 2 by as little as we please*. The

value of {a? - l)/(x - 1) thus specially defined is spoken of as the

limiting value, or the limit of {p^ - l)l(x - 1) for x=l ; and it is

symbolised by writing

* The reader should observe that the definition of the critical value just

given has another advantage, namely, it enables us to assert the truth of the

identity (a;' - l)/(x - 1) = x + 1 without exception in the case where «= 1.
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where L is the initial of the word "limit." The subscript x=l
may be omitted when the value of the argument for which the

limiting value is to be taken is otherwise sufficiently indicated.

We are thus led to construct the following definition of the

value of a function, so as to cover the cases where the vahie

indicated by its synthesis is indeterminate :

—

When, hy causing x to differ sufficiently little from a, we can

make the value of f{x) approach as near as we please to a finite

definite quantity I, then I is said to be the limiting value, or limit,

off{x) when x-a; and we write

Lf{x) = l.

Cor. 1. A function is in general continuous in the neighbour-

hood of a limiting value ; and, therefore, in obtaining that value

we may subject the function to any transformation which is

admissible on the hypothesis that the argument x has any value in

the neighbourhood of the critical value a.

We say "in general," because the statement will not be

strictly true unless the phrase "differ infinitely little from" mean

"differ eit/ier in excess or in defect infinitelj'^ little from." It may
happen that we can only approach the limit from one side ; or

that we obtain two different limiting values according as we in-

crease X up to the critical value, or diminish it down to the critical

valu e. In this last case, the graph of the function in the neighbour-

hood oi x = a would have the peculiarity figured in chap, xv.,

Fig. 5 ; and the function would be discontinuous. The latter

part of the corollary still applies, however, provided the proper

restriction on the variation of x be attended to.

When it is necessary to distinguish the process of taking a

limit by increasing a; up to a from the process of taking a limit

by decreasing x down to a, we may use the symbol L for the
a;=o-0

former, and the symbol L for the latter.
x=a+0

Cor. 2. If L f{x) = I, then f{a + h)-l + d, where d is a
x=a

function of a and h, whose value may be made as small as we

please by sufficiently diminishing h.

5—2
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This is simply a re-statement of the definition of a limit from

another point of view.

Cor. 3. Any ordinary value of a function satisfies the

definition of a limiting value.

For example, Lix"- l)/{w - 1) = (2- - 1)1(2 - 1) = 3. This re-

mark would be superfluous, were it not that attention to the

point enables us to abbreviate demonstrations of limit theorems,

by using the symbol X where there is no peculiarity in the

evaluation of the function to which it is prefixed.

§ 3.] It n)ay happen that the critical value a, instead of

being a definite finite quantity, is merely a quantity greater than

any finite quantity, however great. We symbolise the process

of taking the limit in this case by writing L fix), or L f{x),
a;=+oo a;=-oo

according as the quantity in question is positive or negative.

For example,

L {x + l)lx = L {I + llx) = \.

In this case, we can, strictly speaking, approach the limit from one side

' only ; and the question of continuity on both sides of the limit does not

arise. If, however, we, as it were, join the series of algebraical quantity

-QO...-1...0...+1...+QO through infinity, by considering

+ 00 and - oo as consecutive values ; then we say that / (x) is, or is not, con-

tinuous for the critical value a;= oo , according as I//(.T)and L /(x) have,
a;=a) x=— oo

or have not, the same value. For example, (x + \)lx is continuous for .t = qo
,

for we have L (x + Vjjx = 1 = L (x + l)/j! ; but (x- + l)/a; is not continuous
x=« a:=—

«

for a; = 00 .

§ 4.] The value may of course occur as a limiting value
;

for example, L x{x-lfl{x^~l) = Q. It may also happen, even

for a finite value of a, that f{x) can be made greater than any

finite quantity, however great, by bringing x sufficiently near to a.

In this case we write L f{x) = oo . In thus admitting and oo
a:—

o

as limiting values, the student must not forget that the general

rules for evaluating limits are, as will be shown presently, sub-

ject in certain cases to exception when these particular limits

occur.
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ENUMERATION OF THE ELEMENTARY INDETERMINATE FORMS.

§ 5.] Let u and v be any two functions of x. We have

already seen, in chap, xv., that u + v becomes indeterminate

when u and v are infinite but of opposite sign ; that ?* x -y

becomes indeterminate if one of the factors become zero and

the other infinite ; and that u-^v becomes indeterminate if it

and V become both zero, or both infinite. We thus have

the indeterminate forms—(I.) co — qo, (II.) x go, (III.) 0-^0,

(IV.) 00-00.

It is interesting to observe that all these really reduce to (III.). Take
00-00 for example. Since M + u= (l + r/M)/(l/«), and Ll/w= l/oo =0, this

function will not be really indeterminate unless Lvja— - 1. The evaluation

of the form oo - oo therefore reduces to a consideration of cases {IV. ) and (III.)

at most. Now, since tt-^j; = (l/t))->-(l/M), case (IV.) can be reduced to (III.);

and finally, since uxv— u-i-{\lv), case (II.) can be reduced to (III.).

To exhaust the category of elementary algebraical operations

we have to discuss the critical values of m". This is most simply

done by writing w" = a''*°*''" where a is positive and >1. We
thus see that u" is determinate so long as ^" loga u is determinate.

The only cases where v loga u ceases to be determinate are those

where—(V.) v-0, log^ ^* = + oo , that is v = 0, m = oo
;
(VI.) » = 0,

logaM = -<», that is u = 0, w = 0; (VII.) v = ±qo, logaW=^0,

that is 'y = +Qo, u=l. There thus arise the indeterminate

forms—(V.) 00
«, (VI.) 0«, (VII.) 1*"*.

All these depend on n"^* ; or, if we choose, upon a"/" ; so that it may
be said that there is really only one fundamental case of indetermination,

namely, 0-^0.

EXTENSION OF THE FUNDAMENTAL OPERATIONS TO LIMITING

VALUES.

§ 6.] We now proceed to show that limiting values as above

defined may, under some restrictions, be dealt with in algebraical

* The reader is already aware that 1" gives 1 ; and he may easily convince

himself that 0+", 0"*, oo +°°, qo~* give 0, ±oo, ±oo, respectively, no
matter what their origin.
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operations exactly like ordinary operands. This is established

by means of the following theorems :

—

I. The limit ofa mm offunctions ofx is the sum oftheir limits,

provided the latter does not take the indeterminateform co - go.

Consider the sum f{x)-<ft(a;) + x{it!) for the critical value

«r = a ; and let Lf{x) =/', Z«^ (x) =
<f>', Lx{x) = x'- Then, by § 2,

Cor. 2,

f{a>)=f' + a, <i>{x) = <f>'
+ P, x(^) = x' + y>

where a, p, y can each be made as small as we please by

bringing x sufficiently near to a.

Now, f{x) -<t>ix) + x(^) -f'-^' + X+{a-/3 + y).

But, obviously, a-/3 + y can be made as small as we please by

bringing x sufficiently near to a. Hence

L{fix)-^x) + x{^)}=f'-<l>'+X,

that is, ^If{x)-L*i>{x) + Lx{x) (1).

This reasoning supposes /', ^', x' to be each finite ; but it is

obvious that if one or more of them, all having the same sign,

become infinite, then f'-<(>' + x and L {f{x) - (t>{x) + x(^)} are

both infinite, and the theorem will still be true in the peculiar

sense, at least, that both sides of the equality are infinite. If,

however, some of the infinities have one sign and some the

opposite, f'-<!>' + x' ceases to be interpretable in any definite

sense ; and the proposition becomes meaningless.

II. T/ie limit ofa product offunctions of x is the product of

their limits, provided the latter does not take tlie indeterminate

form X CO.

Using the same notation as before, we have

f{x) <l>(x) x{^) = (/'+ a)(f+ /3)(x'+ y)

= /'</>'x'+ 2a<^'x' + 2a/3x' + a/3y.

Now, provided none of the limits /', ^', x' be infinite, since a,
ft,

y can all be made as small as we please by bringing x sufficiently

near to a, the same is true of Sa^'x', SaySx', and aySy. Hence

Lf(x) ^(x) x(^) =/'<^'x' - Lf{x) L<f>(x) Lx(x) (2).

If one or more of the limits/', «/»', x' be infinite, provided none

of the rest be zero, the two sides of (2) will still be equal in the
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sense that both are infinite ; but, if there occur at the same time

a zero and an infinite value, then the right-hand side assumes

the indeterminate form x oo ; and the equation (2) ceases to

have any meaning.

III. The limit of the quotient of two functions of x is the

quotient of their limits, provided the latter does not take one of the

indeterminate forms 0/0 or co /go . We have

From this equation, reasoning as above, we see at once that, if

neither /' nor <^' be infinite, and
(f>'

be not zero,

It is further obvious that if /' = qo ,
<^' + oo , both sides of (3)

will be infinite ; if ^' = oo
,
/' 4= oo , both sides will be zero ; and

if <fi' = 0, /' 4= 0, both sides will be infinite. In all these cases,

therefore, the theorem may be asserted in a definite sense. If,

however, we have simultaneously/' = 0, <^' = 0, the right hand of

(3) takes the form 0/0 ; if /' = co , <^' = co , the form go /co ; and

tten the theorem becomes meaningless.

§ 7.] If the reader will compare the demonstrations of last

paragraph with those of § 8, chap, xv., he will see that (except

in the cases where infinities are involved) the conclusions rest

merely on the continuity of the sum, product, and quotient.

This remark immediately suggests the following general theorem,

which includes those of last paragraph as particular cases :

—

If F{u, V, w, . . .) he any function ofu,v,w, . . . , which is

determinate, and finite in value, and also continuous when

u^Lf{x), v = Ltf>(x), w = Lx{x), . . .,

then

LF{f(x),cl>(x),x(^\ . . .] = F{Lf(x),L<f>{x),Lx{x), . . .}.

The reader will easily prove this theorem by combining § 2,

Cor. 2, with the definition of a continuous function given in

chap. XV., §§ 5, U.
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The most important case of this proposition which we shall have occasion

to use is that where we have a function of a single function. For example,

L {(x2-l)/(x-l)P-{ L (x^-l)l(x-l)}^=i.
X-l X^'l

L log
{
(x" - 1)1(x - 1) } = log { L (.t2 - l)/(x - 1) } = log 2.

ON THE FORMS 0/0 AND X /oo IN CONNECTION WITH

RATIONAL FUNCTIONS.

§ 8.] The form 0/0 will occur with a rational function for

the value a:-0 \i the absolute terms in the numerator and

denominator vanish. The rule for evaluating in this case is to

arrange the terms in the numerator and denominator in order

of ascending degree, divide by the lowest power of x that occurs

in numerator or denominator, and then put ^ = 0. The limit

will be finite, and 4=0, if the lowest terms in numerator and

denominator be of the same degree ; if the term of lowest

degree come from the denominator ; oo if the term of lowest

degree come from the numerator. All this will be best seen

from the following examples ;

—

Example 1.

Example 2.

Example 3.

2.r^ + 3.r'' + a;*_ 2j^Bx + x' _2
a:=o '6x^ + x* + a^ ~

x=o^ + x''+ x*~S'

2x» + 3a;Hx»_ 2.T + Sx"+ x» _
a;=o 3x'- + X* + X* ~ x^o 3 + x'-* + X* ~ 3

~~

2x*+x« 2 + x2 2

x=o x« + x» x=^„x^ + x*

§ 9.] The form co /oo can arise from a rational function when,

and only when, x= cc. The limit can be found by dividing

numerator and denominator by the highest power of x that

occurs in either. If this highest power occur in both, the limit

is finite ; if it come from the denominator alone, the limit is ;

if from the numerator alone, the limit is co

.

Example 1.

J _ 8^+^ ^ T 3/x+l _ Ji^. 1_ _ 1

^'„2x« + x» + 3x^ ,.«2/x2 + l7x + 3~0 + 6 + 3~3*
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Example 2.

a;--' + 3ar> + 4.r< _ 1/.t* + 3/x^ + 4/.e'^ _
r=» 2a; + x^ + 6x'' ~a;=aD 2/x5 + l/ar» + 6 ~6~ '

Example 3.

l/x< + 3/a:3 + 4 _4
a;!* 2.r + 3a;2 + x3 ~^^^2lx^ + 3/x* + 1/^» " ''
J J z;. t:

—K-~—TT — Ij

§ 10.] If the rational function f{iK)l<ii{x) take the form 0/0 for

a finite vahie of x, 4= 0, say for a; = a, then, since f{a) = 0, <f> (a) =^ 0,

it follows from the remainder-theorem that x — a is a common
factor in /(x) and ^ (x). If we transform the function by re-

moving this factor, the result of putting ^ = a in the transformed

function will in general be determinate ; if not, it must be of

the form 0/0, and x — a will again be a common factor, and must

be removed. By proceeding in this way, we shall obviously in

the end arrive at a determinate value, which will be the limit of

f(x)l<f> (x) when x-a.

Example. Evaluate {Sx^ - lOx" + 3x- + 12x - 4)/(.c'» + 2x^ - 22.1-2 + 32a; - 8)

when x= 2. The value is, in the first instance, indeterminate, and of the

form 0/0 ; hence a; - 2 is a common factor. If we divide out this factor, we
find that the value is still of the form 0/0 ; hence we must divide again. We
then have a determinate result. The work may be arranged thus (see chap,

v., § 13) :-

1 + 2 -22 +32 -8
+ 2 + 8 -28 +8

3-10+ 3+12-4
0+6- 8-10+4
3_ 4- 5+ 2 +0
0+6+4-2
3+2-1
0+ 6+16

+

3+ 81 + 15

1 + 4 -14+ 4

+ 2+12 - 4

+

1 + 6 - 2,+

+ 2 +161

_1_+8| + 14

The process of division is to be continued until we have two remainders

which are not both zero. The quotient of these, 15/14 in the present case, is

the limit required.

The evaluation of the limit in the present case may also be

effected by changbig the variable, an artifice which is frequently

of use in the theory of limits. If we put x = a + z, then we have

to evaluate Lf{a + 5;)/<^ {a + z) when z = Q. Since /{a + z) and

^{a + z) are obviously integral functions of z, we can now apply

the rule of § 8. It will save trouble in applying this method if

it be remembered— 1st, that in arranging f{a + z) and <ji{a + z)

according to powers of z we need not calculate the absolute
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terms, since they must, if the form to be evaluated be 0/0, be

zero in each case ; 2nd, that we are only concerned with the

lowest powers of z that occur in the numerator and denominator

respectively.

3a;<- 10x3 + 3a;'' + 12a; -4 _ 3(2 + g)<- 10(2 + ^)^ + 3(2 + 2)" + 12(2+ 2) -4

x=2 a;*+ 2a;*-22x2+ 32x -8 ~^=o(2 + 2)* + 2(2 + 2;)»- 22(2 + 2)2 + 32(2 + 2) -8

1522 + P23+ &C.

_ I5 + P2 + &C.

~^ol4 + Q2 + &c.'

15
~ 14*

This method is of course at bottom identical with the former ; for, since

z=-x-a, the division by z"^ corresponds to the rejection of the factor (x - a)".

§ 11.] The methods which are applicable to the quotient of

two integral functions apply to the quotient of two algebraic

sums of constant multiples of fractional powers of x. Each of

the two sums might, in fact, be transformed into an integral

function of y by putting x =
jf', where d is the L.C.M. of the

denominators of all the fractional indices. It is, however, in

general simpler to operate directly.

Example. Evaluate

1= L, -^ .

If we divide by x', the lowest power of x that occors, we have

,
^x^ + x7 + 3xT^

'— ^
i s—

»

*-» l + 2x<r + x5

=?=o.

§ 12.] The following theorem, although partly a special case

under the present head, is of great importance, because it gives

the fundamental limit on which depends the " differentiation " of

algebraic functions :
—

If mhe any real commensurable quantity
^
positive or negative

L{x^-l)l{x-l) = m (1).
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First, let w be a positive integer. Then we have

(^'"-l)/(ir-l) = a;"'-i + i2;'"-=' + . . . + a;+l.

Hence

L {a;"'-l)/{x-l) = 1 + 1 + . . . + 1 + 1 (m terms),

= m.

Next, let vw be a positive fraction, say p/q, where p and q are

positive integers. Then the limit to be evaluated is L {x^i'^- 1)/
a:=l

{x— 1)*. If we put X = z^, and observe that to a? = 1 corresponds

z=\, the limit to be evaluated becomes L (z^ - l)l{z^ — 1). This

may be evaluated by removing the common factor z—1; or thus

i(.^-,)/(.-i)=i(^'fi)/(ffi),

=p/q = m.

Finally, suppose m to have any negative value, say - «, where

n is positive. Then

L (^-" - \)l{x - 1) = Z (1 - x'')\x''{x - 1),

--- L{x''-\)\{x-\)x'\

= -{L (;»"- l)/(^- 1)} X L l/x\

Now, by the last two cases, since n is positive, i/(^"-l)/

(a; - 1) = w. Also Z l/x'' = 1. Hence
a;=l

L{x-''-l)/{x-l) = -n;
a;=l

that is, in this case also,

L{x'^-l)l{x-l)^m.

Second Demonstration.—The above theorem might also be deduced at once

from the inequality of chap, xxiv., § 7, as follows :—For all positive values of

X, and all positive or negative values of m, x"* - 1 lies between wta;"'""i (x - 1)

and m (x - 1). Hence (a;"* - l)/(a; - 1) lies between mx^-^ and wt. Now, by

* There is here of course the usual understanding (see chap, x., § 2) as

to the meaning of x '''/«.
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bringing x sufficiently near to 1, mx^~^ can be made to differ as little from m
as we please. The same is therefore true of (a;"' - l)/(u; - 1) ; that is to say,

L(x"»-l)/(a;-l) = »t

for all real values of m.

Example 1. Find the limit of (x" - aP)/(x<' - «») when x=a. We have

L {xv - aP)\(3fl - ai)= L aP-9{(x/a)P- l}/{(a;/a)«- 1},
x—a x=a

where y=xla. Hence we have, by the theorem of the present paragraph

L (xr> - av)j{xfi - ai) = a'P-ipjq.

Example 2. Evaluate log (x^ - 1) - log (x2 - 1) when x = 1.

L{Iog(xi-l)-log(xi-l)} = Llog{(x^-l)/(x4-l)},

= log{L(xi^-l)/(xi-l)}, by §7,

x=a

M''{tl)Ki^)\-
= log3.

Example 3. If Ix, Px, . . . denote logx, log (log x), . . . respectively,

then, when x= cc, LV {x + l)jl''x — l.

In the first place, we have

l{x + l)llx^{l(x + l)-lx + h:}llx,

= l(l + llx)llx + l.

Now, when x^oo, i(l + l/.r) = Zl = and Ix— oa. Hence Li (x + l)/ix=l.

If we assume that LlT{x + VjfVx = 1, we have

i'-+' (x + \)jV+\x= {V^^ (x + 1) - Z'-+ix + i'-+'x}/Z'-+ix,

= l{V{x + l)lVx}ll^^x + l.

Lr+i (X + l)/i'-+Jx = Zl/oo + 1,

= 1;

that is, the theorem holds for r+ 1 if it holds for r. But it holds for r=l, as

we have seen, therefore for r=2, &c. It is obvious that this theorem holds

for any logarithmic base for which ioo = oo .

Example 4. 11 I have the same meaning as before, and X have a similar

meaning for the base a, then

L VxlVx= ll\oga.
x—oo

Let /:i=l/loga. Since 'Kx=fdx, the theorem clearly holds when r=l. It is

therefore sufficient to show that, if it is true for r, it is true for ; +1. Now
X'^'x/Z'^-ix = X (X'-x)/P^-ix,

= mZ(X''x)//h-1x,

=/* {I (X'-x) - r+ix + i-^-ix}//' +'x,

= M{«(X'-x/i'-x)/F+ix+l}.

Hence, if we assume that LVxlirx=n, we have

LX'^-'x/I'+'x ^M {Wa> + 1},

= /*•
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EXPONENTIAL LIMITS.

§ 13.] The most important theorem in this part of the sub-

ject is the following, on which is founded the differentiation of

exponential functions generally :

—

The limit o/(l + llxf when x is increased without limit eit/wr

positively or negatively is a finite number {denoted by e) lying

between 2 and 3.

The following proof is due to Fort*.

We have seen (qhap. xxiv., § 7) that, if a and b be positive

quantities, and m any positive quantity numerically greater

than 1, then

ma"'-'' (a - b)>a'^- b"^> mb'""-' {a - b) (1).

In this inequality we may put a = {y+ l)/y, b-l, m~y/,v, where

y>x>l. We thus have

\ y J .v'

Hence ( 1 + -
) > 1 + -

,

\ y/ a;

]

y^
that is, (l+^y>(l+_^J (2).

where y>x.
Again, if in (1) we put a = l, b = (y- l)/y, (m, y, x being as

before), we have

X \ 1/ /

Hence (1 — ) >1--,
\ yJ X

and therefore A - -V<[l - i)
"

(3),

where y>x.
We see from (2) and (3) that, if we give a series of in-

* Zeitschriftfur Mathematik, vii., p. 46 (1862).
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creasing positive values to x, the function (1 + IfxY continually

increases, and the function (1 - l/a;)""^' continually decreases.

Moreover, since a?>x^-\, we have

X x+ 1

X- 1 X '

that is, ( 1 - - ) > 1 + -

.

\ x/ X

Hence (i _ l)-%(i , 1)' (4).

The values of (1 - l/ar)~^ and (1 + 1/xy cannot, therefore,

pass each other. Hence, when x is increased without limit,

(1 — l/xy must diminish down to a finite limit A, and

(1 + 1/xY must increase up to a finite limit B. The two limits

A and B must be equal, for the difference (1 - l/x)~''-{l + l/xf

may be written {x/{x-l)}''-{{x + l)/x}'' ; and by (1) we have

If a; y f X y (x + iy 1
(
x+iy , .

x\x-\) ^\x-\) \ X ) ^x{\-\la^)\ X ) ^^>-

But, since, as has already been shown, {xl{x - \)Y and

{{x + l)lxY remain finite when a; = qo , the upper and lower

limits in (5) approach zero when x is increased without limit

;

the same is therefore true of the middle term of the inequality.

It has therefore been shown that X (1 + IjxY and

L {I- l/x)'" have a common finite limit, which we may denote

by the letter e.

Since (1 + 1/6)" = 2 '521 ... and (1 - 1/6)-" = 2*985 . . .,

e lies between 2 5 and 2 9. A closer approximation might be

obtained by using a larger value of x ; but a better method of

calculating this important constant will be given hereafter, by

which it is found that

e = 27182818285 . . .

The constant e is usually called Napier's Base*; and it is the

logarithmic or exponential base used in most analytical calcula-

tions. In future, when no base is indicated, and mere arith-

* In honour of Napier, and not because he explicitly used this or indeed

any other base.
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metical computations are not in question, the base of a

logarithmic or exponential function is understood to be ^ ; thus

log a; and expa; are in general understood to mean logga? and

expeW (that is, e') respectively.

Cor. 1. Lil+xY'^'^e.

For L {l + l/zy = e; and, if we put z = l/a;, so that iv =

corresponds to z=oo, we have L (l + wy^'' -- e.

Cor. 2. L log„ {(1 + l/wf} = Z log„ {(1 + ;r)v-} = log„ e.
a;=oo x=0

For, since loga^ is a continuous function of y for finite values of

y, we have, by § 7,

L hga {(1 + 1/^)1 = loga { i^ (1 + 1/^)1,

= logae.

The other part of the corollary follows in like manner.

Cor. 3. L{1+ yjxf = X ( 1 + xyf"' = e^.

jc=«) a:=0

If we put \lz = ylx, then to ^= oo corresponds «;= cc
; hence

= {Z(l + l/^)r, by §7,

Cor. 4. L (a* - 1)/^ = log a.

If we put y = a"-\, so that a; = loga(l +?/), and to ^ = corre-

sponds 3/ = 0, we have

X(a--l)/^=Z2//log„(l+7/),

= Xl/log„(l+2/)"^

= i/iog4Z(i+^)n

= l/logae = loga.

It will be an excellent exercise for the student to deduce directly from the

fundamental inequality (1) above, the important result that L (a* - \)lx is
z=0
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finite ; and thence, by transformation, to prove the leading theorem of this

paragraph*.

Cor. 5. IfX be any positive quantity,

e">l+a;, log (1 + x) < a-

;

and, if a; be positive and less than 1,

e~^>l-x, -log(l— a?)>;r.

Since e>{l + l/«)", when n may be as great a.s we please,

e^-l>(l + l/w.)"^-l,

> nx {(1 + 1/n) -l}>x, by chap. xxrv.
, § 7,

for, however small w, we can by sufficiently increasing n make

nx>l.
Hence 0^>l+w.

It follows at once that log^>log (1 + w), that is, ir>log (1 + a-).

Again, since e<{l- l/w)~" and e~^>(l - 1/w)",

e-^-l>{(w-l)/?i}"*-l,

>na:{(n- l)/w- Ij,

Hence e~'°>\ -x, and therefore 1/(1 -x)>e^.

It follows at once that log {1/(1 - x)], that is, -log(l -x)>x.

Cor. 6t. Iflx,Px, . . . denote log X, log {log x), . . . respect-

ively, x>y>\, and r be any positive integer, then

{x-y)lylyV-y . . . l'y>l'-^'x-l'^'y

>(x-y)/xlxl^x . . . /'.r.

This may be proved by induction as follows.

By Cor. 5,

Ix -ly = l (x/y) = / { 1 + (a; - 7j)/y} <(x- yl'y,

which proves the first inequality when r = 0.

Assume that it is true for r, i.e. that
,

l''^''x-V^^y<{x-y)lylyl''y . . . Z'*^, then

r^^x-l'-^^y^-l(l^^'x/l'*'y),

= l{l + (l'-*'x-l'-^'y)/l^*hjl

< (I'^^'x - I'-^'yyi^^hj, by Cor. 5.

Hence the induction is complete.

* See Schlomilch, Zeitschrift fiir Mathematik, vol. iii., p. 387 (1858).

+ Malmsten, Grunert's Archiv, viii. (184G).
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Again, we have by Cor. 5,

la;-ly = -l{ylx) = -l{l-{oc-y)lx}>{x-y)lx.

Using this result, and proceeding by induction exactly as before,

we establish the second inequality.

If we put x + l and x for x and y respectively we get the

important particular result

llxlxl^x . . . l'-x>l''^'{x + l)-l'-^'x

>l/(x + l)l{x+l)l^x + l) . . . /'•(.r + 1).

Cor. 7. From the inequality of Cor. 6, combined with the

result of Example 3, § 12, we deduce at once the following im-

portant limits :

—

L{l'-{x+l)-l'x} = 0,

L {/'•+' (x + l)- r+M xl.zPx . . . l^x = 1.

X—

Example 1. Show that the limit when n is infinite of 1 + 1/2+ . . .

+ 1/71 - log n is a finite quantity, usually denoted by y, lying between and 1.

(Euler, Comm. Ac. Pet. (1734-5).)

Since, by Cor. 5,

-log(l-l/«)>l/n >log{l + l/n).

We have log {n/(n-l)}>l//i >log{(7i + l)/H},

log{(n-l)/(7i-2)}>l/(n-l)>log{«/(n-l)},

log {3/2} > 1/3 > log {4/3},

log {2/1} > 1/2 > log {3/2},

1 = 1 >log{2/l}.

Hence l+logn>Sl/n>log(n+l).

Therefore 1 > Sl/n - log n > log (1 + 1/;;).

Now, when n= co, log(l + l/H)=0. Thus, for all values of n, however

great, Sl/n - log n lies between and 1.

The important constant 7 was first introduced into analysis by Euler, and

is therefore usually called Euler's Constant. Its value was given by Euler

himself to 16 places, namely, 7= -577215664901532(5). (Seelnst. Calc. Diff.,

chap. VI.)*

* Euler's Constant was calculated to 32 places by Mascheroni in his

Adnotationes ad Eiileri Calculum Integralem. It is therefore sometimes

called Mascheroni's Constant. His calculation, which was erroneous in the

20th place, was verified and corrected by Gauss and Nicolai. See Gauss,

Werke, Bd. in., p. 154. For an interesting historical account of the whole

matter, see Glaisher, Mess. Math., vol. i. (1872).

c. II. 6
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Example 2. Show that L {1/1 + 1/2+ . . . +l/M}/logre=l.
n—

»

This follows at once from the inequality of last example.

From this result, or from Example 1, we see that L {1/1 + 1/2 + ... + 1/n}

= 00 ; and also that L {l/Zc + l/(/c + 1) + . . . + !/«} = oo , where k is any finite

positive integer.

GENERAL THEOREMS.

§ 14.] Before proceeding further with the theory of the limits

of exponential forms, it will be convenient to introduce a few

general theorems, chiefly due to Cauchy. Although these theorems

are not indispensable in an elementary treatment of limits, the

student will find that occasional reference to them will tend to

introduce brevity and coherence into tlie subject.

I. For any critical value of x,L{f{x)\ ={Lf{x)] ', pro-

vided the latter foi'in be not indeterminate.

This is in reality a particular case of the general theorem of

§ 7. The only question that arises is as to the continuity of the

functions of the limits. We may write

... v,*te)_ i>(x)\o^f(x)

Now w = logM is a continuous function of u, so long, at least, as

u lies between + 1 and + so
; and e*"" is a continuous function

of V and w. Hence, so long as 2/<^ {x) and L \ogf{x) are neither

of them infinite, we have

L{f{x)] =Le ,

UMLlogfix)
= e

I4(x)logLf(,x)
-e

Hence L {f[x)f''^
= {Z/(^)j^<-» (i).

An examination of the special cases where either L^ {x) or

L\ogf{x)y or both, become infinite, shows that, so long as

\I^{x)\ does not assume one of the indeterminate forms ,

Qo
,
1~

, both sides of (1) become 0, or both qo ; so that the

theorem may be stated as true for all cases where its sense is

determinate.
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II. L{f{x^-\)-f{x)}^Lf{x)lx,promdedL{f{x+l)-f{x)}
K=« x=y> a;==o

he not indeterminate*. (Cauchy's Theorem.)

Since x is ultimately to be made as large as we please, we

may put x-h + n, where A is a number not necessarily an

integer, but as large as we please, and n is an integer as large

as we please.

First, suppose that L {/{x + 1) -/(x)} is not infinite, = k say.

Since L{/{x+ l)—f{x)}=k, we can always choose for h a

definite value, so large that for x = h and all greater values

f{x + 1) -f{x) - ^ is numerically less than a given quantity a, no

matter how small a may be. Hence we have numerically

f{h+\)-f{h)-k<a,

f(k + 2)-f(k+l)-k<a,

f{h + n) -f{h + n-l) -k<a;

and, by addition, /{k + n) —f(h) -nk<na;

that is, / (x) -f{h) -{x — h)k< (x - h) a.

X X \ xj \ X.

A <_ a H .

Since /(^), h, k, and a are, for the present, fixed, it results

that, by making x sufficiently large, we can make f{x)lx—'k

numerically less than a. Now a can be made as small as we

please by properly choosing k ; hence the theorem follows.

Next, suppose that L{f {x + \) -f{x)\ = + <x^ \ then, by

taking h sufficiently large, we can assume that

f{h^l)-f{h)>l,

/(k + 2)-f(h + l)>l,

/(/i + n)-f{h + u~-l)>l,

where / is a definite quantity as large as we please.

* Theorems II. and III. are given by Cauchy in his Analyse Algebrique

(which is Part I. of his Cours d'Analyse de VEcole Royale Polytechnique).

Paris, 1821.
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Hence f{h + n)-f{h)> nl,

that is f{x) -fih) >{x-h) I.

fix) 7 f{h) hi
Hence ''-^-^ > I +'^-^^ .

a; a; a;

Since /(h), h, I are all definite, we can, by sufficiently in-

creasing a?, render f{h)lx — hljx as small as we please, therefore

f{x)lx>l. Now, by properly choosing h, I can be made as large

as we please ; hence Iif{x)lx = oo

.

The case where L{f{x+ \)-f{x)] =- co can be included in

the last by observing that {—/{x+ 1)) - {-/(x)) has in this case

+ Qo for its limiting value.

HI. L f(x + 1)1/{x) - L {/(a;)}^^ prcmded L/{x + 1)1/{x)
a;=oo a;=« »=oo

be not indeterminate.

This theorem can be deduced from the last by transformation,

as follows* :

—

We have L \^l;{x+\)-xl;{x)] = L"^-^,
a:=«j x=<D X

where ^ (x) is any function such that L {if/ (x + 1) - 1}^ (x)} is not
a=oo

indeterminate. Let now i/^ (x) = log/(a;) ; so that ij/(x+l)-il/(x) =

log /(x+1)- log / (x) = log {/ (x + 1)1/ {x)] ; and i}/ {x)/x -

{hg/(x)}/x = log {/(x)Y'\ Then we have

£log
{^^f^}

=Lhg{/{x)Y'\

Hence log { L'^^^ ]=log[L {/(x)n
K. X=ao J \X) } 2=00

provided L/{x-\- 1)1/ {x) be not indeterminate. Hence, finally,

L-^-^^^L{/{x)r.

Cauchy makes the important remark that the demonstrations

of his two theorems evidently apply to functions of an integral

variable such as x\, where only positive integral values of x are

admissible.

* The reader will find it a good exercise to establish this theorem directly

from first principles, as Cauchy does.
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For example, we have L (a;+ l)!/a;l = L {x + l) = co. Hence L (.rl)V*=Qo,

and consequently L (l/a;!)'/* = 0.

EXPONENTIAL LIMITS RESUMED.

§ 1 5.] Ifa> 1, then L d^jx = co; L loga^/^ = 0; L x \ogaX = 0.

The first of these follows at once from Cauchy's Theorem

(§ 14, II.) for we have

L (a^+^ - a") = Za^ (a - 1) = 00

.

Hence La^/x = qo .

As the theorem is fundamental, it may be well to give an

independent proof from first principles.

First, we observe that it is sufficient to prove it for integral

values of x alone, for, however large x may be, we can always

put x=/+z where / is a positive proper fraction and z a

positive integer. Then we have

Li — — Jj -? ,

X=ao X Z^tnJ + Z

z=« y + ^ z

f T 1 T <^^

4=00 JlZ + 1 «=„ Z

= ^L"l, (1),

where we have to deal merely with Ldjz, z being a positive

integer.

Let Uz = d/z, then Uz+i/u^ = az/{z + 1) = a/(l + l/z). Now,

since Z «/(l + 1/2;) = a>l, we can always assign an integral

value of z, say z = r, such that, for that and all greater values of z,

Ug+ilug>b, where b>l. We therefore have

tlr+i/Ur>b,

Ur+^/Ur+i> h,

Ug/u.,-i>b,
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Hence, by multiplying all these inequalities together, we deduce

Now Urjlf is finite, and, since h>l, h^ can be made as great as

we please by sufficiently increasing z. Hence 7/ w^ = go
, on the

supposition that z is always integral. But, since a^ is finite, it

follows at once from (1) that L d^/a;= co, when w is unrestricted.

The latter parts of the theorem follow by transformation.

If we put a" - y, so that a; = log^y, and to a; = go corresponds

y = oc , we have
CO =L d^lx = L yl\ogay-

Hence L \ogay/y = 1/go =0.

If we put a* = l/y, so that a; = - logay, and to ii; = go corre-

sponds y = 0, we have

CO - X a^'/x = - L l/y hgay.

Hence L y hgay = - 1/go = 0.

Example 1. Show that, if a>l and n be positive, then L fl^/x" = Go
;

L log^^x|x^= 0, L a;»log„a;= 0.
SC=X X=+0

L a'=lx-"= L {a*/»/a;}",
a=oc ar=ao

= { L (aV«)«/.T}»,

— rr^n—,

for, since a>l and n is positive, we have aV»>l, so that L(a^l^Ylx = <x> and

The two remaining results can be established in like manner, if we put

y = log„ X in the one case, and y= - log„ x in the other.

It should be noticed that if n be negative we see at once that L a'Jx^= co
;

X=<B
L log„x/x»= 00 ; L .i»]og„a;= - oo .

«=« a:=0

Example 2. If x be any fixed finite quantity, L a;"/Hl=0.

Since n is to be made infinite, and x is finite, we may select some finite

positive integer k such that x<k<n. Then we have

nl (A:-l)l ' k ' k + 1 ' ' ' n'

Now, since x<k, L (.r/fc)"~*+' = 0, hence the theorem.
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Example 3. Lm{m-1) . . . (w- jj + 1)/h! = or oo , according as -?)i>

or < -1.

First, let m> -1, then m + 1 is positive. We can always find a finite

positive integer k such that 7« + l<ft<n. Therefore we may write

w(m-l). . . (m -n + l) _, ^+1 r ( I JI!^\ ( \ '"±1^
-K ) m^k-iy-

j^ J\ 'k + lj • ' '

11

= (-)»-fc+\„Ct_iP,say.

Now

logl/P=-log(^l--^j-log(^l-^-...-log(^l--^-j.

> (m + l)/& + (7tt+ !)/(/; + 1) + . . .+(m + l)/?i,

by § 13, Cor. 5. Also, by § 13, Example 2, the limit of {m + 1)/A; + {m + 1)/(A; + 1)

+ . . . +(»i + l)/7t is infinite when n^cc . It follows, therefore, that LP= 0,

and therefore that L„jC„=0.

Next, let m< - 1, say m= - (1 + a), where a is a positive finite quantity.

We may now write

TO^n~i^ 1.2. . .
.^ ~^ ' ^) ^^y-

Now

l„gP=-log(l-^-^)-l<.g(.-,j^)-. . .-1ob(i-.„-»-^),

> a/(l + a) + a/(2 + a) + . . . + al{n + o),

>a/(l+jj) + o/('2+iJ)+. . .+al(n+p),

where p is the least integer which exceeds a. But the limit of a/(l+2))

+ a/(2 + p)+. . . +al{n+p) is infinite. Hence LP =co.

When m= -1, ^6\=(-l)", and the question regarding the limiting

value does not arise.

§ 16.] T/ie fundamental tlieorem for tlie form 0" is that

L af>=l.
«e=+o

This follows at once from last paragraph ; for we have

JLaf = Le^^'^^^ = e^^"'^^ — e" — 1.

Example 1. L {x^)='= l.

a:=+0

For L(a;»)*= Lx''^=L(.c^)»= (Lar^)» = l™= l.

Example 2. L a;^"= l (« positive).
z=+0

For La;*" = Le*"'°8='=e"'''»B='= e°= l, by § lo, Example 1,

^.Ij.—If n be negative, L a;*" = 0°° = 0.
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§ 17.] Ifu and v be functions of x^ both, of which vanish when

x= a, and are such that L v/u^ = I, where n is positive and neither

nar 00 , and I is not infinite, then L u^ = \, provided the limit be so
a;=o

approached that u is positive*.

For Lu'> = L (m^")"/"" = (Zw"")^'""-

Now, by § 16, Example 2, since n is positive, L ti^' = 1. Hence
«=+0

Lu'' = V=l.
If L v/u^ = CO, this transformation leads to the form 1°°;

x=a

and therefore becomes illusory.

The above theorem includes a very large number of parti-

cular cases. We see, for example, that, ifLvju be determinate and

not infinite, then Lu^ = 1. Again, since, as we shall prove in

chapter xxx., every algebraic function vanishes in a finite ratio

to a positive finite power of x — a, it follows that every such

function vanishes in a finite ratio to a positive finite power of

every other such function. Hence LijC = 1 whenever u and v

are algebraic functions of a?t.

Example. Evaluate I, {x- 1+V(a:^- l)}"^"""^' when x=l.

Here u=^{x-l)y{x-l) + ^{x^ + x + 1)}, v= ^(x-l), u^/sy^ =y(x - 1)

+ ^{x^ + x + l)Yri.

Hence Lu^/^Jv = ^S. Therefore Lm"=L (m"^'"-')''/"^^= 1^'"^'= 1

.

§ 18.] In cases where the last theorem does not apply, the

evaluation of the limit can very often be effected by writing u"

in the form g"'"*", and then seeking by transformation to deduce

the limit of v logu from some combination of standard cases J.

Example. Evaluate x'Aok («'-i) ^hen a;= 0.
'

It is obviously suggested to attempt to make this depend on
L {(e*-l)/x} = l. This may be effected as follows. We have

* See Franklin, American Journal of Mathematics, 1878.

t See Sprague, Proc. Edinb. Math. Soc, vol. in., p. 71 (1885).

t At one time an erroneous impression prevailed that the indeterminate

form 0" has always the value 1. See Crelle's Jour., Bd. xii.
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Now ^^S'' - ^°^^

log (6=^-1) log{(e==-l)/a;}+loga;'

1~ log {(e* - l)/x}/log x + 1'

Since L log {(e*- l)/a;} =0, by § 13, Cor. 4, and L log a;= - qo , we see that

I,loga;/log(e"=-l) = l.

Hence ix^/ios («'~^)= e

.

§ 19.] Since m" = 1/(1/^)", indeterminates of the form oo"

can always be made to depend on others of the form 0", and

treated by the methods already explained.

Example. Evaluate (1 + xyi^ when a; = oo .

Let l + x= lly, so that y= when a; = Qo ; then we have

L (l + x)V«=i {llyvH^-v)} = llL{yV)Vi^-y).
X=co y=0

Novf Lyy = 1 and Lll{l-y) = l; hence L (l+x)V*=l.
a;=oo

§ 20.] The fundamental case for the form 1" is L (l + Ijccf
X=oo

= L {\+ xY'^-e, already discussed in § 13. A great variety of
a:=0

other cases can be reduced to this by means of the following

theorem.

If u and V he functions of x such that u=\ and v= cc when

x = a, then Lu^ = e^<"-^), provided Lv (u—l) be determinate.

We have in fact

W" = {(1 + ^^3Y)V(«-i)}MM-l),

Hence, by § 7,

Xw" = X {(1 + w - i)V(«-i)|i''(«-i)^

provided Lv {u - 1) be determinate.

Example 1. L xV(^-i) = L (1 + ^^)V(*-i)=c.
x=l a:=l

Example 2. Evaluate (1 + log x)V(a;-i) when a; = 1.

We have
l=L (1 +logx)V(a:-i)= L{(1 + log a.)i/ioKX}loga;/(a:-i)^

— gtIoga;/(x-l)_

Now L log xl{x -1)=L log xV(*-i)= log La;V(a:-i)= log e= 1. Hence I= e.

TRIGONOMETRICAL LIMITS.

§ 21.] We deal with this part of the subject only in so far

as it is necessary for the analytical treatment of the Circular

Functions in the following chapters. We assume for the present

that these functions have been defined geometrically in the usual

manner.
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We shall require the following inequality theorems :

—

If xhe the number of radians {circular units) in any positive

angle less than a right angle, then

I. iaxix>w>s\n x\

II. x>mix>x-\aP\

III. l>cos^>l-i.^.

If PQ be the arc of a circle of radius r, whicli subtends the

central angle 2x, and if PT QT be the tangents at P and Q,

then we assume as an axiom that

PT+ TQ> a.Tc PQ> chord PQ.

Hence, as the reader will easily see from the geometric defini-

tion of the trigonometrical functions, we have

2r tan x> 2rx> 2r sin x
;

that is, tan x> x> sin x,

which is I,

To prove IL, we remark that sin x = 2 sin ^x cos ^x

^ 2 tan Ix cos^ |a7 = 2 tan ^x (1 - sin" ^x). Hence, since, by I.,

tan^;»>|.r and sin|a;<^a;, we have

sin a;>2 . ^a; {1 - {^xf},

>x-la^.

The first part of III. is obvious from the geometric

definition of cos x. To prove the latter part, we notice that

cos a; = 1 - 2 sin'^ ^x ; hence, by I.,

cosa;>l - 2(|a')"

>1-K-
§ 22.] The fundamental theorem regarding trigonometrical

limits is as follows:

—

If X be the radian measure* of an angle, then L (sin xjx) = 1.
1=0

This follows at once from the first inequality of last para-

graph. For, if x<^ir, we have

tan x>x>8inx;

therefore sec x

>

^r/sin x>l.

* In all that follows, and, in fact, in all analytical treatment of the trigono-

metrical functions, the argument is assumed to denote radian measure.
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If we diminish x sufficiently, sec x can be made to differ from

1 by as little as we please. Hence, by making x sufficiently

small, we can make xj^m x lie between 1 and a quantity differing

from 1 as little as we please. Therefore

Lxjmix^l.

Hence also L sin xjx = 1.

Cor. 1. L tan xjx = 1.

For L tan xjx = L (sin ^/^)/cos x =L sin xjx x L 1/cos x = \ x 1 = 1.

Cor, 2. Zsin-/-
a;=oo X X

L tan - /- = 1 provided a is either a con-

stcmt, or a function ofx which does not become infinite when a? = qo .

This is merely a transformation of the preceding theorems.

It should also be remarked that

i (sin ?/")'= i('tan-/°y=l.
a;=»V ^/ OCJ x=m\ XJ Xj

provided a and /? are constants, or else functions of x which

do not become infinite when x= co.

If, however, a were constant, and y3 a function of x which

becomes infinite when a? = co , then each of the two limits would

take the form 1*, and would require further examination.

§ 23.] Many of the cases excepted at the end of last para-

graph can be dealt with by means of the following results, which

we shall have occasion to use later on :

—

If a. be constant, or a function of x ivhich is not infinite when

x= cc , then

i(sm2/-y = i;
a;=«\ X/ x/

L (cos -) = 1:

xftanV-y=l-
a:==oV Xl xJ

To prove the first of these, we observe that for all values of

a[x less than ^tt we have, by § 21, II.,

1>(^^Ht)>{^<t)]'
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Now
L{1- a^A^r^L {(1 -aV4;r^)-*^^''V'^'^.

= e«=l, by §§7 and 13.

Hence Xfsin-/-) =1.

In exactly the same way we can prove that Z- ( cos - ) =1.

Finally, since

the third result follows as a combination of the first two.

Example. Evaluate (cos xfl^ when a;=0. By § 20, we have L (cosx)V»:

=:eZ,(co8x-i)/ar', Now (cos X - l)lx^ = - 2 sin^^xlx^^ - ^(sin i^xf^xf. Hence

L (cos.r-l)/a;2= _^_

We therefore have L (cos xfl^

=

e-i.

SUM OF AN INFINITE NUMBER OF INFINITELY

SMALL TERMS.

§ 24.] If we consider the sum of n terms, say, Wi + Wa + • • •

+ Un , each of which depends on n in such a way that it becomes

infinitely small when n becomes infinitely great, it is obvious

that we cannot predict beforehand whether the sum will be finite

or infinite. Such a sum partakes of the nature of the form

X CO ; for we cannot tell a priori whether the smalluess of the

individual terms, or the iufiniteness of their number, will ulti-

mately predominate. We shall have more to do with such cases

in our next chapter ; but the following instance is so famous in

the history of the Infinitesimal Calculus before Newton and

Leibnitz that it deserves a place here.

I/r+1 be positive, then

L (V + 2''-h. . . +w'-)/7i'-+» = l/(r + 1).

In the case where r is an integer this theorem may be

deduced from the formula of chap, xx., § 9.
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The proofs usually given for the other cases are not very-

rigorous ; but a satisfactory proof may be obtained by means of

the inequality

{r+\)x-{x-y)^x'^'~if''%{r^-l)f{x-y) (1),

which we have already used so often.

If we put first X =p, y -p - 1, and then x =p + 1, y -p, we

deduce

{p + l)'-+i - io'-+i ^{r + l)p'' $/+' -{p- 1)'"+' (2)

where the upper or the lower signs of inequality are to be taken

according as the positive number r + 1 is > or <1.

If in (2) we put for p in succession 1, 2, 3, . . ., n and add

all the resulting inequalities we deduce

(w +!)'•+» -l>(r+l)(r + 2'-+.
. . +wO<w''"''-

Hence

{(1 + 1/^)''+^ - llnr+'}/(r + 1) ^ (!'• + 2'- + . . . + nr)/nr+'

>l/{r + l).

That is to say, (l*" + 2'" + . . . + n^)/n^+^ always lies between l/(r+l)

and {(1 + l/7iY+' - l/w'-+^}/(r + 1). But L {1 + l/nY+' = 1
;

n=oo

and L l/w*""*"^ = 0, since r + 1 is positive. Hence the second of

the two enclosing values ultimately coincides with the first, and

our theorem follows.

It may be observed that, if r + 1 were negative, the proof

would fail, simply because in this case L 1/rf'*'^ = co

.

Cor. 1. If she any finite integer, and r +\ he positive,

L{V+2^+ . . .+(n- syyn'+' = !/(/• + 1).
n=ao

This is obvious, since L{V'+2''+ . . . + (n-sYl/n'''^^ differs

from L{V + 2^ + . . . + n^)/n'''^^ by a finite number of infinitely

small terms.

Cor. 2. j[fa he any constant, and r + 1 he positive,

L {{a + !)•• + (a + 2)'- + . . . + (a + w)'*}/w'-+^ = l/(r + 1).

This may be proved by a slight generalisation of the method

used in the proof of the original theorem.
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Cor. 3. If a and c he constants, and r + 1 4= 0,

L {{na + cy + (na + 2cY + . . . + (na + ncY}ln''+^

= {(rt + c)''^'-a'-+^}/c(r+l).

This also may be proved in the same way, the only fresh point

being the inclusion of cases where r + 1 is negative.

§ 25.] Closely connected with the results of the foregoing

paragraph is the following Limit Theorem, to which attention

has been drawn by the researches of Dirichlet:

—

If a,h, p be all positive, the limit, when n=cc,ofthe sum of n

terms of the series

1 1 1 1 .

a^+p^ {a + Vy^"^ {a+2by+p^ ' ' ' ^ (a + nby+p'^ ' " * ^
^'

is finite for all finite values of p, however small; and, if

2 l/(a + nbY'^f denote this limit, then
n-O

Lp^l/(a + nby+p^l/b (2).
p=0 n=0

By means of the inequality (1) of last paragraph, we readily

establish that

{a+ (]}- 1) b}''P- {a+pb}~p>pb {a+pb}~p-^>{a + pb}~P

-{a + (p+l)b}-P (3).

Putting, in (3), 0, 1, 2, . . ., n successively in place oi p,
adding the resulting inequalities, and dividing by bp, we deduce

li_l L__U5 1 ..Ml 1 1

bp\{a- b}p {a + 7ib}pj p=o {a + pby+p bpW \a + (n + l) b]p)

(4).

Since Ll/{a + nb}p = 0, and L l/{a + (n + l)b}p = 0, when
» = 00 , we deduce from (4),

pb (a - b)p^ ^oia +pby+p ^pba? ^^^*

From (5) the first part of the above theorem follows at

once ; and we see that i/pb{a-b)p and 1/pbp'^^ are finite upper

and lower limits for the sum in question.
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We also have
1 s 1 1

;>P2 7-—nTiT->,h{a- by ^p=o {a +pby+p hafi
'

whence it follows, since L 1/b {a - b)p = L 1/baP = l/b, when p = 0,

that

p^o^p=o{a+pby+p b'

From the theorem thus proved it is not difficult to deduce

the following more general one, also given by Dirichlet :

—

Ifkx.k^,. . -ykn, . .be a series ofpositive quantities, no one

of which is less than any following one, and if they be such that

L Tjt - a, where T is the number of the k's that do not exceed t,

tJien ^Ijkn'^p is finite foi' all positive finite values of p, however

small; and L p^l/kn'^p = a*.
p=0 1

Cor. It follows from (5) that

p (^"^Jp^ n=4^p ^ WTiy+p + • • • + (a + ny+p\ ^p^ ^^^'

an inequality which we shall have occasion to use hereafter.

GEOMETRICAL APPLICATIONS OF THE THEORY OF LIMITS.

§ 26.] The reader will find that there is no better way of

strengthening his grasp of the Analytical Theory of Limits than

by applying it to the solution of geometrical problems. We may

point out that the problem of drawing a tangent at any point of

the graph of the function y =f{a)) can be solved by evaluating the

limit when A = of {f(x + h)-f(a;)}/h; for, as will readily be

seen by drawing a figure, the expression just written is the

tangent of the inclination to the axis of x of the secant drawn

through the two points on the graph whose abscissae are a^ and

x + h; and the tangent at the former point is the limit of the

* See Dirichlet, Crelle's Jour., Bd. 19 (1839) and 53 (1857) ; also Heine,

ibid., Bd. 31.
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secant when the latter point is made to approach infinitely close

to the former*.

Example. To find the inclination of the tangent to the graph of y=e'
at the point where this graph crosses the axis of y.

If he the inclination of the tangent to the x-axis, we have

tane=L{e<^''-e^)lh,

= L{e^-l)jh,

=loge= l.

Hence = \ir.

§ 27.] The limit investigated in § 24 enables us to solve a

problem in quadratures ; and thus to illustrate in an elementary

way the fundamental idea of the Calculus of Definite Integrals.

We may in fact deduce from it an expression for the area in-

cluded between the graph of the function y = aflV'~^, the axis of

X, and any two ordinates.

Let A and B be the feet of the two ordinates, a, b the corresponding

abscissae, and b -a=cf. Divide AB into n equal parts; draw the ordinates

through A, B, and the n-1 points of division ; and construct—1st, the series

of rectangles whose bases are the n parts, and whose altitudes are the 1st,

2nd, . . ., nth ordinates respectively; 2nd, the series of rectangles whose

bases are as before, but whose altitudes are the 2nd, 3rd, . . ., (7i+l)th

ordinates. If I„ and J„ be the sums of the areas of the first and second series

of rectangles, and A the area enclosed between the curve, the axis of x and

the ordinates through A and B, then obviously I^<A<J„.
Now

J„= c{a'-+{a + cjiiY +(a+ IcjnY + . . . + (a + n - lclnY]lnV''^ ;

J„=c{(a + c/n)'"4-(a + 2c/n)'"+ . . . +(a + 7ic/n)''}/ni'"-i.

Since e7„ - 1„= c (6'' - aT)lnV~^ , which vanishes when n= ao , Lin=LJ„ , and

therefore A=LJn, when n— ao. Hence

c (na+ lcY+(na + 2cY+ . . .+(na+ ncY

-M'^i^^l-"^^^^-'-'--
Hence A = (fc'^-i - a»-+i)/(r+ 1) i""-'.

This gives, when r—i^, and a~0, the Archimedian rule for the quadrature

of a parabolic segment.

* We would earnestly recommend the learner at this stage to begin (if

he has not already done so) the study of Frost's Curve Tracivg, a work which

should be in the hands of every one who aims at becoming a mathematician,

either practical or scientific.

t The reader should draw the figure for himself.
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NOTION OF A LIMIT IN GENERAL. ABSTRACT

THEORY OF IRRATIONAL NUMBERS.

§ 28.] In the earlier part of this chapter limiting values have

been associated with the supply of values for a function in special

cases where its definition fails owing to the operations indicated

becoming algebraically illegitimate. This view naturally sug-

gested itself in the first instance, because we have been more

concerned with the laws of operation with algebraic quantity than

with the properties of quantity regarded as continuously variable.

It is possible to take a wider view of the notion of a limit

;

and in so doing we shall be led to several considerations which

are interesting in themselves, and which will throw light on the

following chapter.

Although in what precedes we defined a limit, it will be

observed that no general criterion was given for the existence of

a finite definite limit. All that was done was to give a demon-

stration of the existence of a limit in certain particular cases.

When the limit is a rational number, the demonstrations present

no logical difficulty ; but when this is not the case we are brought

face to face with a fundamental arithmetical difficulty, viz. the

question as to the definition of irrational number. For example,

in proving the existence of a finite definite limit for (1 + '[jxf

when X is increased indefinitely, what we really proved was not

that there exists a quantity e such that [e-(l + l/a?)*] can be

made smaller than any assignable quantity, but that two rational

numbers A and B can be found differing by as little as we please

such that (1 + IjxY will lie between them if only x be made
sufficiently large. From this we infer without farther proof that

a definite limit exists, whose value may be taken to be either

A or B. For practical purposes this is sufficient, because we can

make A and B agree to as many places of decimals as we choose

:

but the theoretical difficulty remains that the limit e, of whose

definite existence we speak, is any one of an infinite number of

different rational numbers, the particular one to be differently

selected according to circumstances, there being in fact* no single

* See chap, xxvni., § 3.

C. 11, 7
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rational number which can claim to be the value of the limit.

The introduction of a definite quantity e as the value of the

limit under these circumstances is justified by the fact that we
thus cause no algebraic contradiction. Such quantities as ^"2,

^4, &c. have already been admitted as algebraic operands on

similar grounds.

§ 29.] The greater refinement and rigour of modern mathe-

matics, especially in its latest development—the Theory of

Functions— have led mathematicians to meet directly the logical

difficulties above referred to by giving a priori an abstract defi-

nition of irrational real quantity and building thereon a purely

arithmetic theory. There are three distinct methods, commonly

spoken of as the theories of Weierstrass, Dedekind and Cantor*.

A mixture of the two last, although perhaps not the most elegant

method of exposition, appears to us best suited to bring the issues

clearly before the mind of a beginner. We shall omit demon-

strations, except where they are necessary to show the sequence

of ideas, the fact being that the initial difficulties in the Theory

lie not in framing demonstrations, but in seeing where new
definitions and where demonstrations are really necessary. For

a similar reason we shall at once assume the properties of the

onefold of Rational Numbers as known ; and also the theory of

* The theory of Weierstrass, earliest in point of time, was given in his

lectures, but not published by himself. An account of it will be found in

Biermann, Theorie der Analytischen Functionen (Leipzig, 1887), pp. 19—33.

A brief but excellent account of Dedekind's theory is given by Weber,

Lehrbuch der Algebra (Braunschweig, 1895, 1898), pp. 4—16 : see also

Dedekind's two tracts, Stetigkeit und irrationale Zahlen (Braunschweig,

1872, 1892); and Was sind und icas sollen die Zahlen? (Braunschweig,

1888, 1893). For expositions of Cantor's theory see 3Iath. Ann., Bd. 5

(1872), p. 128, and lb. Bd. 21 (1883), p. 565; also Heine, Crelle's Jour.,

Bd. 74 (1872): and Stolz, AUgemeine Arithmetik, I. Th. (Leipzig, 1885),

pp. 97—124.

Meray, in his Nouveau Precis d'Analyse Infinitesimale (Paris, 1872),

published independently a theory very similar to Cantor's, which will be

found set forth in the first volume of his Lemons Nouvelles sur I'Analyse

Infinitesimale (Paris, 1894).

A good general sketch of the whole subject is given by Pringsheim in his

article on Irrationalzahlen, drc, Encyclopddie der Mathematischen Wissen-

schaften (Leipzig, 1898), Bd. i., p. 47.
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terminating and repeating decimals, which depends merely on the

existence of rational limits.

§ 30.
J

Starting with 1 and confining our operations to the

four species +, -, x, h-, we are led to the onefold of Rational

Quantity

. . ., -mjn, . . .
- 1, . . . 0, . . . + 1, . . . +mln, . . . {R)

in which every number is of the form + 7^^/w, where m and n are

finite integral numbers.

The onefold R possesses the following properties.

(i) It is an ordered onefold, in the sense that each number

is either greater or less than every other. The onefold may
therefore be arranged in a line so that each number occupies a

definite place, all those that are less being to the left, all greater

to the right.

(ii) R is an arithmetic onefold, in the sense that any con-

catenation of the operations +, — , x, -f- in which the operands are

rational numbers (excepting always division by 0) leads to a

number in R.

(iii) a and h being any two positive quantities in R, such

that Q<a<h, we can always find a positive integer n so that

na>b*; and consequently b/n<a.

(iv) Between any two unequal quantities in R, however

nearly equal, we can insert as many other quantities belonging

to R as we please. We express this property by saying that R is

a compact onefold. This follows at once from (iii), since the

rational numbers

a, a + {b-a)ln, a + 2{b-a)/n, . . ., a + {n-l) (b - a)/n, b

are obviously in order of magnitude, and the integer n may be

chosen as large as we please.

§ 31.] Dedekind's Theory of Sections. Any arrangement of

all the rational numbers into two classes A and B, such that

every number in A is less than every number in B, we may call

a section i of R. We denote such a section by the symbol (A, B).

It is obvious that to every rational number a corresponds a

* This is sometimes spoken of as the Axiom of Archimedes.

t Dedekind uses the word Schnitt.

7—2
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section of B ; for we may take A to include all the rational

numbers which are not greater than a, and B to include the rest,

viz. all that are greater than a. Conversely, if in the class A
there be a number a which is not exceeded by any of the others

in A, then the section may be regarded as generated by a. The

same is true if in the class B there be a number a which is

not greater than any of the others in B ; for we might without

essential alteration transfer a to the class A, in which it would

then be the greatest number. The case where there is a greatest

number a in A and a least number ^ in B\& obviously impossible.

For a and fi must be different, since the two classes A and B are

exhaustive and mutually exclusive ; but, if a and /S were different,

we could, since R is compact, insert numbers between them which

must belong either to J. or to ^ ; so that a and /3 could not be

greatest and least in their respective classes as supposed.

But it may happen that there is no greatest rational number

in A, and no least rational number in B. There is then no

rational number which can be said to generate the section. Such

a section is called an empty or irrational section. It is not

difficult to prove that, if mjn be any positive rational number

which is not the quotient of two integral square numbers, and A
denote all the rational numbers whose squares are less than mjn,

and B all those whose squares are greater than min, then the

section {A, B) is empty.

§ 32.] An ordered onefold which has no empty sections is

said to be contimwus. It will be observed that the onefold of

rational numbers is discontinuous although it is compact.

Starting with the discontinuous onefold of rational numbers

B, we construct another onefold S by assigning to every empty

or irrational section a symbol which we shall call by anticipation

a number, adding the adjective irrational to show that it is not a

number in B. As the section and the number are coordinated,

we may use the symbol {A, B) to denote the number as well as

the section. We can also without contradiction re-name all the

rational numbers by attaching to each the corresponding sectional

symbol.

Naturally we define the number {A, B) as being greater than
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the number {A', B) when A contains all the (rational) numbers

in A' and more besides ; and consequently B' contains all the

numbers in B and more besides. The numbers {A, B) {A\ B')

are equal when A' contains all the numbers in A, neither more

nor less, and the like is consequently true of B' and B.

is the section in which A consists of all the negative and

B of all the positive rational numbers.

{A, B) is positive when some of the numbers in A are

positive ; negative when some of the numbers in B are negative.

Also, if we understand - A to mean all the numbers in A each

with its sign changed, then {- B, - A) =-{A, B).

The new manifold S is therefore obviously an ordered mani-

fold ; and it is clearly compact, since B is compact. It is also

continuous, i.e. every section in S is generated by a number in ^S*

;

for, if a, /8 be a classification of all the numbers (or sections) of S
such that every number in a is less than every number in fi, then

(a, P) determines a section in S of the most general kind. But,

if A contain all the rational sections in a and B all the rational

sections in yS, then {A, B) is a section in R, i.e. a number in 8
;

and it is obvious that every number in S<{A, B) is a number in

a, and every number m. S>{A, B) au number in (i. Hence (a, ^)

corresponds to the number {A, B), which is a number in 8.

% 33.] Systematic representation of a number, rational or

irrational. Consider any number defined by means of a section

{A, B) of the rational onefold B. We are supposed to have the

means, direct or indirect, of settling whether any rational number

belongs to the class A or to the class B. Suppose {A, B) positive.

Consider the succession of positive integers 0, 1, 2, . . .; and

select the greatest of these which belongs to A, say a^. Then

/!>o
= ao+l belongs to B. The two rational numbers ««, ^o de-

termine two sections in B between which there is a gap of

width 1. Within this gap the section {A, B) lies, i.e. ao<{A, B)

Next divide the unit gap into ten parts by means of the

rational numbers a^ + 1/10, «« + 2/10, . . . , ao + 9/10, and select

the greatest of these numbers, say a^ = a^ + jOj/lO, which belongs

to A ; then hi = ax + 1/10 belongs to B. We have now a gap in
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B of width 1/10, determined by tlie numbers cfj, hi within which

{A, B) lies.

We next divide the gap of 1/10 into ten parts by means of

the numbers al+l/10^ ai + 2/10', . . ., «! + 9/10^ ; and so on.

Proceeding in this way, we can determine two rational numbers

(terminating decimals in fact),

a» = ao+WlO + - • .+W10", &„ = »„ + 1/10'' (1)

between which {A, B) lies, the width of the gap between a^ and hn

being 1/10". It is obvious that a^, «!,...,»„ are a non-decreas-

ing succession of positive rational numbers ; and it can easily

be proved that ho, hi, . . ., hn are a non-increasing succession.

1°. At any stage of the process it may happen that a„ is the

greatest possible number in A, in other words that J3n+], and all

successive jo's are zero. The section {A, B) is then determined

by the number a„ ; and {A, B) is the rational number a„.

If the process does not stop in this way, two things may
happen.

2°. The digits pi, p^, . . ., Pn, > > > may form an endless

succession but repeat, say in the cycle j^^, Pr+i, • • ., Pw In this

case there exists a rational number a to which a„ = a,, +pil\Q + . . .

-i-j9m/10" approximates more and more closely as we increase n
;

and, since J„ = a„ + 1/10", hn also approaches the same limit. It

follows that the rational numbers of class A might be defined as

the numbers none of which exceeds every number of the succession

a^, ai, . . ., an, however large wbe taken. Hence, if we agree to

attach the number a to the class A, it will be the greatest number

of that class, and the section {A, B) is generated by a.

3°. The digits Pi, p^, • -, Pn may form an endless non-

repeating succession. Since the gap hn-an= 1/10" can be made

as small as we please, it follows as before that the rational

numbers of class A may be defined as all the rational numbers

none of which exceeds every number in the endless succession

ao, Oi, •..,«»,... . This statement does not as in last case

enable us to identify {A, B) with any rational number; but, since

n may be as large as we please, we can by calculating a sufficient

number of the digits jOj, p^, . . . separate {A, B) from every other
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number, rational or irrational, no matter how near that number

may be to (A, B).

Conversely, it is obvious from the above reasoning that every

terminating or repeating decimal determines a rational section in

B, and therefore a rational number ; and every non-terminating

non-repeating decimal an irrational section in U, i.e. an irrational

number.

It is an obvious consequence of the foregoing discussion that

between any two distinct numbers, rational or irrational, we can

find as many other numbers, rational or irrational, as we please,

§34.] Cantor's Theory. The rational numbers ««> «i, • • •,

«„,... in § 33 evidently possess the following property. Given

any positive rational number e, however small, we can always find

an integer v such that la,j-a„+r|<€ when n^^v, r being any

positive integer whatever.

We are thus naturally led to consider an infinite sequence of

rational numbers
w,, lu, ...,«„,... (2)

which has the property that for every positive rational value of e,

however small, there is an integer v such that
\
Un ~ Un+r

I

< « when

n-^v, r being any positive integer whatever.

Such a sequence is called a convergent sequence ; and Ui, u^,

&c. may be called its convergents. It should be observed that we

no longer, as in § 33, confine the convergents to be all (or even

ultimately all) of the same sign ; nor do we suppose that they

form a non-decreasing or a non-increasing (monoclinic) sequence.

To every convergent sequence corresponds a definite section of

the onefold of rational numbers {R) : so that every such sequence

defines a real number, rational or ir?'atio7ial.

We may prove this important theorem as follows.

Let €i be any positive rational number whatever; then we can

find vi such that, when n'^v^, \un-Un+r\<^i' Iii particular, we

shall have, if w?> I'l,
|
m^, - u„,

|
< ei , whence

U^^-ei<Um<U^, + £i (2).

In other words, the two rational numbers «! = Uy^ - Cj, &i = w„, + Ci

determine two sections in 11 such that all the numbers of -the
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sequence 2 on and after m^, lie in the gap of width 2ej between

those two sections.

Next choose any rational number (2<^i' We can then es-

tablish a gap of width 2c2, whose bounding sections are given by

ttj = iiya — *2j ^2 = tifi + fg. The number v^ will in general be greater

than vi ; but it might be less. Also the gap a^bo might partly

overlap the gap Uibi. But, since all the convergents on and

after w^, lie within the gap aibi, we can throw aside the part of

a^bi, if any, that lies outside Uibi, and determine a number v2-«^vi

such that

a2<Um<b2

when w-^vj. Then, all the convergents on and after w^, lie

within the gap aa^a, whose width ;:^2€2<2ci. This process may
be repeated as often as we please; and the numbers Ci, C2> • • •

may be made to decrease according to any law we like to choose.

The numbers ai, a2, . . . form a non-decreasing and the numbers

bi, b^, . . . & non-increasing sequence : and each successive gap

lies within the preceding, although it may be conterminous with

the preceding at one of the two ends. Since f], Cj, . . . can be

made as small as we please, it is clear that by carrying the above

process sufficiently far we can assign any given rational number

to one or other of the two following classes :

—

(A ) numbers which

do not exceed every one of the numbers ttm, Um+i , . . . when m is

taken sufficiently large, (B) numbers which exceed any of the

numbers Um, Um+i, . . . when m is taken sufficiently large.

Hence every convergent sequence determines a section of B

;

and therefore defines a number, rational or irrational.

Conversely, as we have seen in § 33, every number, rational or

irrational, may be defined by means of a convergent sequence. If

the sequence is Ui, ti^, . . ., w„, . . . we shall often denote both

the sequence and the corresponding number by («„). Since it is

only the ultimate convergents that determine the section, it is

clear that we may omit any finite number of terms from a con-

vergent sequence without affecting the number which it defines.

In particular, the sequences Ml, u^, . . . tir, ...,«„,... and

Mr, ...,«„,.. . define the same number. It should be noticed

that in the case of rational numbers the convergents on and after
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a particular rank may be all equal : in fact we may define any

rational number a by the sequence a, a, . . ., a, . . ., and call

it (a).

Since each gap in the above process lies within all preceding

gaps, and the section in R which is finally determined within

them all, we have, if v he such that |M,i-w„+rl<« when n-^v,

U^-i1^.{Un)'^U^ + € (3),

an important inequality which enables us to obtain rational

approximations as close as we please to the number which is

defined by the sequence Ui, u^, . . ., Un, ....

§ 35.] Null-sequence. If by taking n sufficiently great we

can make
|
u^

\
less than any given positive quantity e, however

small, it follows from (3) that (?<„) must be between and a

rational number which is as small as we please. We therefore

conclude that in this case tbe sequence u^, lu, . . ., Un, . . .

corresponds to ; and we call it a null-sequence.

§ 36.] Definition of thefour species fm- the generalised onefold

of real numbers S.

If (Un) (vn) be any two numbers, rational or irrational, defined

by convergent sequences, it is easy to prove that the sequences

{un + Vn), (Un-Vn), (tinVn), (un/vn), are Convergent sequences*,

provided in the case of (un/vn) that (Vn) is not a null-sequence.

We may therefore define these to mean (iCn) + (vn), (%) - (%),

(Un) X (Vn), (un) "^ (%) respectively. For it is easy to verify that,

if we give these meanings to the symbols +, -, x, -f- in connection

with the numbers (tin) and (y„), then the Fundamental Laws of

Algebra set forth in chap. i. § 28 will all be satisfied.

For example!,

(un) - (vn) + (vn) = («„ - Vn) + («„), by definitions

^{{Un-Vn}+Vn), by dcf.

= (Un), by laws of operation for R.

* The reasoning is much the same as in § 6 above.

t The plain bracket
(

) is appropriated to the definition of the number by

a sequence ; the crooked bracket has reference to operations in R.



106 ARITHMETICITY OF IRRATIONAL ONEFOLD CH. XXV

Again,

(Un) X {(v„) + (Wn)} = (Un) X (v^ + «;„), by def.

= (un {Vn + iCn}), by def.

= {unVa+UnWn), by laws of Operation for (R),

= (UnVn) + (UnWn), by def.

= (m») (««) + (Un) (Wn), by def.

and so on.

In order that two numbers (m„) and («„) may be equal it is

formally necessary and sufficient that (m„) - (v„) = 0, in other

words, that (M„-'y„) = 0, that is, that Ui-Vi,U2-V2, . . ., Un-Vn,

. . . shall be a null-sequence. This from the point of view of

our exposition might also be deduced from the fact that (m„) and

(vn) must correspond to the same section in E. We can also

readily show that all null-sequences are equal, as they ought to

be, since they all correspond to 0.

We have now shown that the onefold of real quantity (S)

built upon E by the introduction of irrational numbers is an

arithmetic manifold. The proof that S has the property iii. of

§ 30 is so simple that it may be left to the reader. Henceforth,

then, we may operate with the numbers of S exactly as we do

with rational numbers.

§ 37.] It is worthy of remark that the properties of the

rational onefold R can, by means of appropriate abstract defini-

tions, be established on a purely arithmetical basis. It is not

even necessary to introduce the idea of measurement in terms of

a unit. The numbers may be regarded as ordinal ; and addition

and subtraction, greaterness and lessness, &c. interpreted merely

as progress backwards and forwards among objects in a row, which

are not necessarily placed at equal or at any determinate distances

apart*.

Following the older mathematicians since Descartes, we have

in the earlier part of this work assumed that, if we choose any

point on a straight line as origin, every other point on it has for

• See, for example, Harkness and Morley, Introduction to the Theory of
Analytic Functions. (Macmillau, 1898.)
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its coordinate a definite real quantity : and conversely that every

real quantity, rational or irrational, can be represented in this way

by a definite point. The latter part of this statement, viz. that

to every irrational number in general* there corresponds a definite

point on a straight line, is regarded by the majority of recent

mathematicians who liave studied the theory of irrationals as an

axiom regarding the straight line, or as an axiomatic definition

of what we mean by "points on a straight line."

§ 38.] Generalisation of the notion of a Convergent Sequence.

It is now open to us to generalise our definition of a convergent

sequence by removing the restriction that « and Ui, u^, . . .,

Un, . . . shall be rational numbers. Bearing in mind that we

can now operate with all the quantities in S just as if they were

rational, we can, exactly as in § 34, establish the theorem that

everi/ convergent sequence oi real numbers Ui, u», . . ., Un, . . .

defines a real number (?«„).

Also we can show that, if e be any real positive quantity,

however small, we can always determine v so that

Wm-«<K)<Mm + C (4),

when w<|:v.

For we have merely, as in § 34, to determine v so that

l«m-Mm+r
I

<«'<«, when ?»<j:v.

Then we have

and therefore

when m<^v.

§ 39.] General Definition of a Limit and Criterion for its

Existence.

Returning now to the point from which this discussion

started, we define the limit of the infinite sequence of real

quantities

til, «2, . . ., w„, . . . (2),

as a quantity u such that, if c he any real quantity however small.

* We do not speak of special irrationalities, such as ^2, which arise in

elementary geometrical constructions.
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then there exists always a positive integer v such that
| w,i — w|<e

when n*^v. And we prove the following fundamental theorem.

The necessary and sufficient condition that the sequence, 2, have

a finite definite limit is that it be a convergent sequence ; and the

limit is the real number which is then defined by the sequence.

The condition is necessary ; for, if a limit u exist, then

I
Un - Un+r I

S
j
M„ - M + M - M„+r |,

:^\Un-u\ + \Un+r-u\.

Now, since u is the limit of the sequence, we can find v such

that
I
M„ - M I < I c when n^^v; and , d, fortiori, \tin+r-u\<^e

when w<^v. Hence we can always find v so that \un-Un+r\<f,

where c is any positive quantity as small as we choose. Hence 2

is convergent.

Also the condition is sufficient. In fact, we can show that

(un), the number defined by the sequence when it is convergent,

satisfies the definition of a limit. For, given c, we have seen that

we can find v so that

Um-€<(Un)<Um + e

when m<^v: whence it follows that
|
u^ - (w„)

|
<« when m'^v.

Moreover there cannot be more than one finite limit ; for, if

there were two such, say u and v, we should have

\U-V\ = \u-Un + Un-V\,

:!f>\Un-u\ + \nn-v\.

But, since both u and v are limits we could, by sufficiently

increasing n, make |ttft-w| and |Mn — •»! each less than ^c, and

therefore
|
w - « |< e, i.e. as small as we please. Hence u and v

cannot be unequal.

The reader will readily prove that, {/* Ml, Wa, . . .,«»,• • • ^^

a non-decreasing {non-increasing) infinite sequence, no number of

which is greater than (less than) the finite number I, then this

sequence has a finite limit not greater than {not less than) I.

§ 40.] Let us now consider any function of x, sa.yf{x), which

is well defined in the sense that, for all values of x that have to

be considered, with the possible exception of a finite number of

isolated critical values, the value of f(x) is determined when the

value of X is given. We define the limiting value, I, off{x) when
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X is increased up to the value a, by the property that, when any

positive quantity e is given, there exists a finite quantity $<a such

that

\f{x)-l\<.
when t1^x<a.

This obviously includes our former definition of a limiting

value ; and we may denote I hy L f{x).
a;=o-0

Let ai, a2, . . ., an, . . be any ascending convergent

sequence which defines the number a ; and let us suppose, as

we obviously may, that there is no critical value of x in the

interval ai^x<a. Then, if we consider the sequence Ui =f{a^,

ih-fia^), • • ', w„ =/(«„), . . ., the results of last paragraph

lead us at once to the following theorem.

The necessary and sufficient condition that L f{x) be finite
x=a-0

and definite is that it be possible to find a finite quantity i<a
such that, wlien $^x<x'<a,

\/(x)-/(x)\<.,

where c is any finite positive quantity however small.

The reader will easily formulate the corresponding proposition

regarding L f{x).
a;=a+0

§ 41.] There is one more point to which it may be well to

direct attention before we leave the theory of limits.

L f{x) is not necessarily equal to the value of f{x) wJien
x=a±0

x = a. For example, L{af- l)/(x - 1) = 2 ; but (aP - l)/(x - 1)
a:=l±0

has no value when x-1.

A more striking case arises when f(x) is well defined when

x = a, but is discontinuous in the neighbourhood of x = a.

Thus, if

/{x) = L {sin xjl - sin 2^/2 + . . . + (- 1)""^ sin nxjn],
n=oo

then it is shown in chap, xxix., § 40, that L f{x) - + 7r/2,
a;=7r-o

L f{x) = - 'jr/2 ; whereas /(tt) = 0.
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Exercises VII.

Limits.

Find the limiting values of the following functions for the given values of

the variables :

—

(1.) (3xi + 2x^ + 3xi)/(a;i+a;7 + a;^), x= Q, and x=<x>.

(2.) (a;4-x3-9x2+16a;-4)/(,r''-2a;2-4x + 8), x= 2.

(3.) log(x3-2x'''-2x-3)-log(x3-4a;2 + 4x-3), x= 3.

(4.) {a;-(n + l)a;"+'+n.T™+2}/(l-x)2, a;=l (n a positive integer). (Euler,

Diff. Gale.)

(5.) {V(x-l)-(x-l)}/{4/(x-l)-V(x-l)}, x=l.

(6.) (x'"+"-a'"x")/(xP+9-ai'x«), x= a.

(7.) {(a + x)"»-(a-x)™}/{(a + x)»-(a-x)"}, x= 0.

(8.) {(x'»-l)P-(x™-l)9}/{(x-l)P-(x-l)«}, x= l.

(x'»-l)^-(x'»-l)(x"-l) + (x«-l)''

^ * (a;"*-l)2+(a;"'-l)(x™-l) + (x"-l)2*

(10.) {a-V(a«-a;2)}/x2, x=0. (Euler, Z)/J. Cafc.)

(11.) {i:J{a-\-x)-^{a-x)}l{;>l{a + x)-^{a-x)}, x= 0.

(12.) {(a2+ ax + x2)i-(a2-ox + x2)^}/{(a + x)i-(a-x)i}, x=:0. (Euler,

Z)//f. Cafc.)

(13.) {(2a-''x-x^)i-a(a-x)^}/{a-(ax3)i}, x= a. (Gregory, JBxamjj/fs in

D7j. Gale.)

(14.) {a + V(2a2-2ax)-V(2ax-x2)}/{a-x4-v'(a2-x2)}, x= a. (Euler,

Biff. Gale.)

X - ^{x^ - j/2), when x = oo , i/ = oo , but j/'/x finite = 22).

Sx" (y - 2)/n (y - z), x= y=z.
Sx'"(?/"-z")/SxP(j/«-2«), x=y= z= a.

nx»-V(x" - a") - l/(x - a), x= <j.

(15.

(16.

(17.

(18.

(19.

(21.

(23.

(25.

(27.

(29.

(31.

(32.

(33.

(34.

(36.

(36.

(87.

(1 + 1/x'y, X=QO.

(1 + 1/x)^ x= 0.

xV(^-i)', a;= l.

a^"lx, X= 00 ,

(log x/x)V*, X = CO .

(20.) xV*. x=ao.

(22.) x2^/(l+x2)^, x = ao..

(24.) (l + l/x)< x = (».

(26.) .tV(x«-i), a;=l.

(28.) (logx)V^, x= oo.

(30.) log^x/log^x, x= a).

a*/(x), x=cc, where /(x) is a rational function of x, and a a

constant.

(ax" + 6x"-J+ . . .)'/*, x = oo, (Cauchy.)
3.1/(1+2 log x)^ a;=0.

{(x2 + x + l)/(x2-x + l)}«, x=x..

{i(a'^+&'=)}'/^, x=0.

{l + 2/V(x2 + l)}\^(»«*+i), x = oo. (Longchamps.)

/an + a-,x+ , . , +a_x''\Ao-("A,a;

{^^h^^TTTTb^) ' '= ^- (M-^th. Trip., 1886.)
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(38.

(39.

(40.

(41.

(42.

(44

(45

(47.

(49.

(50.

(52.

(54.

(56.

(57.

(58.

(60.

(61.

(62.

(64.

{!/(«*- 1)}V*, x= aa.

{log(l + a;)}'»«(i+A a;= 0.

log(l + aa;)/log(l + 6a;), x = 0.

(e«_e-x)/log(l + x), x = 0. (Euler, D?/. Cai!c.)

(^7r-a:)tanaj, a;= ^. (43.) tan-ix/a;, a;= 0.

(l-sina; + cos3;)/(sina; + cosx-l), x= \ir. (Euler, Diff. Calc.)

sina;/(l-a^/7r2), x-tt. (46.) x {cos (ajx) -1}, x=<x>.

(amx-8ma)l{x-a), x= a. (48.) sec a; -tan a;, x-\ir.

(sin* x - tan* x)j{l + cos x){l- cos x)^, a; = 0.

sinhx/x, a;=0. (51.) (cosh x - l)/x2, x=0.

tanh-'x/x, x=0. (53.) 8inx/log(l + x), x= 0.

sin X log X, x=0. (55.) cos x log tan x, x= ^w.

log tan 77ix/log tan Tix, x= 0.

(log sin mx - log x)/(log sin nx - log x), x = 0.

sinx^'"*, x=0. (59.) sinxt*"^, x = 0.

(sinhx)'*""', x= 0.

{(x/a)sin (a/x)}=^"'(?ra<2), x= oo.

(cosmx)"/^, x = 0. (63.) (cos mx) <=<>'««''«, x= 0.

(2 - xja) **" '^'^/2<», x-a.

(65.) logJlogeX)/cos
2x'

(66.) Show that sin x cot (a/x) log (1 + tan (a/x)) has no determinate limit

when X= 00 .

(67.) If l^x stand for log„(log„x), l^H for log„(log„(log„x)), &c., show

that L [1 - {;aPx/Z„P(x + l)}'"]xi„xZ„2x . . . /„J'x = m(\e)P (Schlomilch,
Z=oo

Algebraische Analysis, chap, n.)

(68.) Show that I, 2 (a + s)^/"/n= l.

71=00 g=l

(69.) Show that L S { (a + 8)/7i}" lies between e« and e«+i.

n=oo 8=1

g—n
(70.) Show that L S {(a + sc/n)/(a + c)}"isfiniteif a + cbenumerically

n=oo g=l
s=n

greater than a, and that L S {(a + sc/n)/a}" is finite if a + c be numerically

less than a. ™=°° «=i

(71.) Trace the graph of ?/= (a^- l)/x, when a>l, and when a<l.

(72.) Trace the graph of y==x^l' for positive values of x; and find the

direction in which the graph approaches the origin.

* For the definition and elementary properties of the hyperbolic functions

cosh X, sinh x, tanh x, &c., see chap. xxix. All that is really wanted here is

cosh X= i (e=>=+ e-'') , sinh x= ^ (e^^ - e-»=).
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(73.) Trace the graph of y = {l + llx)'; and find the angle at which it

crosses the axis of y.

(74.) Find the orders of the zero and infinity vaUies of y when determined

as a function of x by the following equations* :

—

(a) X (rc2 -ayf~y'^ = 0. (Frost's Curve Tracing, § 155, Ex. 3.)

(/3) x2j/«+ ah/ - x^y^ + axhj - aV = 0. (76. , Ex. 7.)

(7) (x-l)?/ + (a;2-l)2/2_(a;_2)2j/ + a;(.T-2)=0.

(75.) If u and v be functions of the integral variable n determined by the

equations m„=m„_^ + v„_i, v„= m„_i , show that L w„/r„=(l±v'5)/2. How

ought the ambiguous sign to be settled when «„ and t/j are both positive ?

(76.) Show that

(77.) Show that L f^" fV>
" ' ' ""'^"'I'^^l.

^ ' n=oo I
1 . 2 , . . n

J

(78.) I/log(l-x) loga;=0, when a;=0.

For a general method for dealing with such problems, see chap. xxx.



CHAPTER XXVI.

Convergence of Infinite Series and of Infinite

Products,

§ 1.] The notion of the repetition of an algebraical operation

upon a series of operands formed according to a given law

presents two fundamental difficulties when the frequency of the

repetition may exceed any number, however great, or, as it is

shortly expressed, become infinite. Since the mind cannot over-

look the totality of an infinite series of operations, some defi-

nition must be given of what is to be understood as the result of

such a series of operations ; and there also arises the further

question whether the series of operations, even when its meaning

is defined, can, consistently with its definition, be subjected to

the laws of algebra, which are in the first instance laid down for

chains of operations wherein the number of links is finite. That

the two difficulties thus raised are not imaginary the student

will presently see, by studying actual instances in the theory of

sums and products involving an infinite number of summands

and multiplicands.

§ 2.] One very simple case of an infinite series, namely, a

geometric series, has already been discussed in chap, xx., § 15.

The fact that the geometric series can be summed considerably

simplifies the first of the two difficulties just mentioned*; never-

theless the leading features of the problem of infinite series are

all present in the geometric series ; and it will be found that

most questions regarding the convergence of infinite series are

ultimately referred to this standard case.

* The second was not considered.

c. II. 8
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The consideration of the infinite geometric series suggests

the following definitions.

Consider a succession of finite real summands Ui, U2, th, • • •>

Un, . . ., unlimited in number, formed according to a given law,

so that the nth term Un is a finite one-valued function of n ;
and

consider the successive sums

When n is increased more and more, one of three things must

happen :

—

1st. Sn may approach a fixed finite quantity S in suck a way

that by increasing n sufficiently we can make Sn differfrom S by as

little as weplease; that is, in the notation oflast chapter, L Sn = S.

In this case the series

«i + W2 + W3 + . . . + M„ + . . .

is said to be convergent, and to converge to the value S, which is

spoken of as the sum to infinity.

Example. I + + T+ • • • +n;i+ • • • HereS= L -S'„=2.

2nd. Sn may increase with n in such a way that by increasing

n sufficiently we can make th£ numerical value of S^ exceed any

quantity, however large ; that is, L Sn =±^ . In this ca>se the

series is said to be divergent.

Example. 1 + 2 + 3+ . . • Here L S„=oo.

3rd. Sn may neither become infinite nor approach a definite

limit, but oscillate between a number of finite values the selection

among which is determined by the integral character of n, that is,

by such considerations as whether n is odd or even; ofthefwm 3m,

Sm + 1, 3m + 2, o&c. In this case the series is said to oscillate.

N.B. If all the terms of the series have the same sign, then Sn

contintially increases {or at least neve)' decreases) in numerical value

as n increases : and the series cannot oscillate.

Example. 3-1-2 + 3-1-2 +3-1-2+ . . . Here L S„ = 0, 3, or2,

according as n is of the form 'dm, 3;n + 1, or 3;n + 2. »=*
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In cases 2 and 3 the series

U1 + U.2 + U3+ . . . + tin + . . .

is also said to be non-convergent*. In many important senses

non-convergent series cannot be said to have a sum ; and it is

obvious that infinite series of this description cannot, except in

special cases, and under special precautions, be employed in

mathematical reasoning.

Series are said to be more or less rapidly convergent according

as the number of terms which it is necessary to take in order to

get a given degree of approximation to the sum is smaller or

larger. Thus a geometric series is more rapidly convergent the

smaller its common ratio. Rapid convergency is obviously a

valuable quality in a series from the arithmetical point of view.

It should be carefully noticed that the definition of the con-

vergency of the series

U1 + U2 + U3+ . . . + Un + . . .

involves the supposition that the terms are taken successively in

a given order. In other words, the sum to infinity of a con-

vergent series may be, so far as the definition is concerned,

dependent upon the order in which the terms are written. As a

matter of fact there is a class of series which may converge to one

value, or to any other, or even become divergent, according to the

order in which the terms are written.

§ 3.] Two essential conditions are involved in the definition

of a convergent series—1st, that Sn shall not become infinite

for any value of n, however great ; 2nd, that, as n increases,

there shall be continual approach to a definite limit S. If we

introduce the symbol m^n to denote Un+i + Un+2+ • - +w«+m,

that is, the sum of m terms following the wth, following Cauchy

we may state the following criterion :

—

The necessary and sufficient condition for the convergence of a

series of real terms is that, by taking n sufficiently great, it he

possible to make the absolute value of mRn «« small as we please, tig

matter what the value ofm may he.

* Some writers use divergent as equivalent to non-convergent. On the

whole, especially in elementary exposition, this practice is inconvenient.

8 9
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This condition may be amplified into the following form.

Given in advance any positive quantity f, however small, it must

be possible to assign an integer v such that for n = v and all

greater values |m-^^n|<c : or it may be contracted into the form

J^ml^n = when n= zc , for all values of m.

The condition is necessary; for, by the definition of con-

vergency, we have L Sn = S, where ;S^ is a finite definite quantity;
n=oo

therefore also, whatever m, L Sn+m = S. Hence
n=oo

-^ {^n+m ~ Sn) = S— S=Q '.

n=w

that is, L mP'n - 0.

Also the condition is sufficient : for, if we assign any positive

quantity c, it is possible to find a finite integer v such that, when

w <|; V,
I

mRn 1
< f

J
that is

I

Sn+m - Sn\<(. In particular, therefore,

|/S^v+m->S',, |<€. Since S^,, being the sum of a finite number of

finite terms, is finite, and m may have any value we please, it

follows that for no value of n exceeding v can Sn become infinite.

Hence L Sn cannot be infinite.

Also the limit of S^ cannot have one finite value when n has

any particular integral character, and another value when n has

a different integral character ; for any such result would involve

that for certain values of m L Sn and L Sn+m should have
n=oo n=«)

diff'erent values ; but this cannot be the case, since for all values

of m L {Sn+m — Sn)= L m^„ = 0*.

It should be noticed that, when all the terms of a series have

the same sign, there is no possibility of oscillation ; and the

condition that Sn be finite for all values of n however great

is sufficient. In case the subtlety of Cauchy's single criterion

should puzzle the beginner, he should notice that the proof which

shows that i/mjB„ = can usually be readily modified so as to

show that LSn is not infinite. In fact some of our earlier

* A more rigorous demonstration of the above criterion is obtained

by applying the result of § 39, chap. xxv. to the sequence S^, S^, . . .,

8^, . . . We have given the above demonstration for the sake of readers

who have not mastered the Theory given in chap. xxv. , §§ 28—40.
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demonstrations are purposely made redundant, by proving both

Lmlin = 0, and LSn not infinite.

Cor. 1. In any convergent series L w,i = 0.
n=co

For Un = ^n — ^n-i = iRn-i, and, by the criterion for con-

vergency, we must have L ii2„_i = 0. This condition, although
n=oo

necessary, is not of itself sufficient, as will presently appear in

many examples.

Cor. 2. If Bn= L mRn, cb^d S and Sn have the meanings
»n=oo

above assigned to them, then Sn = S-Iln.
For Sn+m = ^n + mRn, therefore L Sn+m = Sn+ L mRn\ and

L Sn+m = ^> hence the theorem.

Bn is usually called the residue of the series, and mUn a

partial residue.

Obviously, the smaller RnjSn is for a given value of n, the

more convergent is the series ; for R^ is the difference between

Sn and the limit of Sn when n is infinitely great.

Rn is, of course, the sum of the infinite series

^re+l + ^n+2 + Wn+3 +••'',

and it is an obvious remark that the residue of a convergent series

is itself a convergent series.

Cor. 3. The convergency or divergency of a series is not

affected by neglecting a finite number of its terms.

For the sum of a finite number of terms is finite and definite

;

and the neglect of that sum alters L Sn merely by a finite
n=oo

determinate quantity ; so that, if the series was originally con-

vergent, it will remain so ; if originally oscillating or divergent,

it will remain so.

Example 1. Consider the series 1/1 + 1/2 + 1/3+ . . . +1//1+ . . .

Here ^R„=l/(n + l) + !/(« + 2)+ . . . +l/(n + 7n),

>l/()f + m) + l/(n + ??i)+ . . . +1/(w + 7h),

>m/(H, + m),

>l/(?i/m + l).

Now, however great n may be, we can always choose in so much greater that

»t/m shall be less than any quantity, however small. Hence we cannot cause

„jR„ to vanish for all values of m by sufficiently increasing n. We therefore

conclude that the series is not convergent ; hence since all the terms are
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positive it must diverge, notwithstanding the fact that the terms ultimately

become infinitely small. We shall give below a direct proof that Z-S„=qo .

Example 2.

1, 22 1, 32 1, (n + l)2
jlog j-3 + 2log—̂ + . . . +-log^(^^.

Since (ri + l)-/;i(n+ 2) = (l + l/n)/{l + l/(n + l)}, we have

JL_ l + l/(n+ l ) 1 l + l/(n + 2)

»" "~n+ l ^^l + l/(n + 2J'*'7i + 2 ^^l + l/(u + 3)

1 . 1 + 1/(h + wi)
+ . . . +—— log '^ '-

n +m ** l + l/(n + m + l)'

n+ 1 V°''l + l/(n + 2)^'°'^l + l/(n + 3)^ •

^ '°^ l + l/(M + m+l)r '

1 . l + l/(ra + l)

^n+ l^^l + l/(n+m + l) - ^
^•

Now, whatever m may be, by making n large enough we can make l/(n+ 1),

and, a fortiori, l/(n + m + l), as small as we please, therefore L ^R^—0 for

all values of m. "="

If in (1) we put in place of n, and n in place of vi, and observe that

iS_=_Iio, we see that

r, , 1 + 1/1

.

• ^""^°°
l + l/(n + l)

-

so that fif„ can never exceed log 2 whatever n may be.

Both conditions of convergency are therefore satisfied.

Putting 7)1= 00 in (1), we find for the residue of the series

J?„<[log{l + l/(n + l)}]/(n + l);

a result which would enable us to estimate the rapidity of the convergency,

and to settle how many terms of the series we ought to take to get an

approximation to its limit accurate to a given place of decimals.

§ 4.] The following theorems follow at once from the

criterion for convergency given in last paragraph. Some of

them will be found very useful in discussing questions regarding

convergence. We shall use 2«,i as an abbreviation for Mj + u^

+ . . . +Mn+ • . ., that is, " the series whose nih. term is ?f„."

I. If Un and v„ be positive, Un<Vn for all values of n, and

2»„ convergent, then 2w„ is convergent.

If Un and Vn be positive, w„>'y„ for all values of n, and 2v„

divergent, then 2m„ i? divergent.

For, under the first set of conditions, the values of ^„ and

,„i?„ belonging to 2m„ are less than the values of the correspond-

ing functions S'n and ^R'n belonging to 2«j„. Hence we have

0<Sn<S'n, 0<mIin<mR'n- But, by hypothcsis, S\ is finite for
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all values of w, and L ^B'n - ; hence 8n is finite for all values

of n, and L rn.Rn = ; that is, 2% is convergent.

Under the second set of conditions, Sn>S'n. Hence,

since L S'n = qo , we must also have L JSn- <x) ; that is, 2?«„ is

divergent.

11. ^f, for all values of n, Vn> 0, and Un/vn is finite, then

%Un is convergent if Sv„ is convergent, and divergent if 5v„ is

divergent.

By chap, xxiv., § 5, if ^ be the least, and B the greatest of

the fractions, ?«„+i/v„+i, t«;i+2/??„+2, . . ., M„+mK+m, then

A Un+l + UnJr2 + • • . + Un+m n
1'n+l + Vn+i + . . . + Vn+m

Now, since ujvn is finite for all values of ;^, A and B are

finite. Hence we must have in all cases mBn = Cm-R'n, where C
is a finite quantity whatever values we assign to m and n.

Hence 8n (that is, nRo) will be finite or infinite according as

S'n is finite or infinite ; and if L ^R'n = 0, we must also
n=oo

have L mBn-^-
n=oo

HI. If iin and Vn he positive, and if, for all values of n,

Un+\/un< Vn+i/v„ , and '^Vn is Convergent, then %Un is convergent; and

if Un+i/un>Vn+i/vn, and 5v„ is divergent, then ^u^ is divergent.

We have, if Un+i/Un<Vn+i/Vn,

a f-, Wo th Uo 1
1 . r . . . r

Ul U2 Ui )

Vi, V2 Vi

<->S„.
^

Now, by hypothesis, Z/S",i is finite : hence LR^ must be finite.

Also, since all the terms of 2m„ are positive, the series cannot

oscillate, therefore %Un must be convergent.

In like manner, we can show that, if Un+ilun>Vn+ilvn, and

%Vn be divergent, then Swn is divergent.

N,B.—In Theorems I., II., III. we have, for simplicity,

stated that the conditions must hold for all values of n ; but
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we see from § 3, Cor. 3, that it is sufficient if they hold for all

values of n exceeding a certain finite value r ; for all the tenns up

to the rth in both series may be nej,flected.

Also, when all the terms of a series have the same sign, we

suppose, for simplicity of statement, that they are all positive.

This, clearly, in no way affects the demonstration.

It is convenient to speak of m»+i/m„ as the Ratio of Con-

vergence of 2«<„. Thus we might express Theorem III. as

follows :—Any series is convergent (divergent) if its ratio of

convergence is always less (greater) than the ratio of convergence

of a convergent (divergent) series.

IV. If a series which contains negative terms be convergent

when all the negative terms have their signs changed, it will be

convergent as it stood o^'iginally.

For the effect of restoring the negative signs will be to

diminish the numerical value both of >S'„ and of mRn-
Definition.

—

A series which is convergent when all its terms are

taken positively is said to be absolutely convergent.

It will be seen immediately that there are series whose
convergency depends on the presence of negative signs, and
which become divergent when all the terms are taken positively.

Such series are said to be semi-convergent. In §§ 5 and 6, unless

the contrary is indicated, we suppose any series of real terms to

consist of positive terms only, and convergence to mean absolute

convergence.

SPECIAL TESTS OF CONVERGENCY FOR SERIES WHOSE TERMS
ARE ULTIMATELY ALL POSITIVE.

§ 5.] If we take for standard series a geometric progression,

say 2r", which will be convergent or divergent according as

r< or > 1, and apply § 4, Th. I., we see that 2m„ will be con-
vergent if, on and after a certain finite value of ti, u,^<7^,

where r<l
; divergent if, on and after a certain finite value of

n, Un>r^, where r>l. Hence
I. 2m„ is convergent or divergent according as Un"" is

ultimately less or greater than unity.
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This test settles nothing in the case where u^'^ is ultimately

unity, or where L Un''^ fluctuates between limits which include
n=oo

unity.

Example. 21/(1 + !/«)" is a convergent series ; for

L u„i/»= l/L(l + l//i)"= l/e,

by chap, xxv., § 13, where e > 2, and therefore 1/e < 1.

If, with the series 2r" for standard of comparison, we apply

§ 4, Th. III., we see that %Un is convergent or divergent according

as Un+i/un is, on and after a certain finite value of n, always < 1

or always > 1. Hence

11. ^Un is convergent or divergent according as its ratio of

convergency is ultimately < or >\.

Nothing is settled in the case where the ratio of convergency

is ultimately equal to 1, or where L tin+i/un fluctuates between

limits which include unity.

The examination of the ratio Un+i/un is the most useful of

all the tests of convergence*. It is sufficient for all the series

that occur in elementary mathematics, except in certain extreme

cases where these series are rarely used. In fact, this test, along

with the Condensation Test of § 6, will suffice for the reader

who is not concerned with more than the simpler applications of

infinite series.

Notwithstanding their outward difference, Tests I. and II. are

fundamentally the same when L Un+i/un is not indeterminate.
n=«)

This will be readily seen by recalling the theorem of Cauchy, given

in chap, xxv., § 14, which shows that L Un+i/un- L Un''^. It is

useful to have the two forms of test, because in certain cases I. is

more easily applied than II.

Example 1. To test the convergence of 2n''a;", where r and x are

constants. We have in this case

= (1 + 1/h)'"x.

Hence Lu„_^j/w„= x. The series is therefore convergent if a: < 1, and divergent

if x>\.

* We here use (as is often convenient) " convergence" to mean " the quality

of the series as regards convergency or divergency."
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If x = 1, we cannot settle the question by means of the present test.

Example 2. If tp{n) be any algebraical function of n, 'S<f>{n)x^ is con-

vergent if a:<l, divergent if a;>l.

This hardly needs proof if L (n) be finite. It L <p (n) be infinite, we
n—<D n=oo

know (see chap, xxx.) that we can always find a positive value of r, such

that L <p{7i)jn^ is finite, =A say. We therefore have
n—00

^) I L^^l L^"^^)'"

=x{AIA}xl,

= x.

This very general theorem includes, among other important cases, the

integro-geometric series

</){l)x + (f>(2)x'+ . . . +0(n)a;"+ . . .

where ip (») is an integral function of n ; and the series

X x^ x"

1+2 + -
••+¥+••• W-

which, as we shall see in chap, xxvin., represents (when it is convergent)

-log(l-x). It follows, by § 4, Th. IV,, that, since the series (1) is con-

vergent when x<l, the series

is also convergent when .r < 1.

When (2) is convergent, it represents log (1 -f x).

Example 3. Sx^/n! (the Exponential Series) is convergent for all values

«»-«/«»= {•^"+Vf« + 1)!}/MH!},

=x/(n-f 1),

Hence, however great x may be, since it is independent of n, we may always
choose r so great that, for all values of n>r, .t/(«-i-1)<1. Since the limit

of the ratio of convergence is zero in this case, we should expect the con-

vergency for moderate values of x to be very rapid ; and this is so, as we
shall show by examining the residue in a later chapter. We have supposed

x to be positive ; if x be negative the series is convergent a fortiori ; the

convergence is in fact absolute, § 4, Th, IV.

Example 4. S(-)"m(m-l) . . . (m-n + l)^"/;/! (x positive), where m
has any real value*, is convergent if x< 1, divergent if x> I.

* If wt were a positive integer, the series would terminate, and the

qnestion of convergency would not arise.
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m-n
71+1

'

•n T I ^ m-n
For LUn^Ju,^= -xL

^ mln - 1

=x.
Hence the theorem.

The series just examined is the expansion of (1-x)'" when a;<l. It

follows, by § 4, Th. IV., that the series Sm(m-l) . . . (m-n+ l)x'7«!.

whose terms are ultimately alternately positive and negative, is convergent

if a;<:l; this series is, as we shall see hereafter, the expansion of (1 + ar)"'

when x<l.

§ 6.] Cauchy's Condensation Test.—The general principle of

this method, upon which many of the more delicate tests of

convergence are founded, will be easily understood from the

following considerations :

—

Let 2m„ be a series of positive terms which constantly

decrease in value from the first onwards. Without altering the

order of these, we may associate them in groups according to

some law. li Vi, v^, . . . Vm, . . . be the 1st, 2nd, . . . mih, ... of

these groups, the series ^v^ will contain all the terms of Sm^
;

and it is obvious from the definition of convergency that 2«*„

is convergent or divergent according as Sv^ is convergent or

divergent ; we have in fact L ^Un- L 'Xvm,- It is clear that the
n=oo m=«>

convergency or divergency of 2v,„ will be more apparent than

that of 2m„, because in Sv^ we proceed by longer steps towards

the limit, the sum of n terms of 2v,„ being nearer the common
limit than the sum of % terms of 2m». Finally, if 2v'„ be a new

series such that 'y'n^'Wn. then obviously 2m„ is ,. , if %v'n^ J ™ divergent

. convergent

divergent

We shall first apply this process of reasoning to the following

case :

—

Example. The series 1/1 + 1/2+ . . . +l/7i+ ... is divergent.

Arrange the given series in groups, the initial terms in which are of the

following orders, 1, 2, 22,... 2"', 2"'+i,
. . . The numbers of terms in the

successive groups will be 2 - 1, 2^ - 2, 2» - 2*, . . .
2'»+i - 2"*, 2'»+2 - 2'»+i,

. . .

respectively. Since the terms constantly decrease in value, if 2"*+^ be the

greatest power of 2 which does not exceed w, then
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1/1 iv /i 1 1 l\ /_L _L 1 \

"^l"*'V2''"3J
^'

V22"^5"^6'^7/'*' * ' *

^V2"»'^2»» + l'*'* * '^2'»+'-iy'

,11 1

Hence, by making n sufficiently great, we can make S„ as large as we please.

The series 1/1 + 1/2 + 1/3 + . . . is therefore divergent. This might also be

deduced from the inequality (6) of chap, xxv., § 25.

Cauchy's Condensation Test, of which the example just

discussed is a particular case, is as follows :

—

Xff{n) he positive for all values of n, and constantly/ decrease

as n increases, then "^fin) is convergent or divergent according

as '^a^f{a^) is convergent or divergent, where a is any positive

integer <j: 2.

The series 2/(w) may be arranged as follows :

—

+ {/(a^)+/(«^ + l)+. . .+/(»=> -1)}

+ {/K) +/(«'" +1)+. . . +/(a"'+^-l)}

Hence, neglecting the finite number of terms in the square

brackets, we see that '^{n) is convergent or divergent accord-

ing as

2 {f{ar) +f{a^ + 1) + . . . +/(a™+^ - 1)} (1)

is convergent or divergent. Now, since f{a'")>f(a^ + 1)>. . .

>f{a"'+' - l)>/(a'"+^), we have

(a'»+^-a"')/(a'") >/(«'") +/(»'" + 1) + . . . +/(a'"+^- 1)

that is,

(a - 1) «•»/(«'") >/(«"•) +/(«"' + 1) + . . . +/(a"'+' - 1)

> {(a - l)/a} a'»+y(a'»+^).

Hence, by § 4, Th. I., the series (1) is convergent if 2 (a- 1)

a'"/(a'") is convergent, divergent if 2 {(a- l)/a}a'"+7'(a'"+*) is
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divergent. Now, by § 4, Th. II., 2 (a- l)«™/(c*'") is convergent

if :Sa"'/(a"0 is convergent, and % {{a - !)/«} a'"+y(a"'+0 is

divergent if 2«'""^V'('^*"'^') is divergent ; and for our present

purpose %a'"J\d"') and 2«'"+V"(a'"+^) are practically the same

series, say 'Za'^fia^). Hence Caucliy's Theorem is established.

N.B.

—

It is obviously sufficient that the /miction f{n) be

positive and constantly decrease for all values of n greater than

a certain finite value r.

Cor. 1. The theorem will still Iwld if a have any positive

value not less than 2*.

Let a lie between the positive integers b and b + \, (6 <|; 2).

If 2ay(a") be convergent, then L ay(a") = 0, that is, L ccf{x) = Q.
n=oo a;=oo

Hence, on and after some finite value of x, the function xf{x) will

begin to decrease constantly t as i» increases. We m\ist therefore

have (6 + 1)V'{(6 + !)"}< «"/(«")> on and after some finite value

of w. If, therefore, %a^f{a^) is convergent, afortiori, will 2(6 + 1)"

f{{b + 1)"} be convergent, and therefore, by Cauchy's Theorem,

2/(w) will be convergent.

If %a"f{a"') be divergent, xf(x) 1° may, or 2° may not decrease

as X increases.

In case 1°, 6"/(6")> a"'f(a"'). Hence the divergence of 5a"/(a")

involves the divergence of '^b'f{b^'') ; and the divergence of %f{n)

follows by the main theorem.

In case 2°, the divergence of ^f(n) is at once obvious ; for,

if L xf{x)^0, then ultimately xf{x)>A, where A>0. Hence
x=oo

f{x)>A/x. Now %A/n is divergent, since 2l/w is divergent;

therefore 2/(w) is divergent.

In what follows we shall use ex, ^x, ... to denote a*,

a"*, . . ., a being any positive quantity <j; 2 ; and \x, ^?x, . . .

Ix, Px,... to denote logaX, hgai^ogax), . . . loge^, loge(logeir), . . .,

where e is Napier's Base.

• Also if l<a<:2, see Kohn, Grunert's Archiv, Bd. 67 (1882) and Hill,

Mess. Math., N. S., 307 (1896).

t This assumes that xf{x) has not an infinite number of turning values;

so that we can take x so great that we are past the last turning value, which

must be a maximum.
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Cor. 2. %f{n) is convergent or divergent according as

^fne^n . . . €^n/{e^n) is convergent or divergent.

This follows, for integral values of the base a, by repeated

application of Cauchy's Condensation Test ; and, for non-integral

values of a, by repeated applications of Cor. 1. Thus ^/(n) is

convergent or divergent according as ^mf{m) is convergent or

divergent. Again, '^mf{m) is convergent or divergent according

as 2€Wc(ew)/{€(£»)}, that is %m€-n/(€^n), is convergent or divergent;

and so on.

Cor. 3. 2/(w) is convergent or divergent according as the first

of the functions

T, = \f{x)lx,

T,^H^f{x)}lXx,

T^ = \{x\xf{x)]lX\v,

Tr==\{x\xX^X . . .\'--^xf{x)}lyX,

which does not vanish when x=co, has a negative or a positive limit.

By Cor. 2, ^f(n) is convergent or divergent according as

^ene^n . . . €^nf(e^n) is convergent or divergent.

Now the latter series is (by § 5, Th. I.) convergent or

divergent according as

L {m^n . . . e'vf(e'-n)Y"'<OT>l
;

n=oo

that is, according as

Lhgaiene'n. . . e'-nf(e-n)Y"'<>0;
n=oo

that is, L loga{ew€^» . . . €''nf{e^n)}ln<>0.
n=oo

If we put X = i^n, so that \x = ("'hi, \^x = f^~hi, . . .

X^~^x = en, X'".2; = w, and x-cc when n-<x>, the condition for

convergency or divergency becomes

L X{xXxX''x . . . X^-'xf{x)}/X^x<>0 (1).
2=00

If, on the strength of Cor. 1, we take e for the exponential

base, the condition may be written

L l{xlxPx . . . l''-'xf(x)}/l'-x<>0 (2),

where all the logarithms involved are Napierian logarithms.
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We could establish the criterion (2) without the intervention

of Cor. 1 by first establishing (1) for integral values of a,

and then using the theorem of chap, xxv., § 12, Example 4,

that L >TxlVx = l//a.
a;=oo

Cor. 4. Each of the series

2l/'«^+» (1),

21/w{/w}^+<' (2),

%l/nln{Pny+'' (3),

^l/nlnPn . . . T-^w {/'•wp+» (^' + 1),

is convergent if a>0, and divergent i/a = or<0.

As the function nlnPn . . . l^'n frequently occurs in what

follows, we shall denote it by Pr (n) ; so that Po (n) = n, Pi (n) =

nln, &c.

1st Proof.—Apply the criterion that 2/(w) is convergent or

divergent according as Ll{Pr{x)f{x)}IV''^^x<>Q. In the pre-

sent case, fix) = IjPr (x) {l^'x)"-. Hence

/ {Pr {x)f{x)]IV+'x = I{l/(1'-Xy}/1'-+'X,

— — a.

It follows that (r+l) is convergent if a>0, and divergent

if a<0. If a = 0, the question is not decided. In this case,

we must use the test function one order higher, namely,

I {Pr^i {x)f{x)}ll'+''x. Since f(x) = 1/Pr (x), we have

/ {Pr+i {x)f{x)W-''x = / {1-+'X]IV^'X,

= 1>0.

Hence, when a = 0, (r+l) is divergent.

'2nd Proof.—By the direct application of Cauchy's Condensa-

tion Test, the convergence of (1) is the same as the convergence

of '2,0^1(0^)^+", that is, 2 (l/a*)™. Now the last series is a geo-

metrical progression whose common ratio is l/«" ; it is therefore

convergent if a>0, and divergent if a= or <0. Hence (1) is

convergent if a>0, and divergent if a= or <0.

Again, the convergence of (2) is by Cauchy's rule the same

as the convergence of 2aVa'M/«'T+", that is, 2l/(/ay+«w^+»

;
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and the convergence of this last the same as that of %l/n''\

Hence our theorem is proved for (2).

Let us now assume that the theorem holds up to the senes

(r) We can then show that it holds for (r+ 1). In fact, the

convergence of (r+ 1) is the same as that of 2aV«;/«"/V •

;;
Z'-«"UVr",thatis,2l/0i/a);(«?a) . . . l^-^nlaW'' {nla)^ .

First suppose a>0, and a >^. Then la>l, nla>n. Hence

ll{nla)l{nla) . . . I''-' (nla) {l^-Hnla)}''"

<\lnln . . . V-'n{V-'nY^''.

But, since a>0, 2l/P.-i(«) [I'-'nY is convergent, a fortiori,

21/Pr {n) {VnY is convergent.

Next suppose al^O, and 2<a<e. Then nla<n; and, pro-

ceeding as before, we prove 21/P,(«) {r»}* more divergent than

the divergent series %\IPr-M{l^-^n\\

Logarithmic Scale of Convergency.-lh^ series just discussed

are of great importance, inasmuch as they form a scale with

which we can compare series whose ratio of convergence is

ultimately unity. The scale is a descending one
;

for the least

convergent of the convergent series of the rth order is more

convergent than the most convergent of the convergent series of

the (r+l)th order. This will be seen by comparing the «th

terms, w. and u\, of the rth and (r + l)th series. We have

ii\lii^ = {l^-^nYl{VnY^'^\ where a is very small but >0, and

a' is very large.
_

If we put x = V-''n, we may write ^2/^
tt „/«„ = ^x/^ i^ ^ 7

IxY^"'. Hence, however small a, so long as it is greater than 0,

and however large a', Luju^ = qo .

If we suppose the character of the logarithmic scale estab-

lished by means of the second demonstration given above, we

may, by comparing 2?<„ with the various series in the scale, and

using § 4, Th. I., obtain a fresh demonstration of the criterion

of Cor. 3. We leave the details as an exercise for the student.

This is perhaps the best demonstration, because, apart from the

criterion itself, nothing is presupposed regarding /(.r), except

that it is positive when x is greater than a certain finite value.
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By following the same course, and using § 4, Th. III., we

can establish a new criterion for series whose ratio of con-

vergence is ultimately unity, as follows, where Px=f{^+ l)//(^)-

Cor. 5. Iff{x) be always positive when x exceeds a certain

finite value, '%f(^i) is convergent or divergent according as the first

of tJie following functions—
'''o
= Pa - 1

;

T-t_ = Po{x+\)px-Po{x)\
T^ = Pi{x+l)p^-Pi(x);

Tr = Pr-i(x+l)px~Pr-i{x);

which does not vanish when x= cc has a negative or a positive limit.

Comparing 2/(w) with '^llPr{n){VnY, we see that 2/(w)

will be convergent if, for all values of x greater than a certain

finite value,

p<,<Pr (X) {VxflPr {X + 1) {V {X + l)}» (l),

where a>0.

Now (1) is equivalent to

Pr {X +l)p^- Pr {X) < Pr {x) [{/'>//'• (^ + l)}» - l].

Also LPr {x) [{/'•^/r (^ + 1 )}'' - 1]

=-£i'._.(.)ir(..i)-r.).^^.
j^:-;^:|::;>f:;

,

= — lxlxa = — a,

by chap, xxv., §§ 12 and 13.

Hence a sufficient condition for the convergency of 2/(w) is

L [Pr (x +l)px- Pr (^)} < - a (a positive),

<0.

In like manner, the condition for divergency is shown to be

L {Pr (x + l)pa. -Pr{x)}>-a (a negative),
a=oo

>0.

Example 1. Discuss the convergence of 2e~i~'/2-' • •-V»/n'*.

Here
,

T,= l{f{n)}ln,

_ 1 + 1/2+ . . . + lln + rln

n
Now, by chap, xxv., § 13, Example 1,

l + (r + l)ZM>l + l/2+. . . + l//i + r!n>rZ/i + Z(n + l).

c. II. 9
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Hence Lru= 0. We must therefore examine Tj , Now

Ti=l{7if{n)}lln,

= -{1 + 1/2+. . .+lln + (r-l)ln}lln,

= -{1 + 1/2+. . . + l/«}/Jn-(r-l).

By chap, xxv., § 13, Example 2, 1,(1 + 1/2+. . , + l/w)/Zn= l. Hence

LTj= -l-r+ l= -r. The given series is therefore convergent or divergent

according as r> or <0.

If r=0, LTo=0, and LT^^O. But we have

2\=l{Hlnf{n)}jl-^n,

= l-{l + l/2+. . .+lln-ln}ll'n.

Now, when n is very large, the value of 1 + 1/2 + . . . + 1/h - In approaches

Euler's Constant. Hence I,2'2=l>0. In this case, therefore, the series

under discussion is divergent.

Example 2. To discuss the convergence of the hypergeometric series,

a^ a(a + l).p
(/3 + 1) „

^+7-5 7(7+l)-'5(5 + l) *
•

The general term of this series is

_ a(a+l) . . . (a + n-l).j3(^ + l) . . . (^ + n-l)
•'^^"7(7 + 1) . . . (7 + n-l). 5(5 + 1) . . . (5 + 71-1) '

The form of / (n) renders the apislication of the first form of criterion

somewhat troublesome. We shall therefore use the second. We have

(a + u)(/3+?t)

''»~(7 + «)(5 + ")

(a + n)(/3 + ?i)

.r-l," (y + 7i)(d + ny
Ltq=x-1.

Hence the series is convergent if a;<l, divergent if a;>l.

If a;= l, Ltq= 0, and we have

{7i + l)(a + n)(^ + n)
^1

{y + n)(5+Ji)

- {
a + P- y -S + l)n^ +An+B

^

^n^ + Cn +D '

LTi = a + (3-7-5 + l.

If^ therefore, x = l, the hypergeometric series is convergent or divergent

according asa + /3-7-5 + l< or >0.

If o + /3-7-5 + l = 0, Lri = 0. But we have

To={n + l)l(n + 1) ) , {,. (
- nln,

= [n{l(n + l) -bi} + (a + ^ + 1) \l(n + l)-hi} + {Al{n + 1) + Bln}[n

+ CI (« + l)/7i2]/[l + Ejn + Fjifl].

Hence, since Ln{l{n+ l)-ln}==l, L {l(n + l)-ln}=0, Ll{n + l)ln>=0,

Llnln'=0 («>0), (fee, we have
Lr2=l>0.

In this case, therefore, the series is divergent.
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Example 3, Consider the series

m .
m{m-l)

, ,^„ )»()»-l) . . . (m-n + l)
,

^"r+ 1.2
+---+(-A)

1 . 2 . . . 7t
^•••

This may be written

^ --m (-"')(-?» + !)
4. _ ^ (-n,)(-m + l) . . . (-m + n-1)

_^ ^ ^ ^

1 1.2 • • •
•

1 . 2 . . . n
It is therefore a hypergeometric series, in which a=-7n, fi=y, 5= 1,

x= l. It follows from last article that the series in question is convergent or

divergent according as -m<>0, that is, according as m is positive or

negative.

This series is the expansion of (1 - x)^, when x= l.

Example 4. Consider the series

^ + 1'*—172^+' •
•+

1.2 . . .n "^-
• •

^^'-

In this series the terms are ultimately alternatively positive and negative

in sign. Hence the rules we have been using are not directly applicable.

Ist. Let III be positive ; and let m - r be the first negative quantity among
m, m-1, m-2, . . . &c., then, neglecting all the terms of the series before

the (j' + l)tb, we have to consider

m(m-l) . . . (m-r+ 1) f m- r {m-r)(m-r-l)
\

1.2 . . . r |^"*",. + l"^ (r+ l)(r + 2) + • • •

[ ^^^

If we change the signs of the alternate terms of the series within brackets,

it becomes

, ,
r-m

,

(r-m)(r-m + l)
,

^^Tn"*" (r+ l)(r + 2)
+••• (^^

Now (3) is a hypergeometric series, in which a = r-m, P= y, 5= r+l,
x= l. Hence a+(3-7-5 + l = r-7H-(r+l) + l= -?H<0. Therefore (3) is

convergent. Hence (2), and therefore (1), is absolutely convergent.

2nd. Let m be negative, = - /j. say. The series (1) then becomes

M /iOi+l)_ , ,x(n+l) . . . (m+ »-1)
1^ 1.2 •••-^V

; 1.2... ^^ " "^ ' ^^•

Since /* is positive, the hypergeometric series

M m(m + 1
) m(m+1) (M + n-1 ) ,5>^1^ 1.2 ^^ ^ 1.2 ... 7j

^ ' ' '
^

''

is divergent.

Hence (4) cannot be absolutely convergent in the present case.

Since /3„= - (/* + ?«)/(« + 1), the terms will constantly increase in numerical

value if M > 1. Hence the series cannot be even semi-convergent unless ix<\.

If fjL be less than 1, />„<!, and the series will be semi-convergent provided

l-u„=0.

Now logM„=2:log^ = 2:log jl-f-'^l.

Since I,log{l-f (/^-l)/(/n-l)}/{(|x-l)/(w-f-l)} = l (see chap, xxv., § 13),

the series 21og {l-t-(^- l)/(7t-f-l)} and S (/x-l)/(n-f 1) both diverge to an
infinity of the same sign. But the latter series diverges to - oo or -foo,

according as /i< or >1. Hence iM„=0 or oo , according as yu< or >1.

9—2
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Hence the series (1) is divergent if /*>!, semi-convergent it fjL<l,

It obviously oscillates if /x= l. Hence, to sum up, the series (1)

is absolutely convergent, if ^m < + oo ;

semi-convergent, if -l<m<0;
oscillating, if ~l = m;
divergent, if - oo <j;i< - 1*.

SERIES WHOSE TERMS HAVE PERIODICALLY RECURRING NEGATIVE

SIGNS, OR CONTAIN A PERIODIC FACTOR SUCH AS SI^ llO.

§ 7.] Series wliich contain an infinite number of negative

terms may or may not be absolutely convergent. The former

class falls under the cases already discussed. We propose now

to give a few theorems regarding the latter class of series, whose

convergency depends on the distribution of negative signs

throughout the series.

The only cases of much practical importance are those— 1st,

where the infinity of negative signs has a periodic arrangement

;

* Historical Note.—If we except a number of scattered theorems, given

chiefly by Waring in his Meditationes Anahjticce, and Gauss in his great

memoir on the Hypergeometric Series, it may be said that Cauchy was the

founder of the modern theory of convergent series ; and most of the general

principles of the subject were given in his Resumes Analytiques and in

Analyse Algihrique. In his Exercices de Mathematiques, t. ii. (1827), he gave

the following integral criterion from which most of the higher criteria have

sprung :—If, for large values of n,f(n) be positive and decrease as n increases,

fm+n
then S/(n) is convergent if L j dxf{x)=0 (m arbitrary), otherwise divergent.

The second step of the r-criteria was first given by Eaabe, Crelle's Jour.,

Bd. XIII. (1835). De Morgan, in his Differential Calculus, p. 323 et seq. (1839),

first gave the Logarithmic Scale of Functional Dimension, established the

Logarithmic Scale of Convergency of Cor. 4, and stated criteria equivalent

to, but not identical in form with, those of Cor. 3 and Cor. 5. Continental

writers, nevertheless, almost invariably attribute the whole theory to Bertrand.

Bertrand, Liouv. Jour. (1842), quotes De Morgan, stating that he had obtained

independently part of De Morgan's results. His Memoir is very important,

because it contains a discussion of various forms of the criteria and a demonstra-

lion of their equivalence; we have therefore attached his name, along with De
Morgan's, to the two logarithmic criteria. Bonnet, Liouv. Jour. (1843), gave

elementary demonstrations of Bertrand's formulee ; and Malmsten, Grunert's

Archiv (1816) , gave an elegant elementary demonstration, depending essentially
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2nd, where the occurrence of negative signs is caused by the

presence in the nth. term of a factor, such as sin 7iO, which is a

periodic function of n.

In the former case (which might be regarded as a particular

instance of the latter) we can always associate into a single term

every succession of positive terms and every succession of negative

terms. Since the recurrence of the positive and negative terms

is periodic, we thus reduce all such series to the simpler case,

where the terms are alternately positive and negative.

We may carry the process of grouping a step farther, and

associate each negative with a preceding or following positive

term, and the result will in general be a series whose terms are

ultimately either all positive or all negative.

The process last indicated often enables us to settle the con-

vergence of the series, but it must be remembered that the series

derived by groiiping is really a different series from the original

one, because the sum of n terms of the original series does not

always correspond to the sum of m terms of the derived series.

The difference between the two sums will, however, never exceed

on the inequality of chap, xxv., § 13, Cor. 6, that Sl/P^(m + n) {^(m + ??)}"

(where Fm is positive) is convergent or divergent, according as a < or <t ; and
thence deduces Cor. 3. Paucker, Crelle's Jour., Bd. xlii. (1851), deduces both

Cor. 3 and Cor. 5 from Cauchy's Condensation Test, much as we have done,

except that the actual form in which we have stated the rule of Cor. 5 is

taken from Catalan, Traite El. d. Series (1860). Du Bois-Reymond, Crelle's

Jour., Bd. Lxxvi. (1873), gives an elegant general theory embracing all the

above criteria, and also those of Kummer, Crelle's Jour., xiii. (1835). Abel

had shown that, however slightly divergent 2!(„ may be, it is always possible

to find 7i, 72) • • •> 7n> • • • ^^^^ ^^^^ J^7n= and yet S7„?(,j shall be

divergent. Du Bois-Reymond shows that, however slowly 2»„ converge, we
can always find 7i , 72 , . . .,7n> • • . such that L7,j=qo and 27„m„ neverthe-

less shall be convergent. He shows that functions can be conceived whose
ultimate increase to infinity is slower than that of any step in the logarithmic

scale ; and concludes definitely that there is a domain of convergency on
whose borders the logarithmic criteria entirely fail—a point left doubtful by

his predecessors. Finally, Kohn, GrunerVs Archiv (1882), continuing Du Bois-

Eeymond's researches, gave a new criterion of a mixed character; and
Pringsheira (Math. Ann. 1890, 1891) has discussed the whole theory from a

general point of view. The whole matter, although not of great importance

as regards the ordinary applications of mathematics, illustrates an exceedingly

interesting phase in the development of mathematical thought.
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the sum of a finite number of terms of tlie original series ; and

this difference must vanish for w = oo ,.if the terms of the original

series ultimately become infinitely small.

Example. Consider the series

1 2 •6'^ i 5 6"^' "''3/1-2 3h-1 a»
"^

'
* ' ^

''

Compare this with the series

i-G + l) + ^G4)+---+3-;^-(B;r:i + i) + - ••(-)'

that is, the series whose {2n- l)th term is l/(3«-2), and whose (27t)th term

is -(l/(3«-l) + l/3«).

If S^ S„' denote the sums of n terms of (1) and (2) respectively, then

Ssn-^=S,„'_„ S3n-i = ^2n'-i-l/(3't-l), 5^3.=^V- Since Ll/(3n - 1) = 0, we

have in all cases I,S„=L/S„'. Hence (1) is convergent or divergent according

as (2) is convergent or divergent. That (1) is really divergent may be shown

by comparing it with the series

2 {1/(3h - 2) - l/(3u - 1) - l/3«} (3).

If .9,," denote the sum of n terms of this last series, we can show as before

that LSn" — LSn- But the Jith term of (3) can be written in the form

(
- 9 + 12/h - 2//t"'^)/(3 - 2/m) (3 - Ijn) 3n ; and therefore bears to the ?ith term of

Sl/n a ratio which is never infinite. But Sl/u is divergent.

