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PREFACE.

—_——

THE present treatise was undertaken to supply a book for the
course of instruction of the Junior Mathematical Class of
Natural Philosophy in University College, London. Although
there was no scarcity of treatises within nearly the same limits
as the present, yet the author had to regret that the students
who went forward into his Senior Mathematical Class had to
re-learn the subject in an entirely different manner ; so that their
previous reading of it was in a-great measure lost to them.

It has been the author’s wish to supply a work which, whilst
it presented to the less advanced student the more modern me-
thod of treating Mechanics, and taught him a general analytical
method of solving the new problems he met with, as far as his
mathematical attainments would reach, should, at the same time,
be an advantageous foundation on which the superstructure of a
more advanced study might be reared.

Some experience in Professorial teaching leads the author
to believe that he has succeeded to some extent in the object
which he had in view; and he concludes that the book which
will supply a desideratum in the Natural Philosophy course in
his own lectures will be also acceptable to other teachers simi-
larly situated.
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- ELEMENTARY MECHANICS.

—

INTRODUCTION.

MEcHANICAL Science is that in which the laws of forces, and
the effects they produce on bodies, are investigated.

It is subdivided into four Sciences—Statics, Dynamics,
Hydrostatics, and Hydrodynamics.

In Statics the effects of forges on solid bodies at rest are
examined.

In Dynamics the effects when motion is produced.

In Hydrostatiés the effects of forces on fluid bodies at rest
are considered.

In Hydrodynamics the effects on fluid bodies when motion
ensues.

In the present treatise, Elementary Statics and Dynamics
only, are treated of.

The mass of a body is the quantity of matter which it con-
tains; and matter is defined to be, whatever possesses bulk and
affords resistance to the occupation of the same portion of space
by other matter.

We are ignorant of the ultimate nature of matter, but we
know that dense matter consists of atoms,* which have each their

* See Dr, Daubeny on the Atomic Theory.
B
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peculiar masses constant and unchangeable by any mechanical
or chemical means within our reach.

The term subtile matter has been applied to the agents which
cause the phenomena of electricity, heat, &c.

Though evidently closely connected with the development of
forces, we as yet only know some of the properties and laws
of the effects of these agents upon dense matter. Whenever
the term matter is used in Mechanics, it is understood to mean
what is called above dense matter. The quantity of matter in a
body is measured by its inaptitude to receive motion (inertia)
when acted on by a given force; and is proportional to the
weight at the same place on the Earth’s surface. So that a
body of two, three, &c. pounds weight contains twice, thrice, &c.
respectively the matter that a body of one pound does.

We define force to be, whatever causes or tends to cause
motion, or change of motion in bodies. We see force acting
continually around us, and developed by various means, though
we cannot trace it to its ultimate origin. We measure forces
by their effects, and in Statics they are often called pressures ;
being compared with the pressures produced by known weights,
they can thus be expressed numerically. We speak, for in-
stance, of a pressure of twelve ounces, of thirty pounds, of two
tons, &c. &c. when the unit of measure is an ounce, a pound,
or a ton respectively.

In Dynamics, forces are measured in two different manners,
according to the nature of the problem,—namely, in some cases
by the velocity generated in a unit of time; and in other cases
by the momentum (or velocity multiplied into the mass of the
body moved) generated in a unit of time.

In Statics, we continually represent forces by lines of definite
lengths. A unit of length being taken to represent the unit



INTRODUCTION. 3

of pressure, the length of the line represents the magnitude of
the force; its direction represents the direction of the force ; and
the commencement or first extreme of the line, the point at
which the force acts, or its point of application. Lines which
are parallel are said to have the same direction.

In order that a statical force may be known, its magnitude,
direction, and point of application, must be given.

The weight of bodies, being their gravitation vertically down-
wards, arises from the attraction of the Earth upon them, ac-
cording to the laws of universal gravitation. These laws we
shall have to consider in the science of Dynamics.

In statical problems we have frequently other forces arising
from the effects of the original forces, which have to be consi-
dered in the same manner; as the fension in cords, and the re-
action in rods. Unless the contrary is stated, the cord is sup-
posed without weight, perfectly flexible, and to pass perfectly
freely round any object which changes its direction: the force
applied at one extremity must then be transmitted without loss
along the whole length of the cord, or the Zension in the cord is
the same in every part. Unless the contrary is stated, the rods
are supposed to be inflexible and without weight; so that a
straight rod transmits a force applied at one extremity in the
direction of its length, to the other extremity unchanged ; thus
the reaction of the rod equals the original force, and may be
supposed to act at any point in it.

In other statical problems there arise forces of a different
nature to the original forces, and which therefore have to be
considered differently; as the friction which arises from the
roughness of the surfaces of bodies in contact, and the adhesion
which arises when one of the surfaces at least is of an adhesive
nature. The laws of friction have been ascertained, and will be
treated of in a distinct chapter. The properties of adhesive sur-
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faces are of less theoretical importance, and are seldom discussed
in treatises on Mechanics.

By a particle of a body, we mean a portion of it whose di-
mensions are smaller than any possible means of measurement.

By a rigid body, we mean one in which the relative positions
of its particles remain unchanged.

In some statical problems the properties of flexible and
elastic bodies have to be considered. In these the relative posi-
tions of the particles change by the action of the forces.




STATICS.

CHAPTER 1.

ON FORCES WHICH ACT AT THE SAME POINT.

1. A force acting at any point is balanced by an equal force
acting at the same point in an opposite direction. It is clear
that this must be true; for whatever tendency to motion the
point might receive from one of the forces, it would receive an
equal and opposite tendency from the other; and these would
neutralise each other.

2. If two forces be in equilibrium at a point, they must be
equal in magnitude and opposite in direction. If possible, let
the forces P and Q', acting in the q
directions of the arrows, as in the
figure, keep the point 4 at rest. -
Let Q be a force equal and oppo- ¢ “p
site to P; P and Q will balance, and therefore Q produces the

same tendency to motion that @', a different force does, which
is absurd.

DeriniTiON. The resultant of two or more forces is the
single force which produces the same mechanical effect as the
forces themselves; which are called the component forces.

3. When any number of forces act at a point in the same
straight line, the resultant equals the algebraic sum of the com-
ponent forces.

First, let all the forces act in the same direction, as in the
figure. Let the line 4B B ¢ » B P »,
represent the force Py. . . NN\
If the point B be rigidly
connected with 4, we may suppose the force P, to act at B, and
it will produce the same effect as if it acted directly at 4. Let
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BC represent the magnitude of P;. The line 4C represents
a force equivalent to P, and P, acting at 4; or, their resultant
equals their sum. If we had a third force, P;, represented by
CD, we should have the resultant of P, P,, and P, a force
represented by 4D, their sum as before; and so onwards for
any number of forces.

When some of the forces act in the contrary direction, we
must take the lines which represent their magnitudes on the
contrary side of 4, and subtract them from the sum of the other
forces. Let P be repre-

A b A [ B
sented by the line 4B, p.¢—t + t } >
L P
and P, a force acting in

the opposite direction, by 4b; we may suppose P’ to act at B,
and measuring Bb equal to 4b, we have 4V, a line representing
the resultant of P and /. So that, having taken the sum of
the forces acting in one direction and the sum of those acting
in the contrary direction, the difference of these sums is the re-
sultant force, and it acts in the direction of the forces which
form the larger sum. This is equivalent to calling the forces in
one direction positive, and those in the contrary direction nega-
tive; and then their algebraic sum gives the magnitude of the
resultant, and its sign determines its direction. When the
resultant = O the forces balance, and the condition of equili-
brium of forces acting in the same straight line is, that their
algebraic sum = 0.

Hence, we may add equal and opposite forces at any point
without affecting a system of statical forces: this is called the
superposition of equilibrium. In the same way we may remove
from any point in a system those forces which are equal and
opposite. In finding the resultant of given forces, we are said
to compound them; and when we find the components of a given
force, we are said ?o resolve it into its components.

THE PARALLELOGRAM OF FORCES.

4. Prop. When two forces act at a point, if the parallelogram
upon the lines representing them be completed, the diagonal from
that point represents their resultant in magnitude and direction.

First, to prove that the diagonal is the direction of the resul-
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tant. If the forces are equal, as P, P in the A
figure, this is evidently true, for no reason
can be assigned why it should incline more
to one force than the other, and the diagonal
bisects the angle 4 in which the forces meet.

Let us assume that this holds good for R
forces p and ¢, and p and 7, we shew that it v
must also be true for a force p and a force
qg+r.

Let p and g act at 4,
as in the figure, in the
directions 4D and 4B,
and be represented in
magnitude by these lines
respectively. We may
consider the force » to be D F
applied at B, a point in its direction; let BC represent its
magnitude. Complete the parallelogram ADFC, and draw BE
parallel to 4D. Draw the diagonals 4E, AF, BF.

Then, p at 4 in 4D, and ¢ at 4 in AB, are equivalent to
a force in AE which we may suppose to act at the point E.
Resolving it again, parallel to the original directions, we have a
force p acting at E, in the direction BE, and a force ¢ acting at
E in EF. We may suppose them to act at the points B and F
in their directions; but p at B in BE, and r at B in BC, are
equivalent to a force in BF. Therefore we may suppose all the
forces to act at the point F, parallel to their original directions,
and F must be a point in their resultant; or force p at 4 in
AD, and forces ¢ and r in 4C, have their resultant in the direc-
tion of the diagonal AF.

Now, our assumption is true when ¢ and r are each equal to
P therefore the proposition for the direction of the resultant is
true for forces p and 2p: again, putting ¢=2p, r=p, it is
true for forces p and 3p, and so for p and np; also, putting np
for p, and g=p, r=p, it is true for np and 2p, and so onwards
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for all commensurable forces. We NP SR

see also in the annexed figure,

that the resultant lies nearer to

the greater than the weaker force;

and if one of the two forces be increased, the resultant lies still
nearer to the increased force.

‘When the forces are incommensurable, the proposition still
holds good. Let the lines 4B, 4C , B
represent the incommensurable forces :
complete the parallelogram, and draw
the diagonal 4D ; then 4D represents
the direction of the resultant. If not,
let some other line, as AE, be its di-
rection. Take a quantity which di-
vides 4 B without remainder, and being p
applied to 4C, leaves a remainder GC
less than ED. Complete the parallelogram 4BFG, and draw
the diagonal 4F. Now 4B, AG, represent commensurable
forces, and therefore their resultant is in the direction 4F; but
AE, the resultant of 4B and greater force 4C, is nearer 4B
than the resultant of 4B and the less force 4G, which is impos-
sible. Similarly it can be proved, that no other direction than
AD can be that of the resultant.

Secondly. To prove that the diagonal of the parallelogram
represents the magni-
tude of the resultant

also, when the sides D E

respectively represent

the component forces. ¢ >
. a F >

Let P, Q, R, acting in

the directions of the B

arrows, as in the figure,
keep the point 4 at
rest. Let the lines 4D, 4B, AF, represent respectively the
forces. Complete the parallelograms 4C, AE, and draw the
diagonals. The resultant of any two of the forces must be
equal in magnitude, and opposite in direction, to the third
force, since there is equilibrium: therefore, CAF, BAE, are

Q
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straight lines. AE is parallel to CD, and AC is parallel to
DE; and ACDE is a parallelogram, of which the side 4C is
equal to the side DE. But DE by construction is equal to
AF; therefore AD and AB representing the forces P and Q,
AC represents a force equal in magnitude to the third force R,
and opposite in direction; and thus represents the resultant of
P and Q in magnitude as well as direction.

5. Prop. If three forces acting at a point keep it in equili-
brium, and a triangle be formed by three lines drawn in their di-
rections, the sides of the triangle, taken in order, will represent the
Jorces.  Conversely, if three forces which act at a point be repre-
sented by the sides of a triangle, taken in order, they will be in
equilibrium. This proposition is called the ¢riangle of forces.

If the three forces, P, Q, R, in equilibrium, act at the
point 4, as in the figure, P
the triangle 4BC, which
is half the parallelogram

formed on the lines re- ¢
presenting P and Q, will
have its side BA repre- ALl < B

senting the force R, by
taking the sides in order,
as shewn by the direction
of the arrows: for 4B represents the resultant of P and Q, when
taken in the opposite direction.

=A
/z

Conversely, If the three forces were represented by the sides
of the triangle 4B C taken in order, we might form a parallelo-

gram with any one of the sides, B D
as BC, for its diagonal, and

the resultant of the other two /\/
forces, represented by CAand —

CD (or AB), would be repre- c

-sented by this diagonal taken in the opposite direction, which
would make equilibrium with the third force.

By means of this proposition we can resolve a given force into
two others which are equivalent to it, in any given directions.
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6. Pror. Ifthree forces acting at a point are in equilibrium,
they are proportional each to the sine of the angle contained
between the other two.

In figure art. 5, the sides of the triangle ABC represent the
forces P, Q, R, respectively; or,

P:Q:R:: 4C: CB: B4
::sin. ABC : sin. BAC : sin. ACB
:: 8in. BAQ : sin. BAC : sin. PAQ
:: sin. QAR : sin. PAR : sin. PAQ

Since the sines of the angles equal the sines of their supple-
ments.

7. Pror. If P and Q be two forces which act at a point, the
angle between their directions being 6, then if R equals their re-
sultant, we have R*=P*+ Q*+2.P. Q cosine 6.

By trigonometry we have in triangle 4BC, art. 5.

ABR=AC*+BC*—2AC.BC. cos. ACB
and cos. ACB= — cos. BCP= — cos. 6.
o RB=P?+ Q2+ 2 PQ cos. 6.

8. Prop. If three forces acting at a point in different planes
be represented in direction and magnitude by the three edges of
a parallelopiped, then the diagonal will represent their resultant
in direction and magnitude; and reciprocally, if the diagonal re-
presents a force, it is equivalent to three forces represented by the
edges of the parallelopiped. :

Let the three edges 4B, AC, AD of the parallelopiped in
the figure represent the three B

forces. Then AE, the diagonal ‘ A
of the face ACED, represents —\F
the resultant of the forces 4C , AE

and 4D. Compounding this with V‘

the third force represented by 4B, \/

we have AF, the diagonal of the B
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parallelogram 4 EFB, representing the resultant of 4E and 4B,
or of the forces 4C, AD, AB.

Reciprocally, the force AF is equivalent to the components
AB, AE, or to the component forces, 4B, AC, and AD.

9. Prop. If any number of forces are represented in direc-
tion and magnitude by the sides of a polygon taken in order, they
will, when applied at one point, produce equilibrium.

Py

Let Py, Py, P,
P,, P, be forces
acting at the point

A, as in the figure.
Py

E
Let P, be represented by 4B.
» Py » the parallel line BC.
» -P3 2 » CD.
» Py ) 9 DE,
2 Ps »” 2 EA.

Or, let the forces be represented in magnitude and direction by
the sides of the polygon ABCDE, taken in order. If we com-
plete the parallelograms 4C, 4D, AE, and draw the diagonals
AC, AD, we see that 4C represents the resultant of forces P
and P,; compounding this resultant with the force P, we see
that 4D represents their resultant, or the resultant of P, P,
and P;; compounding this last resultant with the force P,, we
see that their resultant is represented by the line 4, acting in
the direction from 4 to K, which would consequently balance
the last force P;, represented by the last side EA of the poly-
gon, and acting in the direction from E to 4. It will be seen
from the proof that it is not necessary the forces should lie all in
one plane.

This proposition is called the polygon of forces.
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When three forces act in equilibrium at a point, any three
lines taken parallel to their directions will form a triangle, the
sides of which respectively will represent the forces; but when
there are four or more forces, this will not hold, because the
relation which subsists between the sides and angles of triangles
does not hold in four-sided figures or polygons.

For instance, in the figures, if CB and cb be parallel, and
also FG and

Jg, the triangles c

ABC, Abe,being c

similar and si- D
milarly situated,

the sides being A B b

respectively proportional, would represent the same three forces;
but, although the sides of the polygon DEFGH might repre-
sent a system of five forces in direction and magnitude, yet they
could not be represented by the sides of the polygon DEfgH in
magnitude also.

10. When any number of given forces act at given points in
a plane, we may find, graphically, the magnitude and direction
of the resultant of the system.

Let Py, P,, P;, in the figure, have their points of application
A, B, C. Producing the directions
of the forces P, and P,, until they
meet at the point a, we form the
parallelogram @b upon the lines re-
presenting them, and the diagonal
is their resultant R, in the figure.
Producing R;, until it meets at ¢ /
the direction of the force P, and
drawing the parallelogram cd on the
lines representing R, and Pj; we
have the diagonal representing R, their resultant, or the result-
ant of Py, Py, and P;. By pursuing the same method we may
find the resultant for any number of forces.

Py R,

DeriniTiON. The moment of a force about any point is
the product of the force into the perpendicular let fall from the
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point upon the direction of the force. The moment, as we shall
see in the next chapter, measures the tendency of the force to
produce rotatory motion about the fixed point.

. 11. Pror. The moment of the resultant about any point in
the plane of the forces equals the sum of the moments of the
JSorces.

Let the forces P and Q, act- , E F ¢
ing at 4, be represented by the
lines AB, AC, and their result- H
ant R by AD, the diagonal of ¢ ~
the parallelogram drawn upon Q
AB, AC. Let O be the point ° B '
about which the moments are D R
taken; join 04, and draw AEFG P
perpendicular to OA4 ; draw Ol
Om, On, respectively perpendicular to 4B, AC, AD; and BE,
CF, DG, perpendiculars to AEFG; and CH parallel to that
line.

Now the triangles Ol4, OmA, Ond, are respectively similar
to the triangles AEB, AFC, AGD.

AE 0l AB. Ol
WhenceA—B._O—A orAE__OT_
AF  Om AC. Om
qc=04d " F=—"%1"
AG _ On _AD. On
4D =04 "4°="0o1

but AE = CH = FG .. AF+ AE = AG
or, AB.Ol+AC.Om = AD.On
or, P.Ol+Q.0m = R. On

Or the sum of the moments of the components equals the mo-
ment of the resultant about any point in their plane, or about
an axis perpendicular to their plane.

If the point O fell within the angle formed by the forces, we
should have the moment of one of the forces tending to cause ro-
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E A G 3

tation in the opposite
direction to the other, -
and it must then be y .
considered as negative ! ¢
if the other were po- ' °

sitive, and the alge-

braic sum of the mo- )
ments of the compo-

nents still equals that R

of the resultant. In the annexed figure we have the proof the
samc as above, except that 4G = AF — AE,

and AC.Om — AB.Ol = AD. On
or Q.Om — P.0O!l = R. On.

By compounding R with another force acting at 4, we should
obtain a like result: or the moment of the resultant of these
forces acting at A4 cquals the algebraic sum of the moments of
the forces. The proposition may, in the same manner, be ex-
tended to any number of forces acting at a point.

EXAMPLES.

1. Shew that if @ be the angle between two forces of given
magnitudes, their resultant is the greatest when § = 0, least
when @ = m, and intermediate for intermediate values of 8. If
the component forces be P and Q, what is the magnitude of the
resultant when 6 = 0, and also when 0 = w? Ans. (P + Q)
and (P— Q).

2. If two equal forces (P) meet at an angle of 60° shew that
their resultant = P /3.

3. If two equal forces meet at an angle of 135° shew that
their resultant = P (2 — 4/2)4,

4. If three forces, whose magnitudes are 3m, 4m, and 5m, act
at one point and are in equilibrium, shew that the forces 3m
“and 4m are at right angles to each other.
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5. If two equal forces are inclined to each other at an angle
of 120°, shew that their resultant is equal to either of them.

6. If the magnitudes of two forces are 6 and 11, and the
angle between their directions 30° shew that the magnitude of
their resultant is 16-47 nearly.

7. Shew, that in the last question the resultant makes with
the force 6 the angle whose sine is ‘3339, and with the force 11
the angle whose sine is 1821, which are the sines of 19° 30" and
10° 30’ nearly.

8. Apply the proof of the polygon of forces to the case of five
equal forces represented by the sides of a regular pentagon taken
in order.

9. Enunciate all the propositions requisite to prove that the
resultant is in every respect mechanically equivalent to the com-
ponent forces.

10. A cord PAQ is tied round a pin at the fixed point 4,
and its two ends are drawn in different directions by the forces
Pand Q: shew that the angle between these directions is found
3(PF+@)—2PQ

3PQ when the

from the expression cos. 0 = —

P+Q
2 .

pressure on the pin is equal to

11. A cord whose length is 21/ is tied at the points 4 and B
in the same horizontal line, whose distance is 2 a: a smooth
ring upon the cord sustains a weight w: shew that the force of

.. w
tension in the cord =



CHAPTER II.

ON FORCES WHOSE DIRECTIONS ARE PARALLEL.,

Tuougn the propositions in the last chapter will not apply at
once to forces acting at different points, of which the directions
are parallel, yet we can reduce the proof of the method of find-
ing their resultant to that of two forces acting at one point in
different directions.

12. Pror. If two parallel forces P and Q act at points A
and B respectively, then their resultant equals their algebraic
sum in magnitude, and acts at a point C in the same straight
line with A and B, such that Px AC = Q x BC.

Let the forces s ¥
act as in the figures
at 4 and B; at 4__ A B

these points apply P c —=>F
equal and opposite
forces, S and S':
they will not affect

the system. P and P R=P+Q

S at A will have a Q@  B=Q-pP
resultant in

the direction

AD; Q and

S’ at B will

have a result-

ant in the di- 8<€
rection BD;

and in the

lower figure,

where  the P
forces act in opposite directions, we suppose Q greater than P,
so that the resultant of @ and S will lie nearer Q than the re-
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»

sultant of P and S does to P; and therefore the directions of
the resultamts will meet at some point, as D, in both figures.
We may suppose the whole of the forces to act at the point D.
Resolving the forces parallel to the original directions, we shall
have forces S and S’ parallel to 4B, which will destroy each
other; and forces P and Q acting parallel to their original direc-
tions, giving a resultant B = P+ Q in the upper figure, and
R=Q—P in the lower figure. To find the point C in the line
4B, or AB produced, where R acts, we have,

from triangle 4CD, P:S8::CD:4C

from triangle BCD, S8':Q::BC:CD

Compounding these ratios, we have
P:Q::BC:4C
or, Px AC = Q xBC

13. If AB be perpendicular to the direction of the forces,
AC and BC are called the arms of the forces, and the products
P.4C, Q.BC, are the moments of the forces, about the point C.
If the forces are inclined at an angle « to 4B, then the perpen-
diculars from C on the lines of action of the forces are . 4C.sin.«
and BC.sin.«, and the moments are P.4C.sin.a and Q.BC.sin. «.

14. If C be a fixed point, its resistance will destroy the
effect of the resultant force; so that P and Q will be in equili-
brium about such a point, when their moments, tending to cause
rotation opposite ways about it, are equal to each other.

15. To find 4C in terms of 4B, we have
Px AC = Q(AB—AC), in the upper figure;

Q - P
== C=—-4B
or, AC P QAB and similarly, B o QA
and P x 4C=Q(AC—AB), in the lower figure;
Q . __ P
or, AC =Q—_1—)AB and similarly, BC —_Q——T’AB :

The point C is determined in both cases; unless in the latter

P=Q, when 4C=infinity ; but then the resultant =Q—P=0.

This is a peculiar case; the effect of two equal and parallel

forces which do not act at the same point being to produce

rotatory motion only. Such forces constitute what is called a
c
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statical couple, and all tendency to rotatory motion can be re-
ferred to forces forming such couples. If the forces are inclined
at an angle « to 4B, then P.4B.sin.« is the moment of the
couple.

16. Pror. To find the resultant of any number of parallel
Jorces which act at any points in one plane.

First, let the parallel forces
P, P, Py, &c. . . . P, have
their points of application A,
B, D, &c. and act towards the ,
same part. Take any two lines,
Oz, Oy, at right angles to each
other; join 4 B, and let C be
the point of application of the

resultant, R,, of P, and P, A
Then R, =P+ P,
and P, x AC=P,x BC O F  H

Draw the lines AF, BG, CH, DK, parallel to Oy; and Ac,
Cb, parallel to Ox. The triangles 4Cc, CBb, are similar, and
A4C _ BC
Cec  Bb
oo PyxCec= P,xBb
or, P, x(CH—AF)= P,x(BG— CH)
(P,+P)xCH =P x AF+ P, x BG
or, Rix CH= P, xAF+P,x BG

Taking another force, P;, and compounding with R, acting
at C, we find the second resultant, Ry = R, + Py = P, + P+ P,,
and Ryx EL = Ry x CH+P;x DK
=P xAF+P,x BG+P;x DK
and so onwards for any number of forces.

If we put AF=y,, BG=y, DK=y, &ec.
OF=x, OG=x;, OK==x, &c.
or, if xy, Ta¥s, Xays &c. . . . xay, are the co-ordinates of
the points 4, B, D, &c., the points of application of the z
forces, the above formula becomes
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Rg X EL = Pl.y1+P2.yg+P3.y3
and if #, 7, were the co-ordinates of the point of application of
R, the resultant of the n forces, we should have
.R=P1+P2+P3+&co .« o +.P,.
and .R..l; = P].y1+P2.y2+P3.y3+&C. « s e +P,..'l n

If we had drawn lines parallel to Oz, we should have found,
in the same way,

R.i= .Pl..rl+P2.wg+P3.w3+&c. " e o +P,...Z‘,.

These formule are often written more concisely by using
the Greek letter 3 as the sign of summation; and P being any
one of the forces, x, y, being the co-ordinates of its point of
application, then

R.#z=3(P.x)
R.7=3(P.y)
R =3(P)

The point whose co-ordinates are #, ¥, is called the center of
parallel forces. It depends on the magnitude of the forces and
their points of application; but is independent of the angle
which their direction makes with any given line.

Secondly. When some of the forces act in opposite direc-
tions, they must be taken negative; and so also when the co-
ordinates of the points of application are negative, they must be
applied with their proper signs; and then the above formula
will apply to all cases.

If R,, the resultant of P, and P D
P,, as found in the previous case, P
be compounded with a force Pj
acting as in the figure at D, by

joining C D, and producing it in e

the direction of the greater force,

say R,, we have R, the second , ‘ P,
resultant = R, — P;; and E being E ‘ d

its point of application, 0 | K =

B, xEC=P,xED
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Drawing Ce, Ed, parallel to Ox and meeting DK in d, EL
produced in e, the triangles E Ce, EDd, are similar, and

EC_ DE
Ee — Dd
. RixEe= PyxDd
or, R(CH—EL) = P{(DK—EL)
or, (R,—P;). EL= R, x CH—P;x DK
or, R, x EL = P\ x AF+ P;x BG—P;x DK

and so for any other forces act- ¥ Py
ing in the opposite direction to o
P, and P, &c.
Again. Let y,, the ordinate A ¢ .
of the point of application of
P,, be negative = BG in figure ; p b
draw Ada, Cb, parallel to Ox.
G

P,xAC=P,xCB o ¥ H
or, P, x Ca =P, x Bb by similar \ /
triangles. B

P(AF—CH) = P(CH+ BG)
(P,+P,)CH = P, x AF—Pyx BG
or, R,.j7 = P,.y,— P,.y,, as we should have found by putting

s with its proper sign in the general formula, which thus ap-
plies generally to all cases of parallel forces.

When some of the forces are negative and others positive,
we may have the sum 3(P) =0;

or, R =0
and the system of forces may be equivalent to a couple.

17. Prop. The algebraic sum of the moments of any number
of parallel forces which act in one plane about any point in the
plane, equals the moment of their resultant about that point.

_ Let Py, Py, Py, be parallel forces acting at the points 4, B,
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D, respectively; R, and R, the resultants, as before; G the
point about which
the moments are
taken, and called
the center of mo-
ments.

Draw Gdef and
Acb  perpendicu-
lars to the direc-
tion of the forces
in both figures. In
the first figure both
P, and P, will tend to
cause rotation the same
way round G'; but in the
other figure they tend op-
posite ways, and must
therefore be taken with
different signs.

In the first figure, the
sum of the moments of P,
and P; about G=P, x Gd+ P, x Gf ’

=P, (Ge—de)+ Py (Ge+ef)
=(Py+ Py)Ge+ Pyx cb—P,Adc . . . since ch=ef, de=Ac
=R, x Ge+(Pyx CB—P; x AC) cos. BAb
=R, x Ge=moment of the resultant about G
since P; x AC=P;x CB when C is the point of application of
the resultant.

In the second figure, the algebraic sum of the moments about G
=P, x Gf—P,x Gd
=Py(Ge+ef)—Py(de—Ge)
=P+ P,)Ge+ Py x ef —P, x de
=R, x Ge . . . as before, since Py x ef=P, x de

If we take another force, P;, we find, in the same way, the
moment of the second resultant, R,, equals the algebraic sum of
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the moments of R, and P;, or of P,, P,, and Py, and so for any
number of furces.

EXAMPLES.

1. Two parallel forces acting in the same direction have
their magnitudes 5 and 13, and their points of application 6 feet
distant ; shew that their resultant acts at a point 4} feet from the
point of application of the force 3, and 1§ feet from that of the
force 13.  'What is the magnitude of the resultant ?

2. If the forces in the last question act in opposite directions,
shew that the point of application of their resultant is distant
33 feet from the point of application of force 13, and 93 feet
from that of force 5. What is the magnitude of the resultant ?

3. If two parallel forces, P and @, act in the same direction
at the points .{ and B, and make an angle @ with the line 45,
shew that the moment of each of thern about the point of appli-

cation of their resultant = IP'—QJB sin. 6.

’+Q

4. If three forces which act at a point be represented in
direction and magnitude by the sides of a triangle taken in
order, they will make equilibrium ; shew that if, instead of act-
ing at one point, they each act in the line which is the side of
the triangle representing it, they are equivalent to a statical
couple.

5. If three equal parallel forces act at the three angles of
an equilateral triangle, shew that their center, or point of appli-
cation of their resultant, is in the line drawn from any angle to
the middle of the opposite side, and at § the length of the line
measured from the angle: being independent of the angle which
the forces make with the plane of the triangle.