By § 4, II., (3) is therefore also divergent. Hence (1) is divergent.

It should be noticed that in the case of an oscillating series,

where Liin + 0, the grouping of terms may convert a non-convergent

into a convergent series; so that we cannot in this case infer tJie

^onvergency of tlie oi'iginal from the convergency of the derived

series*.

Example.

(.,>y.(.,j)%..,,(.,>)'.(,,^)V...

is obviously a non-convergent oscillating series. But

](-i)'-(-3)M(-f-(-0}--{(-^.y-
^ + 2nTT

whose 7ith term is (Sn- + %n + l)l(\ifi \-2nY, i.e. (8 + 8/k + 1/«2)/16(1-(- l/27i)V,

is convergent, being comparable in the scale of convergency with Sl/zt-.

* This remark is all the more important because the converse process of

pplitting up the ?ith term of a series into a group of terras with alternating

signs, and using the rules of § 8, often gives a simple means of deciding as to

its convergency. The series 1/1 . 2 + 1/3 . 4 + 1/5 . 6 + 1/7 . 8 + . , . may be tested

in this way.
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§ 8.] The following rule is frequently of use in the discus-

sion of semi-converging series :

—

If Ui>U2>U3> • • • >w„> . . . and fill be positive, then

ih-ih + u-i-. . . (-)''-X + (-)Xm + - . • (1)

converges or oscillates according as L Un = or 4= 0.

Using the notation of § 3, we have

= ± {(««+! -«ft+2) + (2«n+3- "71+4) + . • •}•

Hence we have

numerical values being alone in question. If, therefore, Lun ~ 0,

we have LunJr\ = Lun+2 = ; f^nd it follows that L m,Rn = for all

n=«>

values of m. Also

so that 8n is finite for all values of n. The series (1) is there-

fore convergent if Lun = 0.

If Lun = a + 0, then L ^Rn = « or =0 according as m is odd
n=<»

or even. Hence the series is not convergent. We have, in fact,

L(SM+i-S2n) = Lu2n+i = (^, which shows that the sum of the

series oscillates between S and S + a, where S=LS2n-

Cor. The series

(til - U2) + {«3 - M4) + • • • + (^^271-1 - «2ft) + . . .

where «i, ih, • • • «''^ «« be/ore, is convergent.

Example 1. The series S (
- 1)"-^ is convergent, nolwitlistanding the

fact, ah-eady proved, that Sl/)i is divergent.

Example 2. S( - 1)"'-i(h + 1)/(i is an oscillating series; but SC-l)""!

{{n + l)ln- (n + 2)l{n + l)} is convergent.

§ 9.] The most important case of periodic series is 2a,i cos

{nO + <f)), where a,i is a function of 7i, and ^ is independent of n,

commonly spoken of as a Trigonometrical or Fourier s Series. The

question of the convergence of this kind of series is one of great

importance owing to their constant application in mathematical

physics.
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We observe in the first place that

I. If 2«„ he an absolutely converging series then "^ancos (nO + <^)

is convergent.

This follows from § 4, I.

II. 1/6 = or 2k7r {k being an integer), 2a„ cos (nd + 4>) is

convergent or divergent according as ^a,i is convergent or divergent.

This is obvious, since the series reduces to Sa^ cos <^.

III. 1/6^0 or 2kTr, then Ian cos (nO + <f>) is convergent if, for

all values of n greater than a certain finite value, «„ has the same

sign and never increases as n increases, and if L an- 0.
n=oo

This is a particular case of the following general theorem,

which is founded on an inequality given by Abel :

—

IV. If'Xunbe convergent or oscillatm'y , anda^, ^2, . . ., a„, . . •

be a series ofpositive quantities, v^hich never increase as n increases,

and if i/a„ = 0, the7i lanUn is convergent.

Abel's Inequality is as follows :—If, for all values of n,

A>U^ + Ui + . . . + Un>B,

where Ui, u^, . . ., Un are any real quantities whatever, and

if Oi, fflj, . . ., ttrt be a series of positive quantities which never

increase as n increases, then

ttiA > aiUi + a-iU^ + . . . + «„%> cti^-

This may be proved as follows:—Let Sn=iii + ih + ' • + «»,

Sn = aiUi + a-iU^ + . . . + antin- Then Ui = Si, W3 = /Sj-/Si, &c.

;

and

Sn =aiSi + a^ iS.j,-Si) + . . .+ a„ (S^ - Sn-i),

= >Si («! - ttj) + /S^2 (^2 - tts) + • . .+Sn-i{an-i-an) + Snan.

Hence, since Si, S^, . . ., /S'„ are each <A and >B, and (ai-a^),

(aj - Oa), . . . , {a„-i — ttn), an are all positive or zero,

{(ai-«2) + («2-a3) + . . . + {an-i - an) + an} A

>Sn'>{{ai-a2)-\-{a2-a3)+. . . + («„_i - a„) + «„} 5

;

that is,

ajA>Sn'>aiB (1).

Theorem IV. follows at once, for, since 2m„ is not divergent,
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Sn is not infinite for any value of n. Hence, by (1), S^ is not

infinite. Also, by Abel's Inequality,

where (7 and D are the greatest and least of the values of

r^Rn (= M„+i + M„+2 + . . . + Un+m = ^n+m " ^n) for all different

positive values of m. Now, since 2m,» is convergent or oscillatory,

^n+m - Sn is either zero or finite, and L a„+i = 0, by hypo-
n=oo

thesis. Therefore, it follows from (2), that L m,Rn = for all

values of m. Hence ^a^Un is convergent.

We shall prove in a later chapter that, when

Un = cos {n6 + (fi),

Sn = sin ^n6 cos {^{n + l)9 + </>}/sin |^.

If, therefore, we exclude the cases where 6 = or 2kir, we see

that Sn cannot be infinite. Theorem HI. is thus seen to be a

particular case of Theorem IV.

Cor. Ifa^he as above, 2(— l)"~'a„cos(w^ + ^), 2a„siw(w^+<^),

and 2 ( - l)"~^a„s«« (n^ + <^) are all convergent.

CONVERGENCE OF A SERIES OF COMPLEX TERMS.

§ 10.] If the wth term of a series be of the form Xn + yJ,

where i is the imaginary unit, and x^ and yn are functions of n,

we may write the sum of n terms in the form &n + TJ, where

Tn=yi+y2 + ' . '+yn-

By the sum of the infinite series % (xn + yj) is meant the limit

when n= CO of /S„ + TJ ; that is, (LSn) + (LTn) i-

The necessary and sufficient condition for the convergency of

^(xn + yni) is therefore that 2ir„ and lyn he both convergent.

For, if the series 2^„ and 2y„ converge to the values 8 and

T respectively, S {xn + yJ) will converge to the value S+ Ti;

and, if either of the series 2ir„, %„ diverge or oscillate, then

(LSn) + {LTn) i will not have a finite definite value.
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§ 11.] Let Zn denote a^n + ^J; and let \zn\ be the modulus

of Zn* ; so that
| ;2n T = I

^» P + I
^n P- We have the following

theorems t, which are sufficient for most elementary purposes :

—

I. The complex series %Zn is convergent if tlie real series '^\zn\

is convergent.

For, since 2
1
2;„ ]

is convergent, and
| Xn \

and
| ?/„ |

are each less

than \zn\, it follows from § 4, L, that '^\xn\ and %\yn\ are both

convergent ; that is, 2a?„ and %y,^ are both convergent. Hence,

by § 10, Izn is convergent.

It should be noticed that the condition thus established,

although sufficient, is not necessary. For example, the series

(1 - i)/l - (1 - i)/2 + (1 - i)/3 - ... is convergent since 1/1 - 1/2

+ 1/3 — . . . and - 1/1 + 1/2 — 1/3 + . . . are both convergent;

but the series of moduli, namely, *y2/l + J^/'Z + j2/3 + . . .

,

is divergent.

When ^Zn is such that '^\zn\ is convergent, 2;r„ is said to be

ahsolutehj convergent. Since the modulus of a real quantity Un is

simply Un with its sign made positive, if need be, we see that

the present definition of absolute convergency includes that

formerly given, and that the theorem just proved includes

§ 4, IV., as a particular case.

Cor. 1. IfmRn denote Zn+i + Zn+2 . . . + Zn+m, then the necessary

and sufficient condition that the complex series 2^„ converge is that

it be possible, by taking n sufficiently great, to make \mRn\ «s small

as we please, whatever the value of m.

Cor. 2. If Xn be real or complex, and z^ a complex number

whose modulus is not infinite for any value of n, however great, then

2(^>i*n) '^m be absolutely convergent if 2X„ is absolutely convergent.

For
I
XnZn

I

=
I
^n

1

1 ^»
I

; and, since 2A„ is absolutely con-

vergent, 2
I

X„
I

is convergent. Hence, since \zn\ is always

finite, 2 1 X,i
1

1 z„,
\
is convergent by § 4, 11. ; that is, 2 |

A.„;2r„
|

is

convergent. Hence % {K.Zn) is absolutely convergent.

Example 1. The series 2j'7n! is absolutely convergent for all finite

values of z.

Example 2. The series S«"//t is absolutely convergent provided
| * ]

< 1.

* See chap, xii,, § 13.

+ Cauchy, R6sum6s Anahjtiques, § xiv.
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Example 3. The series S (cos 6 + i sin ^)"/)i is convergent if ^ 4= or 2krr.

For the series 2 cos ndjii and S sin v0ln are convergent by § 9, III.

Example 4. The series (cos ^ + i sin 0)"ln" is absolutely convergent. For
the series of moduli is Sl/ft^, which is convergent.

II. Let O be the fixed limit or the greatest of the limits^ to

ivhich l^^np^"' tends wJien n is increased indefinitely, or a fixed limit

to which
I
Zn+i/Zn

I

tends when n is increased indefinitely ; then tJie

series IZn will he convergent ifQ,<l and divergent ifQ,>\.

For, if fi<l, then, by §5, I. and II., the series '^\zn\ is

convergent; and therefore, by § 11, I., 2;5„ is convergent.

If 0>1, then either some or all of the terms of the series

2
I

s^n
I

ultimately increase without limit. In any case, it will be

possible to find values of n for which
| Zn \

exceeds any value

however great ; and, since
|

2r„
|
= (j a;„ |^ +

|
y„ ffi"^, the same must

be true of one at least of
|

x^
\
and \yn\- Hence one at least of

the series 2ir„, %„ must diverge; and consequently %{xn + yni),

i.e. ^z.,i, must diverge.

APPLICATION OF THE FUNDAMENTAL LAWS OF ALGEBRA

TO INFINITE SERIES.

§ 12.] Law of Association.—We have already had occasion to

observe that the law of association cannot be applied without

limitation to an infinite series; see the remarks at the end of § 7.

It can, however, be applied without limitation provided the series

is convergent. For let SJ denote the sum of m terms of the new

series obtained by associating the terms of the original series into

groups in any Avay whatever. Then, if /S'^ denote the sum of n

terms of the original series, we can always assume m so great that

S,n' includes at least all the terms in Sn- Hence S^' - Sn=^pJin,

where p is a, certain positive integer. Now, since the original

* It will be noticed that this includes the case where L |2,J'/" has
n=ao

different values according to the integral character of n: but the corre-

sponding case where L
\ s,i+i/*„ |

oscillates is not included. We have
n=x

retained Cauchy's original enunciation ; but it is easy to see that some
additions might be made to the theorem in the latter case.
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series is convergent, by taking n sufficiently large we can make pRn

as small as we please. It follows therefore that L SJ= L Sn-

Hence the association of terms produces no effect on the sum of the

infinite convergent series.

§ 13.] Law of Commutation.—The law of commutation is even

more restricted in its application than the law of association.

We may however prove that the law of commutation can he

applied to absolutely convergent series.

"We shall consider here merely the case where each term of

the series is displaced a finite number of steps*. Let 2m„ be

the original series, 2^^' the new series obtained by commuta-

tion of the terms of 2m„. Since each term is only displaced by

a finite number of steps, we can, whatever n may be, by taking

m sufficiently great always secure that Sm contains all the

terms of Sn at least. Under these circumstances SJ — Sn con-

tains fewer terms than pRn, where p is finite, since m is finite.

Now, since 2w„ is absolutely convergent, even if we take the

most unfavourable case and suppose all the terms of the same

sign, we shall have L pEn - ; and, a fortiori, L Sm - L Sn = 0.

Hence L SJ = L Sn', which establishes our theorem.

The above reasoning would not apply to a semi-convergent series

because the vanishing of L pRn does not depend solely on the

individual magnitude of the terms, but partially on the alterna-

tion of positive and negative signs.

Cauchy, in his Resumes Analytiques, § Vii. (1833), seems to

have been the first to call explicit attention to the fact that the

convergence of a semi-convergent series is essentially dependent on

the order of its terms. Dirichlet and Ohm gave examples of the

effect of the order of the terms upon the sum.

Finally Riemann, in his famous memoir on Fourier's Seriest,

showed that the series 2 (-1)"~%„, where Lun = 0, and ^u^+xOxA

lu^n are both divergent, can, by proper commutation of its terms,

• See below, § 33, Cor. 2.

t Written in 1854 and published in 1867. See his Gesammclte Math.

Werke, p. 21L
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be made to converge to any sum we please ; and Dirichlet has

shown that commutation may render a semi-convergent series

divergent.

When the sum of an infinite series is independent of the order

of its terms it is said to converge unconditionally. It is ohvious

from what has been said that unconditional convergence and

absolute convergence are practically synonymous.

1 !_

Example 1. The series

1 1 1 1

is convergent by § 8
;
but the series

V(4m+1) v/(4m + 3) ^(2m+2),
+ ... (2),

v?hich is evidently derivable from (1) by commutation (and an association

which is permissible since the terms ultimately vanish), is divergent. For,

if «^ = 1/J(4m + 1) + 1/^(4771 + 3) -l/v'(2m + 2), and v^ = lljm, then

LuJv^=L {1/V(4 + 1/m) +ly (4 + 3/«0 - 1/^(2 + 2/m)} = 1/2 + 1/2 - 1/^2 =
1 - i^2. Hence w^/^'ot i^ always finite ; and 2v^ is divergent, by § 6, Cor. 4.

Hence 22t„ is divergent. (Dirichlet.)

Example 2. The series

11 11 1_ 1 1

1 2'*'3 4'*'5 •'•"^(2«-l) (2)1)'^''' ^''

\1^3/ 2^V5^7y 4^ •^V4»i + 1^4m + 3y
(2),

are both convergent; but they converge to different sums. For, by taking

successively three and four terms of each series, we see that the sum of (1) lies

between -583 and -833; whereas the sum of (2) lies between -926 and 1-176.

Addition of two infinite series. If 2m„ and Sv^ i>^ both con-

vergent, and converge to the values S and T respectively, then

'%{Un + v^ is convergent and converges to the value S+T.
We may, to secure complete generality, suppose u^ and v„ to

be complex quantities. Let 8n, Tn, Un represent the sums of

n terms of 2m„, 2v„, 2 («„ + Vn) respectively ; then we have, how-

ever great n may be, V'n = Sn+ Tn. Hence, when n=cc,

LU'n = LSn + LTn, which proves the proposition.
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§ 14.] Law of Distribution.—The application of the law of

distribation will be indicated by the following theorems :

—

If a he any finite quantity^ and 2m„ converge to the value S,

then '^aun converges to aS.

The proof of this is so simple that it may be left to the

reader.

If %Un and %Vn converge to the values S and T respectively, and

at least one of tlie two series he absolutely convergent, then the series

lhVi+{lhV2 + U-iVi) + . . .+{tliVn + U./On-i + . • . + Un'«l) + • • • (l)

converges to the value ST*.

Let Sn, Tn, Un denote the sums of n terms of 2?^„, %Vn,

2 {UiVn + ii'^n~\ + . • . + UnVi) respectively ; and let us suppose that

%Un is absolutely convergent. We have

where L^ = ii-iV^ + Ws'^n-i + . . . + UnV-i

+ UiCj, + . . . + U,,V.i

+ w^vn

= U.Vn + Wj {Vn + Vn_i) + . . . + U^ (??„ + . . . + Vo) (2).

If therefore n be even, = 2w say,

Ln - [WoVsm + Ih (Vin, + V2m-i) + . . . + U,„, {v.„, + . . . + V,a+o)]

+ [Um+1 {V-im + . • • + V,„+i) + . . . + lh,n (V-zm + •
• "+ «-)] (3).

If n be odd, =2ni+ 1 say,

+ [Um+l{Vzm+l + - - '+Vm+2) + . . • + «2;ft+l (V27n+1 + • • •
+

''^2)] (4).

Now, since 2v„ is convergent, it is possible, by making m
sufficiently great, to make each of the quantities \v2m\, \v^-i+V2m\,

. . ., \Vm+2 + ' . .+V2„,\, \Vo,a+i\, \v.,n + V.2m+i\, . ., | ^m+a + • • •

* The original demonstration of this theorem given by Cauchy in his

Analyse Algebrique required that both the series S?/„, Sr„ be absolutely con-

vergent. Abel's demonstration is subject to the same restriction. The more
general form was given by Mertens, Creliefs Jour., lxxix. (1875). Abel had,

however, proved a more general theorem (see § 20, Cor.), which partly in-

cludes the result in question.
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+ v.2m+i
I

as small as we please. Also, since \Ti\, \T2\,\Ts\, . . .,

|y;i, ... are all finite, and \Tr-Ts\< \T,.\ + |2;|, therefore

.
1 'y^+i + . . . +V.2,n\, ' - . ,

\'C2 + ' . . + •»2m I,

are all finite. Hence, if c^ be a quantity which can be made as

small as we please by sufficiently increasing m, and p a certain

finite quantity, we have, from (3) and (4), by chap, xii., § 11,

\Ln\<^ra{\u2\ + \u3\ + ' - • +
| «m| )

+ /3 ( I M^+i
I

+
I
^^,„+2 1 + . . . +

I
Wft

I

).

If, therefore, we make n infinite, and observe that, since

2w„i is absolutely convergent, Im,] + l^sl + • • . + Iwjil is finite, and

L{\um+i\ + |w,„+2| + . . . + \un\) = 0, we have (seeing that L(m = 0)

L\Ln\ = 0. Hence LSnTn = LUn, that is, LUn = ST.

Cauchy has shown that, if both the series involved be semi-

convergent, tlie multiplication rule does not necessarily apply.

Suppose, for example, u„=i;„=r ( - l)'*-^". Then both 2m„ and 2v„ are

semi-convergent series. The general term of (1) is

^"="U
1 1 1 , .-.

Now, since r{»i-r + l) = J(n + 1)2 -{i(n + l)-r}2, therefore, for all values

of r, r(r^-r^-l)<|(J^ + l)-, except in the case where r=^ (w + 1), and then

there is equality. It follows that \io^\>nl\ (n-(-l)>2/(l + l/)i). The terms of

2w„ are therefore ultimately numerically greater than a quantity which is

infinitely nearly equal to 2. Hence 2i^„ cannot be a convergent series.

UNIFORMITY AND NON-UNIFORMITY IN THE CONVERGENCE

OF SERIES WHOSE TERMS ARE FUNCTIONS OF A VARIABLE.

§ 15.] Let X for the present denote a real variable. If the

?2th term of an infinite series be f{n, x), where /(w, x) is a single

valued function of n and of x, and also for all integral values of n

a continuous function of x within a certain interval, then the

infinite series 2/(%, x) will, if convergent, be a single valued

finite function of x, say <i>{x). At first sight, it might be

supposed that 4*{x) must necessarily be continuous, seeing that

each term of f{n, x) is so. Cauchy took this view ; but, as
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Abel* first pointed out, (f> {x) is not necessarily continuous.

No doubt 2/(w, X + h) and 2/(w, x), being each convergent, have

each definite finite values, and therefore 2 {/{n, x + h) —/{n, x)}

is convergent, and has a definite finite value ; but this value is

not necessarily/ zero when h = for all values of x. Suppose, for

example, following Du Bois-Reymond, thsd, f(n, x) = x/{nx + 1)

(nx -x+1). Since /{n, x) = nx/{nx +l)-{n-l) x/{n -lx + 1},

we have, in this case, Sn = nxl{nx+1). Hence, provided x + 0,

LSn = l. If, however, x=0 then Sn = 0, however great n may

be. The function tf> (x) is, therefore, in this case, discontinuous

when x=0.
The discontinuity of the above series is accompanied by

another peculiarity which is often, although not always, asso-

ciated with discontinuity. The Residue of the series, when

x=¥0, is given by

En=l-Sn=l/(nX+ 1).

Now, when x has any given positive value, we can by making n

large enough make l/{nx+l) smaller than any given positive

quantity e. But, on the other hand, the smaller x is, the larger

must we take n in order that l/(nx + 1) may fall under € ; and,

in general, when x is variable, there is no finite lower limit for n,

independent of x, say v, such that if w>i' then Rn<^. Owing

to this peculiarity of the residue, the series is said to be non-

uniformly convergent in any interval which includes ; and,

since, when x approaches 0, the number of terms required to

secure a given degree of approximation to the limit becomes

infinite, the series is said to Converge Infinitely Slowly near x = 0.

These considerations lead us to establish the following

important definition, where we no longer restrict ourselves

to functions of a real variable. If, for all values of z within

a given region R in Argand^s Diagram, we can for every

positive value of €, however small, assign a positive integer v

INDEPENDENT OF z, such that, when n>v, |i?„|<€, then the series

* Eecherches sur la Serie 1 +y^+
^

J^^Z x^+ • • • Crelle's Jour.

Bd. 1. (182G).
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2/(w, x) is said to be Unifokmly Convergent within the region

in question.

Stokes*, who in his classical paper on the Critical Values of

the Sums of Periodic Series was the first to make clear the

fundamental principle underlying the matter now under dis-

cussion, has pointed out that the question of uniformity or

non-Tiniformity of convergence always arises when we consider

the limiting value of a function of more than one variable.

Consider, for example, the function f{w, y) ; and let us suppose

that, for all values of y in a given region R, f{x, y) approaches

a finite definite limit when x approaches the value a ; and let us

call this limit/(«, y). Then if we assign in advance any positive

quantity e, however small, we can always find a positive quantity

A, such that, when |.'r-al<X, \f{x,y)-f{a,y)\<€. If it be

possible to determine A. so that the inequality

\/{'^>y)-f{a,i/)\<^

shall hold for all values of y contained in li, then the approach

or convergence to the limit is said to be uniform within R. If,

on the other hand, A depends on y, the convergence to the limit

is said to be non-uniform.

Example 1. Consider the series l + z + z'^+ . . .+z"+. . .; and let

l2|<p<l. We have \I\n\ = \z^'^^l{l-z)\<p^'^^l(l- p). Hence, in order to

secure that iJ„ < e, we have merely to choose n> - 1 + log (e - e/3)/log p.

Since - 1 + log (e - ep)/logp is independent of z, we see that within any circle

whose centre is the origin in Argand's Diagram, and whose radius is less

than unity by however little, the series Sz" is uniformly convergent.

On the other hand, as p approaches unity log (e- €p)llog p becomes larger

and larger. Hence the convergence of Sz" becomes infinitely slow when
|
z

approaches unity. We infer that the convergence of 2S^" is not uniform

within and upon the circle of radius unity. And, in fact, when the upper

limit of
1
2

I

is 1, it is obviously impossible when e is given to assign a finite

value of n such that
1
2"+'/(l -z)\<e shall be true for all values of z.

* Trans. Camb. Phil. Soc, Vol. viii. (1847). Continental writers have
generally overlooked Stokes' work; and quote Seidel, Abld. d. Bayerischen

Akad. d. Wiss. Bd. v. (1850). For exceptions, see Reiff, Geschichte der

uiiendlichen ReUien, p. 207 (1889) ; and Pringsheim, Eiic. d. Math. Wiss.

Bd. II. p. 95 (1899). In his first edition the writer, although well acquainted

with Stokes' great paper, by an unfortunate lapse of memory, fell into the

same mistake. The question of uniformity of convergence is now a
fundamental point in the Theory ©f Functions.

c. 11. 10
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Example 2. Osgood* has shown that, if

'Pn (^) =V(2e) n sinVa; .
c-»'^»i"*'f*,

the infinite series which has ^„ {x) + 0„ (2! x)j2\ + . . . + ^„ (n! x)jn\ for the

sum of n terms converges non-uniformly ia every interval.

From the definition of Uniform Convergence we can at once

draw the following conclusions.

Cor. 1, If the terms of 2 \f{n, z)
\
are ultimately less than

the terms of a converging series of positive terms wlwse values are

independent of z, then %f{n, z) converges uniformly.

For, if %Un be the series of positive terms in question, and Rn
the residue of "^{n, z), then

\B,\1^\f{n+\,z)\ + \f{n + 2,z)\+ . . .,

< M„+i + Un+2 + . . .

Since Swn is convergent, we can find an integer v so that, when

w> V, Un+i + Mn+2 + • • '<^\ and V will be independent of z, since

Un+i, w„+2, ... are independent of z. Hence we can find v

independent of ^: so that |i2„|<e, when n>v, c having the usual

meaning.

Cor. 2. If % \f{n, z)
\
is uniformly convergent, then ^{n, z)

is unifoi'mly convergent.

§ 16.] We now proceed to establish a fundamental theorem

regarding the Continuity of a Uniformly Converging Series.

Let f{n, z) he a finite single valued function of the complex

variable z and the integral variable n, which is continuous as

regards z for all values of n, Jwwever large, and for all values of

z within a region B in Argand's Diagram. Farther, let ^{n, z)

converge uniformly within R, say to
<t>

(z). Then ^ (z) is a con-

tinuousfunction of z at all points within the region R.

Let the sum to n terms and the residue after n terms of

2/(7i, z) be Sn and Rn ; and let Sn and Rn be the like for

%f{n, z'), where z and z' are any two points within the region R.

Then we have
^(z)=Sn + Rn, ^{z) = S: + R: (1).

* Bull. Am. Math. Soc, Ser. 2, iii. (1S96). This paper is well worthy of

study on account of the interestiug geometrical methods which the author

uaes.
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Since '^/{n, z) is uniformly convergent within R, given any

positive quantity c, however small, we can find a finite integer v,

independent of z, such that for all values of z within R, Rn<€ and

Rn<i, when n>v. Let us suppose n in the equations (1) chosen

to satisfy this condition. Since the choice of z is unrestricted we

can by making \z-z'\ sufficiently small cause the absolute value

of each of the differences /(I, z)-f{\, z), . . .,f(n, z)-f{n, z)

to become as small as we please, and, therefore, since n is finite

we can choose \z-z'\ so small that \Sn-Sn\, which is not greater
n

than % \f{n, z) -f{n, z') |, shall be less than c.

Now
\<i>{z)-^{z')\ = \8r,-S,: + R,,-R:\

1^\Sn-Sn\ + \Rn\ +
\
Rn

\

<3e,

which proves our theorem ; for c, and therefore 3c, can be made as

small as we please.

It follows from what has been proved that discontinuity of

%f{n, z) is necessarily accompanied by non-uniformity of con-

vergence ; but it does not follow that non-uniformity of con-

vergence is necessarily accompanied by discontinuity. In fact,

Du Bois-Reymond has shown by means of the example

% {xjii {nw + 1) {nw -x+l)- w'^/(naf +1) (naf -x+1)}

that infinitely slow convergence may not involve discontinuity.

The sum of this series is always zero even when ^ = ; and yet,

near x^O, the convergence is infinitely slow.

It should also be noticed that the fact that a series converges

at a point of infinitely slow convergence, does not involve that

the sum is continuous at that point. Thus the series

%xl{nx + 1) {nx -x-\-\)

converges at x = Q; but, owing to the infinite slowness of con-

vergency at x-0, the sum is discontinuous there, being in fact

at i» = 0, and 1 for points infinitely near to a? = 0. In such

cases it is necessary to state the region of uniform convergence

with some care. The fact is that the series in question is

convergent in the real interval pl^xl^b, where b is any finite

10—2
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positive quantity and p is a positive quantity as small as we

please but not evanescent. This is usually expressed by saying

that the series is uniformly convergent in the interval 0<x^b.
Such an interval may be said to be 'open' at the lower and
* closed ' at the upper end*.

Examplef. If /*„ be iDdei)endent of z, and u\^{z) be a single valued

function of n and z, finite for all values of n, Lowever great, and finite and

continuous as regards z within a region R, then, if 2,/j.^ be absolutely con-

vergent, l,flJ^w,^ (z) is a continuous function of z within jR.

It will be sufficient to prove that the series 2/x„it'„ (2) is uniformly

convergent within E.

Since w„(2) is finite for all points within li, we can assign a finite

positive quantity, g, independent of z, such that, for all points within R,

Consider i?„, the residue of S/U,ji<j„ (2) after n terms. We have

Kn= M„+i Jf„+i (2) + /J^n+^J^n+i (z) + • • •

Hence

1 ^L I
>

I
M»+l

I 1 Wn+l (2)1 +
1 Mn+2 I I

«''«+2 {^)\+ ' • •

.

Since S/i„ is absolutely convergent, S
| ;«„ |

is convergent, and we can assign

an integer v such that, when n>v,
\
fi^^-y

\
+

\
/j.^^^„ |

+ . . . <e/f7, where e is a

positive quantity as small as we please.

Both /x„ and g being independent of 2, it is clear that v is inde-

l^endent of z. Hence we have, Avhen n>v, |JJ,J<e, v being independent

of 2. The series is therefore uniformly convergent : and it follows from the

main theorem of this paragraph that its sum is a continuous function of z.

SPECIAL DISCUSSION OF THE POWER SERIES Sfln^".

§ 17.] As the series 2«,iC;" is of great importance in Algebraic

Analysis and in the Theory of Functions, we shall give a special

discussion of its properties as regards both convergence and

continuity. We may speak of it for shortness as the Power

Series ; and we shall consider both «„ and z to be complex

numbers, say «„ = ?'n (cos a,^ + i sin a,i), z = p (cos + i sin 6), where

Tn and o„ are functions of the integral variable n, but p and are

independent of n.

* Harkness and Morley use these convenient words in their Introduction

to the Tliconj of Analytic Futictiotus, Macmillan (1898).

t Du Bois-Reymond, Math. Ann. iv. (1871).
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The leading property of the Power Series is that it has what

is called a Circle* of Convergence, whose centre is the origin in

Argand's Diagram, and whose radius {Radius of Convergence) may

be zero, finite, or infinite. For all values of z within (but not

upon) this circle the series is absolutely and uniformly con-

vergent ; and (if the radius be finite) for all values of z without

divergent. On the circumference of the circle of convergence

the series may converge either absolutely or conditionally,

oscillate, or diverge ; but on any other circle it must either

converge absolutely or else diverge.

The proof of these statements rests on the following theorem.

If the series "^anZ^ be at least semi-convergent when z = Zq,

then it is absolutely and uniformly convergent at all points within

a circle whose radius <\zq\.

Since %anZj^ is convergent, none of its terms can be infinite

in absolute value, hence it is possible to find a finite positive

quantity g such that
|
anZ^^\<g, for all values of n however large.

Hence \a,z''\ = \a,,z,''{zlz,Y\,

'^Aa,,z-\\{zlz,Y\,

Now, since z is within the circle \zo\, \zIzq\<1. Hence the

series g%{zlz^'^ is absolutely convergent. Therefore (§ 4, I.)

2
I

anZ^
I

is absolutely convergent.

The convergence is uniform. For, since |2;|<|co|, we can

find z' such that |;c;]<|2;'|<|2'o|. Now, by the theorem just

established, 2 1 Unz"^
\
will be convergent, and its terms are inde-

pendent of z. But, since
|
;3

]
<

1

2;'
| , |

ofj^^;"'
|
<

|

«„«'"
|
. Hence, by

§ 15, Cor. 1, %anZ^ is uniformly convergent.

Circle of Convergence. Three cases are in general possible.

1st. It may not be possible to find any value Zq of z for which

the series Sa^s" converges. "We shall describe this case by saying

that the circle of convergence and the radius of convergence are

infinitely small. An example is the series 2»!a;".

2nd. The series may converge for any finite value of z

* When in what follows we speak of a circle {R), we mean a circle of

radius B whose centre is the origin in Argand's Diagram.
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however large. We shall then say that the circle and the radius

of convergence are infinite. An example of this very important

class of series is ^x^jnl.

3rd. There may be finite values of z for which 2a„2;" con-

verges, and other finite values for which it does not converge.

In this case there must be a definite upper limit to the value

of \zq\ such that the series converges for all points within the

circle
l^^ol and diverges for all points without. For the series

converges when |2;|<|^;olj f^iid it must diverge when |2;|>|2;o|;

for, if it converged even conditionally for |«;'|>|2ro|, then it

would converge when |2;|<|2;'|. We could, therefore, replace

tlie circle \zq\ by the greater circle \z'\, and proceed in this way

until we either arrive at a maximum circle of convergence,

beyond which there is only divergence, or else fall back upon

case 2, where the series converges within any circle however great.

We shall commonly denote the radius of the circle of con-

vergence, or as it is often called the Radius of Convergence, by R.

It must be carefully noticed that both as regards uniformity and

absoluteness of convergency the Circle of Convergence is (so far

as the above demonstration goes) an open region, that is to say,

tlie points on its circumference are not to be held as being within

it. Thus, for example, nothing is proved as regards the con-

vergence of the power series at points on the circumference of

the Circle of Convergence ; and what we have proved as regards

uniformity of convergence is that ^a^z^ is uniformly convergent

within any circle whose radius is less than R by however little.

§ 18.] Cauchys Rules for determining the Radius of Con-

vergence of a Power Series.

I. Let to be tlie fixed limit or tlie greatest of the limits to

ivhich
I
ttn P'" tends when n is increased indefinitely, then l/a>

is the radius of convergence of "ZanZ^.

For, as we have seen in § 11, II., 2a„2;" is convergent or

divergent according as X|a„«''p^<or>l; that is, according as

w I « I < or> 1 ; that is, according as \z\< or> 1/<d.

II. Let (o be a fixed limit to which
\
a„+,/a„

]
tends when n is

increased indefinitely; then l/w is the radius of convergence of

^anz"".
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The proof is as before. The second of these rules is often

easier of application than the first ; but it is subject to failure in

the case where L
\ an+ildn \

is not definite.

Example 1. 1 + 2/1 + 2^/2+...
Here, by the first rule, w= I, (l/n)V"= L m'»=l (chap, xxv., §16).

n=«o »n=0

Hence R = l.

By the second rule, w= L {l/(n + l)}/{l/n} = L n/(n + l) = l. Hence

R = l, as before.

Example 2. z + 2z^ + z^ + 2z*+ . , .

Kereifn= 2??i, L |a„V»]= L lVn= l,

n=» n=ot)

if n = 2m + l, L |a„V»|= L 2V«=:1.
jl=oo n=aJ

Hence w=l, and JJ= 1. The second rule would fail.

§ 19.] Convergence of a Power Series on its Circle of Con-

vergence,

The general question as to whether a power series converges,

oscillates or diverges at points on its circle of convergence is

complicated. For series whose coefficients are real the following

rule covers many of the commoner cases.

I. Let a„ be real, such that ultimately «„ has the same sign

and never increases; also that Lan = 0, and Lan+i/an=l, when

n- <^. Then the radius of convergence of^a^z^ is unity ; and

1st. If 2a„ is convergent, %anZ"' converges absolutely at every

point on its circle of convergence.

2nd. If %an is divergent, 'ZanZ^ is semi-convergent at every

point on its circle of convergence, except z= 1, where it is

divergent.

If we notice that on the circle of convergence Sa„s" reduces

to 2a„ (cos nO + i sin nO) = 2a„ cos nO + i^an sin nO, we deduce the

above conclusions at once from § 9.

Cor. Obviously the above conclusions hold equally for

2 ( - l)"'anZ^, except that the point z = — l takes the place of

the point z=l.

The following Rule, given by Weierstrass in his well-known

memoir Ueber die Theorie der Analytischen Facultdten* , applies

Crellt'a Jour., Bd. 51 (185G).
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to the more general case where the coefficients of the power series

may be complex. By § 6, Cor. 5, it is easy to show that it

includes as a particular case the greater part of the rule already

given.

II. If on and after a certain value of n we can expand

dn+i/ftn in the form

an+1 , a + hi a^

an n n^

where g and h are real, then the behaviour of S^n^" on its

circle of convergence, the radius of which is obviously unity, is

as follows :

—

1st, Jf g<i;iO the series diverges.

2nd. Ifg<-l the series converges absolutely.

3rd. If — 1;{>^<0 the series is semi-convergent, except at the

point z=l, where it oscillates if g — —l and h = 0, and diverges

if g>-l.
For the somewhat lengthy demonstration we refer to the

original memoir.

§ 20.] Abel's Theorems* regarding the continuity of a power

series.

Since (§18) Sa^^" converges uniformly at every point within

its circle of convergence, we infer at once that

I. The sum of the power series "^a^z^ is a continuousfunction

of z, say
(f)

(z), at all points within its circle of convergence.

This theorem tells us nothing as to what happens when we

pass from within to points on the circumference of the circle of

convergence, or when we pass from point to point on the circum-

ference. Much, although not all, of the remaining information

required is given by the following theorem.

II. If the power series ^a^s" be convergent at a point Zq on

its circle of convergence, and z be any point within the circle, then

provided the order of the terms in '^a^^z^^ be not deranged in cases

where it is only semi-convergent.

• CrelU's Jour., Bd. i. (1826).
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In the first place, we can show that in proving this theorem

we need only consider the case where z and ^o lie on the same

radius of the circle of convergence. For, if z and ^o be not on

the same radius, describe a circle through z, and let it meet the

radius Oz^ in z^. Then it is obvious that, by making |2;-2?o|

sufficiently small, we can make
|
s - ;2;i ]

and
j
2^1 — «o |

each smaller

than any assigned positive quantity however small.

Since z and Zx are both within the circle of convergence, we

can, by making
1
;2 - ;2;i |

sufficiently small, make
| ^ (2;) - <^ (^^i)

|

less than any assigned positive quantity c, however small. But

1 <^ (2;) - </> (^0)
I

=
I
<^ (^) - «^ (;2a) + «^ (^1) - </> (^0) I,

>l<^(«)-<^(;^OI+l'^(^i)-<^(^o)!,

If, therefore, we could prove that by making
| «i - 2^0 1 sufficiently

small we could make
] ^ {z^ -

<f) (zo) \
as small as we please, it

would follow that by making \z- Zo\ sufficiently small we could

make \(f>(z) — <f>
(zq)

\
as small as we please.

Let us suppose then that z and Zo have the same amplitude 6,

then we may put z = p (cos 6 + i sin 0), Zq = po (cos B + i sin 0), and

we take a„ = r„ (cos a„ + i sin a„). Hence

ttnZ^ - rn (cos a„ + i sin a„) p" (cos 110 + i sin nO),

= (-) '''nPo' {cos {nO + a„) + i sin {nd + a„)}

,

\Po/

where x = p/po, and becomes unity when 2; = 2^0 5 and ?7„ and F„

are real and do not alter when z is varied along the radius of the

circle of convergence.

It is now obvious that all that is required is to prove that if

the series of real terms ^x^Un remains convergent when a;=l,
00 00

then L %af^ Un = '^Un, or, what is practically the same thing,
a:=-=l-0 1 1

to prove that, if 5 ?7„ bo a convergent series, then

L i(l-^")C^„ = 0.
J-=l-0 1

Let 8n = {l-a;)Ux + {l-af)lh + . . .+{\-x'')Un,



154 ABEI4'S CONTINUITY THEOREMS CH. XXVI

Since a;^l, \ — x^, 1 — ^"~\
. . ., 1 — x satisfy the conditions

imposed on a^, a.2, . . ., «« in Abel's Inequality (§ 9). Also,

since ^dn is convergent, Un, Un-i, . . .,U-^ satisfy the con-

ditions imposed on Wi, ^^, . . ., u^. Hence, A and B being two

finite quantities, we have

(l-^»)^>>S;>(l-a?")5.

This inequality will hold however large we may choose n ; and

we may cause x to approach the value 1 according to any law we
please. Let us put x-\- Ijii^. Then we have, for all values

of n, however great,

{1 - (1 - 1/viT} yi >^„> {1 - (1 - lAOn B.

But L {I- Ijny = L {{I- l/w^)-»V'^" = ^"^ = 1.

Therefore, since A and B are finite, L /Sf^ = ; that is,

L i (1 - ^») ZJ^ = 0.
X=l-0 1

It will be observed that, in the above proof, each term of

%x^^ Un is coordinated with the term of the same order in 2 Z7„.

Hence the order of the terms in S Un must not be deranged, if it

converges conditionally.

It follows from tlie above, by considering paths of variation

within the circle of convergence and along its circumference, that,

if a power series converge at all points of the circumference of its

circle of convergence, then as regards continuity of the sum the

circle of convergence may be regarded as a closed region. This

does not exclude the possibility of points of infinitely slow con-

vergence on the circumference of the circle of convergence,

because such points are not necessarily points of discontinuity.

On the other hand, if at any point P on the circumference

of the circle of convergence the series either ceases to converge

or is discontinuous, then the series cannot at such points be

continuous for paths of variation which come from within. If

however the series converge on both sides of P at points on the

circumference infinitely near to P, it must converge to the same

values.

It would thus appear to be impossible that a power series
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should converge infinitely near any point P of the circumference

of its circle of convergence to one finite value and to a different

finite value at P itself. It follows that, if a power series is

convergent, generally speaking, along the circumference of its

circle of convergence, it cannot become discontinuous at any

point on the circumference unless it cease to converge at that

point.

By considering the series Swn^", S-Wnz", and the series

which is their product when both of them are absolutely con-

vergent, and applying the second of the two theorems in the

present paragraph, we easily arrive at the following result, also

due to Abel.

Cor. If each of the series 2m„ and 2v„ converge, say to_ limits

u and V respectively, then, if the series % (unVi + Un-iV^ + . . . + Ui^n)

be convergent, it will converge to uv ; and this will hold even if

all the three series he only semi-convergent.

Example 1. The series l+z+ . . . +z"+ . . . has for circle of con-

vergence the circle of radius unity. Within this circle the series converges

to 11(1 -z). On the circumference the series becomes 2 (cos nd + i sin nd),

which oscillates for all values of 6, except 6 = for which it diverges. At

points within and infinitely near to the circle of convergence the series

converges to i + tcot^.

Example 2, The radius of convergence for 2/1+ . . . +«"/«+ ... is

unity. Within the unit circle, as we shall prove later on, the series con-

verges to - Log (1 - z). On the circumference of the unit circle the series

reduces to S(cosn0-Fisinn^)/n. This series (see §9,111.) is convergent

when ^ + 0; but only semi-convergent, since Sl/n is divergent. When = 0,

the series diverges. The sum is therefore continuous everywhere at and on

the circle of convergence, except when ^=0. At points within the circle

infinitely near to 2= 1 the series converges to a definite limit, which is very

great; but at 0=1 the series diverges to -f oo .

Example 3. S^^/n* converges absolutely at every point on the circum-

ference of its circle of convergence (i? = l): and consequently represents a

function of z which is continuous everywhere within that circle and upon
its circumference.

Example 4. S?!2" is divergent at every point on its circle of convergence

(J?= l); and its sum is a continuous function at all points within its circle

of convergence, but not at points upon the circumference.
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Example 5. Pringsheim * has established the existence of a large class

of series which are semi-convergent at every point on the circumference of

their circle of convergence : a particular case is the series S ( - l)'^»z^jn log n,

where \„=1 when 22"' }>«< 22'»+i, x^=0 when 22'»+i > n < 2-''»+2.

§ 21.] Principle of Indeterminate Coefficients.

If Uo^O, there is a circle of non-evanescent radius within

which the convergent power series ^a^z^ cannot vanish.

Since the evanescence of the series implies a^ = - UiZ- a,,z^. - . . .,

it will be sufficient to show that there exists a finite positive

quantity A such that, if p = \z\<'K, then

\— aiZ - a<iZ'^ - . . .|<|aoI.

Now, since the series %anZ^ is absolutely convergent at any

point Za within its circle of convergence, there exists a finite

positive quantity ^ such that for all values of n,
\
a^zi^ \

^ a^p^' <g.
Hence |a„|<^/po".

Now
\- a-^z - a<2,z^ - . . . |:j>|ai2;| + |a2;:;^| + . . .

>l«i|p + I«2|p'' + . . .

<9{{plp^) + {plpof + . . .}

<9p/{Po-p)-

Hence, if we choose A. so that g^/(po - X) =
|
a^

J,
that is A. =

j
a^

| p^/

(^ + 1 «(,
I
), we shall have

I

- aiZ - a-iz- — . . .
I

<
I

tto
I

for all values of z within the circle X.

Cor. 1. If am^O, there is a circle of non-evanescent radins

within which the convergent power series am^'" + «m+i^"'"'"' + - • •

vanishes only when z = 0.

For a,nZ"' + ar„+^z^+^ + . . .

= z'^{am + ara+iz + . . .).

Now, since am + 0, by the theorem just proved there is a circle

of non-evanescent radius within which a,„ + am+iZ + . . . cannot

vanish : and z^ cannot vanish unless z-0.

* Math. Ann., Bd. xxv. (1885).
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Cor. 2. If ao + a^z + a.^z"^ + . . . vanish at least once at some

point distinct from z = within evei'y circle, however small, then

must ao-0, «! - 0, a., — 0, . . ., that is, the series vanishes

identically/.

Cor. 3. If for one value of z at least, differing from 0, the

series ^a^z^ and ^bnZ"' converge to the same sum within every

circle, however small, then must a^ = bo, tti-bi, . . ., that is, the

series must be identical.

INFINITE PRODUCTS.

§ 22.] The product of an infinite number of factors formed

in given order according to a definite law is called an Infinite

Product. Since, as we shall presently see, it is only when the

factors ultimately become unity that the most important case

arises, we shall write the nth. factor in tlie form 1 + m„.

By the value of the infinite product is meant the limit of

(1 + Ml) (1 + th) . . . (1 + lln),

n

(which may be denoted by 11 (1 + n,^\ or simply by Pn), when n

is increased without limit.

It is obvious that if Lun were numerically greater than unity,

then LPn would be either zero or infinite. As neither of these

cases is of any importance, we shall, in what follows, suppose

I

w„
I

to be always less than unity. Any Jlnite number of factors

at the commencement of the product for which this is not true,

may be left out of account in discussing the convergency. . We
also suppose any factor that becomes zero to be set aside ; the

question as to convergency then relates merely to the product of

all the remaining factors.

Four essentially distinct cases arise

—

1st. LPn may be 0.

2nd. LPn may be a finite definite quantity, which we may
denote by 11 (1 + m„), or simply by P.

3rd. LPn may be infinite.

4th. LPn may have no definite value ; but assume one or

other of a series of values according to the integral character of n.
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In cases 1 and 2 the infinite product might be said to be

convergent ; it is, however, usual to confine the term convergent

to the 2nd case, and to this convenient usage we shall adhere

;

in case 3 divergent ; in case 4 oscillatory.

§ 23.] If, instead of considering P„, we consider its logarithm,

we reduce the whole theory of infinite products (so far as real

positive factors are concerned*) to the theory of infinite series

;

for we have

log P„ = log (1 + Wi) + log (1+^2) + . . . + log(l + «^)
n

= % log (1 + Un)
;

and we see at once that
n

1st. If S log (1 + u^ is divergent, and L% log (1 + m„) = - 00

,

then n (1 + w„) = ; and conversely.

2nd. If 2 log (1 + w») be convergent, then n (1 + m„) converges

to a limit which is finite both ways ; and conversely.
n

3rd. If 2 log (1 + %) is divergent, and L% log (1 + Uj) = + 00

,

then n (1 + «„) is divergent; and conversely.

4th. If 2 log (1 + M„) oscillates, then n (1 + m,^) oscillates
;

and conversely.

§ 24.] If we confine ourselves to the case where w„ has

ultimately always the same sign, it is easy to deduce a simple

criterion for the convergency of n (1 + w„).

If Lun< 0, then S log (1 + m„) = - 00 , and n (1 + m„) = 0.

If Lun>0,% log (1 + Un) = + 00 , and n (1 + m„) is divergent.

It is therefore a necessary condition for the convergency of

n (1 + Ur) that LUn — 0.

Since Lun = 0, 2/ (1 + m,J'/"»i = e ; hence L log (1 + M„)/Mn = 1-

It therefore follows from § 4 that 2 log (1 + u^ is convergent or

divergent according as Sm^ is convergent or divergent. More-

over, if Un be ultimately negative, the last and infinite parts of

5w» and 51og(l + u^ will be negative ; and if m„ be ultimately

* The logarithm of a complex number has not yet been defined, much
less discussed. Given, however, the theory of the logarithm of a complex

variable there is nothing illogical in making it the basis of the theory of

infinite products, as the former does not presuppose the latter.
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positive, the last and infinite parts of 2m„ and 2 log (1 + w„) will

be positive. Hence the following conclusions

—

If the terms of 2m„ become ultimately infinitely small, and
hate ultimately the same sign, then

1st. n (1 + w„) is convergent, if 2m„ he convergent ; and con-

versely.

2nd. n (1 + w„) = 0, */* %Un diverge to - ao ; and conversely.

3rd. n(l + w„) diverges to + co, if ^Un diverge to + cc ; and
conversely.

Since in the case contemplated, where u^ is ultimately of

invariable sign, the convergency of n (1 + m„) does not depend on

any arrangement of signs but merely on the ultimate magnitude

of the factors, the infinite product, if convergent, is said to be

absolutely convergent. It is obvious that any infinite product in

which the sign of Un is not ultimately invariable, but which is

convergent when the signs of w„ are made all alike, will he,

a fortiori, convergent in its original form, and is therefore said

to be absolutely convergent ; and we have in general, for infinite

products of real factors, the theorem that 11 (1 + w„) is absolutely

convergent when %Un is absolutely convergent ; and conversely.

Cor. Ifeither of tJie two infiniteproducts n (1 + m„), n (1 - u,)

be absolutely convergent, the other is absolutely convergent.

For, if %Un is absolutely convergent, so is S ( - «„) ; and

conversely.

Example 1. (1 + l/P) (1 + 1/22) . . . (i + i/n-') ... is absolutely conver-

gent since 21/h^ is absolutely convergent.

Example 2. (1 - 1/2) (1 - 1/3) ... (1 - l/?t) . . . has zero for its value

since S ( - l/;i) diverges to - oo .

Example 3. (1 + 1/^2) (1 + 1/^3) . . . (1 + 1/^/0 • • . diverges to +qo
since S (If/Jn) diverges to + oo .

Example 4. (1 + 1/^1) (1 - l/v/2) (1 + 1/^3) (1 - l/x/4) . . . Since the

sign of «„ is not ultimately invariable, and since the series 2 ( - l)"~'/\/'^ i^

not absolutely convergent, the rules of the present paragraph do not apply.

We must therefore examine the series S log (1 + ( - 1)"~VV«)- The terms of

this series become ultimately infinitely small ; therefore we may (see § 12)

associate every odd term with the following even term. We thus replace the

series by the equivalent series

Slog {1 + 1/V(2tt - 1) - 1/V(2n) - 1/V(4n« - 2h)}.
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It is easy to show that

1/V(2» - 1) - 1/V(2h.) - y^iin' - 2;0 <0,

for all values of n>l. Hence the terms of the series in question ultimately

become negative. Moreover, 1/V(2m - 1) - 1/\/(2«) - 1/V(47i-' - 2n) is ulti-

mately comparable with -\j'2n. Hence S log (l + (
- 1)"~VV") diverges to

- 00 . The value of (1 + lyi) (1 - 1/^2) (1 + l/V^) (1 - W^) • • • is there-

fore 0. This is an example of a semi-convergent product.

Example 5. e^+^e-'^~ie^^ie~'^~^ . . . The series 2log(l + M„) in this

case becomes
(l + l)-(l + i) + (l + i)-(l + |)+. . .

which oscillates. The infinite product therefore oscillates also.

Example 6. 11 (1 - a;"'"^//*) is absolutely convergent if a; <1, and has for

its value when x — 1.

§ 25.] We have deduced the theory of the convergence of

infinite products of real factors from the theory of infinite series

by means of logarithms ; and this is probably the best course for

the learner to follow, because the points in the new theory are

suggested by the points in the old. All that is necessary is to

be on the outlook for discrepancies that arise here and there,

mainly owing to the imperfectness of the analogy between the

properties of (that is, +a- a) and 1 (that is, x a h- a).

It is quite easy, however, by means of a few simple inequality

theorems*, to deduce all the above results directly from the

definition of the value of n (1 + m„).

If Pn have the meaning of § 22, then we see, by exactly the

same reasoning as we used in dealing with infinite series, that

the necessary and sufficient conditions for the convergency of

n (1 + M„) are that P^ be not infinite for any value of n, however

large, and that L (Pn+m — J^n) = ; and that the latter condition

includes the former.

If we exclude the exceptional case where L P„ = 0, then,
n=»oo

since Pn is always finite, the condition L (Pn+m - Pn) ^ is

equivalent to L (P„+m/P„ - 1) = 0, that is, LPn+m/Pn = 'i-

* See Weierstrass, Abhandlungen aus d. Functionenlehie, p. 203 ; or

Crelle's Jour., Bd. 51.
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If, therefore, we denote (1 + Un+\) (1 + M„+a) . . . (1 + ^,1+^)

by mQn , we may state the criterion in the following form, where

Un may be complex :

—

Tlie necessary and sufficient condition that 11 ( 1 + m„) converge

to a finite limit differing from zero is that L
\ mQn - 1 1

= 0, for
71=00

all values of m.

For, since L
\ ^Qn - 1 1

= 0, given any quantity e however

small, we can determine a finite integer v such that, if %<j;v,

1^^,1-1 |<c. Therefore, since w.Qn = Pn+mlPn, we have in

particular

l-€<P;,+JP^<l + €.

Since V is finite, Pv is finite both ways by hypothesis. Therefore

(l-e)P,<P,+^<(l + c)P,.

Since m may be as large as we please, the last inequality shows

that P„ is finite for all values of n however large.

Again, since P„ is not infinite, however large n, the con-

dition L
1 raQn " 1 1

= 0, wMch is cquivalcut to L mQn = 1, leads
n=Qo n=Qo

to L Pn+m= L P„. The possibility of oscillation is thus ex-
n=oo n=co

eluded. The sufficiency of the criterion is therefore established.

Its necessity is obvious.

We shall not stop to re-prove the results of § 24 by direct

deduction from this criterion, but proceed at once to complete

the theory by deducing conditions for the absolute convergence

of an infinite product of complex factors.

§ 26.] n (1 + «i„) is convergent ?/ n (1 + |

w„
|

) is convergent.

Let Pn~\un\, so that p„ is positive for all values of n, then,

since n (1 + p„) is convergent,

L {(1 + pn+i) (1 + Pn+2) . . . (1 + Pn+m) " 1} = (1).

Now

mQn - 1 = (1 + «f™+i) (1 + W«+2) . . . (1 + W„+m) " 1,

= 2tUnJf.x + AUn+iUn+2 + . . . + Un+iUn+2 • • • ^»+ni«

Hence, by chap, xii., §§9, 11, we have

O^lmQn - 1
I
^2p,i+i + ^Pn+lPn+2 + • •. . + Pn+lPH+2 • • • Pn+m,

^-(1 + Pn+l) (1 + Pn+2) . . . (1 + Pn+m) " 1-

C. II. 11
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Hence, by (1),ZU$„-1 1
= 0.

Remark.—The converse of this theorem is not true ; as may

be seen at once by considering the product (l + l)(l-^)(l + 5)

(1 - -J) . . . , which converges to the finite limit 1 ; although

(1 + 1)(1 + ^)(1 + ^) (1 + ^) ... is not convergent.

When n(l + M„) is such' that n(l + |w„|) is convergent,

11(1 + Wre) is said to he absolutely convergent. i/'n(l + M„) he

convergent, hut n (1 + 1 ?^,i |) non-convergent, n (1 + w„) is said to he

semi-convergent. The present use of these terms includes as a

particular case the use formerly made in § 24.

§27.] If '^\un\ be convergent, then n(l + z^„) is absolutely

convergent; and conversely.

For, if %\Un\ be convergent, it is absolutely convergent, seeing

that \un\ is by its nature positive. Hence, by § 24, n (1 +
[ «„ |)

is convergent. Therefore, by g 26, n (1 + w„) is absolutely con-

vergent.

Again, if n(l+w„) be absolutely convergent, n(l + |M„|)

is convergent; that is, since |m„| is positive, n(l + |M„|) is

absolutely convergent. Therefore, by § 24, 2 1 tin
\

is absolutely

convergent.

Cor. If %Un he absolutely convergent, n (1 + Unx) is absolutely

convergent, where x is either independent of n or is such afunction

of n that X
I

a;
1

4= CO when n= co.

Example 1. 11 (1 - a;"/n) is absolutely convergent for all complex values

such that
I

a;
I

< 1, but is not absolutely convergent when
|
x

|
= 1.

Example 2. ^.{l-xjn^), where x is independent of n, is absolutely

convergent.

§ 28.] After what has been done for infinite series, it is not

necessary to discuss in full detail the application of the laws of

algebra to infinite products. We have the following results

—

I. Ths law of association may be safely applied to the factors

^n (1 + w„) provided Lun = ; hut not otherwise.

H. The necessary and sufficient condition that n (1 + w„) shall

converge to the same limit {finite both ways), whatever the ordsr of

itsfactws, is that the series %Un be absolutely convergent.

When Un is real, this result follows at once by considering the

series 2 log (1 + m„) ; and the same method of proof applies when
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Un is complex, the theory of the logarithm of a complex variable

being presupposed*.

An infinite product which converges to the same limit what-

ever the order of its factors is said to be unconditionally convergent.

The theorem just stated shows that unconditional convergence and

absolute convergence may be taken as equivalent terms. A con-

ditionally convergent product has a property analogous to that of

a conditionally convergent series ; viz. that by properly arranging

the order of its terms it may be made to converge to any value

we please, or to diverge.

III. If both n (1 + w„) and Tl {I + v^^ be absolutely convergent^

then n {(1 + Uj) (1 + v^] is absolutely convergent, and has for its

limit {n (1 + Un)] X {n (1 + Vr^} ; also n {(1 + w„)/(l + v^] is abso-

lutely convergent, and has for its limit {n(l + w„)}/{n (1 +«?„)},

provided none of the factors q/II (1 +Vn) vanish.

If Qn denote (1 + w„+i) (1 + w^+s) • . ., the total residue of

the infinite product n (1 + w„) after n factors, then, if the product

converges to a finite limit which is not zero, given any positive

quantity e, however small, we can always assign an integer v such

that \Qn-l\<€, when w<|;i'.

If Un be a function of any variable z, then, when c is given,

V will in general depend on z.

If however, for all values of z within a given region R in

Argand's diagram an integer v independent of z can be assigned

such that

\Qn-l\<^,

when n<^v, then the infinite product is said to be uniformly

CONVERGENT witMn U.

IV. Iffin, z) be a finite single valuedfunction of the integral

variable n and of z, continuous as regards z within a region R,

and if Il{l +f(n, z)} converges uniformly for all values of z

within R to a finite limit <j>{z), then ff> (z) is a continuousfunction

of z within R.

Let z and z' be any two points within R, then, since

* See Harkness and Morley, Treatise on the Theory of Functions (1893),

§ 79 ; or Stolz, Allgemeine Arithmetik, Thl. ii. (1886), p. 238.

11—2



164 CONTINUITY OF INFINITE PRODUCT CH. XXVI

(f>
(z) and <^ (z') are each finite both ways, it is sufficient to prove

that L
I
<l> {z')/cf> (z)

I

= 1.
z—z'

Let

<l>{z) = PnQn, i>(z') = P'nQ'n,

where P„, Qn, &c. have the usual meanings.

Since the product is uniformly convergent, it is possible to

determine a finite integer v (independent of z or z) such that,

when fi'^v, we have

\Q„-1\<€, and 1Q'„-1|<€,

where c is any assigned positive quantity however small. Hence,

in particular, we must have

\Qn\ = i + ee, \Q'n\ = i + x^;

where 6 and x are real quantities each lying between - 1 and + 1.

Now
<}>(z')

<i>{z)

=
P.

Also, since L \P'v/Pv\ = l, v being a finite integer, and, z
z=i!

being at our disposal, we can without disturbing v choose \z- z'\

so small that
\ P'vjPx

Hence

^{z)
-1

1 + i/'e, where - 1 <i/^< + 1

(1 + i/^e) (1 + xe)

l + ^e

i + e€

< e
3 + 6

1-e"

Since € (3 + €)/(! — c) can, by sufficiently diminishing e, be

made as small as we please, it follows that L
\

4> {z')/<t> (z)\ = l.

Cor. 1. 1/ fin and Wn (z) satisfy the conditions of the example

in § 16, then n {1 + finWn {z)} is a continuous function of z within

the region E.

For, if we use dashes to denote absolute values, we have

I
Q« - 1 |<(1 + f^'n+lW'n+i) (1 + /n+2«'^'n+2) ... - 1.
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Since Wn{z) is finite for all values of n and z, we can find a finite

upper limit, g, for w'n+i, w'n+2, . . . Therefore

I
Q„ - 1 1 < (1 + gix^+^) (1 + ^M'n+2) . . . - 1.

Since 2ju.'n is absolutely convergent, ^g/n is absolutely con-

vergent. Hence n (1 + g/x^) is absolutely convergent ; and we
can determine a finite integer v (evidently independent of z,

since g and fi'„ do not depend on z), such that, when n^^v,

(1 + gfx.'n+i)(l +gfJ-'n+2) . . . -1<€. Hence we can determine v,

independent of z, so that
|
^„ - 1 1 < e, where e is a positive

quantity as small as we please. It follows that n {1 + finWn(z)}

is uniformly convergent, and therefore a continuous function of

z within B.

Cor. 2. If 'XanZ" be convergent when \z\ = Il, then n (1 + a^s")

converges to <^ (z), where </> {z) is a finite continuous function of z

for all values of z such that \z\<B.

Cor, 3. If f{n, y) he finite and single-valued as regards n,

and finite, single-valued, and continuous as regards y within the

region T, and if "^fin, y) z^ be absolutely convergent when \z\=B;

then, so long as \z\<E, n (1 +f(n, y) z^) converges to
\f/ (y), where

\^{y) is a finite continuous function ofy within T.

Cor. 4. If %an be absolutely convergent, then n (1 + anz)

converges to ij/ (z), where if/ (z) is a finite and continuous function

of z for all finite values of z.

We can also establish for infinite products the following

theorem, which is analogous to the principle of indeterminate

coefficients.

V. If, for a continuum of values of z including 0, 11 (1 + anZ^)

and n (1 + bnZ^) be both absolutely convergent, and n (1 + anZ^) =

n (1 + bnZ% then ax = bi, az^b^, . . ., an = bn, . . .

For we have

2 log (1 + «„2;") = 2 log (1 + bnZ"),

both the series being convergent.

Hence for any value of z, however small, we have, after

dividing by z,

^a^z""-^ log (1 + ttr^zy-'" = ^bnz''-' log (1 + bnz'y'''n''\
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Since L log (1 + a^^;")^''"''''" = 1, we have, for very small

values oi z, ' '
'

a^A^ + a^A^z + aiA^z^-^ . . . = h^Br + KB<iZ + h3B3Z^ + . . . (1),

where Ai, A2, . . ., B^, B^ difier very little from unity, and all

have unity for their limit when z-Q.

Hence, since Sa„;2;""^ and :S6„«""^ are, by virtue of our

hypotheses, absolutely convergent, we have

L {a^A^z + a^A^z^ + . . . ) =^

L {hB^z + h^B^z" + . . . ) = 0.

Hence, if in (1) we put z = Q, we must have

ai L Ai = bi L Bi.

But LAi = LBi = l; therefore ai = bi. Removing now the

common factor 1 + aiZ from both products, and proceeding as

before, we can show that (Zg = &2 ; and so on.

§ 29.] The following theorem gives an extension of the

Factorisation Theorem of chap, v., § 15, to Infinite Products.

If iff {z) = 11(1 + anz) be convergent for all values of z, in the

sense that L
\ mQn - 1 1

= 0, when n= ^ ,no matter what value m
may have, then \j/ (z) will vanish if z have one of the values — l/ai,

- 1/«2, . . . , - l/ctr, • • • ) (^nd, if >/' (z) = 0, then z must have one

of the valties — l/ai, - l/a^, . . ., - l/ar, . . .

In the first place, we remark that, by our conditions, the

vanishing of L^Qn when w = qo is precluded. The exceptional

case, mentioned in §23, where Slog(l +a„;2;) diverges to -co,

and n (1 + ttnz) converges to for all values of z, is thus excluded.

Now, whatever n may be, we have

^{z)=FnQn (1).

Suppose that we cause z to approach the value — l/ar. We
can always in the equation (1) take n greater than r ; so that

1 + arZ will occur among the factors of the integral function P„.

Hence, when z = - l/ar, we have P„ = 0, and therefore, since

Qn+QO, ilf{-l/ar) = 0.

Again, suppose that ^{z)^0. Then, by (1), PnQ» = 0.

But, since u may be as large as we please, and LQ^-l when
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n='X), we can take n so large that Qa + 0. Hence, if only n

be large enough, the integral function P„ will vanish. Hence z

must have a value which will make some one of the factors of

Pn vanish ; that is to say, z must have some one of the values

It should be noticed that nothing in the above reasoning

prevents any finite number of the quantities ai, a^, . . ., ar, . . .

from being equal to one another ; and the equal members of the

series may, or may not, be contiguous. If there be /*„ contiguous

factors identical with 1 + ttnZ, the product ip (z) will take the form

n (1 + anzY" ; and it can always be brought into this form if it be

absolutely convergent, for in that case the commutation of its

factors does not affect its value.

Cor. 1. If z lie within a continuum (z) w/iich includes all the

values

-1/^1, -1/^2, . . ., -!/«»,. . . (A),

and -i/bi, -l/b^, . . ., -1/bn, . . . (B),

if 11(1 + anzY" and n (1 + bnzy» be absolutely convergent for all

values of z in {z), iffiz) and g{z) be definite functions of z which

become neither zero nor infinite for any of the values (A) or (B),

and if, for all values of z in {z),

f{z) n (1 + anzY'^ = g{z)U{l^. b^z)"' (1),

then must each factor in the one product occur in the other raised

to the same poiver ; and, for all the values of z in (z),

f(^) = g{^) (2).

For, since, by (1), each of the products must vanish for each

of the values (A) or (B), it follows that each of the quantities

(A) must be equal to one of the quantities (B) ; and vice versa.

The two series (A) and (B) are therefore identical.

Since the two infinite products are absolutely convergent, Ave

may now arrange them in such an order that ai = bi, az^ba, . . .,

&c., so that we now have

f{z) (1 + aizyi (1 + a2zy* . . .=g{z){l + a^z^ (1 + a<2zy^ . . . (3).

Suppose that )u.i + vi, but that /aj, say, is the greater; then

we have, from (3),

/(«)(! +ai;2;)'^>-''i(l+a,<£)'*2. . . = g {z) {\ -v a^zy^ . . . (4).
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Now this is impossible, because the left-hand side tends to

as limit when z = — l/ai, whereas the right-hand side does not

vanish when z = — l/ai. We must therefore have aii = Vi; and,

in like manner, fta = ''2 ; and so on.

We may therefore clear the first n factors out of each of the

products in (1), and thus deduce the equation

f{z)Qn = g{z)qn (5),

where Qn and Q'n have the usual meaning. The equation (5) will

hold, however large n may be. Hence, since LQn = LQ'n = 1, we

must have

/(^)=^(4

Cor. 2. From this itfollows that a given function of z which

vanishes for any of the values (A) and for no others within the

continuum (z), can he expressed within {z) as a convergent infinite

product of the formf{z) n (1 + anZ)^"" {wheref{z) is finite and not

zerofor all finite values of z within (z)), if at all, in one way only.

If the infinite product be only semi-convergent, the above

demonstration fails.

It may be remarked that it is not in general possible to

express a function, having given zero points, in the form described

in the corollary. On this subject the student should consult

Weierstrass, Ahhandlungen aus der Functionenlehre, p. 14 et seq.

ESTIMATION OF THE RESIDUE OF A CONVERGING SERIES OR

INFINITE PRODUCT.

§ 30.] For many theoretical, and for some practical purposes,

it is often required to assign an upper limit to the residue of an

infinite series. This is easily done in what are by far the two

most important cases, namely:—(1) Where the ratio of converg-

ence {pn = Un+i/un) ultimately becomes less than unity, and the

terms are all ultimately of the same sign
; (2) Where the terms

ultimately continually diminish in numerical value, and alternate

in sign.

Ca^e (1). It is essential to distinguish two varieties of series
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under this head, namely :

—

{a) That in which p„ descends to its

limit p ;
{b) That in which p„ ascends to its limit p.

In case {a), let n be taken so large that, on and after n, Pn is

always numerically less than 1, and never increases in numerical

value. Then

Rn = Un+\ + Wri+2 + Un+'i + .

= Un4.^ i 1 + + • + •}-
^re+1 Wre+2 W^+1

= Un+\ {1 + Pra+1 + Pn+\ Pn+2 + Pn+1 Pn+2 Pn+3 + • • •}•

Therefore, if dashes be used to denote the numerical values,

or moduli, of the respective quantities, we have

R'n'^u'n-\-\ {1 + p'n+\ + P n-\-\ + • • •},

>m'„+i/(1-p'„+i),

>>m'„+,/(1 - U'n+2fu'n+,) (1).

And also, for a lower limit,

n'n<u'n+.Kl-p) (2).

In case (b), let n be so large that, after n, p» is numerically

less than 1, and never decre'ases in numerical value. Then

Rn - Un+i {1 + Pn+l + Pn+2 Pn+l + ...}•

B'n:^u'n+i {1 + p + p' + . . .},

:^u'n+J{l-p) (3);

and we have also

R'n^u'n+i/(l — p'n+i), ,

<t:M'„+i/(l - u'n+^/u'n+i) (4).

Case (2). When the terms of the series ultimately decrease

and alternate in sign, the estimation of the residue is still

simpler. Let n be so large that, on and after n, the terms never

increase in numerical value, and always alternate in sign. Then
we have

>u'n+i (5);

<^Un+i~u'n+2 (6).
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§ 31.] Residue of an Infinite Product. Let us consider the

infinite products, 11 (1 + w„) and 11 (1 — m„), in which w„ becomes

ultimately positive and less than unity. If the series %Un converge

in such a way that the limit of the convergency-ratio p„ is a

positive quantity p less than 1, then it is easy to obtain an

estimate of the residue. Let Q^, Q'n denote the products of all

the factors after the nth. in n (1 + m„) and 11 (1 -?0 respectively,

so that Qn>l, and Q'n<l. We suppose n so great that, on

and after n, Un is positive, Pn less than 1, and either («) Pn never

increases, or else {b) p„ never decreases. In case {a), 2m„ falls

under case (1) (a) of last paragraph ; in case {b), %Un falls under

case (1) {b) of last paragraph. We shall, as usual, denote the

residue of %Un by Rn ; and we shall suppose that n is so large

that \Rn\<l.

Now (by chap, xxiv., § 7, Example 2),

.' '
) Q« = (1 + Mn+l) (1 + %+2) . • • ,

> 1 + Un+x + Un+2 + . . .

,

>l + Rn
'

(1).

Q\ = (1 - Un+l) (1 - Un+^ . . . ,
.

>l-Rn (2).

Also,

IjQn = {1 - Mn+]/(l + <+l)} {1 - M„+2/(l + Un^^)] • • .,

> 1 - M„+i/(l + W«+i) - Un^ilil + Mft+s) - • • • ,

> 1 — Un+i — Un+2 ""•••>,
. ,

>1-Rn.

Whence Qn-K Rn/il - Rn) (3).

In like manner,

l/Q'n = {1 + Un+lRl - Un+i)} {l + 2««+2/(l " Un+2)} • • -,

> 1 + M„+i/(l - Un+i) + Un+oRl - Ua+2) + . • •

,

> 1 + Un+i + Un+2 + . . .

,

>1+Rn.

Whence 1 - Q'n>Rnl{l + i^n) (4).
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From (1), (2), (3), and (4) we have

En<Qn-l<Itn/{l-Bn) (5);

Rnl{l+Rn)<l-Q'n<Rn (6).

Since upper and lower limits for B^ can be calculated by-

means of the inequalities of last paragraph, (5) and (6) enable us

to estimate the residues of the infinite products 11 (1 + Un) and

n(i-%).
Example. Find an upper limit to the residue of 11 (1 - a;"/)t), x<l.
Here u„=x^ln, /)„=a;/(l + l/n), p=x. The series has an ascending con-

vergency-ratio ;
and we have -Rn<Mn+i/(l~p)<^"'*'V(" + l) (1- ^)' There-

fore, 1 - Q'„<a;"+i/(n + l) (1 -a;). Hence, if P'„ be the nth approximation to

n(l-x"/n), P'„ differs from the value of the whole product by less than

100a;»+V(n + l)(l-^) °lo of P'n itself.

CONVERGENCY OF DOUBLE SERIES.

§ 32.] It will be necessary in some of the following chapters

to refer to certain properties of series which have a doubly in-

finite number of terms. We proceed therefore to give a brief

sketch of the elementary properties of this class of series. The

theory originated with Cauchy, and the greater part of what

follows is taken with slight modifications from note vin. of the

Analyse Algehrique, and § 8 of the Resumes Anahjtiqiies.

Let us consider the doubly infinite series of terms repre-

sented in (1). We may take as the general, or specimen term,

Um,n, where the first index indicates the row, and the second the

column, to which the term belongs. The assemblage of such

terms we may denote by 2m;„, „; and we shall speak of this

assemblage as a Double Series*.

A great variety of definitions might obviously be given of

the sum to a finite number of terms of such a series ; and,

corresponding to every such definition, there would arise a

definite question regarding the sum to infinity, that is, regarding

the convergency of the series.

There are, however, only four ways of taking the sum of the

double series which are of any importance for our purposes.

Sometimes the term " Series of Double Entry" is used.



172 DIFFERENT DEFINITIONS OF THE CH. XXVI

First Way.—We may define the finite sum to be the sum of

all the mn terms within the rectangular array OKMN. This

we denote by 8m,, n- Then we may take the limit of this by

first making m and finally n infinite, or by first making n in-

finite and finally m infinite. If the result of both these limit

operations is the same definite quantity 8, then we say that

"^Um, n converges to 8 in the first way.

A B C D K

A'

B'

C

D'

"i.i «1.2 W].2 "1.4 "i,« "l.n+1

"2,1 «2.2 «2,3 "2,4 "2.™ "2.W+1

%1 «E,2 "3.3 "3,4 "3.» "3,»l+l

"4.1 "4.2 "4,3 "4.4 "4,™ "4.»+1

•

•

•

K'

"«,1 "«,2 "n,3 "n.4 "«.n "n.Ji+1

• •

L

'',n,l "«.,2 "m.3 ",n.4 "»>,» "m.n+1

N
"w+l. 1 "m4-], 2 "»n+l,3 "to+1.4 "m+1. n

M
"m+l.n+l

(1).

It may, however, happen—1st, that both these operations

lead to an infinite value ; 2nd, that neither leads to a definite

value ; 3rd, that one leads to a definite finite value, and the
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other not ; 4th, that one leads to one definite finite value, and

the other to another definite finite value*. In all these cases

we say that the series is non-convergent for the first way of

summing.

Second Way.—Sum to n terms each of the series formed by

taking the terms in the first m horizontal rows of (1) ; and call

the sums T-i^n, Ti,n, • • ., ^m,»- Define

^ m, «— -* I, n+ -* 2, n + • • • + -'m, n \^)

as the finite sum.

Then, supposing each of the horizontal series to converge

to Ti, 7^2, . . ., jTot respectively, and %Tm to be a convergent

series, define

>Sf' = Ta+jr2 + . . . + 7;, + . . . ad 00 (3)

as the sum to infinity in the second way.

Third Way.—Sum to m terms each of the series in the first

n columns; and let these sums be Ui^m, £^2, m, • • •, Un,m'

Define

S"m, n= U'l,m+ Uo,m + - • •+ Un,m (4)

as the finite sum.

Then, supposing these vertical series to converge to Ui, U^,

. . ., Un respectively, and %Un to be a convergent series,

define

^"=J7i+ t72 + . . .+ Z7„ + . . . ad 00 (5)

as the sum to infinity in the third way.

So long as m and n are finite, it is obvious that we have

C*' _ C" o
*J m, n " m,n — *J»i, n j

so that, for finite summation, the second and third ways of

summing are each equivalent to the first.

The case is not quite so simple when we sum to infinity. It

is clear, however, that

8'= L { L Sm, n\ (6)

;

and S"=L{LS^,n} (7);

* Examples of some of these cases are given in § 35 below.
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SO that S' and S" will be equal to each other and to S when the

two ways of taking the limit of Sm,n both lead to the same

definite finite result*.

Fourth Way.—Sum the terms which lie in the successive

diagonal lines of the array, namely, AA', BB', CC, . . ., KK'

\

and let these sums be i)2, A, • ., ^n+i respectively ; that is,

A = «^i,l, A = «^l,2 + M2, X, . . • , -On+i = «<i, n + ^2, n-i + . • • + «»,!•

Define

>S""„=A +A + . . . +A (8)

as the finite sum ; and, supposing SZ)„ to be convergent, define

>S""=A +A + . . .+-^« + - . . adoo (9)

as the sum to infinity in the fourth way.

The finite sum according to this last definition includes all

the terms in the triangle OKK' ; it can therefore never (except

for w = w = 1) coincide with the finite sum according to the

former definitions. Whether the sum to infinity {8'") according

to the fourth definition will coincide with S, S', or S", depends

on the nature of the series. It may, in fact, happen that the

limits S, S', S" exist and are all equal, and that the limit S'" is

infinite t.

§ 33.] Double series in which tJie terms are all ultimately of

the same sign. By far the most important kind of double series

is that in which, for all values of m and n greater than certain

fixed limits, Um,n has always the same sign, say always the

positive sign. Since, by adding or subtracting a finite quantity

to the sum (however defined), we can always make any finite

number of terms have the same sign as the ultimate terms of

the series, we may, so far as questions regarding convergency

are concerned, suppose all the terms of %Um, » to have the same

(say positive) sign from the beginning. Suppose now (1) to

represent the array of terms under this last supposition ; and let

us farther suppose that %Um, n is convergent in the first way.

Then, since L (S^+p, n+q - Sm,n) = S-S = 0, when w = qo
,

n= CO whatever p and q may be, it follows that the sum of all

* For an illustration of the case when this is not so, see below, § 35.

t See below, § 35.
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the terms in the gnomon between NMK and two parallels to

NM and MK below and to the right of these lines respectively,

must become as small as we please Avhen we remove NM suffi-

ciently far down and MK sufficiently far to the right.

From this it follows, a fortiori, seeing that all the terms of

the array are positive, that, if only m a,nd n be sufficiently great,

the sum of any group of terms taken in any way from the residual

terms lying outside OKMN will be as small as we please.

Hence, in particular,

1st. The total or partial residue of each of the horizontal

series vanishes when n= <x>.

2nd. The same is true for each of the vertical series.

3rd. The same is true for the series 5Z>„.

The last inference holds, since S"'n obviously lies between

^q, n-q and. On-i, n-1'

Hence

Theorem I. ^f all the terms of %Um, n be positive, and if the

series he convergent in the first sense, then each of the horizontal

series, each of ths vertical series, and the diagonal series will be

convergent, and the double series will be convergent in the re-

maining three ways, always to the same limit.

If we commutate the terms of a double series so that the

term Um, n becomes the term Um', %', where m =f{m, n), n' = g {m, n),

f{m, n) and g {m, n) being functions ofm and n, each of which has

a distinct value for every distinct pair of values of m and n (say

non-repeating functions), and each of which is finite for all finite

values ofm and n (Restriction A*), then we shall obviously leave

the convergency of the series unaffected. Hence

Cor. 1. If ^Um, n be a series of positive terms convergent in

the first way, then any commutation of its terms {under Re-

striction A) will leave its convergency unaffected; that is to say, it

will converge in all the four ways to the same limit S as before.

* No such restriction is usually mentioned by writers on this subject

;

but some such restriction is obviously implied whep it is said that the terms

of an absolutely convergent series are commutative ; otherwise the character-

istic property of a convergent series, namely, that it has a vanishing residue,

would not be conserved.
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Cor. 2. If the terms {all positive) of a convergent single series

^Un be arranged into a double series ^u^.', n'> where m' and n a/re

functions of n subject to Restriction A, then %Um',n' will converge

in allfour ways to the same limit as ^Un.

It should be noticed that this last corollary gives a further

extension of the laws of commutation and association to a series

of positive terms ; and therefore, as we shall see presently, to

any absolutely convergent series.

Let us next assume that the series %Um, » is convergent in the

second way. Then, since ^T^ is convergent, we can, by suffi-

ciently increasing m, make the residue of this series, that is, the

sum of as many as we choose of the terms below the infinite

horizontal line NM, less than ^e, where e is as small as we

please. Also, since each of the horizontal ^ries is, by our

hypothesis, convergent, we can, by sufficiently increasing n, make

the residue of each of them, less than €/2w ; and therefore the

sum of their residues, that is, as many as we please of the terms

above iVJ/ produced and right of MK, less than ^e. Hence, by

sufficiently increasing both m and n, we can make the sum of

the terms outside OKMN, less than c, that is, as small as we

please. From this it follows that ^m^, m is convergent in the

first way, and, therefore, by Theorem I., in all the four ways.

In exactly the same way, we can show that, if %Um, % is con-

vergent in the third way, it is convergent in all four ways.

Finally, let us assume that 2^^, n is convergent in the fourth

way. It follows that the residue of the diagonal series %Dp can,

by making p large enough, be made as small as we please.

Now, if only m and n be each large enough, the residue of S^., %,

that is, the sum of as many as we please of the terms outside

OKMN, will contain only terms outside OKK', all of which are

terms in the residue of 8'"p. Hence, since all the terms in the

array (1) are positive, we can make the sum of as many as we

please of the terms outside OKMN as small as we please, by
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sufficiently increasing both m and n. Therefore ^tim,n is con-

vergent in the first way, and consequently in all four ways.

Combining these results with Theorem L, we now arrive at

the following :

—

Theorem 11. If a double series of positive terms converge in

any one of the four ways to the limit S, it also converges in all the

other three ways to the same limit S ; and the subsidiary single

series, horizontal, vertical, and diagonal, are all convergent.

Cor. Any single series %Un consisting of terms selected from

^'U'm.n {under Restriction A) will be a convergent series, if Sw„i,n

be convergent.

Restriction A will here take the form that n' must be a

function of m and n whose values do not repeat, and which is

finite for finite values of m and n.

Example. The double series Sx'"^/'* is convergent for all values of x

and y, such that 0<a;<+l, 0<j/<+1.
For the [m + l)th horizontal series is x^S?/", which converges to a;'"'/(l - y)

since 0<j/< +1. Also Sa;'"/(1 - y) converges to 1/(1 -x)(l-i/) since 0<x< +1.

§ 34.] Absolutely Convergent Double Series.—When a double

series is such that it remains convergent when all its terms are

taken positively, it is said to be Absolutely Convergent.

Any convergent series whose terms are all ultimately of the

same sign is of course an absolutely convergent series according

to this definition.

It is also obvious that all the propositions which we have

proved regarding the convergency of double series consisting

solely of positive terms are, a fortiori, true of absolutely con-

vergent double series, for restoring the negative signs will, if it

affect the residues at all, merely render them less than before.

In particular, from Theorem II. we deduce the following,

which we may call Cauchy's test for the absolute convergency of a

double series.

Theorem III. If u'm,n be the numerical or positive value of

Um,n, and if all the horizontal series of %u'm,n be convergent, and
the sum of their sums to infinity also convergent, then

1st. The Horizontal Series of '%Um,n are all absolutely con-

c. II. 12
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vergent, and the sum of their sums to infinity converges to a

definite finite limit S.

2nd. ^Um,n converges to S in the first way.

3rd. All the Vertical Series a/re absolutely convergent, and

the sum of their sums to infinity converges to S.

4th. The Diagonal Series is absolutely convergent, and con-

verges to S.

5th. Any series formed by taking terms from %Um,n {under

Bestriction A) is absolutely convergent.

The like conclusions also follow, if all the vertical series, or if

the diagonal series of'Zu'm,n be convergent.

Cor. If %Un and S'Wn be each absolutely convergent, and con-

verge to u and v respectively, then % (u^Vi + Un-iV^ + . . . + UiV^) is

absolutely convergent, and converges to uv.

For the series in question is the diagonal series of the double

series %UmVn, which, as may be easily shown, satisfies Cauchy's

conditions.

This is, in a more special form, the theorem already proved

in § 14

Example 1. Find the condition that the double series S ( - )™„(7^a;'*-^y"*

(n<tni, qGq=1) be absolutely convergent; and find its sum.

The series may be arranged thus :

—

1 + x+ x''+ . . . +a;"+. . .

~y - 2yx

-

Byx^ - . . . - (n+ 1) j/x" - . . .

+ 2/2+ By"-x+ 6j/2a;2+ .,. + i(/i + l)(n + 2)r/2a;»+, . .

( _ )mym+ ( _ )rr^^+^C,y^x + ( - I'^^+s^al/'^x^+...+(- )'"„,4^(7„2/™a;» + . . .

If x' and y' be the moduli, or positive values, of x and y, then the series

^^'m,n corresponding to the above will be

1 + x'+ x'2+. . . +a;'»+. . .

+y'+2y'x' + 3y'x'''+. . . + (n + 1) j/'x'™ + . . .

In order that the horizontal series in this last may be convergent, it is

necessary and sufficient that x'< 1.

Also T'^^y=y'^j{l — x'y^'^^; hence the necessary and sufficient condition

that Sr'^ be convergent is that y'<.l-x', which implies, of course, that

The given series will therefore satisfy Cauchy's conditions of absolute

convergency if
|
a;

|
< 1, |

a;
| + 1 j/

1 < 1, and consequently also
| y [

< 1.

These being fulfilled, we have r^+i= ( - )"^'"/(l - x)'»+i

;
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1-x+y '

and the sum of the series, in whatever order we take its terms, is 1/(1 -x + ij).

Example 2. If Ur=x''+ X''^^ +x^^+ . . ., where x<l, show that

Mo
,
Wl "2 , _0,, _?!! _ ^' _ ^'_

2b'*'2i 22 ° 2** 21 2^
*'*

Let S denote the series on the left. Then S may be written as a double

series thus,

l(x2» + x2Va;2V. . .+x'''+. . .)

+ ^(0 +a;2Va;2'+. . .+x^- +. . .)

+ ^(0 +0 + X2-+. . . + a;2''+. . .)

Now each of the vertical series is absolutely convergent, and we have

J7„=x2" (1 - l/2"+i)/(l - i) = a;2'' (2 - 1/2»). SC7„ is of the same order of con-

vergence as Sx'^", hence it is absolutely convergent. Also all the terms of the

double series are positive. The double series therefore satisfies Cauchy's

conditions ; and its sum is the same as that of Sf7„, or of Sr„. Now

ST„=Wo/20+ Mi/2i + «2/22+. . .;

and Sl7„=2x2"(2-l/2«),

= 22x2" -2x272",

= 2wo-a;2"/2»-x2V2i-. . .

Hence the theorem.

§ 35.] Examples of tlie exceptional cases that arise when

a double series is not absolutely convergent. It may help to

accentuate the points of the foregoing theory if we give an

example or two of the anomalies that arise when the conditions

of absolute convergency are not fulfilled.

Example 1. It is easy to construct double series whose horizontal and

vertical series are absolutely convergent, and which nevertheless have not a

definite sum of the first kind ; but, on the other hand, have one definite sum
of the second kind and another of the third kind.

If the finite sum of the first kind, /S^.^, of a double series be A +f{m, n),

where A is independent of m and n, then it is easy to see that

'i^m,n=f{m, n)-f{m-l, n)-f{m,n-l)+f{m-l,n-l).
Hence we have only to give/(ni, n) such a form that

L { Lf(m,n)}dr L { Lf(m,n)},

12—2
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and we shall have a series whose sums of the second and third kind are not

alike, and which consequently has no definite sum of the first kind.

Suppose, for example, that/(m, n) = (?n + l)/(m + n+ 2), then

u^„=(m + l)/(m + n + 2)-m/(m+ n + l)-(m+ l)/(TO + n+ l) + m/(m + n),

= (m-n.)/(m + n) (m+ n + 1) {m+ n + 2).

It is at once obvious that the sums of the second, third, and fourth kind

for this series are all different. For in the first place we observe that

^m,n— ~'"'rum- Hence there is a "skew" arrangement of the terms in the

array (1), such that the terms equidistant from the dexter diagonal of the

array and on the same perpendicular to this diagonal are equal and of opposite

sign, those on the diagonal itself being zero. Each term of the diagonal series

2D„ is therefore zero ; and the sum of the fourth kind is 0.

Also, owing to the arrangement of signs, we have Tm,„= - U^„; and,

since each of the horizontal and each of the vertical series in this case is

convergent, Tjn= -U^, and therefore S'= -S".

Now

Tm,n= 2 [(m + l){l/(ni + n + 2)-l/(jn+ n+ l)}-m{l/(m+n+l)-l/(wi+ n)}],

n=l

= (m + l){l/(m + 7i + 2)-l/(m + 2)}-m{l/(m + 7i + l)-l/(m+ l)}.

Hence

Tm=- ('» + !)/("* + 2) + ml{m + 1) = - ll(m + 1) (m+ 2).

The series ZT^ is therefore absolutely convergent ; and its sum to infinity

is obviously - 1 + 1/2 = - 1/2. Hence the double series has for its sum
- 1/2, + 1/2, or 0, according as we sum it in the second, third, or fourth way.

At first sight, the reader might suppose (seeing that the horizontal series

are all absolutely convergent, and that the sum of their actual sums is also

absolutely convergent) that this case is a violation of Cauchy's criterion.

But it is not so. For, if we take all the terms in the mth horizontal series

positively, and notice that the terms begin to be negative after m= n, then

we see that T'^ the sum of the positive values of the terms in the mth series

is given by
m <"

n=l n=in+l

= (m + l){l/(2m + 2)-l/(m + 2)}-m{l/(2?tt + l)-l/(m + l)}

-(m + l){0-l/(2m + 2)} + m{0-l/{2m + l)},

= l-2m/(2?;i + l)-(m + l)/(m + 2) + OT/(m + l),

= (m2 + m + l)/(ni+ 1) (m + 2) (2m + 1).

Now the convergence of ST'^ is of the same order as that of Sl/m, that is

to say, ST'^ is divergent. Hence Cauchy's conditions are not fully satisfied

;

and the anomaly pointed out above ceases to be surprising. The present case

is an excellent example of the care required in dealing with double series

which are wont to be used somewhat recklessly by beginners in mathematics*.

* Before Cauchy the reckless use of double series and consequent

perplexity was not confined to beginners. See a curious paper by Babbage,

Phil. Trans. R.S.L. (1819).
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Example 2. The double series S ( - )'"+™l/mn, whose horizontal and
vertical series are each semi- convergent, converges to the sum (log 2)* in the

second, third, or fourth way (see chap, xxviii., § 9, and Exercises xiii. 14).

But alteration in the order of the terms in the array would alter the sum
(see chap, xxviii.

, § 4, Example 3).

Example 3. If the two series Sa„ and 2&„ converge to a and h respectively,

and at least one of them be absolutely convergent, then it follows from § 14

that the double series 2a„&„ converges to the same sum, namely ah, in all

the four ways, although it is not absolutely convergent, and its sum is not

independent of the order of its terms.

The same also follows by § 20, Cor., provided Sa„, 26„, 2 {0'rfii + o,n-i\

+ . . . + aj &„) be all convergent, even if no one of the three be absolutely

convergent*.

If, however, both Sa„ and 2&„ be semi-convergent, then the diagonal series

may be divergent, although the series converges to the same limit in the

second and third way. This happens with the series S( - )"»+"l/(m7i)* where

a is a quantity lying between and \. This series obviously converges to the

finite limit (1 - 1/2* -f 1/3"*— ...)"' iii the second and third ways. For the

diagonal series we have

D„= S l/r''(n-r)«.
r=l

Now, since 0<o<l, we have, by chap, xxiv., § 9, r"-|-(w-r)«<2i-<*{r

+ (n -»•)}"< 21-" R«.

Therefore

y. ^ 1 ^ ^'"""^ 1 r°-h(w-r)°
n 2i-*ft* r* {n - »•)* 2i-«n« r" (n - r)» '

2 » 1 2 n
2 —

;

Hence, if a = J, LD„<t2''; and, if a<J, I/D„= qo, when n= cc. Therefore

2D„ diverges if < a J> ^.

IMAGINARY DOUBLE SERIES.

36.] After what has been laid down in § 10, it will be

obvious that, in the first instance, the convergency of a double

series of imaginary terms involves simply the convergency of

two double series, each consisting of real terms only.

It is at once obvious that each of the two double series,

2a^„, %Pm,n, will be absolutely convergent if the double series

* See Stolz, Allgemeine Arithmetik, Th. i., p. 248.
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^Ji'^^m.n + (i\n) IS Convergent. Hence, if u'm.n denote the

modulus of Um,n = ttm.n + i^m.n, We 866 that S^m.n will C0nV6rg6

to the same limit in all four ways if ^u'm,n he convergent.

In this case we say that the imaginary series is absolutely

convergent.

Since all the terms u'm,n are positive, we deduce from

Theorem II. the following :

—

Theorem IV. If all the horizontal series in the double series

formed by the moduli of the terms of 2m;„,„ be convergent, and the

sum of their sums to infinity be also convergent, then the series

5wto,» is absolutely convergent, and all its subsidiary series are also

absolutely convergent.

Here subsidiary series may mean any series formed by

selecting terms from 2«m.» under Restriction A. Theorem IV.,

of course, includes Theorem III. as a particular case.

§ 37.] The following simple general theorem regarding the

convergency of the double series Sa^.m^^i/" will be of use in a

later chapter.

If the moduli of the coefficients of the series 2am,„a?™3/" have a

finite upper limit \, then 2a„,^„a;'"2/'' is absolutely convergent for

all values of x and y such that \x\<l, \y\<\.

For, if dashes be used to indicate moduli, we have, by

hypothesis, a'm,™^^- Hence the series ^a!m,nx''^y"^ is, a fortiori,

convergent if the series %\x'^y"' is convergent ; that is, if

^^'wiyn.
jg convergent. Now, as we have already seen (§ 33),

this last series is convergent provided x <1 and7/'<l. Hence

the theorem in question.

Exercises VIII.

Examine the convergency of the series whose «th terms are the

following :

—

(1.) (l + n)/(l + n-^). (2.) nP/(nP+ a).

(3.) e-»'»^. (4.) l/(n2±l).

(5.) iy(n2-n){Vn-\/(n-l)}. (6.) a»/(a» + x»).

(7.) (nl)2x»/(2ji)l. (8.) n*ln\.

(9.) {(y + x»)/(2-a;»)}V», (10.) nlog{{2« + l)/(2n-l)} -1.

(11.) 1.3.5. . . (2h-1)/2.4.6. . . 2n.

(12.) {l/l»+l/2''+. . .+l/n«}/«».
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(13.) ll{an + b). (14.) nl{an^+b).

(15.) m(m-l) . . .(m-n + l)ln\ (16.) {(7i + l)/(n + 2)}"/n.

/ir,\ en ii, J.
"* m(wi + l) m(m+ l)(wi + 2) . .

(17.) Show that - H -r-' H—-, :rrA ^r- + ... IS convergent or
^ ' n n(n + l) n{n + l) {n+ 2)

divergent according as 7i - m> or }> 1.

(18.) Show that aV»»+ aV™+i/{»n-i) + aV^+iAm+iJ+i/Cw+a) + ... is conver-

gent or divergent according as a< or <tl/e. (Bourguet, Notiv. Ann., ser.

II., t. 18.)

(19.) Exataine the convergency of Sl/zif^+i)/".

(20.) Show that "Ln^jin + !)'*+<» is convergent or divergent according as

a> or > 1 . (Bertrand.

)

(21.) Show that Sl/n log ?i {log log n}* is convergent or divergent accord-

ing as a> or <1.

(22.) Show that Sl/(/H-l + cos mrY is convergent. (Catalan, Traite El.

d. Series, p. 28.)

Examine the convergency of the following infinite products :

—

(23.) n{l+/(?i)r"}, where/(?j) is an integral function of n.

(24.) n{(a;2»+ a;)/(a;2»+l)}. (25.) H {n'+^ I
(n - 1^ {n + z)}

.

(26. ) If 2/ (n) be convergent, show that, when ?i = oo
,

L{n{x+f{n))yi''=x.
1

(27.) If p denote one of the series of primes 2, 3, 5, 7, 11, . . . , then

2/(2)) is convergent if S/(p)/log jj is convergent. (Bonnet, Liouville's Jour.,

VIII. (1843), and Tchebichef, ih., xvii. (1852).)

(2d.) If a;<l, show that the remainder after n terms of the series

Vx + 2'rx^+ ^-rx^+ . . .

is <(n + l)''a;"+V{l-(l + l/n)'"a;}.

(29.) If Wfl, Mj, . . ., w„ be all positive, and 2w„a;" be convergent for all

values of x^< «'*, then

S^» |w„ - (n + 1) au^+, + (!i±_lH^±^
a-^u,+, - &c.

|
will be convergent between the same limits of x.

(30.) Point out the fallacy of the following reasoning :

—

Let 2= 1 + 1 + ^4- ... ad 00,

then log,2= l-^ + ^-i-H. . .

= (l + l+i+. . .)-2(i + i +K. . .)

= 2-22/2=0.
(31.) If p and p' be the ratios of convergence of 21/P^_i (n) {V-^ny+'^ and

21/P^ (n) {lrnY+'^' (see § 6), then L (p'„ - pj P^_^ (n) = a, when n = oo . What
conclusion follows regarding the convergence of the two series ?

(32.) If 2m„ is divergent, then 2u„/5f„_i" is divergent it a>l (where

S„=2tj + W2+ . . . +«„), and 2u„/S,j"'+i is convergent if a>0. Hence show
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that there can be no function (n) such that every series Sm„ is convergent

or divergent, according as L 0(n)u„= or #=0. (Abel, CEuvres, ii., p. 197.)
n=oo

(33.) If Sw„ be any convergent series whose terms are ultimately positive,

we can always find another convergent series, Su„, whose terms are ultimately

positive, and such that LvJu„= co.

If St{„ be any divergent series whose terms are ultimately positive, we
can always find another divergent series whose terms are ultimately positive,

and such that Lujt\= oo .

(These theorems are due to Du Bois-Eeymond and Abel respectively; for

concise demonstrations, see Thomae, Elementare Theorie der Analytischen

Functionen. Halle, 1880.)

(34.) If w„+i/M„=(n« + ^n''-i+. . .)/("" + ^'"""^ + • • •). t^^n 2m„ will

be convergent or divergent according as ^ -^'> or J>1. (Gauss, Werke,

Bd. III., p. 139.)

(85.) If M„^.i/u„=a-/3/7i + 7/n2 + S/n^+ . . ., then 2m„ is convergent or

divergent according as a<: or >1, If a = l, 2m„ is convergent only if /3>1.

(Schlomilch, Zeitschr. f. Math. , x., p. 74.)

(36.) S1/m„ is convergent if m„+2 - 2u„^i + «„ is constant or ultimately

increases with n. (Laurent, Nouv. Ann., ser. ii., t. 8.)

(37.) If the terms of 2u„ are ultimately positive, then

—

(I.) If \{/{n) can be found such that \l/(n) is positive, L^(n)M„=0, and

L {xp {n) M„/«„+i -\f/(n + l)}>0, 2m„ is convergent.

(II.) If xp{n) be such that ^^^(n) w„=0, L {^{n)uju„+i-xp(n + l)}=0,

and L\p {n) m„/{
V' («) uju^+i - vt- (ra + 1) } + 0, 2m„ is divergent.

(III.) If w„/w„+i can be expanded in descending powers of n, 2m„ is

convergent or divergent according as L {«uju„+i- (n + l)}> or t>0.

(IV.) If m„/m„+i can be expanded in descending powers of n, 2w„ is

convergent or divergent according as Lnu,^= or 4=0. (Rummer's Criteria,

Crelle's Jour., xiii. (1835) and xvi.)

(38.) If the terms of 2u„ be ultimately positive, and if, on and after a

certain value of n, o„Mn/"n+i~''^n+i>A'> where a„ is a function of n which

is always positive for values of n in question, and ;tt is a positive constant,

then 2m„ is convergent.

From this rule can be deduced the rules of Cauchy, De Morgan, and

Bertrand. (Jensen, Comptes Rendus, c. vi., p. 729. 18S8.)

Discuss the convergence of the following double series :

—

(39.) 2 (-)»-! r^/n. (40.) 2 ( - l)»-i r"'/"!

.

(41.) 2
{
(n - l)'»/n'»+i - 7i'»/(n + l)"»+i }.

(42.) 2a;'»t/"/(m + n). (43.) 21/(ni + n)2.

(44.) 21/(m + n). (45.) 21/(771" - ?{'').

(46.) Under what restrictions can 1/(1 + a; + j/) be expanded in a double

series of the form 1 + 2^,„, „a;'«i/" ?

(47.) If ^u^,n converge to S in the first way, and if its diagonal series be

convergent, show that the diagonal series converges to S also.
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Deduce Abel's Theorem regarding the product of two semi-convergent

series. (See Stolz, Math. Ann., xxiv.)

(48.) If uju^_^ can be expanded in a series of the form 1 + ajn + ajir + . . .

,

show that

1°. If ai= 0, ajj=0, . . ., a(n_i = 0, a^^O, then u^=u + vjn, where w is a

definite constant +0 and +x, and Lv^^ is finite when Ji= co .

2°. If Oj + O, and the real part of a^ be positive, then Lm„= qo when
n=QO.

3°. If aj + O, and the real part of a^ = 0, then I,w„ is not infinite, but is

not definite.

4^ If Oj + O, and the real part of a^ be negative, then I,m„=0.

Apply these results to the discussion of the convergency of 2;j/,^x", and,

in particular, to the Hypergeometric Series, and to the following series :

—

^t^+H^ni^ + yir, 2x«/«^+>'», 2^GJ(m + n)P, 2 ( - )»^CJ(m + «F.

(See Weierstrass, Ueber die Theorie der Analytischen Facultat.— Crelle's

Jour., LI.)

(49. ) Discuss the convergence of S ^C„ (a - n/3)"-^ (x + n/3)».

(50.) If M„ and i;„ be positive for all values of n, never increase when n
increases, and be such that I/M„=0, Lt;„=0, when n = Qo, find the necessary

and sufiicient condition that 2 (m„Vi + Un-it^^ + • • • + "i^n) = ^Wn ^ 2i>„. (See

Pringsheim, Math. Ann., Bd. xxi.)

(51.) If < ilf„< iH„+i and LM^=0 when n=oo , show that every diver-

gent series of real positive terms can be expressed in the form 2 (^„+i - M^)

;

and every convergent series of real positive terms in the form 2 (il/„+i - M„)/

Also that the successions of series

2(M„+i-lfJ/Pr(M„), r=0, 1, 2, . . .

^(M,+,-MJIPAM^+,){lrM^+,r, r=0, 1, 2, . . .,

where 0<p<l, and P^ (x) has the meaning of § 6 above, form two scales, the

first of slower and slower divergency ; the second of slower and slower

convergency. (Pringsheim, Math. Ann., Bdd. xxxv., xxxix.)



CHAPTER XXVII.

Binomial and Multinomial Series for any Index.

BINOMIAL SERIES.

§ 1.] We have already shown that, when w is a positive

integer,

{l + xf=\+,„C^x + ^C^x' + . . . + »C„a;'' + . . . + ^(7„a;™ (1),

where raCn = m(m-l) . . . (w - w + l)/w! (2).

When m is not a positive integer, mOn, although it has still a

definite analytical meaning, can no longer be taken to denote

the number of ;i-combinations of m things ; hence our former

demonstration is no longer applicable. Moreover, the right-hand

side of (1) then becomes an infinite series, and has, according

to the principles of last chapter, no definite meaning unless the

series be convergent. In cases where the series is divergent

there cannot be any question, in the ordinary sense at least,

regarding the equivalence of the two sides of (1).

As has already been shown (pp. 122, 131), the series

1 + rriCiO! + ^dar" + . . .+^C„iP™ + . . . (3)

is convergent when a has any real value between — 1 and + 1

;

also when w = + l, provided m>-l; and when w = -l, pro-

vided 'm>0. We propose now to inquire, whether in these cases

the series (3) still represents (1 + a;)™ in any legitimate sense.

In what follows, we suppose the numerical value of m to be

a commensurable number* ; also, for the present, we consider

* If m be incommensurable we must suppose it replaced by a commensur-

able approximation of sufficient accuracy.
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only real values of x, and understand {l+xY^ to be real and

positive.

§ 2.] If we assume that (1 + a?)"* can be expanded in a con-

vergent series of ascending powers of x, then it is easily shown

that the coefficient of x^ must he m{m-\) . . . (m-n+ l)/n\.

For, let

(l+x)'^ = ao + aiX + a2a^ + . . .+anX^ + . . . (1)

where fto + «i^ + «2^ + . . . + cinX^ + . . . (2)

is convergent so long as \x\<R (it will ultimately appear that

R = 1). Then, if h be so small that \x + h\<B, we have

{1 + x^- hy- ^ ao+ ai{x + h) + a2{x + hY+ . . . + a„(^ + ^)'*+. . . (3),

the series in (3) being convergent by hypothesis.

Hence by the principles of last chapter, we have

{l+x + h)'^-{l+x)"' _ {x + h)-x {x + hf-x^
{\+x-^h)-{\+x) ~ ^ {x + h)-x ^ {x + h)-x

the series in (4) being still convergent. Hence, if we take

the limit when h-O, and observe that

(l+i» + A)-(l+^) ^ ' '

{x + h)-x '

by chap, xxv., § 12, we have

m{l+x)'^-'^ = ai + 2a.x + . . .+nanC(f-^ + . . . (5),

where the series on the right must still be convergent, since

L {n + 1) an+i/nun = Za„+i/a„ when w = c» *. Hence, multiplying

by 1 +x, we deduce

m (1 + x)'^ = ai + («! + 2a.2) x + . . . + {na^ + (w + 1) an+i} ^" + . . .

,

that is,

muo + maix + . . . + manX^ + . . . = «! + («! + '2a^ x+. . .

+ {nan + (n + 1) ttn+i} x"" + . • . (6).

* We here make the farther assumption that the Hmit of the sum of the

infinite number of terms on the right of (4) is the sum of the limits of these

terms.
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By chap, xxvi., § 21, the coefficients of the powers of x on

both sides of (6) must be equal. Hence

a^-ma^, 2a2 = {m-l)ai, . . ., (n + l)an+i = {m-n)an, . . . (7).

From (7) we deduce at once

ai = mao, a2 = m(m-l)ao/2\, . . .

an = m(m-l) . . . {m-n + l)ao/n\, . . .

To determine ao we may put a; = 0. We then get from (1),

a„ = !»» = 1 (if we suppose, as usual, the real positive value of

any root involved to be alone in question). We therefore have

(1 + «)'"=1 + :S„C„^" (8).

The theorem is therefore established ; and we see that the

hypothesis under which we started is not contradicted provided

|a7|<l, this being a sufficient condition for the convergency of

§ 3.] Although the assumption that (1 + a;)'^ can be expanded

in a series of ascending powers of x leads to no contradiction in

the process of determining the coefficients, so long as
|

a;
|
< 1

;

this fact can scarcely be regarded as sufficient evidence for the

validity of a theorem so fundamentally important. We proceed,

therefore, to establish the following theorem, in which we start

from the series in the first instance.

Whenever the series 1 +%mCnX^ is convergent, its sum is the

real positive value o/ (1 + x)"^.

The fundamental idea of the following demonstration is due

to Euldr* ; but it involves important additions, due mainly to

Cauchy, which were necessary to make it accurate according to

the modern view of the nature of infinite series.

Let us denote the series

1 + J]^x + JJ^ar + . . . + JJuX"" + . . . (1)

by the symbol f{m).

So long as -l<a?<+l, f{m) is an absolutely convergent

series, and (by chap, xxvi., § 20) is a continuous function both

of m and of x.

• }f(ov. Comm. Petrop., t. xix. (1775).
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Hence, mi and m-i, being any real values of m, we have

= 1 + 2 (mi^ri + 7n,f^lmif^»-l + m2f^2mi^n-2 + • • • "^ rn^^n) X (2),

where the last written series is convergent (by chap, xxvl, § 14),

since the two series, 1 + ^rnfinX^ and 1 + Sm,(7„^", are absolutely

convergent.

Now, by chap, xxiii., § 8, Cor. 5,

hence f{mi)/{m2) = 1 + ^m,+m,C„w'\

=f(mi + m^) (3).

In like manner, we can show that

f{mi + m2)/{ms) =/(w^l + ^2 + ma).

Hence f{mi)f{m2)f{m^ =/(wi + mj + m^)
;

and, in general, v being any positive integer,

f{mi)f{mi) . . . f{m„) =f{mi + m^ + . . .+m„) (4).

This result may be called the Addition Theorem for the

Binomial Series.

If in (4) we put mi^m^^. . . = m„=l, then we deduce

{f{l)Y=fiv) (5),

where v is any positive integer.

If in (4) we put mx = m^ = . . . = m„ =p/q, where p and g
are any positive integers, and also put v = q, we deduce

{/(p/q)}'=/ip) (6).

Hence, by (5), {/(p/q)}' = {/(l)}^ (7).

Again, if in (3) we put mi = m, m^ =-m, we deduce

/(m)/{- m) =f{m - m) =/(0) (8).

Hence f{-m)=f(0)//{m) (9).

These properties of the series (1) hold so long as -l<x<+ 1,

and they are sufficient to determine its sum for all real com-

mensurable values of m.
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For, since aCi=l, ,C; = 0, . . ., ^ = 0, . . . o^^^^O, 0^2 = 0,

. . . , oC^n = 0, . . .we have

f{l) = l + x, f{0) = \.

Suppose, now, 7?i to be a positive integer. Then, by (5),

(1 + xY =f{m) = 1 + r^Cx + mC^x' + . . . + ^C^^™ (10),

where the series terminates, since mCm+i = 0, m^m+2 = 0, . . .,

when w is a positive integer. This is another demonstration of

that part of the theorem with which we are already familiar.

Next, let m be any positive commensurable quantity, say

p/q, where p and q are positive integers. Then, by (7),

{Ap/q)}' = ii + ^y (11).

Hence/(p/q) is one of the g'th roots of the positive* quantity

(1 + xy. But /(p/q) is necessarily real ; hence, if (1 + x)^''^

denote, as usual, the real positive qth. root of (1 + xy, we must
have

f(p/q)^±{l+a;y"' (12).

The only remaining question is the sign of the right-hand side

of (12).

^'mce /(p/q) is a continuous function both oi p/q a.nd of x, its

equivalent ± (1 + x)^'^ must be a continuous function both of

p/q and of x. Now (1 + x)^'^ does not vanish (or become in-

finite) for any values of p/q or of x admissible under our present

hypothesis ; and being the equivalent of a continuous function it

cannot change sign without passing through 0. Hence only one

of the two possible signs is admissible ; and we can settle which

by considering any particular case. Now, when ^2; == 0, /(p/q) = + 1.

Hence the positive sign must be taken ; and we establish finally

that

/(p/q)^ + (l + x)P'%

that is,

(1 + X)"^ = 1 + mCiX + mCx" + . . . + ^CnX^ + . . . (13),

when m is any positive commensurable quantity.

* Positive, since -l<x<l, by hypothesis.
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Finally, let m be any negative commensurable quantity, say

m = - m', where m' is a real positive commensurable quantity.

By (9) we have

/(-m')=/(0)//(m') = l//W-
Hence, by (13),

/(- m) = 1/(1 + x)^',

= (1 + ;2;)-™',

that is,

where m is any commensurable negative quantity.

The results of (10), (13), and (14) establish the Binomial

Theorem for all values of x such that - l<a;<+ 1. It remains

to consider the extreme cases.

When a; = +l, the series (1) reduces to

1 + mf^i "*" m^2 + . . . + m^^n + • . .

This series is semi-convergent if —l<m<0, absolutely con-

vergent if m>0. Hence, by Abel's Second Theorem, chap, xxvr.,

§20,

(1 + 1-0)'"= L {l+mCrW + ^C,aP+. . ,+^CnX- + . . .},
a;=l-0

that is,

2'»=l+„,(7i + ™(7, + . . . + M. + . . . (15),

provided m>-l, with the condition that, when -l<w<0, the

order of the terms in the series of (15) must not be altered.

If 0<i»<l, we have, by the general case already established,

(l-^)™=l-™Ci^ + ^C2^-^-. . .(-)\Cna;'' + . . .

Hence, since the series

l~mW + mf^2~' • • (~)'^>lf'n + • • •

is convergent if wz> 0, we have, by Abel's Theorem,

(l-r^)'»= L {l-rr^Cw + mC.x'-. . .(-)»^C„^» + . . .),
x=l-0

that is,

0=^—mOi + mC2-k . • (—)\Cn + . . . (16),

provided m be positive.

The results of (15) and (16) complete the demonstration of
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the Binomial Theorem in all cases where its validity is in

question.

Cor. If x^y, it follows from the above result that we can

always expand {x + yY' in an absolutely convergent series. We
have in fact, if

|
^

|
>

1 3/ 1

, that is,
|

y\x
\
< 1,

(a; + y)™ = ic"* (1 + ylxY,
= x''{l+r.GAylx)+raG.,{ylxY + . . . + „(7„ (y/^)" + . . .},

= x'^ + ^G,x^-'y + m.C,x^-Y^- ' .+^^^^-"2/" + . . . (17);

and if
I

a;
I

<
1 2/ 1

, that is,
|
xjy

|
< 1,

{x + y)'^ = y'^{l-¥xly)'^,

= y'^{l+MCiix/y) + ^C,(xlyy + . . .+raGn{xlyY + . . .},

= 3^™ + raG^y'^-^X + rnG^y'^-'^x'' + . . . + JJ^y'^-'^ x"" + . . . (18).

If 7W be a positive integer, both the formulae (17) and (18) will

be admissible because both series terminate. But, if m be not a

positive integer, only one of the two series will be convergent.

§ 4.] The general formulae of last paragraph contain a vast

number of particular cases. To help the student to detect these

particular cases under the various disguises which they assume,

we proceed to draw his attention to several of the more com-

monly occurring. The difficulties of identification are in reality

in most cases much smaller than they at first sight appear. We
assume in all cases that the values of the variables are such that

the series are convergent.

Example 1.

(l + a-)-' = l-x + a;2-. . , + (-)»a;" + . . .;

(l-a;)-i = l + a; + x2 + . . . + a;" + . . .

For (l + x)-i=l+S_iC„a;";

and _iC„=-l(-l-l)(-l-2) . . . (-l-n + l)/nl.

= (-)"!. 2. 3 . . . n\n\.

= (-)»!.

(l-x)-i = l + S_i(7„(-x)»;

and -iC» {- ^)" = (-)"(-)"«'''=(- P^"

Example 2.

(l+a;)-2= l-2a; + 3x2-. . . +( - )»(n+l)a:'' + . . .;

(l-a;)-2=l + 2x + 3x'' + . . .+(n + l)x" + . . . *

For ^C„=-2(-2-l) . . . (-2-n+ l)/nI,

= (-)»{« + !).
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Example 3.

(l + a;)-»=l-3a; + 6.T2- . . . +(- )»i (w+ 1) (n + 2) a,"+ . . .;

(l-x)-8=l + 3x + 6a;2+ . . . +^(n + l)(7i + 2)a;»+ . . .

Example 4.

Example 5.

Example 6.

/I x^» 1 '"" X m{jH-2) fx\^

m(m-2)(m-4) . . . (7?i-2n + 2) /xN"
"*

7j1 V2J
"^

"'

-1 , "^y
I

"^("^-2) o m(m-2)(m-4). . . (ot-271 + 2)
~ ^ 2 2.4

+•••+
2.4.6. ..2« '^ ' '

'

(l + x)-n./.= l + S(-)n"^(" + ^n"; t^
• • •

l"
+ ^"-^)x".

^.4.0 • • • a'H

Example 7.

(l + xr/^^l + Z^^^-^^^V;^-
•
•^^-"^ + ^^ xn;

^ ' q .2q .2q . . . nq

(1 - x)-P/«= 1 + S P(P + g)(^ + ^'?)-- -(P + ^g-g) ^».
^ ' q .2q .Sq . . , nq

Example 8.

It will be observed that the coefficient of x" in this last expansion, when

m la integral, is (see chap, xxiv., § 10) the number (^HJ of n-combinations

of m things when repetition is allowed. It is therefore usual to denote this

coefficient by the symbol ^iT„, m being now unrestricted in value. We
shall return to this function later on.

Example 9.

i{(l + xr+(l-x)'"}=l + ^C2x''+^(74X*+ . . . +„C'2„x2»+ . . . ;

^{(l+x)"'-(l-xr}=^CiX + „C3x3+ . . . +^C^^_,x^n-l+
. . ,

Ultimate Sign of the Terms.—Infinite Binomial Series belong

to one or other of two classes as regards the ultimate sign of

the terms—1st, those in which the signs of the terms are

ultimately alternately positive and negative ; 2nd, those in

which all the terms are ultimately of the same sign.

c. n. 13
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If X and m denote positive quantities (m of course not a positive integer),

1st. The expansions of (l + a;)"* and (1 + a;)-'" both belong to the first

class. In (l + x)'" the first negative term will be that containing a;"+^, where

n is the least integer which exceeds m. In (1 + x)~'^ the first negative term

is of course the second.

2nd. The expansions of (l-a;)"», (l-x)-'", both belong to the second

class. In (1 - a;)"* the terms will have the same sign on and after the term

in a;" n being the least integer which exceeds m, and this sign wUl be + or

- according as n is even or odd. In (1 - a;)""* all the terms are positive

after the first.

§ 5.] A great variety of series suitable for various purposes

can be readily deduced from the Binomial Series ; and, conversely,

many series can be summed by identifying them with particular

cases of the Binomial Series itself, or with some series deducible

from it.

The following cases deserve special attention, because they

include so many of the series usually treated in elementary text-

books as particular cases, and because the methods by which the

summation is effected are typical.

Consider the series S^r(^)mC»i«", where <i>r{n) is any integral

function of n of the rth degree. Such a series stands in the

same relation to the simple Binomial Series as does the Integro-

Geometric to the simple Geometric Series. We may therefore

speak of it as an Integra-Binomial Series.

We may always, by the process of chap, v., § 22, establish

an identity of the following kind,

^r(w) = J.o+^iW+yl2w(w-l)+. . .+Arn{n-\) . . . (w-r+1) (1),

where Ao, Ai, A^, . . ., Ar are constants, that is, are independent

of n.

We can therefore write the general term of the Integro-

Binomial Series in the following form :

—

^r(»)m^»«" = Ao m^n^" + Ain^CnX'^ + . . .

\-Arn{n-\) . . . (w-r+l)^(7„a;",

= ^Om^n'^ "T niJ±i3/ fn—ifyfi—ilV

+ m(?w-l) J.2^m-2^n-2^"~^+ . . . +in(m-l) . . .

{m-r+l)Araf^-rCn-ra;'*-'' (2).
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Hence, if the summation proceed from to go
, we evidently

have

Mr{n)raCnX''=A3'mGnX^+rnA^X%ra-lCn-^X'^~'^+. . .

1

+ m{m,— l) . . . {m-r+\)ArX^%m-rGn-rX'^~'^ (3),
r

+ m{m-\) . . . {m-r+\)ArX'''{l+xY-'',

since all the Binomial Series are evidently complete*. Hence

2(^r {n)r„.GnCc^^{AQ + mA^xl{l + x) + m{m-\) A^x^il +xy + . . .

+ m{m-l) . . .{m-r+1) Arx''/{1 + xY] (1 + x)"^ (4)

;

and the summation to infinity of the Integro-Binomial Series is

effected!.

The formula will still apply when w is a positive integer,

although in that case the series on the left of (4) has not an

infinite number of terms. The only peculiarity is that a number

of the terms within the crooked bracket on the right-hand side

of (4) may become zero.

• °°

Cor. We can in general sum the series ^i>r(n)mCna!"l(n + a) (n + b)

. . . {n + k), where a, h, . . ., k are unequal positive integers,

in ascending order of magnitude.

For, by introducing the factors w+1, w + 2, . . ., n + a-\,

w + a+1, w + a + 2, . . .,w + 6-l, &c., we can reduce the general

term to the form

«A {n)rr.^uGn^ica;''^''l{m + 1) (m + 2) . . . (m + k) a^ (5)

;

where i/' {n) is an integral function of n, namely, 4*r (n) multiplied

by all the factors introduced which are not absorbed by m+kGn+k-

* If the lower limit of summation be not 0, then the Binomial Series on
the right-hand side of (3) will not all be complete, and the sum will not be
quite so simple as in (4).

t It may be remarked that the series is evidently convergent when x<l.
The examination of the convergence when x=l will form a good exercise on
chap. XXVI.

13—2
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Hence
00

^i>r {n)mGnCffl{n + o) (fl + b) . . . (fl + k)

= {i./. (w) ,„+fc(7„+,^"+'=}/(m + l){m + 2). . .{m + k)o^ (6).

The summation of the series inside the crooked bracket may
be effected ; for it is an Integro-Binomial Series. Hence the

summation originally proposed is always possible.

We have not indicated the lower limit of the summation,

and it is immaterial what it is. Even if the lower limit of

summation be 0, the Binomial Series into which the right-

hand side of (6) is decomposed will not all be complete (see

Example 6, below).

It should also be noticed that this method will not apply if

m be such that any of the factors m + \, m + 2, . . ., m + k

vanish. In such cases the right-hand side of (6) would become

indeterminate, and the evaluation of its limit would be trouble-

some.

The above method can be varied in several ways, which

need not be specified in detail. It is sufficient to add that by

virtue of Abel's Second Theorem (chap, xxvi., § 20) all the

above summations hold when a? = ± 1, provided the series in-

volved remain convergent.

Example 1. To expand (a; + ?/)"* in a highly convergent series when x
and y are nearly equal. From the obvious identities

{{x+y)l2x}^={2xl{x+ y)}-"^={l + (x-y)l(x + y))-^,

{{x + y)l2y}«'={2yl{x + y)}-«*={l-{x-y)Hx+ y)}-^,

(x+j/)"* {l/(2xr± l/(2j/n = {1 + (x - i/)/(x+ j/)}-'»± {1 - (x - 2/)/{a; + y)}-».

•we deduce at once

(i + !,)"=2"i". |l +S(-)VH.(^)"[ ,

where ^fl'„=m(m + l) . . . (m+ n-l)/n!,

_2V^+ix^y«* I m(m + l)
f
x-yy m(w+ l)(m+ 2) (ot+ 3) fx-y

\*

t^+ 21 \x + y)
+

41 [IT^)xm+ yn

^ 2^+1 a-mym
J
jn fx-y\ TO(w+ l)(m + 2) f

x-yy 1

All these series are highly convergent, since (x-y)l(x+y) is small.

}
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Example 2. To sum the series

2
9-*-

2 /2y 2^ /2\3 2.5.8 /2\*

If we denote this series by Wj+M2+%+ • • •• ^^ s^e that

+ (ra-2)3}
3̂2n»

(-l + T^-1) /2\»

_ 2.5. . .{2 + (ra-2)3} 2^
"" ~

nl 32"

'

«1 (!)"•

_
^

)n i(i-i)a-2)- • -g-^+i) m"^

!ti.GIlC6

= 1/4/3.

Therefore,
«t^ + M2 + M3+ . . . =1-1/4/3.

Example 3. To sum the series

m m (m - 1) m (wi - 1) (m - 2)
+

J
+ j-y2 + • • M

whenever it is convergent.

Here we have

_m{m-l){m-2) . . . (m-n)
"n+i -

-I
,

_m(m-l) (m-1-1) . . . (m-l-n+ l)~
ni •

Hence
Mi+M2 + «3+ • • . ='n{l+m-iCi + «-iC2+ . . .}

= ni{l + l}'"-i=m2"*-\

provided m - 1> - 1, that is m> 0.

It should be observed that we have at once from §2(5) the equation

m(l + x)^-^ = l^Ci + 2^C^x+ . . . +n^C„a;™-i+ . . . (1),

from which the above result follows by putting x=l.
By repeating the process of § 2, we should deduce the equation

m(m-l) . . . (m-ft+ l)(l + a;)'"-*=1.2 . . . fc^Cfc+2.3 . . . (fc + 1)

mCk+i^+ • • • +{n-k + l){n-k + 2) . . . 7i„(7„a;«-*+ . . . (2),

whence it follows that

m(m-l). . .(m-fc + l)2'»-*= 1.2. . . k^Gj,

+ 2.3. . .(k + l)^G,+,+ . . . (3),

provided m>k-l. These results might also be easily estabhshed by the

method first used.

Example 4. To sum the series

1.2. . .&^2.3. . .(/c + l)^3.4. . . {k+2y • •
•
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Here we have
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Hence

(l + .r)"

(ra+l)(n+ 2) . . , (n + k)

(m+l) (ni+ 2) . . .{vi + k)x'''

1

(»i+ l)(m + 2) . . . (m+ fe)a;fc (m+ l)(m+ 2) . . . (m + A)a;*^^'^'^*^^^

Therefore

_
(1 + a;r+fc-l- ^+,(7j X - ^+fcC2a;2 - ... - ^+^0^., a*-i

(4).(m + l) (m+ 2) . . . (7;i + /c)a^

If 7)t> - ft - 1, this gives as a particular case

S^C„/(n + l)(n + 2). . . {n+ k) =

{2m+*_l-*°S '^+fc(7j/(7n + l)(m+ 2) . . . (m+ k) (5).
«=i

The formulffi (1), (2), (3), (4), and (5) contain of course a considerable

variety of particular cases.
CO

Example 5. Evaluate Sn^^C7„a;".

Let n^=AQ + A-^n + A^n (n - 1) + A^n (n - l){n - 2), then we have the follow-

ing calculation to determine Ag, A^, A^, A^ (see chap, v., § 22).

1 +0 +0|+0 ^=0,

^1 = 1,

A^= ^, Jg=l.
Hence

Sn=i^C„x«=0 . I^C„x'' + l?7ia;l^_iC„_ia;"-i + 3m (m - 1) x'l^^_^C^_^x'^-^
1 2

+m (m- 1) (m- 2) x3S^-3C„_3a;»-3,
3

= mx (1 + x)*"-! + 3m (m - 1) x2 (1 + x)"»-2+m (m - 1) {m - 2) x^ (1 + x)'"-3,

= {w?x^+ m (3m - 1) a;2 + mx} (1 + x)™"'.
CO

Example 6. Evaluate S^C„x''/(n + 2) (n+ 4).

^C^x" ^ (» + !)(» + 3) „^+40n+4a^""^*

(h + 2) (n + 4) x^ (m + l) (m+ 2) (m + 3) (m + 4)
*

(7t+ l)(n + 3) = 7i2+ 4« + 3,

= ^o+ ^i(" + 4) + ^2(«+ 4)(M+ 3).

1 +4 +3
-4 +0

1 +1 +1

2

1 +1|+1
+2

11+3

-4

-3
1 +0|+3
-3

11 -3
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We therefore have

» C a;" 1 »

?{n+V(«+ 4)
" xHm + l){m+ 2)(m+ 3)(m + i) ^^? rr^^n+i^''^* - 3 (m + 4) x

+ (m + 4) (m+ 3) a;2 {(l + a;)»'+2-l -^+2010;}],

a* (m+ 1) (m + 2) (m + 3) (m + 4)
"• ^ ^ ' ^ ' ^ ' ^ ^ '

+ {i(m + 3)(m+ 4);r2_3|].

Exercises IX.

Expand eacli of the following in ascending powers of a; to 5 terms ; and in

each case write down and simplify the coefficient of a;''.

(1.) {l + xfl\ (2.) (l-a;)-V2. (3.) (l_a;)-3/4.

(4.) {2-1x^1^. (5.) (a+ 3a;)i/3. (G.) ^l{d^-x^).

(7.) ^(1-nx). (8.) l/(l-3a;2)V3. (9.) (^-l/x)-".

(10.) Write down the first four terms in the expansion of
{ (a+ x)/(a - x) } V-^

in ascending powers of x.

Determine the numerically greatest term in

(11.) (3 + a;)2/3, x<3. (12.) (2-3/2)"/2. (13.) (1 - 5/7)-i3/s.

(14.) Find the greatest term in (l + a;)~", when x=^, n=4.

(15.) If 71 be a positive integer, find the greatest term in (n - l/?i)2n+i.

(16.) The sum of the middle terms of (l + a;)"» for all even values of vi

(including 0) is (1 - 4a;)-i/2.

(18.) Show that, if m exceed a certain value, then

»^. 1
I

(»t+ l)"t
I

(m + l)m{m-l){m-2)
.-i+

2! "^ 41
*•••

(19.) Sum the series

a-(a + &)m+(a + 26)—5^j—i_(a + 36)-i ^ '+. . .,

for such values of m as render the series convergent.

(20.) N/27=2 + 24 +y+...

V**'i 24 3*^ a'*31 2*4r 2^51
*''
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(22.) Sum to infinity

1 1.4 1.4.7
6"*" 6.12"*' 6. 12. is"*"'

*

(23.) Sum the series

m(m IN i

"^('"-^)("^-^)
I

m(m-l) . . .
(
m-r+1

)

for such values of m as render the series convergent.

(24.) If n be even, show that

n(n+ 2) . . . (2ra-2)/1.3 . . . (?i-l) = 2»-i.

(25.) In the expansion of (1 - x)~'"* no coefficient can be equal to the next

following unless all the coefficients are equal.

(26.) Prove by induction that

m{m + l) m{m+ l) . . . {m+ r-1) _{m + r)ll+m+
2j

+...+
^:j ^-i^ifd'

where r is a positive integer. Hence show that, if x< 1,

^ ''> -^ (m-l)Irl •

(27.) The sum of the first r coefficients in l/,;/(l - x) : the coefficient of

the rth term= 1 + n (r - 1) : 1.

(28.) If ir(a) = l4-^ + ^(^)..H^i^±4/^±^)x3+. . ..theseries

being absolutely convergent, then

F{a)F{b) = F{a + b).

What is the condition for the convergency of the series ?

(29.) Show that

j-nGij+nC,j-. . .=[l-{(n + l)a; + l}(l-x)»«]/(n + l)(n + 2).

Sum the following series, so far as they are convergent :

—

(30.) 2(71- 1)2 jn (Hi -1) . . . (77i-n + l)x»/7il, from w= l to?i=oo.

(31.) S(-)»-i(ji+ l)(n + 2)1.3.5 . . . (2n-5)a;"/n!, from ji^O to rt=oo ,

(32.) Sm(m+1) . . . (m+ n-l)a;»/(n + 3)?i!, from ri=0 to n=oo .

(33.) S(?i-l)n.4.7 . . . (3n-2)/(?i + 2)(n + 3)n!, from n=l to 71=00.

(34.) Why does the method of summation given in § 5 not apply to

la;»/(n+ l)?

SERIES DEDUCED BY EXPANSION OF RATIONAL FUNCTIONS OF X.

§ 6.] Since every rational function of w can be expressed in

the form I+F^, where / is an integral function of x, and i^ a

proper rational fraction, and since F can, by chap, vni., § 7, be
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expressed in the form %A{x- a)-'^, where A is constant, it follows

that for certain values of a; a rational function of a; can be ex-

panded in a series of ascending powers of x, and for certain

other values of a; in a series of descending powers of a;*. "We

shall have occasion to dwell more on the general consequences of

this result in a later chapter, where we deal with the theory of

Recurring Series. There are, however, certain particular cases

which may with advantage be studied here.

§ 7.] Series for expressing a" +^ and (a"+^ - ^"+^)/(a - /8) in

terms of a^ and a + fi, n being a positive integer.

If we denote the elementary symmetric functions a + y8 and

ajS by p and q respectively, it follows from chap, xviii., § 2, that

we can express the symmetric functions a'' + /3™, (a"+^ - y3"+^)/

(a - j3) as follows :

—

ar'-\-^ = aoP^+a^p^-^q+ . . . + a^;?*'"'^?*" + • • • (1),

(„n+l _ ;8"+l)/(a - /3) = 6„j9" + 6i^«-V + . . . + brP^'-^-'q'- + . . . (2),

where both series terminate.

By the methods of chap, viii., § 8, or by direct verification

we can establish the identity

2-px _ 2-(a + (3)w _ 1 ^ 1 ,g.

1 -px + qa^ (1 — ax) (1 - (3x) 1 - aa; 1- fix ^
^'

Now if X be (as it obviously always may be) taken so small

th.&tpx-qx'^Kl, we have by the Binomial Theorem

1 -pxTqa^
" ^^ ~-^^^ {l-{px- qx")}-' = (2 -px) {l + {px- qx")

+ (px - qx^y + . . . + (px - qxy- + . . . } (4).

Now (by chap, xxvi., § 34) if x be taken between - a and + a,

a being such that the numerical value of ±po.±qa?<\, that

arrangement of signs being taken which makes ±pa. + qa? greatest,

then each of the terms on the right-hand side may be expanded

in powers of x and the whole rearranged as a convergent series

proceeding by ascending powers of x.

* Strictly speaking, this is as yet established only for cases where a

is real. The cases where o is imaginary will, however, be covered by the

extension of the Binomial Theorem given in chap. xxix.
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We thus find that

+ (-)Vra.i3''-''-/+. . .)^n (5),

= 2 {1 + 2 &c.} -px {1+2 &c.} (6).

The coefficient of x^ on the right-hand side of (6) is

Now

2n-rCr-n-r-iCr = n{n — r-l)(n-r-2). . . (n-2r+l)/rl

Hence

^—p^ n ^ r « w «-9 n(n-3) „. „

Again

--^ + :p^-{l + a^ + aV+. . . + a'^^'* + . . . ] + {1 + /3x

+ i8V+. . . +fi"x''+. . . },

= 2 + 2(a™ + y8'^)^™ (8).

All the series involved in (8) will be absolutely convergent,

provided x be taken so small that
|
ax

\
and

|

^x
\
are each < 1.

Now, by (3), the series in (7) and (8) must be identical. Hence,

comparing the coefficients of x"^, we must have (by chap, xxvi.,

§21)

+ (_ ^y.
n{n-r-l){n-r-2). . . (w - 2r + l)^^.^^^^

^

(9).

As we have indicated (by using =), the equation (9) is an

algebraical identity, on the understanding that p stands for a + ^
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and q for a/3. The last term will or will not contain p according

as n is odd or even.

In like manner, from the identity

sj^ ^—\JL
\—px + qa? 1 - (a + /8) i» + a.^a? \\-ax 1 - ^x) a — P

we deduce

(„«+i _ y8"+i)/(a -I3)=p^- ^^p^-"^q + ^^
'^l^""'

^^ p^-'q-" -
. . .

I i\rO^~0(w-r-l) . . .(«-2r+l) „ o„ r /i/v\+ (-1)'^^ ^^
'-^^

^ ->»-V+- • • (i^X

subject to the same remarks as (9).

If we write the series (9) in the reverse order, and observe

that, when n is even, = 2w say, only even powers of p occur, and

that the term which contains p" is

i_\ra-» 2?;^(m + g-l)(m + g-2). . . (2^ + 1)

^ ^
_

(m-s)! ^ ^ '

that is,

. .„j_g2w(w + s-l)(w + s-2). . . (w+ l)w(m- 1) . . . (y»-s+ 1)

p^q"^-',

that is,

\ ) ^ (2s)! -P ^ »

then we have

a2'» + ^« = (_)'«2f/" -^jt?V'+^^^^^^l^^V<Z"'~'-- • •

Similarly, we have

^2,»+l + ^2m+l = (_)'« (2m + 1) [pq^^ - (^' + l)^^3^m-l
I 3!

5!
^^5 ~TO-2

^ ^ (2s-l)! ^ ^ •
• •/

(9").
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^(-)-
"^"^-^^|,;_,)f-^^\--v-'^...} (10').

a-^ -'^ M^ 2! -^^ 4!

p-m^m-s^ ... I (10").

Since a and P are the roots of the quadratic function

!? -pz + q, we may replace a and /3 in the above identities by

i {p+ J{p^ - 4g')}, and ^ {p - sj{p^ - ^)} respectively. If

this be done, and we at the same time put p = x and —^q=y^,

we deduce the following :

—

{x + V(^ + f)Y + {x- Jix" + f)Y

= 2« [x^ + ^, x^-Y +^^^ ^'^-Y +

^K^-y-l)(^-^-2)...(?^-2r+l) ^„_,,^^,

r!2'^
+ ^—

—

~'^"
'

. ~r ' •^" "• •
''

a;«-='Y' + . . .

I

,

7Z-(7^''-2^)(;^^-4^). .(^^--2^2-) 1

(2s)!
^^ ""•••/'

if w be even

;

-of n-i ^ *K«' - 1") ^ n 3 n {11^ - V) (n" - 3==)

^^ '^•••'^
(2^rri)!

^.+i^™-2*-i^^
. . j,ifwbeodd.

(9'").
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a;"-V +

a;n-2r-l^2r _^,

{n-r-l)(n-r-2) . . . (n-2r)

}
r!2-''

= 2V(^ + 1/) 1^ xf-^ 4- ?ii^!f^ ^s^.-4 +
3!

_^7»(w^-2'^). . . (71^-28-2') ^_, ,,_„, 1

if n be even
;

= 2V(^ + 2/ ) [y + 2! ^^ ^
4!

^y +• • •
+-

(2i)!

^y%-1»-\ } if n be odd.

(10'").

These series are important in connection with tlie theory of

the circular and hyperbolic functions.

§ 8.] A slight extension of the method of last paragraph

enables us to find expressions for the sum and for the number of

r-ary products of n letters (repetition of each letter being allowed).

The inverse method of partial fractions gives us the identity

1/(1 - tti^;) (1 - ajir) . . . (1 -a„a7)s2^g(l-a^a;)-^ (l),

where ^g = a/-Y(a, - Oj) (a, - Oj) . . . (ttg-a^).

Also, since (1-0,3;;)"^= 1 +Sa/af, we have (by chap, xxvi.,

§ 14), provided x be taken small enough to secure the absolute

convergency of all the series involved,

1/(1 - a^x) (1 - a^X) ... (1 - a^x)

= (1 + ^a^^x"-) (1 + Sa/^'-) . . . (1 + Sa/^r'-) (2),

= 1 + ^JCrX^ (3),

where ^t is obviously the sum of all the r-ary products of

ttj, 05, . . . a„. Since the coefficients of x^ on the right-hand

sides of (1) and (3) must be equal, we have

„Z, = 2a/+'-V(a, - ai) (a, - a^) ... (a, - a„) (4).
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If, for example, there be three letters, oj, a,, aj, we have

„ r+2 „ r+2 r+2

Z-
_ "-1

,

"2
.

"3
r=

(tti - 02) (tti - as) (og - tti) (og - 03) (as - Oj) (a^ - a^)

_ <'^^ («2 - "3) + <"^^ (^3 - «i) •< <^^ («i - 02) /.x~
(02 - "3) (tts - «l) («! - "2)

If we put ai = a2= . . . =a„ = l, then each of the terms in

nKr reduces to 1, and nJ^r becomes n^r- Hence, from (3),

(l-a;)-''=l + :^^Hrar (6).

Equating coefficients of oT on both sides of (6), we have

nffr =n{n + l) . . . {n+r~ l)/rl,

a result already found by another method in chap, xxiii., § 10.

§ 9.] Some interesting results can be obtained by expanding

l/(y + a;)(i/ + a; + l) . . . {^ + a; + n)m descending, and in ascend-

ing powers of ?/.

If we write
r=n

l/{y + x)(y + a;+l) . . . {y + x + n)= 1 Ar{y -^ x + r)-\
r=0

then we find, by the method of chap, viii., § 6, that

l=Ar{-r)(-r+l). . . (-1)1.2. . . (n-r).

Hence J.^ = (- )*« Cr/nl

Therefore

nl/{y + x)(y + x+l). . .(y + x + n) = -S,(-y^Cr(ij + x + r)-' (1).

Hence, if Pi, P2, P&, . , . denote respectively the sum of

X, X + ly . . ., x + n, and of their products taken 2, 3, . . . at a

time (without repetition), we have

= S(-)-.a{l + S(-)'(5^)} (2),
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where we suppose t/ to have a value so large that all the series

involved are convergent.

Since there is no power of l/i/ less than the nth. on the left

of (2), the coefficient of any such power on the right must

vanish. Therefore

{a; + ny-nC,{a; + n-iy + nC^(iv + n-2y-. . .(-)"^ = (3),

where s is any positive integer <n.

Equating coefficients of l/y", ll'}f"^\ and 1/3/"+^ we find

{x + nf-nG,{as + n-lf + nC!o{x + n-'2.f-, . .

{-fx'^ = n\ (4);

= {n+iy.{x + \n) (5);

{x + nf+^-nCx{x + n-lf'^^ + nC',{x + n-2f^^-. . .

{-fx^-^^=n\{P^^-P^\

= ^{n+ 2)! [x" + nx + ^^n (3w + 1)} (6)

;

and so on.

Again from (1) we have

x{x+l) . . . (x + n)'- ^ -^ ^ -^ *

= ^\-y-^\l +
-^~'

(7),

where Qi, Q2, Qs, . . . are respectively the sum of 1/x, l/{x + 1),

, . . , l/{x + n), and the sums of their products taken 2, 3, . . .

at a time. From (7), hy expanding and equating coefficients of

y, we get

n\ fl 1 11
x{x+l) . . . (x + n)\x X + 1 '

' ' (x + n))

"iT* (^+1)2 (a; +2)^^ •••^M^ + w)' ^
^*

If we put x=l, we get the following curious relation between

the sum of the reciprocals of 1, 2, . . ., w + 1, and the reciprocals

of their squares :

—
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1 fl 1 _J_\ ^ 1 _ -^
w+1 ll

^2'^' ' ' n + 1} V ""
"^

2' 3''

§ 10.] We have now exemplified most of the elementary

processes used in the transformation of Binomial Series. The

following additional examples may be useful in helping the

student to thread the intricacies of this favourite field of exercise

for the tyro in Mathematics.

Example 1. Find the coefficient of x" in the expansion of (1 - x)^l(l + a;)''/^

in ascending powers of x.

If (H-x)-3/2= l + Sa„a;», then (l-x)2/(l + a;p= (l-2x + a;2)(H-Sa„x»).

Hence the coefficient required is o„ - 2a„_i + a„_2 . If we substitute the

actual values of a„, a„_i, a„_2, we find that

Example 2. If f{x)=zaQ + aiX + a2X^+ . • ., then the coefficient of x^ in

the expansion of / (x)/(l - a;)"» in ascending powers of x is a,, mHr+ «i m-^r-i

+ a2mHr-2+ ' • • + «?• This follows at once from the equation

/ {x)l(l - x)'"= (ao + Sarxn (1 + S^H.x'-).

In particular, if we put /(x) = (1 - x)~" and m — 1, we deduce that

and, if we put /(x) = (1 - x)~", we deduce that

m-hi^r—m^r+ »n-"r-l »-" l +m" r-2 n-" 2 + • • + n-Hp j

results which have already appeared, in the particular case where m and n are

integral (see chap, xxiii., § 10).

Example 3. Show that

m<?«/2 + ^+iC„/22+ ^+2^„/23+. . . adoo=l + „,Ci + ^C2+. . .+„C7„ (1).

The left-hand side of (1) is obviously the coefficient of x" in

^ = (1 + x)'»/2 + (1 + xr+V22+ ( 1 + x)'»+2/23 + . . . ad 00

.

Now Z=^(l + x)"'[l + {(l + x)/2} + {(l + x)/2}2+. . . ad 00],

= (l + x)'»/2{l-(l + x)/2}, if we suppose x<l.

= (l + x)"»/(l-x),

= l + S(l+m^l + mC2+- • •+m(?»)a;™,

by last example. Hence the theorem follows.

Example 4. Sum the series

«-3
,

(«-4)(n-5) (n-5)(n-6)(7i-7)
.*-^ 2r+ 31 41 *••••

n being a positive integer.
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The equations (9'") of § 7 being algebraical identities, we may substitute

therein any values of x and y we choose, so long as no ambiguity arises in

the determination of the functions involved. We may, for example, put

x= -1 and y= 2i. We thus find

Hence, if w and ufi denote, as usual, the two imaginary cube roots of + 1,

we have
/S={ 1 + (-)"-! (w"+ w^*^)

}
/re.

If we evaluate w^+ w^™ for the four cases where n has the forms 6m, 6ni±l,

6m±2, 6ni + 3 (remembering that ui^^=\, w-i= w2^ u-^— ui), we find that

S has the values - Ijn, 0, 2/7i, and 3/« respectively.

Example 5. Sum the series

«(n-l) w(re-l)(re-2)(n-3) n{n-V)(n-2) (w-3) (n-4) (n-5)

''2(2;+l)"^ 2.4(2r+ l){2r+ 3)
"^ 2 . 4.6(2r + l) (2r+ 3) (2?-+ 5)

+ . . .

n being a positive integer.

If we denote the series by 1 + Mj + "a + W3 + . . . , then

_ n(ji-l) . . . (n-2s + l)

* 2.4 .. . 2s(2r+l)(2r + 3) . . . (2r + 28-l)'

_ ?tl(27-)!(r + l)(r + 2) . . . (r + s)~
(re-2s)!(2r+2s)!sl

'

restricting r for the present to be a positive integer. We may therefore write

n!j2r)!
"a— In+ ^rW "+2'" 2r+28 • r+s^f

Now r+s^s is *^6 coefificient of x^*" in the expansion of ai^'^+^s (i + l/x^)*^*; that

is, in the expansion of a;^+2'{^(l + l/x'-^)}2''+2*. Hence 2«g is one part of the

coefiicient of x'^'^ in the expansion of

Hence 2S is the whole coefficient of rc^'" in the expansion of

Now, by § 7,

{l + V(l + a;^)}"+''' + {l-N/(l + ^2)}™+'"'

_ or^'zr ii 4. s (>^+ 2r)(re + 2r-«-l)(M + 2r-s-2) . . . (n^ 2;--2.- + l) x^\

\ {s)\ 2'4'

the coefficient of x"^^ in which is

(» + 2r) (ji+r -!)(?? + r- 2) . . . (» + l)

^T2^^^^
'

14



210 EXERCISES X CH. XXVIl

c_ on+2r-i nl(2r)!(n + 2r)(« + r-l)l
(n + 2r)!r!nl22'- '

_ (n+r-l)(n + r-2) . . . (r+ 1)

~
(n + 2r-l){n + 2r-2) . . . (2r + l)'

The summation is thus effected for all integral values of r. So far, how-

ever, as r is concerned, the formula arrived at might be reduced to an

identity between two integral functions of r of finite degree. Since we have

shown that this identity holds for an infinite number of particular values of

r, it must (chap, v., § 16) hold for all values of r. The summation is there-

fore general so far as r is concerned.

Exercises X.

Find the coefficient of x*" in the expansion of the following in ascending

powers of x,

(1.) xl{x-a)(x-b){x-c). (2.) x^+^l(x-a){x-b){x-c).

(3.) x'"^+^l{x -a){x- b) (x-c), where m is a positive integer <r - 3.

(4.) (3 - x)l{2 -x)(l- x)\ (5.) 2x2/(x - 1)2 (x»+ 1).

(6.) {l-px)"'{V-qx)-\

(7.) If (1 - 3a;)'*/(l - 2x)^ be expanded in ascending powers of x, the co-

efficient of x""!^"^ is ( - 1)" (r - 2n) 2^-^, n and r being positive integers.

(8.) Find the numerically greatest term in the expansion of (a - x)/(6 + x)^

in ascending powers of x.

(9.) Show that

(x+ /3)(x-l-2;3) . . . (x+ w/3)

(x-j3)(x-2^) . . , (x-n/3)

-14-T^ ^~-r »(» + >•)(»^-l^)("''-2') " • (n'-r-l') r/3 ,

and hence show that

*•;"( )„_.
r»(n+ r)(n«-l')(n'-2-^) . . . (,,2-7312)

^^ ^^^ ^ ^^^
r=i {^^Y

(10.) If n be a positive integer, show that

' ~ ni^l + m^2 ~ • • • \~)rrfin—\~rm-l^n'

(11.) If n be an even positive integer,

m^n ~ m^n-1 • m^l + »n^n-2 • nfii - . . . + ,„C/„ — \- r'^mPnJ%

'

(12.) If m and n be positive integers, show that

m^O • m/2^n + to^2 • (»>i-2)/2^n-l + m^i ' (m-4)/2^n-2 + • • • + m^2n • (m-2n)/2^0

m2(wt''-2'') . . . {m^-2n-2"-)

(2n)l
'

m^l • (m-l)l2^n+m^3 • (m-3)li^n-l + m^6 • (»n-«)/a^n-2 + • • • + »n^2n+l • (m-2n-l)/2^0

_ m(wt^-P)
(
m'-3'') . . . {m^-'JiT^^)

(2n + l)!

(See Schlomilcb, Hci«d6. d. Alg. Anal., § 38.)
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(13.) Show, by equating coefficients in the expansion of (1 - x~^)^{l - «)""*,

where m is a positive integer, that

l_™.+!5!Kri)+.
.
.^(-ir""(~'-i')...(..'-53I^^„,

(2!)^
^ [miy

(14.) If n be a positive multiple of 6, then

(15.) li {l-\-x)-'^=l + a-^x + a^x'^-\-. . ., sum the series l-a^ + a^-a^-\- . . .

to n terms.

(16.) If (l + x)^'' = l + a^x + a^x^+ . . ., then l-a^^+a^^- . . . =
(-l)'»2ra(2ra-l) . . . (n+l)/Ml.

r\ 2^r+ l)\ {-iy2^r(2r)\ _ {-l)r

^ ' rill (r-l)13l"^' •
'"^

01(2r + l)! ~2r + l'

(18.) ''s"l/4'- (r!)2 {2n

-

2r)! = (4n)I/4"{ (2n)l\^.

(19.) Sum to n terms S (2n - 2)I/22'*-in {(jj - 1)1 }^.

(20.) Sum the series

,. ,.1 ,, „, 1.4 . „, 1.4.7, 1.4...(3n-5)
«+ (n-l)3 + (n-2)— + (n-3)3-^g+. . • +

3 .^ . . . (3„-3)

(21.) Find for what values of n the following series are convergent; and
show that when they are convergent their sums are as given below.

1 TC 1 w(n-l) 1 (m-l)!

m~llm+ l"^ 21 m+2 ' ' ' ~ {n + l)(n + 2) . . . (n + m)'

1 n 1 w(n-l) 1 (m-l)!

m'^'llm+ l"^ 21 m + 2''"* •~(n + l)(7i + 2) . . . (n + m)^'"+"^'"-i^"

-^4^C^_22»+2+ . . . + (-)'«-i2'>-Hn+ (_)mi},

i» in both cases being a positive integer.

/22 )
»^" (r+ s)!(m+n-r-g-l) l _ (m + n)

«=o ^•Is! (m-r- 1)1 (n-s)! ~ ml?*!

(23 ) '"IT *s"
(^+ ^)'("^+"-^-g)' _ (

m + w + l)l

r=o «=o ris! (m-r)! (n-s)! mini

(24.) The number of the r-ary products of three letters, none of which is

to be raised to a power greater than the nth, where n< r< 2n, is

r(3?i-?-) + l-fK(n-l).
(25.) Prove, for a, b, c, that "LarKa-h) (a-c) = 0, if r-0, or r=l ; =1,

if r=2 ; and generalise the theorem.

(26.) Show that

a(b-c) (be - aa') {a^ - a'^) & (c - a) (ca - 66') (&»> - fc'"')

a -a' b-b'

c{a-b) {ab - cc') (c*» - c"»)

c-c'
= {b-c){c- a) {a - b) {be - aa') (ca - bb') (ab - cd) S^_^\ahc,

where aa'= bb'=ee'y and S^_^ is the sum of the (m-3)-ary products of
a, 6, c, a'y b', c'. (Math. Trip., 1886.)

14—2
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(27.) If S^ be the sum of the r-ary products of the roots of the equation

a;'»+aix"'-i + a2a;"-- + . . . + a„=0, then

= ^1 + 01,

O^Sa+ S'iOi + fla,

(Wronski.)

(28.) If Sy be the sum of the r-ary products of n letters, P^ the sum of the

products r at a time, S^ the sum of their rth powers, then

Zr=nSr-(n-l)PiSr-i+. . . + {-lY{n-r)P^, if r<n-l.

= nS^-{n-l)P^Sr-.i+. . .+(-l)"-iP„_iSr-„+i, if r>n-l.

(Math. Trip., 1882.)

(29.) If i;= (1 - ax)~'^ (1 - ^x)~^ • -, the number of ways of distributing n

things, X of which are of one sort,
fj.

of another sort, . . ., into p boxes

placed in a row is the coefficient of x^^a'^^'^ ... in the expansion of {v - 1)p

in ascending powers of x, namely,

ih-pCjii^+pC^Ui- . . .,

where Ug={p + \-s)\{p + iJ.-s)l . . . I(p-sy.\l{p -s)l fil . . .

(Math. Trip., 1888.)

(30.) With the same data as in last question, show that the whole number

of ways of distributing the things when the order in which they are arranged

inside each box is attended to is

nI(?i-l)I/(n-ij)!(2J-l)!X!Ai!»'! . . .

(Math. Trip., 1888.)

Show that

(31.) 1 + 1/2 + . . . + llx=^C^-h^C, + ^,C,-. . .

{m+ l)m {m + 2){vi+l)m(m-l) _{-Vr
(32.) 1 ---2 +

gj
2 2m+l-

/^Q^ 1 w^n.
I

m^(m^-P) „, "t"
K - 1")K - 2")

^^ , -^-1^"*(66.}i.-:^^+
ji

^-
gj

^ +. . . V ; .

(34.) If 7n and n are both positive integers, and jn>n, then

2^ {m-n){m-n-l) _^ (m-n)(jn-n-l)(m-n-2){m-n-B) ^_^_^

n\
*"

ll(n-l-l)!
*"

21(n + 2)!

1.3.5 . . . (2nt-l)
" "

~
(m + w)!

(35.) If r be a positive integer,

( ^2 _ 12 (^2 _ 12) (^2 _ 22) {f - 12) (f _ 22) (r^ - 3^) „
,

)

rjl-f—3j-a; + ^

5]
^^

7!
^^'' + - ' •[

= (a; + 2)'-i-^_a(7i(a;+ 2)'-3+ r-8t''2(x + 2)'-'>-r_4C3(a;+ 2)'-7+ . . .
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MULTINOMIAL THEOREM FOR ANY INDEX.

§ 11.] Consider the integral function aiX + «2^ + . . . + arX^,

whose absolute term vanishes, the rest of the coefficients being

real quantities positive or negative. Confining ourselves in the

meantime to real values of x, we see, since the function vanishes

when a; = 0, that it will in all cases be possible to assign a posi-

tive quantity p such that for all values of x between - p and + p

we shall have
\aiX + a2a^+. . . <rarX^\<l (1).

In fact, it will be sufficient if p be such that

ap + ap^^ . . . + «/)'< 1

where a is the numerical value of the numerically greatest

among ai, a.2, . . ., ar. That is, it will be sufficient if

«p(i-pO/(i-p)<i;

afortiori (supposing p<l) it will be sufficient if

apl{l-p)<\\

that is, if p<l/(a + l)* (2).

p is, in fact, the numerically least among the roots of the

two equations

ttrX^ + . . . + aiX±l = 0,

as may be seen by considering the graph of arX'^ + . . . +aiX.

Therefore, whether m be integral or not, provided

-p<x< + p we can always expand (1 +aiX + a.2X^+ . . . +arX^)^

in the form
1 + 2m(7g (ttiX + a2X^ + . . . + arx'y (3)

;

and the series (3) will be absolutely convergent whether m be

positive or negative. Hence, since aiX+a.2af+. . . +arafh a

terminating series and therefore has a finite value for all values

of X positive or negative, it follows from the principle established

in chap, xxvi., § 34, that we may arrange (3) according to powers

* This ia merely a lower limit for p ; in any individual case it would in

general be much greater.
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of X, and the result will be a power series which will converge to

the sum (l + aiir + a2^+ . • • + ar^O™ so long as -p<^< + p.

Since s is a positive integer, we can expand m.Gs{aiX + a^x^ \-

. . . varX^'Y by the formula of chap, xxin., § 12. The coefficient

of x^ in this expansion will be

XJJ.sXa^'a.^-" . . . ar^-'ja^W . . . a^!,

that is,

^a^'-a^ . . . a^m{m-\) . . . {m-s+l)/ai\a^l . . . a^! (4),

where the summation extends over all positive integral values of

«!, oa, . . ., Ur, including 0, which are such that

"1 + 02+ . . . +a;. = S|

ttj + 2a2 + . . . + ra^ = wj ^ ''

In order, therefore, to find the coefficient of of* in (3) we have

merely to extend the summation in (4) so as to include all

values of 5 ; in other words, to drop the first of the two restric-

tions in (5).

Hence, wliether m he integral or not, provided x he small

enough, we have

(1 + aix + a^x^ + . . . +arafy"'

^ J ^ 2
m(«,-l) . .(m-2...M) , __

the summation to he extended over all positive integral values of
"1, (h, • • •, "rj including 0, su^h that

Oj + 2a2 + . . . + raj. = n.

The details of the evaluation of the coefficient in any parti-

cular case are much the same as in cbap. xxin., § 12, Example 2,

and need not be farther illustrated. It need scarcely be added

that when n is very large the calculation is tedious. In some

cases it can be avoided by transforming l + aiX + a^g^ + . . . + arOf

before applying the Binomial Expansion, but in most cases the

application of the above formula is in the end both quickest and

most conducive to accuracy.
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Example. To find the coefficient of .r" in (1 + x + x^+ . . . + a;*")"*.

We have

(l + x + x^+. . .+a;'')'"={(l-a;'*+i)/(l-a;)}"*,

= (l-a;''+i)™(l-a;)-"»,

Hence, if n<r+ 1, the coefficient of a;" is simply

^fl'„=m(ffH-l) . . . (?« + n-l)/nI;

but, if n<tr+ l, the coefficient of x" is

m"-n ~ m^l • m"n-r-l •" m^2 • m"«-2r-2 ~ • • •

NUMERICAL APPROXIMATION BY MEANS OF THE BINOMIAL

THEOREM.

§ 12.] The Binomial Expansion may be used for the purpose

of approximating to the numerical value of (1 + w)'^. According

as we retain the first two, the first three, . . ., the first n + 1

terms of the series 1 + nCiO! + nO^a^ + . . ., we may be said to

take a first, a second, ... an nth approximation to (1 + a?)"'.

The principal points to be attended to are—

1st, To include in our approximation the terms of greatest

numerical value ; in other words, to take n so great that the

numerically greatest term, at least, is included.

2nd, To take n so great that the residue of the series is

certainly less than half a unit in the decimal place next after

that to which absolute accuracy is required.

3rd, To calculate each of the terms retained to such a degree

of accuracy that the accumulated error from the neglected digits

in all the terms retained is less than a unit in the place next after

that to which absolute accuracy is required.

The last condition is easily secured by a little attention in

each particular case. We proceed to discuss the other two.

§ 13.] The order of the numerically greatest term.

In the case of the Binomial Series (1 -^-xY, if ^ denote the

numerical value of x, so that 0<^<1, we have for the numerical

value of the convergency-ratio u^^^lu^
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m — n J. n — m
(r„ = ^'OT^--—i, (1),n+l n+1

according a,8 m-n is positive or negative.

Hence it is obvious, in the first place, that, if - 1 ^ m<+ 1,

that is, if m he & positive or negative proper fraction, the condi-

tion o-„<l is satisfied from the very beginning, and the first

term will be the greatest.

If m>+l, the condition o-„<l is obviously satisfied for any

value of n which exceeds m ; in fact, the condition will be

satisfied as soon as

(m-n)i<n+ 1,

that is, n>(mi- 1)/(1 + i) (2),

the right-hand side of which is obviously less than m. This

condition is satisfied from the beginning if i<2l(m-l).

If m be <-l=-/A, say, where )u.>l, the condition o-„<l

will be satisfied as soon as

(fj.
+ n)i<n + 1,

that is, n> (fjii -l)/(l-i) (3).

This condition is satisfied from the beginning if ^<2/(/ti + 1).

§ 14.] Upper limit of the residue. We have seen that,

ultimately, the terms of a Binomial Series either (1) alternate in

sign or (2) are of constant sign.

To the first of these classes belong the expansions of (1 +a;)'"

and (1 + x)"^, where x and m are positive.

If n be greater than the order of the numerically greatest

term, and in the case of (1 +xy"' (see § 4) also >m, then the

residue may be written in the form

-Sn = ± {Un+i - ltn+2 + W»+3- • • •) (l),

where «„+!, %+2, ^n+a, ... are the numerical values of the

various terms, and we have Un+\>ti,i+2>Un+%> . . •

Hence, in the present case, the error committed by taking an

n\\\ approximation is numerically less than Un+\. In other words.
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if we stop at the term of the nth order, the following term is an

upper limit for the error of the approximation.

Cor. A lower limit for the error is obviously m^+i - Un+2'

The expansions of (1 - a;)™ and (1 - a;)~™ belong to the

second class of series, in which the terms are all ultimately of

the same sign. It will be convenient to consider these two

expansions separately.

In the case of (l-ar)™, if we take n>m, then we shall

certainly include the numerically greatest term ; and o-„, the

numerical value of the convergency-ratio, will be {n - m) xl{n + 1),

that is, {\. — {m+l)l{n + \)}x. This continually increases as n

increases, and has for its limit x, when n=<xi. Hence

Therefore, m^+i, w„+2, • • having the same meaning as before,

-^ra = ± («*»+! + Un+2 + «^n+3 + • • •),

— ± W»+i (1 + <^n+i + O^n+iO'n+2 + 0'n+iO'»+20"n+3 + • • •)•

Therefore

<Un+il{l-x) (2).

Hence the error in this case is numerically less than w„+i/(l - x),

and it is in excess or in defect according as the least integer

which exceeds m is even or odd (see § 4).

Cor. A lower limit for the errm^ is obviously %+]/(! — a-n+i),

that is, mC„+i^"+V{l -{n+l-m) x/{n + 2)}.

In the expansion of (l-x)'"^, all the terms are positive;

and, in order to include the greatest term, we have merely

to take n>{mx-l)/{l-x).

We have, in this case,

(T^ = (w + m) x/{n + 1) = {1 - (1 - m)/(n + 1)} x,

= {l + (m~l)/{n+l)}x.
Hence, if »i<l

0'n+l<0-n+2<' • .<X<1,
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and an upper limit of Bn will he w»+i/(l - x) as in last case, a
lower limit being m„+i/(1 - o-„+i), that is, m^„+ia;'*+V{l - (w + 1

+

m) xl{n + 2)}.

If w>l,
l>0'»+l>0-«+2>. . '>X,

and an upper limit of Rn will be Un+i/(l - a-n+i), that is,

»n^«+ii»"'^V{l -{n + l+m) x/{n + 2)}, a lower limit being Un+j
(l-x).

The error for (1 - ar)-"* is, of course, always in defect.

Example 1. To calculate the cube root of 29 to 6 places of decimals.

The nearest cube to 29 is 27. "We therefore write

4/29= (33+ 2)1/3= 3 (1 + 2/33) V»,

= Mq + Mi-M2+ M3-M4 . . . .

The first term is here the greatest ; and the terms alternate in sign after m^.

Also Uf, written in the most convenient form for calculating successive terms, is

«r=3 (A) (tI.) (,*A) (t.V\) (A\) . . . (^) .

Therefore

+ -

«o=
Mi=«o2/81 =
M2= Ml4/162 =
«3= 1*2 10/243 =
W4=M3 16/324 =

3 000,000,00

74,074,07

75,27

•001,828,99

3,72

3 074,149,34

•001,832,71

•001,832,71

«5=M422/405

3 072,316,63

20

Hence the error in defect, due to neglect of the residue, amounts to less

than 2 in the seventh place. The error for neglect of digits does not exceed

1 in the seventh place. Therefore, the best 6-place approximation to

^29 is 3^072,317. In Barlow's Tables we find 3-072,316,8 given as the

value to 7 places.

Example 2. To calculate (1 - x)'"/(l + x + x*)*" to a second approximation,

X being small.

(l-x)'"(l + a;+ x2)-'"

(, 7n(7»-l) „1 I, , , „, m(?tt + l) 2]= < l-mx + -^—' x^V X i l-Tn(x + x^) +—^—'-x^V
,
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where we have already neglected all powers of x above the second in each of

the two series

;

(, m(m-l) „) (

^

m(m-l) „)= \l- mx +—5_ '
a;2

I Jl-mx+ —~

—

'-
x^ \ ,

, Ivi(m-l) „ m (m - 1)1 „= l + {-m-m)x+ \—^—'- +m^+—^—'-V x",

where higher powers of x than x^ have again been neglected in distributing

the product

;

= 1 - 2mx + m (2m - 1) x*.

Exercises XI.

(1.) The general term in the expansion of {l + x + y + xy)l{l + x + y) ia

( _ l)m-H» (^ 4. „ _ 2)1 a;"'?/»/(m - 1)! (n - 1)1.

Determine limits for x within which the following multinomials can be

expanded in convergent series of ascending powers of x ; and find the

coefficients of

(2.) X* in (1 - 2x + a;2 _ Sx^)-V*. (3.) x« in (1 - 3x - Ix^ + x^)-^l^.

(4.) a;8 and x^ in (a; + 3a;»+ Sa;"+ 7a;^ + . . . )-\

(5.) x7in(l-3a;+ a;8-x')-3/2. (6.) x'" in (2 + 3a; + x2)-2.

(7.) Show that in (Qa^ + 6ax + ix^)-^ the coefficient of x^^ is 23'- (3a)-*'-2

;

and that the coefficient of every third term vanishes.

(8.) The coefficient of x"* in (1 + a; + x"^)^ (m a positive integer) is

^ m(m-l) m(m-l)(?/t-2)(m-3)
*

(11)2 "^ (2ip
+... .

(9.) The coefficient of 3^^+^ in (1 + x)/(l + x+x^ is - (r+ 1),

(10.) Evaluate «2/( 100/99), and 1^(1002/998), each to 10 places of deci-

mals ; and demonstrate in each case the accuracy of your approximation.

Find a first approximation to each of the following, x being small:

—

/„. {x+^jx^+ l)}'^- {x- V(x2+1)}^»
^ '' {x+^{x^+i)y^'n+i-{x-^(x-'+i)y^+i'

(12.) (l + aj)(l + rx)(l + r2a;). . ./(l-a;)(l-x)'-(l-x)'^. . . .

(13.) V(2-x/(2-v/(2- . . . -^(1 + x). . .))); where ^ is repeated

n times.

(14.) If X be small compared with N^, then ^{N^+ x)= N+xl4:N +
Nxl2 (2N^+ x), the error being of the order x'^jN'^. For example, show that

^(101)= 10^0^, to 8 places of decimals.

(15.) If p differ from N^ by less than 1 per cent, of either, then i^p differs

from ^N+IpIN^ by less than ^'/90000. (Math. Trip. , 1882.)
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(16.) Itp=N*+ x'where x is small, then approximately

show that when J/=10, x = \, this approximation is accurate to 16 places of

decimals. (Math. Trip., 1886.)

(17.) Show that L {1/V«- + 1/V(«^ + 1) + • • . +\l^{n^ + 2n)} = 2.
n=oo

(Catalan, Nouv. Ann., sec. i., t. 17.)

(18.) Find an upper limit for the residue in the expansion of (l + a;)"*

when m is a positive integer.



CHAPTER XXVIII.

Exponential and Logarithmic Series.

EXPONENTIAL SERIES.

§ 1.] We have already attached a definite meaning to the

symbol a* when a is a positive real quantity, and x any positive

or negative commensurable quantity. We propose now to discuss

the possibility of expanding (f in a series of ascending powers

of X.

If we assume that a convergent expansion of a'' in ascending

powers ofX exists, then we can easily determine it^ coefficients.

For, let

a'' = AQ-^AiX +A^ + . . .+Anx'^+. . . (1),

then, proceeding exactly as in chap, xxvii., § 2, we have

L{a''+^-d")lh = Ai + 2A^ + . . . + nAnX''-'^ + . . .;

and the series on the right will be convergent so long as x lies

within limits for which (1) is convergent. Now (by chap, xxv., § 13)

L ia"^^ - d')lh - a'^XL (e^" - 1)/XA,

where X = log^a, and e is Napier's Base, namely, the finite quantity

L{l + llnf. Hence

Xa'' = lAi + 2A^x + . . .+nAnX''-'^ + . . . (2).

Therefore, by (1),

\{Ao + AiX-¥. . . + An-idf"-^ + . . .)

= lAi + 2A2X + . . .+nAnaf~'^ . . . (3).

Since both the series in (3) are convergent, we must have

lAi = XAo, 2Aa = kAi, . . ., nAn = XAn-i.
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Using these equations, we find, successively,

A^ = AMl\, A, = Ao\y2\, . . ., An = AoX''/n\ (4).

Also, since, by the meaning attached to a% a° = + 1, putting

a; = on both sides of (1), we have

+ 1=^ (5).

Hence, finally,

a'' = l+XxfU + {Xx)y2l + . . .+{Xxfln\ + . . . (6).

We see, a posteriori, that the expansion found is really con-

vergent for all values of x (chap, xxvi., § 5), and also that the

series in (2) is convergent for all values of x. Our hypotheses

are therefore justified.

This demonstration is subject to the same objection as the

corresponding one for the Binomial Series : it is, however, interest-

ing, because it shows what the expansion of d" must be, provided

it exist at all. We shall next give two other demonstrations,

each of which supplies the deficiency of that just given, and each

of which has an interest of its own.

§ 2.] Deduction ofthe Exponentialfrom theBinomialExpansion.

By the binomial theorem*, we have, provided z be numeric-

ally greater than 1,

i}^W-
1 zx(zx-l) 1

z 2! z^

+
zx{zx-\) . . . (zx-n+1) 1

. x^l- 1/zx) x"" (1 - Hzx) ... (1 - w - \\zx)= 1 + a; + —^—^—- + . . . +—^ —'-—:—^^ —-

2! n\

where
+ i2» (1),

„ _ x''^^{\-\lzx)...{\-n\zx) x"^^"" {l-ljzx) . ..{\-n^\lzx)
(^i+1)! "" (« + 2)!

+• • . (2).

* In what follows we have restricted the value of the index zx. Since

z is to be ultimately made infinite, there is no obj jction to our supposing it

always so chosen that zx is a positive integer. We then depend merely
on the binomial expansion for positive integral indices. This will not affect

the value of L(l + l/z)**, for it has been shown (chap, xxv., § 13) that this

has the same value when z becomes + or - oo , and whether z increases by
integral or by fractional increments.
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Suppose now ar to be a given quantity ; and give to n any fixed

integral value whatever. Then, no matter what positive or

negative commensurable value x may have, we can always choose

z as large as we please, and at the same time such that zx is a

positive integer, p say, where p>n. The series (2) will then

terminate; and we shall have IjzxK^jzxK. . .<nlzx . . .

<{p- l)/zx<l. With this understanding, it follows that

^"^{71 + 1)1^ {n+ 2)1'^' ' •%!'

af+^ ( X id' J I

(w + 1)! i w + 2 (w + 2f J

'

< a;"+V(w + 1 ) ! { 1 - xl{n + 2)} (3)

;

and we have

V 2;/ 2!
* '

*

n\

+ Rn (4),

where ^„ satisfies the condition (3).

Now let z, and therefore also p, increase without limit (;*

remaining fixed as before). Then, since

X(l-1/^) . . . (1-72-1/^) = !,

we have

Bn being still subject to (3).

We may now, if we choose, consider the effect of increasing

n. When this is done, a;"+Y(w + 1)!{1 -a;/(w + 2)} (see chap.

XXV., § 15) continually diminishes, having zero for its limit when

« = Qo ; we may therefore write

c^ x^
l+a;+-+. . . + —: + . . . ad CO (6).

2! n\ ^ '

Thus the value of Z(l + I/2;)** is obtained in the form of an

infinite series, which converges for all values of x. For most

purposes the form (5) is, however, more convenient, since it gives

an upper limit for the residue of the series.

z~\ z)
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§ 3.] The conditions of the demonstration of last paragraph

will not be violated if we put x=\. Hence, using e, as in chap.

XXV., to denote i/ (1 + llzf, we have

where Rn<{n + 2)/(n + 1) (% + 1)! (8).

This formula enables us to calculate e with comparative rapidity

to a large number of decimal places. We have merely to divide

1 by 2, then the quotient by 3 ; and so on. Proceeding as far

as 11 = 12, we have

1 + 1 =2-000000000

1/2! = •500000000

1/3! = 166666667

1/4! = 41666667

1/5! = 8333333

1/6! = 1388889

1/7! = 198413

1/8! = 24802

1/9! = 2756

1/10! = 276

1/11! = 25

1/12! = 2

2718281830

Here the error in the last figure owing to figures neglected in the

arithmetical calculation could not exceed the carriage from 10x5,

that is, 5. Also the residue i2i2<i^(l/13!)<if '0000000002

< '0000000003, so that the neglect of Ei^ would certainly not

affect the eighth place. Hence we have as the nearest 7-place

approximation for e

e=: 2-7182818.

It is usual to give a demonstration that the numerical constant e

is incommensurable. The ordinary demonstration is as follows :

—

Let us suppose that e is commensurable, say =pjq, where jp and q are

finite positive integers. Then we have by (7)

p/e = 2 + l/2!+. . .+l/(?! + 2?„

where B«<(3 + 2)/(3 + iP3l.
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Hence, multiplying by g!, we get

2>.(g-l)I=I+ glEg,

where p (gf
- 1)! and I are obviously integral numbers. Hence gliJg must be

integral.

Now 3!i^g<{'Z + 2)/('? + l)^

<(3 + 2)/{3('Z + 2) + l},

that is, glEj is a positive proper fraction.

The assumption that e is commensurable therefore leads to an arithmetical

absurdity, and is inadmissible.

Another demonstration which gives more insight into the

nature of this and some other similar cases of incommensurability

in the value of an infinite series is as follows :

—

If ?'i, ?'2, . . .,?*«»• • . be an infinite series of integers <7ivere in magnitude

and in order, then it can be shown (see chap, ix., § 2) that any commen-
surable number pjq (where p and q are prime to each other, and p<q) can

be expanded, and that in one way only, in the form

P=Pl+P2.+.Is_+_, + PiL +. .. (9),
q Ti r^r^ r^r^r^ r^r^ • • • »«

where 2'i<»'i, i'2<''2> • • •» i'n<^n» • • •; ^^^ *^^* ^^^ series will always

terminate when either q or all its factors occur among the factors of the

integers r-i,r2, • • •, r„, . . . Hence no infinite series of the form (9) can

represent any vulgar fraction whose denominator consists of factors which

occur among rj , r^ , . . .,»•«,• • •

In particular, t/ J*i,?'2, • • •,'!'%>• • • contain all the natural primes,

and, a fortiori, if they be the succession of natural numbers {excepting 1),

namely, 2, 3, 4, 5, . . ., n + 1, . . ., then the series in (9) cannot represent

any commensurable number at all*.

The incommensurability of e is a mere particular case of the last con-

clusion ; for we have in the series representing e - 2

ri= 2, r2=3, . . ., r„=n + l, , . .;

i'i= l. i'2=l i'n= l. ....
Hence e - 2 is incommensurable, and therefore e also.

§ 4.] Returning to equation (5) of § 2, since L(l + l/z)" has

a finite value e, we have L(l + l/zf^ = {L{1 + l/zf}'' - e^, there-

fore

* It should be noticed that an infinite series of the form (9) may
represent a fraction whose denominator contains a factor not occurring

among TitT^, . . •> J'ni • •» for example,

112 3 4

2 = 3+375 + 375?7 + 3.5.7.9+---^^^-

This point seems to have been overlooked by some mathematical writers.

c. II. 15
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^=1 + ^ +
1;
+ . .•+f;+^« (10),

where Rn is subject to the inequality (3).

Finally, since a"' = e^% where \ — \<dgea, we have

a^-l + ^^ + ^-^+. . . +^+i2„ (11),

where Rn<{^f+^l{n + 1)!{1 - A;r/(w + 2)} (12).

Since LRn'^O when n^cc, the series (10) and (11) may of

course each be continued to infinity.

This completes our second demonstration of the exponential

theorem.

§ 5. ] Summation of the Exponential Series for real values ofx.

A third demonstration was given by Cauchy in his Analyse

Algehrique. It follows closely the lines of the second demonstra-

tion of the binomial theorem ; and no doubt it was suggested

by the elegant process, due to Euler, on which that demonstra-

tion is founded. This third demonstration is of great import-

ance, because we shall (in chap, xxix.) use the process involved in

it to settle the more general question regarding the summation

of the Exponential Series when a? is a complex number.

Denote the infinite series

'

x" af
l+X+~. + . . . + -:+. . .

2! n\

by the S3anbol f{x). Then, since the series is convergent for all

values of x, f{x) is a single valued, finite, continuous function

of X (chap. XXVI., § 19).

Also, since f{x) and f(i/) are both absolutely convergent

series, we have, by the rule for the multiplication of series

(chap. XXVI.
, § 14),

/(^)/(2/) = l + (^+2/)+(^+^^ +
|-j)

+ . . .

\n\ {n-\)\l\ {n-2)\2\ n\J
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Now
x^ x^~\l x^'^y^ y^

= {x^ + nC,x^'-'y + nC^x'^-hf + . . .+2/")^!,

=^{x + yfln\,

by the binomial theorem for positive integral exponents.

Hence f{x)f{y)---l + ^{x+ yfjii !

,

=/(^ + 2/) (1).

Hence f{x)f{y)f{z) =f{x + y)f{z),

=f{x + y + z);

and, in general, x, y, z, . . . being any real quantities positive or

negative,

f{^)f{y)m- .=f{x + y + z + . . .) (2).

This last result is called the Addition Theorem for the

Exponential Series.

From (2), putting x=y = z, . . ., =1, and supposing the

number of letters to be w, we deduce

{f{l)r=f(n) (3).

Also, taking the number of the letters to be q, and each to

be p/q, we deduce

{/(p/q)}'=f{p) (4),

where p and q are any positive integers. From (4), by means of

(3), we deduce

{/(plq)}'-{/{l)}' (5).

Finally, from (1), putting y = — x, we deduce

/{x)f{-x)=f{0) (6).

The equations (5) and (6) enable us to sum the series /(x)

for all commensurable values of x.

From (5) we see that /(p/q) is a g'th root of {/(l)}^. Now,

since p/q is positive, the value of /(p/q) is obviously real and

positive. Also /(I), that is, 1 + 1/1! + 1/2! + . . , , is a finite

positive quantity, which we may call e. Therefore {/(l)p, or e^,

is real and positive. Hence /(p/q) must be the real positive

g-th root of e^, that is, e^''^. Hence

15—2
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1+^+^ + ...=^" (7).

p and q being any positive integers.

Finally, since /(0)= 1, we see from (6) that

f{-p/q) = i/f{p/q),

= e~P'^.

Hence

l^Lz£lSlJjz£lsy^...=e-m
(8),

J. 1 Jil

where p/q is any positive commensurable number.

By combining (7) and (8) we complete the demonstration of

the theorem, that

1! 2! n\

for all commensurable values of a;, e being given by

,11 1

1! 2! nl

The student will not fail to observe that e is introduced and

defined in the course of the demonstration.

The extension of the theorem to the case where the base is

any positive quantity a is at once effected by the transformation

a" = e^, as in last demonstration.

§ 6.] From the Exponential Series we may derive a large

number of others ; and, conversely, by means of it a variety of

series can be summed.

Bernoulli's Numbers.—One of the most important among the

series which can be deduced from the exponential theorem is

the expansion of xl{\-e~'^), the coefficients in the even terms

of which are closely connected with the famous numbers of

Bernoulli.

We shall first give Cauchy's demonstration, which shows, a

priori, that xl{\-e~'^) can he expanded in an ascending series of

powers of X, provided x lie within certain limits.
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We have

'
'

(1),
1-e-'' {l-e~^)lx l-y

where 2/=l-(l-0/-» (2).

Now, from (1), we have

^/(l-0 = l+2/+y' + - • .ad 00 (3);

and this series will be absolutely convergent provided - 1 <?/< + 1.

Also, from (2), using the exponential theorem, we have

3/ = ^/2!-^/3! + ar'/4!-. . . ad 00 (4);

and this series is absolutely convergent for all values of x, and

therefore remains convergent when all the signs are taken alike.

If, therefore, we can find a value of p such that

p/2! + pV3! + /3V4! + . . . ad ox 1 (A),

then, for all values of x between — p and + p, Cauchy's condi-

tions of absolute convergency (chap, xxvi., § 34) will be fulfilled

for the double series which results, when we substitute in (3) the

value of y given by (4). This double series may therefore be

arranged according to powers of x, and the result will be a

convergent expansion for a;/(l — e~*).

It is easy to show that a value of p can be found to satisfy

the condition (A) ; for we have

p/2!+pV3! + . . .=^{e<>-\)lp-l.

We have, therefore, merely to choose p so that

e^-K^p (5).

If the graphs of e^ — 1 and of 'ix be drawn, it will be seen

that both pass through the origin, the former being inclined to

the a?-axis at an angle whose tangent is 1, the latter at an angle

whose tangent is 2, that is to say, at a greater angle. There-

fore, since e^—1 increases as x increases, and that ultimately

much faster than 'ix, the graph of e*— 1 will cross the graph of

2x just once. Therefore the inequality (5) will be satisfied pro-

vided p be less than the unique positive root of the equation

e'—l^'lx. Since e^ - 1 < 2 x 1, nnd r — 1 > 2 x 2, this root lies
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between 1 and 2.* It will, therefore, certainly be possible to

expand ir/(l-e~^) in a convergent series of powers of x if

If we make the substitution for y, and calculate the co-

efficients of the first few terms, we find that

1-e-^ 2^^ 62! 304! "^426! •'• ^^^•

Knowing, a priori, that the expansion exists, we can easily

find a recurrence formula for calculating the successive co-

efficients. Let

a;/(l-e-'')=Ao + AiX + A^aP + A3a:^ + . . . (7).

Then, putting - ^ in place of x, we must have, since

- x/(l -0") = e-^^/(l - e-%

e-''xl{l-e-'°) = Aa-A^x + Aoa^-A3C(^ + . . . (8).

Since both the series are convergent, we have, by sub-

tracting,

x = 2AiX + ^Aia? + . . . (9).

Hence Ai = ^; and all the other coefficients of odd order

must vanish.

Therefore, from (7), we have

x = {Ao + ix + A2aP + AiX^ + . . .)(l-e-^),

= (Ao + ix + A2iv'^ + AiX* + . . . + A2nx'^'' + . . .)

""U! 2!
"^3! ••• (2nj\^{2n + l)r- ' '}

The product of these two convergent series will be another

convergent series, all of whose coefficients, except the coefficient

of X, must vanish. Hence, equating coefficients of odd powers of
X, we deduce Ao= 1, and

^•2n A<2n-2 A^ 1 1

1-' 3! •
* {2n ~l)\~ 2(2^ "^

{2n + 1)!
^ "'

* More nearly, the root is 1-250 . . . ; but the actual value, as will be
seen presently, is not of much importance.
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that IS, IT + -gr + • • • +
(2^^31)1

=
2T2;r;:i)!

^^^^'

In like manner, if we equate the coefficients of even powers

of iT, we deduce

2! 4! (2^2)!
~

2 (2w + 2)! ^ ^'

If, as is usual, we put ^2)i = ( - r~^^n/(2w)!, our expansion

becomes

""
;

= l + ^^ + i^-^^^ + #^-. .. (12);
1-e-^ 2 2! 4! 6!

and the equations (10) and (11) may be written

a»+l ^271 -Dn ~ 271+1 ^271-2 -On-1 + • . • ( ~ ) 271+1 ^2 -0 1 = ( — ) (W — ^)

and
(10')

271+2 ^271 -On ~"2n+2 ^271-2^77-1 + • • •("/ 271+2^2^1 — \ ) W (11)

respectively.

If we put n-l, 11 = 2, n = 3, . . . , successively, either in

(10') or in (11'), we can calculate, one after the other, the

numbers Bi, B2, . . ., Bn, • • -, which are called Bernoulli's

numbers*. Since we know, a priori, that the expansion exists,

the two equations (10') and (11') must of necessity be con-

sistent. Neither of them furnishes the most convenient method

for calculating the numbers rapidly to a large number of decimal

places ; but it is easy to deduce from them exact values for a

few of the earlier in the series, namely,

•^^'"^6' ^'^30' ^'^42' ^'"30'

7?_5 o_691 J. J D_3617
^''66' ^«~2730' ^'~6' ^'~ 510'

43867 „ 1222277 n

^^^"79F' ^''~
2310 '

^'''

* There is considerable divergence among mathematical writers as to the

notation for Bernoulli's numbers. What we have denoted by B^ is often

denoted by Bj^, or by -Ban-i- ^^^ further properties of these numbers, and

for tables of their values, see Euler, Inst. Diff. Calc. Cap. 5, § 122 ; Ohm,

Crelle's Jour., Bd. xx. p. 11 ; J. C. Adams, Brit. Assoc. Rep., 1877, p. 8,

also Cambridge Observations, 1890, App. i. ; Staudt, Crelle's Jour., Bd. xxi.

;

Boole's Finite Dijj'erences (ed. by Moulton) ; and, for a useful bibliography

of the relative literature, Ely, Am. Jour, Math. (1882),
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We shall return to the properties of these numbers in

chap. XXX.

Remark regarding the limits within which the expansion of a;/(l-c~*) is

valid.—If we denote the series

,1 B, ^ Bo ,

by
<f)

(x), we may state the problem we have just solved as follows :

—

To find
a convergent series

<f>
(x) such that (1 - e~^) <p (x) — x, that is, such that (x - a;^/2!

+ a;3/3!- . . . )<p(x) = x.

Now, since x~ x^l2l + x^l^\-is absolutely convergent for all values of x,

and the coefficients of (p (x) satisfy (10') and (11'), <p {x) will satisfy the con-

dition (a;- a;2/2! +a;^/3! - . . .) ^(x) = a; so long as ^(a;) is convergent. Hence,

so long as ^{x) is convergent, it will be the expansion of a;/(l-e~^). As a

matter of fact, it follows from an expression for Bernoulli's numbers given in

chap. XXX. that <p(x) is convergent so long as -27r<x< +2ir. The actual

limits of the validity of the expansion are therefore much wider than those

originally assigned in the a priori proof of its existence.

Cor. 1. Since x{e" + e-^)/(e* - g"^) = ^/(l - e"^) - ^/(l - e^),

we deduce from (12)

Cor. 2. Since «/(l + e"^) = 2^/(1 - e"'^) - ^/(l - g-*),

j-^,=.|(2^-l)^ + §(2^-l)^='-§^(2^-l)^^ + . . . (14).

§ 7.] Bernoulli's Theorem.—We have already seen that the

sum of the rth powers of the first n integers {nSr) is an integral

function of ii of the r + 1th degree (see chap, xx., § 9).

We shall now show that the coefficients of this function can

be expressed by means of Bernoulli's numbers.

From the identity

(g"* - 1)1{e^ -l) = l + e^ + e^ + . . .+ e(™-i)%

that is,

(e"^ - 1)/(1 - e-"=) = e*= + e^ + e*^ + . . . + g"*,

we deduce at once

(nx 7iV n^'x"
,

"1

f^

.^^+!1^ + . .
.4-"A^ + . .. (1),



§§ 6-8 Bernoulli's expression for Xn^ 233

wherein all the series are absolutely convergent, so long as n

is finite, provided a: do not exceed the limits within which

1 + ^a? + ^i^Y2! -^2^7^' + • • • is convergent. The coefficient

of af'^'^ on the right of (1) must therefore be equal to the co-

efficient of af'^^ in the convergent series which is the product of

the factors on the left. Hence

„Sr_ 11""+' jf^ B^Tf- ^ B,n^-' ^^n"--'

r\ (r+1)! 2.H 2!(r-l)! 4!(r-3)! Ql{r-5)l'

Therefore

^ n''+^ 1 „ ^ D r 1 r(r-l)(r-2) „ ,. ,

"'^r = ,r^ + 2
'' ""

2\
^'"^ " 4!

' ^''"

r (r-l)(r-2)(r-3)(r-4)
(2),

the last term being ( - )H''-2) i?^,.w, or ^ ( - )H''-V ^j (r_i)»^ accord-

ing as r is even or odd.

This formula was first given by James Bernoulli {Ars Conjectandi, p. 97,

published posthumously at Basel in 1713). He gave no general demonstra-

tion ; but was quite aware of the importance of his theorem, for he boasts

that by means of it he calculated intra semi-quadrantem hoiw ! the sum of

the 10th powers of the first thousand integers, and found it to be

91,409,924,241,424,243,424,241,924,242,500.

It will be a good exercise for the reader to check Bernoulli's result.

SUMMATION OF SERIES BY MEANS OF THE EXPONENTIAL

THEOREM.

§ 8.] Among the series which can be summed by means of

the Exponential Series, two, related to it in the same way as the

series of chap, xxvil, § 5, are related to the Binomial Series,

deserve special mention.
CO

We can always sum the series %<f)r (n) x^jnl, where <}>r (n) is an

integral function of n of the rth degree. {Integro-Exponential

Series.)
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For, as in chap, xxvii., § 5, we can always establish an identity

of the form

clir{n)-Ao + Ain + A2n(n-l) + . . . + Arn{n-1) . . . (n-r + l).

Then we have, taking, for simplicity of illustration, the lower

limit of summation to be 0,

^tlM^^Ao%'^^+A,a;^y^^+A,a^%j^^~-^, + . . .

w! w! 1 (»-l)! '2 (w-2)!

{n-r)V
= (Ao + Aiiv + A.x^ + . . . + Araf)e^.

QO

Cor. We can in general sum the series %<f)r(n)af^/n\(n + a)

(n + b) . . . (n + k), where a,b, . . ., k are unequalpositive integers.

The process is the same as that used in the corollary of

chap, xxvn., § 5, only the details are a little simpler. (See

Example 5, below.)

Example 1. To deduce the formulae (3), (4), (5) of chap, xxvii., § 9, by

means of the exponential theorem.

(x + n)'-nCi{x +n-lY+. . . {-)r^^C^{x + n-r)'+. . . (-)»a^

is evidently the coefficient of 2' in

s!|g(a;+n)?_^(7^e(a;+n-l)2 4.. . . {
- )\C^ e(='+'>'-^)^ + . . . (-)"«=:'}

==s!e^^(e^-l)»,

The lowest power of z in the product last written is 2", and the coeflScienta

of 2", 2"+i, 2"+2 are si, s! (x + ^n), 4s!{.x;2 + n.'c + TV"(^" + l)} respectively.

Hence

(x + 7i)»-„Ci(x + n-l)»+. . . (-)r^fi^{x + n-ry + . . . {-y>x'

— 0, if s<n;

= ji!, if s= 7i;

= (n + l)!(x + ^n), if 8 = 71 + 1;

= ^(n + 2)l{x^ + nx + -^^n{3n + l)}, if s=:n + 2.

Example 2. If n and r be positive integers, show that

„(1, n n{n-l) . . .{n-s + 1) .
n{n-l) . . .1 J

{r\ l!(r+ l)! sl(r+ s)! nl (»• + «)! |

r! l!(r+l)! s!(r + s)!



§ 8 EXAMPLES

The right-hand side is the coefficient of z'^+^ in

^ ' 1! n (r+ s)I

= (z + .t)» «^+*,

= eMz»+ ,^(7j2"-ix+. . .+„C7„a;»}x |l + ^ + ^ + . . . +^+ .

Now the coefficient of z™+'' in this product is

235

{^ ra;+ . .+
71 (W - 1)

l!(r + l)!

Hence the theorem.

If we put r =0, and x=l, we have

, n+1 (ra + l)(n + 2) ,

^ + Il!F+ (2!)^
^ + ..-adoo

( ,

n n(7i-l)
' "*"(!!

)2'*'"
(2!)2

^'

.!(r + 7i)! T

Example 3. Sum the series

n{n-l)

(«!)^ -I-

13 13 + 23 13 + 23+. .

-X'^+. ad 00,

We have (by chap, xx., § 7)

13 + 23 + , . . + ri3=(ra4+ 27l3 + n2)/4,

=J{^o + ^ira+ ^2«(«-l) + ^3"("- 1) {n-2)+A^n{n-l) (n-2) (w-3)},

where ^q, A-^^, . . ., A^ may be calculated as follows:

—

A,= 0,

+ 1

+ 2

+ 3

Hence

1+ 2+ 1+ + |0
0+ 1+ 3+ 4

1+ 3+ 4+|4
0+ 2+ 10

1+ 5 + |14
0+ 3

1 + 1

_13+23 + ... + n3 „ ^ x«-i 7 ,^
n!

^= 4,

^3= 8, ^4=1.

rn-3 1

+ 2.!;3S,-^-^ + ;a;*S
(n-l)!"^2 ^(n-2)l

= (x+ |a;2+ 2a;3+ Jx^)e^.

If we put a; = 1, we have

S(13 + 23 + . . . + n3)/ji! = 27e/4.

n=«o
Example 4. Show that S n^lnl = 5e.

n=l

Since n^^n + 3n{n-l)+n {n- 1) {n- 2),

S?i3/ral= 21/(n - 1)! + 3Sl/(rt - 2)! + Sl/(?t - 3)!,

'(ra-3)!^4-^ ^(n-4)!'
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Example 5. Evaluate S (n - 1) x"/(n + 2) nl.

1

(w-l)a;" _ly, (n2-l[x^
(n+2)n!~x2 (n+ 2)! *

Now 7i2-l= 3-3(n + 2) + (n + 2)(n + l).

Therefore

1 (7r:r2) nl - ^2 I'^f („+ 2)1 ^"^ t (n + 1)! a n! r
= {3 (e^ - 1 - X- ia;2) - 3x (e=' - 1 - x) + x^ {c'' - 1)} jx-,

=
{ (a;2 - 3a; + 3) e^ + (^a;2 _ 3) } ^^2.

Exercises XII.

(1.) Evaluate 1/e to six places of decimals.

(2.) Calculate x to a second approximation from the equation

501oge(l + x) = 49x.

(3.) If e*= 1 + xe^^, and x* be negligible, show that

;iz=l/2! + x/4!-x3/4!5!.

(4.) Show that, if n be any positive integer,

(1-1/k)-"> 1 + 1/11 + 1/2! + . . . + l/n!>(l + l/w)».

(5.) Sum from to oo S (1 - 3n + n^) x»/n!.

Sum to infinity

(6.) 12/21 + 22/3! + 3'^/4! + . . . .

(7.) 13/2! + 23/31 + 3'V41 + . . . .

(8.) 1-23/11 + 33/21-43/3! + . . . .

(9.) l< + 2*/2! + 3*/31 + . . . .

Show that

(10.) 1/(271)1 - 1/1! (2k - 1)1 + 1/21 (2h - 2)1 - ... - 1/11 (2ra - 1)1 + l/(2n)I = 0.

(11.) If >i>3, n3+ „C2(/i-2)3 + „C4(n-4)3+ . . .^ji^ (n+ 3) 2"-*.

(12.) n"-„(7i(7i-2)»+ „C2(n-4)™-. . .=2"nl.

(13.) By expanding e^/l^"''), or otherwise, show that, if

Jr="i°°(n + 7--l)!/?i!(n-l)!, then J^j-(2r + l)^^ + r(r-l)^^_i = 0.

"=i (Math. Trip., 1882.)

(14.) Prove that

(x-x3/31 + x5/51- . . .)(l-x2/21 + a;'»/4!-. • . ) = S(-)'-22'-x2'+i/(2r+l)!.

(15.) Solve the equation x2 - x - Ifn—O ; and show that the ?ith power of

its greater root has e for its limit when n— ao.

(16.) For all positive integral values of n

"-cw("-a-r---(«^)-"'"-'^-
(17.) If

x»=^„ + y|(x-l) + ^(x-l)(x-2) + . . . + ^(x-l)(x-2) . . . (x-n),

show that A,={s + 1)» - ,C^ s"+ .Cj (s - 1)» -...(- )%C, 1».



Also that

EXERCISES XII 237

(18.) Show that S(n3 + 2n2 + n-l)/ji! = 9e + l.

(19.) Sum S(7i + a)(7i + 6)(7i + c)x"/7i! from 7J= to n=QO .

(20.) Show that e cannot be a root of a quadratic equation having finite

rational coefficients.

(21.) Sum the series 2x"/(» + 3) n\ from n= to ji=qo .

(22.) Sum to infinity the series 13/3. 1I + 3S/4. 2! + 5'V5. 3! + .. . .

If i?i, JSg, . . ., jB„ denote Bernoulli's numbers, show that

(23.) 2)i+1^2n-l^n~2n+l<^2n-3^n-l + ' ' • ( ~ )"~ 2ii+l^l^l = (
" l)"" •

^94^ r n 2n+1^2n-2 -^w-1 , / _ w-i 2n+1^2 -^1 _ / _ w-l^
\^*-) 2?i+l'^2n-"n 22

' • \ I ^in ~\ I ^in,'

(25.) hnCiB^-i^C^B^ + l^C^B^-. . . = (n-l)/2 (71 + 1), the last term on

the left being (-)**""''' -B^2> or 4( - )^'""'^'
"^(»-i)/2 -

according as n is even or

odd.

(26.) By comparing Bernoulli's expression for 1'* + 2'"+ . . . + ti*" with the

expressions deducible from Lagrange's Interpolation Formula, show that

1 '

'-r,-).-.„«c.&±..=o.
1 >-

r
^"^ 2p+i*^'«(t+i)-°-

(Kronecker, Crelle's Jour., Bd. lxxxiv. ; 1887.)

(27.) a; (6== - e-»=)/(e»= + e-»=) = |i (22 - 1) 22x2 + 1? (2* - 1) 2*x J + |j^
(26 - 1) 26x« + . .

.

LOGARITHMIC SERIES.

§ 9.] Expansion of log (1 + x).—It is obvious that no function

of X which becomes infinite in value when x^O can be expanded

in a convergent series of ascending powers of x. For, if we

suppose

f{x)=^AQ + A-^x + A2X^ + . . .,

then on putting a; = we have <x> = A^; and the attempt to

determine even the first coefficient fails.

There can therefore be no expansion of log^ of the kind

mentioned.
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We can, however, expand log{\ + x) in a series of ascending

powers of x, provided x he numerically less than unity.

The base in the first instance is understood to be e as usual.

By § 4, we have

{l + xy=l^z {log (1 + x)] + z" {log (1 + x)fl2\ + . . . (1)

;

and this series is convergent for all values of z.

Again, by the binomial theorem, we have, provided the

numerical value of x be less than 1,

{l^xY = l+zx + z{z-l)x'l2\+z{z-l){z-2)a?l?>\ + . . .,

= 1 + zx-z{l- z/1) xy2 +z(l- z/l)(l- z/2) x'/S + . . . (2).

If we arrange this as a double series, we have

(l + xy =l+zx- {zxy2 - «V/2} + {zaf/3 - (1 + i)2V/3 + ^ z'a^/S} +

{-y-^ {zx'^/n - n-iPiz'x''/n+ n-iP^z^^/n- . . .

{-f-\-,Pn-,z'x^ln]

(3),

where n-\Pr stands for the sum of all the r-products of 1/1,

1/2, . . . , l/(w - 1), without repetition.

In order that Cauchy's criterion for the absolute convergency

of the double series (3) may be satisfied, it will be sufficient if

the series

zx^'jn + „_iPi z^x'^jn + . . . + n-iPn-i z'^x^'ln (4)

and

l+zx + zil + zll)a^/2 + z{l + z/l){l + zl2) 0^/3 + . . . (5)

be both convergent when z and x are positive.

Now the sum of (4) is always z{z + l) . . . (z + n-l) x^'/nl
;

and this has for its limit when n= cc, provided x<l. Also,

the series (5) is absolutely convergent when x<l.

Hence, by chap, xxvi., § 34, we may rearrange the series (3)

according to powers of z, and it will still converge to (1 + x)".

Confining our attention to the first power of z, for the

present, we thus find

{l+xY=l + {x/l-x'/2+ar'/S-. . .}z+. . . (5).

Now, since there can only be one convergent expansion of
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(1 + xf in powers of z, the series in (1) and (5) must be

identical. Therefore

log(l + a;)=^/l-a^/2 + ar'/3-. . .{-f-^ x'^jn^- . . . (6).

The series on the right of (6) is usually called the logarithmic

series. It is absolutely convergent so long as — 1 <;»<!, and it

is precisely under this restriction that the above demonstration

is valid.

If we put x = l on the right of (6), we get the series

1/1 - 1/2 + 1/3- . . . (-l)"~Yw + . . ., which is semi-con\er-

gent. Hence, by Abel's Theorem (chap, xxvi., § 20), equation

(6) will still hold in this case ; and we have

log 2 = 1/1-1/2 + 1/3-. . . + ( - 1)"-V7i + . . . (7),

provided the order of the terms as written be adhered to.

If we put a! = -l in (6), the series becomes divergent. It

diverges, however, to — co ; so that, since log = - qd , the

theorem still holds in a certain sense.

Cor. If we arrange the coefficients of the remaining powers

of z in (5), and compare with (1), we find

{log(l+^)P=2!{iPi^/2-2Pi^/3+3Pi;2?V4-. . .},

{log (1 + X)Y = n\ {n-iPn-i as''In - nPn-i ^"+70* + 1)

+ «+iP«-i^"+V(w + 2)-. . .} (8).

These formulae and the above demonstration are given by

Cauchy in his Analyse Algebrique.

§ 10.] A variety of expansions can be deduced from the

logarithmic theorem. The following are some of those that

are most commonly met with :

—

We have

log {l+x) = x/1 - a?l2 + ^73 - . . . ( - f-^x^ln + . . .

;

also

log(l-;r) = -;r/l-^/2-/r'/3-. . .-^7«-. . . .

Hence, by subtraction, since log {\ + x)- log (1 - x) = \og

{(1 + x)l{l - x)], we deduce

log{(l + ^)/(l-.r)} = 2{^/l + ^73+. . . +^^"-7(2»-l) + . . .} (9).
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Putting in (9) y = {l + x)l{l-x), and therefore x-{y — \)l

{y + 1), we get

^^ \l\y + l) 3\?/ + l/ 2n~l\y+l) ^- • •/

(10),

an expansion for log y (but not, be it observed, in powers of y)

which will be convergent if y be positive—the only case at

present in question.

Again, since 1 + x = x{\ + llx), and log(l + a^) = loga; + log

(1 + 1/a;), putting in (10) y=l + l/x, so that (y-l)/(y+l) =

l/{2x + 1), we have

log(l+a;) = log« + 2{l/l(2^+l) + l/3(2.r+l)^ + . . .} (11).

Finally, since x+l = ar(l — \jaP)j{x — 1 ),

log {x+\)~'2\ogx- log {x — 1)

-2 {1/1(2^^-1) + 1/3(2^^-1)^ + . . .} (12).

If, in any of the above formulce, we wish to use a base a

different from e, we have simply to multiply by the " modulus
"

l/logett (see chap, xxi., § 9). Thus, for example, from (10) we

derive

ON THE CALCULATION OF LOGARITHMS.

§ 11.] The early calculators of logarithms largely used

methods depending on the repeated extraction of the square

root. This process was combined with the Method of Differences,

which seems to have arisen out of the practical necessities of the

Logarithmic Calculator*.

* See Glaisher, Art. "Logarithms," Encyclopcedia Britannica, 9th ed.,

from which much of what follows is taken.
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Thus, Briggs used the approximate formula

logio 2 = (2'"'"- 1) 2^10 log, 10,

depending on the accurate formula

L {af-l)Jz = hgeX,
2=0

which we have already established in the chapter on Limits,

and which might readily be deduced from the exponential

theorem. The calculation of logio 2 in this way, therefore, in-

volved the raising of 2 to the tenth power and the subsequent

extraction of the square root 47 times

!

Calculations of this kind were infinitely laborious, and nothing

but the enthusiasm of pioneers could have sustained the calcu-

lators. If it were necessary nowadays to calculate a logarithmic

table afresh, or to calculate the logarithm of a single number to

a large number of places, some method involving the use of

logarithmic series would probably be adopted.

The series in § 10 enable us to calculate fairly rapidly the

Napierian Logarithms of the small primes, 2, 3, 5, 7.

Thus, putting 3/ = 2 in (10) we have

log 2 = 2 {1/1 . 3 + 1/3 .
3=^+ 1/5 . S'' + . . . }.

The calculation to nine places may be arranged thus :

—

1/3 •333,333,333 1/1 .3 •333,333,333

1/3=' 37,037,037 1/3 .3=' 12,345,679

l/3« 4,115,226 1/5 .3' 823,045

1/3^ 457,247 111 .3^ 65,321

l/3» 50,805 1/9 .3" 5,645

1/3" 5,645 1/11 .
3" 513

1/3^^ 627 1/13 .
31^ 48

1/3^^ 70 1/15 .
3'^ 5

1/3'^ 8 1/17 .
3^^

•346,573,589

2

±4

•693,147,178 ±8

By the principle of chap, xxvi., § 30, the residue of the series

is less than

{l/l9.3-}/(l-?),

c. II. 10
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that is, less than '000,000,000,06 ; and the utmost error from

the carriage to the last line is ±4. The utmost error in our

calculation is ± 8. Hence, subject to an error of 1 at the utmost

in the last place, we have

log 2 = -693,147,18.

Having thus calculated log 2, we can obtain log 3 more
rapidly by putting w = 2 in (11), Thus

log3 = log2 + 2{l/l. 5 + 1/3.5^ + 1/5.5^ + . . . }.

Knowing log 2 and log 3, we can deduce log4 = 2log2, and

log 6 = log 3 + log 2. Then, putting x = 4:m (12), we have

log5 = 2log4-log3-2{l/31 + l/3.3P + . . . }.

Also, putting a) = 6 m (12), we have

log7 = 2log6-log5-2{l/71 + l/3.7P + . . . }.

It will be a good exercise in computation for the student to

calculate by means of these formulae the Napierian Logarithms

of the first 10 integers. The following table of the results to

ten places will serve for verification :

—

No. Logarithm,

1 000,000,000,0
2 0-693,147,180,6*

3 1-098,612,288,7

4 1-386,294,361,1

5 1-609,437,912,4

6 1-791,759,469,2

7 1-945,910,149,1

8 2079,441,541,7
9 2197,224,577,3

10 2-302,585,093,0

From the value of log^lO we deduce the value of its re-

ciprocal, namely, M= -434,294,481,903,251 ; and, by multiplying

by this number, we can convert the Napierian Logarithm of

* 6 means that the 10th digit has been increased by a unit, because the

llta exceeds 4.
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any number into the ordinary or Briggian Logarithm, whose base

is 10.

Much more powerful methods than the above can be found

for calculating log 2, log 3, log 5, log 7, and M.

By one of these (see Exercises xiil, 2, below) Professor

J, C. Adams has calculated these numbers to 260 places of

decimals.

§ 12.] Tlie Factor Method of calculating Logarithms* is one

of the most powerful, and at the same time one of the most

instructive, from an arithmetical point of view, of all the methods

that have been proposed for readily finding the logarithm of a

given number to a large number of decimals.

This method depends on the fact that every number may, to

any desired degree of accuracy, be expressed in the form

io>o/(i-Wio)(i-Wio^)(i-Wio') . . . (1),

where Pq, Pi, p^y • • • each denote one of the 10 digits, 0, 1,

2, . . ., 9, jt?o being of course not 0.

Take, for example, 314159 as the given number. First

divide by 10' . 3, and we have

314159 = 10^ 3. 1-047,196,666,666 ....

Next multiply 1-047,196,666,666 by 1-4/10^ that is, cut

off two digits from the end of the number, then multiply by 4

and subtract the result from the number itself. The effect of

this will be to destroy the first significant figure after the

decimal point. We have in fact

1-047,196,666,666 x (1-4/10')= 1-005,308,800,000.

Next multiply 1-005,308,800,000 by 1-5/10^ and so on

till the twelve figures after the point are all reduced to zero. The
actual calculation can be performed very quickly, as follows :

—

* For a full history of this method see Glaisher's article above quoted

;

or the Introduction to Gray's Tables for the Formation of Logarithms and

Anti-Logarithms to Twenty-four Places (1876).

16—2
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1-0 4 7, 19 6,6 6 6, 6|6 6

41,8 8 7,866,6 66

5,308,800,1000
5, 2 6, 5 4 4,

2 8 2,2 5|6,0 00
20 0, 05 6, 451
8 2, 1|9 9, 549
8 0, 6, 5 7 6

2,|19 2,9 73
2, 0, 4

|1 9 2, 9 6 9

100,000

4/10=

5/10''

2/10*

8/10''

2/l0«

1/10^

92,969 9/10^ 2/10", 9/10", 6/10", 9/10^1

The remaining factors being obvious without farther calcula-

tion. Hence we have

314159 x(l-4/lO')(l- 5/10^) . . . (1-9/10^^)

= lo^3(l + ^/lO"), ^:|>9.

Therefore

314159 = 10^ 3 (l+^/10^^)/(l- 4/10^) (I-S/IO'') . . . (1-9/10^^)

(2).

Since log(l ^- xlW^)<a;IW\ it follows from (2) that, as far

as the twelfth place of decimals,

log 314159 = 5 log 10 + log 3 - log (1 - 4/10") - log (1 - 61W)
- log (1 - 2/10*) - log (1 - 8/10') - log (1 - 2/10")

- log (1 - 1/100 - log (1 - 9/100 - log (1 - 2/100

- log (1 - 9/10") - log (1 - 6/10") - log (1 - 9/10^0-

All, therefore, that is required to enable us to calculate

log 314159 to twelve places is an auxiliary table containing the

logarithms of the first 10 integers, and the logarithms of l-pjKf
for all integral values oip from 1 to 9, and for all integral values

of r from 1 to 12. To make quite sure of the last figure this

auxiliary table should go to at least thirteen places.

§ 13.] It should be noticed that a method like the above is

suitable when only solitary logarithms are required. If a com-

plete table were required, the Method of Differences would be

employed to find the great majority of the numbers to be entered.
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A full discussion of this method would be out of place here*

;

but we may, before leaving this part of the subject, give an

analytical view of the method of interpolation by First Differ-

ences, already discussed graphically in chap. xxi.

We have

logio (a; + h) - logio w = logjo (1 + h/a;)

= M{h/x - -^ (kiwf + I (h/a-y - . . . } (1).

Hence, if h< x, we have approximately

logio (^ + A) - logio ^ ^ Mk/a; (2),

the error being less than ^M(h/wy.

The equation (2) shows that, if \M{klxf do not affect the

nih. place of decimals, then, so long as h'if^k, the differences of

the values of the function are proportional to the differences of

the values of tlie argument, provided we do not tabulate beyond

the wth place of decimals.

Take, for example, the table sampled in chap, xxr., where the numbers

are entered to five and the logarithms to seven places. Suppose x= 30000

;

and let us inquire within what limits it would certainly be safe to apply the

rule of proportional parts. We must have

I X -4343 (/i/30000)2< 5/108,

if the interpolated logarithm is to be correct to the last figure, that is,

/i< 3^23-04,

<14.

It would therefore certainly be safe to apply the rule and interpolate to

seven places the logarithms of all numbers lying between 30000 and 30014.

This agrees with the fact that in the table the tabular difference has the

constant value 144 within, and indeed beyond, the limits mentioned.

SUMMATION OF SERIES BY MEANS OF THE LOGARITHMIC

SERIES.

§ 14.] A great variety of series may, of course, be summed

by means of the Logarithmic Series. Of the simple power series

that can be so summed many are included directly or indirectly

under the following theorem, which stands in the same relation

* For sources of information, see Glaisher, I.e.
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to the logarithmic theorem as do the theorems of chap, xxvii., § 5,

and chap, xxviii., § 8, to the binomial and exponential theorems :

—

The series whose general term is (f> (n) x^l{n + a){n + h) . . .

(n + k), where <{> (n) is an integral function of n, and a, b, . . .

,

k are positive or negative'^ unequal integers, can always he

summed to infinity provided the series is convergent.

It can easily be shown that the series is convergent provided

X be numerically less than unity, and divergent if x be

numerically greater than unity.

If the degree of <^ {n) be greater than the degree of {n + a)

(n + b) . . . (n + k), the general term can be split into

i/' {n) x^ + x (n) x''l(n +a)(n + b) . . . {n + ^) (1),

where ^{n) and x{n) are integral functions of n, the degree of

the latter being less than the degree of {n + a){n + b) . . . {n + k).

Now %\l/{n)x'^ is an integro-geometric series, and can be

summed by the method of chap, xx., § 13.

By the method of Partial Fractions (chap, viii.) we can

express x {n)l{n + a){n + b) . . . (n + k) in the form

AI{qi + a) + B/(n + b) + . . . + IC/{n + k),

where A, B, . . ., K are independent of n. Hence the second

part of (1) can be split up into

Ax^l{n + a) + Bx^'lin + h) + . . . + Kaf'l{n + k) (2)

;

and we have merely to sum the series

^Sa;7(w + a), B^x^'lin + b), . . ., K%x'%n + k) (3).

Now, supposing, for simplicity of illustration, that the sum-

mation extends from w = 1 to w = oo , we have

A ix^'/in + a) = Ax-^^x^+^lin + a),

= -Ax-''{xJl + xy2+ +x^/a+hg{l-x)} (4).

Each of the other series (3) may be summed in like manner.

Hence the summation can be completely eft'ected.

* When any of the integers a, b, . . ., k are negative, the method

requires the evaluation of limits in certain cases.
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If a; = 1, the series under consideration will not be convergent

unless the degree of <^ (n) be less than the degree of {n + a)

(n + b) . . . (n + k). It will be absolutely convergent if the

degree of ^ {n) be less than that oi {n + a){n + h) . . . (n + k) by-

two units. If the degree of ^ {n) be less than that of {n + a)

(n + b) . . . (n + k) by only one unit, then the series is semi-

convergent if the terms ultimately alternate in sign, and divergent

if they have ultimately all the same sign.

In all cases, however, where the series is convergent we can,

by Abel's Theorem, find the sum for x=l by first summing for

x< 1, and then taking the limit of this sum when x=\.

In the special case where </> {n) is lower in degree by two

units than {n + a)(n + b) . . . (n+ k), and a,b, . . ., k are all

positive, an elegant general form can be given for 2</» {n)l{n + a)

(n + b) . . . {n + k).

From the identity

<i>
(n)/{n + a){n + b) . . . (n + k)

= AI{n + a) + Bl{n + b) + . . . + K,(n + k),

we have

ff>{n) = A{7i + b)(n + c) . . . {n + k) + B{n + a)(n + c) . . . (n + k)

+ . . . + K{n + a)(n + b) . . . (n +j) (5),

and, bearing in mind the degree of <^ (n), we have

A + B + . . .+K=0 (6).

Also, putting in succession n = -a, n=-b, . . , , n~-k, we

have
A^^{- a)l{b -a){c-a) . . . {k-a)\

B = 4>{-b)l{a-b){c-b) . . . ik-b)[
(7)^

K=cl>(-k)l{a-k){b-k) . . . (j-k)

Reverting to the general result, we see from (4) that

'h^{n)x'^l{n + a){n + b) . . . {n + k)

= -%Ax-''{xl\ + x'l2 + . . .+afla)-\og{\-x).^Ax-'' (8),

where the S on the right hand indicates summation with respect

to a,b,. . . , k.
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JN^ow, since A+B + . . .+K=0, '^Ax'"' is an algebraical

function of x which vanishes when x = l. Also \-x is an

algebraical function of x having the same property. Therefore,

by chap, xxv., § 17, we have

L \og{l-x).'^Ax-''= L log {(1-^^)2^'=-"},
x=\ x=l

= log 1,

= 0.

Hence, taking the limit on both sides of (8), we have, by Abel's

Theorem,

^c{>{n)/{n + a){n + b) . . . {n + k) = -%A (l/l + 1/2 + . . . + 1/a),

_ ^ ^(-a){l/l + l/2 + . . . + l/a)

{b-a){c-a) . . . (c-k) ^^^'

the S on the right denoting summation with respect to

a, b, c, . . ., k

Example 1. Evaluate 2,n^x^l{n - 1) (n + 2).
2

We have ri?x'^j{n - 1) (n+ 2) = (n - 1) a;"+ \x'^l{n - 1) + |a;'7(7i + 2),

Now 2(n-l)a;"=la;2 + 2x3 + 3a;*+ . . .,

(1 - xf-Z {n - 1) a;»

=

Ix^+ 2x^ + Zx*+.

-2.1x3-2.2a;4-.

+ lx*+.
= x\

Hence 2(ji-l)x'»=x2/(l-a;)2.
2

Also i la;»/(n - 1) = 4a;2a;"-V{n - 1),

= -lx log (1 - a;)

;

1 2a;»/(n+ 2) = |a;-2 Sa;»+2/(n + 2),
2 2

= -fa:-2{a;/H-a^/2 + .-c3/3 + log(l-a;)}.
Hence the whole sum is

x-'lil - xf - Sx-i - 1 - «x - i (x + 8x-2) log (1 - x).

Example 2. Evaluate 2 l/(n-l)(n+ 2).
2

By the same process as before, we find

Sx»/(n - 1) (n + 2) = Jx-i + ^ + Jx + ^ (x-2 - a;) lo- (1 - a;}.
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Now, since L {l-xY~'-^-l (chap, xxv., § 17), L {x-"^- x)\og{l- x) = 0.

Therefore Sl/(n - 1) (n + 2) = ^ + i + i= -H-
2

This result might be obtained in quite another way.

It happens that Sl/(7i- 1) (n + 2) can be summed to n terms. In fact,

we have
l/(«-l)(7i + 2) = Hl/(«-l)-l/(« + 2)}.

Hence, since the series is now finite and commutation of terms therefore

permissible,

3|l/(„-l)(« + 2)=.J4 + l3+...+-i_ + ^3 +^2 +^^
1 _Jl 1 1 1_

~4 **' n-4 n-'d n-2 n-1

_i_ J^ i_
n n + 1 n + 'A'

_1 1 1_ 1__1 1_
~i'^2"^3 n 11 + 1 n + 2'

Hence, taking the limit for «=qo , we have

|_1/1 1 1\_11
2~3Vl'*'2'^3y"18'

Example 3. To sum the series

(Lionnet, Nouv. Ann., ser. ii.,t. 18.)

Let the (n+ l)th term be m„, then, since m„=0, association is permitted

(see chapter xxvi., § 7), and we may write

+
4w + l 4n + 3 2)i + 2'

4n+ l 4?i + 2 4n+ 3 4?t + 4 47z + 2 4?i + 4'

^ /^L 1_ _1 ]_\ 1 /^ 1_\
~\,4n+ l 471 + 2"^ 4n + 3 4ji + 4/ "^ 2 ^271 + 1 2n + 2/'

= u„+ w„, say.

Now, as may be easily verified, v^ and w„ are rational functions of n, in

which the denominator is higher in degree than the numerator by two units

at least. Hence (chap. xxvi.
, § 6) Zv^ and Xtu^ are absolutely convergent

series. Therefore (chap, xxvi., § 13)

Sw„=S(v„+ «;„),

=Sv„+2w„.
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Hence, again dissociating v„ and w^ (as is evidently permissible) we have

« ,1111111

l{
,1111111

2 3 4^5 6 7 8

=log,2 + ilog,2, by §9 above,

This example is an interesting specimen of the somewhat delicate opera-

tion of evaluating a semi-convergent series. The process may be described

as consisting in the conversion of the semi-convergent into one or more

absolutely convergent series, whose terms can be commutated with safety.

It should be observed that the terms in the given series are merely those of

the series 1 - 1/2 -i- 1/3 - 1/4 + 1/5 - . . . written in a different order. We
have thus a striking instance of the truth of Abel's remark that the sum of

a semi-convergent series may be altered by commutating its terms.

APPLICATIONS TO INEQUALITY AND LIMIT THEOREMS.

§ 15.] The Exponential and Logarithmic Series may be

applied with effect in establishing theorems regarding inequality.

Thus, for example, the reader will find it a good exercise to

deduce from the logarithmic expansion the theorem, already

proved in chapter xxv., that, if ic be positive, then

a;-l>\oga;>l-llw (1).

It will also be found that the use of the three funda-

mental series—Binomial, Exponential, and Logarithmic—greatly

facilitates the evaluation of limits. Both these remarks will be

best brought home to the reader by means of examples.

Example 1. Show thatnil 1 1 , n+1
loe - — >—I 1 h . . . -f - > log .

^m-1 m^m + 1 m + 2^ n ^ m
If we put 1 - l/x= 1/to, that is, x=mj{m- 1), in the second part of (1) above,

and then replace m by m-hl, to + 2, . , ., n successively, we get

log m - log (m - 1) > l/»i,

log {m+ 1)- log m> l/(m + 1),

log n - log (« - 1) > 1/w.

Hence, by addition,

logn-log(m-l)>l/y)i-l-l/(Ht + l)+ . . . +l/« (2).
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Next, if we put x - l = l/?n in the first part of (1), and proceed as before,

we get

log (m + 1) - log m< 1/m,

log {m + 2) - log (m + 1) < ll{m + 1),

log (n + 1) - log n < 1/n.

Hence
log(»i + l)-log?n<l/m + l/(Ht + l)+ . . .+1/71 (3).

From (2) and (3),

log{K/(m-l)}>l/m + l/(m+ l)+ . . .+!/«> log {(n + l)///i}.

Example 2. If^ and q be constant integers, show that

L {l/m+l/(m + l)+ . . . +ll{pm + q)}=\ogp.
ni=oo ,

(Catalan, Traite Elementaire des Series, p. 58.)

Put n=pm + q in last example, and we find that

log{(p»i+ 3)/(TO-l)}>l/wi + l/(m + l) + . . . + ll{pm + q)>log{{pm + q + l)lm}.

Now L log {{pm + q) I
(m-l)} = logp,

m=oo

and L log{(2J)n+ g + l)/»t} = logiJ.

Hence the theorem.

Example 3. Evaluate L (e*-l)2/{a;-log(l + a;)} when x= 0.

Since {e''-l)^={x + ^x^+ . . .)^=x^{l + ^x+ . . .)2;

x-log(l + x):^ix^-^x^+ . . .=ia;2(l-|a;+ . . .).

Therefore

(e''-lfl{x-log(l + x)}=2(l + isX+ . . .)2/(l-|x+ . . .).

Since the series with the brackets are both convergent, it follows at once

that L(e»-l)2/{x-log(l + a;)} = 2.

Exercises XIII.

(1.) If P= l/31 + l/3.31» + l/5.3Pf . . .,

Q=l/49 + l/3. 493 + 1/5. 49''+. . .,

iJ= 1/161 + 1/3. 16P + 1/5. 161» + . . .,

then log2=2(7P+5g + 3i?),

log 3 = 2 (11P + 8(3 + 512),

log5= 2(16P+ 12(3 + 7i?).

(See Glaisher, Art. "Logarithms," Ency. Brit., 9th ed.)

(2.) If a= -log (1-1/10), &=- log (1-4/100), c = log (1 + 1/80), d =
-log (1-2/100), e = log (1 + 8/1000), then log 2 = 7a - 26 + 3c, log 3= 11a- 3&

+ 5c, log 5 = 16a -46 + 7c, log7= i(39a- 106 + 17c-d) = 19a- 46 + 8c + e.

(Prof. J. C. Adams, Proc. R.S.L. ; 1878.)

(3.) Calculate the logarithms of 2, 3, 5, 7 to ten places, by means of the

formulaj of Example 1, or of Example 2.

(4.) Find the smallest integral value of x for which (1-01)*> lOar.
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Sum the series :

—

(5.) 21/1 (a;3 - 3x)i + 2^/3 (x^ - 3x)^ + . . .

(7.) a;V1.2-a;2/2.3 + a;3/3.4- . . . (-)»-ix"//i(ji + l) . . .

(8.) a;2/3 + a;^/]5+. . . + a;2"/(4ra2 - 1) + . . .

(9.) a;/P + a;2/(12 + 22) + a;3/(12 + 22+ 32)+. . .+x^l{l^ + 2'^ + . . . + n'^) + . . .-,

also l/P + l/(P + 22) + l/(12 + 22 + 32) + . . . + 1/(12 + 22+ , . . + ,f-)+ . . .

(10.) 4/1.2.3 + 6/2.3.4 + 8/3.4.5+ .. .

(11.) If x>100, then, to seven places of decimals at least, log(a; + 8) =
2 log (x + 7) - log (a; + 5) - log (x + 3) + 2 log a; - log (x-3)- log (a; - 5) + 2 log

(x-7)-log(a;-8).

(12.) Expand log (1 + a; + a;2) in ascending powers of x.

(13.) From log (a;3 + l) = log (x+ l) + log(a;2-cB + l), show that, if m be a

positive integer, then

6»t - 2 (6»i - 3) (Got - 4) {6m - 4) (6nt - 5) (6m - 6) _1-
21 +

3! 4!
+...-0.

(Math. Trip., 1882.)

(14.) {loge(l + a;)}2= 2a;2/2-2(l/l + l/2)a;3/3 + . . . (-)»2{l/l + l/2 + . . .

l/(n- l)}a;"/7i . . . Does this formula hold when x= 1 ?

where Q^n-i = 1/1 - 1/2 + 1/3 - . . . + l/(2?j - 1).

(16.) If a; <1, show that

X + ^a;2 + ^x*+ ^W^.

.

. = log{l/(l - a;) } - 1P3 - ^P^+ IP^ - ^Py - ^^9 + tV^10 • • • :

where P„=x" + x2»+ x'"'+ a[:8™ + a;i^"+ . . ., and the general term is (-)"P„/7i,

unless n is a power of 2, in which case there is no term.

(Trin. Coll., Camb., 1878.)

(17.) li e'^xe'^'^xe''''^ . . . = Ao+ A^x + . . ., then A^r= ^2r+2 = '^-^-^
• •

(2r-l)/2.4.6. . .2r.

(18.) lix+ asa^+ a^x^+. . . + y + a.^y^ + a^i/ + . . . = {{x + y)l{l-xy)y +
a3{{x + y)l(l- ocy)}'^ + a^{{x + y)l{l - xy)y+ . . ., for all values of x and y
which render the various series convergent, find a^, a^, . . .

Show that

(19.) log(4/e) = l/l. 2-1/2. 3 + 1/3. 4-1/4. 5+. . .

(20.) log 2= 4(1/1. 2. 3 + 1/5. 6. 7 + 1/9. 10. 11 + 1/13. 14. 15 + ...) (Euler.)

(21.) (1-1/2 -1/4) + (1/3 -1/6 -1/8) + (1/5 -1/10 -1/12) + . . . = ilog2.

(See Lionnet, Nouv. Ami., ser. 11., t. 18.)

(22.) ffi/1! -7J(ro/2! + n(n-l) 0-3/3! - . . . to n + 1 terms = l/(n+ 1)2, where

(7^=1/1 + 1/2 + 1/3+. . . +l/r. (Math. Trip., 1888.)

(23.) e~(l + l/m)'" lies between e/(2m + l) and e/(2m + 2), whatever vi

may be. (Nouv. Ann., ser. 11., t. 11.)

(24.) L{x/(x-l)-l/logx}=i, when x = l. (Eulei, Inst. Calc. Dif.)

(26.) I,{e»=-l-log(l + .T)}/x2=l, whenx=0. (Euler, Z.c.)

(26.) L(a;*-x)/(l-x + logx)= -2, whenx= l. (Euler, Z.c.)



§ 15 EXERCISES XIII 253

(27.) I, (1 + l/?i)Vn (1 + 2/71) V». . . (l + n/n)V»=4/e, when 71 = 00.

(28.) L{(27i- I)l/n2™-i}i/n= 4/e2, when «= oo .

(29.) ^>l + x, for all real values of x.

(30.) a;-l>loga;>l-l/a;, for all positive values of a; ; to be deduced

from the logarithmic expansion.

(31.) «"> (1 + n)"/7il, n being any integer,

(32.) If n be an integer > e, then ?i"+i > {n + 1)".

(33.) If A, B, a, h be all positive, then {a-h)l{A-B) + {Aa -Bh)
log (BIA)I{A - BY is negative. (Tait.)

(34.) llx>y>a, then {{x+a)l{x - a)}''<{{y + a)l{y -a)}y.

(35.) L{l/(ji + l) + l/(n + 2) + . . . + l/27i} = log2,whenn= Qo, (Catalan.)

(36.) log{(n + i)/(m-i)}>l/m+l/(m + l) + . . . + l/7i>log{(n + l)/m}.

(Bourguet, Nouv. Ann., ser. ii,, t. 18.)

(37.) log3=5/l. 2. 3 + 14/4. 5.6 + . . . + (97i-4)/(3n-2) (3?i-l)37i + . . .

(38.) If S( -)"-V (")/(«+ «)(?i+ ^) • . • (n+fc), where a,b,...,k are
1

all positive integers and (p(n) is an integral function of n, be absolutely

convergent, its sum is

S= S 0(-a){l/a-l/(a-l). . . (-)«-il/l}/(6-a) (c -a) . . .(k-a);
a,b, . ..,k

and, if it be semi-convergent, its sum is

S + log2 S {-)<'<p{-a)l{b-a){c-a) . . .(k-a).
a,b,...,k

(39.) Show that the residue in the expansion of log {1/(1 -a;)} lies

between
a;i+i{l+(n + l)a;/(n + 2)}/(7! + l)

and x^+^{l + {n+ l)xl(l-x)(n + 2)}l{n + l).

(40.) In a table of Briggian Logarithms the numbers are entered to

5 significant figures, and the mantissae of the logarithms to 7 figures.

Calculate the tabular difference of the logarithms when the number is near

30000 ; and find through what extent of the table it will remain constant.

(41.) Show that (1 + l/a;)*^+i continually decreases as x increases.

(42.) Show that S I/71 (4n2 - 1)"= f - 2 log 2.



CHAPTEE XXIX.

Summation of the Fundamental Power Series for

Complex Values of the Variable.

GENERALISATION OF THE ELEMENTARY TRANSCENDENTAL

FUNCTIONS.

§ 1.] One of the objects of the present chapter is to generalise

certain expansion theorems established in the two chapters which

precede. In doing this, we are led to extend the definitions of

certain functions such as «% loga^, cos a:, &c., already introduced,

but hitherto defined only for real values of the variable x ; and

to introduce certain new functions analogous to the circular

functions.

Seeing that the circular functions play an important part in

what follows, it will be convenient here to recapitulate their

leading properties. This is the more necessary, because it is

not uncommon in English elementary courses so to define and

discuss these functions that their general functional character is

lost or greatly obscured.

§ 2.] Definition andProperties ofthe Direct CircularFunctions.

Taking, as in chap, xii.. Fig. 1, a system of rectangular axes, we
can represent any real algebraical quantity 6, by causing a radius

vector OP of length r to rotate from OX through an angle con-

taining 6 radians, counter-clockwise if 6 be a positive, clockwise

if it be a negative quantity. If {cc, y) be the algebraical vahies of

the coordinates of P, any point on the radius vector of 6, then

xjr, yjr, yjx, xjy, rjx, rjy are obviously all functions of 0, and

of B alone. The functions thus geometrically defined are called
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COS 0, sin 6, tan 6, cot 6, sec &, cosec 6 respectively, and are spoken

of collectively as the circular functions.

All the circular functions of one and the same argument, 6,

are algebraically expressible in terms of one another, for their

definition leads immediately to the equations

tan 6 - sin ^/cos 6, cot 6 = cos ^/sin d ; \

sec 6 = 1/cos 0, cosec - 1/sin 6 ; Y (1)

;

cos^ 6 + sin^ ^ = 1, sec- 6 — tan^ ^ = 1 ; i

from which it is easy to deduce an expression for any one of the

six, cos 0, sin 6, tan 6, cot 6, sec 6, cosec 6, in terms of any other.

When F{6) is such a function of 6 that F{-0) = F(6), it is

said to be an even function of ; and, when it is such that

F{-0) = -F(0), it is said to be an odd function of 0. For

example, 1 + 6^ is an even, and ^-^^* is an odd function of 6.

It is easily seen from the definition of the circular functions

that cos and sec 6 are even, and sin 0, tan 9, cot 0, and cosec

odd functions of 6.

When F(0) is such that for all values of e,F{e + nX) = F(6),

where A. is constant, and n any integer positive or negative, then

F{0) is said to be a periodic function of having the period A.

It is obvious that the graph of such a function would consist

of a number of parallel strips identical with one another, like the

sections of a wall paper ; so that, if we knew a portion of the

graph corresponding to all values of 6 between a and a + X, we

could get all the rest by simply placing side by side with this an

infinite number of repetitions of the same.

Since the addition of ±27r to 6 corresponds to the addition

or subtraction of a whole revolution to or from the rotation of

the radius vector, it is obvious that all the circular functions are

periodic and have the period 27r. This is the smallest period,

that is, the period par excellence, in the case of cos 6, sin 9, sec 9,

cosec (y. It is easily seen, by studying the defining diagram, that

tan 9 and cot 9 have the smaller period tt. Thus we liave
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COS {6 + 2w7r) = COS 6, sin {6 + 2mr) = sin 6, \

sec {6 + 2w7r) = sec ^, cosec {6 + 2w7r) = cosec 9, Y (2).

tan (^ + nir) = tan ^, cot {6 + n-n) = cot 6. )

Besides these relations for whole periods, we have also the

following for half and quarter periods :

—

cos {tt+O) =- cos 6, sin (rr±6) = + sin ^

;

cos(^ir±6) = + sm6, sin(^7r+ ^) = + cos^; I /^\

tan {^Tr±0) = + cot 6, cot (^n-±0)= + tan 6
;

&c.,

all easily deducible from the definition.

We have the following table of zero, infinite, and turning

values :

—

e i^ IT Itt 27r (fee. '

cos 6 + 1 -1 + 1

sin^ +

1

-1
tan^ GO 00 &c.

cot^ GO GO CO

sec^ + 1 CO -1 GO + 1

cosec 6 00 +

1

GO -1 GO
/

which might of course be continued forwards and backwards

by adding and subtracting whole periods

Hence cos has an infinite number of zero values correspond-

ing to = ^{2n + 1) TT, where n is any positive or negative integer;

no infinite values ; an infinite number of maxima and of minima

values corresponding to ^ == 2mr and 6 = {2n + 1) tt respectively

;

and is susceptible of all real algebraical values lying between

- 1 and + 1.

Sin 6 is of like character.

But tan is of quite a different character. It has an infinite

number of zero values corresponding to 6-mr; an infinite

number of infinite values corresponding to 6 = ^(2n+l)7r ; no

turning values ; and is susceptible of all real algebraical values

between — qo and + oo

.

Cot 9 is of like character.
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Sec^ and cosec^ have again a distinct character. Each of

them has infinite and turning values, and is susceptible of all

real algebraical values not lying between - 1 and + 1. The

graphs of the functions y = sma!, y = cosiv, &c., are given in

Fig. 1. The curves lying wholly between the parallels KL,
K'L , belong to cos x and sin x, the cosine graph being dotted

;

all that lies wholly outside the parallels KL, K'L', belongs either

to sec X or to cosec x, the graph of the former being dotted. The

curves that lie partly between and partly outside the parallels

KL, K'L', belong either to tsmx or to cot;r, the graph of the

latter being dotted.

Again, from the geometrical definition combined with

elementary considerations regarding orthogonal projection are

deduced the following Addition Formulw :

—

cos (0 ±(}>) = cos ^ cos <^ + sin ^ sin ^ ;

sin {6±<li) = sin ^ cos <^ ± cos ^ sin <^ ;

tan (^ ± ^) = (tan 6 ± tan <^)/(l + tan 6 tan 0).

As consequences of these, we have the following :

cos ^ + cos <^ = 2 cos |(^ + <ji) cos ^{0 - ^)
;

'

cos <^-cos 6 - 2 sin ^{0 + <j>) sin ^{0-(f>) ;

sin ^ ± sin <;^ = 2 sin |(^ ± ^) cos ^{0 + ^).

cos ^ cos ^ = |cos (6 + <fi) + |cos (^ - <^)

;

'

sin ^ sin ^ = ^cos (^ - ^) - ^cos (^ + <^) ;

sin 6 cos (ft - ^sin {$ + (fi) + |sin (6 - <^).

cos2^ = cos''e-sin'^^ = 2cos'^-l = l-2sin'^e
'

= (l-tan^^)/(l+tan2^)

sin 2^ = 2 sin 6cosd = 2 tan 6/{l + tan'' $).

tan 2^ = 2 tan 9/(1 - tan' 6).

(5).

(C)

(7)

(8).

§ 3.] Inverse Circular Injunctions. When, for a continuum

(continuous stretch) of values of y, denoted by (y), we have a

relation

(t:-F{t/) (1),
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which enables us to calculate a single value of x for each value

of y, and the resulting values of x form a continuum {x), then

the graph of F{y) is continuous; and we can use it either to

find X when y is given, or y when x is given. We thus see that

(1) not only determines a; as a continuous function of y, but also

^ as a continuous function of x. The two functions are said to

be inverse to each other ; and it is usual to denote the latter

function by F~^{x). So that the equation

y = F-Hx) (2)

is identically equivalent to (1).

It must be noticed, however, that, although F~^ (x) is con-

tinuous, it will not in general be single-valued, unless the values

in the continuum (x) do not recur. This condition, as the

student is already aware, is not fulfilled even in some of the

simplest cases. Thus, for example, if x = y^, for -oo <y< + oo,

the continuum (x) is given by 0:!f>x<+ oo
; and each value of x

occurs twice over. We have, in fact, y = ±x^', that is, the

inverse function is two-valued.

It is also important to notice that, even when the direct

function, F{y), is completely defined for all real values of y, the

inverse function, F~^ (x), may not be completely defined for all

values of x. F~^ (x) is, in fact, defined by (1) solely for the

values in the continuum (x). Take, for example, the relation

x=y^, for - cc <y< + (x>. The continuum (x) is given by

1^ iJ? < + 00 ; hence y is defined, by the above relation, as a

function of x for values of x between and + qo and for no

others.

The application of the above ideas to the circular functions

leads to some important remarks. It is obvious from the

geometrical definition of sin^ that the equation

x = smy (3)

completely defines ir as a single-valued continuous function of

y, for — CO <y <+ cc. Hence, we may write

y = sin"' X (4),

17—2
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where the inverse function, sin~^a;*, is continuous, but neither

single-valued, nor completely defined for all real values of x.

Since, by the properties of sin y, x lies

between - 1 and + 1 for all real values

of y, sin"^ x is, in fact, defined by (3)

only for values of x lying between — 1

and + 1. For other values of x the

meaning of sin"^ x is at present arbitrary.

By looking graphically at the problem

"to determine y for any value of x lying

between -1 and +1," we see at once

that sin~^^ is multiple-valued to an

infinite extent.

If, however, we confine ourselves to

values of sin"^a; lying between -^tt and

+ |^7r, we see at once from the graph

(Fig. 2) that for any value of x lying

between — 1 and + 1 there is one, and

only one, value of sin~^:r. If we draw

parallels to the axis of x through the

points A, B, C, . . ., A', B', . . .,

whose ordinates are +-|-7r, +f tt, +|-7r, . . ., -I-t, -f tt, . . ., then

between every pair of consecutive parallels we find, for a given

value of X (- 11f^x'^+ 1), one, and only one, value of ^ = sin~^ar.

The values of y corresponding to points between the parallels

A' and A constitute what we may call the Principal Branch of

the function. Similarly, the part of the graph between A and B
represents the 1st positive branch ; the part between B and G
the 2nd positive branch ; the part between A' and B' the 1st

negative branch; and so on.

If, as is usual, we understand the symbol sin~^ x to give the

value of y corresponding to x, for the principal branch only, and

use yn or „ sin~^ x for the wth branch, then it is easy to see that

3/„ = „sin-^;r = TC7r + (-l)"sin-^a; (5),

Fig. 2.

* This may be read "angle whose sine is x" or " arc-sine x." In

Continental works the latter name is contracted into arc-sin x ; and thia is

used instead of sin"*x.
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where n is a positive or negative integer according as the branch

in question is positive or negative.

It is obviously to some extent arbitrary what portion of the

grapli shall be marked off as corresponding to the principal

branch of the function ; in other words, what part of the function

shall be called the principal branch. But it is clearly necessary,

if we are to avoid ambiguity—and this is the sole object of the

present procedure—that no value of y should recur within the

part selected ; and, to secure completeness, all the different values

of 3/ should, if possible, be represented. Attending to these con-

siderations, and drawing the corresponding figures, the reader

will easily understand the reasons for the following conventions

regarding cos'^a?, tan~^a?, cot"^a;, sec~^a;, cosec'^^r, wherein 3/

and the inverse functional symbols cos~^^, &c., relate to the

principal branch only, and i/n to the nth branch, positive or

negative.

1/ = cos"^ a?, y between and + tt
;

I/n = (n + I- + i-T-'i)^ + i-T cos-' X.

y = tzxr' X, y between -\tt and + I^tt;

yn, = WTT + tau~^ X.

y = cot~^ X, y between and ir

;

y^ = tm + cot~^ X.

y = sec~^ X, y between and ir2/ = sec '
i2?, y oetween u ana ir

;

2^» = (^ + |- + (-r-'^)T+(-)'*sec-^^.

y = cosec"^ x, y between -^tt and + ^^
5

yn = n'7r+ (- )" cosec"^ x.

(6)

(7)

(8)

(9)

(10)

Since every function must, in practice, be unambiguously

defined, it is necessary, in any particular case, to specify what

branch of an inverse function is in question. If nothing is

specified, it is understood that the principal branch alone is in

question.

It is obvious that all the formulae relating to direct circular

functions could be translated into the notation of inverse circular

functions. In this translation, however, close attention must be

paid to the points just discussed. Thus
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If X be positive, the formula cos ^ = + ^(1 - sin^ B) becomes

sin~^ X = cos~^ ^(1 - of)
;

but, if X be negative, it becomes

sin~^ x = — cos~^ J(l - x^).
,

If 0<x<l/j2, 0<3/<l/^2, we deduce from the addition

formulae for the direct functions

sin~^ X + sin~^^ = cos~^ [\/{(l - ^^) (1 -y^)} - ^y]
',

if 0<a;<l, 0<2/<l,

tan~^ X + tan~^ y = tan~^ [(x + y)/(l - xy)].

If X and y be both positive, but such that xy>l, then

tan~^ X + tan~^ y = Tr \- tan~^ [{x + y)l{l — xy)] *

;

and, in general, it is easy to show that

flitan"^ X + „tan~^ y = {m + n+p)Tr + tan~^ {{x + y)/{l - xy)},

= r>i+n+pt&n-^{{x + y)l{l-xy)} (11),

where p=l, 0, or -1, according as tan"^ ^ + tan~^ ?/ is greater

than ^TT, lies between ^tt and -^tt, or is less than -^tt.

ON THE INVERSION OF W = Z'K

§ 4.] When the argument, and, consequently, in general,

the value of the function are not restricted to be real, the

discussion of the inverse function becomes more complicated,

but the fundamental notions are the same.

For the present it will be sufficient to confine ourselves to

the case of a binomial algebraical equation. Let us first consider

the case

w-^" (1),

where w is a positive integer, 2; is a complex number, say

z = x + yi, and, consequently, w also in general a complex

number, say w = u + vi.

To attain absolute clearness in our discussion it will be

* In English Text-Books equations of this kind are often loosely

stated; and the result has been some confusion in the higher branches

of mathematics, such as the integral calculus, where these inverse functions

play an important part.
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necessary to pursue a little farther the graphical method of

chap. XV., § 17.

It follows from what has there been laid down, and from the

fact that any integral function of x and 2/ is continuous for all

finite values of a; and 3/, that, if we form two Argand Diagrams,

one for a; + yi (the ;2;-plane), and one for u + vi (the tr-plane), then,

whenever the graphic point of s* describes a continuous curve, the

graphic point ofw also describes a continuous curve. In this sense,

therefore, the equation (1) defines w as a continuous function of

z for all values, real or complex, of the latter. For simplicity in

what follows we shall suppose the curve described by z to be the

whole or part of a circle described about the origin of the ;^-plane.

We shall also represent z by the standard form r (cos ^ -^ * sin 6),

and w by the standard form s (cos
(f>
+ i sin <^) ; but we shall, con-

trary to the practice followed in chap, xii., allow the amplitudes

6 and ^ to assume negative values. Thus, for example, if we

wish to give z all values corresponding to a given modulus r,

without repetition of the same value, we shall, in general, cause

6 to vary continuously from - ir to + tt, and not from to 27r,

as heretofore. In either way we get a complete single revolution

of the graphic radius ; and it happens that the plan now adopted

is more convenient for our present purpose.

It is obvious that by varying the amplitude in this way, and

then giving all different values to r from to + qo
, we shall get

every possible complex value of z, once over ; and thus eff'ect a

complete exploration of any one-valued function of z.

Substituting in (1) the standard forms for w and z, and

taking, for simplicity, w = 3, we have

s (cos ^ + * sin ^) = r* (cos ^ + « sin df

= r" (cos 3d + i sill '66) (2)

by Demoivre's Theorem. Hence we deduce

s = r^y (t>^39 + 27i7r

;

* For shortness, in future, instead of "graphic point of z" we shall say

'• z " simply.
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or, if (as will be sufficient for our purpose) we confine ourselves

to a single complete revolution of the graphic radius of z,

s^r", cf> = Sd (3).

If, therefore, we give to r any particular value, s has the

fixed value r^ ; that is to say, w describes a circle about the

origin of the w-plane (Fig. 4). Also, if we suppose z to describe

its circle (Fig. 3) with uniform velocity, since ^ = 3^, w will

describe the corresponding circle with a uniform velocity three

times as great. To one complete revolution of z will therefore

Fm. 3. Fig. 4.

correspond three complete revolutions of w. In other words, the

values in the (w)-continuum which correspond to those in the

(«)-continuum are each repeated three times over*.

The actual course of w is the circle of radius i^ taken

three times over. We may represent this multiple course

of w by drawing round its actual circular course the spiral

0', T, r, 0, 1', 1, 0', which re-enters into itself at 0' and 0'.

The actual course may then be imagined to be what this spiral

becomes when it is shrunk tight upon the circle.

* To indicate this peculiarity of w we shall occasionally use the term
"Eepeating Function." A repeating function need not, however, be periodic

as w=:a?i8.
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If we now letter the corresponding points on the 2;-circle with

the same symbols we have the circle O'll' in the w-plane, cor-

responding to the circular arc O'll' in the z--p\a.ne, and so on, in

this sense that, when z describes the arc O'll', then w describes

the complete circle O'll', and so on.

It follows from this graphical discussion that tlie equation

W'=^, which defines w as a one-valued continuous function of z

for all values of z, defines z as a three-valued continuous function

ofw for all values of w.

In other words, since, in accordance with a notation already

defined, (1) may be written

z = yw (1'),

we have shown that the cube root of wis a three-valued continuous

function ofw for all values of w.

It is obvious that there is nothing in the above reasoning

peculiar to the case n = 3, except the fact that we have a triple

spiral in the w-plane, and a trisected circumference in the 2;-plane.

Hence, if we consider the equation

w = «" (4),

and its equivalent inverse form

z = ^w (4'),

all the alteration necessary is to replace the triple by an w-ple

spiral, returning into itself on the negative or positive part of

the w-axis, according as n is odd or even ; and the trisected

circumference by a circumference divided into n equal parts.

Thus we see that the equation (4), which defines w as a

continuous one-valued function of z for all values of z, defines z

{that is, the nth root of w) as a continuous n-valued function of w
for all values ofw.

% 5.] Riemann's Surface. It may be useful for those who are to pursue

their mathematical studies beyond the elements, to illustrate, by means of

the simple case tD=z^, a beautiful method for representing the continuous

variation of a repeating function which was devised by the German mathema-
tician Eiemann, who ranks, along with Cauchy, as a founder of that branch

of modern algebra whose fundamental conceptions we are now explaining.
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Instead of supposing all the spires of the w?-path in Fig. 4 to lie in one
plane, we may conceive each complete spire to lie in a separate plane super-

posed on the w-plane. Instead of the single it'-plane, we have thus three

separate planes, Pj, P^ , Pj , superposed upon each other. To secure continuity

between the planes, each of them is supposed to be slit along the M-axis from
to - 00 ; and the three joined together, so that the upper edge of the slit in

Po is joined to the lower edge of the slit in Pj ; the lower edge of the slit in

Pj to the upper edge of the slit in Pj ; the lower edge of the slit in Pj to the

upper edge of the slit in Pj, this last junction taking place across the two
intervening, now continuous, leaves. We have thus clothed the whole of the

w-plane with a three-leaved continuous flat helicoidal* surface, any continu-

ous path on which must, if it circulates about the origin at all, do so three

times before it can return into itself. This surface is called a Eiemann's

Surface. The origin, about which the surface winds three times before

returniug into itself, is called a Whiding Point, or Branch Point, of the

Third Order. Upon this three-leaved surface lo will describe a continuous

single path corresponding to any continuous single path of z, provided we
suppose that there is no continuity between the leaves except at the junctions

above described.

§ 6.] If we confine to that part T'Ol' of its circle which

is bisected by OJC, and <f> to the corresponding spire I'Ol' of its

path, so that <^ lies between — tt and + ?r, and 6 between - ir/n

and +7r/n, then z becomes a one-valued function of w for all

values of w. We call this the principal branch of the n-\a\ued

function ^w; and, as we have the distinct notation w^^"' at our

disposal, we may restrict it to denote this particular branch of

the function z. In other words, if

w = s{GO&(f> + isiw (ji), — 77 < ^< -t- TT,

we define w^'^ by the equation

and we also restrict (cos ^ + * sin <^)^''"' to mean cos . ^Jn + i sin . <f>ln.

Just as in § 4, we take the next spire after T'Ol' in the

positive direction (counter-clock) to represent the first positive

branch of IJw ; the next in the negative direction to represent the

first negative branch of ^w ; and so on, the last positive and the

last negative being full spires, or only half spires, according as n

is odd or even.

If, as is usual, we represent the actual analytical value of w

* Like a spiral staircase.
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by the form s (cos «^ + / sin ^), where <^ is always taken between

- TT and + TT, then it is easy to find expressions for the values of z,

belonging to the w - 1 positive and negative branches of 'i/w and

corresponding to any given value of w, in terms of the value

belonging to the principal branch. We have, obviously, merely

to add or subtract multiples of 27r to represent the successive

positive and negative whole revolutions of the graphic radius of

w. Thus, if z, Zt, Z-t relate to the principal, tth. positive, and

^th negative branches oiz= l^w respectively, we have

z= s^/" {cos . ^/w + * sin . ^/w}

;

\

Zt = s^'" {cos . (<)) + 2tTr)/n + i sin . (<^ + 2tT)ln} ; I (5).

Z-t = s''"{cos . (<^ - 2tTr)ln + i sin . (<^ - 2tiir)ln]. J

We have thus been led back by a purely graphical process to

results equivalent to those already found in chap, xii., § 18.

Cor. 1. Hence, \f z denote the principal value of the nth root

ofw, and <an= cos. 27r/w + i sin . 27r/n, then

t

n ;

that is, Zt = w^'"'u>n, Z-t = 'U)

Zt = zwn', z.t = zo)n-'; \ .„.

Cor. 2. The principal value of the nth root of a positive real

number r is the real positive nth root, that is, what has already

been denoted by r^'"' (see chap, x., § 2).

For, in this case, we have w = r (cos + i sin 0), that is, ^ = 0.

Hence J!jw = r^'\

Cor. 3. There is continuity between the last values of any

branch of ^Jtv and the first values of the next in succession, and

between the last values of the last positive branch and the first

values of the last negative branch; but elsewhere two values of

'^w belonging to different branches, and cori'esponding to the

same value of w, differ by a finite amount.

It should be noticed as a consequence of the above that the principal

value of the nth root of a real negative number, such as - 1, is not definite

until its amplitude is assigned. For we may write -l = cos7r + isin7r or

= cos ( - tt) + i sin (
- ir) ; and the principal value in the former case is

cos.7r/n+ tsin.ir/n, in the latter cos(-7r/w) + i Bin(-ir/n). This ambiguity

does not exist for complex numbers differing from - 1, even when they differ

infinitely little, as will be at once seen by referring to Figs. 3 and 4,
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§ 7.] It should be observed that if, instead of restricting «^

in the expression 2; = 5^^"{cos. ^/w + « sin. <^/n} to lie between

— TT and +7r, we cause it to vary continuously from -wtt to

+ W7r, then s^^"{cos . <^/w + «' sin. ^/«} varies continuously and

passes once through every possible value of I^w, where
|
«r

|
is

given =5.

It follows also that, if w describe any continuous path

starting from P and returning thereto, the value of J^w will

vary continuously ; and will return to its original value, if w
have circulated round the origin of the w-plane pn times, where

/> is or any integer ; and, in general, will return to its original

value multiplied by wj, where t is the algebraical value of

+ fi — r, fi and V being the number of times that w has circu-

lated round the origin in the positive and negative directions

respectively. On account of this property, the origin is called a

Branch Point of l^w.

§ 8.] Let us now consider briefly the equation

'uf = z'^ (1),

where p and q are positive integers. We shall suppose p and q
to be prime to each other, because that is the only case with

which we shall hereafter be concerned*.

Our symbols having the same meanings as before, we
derive from (1)

s^ {cosp(ji + i sill p<}>) = r^ (cos qO + i sin qd) (2).

Hence, taking the simplest correspondence that will give a

complete view of the variation of both sides of the equation

last written, we have

s^ = r^, p^ = q6 (3).

If, then, we fix r, and therefore s, the paths of z and w will

be circles about the origins of the z- and ^^-planes respectively

;

and, since p is prime to q, if z and w start from the positive part

* If ^ and q had the G.C.M. k, so that ^= fc^', q = kq', where p' and q' are

mutually prime, then the equation (1) could be written («7P')*'=(z9')*, which

is equivalent to the k equations, wp'—z1', wV= uj^sfi' , ioP'=(,)f?zi', . . ., ujp*

= wj*~^2;9', where w^. is a primitive A;th root of + 1. Each of these k equations

falls under the case above discussed.
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of the X- and w-axes simultaneously, they will not again be

simultaneously at the starting place before z has made p, and

w has made q revolutions.

To get a complete representation of the variation we must

therefore cause 6 to vary from —pir to +ptt, and ^ from — qir to

+ g''7r. The graphs of z and w will therefore be spirals having

p and q spires respectively. To each whole spire of the g-spiral

will correspond the pjqih. part of the j9-spiral. The case where

p = Z and g = 4 is illustrated by Figs. 5 and 6.

FiQ. 5. Fig. 6.

It follows, therefore, that the equation (1) determines w as a

continuous p-valued function of z, and z as a continuous q-valued

function of w. Taking the latter view, and writing (1) in the

form
z = Uw^ (1'),

and (3) in the form

r = ^i% e=p^lq (3'),

we see that, if we cause ^ to vary continuously from -qir to

+ qtr, then s**'* ( cos - <^ + e sin- ^ j will vary continuously through

all the values which ^w^ can assume so long as
1
1^?

|

= s, and

will return to the same value from which it started. In fact, we
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see in general that, if w start from any point and return to the

same point again after circulating /* times round the origin in

the positive direction, and v times in the negative direction,

then ^liP returns to its original value multiplied by cos . 2ptTrlq +

i sin . 2pt-nrlq where # = +/*- r; that is, by w/', where Wg denotes

a primitive q\h root of + 1.

If, as usual, we divide up the circular graph of w into whole

spires, counting forwards and backwards as before, and consider

the separate branches of the function ^iif corresponding to these,

then each of these branches is a single-valued function of 6.

The spire corresponding to -7r<^<+7r is taken as the

principal spire, and corresponding thereto we have the principal

branch of the function z = ^w^, namely.

\cos~<fi + ism-({)[, -'n-<(f)< +

For the (+ t)th. and (-r t)th. branches respectively, we have

Zt = s^'^{cos .p{(l> + 2tir)lq + i sin .p(<fi + 2t7r)/q},

= iofz;

z^t = s'^'^{cos.p{cf>-2t7r)/q + 2 sin .p{<fi- 2tTr)/q},

= o>f'"z.