6. In question 4, if a, b, ¢, be the sides of the triangle op-
posite to the angles 4, B, C, respectively, then the moment of
the couple equals ab sin. C=ac sin. B=bc sin. 4.




CHAPTER IIL

ON THE THEORY OF COUPLES.

WE saw in the last chapter that two equal and parallel forces
acting in opposite directions and at different points of a body
had no single resultant, but constituted a statical couple, tend-
ing to produce rotatory motion. This tendency can be balanced
only by an equal and opposite tendency produced by an oppo-
site couple. Statical couples have peculiar properties, which we
will now discuss, and chiefly by employing the super-position of
equilibrium. See page 6.

18. Prop. A couple may be turned round in any manner in
its own plane without altering its statical effect.

Let P,ABP, be the ori-
ginal couple; take ab=4B,
and turned round any point C;
apply equal and opposite forces,
P, P,, perpendicular to ab at
a; and similarly, P; and Pg at
b; these will not affect the
system, being in equilibrium
amongst themselves: let each
of them equal P, or P,. Then
P, at 4, and P, at a, are equi-
valent to a force bisecting the
angle P, E P, between them, or a force in CE; similarly, P, .
and P are equivalent to an equal force in CD. These forces
being equal and opposite may be removed ; that is, we may re-
move from the system the forces Py, P, P,, Pg, and we have
remaining the forces P; and Pj at a and b, forming the couple
PyabP;, which is the same as if we had turned the original
couple round the point C until its arm came to the position ab.
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19. Prop. A couple may be removed to any other part of its
own plane, its arm remaining parallel to the original direction ;
and it may be removed to any other plane, in the body on which
it acts, parallel to its own plane, its arm being parallel to the
original arm.

First. Let the arm 4B of the
original couple P, ABP,; be re-
moved in its own plane to the
parallel position ab; let forces
Py, P,, P;, Pg, each equal to the
original forces, be applied per-
pendicularly to ab at the extre-
mitics @ and b in opposite pairs,
as in the figure.

Join A% and a B, these lines
will bisect each other in C; and
P, at 4, and Py at b, are equiva-
lent to a force=2P, at C, pa-
rallel to the original direction; similarly, P, at B, and P, at a,
arc cquivalent to a force=2P; at C, opposite to the former;
these will consequently balance each other, and may be removed,
or the forces P, P, P,, P;, may be removed, and we have re-
maining the couple P;abPg, equivalent to the original couple
removed parallel to itself in its own plane.

Secondly. Let the arm 4B of the original couple be re-
moved from its own plane :
DE, parallel to itself, to ad b Py
in the parallel plane FG; F
let equal forces, each equal
to P, or P, be applied at a; |
and b, as in the former case. ‘ o
Join 4 and Ba; these lines Coee B
will bisect each other in C. |
The forces P, and P will be
cquivalent to a force=2P, at :
C, parallel to the original di- E G
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rection, and P; and P, will be equivalent to an equal and oppo-
site force at the same point; these equal and opposite forces at
C may be removed, and there remains the couple P;ab Pg, equi-
valent to the original couple removed to the plane FG.

20. Prop. Al statical couples are equivalent to each other
whose planes are parallel and moments equal.

DeriniTION. The moment of a couple is the product of one
of the forces into the arm, or P.4B in the foregoing proposi-
at 4 to be the sum of two forces,

tions.
\ Q
/I\C
P and Q,; now l
P.AB=Q, AC=Q,(4B+ BC). y ( @
-~ (P,—Q)4B=Q,.BC P=Fr G
=P .A4AB

and forces P’ at 4, and Q, at C, have a resultant parallel to
their directions and equal to their sum at B. This force,
P+ Q=P, will balance P,, and therefore P at 4, Q, at C,
and P, at B, may be removed; and there remains the couple
Q.A4C, which is therefore equivalent to the original couple.

Let P, A BP, be the original couple, P,
whose moment is P.4B. Produce /
AB to C, and apply there equal and
opposite forces Q, and Q,, such that
Q.AC=P.4AB. We may suppose P,

By the previous propositions this couple, Q.4 C, may be
removed into any plane parallel to its own, and turned round in
any manner in that plane.

DEeriniTION. The axis of a couple is a line perpendicular
to the plane of the couple; and its length being taken propor-
tional to the moment of the couple, represents it in magnitude.
The tendency to rotatory motion being round the axis, and the
length of the axis representing this tendency as measured by
the moment, the axis represents completely the couple. The
effect of the previous propositions is consequently this: that the
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axis, of fixred length, may be removed any where within the body
acted on, parallel to itself.

When any number of couples act upon the body, they can
be compounded into one resultant couple.

21. Pror.  Ihen any number of couples act upon a body in
parallel planes, the moment of the resultant couple equals the
sum of the moments of the component couples.

Let P, Q, R, &c. be the forces; a,
b, ¢, &c. their arms respectively; the
couples can be removed all into one
plane, turned round, and moved in that
plane, and their arms changed to a
common arm, whilst their moments re-
main unchanged.  ILet m be the com-
mon arm AB; P, Q', R, &c., the ¥
forces; so that /.m=D".a, Q. m=Q.b, @
R'.m=R.c, &c.; but the forces , @, p.
'y &e. at . are equivalent to a force

&R

A

l’+(2’+R’+&c.=T +— 4+ —+&e.

And similarly, the forces at B are equal to
the same sum; and the moment of the re-
sultant couple= (" + Q@ + R'+ &c.) 4B e
=L"+Q+R +&c)m
=PLa+ Qb+ Re+ &e.
This is the same thing as taking the algebraic sum of the
axes, as OK, KL, LM, &c. for the resultant axis, when the
component axes are parallel. If any of the couples tend to

causc rotation the contrary way round, H
we must take them with contrary

signs, or their axes must have been T
measured in the opposite direction q 4 g
from O. An axis is therefore ba- E

lanced by an equal and opposite axis,
or a couple by an equal and opposite
couple. If PABP, QDEQ, were D

couples whose moments were equal and
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opposite, or P.4AB = —Q.DE, they would evidently make
equilibrium with each other.

22. Pror. If two sides of a parallelogram represent the
axes of two component couples, the diagonal represents the axis
of the resultant couple.

Let OK, OL, be the axes

R

of the component couples,
then OM, the diagonal of @ P
the parallelogram formed on
them, represents the axis of A s

K

M ~
L

a couple equivalent to them.

The planes of the couples °/<
being perpendicular to their P Q
axes respectively, will be in-
clined at the same angle to
each other as the axes themselves are. The couples can be
moved and turned round, each in their own plane, until their
arms are in the intersection of their planes; and their moments
being kept the same, they can be brought to have the same arm.
Let 4B be this common arm in the intersection of the planes;
PABP, QA4BQ, the couples. Completing the parallelograms
on the lines representing P and Q respectively, the diagonal
represents their resultants R, at 4 and B, and the two couples
are equivalent to a couple RABR.

If 6 be the angle between P and Q, or between OK and OL,
R:=P2+ Q*+2PQcos. 0 . . . from the triangle of forces.

. R.AB=AB.V P>+ Q*+2PQ cos. 0
= VP AB*+ Q*. AB*+2P.AB x Q.AB cos. 6

= ¥ OK?+ OL*+20K.OL cos. §

=0M
And OK, OL being respectively perpendicular to the planes of
the couples PABP, QABQ, we have OM perpendicular to
the plane of the resultant couple RABR; therefore OM repre-
sents the axis of the resultant couple: Let L and M be the
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moments of the component couples, G the moment of their re-
sultant; then
G*=L%+M?*+2L.M.cos. 6.

Cor. If L, M, N, were the axes of three component couples,
we could shew, as in article 8, that G, the axis of the resultant
couple, would be represented in direction and magnitude by the
diagonal of the parallelopiped formed upon them.

If L, M, N, were at right angles each to the plane passing
through the other two, the parallelopiped would be rectangular,
and we should have

G?=L%*+ M®+ N®.



CHAPTER IV.
ON ANALYTICAL STATICS IN TWO DIMENSIONS.

IN this chapter we refer the points of application and the direc-
tions of the forces to co-ordinate axes Ox, Oy, at right angles to
each other.

23. Prop. Required the magnitude and direction of the re-
sultant of any number of forces in one plane acting at one point,
and the conditions in order that there may be equilibrium.

Let Py, Py, Py, &c. . . . Pn,bethen
forces, and let the point at which they act
be taken for the origin of co-ordinates.

Let P, make the angle «; with Ox

Py oo - - 4 - - AP
P, - - - ag - = N

&c. - - - & -

PP - - - a - - [ M ¢

Let OA represent the force P,; com-
plete the right-angled parallelogram
OMAN, then OM represents the resolved part of P, in Ou,
ON that in Oy.

Let X, X,, X, &c. . . . X,, be the resolved parts of the
forces respectively in O,

Y, Y, Y5 &e. . . . Y, . . . in Oy,
we have OM=X,=P, cos. a, ON=Y,=Psin. a,

and similarly, X,=P, cos. a, Y,=P;sin. a,
X;=P3cos. a3 Y;=P;sin, a3
&e. &ec. &e. &ec.
X,=P,cos. 2, Y,=P,sin a,.

But the components in Oz are equivalent to a single force
=X1+X2+X3+&Co « o o +.Xn-
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e X -X. -X.-&. ... =X,=2X)
In ¢tz sam= w27, == o= ax®e oI g we Lave

cr we Tavs S X=XPcos.2
X Y =X Psin. a)

Lt R be the resuliant recuired, @ the angle it makes with
0Ox. The resolved parts of R in the axes must equal the re-
tolved parts of the forces in the same directions; or,

R cos. 0=3(X}
R sin. 6=X3T;

=37 (1
R*= R*(s1n.20 + cos.?6)
= S@MPF+HEDE @
These equations (1) and (2) give the magnitude and direction of
the resultant.

If the forces are in equilibrium, their resultant = 0, and

It=0 gives
0=(Z(X))+ (1))
But square quantities being essentially positive, this equation
cannot be true unless we have
3(X)=0 3(Y)=0
These are the two necessary and sufficient equations for equili-
brium, when any number of forces in one plane act at one point.

24, Pror.  To investigate the expressions for the resultant
Jorce and resullant couple, and to find the conditions of equili-
brium, when any number of forces act at various points of a rigid
body in one plane,

Lot Ox, Oy, be the co-ordinate axes, and the plane passing
through them be that in which the forces Py, Py, &ec. . . . Py, act.

Lot a, ay, &e. . o . a,, be the angles they make with Ox
l‘(‘upm'li\‘vl.\'.
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Let ), 9, be the co-ordinates

OM,, A\ M, of A4, the point of appli- v

cation of the force Py, and let x, y,, Y, ?,
&c. . . . Zn, Ya, be the co-ordinates

of the points of application of the A -

others respectively.

Resolving P, in the directions of ST x> w —— °
Ox and Oy, we shall have compo-
nents

X1=P1 COS. oy Y1=P1 Sin. a)
at the point A4,.

Apply at O, in Oz, equal and opposite forces, each equal to
X, which will not affect the system; and X, at 4, with — X, at
O, form a couple, with its arm 4, M,.

Then X, at 4, is equivalent to a force X, at O, and a couple
Xl X A1M1= lel'

Similarly, applying at O in Oy forces equal and opposite,
and each equal to ¥,, we have Y, at 4, equivalent to ¥, at O,
and a couple

- Yl X 0M1= - Yla?l ]
This last couple will be negative if the former be taken positive,
as tending to cause rotation the contrary way. We consider

those couples positive which tend to cause rotation in the direc-
tion of the hands of a watch.

Proceeding in the same way with all the other forces, we
shall have a sum of forces

X+ Xo+ X+ &e. . . . +X,=3(X)
at Oin Ox;

N+Y+Y+&. ... +Y,=3(Y)
at Oin Oy;
and couples X,y + Xoyo+ Xyys+&e. . . . + X,ya=3(Xy)

— Yo, — Yoy — Yyry—&e. . . . —Y,a,=3(— Yx)

The couples being in the same plane, we have their resultant
axis G equal to the algebraic sum of the component axes; or,
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G=3(Xy)—3(Y=)
=3(Xy— Yx) ¢))]
If R be the resultant force acting at O, @ the angle it makes

with O,
R cos. 0=3(X)

R sin. =3(Y)

_X(D)
tan. 0= 3p9) €)
and R*=(Z(X))*+(3(Y))* &)

The equations (1), (2), and (3), determine G and R; they
can, however, be simplified when neither G nor R=0. The
moment of the couple remaining the
same, let its forces be each made
equal to R; then let it be moved and
turned round until one of its forces
acts at O in an opposite direction to
the resultant force; 4O being the
arm. These two forces balancing,
may be removed, and there remains o ”
the other force of the couple acting
in ABR in the figure. This final re- ®
sultant being parallel to R, makes the angle 8 with the axis of .

To find the equation of the line 4BR, we have O4 the arm

G 04 G
of the couple= B and OB—cox 0~ R cos. 0
G
or, OB= 5

and equation of the line ABR is
y=tan. 6.z + OB
30,
5@ 2(X>
When there is equilibrium, we must have both the resultant
force=0 and the resultant couple=0. These conditions give us
3(X)=0
3(V)=0
3 (Xy—Ya)=0

or, y=
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These are the three necessary and sufficient equations of equili-
brium, when any forces act on a free body in one plane.

'25. If there were a fixed point in the plane of the forces, we
might take it for the origin of co-ordinates O, and its resistance
would destroy the effect of the resultant force R, and we should
have the condition of equilibrium only G=0;

or, 3 (Xy— Yx)=0
or there must be no tendency to rotation around the fixed point.

26. Pror. To prove the principle of virtual velocities for
Jorces acting in one plane on a point, and on a rigid body at dif-
Serent points.

DeriniTIoN. If any forces as P, and P,
act at a point as 4 in the figure, and this Py
point is displaced through an indefinitely
small space A4a, and we draw perpendicu- x o
lars p,a and p,a from a upon the directions
of the forces, then the distances Ap, and
Ap, are called the virtual velocities of the forces P, and Py; and
Ap, being measured in the direction of force P; is called posi-
tive, Ap, being measured in the direction of force P, produced
is called negative.

]
A P

The principle of virtual velocities is thus enunciated: If
any number of forces be in equilibrium at one or more points of a
rigid body, then if this body receive an indefinitely small disturb-
ance, the algebraic sum of the products of each force into its
virtual velocity is equal to zero.

This principle is true when the forces in equilibrium act at
any points and in any planes on a rigid body; but we shall in
this treatise only prove the case when the forces act either at
one point or at different points, in one plane, because the ge-
neral case requires a knowledge of analytical geometry of three

. dimensions.

First. To prove the principle when the forces act all at one
point.

Let A be the point at which the forces Py, P,, &c. . . . P,,act.
D
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Let xy, oy, Az, &e. . .. un, be the y P,

angles they make respectively with Ox.
. ”

Let 0 be the angle which the displace- .

ment A4a makes with Ozx. A
//

Let v, vy, 5, &e. . . . vy, be the vir- /4 L

tual velocities of the forces respectively; o =

then in figure, v, =Ap,=4a cos. adp,
= Aa cos. (2;—6)
=Aa (cos. a, cos. 8 +sin. «, sin. 6)
and P,.v,= P Aa(cos. a, cos. 8+ sin. a, sin. )
=Aa (cos. 8. P, cos. a;+sin. 0. P, sin. a;)
Similarly, for P, we have
Py.v,=Aa(cos. 8. Pycos. ay+sin. 0 . Pysin. ay)
and so for the other forces, therefore, we have
P.oy+Py.v,4+ Py.v3+&e. .. . Py.v,=3(P.v); say,
=Aa{cos. 0 (P, cos. a,+ P, cos. ay+&ec. . . . +Pycos. a,)
+sin. 0 (P sin. a;+ Py sin. ey + &c. .+ . + Py sin. a,)}
But when there is equilibrium at a point
P, cos. 2)+ Pycos.ay+ &c. . . . + P, cos.2,=0
Pysin. a;+ Pysin. ay+&c. . . . + P, sin.a, =0
.*. we have 3 (P.v)=0; or, the principle is true when the forces
act all at one point.

Second. Let the forces act at different points or particles of
the body in one plane. We have now to consider these points
connected together by rigid lines or rods without weight, which
transmit the reactions of the particles upon each other. These
reactions must be considered together with the other forces.

Let 4,, Ay, A3, &c. . . . A, be the particles.
Let 74,0, be the reaction of the particle 4, upon the particle A,

Tam - = - 2 - - Al
Taja, - - - Al = = A3
Fu e
&e. &e. &ec.

Let vaa, Va9 Vg Yarap &c. &ec. be the corresponding virtual
velocities ;
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then 740, =704, Ta0,="as, &e. &c. from the nature of reactions.

AlSO Vg0, = —V0,0)y Vaa;= —Vasayy &c., Which we must shew.

Let 4 and B be B
the particles dis- Mq
placed to @ and 8. € a b

Draw the perpendiculars ap, bg. Then if the line ab is parallel
to 4B, the point to be proved is evidently true. When ab is
not parallel to 4B, let them meet when produced, if necessary,
in some point C. Since the displacements are indefinitely small,
the perpendiculars ap, bg coincide with circular arcs having C
for center, and
Ca=Cp Cb=Cq
but Ap=Cp—CA=Ca—CA
Bg=Cb— CB=(Ca+ab)—(CA+ AB)

=Ca—C4 . . . since AB=ab

=Ap, but measured in the opposite direction
to the reaction of B upon 4, and is therefore negative.

Let the sum of the products of all the external forces into
their virtual velocities, acting on particle 4, be 3(Ps,.vs)
those on - - 4, be 3(P,,.va,)
those on - - A;be 3(P,,.vs,)
&e. A &e.
thoseon - - A,be 3(P,,.v,)
Since each particle is in equilibrium from the action of the
forces upon it, we have from the first case,
O=Z(P¢| . val) + Tajay+ v"l“s+ r“l“: 'valﬂs + &C.
0=2/(Ls,-V4,) + Tasa, Vays, + Tasas+ Vage, + &c-
0=3(Py,. Va;) + Taga + Vasa, + Tasa, - Vaga, + &C.
&ec. &ec.
0=3/(P,,.a,) + 7o, Va0, F a0+ Va0 T+ &

In taking the sum of the products for all the particles, the
products of the reactions into their virtual velocities will disap-
pear, being in pairs equal in magnitude with contrary signs;
therefore we have,

5(Payeva) + 3 (Payeva,) + 3 (Poyeva) + &e. . . o +3(P,,.05,)=0
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or generally, when there is equilibrium,
3(P.v)=0.

27. CoNvERSELY. If the sum of the products of the forces
into their virtual velocities be equal to zero, or 3(P.v)=0, then
there will be equilibrium.

For if the forces be not in equilibrium, they will be equiva-
lent either to a single force or a single couple. (Art. 24.)

In the first case, let R be the single resultant force, then a
force equal and opposite to R will reduce the system to equili-
brium ; let u be its virtual velocity for any displacement. Since
there is now equilibrium, we have, by the preceding article,

3(P.v)+R.u=0
But by hypothesis 5(P.v)=0 ... R.u=0; which being true for
all small displacements of the body, we must have R=0, or the
body was in equilibrium from the action of the original forces.

In the second case, if the forces were equivalent to a result-
ant couple, it would be balanced by an equal and opposite
couple. Let the forces of this opposite couple be Q and Q’, and
their virtual velocities for any displacement be ¢ and ¢’ respec-
tively. Since they will reduce the system to equilibrium, we
have by the preceding article

S(P.v)+Q.q+Q.4=0
but 3(P.»)=0 .. Q.g¢+Q.q¢ =0 for all displacements, which
is impossible unless Q@ and Q' each =0, since they are equal and
parallel forces, and act at different points.



CHAPTER V.

ON THE CENTER OF GRAVITY.

28. The center of gravily of a body is that point at which the
whole weight of a body may be considered to act, and would pro-
duce the same mechanical effect as the weight of the body actually
does.

The weights of all the particles of a body, acting vertically
downwards, are parallel forces, so that the center of gravity co-
incides with the center of parallel forces for such weights.

From the definition it arises, that if the center of gravity of
a body be a fixed point, the body will balance about that point
in all positions. This property of the center of gravity often
furnishes the means of determining its position practically. In
regular and symmetrical figures, as cubes, spheres, cylinders,
thin plates which are circular, elliptic, or regular polygons, &c.
it is evidently the center of the body, or point about which it is
symmetrical.

29. Prop. If a body be in equilibrium, suspended from any
point, or resting with one point of contact upon another body,
then the center of gravity lies in the vertical line through that
point of suspension or contact respectively.

A
Let 4 in the figures be ™Ne
the points of suspension and
contact respectively ; draw Ly
the vertical lines 4w. If the -
whole weight of the body act
in these vertical lines, it will
1

be supported by the reac-
tions of the fixed points 4,
or when the centers of gra- v

-<
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vity g are in these lines. If the centers of gravity were not in
these lines, but at some points as g'; drawing the vertical lines
g'm through ¢', and the horizontal lines 4m, then w, the weight
of the body acting at g, would have a moment w x 4m, which
being unbalanced, the body could not be in equilibrium, con-
trary to the supposition.

DeriNiTIONS. A4 body is said to rest in stable equilibrium
when, after receiving a slight disturbance, it returns to its first
position.

It is said to rest in unstable equilibrium when, after receiv-
ing a slight disturbance, it moves from its position of equilibrium.

It is said to rest in neutral equilibrium when, after being dis-
turbed slightly, it still rests in equilibrium.

30. Prop. hen a body rests in stable equilibrium, its
center of gravity is in the lowest position it can take; and when
in unstable equilibrium, it is in the highest position it can take.

In the first figure of the last article the body rests in stable
equilibrium, and the center of gravity g would, on disturbance,
describe a circular arc about the point of suspension 4, and
therefore would rise on the body being disturbed. In the
second figure also, if the equilibrium be stable, the center of
gravity will rise on disturbance, from the change of the point
of contact from 4 to a neighbouring point. In the annexed
figures, whilst the vertical lines through
the centers of gravity g pass through the
points of suspension or contact 4, the
body will rest in equilibrium ; but on a
small disturbance being given to the
bodies, the centers of gravity, falling out
of the vertical lines through the points
of suspension and contact, will come to
a lower position than at first, and the
weight will have a moment turning the
body further from its position of equilibrium, which therefore
in this case is unstable.




STATICS. 39

3l. Pror. To find the conditions that the equilibrium may
be stable, unstable, or neutral, when the spherical surface of a
body rests upon another spherical surface.

Let A4 be the point of contact of
the spherical surfaces, C the center
of the upper surface, O that of the
lower. Let CA=r, OA=r. Let
the body receive a small disturbance,
so that the point C comes to C’ in
the plane of the figure, and the point
of contact is now B, A4’ being the
new position of 4. Join O and C’,
then OC'=r++. Draw Bb, a ver-
tical line meeting C’4’ in b. Then
if the center of gravity of the body
falls between 4’ and b, as at ¢ in the
figure, the equilibrium will be stable, for the moment of the
weight (w) of the body will bring the body back to its first posi-
tion. If the center of gravity falls beyond b from 4’, as at ¢,
the vertical line through g’ will fall beyond B, and the moment
of the weight will cause the body to move further from its first
position, and the equilibrium will be unstable.

w 0

If the vertical line through the center of gravity passes
through 3, the body will be still in equilibrium, which is there-
fore neutral.

When the displacement is indefinitely small, 4" will be inde-
finitely near 4, and, by similar triangles, we have
Ab: 4C :: OB: OC
or, Ab:r::r ir+7
or, A'b = rr .
r+r
consequently, when the equilibrium is

stable, 4g is less than UL

r

' i
ble, Ag is greater than —,
unstable, 4g 18 greater than prgrape

’
rr
g

r

neutral, 4y is equal to
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When the lower surface is a horizontal plane, the radius of the
body at the point of contact is always vertical, and the equili-
brium is

stable, when Ag is less than r;

unstable, when .4’ is greater than r;

neutral, when Ag is equal to r.

32. Pror. To find the condition that a body placed on a
plane surface may stand or fall.

Let figures 1 and 2 fg. 1. fig. 2.

represent the sections of
bodies by vertical planes
through their centers of
gravity (g), which rest on 9
a horizontal planc. l

A B (o} D
Let figures 3 and 4 re- ¢ ¢

present, similarly, bodies

resting on an inclined

plane, down which they fig. 3. fig. 4.
are prevented from slip-
ping by friction.

Drawing  vertical
\ines through the cen-
ters of gravity of the
bodies, they will be the
dircctions in which the v )
weight of cach acts, as g w in the figures.

Now, in figures 1 and 4 the weight cannot cause the body
to turn about either 4 or B in figure 1, or G or H in figure 4,
because its cffect is destroyed by the resistance of the plane.
But in figures 2 and 3 the weight will have a moment about D
in figure 2, and about E in figure 3, which is not neutralised by
the resistance of the plane, and the bodies consequently will fall
over,

The condition, therefore, that a body placed on a plane shall
stand or fall is, that the vertical line through its center of gra-
vity falls within or without the base, respectively.
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TO FIND THE POSITION OF THE CENTER OF GRAVITY IN SYSTEMS
OF PARTICLES AND IN RIGID BODIES.

33. Prop. To find the center of gravity of any number of
heavy particles whose places are given.

Let 4, B, C, D, E, &c. be the B
particles whose weights w,, w,, w;, a
&c. act in the vertical direction A
indicated by the arrows from A4,
B, C, &c. and therefore consti-
tute a system of parallel forces.« o
w; and w, will have a resultant
=w, +w, acting at a point a, such l
that w; x da=w, X Ba. (Art.12.) w0,

Compounding the weight w,+w, at @ with another weight
wy acting at C, they will have a resultant = w, + w, +w; acting
at a point b, such that

(wl +W2) Xab = wsx Cb

Compounding the weight w, +w,+w; acting at b, with another
weight w, acting at D, we should find the point at which the
resultant w, +wy+w;+w, acted, and so onwards for any num-
ber of particles whose positions were given.

The position of the point at which the final resultant weight
acts is thus determined, and is the same point whatever be the
order in which we compound the weights; so that a system of
particles or a rigid body can never have more than one center of

gravity.

The positions of the points a, b, &c. depend on the weights
w,, wy, ws, &c. and on the positions of the points 4, B, C, &c.
with respect to each other, but not at all on the directions of the
arrows with regard to the lines 4B, aC, &c.; so that gravity
acting vertically downwards, we may turn the whole system into
any new position, the weights and relative positions of the par-
ticles remaining the same, and shall find the center of gravity in
the same point as before.



42 ELEMENTARY MECHANICS.

Cor. If the center of gravity of a system of particles rigidly
connected, or of a rigid body, be supported, the whole system
will be supported, and the system or body will balance about
the center of gravity in all positions.

34. If the positions of the particles be given with respect to
a fixed origin and co-ordinate axes, we should find the position
of the center of gravity by the same process as in article 16; the
weights of the particles being the forces, and the whole weight
of the body being the resultant, or the sum of the weights of
all the particles.

If m = the mass of any particle, and therefore proportional
to its weight, x, y its co-ordinates, and #, 7 the co-ordinates of
the center of gravity of the system, we have, by article 16,

= 3(m.x) or = %1 + myxy +mgr; + &c.

S(m) " °° my + mg+mg+ &ec.
7= 2(m-y) or = M1+ meys +myys+ &e.
y Sm) " m + mg+m3+ &c.

where z,, y, are the co-ordinates of the particle m,; x5, y, those
of my, &c. &c. If the particles are all in the axis of z, y,=0,
y,=0, &c. &c. and 7=0.

35. The formula of the last article are applicable to the so-
lution of problems where the centers of gravity of the parts are
given to find the center of gravity of the whole body, and where
the centers of gravity of the whole body and some of the parts
are given, to find the center of gravity of the remaining part;
for the weight of each part being taken at its center of gravity,
we treat the problem as if a heavy particle of that weight were
placed there. Thus, let M equal the whole mass of a body; #,
the co-ordinates of its center of gravity; M, My, &, ), &y, s,
the corresponding quantities for its two parts; we have

5 = Mo+, g = Mt Mg,
If M, M,, and #, §, &,, ,, were given, we have
M, = M—M,
5, = M7~ M g, = MI—Mg,

2 M;; Y Iu'2



STATICS. 43

36. Ex. 1. To find the center of gravity of a uniform physi-
cal straight line.

If AB be the uniform straight A B
line, it will balance on a fulcrum or ¢
fixed point at C its middle point, which will be its center of
gravity by art. 28; for we may consider the line as made up of a
series of equal particles in pairs, at equal distances on opposite
sides of C, and the weights of each pair would have their result-
ant weight acting at C, the middle point between them, or the
resultant weight of the whole line would act at C; and this
weight being supported by the reaction of the fulerum, the line
will be supported, and its center of gravity will be at C, its
middle point.

Ex. 2. To find the center of gravity of a triangular plate, of
uniform thickness and density.

Let 4B C be the triangular
plate of which the thickness is
inconsiderable. Draw from C the
line CD bisecting 4B in D, and
from B the line BE bisecting
AC in E. Let G be the inter-
section of CD and BE, then G is* ° ?
the center of gravity of the triangle. For we may consider the
triangle to be made up of physical lines, each parallel to 4B;
let adb be any one of these lines, meeting CD in d, which will
be its middle point, because by similar triangles we have

Cd:da:: CD: DA
::CD: DB
:: Cd: db
The line ab has therefore its center of gravity at d.

Similarly it is shewn that every line parallel to 4B will be
bisected by CD, and have its center of gravity in that line; there-
fore the center of gravity of the triangle will be in this line.

In the same way it is shewn that the center of gravity will
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be in the line BE: consequently it must be at the intersection
of these lines, cr at the point G in the figure,

Join the points D and E. The line DE is parallel to BC,
because the sides 4C, 4B are cut proportionally in D and E,
and DE = } BC.