As before, we may use w*'^^ to stand for the principal branch

of ^w^, and we observe, as before, that the principal value

of ^w^ when w is a real positive quantity is the real positive

value of the qth. root, that is, what we have, in chap, x,,

denoted by w^'^.

% 9.] It must be observed that, when p is not prime to q, the expressions

sPl'i {cos.p (0±2<ir)/g + i sin.p (^±2tir)/g} no longer furnish all the q values

of i^wP, but (as may be easily verified) only q/k of them, where k is the

G.C.M. of p and q. The appropriate expression in this case would be
«P/« {cos . (p^± 2(ir)/g + i sin . (p^ ± 2t7r)/g }

.

This last expression gives in all cases the q different values of ^wp ; but

it has this great inconvenience, that, if we arrange the branches by taking

successively f = 0, t=l, «= 2, . . ., the end value of each branch is equal,

not to the initial value of the succeeding branch, but to the initial value of

a branch several orders farther on. There will therefore be more than one

crossing in the graphic spiral. The investigation from this point of view will
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be a good exercise for the student. When p is prime to q, the two expres-

sions for ^wP are equivalent ; and we have preferred to use the one which
leads to the simpler graphic spiral.

If we adopt Riemann's method for the graphical representation of the

equation wP—zi, then we shall have to cover the z-plane with a ^-leaved

Eiemann's surface, having at the origin a winding point of the _pth order

;

and the w-plane with a g-leaved surface, having at the origin a winding

point of the gth order.

Exercises XIV.

(1.) Solve the equation

tan-i {(x-t- l)/(a; - 1)} -1- tan-i {(a: -f- 2)/(a; - 2)} = ^ TT,

and examine whether the solutions obtained really satisfy the equation when
tan~^ denotes the principal branch of the inverse function.

(2.) If 27r2<4g', show that the roots of the equation x^-qx-r=0 are

2(g/3)V2cosa, 2 (g/3)i/2cos (|7r-J-a), 2 ((7/3)1/2 cos (§7r- a), ^Yiexe a is deter-

mined by the equation co8 3a= ^r (3/g)=V2,

Show that the solution of any cubic equation, whose roots are all real,

can be effected in this way ; and work out the roots of a;^ - S-r + 3 = to six

places of decimals. (See Lock's Higher Trigonometry, § 135, or Todhunter's

Trigonometry, 7th ed., § 2G0.)

Trace the graphs of the following, x being a real argument :

—

(3.) 2/ = sina;-(-sin2a;. (4.) y= smx + cos 2x.

(5.) y = sinx sin 2x. (6.) y= tanx + t&n2x.

(7-) y=xamx. (8.) y = sin x/x.

(9.) y= sin 8a;/cos x. (10.) y = am~^x^.

(11.) 2/2= sin- ix. (12.) sin y= tan x.

Discuss graphically the following functional equations connecting the

complex variables w and z. In particular, trace in each case the «;-paths

when the 2-paths are circles about the origin of the 2-plane, or parallels to

the real and to the imaginary axis.

(13.) w-=z^ (14.) w = Ijz.

(15.) w^ljz^ (16.) 102= 1/^3.

(17.) w^=(z-a){z-b). (18.) w^= {z-af(z-h).

(19.) w3=(z-af. (20.) w^={z-af.
(21.) w= {az + b)l{cz + d). (22.) w^=ll{z-a)(z-b).

§ 10.] We can now extend to their utmost generality some

of the theorems regarding the summation of series already

established in previous chapters.

It is important to remark that the peculiar difficulties of this
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part of the subject do not arise where we have to deal merely

with a finite summation ; that is to say, the summation of a

series to n terms. For any such summation involves merely a

statement of the identity of two chains of operations, each con-

taining a finite number of links, and any such identity rests

directly on the fundamental laws of algebra, which apply alike

to real and to complex quantities.

Even when the series is infinite, provided it be convergent,

and its sum be a one-valued function, the difficulty is merely one

that has already been fully settled in chap, xxvi.

The fresh difficulty arises when the sum depends upon a

multiple-valued function. We have then to determine which

branch of the function represents the series ; for the series, by

its nature, is always one-valued.

We commence with some cases where the last-mentioned

point does not arise.

GEOMETRIC AND INTEGRO-GEOMETRIC SERIES.

§ 11.] The summation

l+z + z"-^. . . +;^" = (l-z"*0/(l-2;) (1),

since it depends merely on a finite identity, holds for all values

of z. We may therefore suppose that z-x + yi^r (cos 6 + i sin 6),

and the equation (1) will still hold.

Also, since L 2;""*"^ ^ Lr'"-^'^ (cos n + l6 + i dnn + 1^) = 0,
n=at>

when r<\, we have, provided |2;|<1, the infinite summation

l+z + s'^+ . . . adoo = l/(l-;r) (2)

for complex as well as for real values of z.

In like manner, the finite summation of the integro-geometric
n

series 2^(w)^"> which we have seen can always be effected for

real values of z (see chap, xx., § 14), holds good for all values

of z ; and, since 2«^ (w) z^ is convergent provided
1
2;

|
< 1 , the

infinite summation deducible from the finite one wilj hold good

for all complex values oi z such that |;2;|<1.
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By substituting in (1) or (2), and in the corresponding

equations for 5^ (n) z^, the value r (cos + i sin 0) for z, and then

equating the real and imaginary parts on both sides, we can

dedxice a large number of summations of series involving circular

functions of multiples of 6.

Example 1. To sum the series

Sn=l + rcosd+ r^co82d+ . . . + r^coane,

T^=r sin d + r"^ sin 20 + . . . + r"-sinn6,

i[7„=cosa+rcos(a + ^) + r''cos(a + 2») + . . . + r'*cos (o + n^),

Vn=ama+ r8m{a + e)+r^sm{a + 2e) + . . . +r"sin (a + Ji^),

to n terms ; and to oo when r< 1.

Starting with equation (1), let us put z = r (cob 9 + i ain 6), and equate real

and imaginary parts on both sides. "We find

l + r{coB$ + iaind) + f^{cos2e + ism2d) + . . .+r^{cos7i0 + iamn0)
= { 1 - r™+i (cos {n + l)9+i sin (n + 1) ^)}/{ 1 - r (cos ^ + i sin ^)} (3)

;

whence*

S;„= {1 - r cos ^ - r"+i cos (n+ 1) ^ + r"+2 cos n9}l{l - 2r cos O+r^} (4)

;

T„= {r sin 9 - r^+i sin [n + 1)9 + r'^+^ sin n9}l{l - 2r cos 9 + r^} (5).

Again, since U'„= cos aS„- sin aT^,

Vn= sin a5f„ + cos aT^

,

we deduce from (4) and (5) the following:

—

f7„= {cos a - r cos (a - ^) - r"+i cos {n+ 19 + a) + r"+2 cos {n9 + a)}/

{l-2rcos9 + r"} (6),

F„= {sin a - r sin (a -9)- r'^+i sin (n+ 10 + a) +r'»+2 gin („,9 + a)}/

{l-2rcos^ + r2} (7).

From these results, by putting r=+l, or r=-l, we deduce several

important particular cases. For example, (6) and (7) give

C08a+ C08(a + 5)+C0s(a+ 2e) + . . . + cos(ft+7i^)

=cos ^ {o + (a+n^)} sin ^ (n+ l)^/sin ^^ (6')

;

sina+ sin(a+ ^) + sin(a + 2^) + . . . + sin(a + ne)

= sin^{a+ (a+ n&)}sin^(n + l)^/sin4^ (7').

Finally, if r<l, we may make n infinite in (4), (5), (6), (7) ; and we thus

find

S„ = (l-rcos^)/(l-2rcos0 + r2) (4");

r„ = r sin 91(1 - 2r cos d + r^) (5")

;

U^ = {cos tt - r cos (a - ^) }/{l - 2r cos 9 + r^ (6")

;

F„ = {sin a -r sin (a - 9)}I{1 - 2r ooa9 + r^} (7").

* For brevity, and in order to keep the attention of the reader as closely

as possible to the essentials of the matter, we leave it to him, or to his teacher,

to supply the details of the analysis.

c. u. 18
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Example 2. Sum to infinity the series

S=l-2rcose + 3r^coa2e-4kr^co&3e + . . . ('<1)-

If « = r (cos e + isinO), then S is the real part of the sum of the series

T=l-2z + dz^-iz^ + . . . .

Now, by chap, xx., § 14, Example 2,

T=l/(l + z)2.

Henee S=B{ll{l + rcoa0 + rism0)^}*

=R{{l + rcose-rism0)^j(l + rcoa0^ + r^sin^e)^},

= {l + 2rco3 + r^cos2e)l{l + 2rcose + r^)^.

Example 3. Exemplify the fact that every algebraical identity leads to

two trigonometrical identities in the particular case of the identity

- (b-c){c~a) (a - b) = bc (b - c) + ca {c - a) + ab {a ~ b).

In the given identity put a=cosa + tsina, &=cosj3+ tsin^, c= cos7 +
i sin y, and observe that

cos /3 + i sin /3 - cos 7 - i sin 7= 2i sin i (/3 - 7) {cos i (/3 + 7) + i sin J (/3+ 7)}.

We thus get

4n sin i (i3
- 7) {cos 4 (i3 + 7) + i sin J (/3 + 7)}

= Ssin J(/3-7){cos|3 + isin/3} {0087 + 1 sin 7} {cos4(j3+ 7)

+ isini(^+7)},
whence

4cos(a + /3 + 7)nsini(/3-7) = Ssini(/3-7)cosf (^3+ 7);

4 sm (a + /3 + 7) n sin i (i3
- 7) =2 sin i (/3 - 7) sin f ifi+ y).

FORMULA CONNECTED WITH DEMOIVRE's THEOREM AND

THE BINOMIAL THEOREM FOR AN INTEGRAL INDEX.

§ 12.] By chap. xiL, § 15 (3), we have

cos (^1 + ^2 + . . . + ^n) + i sin (^1 + ^2 + • • • + ^n)

= (cos Oi + i sin 61) (cos 6^ + i sin 6^ . . . (cos 9^ + i sin ^n).

If we expand the right-hand side, and use Pr to denote

% cos 6I1 cos B^. . . cos Or sin ^r+i ... sin ^„, that is, the sum of all

the partial products that can be formed by taking the cosines

of r of the angles ^1, ^2, . • ., ^n and the sines of the rest, then

we find that

cos {6^ + 6i+ . . . + ^„) + » sin (^i + 6/2 + . . . + 0,,)

= Pn + iPn-l-Pn-2-iPn-i + Pn-4 + iPn-S-- - - •

* We use Rf(x + yi) and If(x + yi) to denote the real and imaginary parts

of / (a; + yi) respectively.



§ 12 EXPANSIONS OF COS (^i + ^2 + • • • + On), &C. 275

Hence

cos(^i + ^2+. . . +6'„) = P„-P„_2 + P„_4-P„-6+ . . . (1);

sin (6, + 6,+ . . . + ^„) = Pn-l - Pn-, + A-5 - Pn-7 + • • • (^)-

From these, or, more directly, from

cos {di + 6^+ . . . +0n) + i sin {6^ + 62+ . . . + ^n) = cos 6^ cos $2

... cos 6n (1 + i tan ^1) (1 + i tan 6^ . . . (1 + * tan ^„),

we derive

tan (^1+^2 + . .. + er,)={T,-T, + T,-. . .)/{l-T2+T,- . . .) (3),

where T'r = 2 tan ^1 tan ^2 • • • tan Or.

The formula) (1), (2), (3) are generalisations of the familiar

addition formulae for the cosine, sine, and tangent.

From the usual form of Demoivre's Theorem, namely,

cos n6 + i sin nd - (cos 6 + 1 sin &)",

we derive, by expansion of the right-hand side,

cos nd + i sin nd = cos'' + i „(7i cos**"^ ^ sin ^ - ^Cg cos""^ sin^ 6

- i nGs co8"-3 d sin' 6 + „C4 cos™"* d sin* 6> + . . .

.

Hence

coswe = cos''e-„C2Cos"-'^sin2^ + „C4Cos"-''esin*^-. . . (4)*;

sin nO = nC^ cos"-^ ^ sin ^ - ^C^ cos"-=^ B sin=* 9

+ „aiCos"-''^sin^^-. . . (5);

„ ^(^itan^-^Cstan'^ + ^Cgtan''^-. . . ,^.
tan no= 77-

—

ttb—?n—rz l^;.
l-rtC/atan-^ + nC^tan^^- . . .

These are generalisations of the formulae (8) of § 2.

The formulae (4) and (5) above at once suggest that cosw^

can always be expanded in a series of descending powers of cos ^;

that, when n is even, cos nd can be expanded in a series of even

powers of sin or of cos ; sin nO/sin ^ in a series of odd powers

of cos ; and sin 7i^/cos in a series of odd powers of sin 9

:

and, when n is odd, cos n6 in a series of odd powers of cos 9
;

cos nO/cos ^ in a series of even powers of sin 9 ; sin n9 in a series

of odd powers of sin 9 ; sin nO/sin ^ in a series of even powers

of cos 9.

* The formulas (4), (5), (6), (8) were first given by John Bernoulli in 1701

(see 0^., t. I., p. 387).

18—3
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Knowing, a priori, that these series exist, we could in various

ways determine their coefficients ; or we could obtain certain

of them from (1) and (2) by direct transformation , and then

deduce the rest by writing ^w-O \n place of 6. (See Todhunter's

Trigonometry, §§ 286-288.)

We may, however, deduce the expansions in question from

the results of chap, xxvii., § 7. If in the equations (9), (10), (9'),

(9"), (10'), (10") there given we put a=^cos^ + »sin ^, ft
= cos 6-

i sin 0, and therefore jt? = 2 cos ^, (/ = 1, we deduce

2 cos nO = (2 cos 0)'' -
^,

(2 cos 6)''-^ + ^il^izi) (2 cos ey-' - . . .

^_y
Mn-r-l)(n-r-2)...(n-2r^l)

^^^^^^^^^_^^^_ ^^^,.

sin «^/sin 6 = (2 cos 0)^-' - ^^^~ (2 cos 6^-' + ^^lll^^^ J^^Ilil

(2 cos er-^ -...(-)'•
(n-r-l)(n-r- 2).^^n-2r)

(2 cos 6)''-2'--i + . . . (8);

cos ne = {- Y^ |l - ^' cos'^ e + '''^''^7 ^'^
cos" 6 - . . .

, ^y{n'-2 '')
. . . {ti'-2s~2-') „,. 1, . ^.

{-y—

^

(2s)\
^ cos-' ^ + .. .Uw even) (9);

cos n9 = {- )(™-^''^
] — cos 6 ^—-.— '

cos^ + —^ ^ ^

11! o! 5!

cos^6-. . .{-y— ——
.„ ix, -^cos^+^^ + . . .[^
(2s +1)! J

(wodd) (10);

sin n6/sm 6 ^ {- fi'-^ i- cos - ''^'''^~^'^
cos'' ^ + . . .

( -
)

^
{2i+i)\

^°^
•

'P'*
^^^'^^ ^^ ^^

'

* The series (7), (9'), (10') were first given by James Bernoulli in 1702

(see Op., t. II., p. 926). He deduced them from the formula

2Bin^n^=|;(2Bin^)^-»'(";-^^)(2sin.)^4-"''^"'-^;j<"'-^^2sin^)e-....

which he established by an induction based on the previous results of Yieta

regarding the multisection of an angle.
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sin ne/sin 6 = (-f-^V' U ~ ^-^^ cos^ 6 + (tl}^^t:3^ cos"^ - . .

.

(-y^ '-^ 7^^^ cos^ 6+ . . .y{n odd) (12).

If in the above six formulae we put ^tt - ^ in place of 9, we

derive six more in which all the series contain sines instead of

cosines. In this way we get, inter alia, the following :

—

cos n6=l- ^, sin^ + ^
^^

^ sin* 9 - . . . (n even) (9')

;

sm n9 = .,, sm 9 ^—-t— '^ sin^ 9 + —

—

{~,^ ^- sin^ 9- . . .

1! 61 5!

(wodd) (10');

sin n9/cos 9 = --^ sm 9—^—-,—- sm^ 6 + -^ ^ ^ sin^9-. .

.

(weven) (11');

coswg/cos^=l-^^sin^^ +
^'''"^y~

-^sin*g-. . .

(wodd) (12').

The formulae of this paragraph are generalisations of the

familiar expressions for cos 29, sin 29, cos 39, and sin 39, in terms

of cos 9 and sin 9.

§ 13.] The converse problem to express cos"^, sin'*^, and,

generally, sin™ 9 cos" ^ in a series of sines or cosines of multiples

of 9, can also be readily solved by means of Demoivre's Theorem.

If, for shortness, we denote cos 9 + i sin 9 by x, then we have,

by Demoivre's Theorem, the following results :

—

£c = cos 9 + i sin 9, Ijx = cos ^ — z sin ^

;

af = cos n9 + i sin n9, 1/af = cos nO - i sin nO

:

cos9 = -{w+l/a;), sin9=-^{a;- l/ce);

cos n9 = I (.r" + l/.r"), sin n9 = ^. (^'^ - 1/^").

} (1).
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Hence

= r^^^{cos 2m^ + 2mOi cos (2w - 2)0 + ^^C.^ cos (2w - 4)^ +

'
. . . + 22m^«i} (2).

Similarly,

cos^+i ^ =^ {cos (2m + 1)^ + 2«+iCi cos (2m - 1)0

+ 2m+i^2Cos(2m-3)0+ . . . +2»i+iC'mCos0} (3);

sin'^™ =^^^ {cos 2m5 - ^C^ cos (2m - 2)0

+ 2^0.008 (2m -4)0+. . .{-Yl^raCm) (4);

sin-'«+^ =^-^ {sin (2m + 1)0 - am+aC; sin (2m - 1)0

+ 2^+, C^ sin (2m -3)0+. . . (-)'"2«+iatsin0} (5).

These formulae are generalisations of the ordinary trigonometrical

formula sin^ Q = -\ (cos 20 - 1), cos« = ^ (cos 30+3 cos 0), &c.

In any particular case, especially when products, such as

sin™ cos" 0, have to be expanded, the use of detached coefficients

after the manner of the following example will be found to con-

duce both to rapidity and to accuracy.

Example 1. To expand sin' Q cos^ ^ in a series of sines of multiples of 0.

sin' e cos' ^= 08^5 (^ - 1/^)' (*+ 1/^)*'

Starting with the coefficients of the highest power which happens to be

remembered, say the 4th, we proceed thus

—

Coefficients of Multiplier. Coefficients of Product.

1-1
1-4+ 6- 4 + 1

1-6 + 10-10 + 5-1

1 + 1

1 + 1

1 + 1

1-4+ 5+ 0-5 + 4-1
1-3+ 1+ 5-5-1 + 3-1
1-2- 2+ 6+0-6+2+2-1

The coeffi cients in the last line are those in the expansion of (a; - 1/x)' (x+ l/x)'.

Hence, arranging together the terms at the beginning and end, and replacing
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-: (a;8 - l/a;8) by sin 8^, - {x^ - l/x") by sin &d, and so on, we find

sin" e cos8 e=^ {sin 8^-2 sin 6(? - 2 sin 4^+ 6 sin 2^ + ^ . 0},

= fL {sin 80 - 2 sin 6» - 2 sin 4(? + 6 sin 20}.

The student will see that sin"* 6 cos" 6 can be expanded in a

series of sines or of cosines of multiples of 0, according as m is

odd or even. The highest multiple occurring will be (m + n) B.

Example 2. If = 2vln, and a any angle whatever, and

,„[/„= cos'" a + CDS'" (a + 0) + . . . + cos'"(a + ra-10),

^F„=8in'"a + 8in"'(a + 0) + . . . + 8in"*(a+ n-10),

where m is any positive integer which is not of the form r + inji, then

2mf^«=2m^n=«-1.3. . .(2m-l)/2.4. . .2m;

am+l t/„= 2m+l 'n~ '^ •

This will be found to follow from a combination of the formulas of the

present paragraph with the summation formulae of § 11.

Exercises XV.

Sum the following series to n terms, and also, where admissible, to

infinity :

—

(1.) cos a - cos (a + 0) + cos (a + 20)-. . .

(2.) sina-sin(a + 0) + sin(a + 20)-, . .

(3.) Ssin^n^. (4.) nco80 + (n- l)cos20 + (n-2) cos30 + . . . .

(5.) S sin 710 cos (n + 1)0. (6.) S sin Ji0 sin 2ra0 sin 3«0.

(7.) sin a - cos a sin (a + 0) + cos* o sin (a + 20)-. . . .

(8.) 1 + cos 0/cos + cos 20/CO8* + cos 30/cos^ + ... to n terms, where

6=nv.

(9.) l-2rcos0 + 3r2cos20-4?-3cos30 + . . . .

(10.) 8in0 + 3sin20 + 5sin30 + 7sin40 + . . . .

(11.) Sn* cos (?i0 + a). (12.) Sn (n+ 1) sin (2n + 1) 0.

(13.) sin 2n0 - ^JJi sin (2n -2)0 + j^Cj sin (2n - 4) - . . . (n a positive

integer),

(14.) 8in(2n + l)0 + 2„+iCiSiu(2n-l)0 + 2„+iC2sin(27i-3)0 + . . . (n a

positive integer).

(15.) 2m(»i+l) . . . (ni + n-1) r"cos(a + ji0)/nl to infinity, m being a

positive integer.

(16.) Does the function

(sin2 + sin2 20 + . . .+ sin" n0)/(cos' + 008*20 + . . . + cos*n0)

approach a definite limit when n= QO ?

(17.) Expand 1/(1 -2 cos 0,a; + a;*) in a series of ascending powers of x.
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(18.) Expand 1/(1-2 cos ^ . x + x^Y ^^ * series of ascending powers of x.

(19.) Exjjand (l + 2x)/(l-x3) j^ ^ series of ascending powers of x ; and

show that

^ ^^^ ^

(3n - 1) (3» - 2) (3n - 2) (.8n - 3) (37i - 4)
^ ^ _ . = (-l)».

(20.) Show that l/(l+x+x2) = l-x + x3-x*+ x8-x'' + x9-xio+ . . .;

and that, if the sum of the even terms of this expansion be ^ (x), and the

sum of the odd terms \j/ (x), then {0 (x)}^ - {^(x)}— ^ (a;-) + \p (x^).

Prove the following identities by means of Demoivre's Theorem, or

otherwise. S and 11 refer to the letters a, /3, 7:

—

(21.) S sin a/(l + S cos a) = -Iltan Ja, where a+§ + y=0.
(22.) S sin {e - /3) sin {9 - 7)/sin (a - /3) sin (a - 7) = 1.

(23.) SsinJ(a+ i3)sin|(o + 7)cosa/sin4(a-/3)sin|(o-7)= cos(a + /3+ 7).

(24.) cos <7 cos (o- - 2a) cos (tr - 2j3) cos (<r - 27) + sin <t sin (er - 2a) sin (o- - 2§)

sin (or - 27) = cos 2a cos 2;8 cos 27, where o-= a + j3+ 7.

Expand in series of cosines or sines of multiples of 6 :

—

(25.) cosi<>6». (26.) sin7^. (27.) sin^ ^.

(28.) coss^sins^. (29.) cosStfsin'*^.

Expand in series of powers of sines or cosines :

—

(30.) COSIO6'. (31.) sin 7^.

(32.) sin3&cos6tf. (38.) cosm^cosji^.

EXPANSION OF COS 6 AND SIN 6 IN POWERS OF 0.

§ 14.] We propose next to show that, for all finite real

values of 6,

cose = l-^/2! + 6V4!-^V6! + . . . ad co (1);

mi6 = e- eysi + ^751 -6'IV. + . . . ad a> (2).

These expansions* are of fundamental importance in the

part of algebraical analysis with which we are now concerned.

They may be derived by the method of limits either from the

formulae of § 12, or from two or more of the equivalent formulae

of § 13. We shall here choose the former course. It will appear,

however, afterwards that this is by no means the only way in

which these important expansions might be introduced into

algebra.

* First given by Newton in his tract Analysis per cBqttationes numero

terminorum infinitas, which was shown to Barrow in 1669. The leading idea

of the above demonstration was given by Euler (Introd. in Anal. Inf., t, i.,

§ 132), but his demonstration was not rigorous in its details.
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From (4) and (5) of § 12, writing, as is obviously permissible,

6/m in place of 6, and taking n = m, we deduce, after a little

rearrangement,

cos 6 - cos" :{- 2!
tan — /—

)

ml mj

^
(i-i/m)(i-2M(i-3M) ^, A e_i6\\

4! \ mf m)
.= cos™ —{l-u^ + Ui-. . .], say,

and

sin d = cos'"-?j^ftan^/-^)m { \ ml mJ

3! \ m/

e lev
m)

= cos*" - {ui -Us + ' • • }, say,

.} (3),

(3');

(4),

(4').

Here, from the nature of the original formula, m must be a

positive integer; but nothing hinders our giving it as large a

value as we please, and we propose in fact ultimately to increase

it without limit. On the other hand, we take 6 to be a fixed

finite real quantity, positive or negative.

The series (3), as it stands, terminates ; and its terms alter-

nate in sign.

We have

U2n+2

Uo
^ (l-2nlm){l-2n + lfm) ^, A ^^ ^ /0_V

(2w + 1) (2w + 2) \ m/ mJ

Hence, so long as n is finite,

T ^2ra+2

(2n + 1) {2n + 2)

'

If, therefore, we take 2n-hl>6*, we can always, by taking

m large enough, secure that, on and after the term u.2n, the

numerical value of the convergency-ratio of the series (3) shall

be less than unity.

Strictly speaking, it is sufficient if ^<^{(2« + l) (2n + 2)}.
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From this it follows that, if 2n-\-l>B, and m be only taken

large enough, cos 6 will be intermediate in value between

and

cos'"-{l-W2 + ««4-. . •(-r«2«} (5),m

cos*"- {1 - W2 + ^4 - . . .{-fu^n+i- )"+' «2«+2} (6).m
Therefore cos^ will always lie between the limits of (5) and

(6) for m-oo.
]V[ow (see chap, xxv., § 23)

Zcos'»(^/7») = l, Lu2 = 6y2\, Lui=e*/4.\, . . ,

Im,^ = 6/^/(2?0! , i^^^2»+2 = e^+V(2w + 2)!.

Hence cos B lies between

1 _ ^72 ! + ^V4 !
- • • . ( - )"

^'V(2w)

!

and

l-e72! + ^/4!-. . .{-)™6''V(2w)! + (-)"+^^"+V(2w + 2)!.

In other words, provided 2w + 1 > ^,

cos^= 1 - ^/2! + ^74! - • . . (-)'^^^/(2w)! + {-Y^^B^ (7),

Here 2^^ may be made as large as we please, therefore since

L 6^+y{2n + 2)1^0 (chap, xxv., § 15, Example 2), we may
n=oo

write

cos^ = l-^/2! + ^/4!-. . .adoo (7')-

By an identical process of reasoning, we may show that,

provided 2n + 2>6*, then

s{ne = e-6'/S\ + . . .(-fe^+y{2n + l)\ + {-Y+'M^+, (8),

where M^n+i< 6"*+V(2« + 3) !

,

and therefore

smO = e- Oysi + $'151 - . . . ad 00 (8').

It has already been shown, in chap, xxvi., that the series (7')

and (8') are convergent for all real finite values of 6
; they are

• More closely, if 9<:^{(2n + 2) (2n+3)}.
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therefore legitimately equivalent to the one-valued functions

cos 6 and sin 6 for all real values of 0, that is, for all values of

the argument for which these functions are as yet defined. From

this it follows that the two series must be periodic functions of

having the period 2rr. This conclusion may at first sight

startle the reader ; but he can readily verify it by arithmetical

calculation through a couple of periods at least.

When is not very large, say ^l^^-n; which is the utmost

value of the argument we ineed use for the purposes of calcula-

tion* the series converge with great rapidity, five or six terms

being amply sufficient to secure accuracy to the 7th decimal

place.

We shall not interrupt our exposition to dwell on the many

uses of these fundamental expansions. A few examples will be

sufficient, for the present, on that head.

Example 1. To calculate to seven places the cosine and sine of the

radian.

We have

cos 1= 1 - 1/2! + 1/41 - 1/6! + 1/8! - 1/10! + R^q
,

iJio<l/12!,

= 1 - -500,000,0 + -041,666,7 - -001,388,9 + 000,024,8 - -000,000,3 + R^q ,

i?io< -000,000,003.

= -540,302,8.

Similarly,

Bin 1=1 - 1/31 + 1/5! - 1/7! + 1/9! - Eg,

Eg< 1/11! < -000,000,03,

= •841,471,0.

The error in each case does not exceed a unit in the 7th place.

Example 2. If ^ < 3, then > sin ^ > - ^e» ; 1 - ^^2< cos < 1 - ^e^+^^O*.

These inequalities follow at once from (7) and (8) above. They are

extensions of those previously deduced, in chap, xxv., § 21, from geometrical

considerations.

Example 3. Expand cos (a + ^) in powers of 0.

Result, cos (a + ^) = cos a cos ^ - sin a sin 0,

= cos a - sin a - cos a ^2/2! + sin a fl*/3! + cos a ^*/4! - . .

.

* Seeing that the cosine or sine of every angle between ^n- and ^tt is

the sine or cosine of an angle between and lir.
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Example 4. Find the limit of

9(l-cose)l{ta,n0-e) when e= 0.

LO (1 - cos d)l(ta,n -e) = Lsece Le(l- cos ^)/(sia 0-0 cos 0),

= lxLd(d''l2-e*l4l + . . .)l(d-d'i3l + . . .-0 + 6^12-. . .),

= L{0^l2-0^li\ + . . .)I{0^I3 + . . .),

=L(II2 + P0^- + . . .)I(1I3 + Q0"' + . . .),

= 3/2.

Exercises XVI.

(1.) Expand sin (a + 0) sin (j3 + 0) in powers of 9.

(2.) Calculate sin 45° 32' 30" to five places of decimals.

(3.) Given tan 6i/(9= 1001/1000, calculate 0.

(4.) Expand cos^ 9, sin^ 0, and sin^ 9 cos 9 in powers of ; and find the

general term in each case,

(5.) Show that cos'" {m a positive integer) can be expanded in a con-

vergent series of even powers of ; and that the coefficient of 0^* in this

expansion is

(-)»{m2«+^Ci(7n-2)2»+^C2 (771-4)2"+. . .}/2"»-i(2ji)!,

(6.) Show that, if m and n be positive integers, and 1<w<7b, then

j?i" - ^(7i (m - 2)»+ „,C., (771 - 4)» - . . . = 0.

Examine how this result is modified when ?i= l, or n=m.

Evaluate the following limits :

—

(7.) (sin2 7?7^-sin2 7z^)/(co3 2>^-cos(j'^), 0=0.

(8.) {sin27(a + (?) -sin^Ja}/^, ^ = 0.

(9.) {sinXa H-fi")- sin" j5a}/^, = 0.

(10.) {sin"p(a + ^)cos(a + e)-sin"2'aco8a}/^, ^= 0.

(11.) (a^ sin a^ - &^ sin 5(?)/(6^ tan a^-a^ tan 6^), 0=0.

(12.) 1/2x2 -ir/2a; tan TTX-- 1/(1 -a;2), r=l (Euler).

(13.) {sinxlxy/"", x= 0.

(14.) { (xja) sin (a/a;) }*", a;= oo
, (7?i= > 2)

.

(15.) Show, by employing the process used in chap, xxvn., § 2, that the

series for sin ji^/cos 9 in powers of sin 9 can be derived from the series for

cos 71^ in powers of sin^; and so on.

(16.) Show, by using the process of chap, xxvii., § 2, twice over, that, if

C0S7i^=l + Ji8in2^+ J2sin'*^ + . . . + ^^sin2'-^+ . . .,

then

-n^oosn9=2A^ + {3.iA2-2^Aj)sin^9+ . . .

+ {(2r+ l)(2r+ 2)J^i-(27-)2^r}8in2'-6>+ . . . .

Hence determine the coefficients A^, A„, &o. ; and, by combining Exercise

15 with Exercise 16, deduce all the series (7) . . . (12') of § 12.

(17 ) Show (from § 13) that cos"0 and sin"0 can each be expanded in a
convergent series of powers of 9 ; and find an expression for the coefficient of

the general term in each case.

In particular, show that

sin»a;/3I=x3/8!-(l + 32)x'>/5I + (l + 82 + 3^)x7/7!-(l + aH3*+3«)x»/9! + . . . .
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BINOMIAL THEOREM FOR ANY COMMENSURABLE INDEX.

§ 15.] If, as in chap, xxvii., § 3, we write

/(m) = l + 2™(7„;z'' (10),

where m is any commensurable number as before, but z is now

a complex variable, then, so long as |2;|<1, "^mPnZ^ will (chap.

XXVI., § 3) be an absolutely convergent series ; and f{m) will be

a one-valued continuous function both of m and of z. Hence

the reasoning of chap, xxvii., § 3, which established the addition

theorem /(wzi)/(?»2) -f{mx + m^ will still hold good; and all the

immediate consequences of this theorem—for example, the

equations (4), (5), (6), (7), (8), (9) in the paragraph referred to

—

will hold for the more general case now under consideration.

In particular, if p and q be any positive integers (which for

simplicity, we suppose prime to each other), then

= {\^-zY (11).

It follows i\\2Xf{plq) represents part of the g-valued function

^{1 + zY ; and it remains to determine what part.

Let z = r (cos ^ + * sin 9), then, since we have merely to ex-

plore the variation of the one-valued function fiplq), it will be

sufficient to cause 6 to vary between — ir and + ir.

Also, let

w-\ + z-l-if x + yi, \

= 1 + r cos 6 + ir sin 0, I {a),

— p (cos ^ + i sin ^), J

so that

p = {(1 + xf + y'^Y'^
- (1 + 2r cos 6 + t^'f' :

tan ^ - yl{l \-x) = r sin Ojil + r cos 0), J

If we draw the Argand diagram for w = l+x + yi, we see

that when r is given w describes a circle of radius r, whose centre

is the point (1, 0). Since r<\, this circle falls short of the

origin. Hence </>, the inclination to the a;-axis of the vector

drawn from the origin to the point w, is never greater than
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tan-' {r/(l - 7^)^}, and never less than - tan"' {r/(l - r*)'/'}.

Hence <f> lies in all cases between - l^r and + ^tt. Therefore,

since f{p/q) is continuous, only one branch of the function

^(1 + zy is in question. Now, if we denote the principal

branch by {l + z)^'^, so that

(1 + zy^ = p^'^ (cos . p4>lq + i sin . js^/g),

we have, by § 8,

^{l + zY = {l + zY"^oyf (12),

where ^ = 0, ±1, ±2, . . ., according to the branch of the

function which is in question. Hence we have

f{plq) = {l + zy"^i^f,

where t has to be determined.

Now, when «=0, we hayefip/q) = 1, hence we must have

1 = «>/'.

Hence t = 0, and we have

/(p/q) = (1 + '^y^ = P^'^ (cos .pi>/q + i sin. p<fi/q),

where -^7r<<f)< ^ir.

Next consider any negative commensurable quantity, say

-p/q. Then (by chap, xxvii., § 3 (9)),

f{-p/q)-/(o)/f(p/q),

= W{plq\
If, therefore, we define (1 + z)~^'^ to mean the reciprocal of

the principal value of {l + zY'^, we have

/( -piq) = (1 + ^Y"'^ = 1/(1 + ^Y'^

= p-^/« {cos
( -p<i>lq) + % sin ( -p4>lq)] (13).

To sum up : We have now estahlisJied the following expansion

for the principal valiie of(l + «)'", in all cases where m is any

commensurable number, and
1
2;

|
< 1 :

—

{l + zy-=l + '^r.CnZ^ (14).

The theorem may also be written in the following forms :

—

1 + 2,„(7„(;i; + yiy = {(1 + xf + y}'"^ [cos . m tan"' {yl(l + x)]

+ i sin . m tan"' {yj{l + x)]"] (15) ]
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1 + SmCnr" (cos nd + i sin nO)

= (1 + 2r cos 6 + r^)™'^ (cos m^ + i sin m<f>),

where -|7r<<^ = tan"^ {rsin ^/(l +rcos 6)}<+ ^tt (16).

§ 16.] The results of last paragraph were first definitely

established by Cauchy*. In a classical memoir on the present

subject!, Abel demonstrated the still more general theorem

l + 2m+fciC'n(a^ + yO"

= [(1 + a^f + ff"^ [cos {m tan-i {yl{l + a;)} +P log {(1 + a;f + f}}

+ i sin {m tan"^ {?//(l + x)} + \k log {(1 + xf + y^]}]

Exp [ - ^ tan-^ {yl{l + x)]\

Into the proof of this theorem we shall not enter, as the

theorem itself is not necessary for our present purpose.

§ 17.] The demonstration of § 15 fails when |;^| = 1. Here,

however, the second theorem of Abel, given in chap, xxvi., § 20,

comes to our aid. From it we see that the summation of, say,

(16) will hold, provided the series on the left hand remain con-

vergent when r = 1.

Now the series 1 + %mCn (cos n9 + i sin nB) will be convergent

if, and will not be convergent unless, each of the series

S=l + SmCiiCOSW^,

be convergent.

In the first place, we remark that, if m< — l, Lm'On =±^
when « = CO , so that neither of the series 8, T can be convergent.

If w = - 1, then ^C„ = ( - 1)», >S = 1 + 2 ( - 1)" cos iiB,

T- 2 (
- 1)" sin nQ, neither of which is convergent (see chap.

XXVL, § 9).

If - 1 < ?w< 0, then L mGn = ; and the coefiicients ulti-

mately alternate in sign. Hence, by chap, xxvi., § 9, both the

series S and T are convergent, provided 6^±ir. When 6 has

one or other of these excepted values, then S=l +%{-lYm,Gn,
which is divergent when m lies between -1 and (see chap.

XXVL, § 6, Example 3).

* See his Analyse Algebrique

t (Euvres Completes (ed. by Sylow & Lie), 1. 1., p. 238.
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If wz>0, then, as we have already proved (see chap, xxvi.,

§ 6, Example 4), %m.Gn is absolutely convergent, and, a fortiori,

1+2to^jiCosw^ and %raGn^va.nQ are both absolutely convergent.

It follows, therefore, that the equation

will hold when \z\ = \, in all cases v)here m>0 ', and also when m
lies between — 1 and 0, provided that in this last case tlie imaginary

part ofz do not vanish, that is, provided the amplitude ofz is not ±7r.

In other cases where
1
2;

|

== 1, the theorem is not in question,

owing to the non-convergency of S^C^^;''.

In all cases where |2;1>1, the series 2mC»^'' is divergent, and

the validity of the theorem is of course out of the question.

EXPONENTIAL AND LOGARITHMIC SERIES—GENERALISATION

OF THE EXPONENTIAL AND LOGARITHMIC FUNCTIONS.

§ 18.] The series

l+z + zy2\+2^/S\ + . . .

is absolutely convergent for all complex values of z having a

finite modulus (see chap, xxvl, § 10). Hence it defines a single-

valued continuous function of z for all values of z. We may

call this function the Exponential of z, or shortly Exp z* ; so

that Exp z is defined by the equation

'Expz=l+z + zy2l+2?/Sl + . . . (1).

The reasoning of chap, xxvin., § 5, presupposes nothing but the

absolute convergence of the Exponential Series, and is therefore

applicable when the variable is complex. We have therefore

the following addition them'em for the function Exp z :

—

* When it is necessary to distinguish between the general function of a

complex variable z and the ordinary exponential function of a real variable x,

we shall use Exp (with a capital letter) for the former, and either e^ or exp x

for the latter. After the student fully understands the theory, he may of

course drop this distinction. It seems to be forgotten by some writers that

the e in c*^ is a mere nominis umbra—a contraction for the name of a function,

and not 2-71828 . . . Oblivion of this fact has led to some strange pieces of

mathematical logic.
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ExpziEx^Zz . . . ExTpZm = 'Exip{Zi + Z2+. . . + z^) (2),

where Zi, z^, . . ., z^. are any values of « whatever.

In particular, we have, if m be any positive integer,

(Exp 2;)'" = Exp (m;^) (3).

Also
Exp z Exp {-z) = Exp 0,

= 1;

and therefore

Exp(-c) = l/Exp2; (4).

We have, further,

Expl = l + 1 + 1/2! + 1/3! + . . .,

= e (5);

and, if w he any real commensurable number,

'Exp x= I + a; + 0^/21 + 0^/31 + . . .,

=^ (G),

by chap, xxviii., where e' denotes, of course, the principal value

of any root involved if x be not integral.

It appears, therefore, that Exp iv coincides in meaning with

e*, so far as e^ is yet defined.

We may, therefore, for real values of ^ and for the corre-

sponding values of ^, take the graph oi y = Exp x to be identical

with the graph oi y = e^, already discussed in chap. xxi. Hence

the equation

y = Exp X (7)

defines ;c as a continuous one-valued function of y, for all positive

real values of y greater than 0. We might, in fact, write (7) in

the form
^ = Exp-> (8);

and it is obvious that Exp~^y may, for real values ofy greater

than 0, he taken to he identical with hgy as previously defined.

If we consider the purely imaginary arguments + iy and — iy,

we have, by the definition of Exp z,

c. II. 19
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Exp( + ^» = l+^;^/-?/V2!-^y/3! + ?/V4! + ^//5!-. . .,

= (l-2/72!+y/4!-. . .)

= cos2/ + «siny (0);

Exp(-«3/) = (l-y/2! + y/4!-. . .)

-^•(2/-//3!+//5!-. . . ),

= cosy -«' sin y (9'),

by § 14.

Finally, by the addition theorem,

Exp {x + yi) = Exp (x) Exp (i/i),

= e^ (cos 2/ + « sin y) (10).

The General Exponential Function is therefore always expressible

by means of the Elementary Transcendental Functions e", cos y,

sin y, already defined.

Inasmuch as the function Exp 2; possesses all the character-

istics which ^ has when z is real, and is identical with ^ in all

cases where e^ is already defined, it is usual to employ the nota-

tion ef for Exp z in all cases. This simply amounts to defining

d" in all cases by means of the equation

e'=l+z + z''/2\+ 2^/31 + . . .,

which, as we now see, will lead to no contradiction.

§ 19.] Graphic Discussion ofthe General Exponential Function

—Definition of the General Logarithmic Function. Let w be

defined as a function of z by the equation ;

w = Exp2; (1);

and let z = x + yi, and w = u + vi = s (cos (f>
+ i sin <^). Then, since

Exp {x + yi) = e" (cos y + i sin y), we have

s (cos <i>
+ i sin <j>) = e^ (cos y + i sin y) (2).

Hence
s = e^, <i>

= y (3),

where we take the simplest relation between the amplitudes that

will suit our purpose.

Suppose now that in the 2;-plane (Fig. 7) we draw a straight

line 2'ri'2' parallel to the y-axis, and at a distance x from it.



18, 19 GKAPH OF Exp (x + yi) 291

Y K

2'

2'

IK

D B r

C A
X

0'

c A
K

D B i'

Tk

2

Fio. 8.

19-2



292 GRAPH OF Exp (cc + yi) ch. xxix

Then, if we cause z to describe this line, a? will remain constant, and

therefore e* will remain constant ; that is to say, the point w will

describe a circle (K) (Fig. 8) whose radius is e" about the origin

in the w-plane. If we draw parallels to the a;-axis in the ;2;-plane,

at distances O'l' = tt, 0'2' = Stt, . . . , above, and O'l' = tt, 0'2' = Stt,

. . . , below, then, as 1/ varies from - tt to + tt, z travels from 1'

to 1' ; as 2/ varies from + tt to + Stt, z travels from 1' to 2', and

so on ; and each of these pieces of the straight line corresponds

to the circumference of the circle K taken once over. To make

the correspondence clearer, we may, as heretofore, replace the

repeated circle ^ by a spiral supposed ultimately to coincide

with it. Then to the infinite number of pieces, each equal to

27r, on the line K corresponds an infinite number of spires of the

spiral K.

In like manner, to every parallel to the ^/-axis in the 2;-plane

corresponds a spiral circle in the w;-plane concentric with the

circle K. To the axis of 3/ itself corresponds the spiral circle

BAOAB of radius unity ; to the parallel DO"D to the left of

the 2/-axis the spiral circle DO"D ; and so on.

To the whole strip between the infinite parallels DB and

DB corresponds the whole of the «^;-plane taken once over

;

namely, to the right half of the infinite strip corresponds the

part of the i<;-plane outside the circle BAOAB; to the left

half of the strip the part of the w-plane inside the circle

BAOAB.
To each such parallel strip of the «-plane corresponds the

whole of the w-plane taken once over.

Hence the values of w are repeated infinitely often, and we

see that the equation (1) defines w as a continuous periodic

fu/nction of z having the period 27r«.

Conversely, the above graphic discussion shows that the equation

(1) defines z as a continuous <X)-ple valuedfunction of w.

Taking the latter view, we might write the equation in the

form

z = Exp^' w (!')•
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Instead of Exp~^ w we shall, for the most part, employ the

more usual notation Logw, using, however, for the present at

least, a capital letter to distinguish from the one-valued function

logy, which arises from the inversion oi y = e", when x and y are

both restricted to be real.

In accordance with the view we are now taking, we may
write (3) in the form

w = \ogs, y = <t>.

Hence z = Logw
gives w+yi = Log {s (cos ^ + ^ sin ^)},

where x = log s, and y =
<i>.

In other words, we have

Log w = \og\w\-\-i amp {w) (2')

;

and, if we cause ^ (that is, amp {w)) to vary continuously through

all values between - co and + oo , then the left-hand side of the

equation (2') will vary continuously through all values which

Log'?*' can assume for a given value of \w\.

If we confine ^ to lie between -ir and +7r, then Logw
becomes one-valued ; and we have

Log 'W = \ogs + i4> (4),

where s = | w;
|

= ^(ic^ + v^), and cos <^

=

u/J(u^ + v"^), sin^= v/J{u^+ v^),

— 7r;:|><^;^+ tt.

This is called the principal branch of Log w ; and we may
denote it by z.

It is obvious from the graphic discussion that, if Zt or Jjogw
denote the value of Logw in its t-th branch, z being the value in

the principal branch corresponding to the same value of w {that

is, a value ofw whose amplitude differs by an integral multiple

oflir), then

tLog W^Zt^Z^ 2tTri,

= log s + i (ff) + 2tTr) (5),

where
(f>

is the amplitude {confined between the limits — ir and + tt)

ofw, and t is any integer positive or negative.

If w be a real positive quantity, =u say, then s = \w\ = u,

ffi - amp w = ; and we have, for the principal value of Log u,

Log u = locr u.
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Hence^ for real positive values of the argument, log u is tJie

piincipal value of Log u. The other values are of course given

hy tLog u-logu + 2tiri, t being the order of the branch.

We have also the following particular principal values :— •

Log( + «) = ^W,

Log(-*) = -i7r*,

Log(— l) = ±7ri:

the principal value in the last case is not determinate until we

know the amplitude ; and the same applies to all purely real

negative arguments.

§ 20.] Definition of Exp aZ. The meaning of a^, or, as it is

sometimes written, Exp „«, has not as yet been defined for values

of z which are not real and commensurable.

We now define it to mean Exp (;2 . jLog a), where tLog a is

the ^-th branch of the inverse function Log a, and t may have

any positive or negative integral value including 0.

Thus defined, a^ is in general multiple-valued to an infinite

extent. In fact, since ^Log a - log 5 + z (^ + 2^7r), where s = |a|,

and <^ = amp a ( - tt< <^< + tt), we have, \i z-x + yi,

a*+s^ = Exp [{x + yi) {log s + « (<^ + 2tir))\

= Exp Wx log s - (<^ + 2tTr) y] + i {y log s + (^ + 2tir) x]],

= exp {x log s - (^ + 2^7r) y] . [cos {y log s + («^ + 2tir) x)

+ i sin [y log s + (^ + ^tir) x}] (1).

If we put ^ = 0, that is, take the principal branch of Log a,

in the defining equation, then we get what may be called the

principal branch of a'"+'^, namely,

a'+yi = 'EiX^{zhoga),

= exp{a;logs-^y}.[cos{ylogs+^;r}+«sin{2f'log5+^a;}] (2).

The value given in (1) would then be called the ^-th branch,

and might for distinction be denoted by t«'"+'^ or by jExp a{^ + yi)-

It is important to notice that the above definition of a" agrees

with that already givenfor real commensurable values ofz provided

we take the corresponding branches. In fact, when y = 0, (1) gives

a"" ^ exp {x log s) . [cos (^ + lit-rr) X + i sin {<f>
+ 2tir) x'\

j
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that is, if X -piq,

[s (cos ^ + ^ sin <^)]P/'^

= s^i^ [cos . (<^ + 2tir) pIq + i sin . (<^ + 2tir) p/q] (3)

;

the right-hand side of which is the ^-th branch of the left as

ordinarily defined.

Cor. It followsfrom the above tluit when x is an incommen-

surable number the function a" has an infinite number of values

even when both a and x are real.

The principal value of a% however, when both a and x are

real and a is positive, is exp {x log a), which differs infinitely

little from the principal value of a^', if x be a commensurable

quantity differing infinitely little from x.

§ 21.] The Addition Theorem for Logz.

By the result of § 19 we have

^Log w, + nLog Wz

= log
I

Wi
I

+ log
1 2^2 1 + 2 amp Wi + i amp w-i + 2{m + n) iri.

Now (chap. XII., § 15) |
Wi

1
1 Wg

1

=
I
m;i «^2

1
. and, if amp (wi w^

were not restricted in any way, we should have amp Wi + amp w.^

= amp {wi w^. Since, however, amp {wi w^ is restricted in the

definition of Log {wi w.^ to lie between - tt and tt, we have

amp Wx + amp w^ = amp (wi w^ + 2p7r,

where p = + 1, 0, or - 1 according as amp Wx + amp w<2.>^tt, lies

between + ir and -tt, or <-tt. Hence we have

^Log 10^ + „Log ^2 = m+n+pLog {w^ W^) (l),

where p is as defined.

In like manner, it may be shown that

mLog U\ - „Log ^2 = m-n+pLog (Wj/Wa) (2 ),

where p = + l, 0, or -1 according as amp Wi -amp ttJ2>+ tt,

between + rr and — tt, or <— tt.

Taking the definition of a^+^* given in § 20, and making use

of equation (1) of that paragraph, we have
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iLog ^'^^ = log
I
ta="+^*

I

+ (amp <a^+^* + 2kiT) i,

= a? log S - (<^ + 2tTr) 1/+{l/\ogS+ (<f) + 2tTr) x} i + 2 {k + I) iri,

where / is an integer, positive or negative, chosen so that

-7r<7/logS+(^ + 2t7r)a; + 2liT<-\-Tr.

Hence

( fcLog tff^'"' =^{x + yi) {log s + (<^ + 2tTr) i] + 2{k + l) ni,

= {a; + yi) ^Log a ¥ 2 {k + 1) -n-i (3).

The equations (1), (2), (3) are generalisations of formulae for

log X with which the reader is already familiar.

If we confine each of the multiple-valued functions ^Log and

jExpa to its principal branch, we have

Log w'+y' ={x + yi) Log a + 2hi (3'),

where I is so chosen that

-7r<?/logS + 4"^ + 2lir<+Tr.

§ 22.] Expansion of tLog (l + z) in powers of z.

Consider first the principal branch of the function Log (1 + z).

By the definition and discussion of § 20, we see that, when x is

any real quantity, the principal branch of (1 + z)^ has for its

value Exp {a? Log (1 + 2;)}. Hence we have

• (l + ;2f-l + {^Log(l + c)} + {a;Log(l + ;^)}"/2! + . . .;

and, since the series 1 + ^JJ^z"^ represents the principal branch

of (1 + zY, we have

l + 5^(7„2;'» = l+{.»Log(l + c;)} + . . . .

Now all the conditions involved in the reasoning of chap.

XXVIII., § 9, will be fulfilled here, provided the complex variable

z be so restricted that
|

/S'
|
< 1.

Hence, if |2;|<1, we must have, as before,

Log(l + ;^) = ;Z-;2V2 + ;2^/3-«V4 + . . . (1).

In other words, so long as\z\<l, the series z - z^l2 + «^/3 - . . .

represents the principal branch of Exp~^ (1 + ^)'

Cor. Since ^Log (1 + 2;) = Log (1 + 2;) + 2tTn, we have

t\jog{l-^z)^2tni + z-z'l2+z'l^-z*l'^ + . . . (2),
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which gives us an expansion for the t-th. branch of Exp~^ (1 + z)

within the region of the 2:-plane for which
| ;2 1 < 1.

It follows readily, from the principles of chap, xxvl, § 9, that

when
I

;s
1
= 1 the series z - z^/2 + «^/3 - ... is convergent, pro-

vided amp z=¥±7r (other odd multiples of tt are not in question

here). Hence, by the theorem of Abel so often quoted already,

the expansion-formultB (1) and (2) will still hold when |«| = 1,

provided amp^;=#±ir.

GENERALISATION OF THE CIRCULAR FUNCTIONS—INTRO-

DUCTION OF THE HYPERBOLIC FUNCTIONS.

§ 23.] General definition of Cosz, Sinz, Tanz, Cotz, Secz,

Cosecz. Since the series l-z'^l2l + 2!*/Al -. . ., z- z^/3\+z^/5l

—
. . .are convergent for all values of z having a finite modulus,

however large, they are each single-valued continuous functions

of z throughout the 2;-plane. Let us call the functions thus

defined Cos^; and Sin 2;, using capital initial letters, for the pre-

sent, to distinguish from the geometrically defined real functions

cos a? and sin x. We thus have

Cosz=l-z^l2\+zyA\-. . . (1),

^mz = z-2^/3\+ 1^/51-. . . (2).

We also define Tan z, Cot z, Sec z, Cosec z by the following

equations :

—

Tan 2; = Sin 2;/Cos « ; Cotz=Cosz/^mz;]
Sec z = 1/Cos z ; Cosec z = 1/Sin z. J

w-
.

In the first place, we observe that when z is real, =a^ say,

we have, by § 14,

Cos x=l— x^l2 ! + a^l^\ — . . . = cos i??,

^ma; = x — af/Sl + af/5\ — . . .=^sin^;

so that, when the argument is real, the more general functions

Cos., Sin., Tan., Cot., Sec, Cosec. coincide with the functions

COS., sin., tan., cot., sec, cosec already geometrically defined

for real values of the argument.
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Since

z-z^/Sl+zy5\-. . .=l{Exp(^•^)-Exp(-^•^)},

it follows from (1) and (2) that we havefor all values of z

(4)*

Cos z = - {Exp {iz) + Exp ( - iz)\

Sin ^ -
2^

{Exp (^2;) - Exp ( - e^)}

;

with corresponding expressions for Tan;?;, Cot 2;, Sec^:, and

Cosec z.

By (4) we have

Cos^2; + Sin^2;

= \ [{Exp {iz)f + {Exp ( - %z)f + 2 Exp {iz) Exp ( - iz)

- {Exp {iz)f - {Exp ( - %z)Y + 2 Exp {iz) Exp ( - iz)\

Hence, bearing in mind that we have, by the exponential

addition theorem,

Exp {iz) Exp ( - iz) = Exp {iz - iz) = Exp = 1,

we see that

Cos^2 + Sin2;^=l (5),

from which we deduce at once, for the generalised functions, all

the algebraical relations which were formerly established for the

circular functions properly so called.

We also see, from (4), that Cos {-z)- Cos z and Sin {- z)

= - Sin z ; that is to say, Cos z is an even, and Sin z an odd

function of z.

Since, by (4), we have

Cos z-^i Sin z = Exp {iz),

Cos z-i Sin z = Exp ( — iz),

* These formulsB were first given by Euler. See Int. in Anal. Inf., t. i.,

§ 138. He gave, however, no sufficient justification for their usage, resting

merely on a bold analogy, as Bernoulli and Demoivre had done before him.
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it follows from the exponential addition theorem, namely,

Exp {izx + iz^ - Exp {iz^ Exp {iz.^,

that

Cos {zi + z^ + i Sin {Z]_ + z^ - (Cos Zx + % Sin 0i) (Cos z^ + * Sin z^

= (Cos
;j;i Cos «2 - Sin ^fj Sin z^ + « (Sin 2;i Cos z^ + Cos 2^1 Sin %)*.

Hence, changing the signs of ^^j and Za, and remembering that

Cos. is even and Sin. odd, we have

Cos {z-i, + z^ - i Sin {zx + z^ = (Cos Zx Cos ;2;2 - Sin Zx Sin ^ig)

- 1 (Sin 2;i Cos z<2, + Cos 2;j Sin z^.

Therefore, by addition and subtraction, we deduce

Cos {zx + z^ - Cos Zx Cos Z2 - Sin 2;i Sin z^ O . x

Sin (2^1 + ^jg) = Sin 2:1 Cos ^^2 + Cos 2^1 Sin 2^2J

In other words, the addition theorem for Cos. and Sin. in

general is identical with that for cos. and sin.

By (6) we have

Cos (z + 2mr) = Cos z Cos 2mr - Sin z Sin 2mr,

that is, if n be any positive or negative integer, so that

Cos 2;i7r = cos 2?nr = 1, and Sin 2n-ir = sin 2mr = 0, then

Cos (z + 2«7r) = Cos z.

In like manner, Sin (z + 2mr) = Sin z ; Tan {z + mr) = Tan z ; &c.

That is to say, the Generalised Circular Functions have the same

real periods as the Circular Functions proper.

Just in the same way, we can establish all the relations for

half and quarter periods given in equations (3) of § 2. Thus, for

example,

Cos {it + z) = Cos TT Cos z - Sin tt Sin z,

= cos TT Cos z - sin tt Sin z,

= - Cos z.

Also all the equations (5), (6), (7) o/" § 2 will hold for the

generalised functions ; for they are merely deductions from the

addition theorem.

* We cannot here equate the coeflScient of i, Ac, on both sides, because

8'm{zx + z.^), &c., are no longer necessarily real.
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§ 24.] We proceed next to discuss briefly the variation of

the generalised circular functions.

Consider first the case where the argument is wholly-

imaginary, say z = iy. In this case we have

Cos iiy) = - {Exp {iiy) + Exp ( - iiy)],

-\{e-y + ^^) (1);

Bn{iy)='^.{e-y-^J),

-l(ey-e-y) (2).

"We are thus naturally led to introduce and discuss two new

functions, namely, ^ {e" + e'^) and ^ (e" - e'^), which are called

the Hyperbolic Cosine and the Hyperbolic Sine. These functions

are usually denoted by cosh y and sinh y ; so that, for real values

of y, coshy and sinh^ are defined by the equations

coshy = ^{ey + e-y), sinh y = ^ (e^ - e-«) (3).

In general, when y is complex, we define the more general

functions Cosh 2; and Sinh^ by the equations

Cosh z=^ {Exp (z) + Exp ( - z)},

Sinh2; = ^{Exp(;^)-Exp(-;^)}, (3').

We also introduce tanh y, coth y, sech y, and cosech y by the

definitions

tanh y = sinh y/cos\\ y, coth y = cosh y/sinh y

;

sech y = 1/cosh y, cosech y = 1/sinh y

;

and the more general functions Tanh 5;, Coth 2;, &c., in precisely

the same way.

From the equations (1) and (2) we have

Cos (iy) = cosh y, Sin (iy) = i sinhy ; "j

T}a,n(iy) = itsinhy, Cot (iy) = — i coth. y; > (4),

Sec (iy) = sech y, Cosec (iy) = — i cosech y ;

J

and, of course, in general, Cos iz ^ Cosh z, &c.
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The discussion of the variation of the circular functions for

purely imaginary arguments reduces, therefore, to the discussion

of the hyperbolic functions for purely real arguments.

§ 25.] Variation of the Hyperbolic Fimctionsfor real argu-

ments. The graphs of y^cosha;, 3/ = sinh^, &c., are given in

Fig. 9 as follows :

—

cosher, CC\ sinha?, 80B\

coth^, TT'T'T\ tanha;, TTOTT\
secha?, CO' \ cosechiP, S'S'S'S'.

By studying these curves the reader will at once see the truth

of the following remarks regarding the direct and inverse hyper-

bolic functions of a real argument.

(1) coshj» is an even function of w, having two positive

infinite values corresponding to a; = ± qo , no zero value, and a

minimum value 1 corresponding to x = 0.

cosh~^2/ is a two-valued function of y, defined for the con-

tinuum 11f>i/^(x>, having a zero value corresponding to y=l,
and infinite values corresponding to y=<x) , but no turning value.

(2) sinh X is an odd function of x, having a zero value when

^ = 0, and positive and negative infinite values when a? = + oo and

x = - CO respectively.

sinh~^y is one-valued, and defined for all values of y ; it has

a zero value for y = 0, and positive and negative infinite values

when y = + cc and y = — cc respectively.

(3) tanhiP is an odd function, has a zero value for x = Q,

positive maximum + 1, and negative minimum - 1, corresponding

toa7=+oo anda; = — 00 respectively.

tanh"^y ^s a one-valued odd function, defined for -i:^'?/:|>+ 1

;

has zero value for y = Q, positive and negative infinite values

corresponding to 3/ = + 1 and y = - 1.

(4) coth X is an odd function, having no zero value, but an
infinite value for x = 0, and minimum + 1, and maximum — 1, for

x— +<x> and a?= — 00 respectively.

cothr^y is a one-valued odd function, defined, except for the

continuum -i:^3^:j>+ 1, having positive and negative infinite

values corresponding to y=+l and y = -l respectively, and

a zero value for y= co.
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(5) sech X is an even function, having a maximum + 1 for

ir = 0, and a zero value for x---^±^,

sech"^^ is a two-valued function, defined for ^1s^y1s^\^ having

a zero value for y = 1, and infinite values for y = 0.

(6) cosech X is an odd function, having zero values for

a? = ± Qo , and an infinite value for x = 0.

cosech~^2/ is one-valued and defined for all values of y, having

zero values for y = + c» , and infinite values for 3/ = 0.

§ 26.] Logarithmic expressionsfor cosh~^y, sinh~'^i/, dx.

li x = cosh~^y, we have

1/ = coah. X = ^ (e" + e"'') (1).

Therefore

±x/(2/^-l) = |-(^^-0 (2).

From (1) and (2),

a! = log{y±sJ(f-l)};

that is, cosh-^2/ = log {y ± J(y^ - 1 )} (3),

the upper sign corresponding to the positive or principal branch

of cosh~^3^, the lower sign to the negative branch.

In like manner we can show that

sinh-^?/ = log {y + J(f + 1)} (4)

;

tanh-^2/ = ilog{(l+2/)/(l-2/)} - (5);

coth-^2' = ^log{(2/+l)/(2/-l)} (6);

8ech-^2/ = log[{l±V(l-3/^)}/y] (7);

cosech-^?/ - log [{1 + J{1 + f)]ly\ (8).

§ 27.] Properties of the General Hyperbolic Functions ana-

logous to thme of the Circular Functions.

We have already seen that the properties of the circular

functions, both for real and for complex values of the argument,

might be deduced from the equations of Euler, namely.

Cos z = - {Exp ( + iz) + Exp ( - iz)]
;

Sin ^; = -1 {Exp { + iz)~ Exp ( - iz)}

(A).

In like manner, the properties of the general hyperbolic

functions spring from the defining equations
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Cosh z = ^ {Exp ( + z) + Exp (-z)};

Sinh^; = | {Exp { + z)- Exp ( - z) }
(B).

We should therefore expect a close analogy between the

functional relations in the two cases. In what follows we state

those properties of the hyperbolic functions which are analogous

to the properties of the circular functions tabulated in § 2. The

demonstrations are for the most part omitted ; they all depend

on the use of the equations (B), combined with the properties of

the general exponential function, already fully discussed.

The demonstrations might also be made to depend on the

relations connecting the general circular functions with the

general hyperbolic functions given in § 24*, namely,

Cosh z = Cos iz, i Sinh z = Sin iz ;
'

+ i Tanh z = Tan iz, - i Coth z = Cot iz ;
- (C).

Sech z = Sec iz, - i Cosech z = Cosec iz ;

.

Algebraic Relations.

Go&\i^z-^mVz=l, Sech^;2 + Tanh='5;=l (1),

&c.

Periodicity.—All the hyperbolic functions have the period

27ri ; and Tanh z and Coth z have the smaller period -jri.

Thus
Cosh {z + ^rnri) = Cosh z\ &c. l . .

Tanh(;2 + w7r/) = Tanh2;; &c.J
^^^•

Also,

Cosh {iri ±z) = - Cosh z, Sinh {iri ±z) = + Sinh z ; \

Cosh (IW + 2;) = ± « Sinh «, ^m\i {^tri ± z) = i Go^Ax z ; [ (3).

Tanh {^iri ±z) = ± Coth z, Coth (|W ±z) = ± Tanh z ;

)

Addition Formulce.

Cosh {Zi ± Zi) = Cosh Zi Cosh z^ ± Sinh Zi Sinh Z2
;

1

Sinh (Zi ± Z2) = Sinh Zi Cosh Z2 ± Cosh Zi Sinh z^

;

\ (5).

Tanh (zi ± z.,) = (Tanh z, ± Tanh z.^l{l ± Tanh 0, Tanli z^). 1

* This connection furnishes the simplest metnoria technica for the hyper-

bolic formul89.
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Cosh Zi + Cosh Z2 = 2 Cosh J (zi + z^) Cosh J (zi — 2^2) 1)

Cosh Zi - Cosh Z2 = 2 Sinh | (^^j + Z2) Sinh | (^i — ^^2) ; r (6).

Sinh «i ± Sinh Z2 = 2 Sinh |- (^Jj ± Z2) Cosh J (^i + z.2). )

Cosh 2i Cosh Z2 = ^ Cosh (2^^ + SJg) + I Cosh (zi — ^^2) f

Sinh Zi Sinh 2^2 = y Cosh (2^1 + Zz)-^ Cosh (2^1 — 2^2) ; (7).

Sinh Zi Cosh 2:3 = ^ Sinh {zi + 2:2) + ^ Sinh (zi — z^).
,

Cosh 2z = Cosh^ z + Sinh' z = 2 Cosh' 2; - 1,

= 1 + 2 Sinh' z=(l + Tanh' 2)/(l - Tanh' 2).

Siuh 22 = 2 Sinh 2; Cosh z = 2 Tanh 2;/(l - Tanh' z).

Tanh 22; = 2 Tanh zl{l + Tanh' 2;).

h (8).

Inverse Functions.—Regarding the inverse functions Cosh~\

Sinh~\ &c., it is sufficient to remark that we can always express

them by means of the functions Cos~\ Sin~\ &c. Thus, for

example, if we have Cosh"-^2; = w, say, then

z = Cosh w = Cos iw.

Hence *w = Cos"^2;;

that is, W-- i Cos~^2;.

So that Cosh-^2; = -i Cos~^2;

;

and so on.

In the practical use of such formulae, however, we must

attend to the multiple-valuedness of Cosh~^ and Cos"-'. If, for

example, in the above equation, the two branches are taken at

random in the two inverse functions, then the equation will take

the form
Cosh~^2; = 2nnri ± i Cos~^2;,

where m is some positive or negative integer, whose value and

the choice of sign in the ambiguity ± both depend on circum-

stances.

§ 28.] Formulce for the Hyperbolic Functions analogous to

Demoivre's Theorem and its consequences.

We have at once, from the definition of Cosh z and Sinh 2;,

c. II. 20
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Cosh (Z1 + Z2 + . . . + ^^n) ± Sinh (Z1 + Z2 + . . . + Zn)

= Exp ±{Zi + Z2+ . . . + Zn),

= Exp + Zi Exp ±Z2 . . . Exp + Zn,

= (Cosh Zi ± Sinh Zi) (Cosh z^ ± Sinh Z2)

. . . (Cosh Zn ± Sinh 2;„) (A)

;

and, in particular, if n be any positive integer,

Cosh nz ± Sinh nz = (Cosh z ± Sinh z^ (B).

These correspond to the Demoivre-formulse, with which the

reader is already familiar*.

We can deduce from (A) and (B) a series of formulae for the

hyperbolic functions analogous to those established in § 12 for

the circular functions.

Thus, in particular, we have

G0H}\{Zi + Z2+ . . . +Zn)=Pn + Pn-2 + P7i-i + - ' • (l')>

Vfhere Pr = ^Gos]iZiGoshz2 . . . Cosh 2?^ Sinh 2r+i . . . Sinh2;„.

Tanh {Z1 + Z2 + . . . + Zn)

=^{T,+ Ts+T,+ . . .)/{l + T2+T, + . . .) (3'),

where TV = 2 Tanh ^^i Tanh ^^g . . . Tanh 2;,..

Cosh nz = Cosh»;s + ^O. Cosh''-^^; Sinh^z

+ „C4Cosh"-'';sSinh*;2; + . . . (4').

Sinh nz = nCx Gq^V^'-^z Sinh z + nCz Cosh»-«2; Sinh« z

+ „C;Cosh»-«;2;Sinh'';2; + . . . (5').

Cosh nz = {- fi' |l -
'I

cosh'^ ;g +
""' ^'"'~ ^'^

cosh^ z - . . .

(_)._J
(2^)!

^'cosh"z + . . .j (9),

{n even)

;

* As a matter of history, Demoivre first found (B) in the form

J/
= Hl/v'W(l + ''^)-«}-'C^W(l+^'^)-'^}]' where y is the ordinate of P in

Fig. 10 below, and v the ordinate of Q, Q corresponding to a vector OQ such

that the area AOQ is n times AOP, and OA is taken to be 1. He then

dechiced the corresponding formula for the circle by an imaginary trans-

formation. (See Miscellanea Analytica, Lib. II,, cap. i.)
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^-^
(2^Tl)!

cosh-+^^+. . .| (11),

(n even)

;

and so on.

We may also deduce formulae analogous to those of § 13,

such as

(-)"'2m+iCmSinh«}.

§ 29.] Fundamental Inequality and Limit Theorems for the

Hyperbolic Ftmctions of a real a/rgument.

Ifu he any positive real quantity, then

tanhM<w<sinhw<cosh?« (1).

By the definitions of § 24 we have

sinh II = \ {exp {u) - exp ( - ii)\
;

= m + wV3! + mV5! + . . • (2);

coshw=l + MV2! + wV4! + . . . (3);

whence it appears at once that sinhM>?^.

Again, cosh ?« = +>/(! + sinh^ «), so that cosh m> sinh u.

Finally, since

tanh u = sinh w/cosh u

= w(l+t*V3! + wV5! + . . .)/(1+m72! + mV4!- • •)>

and mV3!<mV2!, u''lb\<u'l^\, &c.,

we see that tanhM<«<.

Cor. When u = 0, Lm\\\ulu = \, and LtSin\iu/u=l. This

may either be deduced from (1) or established directly by means

of the series (2) and (3).

If a be a quantity which is either finite and independent of n
or else has a finite limit when w = oo , then^ when w = oo

,

i(c„sh^)^l. X(siuh^/^y=, X(unh^/^)%1.

20—2
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We have

Hence, if we put 1 + e"-"'" ^2-2;:;, so that z-d coiTesponds

to vi = CO , then we have

L ('cosh-y = e» L {(i-;^)-v«}»2«/iog(i-2*0.

Now, X (1 - 2;)-^/* = e, and i/22;/log (1 -2z) = - 1. Hence, by

chap. XXV., § 13,

ifcosh-j =e»e~" = 1.

We leave the demonstration of the second limit as an exer-

cise for the reader. The third is obviously deducible from the

other two.

A very simple proof of these theorems may also be obtained

by using the convergent series for cosh . a/w and sinh . a/w.

§ 30.] Geometrical Analogies between the Circular and Hyper-

bolic Functions.

If 6 be continuously varied from — tt to + tt, and we connect

a and y with 6 by the equations

a? = a cos ^, y = asm9 (1),

then we have

ar' + y^ = a''{cos'6 + siu'e) = a'' (2).

Hence, if (a?, y) be the co-ordinates of a point P, as 6 varies con-

tinuously from — TT to + TT, P will describe continuously the

circle A'AA" (of radius a) in the direction indicated by the

arrow-heads (Fig. 10).

Let P be the point corresponding to 6 ; and let denote the

area AOP, to be taken with the sign + or — according as ^ is

positive or negative. Then is obviously a function of 0. We
can determine the form of this function as follows :

—

Divide 8 into n equal parts, and let P^, P^, . . ., Pr, . . P
be the points corresponding to 6/w, 29jn, . . . , rOjn, . . . ndjn

respectively. Then we have, by the lemmas of Newton,

Area^OP= L T'p^OP^+i.
m=oo r—Q
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Now

= ^a^ {cos
. r^/w sin . (r + l)e/n - sin . rO/n cos . (r + 1)^/;?},

= |a^sin. ^/w.

Hence

® = ^a'Ln sin. 6/n,

= la' OL (sin. d/7i)/(e/n),

Hence, if 6=^2@/a\ we have cos 6 = a/a, sinO^yJa, ts^nO ^yjx,
cot ^ = xjy, &c.

let

Then

Next, let u be continuously varied from - oo to + oo ; and

oe = a cosh u, y=^a sinh ?/, (
i

').

.r^ -y^^a^ (cosh^ w - sinh' z«) == a^ (2').
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Hence, if {x, y) be the co-ordinates of P, as w* varies con-

tinuously from - CO to + CO , P will describe continuously the

right-hand branch AAA" of the rectangular hyperbola, whose

Fig. 11.

semi-axis-major is OA = a, in the direction indicated by the

arrow-heads in Fig. 11.

If P be the point corresponding to u, P^ Pr+i the points

corresponding to ru/n and (r+l)w/w, and U the area AOP
agreeing in sign with u, then, exactly as before,

* Adopting an astronomical term, we may call u the hyperbolic excentric

anomaly of P. The quantity u plays in the theory of the hyperbola, in

general, the same part as the excentric angle in the theoiy of the ellipse.
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r=n—l

71=00 r=0

and

= a^ {cosh . rti/n sinh . (r + 1) u/n - sinh , ru/n cosh . (r + 1) m/w},

= a^ sinh . w/??.

Therefore 17= \a?Ln sinh . w/w,

= ^a^uL (sinh . u/n)/(u/n),

=^a\ by § 29, (3').

Hence, if the area AOP = U, and u-2 U/a^, then, a; and

y being the co-ordinates of P, we might give the following

geometric definitions of cosh u, sinh u, &c, :

—

cosh w = x/a , sinh u = i//a,

tanh « = 2//^> coth w = a?/y, &c.

It will now be apparent that the hyperbolic functions are

connected in the same way with one half of a rectangular

hyperbola, as the circular functions are with the circle. It is

from this relation that they get their name.

We know, from elementary geometrical considerations, that the area 9 is

the product of ^a^ into the number of radians in the angle AOP. It there-

fore follows from (3) that the variable 6 introduced above is simply the

number of radians in the angle A OP. Our demonstration did not, however,

rest upon this fact, but merely on the functional equation cos^S + sin^^^l.

This is an interesting point, because it shows us that we might have intro-

duced the functions cosd and Bin 6 by the definitions cos = ^ {Exp (i^)

4-Exp(-ie)}, Bin^ =—. {Exp(2^)-Exp(-i^)}; and then, by means of the

above reasoning, have deduced the property which is made the basis for their

geometrical definition. When this point of view is taken, the theory of the

circular and hyperbolic functions attains great analytical symmetry ; for it

becomes merely a branch of the general theory of the exponential function as

defined in § 18.

When we attempt to get for u a connection with the arc AF, like that

which subsists in the case of the circle, the parallel ceases to run on the same
elementary line. To understand its nature in this respect we must resort to

the theory of Elliptic Integrals.

§ 31.] Expression of Real Hyperbolic Functions in terms of

Real Circular Functions,
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Since the range of the variation of coshw when u varies from

- 00 to + 00 is the same as the range of sec when 6 varies

from - |-7r to + -Itt, it follows that, if we restrict and u to have

the same sign, there is always one and only one value of u

between - oo and + oo and of 6 between - ^tt and + ^rr such that

cosh M = sec ^ (1).

If we determine 6 in this way, we have

sinh u = ± /^(cosh^ ««-!)>

= ±1/(660^6-1);

hence, bearing in mind the understanding as to sign, we have

sinh u = tan 6 (2).

From these we deduce

e" = cosh u + sinh u,

= sec ^ + tan 6
;

u - log (sec 6 + tan 6\

= logtan(i7r+i^) (3).

Also, as may be easily verified,

tanh \u = tan ^9 (4).

When 6 is connected with u by any of the four equivalent

equations just given, it is called the Gudermannian* of u, and we

write 6 = gd w.

* This name was invented by Cayley in honour of the German mathe-

matician Gudermann (1798-1852), to whom the introduction of the hyperbolic

functions into modern analytical practice is largely due. The origin of the

functions goes back to Mercator's discovery of the logarithmic quadrature of

the hyperbola, and Demoivre's deduction therefrom (see p. 306). According

to Houel, F. C. Mayer, a contemporary of Demoivre's, was the first to give

Bhape to the analogy between the hyperbolic and the circular functions. The
notation cosh. sinh. seems to be a contraction of coshyp. and sinhyp., pro-

posed by Lambert, who worked out the hyperbolic trigonometry in consider-

able detail, and gave a short numerical table. Many of the hyperbolic

formulae were independently deduced by William Wallace (Professor of

Mathematics in Edinburgh from 1819 to 1838) from the geometrical pro-

perties of the rectangular hyperbola, in a little-knowu memoir entitled New
Series for the Quadrature of Conic Sections and the Computation of Logarithms

(TruTis. R.S.E., vol. vi., 1812). For further historical information, see

Giinther, Die Lehre von den gew'dhnlichen vnd verallgevieinerten Hyperbel-

funktionen (Halle, 1881) ; also, Beitriige zur Geschichte derNeueren Mathematik

{Programmschrift, Ansbach, 1881).
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It is easy to give a geometrical form to the relation between 6 and u. If,

in Fig. 11, a circle be described about with a as radius, and from M a

tangent be drawn to touch this circle in Q (above or below OX according as u
is positive or negative), then, since MQ'^=OM^- OQ:'^= x'^-a^=y^, we have
ocoshti=a;=asec(30ilf. Therefore QOM=0, and we have y = 3IQ= a tan 6.

From this relation many interesting geometrical results arise which it would

be out of place to pursue here. We may refer the reader who desires further

information regarding this and other parts of the theory of the hyperbolic

functions to the following authorities :—Greenhill, Differential and Integral

Calculus (Macmillan, 1886), and also an important tract entitled A Chapter

in the Integral Calculus (Hodgson, London, 1888); Laisant, "Essai sur les

Fonctions hyperboliques," MSm. de la Soc. Phys. et Nat. de Bordeaux, 1875

;

Heis, Die Hyperbolischen Functionen (Halle, 1875). Tables of the functions

have been calculated by Gudermann, Theorie der Potential- oder Cyclisch-

hyperbolischen Functionen (Berlin, 1833); and by Gronau (Dantzig, 1863).

See also Cayley, Quarterly Journal of Mathematics, vol. xx. ; and Glaisher,

Art. Tables, Encyclopedia Britannica, 9th Ed.

Exercises XVII.

(1.) Write down the values of the six hyperbolic functions corresponding

to the arguments ^iri, iri, 2iri.

Draw the graphs of the following, x and y being real:

—

(2.) y=s,mh.xlx. (3.) y = xc,oihx.

(4.) y=gdix. (5.) t/ = sinh-Ml/(«-l)}.

(6.) Express Sinh""^«, Tanh-^2, Sech~^2, Cosech~iz, by means of Sin"^^,

Cos~^^, &c.

(7.) Show that cosh*«-8inh^M= l + 3sinh''Mcosh2M.

(8.) Show that

4 cosh'M - 3 cosh u — cosh 3w= ;

4 sinh^M+ 3 sinh u - sinh 3m= 0.

(9.) Show that any cubic equation which has only one real root can be
numerically solved by means of the equations of last exercise. In particular,

show that the roots of x'^-qx-r=0 are ^{ql3) coshu, 2J{qlS){Gos^Tr
cosh «±i sin Itt sinh tt), u being determined by cosh 3h= 3r/,y3/2,^g^

(10. ) Solve by the method of last exercise the equation a;^+ 6a;+ 7= 0.

Express

(11.) tanh~^ar + tanh-iy in the form tanh-^z.

(12.) cosh~i a; + cosh-i ^ in the form cosh^^^.

(13.) sinh'^x- sinh-iy in the form cosh~i2.

Expand in a series of hyperbolic sines or cosines of multiples of m:—
(14.) Coshi««. (16.) sinh^M. (16.) cosh^u sinhSy.
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Expand in a series of powers of hyperbolic sines or cosines of u

:

—
(17.) Cosh 10m. (18.) sinhTw.

(19.) cosh 6m sinh 3w. (20.) sinh nm cosh tim.

Establish the following identities :

—

(21. ) tanh l{u + v)- tanh ^ (m - v) = 2 sinh u/(cosh u+ cosh v),

,„„ , sinh (m - 1;) + sinh M + sinh (m + v)
, ,

(22.) —~ {— V-—

;

^ ' = tanhM.
^ ' cosh (m - v) + cosh 7i + cosh (m+ v)

(23.) tanh u + tanh (^iri + u) + tanh (firt + m) = 3 tanh Su,

cosh 2m + cosh 2v + cosh 2m? + cosh 2 (m+ ?; + «;) = 411 cosh {v + w).

(24.) Tan |(m+ iv) = (sin u+ i sinh v)/(cos u+ cosh v).

(25. ) Express Cosh^ (u+ it') + Sinh* {u+ iv) in terms of functions of u and v.

EHminate u and v from the following equations:

—

(26.) a;= acosh (m + X), y = b sinh [u + im).

(27.) y coshw-x sinh M=a cosh 2m,

y sinh u + x cosh «= a sinh 2m.

(28.) X =: tanh M + tanh v, y = cothM + cothv, u + v = c.

(29.) Expand sinh (u+ h) in powers of h.

(30.) Expand tanh-^x in powers of x; and deduce the expansions of

cosh-^x and sinh~ix. Discuss the limits within which your expansions are

valid,

(31.) Given sinh m/m = 1001/1000, calculate u.

00 1 /a;V-"~^-l\
(32.) Show that the series S — (

—

^^ ) is convergent, and that its
1 ^ \x^/2 _f.l/

sum is (x2+l)/(x2-l)-l/loga; (Wallace, I.e.).

(33.) Prove that the infinite product cosh —^ cosh — cosh — ... is con-

vergent, and that its value is sinh m/w.

(34.) Show that

_x-x-^ 2 2 2
log X~

2 • ^1/2 + x-y'' XV* + .T-y* ' xl/«+ X-V8 • • •
ad 00 .

(Wallace, I.e.)

(35) If i. = *-ZL2^\_j^_^-^
. . . ^j^^iT^n. «how that P„ differs

from 1/logx (in defect) by less than

{1 + i (x'/2"+' + x-V-!"+') }/3 . 4»+iP„.

Evaluate the following limits :

—

(36.) (sinh x - sin x)jx^, x=0.

(37.) (sinh^ mx - sinh^ 7ja;)/(co8hpx - cosh qx), x = 0.

(38.) (tan'^ x - tanh* x)/(coa x - cosh a;) , x= 0.
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Show that, when h=0,

(39.) L {cosh a(x+ h) - cosh ax} lh= a ainh ax.

(40.) L {sinh a (x + h) -sinh ax}lh= a coah ax.

(41.) L {tanh a{x + h) - tanh ax} lh= a sech- ax.

(42.) L {coth o (x + 7i) - coth ax}lh= - a cosech^ ax.

(43.) Show that

2^.
«°*h ^i = «o*^ " ~

f 2^.
**"^ ^'

'

- = coth M - S TTT tanh—,

,

Ji 12" 2"

'

and state the corresponding formulsa for the circular functions (Wallace,

Trans. E.S.E., vol. vi.).

(44.) From the formulffi of last exercise, derive, by the process of chap.

XXVII., § 2, the following:—

24«oth'^|.-«otl^'^«-2.itanh='|..,

-„= coth2 u - S j^ tanh" -^^

.

u^ I
2-^ 2"

(Wallace, I.e.)

In the following, is the centre of the hyperbola x^la^-y^lb^=l', A one

of its vertices ; F the corresponding focus ; P and P' any two points on the

curve, whose excentric anomalies are u and u', and whose co-ordinates are

(x, y){x', y'), so that a;= a cosh m, y = b sinh«, &c. ; and N is the projection

of P on the axis a. Show that

(45.) Area ANP=iab (sinh2u- 2m).

(46.) Area of the right segment cut off by the double ordinate of P

= -x J(x^ - a^) - ah cosh~^ - ,

a ^ ^ ' a

= - x ^(x^ - a^) - ablog—^^-^ '

.

(47.) Area of the segment cut off by PP' = ^ab {sinh («' -u)-{u'-u)}.

Express this in terms of x, y, x', y'.

(48.) If R be the middle point of PP', and OR meet the hyperbola in S,

the co-ordinates of S are {a cosh^ (w-i-m'), b sinh^{u+u')}.

(49.) OS bisects the hyperbolic area POP'.

(50.) If PP" move parallel to itself, the locus of E is a straight line passing

through 0.

(51.) If PP' cut off a segment of constant area, the locus of i? is a

hyperbola.
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GRAPHICAL DISCUSSION OF THE GENERALISED CIRCULAR

v^ FUNCTIONS.

§ 32.] Let US now consider the general functional equation

w - Cos z, or, as we may write it,

u + w = Cos (w + yi) (1),

where u, v, x, y are all real.

Since Cos {x + yi) = Cos x Cos yi - Sin x Sin yi = cos x cosh y -

i sin X sinh y, we have

M = cos ^ cosh y, t) = - sin ;r sinh y (2);

and therefore

u^/cofi' X - v^/sin^ x = l (3)

,

Y

u d

,
TH.

M L K K L M N U U M L K K

l-1> BR. PRIN. B«. (+1) BR.

c 5 s D R B B R D S c s D R B B

G G Q A P F F P A Q G Q Q A P F G X

c C S D R B B n D S C C S D R B B

D U N M L K K L M N U U N M L K K

Fig. 12.

In order to avoid repetition of the values u and v, arising

from the periodicity of cos x and sin x, we confine z, in the first

instance, to lie between the axis of y and a parallel UCGCU to

this axis at a distance from it equal to tt (Fig. 12).

If we draw a series of parallels to the y-axis within this strip,

we see, from equation (3), that to each of these will belong half
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of a hyperbola in the w-plane (Fig. 13), having its foci at the

fixed points i^and G, which are such that 0F= 0G=1. Thus,

for example, if in the 2;-plane FF ^ ^tt and FQ = |7r, then to the

parallels LPL, NQN correspond the two halves LPL, NQN of

a hyperbola whose transverse axis is PQ = jj2.

^
V
M

5 /
/

JK^ A
XJ ef 1

/
f

B K
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Jq
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X
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To the parallel MAM, which bisects the strip, corresponds

the axis of v (which may be regarded as that hyperbola of the

confocal system which has its transverse axis equal to 0) ; and

to the parallels KFK and UG U, which bound the strip, corre-

spond the parts KFK axvd. UGU oi the w-axis, each regarded as

a double line (flat hyperbola).

Again, if we draw parallels to the ^r-axis across the strip, to

each of these will correspond one of the halves of an ellipse

belonging to a confocal system having F and G for common foci.

Thus to BRDSG and BRDSC equidistant from the a^-axis corre-

spond the two halves BRDSC and BRDSC of the same ellipse

whose semi-axes are coshy and sinh^/. In particular, to FPAQG
on the ir-axis itself corresponds the double line (flat ellipse)

FPAQG.
__

Thus, to the whole of the first parallel strip between KOK
and UU corresponds uniquely the whole of the tc-plane. Hence,

if we confine ourselves to this strip, (1) defines w and z each as

a continuous one-valued function of the other. To each succeed-

ing or preceding strip corresponds the w-plane again taken once

over, alternately one way or the opposite, as indicated by the

lettering in Fig. 12. w is therefore a periodic function of z,

having the real period 27r ; and 2; is a multiple-valued function

of w of infinite multiplicity, having two branches for each period

of w.

The value of z corresponding to the first strip on the right

of the y-axis is called the principal branch of Cos~^ w, and the

others are numbered as usual. We therefore have for the ^-th

branch

«Cos-'w = ;^t
= (^ + | + (-)'-U)7r + (-)*Cos-^w; (5),

where Cos"^ w is the principal value as heretofore ; and Cos~^ w
= a; + yi, x and y being determined by (3) and (4), when u and v

are given.

It should be noticed that for the same branch of z there is

continuity fi'om B to B not directly across the w-axis, but only

by the route BFB\ whereas there is continuity from B io B
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directly, if we pass from one branch to the next. This may be

represented to the eye by slitting the w-axis from i'^ to + co and

from G to — oo , as indicated in Fig. 13. If we were to con-

struct a Riemann's surface for the w-plane, so as to secure unique

correspondence between every w-point and its ^^-point, then the

junctions of the leaves of this surface would be along these slits.

The reader will find no difficulty in constructing the model.

Since to the line KFPAQGU (the whole of the w-axis) corre-

sponds in the 2;-plane the three lines KF, FPA QG, GU taken

in succession, we see that as w varies first from + co to 1, then

from 1 to —1, and finally from -1 to -oo, Cos'^m? varies first

from CO i to 0, then from to tt, and finally from tt to tt + oo 2

;

so that an angle whose cosine is greater than 1 is either wholly

or partly imaginary.

§ 33.] If w = Sin 2;, say

u + iv^ Sin (x + yi) ( 1 ),

then, as in last paragraph,

u - sin a; cosh y, v = cos a; sinh y (2)

;

u^/siii^ X - v^lco^^x=l (3)

;

?*7cosh^y + 'jr^/sinh'^ y = ^ (4).

The graphical representation is, as the student may easily

verify, obtained by taking Fig. 13 for the i<;-plane and Fig. 14

for the 2;-pIane.

We have also, for the ^-th branch of the inverse function,

tSin~^ w = Zt = tTr + {-Y Sin~^ w,

where Sin~^ w^x + yi, x and y being determined by equations

(3) and (4), under the restrictions proper to the principal branch

of the function.

§ 34.] If w = Tan z, say

M + «v = Tan (^ + ^?') (1),

then {u + iv) Cos {x + yi) = Sin {x + yi),

that is,

{u cos X cosh y + v&iux sinh y) + i{~u&mx sinh y + vco^x cosh y)

= sin X cosh y + i cos x sinh y.
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Therefore

u cos X cosh y + v&mx sinhy=mix cosh y,

— u sin X sinh y + v cos x cosh ?/ = cos x sinh ^.

From the last pair of equations it is easy, if we bear in mind

the formulse of § 27, to deduce the following :

—

u - sin 2xl{coB 2x + cosh 2y), v = sinh 2?//(cos 2x + cosh 2y) (2)

;

u'' + iP + 2ucot2x-l = (3)

;

u' + v'- 2v coth 22/ + 1 = (4).

The graphical representation of these results is given by

Figs. 15 and 16.

|«o<. «,

Y
Ij+OO

i- I^' B R, PR N. B R. (*

TH.

1) B R.

< " /3 -l a a c r\ (^. '^ /3 7 5 e C " <*, " /3 7 5 e f n f , "

T K L U N p Q R ST K L M N p <s R S T K L M N P Q R 81 K

-' A B D e F Q HJ A B D E F Q H J A B C E F Q HJ A ^

T K L M N p Q R ST K L M N P Q R S T K L M N P Q R 8 T K

4 s 7 i e K 1 O'i ;? r 6 e c U 3: O /3 7 a e C 1 tf'l a

IrCO 1,
-« 1, -OS

Fig. 15.

When X is kept constant, the equation to the path of w is

given by (3), which evidently represents a series of circles passing

through the points (0, +1) and (0, - 1).

When y is constant, the equation to the path of w is (4),

which represents a circle having its centre on the y-axis ; and it

is easy to verify that the square of the distance between the

centres of the circles (3) and (4) is equal to the sum of the

squares of their radii, from which it appears that they are

orthotomic.

If we consider a parallel strip of the 0-plane bounded by

a; = - |7r, a; = + |7r, we find that to this corresponds the whole
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t<;-plane taken once over. The corresponding values of z are

said to belong to the principal branch of the function Tan~^ w.

To the vertical parallels in the 2;-plane correspond the circles

passing through / and I in the w-plane, and to the horizontal

parallels correspond the circles in the w-plane which cut the

former orthogonally.

It should be noticed that / and / in the «<;-plane correspond

to + 00 and - co in the direction of the i^-axis in the ;2-plane, and

Y^
V A

cl D E ' F

/

H

7
1^% Vyj^Y /
L\

K T

J

ys

A
4- 09

J V

Fig. 16.

that to A and J in the 2;-plane correspond the points at oo on

the u- and v-axes in the t<;-plane ; also that there is no continuity

directly across IKcc or IKco in the w-plane, except in passing

from one branch of Tan"^ w to the next.

For the ^-th branch of the inverse function we have

{Tan~^ 'w = Zt = tTr + Tan~^w (5),

where the principal value Tan~^ w is given by ^dixr''- w = x + yi,

X and y being determined, under the restrictions proper to the

principal branch, by means of (3) and (4).

c. II. 21
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§ 35.] It will be a useful exercise for the student to discuss

directly the graphical representation of w = Secz, w = Cosecz,

and w = Cotz. The figures in the w-plane for these functions

may, however, be derived from those already given, by means of

the following interesting general principle.

IfZbe any z-path, W and W the corresponding w-pathsfor

w =f{x + yi) andw = \lf{x + yi), thenW is the image with respect

to tJie lb-axis of the inverse of W, the centre of inversion being the

origin of the w-plane and the radius of inversion being unity.

This is easily proved; for, if (p, ^), (p', <^') be the polar

co-ordinates of points on W and W corresponding to the point

{x, y) on Z, then we have

p (cos ^ + « sin 4>) =f (x + yi),

P (cos tf>' + i sin ^') = l//(^

+

yi).

Hence p (cos ^ + * sin ^) = l/p'(cos ^' + * sin <i>),

= {l/p')(co8(-cf>') + imi(-<l>')).

Therefore p =^ 1/p', ^ = - <^' + 2^7r, which is the analytical ex-

pression of the principle just stated.

From this it appears at once that, if we choose for our standard z-paths

a double system of orthotomic parallels to the x- and y-axes, then the ic-paths

for w=Cotz will be a double system of orthotomic circles, and the w-paths
for 'w=Seoz andw=Cosec2 a double system of orthotomic Bicircular Quartics.

Example 1. If u+ vi= Sec (x + yi), show that

w= 2 cos a; cosh yj{cos 2x + cosh 2y)

;

t)= 2 sin a; sinh j//(cos 2x + cosh 2y) ;

{u^ + v^)^=u^Igo8!^ X - v^Jsin^ x

;

(«a 4- ^2^2_ u^JQosifi y + u^ysinh^ y.

Discuss the graphical representation of the functional equation, and show
how to deduce the t-th. branch from the principal branch of the function.

The curves represented by the last two equations are most easily traced

from their polar equations, which are

/32= 2 (cos 20 - cos 2x)/sin2 2a;,

p^=2 (cosh 2y - cos 2<f>)lsmh^ 2y,

respectively.

Example 2. The same problem for u+vi= Cosec (a;+ yi).

Example 3. The same problem for u+ ri= Cot {x+ yi).
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§ 36.] Before leaving the present part of our subject, it will

be well to point out the general theorem which underlies the

fact that to the orthogonal parallels in the 2;-plane in the six

cases just discussed correspond a system of orthogonal paths in

the w-plane.

Let us suppose that f{z) is a continuous function of the

complex variable z^ such that for a finite area round every

point z-a within a certain region in the 5;-plane f{z) can

always be expanded in a convergent series of powers Qi z- a,

so that we have

f{z)=f{a)^-A^{z-a) + A^{z-af-^. . . (1),

where Ai, A2, . . . are functions of a and not of z.

Then we have the following general theorem, which is funda-

mental in the present subject.

^Ai + 0, the angle between any two z-paths emanating from
a is the same as the angle between the corresponding w-paths

emanating from the point in t/ie w-plane which corresponds

to a.

Proof.—Let z be any point on any path emanating from a,

(r, 6) the polar co-ordinates of z with respect to a as origin, the

prime radius being parallel to the a^-axis. Let w and b be the

w-points corresponding to z and a, (p, ^) the polar co-ordinates

of w with respect to b. Then we have

p (cos <!> + i sin <f>)

= w-b=f(z)-/(a),

= Ai(z-a)+A2(z-aY + . . ., by (1),

= Air (cos 6 + i 8va 0) + A2r^ {cos + i sin 6y + . . . (2).

Let now Ai = n (cos a^ + i sin aj), A^ = rg (cos a^ + i sin aj), . . .

,

then (2) may be written

p (cos i> + i sin <^) = r^r {cos (a^ + 6) + i sin (a^ + 6)}

+ r^r^ {cos (ag + 2^) + i sin {o^ + 2^)} + . . . (3).

Whence

P cos ^=rir cos (aj + ^) + r-^i^ cos (ag + 2^) + . . . (4)

;

p sin ^ =- rir sin (a^ + ^) + r^r^ sin (a.^ + 2(9) + . . . (5).

21—2
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In the limit, when r and consequently p are made infinitely

small, (4) and (5) reduce to

{plr) cos ^ = ri cos (a^ + &), {pjr) sin ^ = rj sin (aj + 6) (6).

Since p and r are both positive, these equations lead to

pjr = /-i, and ^ = 2kTr + ai + ^ (7).

Hence, if we take any two paths emanating from a in directions

determined by 6 and 0\ we should have (fi- cj/ = 6-6', which

proves our theorem.

We see also, from the first of the equations in (7), that if we

construct any infinitely small triangle in the ;2;-plane, having its

vertex at a, to it will correspond an infinitely small similar

triangle in the w-plane having its vertex at b.

Hence, if we establish a unique correspondence between points

{uyv) and {x, y) in any two planes by means of the relation

u + vi =f{x + yi) = X {x, y) + # {x, y),

then to any diagram D in the one plane corresponds a diagram

D' in the other which is similar to D in its infinitesimal detail.

The propositions just stated show that, if we have in the

z-plane any two families of curves A and B such that each curve

of A cuts each curve of B at a constant angle a, then to these

correspond respectively in the w-plane families A' and B' such

that each curve of A' cuts each curve of B' at an angle a.

Since the six circular functions satisfy the preliminary condition

regarding the function f(x + yi), the theorem regarding the

u-v-cuTves for these functions which correspond to a; = const.,

?^ = const, follows at once.

If J.i = 0, J.2 = 0, . . ., An-i = 0, Jn + 0, then the above con-

clusions fail. In fact, the equations (7) then become

p/r^ = rn, <ty
= 2kir + a^ + n6 (T);

and we have <}} - <f>'
= n (6 - 6').

In this case, as the point z circulates once round a, the point

w circulates n times round b. That is to say, & is a winding

point of the wth order for z ; and the Riemann's surface for the

w-plane has an w-fold winding point at b. We have a simple

example of this in the case of «; = «*, already discussed, for which
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w = is B, winding point of the third order. The points w = +l
and z = ±0 are corresponding points of a similar character for

w = cos z.

The theorem of the present paragraph is of great importance in many parts

of mathematics. From one point of view it may be regarded as the geomet-

rical condition that ^(x,y) + ix(x,y) may be, according to a certain definition,

a function of x + yi. In this way it first made its appearance in the famous
memoir entitled Grundlagen fiir eine allgemeine Theorie der Functionen einer

veranderlichen complexen Grosse, in which Riemann laid the foundations of

the modern theory of functions, which has borne fruit in so many of the

higher branches of mathematics.

From another point of view the theorem is of great importance in

geometry. When the points in one plane are connected with those in

another in the manner above described, so that corresponding figures have

infinitesimal similarity, the one plane is said by German mathematicians to

be conform abgebildet, that is, conformably represented (Cayley has used the

phrase " orthomorphically transformed") upon the other; and there is a cor-

responding theory for surfaces in general. Many of the ordinary geometrical

transformations are particular cases of this ; for example, the student will

readily verify that the equation w^a^Jz corresponds to inversion.

Lastly, the theory of conjugate functions, as expounded by Clerk-

Maxwell in his work on electricity (vol. i. chap, xii.), depends entirely on the

theorem which we have just established. In fact, the curves in Figs. 12,

13, 15, and 16 may be taken to represent lines of force and lines of equal

potential; so that every particular case of the equ&tion u+ vi=f {x+yi) gives

the solution of one or more physical problems.

Exercises XVIII.

(1.) Discuss the variation of sin~^M and Birr^iv, where u and v are real,

and vary from - oo to + oo

.

Draw the Argand diagrams for the following, giving in each case, where

they have not been given above, the ic-paths when the ^-paths are circles

about the origin and parallels to the real and imaginary axes :

—

(2.) w= logz. (3.) w=:exp2.

(4.) 10= cosh. z. (5.) w= t&nh.z.

(6.) Show that cos~^(«+ iu) = cos-^{7-icosh~i F";

sin~i (u+ iv) = sin-i U+i eoshr^ V,

where 2U^^{(u+l)^+ v^} -J{{u-l)'^ + v'^},

2V=J{(u+l)^+ v^} + ^{{u-l)^ +v%
the principal branch of each function being alone in question.
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(7.) Show that the principal branch oi ta,n~^ {u + iv) is given by x+ yi,

where y=^t&nh.-^{2ul(u^ + v^+l)};

and a;=^tan-i{2M/(l-M2_r2)}, itu^ + v^<l;
= ± Iff + i tan-i {2m/(1 - u^ - v^)}, if u2 + i;2> i^

the upper or lower sign being taken according as u is positive or negative.

(8.) U u + vi= cot{x + yi), show that

M=sin 2a;/(cosh 2y - cos 2x), v= - sinh 22//(cosh 2y - cos 2a;);

«2^^2_2ucot2a;-l = 0, u2 + i;2 + 2i; coth 22/ + l=0.

(9.) If M+ Tt = cosec (a; + yi) , show that

M=2sina;coBhj//(cosh22/-cos2a;), v= - 2 cos a; sinh ?//(cosh 2y - cos 2a;)

;

{u^+ v^Y

—

w'^/cos^a; - v^JBin^y, (u^+ v'^)^= w^/cosh^j/ + v^'/sinh^y.

Express the following in the form u+ vi, giving both the principal branch

and the general branch when the function is multiple-valued :

—

(10.) Cosh-i(x + 2/i). (11.) Tanh-i(x + 2/i).

(12.) iLog{(a;-(-yi)/(a;-i/i)}. (13.) hog Sin {x + yi).

(14.) (cos^+ isin^)*. (15.) hog a+ip {x + yi).

(16.) Show that the general value of Sin-^ (cosec ^) is {t+^)T+ilog

cotl{tTr+ 6), where t is any integer.

(17. ) Show that the real part of Exp^ {Log (1 + i)} is e-"^/8 cos (Itt log 2).

(18.) Prove, by means of the series for Cos ^ and Sin 0, that Sin 2tf= 2 Sin 6

Cos 61.

(19.) Deduce Abel's generalised form of the binomial theorem from

§§ 20, 22.

(20.) Show that

^ + m+ni(^l^ + m+ni(^2^^+ • • • ad oo

= (1 + x)^ [cos {n log (1 + x)} + i sin {n log (1 + x)}].

(21.) Show that the families of curves represented by

sin a; cosh 7/ = X, cos x sinh ?/=/*

are orthotomic.

(22.) Find the equation to the family of curves orthogonal to r"

cosn^=X.

(23.) Find the condition that the two families

Ax^+ 2Bxy+Cy^= \, A'x^+ 2B'xy + CY=fi
be orthotomic.

(24.) If tan {x + hj) — sin (m + iv), prove that coth v sinh 2y = cot u sin 2ar.

SPECIAL APPLICATIONS OF THE FOREGOING THEORY TO

THE CIRCULAR FUNCTIONS.

§ 37.] In order to avoid breaking our exposition of the

general theory of the elementary transcendents, we did not stop
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to deduce consequences from the various fundamental theorems.

To this part of the subject we now proceed ; and we shall find

that many of the ordinary theorems regarding series involving

the circular functions are simple corollaries from what has gone

before.

Let us take, in the first place, the generalised form of the

binomial theorem given in § 15. So long as l + %mCaZ^ is

convergent, we have seen that it represents the principal value

of (1 + 2;)™. Hence, if z = r (cos ^ + * sin 6), where r is positive,

and -7r::)>^:|> +7r, we have

1 + 2^(7„r" (cos nO + i sin n6)

= {1 + 2rcos6 + T^Y"'^ (cos w^ + i sin m4>\

where - ^tt :|>^ = tan~^ {r sin ^/( 1 + r cos ^) } :|> + ftt.

Hence, equating real and imaginary parts, we must have

1 + :S™C„r" cos ne = {l + 2r cos + r')'"/^ cos mcf> (1) ;

2wCn^" sin nO = (l + 2r cos 6 + r^)™^ sin m4> (2).

These formulae will hold for all real commensurable values of

m, provided r<l.

When r = 1, we have

<^ = tan-^ {sin 6/(1 + cos 6)} = 1$,

and (1) and (2) become

1 + 2 ™(7„ cos ne = 2"^ cos'"i^ cos ^mO (1'),

-$mGn sin nO = 2™ cos'^^O sin ^mO (2').

These formulae hold for all values of 6 between — -rr and + tt*,

when m>—l; and also for the limiting values — tt and + n

themselves, when m>0.
§ 38.] Seriesfor cos m(j> and sin m^, when m is not integral.

If in (1) and (2) of last paragraph we put 9 = ^tt, and

r = tan ^, so that <^ must lie between - ^tt and + \rr, then

(1 + 2r cos 6 + r^yi'^ ^ sec"*^ ; and we find

cos7w^ = cos"*^(l-„(72tan^^ + w(74tan^<^- . . .) (3),

sin7»^ = cos"'^(TOCitan^-mC3tan^<^ + . . .) (4).

* Since the left-hand sides of (!') and (2') are periodic, it is easy to

see that, for 2p-n -ir>d>2pTr-\-ir, the right-hand sides will be 2"* cos™
.J

^

cos \m {e - 2p7r) and 2™ cos"*^^ sin \m [0 - 2/37r) respectively, where 2"* cos"*^^,

being the value of a modulus, must be made real and positive.
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WhencG

tan mq> =- 77——5-7—;

—

tti—

n

v''/*

These formulae are the generalisations of formulae (4), (5), (6)

of § 12. They will hold even when <j> has either of the limiting

values ± jTT, provided m>-l ; so that we have

2™^'cos|m7r=l-„C; + ^C4-. . .;

2'^'^smlmTr = mCi-mC-i + . ...

Since

cos'"-^<^ = (1 - sin^</.)('"-^'-)/^ = 1 + 2 ( - )\rr,-,r),2Cs sin^«^,

and the terms of this series are ultimately all positive, it follows

that the double series deducible from (3), that is to say, from

S ( - Ym02r cos™"^'"^ sin^*"^ by substituting expansions for the

cosines, satisfies Cauchy's conditions (chap, xxvi., § 34), for

there is obviously absolute convergency everywhere under our

present restriction that — ^irlfx})^ + ^tt.

Hence we may arrange this double series according to powers

of sin
(f>.

The coefficient of ( - )'' sin^''^ is

«=r

•^ {m~2s)/2^r~s m^28

_ m (771 — 2) . . . (
m-2r + 2) ^ r* ri~

r~3 (2r—l)
^(»n-l)/2^«(2r-l)/2t/r-«.

Now, by chap, xxiii., § 8, Cor. 5,

^(m-i)/2^« {2r-i)/2^r-8 = (m+2r-2)/2^r'

Hence the coefficient of (-/sin^'"^ is

m{m-2) . . . {m-2r + 2)(m+2r-2) . . . (m + 2)m
1.3 .. . (2r-l)2 . . . (2r-2)2r

_ m' {7)1^-2^) . . . (^"-2^^")
(2r)!

Hence

cosOT^ = l---rSur<;6 +—^—r-\ ^sm^<^-. . . (6).
A 1 4*
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In like manner, we can show that

, m . , m (m^ -V) . „
,

sin 7w^ = —, sm ^ ^-^. ^sin^0

+—^^ ~ -^sm'«A-. . . (7).
o!

Also

cos w^ = cos <^ U ^^ m^<i>

+ ^^

^j
^sin*«^-...| (8);

,
{m . , m (m^ - 2^) . , ,sm m4> = cos ^ j—i

^^^ *P ~~^\ sin^^

+ —

^

rj^^ ^sin'<^-. . . V (9).

The demonstration above given establishes these formulae

under the restriction -\Trl!f<f>l!^\Tr. It can, however, be shown

that they hold so long as -k'^'^^'^l,'^', that is to say, so long

as the series involved are convergent.

Cauchy, from whom the above is taken, shows that by

expanding both sides in powers of m and equating coefficients

we obtain expansions for <^, </)^, ^^, &c., in powers of sin ^.

Thus, for example, we deduce

^ . ^ lsin^«^ 1.3sin^</> 1 . 3 . 5 sin^<A
<i = sm </> H + — + + . . .^^232.45 2.4.6 7

If we put X = sin
<J!),

this gives

. 1 la? 1.3^ 1.3.5^' ,,^.sm-^ = ^ + --+^^- + 2-^g-+... (10).

In particular, if we put x = \, we obtain

-g 1 1.3
1 ,..

2. 3. 2^ "^2. 4. 5.
2«'^"

" 'I ^ ^'

from which the value of tt might be calculated with tolerable

rapidity to a moderate number of places. The result to 10

places is 77-31415926536 ....
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The important series (10) for expanding 8in~i x is here demonstrated for

values of x lying between - 1/\/2 and + 1/\/2. It can be shown that it is

valid between the limits x= -1 and x= +1.

The series was discovered by Newton, who gives it along with the series

for sin a; and cos a; in powers of a; in a small tract entitled Analysis per

jEquationes Numero Terminorum Ivfinitas. Since this tract was shown by

Newton to Barrow in 1669, the series (10) is one of the oldest examples of an
infinite series applicable to the quadrature of the circle.

Example 1. If ni>0, and

C= 2-"* S ^C„cos(m-2n)a:,
n=0

S= 2-'" S ^C„ sin (m - 2n) x,
n=0

C'=2-'" 2 (-)"-! ^C„ COS (m-2n) a;,

n=0

S'=2-^ -Z {- )"-VCn sin (m - 2n) x,
n=0

then, p being any integer,

1°. C

=

(cos x)"* COS 2mp7r, S= (cos a;)"* sin 2mp7r,

from a;= (2p - ^) TT to a;= (2p + 1) tt.

2°. C=(-cosa;)'"cos77i(2/) + l)7r, S=:(-cosa;)'"sinm(2p + l) ir,

from X = (2/D + 1) TT to a;= (2p + 1) TT.

3°. C'= (8ina;)"'cosm(2/) + 4)7r, -S'= (sina;)»'sinm(2/) + i) ir,

from X= 2pir to x= (2p + l)ir.

4°. C'= (- sin a;)™ cos m(2/) + f) IT, S' = ( - sin x)™ sin m (2p + f ) ir,

from x — [2p+l)ir io x = (2p+ 2) t.

These formulae will also hold when m lies between - 1 and 0, only that

the extreme values of x in the various stretches must be excluded. (Abel,

(Euvres, t. i., p. 249.)

If we multiply (1') and (2') above by cos a and sin a respectively, and add,

we obtain the formulae

cos a + S,„C„ cos (o - nd) = 2"* cos^^^ cos (a - ^mO + vipv),

wherein it must be observed that cos"*^^ is the modulus of (l + 2rcos^+r2)'"/2

when r~l, and must therefore be always so adjusted as to have a real positive

value.

From the equation just written, Abel's formulae can at once be deduced

by a series of substitutions.

Example 2. Show, by taking the limit when m=0 on both sides of

(1) and (2) above, that the series (1) and (2) of § 40 can be deduced from the

generalised form of the binomial theorem.

Example 3. Sum to infinity the series Sw3„C„ sin" 6 cos nO. This series

is the real part of Sn'^m^^n sin" 6 (cos ne + i sin nO). Hence

S=R['En^,n(^n sin" d (cos d+ism 0)"],

= J? [{ni3 sin3 e (cos e+ i sin e)^+m (3m - 1) sin^ e (cos ^+i sin oy

+mBmd(cosd + isind)}{l+sm6{cose+ iBind)}^-%
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by Example 5 of chap, xxvii., § 5,

= [m^ sin3 e cos {36* + (m -3)<f>} +m (3m - 1) sin^ d cos {2^ + (m - 3) (p}

+m sin e COB {^ + (m - 3) ^}] (1 + 2 sin 6* cos ^ + sin^ ^)(»*-3)/2,

where ^ = tan-^ {sin2^/(l + sin 6 cos 6)}.

§ 39.] Formulw deducedfrom the Exponential Series.

From the equation

^ (cos y + imiy) = l-\-'%{x + yifln\

,

putting x = r cos 6, y = r sin ^, we deduce

gr eosfl |(.Qg (^ gin ^) 4. ^- gii^ (^ gin ^)} = 1 + ^yw
(cos n9 + i sin n6)Jn\.

Hence
gT- cos e cos (r sin ^) = 1 + 2 r"cos w^/w! (1) ;

gr cos gin (^ gin ^) = :S r"sin w^/»! (2) ;

which hold for all values of r and 9.

In like manner, many summations of series involving cosines

and sines of multiples of 6 may be deduced from series related

to the exponential series in the way explained in chap, xxviii.,

§8.

Thus, for instance, from the result of Example 3, in the paragraph just

quoted, we deduce

S(13 + 23+. . .+n3)a;«/nI = e^''°s^{rcos((9 + rsin^) + Jr2cos(25 + rsin5)
^

+2r3cos(3e+rsine)+Jcos(4&+ rsin0)}.

§ 40.] FormulcB deduced from the Loga/rithmic Series. Since

the principal value of Log(l+^;) is given by Log(l +2;) = log

|l + 2;| + 2amp(l+2;), and since the series z-z'^/2+s^/S- . . .

represents the principal value of Log (1 + z), if we put z = r (cos 6

+ i sin 0), we have

log (1 + 2r cos 9 + t^y^ + i tan"^ {r sin 6/(1 + r cos 9)}

= %{- )"-' r" (cos n9 + i sin n9)ln,

where -|-7r::^tan~^ {r sin6/(l + r cos 6)}:|>|7r, that is, the prin-

cipal value of the function tan~^ is to be taken.

Hence we have the following :

—

I log (1 + 2/- cos 6 + r^) = 2 ( - )"-^ r" cos w6/w (1)

;

tan-i [r sin djil + r cob 6)} = 2 ( - )"-' r" sin nOln (2).
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Although, strictly speaking, we have established these results

for* values of 6 between - tt and + tt both inclusive, yet, since

both sides are periodic functions of 0, they will obviously hold

for all values of 0, provided r<l.

If r = l, (1) and (2) will still hold, provided ^4=±7r; for the

series in (1) and (2) are both convergent, and we have, by

Abel's Theorem,

cos^-^cos2^ + ^cos3^-. . .= L ilog(l + 2rcos^ + r^),
r=l

= log (2 cos i^) (3);

sin ^ - ^ sin 2^ + 1 sin 3^ - . . . = tan"^ {sin 6/(1 + cos 0)},

= tan-^ {tan ^{0 + 2^7r)},

=^e +u (4),

where k must be so chosen that ^6 + krr lies between - ^tt

and + ^TT. Thus, if 6 lie between - tt and + tt, ^ = 0, and we
have simply

sin^-|sin2^ + ;^sin3^-. . . =1^ (4').

In particular, if we put = ^tt, we get

i- = l-i+i-^ + ^-TV +A + . . . (5),

which is Gregory's quadrature ; see § 41.

When 6= ±(2j3 + l)7r, the series in (3) diverges to -oo, and the right-

hand side becomes log 0, that is - oo , so that (3) still holds in a certain

sense.

The behaviour of the series in (4) when ^ = ± (2^) + 1) tt is very curious.

Let us take, for Bimplicity, the case 6= ^ir. With this value of 6 we have

for values of r as near unity as we please tan-^ {rsin^/(l+r cos ^)} = 0.

Hence, by Abel's Theorem, when ^=±7r, sin ^-^sin 2^+ . . .=0, as is

otherwise sufficiently obvious.

On the other hand, for any value of differing from ±7r by however little,

we have L tan-^{rsin^/(l + rcose)}=J^. Hence, again, by Abel's Theorem,

for 6=^ir={:<p, where
(f>

is infinitely small, we have

sin ^-^ sin 2^+ . . . = ±^7r=Fi0.

The series y = sind —^sm2d + . . .is therefore discontinuous in the neigh-

bourhood of 0= ±7r; for, when fl= ±7r, 2/ = 0, and when d differs infinitely

little from ± tt, ?/ differs infinitely little from ± ir/2. This discontinuity is

accompanied by the phenomenon of infinitely slow convergence in the

neighbourhood of r=l, ^= ±7r; and the sudden alteration of the value of

the sum is associated with the fact that the values of the double limits
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L L tan-i {rsine/(l + rcos^)} and L L t&n-^ {r sin 61(1 + r cos 0)}
r=16 = ±iT e=±7r r=l

are not alike.

When 6 lies between v and Sir, we may put 9= 2Tr+ d', where 6' lies

between -ir and +7r, then, for such values of 0, we have

?/= sin^-Jsin2^'+ . . .,

= ^6', as we have already shown,

Hence, however small <p may be, we have, for 6= ir + <f>, y=^<f>-^ir. But,

as we have just seen, for ^= 7r-^ we have ?/= -^0 + ^7r. Hence, as ^ varies

from TT - </> to TT+ 0, y varies abruptly from -^cp + ^ir to i<p - ^ir. In other

words, as 6 passes through the value tt, y suffers an abrupt decrease

amounting to tt*.

We have discussed this case so fully because it is probably the first

instance that the student has met with of a function having the kind of

discontinuity figured in chap, xv., Fig. 5. It ought to be a good lesson

regarding the necessity for care in handling limiting cases in the theory of

infinite series.

§ 41.] Gregory s Series. If in equation (2) of last paragraph

we put 6 = |ir, we deduce the expansion

tan-V=r-^r3+|r^-. . . (6),

where tan"^/* represents, as usual, the principal value of the

inverse function, and —lli^rl^l.

In particular, if r= 1, we have

7r=.4(l-^ + ^-. . .).

The series (6), which is famous in the history of the quadrature of the

circle, was first published by James Gregory in 1670 ; and independently,

a few years later, by Leibnitz. About the beginning of the 18th century, two

English calculators, Abraham Sharp andJohn Machin (Professor ofAstronomy

at Gresham College), used the series to calculate tt to a large number of places.

Sharp, using the formulas ^7r=tan-il/v'3= (iy3){l- 1/3.3 + 1/5.32- . . .},

suggested by Halley, carried the calculation to 71 places ; that is, about

twice as far as Ludolph van Ceulen had gone. Machin, using a formula

of his own, for long the best that was known, namely, Jtt = 4 tan"^ 1/5

- tan~^ 1/239, went to 100 places. Euler, apparently unaware of what

the English calculators had done, used the far less effective formula

J7r=tan-i^+tan-i J. Gauss {Werke, Bd. ii., p. 501) found, by means
of the theory of numbers, two remarkable formul89 of this kind, namely :

—

47r= 12 tan-i 1/18 + 8 tan-i 1/57 - 5 tan-i 1/239,

= 12 tan-i 1/38+ 20 tan-i 1/57+ 7 tan-i 1/239 + 24 tan-i 1/268,

* The reader should now draw the graph of the function y, for all real

values of 6.
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by means of which ir could be calculated with great rapidity should its value

ever be required beyond the 707th place, which was reached by Mr Shanks

in 1873 1*

Exercises XIX.

Sum the following series to infinity, pointing out in each case the limits

within which the summation is valid:

—

(1.) l-^cosd + i^5cos2^-^-^cos30+. . . .

cos 5 1 „ cos 35 1 • 3 . cos 55
(2-) «'-i- + 2-^-^ + 2T4^-^+--- •

,„ , cos 5 1 COS 35 1.3 cos 55
<^-) -T+2-3- + 2:4-^+---'

result \ cos~i (1-2 sin 5).

(4.) S(27i-l)(2/i-3)cos7i5/nl (5.) Ssinn5/(7i + 2)7i!

(6.) e-«sin5-^e~3"sin35 + ^e-5'»sin55-. . . .

(7.) sin5-2—3sin25 + g—^sin35-. . . .

(8.) sin2 5-isin2 25 + ^sin2 35-. . .;

result \ log sec B.

(9.) Scos27i5/n(n-l). (10.) S sin n5/(n2 _ 1).

(11.) ^sin5sin5-^sin25sin25 + -^sin35sin35- . . . .

(12.) cos(a + j3)-cos(a+ 3^)/3I+cos(a+ 5/3)/5!-. . . .

(13.) cos5--|cos25 + ^cos35-. . .;

result \ log (2 + 2 cos 5), except when 5= (2;j + 1) v.

(14.) cos5 + ^cos25 + Jcos35+. . .;

result - \ log (2-2 cos 6), except when 5 — 2pir.

(15.) sin 5+ I sin 25 + ^ sin 35+ . . .;

result =0, if 5= 0; =^ (7r-5), if 0<5>7r; &o.

(16.) sin5-^sin35 + ^sin55- . . . .

(17.) X cos 5 - |x3 cos 35 + J^x^ cos 55 - . . . ;

result i tan-i {2x cos 5/(1 -x^)}.

(18.) cos5cos^-i cos25cos20 + ^cos35cos 30- . . .;

result J log {4 cos ^ (5 + 0) cos i{9-<p)}-

(19.) ar cos 5 cos ^-^x^ cos 35 cos 30 + ^a;'' cos 55 cos 50- • . .;

result i tan-i [ix (1 - x^) cos 5 cos 0/{ (1 + x")^ - 4x2 (cos^ 5 - cos^ <p)}].

(20.) Show that log (1 + x+ x^) = 2S ( - )"-i cos inir x»/n, provided
|
x

|
< 1,

and examine whether the result holds when |x| = l.

* For the history of this subject see Ency. Brit., art. "Squaring the

Circle," by Muir.
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(21.) Show that, under certain restrictions upon 9,

log (1 + 2 cos ^) = - 2S cos ^nir cos ndjn\

^= - 2 cos ^nj- sin nOjn.

(22.) Show that

2^2~ "^3 5 7 '''9 "''11 12 13"^"" * * *

(Newton, Second Letter to Oldenburg, 1676.)

Exercises XX.

(1.) Calculate ir to 10 places by means of Machin's formula.

(2.) Show that, if a; <1,
(tan-ia:)2

=a;2-(l + l/3)a;4/2 + . .
.(-)'»-i {1 + 1/3 + . . . + l/(2ra- l)}a;2»/w . . . .

Does the formula hold when x=l?

(3.) Expand tan~i (x + cot a) in powers of x.

(4.) Deduce the series for.sin"^* from Gregory's series by means of the

addition theorem for the binomial coefficients.

(5.) If X lie between 1/^/2 and 1, show that

sin~^x=7r-
s/{l-x').-x^) ( 1 1-x^ 1 (l-a;2)2 1

X \ 3 x^ '^ 5 X* •

I
(6.) Show that § 38 (10) is merely a particular case of (7).

(7.) Show that

e . , 2 . ,, 2.4 . ,, 2.4.6 . .,

cos 6 3 3.5 3.5.7
(Pfaff.)

,„, 1,„ sin^^ 2 sin*^ 2.4sin«6l ,^,, . .„ ,

(^•^ 2^'=-^ +3-^ + 3-:5-^6 +••• •
(btamvme.)

(9.) e^^sinH + ^.^(l + ^^am^e + . . .

3.5.. .(2ft-l) 3 /, 1 1 \ . .,„x,.

4.6...2n 2n+l \ 6^ (27i-l)^J

(10.) e*=sm*d + ^.^{l + ^^Bm^e + . . .

4.6. . . (2w-2) 2 /, 1 1 \ . o „

5.7 ... (2/1-1) 71 V 2-' (71-1)2/

(11.) Deduce from § 38 (6) and (7) an expression for ^"'/sin"*^ in powers

of sin 6.

(12 .) If sin ^= X sin (^ + a) , show that d + rir= Sa:" sin 7ia/7i.

(13.) If c2=a2- 2a6cosC+6^then
logc = loga-(6/a)cos(7-^(&/a)2cos2C-i(6/a)3cos3C-. . . .

(14.) Show that

1
-
'LZ^ 4.

(w - 4) (w - 5) _ («-5)(7i-6)(7i-7) _ 1+ (-)"+!

2

cos|7i7r
2"^ 2.3 2.3.4

+•••-
^

.
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Show that

(15.)* 52=sin2^ + 22sm*^ + 2«sin*|^ + 2«sm*^+ . . . .

23

22-" sin.
23(16.)* u'^=Bmh^u - 22 sinh*| - 2* sinh*J - 2« sinh*^ - .

(17.)* |^= sm(9 + 3sin3|+ 32sin3|5 + . . . .

.S 1 ml
(18.)* j8in^= ^--3^^,sin3-0 + S 3;^,8in33--i^.

(19.)* tCos(?= S ^ '
, cos3 3'"-^^.

* See Laisant, " Essai sur les Fonctions hyperboliques," M^m. de la Soc.

de Bordeaux, 1875.



CHAPTER XXX.

General Theorems regarding the Expansion of

Functions in Infinite Forms.

EXPANSION IN INFINITE SERIES.

§ 1.] Cauchys Theorem regarding the Expansion ofa Function

of a Function.

u
y^a^^^a^cf- (1),

the series being convergent so long as \a;\<B, and if

z = b, + ^bny'' (2),

this series being convergent so long as \y\<S, then from (1) a7id

(2) we can derive the expansion

provided x be such that \x\<Ry and also

\ao\ + %\an\\x\'<8.

This theorem follows readily from chap, xxvi., §§ 14 and 34.

We have already used particular cases of it in previous chapters.

§ 2.] Expansion of an Infinite Product in the form of an

Infinite Series.

If %Un be an absolutely convergent series, and ^Smi, „2miW2,

. . . , «2mi ^2 . • -Ur, . . . denote the sums of the products of its

first n terms taken one, two, . . ., r, . . ., at a time, then

L „2Wi=2\, L n'^^hU-i= T^, . . ., L ^U-^U^. . .Ur=Tr, . . .

n=a> n=oo n=oo

where Ti, T^, . . ., Tr, . . . are all finite.

Also the infinite series l + %Tn is convergent ; and converges

to the same limit as the infinite product n (1 + itn).

c. II. 22
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After what has been laid down in chap, xxvi., it will

obviously be sufficient if we prove the above theorem on the

assumption that all the symbols «i, «2, • • •> %, • • • represent

positive quantities. In the more general case where these are

complex numbers the moduli alone would be involved in the

statements of inequality, and the statements of equality would

be true as under.

Since Ml, w^, . , ., w„, . . . are all positive, we see, by the

Multinomial Theorem (chap, xxiii., § 12), that

< {ill + U2+ . . . + Un+. , . ad CO y/r\

<S^/rl, (1),

where S is the finite limit of the convergent series 2m„ ; and the

inequality (1) obviously holds for all values of r up to r-n,

however great n may be.

Therefore n^UxU2 . . . Ur has always a finite limit, Tr say,

such that

0>>7;:j>/S^/r! (2).

By (2), we have

0<l + Ti+r2 + . . . adco<l+/S'/l! + /S'72! + . . . adoo,

that is,

0<H-i7;<e^ (3).

Hence 1 + S7^„ is a convergent series, whose limit cannot

exceed e^.

Again, since Lr^Ui u^. . . Ur=Tr when w = oo , we may write

n^UiUi. . .Ur = {l+rAn)Tr ^ (4),

where LrA^ = when n=<x>.

Hence, An being a mean among i^„, ^An, . . ., «^», and

therefore such that X^„ = when w=qo, we have

n(H-M„)sl+„S?fi + „2MiM2+. . .+«22^e«a. • 'Un

= l + (l + ^«)2Tn (5).



§ 2 INFINITE PRODUCT AND SERIES 339

If in (5) we put w = oo , we get

= l + ^Tn
'

(6),
1

since LAn = 0, and 2r„ is finite.

This completes the proof of our proposition.

Cor. 1. If 2un be absolutely convergent, then, Tn having the

above meaning, 1 + 2^"7^« will be convergent for all finite values

of x; and we shall have

Jl{l + xUn) = l + ^x''Tn (7).
1 1

This follows at once by the above, and by chap, xxvi., § 27.

Cor. 2. Let

Urt = nVo + nViX + nV2X'^ + . . . (8),

where n%, nVi, &c., are independent of x, and the series on the

right of (8) may either terminate or not ; and let

Un=\nVo\ + \nVi\\x\+\nV^\\x\^ + . . . (9).

Then, if %Un be convergent far all values of x such that

\x\<py it follows that for all such values n (1 + m„) is convergent,

and can be expanded in a convergent series ofascendingpowers ofx.

For, if Tn have the meaning above assigned to it, then it will

obviously be possible to arrange T^ as an ascending series of

powers of x. Moreover, if we consider the double series that

thus arises from \-v'%Tn, we see that all Cauchy's conditions

(see chap, xxvi., § 35) for the absolute convergence of this

double series are satisfied. Hence we may arrange l+57^„ as

a convergent series of ascending powers of x.

Example 1. To expand (1 + a;) (I + x^) (1 + x^j (i+ ^^Sj
, . .in an ascending

series of powers of x. (Euler, Introd. in Anal. Inf., § 328.)

The series 2 1 a; P" is obviously convergent so long as
|
x

|
< 1. Hence, so

long as |x|<:l, we may write

(l + x)(l + x2)(l + x'')(l + a;8). . .= l + (7ia;+ C2a;2+ . . . + C„a:"+ . . . (10).

To determine the coefficients C^, G^, C„, we observe that, if we multiply

both sides of (10) by l~x, the left-hand side becomes L (l-x^"), that is,
n=oo

1, since jx|<l. We must therefore have

l/(l-a;) = l + Cia; + C2a;2+. . .+C„a;»+. . .,

22—2
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that is,

l+x+x'^+. . .+a;'»+. . .=l + C-iX + C2x'^+ . . . + (7„x"+. . .,

therefore Ci=C.2=. . . = C7„=. . .=1.

Another way is to put x^ for x on both sides of (10), and then multiply by
(1 + x). We thus get

l + SC„a;™=l+a; + Cia;2+. . . +C7„a;2» + C„x2»+i+ . . .;

whence C^^= C^n+i = C„ , ^i = 1,

from which it is easy to prove that all the coefficients are unity.

Example 2. To show that

{l+xz){l + x'^z) . . . (l + a;"»z)

„=1 (l-x)(l-x^) . . . (l-x») ^ '

(Cauchy, Comptes Rendus, 1840.)

Let

{l + xz){l + x^z) . . . (l+a;"*2)

= 1 + ^13 + ^2^2+. . .+^„2«+. . .+^^2"* (2),

where ^j, Jj, . . . are functions of x which have to be determined.

Put xz in place of z on both sides of (2), then multiply on both sides by
{1 + xz)l{l+ x'^+^z), and we get

{l + xz){l + x^z) . . . (1 + x"*^)

= {l + (l+A^)xz + {AT^ + A^)x^z^+... + {An.i + An)x'^z'' + ...-i-A^x'^+'^z^+^},

X { 1 - X'^+^Z + x2(™+l)32+ ..,(- )na.n(,«+l)2«+ . , .
J (3).

Hence, arranging the right-hand side of (3) according to powers of «,

replacing the left-hand side by its equivalent according to (2), and then
equating the coefficients of a™ on the two sides, we get

A„= (J„+ J„_j)a;«- x»>+i
(^„_i+ 4n_2)x»-i

+x2(»'+i)(^„_2+^„_3)a:»-a

(-)»-ia;(»-i)(™+i)(4i + l)a;

(_)«a.n(m+l).

whence

1 — a;"
A =A ,—A ^x^+ A „3;2»»_ ( -\n-lT{n-l}m /A\

Putting n - 1 in place of n in (4), we have

X»-i"(l - X"')
^n-l= -^n-2 - ^n-sa:"*+ A^_,X^ - . . . (_ )n-2^(n-2)m

(5).

If we multiply (5) by x"» and add (4), we derive, after an obvious
reduction,

(l-x")^„=(x»-x'»+i)^„_i (61).

In like manner,

(1 - X»-l) ^„_i = (X»-1 - X'»+l)^„_2
(62),

(1 - X»-2) 4„.2= (x"-2 - X'»+l)^„_3
(63),

(l-x)^i = (x-x'»+i) (6„).
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Multiplying (6i), (62), . . . , (6,j) together, we derive

_(x- x'»+^) {x^

-

a;'»+i) . . . (x" - a:"^^
)"~

(l-a;)(l-a;2). . .(1-a;")

_ (l-a;"')(l-a;"^^)...(l-a:'n-n+i)
^

(l-a;){l-a;--').. .(l-x»)

which establishes our result.

(7).

(8),

If |a;|<l, the product {iy-\-xz){\-vx'^z) . . . will be convergent when
continued to infinity, and will, by the theorem of the present paragraph, be

expansible in a series of powers of z. The series in question will be obtained

by putting m= Qo in (1), We thus get

to ».n(n+l)/2

(1 + ..)(1 + .^.). . . ad 00 =1+^1, (i.,)(i_..)... (!_,„)
^- (9).

an important theorem of Euler's {Introd. in Anal. Inf., § 306).

§ 3.] Expansion of Seek x and Sec x.

We have, by the definition of Exp x,

2/(Exp ^ + Exp - ar) = 1/(1 + tx^l{2n) !) (1).

Hence, if y = %x^l{2n)\ (2),

2/(Exp a; + Exp - a?) = 1/(1 + y),

= l + 2(-r2/" (3).

The expansion (3) will be valid provided
| ?/ 1 < 1 ; and the

series (2) is absolutely convergent for all finite values of x.

Hence, if ^=|a;|, it follows from § 1 that the series (3) can

be converted into a series of ascending powers of x provided

i ^V(2w)!<l (4).
n=l

This last condition involves that

l{^ + e-^)-\<l',

that is, that ^<log (2 + ^3).

This condition can obviously be satisfied ; and we conclude

that 2/(Exp X + Exp - x) can be expanded in a series of ascending

powers of x provided
|
a;

|
do not exceed a certain finite limit.

Since the function in question is obviously an even function

of X, only even powers of x will occur in the expansion. We
may therefore assume

2/(Exp ^ + Exp - ip) = 1 + S ( - fEnX^I{2n)\ (5).

To determine Ei, E^, . . ., ^Q multiply one side of (5) by
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J (Exp X + Exp - w), and the other by its equivalent 1 + %!c^l{2n)\ ;

we thus have

1 = {1 + :S ( - YEnX^^'li^ny] {1 + :Sa^/(2;i)!} (6).

El, Eit . . . must be so determined that (6) becomes an

identity. We must therefore have

_J ^ + ^' (-Y ^" =0 r7V
{2n)\Q\ (2w-2)!2! (2«-4)!4!

'''^
^0!(2w)! " '^'^

'

or,

•^n = iriPiEn-\ - inG^En-^ + • • • ( — )~'^l'nP'2.n-'iEx + ( — l)""-^ (8).

The last equation enables us to calculate E^, E^, E^, . . .

successively. We have, in fact,

Ei = l; E,= 6Ei-l; Es=15E,-15Ei + l;

E,^28E3-70E2 + 28Ei-l; &c.

whence

Es= 2702765,

E-,= 199360981,

Es= 19391512145,

^9 = 2404879675441,

E,= 1,

•£2= 5,

Es^ 61,

Ei= 1385,

^5-50521,

These numbers were first introduced into analysis by Euler*
,

and the above table contains their values so far as he calculated

them.

Since the constants E^, E2, . . .are determined so as to make

(6) an identity, (6), and therefore also (5), will be valid for all

values of w, real or complex, which render all the series involved

convergent. Hence, since 1 -^ %ar^'^/(2n)\ is convergent for all

values of a;, (5) will be valid for all values of cc which render the

series l + %{-)"'EnaP"'/{2n)\ convergent. We shall determine

the radius of convergency of this series presently. Meantime,

we observe that (5) as it stands may be written

Sech a; = l + :^{-T Ena^/{2n)\ (9)

;

and, if we put ix in place of ic, it gives

Sec ^ - 1 + %EnX^''l{2n)\ (10).

• See Inst. Gale. Biff., § 224 : the last five digits of Eg are incorrectly

given by Euler as 61671.

For a number of curious properties of the Eulerian numbers see Sylvester,

Comptes Bendus, t. 52 ; and Stern, Crelle^s Jour., Bd. izxix.
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Cor. SechP'x and Seo^x can each he expanded in a series of

even powers of x.

The possibility of such an expansion follows at once from the

above. . The coefficients may be expressed in terms of Euler's

numbers. We may also use the identity 1 = (1 + %AnX^'^l{2ny)

cos** a?; expand cos" a; first as a series of cosines of multiples of a;;

finally in powers of x ; and thus obtain a recurrence formula for

calculating J.1, ^2> . • • The convergency of any expansion thus

obtained will obviously be co-extensive with the convergency of

(10).

§ 4.] Expansion of Tanh x, x Coth x, Cosech x ; Tan x,

xQiotx, Cosec^*.

We have already shown, in chap, xxviii., § 6, for real values

of X, that

xl{l - e-'') = l+lx+%{- f-^ ^„^»/(2w)!,

the expansion being valid so long as the series on the right is

convergent. In exactly the same way we can show, for any

value of X real or complex, that

xl{l - Exp - a;) = 1 + 1^ + S ( - )"-^ Bnx'^l{2n)\ (1),

where Exp — a? is defined as in chap, xxix,, and x is such that

I

a?
I

is less than the radius of convergency of the series in (1).

From (1) we derive the following, all of which will be valid so

long as the series involved are convergent

:

X (Exp X- Exp - i»)/(Exp X + Exp - x)

= 4^/(1 - Exp - Ax) - 2x1{I - Exp - 2x) - x,

= 2(-r-^2^"(22'^-l)^„^/(2w)! (2);

X (Exp X + Exp - .T)/(Exp X - Exp — x)

= x/{l - Exp - 2x) - xl(l - Exp 2x),

= ! + %{- )"-^ 2^ BnX^I(2n)l (3)

;

2a;/(Exp X - Exp -x) = 2a?/(l - Exp -x)- 2^/(1 - Exp - 2x),

= 1 + 2S ( - )" (2^-^- 1) BnX^''l(2n)\ (4).

From these equations, we have at once

Tanha7 = 2(-)"-'2^"(2"'-l)^«a^"-V(2»)! (5);

a?Coth;» = l + 2(-)"-i2-'*i?„a?V(2w)! (6);

X Cosech x^l + 2^{-f (2^"-^ - 1) B^a?''\{2n)\ (7).

* Euler, I.e.
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If in (2), (3), and (4), we replace x by ix, we deduce

Tan^ = 22^'^(2^-1)^„^-V(2w)! (8);

a; Cot a; = 1 - 22^" B^a^''\{'ln)\ (9)

;

X Cosec a; = 1 + 22 {2^-^ - 1) B^c^''l{^n)\ (10).

Cor. Each of thefunctions (Tanh ccf, {x Coth x)''\ (x Cosech x)^,

{TanxY, (x CotxY, {x Cosec xY can be expanded in an ascending

series ofpowers of x.

Exercises XXI.

(1.) If tf=gdM (see chap, xxix., § 31), show that

B=a-^u-a^x{? 'ra^w'- . . .,

where a^n+i= EJ{2n + 1) I.

(2.) Find expressions for the coefficients in the expansions of Sin" a; and

Cos^x.

(3.) Find recurrence-formulas for calculating the coefficients in the

expansions of (x cosec x)" and (sec a;)".

In particular, show that

^ „=«" ' 'mi 'm'
where S,. denotes the sum of the products r at a time of 1^, 3^, 5^, . . . , (2p - 1)^.

(Ely, American Jour, Math., 1882.)

(4.) If |x|<l, show that

{l + x^){l + x*)(l + x^) ... ad 00 =l + Sx"2+«/(l-x2)(l-a:4) . . . (l-a;^").

(5.) If
I

a;
I

> 1, and p be a positive integer, show that

00 ^n{n+l—2p)/2

(6.) Show that the Binomial Theorem for positive integral exponents is

a particular case of § 2, Example 2.

(7.) Show that

{l + xz){l + x^z) ...{1 + x^-^z)

_ rn
(
1 - x-^^) (1 - X^^-^ ... (1 - x^-2»+2) „

~
n=r {l-X^)(l-X*)...{l~X^r.)

^^^

(Cauchy, Comptes Rendus, 1840.)

(8.) Show that

(l-xa)(l-a;*2).. .(l-x"»2)~ "^ (l-x)(l-x^) . . .(1-x^)

also that, if
|
x

|
< 1, |

zx
|
< 1,

ll{l-xz)(l-x'^z). . .adoo =l + 2a;»2'V(l-a;)(l-x«). . .(l-x»).

(Euler, Int. in Anal. Inf., § 313.)
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(9.) If m be a positive integer (1 - x'"*) (1 - a;»*-i) ... (1 - x^-^+i) is exactly

divisible by (1 -x)(l-x^) . . . (1 - x™).

(Gauss, Summatio quarumdam serierum singularium,

Werke, Bd. ii., p. 16.)

(10.) Uf(x,m) = l + ^i-)^
^'

(l-l)(l-.j;V.(l-.>»)
'''''''' 1^1

>1, show that

/ (a;, m)=f{x, m - 2\) (1 - x""-^) (1 - a;'"-^) ... (1 - ai'^-sA+i)

_l-x'"-i 1-x^-'^ l-x»»-5
- l-x-i • l-x-s • l-a;-5 • • •

^<i =^-

Hence show that, if |a;|<l, then

1 - r2 l-T* 1 - r6
l + Sa;"(»+i)/2=i-^ .^,.i-^ ... ad 00.l-x l-a;-* l-x"

(Gauss, 16.)

(11.) Show that, if m be a positive integer,

(l + x)(l + x^) . . .
(l-|-.^) = l-l-Z.- (

(l-xVl-xV-- (1-X-)
•

(Gauss, I&.)

(12.) Show that

1

{l-xz)(l-a^z) . . . (l-a;2"»-i2)

_ (l-X^-^){l-X^rn+2) . . . (1 _ ^2m+2n-2)

(1-X^)(1-X*) . . . (1-X2»)

Also that, if
|
aj

|
< 1, and

|
za;

|
< 1,

ll(l-xz)(l-x»z) ... ad oo=l + Sa;»2"/(l-x2)(l-a;'') , . . (l-a;2»).

(13.) Show that, if |a;|<l,

1/(1 - X) (1 - x3) (1 - x5) ... ad 00 =(l + a;)(l + a;2)(l + a;3) . . . ad oo .

(Euler, i.e., §325.)

(14.) If |xl<l,
+00

(l-a;)(l-a;2)(l-a;3) . . . ad oo = 2 ( - )»a;(3'''^»)/2.

— 00

(Euler, Nov. Comm. Pet., 1760.)

(15.) If |a;|<l,

log{(l-a;)(l-x2)(l-a;») ... ad oo }= -Sj(n)a;»/n,

where j[n) denotes the sum of all the divisors of the positive integer ra; for

example, J(4)
= l + 2 + 4.

Hence show that
oo JJT™ "^

1 1 - X" 1 ' ^ '

(Euler, lb.)

(16.) If d{n) denote the number of the different divisors of the positive

integer n, and lx|<l, show that

Sd(n)x»=S
1 l-x»'

(Lambert, Ensai d^Architectonique, p. 507.)
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Also that
00 00 /I 4- t'»'\

(Clausen, Crelle's Jour., 1827.)

(17.) If |a;|<l, show that

,
+ ,-4-1 + ^^—«+• • . .1-x 1-x^ l-x' 1 + x^ 1 + x* 1 + x^

(18.) Sx'*+V(l - a;2™+i)2=Sna;"/(l - sc^n).

S ( - )'»-ina;»/(l + a;») =S ( - )'»-ia;»/(l + a;«)2.

(19.) The sum of the products r at a time of x, x^, . . . , a;" ia

a.r(r+i)/2(a;'-+i-l)(a;'-+2-l) . . . {x^ - 1) I(x - 1) {x"^ - 1) . . . (a;"-'--l).

(20.) If Sj. be the sum of the products r at a time of 1, a;, . . ., a;"-!, then

(21. ) Show that, if x lie between certain limits, and the roots of ax^+bx + c

be real, then {px + q)l(ax^ + bx + c) can be expanded in the form Ug +
2 {u^x'^+VnX'^) ; and that, if the roots be imaginary, no. expansion of this

kind is possible for any value of x.

ON THE EXPRESSION OF CERTAIN FUNCTIONS IN THE FORM

OF FINITE AND INFINITE PRODUCTS.

§ 5.] The following General Theorem covers a variety of

cases in which it is possible to express a given function in the

form of an infinite product ; and will be of use to the student

because it accentuates certain points in this delicate operation

which are often left obscure if not misunderstood.

Let f{n, p) be a function {with real or imaginary coefficients)

of the integral variables n and p, such that L f{n, p) is finitefor
P=QO

all finite values of n, say L f{n, p) =f{n) ; and let us suppose

thatfor all values of n andp {n<p), however great, which exceed

a certain finite value, \f{n, p) \l\f{n) \
is not infinite.

Thsn L n {l+f{n, p)} = U{l+f{n)] (1),
p=oo n=l 1

provided 2 \f{n)
\

be convergent {that is, provided n {1 +f{n)} be

absolutely convergent).

Let us denote n {1 +f{n, p)} by Pp ; L U {1 +f{n, j))] by
n=l p=» n=l

P
; !/(«, P) 1

by ^i {n, p) ; and \f{n) \
by/, {n).
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We may write
m p

P,-=U{l+f{n,p)} IT {l+f(n,p)},

= PmQm, say, (2).

Just as in chap, xxvi., § 26, we have

\Qm-i\> n {1+A(n,p)}-1.
n=m+l

Now, by one of our conditions, if m, and therefore p, exceed

a certain finite value, we may put fi (n, p)/fi (n) = An, where An
is not infinite. If, therefore, A be an upper limit to An, and

therefore finite and positive, we have/i {n, p)1f>Afi (n). Hence

>> n {l + AMn)}-l, (3).
TO+l

Let us now put p- <x> in (2). Since m is finite, and

L f{n, p)'^f{n), we have

m
LPm=ll{l+f{n)}.
p=w 1

m
Therefore F = U{1 +f{n)} Q,, (4),

where Qm is subject to the restriction (3),

Let us, finally, consider the effect of increasing m.

Since n {1 +fi (n)} is absolutely convergent, II {1 + Afi (n)} is

absolutely convergent. It therefore follows that, by sufficiently

increasing m, we can make TI {1 + Afi (n)} - 1, and, a fortiori,
m+l

\Qm-l\ as small as we please. Hence, by taking m sufficiently

great, we can cause Qm to approach 1 as nearly as we please.

In other words, it follows from (4) that

P = n{l+/(n)} (5).

In applying this theorem it is necessary to be very careful to see that both

the conditions in the first part of the enunciation regarding the value of

f(n,p) are satisfied. Thus, for example, it is not sufficient that L f{n, p)

have a finite definite value / (n) for all finite values of n, and that S/^ (n) be
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absolutely convergent. This seems to be taken for granted by many mathe-
matical writers

; but, as will be seen from a striking example given below,
such an assumption may easily lead to fallacious results.

§ 6.] Factorisation of sinkpu, sink u, sinpO, and sin 6*.

From the result of chap, xii., § 20, we have, p being any
positive integer,

a;'P-l={x'-l)uL''-2a;cos''^ + l\ (1).

From this we have

-^—- = n (or -2a; cos — + 1 )

;

^-1 »=iV p /'

whence, putting w = l, and remembering tha,t Lia^-l)/{a^-l)=p,
we have

p-i

p = 2P-^ n (1 - cos . mr/p) (2)

;

= 4P-^'usm\'mr/2p (3);

and, since sin . Tr/2p, sin . 27r/2/>, . . . , sin . (j9 - 1) 7r/2p are

obviously all positive.

p-i

sjp = 2^-^ n sin . n7rl2p (4).

If we divide both sides of (1) by a?^, we deduce

aF-x-P^{x- x-^) 'n.{x + x-^-2 cos . mrip) (5),

where for brevity we omit the limits for the product, which are

as before.

If in (5) we put x - e", we get at once

sinhpu = 2^-^ sinh u U (cosh w - cos . mr/p) (6),

= 4^-^ sinh u U (sin^ «7r/2^ + sinh^ w/2) (7).

Using (3), we can throw (7) into the following form :

—

sinhj9M=p sinh uU {1 + sinh^ M/2/sin^ mr/2p} (8).

Finally, since (8) holds for all values of u, we may replace u
by u/p, and thus derive

* The results in §§ 6-9 were all given in one form or another by Euler in

his Introductio in Analysin Infinitorum. His demonstrations of the funda-

mental theorems were not satisfactory, although they are still to be found
unaltered in many of our elementary text-books.
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smh u=p sinh - IT U + ^^r '-.-/-} (9).
i^ n=i I snr.mr/2p) ^ '

We shall next apply to (9) the general theorem of § 5.

Before doing so, we must; however, satisfy ourselves that the

requisite conditions are fulfilled.

In the first place, so long as n is a finite integer, we have

(10).
^ sinh^ . u/2p _ W

p=« sin^ . mrl2p n^-n^

This can be deduced at once, for complex values of u, from

the series for siuh.u/2p and sm.mr/2p. When u is real it

follows readily from chap, xxv., § 22.

The product n (l+u^/irir^) is obviously absolutely convergent.

We have, therefore, merely to show that, for all values of n andp
exceeding a certain finite limit,

sinh^ . u/2p I u^

sm'^.mr/2p/ nrir^
<A (11),

where Aha. finite positive constant. That is to say, we have
to show that

remains finite.

Now

sinh . u/2p

ul2p

sin . mr/2p"^

mr/2p >

sinh . ul2p

u/2p
N 1 /««V

>l +
3! \2p/3! \2p)

"^ (12).

Since the series within the bracket is absolutely convergent,

its modulus can be made as small as we please by taking p
sufficiently great.

Again we know, from chap, xxix., § 14, that, if 0:!f^J{6 x 7)

:l>6*48, and, a fortiori, if 6:lf>2rr, then

that is, if 6 be positive,

sinH^-i^',
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Now, since n'i^p - 1, mrj^pl^ hir. Therefore

~m^]2p~ ^ '^ \2p)

H:i-^<t:-58 (13).

From (12) and (13) it is abundantly evident that the con-

dition (11) will be satisfied if only j3 be taken large enough ; and

it would be easy, if for any purpose it were necessary, to assign

a numerical estimate for A. All the conditions for the applica-

bility of the General Limit Theorem being fulfilled, we may make

p infinite in (9). Remembering that Lp sinh . ujp = u, we thus get

sinh M = w n (1 + u^ln'^tr') (14).

To get the corresponding formulae for mipO and sin^, we

have simply to put in (5) x = exp id. The steps of the reasoning

are, with a few trifling, modifications, the same as before. It will

therefore be sufficient to write down the main results with a

corresponding numbering for the equations.

sin 2)(^ - 2^-1 sin ^ n (cos ^ - cos . mrip) (6')

;

= 4^-^ sin en (sin^. mrj^p - sin^. ^/2) (7').

sinj3^ =p sin dU (1 - sin^. ^/2/ sin^ mtj^p) (8').

' = ^sin^ njl-^^^^n (9').

p n=\\. ain^.nirj2p}

smO=eu{i-eyn'Tr'] (W).

It should be noticed that, inasmuch as (6), (7), (8), (9), and

(14) were proved for all values of u, real and complex, we might

have derived (6'), (7'), (8'), (9'), and (14') at once, by putting

u = iO.

Cor. 1. The following finite products for sinpO and sinhpu

should be noticed :

—

smi
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sin pO =^ 2^-^ sin sin (O + tt/p) am {d + 27rIp) ...

sin{0 + p-l7rlp) (15);

sinhpu = {- 2^y"^ sinli u sinh {u + tV/p) sinh (m + 2i7r/p) . . .

sinh {u+p — l i-rr/p) (16).

The first of these may be deduced from (6'), as follows :

—

sinpO - 2^~^ sin ^n (cos 6 — cos.mr/p),

= 2^-^ sin ^n {2 sin {mr/2p + 0/2) sin (w7r/2/j - 6/2)},

= 2^-^ sin eu {2 sin {mr/2p + 6/2) cos {p-nir/2p + 6/2)}.

Hence, rearranging the factors, we get

sinp6 = 2P-^ sin 6U {2 sin {mr/2p + 6/2) cos {mr/2p + 6/2)},

= 2^-^ sin 6 n sin {6 + mr/p).
n=l

We may deduce (16) from (15) by putting 6 = -iu.

Cor. 2. Wallis's Theorem.

If in (14') we put 6 = ^tt, we deduce

l = |,rn(l-l/2V) (17);
1

whence 2 = 173.375. • . ^2n-l){2n^l)' ' '
^^°°'

2 2 4 4 2n 2n , /,_x

= Vrrl"-2^^-2^i--'^^'^ ^^^^'

This formula was given by Wallis in his Arithmetica In-

finitorum, 1656. It is remarkable as the earliest expression

of IT by means of an infinite series of rational operations. Its

publication probably led to the investigations of Brouncker,

Newton, Gregory, and others, on the same subject.

§ 7.] Factorisation of cosp6, cos 6, cosJipu, coshu. Following

the method of chap, xii., § 20, and using the roots of — 1, we

can readily establish the following identity :

—

x^ + \= Jl(x'-2xcos^^^^^^^ + l) (1).
n=l \ Zp J

Putting herein x = \, we get

2 = 2^n(l-cos.(2;2-l)7r/2;?) (2);

= 4Pn sin^ (2;^ - 1) iv/4,p (3).
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Hence, since all the sines are positive,

J2 = 2^n sin . (2?i - 1) irjip (4).

From (1),

oF + x-^= II {cc + x-^-2 cos . (2w - 1) 7rj2p) (5)

;

whence, putting x - Exp iO, we deduce

cos^^ = ^.2^U (cos ^ - cos . (271 - 1) 7r/2p) (6)

;

= I . -l^n (sin^. {2n - 1) 7r/4^ - sin^ ^/2) (7).

From (7), by means of (3), we derive

cosj9^ = n (1 - sin^ ^/2/sin^ {2n - 1) 7r/4p)

From (8), putting djp in place of 0, we get

sin^^/2;?
cos

„=i I sin^. {2n - 1) Tr/Ap)

(8).

(9).

For any finite value of n we have

^ sm\e/2p ^^
(10).

p=oo sin^ (2w - 1) 7r/4j9 (2w - If tt^

Also the product 11 (1 + 4.6^l{2n - IYtt^) is absolutely con-

vergent.

Moreover,

sin.^/2/?

ei2p S\\2p)
"*

•
•

>l +

<2p

\^l\2pj
(12);

so that
I

sin . 0l2pl6l2p \
can be brought as near to 1 as we please

by sufficiently increasing p.

Also, since (2n - 1) Tr/^p1f>^^, we have, exactly as in last

paragraph,

&m^{2n-l)7rl4p

i2n-l)^lip ^^^

We may, therefore, put jt?= oo in (9) ; and we thus get

cos e = n {1 - 4^V(2w - 1)^71^}

(13).

t

(14).
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In like manner, putting a; = e"' in (5), we get

p

cos\ipu = 1 . 2^ n (cosh w - cos . (2n - 1) 7r/2/?) (6')

;

n=l

- i . 4^n (sin'^ . (2n - 1) n/Ap + sinh^ . w/2) (7').

coshpu = n (1 + sinh^ . w/2/sin . (2n — 1) Tr/Ap) (8').

, PC sm\iKul2p ] ,^,.
coshM= U U+ . rrTTf (9)-

„=i (. sin^(2w- l)7r/4^jj ^ ^

cosh M = 3 {1 + 4m7(27j - 1)' TT^} (14').

We might, of course, derive the hyperbolic from the circular

formulae by putting $ = iu.

It is also important to observe that we might deduce (14)

from the corresponding result of last paragraph, as follows :

—

From (14') and (17) of last paragraph, we have

^"^^=^°ii^:i7k)4'll{2nr

_2^ /2w7r-2^ 2mr + 2$ 1

~
TT t(2w-l)7r'(2w+l)7rj

*

Hence, putting ^tt - ^ in place of 0, we deduce

cos(^- ^ n|
(2n-l)7r •"~(2^n^l)^J'

= (1 - 2e/7r) n {(1 + 2ej(2}i - 1) tt) (1 - 2^/(2w + 1) tt)},

= (1 - 2^/7r) (1 + 26/7r) (1 - 2^/37r) (1 + 2^/37r) ....
Written in this last form the infinite product is only semi-

convergent, and the order of its terms may not be altered

without risk of changing its value ; we may, however, associate

them as they stand in groups of any finite number. Taking

them in pairs, we have

cos ^ = (l-4^/7r2) (1-4^73^772) . . .,

= n{l-467(2;i-l)V-=}.

§ 8.] From the above results we can deduce several others

which will be useful presently.

c. II. 23
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We have, since all the products involved are absolutely

convergent,

sin {6 + <^) ^ 6 + i^ n{l-(g + <^)7y^V^}

sine ~ 6 n {1 - ^/wV^} '

provided O + mr.

Hence, provided O^nir,

cos*H-sin*cote=(l4)n{l_^^:}
(1).

In like manner, starting with cos (6 + ^)/cos 6, we deduce

cos*-s!n*tan<»=n{l-4(-^^^-^,}
(2),

provided 9^^ (2n - 1) tt.

Also, from the identity

sin ^ + sin

e

_ sin l((f> + 0) cos |(<^ - (9)

sin^ sin ^e cos I

e

'

we derive

1 + cosec sin <^

^

= (-!)"{-^4^} (3).

provided 6=^mr.

A great variety of other results of a similar character could

be deduced ; but these will suffice for our purpose.

§ 9.] Before leaving the present subject, it will be instructive

to discuss an example which brings into prominence the neces-

sity for one of the least obvious of the conditions for the applica-

bility of the General Theorem of § 5.

We have, 6 being neither nor a multiple of tt,

apP - 2xP cose + l = {af- (cos ^ + i sin $)} {of - (cos - i sin 6)].

The joth roots of cos 6 + i sin 6 are given by

co&.{2mr->f6)lp-\-i%m.i27nr + 6)lp, n^O, 1, . , ., p-l (1).

The joth roots of cos^-zsin^, that is, of cos {-0) + i

sm{-0), by

cos . {2mr

-

$)Ip + i sin . {2mr - 6)lp, w = 0, 1, . . ., p-l (2),
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Since cos . (2n-ir - 6)/p - cos . {2 (ja - w) tt + 6]lp,

sin . (2w7r - 6)Ip = - sin . {2 {p -n)7r + 6]lp,

(2) may be replaced by

co&.{2mr + 6)lp-i&m.{2mr + 6)lp, n-0, 1, . . ., p-1 (2').

We have, therefore,

ar?P-2A-Pcos^ + l

p-i
= {a^-2w cos . ^/jt) + 1) n {af - 2x cos . (2«7r + ^)/j9 + 1} (3).

Since cos
.
(2w7r + ^)/p = cos .\1{p-n)Tt- 6]lp, we may, if^ be

odd, arrange all the factors of the product on the right of (3)

in pairs. Thus, if j9 = 2^* + 1, we have

;B*a+2 -2^23+1 cos^ + l =

r;r'-2^cos— +l\h[ (^-2^cos.(2;^7r + ^)/(2g+l)+l)|

V 2^+1^ V«=ilx(^-2a;cos.(2n7r-^)/(2^+ 1)4- 1)1

(4).

If we now put x=\, we get

4 sm^ - = 4^«+^ sin^

,

n \ %m^

.

sin^ .
—

\ (5).
2 4g + 2m=il 4g' + 2 4g' + 2j ^ '

If we divide both sides of (4) by x'^^'^, and put x = Exp i4>,

we deduce

2(cos(2g+l)<^-cos6)

= 2^+' {cos <^ - cos . 6l{2q + 1)}n {cos «^ - cos . (^Imr ± 0)1{2q + 1)}

(6),

where the double sign indicates that there are two factors to be

taken.

Transforming (6), and using (5), &c., just as in the previous

paragraphs, we get, finally,

cos ^ - cos Q

-28inH^ll -'-^5!iM4i±2)| fi fi _ sin^«^/(4g + 2) |

(7).

Since nli^q, (2w7r+6')/(4g'+ 2):}>(2g7r±^)/(4^ + 2) ; and the

limit of this last when g'= go is \-k. Hence, by taking q large

enough we can secure that i^mt ± 0)l{4.q + 2) shall have for its

23—2
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upper limit a quantity which differs from ^-rr by as Uttle as

we please ; and therefore (see § 6) that sin . {2mr + 6)l{iq + 2)/

(2w7r + 0)/(4g + 2) shall have for its lower limit a quantity not

less than "58.

We may, therefore, put q= <x> , &c., in (7). We then get

cos <^ - cos ^ = 2 sin^ | ^ ( 1 - <^7^') S {1 - </.7{2w7r ± Of} (8),
n=l

that is,

cos ^ - cos ^

.,3i„'i.{i-i]{i-^-^}{:-^}... .

Putting ffi = iu in (8), we deduce

cosh w -cos ^ = 2 sin^^^ (1 + u^jO'') S {1 + u^l{2mT±6)"] (9).

The formula (8) might have been readily derived from those

of previous paragraphs . by using the identity cos <^ — cos 6

= 2 sin |(^ + ^) sin ^{0-4) and proceeding as in the latter part

of §7.

Remark.—At first sight, it seems as if we might have dis-

pensed with the transformation (4) and reasoned directly from

(3), thus—
From (3) we deduce

p-i

2 (cosptji - cos 0) = 2^ (cos ^ - cos . 0/p) U {cos ^ - cos . (2mr + 6)/p}.
71=1

Hence

cos (f>-cos6

Jsm ,t/|l g|j^.^/2^|^l^A^|l
sm\{2n7r + e)l2pi'

Put now jt? = oo , &c., and we get

cos <^ - cos ^ = 2 sin'' I ^ ( 1 - <t>y6^) fi { 1 - <f>y(2mr + df},
1

This result is manifestly in contradiction with (8), although

the reasoning by which it is established is the same as that often

considered sufficient in such cases.
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In point of fact, however, the condition of § 5, that

M=fi{n, p)/fi{n) must remain finite when w and p exceed certain

limits, is not satisfied.

In the present case the upper limit of {2mT + 0)/2p, namely,

{2(p—l)-ir + 0}l2p, can be made to approach as near to tt as we
please. Hence in this case M may become infinite. We have,

in fact,

sm.{<l>l2p}l(<t>/2p)
M-

sin . {2mr + Q)\2p\{2mT + ^)/2/>

hence, if we give n its extreme value p — \, and put p= co , M
becomes infinite. No finite upper limit to the modulus M can

therefore be assigned ; and the General Theorem of § 5 cannot be

applied.

This is an instructive example of the danger of reasoning

rashly concerning the limits of infinite products.

Exercises XXII.

(1.) If (1 + ixja) (1 + ixlb) (1 + ixjc) . . . =A + iB, then

2 tan-i (xja) = tan-i (B/^).

Hence show that S tan"' (2/n2)

=

dirji.
1

(Glaisher, Quart. Jour. Math., 1878.)

(2.) Find the n roots of

^
^^
n(7i-r-l){n-r-2)...{n-2r+ l) ^_^^_ . . = 0.

(3.) If n be an odd integer, find the n roots of the equation

x+
3,

x+
g,

x+ —j^ x+...-a.

(4.) Solve completely

a;"+ „CjCOsaa;"-i + „C2C08 2aa;"-2+ . . .+cosna= 0.

(Math. Trip., 1882.)

(5.) The roots of

.T™ sin nd - nOia;"-! sin {nd + <j>) +JJ^x'^-'^ sin (n^ + 20) - . . . =

are given by a;=sin(0 + 0- /i;7r/n)cosec(^- fe7r/n), where k= Q, 1, . . ., or

Oi-1).

If a= 7r/2p, prove the following relations :

—

(6.) jj = 2P-isin2asin4a. . .sin(2jj-2)a;

1= 2^-1 sin a sin 3o . . . sin {2p - 1) a.
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(7.) v'j»
= 2P-'co8acos2a. . .cos (p-l)a.

(8.) l= 2P-isin.a/2sin.3o/2. . .sm.(22)-l)a/2;

= 2P-1 cos . a/2 cos . 3a/2 ... COS . (2p - 1) a/2.

(0.) sini)» = 2P-isin^sin(2a + e)sin(4o + e). . . sin (2p-2a + 0);

cospe= 2P-1 sin (a + ^) sin (3a+ 6) sin {5a + 0). . . sin (2^) - ] a + 0).

(10.) tanp^= tan0tan(tf + 2a). . .tan(e + (2j)-2)a), where p is odd.

(11.) tan e tan (^+ 2a).. . tan (^ + (2^ - 2) a) = { - 1)^/2, where;) is even.

(12.) Sliow that the modulus of

cos (^ + i(p) cos (61 + i<p+ ttIp) . . .coB(0 + i(p + (p-l) irfp)

is {coshj)0-cos(2)7r + 22)e)}/2P-J.

(13.) If n he even, show that

. „^ , > «^ ^ 9 d + 2ir « + 47r + (2)i-2)7r
8in2 - = ( - )»/22»-2 cos - cos cos ... cos — .

2 ^ ' n n n n

(14.) Show that n(l + sec2"^) = tan2»^/tan»;

and evaluate n < ^ V .

(15.) Show that

Sr /, 4 . „ 0\ sine

flU-4sin''-J=cos6i;

and write down the corresponding formulae for the hyperbolic functions.

(Laisant.)

Prove the following results (Euler, Int. in Anal. Inf., chap, ix.):

—

na\ «^*+e'^'' „ j, ^ i(b-c)x+ ix^ ] .

(16-) -iFiT^ = n |1
+ ^2^^ _ ^^, ^2 ^ (^ _ ^)2)-

.

e6+g-ec-a: _ / 2x \ j 4(?>-c)a; + 4a;n

c^-e" ~V "^b-cj^ I
^(2n)2^2+(6-c)--iJ

•

coshy + co8hc _ ( ±2cjy + y'' ) .

^ '"'
1 + cosh c -" "[^ "^

(2n - l)-* TT^*+ c'l
'

cosh y- cosh

c

_ /i _y^\ ^ ii
^^cy + y^

\

1-coshc V cV Y (2n)' t'+ c'i
'

Binhy + sinhc ^/^^y\^L^ (-);2c.V + y^)

;

siuhc \ c/ (
7i-7r'*+ C''

J

sinhy-Binhc^_/^_y\„L^( -)"-^2cy + y2|

sinhc \ c/
(

n^ir^+c^
)

Write down the corresponding formulaa for the circular functions, and deduce

them by transformation from § 9.
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cos + cos B

{^^^^
1 + cos^ ~"r ((27i-l)7r±&)2p

(19.) cos^ + tani^Bin^ = n{(l +^-4^— )
(^l-^^^-)|.

cos(g- 0)_ [/ 2^ W 20 \1
^''"•^

cose -^M\ (2«-l)7r-2e;V^ (2n-l)x + 2e;f
'

sine ~V 5;/ IV 2«7r-eyV 2)i7r + eyj"

(21.) Show that

cosh 2v - cos 2m = 2 (!<2 + ^2) n j(!i![±Jf)!+l'}

^ ^„ (((2«-l)7r±2M)2+ 4j;2}

cosh 2v + cos 2m = 2n ^^ t^^^
—rr^'-^

\ ;

< (2j1 - 1)- TT^
)

( 4m^ )

cosh2(i-cos2M= 4M^n U+ .

—

.\ ;

^ n* IT*)

( 2''u* )

cosh 2m + cos 2m = 211 {1 + y^z 5Ti -^^ •

( (2n - 1)* ir*)

(Schlomilch, Handh. d. Alg. Anal., chap, xi.)

(22.) Evaluate n
( %^-\ ]

•

^ '

1 \4n2-4tt + l/

(23.) If OT = log (1 + ^2), show that

EXPANSION OF THE CIRCULAR AND HYPERBOLIC FUNCTIONS

IN AN INFINITE SERIES OF PARTIAL FRACTIONS.

§ 10.] By § 8 we have, provided ^ + 1 (2w - 1) tt,

cos.#.-sin.#,tan« = n{l-4^-^^|^±^,} (1).

Now, referring to § 2, Cor. 2, we have here

Un =
{2n - l)'7r2 - 46= <^l + 4

> W\^' '^

{2n - 1)^2 - AO'

A

w,,

{2n - ly-r^ - 4.0'^r I

{2n - 1)'-^^ - 46''

where 0' = \6\, ^' =
| ^ | . It follows, therefore, that the product

in (1) may be expanded as an ascending series of powers of ^.
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Expanding also on the left of (1), we have

l-|J + ...-tan^(<^-|-;4-...)

{{2m - IfTi^ - 4e^}{(2« - 1)^^ - 4^
. . . . . . . . (2).

Since the two series in (2) must be identical, we have, by

comparing the coefficients of <f>,

This series, which is analogous to the expansion of a rational

function in partial fractions obtained in chap, viii., is absolutely

convergent for all values of except ^tt, f7r, |7r, ... It should

be observed, however, that when lies between | (2w - 1) tt and

^ (2n + 1) TT, the most important terms of the series are those in

the neighbourhood of the wth term, so that the convergence

diminishes as increases.

We may, if we please, decompose 80/{{2n— l)V^-4^} into

2/{(2ra - 1) TT - 2^} - 2/{{2n - 1) tt + 20}, and write the series (3)

in the semi-convergent form

tan«= 2 2 2 2

TT - 2^ Tr + 26 37r-26 Sir + 2$

/o'\
"^

57r - 2^
~

57r + 2^
"^

• •
^'^''

In exactly the same way, we deduce from (1) and (3) of § 8

the following :

—

Scot 6 = 1 -26'%^^-^^ (4),

or

6 cot 6=1 ^ +-6 17 + 6 2Tr-6 27r + e

^^irrh-' • • (4),
Zir-6 37r + ^
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provided ^ 4= tt, 27r, Stt, . . .

;

and

e cosec 6 = 1 + 26'- S-^7p"^! (5),

or

a a ^ ^ e e 6
6 cosec p = 1 + Ti 7i

- t: 7. +-^ 7r + ^ 2ir-6 2Tr +

provided 6^7r, 27r, Stt, . . .

.

"^
377 - ^ Stt + ^ • • • ^^'^'

We might derive (4) from (3) by writing (Jtt-^) for 6 on

both sides, multiplying by 6, decomposing into a semi-convergent

form like (3'), and then reassociating the terms in pairs ; also

(5) might be deduced from (3) and (4) by using the identity

2 cosec 6 = tan ^6 + cot 1-9.

When we attempt to get a corresponding result for sec 6,

the method employed above ceases to work so easily ; and the

result obtained is essentially different. We can reach it most

readily by transformation from (5'). If we put (5') into the form.111 1 1
cosec 6=y:+ 7,

„ - ^ +-6 TT + e 2ir-6 2Tr +

1

3ir-e 377 + 6 • •
•'

which we may do, provided 6=¥0, and then put ^ir-O in place

of 6, we get.22 2 2
sec 6 -^ +

ir-26 T7+26 377-26 377+26

2 2 _ , ,.

"^
577 - 26

"^
577 + 26 •

• •
^^'''

or, if we combine the terms in pairs,

where 6 4= ^77, §77, |77, . . .

.

The series (6), unlike its congeners (3), (4), and (5), is only
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semi-convergent ; for, when n is very large, its wth term is com-

parable with the «th term of the series 2l/(2w - 1).

We might, by pairing the terms differently, obtain an abso-

lutely convergent series for sec 6, namely,

but this is essentially different in form from (3), (4), and (5).

Cor. 1. The sum of all the products two and two of the terms

of the series 21/{(2w - 1)271^ - 4^^! ^g (tan 6 -6)11280^; and the

like sum fw the series 21/{wV^ - 6''} is (3-0^- 36 cot 6)/S6\

This may be readily established by comparing the coefficients

of 4*^ in (2) above, and in the corresponding formula derived from

§ 8 (1).

Cor. 2. The series Sl/{(27Z- If7r2-4^'P converges to th^

value (0 tan' 6 -tan 6 + 6)164.0'; and 21/(^^^-67 to tlie value

{e^cose(f6 + 6cot6-2)/A6\

Since the above series have been established for all values of

6, real and imaginary, subject merely to the restriction that 6

shall not have a value which makes the function to be expanded

infinite, we may, if we choose, put 6 = ui. We thus get, inter alia,

tanh u = 8m21/{(2w - IfTt" + 4m=^} . (8)

WCOthM=l + 2w'2l/K7r2 + w2| (9^

u cosech u=l- 2u^% ( - l)"-V{«-7r2 + u'] (10)

sech w = 42 (-)""' (2w - 1) 7r/{(2w - If-jr'' + 4m^} (1 1).

EXPRESSIONS FOR THE NUMBERS OF BERNOULLI AND EULER.

RADIUS OF CONVERGENCY FOR THE EXPANSIONS OF

TAN 6, COT 6, COSEC 6, AND SEC 6.

§ 11.] If |6|<7r, then every term of the infinite series

^ff^Kn^TT^ - 6^) can be expanded in an absolutely convergent series

of ascending powers of 6. Also, when all the powers of 6 are

replaced by their moduli, the series arising from \l{n^tr^ - 6^)

will simply become l/lw^ir'— \6\^}, which is positive, since |6|<'''".

The double scries
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„?i XTi^'^^iiF^'^ '
' ' '"IF^'' + • • •/

therefore satisfies Caiichy's criterion, and may be arranged

according to powers of 0. Hence, if

0-2^ = l/P"* + 1/2^'" + 1/3'"* + . . . (1),

we have, by § 10 (4),

6cot 6 = 1-22^7(72^2-6^), '

•

= l-2^(r2,„6''"/7r2™ (2).

Since o-2,„(<o-2) is certainly finite*, the series (2) will be

convergent so long as, and no longer than, 6<7r,

Now, by § 4 (9), we have

6cot6=l-22=""5«6''"/(2w)! (3),

provided Q be small enough.

The two series (2) and (3) must be identical. Hence we

have

_ 2(2m)!(r2». ^ 2(2m)! fill
\

§ 12.] If, instead of using the expansion for 6 cot 6, we had

used in a similar way the expansion for tan 0, we should have

arrived at the formula

Bm = 2 (2w)!

(1 - 1/2^'") (27r)2 1 1^"* ^ 3-'" ^ 5-"' *•••! v^/"

This last result may be deduced very readily from (4) ; it is,

indeed, merely the first step in a remarkable transformation of

the formula (4), which depends on a transformation of the series

o-„ due to Eulert. We observe that the result of multiplying

the convergent series (r^m by 1 - 1/2'"* is to deprive the series of

all terms whose denominators are multiples of 2. Thus

(1 - 1/2^'") a-2^ = 1 + 1/3'™ + 1/5"™ + . . . .

* It may, in fact, be easily shown that L<x^^=l when m=Qo; for, by

chap. XXV., § 25, we have the inequality l/(2m-l)>l/22'"-fl/32'« + l/42^

+ . . .>l/(2m-l)22»»-i, which shows that L(l/22»t+ 1/32'" + 1/42'"+. . .)=0,

when m = CO .

t See liUrod. in Anal, luj., g 283.
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If we take the next prime, namely 3, and multiply

(1 - 1/2-"0 o-2» by 1-1/3^'", we shall deprive the series of all

terms involving multiples of 3 ; and so on. Thus we shall at

last arrive at the equation

(1 - 1/2^-) (1 - 1/3^-) (1 - 1/5^'") ... (1 - llp'^) a^
= l + l/g^'»+. . . (6),

where 2, 3, 5, . . . , p are the succession of natural primes up to

p, and q is the next prime to p. We may, of course, make q
as large as we please, and therefore l/g^'" + . . . (which is less

than the residue after the q — 1th term of the convergent series

o-2m) as small as we please. Hence

cr^™ = 1/(1 - 1/2^-) (1 - 1/3^'«) (1 - 1/5^'") . . . (7),

where the succession of primes continues to infinity. Hence

Bm = 2 (2m)!/(27r)^'» (1 - 1/2^"') (1 - 1/32"") (1 - 1/5^™) . . . (8).

§ 13.] Bernoulli's Numbers are all positive; they increase

after B^; and have oo for an upper limit.

That the numbers are all positive is at once apparent from

§ 11 (4). The latter part of the corollary may also be deduced

from (4) by means of the inequality of chap, xxv,, § 25. For

we have

l/(2w-l)>l/2-'" + l/3''"+l/42'"+ . . . > 1/(2ot - 1)
2-'"-^

(9).

Hence

g^+i ^ {2m + 2) (2m + 1) o-g^+a

Br, (27r)V^

(2m + 2) (2m + 1) {1 + l/(2w + 1) 2'^'"+^}

^
(27r)^{l+l/(2m-l)}

(2m)'' -1
^ 47r2 •

Hence Bm+i/Bm>l, provided m>^(Tr^+\), that is, if

w>3-16. Now Bi>Bi, hence Bi<Bi<Bc< . . . .

Again, it follows from (9) that Lar^m = 1 when m = co, and

i/(2m)!/(27r)^'" is obviously infinite; hence LBm is infinite.

Cor. Bm/{2m)l ultimately decreases in a geometrical pro-

gression having for its common ratio l/Ait^. From which itfollows
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that the series for tan 9, 6 cot 6, and 6 cosec 9, given in § 4, have

for their radii of convergence 9 = Jtt, tt and -n- respectively.

§ 14.] Turning now to the secant series, we observe that

42 ( - )"-' (2w - 1) 7r/{(2« - Ifn'' - A9^} does not, if treated in the

above way as it stands, give a double series satisfying Cauchy's

criterion, for, although when
|
^

|
< ^tt the horizontal series are

absolutely convergent after we replace 9 by \9\, yet the sum

of the sums of the horizontal series, namely, 42 (-)"~^ (2n - 1) tt/

{(2w - 1)V- - 4 1^1^}, is only semi-convergent. We can, however,

pair the positive and negative terms together, and deal with the

series in the form

(4n-3)7r {An-l)'n-
42

.(4» - 3)^2 - 4^2 (An - If-n-^ - 4.9}
(10),

,, ,. ^ ^ (47^-3)(4;z-l)7r^ + 4^^
.^^,tnat IS, «7r2i

1(4^ _ 3)2^2 _ 4^2| 1(4,^ _ ^^^2^2 _ 4^2|
(H).

Since (11) remains convergent when for 9 we substitute

1^1, it is clear that we may expand each term of (10) in as-

cending powers of 9, and rearrange the resulting double series

according to powers of 9. In this way we get

sec 6 = 4J^ Ln?ii(4w-3)^™+^ " (l^T^lT+^J J 1^^^ '

= 2 2^'»+V2«+,e2"'/7r2'"+i
(12),

7n=0

where r^m+i=^l/l^+'-l/S''^+'+ 1/5"-"'+'-.
. . (13).

Comparing (12) with the series

sec9^1 + :S,Er„9'"'/{2m)l,

obtained in § 3, we see that

= 2 (2w)!y |p^ - 32^1 + 52^1+1
- .. .j (14),

which may be transformed into

£„ = 2(2».)! (?)""/(! + 3^-.) (1 -
^,1^) (1 . ^L-.)

. . .

in the same way as before. (15)*.

See again Euler, Introd. in Anal. Inf., % 284.
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Cor. 1. Eulers numbers are all positive; they continually

increase in magnitude, and have infinity for their tqyper limit.

For we have

l>T2„m>l-l/3'"'+' (16).

Hence
Ern+i ^ (2m + 2) (2m- + 1) 4t„„+3

Em. TT^T,

>

2m+l

(2m + 2)(2m + 1) 4 (1 - 1/3'"'+')

But this last constantly increases with m, and is already

greater than 1, when m = l. Hence Ei<E2<Ei<. . . Also,

from (16), we see that Xram+i = 1 when W2 = (», and

L (2m)\ (2/7r)2'»+i = 00 , hence LEr^ = «

.

Cor. 2. E,n/(2m)\ ultimately decreases in a geometrical

progression whose common ratio is A/tt^. Hence the radius of

convergence of the secant series is = ^tt.

§ 15.] "We have, by § 11 (4),

— _L 4. _!_ 4. _— + = "^ TT^w n\*'^2m— ,2m "^ 2^™ 3^™ T . . . (2m)[ '

and hence

o- on, = —„™ + -— + Tsr; + . . .—11 — -^ I

—
7:z—r;- ^r ,2/» j2m - 3-2«. - 52»» - • • • \^- 2''V (2w)!

(2'»--l)^^ ^,^
2 (2?»)!

2m J2TO 2^ 3'"* ' *

V 2'"/ (2w)!

(2'""-^-!)^^

(2m)!

(2);

(3).

Again, from (14) of last paragraph

nim+i • • • o2m+2/o,w,\f V /I2HI+1 Q2m+1 K2»H-1 • • •

2'^"'''^(27W)!

* The remarkable summations involved in the formula (1), (2), (3) were

discovered independently by John Bernoulli (see Op., t. iv., p. 10), and by

Euler (Comm. Ac. Petrop., 1740).
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Inasmuch as we have independent means of calculating the

numbers Bm and Em, the above formulae enable us to sum the

various series involved. It does not appear that the series 0-2^+1

can be expressed by means of Bm or Em', but Euler has cal-

culated (to 16 decimal places) the numerical values of 0-2^+1 in a

number of cases, by means of Maclaurin's formula for approxi-

mate summation*. As the values of o-^ are often useful for

purposes of verification, we give here a few of Euler's results.

It must not be forgotten that the formulae involving tt for o-^

are accurate when m is even j but only approximations when

m is odd.

0-2= 1-6449340668

0-3= 1-2020569031

0-4= 1-0823232337

0-5=1-0369277551

^6= 1-0173430620

0-^=1-0083492774

cr8= 1-0040773562

(r9= 1-0020083928

= 7rV6.

= 7rY25-79436

= 7rV90.

= 7r7295-1215

= 7r7945.

= 7rV2995-286

= 7r79450.

-'n-729749'35

EXPANSIONS OF THE LOGARITHMS OF THE
CIRCULAR FUNCTIONS.

§ 16.] From the formulae of §§ 6 and 7, we get, by taking

logarithms,

log sin ^ = log ^ + i log (1 - ^YwV^),

= \og6- 2 o-g^e^^/wTT^ (1),

since the double series arising from the expansions of the

logarithms is obviously convergent, provided |<9|<7r.

If we express 0-2^ by means of Bernoulli's numbers, (1) may
be written

log sin ^ = log 6 - 5 22'»-i5™62'7m (2m)! (1').

* Inst. Gale. Diff., chap. vi.
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The corresponding formulae for cos 6 are

log cos 6* = - 2 (2='" - 1) cr2^^'"/»?7r2'» (2)

;

= - 22^™-^ (2^'" - 1) Br^e^"'/m (2m)\ (2').

The like formulse for log tan 9, log cot 6, log sinh u, log cosh u,

&c. , can be derived at once from the above.

If a table of the values of a-om or of B^. be not at hand, the

first few may be obtained by expanding log (sin 0/0), that is,

log(l-^73! + ^Y^' ~ • • •)> ^Dtd comparing with the series

-2<r2m^^'"/w7r'^"*. For example, we thus find at once that

Stirling's theorem.

§ 17.] Before leaving this part of the subject, we shall give

an elementary proof of a theorem of great practical importance

which was originally given by Stirling in his Methodus Differen-

tialis (1730).

When n is very great, n\ approaches equality with J(2mr) (n/e)'^;

or, more accurately, when n is a large number, we have

n\ = J(27rn) {njeY exp [IjUn + 0} (1),

where - l/24»'< ^< l/24» {n-\).

Since log {w/(w - 1)} = - log (1 - Ijn), we have

, w 1 1 1 1 ,
1

^ n-\ n 2n^ Zri^ 4;i'* '
' ' wzw'"

We can deprive this expansion of its second term by multi-

plying by w - 1. We thus get

/ 1
M w ^ 1 1 m -

1

In - h) log = 1 + -——2 + -.Tn + . . . + ^—7

—

, iv m + • • • •
V ^/ ^n-1 I2n^ 12?r 2m {m + 1) li"'

Hence, taking the exponential of both sides, and writing suc-

cessively n, n-1, n-2, . . ., 2 in the resulting equation, we

deduce

/ n V-i /, 1 1

ijrri) ='''^V-'i2^^-'m'-"-
m-l \

"*
2w (tw + 1) «"* "^

' ' 7'
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/n-iy-'^-^
_ f

1 1

\n-2) -e^^Pi^l
'^l2{n-lY'^12in-iy'^- '

'

m-1 _ _
2m'(m+l)(n^T)"'

"^ '

\n-s) ~ ^""P
V

"*" 12{n-2y ^ 12 {n-2y ^ ' '
*

m — 1

2m(m+l){n-2y

/3\=^-* /, 1 1

(2) =^"p('"'i^^'-i2:33+...

m— 1
+ -
2m {m + 1) 3''

(1) =^^p(^'"n:2-^^i2:2^^---
m—1

+
2m {m + 1) 2™

By multiplying all these together, we get

w^~i f 11
m — 1

S'm +
•} (2),2m (m + 1)

where S'n,= 1/2™ + l/S*" + 1/4™ + . . . + 1/w™

Now
S'm = S^- l/{n + ir - 1/(71 + 2)'» -

. . . (3),

where /Sf^= 1/2™ + 1/3™+ . . . + 1/w™ + . . . ad 00.

By the inequality (6) of chap, xxv., § 25, we have

l/{m - 1) M*"-^> 1/(71 + 1)™ + l/(w + 2)™ + . . . > l/(m - 1) (w + l)'»-i.

Hence

>S'™ - l/(7n - 1) (71 + 1)™-^> /S",„> S,r, - l/{m - 1) n^-\

Therefore

12'^^''l2'^^''- • •'"2^(^+1)'^™'"-
•

•

• ^i^im-llSrr, ,g 1

^2m{m+l) ^2 fn{m + l)n"'-^ ^^'

^jJ^(m-l)Sr, ,g 1

^2 m{m + l) ^2 m {m + 1 )
(w + 1)'"-^ ^^^•

c. II. 24
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Since Sm<lKm - 1), the series 2 {m - 1) Snlm (m + 1) con-

verges to a finite limit which is independent both of m and of n.

Again,

i
^

2 7n{m + 1)m™~^111 /a\

2.3n 3. 4:9V' 4.5n^

1 1 f, 1 1 1

(in 12n^ I w ?r J

^Qn'^12n(n-1) ^
^'

Also, by (6),

1

.5/^1 l_^ L__
7Vw2 ?» + 1/(^ + 1)™-'*

00
]^

°° 1

^ '2^(^ + 1)'" 2 (w + i)(w+ ir^^

= (^^l){-^-log(l-^0}

1 111 1^11^

1

2.3» 3

1

.in" ^T
1

. 5n^

1

^6n
1

12^2
(8).

Combining (2), (4), (5), (7), and (8), we have

-^>^^pf-i+^?mi^rri)~r27r24«(«-i)l (^>'

<exp ]w - 1 + |2 ^
. ^ tT- - tit- + o^T^^h (10).

^
t

"*
2 ^ (^ + 1) 12» 24wv
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Hence, putting

C=exp{l-iS<??,:ii^f"| (11).

so that C is a finite numerical constant, we have

«!>&-,.-»exp(i-^,) (12),

<ft-VHexp(i.^-j^) (13);

or, since the exponential function is continuous,

w! = (7^-^^«Hexp(^^ + ^) (14),

vfhere -l/2Aii^<e<l/24tn{n-l).

Hence, putting w = go on both sides of (14), we have

L7il = CLe'''n''+i (15).

The constant C may be calculated numerically by means of

the equation (11). Its value is, in fact, sJ{2Tr), as may be easily

shown by using Wallis's Theorem, § 6 (18).

Thus we have, when w = oo

,

TT ^ 2"'^(w!)^(2w+l) ^ J
2^"(w!)*(2?^ + l)

2~ P3^ . . . {2n+lf~' {(2w+l)!P *

Hence, using (15), we get

'^^_P2T 2'''e-*^n*^+^2n + 1)

2 e-^™-2(2w+l)^''+^ '

^C^j. ^
4 {(l + l/2»)^'»}2{l + l/2w}2'

4 e''*

Therefore, since C is obviously positive,

C=V(27r) (16).

Using this value of C in (14), we get finally

n\ = J{2Trn) {n/efexi^ {l/Un + e}* (17),

where -l/24w'<^<l/247i(w-l).

* An elementary proof that Ln\ = Ls/(2irn){nle)^ was given by Glaisher

(QiMrt. Jour. Math., 1878). In an addition by Cayley a demonstration of

the approximation (17) is also given ; but inasmuch as it assumes that series

24—2
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Cor. By combining (11) and (16), we deduce that

l-^S ^^'"^^f'" = |log2 + Hog7r (18),^
2 ^^(W+ 1)

where >S',„ = 1/2™ + 1/3™ + 1/4"' + . . . ad oo

.

Exercises XXIII.

(1.) Show that, when |a;|>ir, a; cot a; can be expanded in the form

^o+ S{B„a;~"+C„a;"); and determine the coefficients in the particular case

where Tr<.x<2ir.

(2.) Show that the sum of the products r at a time of the squares of the

reciprocals of all the integral numbers is 7r2''/(2r + l)!; and find the like sum
when the odd integers alone are considered.

(3.) Sum to n terms

tan ^ + tan (^ + tt/ji) + tan (^ + 27r/H) + . . .;

tan2^ + tan2(e + 7r/K) + tan2(^ + 27r/?j) + . . . .

Sum the following :

—

(4.) 1/(12+ a;2) + 1/(22 + .t2) + 1/(32+ a;2) ....
(5.) l/a;2-l/(a;2-7r-^) + l/(x2-227r2)-. . . .

(6.) l/x + l/(x-l)+l/(a; + l) + l/(a;-2) + l/(.r + 2) + . . . .

(7.) 1/(1 - e) + 1/(4 -e) + 1/(9 -e) + . . . + l/(«2-^) + . . ,

(8.) 1/1. 2 + 1/2. 4 + 1/3. 6 + 1/4. 8 + . . . .

Show that

(9.) (a-2-6)/6 = l/12. 2 + 1/22. 3 + 1/32. 4 + . . . .

(10.) 7r/8-l/3= l/1.3.5-l/3.5.7 + l/5.7.9-. . . .

(11.) If fr (m) be an integral function of n whose degree is r, show that

2/r ('*)/(2« - 1)^™ can be expressed in terms of Bernoulli's numbers, provided

r t> 2m - 2 ; and 2 ( - )"~^/r (n)/(2« - l)2"»+i in terms of Euler's numbers, pro-

vided r > 2m - 1.

In particular, show that

1 1 + 2 1 + 2 + 3 _^/^i_:^\
3;+ 54 + 74 +• • '-64

1, 12y*

(12.) Show that

Sl/(?i7r + ^)2= cosec2tf;

00

S Hinir + ^)*= cosec*^ - ^ cosec2^,

n=0 being included among the values to be given to n. (Wolstenholme.)

of the form of 1/2"*+ 1/3"* + . . . can be expanded in powers of 1/m, it cannot

be said to be elementary. The proofs usually given by means of the Mac-

laurin-sum-formula are unsatisfactory, for they depend on the use of a series

which does not in general converge when continued to infinity, and which can

only be used in conjunction with its residue. See Raabe, Crelle's Jour., xxv.
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,j„ , g 1 _ VsJ'i sinh . vx^2 + sin . irx^2 _ 1

^ "

'

xn* + x*~ 4x^ cosh . trXiJ2 - cos . irx^2 2x*

'

(Math. Trip., 1888.)

(14.) Show that

I
1 ^ TT^ 1^

„=i{(2n)2-(2m-l)2}2 16 (2m -1)2 2(2»i-l)*'

„=i { (2n - 1)2 - (2m)2} « 64m2
*

Also that the sum of the reciprocals of the squares of all possible differ-

ences between the square of any even and the square of any odd number is

ir*/384.

(15.) If2?<n, show that

cosP^ 1 "^1 sin (2r+ 1) 7r/2n . cos . P(2r+ 1) 7r/2rt

COS nd n r=o cos - cos . (2r + 1) 7r/2n

(16.) Show that

V "^ i V v \

tan-1— S -^tan-i tau-^ V = tan-i (tanh v cot u)

:

u n=i I
nir-u nir + uj ^ ''

S -Itan-i
j^ ^Y W - 1^"~^

7;i r; ^ Y = ta^^"^ (tai^li '^ tan «)•
n=i I

(2n-l)7r-2u (2n-l)7r + 2M) '

(Schlomilch, Handb. d, Alg. Anal., cap. xi.)

(17.) If X(x) = xn{l-(x/7ia)2}, /i(a;) = n{l-(2x/27i-la)2}, express
1 1

X(a5+o/2) in terms ot n(x), and also iJi,{x + al2) in terms of X(a;).

Hence evaluate i 1.3.5 .. . (2m-l)V(2ni + l)/2™m!.

(Math. Trip., 1882.)

(18. ) Show that, if r be a positive integer,

.£('-T(-r---('-'-^)"'"'='-«-
(19.) Show that

/ X x X \ — '^

(20. ) If n, p, X be all integers, prove

{n+ x){n-^x + \) . . . (n+p + x-1)L
(l + a:)(2 + a;) . . . (p + x)

REVERSION OF SERIES—EXPANSION OF AN ALGEBRAIC

FUNCTION.

§ 18.] The subject which we propose to discuss in this and

the following paragraphs originated, like so many other branches

of modern analysis, in the works of Newton, more especially in his

tract De Anahjsi per ^quationes Numero Terminwum Infinitas.
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Let us consider the function

%{m, n)af^y'^^{l, Q)x+{0, l)y + (2, 0)^^+(l, \)xy+{Q, 2)f+. . .,

where the indices m and n are positive integers, and we use tl\e

symbol (m, n) to denote the coefficient of ofy^, so that {m, n) is

a constant. We suppose the absolute term (0, 0) to be zero

;

but the coefficients (1, 0) (0, 1) are to be different from zero.

The rest of the coefficients may or may not be zero ; but, if the

number of terms be infinite, we suppose the double series to be

absolutely convergent when
|
^r

|

=
|
^^ |

= l*. From this it follows

that the coefficient (w, n) must become infinitely small when m
and n become infinitely great ; so that a positive quantity \ can

in all cases be assigned such that
|

{m, n)\1^X whatever values we
assign to m and n. It also follows (see chap, xxvi., § 37) that

1 (m, n) x^'if' is absolutely convergent for all values of a; and 3/

such that
I

ic
1 ;t> 1,

1 2/ 1 ;:}> 1.

We propose to show tJiat one value, and only one value, ofy as

a function of x can befound which has the following properties:—
1°. y is expansible in a convergent series of integral powers of

X for all values of x lying within limits which are not infinitely

narrow.

2°. y has the initial value when x = Q.

3°. y mahes the equation

:^{m, n)x'^y'^ = (1)
an intelligible identity.

Let us assume for a moment that a convergent series for y
of the kind demanded can be found. Its absolute term must
vanish by condition 2°. Hence the series will be of the form

y = biX + bnar -^-b-iX^ + . . . (2).

In order that this value of y may make (1) an intelligible

identity, it must be possible to find a value oi x<\ such that

(2) gives a value of y<l. The series (1), when transformed by
means of (2), will then satisfy Cauchy's criterion, and may be

arranged according to powers of x. All that is further necessary

* The more general case, when the series is convergent so long as
|
x

|
> o

and \y\>p, can easily be brought under the above by a simple transforma-

tion.
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to satisfy condition 3° is simply that the coefficients of all the

powers of x shall vanish.

It will be convenient for what follows to assume that

(0, 1) = - 1 (which we may obviously do without loss of

generality), and then put (1) into the form

—

y = {(1, 0)x + {2,0)x' + {S,0)a^ + . . .
}

+ {(1, l)a; + (2, l)aP + {S, 1)^ + .

+ {(0, 2) + (1, 2)a; + (2, 2) x" + {3, 2) or" + .

+ {(0, n) + (1, n)x + (2, n) a^ + (3, n)x^ + .

(3).

Using (2), we get

= {(1, 0)^ + (2, 0)ir^ + (3, 0)V +

,

+ {{l,l)x+{2,l)a^ + {3, l)a? + .

+ {(0, 2) + (1, 2)x + (2, 2)a^ + (3, 2)a? + ,\{hi+hiX+h3x'^+. . .}V

+ {(0,w)+ {l,n)x + {2,n)iu^ + {3,n)x'-^. . .]{h^+h^x+b.iX'+. . .fx""

(4).

Hence, equating coefficients, we have

&i=(l,0),

&2=(2, 0) + (l, 1)6, +(0, 2)^>l^

«>3=(3, 0) + (l, 1)62 +(2, l)&i +(l,2)^>i»+2(0,2)JA + (0, 3)6x«,

^'^ = {n, 0) + (1, l)&„-i + (2, 1) hn-^ + . . . + (0, w) &i"

(5).

Here it is important to notice that each equation assigns one

of the coefficients as an integral function of all the preceding

coefficients. Hence, since the first equation gives one and only

one value for &i, all the coefficients are uniquely determined.

There is therefore only one value of y, if any.

In order to show that (5) really affi)rds a solution, we have to

show that for a value of x whose modulus is small enough, but

not infinitely small, the conditions for the absolute convergency

of (2) and (4) are satisfied when hi, 62, • • • have the values

assigned by (5).
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This, following a method invented by Cauchy, we may show
by considering a particular case. The moduli of the coefficients

of the series (3) have, as we have seen, a finite upper limit X.

Suppose that in (3) all the coefficients are replaced by A, and
that a^ has a positive real value <1. Then we have

+ X.{x + aP + a^ + . . . ]y
+ X{1 + x + a^ + x^ + . . . ]y^

(6).

This series is convergent so long as a;<l and |2/|<1. It

can, in fact, be summed ; for, adding k + \y to both sides, we get

(l+X)y + X=^Xl{l-x){l-y),

that is, (1 + X)y'^ -y + Xa;/(l -ic) = 0.

Hence, remembering that the value of y with which we are

concerned vanishes when a; = 0, we have

y=[l-J{l-U (1 + X) w/{l - x)}]l2 (X + 1) (7).

Now, provided 4X (1 + X) a;/(l -a;)<l, that is, a;<l/{2X + If,

the right-hand side of (7) can be expanded in an absolutely con-

vergent series of integral powers of a;, the absolute term in which

vanishes. Also, when ^<l/(2X+l)^ the value of y given by

(7) is positive and < 1, therefore the absolute convergency of (6)

is assured.

It follows that the problem we are considering can be solved

in the present particular case. If we denote the series for y in

this case by

y = G-^x + C^a^ + C^x^ + . . . (8),

then the equations for determining (7i, Co, Cs, . . . will be

found by putting (1, 0) = (2, 0) = (1, 1) = . . . = A in (5), namely,

c,=x,

Cn = X(l + Cn., + Cn-. + . . . + C^%

(9);

from which it is seen that Ci, C^, C^, . . . are all real and

positive.
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Returning now to the system (5), and denoting moduli by

attaching dashes, we have, since (1, 0)', (2, 0)', &c., are all less

than X,

&2>(2, 0)' + (l, l)V + (0, 2)'W'<X{1 + C^ + C^')<C„

h'XS, 0)'+(l, l)'6,'+(2, 1)'^'/+(1, 2)V+2(0, 2yWW+{0, 3)V,

. . . . . . _ y . . (10).

Hence the moduli of the coefficients in (2) are less than the

moduli in the series (8), which is known to be absolutely con-

vergent. It therefore follows that the series (2) will certainly be

absolutely convergent, provided \a;\< 1/(2A + 1)^.

It only remains to show that x may be so chosen (and yet

not infinitely small) that y as given by (2) shall be such that

y'<l. We have

i/'<bia;' + b2a;"^ + b3'a;'^ + . . .,

<Cia;'+C2x'^+Csa:'' + . . .,

<[\-J{l-AX{l+X)x'l{l-x')]]l2{X+l) (11).

Now the right-hand side of (11) is less than 1, provided

x'<ll{2k + l)\ If, therefore,
| ^ [ < 1/(2X -t- 1)"^ the absolute

convergency of the double series (3) or (4) will be assured

;

and (2) will convert (1) into an intelligible identity.

We have thus completely established that one and only one

value of y expansible within certain limits as a convergent series

of integral powers of w can be found to satisfy the equation (1)

;

and the like follows for w as regards y. The functions of x and y
thus determined, being representable by power-series, are of course

continuous. The limits assigned in the course of the demonstra-

tion for the admissibility of the solution are merely lower limits

;

and it is easy to see that the solution is valid so long as (2) itself

and the double series into which it converts the left-hand side of

(1) remain absolutely convergent.

It should be remarked that we have not shown that no other

power-series whose absolute term does not vanish can be found to

satisfy (1) ; nor have we shown that no other function having

zero initial value, but not expansible in integral powers of x, can
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be found to satisfy (1). We shall settle these questions presently

in the case where the series 2 {m, n) x^y^ terminates.

§ 19.] The problem of the Reversion of Series properly so

called is as follows :

—

Given the equation

x^aa + aray'^ + ara+iy'^^^ + . . . (1),

where ttm + O, hut Uq may or may not be zero, and tJie series

«m y^ + (f"m-¥\ 'iT"^^ + . . . is absolutely convergent so long as

\y\^a fixed positive quantity p, to find a convergent expansion,

or convergent expansions, for y in ascending powers of x-a^.

Let t denote {{x-a^jar,^'^'^, that is, the principal value of

the mth root of {x-a^jam, and w^ a primitive mi\x root of

unity, then (1) is equivalent to m equations of which the

following is a type :

—

-mn=y(i-^f^y^'^f^..T (2).

Now, the series inside the bracket in (2) being absolutely

convergent for all values of y such that l^/l^^p, it follows from

the binomial theorem combined with § 1 that we can, by taking y
within certain limits, expand the right-hand side of (2) in an

ascending series of powers of y. We thus get, say,

-i>>ra'^+y+C,f+G,f + , . .=0 (3).

It follows, therefore, from the general theorem of last para-

graph that we have, provided
| $ \

does not exceed a certain

limit,

y=b^<oji+ho>^^e+bs<^j'-e+. . . (4).

We have, of course, m such results, in which the coefficients

bi, bz, bs, . . . will be tJie same, hut r will have the different

values 0, 1, 2, . , . ,
(w - 1).

Each of these solutions is, by chap, xxvi., § 19, a continuous

function of x. If we cause x to circulate about a^ in Argand's

Diagram, the m branches of y will pass continuously into each

other; and after m revolutions the branches will recur. The

point tto is therefore a Branch Point of the wth order for the

function y, just as the point is for the function w^-"* in

chap. XXIX., ^ 5, 6.
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Cor. In the particular case where ao = Oj m — l, we get the

single solution

y-=hiX + h2CC^ + ha^ + . . . (5).

Example. To reverse the series

2 = l + 2//l!+2/2/21 + 2/3/3! + . . . (6).

Let z= l + x, then we have

Hence, provided \x\ lie within certain limits, we must have by the

general theorem

y= bj^x + b^x'^ + bgx^ + . . . (8).

Knowing the existence of the convergent expansion (8), we may determine
the coeflBcients as follows.

Give y a small increment k, and let the corresponding increment of a; be ft;

then, from (7), we have

{y + k)-y {y + kf-y^
,
(y + lcf-y^

,n-
jj + 2!

+
3! +• • • •

Hence, since L{{y + k)'^-y^}lk= ny"'-'^ when k= 0, and since, owing to

the continuity of the series as a function of y, h= when fc= 0, we have

^fc-^ + l] + 2'! + - •
••

= l + x (9).

Again, from (8), we have, in like manner,

k
Z,^= 6i + 262a; + 3&3a;2+. . . (10).

Combining (9) and (10), we have

61 + 262X + 363x2+ . . , = l/(l + x),

= l-x + x'^ - . . . .

We must therefore have

61 = 1, &2=-l/2, 63 = 1/3
Therefore

X x' x*

1 2 3

-
1 2 + 3

• ("^

It must be remembered that (11) gives only that branch of the function y
which is expansible in powers oi z-1 and which vanishes when 2 = 1. We
have, in fact, merely given another investigation of the expansion of the

principal value of log 2.

§ 20.] Expansions of the various branches of an Algebraic

Function.

The equation

5 {m, n) ^'"v/" + (0, 0) = (1),
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where tJie series cm the left terminates, gives for any assigned value

of a; a finite number of values of y. If the highest power of y
involved be the wth, we might, in fact, write the equation in the

form
A^y' + J.„-,y^-^ + . . . + ^12/ + ^0 = (2),

where A^, A^, . . ., An are all integral functions of ^. If, then,

we give to x any particular value, a, real or complex, it follows

from chap, xii., § 23, that we get from (2) n corresponding values

of y, say bi, h, . . ., bn. If we change a; into a value a + h

differing slightly from a, then bi, h, . . ., b^ will change into

bi + h, b2 + k2, . . .,bn + kn; that is to say, we shall get n values

of y which will in general be ditferent from the former set. We
may therefore say that (2) defines y as an w-valued function of

X ; and we call y when so determined an algebraic function of x.

Since every equation of the form y = F{x), where F{x) is an

ordinary synthetic irrational algebraic function (as defined in

chap. XIV., § 1), can be rationalised, it follows that every ordinary

irrational algebraic function is a branch of an algebraic function

as now defined. Since, however, integral equations whose degree

is above the 4th cannot in general be formally solved by means

of radicals, it does not follow, conversely, that every algebraic

function is expressible as an ordinary synthetic irrational alge-

braic function.

In what follows we assume that the equation (2) contains (so

long as X and y are not specialised) no factor involving x alone

or y alone. We also suppose that, so long as x is not assigned,

the equation is Irreducible, that is to say, that it has not a

root in common with an integral equation of lower degree in y
whose coefficients are integral functions of x. If this were so, a

factor could (by the process for obtaining the G.C.M. of two

integral functions) be found having for its coefficients integral

functions of x, and the roots of the equation formed by equating

this factor to would be the common root or roots in question.

Therefore the equation (2) could be broken up into two integral

equations in 3/ whose coefficients would be integral functions of a?;

and each of these would define a separate algebraic function of x.

The condition of irreducibility involves that (2) cannot have
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two or more of its roots equal for all values of x. For, if (2)

had, say, r equal roots, then, denoting all the roots by

2/i, ^2, ' • ', Vn, the equation

'^iy-yi){y-y-^ • • • {y-?/s-i)(y-?/s+i) . • • (y-i/n)^o (3)

would have r-1 roots in common with (2), for r - 1 equal

factors would occur in each of the terms comprehended by 2.

Now the coefficients of (3) are symmetric functions of the roots

of (2) ; therefore (3) could be exhibited as an equation whose

coefficients are integral functions of-4o, ^i, • . -, An, and there-

fore integral functions of w*. Hence (2) would be reducible,

which is supposed not to be the case.

It must, however, be carefully noticed that irreducibility in

general (that is, so long as a; is not specialised) does not exclude

reducibility or multiplicity of roots for particular values of x. In

fact, we can in general determine a number of particular values

of X for which (2) and (3) may have a root in common t. In

other words, it may happen that the n branches of y have points

in common ; but it cannot happen that any two of the n branches

wholly coincide.

When, for x = a, the n values bi, b2, . . ., 6^ are all different,

a (or its representative point in an Argand-diagram) is called an

ordinary point of the function i/, and 6i, 62, . . ., 6» single values.

If fti = ^2 = • . = br, each =b, say, then a is called an r-ple point

of the function, and b an r-ple value.

For every value of a; (zero point) which makes Ao = 0, one

branch of y has a zero value ; for every value of a; (double zero

point) which makes ^o = and -4i = 0, two branches have a zero

value ; and so on. These are called single, double, . . . , zero

values.

For every value of x (pole) which makes ^^ = 0, one branch

of y has an infinite value ; for every value of x (double pole)

which makes An = and An-i. = 0, two branches have an infinite

* See chap, xviii. , § 4.

t These are the values of x for which

and n^„2/«-i + (w-l)^„_i2/"-- + . . .+^i=

have a root iu common.
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value; and so on. These may be called single, double, . . .,

wfinities of the function.

The main object of what follows is to show that every branch

of an algebraic function is {within certain limits), in the neigh-

bourhood of every point, expansible in an ascending or descending

power series of a particular kind; and thus to show that every

branch is, except at a pole, continuous for all finite values of x.

§ 21.] If, at the point x = a, the algebraic function y has a

single value y = b, then y-b is, within certain limits, expansible

in an absolutely convergent series of the form

y-b=^Ci{x-a) + C2{x-aY+Cs{x-ay + . . . (4).

Let x= a + $, y = b + i], then the equation (1) becomes, after

rearrangement,

(0, 0) + (l, 0)^+(0, l)77 + (2, 0)^^ + &c. = (5).

Since y = b is a single root of (1) corresponding to x = a, it

follows that when ^=0 (5) must give one and only one zero

value for r]. Therefore we must have (0, 0) = and (0, 1) + 0.

It follows, from the general theorem of § 18, that within

certain limits the following convergent expansion,

V = C^$+C,e+Cd' + . . .,

and no other of the kind will satisfy the equation (5) ; that is, .

y = b + Ci{x-a) + C2{x-af+Cs{x-ay + . . . (6)

will satisfy (1).

The function y determined by (6) is continuous so long as

I

a? — a
1

is less than the radius of convergency of the series

involved ; and it has the value y = b when x = a.

If we suppose all the values of y, say bi,b2, • . ., bn, corre-

sponding to « = a to be single, then we shall get in this way for

each one of them a value of the function y of the form (6).

Hence we infer that

Cor. So long as no two of the branches of an algebraicfunction

have a point in common, each branch is a continuous function ofx

;

and the increment of y at any point of a particular branch is ex-
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pansible in an ascending series of positive integral powers of the

increment of a; so long as the modulus of the increment of x does

not exceed a certain finite value.

§ 22.] We proceed to discuss the modification to which the

conclusions of last paragraph are subject when ^ = a is a multiple

point of the function y.

We shall prove thatfor every multiple point of the qth order, to

which corresponds a q-ple value y = h, we can find q different con-

vergent expansionsfor y of the form y = h-^%Cr{x- aY, where the

exponents rform a series of increasing positive rational numbers.

It will probably help the reader to keep the thread of the

somewhat delicate analysis that follows if we premise the follow-

ing remarks regarding expansibility in ascending power-series

in general :

—

If t) be expansible in an absolutely convergent ascending

series of positive powers of ^, of the form

^ = C^^o., + C;^a.+a, + C^i'^,^''^-'-, + . . . (A),

where oi, aj, . . . are all positive, then we can establish a series

of transformations of the following kind :

—

n^^^'iCi + yii), rj^ = t^{C, + rj2), v^^i^'iCs + Vs), . . .,

Vn-l^^'^HC'n + Vn) (B),

where i/i, v^, ' ' •, Vn all vanish when ^=0; Ci, C2, . . ., Cn

are all independent of $, and all different from zero ; and

C^L-nli'^^, C^^Lr^.li'^^, . . ., C„ = i:%_,/^' when ^= 0.

Conversely, if we can establish a series of transformations of

the form (B), and if we can show that yjn is expansible in a series

of ascending positive powers of ^, it will obviously follow that r]

is expansible in the form (A).

Let now y = 6 be a g-ple value of y corresponding to x = a,

and put as before x = a + ^, y = b + y], then the equation (1)

becomes
% {m, n) e't = (7).
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Since q values of y become b when x-a, q values of 17 must

become when ^ = 0. Hence the lowest power of 77 in (7)

which is not multiplied by a power of ^ must be yf. There

must also be a power of $ which is not multiplied by a power of

7], otherwise (7) would be divisible in general by some power of

17, which is impossible since (1) is irreducible. Let the lowest

such power of t be |^.

Put now

^ = IMCi + 770 = ^"^ (8),

and let us seek to determine a positive value of A. such that

Ci=-Lv = Lr]/i^ is finite both ways* when ^ = 0.

The equation (7) gives

^(ot, w)^™+^"'»'' = (9).

Now (9) will furnish values of v which are finite both ways when

1=0, provided we can so determine A that at least two terms of

(9) are of the same positive degree in $, and lower in degree

than all the other terms.

Assume for the present that we can find a value of A for

which a group of r terms has the character in question, so that

8 = mi + Xni = m2 + ^n2 = . . .^mr + ^rir (10),

where iii^n^^ . . . :|> w^
;

and X = (twi - mr)/{nr - Wi) = g/h, say, (11),

where g is prime to h,

8 - {mji + nxg)lh. •

Then, putting ^i = ^^'\t so that 4 = when ^ = 0, and dividing

out |^% ''+«!«', we deduce an equation of the form

</> (4 , V) 4 + (^r, nr) V'r + {mr-i, Wr-l) ^"'-^ + . • . + (w2i , Wj) V"l =

(12),

where <^ (li, v) is an integral function of ^ and v.

For our present purpose we are concerned only with those

* That is, neither zero nor infinite—a useful phrase of De Morgan's,

t It is sufficient for our purpose to take the principal value merely of the

hth root of ^.
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roots of (12) whose initial values are finite both ways. There are

evidently rir - n^ such roots, and their initial values are given by

(wr , rir) ®"'--"i + {rrir-u nr-i) v'^r-i-H + . . . + (7^^J, m) =

(13).

If the roots of (13) are all different, then we get rir — ni trans-

formations of the form (8) ; and the corresponding values of v,

that is, of Ci + 771, are given by the algebraical equation (12).

Moreover, since all the values of v are single, we shall get for

each value of -rji an expansion of the form

= d^^'i'' + d^e^^ + . . . (14);

and each of these will give for r] a corresponding expansion of

the form

^ = Ci^«'/* + <?i^(''+i)/'' + (?2^(''+2)/n. . . (14').

If a group of the roots of (13) be equal, then we must

proceed by means of a second transformation,

Vl = ^l''{C2 + V2) (15),

to separate those roots of (12) which have equal values. If the

next step succeeds in finally separating aU the initial values,

then we have for each of the group of equal roots of (13) two

transformations (8) and (15), and finally an expansion like (14'),

the result being the final separation of all the iir-ni roots of

(12), with convergent expansions for each of them.

Moreover, we must in every case be able, by means of a

finite number of transformations like (8) and (15), to separate

the initial values, otherwise we should have two branches of y
coincident up to any order of approximation, which is impossible,

since (1) is irreducible.

The indices in the series (14') may be all integral or else

partly or wholly fractional (see Examples 2 and 1 below).

In the former case the corresponding branch of the function

7] is single-valued in the neighbourhood of tlie point ^= ; that

is to say, if we cause i to circulate about the point $= and

c. II. 25
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return to its original position, 17 returns to the value with which

we started.

If some or all of the indices be fractional, the series will take

the form
rj = c,t'^ + c^m + Csiy'^ + . . . (14"),

where one at least of the fractions a/q, ^/q, . . . , is at its lowest

terms. The function 77 is then ^'-valued and the series (14")

will as in § 19 lead to a c^/cle, as it is called, of q branches

which pass continuously into each other when i is made to

circulate q times round ^ = 0. At any multiple point there

may be one or more such cycles ; and for each of them the

point is said to be a branch point of the qth order, q being the

number of branches belonging to the cycle.

All that now remains is to show that we can in all cases

select a number of groups of terms satisfying the conditions (10)

sufficient to give us q expansions corresponding to the q branches

which meet at the q-p\e point a; = a.

The best way, both in theory and in practice, of settling this

point is to use Newton's Parallelogram, which is constructed as

follows :—Let OX and OF (Fig. 1) be a pair of rectangular axes,

the first quadrant of which is ruled into squares (or rectangles)

for convenience in plotting points whose co-ordinates are positive

integers. For each term {m, n) i'^rf in equation (7) we plot a

point K {degree-point) whose co-ordinates are 0M= m, MK- n.

We observe that, if KF be drawn so that cotKPO = k, then

OP = 0M+ MP = m + nX. Hence OP is the degree in i of the

term in (9) which corresponds to (m, n) i'^r]\ If, therefore, we
select any group of terms whose degree-points lie on a straight

line A, these will all have the same degree in ^, namely, the

intercept of A on OJT.

The necessary and sufficient conditions, therefore, that a

group of two or more terms furnish the initial values of a group

of expansions, let us say be an effective group, are ;

—

1°. That the line A containing the degree-points shall cut

OX to the right of 0, and Y above 0. This secures that X be

positive.
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2°. That all the other degree-points shall lie on the opposite

side of A to the origin. This secures that all the other terms in

(9) be of higher degree in i than those of the selected group.

Y Y,

X, >t ^^ f.
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K \ x,i
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N c / \^
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'

.
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^h p X
1

1

Yl v^

Fig. 1.

We have thus the following rule for selecting the effective

groups :

—

Let A and E be the degree-points of the terms that contain

i and rj alone, so that OA^p, OE=q. Let a radius vector,

coinciding originally with AX^, turn clock-wise about A as

centre until it passes through another of the degree-points B.
If it passes through others at the same time as B, let the last of

them taken in order from A be 0. Next, let the radius turn

about C as centre in the same direction as before, until it passes

through another point or points, and let the last of this group

taken in order from G be D. Then let the radius turn about D
;

25—2
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and so on, until at last it passes through E, or through a group

of which E is the last.

We thus form a broken line convex towards 0, beginning at

A and ending at E, every part of which contains a group of

degree-points the terms corresponding to which satisfy the

conditions (10).

Now the degree of the equation (13) corresponding to any

group CD is the difference between the degrees of -q in the first

and last terms C and D ; but this difference is the projection of

CD on OY. The sum of all the projections oi AG, CD, &c., on

F is OE, that is to say, q. Hence we shall get, by taking all

the groups AC, CD, &c., q different expansions for 3/ correspond-

ing to the q different branches that meet at the multiple point

a; = a. Each one of these has the same initial value b, and each

is represented by a separate expansion in positive ascending

rational powers of a; -a.

Example 1. To separate the branches of the function 17 at the point ^=0,
7] being determined by

+ Hp7?^2=o. (16).

The lowest term in r/ alone is y, so that ^=0 is a multiple point of the

10th order. Plotting the degrees of the terms in Newton's diagram, and
naming the points by affixing the coefficients, we find (see Fig. 1) that the

effective groups are ABC, CD, DE. Taking, for simplicity of illustration,

A=+2, B=-3, C=+l, D=-l, E=+l,

we get from the group ABC

X= 6/2 = 3/1, so that h=l, and t)2-3i; + 2=0 gives the initial values of w,

that is, v= l, or 2, the corresponding expansions being

V=^^l + d,^ + d^^^+. . .),

From the group CD, we get

X= 4/3, u* - 1 = gives the initial values of v,

that is, r= l, u, u^, where w is a primitive imaginary cube root of 1, the

corresponding expansions being
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In like manner, DE gives five expansions of the type

where a is any one of the five 5th roots of 1.

All the ten branches are thus accounted for ; and they fall into cycles of

the orders 1, 1, 3, 5.

Example 2. To separate the branches of 97 at the point ^=0, 7; being

determined by
4f5-3$*-4,t2(^_^) + 4(^-|)2= (17).

The effective group for (17) at the point f=0 corresponding to branches

which have the initial value 7;= is 4(?;-$)2; as will be readily seen from
Newton's diagram.

X=l, h=l and, it n=H^i + '^i)=^'">
'^^ ^^^°

4^-3^-4f(v-l) + 4(v-l)2=0 (18).

Hence two branches have the same initial value for v, viz. v = l. For
each of these »;= ^ (1 + iji) ; and we have for 17^ the equation

4^3_3^2_4^^^ + 4^^2^0 (18').

If we draw Newton's diagram for (18'), we find that the effective group is

47;i3 - 4f77i
- 3^ ; and that X= l. Fnt now 7]^=^ {0^+ 712) = ^Vi', and we get

4^+ (2i;i-3)(2vi + l) = (19).

The initial values of v^ are given by (2vj-3) (2vi + l) = 0, which give the

single values ^^= 3/2, v^=: - 1/2. Hence for the two branches we have

'7i=?(3/2 + %); Vi=H-h + V-2');

and the farther procedure will lead to integral power series for 772 and 173

.

We have therefore for the two branches

V= ^ + 3e'l2 + C\e+. . .;

and the double point is not a branch point on either.

It should be observed that, if we form an integral equation

by selecting from any given one a series of terms which form an

effective group, the new equation gives an algebraic function.

Those branches of this function that have zero initial values

coincide to a first approximation (that is, as far as the first term

of the expansion) with certain of the branches of the algebraic

function determined by the original equation which have initial

zero values. Thus, reverting to Example 1 just discussed,

from the group ABC vfe have

Ae' + Bt^'-q + cerf = 0.

This gives, when we drop out the irrelevant factor ^,

Cf + Bev + Ae = 0,
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which breaks up into two equations,

and thus determines two functions, each of which has a branch

coincident to a first approximation with a branch of -q (as deter-

mined by (16)) which has zero initial value.

In like manner, CB gives Gi^^Drf = ^\ and BE gives

B^+Erf=^.
We thus get a number of binomial equations, each of which

gives an approximation for a group of branches of the function

i\ determined by (16). We shall return to this view of the

matter in § 24.

§ 23.] Before leaving the general theory just established, we
ought to point out that Newton's Parallelogram enables us to

obtain, at every point {singular or non-singular), convergent

expansionsfor every branch of an algebraic function in ascending

or descending power-series, as the case may be.

To establish this completely, we have merely to consider the

remaining cases where x or y or both become infinite.

1st. Let us suppose that the value of the function y tends

towards a finite limit b when x tends towards oo . Then, if we
put r]=y — b,x = ^,we shall get an equation of the form

^(m,n)i^rj^ = (17),

which gives i; = when ^= oo

.

Let us suppose that Fig. 1, as originally constructed, is the

Newton-diagram for (17), and let i" be the highest power of i

that occurs in (17) so that 003 = k. Now in (17) put i=l/i',

and multiply the equation by $'^ ; we then get the equation

S(«i, w)P-™>7'*=0 (18),

which is obviously equivalent to (17).

But the Newton-diagram for (18) is obviously still Fig. 1,

provided OsXg and O3F3 be taken, instead of OJC and OY, as

the positive parts of the axes.

Hence, if we make a boundary convex towards O3 in the

same way as we did for 0, we shall obtain a series of branches

of rj all of which are expansible in ascending powers of $', that
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is, in descending powers of i, and all of which give »; = when

^ = CO . For each such branch we have

that is,

(i/-b)a^ = c + d/iif + e/a;^ + . . . (19),
,

where A, a, y8, . . . are all positive, and c is finite both ways.

2nd. Suppose that w = a is a pole of y, so that 2/ = qo when

a; = a; and put r] = i/, ^ = x-a, so that we derive an equation

%{m,n)e^7f = Q (20),

for which Fig. 1 is the Newton-diagram with OX and F as

axes. Then, putting t] - l/rj', we get an equation of the form

2 (m, n) e'r,''-'' = (21),

I being the highest exponent of t] in (20).

The Newton-diagram for (21) is then Fig. 1 with O^X^

and OiFi as axes; and we construct, as before, a boundary,

EFG say, convex towards Ox, every part of which gives a series

of branches of rf, that is, of !/>?, expansible in ascending powers

of ^. For every such branch we shall have

qe'=ll{c + di'' + e^^ + . . .),

where \, a, /3, . . . are all positive, and c is finite both ways.

Hence also, by the binomial theorem combined with § 1,

rii''=llc + d'i'' + ei^' + . . .,

that is,

i/{a^-a)^--l/G + d'{x-af + e'(a;-ay+. . . (22),

where \, a, /3', . . . are all positive, and c is finite both ways.

3rd. Suppose that 3/ has an infinite value corresponding to

^ = 00 (pole at infinity). Then, if we put x = ^ = 1/$', 2/ = '^ = i/v,

we shall get, by exactly the same kind of reasoning as before, a

boundary GHI convex to O2, each part of which will give a

group of expansions of the form

r)' = i'^{o + di"' + ee^ + . . .}.

Whence, as before, for every such branch

if/a;^ = l/(c + d/x"^ + e/afi + . . . ),

= l/c + d'/w'' + 6'/afi' + . . . (23),

where X, a, /3', . . . are all positive, and c is finite both ways.
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If we combine the results of the present with those of the

foregoing paragraphs, we arrive at the following important

general theorem regarding any algebraic function y :

—

Ify = ^ when x^a (a+co), tJien L yl{x-aY is finite both

ways.

Xfy = when x=cc , then L y\x~^ is finite both ways.
a;=oo

Ify = CO when x-a(a^cc), then L yl{x - a)~^ is finite both

ways.

Jfy= CO when x— cc , then L yjx^ is finite both ways.
X=to

X is in all cases a finite positive commensurable number

which may be called the ordee of the particular zero or infinite

value of y.

This theorem leads us naturally to speak of algebraical zero- or infinity-

values of functions in general, meaning such as have the property just

stated. Thus sin .r = when a;= ; but L sin a;/a;=l when x= 0; therefore

we say that sin a; has an algebraic zero of the first order when x=0. Again,

tana;= QO when x = ^tr; but Ltanxl{x-^ir)~^ is finite when x= ^ir ; the

infinity of tanx is therefore algebraical of the first order. On the other

hand, e^=oo when x = oo ; but this is not an algebraical infinity, since no

finite value of \ can be found such that Le^jx^ is finite when a;= Qo . (See

chap. XXV., § 15.)

§ 24.] Application of the method of successive approxima-

tion to the expansion offunctions. This method, when applied

in conjunction with Newton's diagram, greatly increases the

practical usefulness of the general theorems which have just

been established. The method is, moreover, of great historical

interest, because it appears from the scanty records left to us

that it was in this form that the general theorems which we have

been discussing originated in the mind of Newton.

Let us suppose that the terms of an equation (which may be

an infinite series) have been plotted in Newton's diagram, and

that an effective group of terms has been found lying on a line

A ; and let rT - 1" (the coefficients are taken to be unity for

simpHcity of illustration) be a factor in the group thus selected,

repeated, say, a times, so that the whole group is (f)i($, ri){rf—^Y.

Let A be moved parallel to itself, until it meets a term or group
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of terms <^a {$, rj) ; then again until it meets a group ^3 (i, -q)
;

and so on.

The complete equation may now be arranged thus

—

<t>i(i.v){r-er + M^,v)+<f>s{i,v)+. . .=0,

or thus

—

say, {v'^-ty + r., + Ts+ . . .=0.

Now, by the properties of the diagram, when -q = ^"^™,

^2 (i, v), ^3 (^> v), • ' a.re in ascending or descending order as

regards degree in ^, and the same is true of xg, T3, . . . Let

us suppose that ^ and rj are small, so that t^, tj, . . . are in

ascending order.

As we have seen, yp^i^, that is, 7; = ^"^'", gives a first

approximation. To obtain a second, we may neglect tj, T4, . . ,,

and substitute in xg the value of 77 as determined by the first

approximation. To get a third approximation, neglect t^, . . .,

substitute in xg the value of rj as given by the second approxima-

tion, and in xj the value of rj as given by the first approximation.

We may proceed thus by successive steps to any degree of

approximation ; the only points to be attended to are never to

neglect any terms of lower degree than the highest retained,

and not to waste labour in calculating at any stage the co-

efficients of terms of higher degree than those already neglected.

There is a special case in which this process of successive

substitution requires modification. We have supposed above

that the substitution of the first approximation, rj — i'^'^, in Xg

does not cause Xg to vanish, which will happen, for example,

when <f>2{^, v) contains rj'^-i"' as a factor. In such a case the

beginner might be tempted to put xg = and go on to substitute

the first approximation in xj. This would probably lead to error.

For, if we were to substitute the complete value of rj in Xg, it

would not in general vanish, but simply become of higher order

than is indicated in Newton's diagram, of the same order

possibly as xj. The best course to follow in such cases may be

learned from Example 5 below, which deals with a case in point,
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Example 1. Taking the equation (16), to find a third approximation to

one of the branches of the group CD.
Next in order to G and D a parallel to CD meets successively B and A.

Hence, putting, for simplicity, D=+l, C=:Bz=A=-l, the equation (16)

may be written

Whence 17' - ?* - f/t? - ^^^h^ + . . . = (25)

.

The first approximation is 7]= ^*l^; hence, neglecting f^'/'?' i^ (25), we get

for the second

Whence ,7= ^4/3(1 + ^5/3)1/3=^4/3(1 + 1^5/3) (26).

If we use this second approximation in ^^/ij, and the first approximation

in ^^"Ir}^ now to be retained, (25) gives for the third approximation

^3 _ ^4 _ ^7/^4/3 (1 + 1 ^5/3) _ ^10/ 18/3= 0.

Whence, if all terms higher than the last retained be neglected,

^3_|4_p/3_|p/3= 0,

which gives

,,= f4/3(l + ^5/3+ |p/3)i,

=^'IH1 + W^+U^'^') (27),

which is the required third approximation.

This might of course be obtained by successive applications of the method

of transformation employed in the demonstration of § 22, or by the method

of indeterminate coefficients, but the calculations would be laborious. It

will be observed on comparing (27) with the theoretical result in § 22 that

^1=^2=^3=^4=^6=^7= ^8=^9 = ; a fact wMch, in itself, shows the advan-

tages of the present method.

The other branches of the cycle to which (27) belongs are given by

V= H''')' {i+l i^e^')'+ h H'''T} >

where w is any imaginary cube root of unity.

Example 2. To find a second approximation for the branches corre-

sponding to ABC in equation (16), in the special case where A= +1, B= -2,

C= + 1,D=-1.
The terms concerned in this approximation are {ABC) and (D). We

therefore write

or {v-^r'-v'l^'= 0.

The first approximation is ?;= |^ ; hence the second is given by

{v-ef-e'i^'=o,

that is, ('?-^y-i"=0.
Whence ,-^3 ±^11/2=0,

which gives the two second approximations corresponding to the group.

There are two, because to a first approximation the branches are coincident.

This, therefore, is a case where a, second approximation is necessary to

distinguish the branches.
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Example 3. To find a second approximation, for large values both of

f and 7], to the branch corresponding to HI in equation (16).

Beferring to Fig. 1, we see that, if HI move parallel to itself towards 0,
the next point which it will meet is G, Hence, so far as the approximation

in question is concerned, we may replace (16) by

(JJ ^10^12 + J^U^7) + G ^s^n= 0.

For simplicity, let us put H= l, 1= G= —1, and write the above equation

in the form

Confining ourselves to one of the five first approximations, say rj= ^^/', we
get for the second approximation

^5 _ ^4 _ ^8/5^0,

which gives rj= ^'^l^ (1 + i^~^-/').

The other branches of the cycle are given by

where w is any imaginary fifth root of unity.

Example 4. Given

a;=2/+ 2/2/2! + 2/3/31 + 2/4/4!+ . . .,

to find 2/ to a fourth approximation. We have

j/= a;-2/2/2!-2/='/3!-2/V4!- ....
Hence 1st approx. 2/= ^.

2nd „ y =x-ix\
3rd „ 2/=^-4(^-i^T-|^^

4th „ y= x-^(x-ix^ + ix^)^-^{x-l^X-')^-^\x\

=x- |x^+ ^x^ - ^x*.

Example 5. To separate the branches of 17 at f =0, where

4«-3^*-4^2(^_^) + 4(^_|)2^0.

If we plot the terms in Newton's diagram, and arrange them in groups

corresponding to their order of magnitude, we find

where the suffixes attached to the brackets indicate the orders of the groups.

The first approximation 77= $ is common to the two branches.

Since 7;-^ is a factor in { }2, we cannot obtain a second approximation

by neglecting
{ jg and putting 77=^ in

{ jg. In obtaining the second

approximation we therefore retain { ]g, treating rj-i as a variable to be

found. We thus get

4(,-^)2_4f(„-|) = 344;

whence {2 (1? - |) - ^2}^= 4t4,

which gives v= ^ + 3^^/2

;

or v'=^-i'l2.

The branches are thus separated.
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If a third approximation were required, we should now retain
{ }^, and

•write

|2(^-f)-r}2 = 4|4_4,5.

Hence 2(7;-^)-^2= ±2^2(1- t)i^

We thus get

^= $+3^/2-^3/2;

Sistoncal Note.—As has already been remarked, the fundamental idea of the
reversion of series, and of the expansion of the roots of algebraical or other equa-
tions in power-series, originated with Newton. His famous " Parallelogram " is

first mentioned in the second letter to Oldenburg; but is more fuUy explained
in the Geometria Analytica (see Horsley's edition of Newton's Worlcs, t. i.,

p. 398). The method was well understood by Newton's followers, Stirling and
Taylor ; but seems to have been lost sight of in England after their time. It was
much used (in a modified form of De Gua's) by Cramer in his well-known Analyse
des Lignes Oourbes Algdbriques (1750). Lagrange gave a complete analytical form
to Newton's method in his "Me'moire sur I'Usage des Fractions Continues," Nouv.
Mem. d. VAc. roy. d. Sciences d. Berlin (1776). (See CEuvres de Lagrange, t. iv.)

Notwithstanding its great utility, the method was everywhere all but forgotten
in the early part of this century, as has been pointed out by De Morgan in an
interesting account of it given in the Cambridge Philosophical Transactions,
vol. IX. (1855).

The idea of demonstrating, a priori, the possibility of expansions such as the
reversion-formulae of § 18 originated with Cauchy ; and to him, in effect, are due
the methods employed in §§ 18 and 19. See his memoirs on the Integration of

Partial Differential Equations, on the Calculus of Limits, and on the Nature and
Properties of the Eoots of an Equation which contains a Variable Parameter,
Exercices d'Analyse et de Physique Ilatkematique, t. i. (1840), p. 327 ; t. rt.

(1841), pp. 41, 109. The fonn of the demonstrations given in §§ 18, 19 has
been borrowed partly from Thomae, El. Theorie der Analytischen Functionen
einer Complexen Verdnderlichen (Halle, 1880), p. 107 ;

partly from Stolz, Allge-

meine Arithmetih, I. Th. (Leipzig, 1885), p. 296.

The Parallelogram of Newton was used for the theoretical purpose of estabhsh-

ing the expansibility of the branches of an algebraic function by Puiseux in

his Classical Memoir on the Algebraic Functions {Liouv. Math. Jour., 1850).

Puiseux and Briot and Bouquet {Theorie des Fonctions Elliptiques (1875), p. 19)

use Cauchy's Theorem regarding the number of the roots of an algebraic equation

in a given contour ; and thus infer the continuity of the roots. The demonstra-
tion given in § 21 depends upon the proof, a priori, of the possibihty of an
expansion in a power- series ; and in this respect follows the original idea of

Newton.
The reader who desires to pursue the subject further may consult Durbge,

Elemente der Theorie der Functionen einer Complexen Verdnderlichen Grosse, for

a good introduction to this great branch of modern function-theory.

The English student has now at his disposal the two treatises of Harkness and
Morley, and the work of Forsyth, which deal with function-theory from varioua
points of view.

The appUcations are very numerous, for example, to the finding of curvatures

and curves of closest contact, and to curve-tracing generally. A number of

beautiful examples will be found in that much-to-be-recommended text-book,

Frost's Curve Tracing.
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Exercises XXIV.

Revert the following series and find, so far as you can, expressions for

the coefficient of the general term in the Eeverse Series :

—

, nx n(w-l) „ n(n-l) (n-2) , ,

(2.) y = x-ix»+ ^x^-}x'^+ ....
X* x^ x'^

(3.) 2/=^- 37 + 51-71+ •• •

(4.) y = a; + x2/22+ a;3/32 + a;V42+ ....
(5.) If 2/= sin .-c/sin (x + a), expand x iu powers of?/.

a; and y being determined as functions of each other by the following

equations, find first and second approximations to those branches, real or

imaginary, for which
|
a;

|
or

| j/ 1
, or both, become either infinitely small or

infinitely great :

—

(6.) ?/2-2y = a;*-a;2.

(7.) a3{2/ + a;)-2a2x(2/ + a;) + a;'»=0, (F. 69*).

(8.) {x-yf-{x-y)x-'-\x^-\y^^Q, (F. 82).

(9.) a(2/2-x2)(2/-2x)-2/^=0, (F. 88).

(10.) aa;(2/-x)2-?/=:0, (F. 96),

(11.) a;(y-x)2-a»=0, (F. 115).

(12.) a;y-2a2x2?/ + a%-fc»= 0, (F. 121),

(13.) 2/(j/-a;)2(2/ + 2a;) = 9cx3, (F. 131).

(14.) \x{y-x)-a?-Yy^=a'', (F. 140),

(15.) x''-a;V + aV-«^2/''= 0, (F. 143).

(16.) a(x'>+ 2/=)-a2x32/+a;V= 0, (F. 143).

(17.) x^y*+ ax^3/* + &x^i/ + ex + dz/"^= 0, where a, 6, c, d are all positive,

(F, 155).

(18.) If e„ be any constant whatever when n is a prime number, and

such that e^=-epeqe^ . . . when n is composite and has for its prime factors

p, q, r, . . . , then show that

If a, &, c, . , , be a given succession of primes finite or infinite in number,

s any integer of the form a^-h^cl . . ., t any integer of the forms a, ah,

abc, . , . (where none of the prime factors are powers), and if

F(x)=ZeJ{x%
then /(x) = S(-)«e4F(a^),

where u is the number of factors in t.

(This remarkable theorem was given by Mobius, Crelle's Jour., ix. p. 105.

For an elegant proof and many interesting consequences, see an article by
J. W, L. Glaisher, Phil. Mag., ser. 5, xvni., p. 518 (1884).)

* F. 69 means that a discussion of the real branches of this function,

with the corresponding graph, wiU be found in Frost's Curve Tracing, § 69.



CHAPTER XXXI.

Summation and Transformation of Series

in General.

THE METHOD OF FINITE DIFFERENCES.

§ 1.] We have already touched in various connections upon

the summation of series. We propose in the present chapter to

bring together a few general propositions of an elementary

character which will still further help to guide the student in

this somewhat intricate branch of algebra.

It will be convenient, although for our immediate purposes it

is not absolutely necessary, to introduce a few of the elementary

conceptions of the Calculus of Finite Differences. We shall thus

gain clearness and conciseness without any sacrifice of simplicity

;

and the student will have the additional advantage of an intro-

duction to such works as Boole's Finite Differences, where he

must look for any further information that he may require

regarding the present subject.

Let, as heretofore, «„ be the wth term of any series ; in other

words, let Un be any one-valued function of the integral variable

n ; w„_i, Un-2, . . ., «i the same functions of w- 1, w-2, . . .,1

respectively.

Farther, let A?/„, Am„_i, . . ., Awj

denote w„+i-Wn, w„-m„_i, . . ,, u^-Ui)

also A(A?f„), A(Am„_i), . . ., A(Ami),

which we may write, for shortness,
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A2w„, A2^^„_l, . . ., A2«^,
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denote
A^f„+^-A^f„, A?^„-Aw„_j, . . ., ^u^-^Ui',

and so on. Thus we have the successive series,

Ui, Ma, Us, . . ., Un, ... (1)

Aui, Au2, Aw3, . . ., Aun, ... (2)

A^Mi, A^U2, A^Wg, . . ., A^Un, ... (3)

A^Wi, A^Ma, A^Ws, . . ., A='?«„, ... (4)

where each term in any series is obtained by subtracting the one

immediately above it from the one immediately above and to the

right of it.

The series (2), (3), (4), . . . are spoken of as the series of

1st, 2nd, 3rd, . . . differences corresponding to the primary

series (1).

Example 1. If Uj^—iv^, the series in question are

1, 4, 9, 16, . . . n2, . . .

;

3, 5, 7, 9, . . . 271 + 1, . . .;

2, 2, 2, 2, ... 2, ...

;

0, 0, 0, 0, ... 0, ...

;

where, as it happens, the second differences are all equal, and the third and
all higher differences all vanish.

Cor. If we take for the primary series

A''mi, A^'Mg, ^''^3, . . ., A''m„, . . .,

then the series of 1st, 2nd, 3rd, .

A'-'+'u,, A'-+^W2, A'-+^M3,

A^'+'u,, A^'+'u,, A^+^Us,

A^+^Uu A^'+^Ma, A'^+Swa,

differences will be

. ., A'-+iw„
. . .

. ., A'+hi,, . . .

. ., A'-+^w„ . . .

In other words, we have, in general, A'^A^Un = A'^+^Un. This is

sometimes expressed by saying that the difference operator A
obeys the associative law for multiplication.

Although we shall only use it for stating formulae in concise

and easily-remembered forms, we may also introduce at this

stage the operator E, which has for its office to increase by unity

the variable in any function to which it is prefixed. Thus
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E(t> (n) = fl> (n + 1) ; Eun = Un+i', Eui = Uz\

and so on.

In accordance with this definition we have E{Eu^, which we

contract into E'^Un, = Eun+i = w„+2 ; and, in general, i/™w„ = Un+m-

We have also, as with A, E''E^Un = E'''^*Un, for each of these is

obviously equal to Un+r+a-

Example 2. E^n^= {n + r)^.

Example 3. The with differeuce of an integral function of n of the rth

degree is an integral function of the (r - m) th degree if vi<r, a constant if

r=m, zero if m>r.
Let

^y(n) = an'"+ &n'"~^ + cn'"-2+. . .;

then

A0r(n) = a(ra+ l)'-+6(n+ l)'-i+c(n + l)'-2+ . . .

-anr- hn^-^- cn^-^+ . . .,

=rarf-^ + {^r{r-l)a+{r-l)h}'nT~^+ . . .,

= 0r-l(«),

say, where 0^_i [n) is an integral function of n of the (r - l)th degree. Then,

in like manner, we have ^<pr-i {n) = <Pr-2 (")• S'lt ^4'r-i i^) — ^'^<f>r'"' 5 lience

A^(pj.{"') = <Pr-2{n)' Similarly, A^r (w) = <^r-s (") 5 and, in general, A'^tpr{n)

= 0y_^(n). We see also that A''^^ (n) will reduce to a constant, namely, rla;

and that all differences whose order exceeds r will be zero.

The product of a series of factors in arithmetical progression, such as

a{a+ b) . . .(a + {m-l)b), plays a considerable part in the summation of series.

Such a product was called by Kramp a Faculty, and he introduced for it the

notation a"*'*, calling a the base, m the exponent, and 6 the difference of the

faculty. This notation we shall occasionally use in the slightly modified

form a""i^, which is clearer, especially when the exponent is compound.
Since

a(a + b) . . . (a+ (m-l)6) = 6™(o/6)(a/6+ l) . . . (a/6+ m-l),

any faculty can always be reduced to a multiple of another whose difference

is unity, that is, to another of the form c""'^, which, omitting the 1, we may
write c '"*!

. In this notation the ordinary factorial /n! would be written 1 1"*'

.

The reader should carefully verify and note the following properties of

the differences of Faculties and Factorials. In all cases A operates as ubual

with respect to n.

Example 4.

A(a+ 6n)i'"i6=m6{a+ 6(n+ l)}i"*-ii&.

Example 5.

A{l/(a+6w)i'»i6}=-m6/{a + 6w)i"'+il6.

Example 6.

_ a-c(g-b)'"+^i«>

6 c^n+ub •
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Example 7.

Acos(o + /3«)= -2sin J/3sin(a+ij8+/3n);

A sin (a + /3w) = + 2 sin i/3 cos (a+ J/3 + /3n).

§ 2.] Fundamental Theorems. The following pair of

theorems* form the foundation of the methods of differences,

both direct and inverse :

—

To prove I. we observe that

- Un+i + Un,

hence

and so on.

— Un+2 ~ 2W»4.x + Un ]

A^lln = Un+3-2Un+2+ Un+i

= Un+3~ OUn+z + oUji+i — Un J

Here the numerical values of the coefficients are obviously

being formed according to the addition rule for the binomial

coefficients (see chap, iv., § 14) ; and the signs obviously alter-

nate. Hence the first theorem follows at once.

To prove II. we observe that we have, by the definition of

Aum, Um+i = 'Um + Aum. Heuce, siuce the difference of a sum of

functions is obviously the sum of their differences, we have, in

like manner, u^+i = «m+i + ^u^+i = «» + Am™ + A (u^ + Au„^) =

Urn + AWto + AUm + A^Um. We therefore have in succession

* The second of these was given by Newton, Principia, lib. in., lemma v.

(1687) ; and is sometimes spoken of as Newton's Interpolation Formula. See

his tract, Methodus Differentialis (1711) ; also Demoivre, Miscellanea Analytica,

p. 152 (1730), and Stirling, Methodus Differentialis, &c., p. 97 (1730).

C. II. '2(j
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Um+2 — ^m + ^Ujn

«m+3 = Mm + 2AW„ + A^M^

+ AWto+2A'^W;„ + A^M,„,

Um + S^Um + SA^M^ + A^Um',

and so on.

The second theorem is therefore established by exactly the

same reasoning as the first, the only difference being that the

signs of the coefficients are now all positive.

If we use the symbol E, and separate the symbols of opera-

tion from the subjects on which they operate, the above theorems

may be written in the following easily-remembered symbolical

forms :

—

A^Ur, = (E-l)'^Un (L); «™+„ = (l + A)"M« (IL).

§ 3.] The following theorem enables us to reduce the sum-

mation of any series to an inverse problem in the calculus of

finite differences.

I/vn be any function of n such that A'y„ = M„, then

n

n=«

This is at once obvious, if we add the equations

lis =AVg =Vs+i-Vs.

The difficulty of the summation of any series thus consists

entirely in finding a solution (any solution will do) of the finite

difference equation Av„ = w„, or Vn+i -Vn = w». This solution can

be effected in finite terms in only a limited number of cases,

some of the more important of which are exemplified below.

On the other hand, the above theorem enables us to con-
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struct an infinite number of finitely summable series. All we
have to do is to take any function of n whatever and find its

first diflference ; then this first difference is the wth term of a

summable series. It was in this way that many of the ordinary

summable series were first obtained by Leibnitz, James and John

Bernoulli, Demoivre, and others.

n
Example 1. i; {a + j(6}{a + (w+ l) 6} . . . {a+ (n + m-l) &}.

n=s

Using Kramp's notation, we have here to solve the equation

Av„={a+ n6}i'»i&
(2).

Now we easily find, by direct verification, or by putting m + 1 for m and
n - 1 forn in § 1, Example 4, that

A[{a + (n-l)6}i'»+Jl6/(m + l)6]={a+ ni!)}i"»l6.

Hence 1^^= {a + (?i-l) 6}""+i'*/(m+ l) 6 is a value of «;„ such as we
require.

Therefore

S{a + nZ,}.^'^^ ^^ + "^>""^^''-^^ + ^^-^)^^'"'^^'^
(3)

g
^ (m + 1) 6 ^

''

Hence the tuell-known rule

l,{a + nh}{a + (n+l)b} . . . {a+{n +m-l)b}
= C+{a + nb}{a+{n+ l)b} . . , {a + (n + m-l)b} {a+ {n + m)b}/(m + l)b

(4),

where C is independent of n, and may be found in practice by making the two

sides of (4) agree for a particular value of n.

Example 2. To sum any series whose jith term is an integral function of

n, sa.yf{n).

By the method of chap, v., § 22 (2nd ed.), we can express f{n) in

the form a + bn + cn{n+ l) + dn(n+ l) {n + 2) + . . . Hence

7:,f(n) = C + an + ^bn{n + l) + lcn{n+ l){n+ 2) + ldn{n + l)(n + 2){n + 3) + . . .

(5),

where the constant G can be determined by giving n any particular value

in (5).

Examples. Sl/{a+ 6n}"»'6.

Proceeding exactly as in Example 1, and using § 1, Example 5, we deduce

» 1 _ l/{a+ 68}i'»-ii»- l/ {a + fe(n + l)}i'»-ii&

, {a + 6n}i«i6"" (m-l)6 ^''

Hence a rule for this class of series like that given in Example 1.

Example 4. To sum the series S/(n)/{a + 6n}i''*i'>, /(n) being an integral

function of n,

26—2
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Decompose /(n), as in Example 2, into

a+i3(a + 6re)iii6+ ^(a + 6„)i2ib + 5(a + 6ra)i3i6+ . . . (7).

Then we have to evaluate

aSl/{a+ 6M}l'»l6 + /3Sl/{a+ 6(n+ l)}i'"-ilH. • • (8),

which can at once be done by the rule of Example 3*.

Example 5.

n a\n\b _ a
(
(a+ 6)l»l6 _ (o + fcp^l /q\

This can be deduced at once from § 1, Example 6, by writing a+ 6 for 6

and n - 1 for n.

Example 6. To sum the series whose terms are the Figurate Numbers of

the mth rank.

The figurate numbers of the 1st, 2nd, 3rd, . . . ranks are the numbers

in the 1st, 2nd, 3rd, . . . vertical columns of the table (II.) in chap, rv.,

§25. Hence the (ra+ l)th figurate number of the mth rank is „+^_jC^_i

=„+^_iC„=m(??i + l) . • . (m+ 7i-l)/?t!. Hence we have to sum the series

"m(m+ l) . . . (m+ n-1)
l + Zi —

.

1 1.2 ... 71

Now if in (9), Example 5, we put a=m, 6= 1, c= l, we get

n »n,l'»l_ (m + l)i"l m+ 1

llnl llnl 1

Hence

TO(m+ l) m{m+l) . . . (m + n-1)
l +^+_L_J+.. .+ 1.2... n

(>ra + l)(m + 2) . . . (m + l + 7i-l
)

'

1.2 ... n (10);

that is to say, the sum of thefirst nfigurate numbers of the tnthrank is the nth

figurate number of the (m + l)th rank.

This theorem is, however, merely the property of the function ^JBT^, which

we have already established in chap, xxni., § 10, Cor. 4. The present

demonstration of (10) is of course not restricted to the case where m is a

positive integer.

Many other well-known results are included in the formula of Example 6,

some of which will be found among the exercises below.

* The methods of Examples 1 to 4 are all to be found in Stirling's Methodus

Bifferentialis. He applies them in a very remarkable way to the approxi-

mate evaluation of series which cannot be summed. (See Exercises

xxvii., 17.)
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Example 7. To sum the series

5„= cosa + co8(a + j3) + . . . + cos(a + (n-l) j3)

;

r„=sina + sin(a + j3) + . . . + sin (a+ (n-l)i9).

From § 1, Example 7, we have cos(a + j3n) = A {sin(o-i|8 + i3rt)/2sin^^}.

Hence
S„ = {sin (a- i/3 + ^n) - sin (a- ii3)}/2 sin ^p,

= ^-Yo cos {a + iiS (ra - 1 }.

Similarly,

§ 4.] Expression for the sum of n terms of a series in terms

of the first term and its successive differences.

Let the series be Wi + Wa + • • . + w™ ; and let us add to the

beginning an arbitrary term Uq. Then if we form the quantities

So = Uq, Si = Uo + Ui, S^^Uo + Ui + Uz,

. . ., 8n = Uo + tli + U.i + . . , +Un, . . .,

we have

Hence, putting n = 0,

ASo = u„ /i.'So = Au„ . . ., A^So = A'^-'u^, . . . (1).

Now, by Newton's formula (§ 2, 11. ),

Sn^So + nOi^So + nC^A'K + . . . + A"/^o (2).

If, therefore, we replace Sq, ASq, A^/S'q, ... by their values

according to (1), we have

n

%Un = Uo + nCiUi + nO^^Ui + nCA'^Ui + . . . + A'^-^Mj (3) ;

or, if we subtract Uq from both sides,

2W« = nCiUi + nCAUl + nOs^^Ui + . . . + A^-^W^ (4)*
1

The formula (4) is simply an algebraical identity which may
be employed to transform any series whatsoever; for example,

in the case of the geometric series ^af^ it gives

* This formula, which, as Demoivre (Miscell. An., p. 153) pointed out, is

an immediate consequence of Newton's rule, seems to have been first explicitly

stated by Montmort, Journ. d. Savans (1711). It was probably independently

found by James Bernoulli, for it is given in the Ars Conjectandi, p. 98 (171S).



MONTMORTS THEOREM CH. XXXI

+ ir"

2! ^ ^ 3!
'-^a;{x-iy + . . .

+ a;{x-l)'*-\

406

^' + ^ + . . .

= nx +

which can be easily verified independently, by transforming the

right-hand side. The transformation (4) will, however, lead to

the sum of the series, in the proper sense of the word sum, only

when the m\h differences of the terms become zero, m being a

finite integer. The sum of the series will in that case be given

by (4) as an integral function of n of the mth degree. Since the

wth term of the series is the first difference of its finite sum, we

see conversely that any series whose sum to n terms is an

integral function of n of the m\h degree must have for its «th

term an integral function of n of the (m — l)th degTee. We have

thus reproduced firom a more general point of view the results of

chap. XX., § 10.

Example. Sum the series

S(n + l)(n + 2)(?i + 3).
1

If we tabulate the first few terms and the successive differences, we get

1, 2, 3, 4, 5

•"'n
24, 60, 120, 210, 336,

Aw„, 36, 60, 90, 126,

A'«« 24, 30, 36,

A3«, 6, c.

A^"„ 0.

Hence, by (4),

S(n + l)(n + 2)(n + 3)

= „ . 24 +
"("-^)

. 36 +
>^ ("-! )(» -2)

_ 24 ^ «(
n-l)(7i-2)(n-3)

^ ^^
2 6 24

= |(«J + 10w»+ 35?i2+ 50/1).

§ 5.] Montmort's Them'em regarding the summation ofZunOf^.

An elegant formula for the transformation of the power-

series "ZunX^ may be obtained as follows. Let us in the first

place consider S^ 2M„a?", which we suppose to be convergent when

|a7l<l; and let us further suppose that |a;l<|l-a?|. Put

X = 2//(l + 2/) ; so that
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i2^/(i+y)l = kl<i,
and \i/\ = \w/(l-x)\<l.

Then, since

we liave

1

= u^y-Ui'if+ Uiy^— Uiy* + u^f
+ u^y^ - iCiU^if + 3^2^22/* - iG^u^f +

+ Usf - sCi Usy* + 4C2M3/ -

.

+ u^y* - iOiihf +

.

+ u^f-

This double series evidently satisfies Cauchy's criterion, for

both 1^1 <1 and |y/(l +2/) |
< 1. Hence we may rearrange it

according to powers of y. If we bear in mind § 2, L, we find

at once

>S^=Mi2^ + Ami2/^ + A2wi2/^ + A^t/i2/* + A^?^i/ + . • • •

Hence, replacing y by its value, namely, a?/(l - x), we get

UxX

1 i
+ ,. + 7^—^^, + (ly

X {\-xf {\-xy

When the differences of a finite order m vanish, Montmort's

formula gives a closed expression for the sum to infinity ; and,

if the differences diminish rapidly, it gives in certain cases a

convenient formula for numerical approximation.

Cor. 1. We hamfor the finite sum
** X 0^

\ JL Ou (X OCj

a?

For, if we start with the series e<„+ia7"+^ + i^,i+2^""'"^ +

proceed as before, we get

From (1) and (3) we get (2) at once by subtraction.

(2).

., and

(3).

* First given by Montmort, Fhil. Trans. R.S.L. (1717). Demoivre gave

in his Miscellanea a demonstration very much like the above.
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The formula (2) Avill furnish a sum in the proper sense only

when the differences vanish after a certain order. The summa-

tion of the integro-geometric series, already discussed in chap.

XX., §§ 13 and 14, may be effected in this way. It should be

observed that, inasmuch as (2) is an algebraic identity between

a finite number of terms, its truth does not depend on the con-

vergency of ^UnOf', although that supposition was made in the

above demonstration.

Cor. 2. If Un be a real positive quantity which constantly

diminishes as n increases, and if Lu^ = 0, then

U1-U2 + U3-. . .=-^ih- ^^Ui+ ^.^''ui-. . . (4)*.

This is merely a particular case of (1) ; for, if in (1) we put

-a; for x, we get

S(-rz.„^» = i(-)«A-^e.,.(^y (5).

Since the differences must ultimately remain finite, the right-

hand side of (5) will be convergent when a:=l. Also, by Abel's

Theorem (chap, xxvi., § 20), since 2 ( - )"w„ is convergent, the
CO

limit of the left-hand side of (5) when iz: = 1 is ^ ( - )"«„. Hence
1

the theorem follows.

The transformation in formula (4) in general increases the

convergency of the series, and it may of course, in particular

cases, lead to a finite expression for the sum.