Also the triangles EDG, BCG are similar.
« ED:BC:: DG: CG
0 1:2
or, DG=}.CG=%.CD
So also, EG = 3.BE

Therefore to find the center of gravity of a triangular plate,
we draw a line from any angle to the middle of the opposite
side, and measure along this line § its length from the angle, or
4 from the bisection of the side, and the point so found is the
center of gravity required.

Ex. 3. To find the center of gravity of a parallelogram of
which the density is the same at every point, and the thickness
uniform but very small.

Let ABCD be the parallelogram ;
bisect the sides 4D, BC in E and F,
and join EF; also bisect 4B and CD / / JZ /
in H and K, and join HK; let G be //\ /
the intersection of EF and HK, then
G is the center of gravity of the paral- 4 ¢
lelogram.

For the parallelogram may be considered made up of physical
lines as ad parallel to 4D; each of these will be bisected by the
line EF, and therefore the center of gravity of the parallelogram
will be in this line. Similarly, the center of gravity will be in
the line HK, and is therefore the point G at the intersection of
these lines.

It is also evidently the intersection of the diagonals of the
parallelogram.,
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Ex. 4. To find the center of gravity of a polygonal plate, of

uniform density and thickness.

Let ABCDEF be the poly-
gon. Draw the lines 4E, AD,
A4C, dividing it into triangles.
When the polygon is given,
these triangles will be known,
and their centers of gravity will
be found by Ex. 2. Let gy, 92"
g3 94 be these centers of gra-
vity respectively. We may con-
sider the mass of each triangle
as a heavy particle at its center of gravity. Compounding the
masses at g, and gy, by art. 33, their center of gravity will be at
some point as G’ in the line joining ¢, and g;. Compounding
the mass of the two triangles at G' with the mass of the next
triangle at g3, we shall have the center of gravity of the three
triangles at some point as G”, and so onwards; the last point so
found will be the center of gravity G of the whole figure.

Ex. 5. To find the center of gravity of a triangular pyramid,
of uniform density.

Let ABCD be the triangular
pyramid. Bisect the edge BC in
E, and draw the lines 4E, DE;
in AE take Af = $4E, in DE
take De = §DE, then e and f are
the centers of gravity of the tri-
angular faces of the pyramid DCB,
ABC respectively. Join Df, Ae;
these lines intersect in a point G,
which is the center of gravity of /=2
the pyramid.

For we may consider the pyramid made up of triangular
plates parallel to any one of its faces. Let abc be such a plate
parallel to the face #BC. The parallel planes meet the plane
DCB in cb, CB, therefore these lines are parallel, and cb is bi-
sected by the line DAE in 4; for
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Dh:ch:: DE: CE
::DE:EB
:: Dh: hb
therefore ch=hb.

Similarly, the lines a% and AE are parallel, and DY, a line in
the plane of the triangle 4ED, cuts them proportlonal]y Let
g be the intersection of Df and ak,

Dg:ag:: Df: Af
and gh: Dg:: fE : Df
Compounding, gk :ag::fE: Af
1:1:2
therefore g is the center of gravity of the triangle abc. Simi-
larly it may be shewn that the center of gravity of every section
parallel to 4BC is in the line Df. In the same way it may be
shewn that the center of gravity of every section parallel to the
face BCD is in the line de. The center of gravity of the whole
pyramid must therefore be in each of these lines, which are both
in the plane 4ED. Let G be the intersection of Ae and DY, or
the center of gravity of the pyramid; join fe. Since 4E, DE
are cut proportionally in e and f, ef is parallel to 4D, and
ef: AD :: fE: AE
::1:3
Also the triangles 4G-D, fGe are similar, and
fe: 4D :: fG: GD
::1:8
or, fG=1GD=1Df, and DG=4Df
Similarly eG=1}4e, and 4G=5%Ae

Or, to find the center of gravity of a triangular pyramid, we
must draw a line from any one of the solid angles to the center
of gravity of the opposite face, and measure  of that line from
the angle for the point required.

Ex.6. To find the center of gravity of a pyramid whose
base is any polygon.

Let BCDEF be the polygon which is the base of the pyra-
mid whose vertex is 4. Joining CF and DF, we divide the
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polygon into triangles, and planes A
passing through CF, DF, and the

vertex A, will divide the pyramid

into triangular pyramids. Draw-

ing a line from 4 to the center of

gravity of any one of the triangular

bases, and measuring # of that line b

from A, we shall have the center
of gravity of the triangular pyra-
mid on that base. If we take a
plane bdedef through this point pa-
rallel to the base, it will cut all c

lines drawn from A to the poly-

gonal base in the same proportion, and therefore the centers of
gravity of all the triangular pyramids will be in this plane, and
consequently the center of gravity of the whole pyramid also,
because the mass of each pyramid may be considered a heavy
particle at its center of gravity.

Again. If g be the center of gravity of the polygon, and we
join Ag, it can be shewn that the center of gravity of every sec-
tion parallel to the base will be in the line Ag, and therefore the
center of gravity of the whole pyramid will be in this line; and
since it is also in the plane bedef, it is at the point G- where Ag
meets the plane.

Hence, to find the center of gravity of any pyramid on a
polygonal base, we must draw a line from the vertex to the
center of gravity of the polygon, and measure § of it from the
vertex, or 1 from the base.

Cor. The above rule holds good whatever may be the
number of sides of the polygon, and is therefore true when the
number becomes indefinitely great, or when the base becomes a
continued closed curve, as a circle, an ellipse, oval, &c. Or, the
center of gravity of a cone, right or oblique, and on any base, is
found by drawing a line from the vertex of the cone to the
center of gravity of the base, and measuring £ of the line from
the vertex, or % from the base.



>
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Ex. 7. To find the center of gravity of a frustum of a cone
or pyramid cut off by a plane parallel to the base.

Let the length of the line drawn from the vertex of the
cone, when complete, to the center of gravity of the base = a.
Let the length of the same line to where it meets the smaller
end of the frustum = a’. Using the formula of article 35, we
have

? M,
where #=4a, #1=1d'.

Also. Similar solids have their volumes proportional to the
cubes of their lines similarly situated, and the part of the cone
or pyramid cut off by a plane parallel to the base is similar to
a’®

the whole cone or pyramid, therefore we have %‘=$,

and M, = M—M, = M(1-%)
a

/3

a
3g— Sa
M;a M(;”)Ia

and 452 = 73
M —%)
at—dt
=iz
=3 (a+a)(a®+4a"?)
T4 &®+ad+a?

which gives the distance of the center of gravity from the vertex
of the cone or pyramid; and the distance from the center of
gravity of the base along the same line is

_sla+d)(@®+a?) _a 3a
* @®+tad+a? T 4 4(a®+tad +ad?

a

Ex. 8. To find the center of gravity of the perimeter of a
given triangle in terms of the co-ordinates of its angular points.

We suppose the perimeter of the triangle to be three uni-
form physical lines whose weights are proportional to their
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lengths. Let a, b, ¢ be the sides respec-

tively opposite to the angles 4, B, C. ¢

The centers of gravity will be each at ¢
the middle point of the side, as at g,, g5, o

g3 in the figure. B

Let 2,3, be co-ordinates of A to origin O £ P
LYy . . . B o
T3y; . . . C .

then the co-ordinates of g, are 4(wy+x;3), 3(¥2+y3)

92 are §(z1+x3), §(y1+9s)

g are §(x; +23), 3(71+72)
and Z, § being the co-ordinates required, the formule of Article
34 give us

= __ a(xy+ x3) +b(y +x5) + (o) + x5)

r= 2(@a+b+o)
= _ a(ya+ys) +b(y1 +y3) +cyr+7)
y 2(a+b+c)

Ex. 9. To find the co-ordinates of the center of gravity of a
triangular plate.

Let xy,, x5y, x3y; be the co- 4
ordinates of the points 4, B, C re-
spectively.

Let the line 4D bisect BC in D;
the center of gravity being G, we
have 4G =%4D. The co-ordinates
of D are }(wy+x3), 3(y2+ys); and
if #= ON, §=GN, be the co-ordi-
nates of G, we have

ON = OL+%(0OM—-0L)
GN =AL+¥DM—AL);
or, # = ay + 3 {}(wa+a5) —2}
= 31+ a3+ x5)
Similarly, 7 = 3(y1+: +5)

Ex. 10. To find the center of gravity of the surface of a
right cone.

‘We consider the surface of the cone as a sheet of matter
equally dense at every point; and as it is symmetrical with
E
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respect to the axis of the cone, its center of
gravity must be in that line.

Again. If we draw the straight lines 4b,
Ae, from the vertex to the circumference of
the base, so that bc is an indefinitely small
arc, the center of gravity (¢) of the triangle
Abc is at a distance Ag from 4=§4b. This
is true for every such elementary triangle B
which can be formed on the surface of the b e
cone; or their centers of gravity are in a circle whose center is
G in the axis 4DJof the cone, such that /G=%4D; and G is
the center of gravity of the surface of the cone required.

EXAMPLES ON THE PRECEDING CHAPTERS.

Ex. 1. Two beams, connected together at a given angle,
turn about a horizontal axis at their point of meeting; find the
position of equilibrium which they will take by the action of
their own weights.

Let AC, BC be the beams M c N
suspended from C, and inclined to
each other at an angle a. Since 92
C is a fixed point, the only con- n B
dition of equilibrium is, that the A
moments of the weights about C
may balance.

w) w3

Let g1, g, be centers of gravity of the beams, and ¢,C = a,
93C =b. Let w, = weight of beam AC acting at g;; w, that of
BC acting at g, Draw MCN, a horizontal line, meeting the
vertical lines in which the weights of the beams act in M and N.

In equilibrium we have w, x CM =w, x CN. Let 6 = angle
BCN, which is to be found; we have
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w; X Cg, cos. ACM = w, x Cg,cos. BCN
or, w;acos. (180—a+ ) = w,b cos. 8

wyb+w, a cos. «
w, a sin. o
which gives the position of the beam as required.

whence tan. 8 =

Ex. 2. When a given weight (/) is hung from the end of
one of the beams (4), as in the last question, shew that
wob+ (W. AC+w,a)cos. a

tan. 0 = = 4 C ¥ wya) sin.

Ex. 3. Two beams, as in Ex. 1, are suspended from (B)
one end: shew that if 8 be the angle which the upper one makes
with a horizontal line, we have in equilibrium,

__ (wy+wy) BC—(wb+w, a cos. «)

tan. § = -
wyasin. a

-Ex. 4. Two spheres of unequal M_c N
radii, but of the same material, are )
placed in a hemispherical bowl; find
the position they take when in equili- A B
brium. &

N.B.—This, and similar problems Y J/

of bodies resting in equilibrium in a
hemispherical bowl, can be reduced to problems like the pre-
ceding. For if the center of the hemisphere C in the figure
were a fixed point, and connected by rigid rods 4C, BC, with-
out weight, to the centers of the spheres, we might suppose the
hemisphere removed without changing the conditions of equili-
brium.

Let w, and w, be the weights of the spheres 4 and B, whose
radii are r; and 7, respectively. Let R be the radius of the
bowl. Then if the angle 4CB = « in triangle 4BC, we have
AB =r+7ry AC=R—r, BC= R—r; and
AC*+ BC*—4B?

24C.BC
_B=nP+R—rP— (4l .
= S R—r) (B=ry) , which gives a.

COoS. aa =
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The position of the spheres will be known if the angle BCN
be known; let it = 0. The weights are proportional to the
volumes of the spheres, or to the cubes of the radii;

3
or, ﬂ=r—‘3, and w; X CM = wy, x CN
Wy T
or, wy(R—n)cos. (180 —a+ 0) = wy(R—ry) cos.
r3(R—7y) +13(R—r)) cos. «
r3(R—r)sin. «

whence tan. 6 =

Ex. 5. A heavy beam has one end resting against a smooth
wall, and the other tied to a cord which is fastened at a point
directly above the point where the beam rests; find the forces
which keep the beam in equilibrium.

Let CB be the beam in the figure, 4B the cord;
A4 and C being points on the wall. The weight of
the beam (w), the distance (Cg=a) of the center of
gravity from the end against the wall, the length of A
the beam (), the length of the cord (c), and the dis-
tance (k) of the points 4 and C must be given. The :
angles 4, B, C, will be known.

Let ¢ = the tension in the cord. ¢

The beam will press at C against the wall, and we
may resolve this pressure into a vertical and horizon-
tal part; the latter, perpendicular to the wall, will B
be destroyed by its reaction (R); but since the wall is v
smooth, the vertical component can be balanced only by an
opposite force P.

If we take into account all the forces which act on the beam,
Wwe may treat it as a free body in equilibrium from their action,
and apply the conditions of equilibrium investigated in Chapter
IV., namely:

5(X) =0
S(Y)=0
E(Xy— Yx) =0

Therefore, resolving the forces vertically and horizontally, we
have '
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P+tcos. A—w=0 (1)
R—tsin, A=0 @)

Since the origin of co-ordinates may be taken any where, we
may fix it at a point where we avoid moments of the unknown
forces ; therefore, fixing it at C, we have, for the equation of
moments,

w xsin. Cx Cg—¢ xsin, Bx CB=0
a.sin. C

I.sin. B

ac

=wo.s

L h
which gives the tension in the cord.

or, i=w

Substituting in the equations (1) and (2), we have

R=w ;{ sin. 4, which gives the pressure against the wall.

P=w(l— cos A), which gives P, as required.

Ex.6. A heavy beam rests upon a peg, with one end
against a smooth vertical wall: find the position of equilibrium.

Let ACB be the beam, resting at
A against the vertical wall 4DE, and E

upon the peg C.

The center of gravity, when there bpf-
is equilibrium, will be evidently at
some point, as g, beyond C from 4.

Let w = the weight of the beam;
R=reaction of the wall perpendicular
to itself at 4; R'= reaction of the peg perpendicular to the
beam at C. These three forces keep the beam in equilibrium
when making some angle 6 with the horizontal direction,
which is to be found.

Let 4g=a, and CD=b=nperpendicular distance of the peg
from the wall, which must be given.
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Resolving the forces horizontally and vertically, we have

R—R'sin. =0 ¢))
w—R' cos. =0 €))

Taking the moments about C, we have
w.Cg cos. 6—R.CD.tan. §=0 3)

or, w(a—b secant ) cos. § —Rb.tan. §=0
Multiply (1) by cos. 6, (2) by sin. 6, and subtract, and we have
R cos. 0—w sin. =0
». R=wtan. 8
Substituting, w(a—>b sec. 8) cos. 0 —wb tan.26=0
or, acos.0—b(1+tan26)=0

whence, cos. = A g, and b must be less than a.

Ex. 7. Prove that in the last question the same result is
obtained if we resolve parallel and perpendicular to the beam,
and take the moments about either 4 or g in place of C.

Ex. 8. A heavy beam lies partly in a smooth hemisphe-
rical bowl and partly over one edge: find the position of equili-

brium.

Let ABCbe the beam, rest-

RI
ing on the surface of the hemi- * c
spherical bowl at 4, and on the /
edge at B. o %

D
/ y
/8
The center of gravity of the

beam will be at some point g within the bowl. Let dg=a.

Let O be the center of the
bowl DAB, whose radius=r,
and BOD horizontal.

The beam is supported by the reaction of the bowl at 4
perpendicular to the surface, or in 40, let it=R; by the re-
action of the edge at B perpendicular to the beam, let it=R';
and by the weight of the beam (w) acting at g.
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Let §=angle 4BO=angle BAO, which is to be found.

By the artifice of resolving in the direction of the beam and
taking moments about B, we avoid expressions involving the
unknown reaction R', and have, parallel to 4B,

R cos. 0—wsin. =0
or, R=wtan. 6

For moments about B,
R .ABsin. §—w. By cos. =0

or, R.2r cos. 8.sin. @ —w (2r cos. @ —a) cos. 6=0
Substituting for R, and omitting the common factors,
2rtan. 6.sin. 0 —2r cos. 0 +a=0

whence 2r —4r cos.20+a cos. =0

a+V 32 +a?
8r
in which the + sign only is admissible.

or, cos. 0=

- Ex. 9. Solve the last example by following the method of
Article 24 in every step; taking A for the origin of co-ordinates,
and 4B for the axis of x.

Ex. 10. Find the horizontal strain on the hinges of a given
door, and shew that the vertical pressures are indeterminate.

Let the figure annexed represent R
the door, of which the hinges are 4 A
and B. y

Let g be the center of gravity atnl\ i
which the weight (w) of the door acts. (B

The door is in equilibrium from its ):, 7
weight w at g, and the reactions of the 7
hinges represented by the oblique ar- —[ Qe z
rows at 4 and B. N

Let A be the origin of co-ordinates N
as in the figure ; Ax the axis of z; Ay M
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the axis of y; and let x = a, y =0 be the co-ordinates of g,
x=0, y=h those of the hinge B.

Let the resolved parts of the reactions at B be @, horizon-
tally, and R, vertically, and let Q,, R, be those at 4 respec-
tively, as in figure.

Then, E(X)=0= Qg—Ql or, Ql= Qz (l)
(1) =0=w—R,—R, @
S(Xy—Yzx)=0=w.a—Q,.k 3)

From (3) and (1) we have

wa

Q1=T=Q2

which gives the horizontal strain; and it is the same at each
hinge in magnitude, but opposite in direction.

Again. From (2) we have R,+ R,=w; but we have no
other relation to enable us to determine the separate values of
R, and R,, which are therefore indeterminate.

Ex. 11. Two given smooth spheres rest in contact on two
smooth planes, inclined at given angles to the horizon ; to find
their position of equilibrium.

Let 4B, AC be
the planes, making the
angles « and B respec-
tively with the hori-
zontal line through 4.

Let 0,, O, be the® ij ¢
centers of the spheres

at which their weights

w, and w, respectively act.

Let R, and R, be the reactions of the planes at the points
of contact, perpendicular to themselves, and therefore passing
through the centers of the spheres to which they are tangents.
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Let § equal the mutual pressure of the spheres at their point
of contact, acting in the line passing through their centers; let
this line O, O, D make the angle 6 with the horizontal line
A4D. 1t is required to find 6.

Each sphere is in equilibrium from its own weight, the
reaction of the plane against which it rests, and the pressure of
the other sphere. By the artifice of resolving in the directions
of each plane for the equilibrium of each sphere, we avoid equa-
tions involving the unknown reactions R, and R,, and have, in
the direction of 4B,

wsin. a— 8 cos, (2 —0) =0 (1)
in direction of 4C,

w, sin. B8—8 cos. (B+6) =0 ()]
Eliminating S, we have

we sin. a. cos. (B + 0) =w, sin. B.cos. (a—6)
wg sin. a. cos. B—w, sin. 8. cos. «
(w, + w,) sin. «.sin. B

__wycot. B—w, cot. a
- wy + Wy

whence tan. =

Ex. 12. A sphere is sustained upon an inclined plane by
the pressure of a beam movable about the lowest point of the
inclined plane; given the position of the beam, required that of
the plane,

Let AgB be the beam,
movable about 4.

Let w = weight of the
beam, acting at its center of
gravity g ; B the point of con-
tact with the sphere, whose
center is C; let w' =weight of A
the sphere.

The sphere is in equilibrium, from the reaction (&) of the
plane at the point of contact, from the pressure (P) of the beam
at B, and from its own weight; these three forces all act
through the center C.
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Let Ag=a, AB=b, angle BAD, which the beam makes
with the plane,=a, these are given; or, in place of either one
of the two latter, we may have the radius of the sphere given.

Let the angle DAE =8 the elevation of the inclined plane,
which is to be found, when there is equilibrium.

For the condition of equilibrium of the beam, taking mo-
ments about 4,
PxAB=w.Ag cos.a+06

or, P=w ‘I—:cos. at0

For the condition of equilibrium of the sphere, resolving the
forces in the direction of 4D, we have
w'sin. 0— Psin. a=0

. a . —_
or, w'sin. 6 —w 7 sin . cos. a+60=0

W @.cos. &.sin. &

whence tan. 0=m

which gives 6, the elevation of the plane as required.

Ex. 13. A heavy beam turns about a hinge at the lower
end, with the other end pressing on an inclined plane, a part of
the surface of a body which rests on a smooth horizontal plane
passing through the hinge; find the horizontal force necessary to
keep the body from moving.

fig. 1. R

Let BCD be the body
resting on the smooth hori-
zontal plane A4CD. Let
AB be the beam turning
about the hinge at 4; let g 5
be the center of gravity of c D
the beam, at which its weight \L
(w) acts. v

The body is to be in equi-
librium from the pressure of 7B/l (F
the beam upon it at B, and a = N
horizontal force (F) acting at
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some point K; and the beam is to be in equilibrium from the
reaction (R) of the inclined plane upon it at B, and its own
weight acting at g.

The point B is in equilibrium, from the reaction (R) per-
pendicular to the inclined plane, the reaction (R') of the beam
in the direction of its length, and a force (2°) acting perpendicu-
larly to 4B, arising from the moment of its weight (w) about A.

Taking the moments about 4 for the equilibrium of the
beam, we avoid expressions involving R', and have

w.Adgcos.gAC—R . ABsin. ABR=0

Let the angle BAC=}, the angle of the inclined plane with
CD=a, Ag=a, AB=1;
cos. B

tlxenR=wl cos. (a—PB) (1)

To find R in terms of /' we must consider the conditions of
equilibrium of a right-angled triangular wedge sliding along a
smooth plane, as CD, figure 2, from the action of a force (F)
acting parallel to CD, a pressure (R) perpendicular to CB at B,
and the reaction of the plane CD. If Bn be perpendicular to
CB, and Bm to CD, these three forces will be proportional to
the sides of the triangle Bmn respectively.

Resolving parallel to CD, we have
Rsin. BCD—F=0
r

sin. a

or, in figure 1, R=—

Substituting in (1), we have
F=u® sin. a . cos. B

=W — =
! cos.(a—p)
which gives the horizontal force required.

Ex. 14. Solve the last example by taking the conditions of
equilibrium at the point B; and shew that the whole pressure

on the hinge 4=w {sin. 8+ ‘;cos. B.tan, (a—ﬁ)} .
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Ex. 15. A beam turning about a hinge is supported in
equilibrium by the tension in a cord tied to its lower end: the
cord passes over a pulley in the same horizontal line with the
hinge, and sustains a given weight; find the position of equili-
brium of the beam.

In the previous examples we obtained
the solution from the equations for equi-
librium only, but many statical problems
require, for the determination of all the
unknown quantities, equations tobe formed
from geometrical conditions also, of which
this simple problem is an example.

Let A be the hinge, C the pulley, and
AC=c.

Let AB be the beam, whose length =/, g its center of gra-
vity at which its weight (w) acts, and 4g =a.

Let P be the weight hung from the cord, which is equal to
the tension (¢) in the cord.

Let 8=angle CBA, ¢=angle CAB; these are both unknown
quantities.

Taking moments about 4, we have
t.ABsin. 0 =w. Ag cos. ¢

. a
or, sin. 6 =%-—l—-cos.¢ (1)
From the geometrical data we have
sin.d _ AC
sin. ACB — 4B
or, sin. § = % sin. (0+ ¢) (2)

The equations (1) and (2) suffice to determine 6 and ¢.

Ex. 16. A uniform beam rests with its lower end in a
smooth hemispherical bowl, and its upper end against a smooth
vertical plane ; find the position of equilibrium.
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Let 4B be the beam resting i
against the vertical plane at 4, and 2 A
upon the bowl at B. E c d

Let C be the center of the bowl; 9
ECF a horizontal diameter which, m

being produced, meets the vertical
plane at D.

Let the radius of the bowl =7 ®
AB=length of the beam=/; Ag:é, since the beam is uniform;

w =its weight; let also CD =d; these must be given.

Let angle BCE =0, and let ¢ =angle of the beam with the

horizon; these have to be determined.

The beam is supported by its weight (w) acting at g, the
reaction (R') of the plane perpendicular to itself at 4, and the
reaction (R) in the radius CB.

Resolving vertically, we have

R.sin.0—w=0

or, B = si:: [
Taking the moments about 4, we have
R.AB.sin. (0—¢)—w.Ag.cos. =0

in. (6— .
therefore smsi(n. ) ¢) __cos2 ¢_ 0 1)

This equation containing two unknown quantities, we require
still a geometrical relation between them.

Let Cm be a vertical line meeting 4B in m ;
cos.§ Bm __AB—Am
cos.¢  BC~  r

_l—d.sec. ¢
- r

.. cos. 0= {._c_ow €))
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From (1) we have cos. ¢ —cot. 8 .sin. ¢ —1cos.¢ =0
or, tan. § = 2tan. ¢
These two equations suffice to determine ¢ and @ as required.

Ex. 17. A weight (w) hangs from one end of a cord, of
which the other end is fastened to a vertical wall: the cord is
pushed from the wall by a rod tied to it, which is perpendicular
to the wall. Shew that if the cord, where it is fixed to the
wall, makes an angle « with it, and R be the pressure of the rod

on the wall, then
R=w.tan.a

Ex. 18. A heavy beam lies with its upper end against a
smooth vertical plane, and its lower end on a smooth horizontal
one. Shew that if the beam makes an angle « with horizontal
direction, its length being 7, and weight w, and the distance of
its center of gravity from the lower end being @ ; then the force
required to be applied horizontally at its lower end to maintain
a
Y]
against the vertical wall. Shew also that the pressure on the
horizontal plane = w.

the equilibrium being F, we have F = w— cot. « = the pressure

Ex. 19. A body is suspended by a cord of given length
from a point in a horizontal plane, and is thrust out of its verti-
cal position by a rod, without weight, acting from another point
in the plane; shew that if # = the tension in the cord, w = the
weight of the body, / = the length of the cord, d = the distance
of the two points, and 6 be the angle which the rod makes with
the horizon,

t=w§cot.0

Ex. 20. A triangular plate of uniform thickness and density
is supported horizontally by a prop at each angle; shew, by
drawing perpendiculars on the sides respectively, from the oppo-
site angles and the center of gravity, that the pressure on each
prop .= % the weight of the plate.



CHAPTER VI.

ON THE ELEMENTARY MACHINES, OR MECHANICAL POWERS.

THE effects of forces in practical mechanics are continually
modified through the agency of instruments which we call
machines.

The simplest of these instruments are Cords and Rods,
which, with hard planes, may be considered as forming, by
their combinations and recombinations, all other machines,
however complicated.

Cords are considered in the first instance as without weight,
and perfectly flexible. A cord transfers the action of a pull-
ing force, applied at one extremity, to any other point in it,
unchanged in magnitude, as long as it is in a straight line to
that other point, or only passes over smooth obstacles without
friction. The force which is thus transmitted along the cord we
call the tension in the cord.

Rods are considered in the first instance as without weight,
and inflexible or rigid. They transmit the action of either a
pulling or a pushing force in the line joining their extremities
unchanged in magnitude. The force which is transmitted along
this line we call the reaction of the rod.

The machines which are next in simplicity to simple cords
and rods are called the Mechanical Powers. They comprise the
Lever, the Wheel and Axle, Toothed Wheels, the Pulley, the
Inclined Plane, the Wedge, and the Screw.

ON THE LEVER.

The simple lever is a straight rod, having a fixed point some-
where in its length, and supposed without weight. The fixed
point about which tke lever may freely turn is called its fulcrum.
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The conditions of equilibrium of any heavy lever may be
reduced to those of a lever without weight, by taking the weight
of the lever itself, acting at its center of gravity, with the other

forces producing equilibrium.

The arms of a lever are the portions of it on each side of the
fulcrum. When the arms are not in the same straight line, it is

called a bent lever.

The mechanical powers being
most familiar to us as employed
to support or raise heavy bodies
or weights, it is usual to call one
of the forces the Power, and the
other the Weight.

Levers have heen divided into
three kinds, according to the rela-
tive positions of the Power, the
Weight, and the Fulcrum.

Figure 1 is an example of a
lever of the first kind, 4B being
the lever, C its fulecrum; the power

(P) and weight (#) acting on op-
posite sides of the fulerum.

Figure 2 is an example of a
lever of the second kind, 4C being
the lever, C the fulcrum; the
power (P) and the weight (#)
acting on the same side of the ful-
crum, but # nearer to it.

Figure 3 is an example of a
lever of the third kind, BC being
the lever, C the fulcrum; the
power (P) and the weight ()
acting on the same side of the ful-
crum, but the power nearer to it.

fig. 1.
A & [ B
A
P °
fig. 2.
P
B (o}
A a
fig. 3.
P
B v
A [
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A crow-bar, according to the way in which it is used, is a
lever of the first or second kind. Scissors and carpenter's pincers
are examples of double levers of the first kind. An oar is an
example of a lever of the second kind, the fulcrum being a point
in the blade of the oar which rests for an instant stationary in
the water. Nut-crackers are double levers of the second kind.

Tongs, shears, &c., are double levers of the third kind. The
bones of the arm act as levers of the third kind.

87. Pror. To find the condition of equilibrium when two
parallel forces act upon a straight lever, and to find the pressure
on the fulcrum.

Since the fulcrum is a fixed point, the only effect of either
of the forces tends to turn the lever round this point, and in
equilibrium, the tendency to turn it one way round must be
balanced by an equal tendency to turn it the other way round;
or, the moments of the forces about the fulecrum must be equal
and opposite.

Q
=

If « be the angle which they make _A
with it, we must have, in both figures,
P.ACsin.a=Q.BCsin.a

P.4C=Q.BC

»_zc

Q 4cC P

which being independent of =, there

will be equilibrium in every inclina-

tion of the lever to the forces if there

be equilibrium in any one; and the

Jforces are inversely as the distances
Jrom the fulcrum at which they act. A —

or,

‘We may solve this proposition by

going through all the steps of Article

.12, Chap. 1I.; for, in equilibrium,

_the resultant of the two parallel forces

must pass through the fulerum, and
F
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be destroyed by its reaction; therefore the pressure on the ful-
crum is always equal to the algebraic sum of the parallel forces;
and acts in the direction of the greater force, when they are op-
posite.

38. Prop. To find the condition of equilibrium when any
two forces in the same plane act upon a straight lever, and the
pressure on the fulcrum.

Let the forces P and Q fig. 1.
make the angles « and B re- e
spectively with the lever, as in e
the figures, and let their direc- e
tions when produced, if neces- A’/.";

sary, meet in D. Since their :
moments about C must be equal /
and opposite when there is equi-

librium, we must have

P.ACsin.a=Q.BCsin. 8 fig. 2.

For the pressure on the fulerum
and its direction we must find
the magnitude (R) of the result-

ant of P and Q, and the angle -
it makeswith 4 B; since in equi- AL
librium it must be destroyed by ‘
the reaction of the fulcrum. /

P

By Article 7 we have, in figure 1,
RB=P+Q*+2PQcos. ADB
and ADB=180—a—f
S R=P2+ Q2—2 PQcos. (24 B)

In figure 2, ADB=B—a, and ADQ is the angle between
the forces.

s RP=P4 Q*—2PQ cos. (B—a)

To find the inclination () of R to the lever, in figure 1. By
resolving parallel and perpendicular to the lever, taking R the
reaction of the fulcrum opposite to the resultant of the forces,
we have
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Pcos.a— Qcos. B+ R cos. =0 1
Psin. a+ Qsin. 8— R sin. =0 @)

From these equations (1) and (2) we have

Psin. a + Qsin. B

Qcos. 8— Pcos. a

which gives §. A similar expression may be found for the
lower figure.

tan. =

39. Prop. To find the condition of equilibrium when two
Jorces in the same plane act in any manner on a lever of any
Jorm.

If P and Q, acting as in the
figures at 4 and B respectively,
be in equilibrium about the ful-
crum C, and we draw perpendicu-
lars, CM, CN, upon their direc-
tions, we have, by the equality of
moments about C,

PxCM=QxCN

P_CN
b QT

or, in equilibrium the forces are
inversely as the perpendiculars
upon their directions from the
fulerum.

‘When the directions of P and
Q, with respect to any given straight line through C, are known,
the magnitude and direction of the pressure on the fulcrum can
be found as in the last proposition.

40. Pror. To find the condition of equilibrium and the pres-
sure on the fulcrum when any number of forces act in any man-
ner, in one plane, on a lever of any form.

Let P,, Py, P, &ec. be the forces acting in the plane of the
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figure at the arms C4, CB, CD, &c.
respectively, or at the points 4, B,
D, &c. in a plane turning about an
axis through C perpendicular to it.

Take any two lines perpendicular
to each other through C, as Czx, Cy,
for the axes of co-ordinates.

Let P be any one of the forces
which makes the angle « with Cxz,
and let x, y be the co-ordinates of its point of application.
Then proceeding as in Article 24, we shall have,

at C, in Cz, a force = 3(P cos. «)

at C,in Cy, . . = 3(Psin.a)
and a resultant couple whose moment must = O when there is
equilibrium, or we must have

S(Pcos.a.y—Psin.a.x) =0
The resultant force at C will be destroyed by the reaction of

the fulecrum, and we have the pressure (R) upon the fulcrum
from the equation

R= ,\/ {S(Pcos. 2)} 2+ {3 (Psin. )} ®
If R makes an angle 6 with Cx, we have

tan. 6 = S(Psin. a)
¥ =S (Pcos. )

ON THE WHEEL AND AXLE.

41 .‘ This machine consists of a
wheel, 4B, firmly fixed to a cylinder c
or axle, CDEF, with a common axis, :@-

GH. The pivots or extremities G ¢
and H of the axis generally turn in D
steps which support the whole; and

the forces act by cords which are
wrapped round the wheel and the w
axle,
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The annexed figure being an end
view, we see. that by drawing a hori- o 7 ¥

zontal line through the center of the 7\

axis C, we have the power (P) and
the weight (/) acting at 4 and B,
the extremities of a straight lever
ACB; and in equilibrium we must
have their moments about C equal
and opposite ; or,

PxAC= WxBC

W _4C
% P = BC

The same relation will exist if the wheel and axle be turned
round either way ; so that the machine may be called a perpetual
lever., Also P' and W' being forces equal respectively to P
and W, there will be equilibrium at whatever points the cords
leave the wheel and axle respectively, since the moments about
C remain the same as before.

ON TOOTHED WHEELS.

42. Toothed or Cogged
Wheels are thin cylinders, on
the circumference of which are
projections called teetk or cogs,
as in the figure. If two such |
wheels have their cogs set at
equal distances they will work
together, and if one be set in
motion it will communicate mo-
tion to the other through the
mutual pressure of the cogs
which are at any instant in con-
tact.

Let S be this mutual pressure in the figure, which acts in
the line $'m'msS, a common normal to the cogs at their point of
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contact; Cm, C'm’ being perpendiculars from the centers C, C’
of the wheels upon that line.

Let the power (P) act by a weight from a cord wrapped
round an axle with center C’ and radius C'A, and let the
weight (/) act similarly from an axle with center C and radius
CB.

Taking the moments about C’, we have, in equilibrium,
PxC'A=8xCw
and about C,
WxCB=_8xCnm
Dividing the latter by the former, we have
w_c4, om
P CB"Cw
Now, if the axles from which P and # act are of equal radii,

the effect of the combination will depend on the cog-wheels
only, and we have then

W _ Cm
P Cwm

Let Sw'mS meet the line joining the centers C, C’ in o,
then the triangles C'm’0, Cmo will be similar and

Cm _Co_W
C'm'~ Co™ P

Let the dotted circles be described with radii Co, C’o, these
are called the pitch-lines of the wheels, which roll uniformly
upon each other, when the cogs are made of a proper form. In
planning wheel-work these pitch-lines are first laid down, and
the places of the cogs marked at the same equal distances upon
each; their radii are to be so taken that there may be the requi-
site number of cogs on each circumference; and as they are at
equal distances, their number will be in proportion to the cir-
cumference.

W _ Co _ circumference to radius Co
* P 7 Co  circumference to radius Co

_ number of teeth in wheel of W
~ number of teeth in wheel of P



STATICS. 71

The form of the teeth most used in machinery is, that the
inner part is formed by radii from the center of the wheel, and
the outer part epicycloidal curves; the bottoms of the spaces
being rounded to give strength to the teeth. See Willis's Prin-
ciples of Mechanism.

There are several forms of toothed wheels, which are all sub-
ject to the above rule. When the teeth project from the flat
face of the wheel instead of the edge, they form the crown wheel.
When the wheel contains very few teeth, it is called a pinion,
and its teeth or cogs are then called leaves. These forms may
be seen in most watches.

In the preceding instances the axes of the wheels working
together were either parallel, as
in the first form, or at right angles
to each other, as in the crown
wheel and pinion. But wheels
are in continual use in which the
axes form any given angles, and
the cogs are then placed on thin
frustums of cones, as in the figure,
in place of cylinders; and the wheels are called bevelled wheels.

ON THE PULLEY AND SYSTEMS OF PULLIES.

43. The pulley is a small wheel, with a groove on its edge
to admit a cord which passes over it; it turns round an axis or
pivot through its center, which is fastened to the frame-work,
called the block, in which the pulley moves. It is called a move-
able or a fixed pulley, according as the block is moveable or fixed.

A fized pulley serves merely to change T4
the direction of the force in the cord passing
over it; for, neglecting the friction of the ' '
pulley, the tension of the cord must be the
same in every part. » .

44. Prop. To find the relation of the power to the weight in
the single moveable pulley with the cords parallel.
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The annexed system, consisting of a move-
able pulley from which the weight (/) is
suspended, and a fixed pulley over which the
cord sustaining the power (P) passes, has the
other end fastened at 4.

Since the cord is supposed to pass freely
over the pullies, the tension will be the same
at every point, and the two vertical cords
from the moveable pulley sustain #;

or, if ¢ = the tension, 2t =W =2P

w
P= 5
If we take into account the weight of the moveable pulley,
we may either add this weight (w) to #, or we may suppose
the pulley counterpoised by a weight suspended with P, but
not reckoned with it.

Taking A +w = the whole weight sustained by the tension
of the two vertical cords, we have

2t=W+w
or, P=}V—;—1—v-

45. Prop. To find the relation of the power to the weight in
the single moveable pulley with the cords inclined.

Let ¢ = the tension in
cord, which, being fastened
at 4, passes freely over the
moveable pulley, sustaining
the weight (#), and the
fixed pulley; and is there-
fore the same at every part
of the cord, and equals the
power (P).

Let w=the weight of the
moveable pulley; «=the angle which the inclined cords make
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with the vertical direction, and which is the same for both cords,
since the resultant of the two equal tensions must be a vertical
_ force sustaining # and the weight of the pulley.

Therefore, resolving in the vertical direction, we have
2t.cos.a=W+w

W+w
2 cos. a

or, P=

If w be neglected, or counterpoised independently, we have
w

~ 2cos. a

‘We note here, that the two parts of the cord can never be
drawn into one straight line, or « become 90° whilst P and 7
remain finite, however great P may be, and however small #
may be.

Amongst the various ways in which pullies can be combined,
there are three, which have been called the first, second, and
third systems of pullies.

46. To find the relation of the power to the weight in a com-
bination of pullies, with the cords parallel, where the power at
each pulley acts as weight to the next above
¢t. This is called the first system of pullies.

The figure represents this system with
three moveable pullies, a;, a3, and a3 Let
W be the weight, supported at the block of
the pulley a,, and P the power, acting at the
last cord after passing over the fixed pulley.

Let w,, wy, w; be the weights of the
pullies @), as, a3 respectively. Let 4, be the
tension in the cord passing round the pulley
a,, t, that in the cord round a,, ;3 that in
the cord round a;.

Then, for the gquilibrium of a,;, we have
2t1 = W + wy
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W, oo

or, L= 2 2

For the equilibrium of a; we have
: 2t2 = tl + Wq
t
or, t2=’él + %2
w w,
=+t
For the equilibrium of a; we have
2t 3= tg + w3
W w

or, t3=P—23+:&J+ +2

which gives the relation of P to /¥ as required.

If the system contains # moveable pullies, we have, similarly

W w
P= +‘+2,,,+

2t 2"'&‘: ...+7L

2n- 2

If the pullies are all equal, and their weights each equal to
w;, we have

P=2’f “"(l+2+22+&c e 42
W wl n__
= tm@—1)

In this system a part of the power is expended in sustaining
the pullies. If the pullies be counterpoised independently, we
have

W n
5=2

47. Prop. To find the relation of the power to the weight in
a combination of pullies in two blocks where the same cord passes
round all the pullies. This is called the second system of
pullies.
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This combination of pullies is &1 fig. 2.
the one in most common use. The
pullies are arranged in the blocks in
a variety of ways, but figure 1 repre-
sents the most usual. White's Pulley
is a modification of the system, in
which all the pullies of each block
were formed upon one piece of wood
or metal, with their circumferences
each proportional to the length of e
cord which would pass over them E
when put into use to raise weights,
so that all those in each block would
have the same angular motion, and
they might be then combined into
one wheel, by which a great propor-
tion of the friction in the common
form would be saved. This plan, which pro-
mised so well in a theory constructed upon im-
perfect data, has been found useless in practice,
from that fertile source of error, the omission of
essential natural properties, namely, here, the
elasticity of all cords, which is continually chang-
ing with the wetness or dryness of the atmo- w
sphere, and the friction of the cords upon the
pullies. Neglecting the friction, we shall have
the tension the same at every part of the cord, and counting the
number of cords at the lower block, we shall have the number
of times the tension which supports the weight (/) and the
weight of the block (w).

Therefore, if n=number of cords at the lower block,

nt=W4+w

but =P
cp=ye
n o on

If, as in the figures, the end of the cord be tied to the
upper block, the number of pullies in each block will be the
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same, = m, say ; and the number of cords at the lower block will
be 2m, and then
w w
P=om ™ om

If the weight of the pullies be counterpoised or neglected,
we have

—=n

P

48. Pror. To find the relation of the power to the weight in
a combination of pullies when the cords are parallel, and each
attached to the weight. This is called the third system of
pullies.

In this system the uppermost pulley is fixed,
and its weight is supported by the beam to
which they are attached. Let w, be the weight
of the pulley a,; ws, w;, those of the pullies ay,
ag respectively. Let ¢,, t;, t5, £, be the tensions
in the cords respectively, and

L=P
to= 2, +w,=2P+w,
ty= 2ty + w,=22P + 2w, + w,
ty, =213+ wy;= 2P+ 2w, + 2w, +w;
and W=t +t,+ 63+,
=P(14+2+22+28)+w,(14+2+2%)+
wy(14+2) +w;
=P2t—1)+w (2 —1)+w,(2—1)+
w;3(2—1)

If the system contains n moveable pullies,
we shall have, similarly,

W=P@+' —1)+w(2*—1) +wy(2 ' —1)+ &e. . . .+ w,(2—1)

If the = pullies were of the same weight, w;, we should have
W=P@+'—1)+w,(*+2"1+2* 2+ &c. . . . +2)—nw,
=P(@t1—1) +w, (2" —2—n)
=(P+uw) @ —=1) = (n+ 1),
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In this system the weights of the pullies assist the power.
If they are balanced independently, or neglected, we have

;—,V=(2"+1—1)

ON THE INCLINED PLANE.

When a particle or body is in contact with any hard surface,
plane or curved, and the forces press it against the surface, the
normal reaction of the surface is one of the forces concurring to
produce equilibrium, and must be considered with the other
forces.

The inclined plane, as a mechanical power, is supposed per-
fectly hard and smooth (unless the friction is considered); and
having some angle of elevation above the horizontal plane, has a
heavy particle or body resting on it in equilibrium, by the action
of one or more forces.

49. Prop. To find the conditions of equilibrium when a body
rests on an inclined plane by the action of a force acting up the
plane.

Let the figure represent a section,
AB, of the inclined plane by a verti-
cal plane through the body at a. Let
AC be a horizontal line, and the angle
BAC = a. A

Let P be the power acting up the
plane, R the reaction perpendicular
to the plane at a, # the weight of the body acting vertically
downwards.

These three forces keep the body in equilibrium; and two
out of the three quantities #, P, and «, must be given when
the other and R ave required. Using the method of Article 23,
taking the axis of # in the plane, the axis of y perpendicular to
it, with a for origin of co-ordinates, we have the equations of
equilibrium
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3(X)=0 3(Y)=0
or here P— Wsin.a =0 ¢))
R—Wcos.a =0 @)

From any point B in the plane draw BC vertical; 4B is
called the length of the plane, BC its height, and 4C its base.

' w 1 AB
From (1), 5 =2 =BC
__length of the plane
" height of the plane

W _ length of the plane
From (2), 'R ™ Tbase of the plane

50. Prop. To find the conditions of equilibrium when a body
is supported on an inclined plane by a force whose direction
makes an angle € with the plane.

P, W,and R being the forces in
equilibrium at @, in the figure, where
angle PaB = ¢, angle BAC = a. Re-
solving parallel and perpendicular to the
plane, we have, in equilibrium,

Pcos.e— Wsin.a =0 14
R+ Psin.e—Wcos.a=0 (2

or W _ cos.e
> P sine

R = Wcos, a— Psin. ¢

sin. a. sin. €
= Wcos.a— W — " "~
cOoS. €
cos. (e+¢€
_ oo at)
COS.€
w coS. €

B R = Cos. (x+¢)

Ifa+te=90,P= W,and R = 0.

If € > 90°—a, R is negative, and the body must be on the
under side of the plane.
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51. Prop. T find the conditions of equilibrium when a body
is supported on an inclined plane by a horizontal pushing force.

The body being supported on the R
plane at a by the action of the horizon-
tal force P in Pa; resolving parallel and
perpendicular to the plane, we have, in
equilibrium,

Pcos.a — Wsin.a=0 (1) a lo
R — Psin.a — Weos.a=0  (2) v
From (1), P = Wtan.a w

AC _ base of the plane
BC ™ height of the plane
From (2), R =W cos. a + Psin.a

w
= cos.x

AC _ base of the plane
AB ™ length of the plane

w
or, P = cot.a =

w
or, -p=Cos.a =

52. Prop. To find the relation between the weights of two
bodies which rest on two inclined planes having a common summit ;
the bodies being connected by a cord passing over a pulley at the
summit ; when they are in equilibrium.

Let @ and o' be the bodies whose
weights are /# and W'. Let AB,
BC be the two planes. Let a=
angle BAC, B =angle BCA, and
BD a perpendicular on 4C.

If ¢ be the tension in the cord
aBd', we have, for equilibrium on the
plane 4B,

t = Wsin. a
and on plane BC,
t=W sin. B
o Wsinia =W sin. B

BD _ _,BD
on W =" ge
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w _4B
* w=BC
or, the weights are proportional to the lengths of the planes on
which they rest respectively.

ON THE WEDGE.

This mechanical power, not less simple than any of the
others, has been discussed very differently by different writers,
and those who have given the most elaborate solutions have
treated it the most erroneously. The student who wishes to
understand the mode of action of the wedge should consider
attentively the Example 13, page 58.

53. Propr. To find the conditions of equilibrium on the iso-
sceles wedge.

By the wedge, we mean a triangular
prism whose perpendicular section is an ¢
isosceles triangle, as in the figure, where
A is the section of the edge of the prism;

AB, AC, sections of the sides; and CB of
the back. The prism is considered hard, ®*
and perfectly smooth, if we do not intro-
duce the friction as one of the forces in-
volved.

Draw A4 D bisecting the angle of the wedge, and let
BAD=CAD=a. Let 2P be the power applied at the back
of the wedge, which is in equilibrium with the pressures (&) on
its two sides, which must be equal, and act through the same
point ¢ in the power’s direction, and also perpendicularly to
the sides of the wedge, since they are supposed perfectly
smooth.

Resolving in the vertical direction, we have

2R cos. Ra A—2P=0
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__ 3 back of the wedge
" side of the wedge

ory 5 = sin. a
which gives the force exerted by the wedge perpendicular to its
sides.

If there be more than one force acting on each side of the
wedge, their resultant in equilibrium must be R, as thus found;
and we require such additional data in order to determine the
components, as will enable us to solve the triangle of forces
when one of the forces (&) is known.

Hatchets, knives, carpenters’ chisels, &c. are examples of
different forms of the wedge.

ON THE SCREW.

The Screw consists of a projecting rib or thread passing
round a cylinder at the same angle with its axis everywhere.
This screw works in a hollow screw to which it fits.

54. Pror. To find the conditions of equilibrium on the
screw.

If we suppose one revolution of the thread to be unwrapped,
it forms an inclined plane, of which the height equals the dis-
tance of two threads, and the base the circumference of the
cylinder.

Let ABC represent 2 —
the inclined plane formed / o R
by the unwrapping of one % B
revolution of a thread, and ___9).%} /]/
BC = the distance of two A /\,/ ¢ c
contiguous threads, 4C= \Lw
circumference of the cy- |
linder.

Let a=angle BAC of
the plane, r = radius of
the cylinder.

G

{



82 ELEMENTARY MECHANICS.

The power P acts perpendicularly at the extremity F of a
lever, which turning the screw round, produces a pressure in
the direction of the axis of the cylinder of the screw. In equi-
librium let this pressure be balanced by a weight 7.

Let the arm of the lever of P=FD=a. Let Q be the equi-
valent force to P at the circumference of the cylinder, so that

FD
Q=Pzp5

=p?
- r

‘We may suppose a small part (w) of 7 to be supported at each
point of 4B ; let ¢ be the corresponding part of @, and let R be
the perpendicular reaction of the thread at a.

Proceeding as in Article 51, we have
BC
g=wtan,a= wae

__ w.distance of two threads
" circumference of the cylinder

and the same holds for all other points on the plane; therefore

we have
Q= distance of two threads
7 circumference of the cylinder
=P. a
r
—p. 2ma
‘2wr
or, P=W. distance of two threads

circumference described by 2 in one revolution

or W _circumference described by P
> P~ distance of two threads

‘We note here, that the relation of P to # is independent of
the radius of the cylinder on which the thread is wrapped.

"



CHAPTER VII.

ON COMBINATIONS OF THE MECHANICAL POWERS AND
BALANCES.

By the mechanical advantage of any machine, we mean the
number of times the weight contains the power, or the value of

the fraction %V, as used in the preceding propositions.

Recapitulating, we have for the elementary machines the
mechanical advantage :

the arm of the power

In the lever = the arm of the weight

the radius of the wheel
In the wheel and axle = the radius of the axle

the number of teeth in the wheel of W

In toothed wheels = the number of teeth in the wheel of P

In the single moveable pulley = 2

In the first system of pullies = 27, where # = number of move-
able pullies

In the second system of pullies =%, where # = number of cords
at the lower block

In the third system of pullies = 2*+!—1, where n = number of
moveable pullies

the length of the plane

In the inclined plane = the height of the plane

the side of the wedge
half the back of the wedge

In the wedge =

the circumference described by the power
the distance between two contiguous threads

In the screw =



“
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55. Prop. To find the mechanical advantage of a combina-
tion of any number of elementary machines.

‘We may suppose the machines to be connected together by
cords or rigid rods, and the tension or reaction in any cord or
rod will be the weight to the machine above and the power to
the machine below. Let the number of machines be z; and let
by by t5, &c. . . . t,—1, be the tensions or reactions in the con-
necting cords or rods.

Let P = the power for the whole combination.
W =the weight - - - -

The mechanical advantage of the combination = 'P;'_
W tﬂ—l t"_z t2 tl
== 2= &c ... 70
tp—1 lu—2z ln-s t, P

=0, 0p-1:+C0p-2. ¢« « + Q3.0Q1

if @, ay, a5, &c. . . . a,, be the mechanical advantages of each
of the separate machines.

Or, the mechanical advantage of a combination of machines
equals the product of the mechanical advantages of the separate
machines.

56. Pror. To find the mechanical advantage in the endless
screw.

This machine is a combination of the
screw and the wheel and axle. The wheel
has projections or teeth on its circumfer-
ence, set obliquely so as to fit the thread
of the screw; the power being applied at
the handle of a winch, by which the screw
presses against the teeth of the wheel and
supports a weight hanging from the axle.

The mechanical advantage of the endless screw =
the circumference described by the power _ radius of the wheel

the distance of two threads of the screw -« radius of the axle
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ExampLE. Let the winch be 10 inches, the distance of con-
tiguous threads of the screw } inch, the radius of the wheel 10
inches, and that of the axle 1 inch.

The mechanical advantage =2 ".; 10 X ]—l(-)
=3141

or, a power of one pound will sustain more than three thousand
pounds by such a machine.

57. Propr. To Jind the mechanical advantage of a combina-
tion of levers.

Let C, C, C', C" be the S "
fulerums of the levers. Let the B C l
power (P)act at A4, and the weight A =
(W) at B”; the last lever being ¢ p~ P
of the first kind, and the other "
three of the second kind. Let ¢
B4, BA’, B'"4" be rigid rods i

connecting the levers.

The mechanical advantage of
the combination=

CAxCAxC'A"xC"A”
CBxCB xC'B" xC"B”

Ex. Let the mechanical advantage of each lever=10; the
mechanical advantage of the combination=10'=10000; or, a
power of one pound will sustain a weight of ten thousand pounds
by such a combination of levers.

The weighing machine for carts and waggons is a combina-
tion of levers; the first being a pair of framework levers which
support the platform, on which the cart or waggon is placed
when weighed.

58. Prop. To find the relation of the power to the pressure
produced in the combination of levers called the knee.
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A combination of levers like the
annexed figure is used with advan-
tage in cases where a very great
pressure is required to act through
only a very small space, as in coining
money, in punching holes through
Plates of iron, in the printing-press,
&c. The lever, 4B, turns about
a firmly-fixed pivot at 4, and is
connected by another pivot at B to
the rod BC, whose extremity, C,
produces the pressure on the ob-
stacle, as E in the figure, being
retained in its proper motion by
some contrivance producing a similar action to the lever DC in

the figure.

Let the power (P) act horizontally at some point F, in the
lever 4B. Let ANE be a vertical line meeting the direction of
P in N, and DE a horizontal plane with the substance subject
to pressure at E.

Let R =the reaction of the rod BC in the direction of its
length, and 4M, DL perpendiculars upon its direction from .4
and D. Let W be the vertical pressure of the substance at E.

Taking the moments about 4 and D, in equilibrium we have

P AN=R.AM
W.DE=R.DL

AN DL
o, W=P 15 a0
% B4 DE

‘When BC comes nearly to the vertical direction, DL comes
nearly equal to DE, and 4N becomes AF nearly, whilst 4M is
very small.

So that.we ht-we -}—; = :—;% nearly, which is then very great.
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ON THE COMMON BALANCE.

The common balance, as ordinarily constructed, is a bent
lever, in which we have to take into consideration the weight of
the lever itself.

In the figure, 4 and B
are the points from which
the scale-pans and weights
are suspended; C'is the ful-
crum, being the lower edge
of a prismatic rod of steel 4
projecting on each side of
the beam ; when the ba-
lance is in use, these edges
on each side of the beam,
as at C, rest on hard sur-
faces, so that the beam turns freely about C, as fulecrum. In the
lower figure let C, 4, and B
B be as before; 4B being CLLE—
the line joining the points
of suspension. Draw CD
a perpendicular on 4B;
when the beam is symme-
trical on each side of C, its
center of gravity will be at Q
some point as g in CD.

e

The requisites of a good |,
balance are : P

1s¢z. That the beam rests in a horizontal position when
loaded with equal weights.

2d. That the balance possesses great sensibility.
3d. That it possesses great stability.

For the first condition, it is necessary that the arms are of
equal lengths, and that the beam is symmetrical on each side of
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C, with the points of suspension and the center of gravity below
that point. 'When this is the case, we shall have the perpendi-
cular CD bisecting 4B in D.

59. Pror. To investigate the conditions that a balance may
possess great sensibility and great stability.

A balance possesses great sensibility, when, for a small differ-
ence between the weights P and Q with which it is loaded, the
line 4B is considerably deflected from the horizontal position in
which it rests when loaded with equal weights. Let MCEN
be a horizontal line through C, meeting 4B in E, and let the
angle MEA=6. The sensibility depends on the magnitude of
@ compared with the difference P—Q of the weights. Let w
equal the weight of the beam. Let the horizontal line through’
C meet the vertical lines through 4 and B in M and N respec-
tively ; and those through g and D in @ and d respectively.
Then MN is bisected in d.

Taking the moments about C, we have in equilibrium
P.CM—Q.CN—w.Ca=0
or, P(Md— Cd)—Q(Nd+ Cd)—w.Ca=0
or, (P—Q)A4D cos. 0—(P+ Q) CDsin.0—w. Cgsin. 6=0

Let the length 4D or BD of the arms =a, CD =d, and

Cg=h.
then, (P—Q) a— {(P+ Q)d+w .k} tan. 6=0
) _ (P—Q).a
0= e h

We see that 0, and therefore the sensibility, will be increased
for given values of P and Q by increasing a, and by diminishing
w, d, and A; or, by increasing the lengths of the arms, by dimi-
nishing the weight of the beam, and by diminishing the dis-
tances of the fulcrum from "the center of gravity of the beam,
and from the line joining the points of suspension of the scale-

pans.
. _ A balance possesses great stability, when, being loaded with
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equal weights, on being disturbed it returns quickly towards its
position of equilibrium. The stability is therefore greater as
the moment bringing the beam towards its horizontal position is
greater.

Or, since P=Q,
as P.CN—P.CM+w. Ca is greater;
or, as P(Nd+ Cd— Md— Cd) +w. Ca
=(2P.d+w.h)sin. 0 is greater.

This is greater for given values of P and 6, as d, w, and & are
increased.

We see that the sensibility of the balance is diminished as
we increase the stability, but that we may increase the sensibility
without injuring the stability by increasing the length of the
arms.

We see also that balances must be adapted to the .uses they
are to be applied to. The fine, delicate balance of the chemical
laboratory must possess great sensibility, but we must not ex-
pect great stability. For weighing coarse wares, it is of more
consequence that the balance possesses great stability than that
it shews very small differences of weight, where the material
weighed is not of great value.

ON THE STEELYARD BALANCE.

The steelyard has a longer and a shorter arm, as in the
figure; the substance to be weighed being hung from the point
4 in the shorter arm, its weight is found from the distance to
which the constant weight P must be moved on the longer arm
in order to balance it.

60. Prop. To shew that the divisions on the longer arm of
the steelyard, which correspond to equal additions of weight in
the body weighed, must be in a succession of equal distances.

Let the projecting knife-edge at C be the fulcrum, and 4
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the point from which the ————
weight W is suspended. A{0] ¢’ "
Let P be the moveable
weight. When no weight
is suspended from 4, the
longer arm will prepon-
derate ; let a be the point
from which P must be
suspended to produce equilibrium. Take Cb=Ca, then P at b
would balance P at a if the lever was without weight, conse-
quently we may consider it without weight if we suppose a
weight equal to P to be hung from b. Let the steelyard be in
equilibrium from the weight of # at A4, of P at B and the
effect of the weight of the lever.

From the equality of the moments about C we have
W.CA—P.CB—P.Cb=0

W CB+0Cbh
0 B =40
_aB
’ —4C

If W= PthenaB=A4C

-W=2P - aB=24C

- W=38P - aB=34C

-W=n.P- aB=n.4C
Or, for every additional weight P by which # is increased, the
moveable weight will have to be moved a distance equal to 4C
further along the arm to balance it; and for equimultiples of P

the divisions will be in a succession of distances equal to 4C
counted from a.

This same rule holds for increments of # corresponding to
any fractional part of P. Let it be required to graduate the

steelyard for a succession of weights increasing by £
m

aB

. W
From the expression B =40
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have % = 2B
we avef_fig

m m

Let W=N .;}:, where N is any integer.

r_ aB -y 4C
A_E or, aB—N.m
m

Giving N a succession of integral values, we shall have for

. . . . AC
aB a succession of distances counted from a, increasing by "

It is scarcely necessary to remark, that the method supposed
to be followed above would never be the practical method of
graduating the steelyard; but the discussion is of use, to shew
that the divisions must be at equal distances.