Cor. 3. We get, by subtraction, the followingformula :

—

«i - Wa + • . . ( - )""'«« = 2 (^'1 - ( ~ )"«n+i) - 22 (^«i - ( - )"^«n+l)

+ |(^'«'i-(-r^'w„+,)-. . . (6),

in which the restrictions on m„ will be unnecessary if the right-

hand side be a closed expression, which it will be if the differences

oiun vanish after a certain order.

Euler, hist. Biff. Calc., Part IL, cap. i. (1787).
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Example 1. We have (Gregory's Series)

IT , 1 1 1 /_«

4=1-3 + 5-7 + -
•• <^>-

If we apply (4), we have m„= l/(2« - 1). Hence

A*-«„=(-)'• 2. 4 . . . 2j7(2ra-l)(2n + l)(2n + 3) . . . (2n + 2r-l);

A'-Mi= (-)'-2.4 . . . 2r/1.3.5 . . . (2;-+ l),

= (-)'-2'-.1.2 . . . r/1.8.5 . . . (2r + l).

«,, , IT , 1 1.2 1.2.3 ...
Therefore

2 =1+ 3 + 375 + 37577 + - '
* ^^^'

Example 2. To sum the series

S„=P- 22 + 32-. . .
(-)«-in2.

Since AUn+i = 2n + 3, Aiii= 3,

Ahi„+, = 2, A2m,=2,

A3u„+i=0, A3mi=0,

we have, by (6),

Sn=Ml-(-)"(« + iP}-i{3-(-)M2n + 3)}+i{2-(-)"2},
= (-)»-4w(n+ l).

Exercises XXV,

(1.) Sum to n terms the series whose nth term is the nth r-gonal

number*.

Sum the following series to n terms, and, where possible, also to

infinity :

—

(2.) S»i(n + 2)(n+ 4). (3.) Sl/(ri2-l),

(4.) 1/3.8 + 1/8.13 + 1/13. 18 + . . . .

(5.) 1/1. 3. 5 + 1/3. 5. 7 + 1/5. 7.9 + . . . .

(6.) 1/1. 2. 3. 4 + 1/2. 3. 4. 5 + 1/3. 4. 5. 6 + . . . .

(7.) 2(an + 6)/n(n+ l)(n + 2).

(8.) 1/1.3.5 + 2/3. 5. 7+ 3/5. 7.9 + . . . .

(9.) 1/1.2.4 + 1/2. 3.5 + 1/3. 4.6 + . . . .

(10.) 1/1. 3. 7 + 1/3. 5. 9 + 1/5. 7. 11 + . . . .

(11.) S(n+l)2/n(n+ 2).

(12.) 4/1. 3. 5. 7 + 9/2. 4. 6. 8 + 16/3. 5. 7.9 + . . . .

(13.) Ssecn^sec(n+ 1)^. (14.) S tan (^/2»)/2".

(15.) Stan-i{(7ia-n+l)a»-V(l + «(w-l)a-»-0}-

(16.) Stan-i{2/ri2}.

(17.) ml + (m + l)!/l! + (7/i+ 2)!/2! + . . . .

(18.) lI/ml + 2!/(m+l)! + 3!/(m + 2)l + . . . .

* The sums to n terms of arithmetical progressions whose first terms are

all unity, and whose common diSerences are 0, 1, 2, . . ., (r-1), . . . respec-

tively, are called the nth polygonal numbers of the 1st, 2nd, 3rd, . .
. , rth, . .

.

order. The numbers of the first, second, third, fourth, . . . orders are spoken

of as linear, triangular, square, pentagonal, . . . numbers.
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(19.) l-^Cj + ^C^-. . .(-)VC„.
(20.) Show that the figurate numbers of a given rank can be summed by

the formula of § 3, Example 1.

. 1 1.2 1.2.3
^ '' m vi(m + l) m (m + 1) (m + 2)

a{a + l) . . . (g + r) a{a + l) . . . (a + r + 1
)

^ '' c c(c + l)

. a a(a + l)

^ ' c^{c + l) . . . (c+r)'*'c(c + l) . . . (c + r + 1)"^' ' '
'

(24.) S(a+ n)""-2i/(c + w)"»l.

1.3 1.3.5 1.3.5.7
^ ' 1.2.3.4'^1.2.3.4.5'^1.2.3.4.5.6''"* " * *

/9fi^
(l + r) (l + 2r

)
(l + r)(l + 2r)(l + 3r)

^ ' 1.2,3.4.5'^ 1.2.3.4.5.6
*

2 2^ 2*

(27.) jm-j-^m(m-l) + j—g—gm(m-l)(m-2)-. . . .

(28.) Show that

\'M • • • ("+!) -ri/M • • • ("-^)+^/M • • • ("-I)-- ••

(Glaisher.)

(29.) Show that

l + 2(l-a) + 3(l-a)(l-2a) + . . . + n(l-a) (l-2a) . . . (l-(n-l)a)
= a-i{l-(l-a)(l-2a) . . . (1-na)}.

(30.) • =^-,,,,^„. '>

a;+ l~a;-l (x-l) (x-2) ^ (a;- 1) (a;-2)(a;-3) "*•

(-)"+^w! / n+ l\

(x-l){x-2) . . . (x-n)\ x + lj'

(31.) If a + & + 2= c + d, then
n olnlftlnl _ a&

^

(g + 1) '"I (6 + 1) !»' _ (g+ 1)
"-n (6 + 1)

I'-n^

(32.)

1
g-y

.

g(g-i)-y(^-i)

{p-q + l).{p + r-l) (p-q + l)(p-q+2).(p+r-l)(p + r-2)

p.{p-q + r)
'

{Educational Times Reprint, vol. xli., p. 98.)

(33.) Transform the equation

log2 = l-4+i-i + . . .

by § 5, Cor. 2.

(34.) Show, by means of § 2, I., that, if m be a positive integer, then

1 r "^^ r "fcll_ r «(a-l)J^)
,

^-m^ll+rn^H(b-l) "'^H (& - 1) (6 - 2)
"*"'

* '

(^-|)(-.^)---(-.-r^)
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1

RECURRING SERIES.

§ 6.] We have already seen that any proper rational fraction

such as {a + bx + ca^)l{l +px + qcc^ + rar^)* can always be expanded

in an ascending series of powers of x. In fact, \i\x\ be less than

the modulus of that root of ra? + qx^ +px +1 = which has tlie

least modulus, we have (see chap, xxvii., §§ 6 and 7)

a + bx + cx^ ^ „ . ,

:;
^ ^ = Uo + UiX + U.yX" + . . .+UnX^+. . . (1).1+px + qx^ + ra^ ^ ^

We propose now to study for a little the properties of the

series (1).

If we multiply both sides of the equation (1) by 1 +px
+ qa^ + ra^, we have

a + bx + cx'^ = (1 +px + qaf + rx^) (uq + UiX + u.^x^ + . . . +UnX^ + . .
.

)

(2)-

Hence, equating coeJB&cients of powers of x, we must have

Mo = « (3i);

Ui+puo = b (Sa);

Ui+pu^ + qua = c (Ss);

«^3 + pu2. + QUi + rwo = (84)

;

Un + pUn-1 + qUn-2 + ^%-3 = (3„+i).

Any power-series which has the property indicated by the

equation (3«+i) is called a Becurring Power-Series^; and the

equation (3„+i) is spoken of as its Scale of Relation, or, briefly,

its Scale. The quantities p, q, r, which are independent of n,

may be called the Constants of the Scale. According as the scale

has 1, 2, 3, . . .,/•,. . . constants, the recurring series is said to

be of the 1st, 2nd, 3rd, . . ., rth, . . . order. When x=l, so

that we have simply the series Mq + Wj + Wg + . • . + w„ + . . .

,

with a relation such as (3„+i) connecting its terms, we speak of

* For simplicity, we confine our exposition to the case where the

denominator is of the 3rd degree; but all our statements can at once be

t The theory of Eecuning Series was originated and largely developed

by Demoivre.
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the series as a recurring series simply * ; so that every recurring

series may be regarded as a particular case of a recurring power-

series.

It is obvious from our definition that all the coefficients of a

recurring power-series of the Hh order can be calculated when

the values of the first r are given and also the constants of its scale.

Hence a recurring series of the rth order depends upon 2r constants;

namely, the r constants of its scale, and r others.

From this it follows that if the first 2r terms of a series (and

these only) be given, it can in general be continued as a recurring

series of the rth order, and that in one way only ; as a recurring

series of the (r + l)th order in a two-fold infinity of ways ; and

so on.

On the other hand, if the first 2r terms of the series be

given, two conditions must be satisfied in order that it may be a

recurring series of the (r - l)th order ; four in order that it may
be a recurring series of the (r - 2)th order ; and so on.

Example. Show that

is a recurring series of the 2nd order. Let the scale be M„+i'M„-i + ?Wn_2=0.
Then we must have

3+ 22) + 2 = 0, 4+ 3p + 2g=0, 6 + 4i3 + 33=0, 6 + 52) + 4g=0.

The first two of these equations give ^= -2, q=+\; and these values

are consistent with the remaining two equations. Hence the theorem.

§ 7.] The rational fraction (a + 6ic + ca^)/(l +J3a? + qn^ + ro^),

of which the recurring power-series u^ + u^x + u^oc^ + ... is the

development when
|
a;

|
is less than a certain value, is called the

Generating Function of the series. We may think of the series

and its generating function without regarding the fact that tiie

one is the equivalent of the other under certain restrictions. If

we take this view, we must look at the denominator of the

function as furnishing the scale, and consider the coefficients

* We might of course regard a recurring power- series as a particular case

of a recurring series in general. Thus, if we put JJ^—UnX^, we might regard

the series in (1) as a recurring series whose scale is
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as determined by the equations (3i), (82), . . ., (3„+])*. No
question then arises regarding the convergence of the series.

Given the scale and the first r terms of a recurring power-

series of the rth order^ we can always find its generating function.

Taking the case r = 3, we see, in fact, from the equations (3i),

(82),. . .,(8„+i), . . .of§6, that

{mq + (^z +i3Wo) X -•- (w2 + J9^*l + g'Mo) ^^}/{l + p-^? + (10^ + ra?}

is the generating function of the series u^-^ UyX -v u-^oc^ -^ . . .,

whose scale is u^ +pun-i + qUn-2 + rUns = 0.

Cor. 1. Every recurring power-series may, if \x\ be small

enough, be regarded as the expansion of a rational fraction.

Cor. 2. The general term of any recurring series can always

be found when its scale is given and a sufficient number of its

initial terms.

For we can find the generating function of the series itself

or of a corresponding power-series ; decompose the generating

function into partial fractions of the form A(x-a)-^; expand

each of these in ascending powers of x ; and finally collect the

coefficient of x^ from the several expansions.

Example. Find the general term of the recurring series whose scale is

Uj^-4m„_i + 5w„_2— 2m„_3=0, and whose first three terms are 1 + 0-5. Con-

sider the corresponding power-series. Here 2?= -4, g = 5, r= - 2; so that

a= Mo = l, 6= Mi+j)u„= -4, c = U2+pUi + quQ= 0.

The generating function is therefore

1 - 4:c _ 1 - 4a;

l-4a; + 5a;2-2a;»
""'

(l-xP(l-2a;)

'

_ 2 3 4

~l-x'^ (1-x)^ (l-2a;)*

Expanding, we have
1 -4t

l-4a; + 5x^-2x3
= 2{l + S^n + 3{l + 2(n + l).xn-4{l + S2^a;"}.

= l + S(3n+ 5-2"+2)a;™,

The general term in question is therefore 3w+ 5 - 2"+^,

§ 8.] If Un be any function of an integral variable n which

satisfies an equation of the form

Un +pUn-l + qUn-2 + rUn-3 = 0,

or, what comes to the same thing,

Un+3 +pUn+2 + qUn+1 +rUn^O (l),

* We might also regard the series as deduced from the generating

function by the process of ascending continued division (see chap, v., § 20).
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we see from the reasoning of last paragraph that w„ is uniquely

determined by the equation (1), provided its three initial values

Mo, Ml, % are given ; and we have found a process for actually

determining Un-

it is not difficult to see that we might assign any three

values of w„ whatever, say Ua, up, Uy, and the solution would
still be determinate. We should, in fact, by the process § 7,

determine Un as a function of n linearly involving three arbitrary

constants u^, Va, ii^, say/(Mo, «*i, Ma, w) ; and Uq, ii^, ti^ would be

uniquely determined by the three linear equations

f(uo,Ui,U2,a) = Ua, /(uo,Uj,U2,^) = up, /{u^, th, th, y) = Uy (2).

An equation such as (1) is called a Linear Difference-Equation

of the 3rd m-der with constant coefficients ; and we see generally

that a linear difference-equation of the rth order with constant

coefficients has a unique solution when the values of the function

involved are given for r different values of its integral argument.

Example. Find a function «„ such that w»+3 - 4m„+2 + •''"n+i
- 2u„ = ;

and Mo = l» ^1= 0, u^=-5.
We have simply to repeat the work of the example in § 7.

§ 9.] To sum a recurring series to n + 1 terms, and {when

convergent) to infinity.

Taking the case of a power-series of the 3rd order, let

Sn-UQ + U-i^X + UiCC^ + . . .+UnX''\

then

pxSn =pUoX + pUiOp +... +pUn-iaf'+ pUnX^"^^,

qa^Sn = qu^a^ + . . .^-qUn-^x^+qUn-iX^'^'^ + qUriX""-^^,

ra?8n = . . . + riin-z x""+ rUn-i. a?"+^

+

ru^_^ x^^"^+ ru^ o^^'^

Hence adding, and remembering that u„, + jt?M«_i + qu^-^

+ run-z - for all values of n which exceed 2, we have

(1 +px + qaP + ra^) Sn = UQ+ (ui +pu^ x-¥{Ui-\-pui + qu^) o^

+ {pUn + qun-x + run-^ a;™+^ + {quy, + rUn-^ 37"+^ + rM„;r"+' (1)

;

whence ^» can in general be at once determined by dividing by
1 +^,r + qa^ + ra?.

The only exceptional case is that where for the particular

value of w m question, say x = a, it happens that

1 +pa + qa? + ru' = 0.
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In this case the right hand of (1) must, of course, also

vanish, and Sn takes the indeterminate form 0/0. S^ may in

cases of this kind be found by evaluating the indeterminate form

by means of the principles of chap, xxv. This, however, is often

much more troublesome than some more special process applicable

to the particular case.

If the series ^Univ^ be convergent, then LunX^ = when

w = Qo
; therefore the last three terms on the right of (1) will

become infinitely small when 7i = go . We therefore have for

the sum to infinity in any case where the series is convergent

1 +px + qa? + ra? ^
''

The particular cases

Wo + Ml + ^2 + . . . + M„ + . . . (3),

Mo-'?*i + W2-. . .+(-)"%„+. . . (4),

are of course deducible from (1) and (2) by putting x=-\-\

and x = -\. Exceptional cases will arise if l+j9 + 2' + r = 0, or

if 1 —p + q-r = 0.

It is needless to give an example of the above process, for

Examples 1 and 2, chap, xx., § 14, are particular instances,

2w^^" and 1 + iS ( — y~'^2nx^ being, in fact, recurring series whose

scales are w„ - 3w„-i + 3m„_2 - Wn-s = and u^ + 2m„_i + Un^^ =

respectively.

Exercises XXVI.

Sum the following recurring series to n + 1 terms, and, where admissible,

to infinity :

—

(1.) 2 + 5 + 13 + 35 + 97+ . . . .

(2.) 2 + 10 + 12-24 + 2 + 10 + 12+. . . .

(3.) 2 + 17X + 95x2+461x3+. . . .

(4.) 5 + 12x + 30a;2+ 78x3 + 210x4+. . . .

(5.) 1 + 4x + 17x2+ 76x3 + 353x*+. . , ,

(6.) l + 4x + 10x2+ 22x3+ 46x4+. . . .

(7.) If a series has for its rth term the sum of r terms of a recurring

series, it will itself be a recurring series with one more term in the scale of

relation.

Find the sum of the series whose rth term is the sum of r terms of the

recurring series 1 + 6 + 40+ 288 + . . . .
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(8.) If T„, T„+i, r„+2 te consecutive terms of the recurring series

whose scale is Tn+2=aTn+i-hT„, then

(9.) Form and sum to n terms the series each term in which is half the

difference of the two preceding terms.

(10.) Show that every integral series (chap, xx., § 4) is a recurring series;

and show how to find its scale.

(11.) If M„=M„_i+M„_2, and M2=arti, show that

V-«n+i«™-i=(-)"(«'-«-l)V.
(12.) If the series iij, ?<2, "3> • • •> w„, . . . be such that in every four

consecutive terms the sum of the extremes exceeds the sum of the means by

a constant quantity c, find the law of the series ; and show that the sum of

2m terms is

\m (m - 1) (4ffi - 5) c - m (m - 2) iti+ mMj+m (m- 1) Wg.

(13.) If tt„+2=«n+i + "n> Mi=l, W2= l. sum the series

1.2 1.3 * M„+iWn+3*

(14.) By French law an illegitimate child receives one-third of the portion

of the inheritance that he would have received had he been legitimate. If

there be I legitimate and n illegitimate children, show that the portion of

inheritance 1 due to a legitimate child is

1 n n (ra - 1) . w (w - 1) . . . 2 .

1

l~3Z(J+ l)"*'3'-'i(i+ l)(i+ 2) •
• ^ '3»J(i+ l) . . . (i+ 7i)"

(Catalan, 'biouv. Ann., ser. ii., t. 2.)

Simpson's method for summing the series formed by

TAKING every IcTB. TERM FROM ANY POWER-SERIES
WHOSE SUM IS KNOWN.

§ 10.] This method depends on the theorem that the sum of

the pth powers of the kth roots of unity is k ifp be a multiple

ofk, but otherwise zero.

This is easily seen to be true ; for, if w be a primitive ^th

root of 1, then the k roots are w°, w\ a?, . . ., w*-\ If p-fik,

then (a)y = w«'^*' = (a>*)'*' = l. If p be not a multiple of k, then

we have

((0°)^ + (o>i)p + . . . + (iJ'-'y = 1 + (o>py + (i^y + . . . + {<^^f-\

={i-Kmi--^x
= 0,

for (o)^)* = {J'Y = 1, and w^ 4= 1.
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Let us suppose now that f{x) is the sum of n terms of the

power-series u^ + 2M,ia?", n being finite, or, it may be, if the series

is convergent, infinite.

Consider the expression

k

... ,
(1)'

where m is or any positive integer <k.

The coefficient of x^ in the equivalent series is

w,.{(o)*')^-'«+'-+(o)0*-'"+'" + (o)'^)'=-'"+'" + . . . + {J'-'f -'"'+'-]
IJc (2).

Now, by the above theorem regarding the ^th roots of unity,

the quantity within the crooked brackets vanishes if Jc-m + r

be not a multiple of k, and has the value ^if^-w+rbea
multiple of k. Therefore we have

U^ = W^^'» + W»+fc«™+* + Ura+.T.X^^'^ + . . . (3),

where the series extends until the last power of x is just not

higher than the nih., and, in particular, to infinity if /(;r) be a

sum to infinity*^.

If we put w = 0, we get

{f{x)+f{o>'x)+f{oy^x) + . . .+f{J^-'x)}lk

= Uq + UkO^ + u^a?^ 4- u^^x^^ + . . . (4).

Example 1.

l + ar+a;2+. . . +a;"=(l -a;»+i)/(l-a;).

Hence, if w be a primitive cube root of 1, we have

\ \-x 1-wx 1- la^x
J

where 3s is the greatest multiple of 3 which does not exceed n.

Example 2. To sum the series

x^ x'' x^^ ,

* This method was given by Thomas Simpson, Phil. Trans. R. S. L.

Nov. 16, 1758 (see De Morgan's Trigonometry and Double Algebra (1849),

p. 159). It was used apparently independently by Waring (see Phil. Trans.

B. S. L. 1784).

c. II. 27
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We have

e*=l + x +
2j
+ 'o7+ • • • ad 00.

Hence, if w be a primitive 4th root of unity, say u=i, then, since here

A;=4, ?ft=3, k-m=l, w2=-l, ca^=~i, we get

4(e»=+ie»»-e-»=-ie-i^)=|j + |j+|jj + . . ..

that is, ^(sinhx-sina;) = gT + ^ + jj|+. . . .

MISCELLANEOUS METHODS.

§ 11.] When the wth term of a series is a rational fraction,

the finite summation may often be effected by merely breaking

up this term into its constituent partial fractions ; and even

when summation cannot be effected, many useful transformations

can be thus obtained. In dealing with infinite series by this

method, close attention must be paid to the principles laid down

in chap, xxvi., especially § 13 ; otherwise the tyro may easily

fall into mistakes. As an instance of this method of working,

see chap, xxviil, § 14, Examples 1 and 2.

Example 1. Show that

(
1 1 1

\

f
1 1 1 1 _ 1

"^
((x + l)(a; + 2)2'*'(x+ 2)(x + 3)2"^(a; + 3)(a; + 4)2+' ' -[-(aj + l)"-

Denote the sums of n terms of the two given series by S„ and T„
respectively, and their nth terms by m„ and v„ respectively. Then

«„= -l/(x + n) + l/(x + n)2+ l/(x+ n + l);

Vj,=ll{x + n)-ll{x + n + l)^-ll{x + n + l).

Whence we get at once

5„+ r„=l/(x + l)2-l/(x + n + l)2.

Therefore S^ + T^ = ll(x + 1)K

Example 2. Resolution into partial fractions will always effect the

summation of the series

n
S/{n)/{7H-o)(7i + 6) . . . {n + k),

where a, b, . . ., k are positive or negative integers, and /{ii) is an integral

function of n whose degree is less by two at least thau the degree of

{n+ a){n-i-b) . . . {n + k).
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For we have

f{n)l{n + a){n + b) . . . (n + fc)= S^/(n + a),

and
/(n) = S4(n + 6)(n + c) . . . (n+ k).

Since the degree of f(n) is less by one at least than the degree of the

right-hand side of this last identity, we must have

A +B+. . .+K=0.

But, since a, b, . . ., k are all integral, any partial fraction whose

denominator p is neither too small nor too great will occur with all the

numerators A, B, . , ., K, bo that we shall have Alp + Bjp+ . . . +Klp=0.
On collecting all the fractions belonging to all the terms of the series we

shall be left with a certain number at the beginning and a certain number at

the end ; so that the sum will be reduced to a closed function of n.

§ 12.] Euler's Identity. The following obvious identity*

1 - «! + «! (1 - a^ + aifta (1 - «3) + • • • + ai«2 ... a™ (1 - a„+i)

= 1 -aia.2 . . . a„+i (1)

is often useful in the summation of series. It contains, in fact,

as particular cases a good many of the results already obtained

above.

If in (1) we put

a; _^+pi _x+p.2 _x+pn
fti — , Qi^— , ff3 — , .... fl^n+1 — ,

y y^Vv y+P2 y+p,^

and multiply on both sides by yl{y - x), we get

1 + ^ + ^(^+.Pi) ^ ^ xix+p^) . . . {x+pn-^)

y^Pi (y+Pi)(y+P2) ''' {y+Pi){y+p-2) • . • (y+Pn)

(2).

(3),

= -K— _ ^ {^+Pi)(^+Pi) • • i^+Pn)

y-x y-x'\y +^i) {y +p^) . . . (y +pn)

If the quantities involved be such that

^ {x+pi){x+p2). . . (x+pn) _Q
«=« (y +pi) (y+P2)- . . (y +Pn)

then

- X x(x + pi) J y ...
1 + + 7 -^r^^^^—< + . . . ad 00 = -^— (4).

y+Pi {y+Pi){y+P2) y-^

* Used in the slightly different form,

(l + a^)(l + a2)(l + as){l + a^) . . .

= l + ai + 02(l+ai) + a8(l+Oi)(l-l-a2) + a4(l + ai)(l + a2) (1 + 03) + . .

by Euler, Nov. Comm. Petrop. (1760).

27—2
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If in (2) we put y = 0, we get

Pi P^Pz
'

' ' P1P2 • ' Pn

(-!)(- !)•••(-#.) («'•

From (5) a variety of particular cases may be derived by

putting 72 = CO , and giving special values to pi, p^, • • Thus,

for instance, if the infinite series ^l/pn diverge to + oo, then (see

chap. XXVI.
, § 24) we have

1 + ^^ ^-^-
. . . ad 00 - (6).

Pi PlP-2
CO

In general, if the continued product 11(1 +xjpn) converge to any
1

definite limit, then the series l + '^x{x+pi) . . . {a;+pn-i)/piP2 • - -Pa
1

converges to the same limit.

Example. Find when the infinite series

y+p {y+p){y+^p) (y+p)(y+'b){y+^p)

converges, and the limit to which it converges.

If in (2) above we put Pi=p, P2=^P, &c., . . ., we have

^__y x_ ^ (x^-'p)(x + 2p ) . . . (X+7>J>) .g.

y-x y-x n=<»\y-^v){y + ^p). . .\y + np)

Now the limit in question may be written

fi fi^ (^-y)M
1 I

l + ylnpj'
but this diverges to oo if (x - y)lp be positive, and converges to if (a; - y)lp

be negative (chap, xxvi., § 24).

- Hence, if ^j denote in all cases a positive quantity, we see that

X x(x + v)
,

, y
1 + — + , w n > + • • . ad 00 = -^^

,

y+p {y+p)(y+^p) y-^
if y>x; and

x x(x-p)
. J y

1 + + \ ,

' -. + ... ad 00 = —=^—
,

y-p {y-p)(y-^p) y-^
if y<x.

Exercises XXVII.

(1.) Given ll(l-x)'^=l + 2x + 3x^ + 'h^+ . . .,

sum l + 'ix^+ 7x« + 10x^+ . . , .

(2.) Sum the series

l + ar'/4 + x«/7+. . .;

l + x3/3I+a:«/6!+. . . .
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(3.) If f{x)=iiQ+ UiX + u,2.v"+. . ., and a, p, y, . . . be the Jith roots

of - 1, show that

^{a2»-»»/(ax)+/3«»-»'/(/3x)+. . .} = M,„x™-M„+^a;'"+»+ M„,+2„a;'«+2»- . . .

where m<n. (De Morgan, Diff. Calc, p. 319 (1839).)

Sum the following series, and point out the condition for convergency

when the summation extends to infinity :

—

(4.) l-x3/4+ x«/7- . . . adoo;

x-x*li\ + x'l7l- . . . adoo.

(5.) l + m03+mG6+mC9+- . . adoo;

l-mC3 + mC8-wC'9+' • • ad 00 .

(6.) 1/1.3 + 1/1.2.4 + 1/1,2.3.5+. . . to n terms.

(7.) 1/1. 2. 3+^Ci/2. 3. 4 + ^(72/3. 4.5+. . . ad oo .

(8.) l-2j;/l + 3a;2/2-4a;3/3+. . . ad oo

.

(9.) cose/1.2.3 + cos2S/2.3.4 + cos3e/3.4.5+ . . . ad oo

.

(10.) l/12.22+ 7/2^32+. . . + (2tt2 + 4n+ l)/(ji + l)2(,i + 2)3.

(11.) 1/12.22- 1/22. 3«+. . . (-)«-il/n2(n+ l)H. . . adoo.

(12.) If n be a positive integer, show that

n 1 n{n-l) 1 n(n-l){n-2)

m+ n 2 (wi+ n) (m + n-1) 'd{m + n) (m + n-1) {m+ n-2)

_ n 1 n{n-l) 1 n(n-l) {n-2)

~m + l 2(?/i+ l)(m+ 2) 3 (?»+ 1) (nt + 2) (?« + 3)

(13.) Show that

n^l n<^2
,

flA " .

1-x/l (l-.'c/l)(l-x/2)'^(l-x/l)(l-a;/2)(l-a;/3) **• n-x'

and hence show that

where er,.= 1/1 + 1/2 + . . . + 1/r.

(14.) Sum the series

1 - p + —12:22- ^^-12:22:32— ' + • • •
ad CO

;

m2 m2 (m2 + P) n^jjn^+ V) (^2+ 3^)

^ +F + —1X3^" *"
r^^3i:5"2 + ... ad CO

.

(15.) Show that

fli . yi«2 ^ ;PiP£3 ^
ai+Pi (aa+2'i)(«2+F2) (ai+i'i)(«2+i'2)(«3+i'3)

iJlPa • • . Pn-l^n _-, P1P2 ' • 'Pn= 1--
(Oj+Pi) (a2+i>2) . . . ian-^Pn) («1 +2^1) (a2+i'2) • • («n+Fn)

'

(It).) Show that

tan2^r- l'-(l''-^T
,

34-(32-x2)2

2 ~ (12-x2)2 ^(12-a;-'')2(,S2-a;2)-''^' • • *

(Glaisher, Math. Mess., 1873, p. 138.)
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(17.) Show that11.1^ 1.2

n^ n{n+l) n{n + l)(n + 2) n (n + 1) {n + 2) (n+3) " ''

and apply this result to the approximate calculation of ir^ by means of the

formula
7r2/6= 1/12 + 1/22+1/32+. . . .

(Stirling, Methodus Differentialis, p. 28.)

(18.) Show that Sl/(m»-l) = l and 21/(a«- l) = log2, where m and n

have all possible positive integral values differing from unity, a is any even

positive integer, and each distinct fraction is counted only once.

(Goldbach's Theorem, see Liouv. Math. Jour., 1842.)

(19.) If n have any positive integral value except unity, and r be any

positive integer which is not a perfect power, show that S (n - l)/(r" - 1)

= 7r-/6 ; and, if d(ii) denote the number of divisors of n, that S (d(n) - l)/r"

= 1; also that S(n-l)/r= 2;i/(?-- 1)2. (lb.)



CHAPTER XXXII.

Simple Continued Fractions.

NATURE AND ORIGIN OF CONTINUED FRACTIONS.

§ 1.] By a continuedfraction is meant a function of the form

. a3+^--. (1);

the primary interpretation of which is that bz is the ante-

cedent of a quotient whose consequent is all that lies under the

line immediately beneath b^, and so on.

There may be either a finite or an infinite number of links in

the chain of operations ; that is to say, we may have either a

terminating or non-terminating continued fraction,

h h
In the most general case the component fractions —, —

,

— , . . . , as they are sometimes called, may have either positive or
a^

negative numerators and denominators, and succeed each other

without recurrence according to any law whatever. If they do

recur, we have what is called a recurring or periodic continued

fraction.

For shortness, the following abbreviative notation is often

used instead of (1),

a, +AAA_... (2),
^2 + as + 054 +

the signs + being written below the lines, to prevent confusion

with
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^2 ^3 bi ^

^2 «3 «4

Examples have already been given (see chap, iii., Exercises

III., 15) of the reduction of terminating continued fractions

;

and from these examples it is obvious that evert/ tertninating

continued fraction whose constituents ai, a2, . . ., b^, bs, . . . are

commensurable numbers reduces to a commensurable number.

§ 2.] In the present chapter we shall confine ourselves

mainly to the most interesting and the most important kind

of continued fraction, that, namely, in which each of the nume-

rators of the component fractions is +1, and egxjh of the

denominators a positive integer. When distinction is necessary,

this kind of continued fraction, namely,

111 ,,,
«i + . . . (1),

tta + «3 + «4 +

may be called a simple continued fraction. Unless it is otherwise

stated, we suppose the continued fraction to terminate.

In this case, for a reason that will be understood by and by,

the numbers ai,a2,as,. . . are called the first, second, third, . . .

partial quotients of the continued fraction.

§ 3.] Every number, commensurable or incommensurable, may
be expressed uniquely as a simple continued fraction, which may
or may not terminate.

For, let X be the number in question, and «i the greatest

integer which does not exceed X; then we may write

X=«i+^ (1),

where Xi>l, but is not necessarily integral, or even commensur-

able.

Again, let a^ be the greatest integer in Xi, so that a^^l',

then we have

where X2>\, as before.

Xi = aa +^ (2),

* The notation a, + — + — + -* + . . .is frequently used by Continental
•* a« a^ a^

writers.
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Again, let a-i be the greatest integer in X2 ; tlien

X.==a3 +
^^ (3);

and so on.

This process will terminate if one of the quantities ^Y", say

jr„_i, is an integer ; for we should then have

Now, using (2), we get from (1)

X=ai +
Y

Thence, using (3), we get

A = «! + -

and so on.

Finally, then.

«2 + Y

X=ax+ . . .
— (a),

flf2 +% + «n

It may happen that none of the quantities X comes out

integral. In this case, the quotients «i, «2, • • • either recur, or

go on continually without recurrence ; and we then obtain in

place of (a) a non-terminating continued fraction, which may be

periodic or not according to circumstances.

To prove that the development is unique, we have to show

that, if

11 ,11 ,^.

a2 + a3+ «2 +«3 +

then ffli = a/, ^2 = 0^2', ^s = eta, &c.

Now, since a^ and a^ are positive integers, and . . . and
el's

"^

-—,— . . . are both positive, it follows that ... and—-.
—

a-i + tta + «3 + ^2 +

—— . . . are both proper fractions. Hence, by chap, iii., § 12,
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(r),

- (8).

we must have

and
1

a2 +

1

•«3 +

(h

1

ai->r

1
, . ,

Again, from (S), we have

0^2

1
f—
«3 +

1

a^+ '
' = a^ +

1 1

From (c), by the same reasoning as before, we have

, 111 111 , .

and . . . = —7— —7 7— . • • ('?)•

^3+ ^4+ a5+ as + «4 + ^5 +

Proceeding in this way, we can show that each partial

quotient in the one continued fraction is equal to the partial

quotient of the same order in the other*.

This demonstration is clearly applicable even when the

continued fraction does not terminate, provided we are sure

that the fractions in ()8), (S), {rj), &c. have always a definite

meaning. This point will be settled when we come to discuss

the question of the convergency of an infinite continued fraction.

Cor. If «!, a2) • • •, «re, h, bz, . . ., bn be all positive

integers, Xn+i and yn+i any positive quantities rational or irra-

tional each of which is greater than unity, and if

1 J_J_^^,4.J_ 1 1
^ ^2 + '

' " a» + ^«+i
~

^ h+ ' ' ' bn+ yn+l

'

then must

ai = bi, a.2 = b2, . . ., an -= bn, and also Xn+i = yn+\-

§ 4,] As an example of the general proposition of § 3, we

may show that every commensurable number may be converted

into a terminating continued fraction.

Let the number in question be A/B, where A and B are

integers prime to each other. Let Oi be the quotient and C the

remainder when A is divided by j9 ; Og the quotient and D the

* We suppose, as is clearly allowable, that, if the fraction terminates, the

last quotient is > 1. It should also be noticed that the first partial quotient

may be zero, but that none of the others can be zero, as the process is

arranged above.
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remainder when B is divided by C; a^ the quotient and E the

remainder when C is divided by D ; and so on, just as in the

arithmetical process for finding the G.C.M. of A and B. Since

A and B are prime to each other, the last divisor will be 1, the

last quotient a,j, say, and the last remainder 0. We then have

A
B^

= «i
G

= «!
1

'^

BIG'
B
C~

a.2,
D

= a^
1

^ GjD'

Hence ^''^

B ^ Oa + % + " * " a»

'

It should be noticed that, if^ <5, the first quotient ai will be zero.

Example 1.

To convert 167/81 into a continued fraction.

Going through the process of finding the G.C.M. of 167 and 81, we have

81)167(2
162

5)81(16
80

1)5(5
6

Hence

Example 2.

Consider -23 = 23/100.

We have

81~ 16+ 5*

100)23(0

Hence

23)100(4
92

8)23(2
16

7)8(1

7

1)7(7
7
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Cor. If we remove the restriction that tJie last partial quotient

shall be greater than unity, we may develop any commensurable

number as a continued fraction which has, at our pleasure, an

even or an odd number of partial quotients.

For example, 2 + -^^— - has an odd number of partial quotients ; but we
lo -|- o

may write it 2+ - .— -;— -, which has an even number.16+4+1

§ 5.] Any single surd, and, in fact, any simple surd number,

such as A + Bp^'"' + Cp'^'"' + . . . + Aj»<"~^"", can be converted into

a continued fraction, although not, of course, into a terminating

continued fraction.

The process consists in finding the greatest integer in a series

of surd numbers, and in rationalising the denominator of the

reciprocal of the residue. Methods for effecting both these

steps are known (see chap, x.), but both, in any but the

simplest cases, are very laborious. It will be sufficient to give

two simple examples, in each of which the result happens to

be a periodic continued fraction.

Example 1.

To convert Ji^ into a continued fraction.

We have, 3 being the greatest integer < JlS,

Vl3 = 3 + (Vl3-3) = 3+ —

^

1/(^13-3)'

=3+--J: (1).

(Vl3 + 3)/4

Again, since the greatest integer in (,^13 + 3)/4 is 1, we have

4 4 4/(^/l3-l)'

=1+—7= (2).
(Vl3 + l)/3 ^ '

Vl3 + 1_ jYi-2 _ 1

3 ""
^3/(Vl3-2)'

= 1
1

'*'(s/l3+ 2)/3
^^^'
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Vl3 + 2_ Vl3-1 ^
3 a 3/(Vl3-

1

-1)'

1

4/(n/13-
1

-3)'

^13 + 3

1

1

-3)'

= 1 +;^=^— (4);

n/13 + 1 ^.^^ VT3-3^^^
4 4

=1+—^— (5);

Vl3 + 3 =6+ Vl3-3 = 6 +

(Vl3 + 3)/4
after which the process repeats itself.

From the equations (1)...(6) we derive

^13=3+— -_____...,
* .

where the * * indicate the beginning and end of the cycle of partial quotients.

Example 2.

Jb-1
To convert ^^-^— into a continued fraction.

We have

^3-1 =0 +
2/(V3-l)

0+
'

V3 + l'

^3 + 1 = 2 + ^^3-1 = 2 + ^ ,

1/(^3-1)
•

=2+—yJ^—

;

(V3 + l)/2

v/3 + l _ J3-l _ 1

2 - + 2 -' + 2/(V3-l)'

V3+1
after which the qaotients recur. We have, therefore,

Vizi.o+J^JL...
.

2 ^2+ 1 +
* *

It will be proved in chap, xxxiii. that every positive number of the form

(J^ + Q)IR, where P is a positive integer which is not a perfect square, and

Q and R are positive or negative integers, can be converted into a periodic

continued fraction ; and that every periodic continued fraction represents an
irrational number of this form.
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Exercises XXVIII.

Express the following as simple continued fractions, terminating or

periodic as the case may be:

—

/I \
15 to\

5^2 n \
39293 76

(1-) 73- (^-^ il93- (^-^ 36932- ^^'^ ^^i^-

(5.) 2-718281. (6.) -0079. (7.) ^2. (8.) ^5. (9.) ^/(ll).

(10.) ^(10). (11.) ^/(12). (12.) Vf. (13.) V3 + 1.

(14.) ^-±1^^

(15.) Show that H-ig = l +^^^-L... .

* «

(16.) A line AB is divided in C, so that AB.AC=BC^. Express the

ratios ACjAB, BCIAB as simple continued fractions.

(17.) Express sj(a^+ a) and ij{a^-a) as simple continued fractions, a
being a positive integer.

(18.) If a be a positive integer, show that

2V(l4-a^) = 2a +^jl^... .

«

(19.) If a be a positive integer > 1, show that

« *

(20.) Show that

(21.) Show that every rational algebraical function of x can be expanded,

and that in one way only, as a terminating continued fraction of the form

_1 1_ J^

where Qi, Q^^ • • • » Qn ^^^ rational integral functions of x.

Exemplify with (a?+x^+x+l)l(x*+3x^ + 2!>i^ + x + l).

(22.) If x=^ A . . ..

, b a
and j, =__...,

* «

show that x-y = a-b.
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PROPERTIES OF THE CONVERGENTS TO A CONTINUED FRACTION.

§ 6.] Let US denote the complete continued fraction by x^, so

that

and let

,111
^2 + «3 + »4 +

1

'a.
0);

1 1 1
Xn — Ctln + ... (2);

1 1
a?3 = ^3 + . . .

—
(3);

and so on.

Then x<2,Xz, . . . are called the complete quotients corresponding to

a^, <h, • • -J Of) simply, the second, third, . . . complete quotients.

The fraction itself, or x^, may be called the first complete quo-

tient. It will be observed that ai, a.2, a^, . . . are the integral

parts of ^1, X2, X3, . . . .

Let us consider, on the other hand, the fractions which we

obtain by first retaining only the first partial quotient, second by

retaining only the first and second, and so on ; and let us denote

the fractions thus obtained, when reduced (without simplifica-

tion, as under) so that their numerators and denominators are

integral numbers, by pilqi, p-ilq^, . . . Then we have

ax Px / X

«x =r =q, (")'

(7),

(8).

where

a.2 a^ ^2

1 1 _ ai^a^s + ai + Os

fta + 0,% CL-^z + 1 2'3

11 1 .
ai + ... — = &c.

^2 + «3 + «»

and so on,

Px = ax, 9'i = l

Pi - a^a^ +1, g'2 = Oa

_P3 = aia2«3 + ai + «3, g'3 = a2«3 + 1

and so on.

in
(7)>
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The fractions p^jqi , Pijq^ , • are called the Jirst, second, . . .

convergents to the continued fraction.

Cor. If the continued fraction terminates, the last convergent

is, hy its definition, the continued fraction itself.

§ 7.] It will be seen, from the expressions for pi, p.^, pa and

qi, q'l, qs in § 6 (a), i/3'), (y), that we have

Pi = a3P2+Pi (1);

q3 = a;q2 + qi (2).

This suggests the following general formulw for calculating the

numerator and denominator ofany convergent when the numerators

and denominators of tlie two preceding convergents are known,

namely,

Pn = anPn--l+PH-2 (3);

qn = dnqn-l + qn-2 (4).

Let us suppose that this formula is true for the nth. con-

vergent. We observe, from the definitions (a),
(J3), . . ., (8) of

§ 6, that the n + lth convergent, pn+i/qn+i, is derived from the

wth if we replace a„ by a„ + l/a„+i. Hence, since pn-i, qn-i,

p„_2, qn-2 do not contain a„, and since, by hypothesis,

Pn ^ anPn-l+Pn-2

2'n ^nQn-i + qn-2

it follows that

Pn+1^ {Cl'n + llan+\)Pn-\ +Pn-2

qn+1 {(^n + l/<^Ji+l) 9'ji-l + qn-2

or, after reduction,

Pn+l _ an+i {anPn-l+Pn-2) +Pn-1

qii+1 Cin+l y^nqn-l + qn-i) + 3'n-l

^ dn+lPn -^Pn-l

Ctn+iqn + qn-1
by (3) and (4).

Hence it is sufficient if we take

Pn+l = (f-n+lPn +^n-l \

qn+\ — (tn+\qn + qn-1'

In other words, if the rule hold for the wth convergent, it holds

for the wTlth. Now, by (1) and (2), it holds for the third;

hence, by what has just been proved, it holds for the fourth

;

hence for the fifth; and so on. That is to say, the rule is

general.
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Cor. 1. Since a„ is a positive integral number, it follows from

(3) and (4) that the numerators of the successive convergents form

an increasing series of integral numbers, and that the same is true

of the denominators.

Cor. 2. From (3) and (4) itfollows that

' '
'

(5);

and

-— = a» +

qn 111
qn~i " an-1 + an-1 + ' 'as

(6).

For, dividing (3) by j9„_i, and writing successively w-1, w-2,
. . ., 3 in place of w, we have

•PnlPn-l = «n + " /"
;

/'»-]//'»l-2

= tts +
aa + «i

'

From these equations, by successive substitution, we derive (5)

;

and (6) may be proved in like manner.

Example 1.

The continued fraction which represents the ratio of the circumference

of a circle to the diameter is 3 + ^r— t^— ^j
— :r--— :;— :;— . . , . It is

7+ 15+ 1+ 2U2+ 1+ 1 +
required to calculate the successive convergents.

1 3 22
The first two convergents are 3 and 3 + = , that is, - , —

.

Hence, using the formulae (3) and (4), we have the following table :

—

n a P q

1 3 3 1

2 7 22 7

3 15 333 106
4 1 355 113

5 292 103993 33102
6 1 104348 33215

7 1 208341 66317

where p4= 355, for example, is obtained by multiplying the number over it,

namely 333, by 1, and adding to the product the number one place higher

still, namely 22.

28II.
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The successive convergents are therefore

3 22 333 355 103993
1' 7 ' 106' 113' 33102 » ' • *

Example 2.

If Pi/^i. Ihl<l2> ... be the convergents tol + s— ^— -r— ...—- ...

ad 00 , show that

Pn={n-l)Pn-i + in-l)Pn-2 + {n-2)p^_s+. . .+3p2 + 2pi+ 2.

By the recurrence-formula we have

Pn=fiPn-l+Pn-2;

Pn-l= (n-'^)Pn-2+Pn-3'

JPn-2= («-2)i?„_3+i'„-4;

Ps=^P2+Pi;
and (since Pi= l, p^=3)

p.,^2pi + l.

Adding all these equations, and observing that Pn-^, Pn-Sf • • -t Ps

each occur three times, once on the left multiplied by 1, once on the right

multiplied by 1, and again on the right multiplied by n-1, n-2 3

respectively, we have

2J„=(n-l)i)„_i + (w-l)i)„_2+ («-2)j>„_3+. . .+dp2 + 2pi + {p^ + l),

which gives the required result since i5i= l.

Example 3.

In the case of the continued fraction a, h . . • prove
a2+ ai+ a2+ 0^ +

that P2n= q2,i+l . ^^2™-! = «l92n/«2 •

By the definition of a convergent, we have

P?n+i=a,+^...^
(a),

32,1+1 * a2+ «!

since every odd partial quotient is a^

.

Again, by Cor. 2 above,

Hence

•which gives

Pin ' 02+ «1

Pin+\ _ Pin-¥\

3211+1 Pin

2'2»=9'2n+l (t).

Also, since l'2»= «2P2n-l+i'2n-2»

92n+] = '^iS'Zn + 92n-l i

(7) leads to

«h!P2»-l +i'2n-2= «l9'2n + 5'2n-l (5).

Now, if we write n-1 for n in (7), we have i'27»-a=3'2»-i*» hence (5) gives

«2P2n-l = ai5'2»-

Therefore

i'2H-i=r'32» (0-
"2
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§ 8.] From equations (3) and (4) of last section we can prove

the following important property of any two consecutive con-

fergents :

—

For, by § 7 (3) and (4),

Pn^-X^r, -Pnqn+\ = ifln+\Pn +Pn-^ qn'Pn («»i+i9'>i + qn-i),

= -(Pnqn-i-Pn-iqn)-

Hence, if (1) hold, we have

Pn+iqn -Pnqn+l = - ( - 1)",

In other words, if the property be true for any integer n, it

holds for the next integer n + 1. Now

P^qi -Piq2 = (aia2 +1)1- fti^s,

= 1,

that is to say, the property in question holds for n = 2, hence it

holds for w = 3 ; hence for w = 4 ; and so on.

Cor. 1. The convergents, as calculated by the rule of %7, are

fractions at their lowest terms.

For, if pn and qn, for example, had any common factor, that

factor would, by § 8 (1), divide (-1)" exactly. Hence pn is

prime to qn', and Pn/qn is at its lowest terms.

Cor. 2.

Pn Pn-l ^ ( - I)'*

qn 2'n-i qnqn-i
(2).

Cor. 3.

'n qi \q2 qJ \q3 qJ '
' ' Vg™ qn-J'

1 1 (-1)"
+ . . . + ^

—

'-= «! + +. . . + ^ '-
(3).

qiq^ q^qz gn-iqn
^

Cor. 4.

Pnqn-2-Pn-2qn={-Y~^an (4).

For

Pnqn-i -Pn-^qn = {^nPn-X ^Pn-^ g'n-2 - Pn-1 {flnqn-X + g'n-2),

= {Pn-\qn-1 -Pn-^qn-l) ^n,

= (-r-^a™,byCor. 1.

28—2
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Cor. 5.

Piikn -Pn-llgn-Z = ( " Y'%Jqnqn-i (5).

Cor. 6. The odd convergents continually increase in value, the

even convergents continually decrease; every even convergent is

greater than every odd convergent; and every odd convergent is less

than, and every even convergent greater than, any following con-

vergent.

These conclusions follow at once from the equations (2) and (5).

Cor. 7. Given two positive integers p and q which are prime

to each other, we can always find two positive integers p and q
such that pq -p'q=+ 1 or = - 1, as we please.

For, by § 4, Cor., we can always convert piq into a continued

fraction having an even or an odd number of partial quotients,

as we please. If p'lq' be the penultimate convergent to this

continued fraction, we have in the former case pq' -p'q- + 1, in

the latter pq^ —p'q = — 1.

Example. If jp„/g'„ be the nih. convergent to a^H . . . — , and

s^nlsQn *^^ convergent to Ug-i ... — which corresponds to the
"s+l + ^P

partial quotient a„, show that

Pn9n-r -Pn-r<ln={ " l)""''*"^n-J+lQn«

We have, by our data,

— = a, 4 ... — (a),

ffn «2+ «n

Q.n-r ^2+ ^n-r

heno ^' = a^ + . . . ^-^ -^ (7).

Now
Pn-r _ ^n-rVn-r-\ +Fn-r-

9n-r ^n-r 3n-r-i+ 1n-r-2
Hence, by (a) and (7),

Pn ^ i<^n-r+n-r+lQnln-r+lPn)Pn-r-l +J'n-r-3

ffii (^n-r+ n-r+l^n/n-r+l^n) 9n-r-X+ 3n-r-2

_ Pn-r"^ n-r+T.QnPn-r-lln-r+\-^ n

3n-r+ n-r+lQn 9n-r-lln-r+\"n

n—r+l"nPn—r ' n-r+lVnPn—^—

1

n-r+1 °n3n—r+ n-r+lQn 3n-r-l

Now it la easy to see that the numerator and denominator of the fraction

last written are mutually prime; therefore

(8).

Pn -~ n-r+l "nPri-r+ n-r+l '

9n— n-r+l"n 2n-r+ n-r+lQ
^nPn-r-l' I /^v

'n3n-r-i.i
^ '"
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From (e) we derive

PnQn-r ~Pii-r1ii~ ~ (Pn-rQn-r-l ~ Pn-r-1 Qn-rJn-r+lQuy

= (-l)(-l)"-Vr+l<?n.

by (1) above,

=(-ir-'-+VrH<3„;
as was to be shown.

§ 9.] The convergents of odd order are each less than the

whole continued fraction, and the convergents of even order are

each greater; and each convergent is nearer in value to the whole

continued fraction than the preceding.

We have, by § 7,

Pn^-x ^ (in+^Pn -^Pn-\ ,

3'n+i <^n+i^n + ^n-l

and the whole continued fraction a?i is derived from pn+^/qn+i by

replacing the partial quotient an+i by the complete quotient Xn+i.

Hence

_ iVn+iPn + Pn-i
W\ — .

From this value of x^ we obtain

„ Pn _ ^n+}Pn+Pn-i Pn
OOi —

,

Pn-\qn-Pnqn-i

qn(a!n+iqn + qn-i)
(1).

Similarly

_Pn-\ ^ ^n+l(Pnqn-l-Pn-iq») ,^.

qn-1 2'w-l (^re+l5're + 3'?i-l/

From (1) and (2) we deduce

Pn
Xi--

q-n, qn-1

Pn~\ qn^n+l
(3).

qn-i

Now qn-\, qn ar^> positive integers ; a?„+i -^ 1 ; and, by § 7,

Cor. 1, qn-i<qn- It follows, therefore, from (3) that Xi-pnjqn

is opposite in sign to, and numerically less than, Xi-pn^j/qn-i.

In other words, pjqn differs from Xi by less than pn-i/qn-i does

;

and if the one be less than Xi , the other is greater, and vice versa.
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Now the first convergent is obviously less than a^i, hence the

second is greater, the third less, and so on ; and the difference

between Xi and the successive convergents continually decreases.

Cor. 1. The difference between the continued fraction and

the nth convergent is less than 1/qnQn+i, and greater than

Cl'n+2/(J!nqn+2'

For, by what has just been proved,

Pn Pn+2 ^ Pn+l

Qn Qn+a 9'n+l

are, in order of magnitude, either ascending or descending.

Hence

Pn ^ ^Pn Pn+l

9'n Qn 9'n+l

<r^,by§8(2).

Again,

Pn ^ ^Pn Pn+a

Qn 9'n Qn+i

>-^,by§8(5).

Since gn+i>qn, and since qn+ijan+i = («n+2g'n+i + gn)/an+2

= qn+i + qn/an+2<qn+i + qn (ci'n+2 being <|:l), it follows that the

upper and lower limits of the error committed by taking the nth

convergent instead of the whole continued fraction may be

taken to be l/q^ and l/qn(qn + qn+i)- These, of course, are not

so close as those given above, but they are simpler, and in many
cases they will be found sufiicient.

Cor. 2. In order to obtain a good approximation to a

continued fraction, it is advisable to take that convergent wJiose

corresponding partial quotient immediately precedes a very much

larger partial quotient.

For, if the next quotient be large, tliere is a sudden increase

in qn+i , so that l/qnqn+i is a very small fraction.

The same thing appears from the consideration that, in

taking pn/qn instead of the whole fraction, we take a» instead of
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ttn + . . . , that is, we neglect the part ... of the

complete quotient. Now, if a„+i be very large, this neglected

part will of course be very small.

Cor. 3. The odd convergents form an increasing series of

rational fractions continually approaching to the value of the

whole continued fraction; and the even convergents form a

decreasing series having the same property*.

Cor. 4. If Pnlc[n-i^x<'^l<in{<ln + qn-\), where qn-x is the de-

nominator of the penultimate convergent to Pn/^n when converted

into a simple continued fraction having an even number of

quotients, then Pnlqn is one of the convergents to the simple

continued fraction which represents Xi; and the like holds if

3^i-Pnlqn<'i-/^n(qn + Qn-i), whore qn-i is the denominator of the

penultimate convergent to pn/qn when converted into a simple

continued fraction having an odd number of quotients.

Let «!, ttaj •..>«» be the n partial quotients of pnjqn

when converted into a simple continued fraction having an

even number of quotients, and let Pn-\lqn-\ be the penultimate

convergent. Then pnqn-\ -Pn-iqn = 1-

Let Xn+i be determined by the equation

1 1 1
^1 = «i + . .

. .

^2 + an + iy„+i

Then we have

^1 = (-^^n+li^/i +P.i-l)liXn+iqH + qn-l).

whence

^71+1 = (iViqu-i -Pn-i)/(Pn - a^iqn),

* The value of every simple continued fraction lies, of course, between

and 00 ; and we may, in fact, regard these as the first and second con-

vergents respectively to every continued fraction. If we write = f , and

00 = i , and denote these by -^ and — , so that we understand »_, to be 0,

Pg to be 1, q_i to be 1, and q^^ to be 0, then p_j and p^ will be found to fall

into the series p^, p^, p.^, &c., and g_j and Qq into the series q^, q^, q^, &c.

It will be found, for example, that l>i= a^pQ+p_-^^, <j'j= ajg'o + ?-i > Pol-i -^-i?o
= ^

- l)** =r 1, and so on,
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or, if we put ^ =pn/qn - ^i,

^»+l = {{Pnqn-l -Pn-\ qr^hn - qn-X i]\q%^,

= i^/qn - qn-1 ^)/qni'

Hence the necessary and sufficient condition that iCn+i> 1 is that

i/qn-qn-ii>qJ,

that is,

^<'i-/qn(qn+qn--d,

which is fulfilled by the condition in the first of our two

theorems.

Let now bi, h^, . . ., bn be the first n partial quotients in the

simple continued fraction that represents ^j. Then we have

,1 11
Xi-bi + y . . . 7 ,

02+ bn +2/n+l

where ^»+i > 1.

Hence

1 J ]_^j ^ J_ 1 1

^ 02+ ' ' ' an + iCn+1 ^ b.2+ ' ' ' bn+1/n+i'

Therefore, by § 3, Cor., we must have

Cl'i — bi, ^2 = 62, . . ., ttn — bn, ^n+i—^n+i-

1 1 . p .

Hence «i + . . . + — , that is, — is the nth convergent to
Cti + G'n qn

The second theorem is proved in precisely the same way.

Since qn-\<qni the conditions above are a fortiori fulfilled if

X^~Pn\qn<^\'^qn-

§ 10.] The propositions and corollaries of last section show

that the method of continued fractions possesses the two most

important advantages that any system of numerical calculation

can have, namely, 1st, it furnishes a regular series of rational

approximations to the quantity to be evaluated, which increase

step by step in complexity, but also in exactness ; 2nd, the error

committed by arresting the approximation at any step can at

once be estimated. The student should compare it in these

respects with the decimal system of notation.
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§ 11.] It should be observed that the formation of the suc-

cessive convergents virtually determines the meaning we attach

to the chain of operations in a continued fraction.

If the continued fraction terminate, we might of course pro-

ceed to reduce it by beginning at the lower end and taking in

the partial quotients one by one in the reverse order. The

reader may, as an exercise, work out this treatment of jfinite con-

tinued fractions, and he will find that, from the arithmetical

point of view, it presents few or none of the advantages of the

ordinary plan developed above.

In the case of non-terminating continued fractions, no such

alternative course is, strictly speaking, open to us. Indeed, the

further difficulty arises that, a priori, we have no certainty that

such a continued fraction has any definite meaning at all. The

point of view to be taken is the following :—If we arrest the

continued fraction at any partial quotient, say the sth, tlien, in

the case of a simple continued fraction, however great s may be,

we have seen that the two convergents, p2n-i/Q2n-i, P-^l^^n, in-

clude the fraction psjqa between them. Hence, if we can show

that p^-i/q2n~i and Pznlq2n, each approach the same finite value

when n is increased without limit, it will follow that as s is

increased without limit, that is, as more and more of the partial

quotients of the continued fraction are taken into account,' pa/qa

approaches a certain definite value, which we may call the value

of the whole continued fraction. Now, by § 8, Cor. 5, p2n-i/q2n-i

continually increases with n, and p-2n/q2n continually decreases,

and P2n/q2n>p^-ilq2n-i- Hence, since both are positive, each of

the two must approach a certain finite limit. Also the two

limits must be the same ; for by § 8, Cor. 2, P2nlq^-p^-\lq2n-i
= l/q^q^n-i, and by the recurrence formula for q^ it follows that

q2n and g'sn-i increase without limit with n ; therefore p-aijqon

—p^n-ilq-in-i may be made as small as we please by sufficiently

increasing n.

It appears, therefore, that everi/ simple contimied fraction has

a definite finite value.

Example.

To obtain a good commensurable approximation to the ratio of the
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circumference of a circle to the diameter. Referring to Example 1, § 7,

we have the following approximations in defect:

—

3 333 103993

1' 106' 38102 • '

and the following in excess :

—

22 355 104348

7 ' 113 ' 33215
'

Two of these*, namely 22/7 and 355/113, are distinguished heyond the others

by preceding large partial quotients, namely, 15 and 292.

The latter of these is exceedingly accurate, for in this case l/g„?„+i

= 1/113 X 33102= -0000002673, and a„+2/g'„q'„+2= 1/113 x 33215= •0000002665.

The error therefore lies between -000000266 and -000000267 ; that is to say,

355/113 is accurate to the 6th decimal place. In point of fact, we have

7r= 3-14159265358 . . .

355/113 = 3-14159292035 . . .

Differences -00000026677 ....

Exercises XXIX.

769
(1.) Calculate the various convergenta to yprj, and estimate the errors

committed by taking the first, second, third, &c., instead of the fraction.

(2. ) Find a convergent to the infinite continued fraction
:j
— ;r— -— ...

which shall represent its value within a millionth.

(3.) Find a commensurable approximation to /v/(17) which shall be

accurate within 1/100000, and such that no nearer fraction can be found

not having a greater denominator.

(4.) The sidereal period of Venus is 224-7 days, that of the earth 365-25

days ; calculate the various cycles in which transits of Venus may be expected

to occur. Calculate the number of degrees in each case by which Venus is

displaced from the node, when the earth is there, at the end of the first cycle

after a former central transit.

(5.) Work out the same problem for Mercury, whose sidereal period ia

87-97 days.

(6.) According to the Northampton table of mortality, out of 3635

persons who reach the age of 40, 3559 reach the age of 41. Show that

this is expressed very accurately by saying that 47 out of 48 survive.

* The first of them, 22/7, was given by Archimedes (212 b.c). The

second, 355/113, was given by Adrian Metius (published by his son, 1640

A.D.) : it is in great favour, not only on account of its accuracy, but because

it can be easily remembered as consisting of the first three odd numbers

each repeated twice in a certain succession.
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(7.) Find a good rational approximation to sj(19) which shall differ from

it by less than 1/100000 ; and compare this with the rational approximation

obtained by expressing ij{19) as a decimal fraction correct to the 6th place.

(8.) If a be any incommensurable quantity whatever, show that two

integers, m and n, can always be found, so that 0<an-m<K, however small

K may be,

(9.) Show that the numerators and also the denominators of any two con-

secutive convergents to a simple continued fraction are prime to each other

;

also that if p^ and p^-^ have any common factor it must divide a„ exactly.

(10.) Show that the difference between any two consecutive odd convergents

to ij(a^ + l) is a fraction whose numerator, when at its lowest terms, is 2a.

(11.) Prove directly, from the recursive relation connecting the numera-

tors and denominators, that every convergent to a simple continued fraction

is intermediate in value to the two preceding.

(12.) Prove that

3n%-i'«= (-1)"+V^2^3 • • • ^n+l-

Show that pjqn differs from x^ by less than Ija^a^ . . . a„+i(|'„. Is this a

better estimate of the error than llgn^n+i '

(13.) If the integers x and y be prime to each other, show that an integer

u can always be found such that

where z is an integer.

(14.) Prove that

(PJ - in) d'n-l" - 3n-l^) = {PnPn-1 " 9n^n-lY ' 1
'.

Pn+9n ^ {PnPn-l + QnQn-^)^+'^

Pn-i + in-i {Pn-lPn-i + in-\in-^f+
1

'

(15.) Prove that p^-iPn - 1n-\1n^i ^^ positive or negative according as n

is even or odd.

(16.) If P/Q, P'/Q', P"IQ" be the nth, n-ltb, Ji^^th convergents of

1 1

02 +
1

03 +
1

04 +

1

02+
1

03 +

1

«4 +

1

a3+
1

O4+
respectively, show that

P= a2P' + P", (3= (aia2 + l)P' +«!?".

(17.) If the partial quotients of Xi=pjq^ form a reciprocal series (that is,

a series in which the first and last terms are equal, the second and second

last equal, and so on), then Pn-i = qn^ ^^^ {ln'^^)IPn i^ ^^ integer; and,

conversely, if these conditions be satisfied, the quotients will form a

reciprocal series.

(18.) Show, from last exercise, that every integer which divides the sum

of two integral squares that are prime to each other is itself the sum of two

squares. (See Serret, Alg. Sup., 4'"« ed., t. i., p. 29.)
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(19.) Show that 11 ' '

1 1,1 1

ajH- a„-i an-i+ «a

(20.) If ^1 = rv rz ;7T • • • '
^^°^^ *^^* 2'™=3»-i-1111

(21.) The successive convergents of 2a -\ —

;

^—- . . . are
^ ' a+ 4a+ a+ 4a+

always double those of a + 2—- 0^-77 • • • •

(22.) If the reduced form of the nth complete quotient, x^, in

0,+ ... be ^Jvn, show that

fn= '^n fn+1 "•" fn+2

'

(23.) Find the numerically least value of ax -by for positive integral

values of x and y, a and & being positive integers, which may or may not be

prime to each other.

CLOSEST COMMENSURABLE APPROXIMATIONS OF GIVEN

COMPLEXITY.

§ 12.] One commensurable approximation to a number

(commensurable or incommensurable) is said to be more complex

than another when the denominator of the representative frac-

tion is greater in the one case than in the other. The problem

which we put before ourselves here is to find the fraction, whose

denominator does not exceed a given integer D, which shall most

closely approximate {by excess or by defect, as may he assigned)

to a given number commensurable or incommensurable. The

solution of this problem is one of the most important uses of

continued fractions. It depends on a principle of great interest

in the theory of numbers, which we proceed to prove.

Lemma.

—

Ifplq andp'jq' he twofractions such thatpq'-p'q=l,

then no fraction can lie between them unless its denominator is

greater than the denominator of eitJier of them.

Proof—Let ajb be a fraction intermediate in magnitude to

pjq and p'jq. Then

q h^q q'
^^'

'

?-^<^-< (2).
o q q q

^
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From(l), PkzM^PlJLS^.
^ ' qb qq

pb — qa 1

qb qq
'

Hence qb > qq (pb - qa)
;

and b>(pb- qa) q.

Now p\q — ajb is positive, hence pb - ga is a positive integer.

It follows, therefore, that bxq.
Similarly it follows from (2) that b>q.

Hence no fraction can lie between p\q and p\(l unless its

denominator is greater than both q and q. In other words, if

pq' -p'<l = ^, no commensurable number can lie between pjq and

p'l<][ which is not more complex than either of them.

§ 13.] The nth convergent to a continued fraction is a nearer

approximation to the value of the complete fraction than any

fraction whose denominator is not greater than that of the con-

vergent. For any fraction ajb which is nearer in value to the

continued fraction than Pnlqn must, a fortiori, be nearer than

Pn-il^n-i' Hence, since Pn/gn and Pn-il^n-i include the value of

the continued fraction between them, it follows that a/b must

lie between these two fractions. Now we have, by § 8, either

Pnqn-l-Pn-iqn^'i-, Or Pn-iqn-Pnqn-l= i- HcnCC, by § 12, b

must be greater than qn, which proves our proposition.

Example.

Consider the continued fraction a>, = 3 + -— —- -— -— -.^ 1+ 3+ 4+ 2+ 5

mt, • ^ 3 4 15 64 148 779 ,,The successive convergents ^'^^
3; » j » 4" » pf ' "og > on? ' ^^ ^^ ^^''^

any one of these, say 64/17, the statement is, that no fraction whose
denominator does not exceed 17 can be nearer in value to x^ than 64/17.

§ 14.] The result of last section is a step towards the solution

of the general problem of § 12; but something more is required.

Consider, for example, the successive convergents Pn-2lqn-2,

Pn-i/qn-i, Pnlqn to o^i, and let n be odd, say. Then

Pn-2 Pn ^ Pn-1
> > "^1 >

qn-2 qn qn-1

are in increasing order of magnitude. We know, by last
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section, that no fraction whose denominator is less than g^-i can

lie in the mtevwaX pn-ijqn-i, Pn-il^n-i, and also that no fraction

whose denominator is less than q^ can lie in the interval

Pnlqn, Pn-i/qn-i'} but we havG no assurance that a fraction

whose denominator is less than qn, may not lie in the interval

Pn-2/qn-2, Pnlqn, ^^'^ Pnqn-i-P%-iq% = a,,, where «„ may be>l.

This lacuna is filled by the following proposition :

—

1°. The series offractions

Pn-2 Pn-1 +Pn-1 Pn-2 + '^Pn-l

qn-i qn-2 + qn-1 9'n-2 + ^qn-l

Pn-i + an- IPn-l Pn-I + (^nPn-X
f ^ PA /i\

qn-2 + an- ^qn-i' 9'«-2 + «re2'«-i V qJ

form (according as n is odd or even) an increasing or a decreasing

series.

2°. Each of them is at its lowest terms; and each consecutive

pair, say P/Q, P'/Q', satisfies the condition PQ — P'Q = ± 1 ; so

that no commensurable quantity less complex than the mm'e complex

of the two can he inserted between them.

The first and last of these fractions (formerly called Con-

vergents merely) we now call, for the sake of distinction, Principal

Convergents ; the others are called Intermediate Conmrgents to

the continued fraction. To prove the above properties, let us

consider any two consecutive fractions of the series (1), say PjQ,

P'lQ'; then

P_P^ Pn-2 + rpn-i _ Pn-2 + r+ 1jP„_i

Q Q' qn-2 + rqn-i q^.^ + V+lq^-x

(where r = 0, or 1, or 2, . . ., or a„- 1),

^ - {Pn-l gn-2 -Pn-1 g^-i)

(g'„_2 + rqn-^ {qn-t + r + 1 q^-i)
'

+ 1

{qn-2 + rqn--,) {qn-2 + r+l q^-i)

'

~ OO ^ ** be odd,

+ 1= ^^ if n be even.

(2).
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Hghcb
Fq-P'Q=-li(nheodd,

] ,^.

= + 1 if w be even. J

(2) and (3) are sufficient to establish 1° and 2".

3°. Since P/Q-pn-i/qn-i = ±l/qn-i{qn~2 + rqn~i), and since

iVi obviously lies between P/Q and Pn-i/qn-i, it follows that the

intermediate convergent PjQ differs from the continued fraction

by less than l/q,i-i Q, a fortiori by less than Ijqn-i*

§ 15.] If we take all the principal convergents of odd order

with their intermediates wherever the partial quotients differfrom
unity, andform the series

9. Pi P^ Pl^^ Pn /A\
1 J • • •» J • • -J > • • •> ,...,,... {IV},
^ yi </3 qn-2 qn

and likewise all the principal convergents of even order with

their intermediates, and form the series

1 P2 Pi Pn-3 Pn-l /T>x

'J q-2 q* qn-s qn~i

then (A) is a series of commensurable quantities, increasing in com-

plexity and increasing in magnitude, which continually approach

the continued fraction; and (B) is a series of commensurable

quantities, increasing in complexity and decreasing in magnitude,

which continually approach the same; and it is impossible between

any consecutive pair of either series to insert a commensurable

quantity which shall be less complex than the more complex of the

two.

If the continued fraction be non-terminating, each of the two

series (A) and (B) is non-terminating.

If the continued fraction terminates, one of the series will

terminate, since the last member of one of them will be the last

convergent to Xi ; that is to say, Xi itself. The other series may,

however, be prolonged as far as we please; for, if Pn-i/qn-i c^nd

pjqn be the last two convergents, the series offractions

Pn-l Pn-l +Pn Pn-1 + 2pn

qn-1 qn-i + qn g'„-i + 2g'„'

* For a rule for estimating the errors of principal and intermediate

convergents to a continued fraction, see Hargreaves, Mesa. Math., Feb. 1898.
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forms either a continually increasing or a continvxilly decreasing

series, in which no principal convergent occurs, but whose terms

approach more and m.ore nearly the value pnlq^ that is, a?i*.

§ 16.] We are now in a position to solve the general problem

of § 12 1. Suppose, for example, that we are required to find the

fraction, whose denominator does not exceed D, which shall

approximate most closely by defect to the quantity Xi. What we

have to do is to convert Xi into a simple continued fraction, form
the series (A) of last section, and select thatfractionfrom it whose

denominator is either D, or, failing that, less than hut nearest

to D, say PjQ. For, if there were any fraction nearer to Xi than

PjQ, it would lie to the right oiPjQ in the series; that is to say,

would fall between PjQ and the next fraction P'jQ of the series,

or between two fractions still more complex. Hence the denom-

inator of the supposed fraction will be greater than Q', and hence

greater than D.

Similarly, the fraction which most nearly approximates to Xi

by excess, and whose denominator does not exceed D, is obtained

* This may also be seen from the fact that the continued fraction

a, -4 ... — may also be written a, H . . .
; that is to

Bay, we may consider the last quotient to bo oo , and the last convergent

t The first general solution of this problem was given by Wallis (see

his Algebra (1685), chap, x.) ; Huyghens also was led to discuss it when
designing the toothed wheels of his Planetarium (see his Descriptio Automati

Planetarii, 1682). One of the earlier appearances of continued fractions in

mathematics was the value of 4/7r given by Lord Brouncker (about 1655).

While discussing Brounckcr's Fraction in his Arithmetica Injinitorum (1656),

Wallis gives a good many of the elementary properties of the convergents

to a general continued fraction, including the rule for their formation.

Saunderson, Euler, and Lambert all helped in developing the theory of

the subject. See two interesting bibliographical papers by Giinther and

Favaro, Bulletino di Bibliographia e di Storia dclle Scienze Mathematiclie e

Fisiche, t. vii. In this chapter we have mainly followed Lagrange, who gave

the first full exposition of it in his additions to the French edition of Euler's

Algebra (1795). We may here direct the attention of the reader to a series

of comprehensive articles on continued fractions by Stern, Crelle^s Jour., x.,

XI., xviii.
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by taking tJiat fraction in series (B) of last section whose de-

nominator most nearly equals without exceeding D.

N.B.—If the denominator in the (A) series which most

nearly equals without exceeding D be the denominator of an

intermediate convergent, the denominator in the (B) series which

most nearly equals without exceeding D will be the denominator

of a principal convergent.

Example 1.

To find the fraction, whose denominator does not exceed GO, which

779
approximates most closely to -—^

.

TTT T- 779 , 1 1 1 1 1We have _:.3 + j-^ — j^- ^^ ^.

3 15 143
The odd convergent s are t > t » "j

38

1 4 64 779
the even convergents ^ , j- , j= , ^

.

The two series are

01237111579143922 1701 2480

1' I' I' 1' 2' 3 ' 4 ' 21' 38 ' 245' 452 ' 659 ' * ' ' ^ ''

1419344964207350493636779
0' I' 5' 9' 13' 17' 55' 93' 131' 169' 207

^''

Hence, of the fractions whose denominators do not exceed 60, 143/38 is the

closest by defect and 207/55 the closest by excess to 779/207.

Of these two it happens that 143/38 is the closer, although its denomin-

ator is less than that of 207/55; for we have 143/38= 3-76315 . . ., 207/55

= 3-76363 . . . , and 779/207= 3-76328 . . . For a rule enabling us in most

cases to save calculation in deciding between the closeness of the (A) and (B)

approximations, see Exercises xxx., 10.

Example 2.

Adopting La Caille's determination of the length of the tropical year as

365'' 5'' 48' 49", so that it exceeds the civil year by 5'' 48' 49", we are required

to find the various ways of rectifying the calendar by intercalating an integral

number of days at equal intervals of an integral number of years. (Lagrange.)

20929^
The intercalation must be at the rate of „- .,^ per year ; that is to say,

ob4U0

at the rate of 20929 days in 86400 years. If, therefore, we were to intercalate

20929 days at the end of every 864 centuries we should exactly represent La
Caille's determination. Such a method of rectifying the calendar is open to

very obvious objections, and consequently we seek to obtain an approximate

rectification by intercalating a smaller number of days at shorter intervals.

c. II. 29
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If we turn 86400/20929 into a continued fraction and form the (A) and (B)

series of convergents, we have (omitting the earlier terms)

8434 14003 . .

' 2043' "3392"'
*^-

^ >'

95 128 289 450 611

23' 31 ' 70 ' 109' US'
772 933 1094

187' 226' "265 '
*°*

^ ''

Hence, if we take approximations which err by excess, we may with increas-

ing accuracy intercalate 1 day every 4 years, 8 every 33, 39 every 161, and

so on*
J
and be assured that each of these gives us the greatest accuracy

obtainable by taking an integral number of days less than that indicated in

the next of the series.

The (B) series may be used in a similar mannerf.

Example 3.

An eclipse of the sun will happen if at the time of new moon the earth be

within about 13° of the line of nodes of the orbits of earth and moon. The

period between two new moons is on the average 29*5306 days, and the mean

synodic period of the earth and moon is 346-6196 days. It is required to

calculate the simpler periods for the recurring of eclipses.

Suppose that after any the same time from a new moon the moon and earth

have made respectively the multiples x and yoia, revolution, then a; x 29 '5306=

y X 346-6196. Hence ylx= 295306/3466196 -O + j^-j-^^ipj-j-j-j-— ...

The successive convergents to this fraction are 1/11, 1/12, 3/35, 4/47, 19/223,

61/716.

Suppose we take the convergent 4/47, the error incurred thereby Vvill be

< 1/47 X 223 in excess, and we may write on the most unfavourable supposition

y_±_ 1

a;
~ 47 47 x 223

'

* The fraction 4/1 corresponds to the Julian intercalation, introduced by

Julius Caesar (45 e.g.). 33/8 gives the so-called Persian intercalation, said to

be due to the mathematician Omar Alkhayami (1079 a.d.). The method in

present use among most European nations is the Gregorian, which corrects the

Julian intercalation by omitting 3 days every 4 centuries. This corresponds

to the fraction 400/97, which is not one in the above series; in fact, 70 days

every 289 years would be more accurate. The Gregorian method has, how-

ever, the advantage of proceeding by multiples of a century. The Greeks and

Ilussians still use the Julian intercalation, and in consequence there is a

difference of 12 days between their calendar and ours. See art. " Calendar,"

Encyclopcedia Britannica, 9th ed.

t See Lagrange's additions to the French edition of Euler's Algebra (Paris,

1807), 1. 11., p. 312.
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Hence, if a;= 47, y =4- 1/223. But 3607223 = 1° -61. Hence, 47 lunations

after total eclipse, new moon will happen when the earth is less than 1°-61

from the line of nodes, 47 lunations after that again when the earth is less

than 3° '2 from the line of nodes, and so on. Hence, since 47 lunations= 1388

days, eclipses will recur after a total eclipse for a considerable number of

periods of 1388 days.

If we take the next convergent we find for the period of recurrence 223

lunations, which amounts to 18 years and 10 or 11 days, according as five or

four leap years occur in the interval. The displacement from the node in this

case is certainly less than 360°/716, that is, less than half a degree, so that

this is a far more certain cycle than the last; in fact, it is the famous
" saros " of antiquity which was known to the Chaldean astronomers.

Still more accurate results may of course be obtained by taking higher

convergents.

Exercises XXX.

(1.) Find the first eight convergents to l + ^r— -„— -.— :,— • . • , and find
^ '

^ ^ 2+ 3+ 4+ 1+ '

the fraction nearest to it whose denominator does not exceed 600.

(2.) Work out the problem of Exercise xxix., 4, using intermediate as

well as principal convergents.

(3.) Work out all the convergents to 27r whose denominators do not

exceed 1000.

(4.) Solve the same problem for the base of the Napierian system of

logarithms e= 2-71828183 ....
(5.) Two scales, such that 1873 parts of the one is equal to 1860 parts of

the other, are superposed so that the zeros coincide : find where approximate

coincidences occur and estimate the divergence in each case.

(6.) Two pendulums are hung up, one in front of the other. The first

beats seconds exactly ; the second loses 5 min. 37 sec. in 24 hours. They

pass the vertical together at 12 o'clock noon. Find the times during the day

at which the first passes the vertical, and the second does so approximately

at the same time.

(7.) Along the side AB and diagonal ^C of a square field round posts are

erected at equal intervals, the interval in the two cases being the same. A
person looking from a distance in a direction perpendicular io AB sees in the

perspective of the two rows of posts places where the posts seem very close

together ("ghosts"), and places where the intervals are clear owing to

approximate coincidences. Calculate the distances of the centres of the

ghosts from A, and show that they grow broader and sparser as they recede

from A.

(8.) Show that between two given fractions pjq and p'jq', such that

pq' -p'q= l, an infinite number of fractions in order of magnitude can be

inserted such that between any consecutive two of the series no fraction can

be found less complex than either of them.

29—2
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(9.) In the series of fractions whose denominators are 1, 2, 3, . . . , «
there is at least one whose denominator is v, say, such that it differs from a
given irrational quantity x by less than I/hi/. (For a proof of this theorem,
due to Dirichlet, not depending on the theory of continued fractions, see

Serret, Alg. Sup., 4™« ed., t. i., p. 27.)

(10.) If the nearest rational approximation in excess or defect (see § 16)

be an intermediate convergent PjQ, where <3= Xg-n-i + (?„_2 , show that the
approximation in defect or excess will be nearer unless Q > ^q^ + qn-J^^n+i

(11.) If zero partial quotients be (contrary to the usual understanding)

admitted, show that every continued fraction may be written in the form

« 1 1 1
V-\ ; ; . • . , where a,, a,. «3, • • • are each either or 1. Show

the bearing of this on the theory of the so-called intermediate convergents.

(12.) 0-0= 0, ra-i =r 1, u:r= an+r W^-i + ^,-2; show that Pa+rl<ln+r~Pnl9n=
"^rllnln+r 5 ^1 "Pnlin= ( ''^r+fn+r'^r-l)l(In{'ln+r +fn+rQn+r-l) . where/„= X„ - a^.

(Hargreaves, Mess. Math., Feb. 1898.)



CHAPTER XXXIII.

On Recurring Continued Fractions.

EVERY SIMPLE QUADRATIC SURD NUMBER IS EQUAL

TO A RECURRING CONTINUED FRACTION.

§ 1.] We have already seen in two particular instances

(chap. XXXII., § 5) that a simple surd number can be expressed

as a recurring continued fraction. We proceed in the present

chapter to discuss this matter more closely*.

Let us consider the simple surd number (P^ + sjB)IQi. We
suppose that its value is positive ; and we arrange, as we always

may, that Pi, Qi, B shall be integers, and that sfB shall have

the positive sign as indicated. It will of course always be

positive ; but Pi and Qi may be either positive or negative. It

is further supposed that R - P^ is exactly divisible by Q^. This

is allowable, for, ii B — Pi were, say, prime to Qi, then we might

write (Pi + JB)iq, = (PiQi + JqmiQi' = {P^ + ^R')IQx,

where B' - P/^ { = Q,^ (B - P,^) = {B- P,') Q,'} is exactly divisible

by Qx'.

For example, to pnt t (
^ ~ \/ 9 )

^°*° *^^ standard form contemplated,

we must write

so that in this case P^= -16, Qi= -32, iJ=96; J?-Pi'*=96-256= -160,
which is exactly divisible by Qi= -32.

* The following theory is due in the main to Lagrange. For the details

of its exposition we are considerably indebted to Serret, Alg. Sup., chap. n.
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§ 2.] If we adopt the process and notation of chap, xxxii.,

§§ 3 and 5, the calculation of the partial and complete quotients

of the continued fraction which represents (Pi + \/B)/Qi proceeds

as follows :

—

Pi+JE 1

A'a - Q - ^2 +

_Pn+jjR_ ^J_

(1),

where it will be remembered that ai, a2> • • • are the greatest

integers which do not exceed x^, x^, . . . respectively ; and

Xz, Xs, . . . are each positive, and not less than unity.

It should be noticed, however, that since we keep the radical

iJB unaltered in our arrangement of the complete quotients, it

by no means follows that P^, Q2, Ps, Qs, &c., are integers, much

less that they are positive integers.

The connection between any two consecutive pairs, say Pn,

Qn and P„+i, Qn+i, follows from the equation

Qn
= «„.+

{Pn^, + sllt)IQ,

or

{{Pn- an Qn) Pn+l " Qn Qn+Z + i^} + {Pn " «« Qn + Pn+l} s/E =

(3).

It follows from (3), by chap, xi., § 8, that

(Pn - «« Q,>) Pn+i - Qn Qn+i + li=0,

Pn ~ (^n Qn + Pn+l — "
>

whence .

Pn+l ~ ^n ^n ~ J^n

Pn+l + Qn Qn+l =B

If we write w - 1 for w in (5), we have

Pn'-^Qn-lQn-B

(4),

(5).

(6).
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From (5), by means of (4) and (6), we have

= Pn'+Qn-,Qn-(anQn-PnT,

SO that Qn+i = Qn-i + ''iClnPn " C^n Qn

,

= Qn-i + an{Pn-Pn+i) (7).

The formulse (4) and (7) give a convenient means of cal-

culating Pa, Pa, Qsy P4, Qi, &c., and hence the successive

complete quotients ^2, ^3, • - •

Qa is given by the equation

P^' + Q^Qi^jR,

namely, ^2 = —q ,

= ^^^2a,P,-a,'q,.

From this last equation it follows, since by hypothesis

{R-P^)IQi is an integer, that ^2 is an integer. Hence, since

Pi, Qi are integers, it follows, by (4) and (7), that Pa, P3, . . .,

Pn,Qs, • • •> Qn are also all integers.

§ 3.] We shall now investigate formulae connecting P„ and

Qn with the numerators and denominators of the convergents

to the continued fraction which represents {Pi+ JE)/Qi.

We have (chap, xxxii., § 9)

Pl+ JB ^ Pn-lO^n+Pn-i /^x

^1 ^n-l^n + Qn-2

^ Pn-i Pn + Pn-1 Qn + Pn-1 N^
qn-, Pn + qn-2 Qn + ^n-l '^E

Hence

(Pi + JE) (g„_, Pn + qn-2 Qn + Qn-l ^E)
= Ql (Pn-l Pn +Pn-2 Qn+ Pn-1 V^) (l).

From (1) we derive

qn-lPn + qn-2 Qn = Ql Pn-1 -PlQn-l (2);

E-P"
Pn-1 Pn + Pn-2 Qn = PlPii-l + —Q-^ 3'»-l (3)-
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From (2) and (3) we obtain, since pn-i qn-i —Pn-2 ^n-i

=(-ir-

( - l)**-' Pn = Pi (Pn-l qn-1 ^ Pn-i qn--)

R-P"^
+ —^- qn-\ qn-2- Qi Pn-l Pn-l (4)

;

( - l)*^-^ Q. = - 1pn-l qn-l Pi -^^^ qn-l' + QlPn-l' (5).

The formulae (4) and (5) give us the required expressions,

and furnish another proof that P2, P3, . . ., Pn, Q2, Qa, • • •, Qn

are all integral.

§ 4.] If in equation (2) of last paragraph we replace Pi by-

its value Qi{pn-i^n+Pn-2)l(qn-ii«n + qn-2)- 'JR, derived from

equation (A), we have

qn-l Pn + qn-. Qn = j
"
^T^^' + ^^^^^ (l)"

qn-l'^n •" qn-2

Also, since cc^ = (Pn + JR)/Qn, we have

Pn-a^nQn = -'JR (2).

From equations (1) and (2) we derive, by direct calculation,

the following four :

—

Pn =

i^ii^^ii^-^^^-^-^)^^^^^^

Qn =

L {q^_^ (q^_^a!n + qn-.) 2^R + {- if-' Qi} (4)

;

\qn-l^n + 9'»-2/

JR-Pn =

J-
—

^TTT-v^^^^A'^'^-^'-^) ^-(-^T-'Q] (5);
(qn-ia^n + qn-.) I V ^n / J

2jR-Qn =

-^,{(^;^qn-i+qn-2){qn-iXn+qn-2)2jR-(-lT-'Qi}{G).
(qn-li^n+qn-.T

The coefficients of JR and 2\/S in these four formulae are

positive, and increase without limit when n is increased without

limit. Hence, since Qi is a fixed quantity, it follows that for
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some value of n, say n = v, and for all greater values, P„, Q^,

JlR-Pn, 2jK-Qn will all be positive. In other words, on

and after a certain value of n, n = v say, P„ and Qn will be

positive; and Pn<jB, and Qn<2jB.

Cor. 1. Since Pn and Q„ are integers, it follows that

after n = v P^ cannot have more than JR different values, and

Qn cannot have more than 2 JB different values; so that Xn

= {Pn + jR)IQn cannot have more than JR x 2 JR - 2R different

values. In other words, after the vtli complete quotient, the

complete quotients must recur within 2R steps at most.

Hence the continued fraction which represents (Pi + JR)IQi
must recur in a cycle of 2R steps at most.

Since ever after n=v Pn and Qn remain positive, it is clear

that in the cycle of complete quotients there cannot occur any one

in which Pn and Qn are not both positive.

It should be noticed that it is merely the fact that P„ and

Qn ultimately become positive that causes the recurrence.

If we knew that, on and after n = v, Pn remains positive, then

it would follow, from § 2 (4), that Qv and all following remain

positive ; and it would follow, from § 2 (5), that P^+i and all

following are each <JR ; and hence, from (4), that Qv+x and all

following are each < 2jR ; and we should thus establish the

recurrence of the continued fraction by a somewhat different

process of reasoning.

Cor. 2. Since a„ is the greatest integer in {Pn + jR)IQn,

and since, \{ n>v, Pn and Qn are both positive, and Pn<jR,

and Qn>lj it follows that, if n>v, an<2jR.
It follows, therefore, that none of the partial quotients in the

cycle can exceed the greatest integer in 2 JR.

Cor. 3. By means of (3) and (4), we can show that ultimately

Pn+Qn>jR (7).

Cor. 4. From § 2 (5), we can also show that ultimately

Pn+Qn-^>JR (8).
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Cor. 5. Since JJi>Pjn, it follows from Cor. 3 and Cor. 4

that ultimately

t^m, ~ Ln"^ vent

<Qn-l (9).

EVERY RECURRING CONTINUED FRACTION IS EQUAL TO A
SIMPLE QUADRATIC SURD NUMBER.

§ 5.] We shall next prove the converse of the main pro-

position which has just been established, namely, we shall show
that every recurring continued fraction, pure or mixed, is

equal to a simple quadratic surd number.

First, let us consider the pure recurring continued fraction

^i = «i +—7 ... —7 . . . (I).

*

Let the two last convergents to

1 1
tti + — . .

-

be p'/q' and p/q.

From (1) we have

1 1 1
^1 = ai + . . .

-—- —

,

02+ Or + iTj

_ jt?a?i +p'
^

~
qxi + q"

whence

g^i' + {q -p)xi-p' = (2).

The quadratic equation (2) has two real roots ; but one of

them is negative and therefore not in question, hence the other

must be the value of a^i required.

We have, therefore,

^1 -— 2^— (3),

L +JW=—]g— >say;

which proves the proposition in the present case.
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It should be noticed that, since ai4=0, p/q>l', so that

p>q>g'' Hence p — q' cannot vanish, and a pure recurring

fraction can never represent a surd number of the form JNJM.
Next, consider the general case of a mixed recurring con-

tinued fraction.

Let

1 111 1
Xl = al^ . • .

. . . — . . , (4).* \ /

Also let

1 1

2/i = «i + —— . .
.

. . .

* "2 + a, +
(5).

«

Then, by (3),

L + J]V
y^^ M •

From (4) we have

1 1 1
Xi = ai+ . . .

,

a. + cir + yi

whence, if P'jQ' and PJQ be the two last convergents to

1 1
«! + . . . -,

a<i+ ar

Pyi + P'

_PL + P'M+PjN
/'fi^

QL + Q'M+QjN
Hence, rationalising the denominator, we deduce

_ 1/+ VJN
Example 1.

Evaluate a;, = 1 +—- . . . .

* 2+1+ 1 +
«

The two last convergents to 1 + — - are 3/2 and 4/3 ; hence2+1
_4xi+ 3

^^~3xi + 2*

We therefore have

3a;i2-2xi-3= 0,
the positive root of which is

1 + x/iO
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Example 2.

t:. 1 .
,11111

Evaluate ?/, = 3 + -.— :;— -pr—
-i
—

^i

—

....•'1 4+1+2+1+1 +
* «

The two last convergents to 3 + j are 3/1 and 13/4; and, by Example 1

above,

1_J_ _ i + Vio
* 2+l+***~ 8 •

1 1

We have, therefore,

2/1= 3 +
4+ (l^VIO)/3'

^13 (l + >yi0)/3 + 3

4(l + s/l0)/3 + l
'

_ 22 + 13VlO
~

7 +4^10 '

_366-3ViO~ 111

_ 122-^10
~ 37 •

ON THE CONTINUED FRACTION WHICH REPRESENTS \/{CJD).

§ 6.] The square root of every positive rational number, say

J{C/D), where C and I) are positive integers, and C/I) is not

the square of a commensurable number, can be put into the form

JN/M, where N^CD and M=D. Since N/M = C is an

integer, we know from what precedes that JNJM can be

developed, and that in one way only, as a continued fraction of

the form
1 111 1

Xi = ai+ . . . . . . . . . (1).
^2 + a,. + tti + oo + a, + ^ '

* " *

We have, in fact, merely to put Pi = 0, R = N, Qi =M m our

previous formulae.

We suppose that JNjM is greater than unity, so that Oj + 0.

If JNjM were less than unity, then we have only to consider

MIJN = JM^NIN, which is greater than unity.

The acyclic part a^ + —— ... — must consist of one term at
ffj + U/f
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least, for we saw, in § 5, that a pure recurring continued fraction

cannot represent a surd number of the form JJV/M. Let us

suppose that there are at least two terms in this part of the

fraction ; and let P'/Q', P/Q be the two last convergents to

tti + . . . — ; and p'/q', p/q the two last convergents to
(X'2 "T Ctff

1 111 1 ^, .„
a, + . . . . . . — . Then, it

aQ + ar+ 0-1 + <h+ ««

1 1

we have *

1 11
02+ «r + ^1

1 1 1 ]_ 1 1

02 + * * * <*r + "l + «2 + *
* * "s + 3/1

'

Hence

^ ^ Py, + P' ^ py,+p'
' %i + Q' qyi + q ^

''

Eliminating ^i from the equations (2), we have

m - Q'q) X,' -W - Q'P + Pq - Pq) ^1 + (Pp - P'p) = (3).

Now, if Xi = JNJM, we must have

M^x^^-N=^ (4).

In order that the equations (3) and (4) may agree, we must

have
qp'-Q'p + P<]l-P'q = (5);

and
Pp'-Pp_ N
Qq'-Q'q M' ^^^'

It is easy to show that equation (6) cannot be satisfied. We
have, in fact,

Pp' - P'p _ P'p PIP -pIp
Qq'-Q'q Q'q QIQ'-qlq

But, by chap, xxxii., § 7,

P_£^ 1 j^_^ 1_ I

P p' " ttr-i + ' '
' tti

* a^_i +' ' ' Ui

where/ is a proper fraction.

(7).
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Similarly

Q q _ \ 1 1 1

^ q a,.-! + «o a^_i + a,

= «r - «s ±/',

where/' is a proper fraction.

Now ttr-ois cannot be zero, for, if that were so, we should

have ttr^oLs, that is to say, the cycle of partial quotients would

begin one place sooner, and would be ag, oj, Og, . . . , ag_i, and not

tti, 02, . . . , ag, as was supposed. It follows then that a^- «« is

a positive or negative integral number. Hence the signs of

F/P'-p/p and Q/Q'-q/q' are either both positive or both

negative, and the sign of the quotient of the two is positive.

Hence the left-hand side of (6) is positive, and the right-hand

side negative.

There cannot, therefore, be more than one partial quotient in

the acyclic part of {\).

Let us, then, write

11 11
Xi = a + . . . ... (8),

* ' *

11 11
= a +

ttj + ao + '
' ag + l/(^j - a)

'

Hence
p]{x^-a)+p'

x.^'
' ql{x,-a) + q"

which gives

q'xi^ - (p + q'a -q)xi-{p- ap) = (9).

From (9) we obtain

^ __ P' + q'<^-q ^ J(P + g'a -qY + 4.{p- ap') 7
^

2g' 2q' ^ ''

In order that (10) may agree with Xi = JjV/M, we must have

p' + q'a-q=^0 (11);

and
q"N/M'=={p-ap')q' (12).

Cor. 1. By equation (11) we have

p'/q' + a = q/q'.
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Hence, by chap, xxxii., § 7, Cor. 2,

oil 1^1 1
2a +— . . . = a« + . . .

—

.

Oi + Qa + ag_i a5_i + «,

It follows, therefore, by chap, xxxii., § 3, that

In other words, the last partial quotient of the cyclical part of

the continued fraction which represents JNIM is double the

unique partial quotient which forms the acyclical part; and the

rest of the cycle is reciprocal, that is to say, the partial quotients

equidistantfrom the two extremes are equal.

In short, we may write

jN^ll 1111 ..„.
^^^ = a + . . . -z . . . (13).

* «

Cor. 2. If we use the value of q'a given by (11), we may

throw (12) into the form

q^NlW =pq' -p' (q -p) ;

wlience

q'^'NIM'' -p'^ =pq' -p'q,

-±l (14),

the upper sign being taken if pjq be an even convergent, the lower

if it be an odd convergent.

§ 7.] All the results already established for {Pi + jR)IQi

apply to JN(M. For convenience, we modify the notation as

follows :

—

_
a, =a, x, = {P, + jK)iq, = {0 + jN)IM;

as =a,_i, Xs={Ps + jR)IQs^{Ls-i + jN)IMs-i;
as+^ = 2a,

0/8+2— °-l, .......
From § 2 (4), we then have

Ln = «n-l Mn-i - Ln-\ ( 1 ) ;

and, in particular, when n=\,

L, = aM (1').
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From § 2 (5), we have

Lr,' + M^^,Mr, =N (2);

and, in particular,

L^^MM^ =N (2').

From § 3 (4) and (5), we have

( - ifL^ = {NIM) qnqn-i - MpnPn-l (3) ;

{-fM,= Mp,'-{NIM)q^' (4).

These formulse are often useful in particular applications.

It will be a good exercise for the student to establish them

directly.

§ 8.] Let us call L^, L^, &c., the Bational Dividends and M,

Ml , M2, &c., the Divisors belonging to the development of JN/M.
Then, from the results of § 4, we see that

None of the rational dividends can exceed JW; none of the

partial quotients and none of the divisors can exceed 2jN.
All the rational dividends, and all the divisors, are positive.

It is, of course, obvious that the rational dividends and the

divisors form cycles collateral with the cycle of the partial and

total quotients; namely, just as we have

so we have
Ls+\ = Li, Ls+'i = L.2, (1),

and
itf,+i = ifi, Ms^^ = M^, (2).

We can also show that the cycles of the rational dividends

and of the divisors have a reciprocal property like the cycle of

the partial quotients ; namely, we have

Ls-i = L.„ Ms-i = Mi;

Ls-2 = Ls, Ma-2 = M-i ;

(3).

For, by § 7 (2),

£,+,' + M,^JI, = L,' + MJI;

but Ls+i = Li and Ms+i = Mi, hence

31, = 31 (4).
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Again, by § 7 (1),

Ls+i = o.gMg-Lg;

but Z,+i =Li,a,= 2a, Ma = M, hence we have

A = 2aM- Ls.

Now, by § 7 (1'), Li = aM, hence

A = 2A-A,
therefore Lg =A (5).

Again, by § 7 (2),

whence, bearing in mind what we have already proved, we have

Mg., = M, (6).

Once more, by § 7 (1),

Ls = ««-] Mg-i — Lg-i,

i/2=a,iV/i-Xi.

Now Mg-i = Ml and a,_i = a^, hence

Xg — ^2 = Z-i — Xg-i.

But Lg-Li, hence

X/g_i = X/2.

Proceeding step by step, in this way, we establish all the

equations (3).

It appears, then, that we may write the cycles of the rational

dividends and of the divisors thus

—

L\, L^t Ls, . . ., Lz, Z-j, Z-i;

M„ M„ M,, . . ., Ms, M„ M„ M.

Since J/ precedes Mi, we may make the cycle of the divisors

commence one step earlier, and we thus have for partial quotients,

rational dividends, and divisors the following cycles :

—

«i5 "2> «3, • . •» «3> «2, «i, 2a; oi.

Z-i, L.2, Lz, • . -, Ls, Za, i/i ; X].

M, Mu M„ M„ . . ., M^, M, ; M, M,.

That is to say, the cycle of the rational dividends is collateral

with the cycle ojthe partial quotients, and is completely reciprocal;

c. II. 30
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the cycle of the divisors begins one step earlier* (that is, from the

very beginning), and is reciprocal after the first term.

§ 9.] The following theorem forms, in a certain sense, a

converse to the propositions just established regarding the cycles

of the continued fraction which represents JNJM.

If Lm =Ln+i, Mm =Mn, O-m - «»)

then Xm-i = i/n+2, Mm-i=Mn+i, a.m-l = 0-n+l (l)-

We have, by § 7 (2),

whence, remembering our data, we deduce

Mm-^ = Mn+, (2).

Again, by § 7 (1),

whence, since Lm = Ln+i by data,

= («m-l - «n+l) Mn+i (3).

If Lm~i>Ln+^, we may write (3)

(Im-l — Ln+^IMn+\ = Ctm-i - a„+i (4) ;

ii Lm-i<In+i, we may write

(-^n+2 - Ln--)IM,n-i = O-n+l " ^m-1 (5).

But, by § 4 (9), the left-hand sides of (4) and (5) (if they

differ from 0) are each <1, while the right-hand sides are each

positive integers (if they differ from 0).

It follows, then, that each side of equation (3) must vanish,

so that

J^m-l — L'n+i (6),

«m-l = O-n+l (7),

which completes the proof.

* The fact that the cycle of the divisors begins one step earlier than the

cycles of the partial quotients and rational dividends is true for the general

recurring continued fraction. Several other propositions proved for the

special case now under consideration have a more general application. The
circumstances are left for the reader himself to discover.
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Cor. 1. Starting with the equations in the second line o/{l)

as data, we could in like manner prove that

and so on, forwards and backwards.

Cor. 2. If we put m = n, the conditions in (1) become

in other words, the conditions reduce to

and the conclusion becomes

Jjn-\— -1-^71+2} -^n-l — -^Jn+lf ''n-l — ^n+l'

Hence, if two consecutive rational dividends he equal, they are

the middle terms of the cycle ofrational dividends, which must there-

fore be an even cycle ; and the partial quotient and divisor cor-

responding to thefirst ofthe two rational dividends will be the middle

terms of their respective cycles, which must therefore be odd cycles.

Cor. 3. If we put m = n + l, the conditions in (1) reduce to

^n+i — -^Im "ti+i = ct»
j

and the conclusion gives

Using this conclusion as data in (1), we have as conclusion

Ln-i = L/n+S, i)y„_i = ilz„+2j "ji-i = "n+2 )

and so on.

Hence, if two consecutive divisors (Mn, Mn+i) be equal, and also

the two corresponding partial quotients (a„, a„+i) be equal, these two

pairs are the middle terms of their respective cycles, which are both

even ; and the rational dividend (Ln+i) corresponding to the second

member of either pair is the middle term of its cycle, which is odd.

These theorems enable us to save about half the labour of

calculating the constituents of the continued fraction which

represents slNjM. In certain cases they are useful also in

reducing surds of the more general form {L + 'JN)/M to con-

tinued fractions.

Example 1.

Express ,^8463/39 as a simple continued fraction ; and exhibit the cycles

of the rational dividends and of the divisors.

30—2
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We have

J8m^^
I

-'78+V8463 _g^
1

39 39 (78+v'8463)/61

78+^/8463_„ -44+^8463^^ ^ ^
61 61 (44 + ^8463)/107'

44+js/8463_ -63 + ^8463 ^^
1

107 ~ "'' 107 ~
(63 + V8463)/42

63+ V8463_g ^

- 63+^/8463^g
^

1

42 42 (63 + ^463)/107

63+^^^8463 ^^^^^

Since we have now two successive rational dividends each equal to 63, we

know that the cycle of partial quotients has culminated in 3. Hence the

cycles of partial quotients, rational dividends, and divisors are

—

Partial quotients . . 2, 1, 3, 1, 2, 4

;

Rational dividends . 78, 44, 63, 63, 44, 78;

Divisors ... 39, 61, 107, 42, 107, 61;

and we have

Jsm 1 1 _L_L J^ J^
39 2+ 1+ 3+ 1+ 2+ 4+

« *

Example 2.

If c denote the number of partial quotients in the cycle of the continued

fraction which represents JnjM, prove the following formulae :

—

Ifc=2t,
Pc_Pt+j'lt+Pt9t-i

if c= 2« + l,

if 771 be any positive integer

9c Qti<lt+i + 9t-i)

Pc^Pt+i(It+i+PtQt

1c It+i^ + Qt^

'p2r«._ P,rJ+(NIM^)q„

(I.);

(II.);

(III.).

Qzmc ^Pmc imc

For brevity we shall prove (III.) alone. The reader will find that (I.)

and (II.) may be proved in a similar manner. For a different kind of demon-

stration, see chap, xxxiv., § 6.

We have

^»?«-a+— - . . . ^— ... — (2m cycles),

gam* «i+ «i+ 2a+ a^
^

1 11 1 1 , , ,= a H . . . ,T— . . .
i
— (m cycles),

ai+ ai+ 2a+ <^i+ a+Pmckrw

_ (
a +Pmclimc)Pmc +Pmc-\
(a +Pmcllmc) Imc + 9mc-\

'

_ (fflj^mt+Prnf-l) linc+Pm^

3tnc{«?mc+ 9'»nc-l+l>»nc)

(o).
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Now the equations (2) and (3) of § 3 give us

Qmc ^mc+l + 9)nc-l Vmc+1 — ^Pme
Pmc Pmc+l +P,nc-1 Qmc+1 = (^1^) q„

In the present case,

Qmc+l = Qc+l = ^^c = M-
The equations (/3) therefore give

^9inc + 1me-l —Pmc \

aPmc +Pmc-1 = i^lM^) qmc\

From (a) and (7) (III.) follows at once.

The formulae (I.), (II.), (III.) enable us, after a certain number of con-

vergents to Jn/M have been calculated, to calculate high convergents
without finding all the intermediate ones.

Consider, for example,

x/8463_ 111111

03).

(7)-

39 2+ 1+ 3+ 1+ 2+ 4+
'

* *

Here c=6, t= 3, and we have for the first four convergents 2/1, 5/2, 7/3,

26/11; hence

Pe ^ P-i<}3+P3<l2

Qe ^3(34+ 32)'

_ 26x3 +7x2 _92
3(11 + 2) ~39'

Also P_.^Pl±iflMW^

_ 92^ + (8463/39'^). 39^ _ 16927
^"

2 X 92 X 39 ~ 7170
'

Pit ^Pjl+iNimiq^
924 ^Pu'il2

_ 16927^ X 39^+8463 x 7176^
~ 2x392x16927x7176 *

The rapidity and elegance of this method of forming rational approximations

cannot fail to strike the reader.

Exercises XXXI.

Express the following surd numbers as simple continued fractions, and

exhibit the cycles of the partial quotients, rational dividends, and divisors :

—

(1.) V(lOl). (2.) iV(63)- (3-) n/(H)-

(7.) Express the positive root of a;^ - a; - 4=0 as a continued fraction, and

find the 6th convergent to it.

(8.) Express both roots of 2x--6x-l = as continued fractions, and

point out the relations between the various cycles in the two fractions.
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(9.) Show that

J{a^ + l) = a +^,..;

(10.) Express ij{a^ + l) as a simple continued fraction, and find an
expression for the 7tth convergent.

Evaluate the following recurring continued fractions, and find, where you
can, closed expressions for their nth convergents; also obtain recurring

forniula3 for simplifying the calculation of high convergents:—
1

(11.) a+—-. .

a +
*

(12.)
1

a-
*

(13.)
1 1

a+ b +
#

Show, in this case, that

* *

where the cycle consists of n units followed by 2.

(15.) Show that

\x+ 4lX+ J \2x+ J
« •

is independent of x.

(16.) Show that

(-*-2^---y-("-2Tr---j^-^-
« «

(17.) If x=a +r^ — . . ., y^h +—~...,
« *

11 ,1
* a+ 6+ * a + b + c +

*

show that

2{x + y + z)-(a + b + c) _ 1 1 1

2u-{a + b + c)-abc ~bc + l ca + 1 ab + l'

(18.) Show that

\b+ ' ' ') ~2a + b-- • ' ' '
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(19.) If p be the numerator of any convergent to ,^2, then 2p2±i ^iH
also be the numerator of a convergent, the upper or lower sign being taken

according aspjq is an odd or an even convergent; also, if q, q' be two con-

secutive denominators, q'^ + q'^ will be a denominator.

(20.) Evaluate

Jl J_ 1

1+ 1+ ' * 'm+ ' '

« *

where the cycle consists of n - 1 units followed by ii.

(21.) In the case of
:j

— t— . . . ,
prove that

* *

P,n= (l,n+l= {(v/2 + l)2»+l + (V2- 1)2»+1}/2V2,

i'2«-i = i32n = {(V2 + l)^"- (v/2- 1)^»}/V2.

(22.) Convert the positive root of ax^ + abx-b=:0 into a simple con-

tinued fraction; and show that p^ and q.^ are the coefficients of a;" in

(x+bx'-x^)l(l- ab + 2.x'^ + x*) and (ax + ab + l.x^ + x*)l(l - ab + 2.x^ + x^)

respectively.

Hence, or otherwise, show that if a, /3 be the roots of 1- {ab + 2)z + z^=0,

then
pH /an

ap^,,= bq2„-^ = ab

P-2n+l — l2n ~

'

(a"+i-j3"+i)-(a"- ^)

(23.) If the number of quotients in the cycle of

V^V 1 1 111
-^rr =aH . . . ~ ... be c,M a^+ a., + 00+ a,+ 2a +

* " *

show that

a-\ . . . ^ . . . (m cycles) =--—~^.
«!+ ai+2a+ai+ Oj+a'' '

' M^p^^

(24.)* If c be the number of quotients in the cycle of ^JNjM, show that

if c = 2< + l,

gVr-l + ffVr ^"
r= 0, 1, . . ., t-1;

and if c= 2^

Pt-r-iPt~r-\ +Pt+r-^Pt+r _ ^
qt-r-^qt-r-l + it+r-lit+r

-3^'*

(25. )t lisJZ= a-\ ; ...-—~ .. ., and if the convergent
«!+ Oo+ a„+ ai+ 2rt+ ^

« ' *

* For solutions of Exercises 24 and 26-29 see Muir's valuable little tract

on The Expression of a Quadratic Surd as a Continued Fraction, Glasgow
(Maclehose), 1874.

t In connection with Exercises 25 and 30-32 see Serret's Cours

d'Algebre Superieure, 3™" ed., t. i., chaps, i. and ii.
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obtained by taking 1, 2 i periods, ending in each case with a^, be

Zi, Z„ . . ., Zi, and if Z^^PJQ^, . . ., Zi = PilQi, P^ and Q^ being

integers prime to each other as usual, then

Pi - Qis/^={Pi-i - Qi-is/^) {Pi - Qxsiz),

= (P,-Q,JZ)i;

Zi + ^Z^fZ. +^ZV
Zi-^Z \Zi-^Zj

'

(26.) If N be an integer, and if a cyclical partial quotient occur in the

development of »JN equal to the acyclic partial quotient a, that quotient

will be the middle term of the reciprocal part of the cycle ; and no cyclical

partial quotient can occur lying between a and 2a.

(27.) When 2^ is a prime integer, the cycle of partial quotients is even,

and the middle term of the reciprocal part of the cycle is a or a - 1, according

as a is odd or even.

(28.) If N be an integer, and the cycle of sJN be odd, then A is the sum
of the squares of two integers which are prime to each other.

Exhibit 365, as the sum of two squares.

(29.) The general expression for every integer whose square root has a

cycle of c terms, the reciprocal part of which has the terms a^ , Og , . . . , ao , aj

,

is

(^pm-{-lYp'q')^+p'm-[-iyq'\

where m is any positive integer, and p'jq', pjq are the two last convergents to111
^ 02+ a2+ Oi

Find an expression for all the integers that have 1, 2, 1 for the reciprocal

part of the cycle of their square root.

(30.) If two positive irrational quantities, x and x', can be developed

in continued fractions which are identical on and after a certain constituent,

show that
x'= {ax + h)j{a'x + h'),

where a, h, a\ h', are integers such that alf - a'b= ± 1 ; and that this con-

dition is sufficient.

(31.) The equation of the 2nd degree with rational coefficients which is

satisfied by a given recurring continued fraction has its roots of opposite

signs if the fraction is purely recurring, and of the same sign if it is mixed

and has more than one acyclic partial quotient.

(32.) Investigate the relation between the cycles of the partial and

complete quotients of the two continued fractions which represent the

numerical values of the two roots of an equation of the 2nd degree with

rational coefficients.

Illustrate with 27x- - 97x + 77 = 0.
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APPLICATIONS TO THE SOLUTION OF DIOPHANTINE PROBLEMS.

§ 10.] When an equation or a system of equations is in-

determinate, we may limit the solution by certain extraneous

conditions, and then the indeterminateness may become less in

degree or may cease, or it may even happen that there is no

solution at all of the kind demanded.

Thus, for example, we may require (I.) that the solution be

in rational numbers
;

(II.) that it be in integral numbers ; or,

still more particularly, (III.) that it be in positive integral num-

bers. Problems of this kind are called Diophantine Problems,

in honour of the Alexandrine mathematician Diophantos, who,

so far as we know, was the first to systematically discuss such

problems, and who showed extraordinary skill in solving them*.

We shall confine ourselves here mainly to the third class of

Diophantine problems, where positive integral solutions are

required, and shall consider the first and second classes merely

as stepping-stones toward the solution of the third. We shall

also treat the subject merely in so far as it illustrates the use of

continued fractions : its complete development belongs to the

higher arithmetic, on which it is beyond the purpose of the

present work to enter t.

Eqitations of the 1st Degree in Two Variables.

§ 11.] Since we are ultimately concerned only with positive

integral solutions, we need only consider equations of the form

ax±hy- c, where a, b, c are positive integers. We shall suppose

that any factor common to the three coefficients has been

• See Heath's Diophantos of Alexandria (Camb. 1885).

t The reader who wishes to pursue the study of the higher arithmetic

should first read Theory of Numbers, Part I. (1892) by G. B. Mathews,

M.A. ; then the late Henry Smith's series of Reports on the Theory of

Numbers, published in the Annual Reports of the British Association (1859-

60-61-62) ; then Legendre, TMorie des Nombres ; Dirichlet's Vorlesungen

iiber Zahlentheorie, ed. by Dedekind; and finally Gauss's Disquisitiones

Arithmeticee. He will then be in a position to master the various special

memoirs in which Jacobi, Hermite, Kummer, Henry Smith, and others have

developed this great branch of pure mathematics.
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removed. We may obviously confine ourselves to the cases

where a is prime to h ; for, if x and y be integers, any factor

common to a and b must be a factor in c. In other words, if a

be not prime to h, the equation ax±hy^c has no integral solution.

§ 12.] To find all the integral solutions of a^-hy = c; and to

separate the positive integral solutions.

We can always find a particular integral solution of

ax-hy-c (1).

For, since a is prime to h, if we convert ajb into a continued

fraction, its last convergent will be ajb. Let the penultimate

convergent be pjq, then, by chap, xxxii., § 8,

aq-ph=±i (2).

Therefore

a{±cq)-b{±cp)^c (3).

Hence
x' -± cq, y =±cp (4)

is a particular integral solution of (1).

Next, let {x, y) be any integral solution of (1) whatever.

Then from (1) and (3) by subtraction we derive

a{x-{±cq)]-b{y-{±cp)] = 0.

Therefore

{^ - ( ± cq)]l{y -{±cp)] = b/a (5).

Since a is prime to b, it follows from (5), by chap, iii., Exercises

IV., 1, that

x-{±cq) = bt, y-(±cp) = at,

where f is zero or some integer positive or negative. Hence

every integral solution of (1) is included in

x = ±cq + bt, y = ±cp + at (6),

where the upper or lower sign must be taken according as the

upper or lower sign is to be taken in (2).

Finally, let us discuss the number of possible integral solu-

tions, and separate those which are positive.

1°. If a/b>plq, then the upper sign must be taken in (2),

and we have
x-cq + bt, y^cp + at (6).
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There are obviously an infinity of integral solutions. To get

positive values for x and y we must (since cpla<cqlb) give to

t values such that - cpja 1^t'if>+ go . There are, therefore, an

infinite number of positive integral solutions.

2°. If a/b<p/q, so that cp/a>cqlb, we must write

x = — cq + bt, y = - cp + at (6").

All our conclusions remain as before, except that for positive

solutions we must have cp/a1f>t':}(> + oo

.

We see, therefore, that ax — by = c Jms in all cases an infinite

number ofpositive integral solutions.

§ 13.] To find all the integral solutions of

ax + by = c (7),

and to separate the positive integral solutions.

We can always find an integral solution of (7) ; for, if p and

q have the same meaning as in last paragraph, we have

{±cq)a + {^cp)b = c (8),

that is, x' = ±cq, y =+cp\& & particular integral solution of (7).

By exactly the same reasoning as before, we show that all

the integral solutions of (7) are given by

x = ±cq-bt, y= + cp + at (9);

so that there are in this case also an infinity of integral

solutions.

To get the positive integral solutions :

—

1°. Let us suppose that a/6 >j3/g', so that cp/a<cg'/6. Then

the general solution is

x= cq-bt, y = - cp + at (9').

Hence for positive integral solutions we must have cpjali^t

>cq/b.

2°. Let us suppose that alb<p/q, so that cpla>cq/b, then

x = -cq-bt, y = cp + at (9").

Hence for positive integral solutions we must have —cpja:lf>t

>-cq/b.
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In both these cases the number of positive integral solutions

is limited. In fact, the number of such solutions cannot exceed

1 +
I

cqjh - cp/a
\

; that is, since
|
aq -pb

|

= 1, the number of

positive integral solutions of the equation ax + by = c cannot

exceed 1 + clab.

Example 1, To find all the integral and all the positive integral solutions

of 8a; + 13?/ = 159.

We have
8 1 1 1 11
r3~i+ 1+ 1+ 1+ 2'

The penultimate convergent is 3/5 ; and we have

8x6-13x3 = 1,

8 (795) + 13 (-477) = 159.

Hence a particular solution of the given equation is a;'= 795, y'= - 477; and

the general solution is

.'c= 795-13<, 2/=-477 + 8t.

For positive integral solutions we must have 795/13 <t:««t 477/8, that is,

61j'V't*'*59|. The only admissible values of t are therefore 60 and 61;

these give x= 15, y= 3, and x= 2,y = ll, which are the only positive integral

solutions.

Example 2. Find all th« positive integral solutions of 3a; + 2?/ + 3z = 8.

We may write this equation in the form

3x+ 22/ = 8-3«,

from which it appears that those solutions alone are admissible for which

2= 0, 1, or 2.

The general integral solution of the given equation is obviously

x= 8-3z-2^ 7/=-8 + 32 + 3t.

In order to obtain positive values for x and y, we must give to t integral

values lying between + 4 - f2 and + 2§ - z. The admissible values of t are

3 and 4, when 2=0; 2, when 2= 1; and 1, when 2 = 2. Hence the only

positive integral solutions are

x= 2, 0, 1, 0;

2/ = l, 4, 1, 1;

2 = 0, 0, 1, 2.

In a similar way we may treat any single equation involving more than

two variables.

§ 14.] Any system of equations in which the number of

variables exceeds the number of equations may be treated by

methods which depend ultimately on what has been already

done.
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Consider, for example, the system

ax + hy + cz = d (1),

a'x + b'y + c'z = d' (2),

where a, b, c, d, a', &c. denote any integers positive or negative.

This system is equivalent to the following :

—

- {ca) X + {he') y = (dc) (3),

ax + by + cz = d (4),

where (ca') stands for ca - ca, &c.

Let 8 be the G.C.M. of the integers {ac\ {he). Then, if 8

be not a factor in {dc), (3) has no integral solution, and conse-

quently the system (1) and (2) has no integral solution.

If, however, 8 be a factor in {dc'), then (3) will have integral

solutions the general form of which is

x^x" -v {be') t/B, y = y" + {ca) t/8 (5),

where {x", y") is any particular integral solution of (3), and t is

any integer whatever.

If we use (5) in (4), we reduce (4) to

cz-c {ah') t/8 = d- ax" - by' (6),

where c {ab')l8 is obviously integral.

In order that the system (1), (2) may be soluble in integers,

(6) must have an integral solution. Let any particular solution

of (6) hez^z,t = t'. Then

z-z' _ {ab')

t-t'
~

8 '

Hence, if e be the G.C.M. of {ab') and 8, that is, the G.C.M.

of {he), {ca), {ab'), then

z = z' + {ab') u/e, t^t' + Sii/e (7),

where u is any integer.

From (5) and (7) we now have

x = x' + {be') u/e, y = y' + {ca') w/c, z = z' + {ab') w/e (8),

where x == x" + {be) t'/S, y = y" + {cd) t'jh.

If in (8) we put w = 0, we get x = x, y = y', z = z' ; therefore

{x', y', z) is a particular integral solution of the system (1), (2).

A little consideration will show that we might replace {x, y, z')

by any particular integral solution whatever. Hence (8) gives all
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the integral solutions of (1), (2), {x\ y, z) being any particular

integral solution, e the G.C.M. of {he), (ca), {ah'), and u any

integer whatever.

The positive integral solutions can be found by properly

limiting u.

Example.
3a; + 4?/ + 27z = 34, 3a: + 5y + 21z = 29.

Here {&c')= -51, (ca') = 18, (a6') = 3. Hence e= 3; a particular integral

solution is (1, 1, 1) ; and we have for the general integral solution

a;=l-17w, j/ = l + 6u, «= l + w.

The only positive integral solution is a;=l, y = l, z= l.

Equations of tJie 2nd Degree in Two Variables.

§ 15.] It follows from § 7 (4) that, if pnjqn be the wth con-

vergent and Mn the {n + l)th rational divisor belonging to the

development of ^{C/'D) as a simple periodic continued fraction,

then

Dpn'-Cqn^={-TMn (1).

Hence the equation Da? — Cy^ = + H, where G, D,H are positive

integers, and CjD is not a perfect square, admits of an infinite

number of integral solutions provided its right-hand side occurs

among the quantities {-YMn belonging to tJie simple continued

fraction which represents J{CID) ; a7id the same is true of the

equation Da? - Gy^ = -H.

The most important case of this proposition arises when we

suppose J9 = 1. We thus get the following result :

—

Tlie equation a? — Cy^ = ±H, where G and H are positive

integers, and G is not a perfect square, adfnits of an infinite

number of integral solutions provided its right-hand side occurs

among the quantities ( - )'^Mn belonging to the development of JG
as a simple continuedfraction.

Cor. 1. The equation a?- Gy'^= 1, where C is positive and not

a p&rfect square, always admits of an infinite number of solutions*.

* By what seems to be a historical misnomer, this equation is commonly
spoken of as the Pellian Equation. It was originally proposed by Fermat

as a challenge to the English mathematicians. Solutions were obtained by



§§ 14-16 Lagrange's theorem Regarding x^- Cy^=±H 4tld

For, if the number of quotients in the period of JC be

even, =25 say, then {-f^3Ls will be + 1 (since here 3I=+l).

Therefore we have

where t is any positive integer ; that is to say, we have the

system of solutions

^=i?2t„ y = q2ts (A),

for the equation or - Cy"^ = 1.

If the number of quotients in the period be odd, = 2s - 1 say,

then ( - T-'M,s-i will be - 1, but ( - )^-^iJf4.-2, ( - T'^Mss-,, . . .

will each be + 1. Hence we shall have the system of solutions

^ =P4ts~2t , y = Qits-a (B),

for the equation x"^ — Cy'^ = 1.

Cor. 2. The equation a^ — Cy^ = - 1 admits of an infinite

number of integral solutions provided there he an odd number of

quotients in the period of ^C.

§ 16.] In dealing with the equation

a?-Gf^±H (1)

we may always confine ourselves to what are called primitive

solutions, that is, those for which x is prime to y. For, if x and y
have a common factor 6, then 6" must be a factor in H, and we

could reduce (1) to x"^- Cy"^ = ±HI6'^. In this way, we could

make the complete solution of (1) depend on the primitive

solutions of as many equations like x'^- Cy"^ = ±H\(P' as ^has
square divisors.

We shall therefore, in all that follows, suppose that x is

prime to y, from which it results that x and y are prime to H.

With this understanding, we can prove the following im-

portant theorem :

—

If H<JG, all the solutions of (1) are furnished by the

convergents to JC according to th^ method of % 16.

This amounts to proving that, \{ x = p, y^qhe any primitive

integral solution of (1), ihexx pjq is a convergent to JG.

Brouncker and Wallis. The complete theory, of which the solution of this

equation is merely a part, was given by Lagrange in a series of memoirs which

form a landmark in the theory of numbers. See especially (Eiivres, t, ii.,

p. 377.
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Now we have, if the upper sign be taken,

Hence Pl9l- JG = Hjq (p + J Cq),

<>jC/q{p+JCq),

<W(p/qJC-^l) (2).

Now p/q - JC is positive, therefore pjq JC> 1. Hence

plq-JC<l/2f (3).

It follows, therefore, by chap, xxxii., § 9, Cor. 4, that p/q is

one of the convergents to JC.

If the lower sign be taken, we have

q'-{l/C)f = H/C,

where JI/C<J{llC). We can therefore prove, as before, that

q/p is one of the convergents to «y(l/C), from which it follows

th&tp/q is one of the convergents to JC.

Cor. 1. All the solutions of

x''-Ctf=-l (4)

are furnished hy the penultimate convergents in the successive

or alternate periods of JC.

Cor. 2. If the number of quotients in the period of JC he

even, the equation

a^'-Cf = -l (5)

has no integral solution. If the number of quotients in the

period be odd, all the integral solutions are furnished by the

penultimate convergents in the alternate periods of JC.

§ 17.] We have seen that all the integral solutions of the

equation (4) are derivable from the convergents to JC; it is

easy to give a general expression for all the solutions in terms

of the first one, say {p, q). If we put

x +yJC={p + qJCr\ ,..

^-^JC-{p-qJCr\ ^
^'

we have
x'-Cy^ = (p^-Cq')''=l.

Hence (6) gives a solution of (4).

In like manner, if n be any integer, aud (p, q) the first

solution of (5), a more general solution is given by

X^yJC = {p + qJCT"-\
(7)

x-yJC=(p-qjCr-'\
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(8)

Finally, if {p, q) be the first solution of (1), we may express

all the solutions derivable therefrom* by means of the general

solution (6) of the equation (4). For, if (r, s) be any solution

whatever of (4), we have

(pr ± Cqsf -C{ps± qry = ± //.

Therefore

w =pr±Cqs
y=ps±qr

is a solution of (1).

The formulae (6), (7), (8) may be established by means of the

relations which connect the convergents of ^C (see Exercises

XXXI., 25, and Serret, Alg. Sup., § 27 et seq.). This method of

demonstration, although more tedious, is much more satisfactory,

because, taken in conjunction with what we have established

in § 16, it shows that (6), (7), and (8) contain all the solutions

in question.

Example 1. Find the integral solutions of x^- 13j/^=l.

If we refer to chap, xxxii., § 5, we find the following tahle of values

for .yi3 :—

n «« Pn In ^n

1

2

3 3

4

1

1

4

3

3 7 2 3

4 11 3 4

5 18 5 1

6

7

119

137

33

38

4

3

8 256 71 3

9 393 109 4

10 G49 180 1

11 6 4287 1189 4

Hence the smallest solution of x^ - l^y^= 1 is x = 649, y= 180. "We have,

in fact,

6492 - 13 . 1802=421201 - 421200=1.

* It must not be forgotten that there may be more than one solution in

the first period. For every such primary solution there will be a general

group like (8).

c. II. 31
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From (6) above, we see that the general solution is given by

X = i {(649 + 180^13)"+ (649 - 180^13)"},

y= ^{ (649 + 180^13)" -(649- 180 Vl3)"}/v/13,

where n is any positive integer.

In particular, taking n=2, we get the solution

a;= 6492+ 13 . 1802= 842401,

y= 2.649.180=233640.

Example 2. Find the integral solutions of x'^-l%y^= - 1.

The primary solution is given by the 5th convergent to ,^13, as may be

seen by the table given in last example.

The general solution is, by (7),

x=^{(18 + 5Vl3)2»-i + (18-5V13p-'},

2/ =2^{(18 + 5Vl3)2»-i-(18-5^13)2"-i}.

where n is any positive integer.

Example 3. Find all the integral solutions of x^ - 13j/2= 3.

The primary solution \s x= ^, y= l, as may be seen from the table above.

The general solution is therefore, by (8),

a;=4r±13s, ?/= 4sir,

where (r, s) is any solution whatever of x^- 13?/2=1.

In particular, taking ?-=649 and s = 180, we get the two solutions, a;=256,

i/= 71, and x=4936, 2/= 1369.

§ 18.] Let US next consider the equation

a^-Cf = ±H (9),

where C is positive and not a perfect square, and II is positive

but>va
We propose to show that the solution of (9) can always be

made to depend on the solution of an equation of the same form

in which II<JC; that is, upon the case already completely

solved in §§ 15-17.

Let (x, y) be any primitive solution of (9), so that x is prime

to y. Then we can always determine {xi, y^ so that

xy^-yxi = ±l (10)*.

In fact, if pjq be the penultimate convergent to xjy when

converted into a simple continued fraction, we have, by § 12,

w^ = tx±p, yi = ty±q (11).

* There is no connection between the double signs here and in (9).
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If we multiply both sides of (9) by Xx - Cyi, and rearrange

the left-hand side, we get

{xxx-Cyy,y- C{xy,-yx,f = ±H{x,^-Cy,%

This gives, by (10),

{XX, - Cyy.y -C=^±H {x^ - Cy^) (12).

Now
XX, - Cyy, =t{x'- Cf) ± {xp - Cyq) (13).