ON THE BENT LEVER BALANCE.

61. This balance is similar to the
figure, where BCD is the bent lever, )
turning about a pivot at C. A scale
(4) hangs from B; and at D an index
points to some division on the graduated
arc.

Let g be the center of gravity of the
beam at which its weight, w, acts. The weight of the scale (4)
and the weight (#) of a body placed in it will act vertically
through B. If we draw a horizontal line through C, meeting
the vertical lines through g and B respectively in m and b, we
must have, in equilibrium,

w.Cm—(A+W)Cb =0

Now, as greater weights are put into the scale 4, the point B
comes more nearly to the vertical line through C, from the bent
. form of the beam; and the distance Cm increases, so that the
arc may be graduated from the positions of the index at D for
a succession of weights put into 4. When the arc has been
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thus graduated experimentally, the weight of a body placed in
the scale is told very quickly by the division on the arc to which
the index rises. 'When it is required to sort a great number of
bodies into classes of different weights, but where extreme nicety
is not essential, this balance is the most convenient for the
purpose.

ON ROBERVAL’S BALANCE.

62. This balance is of greater interest from its paradoxical
appearance than from its use as a machine for weighing bodies.
It consists of an upright stem upon a heavy base, 4, with equal

—

—
[ieie o do

B a c

=4 || =%

L+ |

crossbeams turning about pivots at @ and . These crossbeams
are connected by pivots at ¢, d, e, f, with other equal pieces in
the form of the letter T; the weights are hung from the horizon-
tal arms of the latter pieces; and the peculiar property of the
balance is, that equal weights balance at all distances from the
upright stem: thus, two equal weights (P), as in the figure, ba-
lance; although one may hang at B much nearer the upright
stem than C, the point from which the other hangs.

P, Py
This property is easily A A
proved from the theory of . . a
couples. Let the letters @< > R,
in the annexed figure in- B c
dicate the same parts as A k—l_
in the former. ¢ b< ; l
Q| B
Let equal and oppo- v Vv
site forces P, and P,, as Pr P F

in the figure, act in ec, i
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each equal to P; and similarly let P; and P, act in df. These
forces, Py, P,, P;, P,, will not affect the equilibrium; and P at
B is equivalent to P, at e and the couple P, Bk, P;,. Similarly,
P at C is equivalent to P, at f, and the couple P, Ck, P;. The
forces P, at e and P, at f will evidently balance.

The couple P, Bk, P, is equivalent to a couple Q,, ec, Q, in
its own plane, of equal moment, in which we may take the
forces @) and Q, acting in the directions of the crossbeams e,
ac, which always remain parallel to each other as they turn on
the pivots. These forces Q, and Q, are destroyed by the resist-
ance of the pivots b and a; and similarly, if R,, fd, R, were the
corresponding couple on the other side, R, and R, would be de-
stroyed by the resistance of b and a. These couples therefore
would not affect the equilibrium, and the original forces P at B
and P at C must be in equilibrium.

If the beams cad, ebf be moved round the pivots into any
oblique position, the same reasoning holds good, and the equili-
brium still subsists.

It is easy to see that unequal weights, as P and @, could not
balance when hanging from any points.



CHAPTER VIIL

APPLICATION OF THE PRINCIPLE OF VIRTUAL VELOCITIES TO
THE MECHANICAL POWERS.

‘WE saw in Articles 26 and 27 that the principle of virtual velo-
cities holds good for all cases of the equilibrium of a free body
under the action of any number of external forces.

‘We may consider the effective parts of the mechanical powers
as free bodies if the reactions of the parts which support them
be taken with the other external forces; and the internal re-
actions and tensions do not enter the fundamental expression
S(P.v)=0. We shall also generally have the virtual velocities
of the reactions of the supporting parts equal to zero for the
possible displacements of the system,

In some of the mechanical powers we have the principle ap-
plying to all possible displacements whether great or small, since
they are always in the direction of the forces; as in the wheel
and axle, toothed wheels, the pullies with parallel cords, the
inclined plane, the wedge, and the screw. In the lever and
the pullies with inclined cords we must take the displacement
indefinitely small.

63. Prop. To shew that the principle
of virtual velocities holds good for the wheel
. and axle in equilibrium.

The forces which act on the wheel and *
axle are the power P, the weight /7, and
the reaction R of each of the steps which
support each end, C, of the pivot about
which it turns.  'When the wheel and axle
receive a displacement turning about C,
the virtual velocity of R equals 0.
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Let A4 and B be the points at which the cords left the wheel
and the axle respectively before displacement; 4', B, after-
wards. Then W ascends through the space WHW'= arc BF,
and P descends through PP'=arc 44'. WW’'is a negative
virtual velocity if PP’ be positive.

By the principle of virtual velocities,
PxPP—Wx WW' =0
or, Pxarc A4 — W x arc BB'=0
or, Px AC x angle £ CA— W x BC x angle BCB'=0
PxAC—WxBC=0

or, w_4¢

P BC

the condition of equilibrium as found in Article 41.

64. Prop. To shew that the principle of virtual velocities
holds good in a pair of toothed wheels.

Let the circles in the figures
represent the pitch-lines of the 0, /0,
wheels which roll on each other
without slipping, and let 0,, O, | A c
be the points which were in con-
tact in the line CC’ before dis-
turbance. Then the other let-
ters being as in Article 42, we
have

arc 00,=arc 00,
P’s displacement=PP’
=AC xangle 0,C'0
_ arc 0,0
=AC x TO
W’s displacement= W W’

_ arc 0,0
=CB x CO

<<
<<

By the principle of virtual velocities,
PxPP' —Wx WW' =0
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arc 0,0 arc 0,0
or, PXAC’XT,()——WX CBXTO——O
AC CB
Peo"eo="
W AC' CO '
o B =Be'TO’ when 4C'= BC,
_¢o
—Co

as found for the condition of equilibrium in Article 42.

65. Pror. To shew that the principle of virtual velocities
holds good in the single moveable pulley with the cords parallel.

In the figure, if the pulley 4 be raised to 4', we
shall have A4 = WW =} PP, since each of the
cords passing round the pulley 4 must be shortened
by a length=WW’'. And WW’ is a negative virtual
velocity.

oo PxPP'—WxWW' =0
gives Px PP —Wx 3PP =0

or, %, =2
the condition of equilibrium as found in Article 44.

66. Pror. To shew that the principle of virtual velocities
holds good in the first system of pullies.
Referring to the figure in Article 46, we see that if P de-
scended through a space PP,
the pulley a, would be raised a space § PP’

the pulley a,_, - - - P_QI;_
&e. &c.
the pulley a3 - - - - é:_l_);
the pulley a, - - - - 5_1_)1
the weight 77 or the pulley a, - - - 'Z—np

and the equation of virtual velocities
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Px PP — W x WW' =0 becomes
PP’

or, -;—;=2"

the condition of equilibrium when the weights of the pullies are
counterbalanced or neglected.

67. Pror. To shew that the principle of virtual velocities
kolds good in the second system of pullies.

Referring to the figure in Article 47, we see that if the
weight be raised through a space W', each of the n cords at
the lower block must be shortened the same quantity, or P
must descend through a space nx WW'. The equation of vir-
tual velocities is :
PxPP—WxWW =0
which becomes Pxn . WW' —W x WW' =

or, ?= n
the condition of equilibrium as in Article 47.

68. Prop. To shew that the principle of virtual velocities
holds good in the third system of pullies.

Referring to the figure of Article 48, we see that if 7 be
raised a space=WW’, each cord will be shortened in conse-
quence a space equal to it. The highest moveable pulley, a,,
will descend through the same space, W#'. The next pulley,
@y_y, will descend through a space 2. W, in consequence of
the descent of a,, and # W’ in consequence of the elevation of
W, or will descend on the whole (2+1) W "

Similarly, the pulley a,_5 will descend through
2@+ 1)+ 1} W =2 +2+ 1) WW'.

Proceeding in the same way, we find that pulley as, or,
a,_5=3, will descend through the space

@3 +2-4+&e. . . . +2+ )W
H
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and a, through the space (2* 2423+ &e. . . . +2+ 1) WW’
a - . (214224 &c. . . . +2+ 1) VWV

P descends through twice the last found space in conse-
quence of the descent of the pulley a,, and through the space
WW', in consequence of the elevation of the weight ;

or, PP=WW' {22 +22+&c. . . . +2+1)+1}
=wwW @+ —1)

The equation of virtual velocities is
PxPP —Wx WW' =0
which becomes Px WW' (2"+'—1)— Wx WHW'=0

or, %= 2r+1—1
the condition of equilibrium when there are » moveable pullies,
as in Article 48.

69. Prop. To shew that the equation of virtual velocities
holds in the inclined plane.

Taking the most general case,
when the force (P) makes any angle
e with the plane. Let a= /[ BAC;
a the first position of the body whose
weight is #; & the position of it
after a disturbance.

Drawing the perpendiculars av,
d'u, we have —a'v, the virtual velo-
city of P=—ada’ cos. ¢, and au, the
virtual velocity of W=aa' sin. a.

By the equation of virtual velocities,
Pxdv—Wxau=0
or, Pxad cos. e— Wxaa sin.a=0

or W _cos. €
M P sin &

as found for the condition of equilibrium in Article 50.
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70. Pror. To shew that the principle of virtual velocities

holds for the wedge.

Let 2P be the whole power, R and
R the pressures perpendicular to the
smooth sides of the wedge 4BC, which

produce equilibrium.

Let the wedge be displaced to the
position A'B'C’'.  The displacement of
the point of application of P is aa’ in
the figure, =A44'; that of b, the point
of application of R, is bb'=Am, a per-

pendicular from 4 on 4'B’;

Am =AA sin. 2

BAC

and

The equation of virtual velocities is
Pxad—Rxbt'=0

or, Px AA — R x AA' sin. —

s R=

as found in Article 53, for
the condition of equilibrium
of the wedge.

71. Prop. To shew that
the principle of virtual velo- \
cities holds for the screw.

BAC_
1C_

0o .

P

. BAC
sin. —5

OB

A

P

~<

Y
Suppose the power P ¥

to act by means of a cord
passing over a pulley upon
a wheel, as perpetual lever,
fixed to the cylinder of the
screw.

Let A be the point
where the cord left the
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wheel when the power was at P and the weight at #; and let
A4, Py, W be their positions after a disturbance,
PP =arc AL =A4C xangle ACA

angle ACA'

W W' =distance of two threads x G

By the equation of virtual velocities,
PxPP—Wx WW =0
or, Px AC x angle 4CA'— W x distance of two threads x
angle ACA _ 0
2w
. w_ 2w AC
% P = distance of two threads
the condition of equilibrium as found in Article 54.

72. Prop. To shew that the principle of virtual velocities
kolds in a lever of any form.

Let ACB be the lever C
before displacement, 4'CB’
its position after. A -

From 4 draw A'v per- o
pendicular to AP, and from
B, B'u perpendicular to BQ
produced. Av is the virtual
velocity of P, Bu that of Q,
and negative. Now, when
the displacement is indefi- Y.
nitely small, the circular arcs
AA'y, BB become straight lines, and

Av=AA4 x cos.4'Av=AC x angle 4CA’ x cos.(P.AC—90°)
=A4C.sin.PAC.angle ACA'

Bu=BC.sin. QBC. angle BCB
and angle ACA' =angle BCB

The equation of virtual velocities is
Px Av—Q x Bu=0
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or, P.AC.sin. PAC—Q.BC.sin. QBC=0

. P_BC.sin. @BC
" QT 4C.sm. PAC
as found in Article 39 for the condition of equilibrium.

73. Prop. To shew that the principle of virtual velocities
holds in the single moveable pulley with the cords inclined.

Let 4 be thepoint where the 5 c
cords produced would meet at
the first position of the pulley,
when P and W are the positions
of the power and the weight.

Let P be displaced to P~
when the weight is raised to W7,
or the point of meeting of the
cords to 4. Draw the circular arcs, 4£'m, A'n, with centers B
and C. When the displacement is indefinitely small, the arcs
A'm, A'n become straight lines, and

Am=AA cos. BAA'=An

PP'=Am + An=2A4A cos. B—g—c
WW=A44
The equation of virtual velocities is
Px PP —-WxWW'=0
becomes P x 244 cos. 3,240_ WxAA=0
w BAC
or, P—=2 cos.—5—

as found for the condition of equilibrium in Article 45.

In the preceding propositions, the expression
PxPP=WxWW
WW _P
PPEW
explains the principle that, in using any machine, what we
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gain in power we lose in time.” For, in order that # may be
raised through any given space, we must have the space moved
through by P increased in the same ratio that the magnitude of
P is diminished.

EXAMPLES ON CHAPTERS VI, VII. AND VIII.

Ex. 1. A lever 30 feet long balances itself upon a prop %
of its-length from the thicker end; but when a weight of 10
pounds is suspended at the other end, the prop must be moved
2 feet towards it, to maintain the equilibrium: shew that the
weight of the beam is 90 pounds.

Ex. 2. The forces P and Q act at arms @ and b respectively
of a straight lever which rests upon a fixed point to which it is
not attached. When P and Q make angles « and 8 with the
lever, shew that the conditions of equilibrium are

Pcos. 2+ Qcos. B=0
Pasin.a—Q bsin. =0

Ex. 8. The beam of a false balance being of uniform density
and thickness, it is required to shew that the lengths of the arms
(@ and b) are respectively proportional to the differences between
the true () and apparent weights (P and Q). Or to shew that
the weight of the beam being considered, we have

a_P-w
b W—-Q

Ex. 4. Two given weights hanging vertically from two
given points in the rim of a wheel, find the position in which
the greatest weight will be sustained on the axle.

Let P and Q be the weights, « the angle contained between
the radii drawn to the points of suspension, which are given.
Let 0 be the angle which the lower radius (that of P) makes
with the vertical direction. Tt is shewn by means of a subsidiary
angle, and without the differential calculus, that

P+ Qcos.a

tan. 6= Qsin. a
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Ex. 5. Iflbe the mechanical advantage of a lever, and s
the mechanical advantage of a screw, shew that the mechanical
advantage of the common vice is [ . s.

Ex. 6. Apply the principle of virtual velo-
cities to find the relation of the power to the
weight in the endless screw, as found in Article P
56.

Ex. 7. Shew that, in the annexed system of
pullies, #=5P. Apply the principle of virtual
velocities to find the same result.

Ex. 8. In the annexed system of three move-
able pullies, with the cords at each pulley mchned
60° to each other, shew that w

W=P(3)t

Obtain the same result by
means of the principle of
virtual velocities. P

Ex,-9. Shew that in
every combination of the
mechanical powers, the re-
lation of the power to the
weight may be found by the
principle of virtual velo-
cities.



CHAPTER IX.

ON THE EQUILIBRIUM OF A SYSTEM OF WEIGHTS SUSTAINED BY
CORDS OR BEAMS.

74. If a weight W be hung from a knot C at which the cords
AC, BC (supposed without weight) meet, and the lengths of the
cords and the position of A and B are given ; to find the tensions
in the cords.

The geometrical data give the angles
which 4C and BC make with the ver-
tical direction; let them be « and 8 re-
spectively. AN f

B

If ¢, and #, be the tensions in the
two cords 4C and BC respectively, we
may find their values by the properties @
of the parallelogram of forces or other-
wise analytically as in Article 23, as follows:

Resolving horizontally and vertically,
t;sin. a—1y sin, B=0 (1)
ticos.a+t3c0s. 3 —W=10 @

Multiply (1) by cos. B, (?) by sin. 8, and add, we find,
¢, (sin. a.cos. B+ cos. a.sin, B) — . sin. B=0

W.sin. B

* A, et B)
Similarly,

_ Wsin.a
*sin. (2 +B)

‘We should find these results at once from Article 6, but the
equation (1) shews us a property in addition, which we shall find
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to hold for systems of any number of cords and beams, namely,
that the resolved parts of the tensions korizontally are the same
in each.

75. Prop. To investigate the form and properties of the
funicular polygon, or a system of cords connected by knots from
which given weights are hung.

Let ABCDEF be the a
polygon formed by cords
connected by knots at the
points B, C, D, E. Let
AF be a horizontal dis-
tance which is given, as

*well as f), &, I, &c. the
lengths of the cords 4B,
BC, CD, &c., which we
suppose without weight.

Let W, Wy, W, &c. be
the weights suspended from
B, C, D, &c. respectively.

The above being given,
we have to determine the
tensions in the cords, and
the angles they make with the vertical direction.

Let #,=tension in 4B, f,=tension in BC, f3=tension in
CD, &c.

Let «,;, B, be angles of the cords with the vertical direction at B,

%oy Bs - = - = C.
A . : - - D
&e. - - - - &e.

If n be the number of cords, we have # tensions, and 2 (r—1)
angles to determine, from the following equations:
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AF—1,sin. a;—lysin, a;—&e. . . . —lp8in.a, | —

lpsin. B,_1 =0 (a)
1, cos. &, + Iy cos. ay+l3cos. a3+ &e. . . .. + 1y cOS. 2y +
by cos. (m—Bu—) =0 (%)

Resolving horizontally and vertically at each knot, we have
at B, ¢,sin. a;—Zysin. B8,=0 t) cos. @+ ¢y cos. B — W, =0 (1)
at C, fysin. ay—Z3sin. B,=0 t, cos, ay+t3cos. B,— W,o=0 (2)
&e. &e.

tp_ysin. ayy —2,sin. 8, =0 tp—1 COS. tyy 4 b, COS. By —
W, n—1 = 0 (n -_ 1)

‘We have also B, +ay=m, B+ a3=m, &c. . . Boptay =, ,
which are n—2 equations.

‘We have, consequently, the equations () and (), 2(z—1)
and n—2; or, in all, 3n—2 equations, to find the » tensions
and 2n—2 angles as required.

Since B,+ a;=m, we have sin. 8,=sin. ay and so onwards,
sin. B;=sin. a3, &c. . . . sin. B, ,=sin. a, ;; therefore we see
that the first of each pair of the equations (1), (2), . . . (r—1)
shews the horizontal component of the tension in each cord to
be the same; for we have

t) sin. a; =1, sin. B =1, sin. ay={3sin. By=&e. . . . =t,sin. B,
but £, sin. &, =1, cos. A=1{, sin. B, =1, cos. F

or the resolved parts of the extreme tensions in the line 47 are
equal and opposite.

From the equations (1), (2), . . . (»n—1), we find by elimi-
nating alternately one of the tensions in each pair,

tl — Wl — t2
Sino Bl— Sill. (“l + Bl) —Sin. “l

— 2 _
sin. By~ sin. (ap+/B;)  sin. ey
&e. &e. &ec.
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t,,_l Wn—l tn

sin. Bo—1  sin. (ap—1+Bs—1)  sin.a,_,

From these we find the horizontal tensions to be

w, w,

_ _ Wi
cot.a; +cot. B, cot. ay+cot. B,

~ cot.a,,+cot. B,

&e....

‘When the weight.of a chain supplying the place of the cords
of the polygon is taken into account, the problem becomes one
of considerable difficulty, and is connected with the construction
of chain bridges.

76. Prop. Three uniform beams connected together form a
triangle, ABC, with AB horizontal, and have a weight, W, hung
Jrom C; to find the reaction in each of the beams, and to shew
that the horizontal part is the same in each beam.

Since the triangle is given,
the angles which the sides
AC, BC make with the ver-
tical direction will be known :
let them be « and B respec- ,
tively.

Let R, be the reaction in
the beam AC, R, that in BC; and let b, be the weight of 4C,
b, that of BC.

Since the beams are uniform, the center of gravity of each
will be at its middle point, and we may consider half the weight
of each to be at each end, so that the whole weight hanging

from C will be W'+ htb _ g say.

2
Resolving horizontally and vertically at C, we have
R, sin,a— Rysin. 8 =0 1
R cos.a+ Rycos. B—W'=0 )]

The equation (1) shews that the horizontal parts of the reactions
are equal.



108 ELEMENTARY MECHANICS.

Eliminating alternately between the equations, we have
R _ W _ R
sin. 8 sin. (a+B) ~ sin.a

and the horizontal part of R, or R, or, as it is called, the
horizontal thrust when the beams form a roof, is equal to

WI
cot. a +cot. B

which is the reaction in the horizontal beam 4B, called tkhe tie-
beam.

If the side 4B were taken away, and its place supplied by a
cord, the last expression would be the tension in the cord. If
the points 4 and B rested on a smooth horizontal plane, we
should have the pressure on the plane

at 4= Rlcos.u+%

and at B = R2¢08-13+—622-

77. Prop. A number (n) of beams connected by hinges form
a frame-work in a vertical plane, having weights hung from the
hinges: to find the position of equilibrium, and to shew that the
horizontal reaction at each hinge is the same.

Let ABCDETF be the D
frame-work, of which the ex- -

tremities 4 and F are fixed
points. Let AHand FH, a
horizontal and vertical line,
begiven,aswell asthelengths &,/
by, by, b3, &ec. of the beams.

The beams being given, A
we may suppose the weight to be applied at the ends, and W,
Wy, W3, &c. to be the whole weights acting at the hinges, B, C,
D, &c. respectively.

Let &), B; be the angles which the beams 4B, BC make
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with the vertical line at B; o, B,, a3, B3, &c. the corresponding
angles at C, D, &c.

Let R, R,, R;, &c. ... R, be the reactions in the beams
commencing at 4.

‘We shall have to find » reactions, and 2(n —1) angles. From
the geometrical relations we have
AH—b,sin. a; —bysin.ay—bssin. a3 —&ec. . . . —bysin. B, ;=0 (a)

FH—b, cos. a; — b, cos. ag—bycos. a3—&c. o . . —b, X
cos. (m—PB—1) =0 (®)

.Resolving horizontally and vertically at each hinge, we have,
in equilibrium,
at B, R sin.a;— R,sin.8=0 R;cos.a,+ Rycos.B,— W,=0 (1)
atC, Rysin.ay— R3sin.B; =0  R;cos.zg+ Rjcos. By— Wy=0 ()

&ec. &ec.
Rysinca, —R,sin. B, 1=0 R, cos. ap—+ Ry cos. B, —
Weaua=0 (n—1)

Wehavealso 8, +a,=m, By+az=m, &c.. .. Bpogt oy =m,
or n—2 equations.

These equations being 3s—2 in number suffice to find the »
tensions and 2n—2 angles.

The expressions would have been identical with those for
the funicular polygon if we had taken F in the horizontal line
through A4; and they lead to the same consequences.

The first of each pair of equations (1), (2), &c. shews that
the horizontal component of the reactions at each hinge is the
same ; and by the same process as in Article 75 we shew that it
is the same at every hinge, and equal to

W, W, W,
_ =——* —— = &ec.. . =
cot.a;+cot. B, cot.ay+cot. S, cot.a, 1+ cot.Bu_1



CHAPTER X.

ON FRICTION.

WEe have hitherto considered the surfaces on which bodies
pressed to be perfectly smooth, so that they offered no resistance
to motion parallel to themselves, their only reaction being per-
pendicular.

‘When rough surfaces are in contact, the motion, or tendency
to motion, parallel to the surfaces, is affected by the roughness,
and we call the effect friction.

Experiments have been made to determine the laws of fric-
tion, which we may subdivide into rubbing friction, when one
body rubs on the other, and rolling friction, when one rough
surface rolls upon another: the former only will be considered
here, under the term friction or statical friction.

78. 1If a body rest, as at 4, upon a rough plane, BC, it is

found that a force, within certain -

limits, may act upon it parallel F
to the plane without motion en- . N
B A ¢

suing, as would be the case if the
plane were smooth. The greatest
force which can be so applied,
without the body moving, measures the friction. If # be a
weight acting by a cord passing over a pulley, as in the figure,
on the body 4, when motion is about to take place, F being the
opposing force of friction which balances W, we have F =W,
It is found that if we put various weights, as m, upon the body
A, then W or F is proportional to the weight of 4 and m, or is
proportional to the pressure perpendicular to the surfaces in
contact. It is also found that it is independent of the magni-
tude of the surfaces in contact, the friction being the same when
the pressure is the same, whether the surface of the body be
increased or diminished; except in extreme cases, where the

w
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pressure is exceedingly great compared with the surfaces in con-
tact. So that if B be the pressure on the plane which is equal
and opposite to its normal reaction, we have

F=uR

where p is a constant, depending on the nature of the surfaces
in contact, and called the coefficient of friction.

‘We may determine the coefficient of R LR
friction by placing the body on a plane
of which we can increase the inclination
to the horizon until the body begins to
slide down. \

79. Prop. To shew that the coeffi- \L
cient of friction between two given sub-
stances is the tangent of the inclination of the plane formed of
one of the substances, when the body formed of the other is about
to slide down it,

The body a in the above figure is in equilibrium from the
normal reaction of the plane R, the friction uR acting up the
plane, and its weight acting vertically. Resolving parallel and
perpendicular to the plane, we have

pR—Wsin.a=0
R—Wcos.a=0

Eliminating R, we have
pcos. a—sin.a=10

or, ;4 = tan.a

80. Pror. To find the limits of the
ratio of P to W on an inclined plane,
when friction acts up or down the plane.

Let the power P, as in the figure,
make an angle e with the plane whose
inclination to the horizon is «. Let #

be the weight of the body. v
w

Friction being considered as an inert force resisting the tend-
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ency to motion, will act up or down the plane as the body is
on the point of moving down or up respectively.

Resolving parallel and perpendicular to the plane, we have
Pcos.e+pR—Wsin.a =0 n
Psin.e+R—Wecos.a=0 @)

Multiply (2) by x and subtract and add, we have
P(cos. €+ wsin. €)— W (sin. a F p cos. ) = 0
W __cos.eF wsin. e

Or —_,_y— . —_—
> P sin.aFpcos.a

where the upper sign is to be taken when friction acts up, and
the lower when friction acts down the plane.

No motion will occur whilst the relation of P to W lies be-
tween the two values.

81. Prop. To find the limits of the ratio of P to W in the
screw when friction acts assisting the power or the weight.

Proceeding as in Article L
54, let ABC be the inclined /
plane formed by the unwrap- 7%
ping of one revolution of the un B

thread ; the angle B4C =a. . M/I
q
Let # be the whole weight T kR

sustained by the screw; w be 4 L ¢
the part of it supported at a; w

Q the whole force acting at

the circumference of the cy-

linder, whose radius ED =1,

FD = a the lever at which the power P acts, and
oo .I)E = Q
ot

and let ¢ be the part of Q which supports w at a. The forces
which are in equilibrium at a are the weight w, the reaction R,
the friction acting up or down the plane uR, and the horizontal
pressure g.
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Resolving parallel and perpendicular to the plane, we have
gcos.a+puR—wsin.a=0 (1)
gsinna—R+4wcos.a =0 (2)

Multiply (2) by u, and add and subtract, we have
g (cos. a4+ p sin. &) —w(sin. ¥ p cos. 2) = 0
w_ W _cos.at psin.a

% q ) sin. a4 p cos. a

W _a cos.atpsin.a
and—-:—'.—_—'
P r sinnatpcos.a

The two values of this expression give the limits required.

82. ProB. A uniform beam rests on a cylinder of given
radius (a); to find the weight (W) which may be hung from one
end, so that the beam may be just about to slide off when friction
acts.

Let g be the center of gravity of the
beam BC, whose length is 2b; and Bg=",
since the beam is uniform. Let w be its
weight. Before the weight # was hung
at B, the point g must have been at 4,
the highest point of the cylinder. Let 4
be the point of contact when the beam is
on the point of sliding off the cylinder,
and let « be the angle which the beam

then makes with the horizontal direction. Y w

Resolving parallel and perpendicular to the beam, we have
pR—wsin.a— Wsin.a =0 1)
R—wcos.a— W cos.a =0 @
whence p = tan. a.

Taking the moments about 4’, we have
W x BA'cos. a—w X A'gcos.a =0
or, W(Bg—A'g)—w.A'g=0
but 4'g = arc A4’ = radius X angle 404’
= aa
I
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coW(b—ax)—w.aa=0
_w.ae__ watan."lp
or, W= b—aa” b—atanTp

the weight required.

83. ProB. A ladder rests with its wR,
Joot on a horizontal plane, and its upper A
extremity against a vertical wall; hav-
ing given its length (1), the place of its
center of gravity, and the ratios of the
Jriction to the pressure both on the plane
and on the wall; find its position when
in a state bordering on motion.

If 4B be the ladder in the figure, W i
whose length 4B=/, and weight acting A ner v
w

at the center of gravity g= W, Bg=b,

# the coefficient of friction against the

vertical wall, u against the horizontal plane 4C, and angle
BAC=80; we find

tan. g="—0 (1 +pp)
ml




DYNAMICS.

CHAPTER 1.

ON DEFINITIONS AND THE LAWS OF MOTION.

WaEN forces produce motion, or change of motion, in bodies,
their effect being different to that in statical problems, we re-
quire other methods of measuring them in addition to the sta-
tical measures.

The motion of @ body may be considered only with respect
to its change of place, either absolutely, or relatively to some
other body which is itself in motion. It may also be considered
with respect to the power the body acquires of overcoming ob-
stacles, and then the magnitude of the body itself has to be
considered.

The wvelocity of a body is its rate of motion, and it is
measured, when wniform or constant, by the space passed over
in a unit of time, or by the space in any time divided by the
time. The units of time and space must be known. Thus we
say, he travelled at the rate of thirty miles per day; he travelled
at the speed or velocity of eight miles per hour; the bullet was
fired from the gun with a velocity of 1000 feet per second.
‘When no mention is made of different units, we shall take a
foot for the unit of space, and a second for the unit of time.

Let v be put for velocity, s for space in feet, ¢ for time in
seconds, we have for a uniform velocity,
v = space described in one second

_ space described in ¢ seconds
- ¢ seconds

=%, or s =uot
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‘When the velocity is continually changing, it is measured by
the space passed over in an indefinitely short space of time
divided by the time.