But we may put xp - Cyq = 8II± K,, where Kil^^II. Hence

xx,-Cyy, = (t±S)H±(±K,) (14).

Now t and the double sign in (13) are both at our disposal

;

and we may obviously so choose them that

xxi-Cyyi = Ki (15),

where
K,:^hff- (16).

"We therefore have, from (12),

K,'-C=±II{x-'-Cy,') (17).

Now, by hypothesis, JC<ff, therefore C<IP and K^'^G
<H\

Since {x,, y,) are integers, it follows from (17) that, if (9)

have an integral solution, then it must be possible to find an

integer K{i(>^H such that

{K,^-C)IH=H, (18),

where H, is some integer which is less than H'^IH, that is, <H.
If no value of Kx<\H can be found to make iK^-G)lH

integral (and, be it observed, we have only a limited number of

possible values to try, since K^lif-^H), then the equation (9) has

no integral solution.

Let us suppose that one or more such values of K,, say K,,

Ki , Ki', . . ., can be found, and let the corresponding values of

Hi be Hi, Hi, H", . . . Then it follows from our analysis that

for every integral solution of (9) we must be able to find an

integral solution of one of the limited group of equations

x^-Cyi^ = ±Hi ^

Xi^-Gyi'=^±H;

Xi'-Gyi' = ±Hi'
(19),

where Hi , Hi, Hi', ... are all less than H.

31—2
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If it also happens that in all the equations (19) the numerical

value of the right-hand side is < JC, then these equations can

all be completely solved, as already explained.

If {xi, i/i) be a solution of any one of them, we see, by (10)

and (15), that

X = (K,x, + Cy^)IH„ y = {K,y, +_x,)IH, (20)*

or a; = [k^x^ hF Cy^lHU y = {K^'y, + Xi)/Hi,

If in any of the equations (19), say, for instance, in the first,

the condition Hi<>JG is not yet fulfilled, we can repeat the

above transformation, and deduce from it a new system,

a;i-Cyi = ±H,
)

x^^-Cyi =±H^\ (21),

where H2 and H^ are each less than Hi ; and we have

Xi = {K2X2+Cy^lH2, yi = {K2y2 + x^lH2 \

xi = {K^x., + Cy^lH;, yi = {K^y^ + x-^lH^ \ (22).

Since the //'s are all integers, the chain of successive operations

thus indicated must finally come to an end in every branch.

Thus we see that any integral solution of{d) must be deducible

from the solution of one or other of a finite group of equations of

the type

a^-Cf^IU"'^ (23),

where Hr^''^<^G.

The practical method of solution thus suggested is as

follows :

—

Find all the integral values oiKx<\EiQx which {K^-G)IH
is an integer. Take any one of these, say K^ ; and let H^ be

the corresponding value of {K{^-C)/ff. Then, if Hi<JC, solve

the equation aji'^
- C?/i^ = ± ZTj generally ; take the formula (20);

and find which of the solutions {x^, y^), if any, make {x, y) integral.

We thus get a group of solutions of (9). If Hx>JC, then we

find all the values of K^K^ff^ for which (K^^ - 0)1H^ is integral,

* Since the signs of x and y are indifferent in the solutions oi s^-Cy^=
A JZ, it is unnecessary to take account of the double signs of Ifj, H-^', &c.

For the same reason, the ambiguities of sign in (20) and (22) are independent.
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= 7/2 say, and, if H2<JC, solve the equation x.2—Cyi = ±H^\
then pass back to x through the two transformations (20)

and (22) ; and, finally, select the integral values of x and y thus

resulting, if there be any.

By proceeding in this way until each branch and twig, as it

were, of the solution is traced to its end, we shall get all the

possible integral solutions of (9), or else satisfy ourselves that

there are none.

The straightforward application of these principles is illus-

trated in the following example. Into the various devices for

shortening the labour of calculation we cannot enter here.

Example. Find the integral solutions of

a;2-15?/2=61 (9').

Let {/ri2-15)/61=J7i (18'),

where K^ > 30.

Then K-^=l^^-<o\TI^.

Since K^ j> 900, we have merely to select the perfect squares among the

numbers 15, 76, 137, 198, 259, 320, 381, 442, 503, 564, 625, 686, 747, 808, 869.

The only one is 625, corresponding to which we have K^ = 25 and H^= 10.

Since Hi>»J15, we must repeat the process, and put

(K^^~15)I10= H^ (18"),

where K^ > 5, and therefore K^^ > 25.

Since K2^=15 + 10H2, the only values of K.^^ to be examined here are 5,

15, 25. Of these the last only is suitable, corresponding to which we have

^2=5, Ifa= l.

We have now arrived at the equation

x^'-15y,^=l (21'),

the first solution of which is easily seen to be (4, 1). Hence the general

solution of (21') is

^2=|{(4+x/15)"+(4-Vl5)n ]

The general solution of (9') is connected with this by the relations

a?!= (5x2 =F 15j/2)/l, Vi = (5?/2T x^)!! (22')

;

x= (25xi=f152/i)/10, y={25y,=fx,)ll0 (20').

Hence a;=14x2=r45i/2, y==f^3x^+ Uy^) .^g.

a;= llx2=F30jf2. 2/= =1=23:2+ 11^2 1

where x^ and j/j are given by (24). The question regarding the integrality of

X and y does not arise in this case.

As a verification put ar2=4, 1/2=1, and we get the solutions (11, 2),

(101, 20), (14, 3) and (74, 19) for (9'), which are correct.
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§ 19.] There remain two cases of the binomial equation

a^ - Cy^ ^±11 which are not covered by the above analysis

—

x'-Cf =±H (26),

where C is a perfect square, say G =W \ and

a?+Cf=-vH (27).

The equation (26) may be written

{x - By) {x + By) = ± //.

Hence we must have
X - By = u
. 7? 1

(28),
X + By = V

j

where u and v are any pair of complementary factors of ±11.

We have therefore simply to solve every such pair as (28), and

select the integral solutions. The number of such solutions is

clearly limited, and there may be none.

In the case of equation (27) also the number of solutions is

obviously limited, since each of the two terms on the left is

positive, and their sum cannot exceed If. The simplest method

of solution is to give y all integral values '^J(ff/C), and

examine which of these, if any, render JI- Cy^ a perfect square.

§ 20.] In conclusion, we shall briefly indicate how the

solution of the general equation of the 2nd degree,

ax"^ + 2hxy + hy'' + 2gx + 2fy + c = Q (29),

where a, b, c, f, g, h are integers, can be made to depend on the

solution of a binomial equation.

By a slight modification of the analysis of chap, vii., § 13,

the reader will easily verify that, provided a and b be not both

zero, and c be not zero, (29) may be thrown into one or other

of the forms

{Cy + Ff-C{ax + hy + gf = -a^ (30);

or {Cx+Gf-C{kx + by+ff=^-bA (31),

where A = abc + 2/gh - ap - bg^ - c/i'', C=h^- ab, F= gh - af,

G - hf- bg ; say into the form (30). If, then, we put

ax-ifhy + g = r})
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(30) reduces to

e-Crf=-a^ (33),

which is a binomial form, and may be treated by the methods

already explained.

If /r>a&, then Cis positive, and, provided Cbe not a perfect

square, we fall upon cases (1) or (9).

If C be a positive and a perfect square, we have case (26).

It should be noticed that, if either « = or b = 0, or both

a = and & = 0, we get the leading peculiarity of this case, which

is that the left-hand side of the equation breaks up into rational

factors (see Example 2 below).

\i h^<ab, then Cis negative, and we have case (27).

lih^ = ah, then C=0, and the equation (29) may be written

{ax + hyf + 2agx + 2afy + ac = (34),

which can in general by an obvious transformation be made to

depend upon the equation

rf-Qi (35),

which can easily be solved.

Example 1. Find all the positive integral solutions of

3x2 _ Qxy + 7j^a -4_x + 2y = 109.

This equation may be written

(3x - 42/ - 2)2 + 5 (?/ - 1)2= 336,

say ^2+5^2=336.

Here we have merely to try all values of ?? from to 8, and find which of

them makes 336 - 5rp a perfect square. We thus find

^=±16, ,;=±4;
|=±4, i;=±8.

Hence
3a;-4y-2=±16, j/-l=±4 (1);

3a; -4?/ -2= ±4, y-l==fc8 (2).

It is at once obvious that in order to get positive values of y the upper

sign must be taken in the second equation in each case. Hence y = 5 or

?/ = 9, To get corresponding positive integral values of x, we must take the

lower sign in the first of (1), and the upper sign in the first of ("i). Hence

the only positive integral solutions are

x—2, y — o, and x=14, 2/
= 9.
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Example 2. Find the positive integral solutions of

This is a case where the terms of the 2nd degree break up into two rational

factors. We may put the equation into the form

(9a; + 6?/-l)(3j/-4) = 112.

Since 3y -i is obviously less than 9x + Gy-l when both x and y are

positive, 3)/ - 4 must be equal to a minor factor of 112, that is, to 1, 2, 4, 7,

or 8; the second and the last of these alone give integral values for y, namely,

y = 2 and j/ = 4. To get the corresponding values of x, we have 9x+ 6y-l
= 56 and 9a; + 6?/-l= 14, that is to say, 9x= 45 and 9x= -9. Hence the

only positive integral solution is x= 5, y= 2.

Example 3. Find all the integral solutions of

9x2 _l2xy + 42/2 + 3x + 2y = 12.

Here the terms of the 2nd degree form a complete square, and we may
write the equation thus

—

(3x - 2(/)2 + (3x - 2y) + 4?/ = 12,

or 4(3a;-22/)2 + 4(3x-22/) + l + 16?/= 49;

that is, (6.T -iy + 1)2= 49 - 16?/.

Hence, if

u=Qx-iy + l (1),

so that u is certainly integral, we must have

?/= (49-w2)/16 (2).

Now we may put M=16/i±s, where s is a positive integer J»8.

It then appears that y will not be integral unless (49 - s2)/16 be integral.

The only value of s for which this happens is s=l. Therefore

u=16a4±1 (3).

Hence, by (1), (2), and (3), we must have

x= 2 + 4/x(l-8/i)/3, y = 3~2fM-16fji^ (4),

or
x= 4/*+ (5-32/^2)/3, j/ = 3 + 2/t-16M2 (5).

It remains to determine /j. so that x shall be integral.

Taking (4), we see that fi{l- 8/i)/3 will be integral when and only when

fj.
— Si> or /j. = 3p -1.

Using these forms for /x, we get

a;= 2 + 4;'-96v2, y = 3-&p-lUv'' (6);

a;= -10+ 68«'-96;'2, t/= - ll + 90;'-144»'2 (7).

Taking (5), we find that (5-32/i2)/3 is integral when and only when
fi=3v + l or /A=8;'-l.

Using these forms, we get from (5)

x=-5-52p-Q6p\ i/=- 11-90*/ -144^2 ^g);

a;= - 13 + 76;/ - 96^2, y=-U + l02v- lUv^ (9)

.

The formulas (6), (7), (8), (9), wherein v may have any integral value,

positive or negative, contain all the integral solutions of the given equation.
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Exercises XXXII.

Find all the integral and also all the positive integral solutions of the

following equations:

—

(1.) 5x + 7y = 2d. (2.) 16a; - 17t/ = 27,

(3.) 11a; + 72/= 1103. (4.) 13G7x - 1013?/ = 16246.

(5.) If £x. ys. be double £y. xs., find x and y.

(6.) Find the greatest integer which can be formed in nine different

ways and no more, by adding together a positive integral multiple of 5 and a

positive integral multiple of 7.

(7.) In how many ways can £2 : 15 : 6 be paid in half-crowns and florins?

(8.) A has 200 shilling-coins, and B 200 franc-coins. In how many ways
can A pay to B a debt of 4s. ?

(9.) 4 apples cost the same as 5 plums, 3 pears the same as 7 apples, 8
apricots the same as 15 pears, and 5 apples cost twopence. How can I buy
the same number of each fruit so as to spend an exact number of pence and
spend the least possible sum ?

(10.) A woman has more than 5 dozen and less than 6 dozen of eggs in

her basket. If she counts them by fours there is one over, if by fives there

are four over. How many eggs has she ?

(11.) A woman counted her eggs by threes and found that there were two

over ; and again by sixes and found there were three over. Show that she

made a mistake.

(12.) Find the least number which has 3 for remainder when divided by

8, and 5 for remainder when divided by 7.

(13.) Find the least number which, when divided by 28, 19, 15 re-

spectively, gives the remainders 15, 12, 10 respectively.

(14.) In how many ways can £2 be paid in half-crowns, shillings, and

sixpences ?

(15.) A bookcase which will hold 250 volumes is to be filled with 3-volumed

novels, 5-volumed poems, 12-volumed histories. In how many ways can this

be done? If novels cost 10s. 6d. per volume, poems 7s. Gd., and histories 5s.,

show that the cheapest way of doing it will cost £129. 15s.

Solve the following systems, and find the positive integral solutions :

—

(16.) x+ 2y + 3z = 120.

(17.) x+y + z+u= 4,) (18.) 2x + 5y+ 3^= 324,)

5?/ + 62 -f 9m= 18.) 6a; -4?/ -1-142= 190.]"

(19.) 5a;-62/ + 72 = 173,'l (20.) 17x-i-19(/ -1-212 =400.

17a; - 4?/ -f 32 = 510.)

(21.) x+ y+ z+ «= 26,'j

3x + 2y + iz+ M=63, L

23; + 32/-l-22 + 4it= 74.J

(22.) Show how to express the general integral solution of the system

a-^T^Xi + a^.^x.^+ . . . -j-ai„a;„=di,

a2ia;i+ G„2.T2-f . . .-ha2„x„=d2.

'^n-l. 1*1 + "«-!. 2^2+ • • •+''«-], n^n— "n-l

by means of determinants, when a particular solution is known.
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Find the values of x which make the values of the following functions

integral squares :

—

(23.) 2x2+ 2x. (24.) (x^-x)l5. (25.) a; + 11 and a; + 20, simultaneously.

(26.) 7x + 6 and 4x + 3, simultaneously. (27.) x^ + x + 8.

Solve the following equations, giving in each case the least integral

solution, and indicating how all the other integral solutions may be found :

—

(28.) x^-Uy^=-8. (29.) x^-Uy'^=+5.
(30.) a;2-44?/2=-7. (31.) a;2-44^2^+4

(32.) x2 + 31/2 =628. (33.) x2-69?/2= - 11.

(34.) x2-472/2=+l. (35.) x^-i7y''=-l.

(36.) x2- 261/2= -1105. (37.) x^-7y^=186.

(38.) x2-(a2+ 1)2/2= 1. (39.) x^-(a^-l)y^= l.

(40.) x2-(a2+a)2/2=l. (41.) x^-(a^-a)y'^=l.

(42.) x2 + 5x2/-2x + 3z/ = 853. (43.) xy-2x-dy= 15.

(44.) x2-2/2 + 4x-5?/ = 27. (45.) 3x2+ 2x2/ + 02/2 =390.

(46.) x2+ 4x2/ - 111/ + 2x-86j/- 140 = 0.

(47.) !b2 - xy - 722/2 + 2x-440t/- 659= 0.

(48.) x2 + 2x2/ -17^2 + 721/ -75=0.

(49.) 61x2+ 28x3/ + 2512/2 + 264x4-5262/ + 260=0.

(50.) Show that all the primitive solutions of Dx^- (7y'= =tH are

furnished by the convergents to ^(C/D), provided H<^{CD). Show also

how to reduce the equation Dx2- C2/2= ifl", when if>^(CD).

(51 .) Find all the solutions of

4x2-72/2= -3,

and of 4x2-72/2 = 53.

(52.) If D, E, F, II be integers, and H<^{E^-DF) (real), show that all

the solutions of

Dx2 - 2Exy + Fy"^= ±H
are furnished by the convergents to one of the roots of

Dz^-2Ez + F=0.
(See Serret, Alg. Sup., § 35.)

(53.) If 0„=P„-a;g„, where a; is a periodic fraction having a cycle of

c quotients, and p„ and g„ have their usual meanings, then

C/„H-^=(a-/3x^+i)»J7r,

1 1
where a;,+i - «r+i+

;i

—

T • • • ,-;—T • • •»

* a,.+2+ «r+c+all
and s=«H-i+ T • • • 7~ •

In particular, if x=sJ(CID), then

DPnc+r - sKGD) q^^= {aM, - /3L^ - /3V(CD)}» (Bp^ - ^(CD) q,)IM*.

Point out the bearing of this result on the solution of Dx^-Cy"= ±11.



CHAPTER XXXIV.

General Continued Fractions.

FUNDAMENTAL FORMULA.

§ 1.] The theory of the general continued fraction

^i = «i + -^-^. . . (A),

where a^, a^, a^, . . ., h.2,h, . . . are any quantities whatever,

is inferior in importance to the theory of the simple continued

fraction, and it is also much less complete. There are, how-

ever, a number of theorems regarding such fractions so closely

analogous to those already established for simple continued

fractions that we give them here, leaving the demonstrations,

where they are like those of chap, xxxii., as exercises for the

reader. There are also some analytical theories closely allied to

the general theory of continued fractions which will find an

appropriate place in the present chapter.

In dealing with the general continued fraction, where the

numerators are not all positive units, and the denominators

not necessarily positive, it must be borne in mind that the chain

of operations indicated in the primary definition of the right-

hand side of (A) may fail to have any definite meaning even

when the number of the operations is finite. Thus in forming

tlie third convergent of 1 + -

—

^rz_^^' • • ^® ^^^ ^^^ ^o

1 + 1/(1 - 1) ; and in forming the fourth to 1 + 1/{1 - 1/(1 - 1)}.

It is obvious that we could not suppose the convergents of this

fraction formed by the direct process of chap, xxxii., § 6 (a), (^),
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(y). It must also be remembered that no piece of reasoning

that involves the use of the value of a non-terminating continued

fraction is legitimate till we have shown that the value in

question is finite and definite.

In cases where any difficulty regarding the meaning or conver-

gency of the continued fraction taken in its primary sense arises,

we regard the form on the right of (A) merely as representing the

assemblage of convergents pijq-i, p^jq^, • . -fPnlqn whose denomi-

nators are constructed by means of the recurrence-formulae (2) and

(3) below.

That is to say, when the primary definition fails, we make

the formulae (2) and (3) the definition of the continued fraction.

In what follows we shall be most concerned with two varieties

of continued fraction, namely,

ai + — . . . (15 ),

and a, + -^-^... (C),

where ai, a.2, a^, . . ., &2, ^3, • • • are all real and positive. We
shall speak of (B) and (C) as continued fractions of the first and
second class respectively.

§ 2,] Upi/qitPi/gi) &c. be the successive convergents to

a<i+ a3 +
then

Pn = CtnPn-l + &n^n-3 (2) J

qn = Clnqn-l + bnqn-2 (3),

with the initial conditions pQ = l,pi = ai; g'l = 1, g'a = «2.

Cor. 1. In a continued fraction of the first class pn and qn

are both positive ; and, provided a„<|; 1, each of them continually

increases with n*.

In a continued fraction of the second class, subject to the

restriction a„<{:l + 6„, p^ and g„ are positive, and each of them

continually increases with n*.

* It does not necessarily follow that Z,p„=QO and Zg'„=oo , for the suc-

cessive increments here are not positive integral numbers, as in the case of

simple continued fracUons.
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These conclusions follow very readily by induction from such

formulae as

Pn -Pn-l = («n - 1 )i?n-l + Kpn-i (•*)•

Cor. 2.

-^=^^4._^ AzZ_.
. .^ (5);

,
Pn-1 ttn-l + a»-2 + «!

_5iL = «^+_A_ A-_l_.
. .
h

(6).

§ 3.] From (2) and (3) we deduce

Pnqn-l -Pn-ign = ( " )"^2^3 • • • &» (!)•

Cor. 1. The convergents, as calculated by the recurrence-rule,

are not necessarily at their lowest te7"ms.

Cor. 2.

Cor. 3.

Phl _ Pj^ = (-Y ^- ^^ • ' -^n /gx

2n S'n-l QnQn-l

Cor. 4.

Pnqn~2-Pn-2qn = {-T"^anb2l>3 . • • ^u-i (4);

/^ra Pn-2 _ / \n-l ^nf^if^'i • ' • ^n-1 /r\

Qn qn-2 qnqn-2

Cor. 5.

/Pn _ Pn-\\ l(Pn-l _ Pn~-i\ ^ _ hnqn-2

\qn qn-J/\qn-i qn-2) qn
'

hnqn-'i
(6).

(^nqn-i + bnqn-2

Cor. 6. In a continued fraction of the first class, the odd

convergents form an increasing series, and the even convergents a
decreasing series ; and every odd convergent is less than, and every

even convergent greater than, following convergents.

In a continued fraction of the second class, subject to the

restriction a„<t;l + &„, all the convergents aVB positive, and form

an increasing series.



494 CONTINUANT DEFINED CH. XXXIV

These conclusions follow at once from (2) and (5), if we
remember that, for a fraction of the second class, we have to

replace h^, . . ., bn by -h, . . ., -bn.

CONTINUANTS.

§ 4.] The functions j9„, q^ of ^i, ofa, • • ., ««; h, h, . . ., bn

which constitute the numerators and denominators of the con-

tinued fraction

,
&2 h bn

(Zi H ...
a2+ CC3+ an

belong to a common class of rational integral functions*.

In fact, pn is determined by the set of equations

Pfi = a.iPi + hpo, Pz = aiPi + biPi, . . ., Pn = anPn-1 + bnPn-2

(1),

together with the initial conditions j9o = l, pi = ai; while q^ is

determined by the system

qz^a^qz + hqi, g'4 = «4g'3 + ^4(72, • • . 9'n = a»g''^-i + ^ng«-2

(2),

together with the initial conditions g'l
= 1, §'2 = «2-

It is obvious, therefore, that qn is the samefunction ofa^, as,. . .,

««; bs, bi, . . .,bn aspn is of a^, a.2, ...,«»; b^, b^, . . ., bn-

We denote the function pn by

Pn =K( ^^'•••'M
(3),

and speak of it as a continuant of tits nth order whose denomin-

ators are a^, a^, . . ., a», and whose numerators are bi, . . ., 6«.

We have then

\a^2» (^if • • • J ^n/

* This was first pointed out by Euler in his memoir entitled " Specimen

Algorithmi Singularis," Nov. Comm. Petrop. (1764). Elegant demonstrations

of Euler's results were given by Mobius, Crelle's Jour. (1830). The theory

has been treated qI l&te in connection with determinants by Sylvester and

Muir.
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When the numerators of the continuant are all unity, it is

usual to omit them altogether, and write simply K{ax, a^, . . ., a„).

A continuant of this kind is called a simple continuant.

When it is not necessary to express the numerators and

denominators it is convenient to abbreviate both

^L !"' * " !") and ^(a„ a„ . ..,«„)
\»i , ih} • • • ) "71/

into K(l, n). In this notation we should have, if r<5,

\fl5,., (Ir+i, '

\(ls , ds—l > •

., as)
(5);

(6).

In particular, K{r, r) means simply a,., so that j^i = K{1, 1) = ai-

To make the notation complete, we shall denote po and q^ by

K{ ), which therefore stands for unity ; and, in general, when

the statement of any rule requires us to form a continuant for

which the system of numerators and denominators under con-

sideration furnishes no constituents, we shall denote that con-

tinuant by ^( ) and understand its value to be unity. It will

be found that this convention introduces great simplicity into

the enunciation of theorems regarding continuants.

§ 5.] A continuant of the nth order is an integralfunction of

the nth degree of its constituents.

This follows at once from the definition of the function, for

we have, by § 4 (1),

K{l,n) = anK{l,n-l) + hnK{l,n-2), \

K{1, n-l)^ an-iK(l, n-2) + K-J<:{1, n - 3),

K{1, /+ 1) = ai+xK{l, I) + hi+,K{ ),

K{l,l) = ai, K{ ) = 1.

(7).

The following rule of Hindenburg's gives a convenient

process for writing down the terms of a series of continuants,

gay Z(l, 1), K{\, 2), K{1, 3), . . . :-
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«!

as

«4

«1 ^2 ^4 ^5

K h. as

^5«! fta «3

K «3 ^>5

»! ^'3 h.

1st. Write down «], and enclose it in the rectangle 1, 1. The

terrain 1, 1 is^(l, 1).

2nd. Write a^ to the right of all the rows in 1, 1 ; and write

&2 underneath. Enclose all the rows thus constructed in the

rectangle 2, 2. Then the rows in 2, 2 give the products in

/r(l, 2), namely, a^az + h.

3rd. Write as at the ends of all the rows of 2, 2 ; repeat

under 2, 2 all the rows in 1, 1, and write bs at the end- of each of

them. Enclose all the rows thus constructed in 3, 3. Then

the rows in 3, 3 give the products in K{1, 3), namely,

aia-itti + hiCh + a^hz.

The law for continuing the process will now be obvious. The

scheme is, in fact, merely a graphic representation of the con-

tinual application of the recurrence-formula

K{1, n) = anK{l, n-\) + hnK{\, n-2) (8).

By considering Hindenburg's scheme we are led to the

following rule of Euler's* for writing down all the terms of a

continuant of the wth order.

Write down a^a^a^ . . . an-ittn. This is the first term. To

get the rest, omit from this product in every possible way one or

more pairs of consecutive a's, always replacing the second a of

the pair by a b of the same order.

* Euler {I.e.) gave the rule for the simple continuaiit merely. Cayley

{Phil. Mag., 1853) gave the more general form.
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For example, to get tlie terms of K{1, 4). The first is a^af^a^a^. By
omitting from this, first aia2, then a2^3' then aga^, and replacing by b^, 63, 64

respectively, we get three more terms, b^a^tti, a^b^a^, a^a^b^. Then,' omitting

two pairs, we get b^^b^. We thus get all the terms of iC (1, 4).

It is easy to verify this rule up to K{\, 5); and a glance at

the recurrence-formula (8) shows that, if it holds for any two

consecutive orders of continuants, it will hold for all orders.

From Euler's rule we deduce at once the following :

—

Cor. 1. The value of a continuant is not altered by reversing

the order of its constituents, that is to say,

j^r h, . . ., K\^r hn, . . ., h\
^g^^

\ai, a^, • . •, a^ \an, flf»-i) • • •> <^i/

We could obviously form the continuant K (1, n) by starting

with anttn-i . . . a^ai instead of ai^a . . . a»-ia„, and replacing each

consecutive pair of a's in every possible way by a 6 of the same

order as the first a of the pair. In this way we should get pre-

cisely the same terms as before. Hence the theorem. We may
express it in the form

K{l,m) = K{m,l) (10).

Cor. 2. We have the following recurrenceformula

:

—
K{1, m) = aiK{l +l,m) + bi+^K{l + 2, m) (11).

For, by Cor. 1,

K{l,m) = K{m, I),

= aiK{m, l+l) + bi+iK(m, 1+2), by (7),

= ai K{1 +\,m) + bi+i K{l + 2, m), by Cor. 1.

§ 6.] The theorems (1) and (4) of § 3 may be written in

continuant notation as follows :

—

J:(1, n) Z (2, w - 1) - K{\, n- 1)^(2, n)

= {-fbA...b,,K{ )K{ ) (12),

K{\, n)K{2, n-2)-K{l,n-2)K{2, n)

= ( - T-' b,b, . . . bn-, K{ ) K{n, n) (13).

These are particular cases of the following general theorem,

originally due to Euler*:

—

* Euler stated it, however, only for simple continuants. It has been

stated in the above general form and proved by Stern, Muir, and others.

C. II. 32
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K{1, n) K{1, m) - K{\, m) K{1, n)

= {-r-''%bu^ . . . ^>«+i^(l, l-2)K{m+2, n) (14),

where l<l<m<n.

This theorem is easily remembered by means of the following elegant

memoria technica, given by its discoverer :

—

1, 2, . . ., 1-2, l-l, \l, . . ., m, |m + l, m+ 2, . . ., n.

Draw two vertical lines enclosing the indices belonging to K{1, m); then two

horizontal lines as above ; and put dots over the indices immediately outside

the two vertical lines. The indices for the first continuant on the left of (14)

are the whole row ; those of the second are inside the vertical lines ; those of

the third and fourth under the upper and over the lower horizontal lines

;

those of the two continuants on the right outside the two vertical lines, the

dotted indices being omitted. The 6's are the 6's ot K{1, m) with one more at

the end ; and the index of the minus sign is the number of constituents in

K{l,m).

The proof of the theorem is very simple. We can show, by

means of the recurrence-formulae (7) and (11), that, if the formula

hold for /, ?» + 2, and for /, m + 1, or for 1-2, m, and for l-l, m,

it will hold for /, m. Now (12) asserts the truth of the theorem

for 1^2, m=n~l; and it is easy to deduce from (12), by

means of (7) and (11), that the theorem holds ior 1= 3, m = n-lf
and also for 1=2, m-n- 2. The general case is therefore

established by a double mathematical induction based on the

particular case (12).

The theorem (14) might be made the basis of the whole

theory of continued fractions ; and it leads at once to a variety

of important particular results, some of which have already been

given in the two preceding chapters. Among these we shall

merely mention the following regarding what may be called

reciprocal simple continuants :

—

K{a^, a^, . . ., tti, tti, . . ., a2, a^

= K((h,a2, . . ., aiY + K(ai, a,, . . ., a^-i)* (A);

K{ai, a<i, . . ., ftf-i, ai,ai-i, . . ., a2, a^

==K{ai, a., . . ., tti--,) {K{a„ a^, . . ., a^) + K{ai, a^, . . ., a<-a)}

(B).
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Example. Show that every prime y of the form 4\ + 1 can be exhibited as

the sum of two integral squares*.

Let Atj , A4 1 • • ., Ms be all the integers prime to p and < ^p ; and let simple

continued fractions be formed for j>/yUj, 2'/m2» • • •> Vli'-si each terminating so

that the last partial quotient > 1. Then each of these continued fractions has

for its last convergent the value K(a-^, a^, . . . , a,J/7i'(a2, a^, . . . , a„), where

the two continuants are of course prime to each other, and ai>l, a„>l.
From this it appears that there are as many ways, and no more, of

representing ^^ by a simple continuant (whose constituents are positive

integers the first and the last of which are each greater than unity) as there

are integers prime to p and < ^p.

Now, since K{ai, a^, . , a^^ = K{a^, . . . , a^, Oj), and a„>l, it is

obvious that -K'(a„, • . . , ag, flj) must arise from one of the other fractions pj/i.

Hence, given any fraction pjfi, it is possible to find another also belonging to

the series which shall have the same partial quotients in the reverse order.

Let p be a prime of the form 4\ + l, then the greatest integer in ^p is 2\,

which is even. Since, therefore, the number of continuants which are equal

to p must be even, and since K (p) is one of them, there must, among the

remaining odd number, be one at least which gives rise to no new fraction

when we reverse its constituents, that is to say, which is reciprocal. Now
the reciprocal continuant in question cannot be of the form K{ai, 02, . . .,

«i-i. flji «i-i» • • •> ^2> '''i)'
^^^ ^* follows from (B) that such a continuant

cannot represent a prime, unless i= l, or else i = 2, and 0^= 1, all of which are

obviously excluded.

We must therefore have an equation of the form

p= K{ai, aj, . . ., a<, o,-, . . ., a^, a^),

K(ai, aj, . . ., ai)^ + K(a^, a^, . . ., ai_i)2,

by (A), which proves the theorem in question.

As an example, take 13=3x4 + 1.

_ , 13 ,„ 13 ^ 1 13 , 1 13 ^ 1 13 „ 111
Wehavey=13; ^=6 + ^; —4+^; -^=3+ ^; -^=2 +^^^;

H=2 +L So that 13=£:(13)=ir(6, 2)=K(4, 3)=K(B, 4:)=K(2, 1, 1, 2)
6 D

=K(2, 6); and, in particular, 13=jB:(2, 1, 1, 2) = K(2, l)2+j: (2)2=32 + 22.

§ 7.] By considering the system of equations (1) of § 4, it is

easy to see that, if we multiply ar, K, h+i by c^, the result is

the same as if we multiplied the continuant K{1, n) {n>r) by

Cr. Hence we have

jy I
C2O2J CipJ^Zi C3C4O4, • • ., Cn-\CrPn

O/i, C<^-2} CsQis, 64(14, • • .J C.

\ai, «2, . . ., «;

nfitn/

^ (15).

* The following elegant proof of this well-known theorem of Fermat's was

given by the late Professor Henry Smith of Oxford (Grelle's Jour., 1855).

32—2
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We may so determine c^, Cs, . . , c^ that all the numerators

of the continuant become equal. In fact, if we put

Cj)2^\ 026^)3 = \ . . ., Cn-iCnbn=\

we get

Ca = '^bJ)ilbJ)J)2, ... ,

Hence

/ \, X, X, . . A
= {ll^ybJ>n-A-.- . ''-^[a„Xa,lb„a.A/b3,XaA/bA, • )

(16),

where p is the number of even integers (excluding 0) which do

not exceed n.

Cor. Every continuant can be reduced to a simple continuant,

or to a cmtinuant each, of whose numerators is - 1.

Thus, if we put X = + 1 and X = - 1, we have

j^/ &2, . . •, bn\

= Z>A-2 . • .xX(ai, ^2/^2, ttsb^bs, aA/bA, - - -,

anbn-ibn-3 • • •/M»-2 • • •) (17),

= {-ybnbn-, . .
.xK(^^^

_^^i^^^ aAlbJ,-aA/bA, . •
•',

{-f-^ dubn-lbn-S ' . -Ibnbn-^ • • 7

§ 8.] The connection between a continuant and a continued

fraction follows readily from (11). For we have, provided

K(2, n), K{3, n), K{^, n), . . . are all different from zero,

K{l,n) _^ b,

KA^) ""^'^ K (2, n)/K (3, n)'

K(2^
^ ^ bs

K{S,n)~'^ K{3,n)IK{4:,ny -

Hence

-^(1>^) _^ ,

^a ba ^r /,qn

Kj^) ~'''^a,+ aa+ - ' ' K{r, n)IK{r + 1, n)
^'''^-
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If in this last equation we put r = n, and remember that

here K{n+l, n) =K{ ) = 1, we get

^Ji4=^+AA...*»
(20),

a result which was obvious from the considerations of § 4.

§ 9.] When the continuant equation

K{1, n) = anK{l, n-l) + bnK(l, n-2),

or Pn = anPn-i + hPn-2,

which may be regarded as a finite difference equation of the

second order, can be solved, we can at once derive from (20) an

expression for

a I

^^ ^^ ^
^ aa + as

+'"'«»

*

When ttn and 6„ are constants, the problem is simply that of

finding the general term of a recurring series, already solved in

chap. XXXL, § 7.

Example. To find an expression for the nth convergent to

_1 1^ J^^-^ + 1+ 1+ • • • 1+ • • • •

Here we have to solve the equation Pn=Pn-i+Pn-2f "^'^^^ the initial con-

ditions 2>o= 1 ) i^i= !• The result is

K{1, n) =i5n= {(1 + v/5)"+i - (1 - V5)"+n/2"+V5.
Hghcg

P^^ Kjl, w) _ {(l + V5)"+i-(l-V5)"+i}/2'*+V5

g„ K{2,n) {(l + V5)''-(l-^/5)»}/2V5 '

_ (l + ^5)"+^-(l-^5)"+i
* (l + ^5)™-(l-V5)" *

From the expression for K{l,n) (all the terms in which reduce in this case

to + 1) we see incidentally that the number of different terms in a continuant

of the nth order is

2n+l /5 — 2^ l«+l'^l + ^n+l<^3 + ^ n+1^5+ • • •/•

§ 10.] When two continued fractions i^ and F' are so related

that every convergent ofF is equal to the convergent of F' of

the same order, they are said to be equivalent*.

* We may also have an {m, ra)-equivalence, that is, Prmllrm^Prnllrn-
See Exercises xxxiii., 2, 17, &o.
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It follows at once from §§ 7 and 8 (and is, indeed, otherwise

obvious, provided the continued fraction has a definite meaning

according to its primary definition) that we may multiply a^, br,

and br+i by any quantity m{=¥0) without disturbing the equi-

valence of the fraction. Hence we may reduce every continued

fraction to an equivalent one which has all its numerators equal

to + 1 or to - 1. Thus we have

a, +

= ai +

tta + «3 + »4 +
*

1 1 1

02/^2+ a3V^3+ «A/^A+ ' " * anK-iK- lbnbn-2

(21).

11.] If we treat the equations (1) as a linear system to

determine K{1, 1), K{1, 2),

minant notation, we get

, K{1, n), and use the deter-

a, h. . . .

1 ^2 ^'3 . . .

0--1 «3 h . . .

0- 1 a^ h,. . .

. . .-1 ««- 1 b,,

. . 0--1 an

which gives an expression for a continuant as a determinant.

The theory of continuants has been considered from this point

of view by Sylvester and Muir* ; and many of the theorems

regarding them can thus be proved in a very simple and natural

manner.

Exercises XXXIII.

(1.) Assuming that both the fractions

a b c _ a h c

^~a+&Tc+*""' ^~b+c+'d+'''
are convergent, show that

x{a + l-\-y) = a-\-y.

See Muir's Theory of Determinants, chap. iii.
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(2.) If piq and p'lq' be the ultimate and penultimate convergents to

a + ;— . . . T , show that
b+ k

1 1 ^ . , 1 r 1 1 1-1
a + ,
— . . .

-— ... to n periods=- P^—, -, ...-;,
* h+ k+ ^

qlf 5 +p=F g +p=F qj
*

where the quotient q' +p is repeated n-1 times, and the upper or the lower

sign is to be taken according as pjq is an even or an odd convergent.

(3.) Evaluate a -J . . . to n quotients, a being any real quantity

positive or negative. Show from your result that the continued fraction in

question always converges to the numerically greatest root of .t^- ax -1 = 0*.

(4.) Deduce from the results of (2) and (3) that a recurring continued

fraction whose numerators and denominators are real quantities in general

converges to a finite limit ; and indicate the nature of the exceptional cases.

(5.) Evaluate 2 - -— -— -— ... to n terms.

14 2 2 2
(6.) Show that the nth convergent to -— -— -— -— -— . . . , every sub-

o— o— o — o — o —

2
sequent component being - , is (2"- 1)/(2" + 1).

X s* x"^* — X
(7.) Show that ; — . . . to n terms= —rn

—

t.
^ ' x + l-x + 1- a;"+i -

1

(8.) :; z ^
—-. . . (;t + l components)

^ ' 1- a+ 1- a + 2- "• ^ '

= l + a + a(a + l)+. • .+a(a + l) . . . (a + n-1).

(9.) If (n) = . . . n quotients, then

<p{m+ n) =
{<f>

(m) + i>(n)- a<l> {m) <p (n)}/{l + (m) (n)}.

(Clausen.)

(10.) Show that

K{0, 02, as, . . ., a„) = K{a3, . . ., aj

;

K(. . . a,b,c,0,e,f,g, . . .)=K{. . . a,b,c + e,f,g, . . .);

K(. . . a, b, c,0, 0,0, e,f,g, . . .) = K(. . . a,b,c+ e,f,g, . . .);

K(. . . a,b, c, 0, 0, e, f, . . .) = k{. . . a, b, c, e, f, . . .).

(Muir, Determinants, p. 159.)

(11.) Show that the number of terms in a continuant of the nth order is

, / ,\ (re-2)(n-8) (n-3)(re-4)(n-5)
l + (n-l) + ^^

^1
i + ^

3!
^+- • • •

(Sylvester.)

(12.) If2>„=Jir( ^' 3' • ' "), show that there exists a relation of

the form

^Pn^ + Spn-i" + Cp^-^ + Dp^-s'= 0,

where A, B, C, D are integral functions of a„, 6„, a„_i, 6„_i.

* This is a particular case of the theorem (due to Euler?) that the

numerically greatest root of x^-px + q = is p—-—— • . . •
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(13.) Show that

and deduce the theorem of § 19. (Muir, I.e.)

Taking {a, b, c, . . ., k) to denote the continued fraction — t —

. . . -T, and [a, h, c, . . ., /c], or, when no confusion 18 likely, [a, k], to

denote k( ~
'
~

' * * *'
) prove the following theorems*:

—

\a, 6, c, . . ., «/

(14.) If a; = (a, fe, c, . . ., c, y), then y= (e, . . .,c, h, a, x) ;

xy-{e, . . ., a)x-(a, . . ., e)y + {e a) (a d)=0;

(a, . . ., c) (e, . . ., b) = {c, . . ., a) {a, . . ., d);

{^-(« c)}{y-{e,. . ., a)}

= {e,. . .,a)2(d,...,a)2(c,. . .,a)2. . . (a)^.

(15.) (a,. . .,c)-{a,. . .,d) = ie,. . .,a){d,. . .,af[c,. . .,a)K..(a)\

(16.) [a, b, c, d, e]= ll(a, b, c, d, c) [b, c, d, e) (c, d, e) (d, c) (e).

(17.) Prove the following equivalence theorem :

—

(a, . . .,e,f, a',. . ., e', f, a", . . ., e". f", a'", . . ., e'", /'")

-J_ir7 1 ,
K e'] [a, e][a", e"] [a', e'][a"', e'"] [a", e"]

]-
[a, e] r'

^J "^
[a, e'] - [a', e"] - [a", e'"] - [a"\ e"']f"' - [«'". d"']i

*

(18.) (a,f, a',f', a",f", a"',f"', . . .)

_1 j
a' aa^ a'a'"

~ a \ afa' -a-a' - a'
J
'a" -a'- a" - a"/"a'" - a" - a"' -

Jl_JLJ L J_
^ '' Tn+ b+ vi+ c+ 171+ ' '

'

If, 1 1= — -{am+ l--— =;m
{

2 + bm- 2 +cm-

(20.) v/2= l +2^2T---=H^-*'itl^l^'"}-

}
]

(21.) (a, . . ., e, f, a, . . ., e, /', a, . . ., e, f", . . . ad oo)

- {e, . . . , a, f, e, . . ., a, f\ e, . . .,a, /", . . . ad oo

)

= (a, . . .,e)-{c, . . .,a).

(22.) Show that the successive constituents a, j3, 7, . . .,X, n,v may be

omitted from the continued fraction (. . . o, 6, a, jS, 7, . . . , X, /jl, v, c, d, . . .)

without altering its value, provided [j3, . ., ;u]=±l, a=^[y, . . ., mL
and »/=±[|8, . . ., X]; and construct examples.

* *

(23.) If a;= (a, . . ., e, /, . . .), the other root of the quadi-atic equation

to which this leads is x = (/, c, . . ., a, . . .).

1
(24.) If 6 +^. ^ '

bm+ a+ ' ' ' a™ +
. . be one root of a quadratic

* The notation and the order of ideas used in (14) to (23), as well as

some of the special results, are due ^ Mobius {Crelle's Jour., 1830).
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equation, the other is

1 111 111
b +

» »

(Stern, Crelle's Jour., 1827.)*

(25.) I{q>p, show that

^^ q -p pq {q -p) pq jq -pf
- a^-ry^- /j2_«a_ •

•

{q-p)q = q^-p

q- q'-p^- q -p
*

.. „a i>g(g-y)'
q^-pi-

CONVERGENCE OF INFINITE CONTINUED FRACTIONS.

§ 12.] By the value or limit of an infinite continued fraction

is meant the limit, if any such exist, towards which the con-

vergent Pn/qn approaches when n is made infinitely great. It

may happen that this limit is finite and definite ; the fraction is

then said to be convergent. It may happen that L Pn/qn fluctuates
n=<»

between a certain number of finite values according to the

integral character of n ; the fraction is then said to oscillate.

Finally, it may happen that L pnfqn tends constantly towards
n=oo

± 00 ; in this case the fraction is said to be divergent.

We have already seen that all simple continued fractions are convergent.

The fraction 1 — -— -— -— ... is an obvious example of oscillation, its

value being 1, 0, or - oo according as n=3m+ l, 3m+ 2, or 3m+ 3,

The fraction 1 —
, ,_

-— :j— :;— . . . diverges to - oo , for -— -— -

—

-h + iJ5- 1+1+1+ ^ 1+1+1 +
. . . converges to -^ + is/5, as may be easily seen from the expression for

its nth convergent given in § 9.

The last example brings into view a fact which it is important

to notice, namely, that the divergence of an infinite continued

fraction is something quite difi"erent from the divergence of an

infinite series. The divergence of the fraction is, in fact, an

accidental phenomenon, and will in general disappear if we

modify the fraction by omitting a constituent. It is therefore

* (23) and (21) are generalisations of an older theorem of Galois', See

Gergonne Ann. d. Math.^ t. xix.
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not safe in general to argue that a continued fraction does not

diverge because the continued fraction formed by taking all its

constituents after a certain order converges.

With the exception of simple continued fractions and recur-

ring continued fractions (whether simple or not), the only cases

where rules of any generality have been found for testing con-

vergency are continued fractions of the " first " and " second

class." To these we shall confine ourselves in what follows*.

§ 13.] A continued fraction of the first class cannot he

divergent ; and it will he convergent or oscillating if any one of

tlie residualfractions x<i, Xz, . . .,Xn,. . . converge or oscillate.

The latter part of this proposition is at once obvious from the

equation

62 ^3 hn
Xi = ai-\ ... —

.

a2 "T a^ "T *c/ji

Again, since (§ 3, Cor. 6) the odd convergents continually

increase and the even convergents continually decrease, while any

even convergent is greater than any following odd convergent, it

follows that Lpsn/^in =A and Lp2n-i/(l2n-i = -S, where A and B are

two finite quantities, and A <^B. U A=B, the fraction is con-

vergent ; if A>B, it oscillates ; and no other case can arise.

§ 14.] A continued fraction of the first class is convergent if

the series 5a„_ia„/6» be divergent.

We have, since all the quantities involved are positive,

Qn ~ Cf'n^n-l + hngn-2 j

9'n-2 = Cin-2^n-3 + t'n-22'»-4> Qn-2^ (^n-2^n-3 >

Qi = atqs + 642-2 , g'4> ^4 5-3

;

^3 = 053^2 + &33'x, q3>aiq2\

* Our knowledge of the convergence of continued fi-actions is chiefly due

to Schlomilch, Handb. d. Algebraischen Analysis (1845) ; Arndt, Disquisitiones

Nommllce de Fractionihus Continuis, Sundi® (1845) ; Seidel, Untersuchungen

uher die Convergenz und Divergenz der Kcttenhriiche (Habilitationsschrift

Miinchen, 1846) ; also Ahluindlungen d. Math. Classe d. K. Baxjerischen Akad,

d, Wiss., Bd. VH. (1855) ; and Stern, Crelle's Joiir.^ xxxvii. (1848).
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Hence

Therefore

qnqn-l>qiq2 (h + a^a,-^ {h + «3a4) . . . (&n + aJTi-i^Ti),

and, since qx = l, g'2 = «2>

_3^

'r^>l(-x)(^^T)---('^""e)''>-
Now, since ^an-iajbn is divergent, n (1 + a„_ia„/J„) diverges

to + Qo (chap. XXVI., § 23), therefore Lqnqn-ilhhz . . . 6„= + go.

Hence

^q^n q^in-J q-2!n,q2n-\\q2n q^n-V
-0,

that is, the continued fraction is convergent.

Cor. 1. Thefraction in question is convergent i/Lan-idn/K> 0.

Cor. 2. Also i/Lan/bn>0, and 2a„ be divergent.

Cor. 3. Also if Zan+ibn/an-ibn+i> 1.

The ahove criterion is simple in practice ; but it is not

complete, inasmuch as it is not proved that oscillation follows

if ^aji-ittn/bn be convergent. The theorem of next paragraph

supplies this defect.

§ 15.] If a continued fraction of the first class be reduced to

the form

^ ^ _1_ _1_ J_ J_ , .

^ d2+ d3 + d4+' ' ' dn+ ' '
'

so that

J _ J _^^ /7 — *^3^2 n _ ^4^3

^^^a^A-A-3. . .

^5j^
UnOn-2 • • •

then it is convergent if at least one of the series

ds^ ds^ dr+ . . . (6)

C?2 + C?4 + <^6 + . . . (7)

be divergent, oscillating if both these scries be convergent.
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This proposition depends on the following inequalities be-

tween the q's and d's of the fraction (4) :

—

0<g'„<(l + d.2) (l + d,) . . . (1 + dn) (8)

;

q2n>d2 + di+ . . . +d.:ai (9);

g2n-a>l (10).

These follow at once from Euler's law for the formation of

the terms in qn, which, in the present case, runs as follows :

—

Write down dzd^ . . . dn and all the terms that can be formed

therefrom by omitting any number of pairs of consecutive (f s.

We thus see that qn contains fewer terms than the product

(1 + ^2) (1 + c^s) • • • (1 + ^») ; and, since the terms are all positive,

(8) follows. Again, in forming the terms of the 1st degree

in ganj we can only have letters that stand in odd places in the

succession d^d^di . . . c?27» ; hence (9) ; and (10) is obvious from a

similar consideration.

To apply this to our present purpose, we observe that, since

the numerators are all equal to 1, we have

P-M P^n-l _
(11).

q^n qin-l q-2nqin-l

If we suppose d^ + 0, neither q^n nor q^n-i can vanish. Hence,

if both Lq^ and Lq^^-i be finite, the fraction will oscillate, and

if one of them be infinite it will converge.

Now, if both the series (6) and (7) converge, the series

d2 + ds + di+ . . . + dn will converge ; and the product on the

right of (8) will be finite when n= co. In this case, therefore,

both q2n and q^n-i will be finite ; and the fraction (4) will

oscillate.

If the series c?2 + «^4 + ^o + • • • diverge, then by (9) Lq^n = <»

,

and the fraction (4) will converge.

By the same reasoning, if the series c?3 + c?5 + c?? + . . . diverge,

then the fraction

^^^J l_ J_ _ '

ds+ di+ ' ' dn +

will converge ; and consequently the fraction (4) will converge.
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Remark.—We might deduce the criterion of last paragraph

from the above. For we have

did2 = aia2lbg,, did3 = a^ajb-i, . . ., dn-\dn = an-\anjbn-

Now, if the series %dn converge, the series formed by adding

together the products of every possible pair of its terms must,

by chap, xxx., § 2, converge : a fortiori, the series 2c?„_iC?„, that

is, ^an-ian/bn, must converge. Hence, if this last series diverge,

2c?n cannot converge. 5c?„ must therefore diverge, since it cannot

oscillate, all its terms being positive. Therefore either (6) or (7)

must diverge, that is to say, the fraction (4) must converge.

Example 1. Consider the fraction

^ +2+2+2+ • • • •

_2(2«-l)2(2ra-3)'^. . 3'.P
Here d^^i+i-

(2n)2 (2/1 - 2)2 . . .4-'.22 *

It may be shown, by the third criterion of chap, xxvi., § 6, Cor. 5, that

the series 2i2„+i is divergent. Or we may use Stirling's Theorem, Thus,

when n is very great, we have very nearly

=2 [{J{2w2n) (2k/c)2»}/{22'» (2irn) (n/e)2»}]2,

= 2/7rn.

The convergence of Sdan+i is therefore comparable with that of 21/n, which

is divergent.

Hence the continued fraction in question converges.

Example 2.

X x^ afi

a+ a+ a+

oscillates or converges according as a;>l or > 1.

Example 3.

2+ 3+4+ • • • *

Here i«n-i ""nl^n=L{?i-l)nl{n + l) = co,

therefore the fraction is convergent.

§ 16.] There is no comprehensive criterion for the con-

vergence of fractions of the second class ; but the following

theorem embraces a large number of important cases :

—

If an infinite continuedfraction of the second class of theform

F = (V\
Oa - tta - '

' " «rt - ' ' '
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be stick that

an^bn + 1 (2)

for all values of n, it converges to a finite limit F not greater than

unity.

If the sign > occur at least once among the conditions (2), then

F<1.
If the sign = alone occur, then F=l — l/S, where

S=l + b2 + h^hi + hj)ibi + . . . + ^2^3 • • . ^» + . • . ad cx) (A),

so that F = or <1 according as the series in (A) is divergent or

convergent.

These results follow from the following characteristic pro-

perties of the restricted fraction (1)
:

—

Pn -Pn-l ^hh. . .bn (3)

Pn^b2 + bibs + b^b-ibi + . . . + bibs . . . 6„ (4)

qn - qn-1 ~ hbj . . .bn (5)

qn = l + b2 + bibs + . . . + bibs . . .b^ (6)

qn -Pn = qn-X - Pn-1 ^. • • ^q^-Pi^l (7).

To prove (3) we observe that

Pn -Pn-l = («n " l)i?n-l " bnPn~2-

Hence, since pn, qn are positive and increase with n (§ 2,

Cor. 1),

Pn - Pn-1 = bn {Pn-1 - Pn-2),

Pn-l -Pn-2 = bn-i {pn-2 -Pn-3),

acc. BUS an^bn + 1;

Ps-Pi^ bsbi. acc. as ag > ig + 1.

Therefore j3„—j3„-i ^bibs . . . bn, where the upper sign must

be taken if it occur anywhere among the conditions to the right

of the vertical line.

To prove (4), we have merely to put in (3) n — 1, w-2,

. . ., 3 in place of n, adjoin the equation Pi = bi, and add all

the resulting equations.

(5) and (6) are established in precisely the same way.

It follows, of course, that pn and qn both remain finite or

both become infinite when w = co , according as the series in (6)

is convergent or divergent.
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To prove (7), we have

= fe-1 -^n-l) + K {(<7n-l -i?n-l) " {qn-^-Pn-^\

according as a» = Z>„+ 1, provided qn-\—Pn-\ is positive.

This shows that, if any one of the relations in (7) hold, the

next in order follows. Now q<^—p^ = a<i-h2.'^\, according as

tta = ^2 + 1 ; and qz- pz = a^a^ — h- has ^ (a^ - h) {bs + 1) - &3

^ (oa - ^2) + ^3 («2 - ^2 - 1), according as aa^bs+l; hence the

theorem. It is important to observe that the first > that occurs

among the relations a2 = b2+l, ^3 = 63+1, . . . determines the

first > that occurs among the relations (7) : all the signs to the

right of this one will be = , all those to the left >

.

The convergency theorems for the restricted fraction of the

second class follow at once. In the first place, as we have

already seen in § 3, the convergents to (1) form an increasing

series of positive quantities, so that there can be no oscillation.

Also, since g„-j9„ = 1, it follows that

Pn/qn ^ 1 - 1/qn (8).

'

Therefore, since qn>l, it follows that i^ converges to a finite

limit ^1.
If the sign > occur at least once among the relations (2),

the sign < must be taken in (8); that is, i^<l.

If the sign = occur throughout, we have

Lpn/qn = 1 - i^l/gn = 1 - l/S,

where >S^ is the sum to infinity of the series (6). Hence, if (6)

converge, F< 1; if it diverge, F= 1.

If we dismiss from our minds the question of convergency,

and therefore remove the restriction that b^, 63, . . ., 6„ be

positive, but still put a„ = 6„ + 1, a„_i = bn-i + 1 , . . ., aa-bs + l,

052 = ^2 + 1> we get by the above reasoning

Pn/qn^l-1/qn (8');

qn=l+b.2 + b.A+ ' . . +bA. . 'h (6').
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Now (8') gives us qn=l/(l-pn/Qn)- Hence tlie following

remarkable transformation theorem :

—

Cor. Ifh<i,. . ., bnbe any quantities whatsoever, then

1 + ^2 + l^it'i + . . . + ^2^3 . . .bn

l-b^+l-h+l-' ' &„+! ^^^'

from which, putting ^1 = 62, u^^b^b-i, . . ., m« = ^2^3. • • 6«+i,

we readily derive

1 + Wi + Mo + • • ' +Un

1 Ui Wg 111 W3 U2Ui

1 — 1 + Ml - Ml + Ma — «<2 + M3 — «*3 + W4 -
*

«„-2 + M„_i - M„-i + Z*„

an important theorem of Euler's to which we shall return

presently.

INCOMMENSURABILITY OF CERTAIN CONTINUED FRACTIONS.

§ 17.] If CTa, «3, . . ., an, b^, h, . . ., hn he all positive

integers, then

I. The infinite continuedfraction

bz h bn '

/jv

a2+ a3+ ' ' ' an+ ' '

'
'^

converges to an incommensurable limit provided that after some

finite value of n the condition ofnH^^re be always satisfied.

II. The infinite continuedfraction

h ba bn
/g)

ftj ~~ ttj — an —

converges to an incommensurable limit provided that after some

finite value of n the condition a„ = 6„ + 1 6^ always satisfied, wJiere

the sign > need not always occur but must occur infinitely often*.

To prove II., let us first suppose that the condition

«„^6„ + l holds from the first. Then (2) converges, by § 16,

• These theorems are due to Legendre, JEltments de G6om4trie, note nr.
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to a positive value < 1. Let us assume that it converges to a

commensurable limit, say K/K, where Aj, Xj are positive integers,

and Xi>X2.

Let now
ba hi

Pz
=

. • • .

ih - ^4 -

Since the sign > must occur among the conditions ^3 ^ ^3 + 1,

0^4 = ^4+1, • • ., Ps must be a positive quantity <1. Now, by
our hypothesis,

KIK = hl{a2 - Pz),

therefore Pa = {a^K - KK)lK

,

= A3/A2, say,

where X3 = a.2X2- ^2^1 is an integer, which must be positive and
<X2, since Pi is positive and < 1.

Next, put
hi h

Pi
=

• ... .

tti-Us-

Then, exactly as before, we can show that P4 = X4/X3, where X4 is a

positive integer <X3.

Since the sign > occurs infinitely often among the conditions

an = bn+ 1, this process can be repeated as often 'as we please.

The hypothesis that the fraction (2) is commensurable therefore

requires the existence of an infinite number of positive integers

Xi, X2, X3, X4, . . . such that Xi>X2>X3>X4> . . . ; but this is

impossible, since X^ is finite. Hence (2) is incommensurable.

Next suppose the condition a„ ^ 6„ + 1 to hold after n = m.

Then, by what has been shown,

y = ...

is incommensurable.

Now we have

K bi bmF=
a^-az- am-y

„ 4-1,, TP \(^m~y)Pm-l t^mPm-2
consequently F= /^z^—TTV^ '

_Pm-yPvi-\
qm-yqm-\

II. 33

(3),
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where pjqm, Pm-i/Qm-i are the ultimate and penultimate con-

vergents of

It results from (3) that

1/ (Fqm-i -Pm-l) = Fq„^ -pra (4).

JNow Fqm-\-pm-i and Fq^-pm cannot both be zero, for

that would involve the equality Pm/qm=Pm-ilqm-i, which is

inconsistent with the equation (2) of § 3. Hence, if F were

commensurable, (4) would give a commensurable value for the

incommensurable ^. F must therefore be incommensurable.

The proof of I. is exactly similar, for the condition a„<t&»

secures that each of the residual fractions of (1) shall be positive

and less than unity.

These two theorems do not by any means include all cases of

incommensurability in convergent infinite continued fractions.

1^ 32 ^2

Brouncker's fraction, for example, 1 + -— -— -— . . .

,

converges to the incommensurable value if-n-, and yet violates the

condition of Proposition I.

CONVERSION OF SERIES AND CONTINUED PRODUCTS INTO

CONTINUED FRACTIONS.

§ 18.] To convert the series

U1 + U2+ ' ' ' +Un+ . . .

into an "equivalent" continued fraction 0/ theform

«!- Oa- ' * ' «»-'

A continued fraction is said to be "equivalent" to a series

when the nth. convergent of the former is equal to the sum of n
terms of the latter for all values of n.

Since the convergents merely are given, we may leave the

denominators qi, 5-2, . . . , qn arbitrary (we take g'o = 1, as

usual).
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For the fraction (1) we have

Pn/qn-pn-i/qn-i = bib2. . . Vg'»-i2'» (2);

g'i = «i, q2 = a'iqi-K, . . ., qn = anqn-i-hnqn-2 (3);

Pi/qi = hlqi (4).

Since

Pjqn ^Ui + ll.2+ . . . + tin (5),

we get from (2) and (5)

Un = bib.2. . . bn/qn-iqn,

Un-1 — Oibz • . . bfi-i/qn-2qn-ly

(6).

ti2 = bib2/qiq2,

Ui = bifqi.

From (6), by using successive pairs of the equations, we get

bi = qi1h, ^2 = ^2^2^, b3 = q3U3/qiU2, . . ., bn-=qnUnlqn-2'Un-l

(7).

Combining (3) with (7), we also find

(ii = qi, a^ = q2('Ui + U2)/qiUi, a3 = g'3(«2 + M3)/?2«2, • • •,

Cln = qn{Un-l + ttn}/qn-lttn-l (8).

Hence

S„ = Ui + U2+ • +tln,

^qiUi q2ih/ui qaUs/qiU^

qi- q2{Ui + U2)/qiUi- q3{u2 + Uz)lq^u^-'
'

qnlln/ qn-2Un-l /n\

qn{Un-l + Un)/qn-lUn-l

It will be observed that the q's may be cleared out of the

fraction. Thus, for example, we get rid of qi by multiplying

the first and second numerators and the first denominator by

1/qi, and the second and third numerators and the second

denominator by qi ; and so on. We thus get foy /8« the

equivalent fraction

^ ^ «*i_ IhfUi U3/U2 uJUn-i ,jQX

which may be thrown into the form

S =— ^2 U1U3 Un-2Un /j.x

"1- Mi + «a- t^ + Ws-* ' Un-i+Un

33—2



516 EXAMPLES

—

BROUNCKER's FRACTION CH. XXXIV

This formula is practically the same as the one obtained

incidentally in § 16 ; it was first given, along with many applica-

tions, by Euler in his memoir, "De Transformatione Serierum

in Fractiones Continuas," Opuscula Analytica, t. ii. (1785).

It is important to remark that, since the continued fraction

(10) or (11) is equivalent to the series, it must converge if the

series converges, and that to the same limit.

By giving to Wi, Wg, . . ., w„ various values, and modifying

the fraction by introducing multipliers as above, we can deduce

a variety of results, among which the following are specially

useful :

—

(12);

ViX + V^X- + . . . + VnX

ViX V^X V1V3X V«-2«H^
~ 1— «! + V2X — V2 + V3X —

'

Vn-1 + VnX

X x^ «"-+ - + . . . + —
'Ox «2 'On

X ViX V2X lOn-xX

Vx- VxX + V^- V2X + V3- ' Vn-iX + Vn

bx 0x02 0x02 . , . On

ttxX bxttzX bzCtsX bn-iUnX

h- b2 + a2X- ba + a^x—' ' '

bn + anX

Example 1. If -iir<x<^ir, then

X 12x2 32a;2 52^2

(13);

(14).

~H-3-a;2+ 5-3a;2+ 7-5x2+' •
•'

and, in particular,

7r_J_ ii 3^ 52^

4~1+ 2+ 2+ 2+ *
'

•which is Brouncker's formula for the quadrature of the circle.

Example 2. If x< 1,

(1.^\m-i,^ 1 {m-l)x 2(m-2)x 3 (m-3)x
^

*"
' ~ "^1- 2+(m-l)x- 3 + (m-2)x- 4+ (m-3)x-
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Also, if m> -1,

2m= 1 . JL IKli) 2(»t-2) 3(m-3)
1- m+ 1- m+ 1- m+ 1- ' '

''

and, if m> 0,

m l(m-l) 2(m-2) 3(wt-3)
= 1-

1+ 3-m+ 5-m+ 7-m +

§ 19.] 77^6 analysis of last paragraph enables us to construct

a continuedfraction, say of theform (1), whose first n convergents

shall he any given quantities fi,f2, . . .,/„ respectively.

All we have to do is to replace Mi, lu, . . ., u^ in (10) or (11)

by /i , /2 -/i , . . . , fn. -fn-x respectively.

The required fraction is, therefore,

/i f.-fx f{fz-A) (A-A)(A-f)
^

1 — /2 — fi ~fl ~ Ji ~/2 ~

C/n-2 ~/n-s) \Jn, ~Jn-l)

Jn Jn—2

Cor. Hence we can express any continued product, say

a\(xi . . . w^

61^2 . . . «}i

as a continued fraction.

We have merely to i^\xt fi = d^/ci, f2 = didz/eie^, . . ., effect

some obvious reductions, and we find

p _ di ei{d2-e^d^i{d3-e^diei{d2-e^{di-e^diei{d^-e^{d!i-e6)

"~
Ci- d^- d^d^-e^i- d^di-e^i- dSh-e^e^-

• • • d d P P
^^^''

§ 20.] Instead of requiring that the continued fraction be

equivalent to the series, or to the function f(n, x), which it is to

represent, we may require that the sum to infinity of the series

(or/(co , x))he reduced to a fraction of a given form, say

1- i_ i_---i_--- u;>

where /?o, A, . . . , )8« are all independent of x.

There is a process, originally given in Lambert's Beytrdge

* A similar formula, given by Stern, Crelle's Jour., x., p. 267 (1833), may
be obtained by a slight modification of the above process.
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(th. II., p. 75), for reducing to the form (1) the quotient of two

convergent series, say F{1, a;)/F(0, a;).

We suppose that the absobite terms of i^(l, a;) and F{0, x)

do not vanish, and, for simplicity, we take each of these terms to

be 1. Then we can establish an equation of the form

F{1, x) - F{0, x) = /3^xF{2, x) (2j),

where F{2, x) is a convergent series whose absolute term we

suppose again not to vanish, and /3i is the coefficient of x in

jP(1, x)-F{0, x), which also is supposed not to vanish*.

In like manner we establish the series of equations

Fi'i, x) - F{\, x) - li,xF{^, x) (2a),

F{3,x)-Fi2,x)^(3sxF(4,,x) (2^),

F(n + l,x)- F{n, x) = (3n+ixF{n + 2, x) (2„+i).

Let us, in the meantime, suppose that none of the functions

F becomes for the value of x in question. We may then put

G (n, x) = F{n + 1, x)/F(n, x) (3),

where G (n, x) is a definite function of n and x which becomes

neither nor oo for the value of x in question.

The equation (2n+i) may now be written

G{n, x)-l= Pn-hixG (n+l, x)G (n, x),

that is, G {n, x) = 1/{1 - Pn^-,xG {n + 1, x)} (4).

If in (4) we put successively n = 6, n=l, . . ., we derive

the following :

—

^(0, ^) = 1- r: • • • i-(i-ilG{n,x)) (^>5

^~'G{n,x)~ 1- ' ' ' l-{l-llG{n + m,x)) ^^''

* The vanishing of one or more of these coeflScients would lead to a more

general form than (1), namely,

1- i- • •
*

General expressions have been found for /3„ , j8, , . . • by Heilermann, Crellc's

Jour. (1846), and by Muir, Proc. L.M.S. (1876).
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In order that we may be able to assert tlie equality

G^(0,^) = j^f^. . .f^. . .ado) (7),

it is necessary, and it is sufficient, that it be possible by making

m sufficiently great to cause 1 - IjG (n, x) to differ from the mih.

convergent of the residual fraction

1- 1- • • • 1- • • •

by as little as we please.

Let us denote the convergents of (8) by Pi/qi, ihl^i,

Pml^m^ Then, from (6), we see that

{l-llG{n, X)]-Pralqm

^Pm-Pm-l{l-i/G(n + m, X) } _ Prn

qm-qm-i{l-'i-JG{n + m,x)} q^'

^ {1 - 1/G (n + m, X)} (Pm/qm-Pm-l/qm-l)

qm/qm-1 - {1 - l/G {n + m, x)}

(8)

(9),

_ {l-l/G(n + m, X)} fin+t Pn+2 . • ^n+m^"* /j^x

qm[qm-qm-i{^-'^IG(n + m,x)]]

The necessary and sufficient condition for the subsistence of (7)

is, therefore, that the right-hand side of (9), or of (10), shall

vanish when m = co

.

Concerning these conditions it should be remarked that while

either of them secures the convergence of the infinite continued

fraction in (7), the convergence of the fraction is not necessarily

by itself a sufficient condition for the subsistence of the equation

(7).

In what precedes we have supposed that none of the functions

F{7i, x) vanish. This restriction may be partly removed. It is

obvious that no two consecutive F's can vanish, for then (by

the equations (2)) all the preceding F'b would vanish, and

G(0, x) would not be determinate. Suppose, however, that

F{r + 1, x) = 0, so that G (r, x') = 0; then (5) furnishes for

G (0, x) the closed continued fraction
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In order that this may be identical with the \alue given by

(7), it is necessary and sufficient that G(r + 1, w), as given by

(6), should become co , that is, it is necessary and sufficient that

the residual fraction

1- . . ad

should converge to 1 ; but this condition will in general be

satisfied if the relation (4) subsist for all values of n, and the

condition (9) be also satisfied when w<i:r + 2,

§ 21.] As an example of the process of last paragrapli, let

Fin, x) = l + -pT V + wri—,—w~^ rT\ + . . . (11).^ l!(y + w) 2! (y + «) (y + w+ 1)

Then

F{n ^ 1, .) - F{n, .) = -
^^,^^^%^,,^

F{n . 2, .) (2')

;

and

G{n,x)^\l[l+-. ry^ -G{n + l,x)\ (4'),

where G (n, x) = F{n + 1, x)/F(n, x).

Hence

r^a ^\- 1 ^/y(y+l)^/(y+l)(y + 2) xl{y^n-l){y + n)

f^l"»'^;-l+ 1+ 1+ ~ ' ' • \-{l-llG{n,x)}
(5');

and

1 _ a?/(y + w) (y + ?2- + 1)

G{n,x)~ 1 +

x/{y + n + m-l)(y + n + m) . ,.

l-{l-l/G{n + m,x)} ^
^'

The series (11) will be convergent for all finite values of x,

and for all positive integral values of n, including 0, provided y

be not or a negative integer. Hence we have obviously, for

all finite values of x, LG {n + m, x) = l when m=cc.

Let us suppose that x is positive. Then the residual con-

tinued fraction
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xl{y + n) {y + n + 1) a;/(y + w + 1) (y + y?, + 2)

1+ 1+ • •
•

xl{y + n + 'm-l){y + n + m)

1 +
(8')

is (by the criterion of § 14) evidently convergent. Hence the

factor Pmlqm-Pm-\lqm-\ in the expression (9) vanishes when
m= 00.

Also, since the q'?, continually increase, Lqmlqm-\^ 1.

Therefore we may continue the fraction to infinity when x is

positive.

Next suppose x negative, =-y say ; we then have

(^(0^ ^)^
1 y/y(y + i) y/(y+i)(y + 2)

^

•

y/{y + n~l)(y + n) - „.
,

l-{l-llG{n,-y)} ^^^'

and

_ 1 ^ i/l(y + n)(y + n + l)

G{n,-y) 1-

yl{y + 7i + m-l)(y + n + m) , „.

~ l-{l-l/G{n + m,y)} ^^ ^

The fraction (8) in this case is "equivalent" to

1
f

?/ y y \ (8")
y + wly + w + l — y + w + 2-*''7 + w + m— '"'J ''

which is obviously convergent (by § 16), if y have any finite

value whatever. Hence the i&ctoT pm/qm-Pm-i/qm-i belonging

to the equivalent fraction (8) must vanish.

Again, by § 2 (6),

qm

5'm-i

_ yl(y + n + m- l)(y + n + m) yj{y + n -^^ m-2) {y + n + m—\)
= 1

Y^z iz

y/{y + n)(y + n + l)

1 - -^— I ^^ -^
o • . --^1 (12).

y + w + w(.y + w + m-l-y + w + ?»-2- y + 7U^

1

r
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If only n be taken large enough, the fraction inside the

brackets satisfies the condition of § 16 throughout : its value is

therefore < 1, however great m may be ; and it follows from (12)

that Lqmlqm-i = 1 when m= co.

Since LG (n + m, —y) = l when m=co, it follows that all the

requisite conditions are fulfilled in the present case also.

We have thus shown that

F{l,a;) ^ l_ xly{y+l) ^/(y+l)(y + 2)

F{Q,w) 1+ 1+ 1+
•

xl{y + n-\){y + n)

r+
""' '

whence, by an obvious reduction,

F{\, OR) y X X a

ad oo (13),

(14),
F(0, x) 7 + 7 + 1 + 7 + 2 + ' *'y + 71+'*

a result which holds for all finite real values of x, except such

as render jP(0, x) zero*, and for all values of y, except zero

and negative integers.

If we put +a^l4t: in place of x in the functions F{0, x) and

F{\, x), and at the same time put 7 = ^, we get

F{Q, - a?IA) = cos X, F(l,- x'jA) = sin x/x

;

F{0, 0^/4:) = cosh X, F{1, ^^4) = sinh x/x.

Cor. 1. Hence, from (14), we get at once

. tAj tAj Uj w *- _!

1-3-5- 2n+l- ^ '

'

tanh X = -— r— ^— . . . . . . (16).1+3 + 5+ 2n + l+ ^ ^

Cor. 2. T/ie numerical constants -n- and ir^ are incommensurable.

For, if TT were commensurable, 7r/4 would be commensurable,

say = Xf/JL. Hence we should have, by (15),

* In a sense it will hold even then, for the fraction

1
J

X X
\

y
('^'7+ 1+ 7+2+ * • •

)

which represents ^(0, x)IF(l, x) will converge to 0. Of course, two consecu-

tive functions F(n, x), F(n + 1, x) cannot vanish for the same value of x^

otherwise we should have i*' (oo , a;) = 0, which is impossible, since F{cd ,x) — l.
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1- 3- 5-

•

X7/.2

*
2?J + 1-'

'

/tA — 3/A — 5/A
—

'

(2/^+1) /A-
(17).

Now, since X and
fj.

are fixed finite integers, if we take n large

enough we shall have {2ti + l)/i>X^ + 1. Hence, by § 17, the

fraction in (17) converges to an incommensurable limit, which

is impossible since 1 is commensurable.

That TT^ is also incommensurable follows in like manner very

readily from (15).

By using (16) in a similar way we can easily show that

Cor. 3. Any commensurable power of e is incommensurable*.

§ 22.] The development of last paragraph is in reality a

particular case of the following general theorem regarding the

hypergeometric series, given by Gauss in his classical memoir

on that subject (1812) t:—
If

J^{a,IJ,y,a;)-l + ^^^W+
i2.y(y+l)

^'-•••'

and
G (a, A y, x) = F(a, /? + 1, y + 1 , a:)/F{a, /8, y, x),

then

r< /„ o ., ™\ _ _i_ /^i^ P^ Pin^
^\<^,P,y,X)-^_ i_ i_. . •l/G(a + w,/3 + 7i, y + 2«)

(18),

where

a. «(y-/^) (^+l)(y-H-a)
^'~y{y^iy ^^"

(y + i)(r + 2)
'

^ (a+l)(y+l-^) _ (;8 + 2)(y+2-a)
P'

(y+2)(y+3) '
'''

(y + 3)(y + 4) '

^ ^
(a + W-l)(y + y^-l-^) _ (^ + w)(y + W-a)

^^'^-^
{y + 2n-2){y + 2n-\) '

^'"
"(y + 2;^ - 1) (y + 2«)

'

* The results of this paragraph were first given by Lambert in a memoir
which is very important in the history of continued fractions (Hist. d. I'Ac.

Roy. d. Berlin, 1761). The arrangement of the analysis is taken from Legendre

(I.e.), the general idea of the discussion of the convergence of the fraction

from Schlomilch. t Weike, Bd. in., p. 134.
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After what has been done, the proof of this theorem should

present no difficulty.

The discussion of the question of convergence is also com-

paratively simple when x is positive ; but presents some difficulty

in the case where x is negative. In fact, we are not aware that

any complete elementary discussion of this latter point has been

given. *
-

Cor. If in (18) we put (3 = 0, and write y- 1 in place of y,

we get the transformation

a a(a + l) , a(a+l)(a + 2) ,

y y(r + i) y(y + i)(y+2)

_ 1 )8i^^ , .

~
1 - 1 - 1 - • • •

^^^^'

where

^-y'
.

^^"y(y+i)'

n_. (^+l)y 2(y + l-a)

'^^-(y+l)(y + 2)' ^'
(y + 2)(y + 3)'

^
(a + n-l){y + n-2) ^ n(y + n-l-a)

/^2»-i -(y + 2n-3){y + 2n - 2) '
^'" ~ (y + 2w - 2) (y + 2n - 1)

'

Gauss's Theorem is a very general one ; for the hypergeometric

series includes nearly all the ordinary elementary series.

Thus, for example, we have, as the reader may easily verify,

{l+xr = F{-m,(3,p,-x);

\og{l+x)--xF{l,l,2,-x);

sinh x = a; L L F{h, h\ f , x'l^kk') ;
fc=oo fe'=oo

8mx = x L L F(k, k', |, - arjikk')

;

fc=ao Jt'=oo

sm-^x = xF(^, i,|,^^);

= xJ{l-x')F{l,l,^,x')',

Un-'x=^xF(l,l,^,-x'').
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Exercises XXXIV.

Examine the convergence of tbe following :

—

. J_ 1 1^
^ ' "*"l2+23+ 32+ • • •

•

,„ , , 12 12 . 22 22 .
3-

/rx I 12 3
<^-) i+irnriT--- •

1" 2" 3*
(7.) X+ ; ... .
^ ' x+ x+ x +

(9.)

2 13.3 2».4 33.5

1+ 1+ 1+ 1+

(2.)

12 2= 32

+3+5+ 7+ * •
•

(4.)
, 1 1.2 2.3
' +1+1+ 1+'-

(6.)

m2 {Hi + n)2 {m+ 2T>]

n+ n+ n+

(8.)
, 1.3 3.5 5.7
'+1+ 1+ !+••
2 22 23 2*

(10.) 1+ rTi+ 1+ * *
'

(11.) Show that the fraction of the second class, a, ~ . -, con-

verges to a positive limit if, for all values of n,

a^bib^+ aslb^bsi-. . . +a„+i/6„6„4.i>l.

(Stern, Gdtt. Nach., 1845.)

(12.) Show that — ? ^-
. . . , where o„ > 0, converges if a„+i :t> a„+ 1.

Oj — a2 — O3 —

(13.) Show that the series of fractions (Fn -i'n-i)/(5'n - 3n-i) forms a

descending series of convergents to the infinite continued fraction of the

second class, provided a^^h^+ 1, and the sign > occurs at least once among

these conditions.

(14.) Show that XXX . •

x + 1- x + 1- a; + l- ' *
*'

where x> 0, is equal to x or 1 according as a;< or <i: 1.

(16.) Evaluate 2^ 3Z 43 • • '

'

, TO ra+ 1 TO + 2
and

TO+1- TO +'2- TO + 3- * * ''

where m is any integer.

Show that

nfi\ 1 ,«
,

«(« + !)
, _, a (a + l)6 (a+ 2)(6 + l)

^^°-' '^b'^ b{b + iy' ' '~ '^b- a+b + 2- a+ & + 4-

(17.) sma;-^^
2.3-x2+ 4.5-x2+ 6.7-x2+ • ' ' '

/1Q^ 1 /I L ^ ^ 1'^ 22x 32x
(18.) log(l + x)=- ^-^ 3-^-^ ^-^-^ ....

* Exercises (5) to (10) are taken from Stern's memoir, Crelle's Jour., xsxvii.
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„„, , 1« 22 32

(19-) 1 =3353 7-- ••
•

(20.) log ^ -j^ 2X-1+ 3X-2+ 4X-3+ ' ' ' '

(2n-l)2(y2-i)3

4 (n2/2 + y + 7i) - ' *
*

/99\ aj-J:. _^ ^.^ 2z 3x :

(22.) € _^_ j^^^_ 2^^_ 3 + a._ 4^^_ • • •

Evaluate the following :

—

,„, , , 1 1 2 3 4 ,_, , 1 2 3 4
(23.) 1 + 1-3-43 5363- •• ' (24.) ____... .

,„, , 1 12 22 32 ,--,12 3 4
(25-) iTiTiTiT • • • •

(''•) 2T3T4T5T • • • -

(27.) Show that tanx and tanhx are incommensurable if x be commen-

surable.

Establish the following transformations :

—

(28.) e _j— j-^ 23 3:; 23 5+ 23 7> ' ' '

, , , „ , a; 12x Px 22x 22x 32a; 32x
(29.) log(l + x) =— ______... .

,„« V . ,
X 12x2 22x2 32x2

(30.) tan-x=^-3^ 5T 7 + ' ' ' *

, ,
X 12x2 22x2 32x2

tanh-ix=^ ____,^. . . .

n tan x (n2 - 1^) tan2 x (n2 - 22) tan2 x
(31.) tan nx= ^_

^

g^;
^ ^ ....

(Euler, Mem. Acad. Pet., 1813.)

sin (n+ 1) X „ 1 1
(32.) -.

i- = 2cosx-j7
ji

. . .,
^ ' smnx 2cosx- 2cosx-

where there are n partial quotients.

(33.) If

(o, /3, 7, x)

(3
-

1) (2^ - 1) (?
-

1) (2" - 1) (9^ - 1)
(2''''' -

1)

then
^(tt, /3 + 1. 7+ 1. x) _ 1 j3iX j3aX

0(0, /3, 7, X) ~1- 1- 1- * •
'
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where

_ (/+^-l)(gV+>-'-l) +,-,

^ (g°+*--l)(,>+--^-l) B-H-

(Heine, Crelle^s Jour., xxxii.)

(34.) Show that

" ~ r "'"2{a-l)+ 2(a-l)+ 2(a-l)+ * * "j

^
t""*" 2(a + l)+ 2(a + l)+ 2(a+ l)+ '

'j"

Wallis (see Muir, PhiL Mag., 1877).



CHAPTER XXXV.

General Properties of Integral Numbers.

NUMBERS WHICH ARE CONGRUENT WITH RESPECT TO

A GIVEN MODULUS.

§ 1.] Ifmhe any positive integer whatever, which we call the

modulus, two integers, M and N, which leave the same remainder

when divided by m are'said to he congruent with respect to the

modulus m,*.

In other words, if M=pm + r, and N- qm + r, M and N are

said to be congruent with respect to the modulus m. Gauss,

who made the notion of congruence the fundamental idea in his

famous Disquisitiones Arithmetics, uses for this relation between

M and N the symbolism

M=N {modim);

or simply M=N,
if there is no doubt about the modulus, and no danger of con-

fusion with the use of s to denote algebraical identity.

Cor. 1. If two numbersM andN be congruent with respect

to modulus m, then they differ by a multiple of m; so that we

have, say, M=N+pm.
Cor. 2. If eitherM orN have any factor in common with m,

then the other must also have that factor; and if either he prime

to m, the other must be prime to m also.

In the present chapter we shall use only the most elementary

consequences of the theory of congruent numbers.

* To save repetition, let it be understood, when nothing else is indicated,

that throughout this chapter every letter stands for a positive or negative

integer.
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Our object here is simply to give the reader a conspectus

of the more elementary methods of demonstration which are

employed in establishing properties of integral numbers ; and to

illustrate these methods by proving some of the elementary

theorems which he is likely to meet with in an ordinary course

of mathematical study. Further developments must be sought

for in special treatises on the theory of numbers.

§ 2.] If we select any "modulus" w, then it follows, from

chap, ni., § 11, that all integral numbers can he arranged into

successive groups of m, such that each of the integers in one of these

groups is congruent with one and with one only of the set

0, 1, 2, . . ., {m-2\ {m-l) (A),

or, if we choose, of the set

0, 1, 2, . . ., -2, -1 (B),

where there are m integers.

Another way of expressing the above is to say that, if we

take any m consecutive integers whatever, and divide them hy m,

their remainders taken in order will be a cyclical permutation of

the integers (A).

Example. It we take m=5, the set (A) is 0, 1, 2, 3, 4. Now if we take

the 5 consecutive integers 63, 64, 65, 66, 67 and divide them by 5, the

remainders are 3, 4, 0, 1, 2, which is a cyclical permutation of 0, 1, 2, 3, 4.

§ 3.] A large number of curious properties of integral

numbers can be directly deduced from the simple principle of

classification just explained.

Example 1. Every integer which is a perfect cube is of the form Ip, or

Tpil. Bearing in mind that every integer N has one or other of the forms

7m, 7m ±1, 7wi±2, 7m ±3,

also that {Im± rf= (Imf =t 3 (7m)2 r + 3 (Im) r^ ± r^,

= (72/713 dk 21wi2r+ 3»!r2) 7 ± r^,

we see that in the four possible cases we have

2^=(7m)3=(7%3)7;

2V3=(7/H±l)3=i»/7±1;

^3= (7m ±2)3,

= ilf7±8= (J/±l)7±l;

JV8=(7m±3)3=(M±4)7=rl.

c. n. 34
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In every case, therefore, the cube has one or other of the forms 7p or

7iJ±l.

Example 2. Prove that 32»+i + 2'»+2 is divisible by 7 (Wolstenholme).

We have 32"+i+ 2»+2= (7 - 4)2"+i + 2"+2.

Now (see above. Example 1, or below, § 4)

(7 _ 4)2»i+i=Ml - 42JI+1.

Hence 32"+i + 2»+2=ilf7-42»+i+ 2»+2,

=Jf7-2«+2(23»-l).

But 2^™- 1 is divisible by 2^ - 1 (see chap, v., § 17), that is, by 7. Hence
2n+2 (231-1) =2^7.

Finally, therefore, 32»+i+ 2"+2=(M-N)7,
which proves the theorem.

Example 3. The product of 3 successive integers is always divisible by

1,2.3.

Let the product in question be m (m+ 1) (m+ 2) . Then , since m must have

one or other of the three forms, 3m, 37)i + l, 3m -1, we have the following

cases to consider:

—

3m(3m+ l)(3OT+ 2) (1);

(3TO + l)(3m + 2)(3m+ 3) (2);

(3m-l)3m(3m+ l) (3).

In (1) the proposition is at once evident ; for 3m is divisible by 3, and

(3m+ 1) (3m + 2) by 2. The same is true in (2)

.

In case (3) we have to show that (3m - 1) m (37« + 1) is divisible by 2.

Now this must be so ; because, if m is even, m is divisible by 2 ; and if m be

odd, both 3m -1 and 3m + 1 are even; that is, both 3m -1 and 3m+ 1 are

divisible by 2.

In all cases, therefore, the theorem holds.

Example 4. To show that the product of p successive integers is always

divisible by 1 . 2 . 3 . . .p.

Let us suppose that it has been shown, 1st, that the product of any p-1

successive integers whatever is divisible by 1.2. 3. . .p-1; 2nd, that the

product of jp successive integers beginning with any integer up to x is divisible

by 1.2.3 . . .p-1. p.

Consider the product of p successive integers beginning with a;+ l. We
have

(x+ l)(x + 2) ...{x+p-l){x+p)
=p(x + l){x + 2) . . . {x+p-l) + x{x + l){x+2) . . . (x+p-1) . . . (1).

Now, by our first supposition, (x + 1) (a;+ 2) . . . {x+p-1) is divisible by

1.2. . . p-1 ; and, by our second, x{x + l){x + 2) . . . (x+p - 1) is divisible

by 1 . 2 . 3 . . .p.

Hence each member on the right of (1) is divisible by 1 . 2 . 3 . . .p.

It follows, therefore, that, if our two suppositions be right, then the pro-

duct oip successive integers beginning with x + 1 is divisible by 1 . 2 . 3 . . .p.

But we have shown in Example 3 that the product of 3 consecutive integers

is always divisible by 1 . 2 .3; and it is self-evident that the product of 4 con-
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secntive integers beginning with 1 is divisible by 1 . 2 . 3 . 4. It follows, there-

fore, that the product of 4 consecutive integers beginning with 2 is divisible

by 1 . 2 . 3 . 4. Using Example 3 again, and the result just established, we
prove that 4 consecutive integers beginning with 3 is divisible by 1.2.3.4;
and thus we finally establish that the product of any 4 consecutive integers

whatever is divisible by 1 . 2 . 3 . 4.

Proceeding in exactly the same way, we next show that our theorem holds

when p=5; and so on. Hence it holds generally.

This demonstration is a good example of " mathematical induction."

Example 5. If a, h, c be three integers such that a^+b'^=c^, then they are

represented in the most general way possible by the forms

a= \(m2-n2), b = 2\mn, c=\{m?+n^).

First of all, it is obvious, on account of the relation a^ + b-^c^, that, if

any two of the numbers have a common factor X, then that factor must occur

in the other also ; so that we may write a= \a', b= \b', c = Xc', where a', 6', c'

are prime to each other, and we have

o'2+ 6'2=c'» (1).

No two of the three, a', b', c', therefore, can be even ; also both a' and b'

cannot be odd, for then a'^ + b''^ would be of the form 4n+ 2, which is an
impossible form for the number c'^.

It appears, then, that one of the two, a', b', say b' (=2|3), must be even, and
that a' and c' must be odd. Hence (c' + a')/2 and (c' - a')/2 must be integers

;

and these integers must be prime to each other ; for, if they had a common
factor, it must divide their sum which is c' and their difference which is a' ;

but c' and a' have by hypothesis no common factor.

Now we have from (1)

c'2-a'2=6':!=:4p2,
whence

m<-^>^ <^)-

Therefore, since (c' + a')/2 is prime to (c' - a')/2, each of these must be a
perfect square ; so that we must have

^'=""
(3),

^=»' (4),

/3=mra (5),
where m is prime to n.

From (3) and (4), we have, by subtraction and addition,

a'=n?-v?, c'=m2 + n2;

and, from (5), b'=2^= 2mn.

Returning, therefore, to our original case, we must have generally

,

a=X(7n2_n=), 6 = 2Xmn, c=X(m2 + n2),

This is the complete analytical solution of the famous Pythagorean
problem—to find a right-angled triangle whose sides shall be commensurable.

34—2
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§ 4.] The following theorem may be deduced very readily

from the principles of § 2. Let /(a:) stand for jOo+i^i^+/'2i^^ +

. . . + pn^'^, where po, Pi, . . ., Pn are positive or negative

integers, and x any positive integer; then, if x he congruent

with r with respect to the modulus m, f{x) will be congruent with

f{r) with respect to modulus m.

By the binomial expansion, we have

{qm + r)" = {qmY + „(7i {qmY'^r + . . . + nCn-i {qm) r"-^ + r*,

= (g«;^'i-i + JJ^q^-^m''-''r + . . . + nCn-iqr''-^) m + r",

= Mnm + r"

;

where Mn is some integer, since all the numbers nG\, n^2, • • .,

nCn-i are, by § 3, Example 4, or by their law of formation (see

chap. IV., § 14) necessarily integers.

Similarly

{qm + r)"-^ = Jf„_iw + r""^,

Hence, \i x = qm-^r,

f{x)=^p^+p,r+p2r'' + . . .+pnr'' + (piMi+p23l2 + . . .+pn3I„)m,

=f{r) + Mm.

Hence /(x) is congruent with /(r) with respect to modulus m.

Cor. 1. Since all integers are congruent (with respect to

modulus m) with one or other of the series

0, 1, 2, . . ., m-1,

it follows that to test the divisibility/ off{x) by m for all integral

values of x, we need only test the divisibility by m off{0), /(I),

/(2), . . .,/(m-l).

Example 1. Let/(a;) = x(x + l) (2x + 1) ; and let it be required to find when

f{x) is divisible by 6. We have/(0) = 0, /(I) = 6, /(2) = 30, /(3) = 84, /(4) = 180,

/(5) = 330. Each of these is divisible by 6 ; and every integer is congruent

(mod 6) with one of the six numbers 0, 1, 2, 3, 4, 5 ; hence x{x+l) (2x+ l)

is always divisible by 6.

Cor. 2. f{qf{r) + r} is always divisible by f{r); for

f{qf{r) + r} =Mf(r) +f{r) = {M+ l)f{r).

Hence an infinite number of values of x can always be found

which will make f(x) a composite number.
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This result is sometimes stated by saying that no integral

function of x can furnish prime numbers only.

Example 2. Show that x* - 1 is divisible by 5 if a; be prime to 5, but not

otherwise.

With modulus 5 all integral values of x are congruent with 0, ±1, ±2.

If/(x) = x*-l,/(0)=-l,/(--fcl)= 0,/(±2) = 15. Now and 15 are each

divisible by 5 ; but - 1 is not divisible by 5. Hence a;^ - 1 is divisible by 5

when X is prime to 6, but not otherwise.

Example 3. To show that x'^+x+ VJ is not divisible by any number less

than 17, and that it is divisible by 17 when and only when x is of the form

17morl77n-l.
Here

/(0)= 17, /{ + 1) = 19, /( + 2) = 23, /(+ 3) = 29, /( + 4) = 37, /( + 5) = 47,

/(+ 6)=:59, /( + 7) = 73, /( + 8) = 89, /{-1) = 17, /(-2) = 19, /(-3) = 23,

/(-4) = 29, /(-5)-37, /(-6)= 47, /(-7) = 59, /(-8) = 73.

These numbers are all primes, hence no number less than 17 will divide

x^+x + n, whatever the value of x may be; and 17 will do so only when
a;=jul7 or a;=ml7-l.

§ 5.] Method of Differences.—There is another method for

testing the divisibility of integral functions, which may be given

here, although it belongs, strictly speaking, to an order of ideas

somewhat different from that which we are now following.

Let fn {cc) denote an integral function of the wth degree.

/„ {x + 1) -/„ {x) =Pq +pi{x+l) + . . . +pn-i (x + 1)"-^ +pn (x + If
-po-piX-. . .-pn-iX''-''-pnX'' (1).

Now on the right-hand side the highest power of x, namely

x^, disappears ; and the whole becomes an integral function of

the n - 1th degree, fn~i (x), say. Thus, if m be the divisor,

we have

/„ (X + 1) -/, (X) ^ fn-i (x) ,

m - m ^
''

It may happen that the question of divisibility can be at

once settled for the simpler function fn-i{x). Suppose, for

example, that it turns out that /„_i {x) is always divisible by m,

whatever x may be ; then/„ {x+\) —fn (x) is always divisible by

m, whatever x may be. Suppose, further, that /„ (0) is divisible

by m ; then, since /„ (1) —/„ (0), as we have just seen, is divisible

by m, it follows that/,i(l) is divisible by m. Similarly, it may
be shown that /„ (2) is divisible by m ; and so on.
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If the divisibility or non-divisibility of /„_i(a;) be not at once

evident, we may proceed with /„_i {x) as we did before with

/„ {x), and make the question depend on a function of still lower

degree ; and so on.

Example, /g (x) = x^-xis always divisible by 5.

f^{x + \)-f^{x) = {x+ lf-{x + l)-x^ + x,

= 5a;*+10a;3+ 10a;2 + 5x,

=M6.
Now /6(1)=0,

therefore f^{2)-f^[l) = M^5,

and J\{2)=M,b.

Similarly, /sCS) -/s (2) = ilfi5,

therefore /s (3) = (M^ + illj) 5

;

aud so on.

Thus we prove that/j (1), /j (2), /^ (3), &c., are all divisible by 5 ; in other

words, that x^ - x is always divisible by 5.

Exercises XXXV.

(1.) The snm of two odd squares cannot be a square.

(2.) Every prime greater than 3 is of the form 6?irfc 1.

(3.) Every prime, except 2, has one or other of the forms 47t±l.

(4.) Every integer of the form 4n-l which is not prime has an odd

number of factors of the form 47i - 1.

(5.) Every prime greater than 5 has the form 30m + n, where n= 1, 7, 11,

13, 17, 19, 23, or 29.

(C.) The square of every prime greater than 3 is of the form 24m + 1 ; and

the square of every integer which is not divisible by 2 or 3 is of the same

form.

(7.) If two odd primes differ by a power of 2, their sum is a multiple of 3.

(8.) The difference of the squares of any two odd primes is divisible by 24.

(9.) None of the forms (Sm + 2) n^ + 3, Amn - m - 1, Amn -m-n can repre-

sent a square integer. (Goldbach and Euler.)

(10.) The nth power of an odd number greater than unity can be presented

as the difference of two square numbers in n different ways.

(11.) If N differ from the two successive squares between which it lies by

X and y respectively, prove that N -xy is a, square.

(12.) The cube of every rational number is the difference of the squares of

two rational numbers.

(13.) Any uneven cube, n^ is the sum of n consecutive uneven numbers,

of which r? is the middle one.

(14.) There can always be found n consecutive integers, each of which is

not a prime, however great n may be.
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(15.) In the scale of 7 every square integer must have 0, 1, 2, or 4 for its

unit digit.

(16.) The scale in which 34 denotes a square integer has a radix of the

form ?i(3n + 4) or (n + 2) (3n + 2).

(17.) There cannot in any scale be found three different digits such that

the three integers formed by placing each digit differently in each integer

shall be in Arithmetical Progression, unless the radix of the scale be of the

form 3p + 1. If this condition be satisfied, there are 2{p-l} such sets of

digits ; and the common difference of the A.P. is the same in all cases.

(18.) If X> 2, x* - ix^ + 5x^ - 2x is divisible by 12.

(19.) a;»/5 + a;*/2 + x3/3-a;/30, and a*/6 + a;«/2 + 5a;'*/12 - a;2/12 are both in-

tegral for all integral values of x.

(20.) If X, y, z be three consecutive integers, {Zx)^-d'Zx^ is divisible

by 108.

(21.) i3_ a; jg divisible by 6.

(22.) Find the form of x in order that x^ + 1 may be divisible by 17.

(23.) Examine how far the forms x- + x + 4:l, 2a;'^+ 29 represent prime

numbers.

(24.) Find the least value of x for which 2* - 1 is divisible by 47.

(25.) Find the least value of x for which 2*- 1 is divisible by 23.

(26.) Find the values of x and y for which 7^ - y is divisible by 22.

(27.) Show that the remainder of 22'''*'^+ 1 with respect to 22^+ 1 is 2.

(28.) 32^~ 2^" is divisible by 5, if x~ y= 2.

(29.) Show that 22^t1 + 1 jg always divisible by 3.

(30.)
433:±i + 2s^±i + 1 is divisible by 7.

(31.) x^"'' + x"^'" + 1 never represents a prime unless a; =0 or cb= 1.

(32.) If P be prime and =a^+ b^, show that P" can be resolved into the

sum of two squares in ^n ways or ^ (n+ 1) ways, according as n is even or odd,

and give one of these resolutions.

(33.) li x'^ + y-=z'^,x, y, z being integers, then xyz= (mod 60) ; and if x
be prime and >3, j/sO (mod 12). Show also that one of the three numbers
= (mod 5).

(34.) The solution in integers of x^ + tj^=2z^ can be deduced from that of

x^ + y"^ — z'. Hence, or otherwise, find the two lowest solutions in integers of

the first of these equations.

(35.) If the equation x^ + ?/=*= ^^ had an integral solution, show that one of

the three x, y, z must be of the form Im, and one of the form 3?re.

(36.) The area of a right-angled trisingle with commensurable sides cannot

be a square number.

(37.) The sum of two integral fourth powers cannot be an integral square.

(38.) Show that (3 + ^5)*+ (3-^5)* is divisible by 2^.

(39.) If X be any odd integer, not divisible by 3, prove that the integral

part of 4* - (2 + v/2)« is a multiple of 112. '

(40.) If n be odd, show that l + »C4 + „C8+„Cm+ ... is divisible by
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ON THE DIVISORS OF A GIVEN INTEOER.

§ 6.] We have already seen (chap, iii., § 7) that every

composite integer iV can be represented in the form a'^h^cy . . .,

where a, b, c, . . . are primes. If iVbe a perfect square, all the

indices must be even, and we have N- a^"' b^^'
c'y'

. . . ; so that

jN^a^'b^'cy' ....
In this case N is divisible by JN.
IfN be not a perfect square, then one at least of the indices

must be odd ; and we have, say,

N^-a'"^'+^b'''^'c-y' . . .=a'^'b^'cy' . . . a^'+^b^' cy' . . .,

so that N is divisible by a'^b^'cy' , . . , which is obviously less

than JN. Hence

Every composite number has afactor which is not greater than

its square root.

This proposition is useful as a guide in finding the least

factors of large numbers. This has been done, once for all, in a

systematic, but more or less tentative, manner, and the results

published for the first nine million integers in the Factor Tables

of Burckhard, Dase, and the British Association*

§ 7.] The divisors of any given number N=a'^b^cy . . . are

all of the form a'^'b^'cy . . . , where a, fi\ y', . . . may have any

values from up to a, from up to /?, from up to y, . . .

respectively. Hence, if we include 1 and iV itself among the

divisors, the divisors of N-a°-b^cy . . . are the various terms

obtained by distributing the product

(1 + a + a^ + . . . + a")

X (1 + ^> + ^)2 + . . . +b^)

X (1 + c + c^ + . . . + cy)

X
(1).

* For an interesting account of the construction and use of these tables,

see J. W. L. Glaisher's Report, Rep. Brit. Assoc. (1877).
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Cor. 1.

Since

l + a + a^+. . .+«» = ;—

,

a- 1

1 +b + b^+ . . . +b^= , _ ,

and so on,

It follows that the sum of the divisors of N-a'^l^c'/ . . . is

(g'+^-lX&P+^-l). . .

(a-l)(6-l). . . •

If in (1) we put a = 1, 6 = 1, c = 1, . . . , each divisor, that is,

each term of the distributed product, becomes unity ; and the

sum of the whole is simply the number of the different divisors.

Hence, since there are a + 1 terms in the first bracket, ^ + 1 in

the second, and so on, it follows that

Cor. 2. The number of the divisors of N=a'^b^cy . . . is

(a+l){/3 + l)(y+l). . . .

Cor. 3. The number of ways in which* N=a'^b^cy . . . can

be resolved into two factors is |{1 + (« + 1) (;8 + 1) (y + 1) . . .}, or

|(a + l)()8+l)(y + l). . ., according as N is or is not a square

number.

For every factor has a complementary factor, that is to

say, every factorisation corresponds to two divisors ; unless N be

a square number, and then one factor, namely JN, has itself

for complementary factor, and therefore the factorisation

N=jNy.jN corresponds to only one divisor.

Cor. 4. The number of ways in which N=a'^b^c''' , . . can be

resolved into two factors that are prime to each other is 2"~^,

n being the number of prime factors a", b^, cy, . . . .

For, in this kind of resolution, no single prime factor, a" for

example, can be split between the two factors. The number

of different divisors is therefore the same as if a, ^, y, . . .

* This result is given by Wallis in his Discourse of Combinations, Alterna-

tions, and Aliquot Parts (1685), chap, iii., § 12. In the same work are given

most of the results of §§ 6 and 7 above.
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were each equal to unity. Hence the number of ways is

^(1 + 1) (1 + 1) (1 + 1). . . (to factors) = 1.2'^= 2"-\

Example 1. Find the different divisors of 360, their sum, and their

number.

We have 360 = 233=5.

The divisors are therefore the terms in the distributed product

(1 + 2 + 22 + 23) (1 + 3 + 32) (1 + 5); that is to say,

1, 2, 4, 8, 3, 6, 12, 24, 9, 18, 36, 72, 5, 10, 20, 40, 15, 30, 60, 120,

45, 90, 180, 360.

Their sum is (2^ - 1) (.S^ - 1) (52 - l)/(2 - 1) (3 - 1) (5 - 1) = 1170.

Their number is (1 + 3) (1 + 2) (1 + 1) = 24.

Example 2. Find the least number which has 30 divisors. Let the

number be N=a°-h^cy. There cannot be more than three prime factors ; for

30=2x3x5, which has at most three factors, must =(a + l) (^3 + 1) (7 + I).

There might of course be only two, and then we must have 30 = (a+ 1) (|3 + 1)

;

or there might be only one, and then 30= a+ 1.

In the" first case a= l, ^= 2, 7= 4. Taking the three least primes,

2, 3, 5, and putting the larger indices to the smaller primes, we have

2^=2'».32.5= 720.

In the second case we should get 2i4
. 3, 2^ . 3^ or 29 . 32.

In the last case, 229.

It will be found that the least of all these is 2* . 32 . 5 ; so that 720 is the

required number.

Example 3. Show that, if 2» - 1 be a prime number, then 2"-i (2" - 1) is

equal to the sum of its divisors (itself excluded)*.

Since 2" - 1 is supposed to be prime, the prime factors of the given number

are 2""^ and 2»-l. Hence the sum of its divisors, excluding itself, is, by

Cor. 1 above,

= (2»-l){2»-2"-i},

= 2"-! (2"- 1) {2-1},

= 2»-i(2"-l);

as was to be shown.

ON THE NUMBER OF INTEGERS LESS THAN A GIVEN

INTEGER AND PRIME TO IT.

§ 8.] If we consider all the integers less than a given one, N,

a certain number of these have factors in common with N, and

the rest have none. The number of the latter is usually denoted

* In the language of the ancients such a number was called a Perfect

Number. 6, 28, 496, 8128 are perfect numbers.
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by <f> (N). Thus <^ (N) is taken to denote the number of integers

(including 1) which are less than N and prime to N.

We have the following important theorem, first given by

Euler :

—

If N=a^^^a^^'ai''i . . . a„"", then

The proof of this theorem which we shall give is that which

follows most naturally from the principles of § 7.

Proof.—Let us find the number of all the integers, not

greater than Ny which have some factor in common with N.

That factor must be a product of powers of one or more of the

primes a^, a^, a^, . . ., a„.

Now all the multiples of «! which do not exceed N are

Ifti, 2ai, 3ai, . . ., {Nja^ai, iVV^i in number (3);

all the multiples of a^ which do not exceed N are

l^a, 2a2, 3052, . . •, {Nja^^a^, iV7a2 in number (4);

and so on.

All the multiples of «ia2 which do not exceed N are

laitta, 2aia2, 3aaa2> • • •, {Njaia^a^a^,

Nja^a^ in number (5)

;

and so on.

Similarly, for a^a^a^ we have

laiagfts, 2aia2«3, 3ai a^tts, . . ., (N/aia^a^) a^a^as,

N/aia^aa in number (6),

Let us now consider the number

N N N
+ — +— +. . .

«2 as '

N N N
ttitti a^as Uitti

N
+
aia^a^

jsr N
+ + + . .

.

a^a^Ui, a^a^ai

N
aittiaiat

(7).
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The number of terms in the first line is „<7i. The number

in the second line is nC^, since every possible group of 2 out of

the n letters ai«2 • • • «n occurs among the denominators. The

number in the third line is nOa for a similar reason. And so on.

Now consider every multiple of the r letters aia^a^ . . . ar

which does not exceed N; in other words, every number, not

exceeding N, that has in common with it a factor of the form

a^'^a-t'^ . . • «/'• This multiple will be enumerated in the first

line, once as a multiple of ai, once as a multiple of a^, and so

on ; that is, once for every letter in it, that is, rOi times.

In the second line the same multiple will be enumerated once

as a multiple of aia^, once as a multiple of ai«3, and so on ; that

is, once for every group of two that can be formed out of the r

letters aia^ . . . «r, that is, rO^ times. And so on. Hence,

paying attention to the signs, the multiple in question will in

the whole expression (7) be enumerated

times ; that is, just once. This proof holds, of course, whatever

the r letters in the group may be, and whether there be 1, 2, 3,

or any number up to w in the group.

It follows, therefore, that (7) enumerates, without repetition

or omission, every integer which has a factor in common with N.

But, from formula (1), chap, iv., § 10, we see that (7) is simply

\ aj\ ttg/
"

\ aJ
To obtain the number of integers less than N which are

prime to i\r, we have merely to subtract (8) from AT. We thus

obtain

.W=^(x-i)(i-i)...(.-l),

which establishes Euler's formula.

Example. 77=100=22.52; 0(lOO) = 22.52(l-i) (1-|)=40.

§ 9.] 1/M= PQ, where P and Q are pi-ime to each other, then

i>{M) = <l>{P)^(Q) (1).
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For, since P and Q are prime to each other, we must have

Q=bM^^- . .,

where none of the prime factors are common ; and therefore

M=a^^^a^^^ . . . h^P^h^^ . . .,

where ai, «2, . . ., h, bz, . . . are all primes.

But, by § 8, we then have

=<.«,"... .(i-l)(i-i)...V.V... . (i-i)(i-i;)---.

Cor. I/PQES . . . be prime to each other, then

<t>(PQES, . .) = <l>{P)^{Q)^{B)<f.{S) . . . (2).

For, since P is prime to Q, E, S, . . ., it follows that P is

prime to the product QES . . . Hence, by the above proposition,

<I>{PQES. . .) = <I>{P)<I>{QES. . .).

Repeating the same reasoning, we have

<f>{QES. . .) = cf>{Q)cf>{ES. . .);

and so on.

Hence, finally,

<ly{PQES. . .) = <f>(P)<f>{Q)<l.(E)<}>{S). . . .

Eemark.—There is no difficulty in establishing the theorem

^ {PQ) = <f>
(P) ^ (Q) « priori. This may be done, for example, by

means of § 13 below (see Gross' Algebra, § 230). The theorem

of § 8 above can then be deduced from <f>{PQE . . .) =

(P) <f>{Q)f}> (E) . . . The course followed above, though not

so neat, is, we think, more instructive for the learner.

Example. 56 = 7x8,

^(56) = 24,

^(7) = 6,

0(8)=4;
0(56) = 0(7)x^(8).
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§ 10.] 1/ di, di, dg, . . ., <&c., denote all the divisors of tJw

integer N, then*

^{d,) + cf>{d,) + <l>(ds) + . . . = N. . . (1).

(Gauss, Bisq. Arith., § 39.)

For the divisors, (?i, d^, ds, . . ., are the terms in the

distribution of the product

(l+ai + ai^+. . . +«i"')(l + «2 + «/ + . . .+«2"0. . . .

If we take any one of these terms, say dr = ai^a.^i . . .,

then, by § 9, Cor.,

since a-^, a^, . . . are primes.

It follows that the left-hand side of (1) is the same as

{l + «^(«i) + <^K)+. • .+^«')}

x{l4-«^(a2) + «^(a2^) + . . .^<^{a^^)\

. . ..... (2).

But <^ {a{) = a{ (l - ^) = ^i*"- «/"'•

Hence

l + «/»(ai) + «^(«i') + . • • + «^«')

= 1 + On.- 1 + tti^- Oj + . . . + «!"- al»l-^

= ai"'

;

and so on.

It appears, therefore, that (2) is equal to a^^a^^ . . ., that

is, equal to N.

Example. iV=315 = 32.5.7.

The divisors are 1, 3, 5, 7, 9, 15, 21, 35, 45, 63, 105, 315, and we have

^(l) + ^(3) + ^(5)+ . . . +0(315)
= 1 + 2 +4+6+6 + 8 + 12 + 24 + 24+ 36 + 48+ 144= 815.

* Here and in what follows 1 is included among the divisors, and, for con- •

venience, (1) is taken to stand for 1. Strictly speaking, ^ (1) has no meaning

at all.
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PROPERTIES OF m!

§ 11.] The following theorem enables us to prove some

important properties of m\:—
The highest power of the prime p which divides ml exactly is

(3MiMf^
where J(— ), ^("s)* • • • denote the integral parts of m/p,

m/p% . . . ; and the series is continued until the greatest power of

p is reached which does not exceed m.

To prove this, we remark that the numbers in the series

l,2,...,m

which are divisible by p are evidently

\p, 2p, 3^, . . ., Jcp,

where kp is the greatest multiple of pl^m. In other words,

i: = I{m/p). Hence I(m/p) is the number of the factors in ml

which are divisible by 2?-

If to this we add the number of those that are divisible by

p^, namely /(m/p^), and again the number of those that are

divisible by p^, namely I{m/p^), and so on, the sum will be the

power in which p occurs in ml.

Hence, since p is a prime, the highest power of p that will

divide ml exactly is

It is convenient for practical purposes to remark that

For, if

then

mlp'-^ = i + klp'-'{k<p'-') (IX

mlp' = ilp + klp' (2),

=j+llp + klp'-{l<p) (3).
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Now
lip + Wl^ip - i)/p + (p'-' - i)Ip%

>(p^^'-pW^\
<1.

Hence, by (3),

But, since i/p =j + l/p,

We may therefore proceed as follows :

—

Divide m by p; take

the integral quotient and divide again hy p; and so on; until the

integral quotient becomes zero ; then add all the integral quotients,

and the result is the highestpower ofp which will divide m\ exactly.

Example 1. To find the highest power of 7 which divides 1000! exactly.

In dividing successively by 7 the integral quotients are 142, 20, 2 ; the

sum of these is 164. Hence 7^^^ is the power of 7 required.

Example 2. To decompose 25! into its prime factors.

Write down all the primes less than 25 ; write under each the successive

quotients ; and then add. We thus obtain

2 3 5 7 11 13 17 19 23

12

6

3

1

8

2

5

1

3 2 1 1 1 1

22 10 G 3 2 1 1 1 1

Hence 25! = 2«2 .
3i» .5^.1^. IP . 13 . 17 . 19 . 23.

Example 3. Express 39!/25! in its simplest form as a product of prime

factors.

Eesult, 213 , 38 . 52 . 72 . 11 . 132 . 17 . 19 . 29 , 31 . 37.

Example 4. Find the highest power of 5 that will divide 27 . 28 . 29 . . . 100

exactly.
Eesult, 518.

Example 5. If m be expressed in the scale oip, in the form

the highest power of 2> that will divide ml exactly is the

m-Po-Pi-Pi- -Pt
th.

p-1

Example 6. If m = 2* + 2^ + 2'>'+
. . . {k terms), where o</3<7<. . .,

the greatest power of 2 that will divide ml is the (m - k)th.
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§ 12.] 1/ /+ g + h+ . . .:^w, then ml/flglh] ... is an

integer*.

To prove this, it will be sufficient to show that, if any prime

factor, p say, appear in /\g\h\ . . . , it will appear in at least

as high a power iu ml In other words (§ 11), we have to

show that

+ . . . . (1).

Now, if d be any integer whatever, we have

f/d^/'+r/d (/'>d-i),
g/d^g' + g"/d (g":!^d~l),

h/d^k' + k"/d (r>c^-l),

• • • • t

,

and we obtain by addition

/+g + h+. . . ., , „ f" + g" + h"+. . .

Hence, if/" + g" + //'+. . .<d,

^4MtX^
If, on the other hand, /" + g" + h" + . . . >d,i then

^\ d r-^ +g +h+. . .,

* This theorem might, of course, be inferred from the fact that

m\lf\g\h\ . . . represents the number of permutations of m things / of

which are alike, g alike, h alike, &c.

t If n be the number of the letters f, g, h, . . ., the utmost value of

f"+g" + h" + . . . is n (d - 1). Hence the utmost difference between the two

sidesof {2)i8l{n(d-l)/d}.

c. II. 35
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It appears, tlierefore, that, even if m =/+ g + h + . . .,

(jM^^K^^--- <^'-

A fortiori is this so if m >/+ g + h+ . . . ,

If now we give d the successive values p, p^, . • . , r.nd com-

bine by addition the inequalities thus obtained from (3), the

truth of (1) is at once established.

Cor. 1. If f-^g + h-^ . . .I^m, and none of tlw numbers

f,g,h,. . . is equal to m, the integer ml/flglhl . . . is divisible

hymifm be a prime.

Cor. 2. The product of r successive integers is exactly

divisible by r\.

The proofs of these, so far as they require proof, we leave to

the reader. Cor. 2 has already been established by a totally

different kind of reasoning in § 3, Example 6.

Exercises XXXVI.

(1.) What is the least multiplier that will convert 945 into a complete

square ?

(2.) Find the number of the divisors of 2160, and their sum.

(3.) Find the integral solutions of

a;z/ = 100x + 102/ + l (o)

;

2/3= 108a! (7).

(4.) No number of the form x* + 4 except 5 is prime.

(5.) No number of the form 2"^+^^ ^ except 5 is prime.

(6.) To find a number of the form 2" . 3 . a (a being prime) which shall be

equal to half the sum of its divisors (itself excluded).

(7.) To find a number N of the form 2'^ahc ... (a, 6, c being unequal

primes) such that N is one-third the sum of its divisors.

(8.) Show how to obtain two "amicable" numbers of the forms 2"pg,2*r,

•where j3, q, r are primes. (Two numbers are amicable when each is the sum

of the divisors of the other, the number itself not being reckoned as a

divisor.)

(9.) To find a cube the sum of whose divisors shall be a square.

(One of Fermat's challenges to Wallis and the English mathematicians.

Var. Op. Math., pp. 188, 190.)

(10.) If N be any integer, n the number of its divisors, and P the product

of them all, then iV»=:P2,
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(11.) The sum and the sum of the squares of all the numbers less than

N and prime to it are ^N (a - 1) (& - 1) (c - 1) . . . and ^N^ (1 - 1/a) (1 - 1/6)

. . . + ^iV^ (1 - o) (1 - 6) . . . respectively. (Wolstenholme.

)

(12,) If p, q,r, . . . be prime to each other, and d (N) denote the sum of

the divisors of N, show that

d(pqr . . .) = d(p)d{q)d{r) . . . .

(13.) If N=abc, where a, b, c are prime to each other, then the product of

all the numbers less than N and prime to N is

{abc - 1)! n {(a - l)l/(6c - 1)! a(6-i)(<'-i)}.

(Gouv. and Caius Coll., 1882.)

(14.) The number of integers less than (j-^+ l)" which are divisible by r

but not by r* is (r - 1) {(r^ + 1)" - Ij/r^.

(16.) Prove that

(16.) In a given set of N consecutive integers beginning with A, find the

number of terms not divisible by any one of a given set of relatively prime

integers. (Cayley.

)

(17.) If m - 1 be prime to n + 1, show that ^C'„ is divisible by n + 1.

(18.) (a + l){a+ 2). . .2axb{b + l) . . . 2bl{a+ b)l is an integer.

(19.) The product of any r consecutive terms of the series x-1, x^-1,
x^ -1, , . .is exactly divisible by the product of the first r terms.

(20.) If p be prime, the highest power of p which divides n! is the

greatest integer in {n-S (n)}l{p - l)™, where S (n) is the sum of the digits of

n when expressed in the scale of p.

If S (m) have the above meaning, prove that S {7n-n)<tS (m) - S (n) for any
radix. Hence show that (n+ l) (n + 2) . . . (n + m) is divisible by ml.

{Camb. Math. Jour. (1839), vol. i., p. 226.)

(21.) If /(n) denote the sum of the uneven, and F (71) the sum of the even,

divisors of n, and 1, 8, 6, 10, , , . be the "triangular numbers," then

/(n)+/(n-l)+/(n-3)+/(n-6)+. . .

=F{n)+F{n-l)+F{n-3) + F(n-Q)+. . .,

it being understood that /(n -n) = 0, F{n-n)=n.

ON THE RESIDUES OF A SERIES OF INTEGERS IN

ARITHMETICAL PROGRESSION.

§ 13.] The least positive remainders of the series of numbers

k, k + a, k + 2a, . . . , k + (m- l)a

with respect to m, where m is prime to a, are a permutation of the

numbers of the series

0,1,2,. . .,(m-l).

35—2



548 PROPERTIES OF AN INTEGRAL A.P. CH. XXXV

All the remainders must be different ; for, if any two

different numbers of the Series had the same remainders, then

we should have

k + ra = fjt-m + p, and k-\- sa = ixm + p,

whence
{r - s) a = (fx - fx') m, and {r - s) a/m = p.- p!.

Now this is impossible, since a is prime to m, and r and s aro

each

<

m, and therefore r-s<m. Hence, since there are only

m possible remainders, namely, 0, 1, 2, . . ., (w- 1), the proposi-

tion follows.

Cor. 1. If the remainders of h and a with respect to m he

k' and a\ the remainders will occur as follows:—
Jc, Jc' + a, Jc + 2a', . . . , k' + ra,

until we reach a number that equals or surpasses m ; this we must

diminish hy m, and then proceed to add a' at each step as before.

Thus, if 7: = 11, a = 25, m= 7, the series is

11, 36, 61, 86, 111, 136, 161.

We have /i;'= 4 and a' = 4, hence the remainders are

4, 4 + 4-7= 1, 5, 5 + 4-7= 2, &c.

;

in fact,

4, 1, 5, 2, 6, 3, 0.

Cor. 2. If the progression of numbers be continued beyond

m terms, the remainders will repeat in the same order as before

;

and in this periodic series the number of remainders intervening

between two that differ by unity is always the same.

Cor. 3. There are as many terms in the series

k, k-\-a, k+2a, . . ., k + {m-l)a

which are prime to m, as there are in the series

0,1.2,. . .(m-l).

Tlmt is, the .number of terms in the series in question which are

prime to m is <^ (m). See § 8.

This follows from the fact that two numbers which are

congment with respect to m are either both prime or both non-

prime to m.

Cor. 4. If out of the series of numbers

0, 1,2,. . .,(m-l)
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we select those that are less than m and prime to it, say

Tu ra, . . ., r„

(the number n being ^ (w) ), then the numbers

k + r^a, k + r^a, . . ., ^ + r„a,

V)here k = or a multiple of m, and a prims to m as before, are

all prime to m ; and their remainders with respect to m are a

permutation of

n, ra, . . ., r„.

For, as we have seen already, all tlie n remainders are unlike,

and every remainder must be prime to m ; for, if we had

k + rta = fim + p, where p is not prime to m, then rta = pm+p-k
would have a factor in common with m, which is impossible,

since r^ and a are both prime to m.

Hence the remainders must be the numbers r^, rg, . . ., r,j

in some order or other.

§ 14.] Ifm be not prime to a, but have with it the G.C.M. g,

so that a = ga, m - gm', the remainders of the series

k, k + a, k+2a, . . ., k+(m-l)a
with respect to m will recur in a shorter cycle of m'.

Consider any two terms of the series out of the first m', say

k^-ra, k+sa. These two must have different remainders, otherwise

(r-s)a would be exactly divisible by m : that is, {r - s) ga'/gm'

would be an integer ; that is, (r - s) a'/m' would be an integer

;

which is impossible, since a' is prime to m' and r — s<m'.

Again, consider any term beyond the m'th, say the {m' + r)th.,

then, since

{k + (m' + r)a} — {k + ra] — m'a,

= gm'a',

= ma',

it follows that the {m' + r)th term has the same remainder with

respect to w as the rth.

In other words, the first m' remainders are all different, and

after that they recur periodically, the increment being ga",

where a" is the remainder of a with respect to m', subject to

diminution by m as in last article.

Example. If k= ll, a=25, wi= 15, we have the series

11, 36, 61, 86, 111, 136, 161, 186, 211, 236, 261, . . .

;
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and here g = 5; a'=5; m'-3; a"=2; fc'=ll; gra"= 10. Hence the re-

mainders are

11, 6, 1, 11, 6, 1, 11, 6, 1, 11, 6, . . . .

Cor. J[ftke G.G.M., g,ofa and m divide k exactly, and, in

particular, ifk=^0, the remainders of the series

k, k + a, k + 2a, ...
are the numbers

Og, lg,2g,3g,. . .,(m'-l)g

continually repeated in a certain order.

For, in this case, since k = gK, we have {k + ra)lm = (k + ra)lm',

hence the remainders are those of the series

K, K + a, K + 2a', . . .

with respect to m' which is prime to a, each multiplied by g.

Hence the result follows by § 13.

Example. Let fc:=10, a= 25, m= 15 ; then the series of numbers is

10, 35, 60, 85, 110, 135, 160, 185, ....
We have (7= 5; a'— 5; m'= 3; k=2; and the remainders are

10, 5, 0, 10, 5, 0, 10, 5, ...

;

that is to say,

2x5, 1x5, 0x5, ... .

§ 15.] From § 13 we can at once deduce Fermat's Theorem*,

which is one of the corner-stones of the theory of numbers.

If m be a prime number, and a be prime to m, a"'~^ - 1 is

divisible by m.

If a be prime to m, then we have

la = /Mi7w + pi,

'ia — [h^m + P2)

(m - 1) a = i^m-\m + p,„_i,

where the numbers pi, P2, • • •, 9m-\ are the numbers

1, 2, . . ., (w-1) written in a certain order.

* Great historical interest attaches to this theorem. It was, with several

other striking results in the theory of numbers, published without demonstra-

tion among Fermat's notes to an edition of Bachet de Meziriac's Diophantus

(1670). For many years no demonstration was found. Finally, Euler {Com-

ment. Acad. Petrop., viii., 1741, and Comment. Nov. Acad. Petrop., vn., 1761)

gave two proofs. Another, due to Lagrange [Nouv. Mem. de VAc. de Berlin,

1771), is reproduced in § 18. The proof given above is akin to Euler'e second

and to that given by Gauss, Disq. Arith., § 49.
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Hence

1.2. . . (m - 1) a"*-' = {^L^m + pi) {fx^m + p.^ . . . {i^m-im + Pm~i),

=Mm + pipn . . . p,n-i,

= Mm + 1.2 . . . {m-l).

We therefore have

1.2 . . .{m-l) (a'"-^ - l)^Mm.

Now, m being a prime number, all the factors of 1 . 2 . . . {m-\)
are prime to it. Hence m must divide a'"~^ - 1.

It is very easy, by the method of differences, explained in § 5,

to establish the following theorem :

—

Ifm he a prime, a^-a is exactly divisible hy m*.

Since a"* - a = a (a™"^ - 1), if a be prime to m, this is simply

Fermat's Theorem in another form.

§ 16.] By using Cor. 4 of § 13 we arrive at the following

generalisation of Fermat's Theorem, due to Euler :

—

If m be any integer, and a be prime to m, then a*^*") — 1 is

exactly divisible by m.

Here <^ (m) denotes, as usual, the number of integers which

are less than m and prime to it.

For, if ri, 7-2, • • • . ^« be the integers less than m and prime

to it, we have, by the corollary in question,

ria = fi^m + pi,

r2a = fj^m + p2,

rnCt = H-nm + pn,

where the numbers pi, p^, . . ., p„ are simply Ti, r^, . . ,, Tn

written in a certain order.

We have therefore, just as in last paragraph,

n^2 . • • ^'»(a"- l) = Mm,

whence, since Ti, r^, . . ., r„ are all prime to m, it follows that

a"- 1, that is, a'''^'"' - 1, is divisible by m.

§ 17.] The famous theorem of Wilson can also be established

by means of the principles of § 13.

* For another proof of this theorem see § 18 below.
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Auy two integers whose product has the remainder + 1 with

respect to a given modulus m may be called, after Euler, Allied

Numbers.

Consider all the integers,

1,2,3,. . .,(m-l),

less than any prime number m (the number of them is of course

even). We shall prove that, if we except the first and last, they

can be exhaustively arranged in allied pairs.

For, take any one of them, say r, then, since r is prime to m,

the remainders of

r.l, r.2, . . ., r{m-l)
are the numbers

1, 2, . . .,(m-l)

in some order. Hence, some one of the series, say rr', must have

the remainder 1 ; then rr will be allies.

The same number r cannot have two different allies, since all

the remainders are different.

Nor can the two, r and r', be equal, unless r=l or = m-l;
for, if we have

r'- fim + 1,

then r^-l=fim; that is, (r+1) (r-1) must be divisible by m.

But, since m is prime, this involves that either r+1 or r-1 be

divisible by m, and, since r cannot be greater than m, this involves

in the one case that r = m - 1, in the other that r = 1.

Excluding, then, 1 and m-1, we can arrange the series

2, 3,. . .,{m-2)

in allied pairs. Now every product of two allies is of the form

fim+1; hence the product 2.3. . . {m-2) is of the form

(fiiin + l) {fi^m + 1) . . ., which reduces to the form 3Im + 1.

Hence
2.3 . . . (m-2) = Mm + l;

and, multiplying by w» - 1, we get

1.2.3. . .(m-2) {m-l) = Mmim-l) + m-l.
Whence

1.2.3 . . . (m- 1) + 1 = Am,
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That is, if m he a prime, {m-l)\ + 1 is divisible by m, which is

Wilson's Theorem*.

It should be observed that, if m be not a prime, (w- 1)! + I

is not divisible by m.

For, if m be not a prime, its factors occur among the numbers

2, 3, . . ., {m-\), each of which divides {m-\)\, and, there-

fore, none of which divide {m - 1)! + 1.

§ 18.] The following Theorem of Lagrange embraces both

Fermat's Theorem and Wilson's Theorem as particular cases :

—

lf{x + l) {x + '2). . . {x+p-\)
= x^-'^ + A-,x'P-'^+. . . + Ap-^x + Ap-1,

andp be prime, then Ai, A^, . . ., Ap-2 are all divisible by p.

We have

{x-^-p){ap-'^-\-AiX^-^ + . . .+Ap-2X+ Ap--i]

= {x + l) {{x + If-' + .Ix {x + l)^-'^ + . . . + J[p-2 (^ + 1) + Ap-,].

Hence

pxP~^-^pAixP~^+pA2xP~^ + . . . + pAp-2X + pAp-i

={(x+iy-af}+A,{(x+iy-'-xp-'}+A,{(x+iy-''-xp-^}+. .