Let s be the space described with a variable velocity in ¢
seconds, ' that in ¢ seconds indefinitely near the former time;
then, using the symbol & to signify difference,

o=t=t_5s
T -t 8t

‘When pressures such as we have considered in Statics are
not balanced, the body on which they act will be put in motion.
Such pressures may act on the body during a definite time, or
act through a definite space, and then cease to act.

‘When pressures act only for a very short space of time, they
are called impulsive forces; as, for instance, the mutual pressure
of bodies whith impinge, the force of the string exerted upon an
arrow shot from a bow, &c.

We call a force an accelerating force whilst it continually
increases the velocity of a body; and a retarding force whilst
it continually diminishes it. A wuniform or constant accelerating
force is one that increases the velocity of the body uniformly,
or adds the same amount of velocity to the previous velocity of
the body in every successive equal interval of time. A uniform
retarding force is one that diminishes the velocity of a body
according to the same law. Variable accelerating or retarding
forces are those whose effects on the velocities of bodies are con-
tinually changing.

By the moving force acting on a body, we mean the mass
moved multiplied by the accelerating force, which we shall
shortly see, by the third law of motion, is proportional to the
pressure exerted on the body, by whatever means that pressure
arises, whether by the unbending of a spring, by the attraction
of other bodies upon it, by the explosion of gunpowder, &c.

By the momentum of a moving body, we mean the mass of
the body multiplied by its velocity. The mass multiplied into
the square of the velocity is called the vis viva of a moving body.
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As forces are measured by the effects they produce, the
dynamical measure of an accelerating force must be the velocity
which it generates in the body in a given time, when uniform or
constant. Let f represent the force, and let the given time be
taken as the unit, we have f=the velocity generated in a unit of
time. Since the force is constant, the same velocity is added in
every unit of time; therefore, if v be the velocity acquired from
rest by the action of the force in ¢ units of time, we have v = ft.
From the above definitions we see that moving force is measured
by the momentum generated in a unit of time.

From the expression v =f¢, we have

f= v __ velocity generated in any time
=-= :

time

When the force is variable, and changing from one instant to
another, we must take the time indefinitely smally so that, for a
variable force, we have

S

__velocity generated in an indefinitely small time
- time .

v—o_dv
f—t &t

if » = velocity of the body at the time ¢, and o' the velocity at
the time ¢ indefinitely near to 2.

In the above, it will be shortly seen that we have anticipated
the first law of motion.

By the path of a body we mean the line, straight or curved,
which it describes in passing from one point to another in space.

The pressure produced by the weight of a body depends
upon the attraction of gravitation towards the earth, which is
sensibly different at different parts of the earth, and upon the
mass of the body; and varies directly as the force of gravity
when the mass is the same, and directly as the mass when the
force of gravity is the same; therefore, by the rules of algebra,
when both vary, the weight varies as their product. Let m be
the mass, w the weight of a body, and g the force of gravity: we
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have wocmg, and taking our units of measure of w, g, and m

accordingly, we may put w=mg, or m = g .

The relative velocity of two bodies is the velocity with which
they approach each other, or separate from each other.

A body is said to move freely when its path depends on the
action of the impressed forces only. Its motion is said to be
constrained when its path is limited to be in a given line,
straight or curved, or to be upon a given surface. A stone
thrown in any direction from the hand is an example of the
former; and a pendulum swinging, or a body rolling down a
hill, are examples of the latter.

ON THE THREE LAWS OF MOTION.

The first law of motion. When a body in motion is not acted
on by any external force, it will move in a straight line, and with
a uniform velocity.

‘We may satisfy ourselves of the truth of the first part of
the law, that the body not acted on by any external force will
describe a straight line, from the consideration that whatever
reason could be alleged for its deviating to one side, as good a
reason could be given for its deviating to the opposite; and since
it could not move in two directions at the same time, the reasons
could not be valid, and therefore it would move in a straight
line only.

The second part of the law we conclude to be true by in-
duction from the results of our experience. If a body be thrown
along a rough surface, it deviates from a straight path, and soon
loses all its velocity; if it be thrown along a smoother level
surface, it moves in a path nearer a straight line, and with a
velocity more slowly diminished ; if it be thrown along a sheet
of ice, it moves very nearly in a straight line, and retains its
motion for a considerable time. If a heavy ball be suspended
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by a very fine thread in a vessel from which the air has been
withdrawn by the air-pump, and it is set oscillating, it remains
in motion for a very great length of time, although it still
experiences resistance from the remaining air in the vessel, and
the want of perfect flexibility in the thread. We therefore con-
clude, that if we could remove all the resistance to a body in
motion, it would retain its velocity unchanged.

The second law of motion. If several forces act upon a body
at the same time, each produces its full effect in the direction of
its action, whether the body be at rest or in motion.

We see this to be true when a ball is rolled along the deck
of a vessel moving uniformly in smooth water: the ball takes
the same course along the deck as it would if the vessel were at
rest; and if it struck any body in its motion, the forces called
into play in the collision would produce the same effects in the
two cases. If a body be let fall from the top of the mast, it
falls to the foot of the mast, whether the vessel be at rest or in
motion. A more complete proof is afforded by experiments
with the pendulum. Whatever be the vertical plane in which it
oscillates, at the same place on the earth’s surface, whether north
and south, east and west, or in any other azimuth, the time of
oscillation is the same; shewing that the effect of gravity on the
pendulum is unaffected by the rotation of the earth on its axis,
and by its motion in its orbit.

The third law of motion. When a pressure acting on a body
puls it in motion, the moving force, measured by the
momentum generated in a unit of time, is proportional A
to the pressure.

This law is proved experimentally by Atwood’s
machine, which consists of a pulley, 4, having its axle
resting on two friction-wheels at each end, as repre-
sented by the dotted circles. These friction-wheels
bave their pivots, or axles, accurately and delicately
fixed, so that the pulley 4 may be subject to as little
effect of friction as possible. A clock which goes for @
a few minutes, with a second’s pendulum and dead- O
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beat escapement, is connected with the frame-work supporting
the machine.

Let P and Q be the weights of the bodies suspended from
the ends of the cord passing over the pulley 4. If P=Q, they
will balance; but if one (P) be greater than the other (Q), it
will descend and draw the other upwards, with a force=P—Q,
which is the pressure setting in motion the masses of P, Q, and
of the wheel-work 4. The masses of P and Q are -§ and%
respectively. Let I represent the inertia or mass of the wheel-
work, acting upon the cord connecting P and Q.

The whole mass set in motion=P+ Q + 1, and the pressure

producing motion=P—Q. Now, it is found that when these
two quantities are kept in the same proportion to each other,
the velocity acquired in a unit of time is the same; or the
pressure varies as the mass moved, when the velocity is constant.

If part of Q be taken successively away, and added to P, so
that the mass moved remains the same, it is found that the
velocity acquired in a unit of time is’ proportional to P—@Q; or
the pressure varies as the velocity acquired in a unit of time,
when the mass moved is constant.

When both the mass and velocity change, by the rules of
variation, we have generally,

pressure varies as mass moved multipled by the velocity
generated in a unit of time,

varies as mass multiplied into accelerating force ;

varies as moving force.

ON THE PARALLELOGRAM OF VELOCITIES.

1. Pror. If two velocities be impressed upon a body at the
same instant, the actual velocity of the body will be represented in
direction and magnitude by the diagonal of the parallelogram
Jormed upon the lines representing the impressed velocities.
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Let a body at 4 have a velocity B D
impressed upon it which would carry
it with a uniform motion from 4 to s
B in a given time, and another velo-
city at the same instant which would
carry it similarly from 4 to C in the
same time. If we complete the pa-4 a & o c
rallelogram 4BDC, the actual path of the body will be the dia-
gonal 4D, described in the same given time.

By the second law of motion each velocity is impressed in-
dependently of the other, and if the body had passed over the
spaces Adc,, Acy, Acg in any times in the direction of A4C, it
would have passed over the spaces ¢;b;, ¢, c3bs parallel to 4B,
in the same times respectively ; so that the latter spaces bear to
the former respectively the same ratio that 4B bears to 4C,
and therefore the points b;, by, b; will be all in the straight line
4D, which is the diagonal of the parallelogram. The body
will also have arrived at D in the same time as it would have
passed over either of the spaces 4B or AC.

2. Prop. Having given a velocity, to find the component
velocities in any directions at right angles to eack other; and
having given two component velocities at right angles to each
other, to find the resultant velocity of a body.

Let A4x, Ay be the directions, at ¥
right angles, in which the components
are required. Let 4D represent the
velocity (v) of the body in direction
and magnitude, « the angle which
AD makes with Ax. If we com-
plete the right-angled parallelogram <
ABDC, the side 4B will represent x—:-
the velocity (@) in Az, and AC (b)
that in Ay.

Then AB=A4D cos. a AC=ADsin. a

or, a=uv cos. « b=vsin.a

Again, if the components a and b in 4z, Ay are given to
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find the magnitude and direction of the resultant velocity v, we
have

v®=a+ b

and tan. “=¢_bz as required.

‘We have seen in Statics that, if two bodies are in equili-
brium from their mutual pressures, their actions upon each
other must be equal and opposite; so also with two bodies in
which motion takes place, the mutual pressures or actions are
equal and opposite. By the third law of motion, the moving
force is proportional to the pressure ; and hence when two bodies
move by the effect of their mutual actions, the moving force pro-
duced in each of the bodies is the same in magnitude, but oppo-
site in direction.

This consequence of the third law of motion is called the
principle, that action and reaction are equal and opposite, each
being measured by the momentum generated in a given time,
the effect being considered uniform during that time.



CHAPTER II.
ON THE IMPACT OR COLLISION OF BODIES.

WHEN two bodies in motion impinge, they exert a mutual but
varying pressure, during an interval of time which is generally
very short. The forces called into play are subject to the prin-
ciple that action and reaction are equal and opposite ; and since
this is true at each instant of the mutual pressures, the whole
effects of the impulsive forces will be subject to the same principle.

‘When it is the final and completed result that we require,
we have only to consider the mutual pressures in the collision to
have produced their full effect and to have ceased; we can, how-
ever, find the circumstances of the motion of the bodies during
the short interval of mutual pressure, by employing a higher
analysis than can be admitted in this treatise. For example,
if the mutual pressures of
the bodies 4 and B in the
figure acted by a spiral °l .‘ . ‘ ‘ U( . ’o
spring of known elasticity,
the circumstances of the motion of each body during the com-
pression of the spring are easily determined.

When natural bodies impinge, we have a similar case to the
one just taken for example.

If two surfaces of india-rubber be pressed against each other,
we see them flattened by the pressure, but recover their former
shape as the pressure is removed. Although not so perceptible,
the same takes place in other elastic bodies.

During the impact of two elastic bodies, the force urging
them towards each other is called the force of compression; and
the opposing force, causing them to separate again, is called the
force of restitution. The ratio which the force of restitution
bears to the force of compression in any bodies of the same ma-
terial or substance, is nearly the same for all degrees of compres-
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sion, and measures the elasticity of the substance. The value of
this ratio is called the modulus of elasticity.

The whole force of compression is measured by the momen-
tum destroyed during the approach, and the whole force of
restitution by that generated during rebounding; and the mo-
mentum destroyed or generated in one of the bodies equals that
destroyed or generated in the other, because action and reaction
are equal and opposite.

Let € be the modulus of elasticity of two bodies whose
masses are 4 and B, which, moving with their centers of gravity
in the same straight line, meet directly with the opposite velo-
cities @ and b, and rebound with the opposite velocities a’ and ¥
respectively : let v be the velocity supposed in the direction of a,
common to both bodies at the instant when compression ends
and rebounding commences; we have
whole force of restitution
whole force of compression

modulus of elasticity =

__ momentum generated in either 4 or B in rebounding
" momentum destroyed in either 4 or B during compression
which gives us
_A(d+v)
~Ad(a—v)
B —v)
B (b+0)
adding, we eliminate v, and have
_a+¥
Ta+b
__velocity of separation
velocity of approach

€ or, ea—ev=a +v

and e= or, eb+ev=0'—v

€

so that when experiments are tried in which the velocities of
rebounding can be determined for any given velocities of impact,
the above ratio gives the modulus of elasticity.

Bodies suspended by fine cords, and allowed to oscillate in
circular arcs of given radius about a fixed point as center,
acquire, as will be shewn in the chapter on constrained motion,
velocities at the lowest point which are proportional to the chords
of the arcs fallen through, and similarly they ascend through arcs
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of which the chords are proportional to the velocities impressed
upon them at the lowest point of the arcs. They are also shewn
to fall down all small arcs of the same circle in the same time.
If two bodies be suspended in this manner, so as to impinge
at the lowest points of the arcs they describe, and be let fall
simultaneously from given points, we know the velocities with
which they impinge, and by observing the arcs through which
they ascend after rebounding, we know the velocities of re-

bounding, and so have sufficient data to determine the modulus
of elasticity.

All known solid bodies are imperfectly elastic—that is, in
all, the force of restitution is less than the force of compression ;
but we have none without some force of restitution, or which
are perfectly non-elastic. Experiments to prove the mathema-
tical results for the impact of non-elastic bodies require to be
tried with balls of soft clay recently worked up, so that they
adhere together after impact, or balls of wood with metallic
spikes fixed in one of them, which entering the other ball pre-
vent them separating again after impact.

‘We are indebted to the excellent experiments of Mr. Eaton
Hodgkinson for our more accurate knowledge of the properties
of impinging bodies. The following table of moduli, and the
rule for bodies of different hardnesses, are from his results:

Modulus of
Elasticity.

Perfect elasticity . . . . . . .| 1

Glass . . . . . . . . . . 94
Hard-bakedeclay . . . . . . . -89
Ivory . « . « ¢ « o o o *81
Limestone . . . . . . . . . 79

Steel (hardened) . . . . . . 79
Cast-<iron . . . . . . . . . 78
Steel (soft) . . . . . . . . 67
Bell-metal . . . . . . . . . 67
Cork . . . . . . « .« . 65
Elm-wood, across the fibres . . . *60
Brass . . . . . . . . . . 41
Lead . . . 20

Clay, just malleable by the hand . ‘17
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In the impacts between bodies whose hardness differs in any
degree, the resulting elasticity is made up of the elasticities of
both, according to the following formula:

Ke+he

h+Hk
where % and % are the relative hardnesses, and ¢ and € the
moduli of elasticity respectively, of the bodies.

modulus of elasticity from both=

From this rule, it results, that if one of the bodies is much
harder than the other, the effective elasticity is that of the softer
body nearly.

3. Pror. To find the common velocity of two non-elastic
spherical bodies after direct impact.

Let 4 and B be the masses N\
of the bodies as in the figure, @ > NG >

movingin the line joining their
centers as indicated by the arrows, so that they impinge directly,
and not obliquely, when A overtakes B.

Let a be the velocity of 4, b of B, and a greater than b.
Let v be the velocity after impact, which is to be found. The
velocity lost by 4 is (a—v), and that gained by B is (v—b).

Since action and reaction are equal and opposite, we have
the momentum lost by 4 equal to the momentum gained by
B, or A

A(a—v)=B (v—-0b)
Aa+ Bb
A+B

whence v=

‘When the bodies are moving in opposite directions, we must
take the velocities with contrary signs. Let B's velocity be —b,
we have

Aa—Bb

"=4+B

It Aa=Bb, then v=0, or the bodies remain at rest after
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impact. If Bb is greater than Aa, then v is negative, or in the
direction of B’s motion.

4. Pror. The velocities of two imperfectly elastic spherical
bodies of the same substance which impinge directly being given,
it is required to find their velocities after impact.

Referring to the figure of the last Prop., let 4 and B be the
masses of the impinging bodies 4 and B; let a, b be their velo-
cities respectively before impact ; &', b’ those after impact, which
are to be found.

Then, if € be the modulus of elasticity of the bodies, we
have
__velocity of separation
velocity of approach

_Y—d
“a—b

)

and momentum lost by 4 =4(a—a')
momentum gained by B=2B (' —b)

Since action and reaction are equal and opposite, we have
A(a—d)=B (b —b) @

Substituting in (2) the values of %’ and a' successively from
(1), we have
a,_Aa+Bb_Be(a-—b)
T A+B A+ B

_4a+Bb_Ae(a—b)
=4+B " 4+B

bl

If B be moving in the opposite direction to 4, and we con-
sequently take its velocity negative and equal to —b, the ex-
pressions become

a,_Aa—Bb Be(a+b)
~ 4A+B A+ B

_Aa—Bb+Ae(a+ b)
~ 4A+B A+B

bl
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If B were at rest, or b=0, the expressions become

,__a(4—Be)
C="4+B
y_da(l+¢)

~ A+B

‘We see that 4’ can never in this case = 0, but &’ will = 0 if
—=¢€

If in the preceding expressions we put e=1, the results will
be those for perfectly elastic bodies.

If we take /=B, and e=1, when the bodies meet, moving
in opposite directions with any velocities @ and b respectively,
we have the expressions becoming

d=}(a—b)—}(a+b)=~b
¥ =}(a—b)+}(a+b)=a
or, in direct impact the balls exchange velocities.

If we have a series of n perfectly elastic and equal balls ar-
ranged in one straight line, and the ball at one extremity be pro-
jected against the e ; e e e @ 6
next, cach ball will
remain at rest after striking the succeeding one until we come to
the last, which will fly off, having the velocity with which the
first was projected. It is immaterial at what distances the balls
be placed ; and if in contact, the impinging of the first ball ap-
pears to produce no visible effect but causing the last one to fly
off with its velocity of impact, the others remaining stationary.
The same holds good for imperfectly elastic balls, if each bears
to the one it strikes the ratio € : 1, as we see above in the case of
%: ¢, when @' =0 whatever a may be, when 5=0; also ¥ =ae,
or the velocity of each ball is less than that of the preceding one.

5. Pror. If any two spherical bodies of the same substance
impinge directly, the motion of their center of gravity after impact
is the sume as before impact.

Since the bodies impinge directly, their common center of
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gravity, both before and after impact, will be always in the line
joining their separate centers of gravity; or its motion will be
always in this line.

Let u be the velocity of the common center of gravity of the
bodies 4 and B, moving in the same direction with velocities a
and b respectively, before impact.

Let x;, x;, # be the distances of the centers of 4 and B,
and of their center of gravity from any fixed point in their line
of motion, at any instant; x,, xy, # the same quantities after
an interval of time ¢, so that

=z +at
Xy =x5+b¢
Z = +ut

By the properties of the center of gravity (Articles 34 and

16 in Statics), we have

(4+B)# = Ax, + Bz, )]

(A4 B)# = Ax) + Bz,
or substituting for &, 2/, 3, the values above, the latter equa-
tion becomes

(A4 + B) (& +ut) = A(x,+ at)+ B(xs+ bt)
Subtracting (1) from this, we have
poAatBD
A+B

which is the same as the velocity of the center of gravity of non-
elastic bodies after impact.

Let «' be the velocity of the center of gravity of the bodies
after impact, when imperfectly elastic; we have similarly,

, _Ad + BY
“="4+B"
Substituting the values of a’ and &’ from Article 4, we have

, A (Aa+Bb Be(a—b) B (da+Bb Ae(a—b)
v=715(avs —a15) 778 axE A B)
_Aa+Bb
T 4A+B
=u

or the velocity of the center of gravity is unchanged by impact.
K
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‘When a body impinges against a fized plane surface, we can
determine its motion after impact, if the direction of the motion
and velocity before impact be given, together with the modulus
of elasticity between it and the plane.

The angle which the direction of the motion before impact
makes with the perpendicular to the surface at the point of
impact is called the angle of incidence; and the angle which the
direction of the motion after impact makes with the same line is
called the angle of rebounding or of reflexion.

6. Pror. If a smooth non-elastic body impinge on a smooth,
non-elastic, hard, and fixed plane, it will, after impact, slide
along the plane.

Let the body 4 impinge upon the A N
plane BC at B, making an angle « with
BN, the perpendicular to the plane at
B; let the velocity of 4 be v. ht

>

The component of v parallel to the B
plane=wvsin.a; this will not be changed
by the impact, since the ball and the plane are smooth. The
velocity perpendicular to the plane after impact will be nothing,
since there is no elasticity ; therefore the body after impact will
slide along the plane with the velocity v sin.a.

7. Pror. To determine the velocity and direction of motion
after impact, when an imperfectly elastic spherical body impinges
obliquely on a smooth, hard, and fixed plane.

Let the body A in the figure im- ,
pinge on the plane BC at B, making N
the angle of incidence ABN =« ; let N
o' = the angle of reflexion NBD. D
M Q/Y
Let the line PB represent v the c

velocity of the body before impact; B
draw PN parallel to BC, then PN represents the velocity of
the body parallel to the plane = v sin. «, and BN represents the



DYNAMICS. 131

velocity perpendicular to the plane = v cos. «. If e be the mo-

dulus of elasticity between the body and the plane, the velocity

perpendicular to the plane after impact will be €v cos. a = MB,
MB

if we takeﬁ =e.

From M measure MQ = NP the parallel velocity, which is
unchanged in impact, since the plane and body are smooth;
BQD is the direction of the motion after impact, and the line
BQ represents the velocity. Now

BQ*=MQ+BM?
=o¥sina+ 2v?cos.?a
Or if u be the velocity after impact, we have

u=12v ¥ sinfa+ ecos.2a

,_ MQ_ PN
AISO, mn.a—m—m

_tan.a

T e

which give the direction of the motion and the velocity after
impact.

If the elasticity be perfect, or e =1, we have

d=a, and u=v

8. Pror. 7o find the path of a body which, having passed
through one given point, after rebounding from a given plane,
passes through another given point.

Let MBE be the given plane;
A the point through which the body
is projected; D the point through
which it passes after rebounding from
the plane.

B E
Draw a perpendicular 4MC to Cl/
the plane through 4, and if € be the modulus of elasticity be-

tween the body and the plane, takel‘/;[—M(Z =e. Draw through the
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points C and D the line CBD, cutting the plane in B. Join
AB; then 4B, BD is the path required, or the body projected
from A in tbe direction 4B will rebound in the direction BD.

For the angle of reflexion DBN=angle BCM, and angle of
incidence 4 BN=angle BAM,

.*.tan. DBN=tan. BCM
_BM
~MC
_ BM
Te.MA
_tan. ABN

€

or the angles ANB and DBN have the required relation as
found in the last proposition.

EXAMPLES IN IMPACTS.

Ex. 1. Two bodies 4 and B, whose elasticity is %, moving
in opposite directions with velocities a and 4, impinge directly
upon each other; shew that their distance at a time ¢ after
impact is tm(a+b).

Ex. 2. If two perfectly elastic balls, whose masses are in
the ratio 1:3, meet directly, with equal velocities; shew that
the larger one remains at rest after impact.

Ex. 3. When two perfectly elastic bodies impinge directly,
shew that the sum of the vires vive after impact equals their
sum before impact : or, prove the expression

Aa®+ Bb®=Aa"*+ Bb"*®

Ex. 4. When two perfectly inelastic bodies, 4 and B, mov-
ing in the same direction, impinge, shew that

A+ B: 4 :: relative velocity before impact : velocity gained by B.
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Ex. 5. An imperfectly elastic ball is projected from a point
in the circumference of a circle, and after twice rebounding from
the circle returns to the same point again; shew that the direc-
tion of projection makes an angle « with the radius drawn to the
point of projection which is given by the equation

et

tan. u=—4/]—+€+e*



CHAPTER III.

ON UNIFORM ACCELERATING FORCES AND GRAVITY.

AccorpiNG to the definition of a uniform accelerating force in
Chapter I., the velocity generated by it in the same time is
always the same, and by the second law of motion, is unaffected
by the previous motion of the body. If we put f=the force,
measured by the velocity it generates in a unit of time, we shall
have the velocity generated in ¢ units=f¢. Writing v for this
velocity acquired by the body at the end of the time ¢ from rest,
we have therefore
v=ft

9. Prop. To find the relations of the space, time, and force
when a body moves from rest under the action of a uniform
accelerating force.

The velocity of the body is continually increased from O up
to ft, if ¢ be the time and f the force. Let s be the whole space
described in the time ¢, and let ¢ be divided into # equal in-

t . .
tervals, each = The velocities at the end of the times

t 2t 3t 4t —1)¢
;;, 7,—”, 7, &C....(nT), ¢,

will be respectively,

AN S P s L

n

Now, if the body moved uniformly during each interval of time
with the velocity it had at the beginning of the interval, from
the expression space =velocity x time, we should have the whole
space s equal to the sum of this series:
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0+f o4 2E 43 e, . 4f L

=fn—2 {14243+ &c. . .. +(n—1)}

_B n(n—1)

_fn” X3
1e_re

2 2

If the body had moved uniformly during each interval of
time with the velocity it had at the end of the interval, we
should have s equal the sum of this series :

f +f +f ? e ..+f(” DLy

+f

=f7?(1+2+3+&c. ce. +m)

_t (ntD)n
f@ g

e 8
2t o

Since the velocity is continually accelerated, the true value
of s will be between these two quantities, however small each
interval may be, or however great » may be ; but when # is in-
definitely great, the last terms in each of the above expressions
vanish, and we have therefore

s=1ft?

10. Between the two equations v=ft, and s=}f7%, we may
eliminate either f or ¢, and thus obtain

*=2fs s'=§vt

The expression s=}wvt shews us that the space described
from rest by the action of a uniform accelerating force is one
half of the space which would have been described in the same
time if the velocity had been constant and equal to its value at
the end of the time.

If we put t=1 in the equation s=}f7#, we have f=2s; or,
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J, which is the velocity generated by the force in a unit of time,
is measured by twice the space through which the body falls in
a unit of time. It is found that a heavy body in our latitudes
falls through a space of nearly 16°1 feet in the first second of
time; therefore, if we put g = the accelerating force of gravity,
we have g=velocity of 32'2 feet per second of time, or, with
the understanding that one second is our unit of time, we write
9=322 feet.

This value of the force of gravity is only an approximate
value for small heights above the earth’s surface.

Sir Isaac Newton’s law of universal gravitation is, that every
particle of matter attracts every other particle with a force
which varies directly as the mass of the attracting particle, and
inversely as the square of the distance. It is also shewn that a
spherical body equally dense at equal distances from its center
attracts a particle outside its surface as if the matter of the
sphere were collected at its center; so that, considering the
earth such a sphere, if g be the force of gravitation at the sur-
face, fthe force at any point exterior to the surface at a distance
r from the center, and R be earth’s radius, we have

1.1
f:-q”ﬁzﬁi
R
or,f=y7
=t .=
=5 if p=g R?

 in this expression is called the absolute accelerating force, for
it is the value of f when r=1. When R is taken for unity, r
must be expressed in terms of the earth’s radius, and p=g=
322 feet.

‘When r is very near R, or for small heights above the earth’s
surface, we have f=g very nearly, or we may take gravity as a
constant accelerating force in that case. It is found that, on
account of the diurnal rotation of the earth on its axis, its figure
differs sensibly from spherical, being flattened at the poles and
bulging at the equator, or is an oblate spheroid. The centri-
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fugal force (see Article 31), being produced by the diurnal rota-
tion, is greatest at the equator, and is there directly opposed to
the force of gravity. It is also nothing at the poles. The
resultant gravitation of a heavy body is affected by the direct
action of the centrifugal force and its indirect action through the
change of the figure of the earth. The ratio for the equator and
poles is as follows:

gravitation at the equator : gravitation at the pole :: 186 : 187.
‘We can, for these reasons, only consider gravity as constant for
the same latitude on the earth’s surface, and for small altitudes
above it. The direction of gravity at each point on the earth’s
surface being perpendicular to the surface taken as that of still

water, does not pass accurately through the center of the oblate
spheroid.

11. Pror. A body being projected with a given velocity u
in the direction in which a uniform accelerating force f acts; to
Jind its velocity, and the space passed over in a given time.

If  be the velocity, s the space described at the end of the
time ¢, we shall have, by the second law of motion,
=velocity of projection + velocity from the action of the force
=u+fi

where the upper sign is to be taken when the force accelerates
the velocity, and the lower when it retards it.

In the same way,

space described=space due to velocity of projection + the space
due to the action of the force

or, s=ut+ifF
the upper and lower signs to be taken as before.

12. Prop. A body being projected with a given velocity u in
the direction in which a uniformly accelerating force f acts; to
find its velocity when it has passed through a given space.

Let o be the velocity when the body has passed through the
space $.
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Let % equal the space through which the body must pass to
acquire the velocity » by the action of the force. Then

w=2fh
and for the space %+ s we have
*=2f(h+s)
=2fh +2fs
=u?+2fs
The signs to be taken as in the last proposition.

13. Prop. 7o find the time of flight or of ascent and descent
of a body projected in an opposite direction to the action of the
Jorce.

Let the body be projected from 4 with a velocity
u. After ascending to some point B, it will return
to 4 again. From the expression v=u—f?, we have
for ¢t=0, or at time of projection v=u; at B, the
highest point, =0, or t=;=time of ascent; when

t=_2]ﬁ, we have v=u—f(27u)=—u,- or the velocity

acquired in descending during any time is equal to \
the velocity lost in the same time in ascending. A

u?—v? A
Tf'; or 8

is the same when v is the same ; if 4C=s, we have the velocity
at C the same when the body is ascending as when it comes to
the same point again in descending, and the time in passing
from C to B in the ascent is the same as in falling from B to C
in the descent.

Also, from v?*=u%—2fs, we have s=

Consequently the whole time of flight from leaving 4 to

. . - 2u
coming to 1t again 1s t=—,

S

If ©*> 42, s is negative, and must be measured below 4.
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EXAMPLES ON THE DIRECT ACTION OF GRAVITY AS A
CONSTANT ACCELERATING FORCE.

Ex. 1. Find the velocity a stone will acquire in falling
during four seconds by the action of gravity near the earth’s
surface.

In the expression v=gt¢, we have here t=4, =322,
Soo=4x322=128'8
or the stone has acquired a velocity of 128°8 feet per second.

Ex. 2. Find the space the stone in the last question had
fallen through in three seconds.