.

Therefore

pAi=pC2 + p-iCiAi,

pAs = pCj +P.1C2A1 + p^-iC^Az,

pA^ = pCi + p-iCaA^ + P-0C2A2 + P-3O1A3.

Hence, since p-iCi, p-^Ci, psCu ... are not divisible hy p
if j9 be prime, we get, by successive steps, the proof that Ai, A^,

A3, . . . are all divisible hy p.

* This theorem was first published by Waring in his Meditationes Alge-

braica (1770). He there attributes it to Sir John Wilson, but gives no proof.

The first demonstration was given by Lagrange (Nouv. Mem. de VAc. de

Berlin, 1771) ; this is reproduced in § 18. A second proof was given by Euler

in his Opuscula Anahjtica (1783), vol. 1., p. 329, depending on the theory of

the residues of powers.

The proof above is that given by Gauss {Bisq. Arith., §§ 77, 78), who
generalises the theorem as follows :

—" The product of aU the numbers less

than m and prime to it is congruent with - 1, if m =p'^ or = 2p'^, where p
is any prime but 2, or, again, if m = 4; but is congruent with +1 in every

other case." This extension depends on the theory of t^uadratic residues.
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Cor. 1. Put a; = l, and we get

2.3. . .p = l + (Ai + A2 + . . . + J.p_2) + Ap-i,

Therefore Ap-i + 1, that is, (p-l)\ + 1, is divisible by p.

Cor. 2. Multiplying by x and transposing, we get

w'^ — x = x {x + '[) . . . (x +p — 1)

-{l+Ap-i)x-(AixP-^ + A^iif-^ + . . .+Ap-^a^).

But x{x+\) . . . {x+p-1), being the product of ^ con-

secutive integers, must be divisible by p. Also, if p be prime,

1 + Ap-1 is divisible by p.

Therefore, x^ — x is divisible by p ifp be prime. From which

Fermat's Theorem follows at once if x be prime to p.

Exercises XXXVII.

(1.) x^^-x is divisible by 2730.

(2.) If a; be a prime greater than 13, x^^ - 1 is divisible by 21840,

(3.) If the nth power of every number end with the same digit as the

number itself, then n= 4^ + l.

Give a rule for determining by inspection the cube root of every perfect

cube less than a million.

(4.) If the radix, r, of the scale of notation be prime, show that the rth

power of every integer has the same final digit as the integer itself, and that

the (r - l)th power of every integer has for its final digit 1.

(5.) If n be prime, and x prime to n, then either a;("~i)/'2 - 1 or x'""!'/^ +

1

is divisible by n.

(6.) If n be prime, and x prime to n, then either a;"("-')/2 - 1 or a;»i"-^)/2 +

1

is divisible by n^.

(7.) If m and n be primes, then

m^-^ + ra^'-i^l (mod. rmi).

(8.) If o, j3, 7, . . . be primes, and N=a^y . . ., then

S(A^/a)"~^=l (mod. a^y . . .).

(9.) If 71 be an odd prime, show that

(a + l)"-(a" + l)= (mod. 2ra).

Hence show that, if n be an odd prime and p an integer, then any integer

expressed in the scale of 2n will end in the same digit as its {pn -p + l)th

power. Deduce Fermat's Theorem. (Math. Trip., 1879.)

(10.) If n be prime and >x, then

.T"-2 + a;n-3^ . . . +x + l = (mod. n).

(11.) If n be an odd prime, then

l + 2(n+ l) + 22(n+ l)2+. . . +2"-«(n + l)»-2=0 (mod.n).

(12.) If nbeodd, l'» + 2»+. . . +(n-l)"=0 (mod. n).
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(13.) If n be prime, and p<n,

(p

-

1)1 (n-p)l-{- 1)P= (mod, n),

and, in particular,

[{i(ji-l)}!p + (-l)(»-i)/2= 0(mod. n).

(Waring.)

(14.) Find in what cases one of the two {^ (n - 1)}I ± 1 is divisible by n.

What determines which of them is so ?

(15.) If p be prime, and n not divisible by ^ - 1, tlicn

l»4-2"+. . .+(p-l)"= 0(mod.23).

(16.) If J) be any odd prime, m any number > 1 which is not divisible by

p-1, then

12'» + 22'"+. . .+ fLlP\^=0{mod.p).

(17.) If neither a nor b be divisible by a prime of the form 4n - 1, then
0^411-2 _ J4H-2 yf[ii Qot be exactly divisible by a prime of that form.

Hence show that a*'^-^ + 6<»-2 is not divisible by any integer (prime or not)

of the form 4n - 1.

Also that a^ + b^ is not divisible by any integer of the form 4n - 1 which
does not divide both a and b. Also, that any divisor of the sum of two
integral squares, which does not divide each of them, is of the form 4n+ l.

(Euler.)

(18.) Show, by means of (17), that no square integer can have the form

imn — m — n'^, where m, n, a are positive integers. (Euler.)

PARTITION OF NUMBERS.

Elder's Theory of the Enumeration of Partitions.

§ 19.] By the partition of a given integer n is meant the

division of the integer into a number of others of which it is the

sum. Thus 1 + 2 + 2 + 3 + 3, 1+3 + 7, are partitions of 11.

There are two main classes of partitions, namely, (I.) those' in

which the parts may be equal or unequal
;

(II.) those in which

the parts are all unequal. When the word " Partition " is used

without qualification, class (I.) is understood.

We shall use a quadripartite symbol to denote the number

of partitions of a given species. Thus P ( | ]
) and Pu ( | |

) are

used to denote partitions of the classes (I.) and (11.) respectively.

In the first blank inside the bracket is inserted the number to

be partitioned ; in the second, an indication of the number of the

parts ; in the third, an indication of the magnitude or nature of
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the parts. It is always implied, unless the contrary is stated,

that the least part admissible is 1 ; so that ^m means any

integer of the series 1, 2, . . ., m. An asterisk is used to mean
any integer of the series 1, 2, . . . , oo , or that no restriction is

to be put on the number of the parts other than what arises

from the nature of the partition otherwise.

Thus P {n\p\q) means the number of partitions of n into p
parts the greatest of which is q; P{n\p\^q) the number of

partitions of n into p parts no one of which exceeds q ;

P {n\*\^q) the number of partitions of n into any number of

parts no one of which is to exceed q ; Pu {n
\
l^p

\
* ) the

number of partitions of n into p or any less number of unequal

parts unrestricted in magnitude; Pw(w|jt?|odd) the number of

partitions of n into p unequal parts each of which is an odd

integer; P{n\*\\, 2, 2^ 2^*, . . .) the number of partitions of

n into any number of parts, each part being a number in the

series 1, 2, 2^ 2^ . . . ; and so on.

The theory of partitions has risen into great importance of

late in connection with the researches of Sylvester and his

followers on the theory of invariants. It is also closely con-

nected with the theory of series, as will be seen from Euler's

enumeration of certain species of partitions, which we shall

now briefly explain.

§20.] If we develop the product {\ -^ zx) {I + zap) . . .

(1 + zofl), it is obvious that we get the term z^x^ in as many

different ways as we can produce n by adding together p of the

integers 1, 2, . . ., q, each to be taken only once. Hence we

have the following equation :

—

(1 + zx) (1 + zx") . . .{l+zafl) = l + '^Pu {n \p \:l^q) z^x"* (1).

Again, if to the product on the left of (1) we adjoin the

factor l + z + z'' + 2^+. . . adco (that is, 1/(1 - z) ), we shall

evidently get z^x"' as often as we can produce n by adding

together any number not exceeding^ of the integers 1, 2, . . ., q.

Therefore

(1 + zx) (1 + zx') . . . (1 + zafl)/(l - z)

= 1 + ^Pu (n \:!f>p i:^g) s^af (2).
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.In like manner, we have

{l + a;)(l+ar'). . . (1 +^) = 1 + 2Ptt(w
|
* |>g)a;" (3);

(1 + zw) (1 + za^) . . . ad GO = 1 + ^Pu (n \p\^) z^x'' (4)

;

{l+x){l+a^) . . .a.dico = \ + -S,Pu{n.\*\*)x'' (5),

Also, as will be easily seen, we have

1/(1 -zx){l-za^)...{l-zafi)^l + ^P{n\p\ :)>^)cV (6)

\l{l-z){l-zx). . .{l-zofi) = l^'ZP{n\1^p\-^q)z^x'' (7)

\l{\-x){l-a?). . .{l-xfi) = \+^P{n\*\-^q)x'' (8)

\l{l-zx){l-zx'). . .a,^co = \ + ^pln\p\*)zPx'' (9)

1/(1
- z){\-zx){\ -zap) . . .ad 00 = 1 + 2P (7i |>>j9 1 *) z^^" (10)

ll(l-x){l-x^). . .adoo = l + 2P(w|*|*)^" (11)

and so on.

By means of these equations, coupled with the theorems

given in chap, xxx., § 2, and Exercises xxi., a considerable

number of theorems regarding the enumeration of partitions

can be deduced at once.

§ 21.] To find a recurrence-formula for enumerating the

partitions of n into any number of parts none of which exceeds

q; and thus to calculate a table for P{n\* \1^q).

By (8), we have

ll{\-x){\-x''). . .{I- xf^)=l + %P {n\^\-^q) x^.

Hence, multiplying on both sides by 1-af^, and replacing

1/(1 -x){l-x^) . . . (1 - xfl~^) by its equivalent, we derive

l + %P{n\*\-i(>q-\)af'

= l+%{P{n\*\:^q)-P{n-q\*\1^q)]x^ (12),

where we understand P(0,
|
*

|:f>g') to be 1.

Hence, if «<j:g',

P{n\*\1^q) = P{n\*\-^q-l) + P{n-q\^\1^q) (13);

and, if w<5',

P{n\*\1^q) = P{n\*\1^q-l) (14).

By means of (13) and (14) we can readily calculate a table of

double entry for P{n\*\1f>q), as follows :

—
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A 1 2 3 4 5 66 7 c
8 9 10 11 12 13 14 15 16 17 18 19 20

1 1 1 1 1 1 1 1 1 1 1 1111 1 1 1 1 1 1 D
2 . 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11

3 . . 3 4 5 7 8 10 12 14 16 19 21 24 27 30 33 37 40 44

4 5 6 9 11 15 18 23 27 34 39 47 54 64 72 84 94 103

5 7 10 13 18 23 30 37 47 57 70 84 101 119 141 164 192

6 11 14 20 26 35 44
i

58 71 90 110 136 163 199 235 282

9 7 15 21 28 38 49 65 I 82 105 131 164 201 248 300 364

8 , 22 29 40 52 70 89 1
116 146 186 230 288 352 434

9 . 30 41 54 73 94 123 157 201 252 318 393 488

10 , 42 55 75 97 128 164 212 267 340 423 530

11

E

• • 56 76 99 131

F
169 219 278 355

1

445 560

B a d

Take a rectangle of squared paper BA G\ and enter the values

of n at the heads of the vertical columns, and the values of q

at the ends of the horizontal lines. We remark, first of all, that

it follows from (14) that all the values in the part of any vertical

column below the diagonal AF are the same. We therefore

leave all the corresponding spaces blank, the last entry in the

column being understood to be repeated indefinitely.

Next, write the values of P{\\*\^\\ P(2l*|>l), . . .,

that is, 1, 1, . . ., in the row headed 1.

To fill the other rows, construct a piece of paper of the form

ahcd. Its use will be understood from the following rule, which

is simply a translation of (13) :

—

To fill the blank immediately after the end of any step, add

to the entry above that blank the number which is found at the

left-hand end of the step.

Thus, to get the number 23, which stands at the end of the

step lying on the fourth horizontal line, we add to 14 the number

9, which lies to the immediate left of ah in the same line as

the blank. Again, in the ninth line 157 = 146+11; and

so on.

By sliding ahcd backwards and forwards, so that he always

lies on AB, we can fill in the table rapidly with little chance of

error. We shall speak of the table thus constructed as Euler's
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Table. It will be found in a considerably extended form in his

Introductio, Lib. I., chap, xvi.

A variety of problems in the enumeration of partitions can

be solved b)^ means of Euler's Table, as we shall now show.

§ 22.] To find by means of Eulers Table the number of

partitions of n into p parts of unrestricted magnitude.

Let us first consider P{n\p\*). By (9) above, we have

l + %P{n\p\*)x^z^=ll{l-zx){l-zx'). . . ad ao,

= 1 + tx^z^lll -x){l-aP). . .{\- x^),

by Exercises xxi. (18).

Hence
^P{n\p\^)x'' = '^aFl{l-x){l-x'). . .(I-xp),

= SP(7J
I
*!>/?) a;"+^ by (8).

Therefore

F(n\p\^.) = F{n-p\*\:^p) (15).

Again,

1 + SPw {n\p\*) x'^zP = (1 + zx) (1 + zx') . . . ad oo

,

= 1 + Sari^U'+i) ^p/^ -x)(l-x''). . . (1 - ^),

by chap, xxx., § 2, Example 2.

Hence

^Pu (n\p\i^)x'' = xlP <P+^)/(l-x)(l-x") . . . (l-x^),

= SP (w
I

*
I
>j9) ^"+ii'(^+'), by (8).

Therefore

Pu{n\p\*) = P{n-y{p+l)\*\:lf>p) (16).

Examplel. P(20
|
5

| «) = P(15
|
« |>5)=84,

Example 2. Pm(20
|
5

| •) = P(5| « |>5)=7.

§ 23.] If we take any partition of n into p parts in which

the largest part is q, and remove that part, we shaU leave a parti-

tion o( n-q into p-1 parts no one of which exceeds q. Hence

we have the identity

P{n\p\q) = P(n-q\p-l\::^q) (17);

and, if we make p infinite, as a particular case, we have

P{n\*\q) = P{n-q\*\:^q) (18).

It will be observed that (18) makes the solution of a certain

class of problems depend on Euler's Table.
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By comparing (15) and (18), we have the theorem

P{n\*\q) = P{n\q\*l

which, however, is only a particular case of a theorem regarding

conjugacy, to be proved presently.

§ 24.] Tliem^ems regarding conjugacy.

(I.) P{n\-^p\>q) = P{n\>q\>p) (19).

(II.) P{n-p\q-l\1^p)^P{n-q\p-l\1^q) (20).

(III.) P{n\p\q) = P{n\q\p) (21).

To prove (I.) we observe that, by (7), we have

l + ^P{n\-^p\1^q)z^x^==ll{l-z){l-zx). ..{l-zofi),

„ (l-;r'^^')(l-^+^).
..(1-^^P)

-i + ^z
(i-x){l-a^)...{l-a^) '

Hgiic6

^T,/ 1^ ,< X ™ (1-3^+0(1-^+'). . .(1-^+^)
^P{n\>p\1^q)x^= '

(l-j)(l-.-)...(l-.^) '

{l-x){\-x'). . .{l-afl+P)

~{l-x){\-x')...{l-afl){l-x){l-x')...(\-xP)'

Since the function last written is symmetrical as regards p
and q, it must also be the equivalent of %P{n\'^q\'^p)af^.

Hence Theorem (I.).

Theorem (II.) follows from (6) in the same way.

Since, by (17), we have

P{n\p\q) = P{n-q\p-l\-^q),

P{n\q\p) = P{n-p\q-l\-i^p);

therefore, by (II.),

P{n\p\q) = P{n\q\p),

which establishes Theorem (III.)-

The following particular cases are obtained by making p or

a infinite :

—

P{n\-^p\^) = P{n\*\>p) (22);

P{:n\p\*) = P{n\*\p) (23).
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§ 25.] Tlie following theorems enable us to solve a number

of additional problems by means of Euler's Table :

—

P{n\p\-if>q) = P{n-p\*\l!f>p)-^P{n-iH-p\*\>p)

-2P(?^-/^-jo|*|:}>^)

(24).

Here the summations are with respect to fii, /.t2, . . . ; and

fix is any one of the numbers q, q + l, . . . , q+p - 1, ju.2 the sum

of any two of them, /i.3 the sum of any three, and so on. The

series of sums is to be continued so long as n — iXr—p^O. If

P{n\p\:lf>q) come out or negative, this indicates that the

partition in question is impossible.

P{n\:if>p\:!f>q)=P{n\*\::f>p)-:^P(n-v,\^\:^p)

+ %P{n-v^\*\:!^p)

-2P(w-v3|#|:t>j9)

. . . . (25).

Here vi, Vg, . . . have the same meanings with regard to

q + 1, q + 2, . . ., q +p a,8 formerly fii, /j^, . . . with regard to

q, q+1, . . ., q+p-1.

P(n\*\*)
= P{n-l\*\1f>l) + P(n-2\*\:!f>2) + . . . +P(0

|
* 1:^^^) (26).

The demonstrations will present no difficulty after what has

already been given above.

CONSTRUCTIVE THEORY OF PARTITIONS.

§ 26.] Instead of making the theory of partitions depend on

series, we might contemplate the various partitions directly, and

develop their properties from their inherent character. Sylvester

has recently considered the subject from this point of view, and

has given what he calls a Constructive Theory of Partitions, which

throws a new light on many parts of the subject, and greatly

simplifies some of the fundamental demonstrations*. Into this

• Amer. Jour. Math. (1882).

c. II. 36
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theory we cannot within our present limits enter ; but we desire,

before leaving the subject, to call the attention of our readers to

the graphic method of dealing with partitions, which is one of

the chief weapons of the new theory.

By the graph of a partition is meant a series of rows of

asterisks, each row containing as many asterisks as there are

units in a corresponding part of the partition. Thus

* * *

# * * * #

I * * *

is the graph of the partition 3 + 5 + 3 of the number 11.

For many purposes it is convenient to arrange the graph so

that the parts come in order of magnitude, and all the initial

asterisks are in one column. Thus the above may be written

—

The graph is then said to be regular.

The direct contemplation of the graph at once

gives us intuitive demonstrations of some of the

foregoing theorems.

For example, if we turn the columns of the graph last

written into rows, we have

where there are as many asterisks as before. The new

graph, therefore, represents a new partition of 11, which

may be said to be conjugate to the former partition-

Thus to every partition of n into p parts the greatest of

which is q, there is a conjugate partition into q parts the

greatest of which is p. Hence

P{n\p\q) = P{n\q\p\
an old result.

Again, to every partition of n into p parts no one of which

exceeds q, there will he a conjugate partition into q orfewer parts

the greatest of which is p. Hence

P{n\p\>q) = P{n\1^q\p) (27),

a new result ; and so on*.

* According to Sylvester (I.e.), this way of proving the theorems of

conjugacy originated with Ferrers.
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§ 27.J The following proof, given by Franklin*, of Euler'o

famous theorem that

(l-x)(l-ai'){l-af). . .ada,=l(- )P;»«'^p'^p) (28)t,

is an excellent illustration of the peculiar power of the graphic

method.

The coeflficient of of* in the expansion in question is obviously

Pu {n
I

even
|
* ) - Fa {n

]
odd

|
* ) (29).

Let us arrange the graphs of the partitions (into unequal

parts) regularly in descending order. Then the right-hand edge

of the graph will form a series of terraces all having slopes of

the same angle (this slope may, however, consist of a single

asterisk), thus

—

A B
* *

if * *
* * *

* * * *
* * * # ::•

* * * >'f * #
'^ if- ^ % i^ *^

* * * i( * » #

"We can transform the graph A by removing the top row and

placing it along the slope of the last terrace, thus

—

, We then have a regular graph A'

representing a partition into unequal parts.

This process may be called contraction.

We cannot transform B in this way;

but we may extend B by removing the

slope of its last terrace, and placing it

above the top row, thus

—

j^,
We then have a regular graph B repre-

senting a partition into unequal parts.

Every graph can be transformed by con-

traction or by extension, except when the top

row meets the slope of the last terrace ; and in

this case also, provided it does not happen that

the number of asterisks in the top row is equal

• Comptes Rendus (1880).

+ Euler originally discovered this theorem by induction from particular

cases, and was for long unable to prove it. For other demonstrations, sea

Legeudre, TMorie des Noinhrcs, t. n., § 15, and Sylvester {l.c.).

36—2
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to the number in the last slope or exceeds it only by one,

as, for example, in

;,; * * * * * *

* * >¥ * »**:! »

* # * * ******
Contraction or extension in the first of these would produce

an irregular graph ; contraction in the second would produce an

irregular graph ; and extension would produce a graph which

corresponds to a partition having two parts equal. These two

cases may be spoken of as unconjugate ; they can only arise when

the p parts of the partition are

p, p+1, p + 2, . . ., 2;?-l,

and the number

n=p + {p+l) + . . . +(2i?-l) = ^(:V-jp);

or when the p parts are

^+1, p + 2, p + 3, . . ., 2p,

and
n = {p + l) + (p + 2)+ . . . +2p = ^{3p'' +p).

Since contraction or extension always converts a partition

having an even or an odd number of parts into one having

an odd or an even number of parts respectivel}'^, we see

that, unless n be a number of the form i{Sp^±p),

Pu (n
I

even
|
* ) =Pu (n

\
odd

[
* ).

When n has one or other of the forms | {^p^±p), there will

be one unconjugate partition which will be even or odd

according as p is even or odd ; all the others will occur in pairs

which are conjugate in Franklin's transformation. Hence

Pu (i (3j3^ ±p) I

even \*)-Pu(^ (Sjo^ ±i>) 1
odd

| * ) = ( - 1)" (30).

Euler's Theorem follows at once.

Exercises XXXVIII.

(1.) Show how to evaluate Fu(n\ >p\*) by means of Euler'e Table.

Evaluate

(2.) P(13|5|>3). (3.) P(13|>6|>3).

(4.) P(10|.|»). (5.) P(20|9|l>3).
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Establish the following :—
(6.) Pu (n I «

I
• ) = P (M - i? (g + 1) I

*
1

1> q), where lq{q + l) just > n.

(7.) Pu{n\v\*)=P(n-\p{Tp-\)\p\*).

(8.) P(n|p|») = Pw(n + ip(i)-l)|i)|*).

(9.) Pu{n\p\>q) =P{n-iiP(p-l)\p\>q-p + l).

(10.) Is the theorem P{n-p\q~\\*):=P{n-q\p-l\*) universally

true?

(11.) Show how to form a table for the values of P (n | * | 2, 3, . . ., q).

(See Proc. Edinb. Math. Sec, 188.3-4.)

(12.) Show how to form a table for the number of partitions of n into an
indefinite number of odd parts.

Establish the following :

—

(13.) P(ra|«|l, 2, 22,23,. . .) = 1.

(14.) Pu(n|p|l, 3, . . .,23-l)=P(7i-2)2+p|p|l, 3, . ..,2<7-l).

(15.) P(n|j>|2, 4, . . ., Q.q) = P{n-p\p\l, 3, . . ., 2q-l).

(16.) P(H|*|odd)=Pu(H|*|«).

(17.) P(n\>p\2,4:, . . .,2g)=P(M|}>gl2, 4, . . .,2p).

(18.) P(w+p1p11, 3, . . .,2g + l)=P(ji + g|(z|l, 3 2^-fl).

(19.) Pu(n + p^\p\l, 3, . . ., 2q + l)=Pii.{n + q-\q\l, 3, . . .,2p + l).

(20.) P(n^2p\p\2, 4, . . ., 2g' + 2) = P(u + 23 | (^ | 2, 4, . . ., 2i> + 2).

(21.) Show that P {n\p\*) =P{n-l\p-l\*) + P(n~p\p\*)\ and
hence construct a table for P (;t |2> | «). (See Whitworth, Choice and Chance,

chap, in.)



CHAPTEK XXXVI.

Probability, or the Theory of Averages.

§ 1.] An elementary account of the Theory of Probability,

or, as we should prefer to call it, the Theory of Averages, has

usually found a place in English text-books on algebra. This

custom is justified by several considerations. The theory in

question affords an excellent illustration of the application of the

theory of permutations and combinations which is the funda-

mental part of the algebra of discrete quantity ; it forms in its

elementary parts an excellent logical exercise in the accurate use

of terms and in the nice discrimination of shades of meaning

;

and, above all, it enters, as we shall see, into the regulation of

some of the most important practical concerns of modern life.

The student is probably aware that there are certain occur-

rences, or classes of events, of such a nature that, although we
cannot with the smallest degTce of certainty assert a particular

proposition regarding any one of them taken singly, yet we can

assert the same proposition regarding a large number iV of them

with a degree of certainty which increases (with or without limit,

as the case may be) as the number N increases.

For example, if we take any particular man of 20 years of age,

nothing could be more uncertain than the statement that he will

live to be 25 ; but, if we consider 1000 such men, we may assert

with considerable confidence that 96 per cent, of them will live to

be 25 ; and, if we take a million, we might with much greater con-

fidence assign the proportion with even closer accuracy. In so

doing, however, it would be necessary to state the limits both of

habitat and epoch within which the men are to be taken ; and,

even with a million cases, we must not expect to be able to assign
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the proportion of those who survive for 5 years with absolute

accuracy, but be prepared, when we take one million with

another, to find occasional small fluctuations about the indicated

percentage.

We may, for illustration, indicate the limits just spoken of

by saying that "man of 20" is to mean a healthy man or

woman living in England in the 18th century. The " event,"

as it is technically called, here in question is the living for 5

years more of a man of 20 ; the alternative to this event is not

living for 5 years more. The whole, made up of an event and

its alternative or alternatives, we call its universe. The alternative

or alternatives to an event taken collectively we often call the

Complementary Event. The living or not living of all the men
of 20 in England during the 18th century we may, following

Mr Venn*, call the series of the event. It will be observed

that on every occasion embraced by the series the event we are

considering is in question ; and we express the above result of

observation by saying that the probability that a man of 20

living under the assigned conditions reached the age of 25 is '96.

We are thus led to the following abstract definition of the

Probability or Chance of an Event

:

—
I/on taking any very large number N out of a series of cases

in which an event A is in question, A happens on pN occasions,

the probability of the event A is said to be p.

In the framing of this definition we have, as is often done in

mathematical theories, substituted an ideal for the actual state

of matters usually observed in nature. In practice the number

p, which for the purposes of calculation we suppose a definite

quantity, would fluctuate to an extent depending on the nature

of the series of cases considered and on the numberN of specimen

cases selected!. Moreover, the mathematical definition contains

no indication of the extent or character of the series of cases.

* Logic of Chance.

t We might take more explicit notice of this point by wording the

definition thus:—"If, on the average, inN out of a series of cases, dkc."

But, from the point of view of the ideal or »iathematical theory, nothing

would thus be gained.
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How far the possible fluctuations of p, the extent of the series,

and the magnitude of N will affect the bearing of any con-

clusion on practice must be judged by the light of circumstances.

It is obvious, for instance, that it would be unwise to apply to

the 14th century the probability of the duration of human life

deduced from statistics taken in the 18th. This leads us also to

remark that the application of the theory of probability is not

merely historical, as the definition might suggest. Into most of

the important practical applications there enters an element of

induction*'. Thus we do in fact apply in the 19th century a

table of mortality statistics deduced from observations in the

18th century. The warranty for this extension of the series of

cases by induction must be sought in experience, and cannot in

most cases be obtained a priori.

There are, however, some cases where the circumstances are

so simple that the probability of the event can be deduced,

without elaborate collecting and sifting of observations, merely

from our definition of the circumstances under which the event

is to take place. The best examples of such cases are games of

hazard played with cards, dice, &c. If, for example, we assert

regarding the tossing of a halfpenny that out of a large number

of trials heads will come up nearly as often as tails—in other

words, that the probability of heads is ^, what we mean thereby

is that all the causes which tend to bring up heads are to

neutralise the causes that tend to bring up tails. In every

series of cases in question, the assumption, well or ill justified,

is made that this counterbalancing of causes takes place. That

this is really the right point of view will be best brought home

to us if we reflect that undoubtedly a machine could be con-

structed which would infallibly toss a halfpenny so as always

to land it head-up on a thickly sanded floor, provided the coin

were always placed the same way into the machine ; also, that the

coin might have two heads or two tails ; and so on.

In cases where the statement of probability rests on grounds

so simple as this, the difficulty regarding the extension of the

series by induction is less prominent. The ideal theory in such

• In the proper, logical sense of the word.
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cases approximates more closely than usual to the actual circum-

stances. It is for this reason that the illustrations of the

elementary rules of probability are usually drawn from games of

hazard. The reader must not on that account suppose that the

main importance of the theory lies in its application to such

cases ; nor must he forget that its other applications, however

important, are subject to restrictions and limitations which are

not apparent in such physically simple cases as the theory of

cards and dice.

Before closing this discussion of the definition of probability

as a mathematical quantity, it will be well to warn the learner

that probability is not an attribute of any particular event

happening on any particular occasion. It can only be predicated

of an event happening or conceived to happen on a very large

number of " occasions," or, in popular language, of an event " on

the average" or in the "long run." Unless an event can happen,

or be conceived to happen, a great many times, there is no sense

in speaking of its probability, or at least no sense that appears to

us to be admissible in the following theory. The idea conveyed

by the definition here adopted would be better expressed by

substituting the word frequency for the word probability ; but,

after the above caution, we shall adhere to the accepted term.

§ 2.] The following corollaries and extensions may be added

to the definition.

Cor. 1. If the 'probability of an event be p, then out of N
cases in which it is in question it will happenpN times, N being

any very large number*.

This is merely a transposition of the words of the definition.

As an example, let it be required to find the number out of 5000 men of

20 years of age who will on the average live to be 25. The probability of a

man of 20 living to be 25 may be taken to be '96; hence the number
required is -96x5000= 4800.

Cor. 2. If the probability of an event be jt?, the probability of

itsfailing is 1-p.

For out of a large number iV of cases the event will happen

on pN occasions ; hence it will fail to happen on N-pN
* It is essential that pN also be a very large number. See Simmons,

Pj-oc. L. M. S., XXVI., p. 307 (1895).
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= (1 -p)N occasions. Hence, by the definition, the probability

of the failing of the event is 1-p.

Cor. 3. If the universe of an event he made up ofn alternatives,

or, in other words, if an event must happen and that in one out of

n ways, and if the respective probabilities of its happening in these

ways be pi, Pi, . . .,pn, thenpi+p, + . . .+pn=l.

For on every one of N occasions the event will happen ; and

it will happen in the first way on p^N occasions, in the second on

p^N' occasions, and so on. Hence N^piN^-p^N^ . . .+pnN;
that is, 1 =pi +P2 + . . . +Pn'

Cor. 4. Ifati event is certain to happen, its probability is 1

;

if it is certain not to happen, its probability is 0.

For in the former case the event happens on 1 . N cases out

ofN cases ; in the latter on . iV cases out of N.

The probability of every event is thus a positive number

lying between and 1.

Cor. 5. If an event must happen in one out of n ways all

equally probable, or if one out ofn events must happen and all are

equally probable, then the probability of each way of happening in

the first case, or of each event happening in the second, is Ijn.

This follows at once from Cor. 3 by making p^ ^p^ = . . . =j9„.

As a particular case, it follows that, if an event be equally

likely to happen or to fail, its probability is \.

Definition.

—

The ratio of the probability of the happening of

an event to the probability of its failing to happen is called ths

odds in favour of the event, and the reciprocal of this ratio is called

the odds against it.

Thus, if the probability of an event be p, the odds in favour

are p:\-p', the odds against 1-p -.p. Also, if the odds in

favour be m : w, the probability of the event is ml{m + n). If the

probability of the event be \, that is, if it be equally likely to

happen or to fail, the odds in favour are 1:1, and are said to

be even.

Cor. 6. If the universe of an event can be analysed into m + n

cases each of which in the long run will occur equally often*, and

* Tliis is usually expressed by saying that all the cases are equally likely.
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if ill m of these cases the event will happen and in the remaining

nfail to happen, the probability of the event is m/{m + n).

After what has been said this will be obvious.

DIRECT CALCULATION OF PROBABILITIES. .

§ 3.] The following examples of the calculation of proba-

bilities require no special knowledge beyond the definition of

probability and the principles of chap, xxiii.

Example 1, There are 5 men ia a company of 20 soldiers who have

made up their minds to desert to the enemy whenever they are put on

outpost duty. If 3 men be taken from the company and sent on outpost

duty, what is the probability that all of them desert ?

The 3 men may be chosen from among the 20 in j^Cj ways, all of which

are equally likely. Three deserters may be chosen from among the 5 in 5C3

ways, all equally likely. The probability of the event in question is therefore

8^s/2oW-i 2.3/ 1.2.3
-^'^^*-

Example 2. If n people seat themselves at a round table, what is the

chance that two named individuals be neighbours ?

There are (see chap, xxiii., § 4) (n-l)l different ways, all equally likely,

in which the people may seat themselves. Among these we may have A and B
or B and 4 together along with the (n-2)! different arrangements of the

rest ; that is, we have 2 (n - 2)! cases favourable to the event and all equally

likely. The required chance is therefore 2 (n- 2)!/(?i- l)!=2/(ji-l).

When n=3, this gives chance =1, as it ought to do. The odds against

the event are in general n - 3 to 2 ; the odds will therefore be even when the

number of people is 5.

Example 3. If a be a prime integer, and n=a'", and if any integer Iii>n

be taken at random, find the chance that I contains a as a factor s times

and no more.

The integer I must be of the form Xa», where X is any integer less than

a*"-* and prime to a*"-'. Now, by chap, xxxv., § 8, the number of integers

less than a^~* and prime to it is a'"~*(l - 1/a). Also the number of integers

> n is oT. Hence the required chance is a*"-* (1 - Ha)la^=a~* (1 - 1/a) = 1/a*

- Ha^\
Example 4. Find the probability that two men A and B oim and n years

of age respectively both survive for p years.

The mortality tables (see § 15 below) give us the numbers out of 100,000

individuals of 10 years of age who complete their mth, Hth, m + pth, n+pth
years. Let these numbers be Z^, Z„, Im+p, i„+p. The probabilities that A
and B live to be m+p and n+p years of age respectively are Im+pl^my 'nWn
respectively. Consider now two large groups of men numbering M and N
respectively. We suppose A to be always selected from the first and B always
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from the second. In this way we could select altogether MN pairs of men
who may be alive or dead after p years have elapsed. The number out of

the M men living after p years is Ml^+pjl^, by § 2, Cor. 1. Similarly the

number living out of the N men is Nln+pjl^. Out of these we could form

MNl^^pln+pjlm^n pairs. This last number will be the number of pairs

of survivors out of the MN pairs with which we started. Hence the

probability required is im+pWp/^m'»=('m+p/^m) (Wp/^n); in other words, it

is the product of the probabilities that the two men singly each survive for

p years. The student should study this example carefully, as it furnishes a

direct proof of a result which would usually be deduced from the law for

the multiplication of probabilities. See below, § 6.

Example 5. A number of balls is to be drawn from an urn, 1, 2, . . ., n
being all equally likely. What is the probability that the number drawn
be even?

We can draw 1, 2, . . ,, « respectively in ^Cj, ^Cj, . . ., „(7„ ways
respectively. Hence we may consider the universe of the event as consisting

of „Ci + ^Ca+ . . . + nC„=(1 + 1)™-! = 2" -1 equally likely cases. The number
of these in which the drawing is even is „C2 + „C4+ . . .=^{(1 + 1)"

+ (1 - 1)" - 2} = 1(2" - 2) = 2™-i - 1. The number of ways in which an odd

drawing can be made is ^(^1 + ^03+. . . =i {(1 + 1)"- (1-I)''} = i2"=2"-^
Hence the chance that the drawing be even is (2"~i- l)/(2"-l), that it be

odd 2'*-'/(2"- 1)- The sum of these is unity, as it ought to be; since, if

the drawing is not odd, it must be even. In general, an odd drawing is more
likely than an even drawing, the odds in its favour being 2"~*

:
2""! - 1 ; but

the odds become more nearly even as n increases.

Example 6. A white rook and two black pawns are placed at random on
a chess-board in any of the positions which they might occupy in an actual

game. Find the ratio of the chance that the rook can take one or both of

the pawns to the chance that either or both of the pawns can take the rook.

Let us look at the board from the side of white ; and calculate in the first

place the whole number of possible arrangements of the pieces. No black

pawn can lie on any of the front squares ; hence we may have the rook on

any of these 8 and the two pawns on any two of the remaining 56 ; in all,

8 X 2 jigC2= 8 X 56 X 55 arrangements. Again, we may have the rook on any one

of the 56 squares and the two pawns on any two of the remaining 55 squares

;

in all, 56 X 55 X 64 arrangements. The universe may therefore be supposed

to contain 62 x 56 x 55 equally likely cases.

Instead of calculating the chance that the rook can take either or both of

the pawns, it is simpler, as often happens, to calculate the chance of the

complementary event, namely, that the rook can take neither of the pawns.

If the rook lie on one of the front row of squares, neither of the pawns can

lie on the corresponding column, that is, the pawns may occupy any two out

of 49 squares ; this gives 8 x 49 x 48 arrangements. If the rook lies in any
one of the remaining 56 squares, neither of the pawns must lie in the row or

column belonging to that square; hence there are for the two pawns 42 x 41

positions. We thus have 56 x 42 x 41 arrangements. Altogether we have
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8 X 49 X 48 + 56 X 42 X 41 = 56 X 49 X 42 arrangements in which the rook can

take neither pawn. Hence the chance that the rook can take neither pawn

is 56 X 49 X 42/62 x 56 x 55 = 1029/1705, The chance that the rook can take

one or both of the pawns is therefore 1 - 1029/1705 = 676/1705.

Consider now the attack on the rook. If he is on a side square, he can

only be attacked by either of the two pawns from one square. For the side

squares we have therefore only 24 x 54 arrangements in which the rook can

be taken. There remain 36 squares on each of which the rook can be taken

from two squares, that is, in 6 ways. For the 36 squares we therefore have

36 X 2 + 36 X 4 X 53 arrangements in which the rook can be taken by one or by

both the pawns. Altogether there are 9000 arrangements in which the rook

may be taken. Hence the chance that he be in danger is 9000/62 x 56 x 55 =
225/4774, The ratio of the two chances is 9464 : 1125.

§ 4.] A considerable number of interesting examples can be

solved by the method of chap, xxiii., § 15. Let there be r bags,

the first of which contains cfi, 6i, Cj, . , ,, h^ counters, marked

with the numbers «!, /3i, yi, . . ., /Ci; the second, a^,h^, Cj, . . .k^,

marked o^, P%,y^, . . ., K-i', and so on. If a counter be drawn

from each bag, what is the chance that the sum of the numbers

drawn is w ?

By chap, xxiii., § 15, the number of ways in which the sum
of the drawings can amount to n is the coefficient, An say, of af^

in the distribution of the product

(ai^;"' + haf' + , , . + ^i.^"')

X {a^af^ + b^a^^ + , . . + k^of')

X {UrX'^ + brO^' + . . . + hrX"'').

Again, the whole number of drawings possible is the sum of

all the coefficients ; that is to say,

(«! + 6i + . . . + ^i)

X (aa + 62 + . . . + ita)

X (ar + ^r + • • • + ^v) = A say.

Hence the required chance is AJD.
Example 1. A throw has been made with three dice. The sum is known

to be 12 ; required the probability that the throw was 4, 4, 4.

The number of ways in which 12 can be thrown with three dice is the

coefficient of x^^ in

(x^-^x^ + x^ + x^ + x^-^x^f,
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tliat ia to say, of x^ in

{I + X + x'^+ x^ + X* + x^)K

Now the coefficients in (l +x+ . • . +x^y^ up to the term in x^ are (see

chap. IV., § 15) 1 + 2 + 3 + 4 + 5 + 6 + 5 + 4 + 3 + 2. Hence the coefficient of x*

in the cube of the multinomial is 5+ 6 + 5 + 4 + 3 + 2=25.* The required

probability is therefore 1/25.

Example 2. One die has 3 faces marked 1, 2 marked 2, and 1 marked 3;

another has 1 face marked 1, 2 marked 2, and 3 marked 3. What is the

most probable throw with the two dice, and what the chance of that throw?

The numbers of ways in which the sums 2, 3, 4, 5, 6 can be made are the

coefficients of x'^, a;*, x^, x^, x^ in the expansion of (3a; + 2a;^ + x") {x + 2x^ + 3x'').

Now this product is equal to

3x2 + 8x3 ^ 14^4 + sx"+ 3x6.

The sum that will occur oftenest in the long run is therefore 4. The

whole number of different ways in which the different throws may turn out

is (3 + 2 + 1) (1 + 2 + 3) = 36. Hence the probability of the sum 4 is 14/36

= 7/18.

Example 3. An urn contains m counters marked with the numbers

1, 2, . . ., m. A counter is drawn and replaced r times; what is the

chance that the sum of the numbers drawn is n?t
The whole number of possible different drawings is ni'*.

The number of those which give the sum n is the coefficient of a;" in

(x + x2+. . .+ x"»)^ that is to say, of x"-*' in (l + x+. . . + x'^-y. Now
1 + X + . . . + x™"^= (1 - x'^)l(l - x). We have therefore to find the coefficient

of x"-*" in

(l-x'»)'-(l-.T)-'-={l-^CiX'"+ rC'2X2«-rC3x3"*+. . .}

'^r+i''+ 1.2 "^ + 1.2.3 '^+- •

-f*
The coefficient in question is

_r(r+ l). . . («-!) r(r + l). . .(w-m-l)r
^ n-r- (jT^)

!

(n -r-vi)[ 11

r()+l). . .(7i-27?t-l)r(r-l)
"*"

(7i-j--2m)!21
-• . . .

The required probability is ^„_r/m'".

Example 4. If m odd and n even integers (n<i.m- 1) be written down at

random, show that the chance that no two odd integers are adjacent is

n! {n + l)\l(m + n)\{n-m+ l)l.

In order to find in how many different ways we can write down the

integers so that no two odd ones come together, we may suppose the m odd

integers written down in any one of the ml possible ways, and consider the

VI -1 spaces between them together with the two spaces to the right and left

of the row. The problem now is to find in how many ways we can fill the

* We might also have found the coefficient of x* by expanding

(1 - x')3 (1 - x)~8, as in Example 4 below.

t This is generally called Demoivre's Problem. For an interesting aocoant

of its history see Todhunter, Hist. Frob., pp. 59, 85.
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n even integers into the spaces so that there shall always be one at least in

every one of the m-1 spaces. A little consideration will show that the

number of ways, irrespective of order, is the coefficient of x" in

{l + x+ x^+ . . . ad Qo)2(x + x2+ . . .adoo)"*-!;

that is, of a;»-"»+i in {l+x+ x^+. . .)^(l + x + x^+. . O"*"!;
that is, of a;»-"»+i in (1 - a;)-("»+>).

This coefficient is

(m + l)(m + 2). . .(n + 1) ^ (« + !)!

{n-m+ l)l ~m!(n-m + l)I*

If we remember that every distribution of the n integers among the m +

1

spaces can be permutated in n\ ways, we now see that the number of ways
in which the m+ n integers can be arranged as required is

n\m\ (n+l)!/m! (7i-m + l)! = n!(n + l)!/(n-m + l)I.

The whole number of ways in which the m + n integers can be arranged is

{m+ 7i)\, hence the probability required is n!(/i + l)!/(ri- wi + l)!(m + n)!.

ADDITION AND MULTIPLICATION OF PROBABILITIES.

§ 5.] In many cases we have to consider the probabilities of

a set of events which are of such a nature that the happening of

any one of them upon any occasion excludes the happening of

any other upon that particular occasion. A set of events so

related are said to be mutually exclusive. The set of events

considered may be merely different ways of happening of the

same event, provided these ways of happening are mutually

exclusive.

In such cases the following rule, which we may call the

Addition Ruh, applies :

—

If the probabilities of n mutually exclusive events be p^, p^,

. . ., Pn, the chance that one out of these n events happens on any

particulwr occasion on which all of them a/re in question ispi+p2 +

. . . +Pn'
To prove this rule, consider any large number N of occasions

where all the events are in question. Out of these N occasions

the n events will happen on p^N, p-^N, . . ., Pn^ occasions re-

spectively. There is no cross classification here, since no more

than one of the events can happen on any one occasion. Out of

iV^ occasions, therefore, one or other of the n events will happen

on piN + P2N + . . . + Pn^= (pi +P2 + • • • + Pn)^ occasions.

Hence the probability that one out of the n events happens on

any one occasion is pi +p2 + . . . +Pn-
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It should be observed that the reasoning would lose all force

if the events were not mutually exclusive, for then it might be

that on the j9iiV occasions on which the first event happens one

or more of the others happen. We shall give the proper formula

in this case presently.

As an illustration of the application of this rule, let us suppose that a

throw is made with two ordinary dice, and calculate the probability that the

throw does not exceed 8. There are 7 ways in which the event in question

may happen, namely, the throw may be 2, 3, 4, 5, 6, 7, or 8 ; and these ways

are of course mutually exclusive. Now (see § 4, Example 1) the probabilities

of these 7 throws are 1/36, 2/36, 3/36, 4/36, 5/36, 6/36, 5/36 respectively.

Hence the probability that a throw with two dice does not exceed 8 is

(l + 2 + 3 + 4 + 5 + 6 + 5)/36=26/36= 13/18.

§ 6.] When a set of events is such that the happening of

any one of them in no way affects the happening of any other,

we say that the events are mutually independent. For such a set

of events we have the following Multiplication Rule :
—

Xf the respective probabilities of n independent events he pi,

Ps, • -yPn, the probability that they all happen on any occasion

in which all of them are in question is piPi . . . pn-

In proof of this rule we may reason as follows :—Out of

any large number iV of cases where all the events are in question,

the first event will happen on piN' occasions. Out of these j9iiV

occasions the second event will also happen on p^iPiN^ =PiP2^
occasions ; so that out of N there are p^p^N occasions on

which both the first and second events happen. Continuing

in this way, we show that out of N occasions there are

jt7ijt?2 . . . PnN occasions on which all the n events happen.

The probability that all the n events happen on any occasion

is therefore Pi.p-i . . . pn-

It should be noticed that the above reasoning would stand

if the events were not independent, provided p^ denote the

probability that event 2 happen after event 1 has happened, p^.

the probability that 3 happen after 1 and 2 have happened, and

so on.

It must be observed, however, that the probability calculated

is then that the events happen in the order 1, 2, 3, . . ., w.

Hence the following conclusion :

—
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Cor. If the events 1, 2, . . ., n be interdependent and pi

denote the probability of \,p2 the probability that 2 happen after

1 has happened, ps the probability that 3 happen after 1 and 2

have happened, and so on, then tlie probability that the events

1, 2, . . .,n happen in the order indicated isp^p-i . . . Pn-

As an illustration of the multiplication rule, let us suppose that a die is

thrown twice, and calculate the probability that the result is such that the

first throw does not exceed 3 and the second does not exceed 5.

The probability that the first throw does not exceed 3 is, by the addition

rule, 3/6 ; the probability that the second does not exceed 5 is 5/6. The result

of the first throw in no way affects the result of the second ; hence the

probability that the result of the two throws is as indicated is, by the

multiplication rule, (3/6) x (5/6) = 5/12.

As an example of the effect of a slight alteration in the wording of the

question, consider the following :—A die has been thrown twice : what is the

probability that one of the throws does not exceed 3 and the other does not

exceed 5 ?

Since the particular throws are now not specified, the event in question

happens—1st, if the first throw does not exceed 3 and the second does not

exceed 5 ; 2ud, if the first throw is 4 or 5 and the second does not exceed 3.

These cases are mutually exclusive, and the respective probabilities are 5/12

and 1/6. Hence, by the addition rule, the probability of the event in question

is 7/12.

§ 7.] The following examples will illustrate the application

of the addition and multiplication of probabilities.

Example 1. One urn. A, contains m balls, p7i being white, (l-^)m black;

another, B, contains n balls, qn white, {l-q)n black. A person selects one of

the two urns at random, and draws a ball ; calculate the chance that it be

white ; and compare with the chance of drawing a white ball when all the

VI + n balls are in one urn.

There are two ways, mutually exclusive, in which a white ball may be

drawn, namely, from A or from B.

The chance that the drawer selects the urn A is 1/2, and if he selects that

urn the chance of a white ball is p. Hence the chance that a white ball is

drawn from A is (§ 6, Cor.) ^p. Similarly the chance that a white ball

is drawn from B is \q. The whole chance of drawing a white ball is there-

fore (iJ + g)/2.

If all the balls be in one urn, the chance is {pm + qn)l{m-\-n).

Now (pm-{-qn)l{m-\-n)> = <[p + q)l2,

according as 2{pjn-\-qn)> = <{p + q) [m+n),

according as (m-n){p-q)> = <0.

Hence the chance of drawing a white ball will be unaltered by mixing if

either the numbers of balls in A and B be equal, or the proportion of white

balls in each be the same.

c. II. 37
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If the number of balls be unequal, and the proportions of white be un-

equal, then the mixing of the balls will increase the chance of drawing a

white if the urn which contains most balls have also the larger proportion of

white; and will diminish the chance of drawing a white if the urn which

contains most balls have the smaller proportion of white.

De Morgan* has used a particular case of this example to point out the

danger of a fallacious use of the addition rule. Let us suppose the two urns

to be as follows: A (3 wh., 4 bl.) ; B (4 wh., 3 bl.). We might then with

some plausibility reason thus ;—The drawer must select either A or B. If he

select A., the chance of white is 3/7 ; if he select B, the chance of white is

4/7. Hence, by the addition rule, the whole chance of white is 3/7 + 4/7= 1.

In other words, white is certain to be drawn, which is absurd. The mistake

consists in not taking account of the fact that the drawer has a choice of urns

and that the chance of his selecting A must therefore be multiplied into his

chance of drawing white after he has selected A. The chance should there-

fore be 3/14+4/14=1/2.

The necessity for introducing the factor 1/2 will be best seen by reasoning

directly from the fundamental definition. Let us suppose the drawer to make
the experiment any large number ^ of times. In the long run the one urn

will be selected as often as the other. Hence out of iV times A will be selected

JY/2 times. Out of these 2^/2 times white will be drawn from A (3/7) (^/2)

= JV (3/14) times. Similarly, we see that white will be drawn from B 2^(4/14)

times. Hence, on the whole, out of 2^ trials white will be drawn

(3/14 + 4/14)2^ times. The chance is therefore 3/14 + 4/14.

Example 2. Four cards are drawn from an ordinary pack of 52 ; what is

the chance that they be all of different suits ?

We may treat this as an example of § 6, Cor. The chance that the

first card drawn be of one of the 4 suits is, of course, 1. The chance, after one

suit is thus represented, that the next card drawn be of a different suit is,

since there are now only 3 suits allowable and only 51 cards to choose

from, 3.13/51. After two cards of different suits are drawn, the chance that

the next is of a different suit is 2.13/50. Finally, the chance that the last

card is of a different suit from the first three is 13/49. By the principle just

mentioned the whole chance is therefore 3.13.2.13.13/51.50.49=133/17.25.49

= 1/10 roughly.

Example 3. How many times must a man be allowed to toss a penny in

order that the odds may be 100 to 1 that he gets at least one head ?

Let X be the number of tosses. The complementary event to " one head
at least " is " all tails." Since the chance of a tail each time is 1/2, and the

result of each toss is independent of the result of every other, the chance of
«' all tails " in x tosses is (1/2)*. The chance of one head at least is therefore

1 - (1/2)='. By the conditions of the question, we must therefore have

1- (1/2)* =100/101;

* Art. "Theory of Probability," £;jcy. Metrop. Eepublished £7icy. Pwra
Math. (1847), p. 399.
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hence 2*=101,

a;=logl01/log2,

=2-0043/-3010,

=6-6 ....
It appears, therefore, that in 6 tosses the odds are less than 100 to 1, and in

7 tosses more.

Example 4. A man tosses 10 pennies, removes all that fall head up;

tosses the remainder, and again removes all that fall head up ; and so on.

How many times ought he to be allowed to repeat this operation in order

that there maj' be an even chance that before he is done all the pennies have

been removed?

Let X be the number of times, then it is clearly necessary and sufficient

for his success that each of the 10 pennies shall have turned up head at least

once. The chance that each penny come up head at least once in x trials is

1 - (1/2)*. Hence the chance that each of the 10 has turned up heads at least

once is {l-(l/2)"^}^<*. By the conditions of the problem we must therefore

have
{l-(l/2)*}io= l/2;

(1/2)*= l-(l/2)iAo= .06697;

a;=-log •06697/log2,

= 3-9 very nearly.

Hence he must have 4 trials to secure an even chance.

Example 5. A man is to gain a shilling on the following conditions. He
draws twice (replacing each time) out of an urn containing one white and one

black ball. If he draws white twice he wins. If he fails a black ball is added,

he tries twice again, and wins if he draws white twice. If he fails another

black ball is added; and so on, ad infinitum. What is his chance of gaining

the shilling? (Laurent, Calcul des ProhahiliUs (1873), p. 69.)

The chances of drawing white in the various trials are 1/2^, 1/3^, . . .

1/n^, . . . The chances of failing in the various trials are 1 - 1/2^,

1 - 1/32, . . . , 1 - l/ra", . . . Hence the chance of failing in all the trials

is (1 - 1/22) (1 _ iy32) . . . (1 _ i/,i2) ... ad 00

.

Now

.L^4)('4^)-(-.^)
_ ^ {1.3}{2.4} . . . {(n-3) (n -l)}{(«-2)n}{(n-l)(n + l)}

12.22...n2 '
= L

_ n{n + l)

The chance of failing to gain the shilling is therefore 1/2. Hence the chance

of gaining the shilling is 1/2.

We might have calculated the chance of gaining the shilling directly, by

37—2
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observing that it is the sum of the chances of the following events : 1°,

gaining in the first trial; 2°, failing in 1st and gaining in 2nd; 3°, failing

in 1st and 2nd and gaining in the 3rd ; and so on. In this way the chance

presents itself as the following infinite series:—

The sum of this series to infinity must therefore be 1/2. That this is so may
be easily verified. The present is one example among many in which the

theory of probability suggests interesting algebraical identities.

Example 6. A and B cast alternately with a pair of ordinary dice. A
wins if he throws 6 before B throws 7, and B if he throws 7 before A throws

6. If A begin, show that his chance of winning : B's=SO : 31. (Huyghens,

De Ratiociniis in Ludo Alece, 1657.)

Let p and q be the chances of throwing and of failing to throw 6 at a

single cast with two dice ; r and s the corresponding chances for 7.

A may win in the following ways : 1°, A succeed at 1st throw ; 2°, A fail

at 1st, B fail at 2nd, A succeed at 3rd ; and so on. His chance is therefore

represented by the following infinite series :

—

p + qsp + qsqsp + . . .=p {l + {qs) + {qs)^ + . . .},

=PI(1 - qs),

B may win in the following ways :—1°, A fail at 1st, B succeed at 2nd

;

2°, A fail at 1st, B fail at 2nd, A fail at 3rd, B succeed at 4th ; and so on.

His chance is therefore

qr+ qsqr+ qsqsqr + . . . = qr{l + (qs) + (qsY + . . .},

= qrl{l-qs).

Hence A's chance : B^s=p : qr.

Now (see § 4, Example 1) iJ= 5/36, g= 31/36, r=6/36 ; hence

^'s chance : B's=5/36 : 6 . 31/362,

= 30:31.

For Huyghens' own solution see Todhunter, Hist. Prob., p. 21.

Example 7. A coin is tossed m+ n times {m>n). Prove that the chance

of at least m consecutive heads appearing is {n + 2)/2"*"*'i.

The event in question happens if there appear—1st, exactly m; 2nd,

exactly m+ 1; . . .; (n + l)th, exactly m+ n consecutive heads.

Now a run of exactly m consecutive heads may commence with the 1st,

2nd, 3rd, n-lth, nth, n+ lth throw. Since m>n, there cannot be more
than one run of m or more consecutive heads, so that the complication due

to repetition of runs does not occur in the present problem. The chances

of the first and last of these cases are each 1/2"*+^, the chances of the others

1^2"»+2^ Hence the chance of a run of exactly m consecutive heads is

2/2"»+i + (n - 1)/2'»+2= (n + 3)/2»^+2.

In like manner, we see that the chance of a run of m + 1 consecutive

heads is (n + 2)/2"'+^; and so on, up to m + 7i-2. Also the chances of a run

of exactly m + n - 1 and of exactly vi + n consecutive heads are l/2'"+'»-i and
1/2W+" respectively.
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Hence the chance ^ of a run of at least m heads is given by

_n+ 3 n+ 2 5 4_ 1
P~ 2»»+2

'''
2'»»+3 + • • • + 2m-t-»

"'" 2»n+n+l 2'"+" '

The summation of the series on the left-hand side is effected (sec

chap. XX., § 13) by multiplying by (1 - 1/2)2= 1/4. We thus find

4 _n + 3 n+ 2 ra+ l 4

2(n+3) _ 2(n+ 2) _ _ 2.5 _ 2.4
~ 2"*+* 2"*+* '

* * 2"*"'^+^ 2"'+"+2

n+3 ,6.5.4.1
2»»+4 ' • •

' 2V^+n+i ^ 2"*+"+^ ' 2'''+''+3 2"*+"+^

'

_n+3 _n+4 3 2 1

iP~ 2>n+a 2"'+* 2"*+"+* 2"'+''+^ 2"'+"+2

'

_n+ 2

Hence i)
= (n + 2)/2^+i.

GENERAL THEOREMS REGARDING THE PROBABILITY OF

COMPOUND EVENTS.

§ 8.] The probability that an event, wJiose probability is p,

happen on exactly r out of n occasions in which it is in question is

nCrP^q^'^ where q=l —p is the probability that the event fail.

The probability that the event happen on r specified occasions

and fail on the remaining n — r is by the multiplication rule

2)pqpqq . . . where there are r p's and n-r qs, that is, j^''^'""'".

Now the occasions are not specified ; in other words, the happen-

ing, and failing, may occur in any order. There are as many
ways of arranging the r happenings and n— r failings as there

are permutations of n things r of which are alike and n-r alike,

that is to say, w!/r! (w — r)! =„6y. There are therefore nOr

mutually exclusive ways in which the event with which we are

concerned may happen ; and the probability of each of these is

pTgn-r^ Hence, by the addition rule, the probability in question

is nOrP^'q'"'''-

It will be observed that the probabilities that the event

happen exactly n, n-1, . . ., 2, 1, times respectively, are the

1st, 2nd, 3rd, . . ., {n+ l)th terms of the expansion of {p + q)\

Since, if we make n trials, the event must happen either 0,
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or 1, or 2, . . ,, or w times, the sum of all these probabilities

ought to be unity. This is so ; for, since p + q = l, (p + qY = 1.

It will be seen without further demonstration that the pro-

position just established is merely a particular case of the

following general theorem :

—

If there he m events A, B, G, . . . one hut not more of which

must happen on every occasion, and if their prohahilities he p, q, r,

. . , respectively, the prohahility that on n occasions A happen

exactly a times, B exactly ft times, C exactly y times, . . . is

n\p'^q^n . . .Ia\(3\y\. . .,

where a + (3 +y + . . .-n.

It should be observed that the expression just written is

the general term in the expansion of the multinomial

(^ + g' + r + . . .y.

Example 1. The faces of a cubical die are marked 1, 2, 2, 4, 4, 6;

required the probability that in 8 throws 1, 2, 4 turn up exactly 3, 2, 3 times

respectively.

By the general theorem just stated the probability is

8! / ly /IY /ly _ 7.5.2

312I3lV6y V^y U/ ~ 38 '

= qZ approximately.

Example 2. Out of n occasions in which an event of probability 2? is in

question, on what number of occasions is it most likely to happen ?

We have here to determine r so that ^^rP^q^'^ may be a maximum.

Now „(?rJP''3"^/nCr-l2''^'2"~'^^= (w - r+ 1) pjrq.

Hence the probability will increase as r increases, so long as

{ji-r+l)p>rq,

that is, (n+ l)jj>r(p + g),

that is r<{n+l)p

If ()i+ l)jj be an integer, =« say, then the event will be equally likely to

happen on s - 1 or on s occasions, and more likely to happen s - 1 or s times

than any other number of times.

If {n+l)p be not an integer, and 8 be the greatest integer in (ra+ 1)^, then

the event is most likely to happen on « occasions*.

* When n is very large, {n-\-l)p differs inappreciably from np. Hence

out of a very large number n of occasions an event is most likely to happen

on pn occasions. This, of course, is simply the fundamental principle of § 2,

Cor. 1, arrived at by a circuitous route starting from itself in the first

instance.
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As a numerical instance, suppose an ordinary die is thrown 20 times,

what is the number of aces most likely to appear?

Here n= 20; i> = l/6; {n + l)p= 3^.

The most likely number of aces is therefore 3.

§ 9.] The probability that an event happen on at least r out

of n occasions where it is in question is

nCrPY-'' + nCr+^p'+Y-'-' + • • • + nCn-iP'^-'q +p\ . . (1).

For an event happens at least r times if it happen either

exactly r ; or exactly r+1 ; . . . ; or exactly n times. Hence

the probability that it happens at least r times is the sum of

the probabilities that it happens exactly r, exactly r+1, . . .,

exactly w times ; and this, by § 8, gives the expression (1).

Another expression for the probability just found may be

deduced as follows :—Suppose we watch the sequence of the

happenings and failings in a series of different cases. After we
have observed the event to have happened just r times, we may
withdraw our attention and proceed to consider another case;

and so on. Looking at the matter in this way, we see that the

r happenings may be just made up on the rth, or on the r+ 1th,

. . ., or on the nth. occasion.

If the r happenings have been made up in just s occasions,

then the event must have happened on the sth occasion and on

any r - 1 of the preceding s - 1 occasions. The probability of

this contingency is

p X ,.^Cr-^p'-Y~' = ,.^Cs-rP''(t"''

Hence the probability that the event happen at least r times in

n trials is

p' + rC^p'-q + r-^,C^p'q'+. . . + n-iGn-rP'Y-"

=i?'-{l + rC^q + r+iC.q' + . . . + „_:(7«_,^''-'-} (2).

As the two expressions (1) and (2) are outwardly very different, it may be
•well to show that they are really identical. To do this, we have to prove that

=i--'{i+.c.(i)..c.(i)V....„<,„(i)"-],
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The expression last written is, up to the (n - r)th power of q, identical with

(1 - g)"-'-{l + g/(l - <7)1» = (1 - g)"-^/(l - 3)™= (1 - <?)-'•.

Now, as may be readily verified,

(l-q)-'=l+rG^q + r+jC^q^+ • • • +n-l'^«-r3"-'"+ • • •

The required identity is therefore established.

Example. A and B play a game which must be either lost or won ; the

probability that A gains any game is p, that B gains it l-p = q; what is the

chance that A gains m games before B gains ra? (Pascal's Problem.)*

The issue in question must be decided in m +n-1 games at the utmost.

The chance required is in fact the chance that A gains m games at least out

of m + n-1, that is, by (1) above,

P^+^-^ +m+n-lG,p^+^-^q+ . . . +,n+„-iC^p'"3"-l (1').

We might adopt the second way of looking at the question given above,

and thus arrive at the expression

P^{l+mGiq + m+lG2l'+ ' ' +,n+™-2C™-i9"-'} (2'),

for the required chance.

§ 10.] The results just arrived at may be considerably-

generalised. Let us consider n independent events Ai, A2,

. . ., An, whose respective probabilities are pi, 2hi • • •» Pn-

In the first place, in contrast to ^ 8, 9, let us calculate the

chance that one at least of the n events happen.

The complementary event is that none of the n events happen.

The probability of this is (1 —p^ (1 -p-^ ... (1 -p^^. Hence the

probability that one at least happen is

= ^Px-%PiPi-^^PiP-2Pz- • ' -{-T'^PiPi- ' -Pn (1).

Next let us find the probabiliti/ that one and no more of the n

events happen.

The probability that any particular event, say A^, and none

of the others happen is, pi{l-p^ {1 -ps) ... (1 -pn). Hence

the required probability is

^Pi(l-P^)(l-P3). . -i^-Pn)

=:%-2(7i2/?,Jt?2 + 3C,2/?i^2i?3-. . (-T~\On-iPiPz. . .pn (2).

* Famous in the history of mathematics. It was first solved for the

particular case p = g by Pascal (1654). The more general result (1') above

was given by John Bernoulli (1710). The other formula (2') seems to be due

to Montmort (1714). See Todhunter, Hist. Frob., p. 98.
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For the products two and two arise from - 2jt?i (P2+P3+ • . .

+Pn), and each pair will come in once for every letter in it. Again,

the products three and three arise from Spi {p-zPs +PiPi + • • •)

;

hence each triad will come in once for every pair of letters that

can be selected from it ; and so on.

By precisely similar reasoning, we can show that the probability

that r and no more of the n events happen is

%i?2 ' • • ^r (1 -Pr+^) (1 -Pr+2) ... (1 -Pn)
= ^PiP2- • 'Pr-r+iCi^PiP2 ' . .Pr+1

+ r+^Gi^PlPl • • . Pr+i

( - Yr+sCs'^PiPi . . . Pr+s

{-T-\Cn-rPyP2. • . Pn (3).

We can now calculate the probability that r at least out of the

n events happen.

To do so we have merely to sum all the values of (3) obtained

by giving r the values r, r + 1, r + 2, . . ., n successively.

In this summation the coefficient of ^pip-2 . . . pr+a is

(
~ )* {r+s^s ~ r+st/«_i + r+sCg_2 — . . . ( — )*~V+«^l + ( — 1)*}.

Now the expression within the brackets is the coefficient of

af in (1 + ivy+'' X (1 + w)-\ that is to say, in (l+a;Y+''-\ Tliis

coefficient is r+s-iOg. Hence the coefficient of ^pip.2 . . . pr+g is

( ~ ) r+8-i^«.

The probability that r at least out of the n events happen is

therefore

^PlP2. Pr-rOi^PiP2. . .Pr+l

+ r^xC^PlPl • . . i?r+2

( - )\-^»-xG^PlP2 . . Pr+S

( - )'^-\-iCn-rPlP2 • -Pn (4).

Since the happening of the same event on n different occasions

may be regarded as the happening of n different events whose
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probabilities are all equal, the formulae (3) and (4) above ought,

when pi -p2 = . . . =pn each = p, to reduce to nCrP^q^~^ and

the expression (1) or (2) of § 9 respectively.

If the reader observe that, when p^ ^p^ = . . . =j3n =P,

%PiP2 . . • Pr = nOrP'^, &c. , ho will havB no difficulty in showing

that (3) is actually identical with JJrP''(t~^ in the particular

case in question.

The particular result derived from (4) is more interesting.

We find, for the probability that an event of probability p will

happen r times at least out of n occasions, the expression

(-)"-VlC„-.i?» (5).

Here we have yet another expression equivalent to (1) and

(2) of § 9. It is not very difficult to transform either of the two

expressions of § 9 into the one now found ; the details may be

left to the reader.

Example. The probabilities of three independent events are ]>, q, r;

required the probability of happening

—

1st. Of one of the events but not more

;

2nd. Of two but not more

;

3rd. Of one at least

;

4th, Of two at least

;

5th. Of one at most

;

6th. Of two at most.

The results are as follows :

—

1st. p + q + r-2{pq+pr+ qr) + ^pqr;

2nd. fq +pr + qr - ipqr

;

3rd. p + q + r-{'pq+'pr+ qr)+pqr

;

Ath.. pq+pr + qr-2pqr \

6th. l-(pq-\-pr-\-qr) + 2pqr',

6th. 1-pqr.

The first four are particular cases of preceding formula ; 5 is comple-

mentary to 4 ; and 6 is complementary to " of all three."

§ 1 1.] The Recurrence or Finite Difference Method for solving

problems in the theory of probability possesses great historical and

practical interest, on account of the use that has been made

of it in the solution of some of the most difficult questions in

the subject. The spirit of the method may be explained thus.
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Suppose, for simplicity, that the required probability is a function

of one variable x ; and let us denote it by u^. Reasoning from

the data of the problem, we deduce a relation connecting the

values of «» for a number of successive values of x\ say the

relation

/(Mx+2, ««+:, «x) = (A).

We then discuss the analytical problem of finding a function

Ux which will satisfy the equation (A).

It is not by any means necessary to solve the equation (A)

completely. Since we know that our problem is definite, all

that we require is a form for m-b which will satisfy (A) and at the

same time agree with the conditions of the problem in certain

particular cases. The following examples will sufficiently illus-

trate the method from an elementary point of view.

Example 1. A and B play a game in which the probabilities that A and
B win are a and ^ respectively, and the probability that the game be drawn
is 7. To start with, A has m and B has n counters. Each time the game
is won the winner takes a counter from the loser. If A and B agree to play

until one of them loses all his counters, find their respective chances of

winning in the end*.

Let Mj. and Uj. denote the chances that A and B win in the end when each

has X counters. If we put 111+%=^, the respective chances at any stage of

the game are u^ and Vp_^.

Consider A'& chance when he has x + l counters. The next round he

may, 1st, win ; 2nd, lose ; 3rd, draw the game. The chances of his

ultimately winning on these hypotheses are au^^^ '> /^"a i 7"a;+i respectively.

Hence, by the addition rule,

"x+l = «"xf2+ ^"x+ 7Wa:+l •

If we notice that + ^ + 7=! (for the game must be either won, lost, or

drawn), we deduce from the equation just written

aWx+2 - (a+ ^) «;^i + ^"a= (!)•

It is obvious that u^=AK'', where A and X are constants, will be a

solution of (1), provided

a\2-(a + /3)X + /3= (2),

that is, provided X=l or X= /3/a. Hence u^=A and Uji.=B {^la)" are both

solutions of (1) ; and it is further obvious that u^=A + B{piaY is a solution

of (1).

We have now the means of solving our problem, for it is clear from (1)

that, if we knew two particular values of u^ , say Mq and u-y , then all other

• First proposed by Huyghens in a particular case; and solved by

James Bernoulli. See Todhunter, Hist. Prob., p. Gl.
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values could be calculated by the recurrence formula (1) itself. The solution

Mj.=4+jB (/3/a)*, containing two undetermined constants A and J5, is

therefore sufficiently general for our purpose *. We may in fact determine

A and B most simply by remarking that when A has none of the counters his

chance is 0, and when he has all the counters his chance is 1. We thus have

^+i? = 0, ^ + jB(|3/a)P=l,

whence ^ = aP/(aP-/3P), B--aPl{aP- ^p).

We therefore have
u^= aP-'= (a* - /3^)/(a»' - i3»)

;

and, in like manner,

The chances at the beginning of the game are given by

M^=a«(a'»-^)/(aP-|8P),

t7„=/3™ (a» - j8™)/(aP - ^»^).

Cor. 1. Ifa=p, then (see chap, xxv., § 12)

The odds on A in this particular case are m to n.

It might be supposed that when the skill of the players is unequal this

could be compensated by a disparity of counters. There is, however, a

limit, as the following proposition will show :

—

Cor. 2. The utmost disparity of counters cannot reduce the odds in A's

favour to less than a-j8 to )3.

For, if we give A 1 counter, and B n counters, the odds in ^'s favour are

a"(a-/3)//3(a™-/3") : 1; that is, (a-;8)/i3 {1- (^/a)"} : 1. Now, if o>|8, this

can be diminished by increasing n; but, since L (^/a)"= 0, it cannot become

less than (a - )3)/(3 : 1, that is, a - j3 : /3.

Hence we see that, if A be twice as skilful as B{a=2^), we cannot by

any disparity of counters (so long as we give him any at all) make the odds

in his favour less than even.

Example 2. A pack of n different cards is laid face downwards. A
person names a card ; and that card and all above it are removed and shown
to him. He then names another ; and so on, until none are left. Required

the chance that during the operation he names the top card once at least t.

Let M„ be the chance of succeeding when there are n cards ; so that u,j_i

is the chance of succeeding when there are n-1; and so on. At the first

trial the player may name the 1st, 2nd, 3rd, . . . , or the nth card, the

chance of each of these events being 1/n. Now his chances of ultimately

succeeding in the n cases just mentioned are 1, m„_2, «„_3, . . . , u^,

respectively. Hence

M„=l/n + M„_2/n+ w„_3/n+ . . . +ujn+ ujn.

We have therefore

?lM„=l + ttl+W2+ . . . +M„-2 (!)•

* This piece of reasoning may be replaced by the considerations of

chap. XXXI., § 8.

+ Reprint of Problems from the Ed. Times, vol. xlii., p. 69.
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From (1) we deduce

(n-l)«»-i = l + Mi + W2+- • • + w»-3 (2).

From (1) and (2)

««»-(»-l)"n-l= W»-2.
that IS,

n («« - ««-i) = - («„-i - w„-o) (3).
Hence

(n - 1) (m„_i - M„_2)= - (m„_2 - M„_3),

{n - 2) («„_2 - W„_3) = - (tt„_3 - «„_,),

3(»3-M2)=-("2-Wl)-

Hence, multiplying together the last n-2 equations, we deduce

inl (u„ - w„_i) = ( - !)»-» (m3 - «,).

Since «! = !, Mj= J, this gives

«»-«»-i=(-l)"-V«I (4).
Hence, again,

«.-i-"»-2=(-l)»-7(«-l)!.

t/2-Mi = (-1)1/2!,

Ml -0=1.

From the last n equations we derive, by addition,

«„= 1 - 1/2! + 1/3! -... + (- 1)»-Vk1 (5).

Introducing the sub-factorial notation of chap, xxiii., § 18, we may write

the result obtained in (5) in the form w„=l-ni/n!.

From Whitworth's Table* we see that the chance when n= 8 is -632119.

When n=co the chance is 1 - l/e= -632121 ; so that the chance does not

diminish greatly after the number of cards reaches 8.

EVALUATION OF PROBABILITIES WHERE FACTORIALS OF
LARGE NUMBERS ARE INVOLVED.

§ 12.] In many cases, as has been seen, the calculation of

probabilities depends on the evaluation of factorial functions.

When the numbers involved are large, this evaluation, if pursued

directly, would lead to calculations of enormous length t, and the

greater part of this labour would be utterly wasted, since all

that is required is usually the first few significant figures of the

probability. The difficulty which thus arises is evaded by the

use of Stirling's Theorem regarding the approximate value of x^

• Choice and Chance, chap. rv.

t In some cases the process of chap, xxxv., % 11, Examples 2 and 3 is

useful.
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when X is large. In its modern form this theorem may be

stated thus

—

(see chap, xxx., § 17).

From this it appears that, if iz; be a large number, x\ may-

be replaced by ^{^t^cd) afe''', the error thereby committed being

of the order 1/12^h of the value of x\.

As an example of the use of Stirling's Theorem, let us consider the follow-

ing problem :—A pack of 4n cards consists of 4 suits, each consisting of n

cards. The pack is shuffled and dealt out to four players; required the

chance that the whole of a particular suit falls to one particular player. The

chance in question is easily found to be given by

p= (3n)Inl/(4w)I.

Hence, by Stirling's Theorem, we have

_V(27r3n) (3n)8"e-»»J(2im)n»e-"^~
V(27r4w)(4n)4"e-4«

'

the error being comparable with 1/llwth oip. Hence, approximately,

2)= V(3tW2)(27/25G)".

Example. Let 4ra= 52, w=13, then

23= ,y(3 X 3-1416 X 13/2)
(27/256)i3.

This can be readily evaluated by means of a table of logarithms. We
find

^ = 156/101*.

The event in question is therefore not one that would occur often in the

experience of one individual.

Exercises XXXIX.

(1.) A starts at half-past one to walk up Princes Street; what is the

probability that he meet B, who may have started to walk down any time

between one and two o'clock ? Given that it takes A 12 minutes to walk up,

and B 10 minutes to walk down.

(2.) A bag contains 3 white, 4 red, and 5 black balls. Three balls are

drawn ; required the probability—1st, that all three colours ; 2nd, that only

two colours ; 3rd, that only one colour, may be represented.

(3.) A bag contains m white and n black balls. One is drawn and then a

second ; what is the chance of drawing at least one white—1st, when the first

ball is replaced; 2nd, when it is not replaced?

(4.) If n persons meet by chance, what is the probability that they all

have the same birthday, supposing every fourth year to be a leap year ?

(5.) If a queen and a knight be placed at random on a chess-board, what

is the chance that one of the two may be able to take the other ?
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(6.) Three dice are thrown ; show that the cast is most likely to be 10 or

11, the probability of each being ^.

(7.) There are three bags, the first of which contains 1, 2, 1 counters,

marked 1, 2, 3 respectively ; the second 1, 4, 6, 4, 1, marked 1, 2, 3, 4, 6 re-

spectively ; the third 1, 6, 15, 20, marked 1, 2, 3, 4 respectively. A counter

is drawn from each bag ; what is the probability of drawing 6 exactly, and of

drawing some number not exceeding 6 ?

(8.) Six men are bracketed in an examination, the extreme difference of

their marks being 6. Find the chance that their marks are all different.

(9.) From 2n tickets marked 0, 1, 2, . . ., (2;i- 1), 2 are drawn; find the

probability that the sum of the numbers is 2n.

(10. ) A pack of 4 suits of 13 cards each is dealt to 4 players. Find the

chance—1st, that a particular player has no card of a named suit ; 2nd, that

there is one suit of which he has no card. Show that the odds against the

dealer having all the 13 trumps is 158,753,389,899 to 1,

(11.) If I set down any r-permutation of n letters, what is the chance that

two assigned letters be adjacent?

(12.) There are 3 tickets in a bag, marked 1, 2, 3. A ticket is drawn

and replaced four times in succession ; show that it is 41 to 40 that the sum
of the numbers drawn is even.

(13.) What is the most likely throw with n dice, when n > 6 ?

(14.) Out of a pack of n cards a card is drawn and replaced^ The opera-

tion is repeated until a card has been drawn twice. On an average how many
drawings will there be ?

(15.) Ten different numbers, each >100, are selected at random and
multiplied together; find the chance that the product is divisible by 2, 3,

4, 5, 6, 7, 8, 9, 10 respectively.

(16.) A undertakes to throw at least one six in a single throw with six

dice; B in the same way to throw at least two sixes with twelve dice; and C
to throw at least three sixes with eighteen dice. Which has the best chance

of succeeding? (Solved by Newton; see Pepys' Diarij and Correspondence,

ed. by Mynors Bright, vol. vi., p. 179.)

(17.) A pitcher is to be taken to the well every day for 4 years. If the

odds be 1000 : 1 against its being broken on any particular day, show that the

chance of its ultimately surviving is rather less than J.

(18.) Five men toss a coin in order till one wins by tossing head ; calculate

their respective chances of winning.

(19. ) A and B, of equal skill, agree to play till one is 5 games ahead.

Calculate their respective chances of winning at any stage, supposing that

the game cannot be drawn. (Pascal and Fermat.)

(20.) What are the odds against throwing 7 twice at least in 3 throws

with 2 dice?

(21.) Show that the chance of throwing doublets with 2 dice, 1 of which

is loaded and the other true, is the same as if both were true.
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(22.) A and B throw for a stake; A's die is marked 10, 13, 16, 20, 21, 25,

and B'3 5, 10, 15, 20, 25, 30. The highest throw is to win and equal throws

to go for nothing ; show that A'b chance of winning is 17/33.

(23.) A pack of 2n cards, n red, n black, is divided at random into 2 equal

parts and a card is drawn from each ; find the chance that the 2 drawn are

of the same colour, and compare with the chance of drawing 2 of the same
colour from the undivided pack.

(24.) 4m cards, numbered in 4 sets of m, are distributed into m stacks of

4 each, face up ; find the chance that in no stack is a higher one of any set

above one with a lower number in the same set.

(25.) Out of m men in a ring 3 are selected at random ; show that the

chance that no 2 of them are neighbours is

(m-4)(m-5)/(m-l)(m-2).

(26.) If m things be given to a men and b women, prove that the chance
that the number received by the group of men is odd is

{4(6 + a)'"-|(6-o)™}/(6 + a)"'.

(Math. Trip., 1881.)

(27.) A and B each take 12 counters and play with 3 dice on this condi-

tion, that if 11 is thrown A gives a counter to B, and if 14 is thrown B gives

a counter to A ; and he wins the game who first obtains all the counters.

Show that ^'s chance is to B'a as

244,140,625 : 282,429,536,481.

(Huyghens. See Todh., Hist. Prob., p. 25.)

(28.) A and B play with 2 dice ; if 7 is thrown A wins, if 10 B wins,

if any other number the game is drawn. Show that A's chance of winning

is to B's as 13 : 11. (Huyghens. See Todh., Hist. Prob., p. 23.)

(29.) In a game of mingled chance and skill, which cannot be drawn, the

odds are 3 to 1 that any game is decided by skill and not by luck. If A
beats B 2 games out of 3, show that the odds are 3 to 1 that he is the better

player. If B beats C 2 games out of 3, show that the chance of .4's winning

3 games running from C is 103/352.

(30.) There are m posts in a straight line at equal distances of a yard

apart. A man starts from any one and walks to any other; prove that the

average distance which he will travel after doing this at random a great

many times is ^{m + 1) yards.

(31.) The chance of throwing / named faces in n casts with a, p + 1-faced

die is

j(p+ l)n_Zpn+/(/_j±)(p_l)n_ . . .| ^(p +
l)n.

(Demoivre, Doctrine of Chances.

)

(32.) If n cards be thrown into a bag and drawn out successively, the

chance that one card at least is drawn in the order that its number indicates

is

1-1/21 + 1/3!- . . . (-l)»-V/i!.

(This is known as the Treize Problem. It was originally solved by

Montmort and Bernoulli.)
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(33.) A and B play a game in which their respective chances of winning

are a and /3. They start with a given number of counters p divided between

them ; each gives up one to the other when he loses ; and they play till one

is mined. Show that inequality of counters can be made to compensate for

ineriuality of skill, provided a/|3 is less than the positive root of the equation

xP - 2xP-^ + 1 = 0. It phe large, show that, to a second approximation, this

root is 2 - 2^- 1^.

MATHEMATICAL MEASURE OF THE VALUE OF AN EXPECTATION.

§ 13.] If a man were asked what he would pay for the

privilege of tossing a halfpenny once and no more, with the

understanding that he is to receive £50 if the coin turn up head,

and nothing if it turn up tail, he might give various estimates,

according as his nature were more or less sanguine, of what is

sometimes called the value of his expectation of the sum of £50.

It is obvious, however, that in the case where only one trial

is to be allowed the expectation has in reality no definite value

whatever—the player may get £50 or he may get nothing
;

and no more can be said.

If, however, the player be allowed to repeat the game a large

number of times on condition of paying the same sum each time

for his privilege, then it will be seen that £25 is an equitable

payment to request from the player; for it is assumed that

the game is to be so conducted that, in the long run, the coin

will turn up heads and tails equally often ; that is to say, that

in a very large number of games the player will win about as

often as he loses. With the above understanding, we may speak

of £25 as the value of the player's expectation of £50 ; and it

will be observed that the value of the expectation is the sum
expected multiplied by the probability of getting it.

This idea of the value of an expectation may be more fully

illustrated by the case of a lottery. Let us suppose that there

are prizes of the value of £a, £b, £c, . . . , the respective prob-

abilities of obtaining which by means of a single ticket are

p, q, r, . . . If the lottery were held a large number iV^ of

times, the holder of a single ticket would get £a on pN
c. II. 38
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occasions, £h on qN occasions, £c on rN occasions, . . . Hence

the holder of a single ticket in each of the N lotteries would get

£,{pNa + qNb + rNc + ...). If, therefore, he is to pay the same

price £t for his ticket each time, we ought to have, for equity,

Nt =pNa + qNb + rNc + . . .

,

that is,

t = pa + qh + rc+ . . . .

Hence the price of his ticket is made up of parts corresponding

to the various prizes, namely, pa, qh, re, . . . These parts are

called the values of the expectations of the respective prizes ; and

we have the rule that the value of the expectation of a sum of

money is that sum multiplied hy the chance of getting it.

The student must, however, remember the understanding

upon which this definition has been based. It would have no

meaning if the lottery were to be held once for all.

Example. A player throws a six-faced die, and is to receive 20s. if he

throws ace the first throw ; half that sum if he throws ace the second throw;

quarter that sum if he throws ace the third throw ; and so on. Eequired the

value of his expectation.

The player may get 20, 20/2, 20/2^, 20/2^, . . . shillings. His chances of

getting these sums are 1/6, 5/6^, 5^/6^, 5^/6-*, . . . Hence the respective

values of the corresponding parts of his expectation are 20/6, 20 . 5/6^ . 2,

20 . 52/6^. 22, 20 . 5'/6*. 2"S . . . shillings. The whole value of his expectation

is therefore

¥{'4HHyKAy- • --} 47(-A)=f

—

that is, 5s. S^d.

§ 14.] It is important to notice that the rule which directs

us to add the component parts of an expectation applies whether

the separate contingencies be mutually exclusive or not. Thus,

if pi, p^, ps, . . . be the whole probabilities of obtaining the

separate sums ai, a^, «3, . . ., then the value of the expectation

is piai + p-jjiz + Pad's + • • •> ^ven if the expectant may get more

than one of the sums in question. Observe, however, that pi must

be the whole probability of getting a^, that is, the probability of

getting the sum ai irrespective of getting or failing to get the

other sums.

If the expectant may get any number of the sums ai, a^,
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. . ., an,VTe might calculate his expectation by dividing it into

the following mutually exclusive contingencies:—ai, a^, . . . , Un',

Oi + aa, tti + tfs, &c. ; cti + a^ + ch, &c. ; . . . ; «! + aa + • • . + ««•

Hence the value of his expectation is

2a,pi (1 -^a) (1 -ps) ... (1 -pn)
+ 2 (ai + a2)piP2 (1 -ps) ... (1 -pn)

+ 2 («! + aa + o.^PiV^V^ (1 -^4) ... (1 -i?n)

+ («! + tta + . • . + «n)i'lP2i?3 . • . i?».

By the general principle above enunciated the value in

question is also "Za^px. The comparison of the values gives a

curious algebraic identity, which the student may verify either

in general or in particular cases.

Example. A man may get one or other or both of the sums a and 6.

The chance of getting a is y, and of getting h is q. Eequired the value of

his expectation.

He may get a alone, or 6 alone, or a + & ; and the respective chances are

p (1 - g), q (1 -p), pg. Hence the value of his expectation is op (1 - q)

+ 6g(l-2)) + (a+ 6)pg, which reduces to ap + bq, as it ought to do by the

general principle.

N.B.—If the man were to get one or other, but not both of the sums a

and 6, and his respective chances were p and q, the value of his expectation

would still be ap + bq; hutp and g would no longer have the same meanings

as in last case.

LIFE CONTINGENCIES.

§ 15.] The best example of the mathematical theory of the

value of expectations is to be found in the valuation of benefits

which are contingent upon the duration or termination of one or

more human lives. The data required for such calculations are

mainly of two kinds—1st, knowledge, or forecast as accurate as

may be, of the interest likely to be yielded by investment of

capital on good and easily convertible security ; 2nd, statistics

regarding the average duration of human life, usually embodied

in what are called Mortality Tables.

The table printed below illustrates the arrangement of

mortality statistics most commonly used in the calculation of

life contingencies :

—

38—2
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The IP' Table of the Institute of Jctuarics.

Age. Number Decre- Age. Number Decre- Age. Number Decre-
Living. ment. Living. ment, Living. ment.

X h dx X Ix d^ X h dx

10 100,000 490 40 82,284 848 70 38,124 2371

11 99,510 397 41 81,436 854 71 35,753 2433

12 99,113 329 42 80,582 865 72 33,320 2497

13 98,784 288 43 79,717 887 73 30,823 2554

14 98,496 272 44 78,830 911 74 28,269 2578

15 98,224 282 45 77,919 950 75 25,691 2527

16 97,942 318 46 76,969 996 76 23,164 2464

17 97,624 379 47 75,973 1041 77 20,700 2374

18 97,245 466 48 74,932 1082 78 18,326 2258

19 96,779 556 49 73,850 1124 79 16,068 2138

20 96,223 609 50 72,726 1160 80 13,930 2015

21 95,614 643 51 71,566 1193 81 11,915 1883

22 94,971 650 52 70,373 1235 82 10,032 1719

23 94,321 638 53 69,138 1286 83 8,313 1545

24 93,683 622 54 67,852 1339 84 6,768 1346

25 93,061 617 55 66,513 1399 85 5,422 1138

26 92,444 618 56 65,114 1462 86 4,284 941

27 91,826 634 57 63,652 1527 87 3,343 773

28 91,192 654 58 02,125 1592 88 2,570 615

29 90,538 673 59 60,633 1667 89 1,955 495

30 89,865 694 60 58,866 1747 90 1,460 408

31 89,171 706 61 57,119 1830 91 1,052 329

32 88,465 717 62 55,289 1915 92 723 254

33 87,748 727 63 53,374 2001 93 469 195

34 87,021 740 64 51,373 2076 94 274 139

35 86,281 757 65 49,297 2141 95 135 86

36 85,524 779 66 47,156 2196 96 49 40

37 84,745 802 67 44,960 2243 97 9 9

38 83,943 821 68 42,717 2274 98

39 83,122 838 69 40,443 2319

In the first column are entered the ages 10, 11, 12, . . .

Opposite 10 is entered an arbitrary number 100,000 of children

that reach their tenth birthday; opposite 11 the number of these

that reach their eleventh birthday ; opposite 12 the number that

reach their twelfth birthday; and so on. We shall denote these

numbers by ko, hi, liz, • • - In a t^^ird column are entered the

differences, or "decrements," of the numbers in the second

column ; these we shall denote by c?io, dn, c?i2, • • • It is obvious

that d^ gives the number out of the 100,000 that die between

their wth. and x + 1th birthdays. It is impossible here to discuss

the methods employed in constructing a table of mortality, or
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to indicate the limits of its use ; we merely remark that in

applying it in any calculation the assumption made is that the

lives dealt with will fall according to the law indicated by the

numbers in the table. This law, which we may call the Law of

Mortality, is of course only imperfectly indicated by the table

itself ; for although we are told that dj. die between the ages of

X and ;» + 1, we are not told how these deaths are distributed

throughout the intervening year. For rough purposes it is

sufficient to assume that the distribution of deaths throughout

each year is uniform ; although the variation of the decrements

from one part of the table to another shows that uniform

decrease* is by no means the general law of mortality.

§ 16.] By means of a Mortality Table a great many interesting

problems regarding the duration of life may be solved which do

not involve the consideration of money. The following are

examples.

Example 1. By the probable duration n of the life of a man of m years

of age is meant the number of years which he has an even chance of adding

to his life. To find this number.

By hypothesis we have imW»n=l/2- Hence i^^^=i^/2. IJ2 will in

general lie between two numbers in the table, say Ip and Zp+, . Hence tn-^n

must lie between jp and p-\-\. We can get a closer approximation by the

rule of proportional parts (see chap. xxi.
, § 13).

Example 2. To find the "mean duration" or " expectancy of life " for a

man of m years of age.

By this is meant the average J'T (arithmetical mean) of the number of

additional years of life enjoyed by all men of m years of age.

Let us take as specimen lives the /^ men of the table who pass their mth
birthday ; suppose them all living at a particular epoch ; and trace their

lives till they all die.

In the first year l^- l^^i die. If wo suppose these deaths to be equally

distributed through the year, as many of the l^ - Z^+j will live any assigned

amount over half a year as will live by the same amount under half a year.

Hence the l^ - l^+i lives that have failed will contribute ^ (Z^ - Z^+j) years to

the united life of the l^ specimen lives. Again, each of the Z„^i who live

through the year will contribute one year to the united life. Hence the

whole contribution to the united life during the first year is ^(Zto-Z^^j)

+ Wi= i('n»+ Wi)- Similarly, the contribution during the second year is

h (Wi + ^m+i) ; *°^ so o°- Hence the united life is

H^m+Wl)+MWl+ W2)+ • • • =i^m+ Wl+'m+s+ • • • (1),

* Demoivre's hypothesis.
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the series continuing so long as the numbers in the table have any significant

value.

If we now divide the united life by the number of original lives, we find

for the mean duration

^=H(Wl+W2+ • • )llm (2).

Owing to our assumption regarding the uniform distribution of deaths over

the intervals between the tabular epochs, this expression is of course merely

an approximation.

Example 3. A and B, whose ages are a and b respectively, are both

living at a particular epoch ; find the chance that A survive B.

The compound event whose chance is required may be divided into

mutually exclusive contingencies as follows:

—

1st. B may die in the first year, and A survive

;

2nd. „ second ,, ;

and so on.

The 1st contingency may be again divided into two :

—

(a) A and B may both die within the year, B dying first

;

(j3) B may die within the year, and A live beyond the year.

The chance that A and B both die within the first year is (Z„ - Z^^j)

ih ~ ^b+i) I^ah- Since the deaths are equally distributed through the year, if

A and B both die during the year, one is as likely to survive as the other

;

hence the chance of A surviving B on the present hypothesis is J. The
chance of the contingency (a) is therefore (la~^a+i){h~^b+i)l^^ah' ^^^
chance of (/3) is obviously la+i{h~h+i)l^ah'

Hence the whole chance of the 1st contingency, being the sum of the

chances of (a) and (/3), is (la+ la+iWb-^}H-i)l^hh-
In like manner, we can show that the chance of the 2nd contingency is

(h+l+ ^af2) (^6+1 - h+i)l^lah •

Hence the whole chance that A survive B is given by

Sa,h={{h+h+l){h-lh+l) + {^<^l + la+2Wh+l-lh^^}+- ' •}mah (!)•

The reader will have no difficulty in seeing that (1) may be written in the

following form, which is more convenient for arithmetical computation :

—

r=oo

^a,h=\+{ 2 W (^6+r-] - 'fc+r+i)

-

iJb+i}l^lJb (2),
r=l

where 00 stands for the greatest age in the table for which a significant value

of l^ is given.

If we denote by S^^^ the chance that B survive A, we have, of course,

If a=b, it will be found that (2) gives fif„^j,= l/2 ; as it ought to do.

§ 17.] Let US now consider the following money problem in

life contingencies :

—

What should an Insurance Office ask for

undertaking to pay an annuity ofSA to a man ofm years of age.



§ 17 ANNUITY PROBLEMS—AVERAGE ACCOUNTING 599

the first payment to he made w + 1 years hence*, the second w + 2

years hence ; and so on, for t years, if the annuitant live so long.

We suppose that the office makes no charges for the use of

the shareholders' capital, for management, and for "margin" to

cover the uncertainty of the data of even the best tables of

mortality. Allowances on this head are not matters of pure

calculation, and differ in different offices, as is well known. We
suppose also that the rate of interest on the invested funds of

tlie office is £i per £1, so that the present value, v, of £1 due

one year hence is £1/(1 + i). The solution of the problem is then

a mere matter of average accounting.

Let ni««m denote the present value of the annuity; and let

us suppose that the office sells an annuity of the kind in

question t to every one of l^ men of m years of age supposed to

be all living at the present date.

The office receives at once n|««mC pounds. On the other

hand, it will be called upon to pay

n+ \, w + 2, . . .

,

n + t

years hence respectively. Reducing all these sums to present

value, and balancing outgoings and incomings on account of the

Im lives, we have, by chap, xxii., § 3,

n\t(^m''m— '^ tni+n+l + "^ ^ni+n+2 + . • . + "W t„(+„+{.

Hence

n\tO'm — \V^^ 'm+n+1 + '*^" 4»+n+2 + • • • + 'W""^ lm+n+t)/lm>

- -y" 2 ;„+„+,. 'yV/,^ (1).

The same result might be arrived at by using the theory of

expectation.

• This is what is meant by saying that the annuity begins to run n years

hence.

t The annuity need not necessarily be sold to the person ("nominee")

on whose life it is to depend. The life of the nominee merely concerns the

definition of the "status" of the annuity, that is, the conditions under

which it is to last.
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The annuity whose value we have just calculated would be

technically described as a deferred temporary annuity.

If the annuity be an immediate temporary annuity, that is,

if it commence to run at once, and continue for t years provided

the nominee live so long, we must put n-^. Then, using the

actuarial notation, we have

r=l
dm — 2 ^m+r^ Ihn (2).

If the annuity be complete, that is, if it is to run during the

whole life of the nominee, the summation must be continued as

long as the terms of the series have any significant value ; this

we may indicate by putting t= <x>. Then, according as the

annuity is or is not deferred, we have

„
I

a,„ = -y" 2 In+n+r 'O^jlm (3).
r=l

r=oo

0'm= 2 Im+rV^jlm (4;).
r=l

§ 18.] The function am, which gives the value of an im-

mediate complete annuity on a life of m years, is of fundamental

importance in the calculation of contingencies which depend on

a single life. Its values have been deduced from various tables

of mortality, and tabulated. By means of such tables we can

readily solve a variety of problems. Thus, for example, nia^,

\tdm, nit^m cau all bc found from the annuity tables; for we

have

n|<^m~'P 'vi+ndm+n/'m (5)

It^m — Oim ~ '^ Li+t Cl'vi+t/l'm. (6)

n\tdm — V^ im+n dm+n ~ '^ l'm+n+tdm+n+t)l'm \J)

as the reader may easily verify by means of formulas (1) to (4).

These results may also be readily established a priori by

means of the theory of expectation.

§ 19.] Let us next find ak,m ths present value of an im-

mediate complete annuity of £1 on tlie joint lives of two nominees

ofk and m years of age respectively.

Jhe understanding here is that the annuity is to be paid sp
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long as both nominees are living and to cease when either of

them dies.

The present values of the expectations of the 1st, 2nd, 3rd,

. . . instalments are

Hence we have

0'k,m= (vlk+llm+l + "^ 4+2 im+2 + • • -j/'kimi
r=oo

= 2 V^lk+rL+r/Um (l).
r=l

Just as in § 18, we obviously have

n\(^k,m~'^ (fk+n , m+n 'k+n 'm+n/'k I'm >

\t(^k,m — (^k,m~'^ <^fc+«,m+t 4+t 'm+trklm 5

n\t^k,m — {'^ ^k+n , m+n 'k+n 'm+n

— V dk+n+t , m+n+t ''k+n+t ^m+n+t)/ik Im j

and it will now be obvious that all these formulae can be easily-

extended to the case of an annuity on the joint lives of any

number of nominees.

Tables for ajs,,^ have been calculated; and, by combining

them with tables for «,„, a large number of problems can be solved.

Example 1. To find the present value of an immediate annuity on the

last survivor of two lives m and n, usually denoted by a,-^.

Let Pr, q^ be the probabUities that the nominees are living r years after

the present date ; then the probability that one at least is living r years

hereafter is Pr + 'lr~Pr1r-

Hence

a;;:;;,= Sy'' ( p^ + ?r - Pr^r)y
1

= -Z.v'-pr+ SVg^ - 2«'>,.(?,

,

This is also obvious from the consideration that, if we paid an annuity

on each of the lives, we should pay £1 too much for every year that both
lives were in existence.

Example 2. Find the present value a^, „, „ of an annuity to be paid so

long as any one of three nominees shall be alive, the respective ages being

fe, m, n.

J£ Pg, Qg, Tg be the chances that the respective nominees be alive after s

years, then
at:^„= 2j)H1 - (1 -P,) (1 -?,) (1 -'•,)}

.

= 2i;» (i)g+ g,+ r,- (Z/g - rg pg - i),^, + jj,g,r,),

= ak+ '^m+ '^n- <^m,n- <^n,k - <^k,m+ ^k.tmn-

The numerical solution of this problem would require a table of annuities

pn three joint lives, or some other means of calculating a^^
,„^ ^^

.
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§ 20.] A contract of life insurance is of the following

nature :—A man A agrees to make certain payments to an

insurance office, on condition that the office pay at some stated

time after his death a certain sum to his heirs. As regards A,

he enters into the contract knowing that he may pay less or

more than the value of what his heirs ultimately receive accord-

ing as he lives less or more than the average of human life ; his

advantage is that he makes the provision for his heirs a certainty,

so far as his life is concerned, instead of a contingency. As

regards the office, it is their business to see that the charge made

for J.'s insurance is such that they shall not ultimately lose if

they enter into a large number of contracts of the kind made

with A ; but, on the contrary, earn a certain percentage to cover

expenses of management, interest on shareholders' capital, &c.

The usual form of problem is as follows :

—

What annual premium Pm must a man ofm years of age pay

{in advance) during all the years of his life, on condition that the

office shallpay the sum of £1 to his heirs at the end of the year in

which he dies?

Pm is to be the "net premium," that is, we suppose no

allowance made for profit, &c., to the office. Suppose that the

office insures L lives of m years, and let us trace the incomings

and outgoings on account of these lives alone. The office

receives in premiums XP^L, £Pmlm+i, ... at the beginning

of the 1st, 2nd, . . . years respectively. It pays out on lives

failed £{L-lm+i), £(^+1-^2), ... at the end of the 1st,

2nd, . . . years respectively. Hence, to balance the account,

we must have, when all these sums are reduced to present

value,

Pm{lm + lm+if^ + L+2V^+ • • •)

= {L - L+i) V + {Im+i - L+2) V" + {L+2 - lm+3) V* + . . . (1),

the summation-to be continued as long as the table gives signi-

ficant values of 4-

Since dm = lm- L+i , we deduce from (1)

"* ~ L+ Im+lV + L+2V^ + . . .
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Dividing by i«, we deduce from (1)

= V + v{lm+iV + lrn+2V'+ . . .)/lm

Hence

Fm = v-aJ{l+am) (3).

The last equation shows that the premium for a given life

can be deduced from the present value of an immediate com-

plete annuity on the same life. In other words, life insurance

premiums can be calculated by means of a table of life annuities.

§ 21.] It is not necessary to enter further here into the

details of actuarial calculations ; but the mathematical student

will find it useful to take a glance at two methods which are in

use for calculating annuities and life insurances. They are good

specimens of methods for dealing with a mass of statistical

information.

Recurrence MetJiod for Calculating Life Annuities.

The reader will have no difficulty in showing, by means of

the formulae of § 17, that

am = v{l+ a;„+i) lm+\llm. (l).

From this it follows that we can calculate the present value

of an annuity on a life of m years from the present value on a life

of w + 1 years. We might therefore begin at the bottom of the

table of mortality, calculate backwards step by step, and thus

gradually construct a life annuity table, without using the com-

plicated formula (4) of § 17 for each step.

A similar process could be employed to calculate a table for

two joint lives differing by a given amount.

Columnar or Commutation Method.

Let us construct a table as follows :

—

In the 1st column tabulate 4

;

„ 2nd „ d^;

3rd „ v"4 = D^, say
;

„ 4th „ '^^^dx=C^,sa.Y.
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Next form the 5th column by adding the numbers in the

3rd column from the bottom upwards. In other words, tabulate

in the 5th column the values of

Nx = Dx+i + Dx+1 + Dx+z + . . . .

In like manner, in the 6th column tabulate

Mx = Cx+ Cx+i + Cx+2 + . . .

All this can be done systematically, the main part of the

labour being the multiplications in calculating Bx and C4,.

From a table of this kind we can calculate annuities and

life premiums with great ease. Referring to the formulae above,

the reader will see that we have

a,„ - J^JDm (2) ;

\tam = {Nrr, - Nm+t)/Dm (4) ;

Frn^MJNm-, (6).

§ 22.] In the foregoing chapter the object has been to

illustrate as many as possible of the elementary mathematical

methods that have been used in the Calculus of Probabilities

;

and at the same time to indicate practical applications ofthe theory.

All matter of debatable character or of doubtful utility has

been excluded. Under this head fall, in our opinion, the

theory of a priori or inverse probability, and the applications to

the theory of evidence. The very meaning of some of the pro-

positions usually stated in parts of these theories seems to us to

be doubtful. Notwithstanding the weighty support of Laplace,

Poisson, De Morgan, and others, we think that many of the

criticisms of Mr Venn on this part of the doctrine of chances

are unanswerable. The mildest judgment we could pronounce

would be the following words of De Morgan himself, who seems,

after all, to have "doubted":—"My own impression, derived

from this [a point in the theory of errors] and many other cir-

cumstances connected with the analysis of probabilities, is, that

mathematical results have outrun their interpretation*."

* "An Essay on Probabilities and on their Application to Life Contin-

gencies and Insurance Ollices " (De Morgan), Cabinet Cyclopcsdia, App.,

p. xxvi.
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The reader who wishes for further information should consult

the elementary works of De Morgan (just quoted) and of Whit-

worth {Choice and Chance) ; also the following, of a more advanced

character :—Laurent, Traite du Calcul des Prohabilites (Paris,

1873) ; Meyer, Vorlesungen iiber Wahrscheinlichkeitsrechnung

(Leipzig, 1879); Articles, "Annuities," "Insurance," "Proha-

bilities," Encyclopaedia Britannica, 9th edition.

The classical works on the subject are Montmort's Essai

d'Analyse sur les Jeux de Hazards, 1708, 1714 ; James Bernoulli's

Ai's Conjectandi, 1713 ; Demoivre's Doctrine of Chances, 1718,

1738, 1756 ; Laplace's Theorie Analytique des Prohabilites, 1812,

1820 ; and Todhunter's History of the Theory of Probability,

1865. The work last mentioned is a mine of information on all

parts of the subject ; a perusal of the preface alone will give the

reader a better idea of the historical development of the subject

than any note that could be inserted here. Suffice it to say that

few branches of mathematics have engaged the attention of so

many distinguished cultivators, and few have been so fruitful of

novel analytical processes, as the theory of probability.

Exercises XL.

(1.) A bag contains 4 shillings and 4 sovereigns. Three coins are

drawn ; find the value of the expectation.

(2.) A bag contains 3 sovereigns and 9 shillings. A man has the option,

1st, of drawing 2 coins at once, or, 2nd, of drawing first one coin and after-

wards another, provided the first be a shilling. Which had he better do?

(3.) One bag contains 10 sovereigns, another 10 shillings. One is taken

out of each and placed in the other. This is done twice ; find the probable

value of the contents of each bag thereafter.

(4.) A player throws n coins and takes all that turn up head ; aU that

do not turn up head he throws up again, and takes all the heads as before

;

and so on r times. Find the value of his expectation ; and the chance that

all will have turned up head in r throws at most. (St John's Coll., Camb.,

1870.)

(5.) Two men throw for a guinea, equal throws to divide the stake.

A uses an ordinary die, but B, when his turn comes, uses a die marked

2, 3, 4, 5, 6, 6 ; show that B thereby increases the value of his expectation

by 5/18ths.

(G.) The Jeu des Noyaux was played with 8 discs, black on one side and
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white on the other. A stake S was named. The discs were tossed up by the

player; if the number of blacks turned up was odd the player won S, if all

were blacks or all whites he won 2S, otherwise he lost S to his opponent.

Show that the expectations of the player and opponent are 1315'/256 and

125S/256 respectively. (Montmort. See Todh., Hist. Prob., p. 95.)

(7.) A promises to give B a shilling if he throws 6 at the first throw

with 2 dice, 2 shillings if he throws 6 at the second throw, and so on, until

a 6 is thrown. Calculate the value of B's expectation.

(8.) A man is allowed one throw with 2 ordinary dice and is to gain a

number of shillings equal to the greater of the two numbers thrown ; what

ought he to pay for each throw ? Generalise the result by supposing that

each die has n faces.

(9.) A bag contains a certain number of balls, some of which are white.

I am to get a shilling for every ball so long as I continue to draw white only

(the balls drawn not being replaced). But an additional ball not white

having been introduced, I claim as a compensation to be allowed to replace

every white ball I draw. Show that this is fair.

(10.) A person throws up a coin ji times ; for every sequence of m (m > n)

heads or vi tails he is to receive 2™ - 1 shillings
;
prove that the value of his

expectation is n(M + 3)/4 shillings.

(11.) A manufacturer has n sewing machines, each requiring one worker,

and each yielding every day it works q times the worker's wages as net profit.

The machines are never all in working order at once ; and it is equally likely

that 1, 2, 3, . . . , or any number of them, are out of repair. The worker's

wages must be paid whether there is a machine for him or not. Prove that

the most profitable number of workers to engage permanently is the integer

next to nqliq + 1) - 4 . (Math. Trip., 1 875.)

(12.) A blackleg bets £5 to £4, £7 to £6, £9 to £5 against horses whose

chances of winning are f , ^, ^ respectively. Calculate the most and the

least that he can win, and the value of his expectation.

(13.) The odds against n horses which start for a race are o : 1 ; a + 1 : 1

;

. . ., a+n-1 :1. Show that it is possible for a bookmaker, by properly

laying bets of different amounts, to make certain to win if n>(a+ l) (e + 1),

and impossible iin<.a(e- 1), where e is the Napierian base.

(14.) If Ap denote the value of an annuity to last during the joint lives

of p persons of the same age, prove that the value of an equal annuity, to

continue so long as there is a survivor out of n persons of that age, may be

found by means of the formula

n(n-l) n(n-l)(«-2) ^n^i-
21

2T
3f

-^8 • • •
— -^n'

(15.) M is a number of married couples, the husbands being m years of

age, the wives n years of age. "What is the number of living pairs, widows,

widowers, and dead pairs after t years ?

Work out the case where M=500, m=40, ra=30.

(16.) If So, 6 have the meaning of § 16, show that

2^o'6'^a,6 - ^h+lh+l^a+U b+1= ('o+ 'o+l) ih - ^b+l)'
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(17.) Find the probability that a man of 80 survive one or other of two

men of 90 and 95 respectively.

(18.) If «j,„,,„, . . . denote the present value of an immediate complete

annuity of £1 on the joint lives of a set of men of I, m, n, . . . years of age

respectively, show that the present value of an immediate annuity of £1
which is to continue so long as there is a survivor out of k men whose ages

are I, m, n, . . . respectively is

(19.) What annual premium must a married couple of ages m and w

respectively pay in order that the survivor of them may enjoy an annuity of

£1 when the other dies?

(20.) Calculate the annual premium to insure a sum to be paid n years

hence, or on the death of the nominee, if he dies within that time.

(21.) Show how to calculate the annual premium for insuring a sum which

diminishes in arithmetical progression as the life of the nominee lengthens.

(22.) An annuity, payable so long as either A (m years of age) or B (n

years of age) survive C (p years of age), is to be divided equally between A
and B so long as both are alive, and is to go to the survivor when one of

them dies. Show that the present values of the interests of A and B are

and «n-i«m,n-«n,P + i«»n,«,P

respectively.

(23.) If the population increase in a geometrical progression whose ratio

is r, show that the proportion of men of n years of age in any large number

of the community taken at random is ('n/»")/2 (^n/^")-





RESULTS OF EXEBCISES.

I.

(1.) 504000. (2.) 1210809600. (3.) 720. (4.) 12. (5.) 6. (8.) 5040;

64864800. (9.) 1235520. (10.) 6188; 3003; 3185. (U.) 408688; 18 ways of

setting together on the front, 10 ways of setting at equal distances all round.

(12.) (19C4 inCi + 1^G^ J2C3 9C1 + 17C4 12^2 gC^ + 16C4 12^1 9C3+ ,5(74 gC^)^P^.

(13.) 10^2 2o<?5 30^10 60^20- (".) 172800. (16.) 267148. (16.) 1814400, if

clock and counter-clock order be not distinguished. (17.) 2(271^^ - 3n + 2)(2n- 2)1.

(18.) 960. (19.) 9C4 ;(73 jP, ; 9C4 ,0^ 4P4 s^s- (20.) 62!/(13!)* ; 39!/(131)3.

(21.) 321/(121)28!. (22.) 64!/(2!)6(81)232!. (23.) 26; 136. (24.) 286; 84.

(26.) (jp + q)llpl 3I ; (p + qryipl {qijl ; a little over six years.

11.

(1.) 448266240x2. (2.) -2093. (3.) 2». 1.3 . . . (2re-l)/n!. (4.)

(-)"+^(2n)!/(n+ r)!(n-r)l. (6.) 22". 1.3. . . (47i- l)/(2«)!. (6.) If n be

even, the middle term is {n!/(Jn)!}x"/^; if n be odd, the two middle terms

are {nl/i(n- l)!i(n+l)l} {2a;("-i)/2 + ia;("+i)/=}. (11.) (2^3 + 3)2"*

+ (2^3-3)2^-1; (2^3 + 3)2^+1 -(2^3-3)2™+!. (16.) ^n{n+l). (16.)
2"-i(2 + n). (27.) r+ 1. (28.) 10. (29.) i(v?+lln). (32.) 190274064.

(33.) 2a7 + 72a«/; + 212a«62 + i2I,a^bc + 35-2a*P + 105I,a*b^c+ 210 ^a*bcd +
1402a363c + 2102a362c2 + 420Sa='62cd!+ 630Sa262c2d. (37.) 23!/(4!)55».

III.

(1.) 944. (2.) 20. (3.) (n + l)(n+ 2)(n+ 3)(7i + 4)(n + 5)/5! if the

separate numbers thrown be attended to ; 5?!+ 1 if the sum of the numbers

thrown be alone attended to. (4.) 231. (6.) p+iC„. (7.) 62. (8.) 15„Cj.

(11.) (2re)!/2»n!. (13.) {N+a + b + c -3)\lalb\c\. (16.) 1 or according as

nisevenorodd; {(1 + ^5)"+^- (1- V5)"+4/2"+V5- (17.) ^^-iCr-m-iGr-i-

(18.) 116280.

V.

(1.) xjy must not lie between 1 and b^ja^. (2.) x must lie between

i(7-V53) and ^ (7 + ^/53). (3.) x between {dc - b^)l(ad - be) and

(d^-ab)l(ad-bc), and y between (ab-c'^)l{ad-bc) and (a'-cd)l{ad-bc),

(16.) Greater. (17.) Less. (39.) 3^/^.

c. II. 39
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VL
(1.) 3ahc, (2.) abclBjS. (4.) d'^jS^-^ is a minimum value if m do

not lie between and 1, otherwise a maximum. (5.) Minimum when
apxP=hqy'i=crz'^. (7.) There is a maximum or minimum when (x + l) log a

= {y + m) log b = {z + n) log c, according as log a log b log c is positive or nega-

tive. (8.) a;= (n?>/ma)'/(™+n), (9.) x=l, a:= 38/15 give maxima; a;= 2, x = 3

minima. (10.) ^abc. (11.) Minimum when x= 7)ic/(m-n), 2/ = nc/(m-n).

(15.) Minimum 2^(a&)/(a + 6).

VII.

(1.) 3,00. (2.) 9/4. (3.) log 13/7. (4.) ^n{n + l). (5.) 0. (6.)

a^-^-p-imfp. (7.) a^-'^mjn. (8.) n^, co , n" according as jj> = <gf. (9.)

{vi^ -mn + v?)l{w?+mn + n'^). (10.) l/2a. (11.) aii-PVPiqlp. (12.) o*.

(13.) 16a/9. (14.) 1. (15.) i?. (16.) -in(n-l)2"-2. (17.) a^+^-P-V* ('"-«)/

n^p{p-q). (18.) (n-l)/2a. (19.) log a. (20.) 1. (21.) 1. (22.) 1.

(23.) 1. (24.) 00. (25.) oo if a;= l + 0, if a;= l -0. (26.) e* (27.)

if 71 be negative, if n be positive or oo according as a< >1. (28.) 1.

(29.) 1. (30.) or 00 according as m> <.n. (31.) oo or according as

axl. (32.) 1. (33.) eK (34.) e\ (35.) ^(a&). (36.) Exp (2^/3).

(37.) 00 or according as \{ar-bj.) is positive or negative. If a^=bf,

a^-i+ ftr-i. the limit is e^'(*-»
~ *- '>''*'

; &c. (38.) 1/e. (39.) 0. (40.) a/6.

(41.) 2. (42.) 1. (43.) 1. (44.) 1. (45.) ^tt. (46.) 0. (47.) COS a.

(48.) 0. (49.) -8. (50.) 1. (51.) i- (52.) 1. (53.) 1. (54.) 0. (65.) 0.

(56.) 1. (57.) logm/logn. (58.) 1. (59.) 1. (60.) 1. (61.) 1. (62.) e-i'"'''"

(63.) e-2"^'/"'. (64.) e2/\ (65.) 2/7r. (74.) See chap. xxx., § 23.

VIII.

(1.) Div. (2.) Div. (3.) Conv. if a; be positive. (4.) Conv. (5.) Div.

(6. ) Div. if mod xi>a; conv. if mod x>a. (7.) Conv. if a; < 4 ; div. if x <t 4.

(8.) Conv. (9.) Div., (a;<l). (10.) Conv. (11.) Div. (12.) Conv. if a>l;

div. ifat»l. (13.) Div. (14.) Div. (16.) Abs. conv. (16.) Div.

IX.

(1.) (-)'-23.1.1.3. . . (2r-5)/2. 4.6.8. . . 2r. (2.) 1 .3 . . . (2r-l)/

2.4 . . . 2r. (3.) 3.7.11 ... (4r-l)/4. 8.12. .. 4r. (4.) 2, 1 .4 . 7 . . .

(3r- 5) 22/3/12. 24.36.48 . . . 12r. (6.) (-)'-U.2 . . . (3r - 4) ai/s-^rl

.

(6.) -1.2.5 . . . (3r-4)ai-373.6.9 . . . 3r. (7.) -(n-l)(2n-l) . . .

{nr-n-l)lr\. (8.) 1.4.7 . . . (3r/2-2)/(r/2)! if r be even; if r be odd.

(9.) (-)™«(n + l) . . . {n + \{r-n)-l)l{\{r-n)}\. (10.) 1 + |(x/a) + g (x/a)"

+ |2(a;/a)3. (11.) The first. (12.) The third. (13.) The fourth and fifth.

(14.) The eighth. (15.) If n=l, the 2nd and 3rd; if n=2, the 2nd; if n<(: 3,

the Ist. (19.) If m= 0, S= a; if m=l, 5= 6; if n>l, S = 0: if n<l(4=0)

the series is divergent. (22.) I - ^^2. (23.) If m <t 1, S= wj (nt - 1| ?"'-'
; if

m= 0, 5= 0.
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X.

(1.) 21/a'-(c-a)(a-6). (2.) 0. (3.) Sl/a'-"'-2/(c-a) (a-Z;). (4.)

2r + l + l/2''+i.
(6.) »-,if r beeven; r-l,if r = 4( + l; r+ l,if r=4t-l. (6.)

nffr9'"-m<?i-m^r-iP2'^^ + mC2.„ir^_22;V-'+ ••• (15-) l(n + l)(n + 2){n + 3).

(19.) 1-1.3... (2n - l)/2"ttl . (20.) 7 . 10 . . . (3m + 1)/3 . G . . . (3n - 8).

XL
(2.) 275/128. (S.) 869699/256. (4.) 48; 0. (6.) 11989305/2048. (6.)

(-)'-{(r-l) + (r + 5)/2'-+='}. (10.) 1-0001005084; 1-0004000805. (11.) 2mx.
(12.) l + 2a;(l-j»)/(l-r). (13.) l + (-)»-ix/2».

XII.

(1.) -367879. (2.) -04165. (6.) {l-x^e'. (6.) 3(e-l). (7.) e + 1.

(8.) lie. (9.) 15e.

XIII.

(4.) 917. (6.) 21og{(a;-l)/(a: + l)}+log{(a; + 2)/(a;-2)}. (6.) log(12e).

(7.) (l + l/x)Iog(H-a;)-l. (8.) i{x-x-^)log {(l + x)l(l-x)} +i. (9.)

When x= l the sum is 18-24 log2. (10.) f. (12.) S {a;3«-2/(3n - 2)

+ x3»-V(3n - 1) - 2x3»/3n}.

XXV.

(1.) ^n(n + l) + -Hr-2)n(w + l)(n-l). (2.) in(n + l) (7i + 4)(n + 5). (3.)

3/4-l/2rt-l/2(n + l). (4.) l/15-l/5(5?i + 3). (6.) 1/12- l/4(2?i + l)(2?i + 3).

(6.) l/18-l/3(n + l)(n + 2)(w + 3). (7.) a/2 + 6/4-a/(«+ 2) - &/2(ra + l)(n + 2).

(8.) l/8-(4n+ 3)/8(2n + l)(2n+ 3). (9.) 7/36-(3rt + 7)/(n + l) (n + 2) (ra + S).

(10.) ll/180-(G?i + ll)/12(2?i + l)(2H + 3)(27H-5). (11.) 3/4 + n-(2w + 3)/

2{n + l){n + 2). (12.) M„=(n+ l)3(n + 3) (n+ 5)/n(« + l) . . . (n + 6); apply

§ 3, Example 4. (13.) sin 6 sec (n + 1) ^ sec 9. (14.) cot (^/2«)/2» - cot 0.

(16.) tan-^na". (16.) tan-il + tau-il/2 - tan-il/n- tan-U/jn+ l). (17.)

(m+ n)!/(7ft + l)(n-l)l. (18.) {l/(m- 1)1 - (n+ l)!/(m + n-l)!}/(TO-2).

(19.) (-)»m-aC„. (21.) {m-l-(n)!/»ii"-ii}/(TO-2). (22.) (al"+'-7ci»i

-

air+iij/(a_c + r+ l). (23.) (ai"+2i/cl"+^ii -a/c"-')/(a-c-?- + l). (24.)

{(a-l)i'"-»7ci'»-ii-(a + ?i)""-^'/(c + n+l)""-^l}/(»i-l)(a-c-l). (28.)

Deduce from (24). (26.) Deduce from (24). (27.) 2m { 1 - ( - )»2« {m - 1)

(m-2) . . . (m-?i)/1.3 . . . (2?i- l)}/(2m- 1).

XXVI.

(1.) 2»+»+i(3"+i-3). (2.) l{l + (-l)"} + 6-3{i"+i+ (-i)"+i}-

V-{i"-(-i)"}- (3.) ll{l-(4x)™+i}/{l-4x}-9{l-(3x)»+i}/{l-3x};

{2+ 3x)l(l-7x + 12x^'), x<l. (4.) 3 {1- (2x)"+i}/{l -2a;} + 2 {l-(3a;)»+J}/

{l-Sxj; (5-13x)/(l-5x + 6x2), x<4. (5.) ^{1 - (3x)»+i}/(l-3x) +
Hl-(5a;)"+i}/(l-5x); (l-4x)/(l-8x+ 15x2), x<^. (6.) 3 {1 -(2x)«+i}/

{l-2x}-2{l-x'»+i}/{l-x}; (l + x)/(l-3x + 2x'^), x-^J.
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XXVII.

. (1.) (1 + 2.x^)l{l - .tS)2. (2.) - [log {[l-x)l{l + x + x^)}- V3 tan-i {^ixj

(2 + .r)}]/3x; \ {6=^+ 26-^1^ cob Qixft)}. (4.) \[e-^ + e''l^ {cos {^1^x12) + sj^

sin(V3x/2)}]. (6.) i(2'"+ 2cos.nnr/3);|3™/2cos.m7r/6. (6.) l/2-l/(n + 2)I.

(7.) {2"»+3-l-(m + 3)(m + 4)/2}/(m+ l)(m + 2)(TO + 3). (8.) 1/(1 + a;)

-

log(l+a;). (9.)icos^-Jcos2^. (10.) l-{2n + 3)/(/i + 2)2. (11.) 2-41og2.

(14.) sin mirjimr; coshmjr.

XXVIII.

The partial quotients are as follows :

—

(1.) 0, 4, 1, 6, 2. (2.) 0, 2, 4, 8, 16. (3.) 1, 15, 1, 1, 1, 3, 1, 14, 1, 1,

5. (4.) 31, 1, 1, 1, 1, 1, 1, 1, 1, 8. (5.) 2, 1, 2, 1, 1, 4, 1, 1, 6, 3, 12, 3,

5, 1, 2. (6.) 0, 126, 1, 1, 2, 1, 1, 6. (7.) 1, 2. (8.) 2, 4. (9.) 3, 3, 6.

(10.) 3, 6. (11.) 3, 2, 6. (12.) 1, 4, 2. (13.) 2, 1, 2. (14.) 3, 1, 5,

(16.) 0, 2, 1; 0, 1. (17.) a, 2, 2a', a-1, 2, 2(rt-l).

XXIX.

(1.) The 1st, 2nd, 3rd, . . . convergents are 1, 2/3, 9/13, 20/29, 29/42,

78/113, . . .: the errors corresponding less than 1/3, 1/39, 1/377, 1/1218,

1/4746, 1/17515, . . . (2.) 972/1393. (3.) 2177/528. (4.) Transits at

the same node will occur 8, 243, . . . years after : after 8 years Venus will

be less than 1° "5 from the node. (5.) Transits at the same node will occur

13, 33, . . . years after,

XXXI.

(1.) 10,20; (2.) 0, 1, 126, 2;

0, lb. 0, 0, 6*3, 6*3

;

*
1. 64, 6*3, 1.

(3.) 1, 5, 3, 1, 8, 1,3, 5, 2;

0,1*2,13, 8,12,12,8,13,1*2;

1*2, 5, 7,20, 3,20,7, 5.

(4.) 0, 7, 1, 4, 3, 1, 2, 2, 1, 3, 4, 1, 1*4

;

0,0, 7,5,7,5,4,6,4,5,7, 5, 7;

61, i, 12, 3, 4, 9, 5, 6, 9, 4, 3, 1*2.

(6.) 1, 2,10, 2, 1; (6.) 2,4;

1*0,15,25,25,1*5; 2,2;

25, 20, 5, 20, 2*5. §, 1.
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« * » •

(10.) + 2— ; a + (a"-i-/3"-^)/(a'»-/3"), a and p being the roots of

*

x--2ax-l=:0. (11.) i{<^ +VK + 4)}; (a""*'^-/3'''^')/(a"-/3"). whereaand
/3 are the roots of a:2- ax -1 = 0. (12.) i{a-J{a^-i)} ; (a" - /3")/(a»+i - jS^+i),

•where a and /S are the roots of x^- ox + 1 = 0. (13.) {- ab + ^(a^b''+ 4:ab)}l2a;

if o, /3 be the roots of x^- (a6 + 2)x+ l= 0, then P2n=*(a"-i3")/(«-/3),

92»= (a"+'-^"+'-«" + i3»)/(a-i3), and P^-,= {p^^-p^-^)lh, q,n-i = {q2n-

g,„_2)/6. (14.) - 1 +V [{3 (a" - /S-^) + 2 (a"-^ - /S»-i) }/(a»+i - (8»+i)], where a

and/3arethe roots of x2-x- 1 = 0. (20.) -iw+V[{(in'^ + n) (a"-i-/3»-i) +
(i ra''+ 1) (a"-2 - p»-2) }/(a» - j3")], where a and /3 are the roots of x^ - x - 1= 0.

XXXII.

(1.) 3 + 7t,2-5t. (2.) 17<+ 7, 16t + 5. (3.) 2206 - 7«, lit - 3309. (4.)

1013t - 3021756, 1367« - 4077746. (6.) 13. (6.) 280. (7.) 6. (8.) If

25fr. = 20«., 41. (9.) Buy 300 of each and spend 1021d. (10.) 69. (12.)

19. (13.) 715. (14.) 697.

XXXIV.

' (1.) Converges. (2.) Converges. (3.) Oscillates. (4.) Converges. (5.)

Converges. (6.) Converges. (7.) Converges if fc > 2, oscillates if fe > 2. (8.)

Converges. (9.) Oscillates. (10.) Oscillates. (IB.) Each of the fractions

converges to 1. (23.) e. (24.) 1/(1 -c). (25.) logg2, (26.) (3-e)/(e-2).

XXXIX.

(1.) 11/30. (2. ) 3/11, 29/44, 3/44. (3.) m (m+ 2n)/(m + n)2, m (m + 2n - 1)/

{m+n){m+n-l). (4.) (365 .4»+l)/(1461)™. (6.) 4/9. (7.) 55/672, 299/2688.

(8.) 1/42. (9.) (n-l)/n(2n-l). (10.) (39!)2/26!52!, 4(39!)2/26!52!. (11.)

2(r- l)/n{7i- 1). (13.) 7n/2, or, if this be not integral, the two integers on
n+l

either side of it. (14.) S r (r- l)n(n-l) . . . (ra-r+2)/n'-. (18.) 16/31,
r=2

8/31, 4/31, 2/31, 1/31. (19.) The chances in A'a favour are 6/10, 7/10, 8/10,

9/10, when he is 1, 2, 3, 4 up respectively. (20.) 25 to 2. (23.) (1 - l/n)/2,

(l-l/n)/(2-l/n).

XL.

(1.) £1 : 11 : 6. (2.) His expectations are lis. 6d. and 10s. 4^d. respect-

ively. (3.) £8 : 5 : 9i , £2 : 4 : 2i. (4.) n(l - 1/2'-), (1 - 1/2')". (7.) 7«. 2id.

;

(n+ 1) (4n - l)/6n. (12.) £6, £1, £4 : 2 : 2^

.
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