Using the expression s=}g?, we have
space required=}% x 322 x 32
=144-9 feet

Ex. 3. Find the velocity the same stone had acquired when
it had fallen through a space of 150 feet.

The expression v*=2¢s gives us
?=2x 322 x 150
=9660
or v=983 feet per second nearly, which is rather more than the
velocity which would be acquired in three seconds.

Ex. 4. A heavy body is projected directly downwards with
a velocity of 100 feet per second ; what is its velocity at the end
of five seconds ?

The formula v=u+g¢ gives
=261 feet per second.

Ex. 5. A heavy body is projected directly upwards with a
velocity of 100 feet per second; find its velocity at the end of
five seconds.

‘We have now the expression v=u—g#,
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and here v=100—32'2 x5
= —61

The negative sign shews that the body is coming down again,
and the velocity is 61 feet per second.

Ex. 6. Find how long the body in the last question con-
tinued to ascend.

At the highest point the velocity=0,
<. 0=100—32-2 x¢

or, t=f;2%=3'l seconds.

Ex. 7. To find the height to which the body in Ex. 5
ascended.

The formula for this case is ¥*=u?—2gs, and at the highest
. u?
point v=0 .- 3=2.-9-,
100
2 x 322
=1552 feet.

or, space ascended =

Ex. 8. A body is projected vertically upwards, and returns
to the same point in ten seconds; shew that the velocity of
projection was 161 feet per second.

Ex. 9. Shew that when a body falls from rest by the
action of a uniform accelerating force, the spaces described in

successive equal intervals of time are as the series of odd num-
bers, 1, 3, 5, 7, 9, &c.

Ex. 10. A stone being let fall into a well, it is heard
to strike the water in I' seconds; required the depth of the
well.

Let s be the depth of the well, m the velocity of sound = 1100
feet per second, nearly.
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Then T'=time of the stone falling + the time of sound returning.
LI
= 7 tm .
d ‘./2=mT
vy

a quadratic equation in 4s; whence

Vit A ) Tmp™ T
s=+ Tm+2g or

which gives s, and the upper sign only is admissible.

. or, s+ Vs

Ex. 11. A body is thrown vertically upwards with a velo-
city u; find the time of its being at a given height 4.

Let ¢ be the time required,
h=ut—3%g¢

whence 22— t?ﬁ+%z =0

gt Vur—29h

9
The lower sign gives the time as the body ascends, and the up-
per sign the time as it comes down again, when at the height &.
At the highest point there will be only one value of £, and

Ty

_— 2
. VuB=2gh=0, or h= %, as we should find by other modes.

Ex. 12. A body of given elasticity is projected upwards
with a given velocity u to strike a horizontal plane, and in ¢
seconds returns to the point of projection; required the distance
of the plane from that point.

Let the body be projected from 4 2
with the given velocity u, and strike
the horizontal plane at B with the ve-
locity o.

Let the velocity of rebounding at B Y

be v', and the modulus of elasticity be e.
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Let AB = s, the distance which is to be found.
Let ¢, be the time of ascending to B.

- t - - - descending from B to A4.
Then t)+t,=1¢ ¢))
and v=u—gt, v=¢v
=e(u—gt) (@
s=ub—3gl?
=vt+3gt’

Substituting for v’ and £, their values from (2) and (1), we have
a quadratic equation in ¢, which gives

49
2 _~J £
u+gt+/\ﬂu+gt) i (eut+1ig#®)

tl = 29
Substituting this value of #; in the expression
s=ut;—3gt?®

we have # as required, the lower sign only being admissible.

Ex. 13. Shew that a body falling by the action of gravity
acquires a velocity of 1000 feet per second in 31 seconds nearly.

Ex. 14. Shew that if a stone be thrown directly upwards
with a velocity of 40 feet per second, it is returning down again
after an interval of 1} seconds.

Ex. 15. Shew that the stone of the last example would
ascend to a height of 24°8 feet.

Ex. 16. An imperfectly elastic ball falls upon a hard floor
from a height A, shew that it will rebound to a height 24,

Ex. 17. A stone falling from a steeple passes through the
last } of the height in }th of a second; shew that the height of

the steeple is % (7+44/3).



CHAPTER IV.
ON PROJECTILES.

In the last chapter the motion of a body projected vertically
upwards or downwards, under the action of gravity, was con-
sidered; the whole motion taking place in the vertical line
through the point of projection. When the direction is any
other than vertical, the path of the body is an arc of the curve
called the parabola. By the second law of motion, gravity pro-
duces its full effect independent of the motion of projection:
and we may consider the latter as compounded of a horizontal
and vertical motion. The latter of these only can be affected by
the action of gravity on the body.

14. Prop. To determine the path of a body projected in a
given direction, with a given velocity, under the action of gravity.

Let v be the velocity of v
projection from the point A, T
in the direction 4Ty, and
let ¢ be the time in which the
body would have described the P
space AT with the uniform ]
velocity v, if gravity had not
acted.

If TP be the space due
to the action of gravity in the
time ¢, P will be the actual
place of the body. 2

Now, AT = vt PT=1g8
v
eliminating ¢, AT2=27”PT Q)



144 ELEMENTARY MECHANICS.

If we draw AV« a vertical line, and taking 47 = PT, com-
plete the parallelogram ATPV, we have AV =a', PV =y, the
oblique co-ordinates of the point P,

Let also % be the height from which the body must fall to
acquire the velocity o, or 4= %, we have from (1)
y*=4ha

which, as seen in treatises on conic sections, is the equation to
a parabola whose axis is parallel to 4«', and therefore vertical,
Ay’ a tangent at the point 4, and 4 the distance S4 of the focus,
and also of the directrix from 4. With these data the parabola
to represent the path of the body can be described.

15. Proe. To find the equation to the path of a projectile
when referred to axes of co-ordinates which are horizontal and
vertical.

Let v be the velocity of /
projection in the direction ¥ T
AT, which makes with Az
the angle of elevation of the
projectile TAr=a. Let APB
be the path, and AM =z, P
PM =y, the co-ordinates of
any point P. Let ¢ be the
time in which the body de- K o —*
scribes the arc AP; and let

PM produced meet AT in T, we have

AT =vt TP=1g#
AM = x=wvitcos.a PM=y=uvtsin.a—}gt
Eliminating £, we have from these equations
= 9
y =axtan. « .'1:22”2 costa

the equation required; or substituting, as in the last Prop.,
ot
"2 @

y = xtan. " Fhcos’a
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DeriniTiONs.  The horizontal range of a projectile is the
distance 4B from the point of projection to the point where it
strikes the horizontal plane in its descent. The time of flight is
the time it takes in describing 4PB.

16. Pror. To find the time of flight of a projectile on a
horizontal plane.
‘We have generally, as in the last proposition,
y=vtsin.a—}git?
and if we put y =0, or v¢sin.a—}g#*=0, the result will apply
to the points 4 and B only; and the values of ¢ are
t=0 at the point 4

o s
L L point B

which is therefore the time of flight required.

‘We should have arrived at this result by the same method as
in Article 13, by putting for u, the vertical component of the
velocity of projection, vsin. a.

17. Prop. To find the range of a projectile on a horizontal
plane.

If we put y = 0 in the equation,

2. g

=gxtan.a——>—>—

y 2. cos e

we have 0=zxtan.a—a?5;—"——
2v° cos.’a

The result, as before, applies to the points 4 and B, and
x =0 at the point 4

r= 29®sin. a cos. a at the point B

ot
or, AB:” sx;l.Qa

= 2hsin.2a

which is the horizonal range required.

This value of 4B varies with the angle of elevation «, and is
greatest when sin,2a =1, or = 45° v remaining the same.
L
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Since sin. (z-f; +6) =sin. (’—;— 6)
or, sin. 2 (45°+ g) = sin. 2(46°—g)

if we put either 4~5°+g, or 45°—g, for a in the equation for

AB, we have the same result;
or, as in the annexed figure,
if AB be the greatest range
of a projectile when the angle P
of elevation is 45° we shall
have 4B, a less horizontal
range corresponding to either

of the paths AP'B,or AP'B,

when the elevation of one was a Y 5

as much above 45° as that of
the other was below it.

‘We see that the horizontal range is the space which would

be described with the uniform horizontal velocity v cos. «, in the

time of flight 22 o,

18. Pror. 7o find the greatest height which a projectile
attains.

The greatest altitude is evidently the value of y at the middle
point of the path above a horizontal plane, or when the time is
one-half of the time of flight, or ¢ = oan. 2
Putting this value of ¢ in the expression

y =otsin.a—}g¢®
v’sin®a_, o%sina

we have the greatest altitude = g

v?sin.2a

9
= hsin2a

]
ol

2

Comparing this expression with s =—21‘q , we see that the
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greatest altitude the projectile attains is that to which it would
rise by the vertical component vsin. of the velocity of pro-
jection.

19. Pror. To shew that the velocity at each point of the
parabolic path of a projectile is that which would be acquired in
Salling directly from the directrix.

In Article 14 it was shewn, that if 2 be the height due to the
velocity of projection, it is also the distance of the point of pro-
jection from the directrix of the parabola described.. Now, if
any point in the parabola were taken for the point of projection,
and a body were projected from it with the same velocity and
direction which it has in the parabola, it would describe the
same parabola; and therefore what holds for the point of projec-
tion holds also for all other points of the path.

20. Prop. To find the point where a projectile will strike
‘an inclined plane through the point of projection, and its distance,
or the range on the inclined plane.

Let y =z tan. B be the equa- ¢
tion of the line 4C, which is the
intersection of the inclined plane
with the vertical plane in which ¢
the body is projected.

Combining this with the equa-
tion of the path of the projectile
in Article 15, namely,

A B
2

4} cos.Pa

we have the co-ordinates of the point C

_ 4 cos.a.sin. (a—8)
@ = 4k cos. B
s. . sin. 8. sin. (x—B)
cos.2 8
and the distance 4C = V22 + 4% = xsec. B

cos. & . sin, (2 —f)
cos.2f8

y = xtan.a—

y= 422

=4A
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EXAMPLES IN PROJECTILES.

Ex. 1. Two bodies are projected from the top of a tower
with the same given velocity at different given angles of eleva-
tion, and they strike the horizontal plane at the same point.
Required the height of the tower above the plane.

Let 4 be the point of pro-
jection, and B the point where A
the bodies strike the horizontal
plane.

Since the velocity of pro-
jection is given, A, the height
from which the bodies must fall to acquire it, is known. Leta
and B be the given angles of elevation.

B

We have to find —y, the height 6f the tower, by eliminating
« from the two equations, )

a?
—y=gxtan. u—ﬁ(l + tan.2a)

—y=xtan.B— (1 + tan3)

4h
(tan. 2+ tan. B) tan. (z+f)

which give y=
the height required.

Ex. 2. Find the angle of elevation at which a body must
be projected with a given velocity in
order to strike the summit of an ob-
ject whose height and distance are
given.

Let 4 be the point from which
the body is projected to strike the £ M =
point B, whose co-ordinates are x=a, y=>b.

Putting these values in the equation to the path of the pro-
jectile, we find
_2ht VIRG—bh)—a
a

tan. «
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Ex. 3. Shew that the latus rectum of the parabolic orbit
equals four times the space through which the body must fall
to acquire the horizontal component of the velocity of projection.

Ex. 4. Shew that the time of flight on an inclined plane is
given by the expression

4h sin. (e — B)
vcos. B

Ex. 5. A body is projected with a velocity due to the
height 4, at an elevation «; shew that it ranges on a horizontal
plane elevated a height H above the point of projection to a
horizontal distance from that point

H

=ksm.2a{l+ l—m

and that the time of flight is

2h . H
/\/g:Sln.d{l-l' l—m}




CHAPTER V.

ON CONSTRAINED MOTION

WHEN a body acted on by any force is constrained to move in
some particular manner, as, for instance, when a body falls down
an inclined plane, or a curve, or swings as a pendulum, we call
it a case of constrained motion.

21. Propr. To determine the relations of the time, space, and
velocity when a body falls by the action of gravity down an in-
clined plane.

Let the body fall from the point
B, down the inclined plane 4B,
whose inclination to the horizontal
line 4C is a.

Let a be its position at any time
¢t from rest, Ba=s, v=velocity at a.

The force f which urges the body down the plane is the
resolved part of gravity in that direction, or

S=gsin. a
which being a uniform force, we have only to put the value in

the expressions found in Articles 9 and 10, for the required re-
lations of s, ¢, and v.

The expressions v =f¢, s=1f#, v®*=2fs, become respectively
v=gsin. a.?, s=1gsin.a.?, v*=2gsin. a«.s, from which the
whole circumstances of the motion can be determined.

22. Prop. To shew that the velocity acquired in falling down
an inclined plane is the same as would be acquired in falling
down the perpendicular height directly.
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When the body arrives at 4, the space described is 4B ;
putting this value for s in the expression »*=2g sin. «. s, we

have
*=2¢g ABsin.

the expression when the body falls directly through the height
BC of the plane.

23. Prop. To shew that the times down any inclined planes
are proportional to the lengths of the planes, when the height is
the same.

Putting 4B for s, and 5_103' for sin. 2 in the expression
s=1gsin, «. 2, we have

BC
AB:%gE.f"

_ 2
or, t—AB/\/ .Q—TC

oc AB when BC is constant.

24. Pror. To find the relations of the time, space, and velo-
city when a body is projected directly up or down an inclined
plane.

Putting for f its value gsin. «, on an inclined plane, in the
expressions of Articles 11, 12, and 13, we have

v=u+jft becoming on the inclined plane v=u+gtsin.«

s=ut+ 3 - - - - - s=ut+igtisin. a
v*=u?42fs - - - - -  o*=u?42gssin.a
25. Prop. To shew that the times of R

a body falling down all the chords of a
circle, in a vertical plane, drawn from the
highest or to the lowest point, are the same. g c

Let AD be the vertical diameter of the E
circle, 4B a chord down which a body falls
by the action of gravity. Draw BC hori-
zontal. The accelerating force acting on 5

the body is
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AC
f=973
Putting =4 B in the expression s=11, we have
AC
=12~
AB—"qABt@

2 AB?
or, ts—g A_C

=§—AD....sinceAc:AB::AB:AD

in a circle; or the time down any chord is the same as that
down the diameter. The same relation evidently holds also for

all chords drawn from the circle to the point D, as, for instance,
DE or BD.

26. Pror. Two bodies hang from the extremities of a cord
passing over a pulley ; to determine the motion.

‘We shall first suppose that the weight of the pulley
may be neglected.

Let P and Q be the weights of the bodies, of which
P is the greatest; their masses are gand g respec-

tively. If the weights are equal, the bodies will balance,
and no motion will ensue ; but if one is heavier than the @5
other, it will descend and the other rise through an equal

space. The force which produces motion is the difference of
the weights, which, being a moving force, equals the accelerating
force multiplied by the mass moved.

Let f be the accelerating force, we have

r-aer39)

This being a constant accelerating force, we shall have the
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circumstances of the motion by substituting its value in the
expressions v=f¢, s=1f1%, v*=2fs.

When we take into account the inertia of the pulley, we
must add the equivalent mass acting at the cord to the other
masses set in motion. Let I be this inertia or mass at the cord ;
we have

_ P-Q
/=9 Pra+1g

This is the formala for Atwood’s machine, referred to in the
Article on the third law of motion. The force being uniform,
and capable of being modified in" any manner by changing the
relative and absolute magnitudes of the weights, we are enabled
by this machine to prove, in the most satisfactory way, by ex-
periment, the formulae for constant forces.

27. Prop. When a body falls by the action of gravity down
any arc of a smooth curve, the velocity at any point is that due to
the vertical height fallen through.

Let us first suppose that a body falls from_ t
A down a succession of smooth inclined planes
4B, BC, CD, DE, &c., and loses no part B/,
of its acquired velocity in passing from one
plane to the next. Draw Abcde, a vertical ¢ c
line, and Bb, Cec, Dd, Ee, &c., horizontal D ‘
lines.
E e

By Article 22, the body will have at B the same velocity as
it would have acquired in falling directly through the vertical
height A4b; and when it has passed without loss of velocity to
the plane BC, it will have at B and all other points the velocity
due to the vertical height fallen through. The same takes place
on each of the other planes, and the velocities at the points
C, D, E, &c. are those due to the vertical heights Ac, 4d, Ae,
&c. respectively. When the number of planes is indefinitely
increased, and the length of each indefinitely diminished, they
form a continuous curve, which, when smooth, acts only perpen-
dicular to the arc at each point, and therefore destroys by its
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reaction no part of the acquired velocity as the body passes
from one point to another. Hence the velocity at all points of
the curve is that due to the vertical height fallen through.

If a body be projected up or down a curve, the formula of
Article 12 hold good; if we put u=velocity of projection, v=
velocity after the body has passed through a wvertical height h,
we have

v*=u1+2gh
The upper sign to be taken when the body is projected down,
and the lower one when it is projected up the curve.

28. Pror. When bodies fall by the action of gravity down
any arcs of a circle in a vertical plane, the velocities at the
lowest point are proportional to the lengths of the chords of the

arcs.

Let a body fall from the point B in the figure Article 25,
down the arc BD ; the velocity at D is that due to the vertical
height fallen through, CD.

or, vel2=29CD
BD?
=*94D
——
or, vel. =BD'\/ :j—%
«BD

When the arcs are small, the velocities are nearly propor-
tional to the lengths of the arcs.

29. Prop. To find the time of a body falling down a cy-
cloidal arc in a vertical plane with its base korizontal.

The cycloidis a curve CAD € B D
described by a point in the cir- \
cumference of a circle, whilst ¢’
the circle rolls along the line
CBD, called the base of the
cycloid. The line 4B, which

8
NN
o

L
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bisects the base CD perpendicularly, is called the axis of the
cycloid, and is the diameter of the rolling circle when the point
describing the cycloid comes to its central position 4, which is
called the vertex of the cycloid.

If a line PpP’ be drawn parallel to the base CD, and 4p be
the chord of the circle in its central position; it is shewn in
mathematical treatises, that the arcs 4P or 4P’ are equal to
twice the chord Ap, and the tangent at P’ is parallel to the
chord Ap.

Let the body fall from the point Z to any point P; and take
Q a point near P. Draw the lines LK, PM, QN parallel to
the base of the cycloid, meeting the axis in K, M, N respec-
tively. Describe the semicircle 4nm K on 4 K, cutting PM in
m, QN in n; and draw the chords Am, An, Km, Kn. Let o be
the intersection of Kn and Am.

The velocity at the point P = ¥'2g . KM, and if the arc PQ
be indefinitely small, the velocity will be constant in it. Hence

the time of describing PQ = —Pace  _ 2r¢ AP—arc 4Q

velocny V29KM gKM
_2 xchord of circle ApB correspg to P—2 X chord corresps to Q
V29K M
QVAB AM -2~ AB. AN

VQgKM
_ /\/.JAB «/A_}
KM
_ ZAB{ AM.AK _ AN.AK}
=A/ g AK. kM~ NV AK.KM
_ 2AB (Am _ An
g |Km Km

24B 5 AB since ultimately no becomes a cir-
g Km ’ cular arc to center A.

- /\/2.43‘
9

x angle mKo
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The same holds for all other points between Z and 4; and
the whole time of falling from L to 4

—

2AB
9

x sum of all the small angles, as m Kn, in the
right angle LK A

_I/\/QAB
=3 _g

The body acquires in falling to 4 a velocity which will carry
it through an equal arc on the opposite side of 4, which it will
describe in the same time; or if the time of the complete oscil-
lation from L to an equal height on the opposite side of 4 be ¢,

we have
/\/QAB
t=m —_
9

30. Tt is shewn in ma- o
thematical treatises, that if
two half cycloids, CO, DO,
equal to 4D or AC, be con-
structed with their axes ver-
tical,sothat 4B Oisastraight B
line, and BO= 4B, then the
curve COD is the evolute of
the cycloid CAD; or a curve
such that a string of the A
length 40 being fastened at
O and wrapping on the arcs CO or DO, the extremity P of the
string, when drawn tight, will be always in the cycloid C4D,
the length of the arc Og+ ¢P being always equal to 04.

If a body be suspended at P upon a cord fastened at O,
wrapping and unwrapping on the arcs CO, OD, it will thus
oscillate in a cycloidal arc.

Let ! = the length of the cord 04, the time of a complete
oscillation is

T

t=m —

~ This is independent of the length of the arc of the cycloid
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described, and is consequently the same for all arcs. For this
reason the cycloidal pendulum is called isockronous, and from
this property arises the importance of the pendulum in instru-
ments for measuring time; for small arcs near A4 the cord will
not sensibly wrap upon the arcs of the evolute, and so a pen-
dulum oscillating in small circular arcs has the property of iso-
chronism. The clocks in astronomical observatories have their
pendulums oscillating in very small arcs, which requires the
mechanism of the clockwork to be very accurate, or the clock
would be liable to stop going.

. .
‘We learn from the expression ¢ = 1r,\/ E that at the same

place on the earth’s surface, or when g is constant, ¢ oc V7
and at different points of the earth’s surface if / is invariable,

txvg

31. Pror. A body at the extremity of an elastic cord, sup-
posed without weight, describes a circle, with a uniform velocity,

about a fixed point in the cord, as center; to find the tension in
the cord.

Let PQAB be the circle in which the body moves, of which
C is the center.

If the body were suddenly freed from constraint at any point
P, it would, by the first law of motion, R P
continue moving in the direction it had

m
at P, and with its uniform velocity, or e
it would then move in the tangent PR,
with that velocity. The effect of the c

tension in the cord is therefore to deflect
the body from the tangent at each point
in the circle, and is called a centripetal
force. The tendency of the body to fly
off by its inertia produces the force A
which balances this centripetal force, and is thence called the
centrifugal force.

If PQ be an arc described in an indefinitely small time ¢,
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and PR the space which would have been described in the tan-
gent, if the body were free, in the same time; then R and Q
being supposed indefinitely near to P; RQ, by the second law of
motion, becomes the space due to the action of the centripetal
force.

Let PCAbe a diameter of the circle, v the uniform velocity
of the body.

Let f = the centripetal accelerating force acting on the body;
we have ultimately

RQ=Pm
=ife
and PR=vt
But in the circle,
Qm*=Pm x mA
2
or, Pm=%%
=%, ultimately

. _v
..%fts—m

or, if » = the radius of circle,

If m be the mass of the body at P, the centrifugal moving
force =mf
ot
,
=the tension in the cord.

32. DeriniTION. A body suspended by a cord which per-
forms revolutions in a horizontal circle is called the conical
pendulum.

33. Pror.  To determine the motion of a body in the conical
pendulum,
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Let the body be fixed at the ex-
tremity P of the cord 4P which is
fastened at 4.

Let 4Cbe a vertical line, PC=»r
the radius of the circle which the
body describes with the uniform ve-
locity o. P

Let 7 = the length of the cord
AP, and angle PAC=a.

Since the body is in the same
circumstances at each point of the Y¢

159

circle, the forces acting upon it must balance each other. These
forces are, the weight of the body acting downwards, the centri-
fugal pressure acting horizontally outwards from C, and the

tension in the cord A4P.

Resolving horizontally and vertically, we have

52

. m v
tsm.a—-T:O

tcos.a—m g=0
From (2) we have the tension in the cord ¢

=_"ng
cos. &

Q)
@)

__the weight of the body
- cos. &
Eliminating ¢ between (1) and (2), we have
S drsin. @
cos. a
=g lsin.” o
cos. &
The time of performing one revolution
__circumference
velocity
Lwr
v

=2_"_/\/l cos. a
9

g
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which depends on the vertical height 4C, but not on the length
of the cord.

34. Proe. It is required to find the position of the rails in
the curve of a railway, so that the resultant pressure of a car-
riage passing along the curve with a given velocity may be per-
pendicular to the line drawn from one rail to the other.

Let APB represent in figure 1 the
curve in the railway, and let the radius
of the curve at Pbe PC=r. Let v=
the velocity of the carriage. If the
reaction of the rails perpendicular to
the line joining them as a b, figure 2, c
supplies the place of the tension in
the cord in the last proposition, the P
carriage will pass smoothly and safely
along the curve; for we shall then
have the weight of the carriage acting
at G, the center of gravity, figure 2, and the centrifugal pressure
acting horizontally outwards giving a resultant pressure perpen-
dicular to the rails which will be destroyed by their reaction.

A

If « be the angle which the resultant pressure in Gp makes
with a vertical line =angle which ab makes with a horizontal
line, we have, from the last proposition,

v®=gr tan. «
o?
or, tan.a=—
gr
which gives the inclination of the line @ b to the horizon as re-
quired.

EXAMPLES ON CHAPTER V.

Ex. 1. Two balls fall at the same instant from the common
vertex down two inclined planes which meet the horizontal
plane on which they rest at angles of 30° and 60°; shew that
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the times of falling to the horizontal plane are in the ratio
V3:1.

Ex. 2. To divide the length of a given inclined plane into
three parts, so that the times of descent down them may be
equal.

If the length of the plane be divided into nine equal parts,
the body will descend down one in the first interval of time,
down four in two intervals, and down the whole nine in the
three equal intervals.

Ex. 3. P descending vertically draws Q up an inclined
plane by means of a string passing over a pulley at the vertex;
find the velocity acquired by P in describing a given space A.

Let P and Q be the weights of the bodies respectively, « the
inclination of the plane to the horizon, 4 the space which P
describes.

the moving force = P— Qsin. «

the mass moved neglecting the pulley =£_}‘_ﬂ
P—Qsin.a
P+Q

and from the general formula ¢* = 2fs we find

. o a P—Qsin. a
the velocity required = ,\/ 2 ghw

Ex. 4. Twelve pounds weight is so distributed at the ex-
tremities of a cord passing over a pulley, that the more loaded
end descends through seven feet in seven seconds. What is the
weight at each end of the cord ?

*. the accelerating force =g.

We find P=6(1+-—5%), and Q= 6(1— i 7) pounds.

1127

Ex. 5. If three pendulums suspended in the same vertical
plane have their lengths as the numbers 1, 4, and 9; shew that
M
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when they commence oscillating together, the first and second
will be together again after four oscillations of the first; the
first and third will be together again after three oscillations of
the first; and the whole will be together again after twelve oscil-
lations of the first.

Ex. 6. The length of the pendulum which beats seconds in
London being 39:138 inches, shew that the force of gravity is
represented by 32:19 feet nearly. -

Ex. 7. Ifa body be projected obliquely upon an inclined
plane, shew that its path is an arc of a parabola.

THE END.
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a German, for epmﬁecﬁonofthepotawphntnvmdjaease.’ » & very ingenions plan by

De Morgan.—Formal Logic;

Or, the Calculus of Inference, Necessary and Probable. By Aveustus De
MoRraan, Professor of Mathematics in University College, London, 8vo. 12s.

Liebig—Gregory.——Turner’s Chemistry.

Eighth Edition. Edited by Jostus Liesie, M.D., Professor of Chemistry
in the University of Giessen, and WiLLiaM GRreGorY, M.D., Professor of
Chemistry in the University of Edinburgh. Complete in 1 volume, 8vo,
14, 10s.

The Work may also be had in Two Parts.

Parr I.—INORGANIC CHEMISTRY. 15s. cloth,
II—ORGANIC CHEMISTRY. 15s. cloth.
“The present is, in short, the most complete and the most luminous system of

Chemistry in the lish lan, ;. and we know no one in France or Germany that
comes near it."—IéE;tgnbwyh m and Surgical Journal, Jan, 1, 1847, v
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2 WORKS PRINTED FOR TAYLOR AND WALTON,

Mohr—Redwood.—Practical Pharmacy.

Comprising the Arrangements, Apparatus, and Manipulations of the
Pharmaceutical Shop and Laboratory. By Francis Mong, Ph.D., Assessor
Pharmacise of the goyal Prussian College of Medicine, Coblentz. Edited,
with numerous Additions and Alterations, adapting it for the use of English
Chemists, by TrEOPHILUS REDW0OD, Professor of Pharmacy to the Pharma-
ceutical Society of Great Britain. One volume, 8vo, illustrated by several
hundred Engravings on Wood. (In the Press.)

Schmitz.— Niebuhr’s Lectures on the History
of Rome from the Earliest Times to the
First Punic War.

Edited by Dr. M. Isler. Translated with numerous Additions from MSS.
in the exclusive possession of the Translator. By Dr. L. Scamirz, Rector
of the High School of Edinburgh. 1 volume, 8vo. 14s. cloth,

The above, with the two volumes of Lectures already published, complete Niebuhr’s
Hiswryofnimeinthelgc_turetorm. v

¢ It is this real utility of structure and treatment which renders the Lectures under
review more pofpnlnr, and to tyros in Niebuhr’s theories more useful, than his history,
to which they form a fitting irtroduction or companion.”—Spectator.

Thirlwall-Hare,—Niebuhr’s History of Rome.

Translated by Bismor THIRLWALL and ARcHDEACON Hare. A New
Edition of Volumes I. and 1I. 8vo, 16s. each.

Sharpey—Quain.—Dr. Quain’s Anatomy.

Fifth Edition. Edited by DRr. SEARPEY and MR. QuarN, Professors of
Anatomy and Physiology in Univerai%nCo]]ege, London. Complete in 2 vols.
8vo. I ush‘ated{;]' several hundred Engravings on Wood.

%4* The Work may also be had for a short time in Three Parts.
Part 1,13s. | Panr II,14s. | ParrIIL, s
«» Part III., completing the Work, is nearly ready.

Dictionary of Greek and Roman Antiquities.

By various Writers. Edited by Dr. WiLLiam Surrr.  Second Edition.
Revised hout, with very numerous Additions and Alterations. One thick
volume 8vo, with several hundred Engravings on Wood. £2. 2s.

Linwood.—Lexicon to ZEschylus.

Containing a Critical Exglanation of the more difficult Passages in the
Seven Tragedies. By the Rev. W. Linwoop, A.M., MLR.A.S. Second
Edition, revised throughout. 8vo. 12s.

¢We ha h pleasure in recommending the work to the notice of students, who
will de:ivey:egugregt assistance from it in the stnd‘yv?ff Zschylus.” v
Classioal Museum, No. 1.
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Dictionary of Greek and Roman Biography and
Mythology.

By various Writers. Edited by Dr. WiLLiaM SmitH. Part XXIV. (Part
V1. of Vol. IIL), price 4s.
%* Volume III. completing the Work, to be published this year.

Latham on the English Language.

Second Edition. Revised, with large Additions. 8vo. 15s.

“Let hlm%gough he know no characters but those of his mother tongue, read
through the book as well as he can, and we will answer that he will, at the close, find
himself in the possession of much iarger and clearer notions of general grammar, and
espoctnllg of comparative etymology, than he would have sup possible at the outset.
He will find herean historical and analytical view, comprising the general ethnographical
relations of the English Language, and that, too, in a much more readable form than
be may imagine. At all events it will set him thinking, and, in whatever nook or
corner of the kingdom or of the world his lot may be observing too; for the very
dialect of the province will acquire a new interest, and help him in his studies.”
English Journal of Education,

Schmitz.—A History of Rome,

From the Earliest Times to the Death of Commodus, A.p. 192. By Dr. L.
ScamiTz, Rector of the High School of Edinburgh, Editor of Niebuhr's
Lectures. One thick volume, 12mo, 7s. 6d. cloth, or 8s. 6d. strongly bound
in leather.

LR ) 3 .
distinguiahod achotas cepectally thoss. of Niebuht, Arneld, Gostliing, Hubiag, aad Hooas:
The whole is based upon a carcful examination of the o sources.

¢TIt will undoubtedly take the place of every other Text-Book of the kind in eur
Schools and Colleges.”’— Bibliotheca Sacra (American), Aug. 1847,

Gregory.—Outlines of Chemistry, for the Use
of Students.

By WiLLian GREGORY, M.D., Professor of Chemistry in the University of
Edinburgh. Second Edition, revised and enlarged. Complete in 1 vol.
foolscap 8vo, 12s. cloth. Part I.—(INoR@aNIC CREMISTRY), 5s. cloth. Part
II— Smmuc CHEMISTRY), 73. cloth.

“ This is beyond comparison the best introduction to Chemistry which has yet
appeared. The directions for preparing substances are usually confined to the best
method, so that brevilz and selectness are combined. The size and price of this little
work, as well asits in c merits, commend it to every student of Chemistry.”—Lancet.

Liebig—Gregory.—Researches on the Chemistry
of Food.

By Jusrus Lieie, M.D., Professor of Chemistry in the University of
Giessen. Edited from the Author’s Manuscng)t, by WiLLiax GrEGORY, M.D.,
Professor of Chemistry in the University of Edinburgh. 8vo, 5s. 6d. cloth.

“ None will refuse to admit the magnitude ayd success of Professor Liebig’s labours.
T%ctget'fa heh has latol)in added b{ a new tlvor:éhczn ‘The Chemisttyt of Food,’ eompr!’sing
m t is curious resent result—mi also, suggestive of further en .

P Quarterly Review, ﬁ‘g.%nxv.

Maclise.—Comparative Osteology,

Being Morphological Studies to demonstrate the Archetype ‘Skeleton of
Vertebrated Animals. By Joserr Macrise, Member of the Royal College of
Surgeons. Tlustrated by 54 Plates. Small folio, 2. 12s. 6d. cloth.

¢ Suffice it to say'that the Book ought to be in the hands of very scientific
anatomist.”—Morning Chronicle.




4 WORKS PRINTED FOR TAYLOR AND WALTON,

Liebig—Playfair and Gregory.——Chemistry in its
Applications to Agricuiture and Physiology.

By Justus Liesie, M.D., Ph.D., F.R.S., Professor of Chemistry in the
University of Giessen. Edited from the Manuscript of the Author, by Lyon
PrayraIr, Ph.D., and WiLLiam Gregory, M.D. Fourth Edition, revised.
8vo, 10s. 64. cloth.

¢ It is not too much to say, that the publication of Professor Liebig’s Organic Che-
of Agriculture constitutes an era of great importance in the history of Agricul-

tural Science. Its acceptance as a standard 1s unavordable; for following closely in the
straight path of inductive Phil ky, the lusions which are drawn from sts data
are incontrovertible. We can truly say, that we have never risen from the of
a book with a more thorough convictien of the profound knowledge, extensive reading,
and practical research of its autbor, and of the invincible power and importance of its
‘l;ealonixllgu and conclusions, than we have gained from the present volume.”—Silliman’s

ournal.

Liebig—Gregory.—Animal Chemistry ;

Or, Chemistry in its Applications to Physiology and Pathology. By Jusrtus
Lieeig, M.D., Ph.D., Professor of Chemistry in the University of Giessen.
Edited, from the Author’s Manuscript, by WiLLiAM GREGORY, M.D., Professor
of Chemistry in the University of Edinburgh. Third Edition, almost wholly
re-written. 8vo. Part I, (the first half of the work) 6s. 6d. cloth, just
published.

¢ Under the heads of animal heat; of the nutrition of the carnivora and herbivora;
of the origin and use of the bile; of the relation b the change of matter and
the consumption of oxygen ; of the origin and use of the mon-nitrog d el 1t
of food, and icularly of fat, and their relative value as sources of heat; of the
effects of alcohol and fermented liquors; of the effects produced on the volume of the
inspired air by the different articles of food ; and lastly, of the true functions of the
intestinal canal, and the origin, mature, and composition of the feoces, with their relation
to the food, and to the su| ‘:ll‘y of oxygen;—under all these heads, the reader will find
such an amount of new amf teresting matter as must satisfy him that we have entered
on the true path of discovery, and that the industry of modern chemists has been most
profitably emplo,yed during “the period which has elapsed since the first edition of this
work appeared.”—From the Editor’s Advertisement.
Part I1., completing the Work, will be ready very soon. It has been delayed

Jor the results of important investigations.
Latham.,—An English Grammar for the Use of
Schools.
By R. G. Laraan, A.M,, Fellow of King’s College, Cambridge. Second
Edition. 12mo, 4s. 6d. cloth.
“A work in which Grammar, no longer an assemblage of conventional rules of
becomes a phi hical analysis of our lan,

speech, and an elementary
intellectual exercise adapted to the hest purposes of "—Minutes of
Council of Education (8t. Mark’s College), Vol. I, 1845,

‘The Classical Museum;
A Journal of Philology and of Ancient History and Literature. 8vo.
Vol. II. 12s. 6d. cloth. + Vols. III,, IV., and V., each 14s. 6d. cloth.
The work is continued Quarterly. Price of each Part, 3s. 6d. Part XX.
is just published.
Sub Rege Sacerdos,—Comments on Bishop
‘ Hampden’s Case,
With an Epitomised Report of the Proceedings. By E. S. CrEasy, M.A., of

Lincoln’s Inn, Barrister-at-Law ; Professor of History in University College,
London. 8vo, 3s.

~
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Clagsical Antiquities, Wiography, Wistory, K¢

DICTIONARY OF GREEK AND ROMAN ANTIQUITIES.
Edited by Dr. WiLLiam Smite. New Edition. One thick vol. 8vo. £2. 2s., cloth
lettered. (See page 2.)

DICTIONARY OF GREEK AND ROMAN BIOGRAPHY
AND MYTHOLOGY. Edited by WiLLiam Smite, LL.D. Medium 8vo.
Illustrated by numerous Engravings on Wood. To be continued in Quarterly
Parts, and to form Three Volumes.

Vol. 1. (1100 pages), 1i. 16s. cloth lettered.
I1. (1200 pages), 11. 16s, ditto,
III. Completing the Work, to be ready this year.
¢4* Parts 19 to 25 (7 Parts of Vol. IIL) are also published, each 4s.

¢ There is no need of pronouncing any formal eulogium on this new Classical Dic-
tionary, for in fact it is the only one with any pretensions to the name in our language ;
and as such it must form part of the library of every student who desires to become
acquainted with the mind of antiquity.”’—Atheneum.

NIEBUHR’S HISTORY OF ROME, FROM THE EARLIEST
TIMES TO THE DEATH OF CONSTANTINE. 5 vols. 8vo, 3. 14s. 6d.
Vols. I. and II, Translated by Bissor THIRLWALL and ARCHDEACON
HaRg. 163. each.
Vol. ITI. Translated by Dr. Smite and DR. Scumitz. 18s. 6d.
Vols. IV. and V, Lecrures. Edited by Dr. Scamitz. 2 vols. 11 4s.

NIEBUHR’S LECTURES ON THE HISTORY OF ROME,
FROM THE EARLIEST TIMES TO THE DEATH OF CONSTAN-
TINE. Edited by Dr. L. Scamirz, Rector of the High School of Edinburgh.
3 vols. 8vo. 11, 18s. -
I. Earliest History to the First Punic War. 1 vol. 8vo,14s. (See p. 2.)
II. First Punic War to the Death of Constantine. 2 vols. 8vo, 1/. 4s.

“They may be used as an introduetion to, or as a running commentary on, Niebuhr’s
great work. .. . Even those who by a care_fui study have acquired a thorough fannlm-lz
with the three volumes of the Roman History, will find in these Lectures much that
new and striking.”’—Pr¢face.

SCHMITZ’S HISTORY OF ROME, FROM THE EARLIEST
TIMES TO THE DEATH OF COMMODUS. 1 vol. 12mo. 7s. 6d. cloth,
or 8s. 6d. strongly bound in leather. (See page 3.)

ROBSON’S QUESTIONS ON DR. SCHMITZ’S HISTORY
OF ROME. 12mo, 2s. _

AKERMAN’S (J. Y.) NUMISMATIC MANUAL; or, GuipE

10 THE COLLECTION AND STUDY OF GREEK, ROMAN, AND ENgLISH CoINs,
8vo, with numerous Engravings, 11. 1s.

A SCHOOL DICTIONARY OF ANTIQUITIES ; selected and
abridged from the “ Dictionary of Greek ,and Roman Antiquities.” B,
WiLLiaym SmitH, LL.D. One small volume, Two Hundred Woodcuts. 10s. 6d.

KEATS’ (JOHN) POETICAL WORKS. In one vol. fcap., with
a Portrait from a Drawing by HiLton. Price 5s. cloth,

¢ As it is, there is not a poet li who could surpass the material of ¢ Endymion,’ a

poem, with all its faults, far more full of beauties.”—H#illis’s Pencillings by the Way.
EXERCISES IN LOGIC; designed for the Use of Students in
Colleges. By J. T. Gray, Ph.D. 12mo. Price 3s. 6d. cloth.

8
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6 WORKS PRINTED FOR TAYLOR AND WALTON,

Hatural Philosophp.

POTTER’ S ELEMENTARY TREATISE ON MECHANICS,
for the use of the Junior Umvermty Students. By Ricaarp PorrER, A_M
late Fellow of Queen’s College cige Professor of Natural Philosophy
in University College, London. 8vo, numerous Diagrams. 8s. 6d. cloth.

POTTER’S ELEMENTARY TREATISE ON OPTICS. 8vo,

with numerous Diagrams. 9s. 6d. cloth.

This vol all the reqniai propositions carried to first ; and the
m ottdm “ Refracting Telesoope:oand the Sohr,
Oxyhydrogenmd Luoernal Moicroaoopes, th;,lhdcut:dmd tamagorhhn the
Optwnl Square; '.he Screw Mi eter; the G , &e.

YOUNG’S LECTURES ON NATURAL PHILOSOPHY AND
THE MECHANICAL ARTS. A New Edition, with References and Notes,
by the Rev. P. KeLLaND, M.A., F.R.S. London and Edinburgh, late Fellow of
Queen’s College, Cambridge, Professor of Mathematics, &ec. in the University
of Edinburgh, 2 vols. 8vo, with 43 Copper Plates. 1. 4s. cloth.

bu‘t‘ All t;'rho mﬁfmfw k:ow that Young ubenot merely ?n pog:l;r vﬂter}
mbjgh, and who have actuagly wrltt:ﬁ ::;oﬁh that range.”—. Ath‘:::cm: °

TWELVE PLANISPHERES, forming a Guide to the Stars for
every Night in the Year, with an Introduction. 8vo. 6s. 6d. cloth.

Mathematics.

DE MORGAN’S ELEMENTS or ARITHMETIC. By AveusTus
DE Morean, Professor of Mathematics in University College, don. Fifth
Edition, with Eleven new Appendixes. Royal 12mo. 5s. cloth.

¢ At the time when this work first published, the importance of establishing
aﬂthmeﬁeein thz ‘ioung min‘:l,orupo‘:xumson l?’a.l:ni de:l'mmuon, was not admitted by
many. s schools exist in which rational arithmetic is taught,
andmere rules are made to do no more than their proper duty. There i8 no necessi
to advocate a change which is actually in progress, as the works which are publish
ever; day suffieiently show. And my principal reason for alluding to the sul Ject here
hmerelytowamthosewhowmtnothmgbutroutme, that this is not the book for their
purpose.”’—Author’s Pyreface.

DE MORGAN’S ARITHMETICAL BOOKS AND AUTHORS.
From the invention of Printing to the present time ; being Brief Notices of a
large number of Works drawn up from actual mspectxon. Royal 12mo. 6s.

“ A great mumber of persons are employed in arithmetic in-the United
Kingdom. In publishing this work, I have the hope of before many of them
more material for the prevention of inaccurate kno of the literature of their
science than they bave hitherto been able to command, without both expense and
research.”— Preface.
DE MORGAN’S ELEMENTS OF ALGEBRA, preliminary to
the Differential Calculus. Second Edition. Royal 12mo. 95 cloth,

DE MORGAN’S ELEMENTS OF TRIGONOMETRY AND
TRIGONOMETRICAL ANALYSIS, preliminary to the Differential Calculus.
Royal 12mo. 9. cloth,

TABL}]'.;}dSETgF LOGARITHM%: COMMON AND TRIGONO-
ICAL, TO FIVE PLACES. Under the S«@ermtendem the Society
Jor the Diffusion of Useful Kmmkdge. Foolscap 8vo. 3s. sewed Of

REINER’S LESSONS ON FORM; or, AN INTRODUCTION TO
GEOMETRY, a8 given in a Pestalozzian School Cheam, Surrey. 12mo, with
numerous Diagrams. 3s. 6d. cloth.

. $It has been found in the actual use of these for a considerable period, that &
larger average number of pu] gﬂs are brought to y, ! the Mathematics with deeided
success, and that all pursue them in a superior manner.”—Rep. Dr. Mayo.
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REINER’S LESSONS ON NUMBER, as given at a Pestaloz-
zian School, at Cheam, Surrey. SecondEdmon. Conmtm of
THE MASTER’S MANUAL 12mo. 4s. 6d. clo
THE SCHOLAR’S PRAXIS. 12mo, 2s. bound.

RITCHIE’S PRINCIPLES OF GEOMETRY, familiarly Illus-
trated, and apphed to a variety of useful purposes. Demgned for the Instruc-
tion of Young Persons. Second Edition, revised and enlarged. 12mo, with
150 Woodcuts. 3s. 6d. cloth.

RITCHIE’S PRINCIPLES OF THE DIFFERENTIAL AND
INTEGRAL CALCULUS, familiarly INustrated and applied to a variety of
useful purposes. Second Edmon Revised by J. A. SPENCER, B.A., Assistant
Mathematical Master in University College School 12mo, with Dmgnms

43. 6d. cloth.
“Dr. Ritchie was a man of clear head, apt at illustration and fond of elements, We
have heard that he wrote this work when, late in life, he began to learn the subject. We
believe our readers would find it a useful first book.”—Atheneum,

BARLOW’S TABLES OF SQUARES, CUBES, SQUARE
ROOTS, CUBE ROOTS, and RECIPROCALS up to 10 000 Stereotype
Edition, "examined and corrected. Underthg&tpmdemofthc&ﬁety
for the D!M of Useful Knowledge. Royal 12mo. 8s.

¢ They will be found useful to the more scientific class of Engineers and Surveyors,
for immedxately obtaining results which are now usually qot by logarithmic caloulation,
or the aliding ; to actuaries (in the table of r for ob-

tninln(ﬁneexmples or the ordinary rules of Arithmetic ; to al, in fact, who are calculators
or necessity, though of course to some more than to others.” —Preface.

Rerent Jintrnhuttorp Lertures.,

PROFESSOR NEWMAN ON THE RELATIONS OF FREE
KNOWLEDGE TO MORAL SENTIMENT. 8vo.

PROFESSOR RAMSAY. PASSAGES IN THE HISTORY
OF GEOLOGY. 8vo. ls.

Biaries and Journals,

THE LITERARY DIARY, or Complete Common-Place Book.
Post 4to, ruled throughout a.nd half-bound. 12s.

A POCKET COMMON-PLACE BOOK. With Locke’s Index.
Post 8vo, half-bound. 8s. 6d.

THE STUDENT'S JOURNAL. Arranged, Printed, and Ruled
for receiving an Account of every Day’s Employment for the space of One
Year. Post 8vo, half-bound. 4s. 6d.

THE PRIVATE DIARY, formed on the Plan of ¢ The Student’s
Journal,” for general Use. Post 8vo, half-bound. 4s. 6d.

Maps.
OUTLINE MAPS:— MercaTor — EvroPE — Britism IsLEs.
Three Maps, folio, stitched in cover, 1s. ; single Maps, 4d. each.

GEOGRAPHICAL PROJECTIONS :—MgercaTor—EUuRoPE—
Bnmsn Istes. Three Maps, folio, stitched in cover, ls.; single Maps, 4d.

TEACHING MAPS: :—ENGLAND, WALES, and Part of ScorLaND.
L. Rivers, Mountains, &c. Price 6d. II. Towns. Price 6d.




WORKS PRINTED FOR TAYLOR AND WALTON,

Linwood’s Lexicon to Aschylus.
New Edition, revised. 8vo. 12s. (See page 2).

Allen’s New Greek Delectus;
being Sentences for Translation from Greek
into English, and Engulh into Greek ;

d in a sy By
Dr. Rarmax. Kosner. Transiated and
Edited from the German. Second Edition,
revised. 12mo. 4s. cloth.

“Tt is an andsyntheﬁedptxlson
mmor“m miuﬂt:i

and information on points
Greek writers.”—Preface.

Allen’s Constructive Greek Ex-
ercises, for teaching Greek from the begin-
ning by writing. Second Edition, revised
and enl;r;ed 12mo. 38s. cloth.

beginning Greek, needs no book
p&gﬂ, He has here Grammar, Vocabulary,

Ha.rdy’ 8 Anabasls of Cyrus,
Book L, Chapters 1 to 8. Literal and Inter-
linear Translation of the First Chapter, and
a Lexicon to the whole, 12mo. 3s. 6d. cloth.

London Greek Grammar; de-
signed to exhibit, in small compass, the
Elements of the Greek Language. Edited
by a GRADUATE of the University of Oxford.
Fifth Edition. 12mo. 3s. 6d. cloth.

Plato: the Apology of Socrates,
the Crito, and Part of the Phedo; with
Notes (translated into English) from STaLL-
BAUM and SCELRIERMACHER'S Introductions.
Edited by DR. Wu. Syrte. 12mo. 4s. 64. cl.

Life of Socrates. By Dr. G.
Wiceers. Translated from the German,
with Notes, 12mo, 3s. 6d. -
ConTENTS :—Life of Bocrates, by Wiggers—

Life of Bocrates, by Diogenes Laertius—
Schleiermacher on the Worth of Socrates
as a Philosopher.

Tayler’s (Rev. Charles) Intro-
duction to the Art of Composing Greek
Iambics, in Imitation of the Greek Trage-
dians, designed for the Use of Schools.
12mo. 2s. 6d.

Greek Authors, selected for the
use of Schools; containing portions of
Lucian’s Dialogues, Anacreon, Homer’s
Iliad, Xenophon’s Memorabilia, and Hero-
dotus. 12mo, 3s. 6d. cloth,

Taylor’'s What is the Power of

the Greek Article? 8vo, 3s. 6d.

Four Gospels in Greek, for the

use of Schools. Fcap. 8vo, 3s. 6d. cloth.

Allen’s New Latin Delectus:
being Sentences for Translation from Latin
into English, and English into Latin; ar-
anged in a sy tic progression, on the
Plan of the Greek Delectus. Second Edition,
revised. 12mo, 4s. cloth.

Robson’s Constructive Latin

lk-chu,for teaching the Elements of the

on a 8y of Analysis and Syn-

thuh, with Copious Vocabularies. By J.

Roeson, B.A., Assistant Master in Uni-
versity College School. 12mo, 6s. 6d.

- Allen’s Etymological Analysis

of Latin Verbs. Fcap. 8vo, 5s.

Allen’s Ecloge Ciceronians ;
containing Narrations, Maxims, Descrip-
tions, Characters, Philosophioal Pieces, and
Letters. Belected from the Works of Cioero.
12mo, 25, 6d. cloth.

Ceesar for Beginnérs. Latin and

English ; with the original Text at the end.
12mo, 3s. 6d. cloth.

Hall’s Principal Roots of the
Latin Language, simplified by a display of
their incorporation into the English Tongue ;
with copious Notes. Fifth Edition. I12mo,
4s. 6d. cloth.

Hodgson’s (Provost of Eton)
Mythology for Versification ; or a Brief
Sketch of the Fables of theAndentu, pre-
pared to be rendered into Latin Verse.
Fourth Edition. 12mo, 3s. cloth. Key to
ditto, 8vo, 7s. cloth.

Hodgson’s (Provost of Eton)
Belect Portions of S8acred History, conveyed
in sense for Latin Verses. Third Edition.
12mo, 3s. 6d. cloth. Key to ditto. Royal
8vo, 10s. 6d. cloth,

Hodgson’s (Provost of Eton)
Bacred Lyrics; or, Extracts from the Pro-
phetical and other Scriptures of the Old
Testament ; adapted to Latin Versification
in the principal Metres of Horace. 12mo,
6s, 6d. cloth.

Caxesar’s Helvetic War. In Latin
and English, Interlinear, with the original
Text at the end. 12mo, 2s. cloth.

Latin Authors, selected for the
use of Schools; containing portions of
Phedrus, Ovid's Metamorphoses, Virgil’s
Zneid, Cesar, and Tacitus. 12mo, 3s. 6d.
cloth,
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London Latin Grammar; in-
cluding the Eton S8yntax and Prosody in
English, accompanied with Notes. Edited
by aGrapuars of the University of Oxford.
Twelfth Edition. 12mo, 2s. 6d. cloth.

New Latin Reading Book ; con-
‘sisting of short Sentences, easy Narrations,
and Descriptions, selected from Cesar's

Gallic War ; arranged in systematic pro-
gression. With a Diotionary. 13mo. 3s.
6d. cloth.

‘¢ The plan of this work differs in oneim t
point from other works of a similar kind. The
sentences have been selected exclusively from
Ceesar’s Commentary on the Gallic War, instead
of being taken from different anthors, as has
usually been the case. There is an obvious
advantage in this plan ; the same words are con-
tinually repeated by the same author in a simple
narrative; and the pupil thus becomes accus-
tomed to his style, and finds the work of transla.
tion grow easier every day, which cannot be the
case when the extracts are taken many dif-
ferent authors, whose style must of course vary
exceedingly.”—Preface.

Tacitus. Germania, Agricola,
and First Book of the Annals, With Notes
translated into English, from Rupertf,
Passow, Walch, and Bbotticher's remarks
on the style of Tacitus. 12mo. b5¢. cloth.

Virgil’s Aneid. The First Six
Books, with an interpaged translation,
line for line, and numerous Notes, Second
Edition. 12mo. 6s. 6d.

Cicero. — Pro Lege Manilia.

12mo, sewed, ls.

ENGLISH.
Latham’s English Language.

Becond Edition revised. 1 vol. 8vo, 15e.
(See page 3.)

Latham’s First Outlines of Lo-
gic, applied to Grammar and Etymology.
12mo, 1s. 6d. cloth.

Latham’s Elementary English
Grammar. For the Use of Schools. Second
Edition. 12mo. 4s. 6d. cloth.

¢ His comparison of the old Saxon forms with
the modern English, his classification of verbs
under the heads of weak and strong forms, and
his remarks on the derivation and construction of

English words, afford evidence of laborious inves-

tigation and research, and are a valuable contribu-

tion towards reducing ou;‘ language within its
useum.

Green’s Questions on the above,
with an Index of Reference. 12mo. cloth,
1s. 6d.

ITALIAN.

Panizzi’s Extracts from Italian
Prose Writers.: One thiok volume, 12mo.
10s. 6d. boards.

Panizzi’s Elementary Italian
Grammar. 12mo. 3s. bound.

FRENCE.
Complete Course of the French

e. By P. F. MERLET, Professor of
French in University College, London.

Merlet’s French Grammar,
divided into Three Parts; the Pronunoia-
tion, the Accid and the Synt: New
Edition. 1%mo. bs. 6d. bound.

Merlet’s Key to the French

Grammar, 12moJ 3s. 6d, bound,

Merlet’s Le Traducteur; or, His-
torical, Dramatic, and Miscellaneous
Selections from the best French Writers;

panied by Explanatory Notes; a
selection of Idioms, &c. New Edition.
12mo. 5s. 6d4. bound.

Merlet’s Petit Tableau Litteraire
de 1a France; containing an Essay on
French Literature, with Spect of the
best Authors, from the earliest period
to the present time: a sequel to “ Le Tra-
ducteur.” 12mo. 6s. bound.

Merlet’s Dictionary of Difficul-
ties; Appendix to the French Grammar.
Second Edition. 12mo. 4s. bound. Con-
taining an explanation of the peculiarities
of the French Language—Complete List of
Adjectives, showing why they are placed
before or after the Substantive—Compre-
hensive List of Idioms, and Proverbs now
in use — List of Synonymes — Mercantile
Expressions, Phrases, and Letters, &c. &o.

Hurwitz’s Grammar of the He-
brew Language. 8vo. 13s. cloth. Or in
Two Parts, sold separately: ELEMENTS,
8vo. Cloth, 4s. 6d. ETvmoLoGY and SywN-
TAX. 8vo. Cloth, 9s.

¢ Mr. Hurwitz’s Grammar is the best ele-
mentary work of its kind extant in the English lan-

guage.”’—Journal of Education, No. 9.

Greenfield’s Book of Genesis in
English Hebrew, accompanied by an Inter-
linear Translation, substantially the same
as the authorised English version; Philo-
logical Notes,and a Grammatical Introduc-
tion. Fourth Edition. 8vo. 8s. cloth. With
the original Text in Hebrew characters at
the end. 8vo. 10s. 64. cloth.




10 WORKS PRINTED FOR TAYLOR AND WALTON,

INTERLINEAR TRANSLATIONS.

LOCKE’S SYSTEM OF CLASSICAL INSTRUCTION,
Restoring the Method of Teaching formerly practised in all Public Schools

The Series consists of the following Interlinear Translations ; with the Original
Text, in which the quantity of the doubtful Vowels is denoted Critical and
Explanatory Notes, &ec.
(R4 Byme-moft.haeWotbf;’hntemM ot'l‘mﬁm effectually restored which
nt the foundation of 8t. Paul’s Sohool,
and was then byauthorl ofthe be adopted in all other Public Semi-
naries of Learning throughout the vdum 2s.64.

1. Pazprus’s FABLES or ZsoP.

2. Ovip’s METaMORPHOSES. Book I.

3. ViraiL’s ANeip. Book 1.

4. ParsiNG Lrssons 10 VIRGIL.

5. Cxsar’s INvasION OF BRITAIN.

6. Tacirus’s LiPE oF AericoLa. Part L

1. Lucian’s Diarogurs. Selections.

2. THE ODES OF ANACREON,

3. Homer’s ILiap. Book 1.

4. Parsing Lessons To HoMER.

5. XenorHON’S MEMoORABILIA. Book I.
6. Heroporus’s Historiks. Selections.

Ttalian, Prench.
Stomies FPROM ITALIAN WRITERS :—AL- | SISMONDI ; THE BATTLES OF CRESSY AND
FIERI, BARETTI, CASTIGLIONE, &c. PoircriEss.
German.
SToRrIEs FROM GERMAN WRITERS.
AN Essiv, EXPLANATORY OF THE SYSTEN. 12mo. 0s. 6d.
Also, to accompany the Latin and Greek Sertes.
THE LONDON LATIN GRAMMAR., 12mo. 2s. 6d.
THE LONDON GREEK GRAMMAR. 12mo, 3s. 6d.
SINGING. :

The Singing Master. Fourth Children, arranged to Popular Airs, and

Edition, revised and corrected. 8vo.
10s. 6d. cloth.

No. 1. FIRST LESSONS IN SINGING AND
THE NOTATION OF MUSIC. Price 2s.

No. IL. RUDIMENTS OF THE SCIENCE
OF HARMONY, OR THOROUGH
BASS. Priocels. 6d.

No. IIl. THE FIRST CLASS TUNE-BOOK.
Thirty Simple and Pl Afrs, ar-
ranged, with Suitable Words, for Young
Children. Price 1s. 6d.

No. IV, THE SECOND CLASS TUNE-

. BOOK. Prioe 2s. 6d.

No, V. THE HYMN TUNE-BOOK. Price
2s. 6d.

School Music; or Songs and
Hymns from the Singing Master; com.
prising Beventy-six Moral BSongs for

Seventy Psalms and Hymns, with their
appropriate Tunes. 8vo. 5s. 6d. cloth.

The Vocal E ises, Moral 8 d Hymns,
with the Music, may also be had, printed
on 87 Cards. Price 2d. each Card, or
Twenty-five for 3s.

The Words without the Music may be had in
Three Small Books.

Moral Songs from the First Class Tune-
Book, 1d,

8 d Class Tune-
Book, 1d.
Hymns from the Hymn Tune-Book, 13d.

Helen S. Herschell’s Fireside
Harmony ; or Domestic Recreation in Part
Singing. A 8election of favourite old
Glees, Rounds, and Canons; arranged to
words suitable for Families and Schools.
Second Edition. Demy 8vo. (oblong) 2s.6d.
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Lineal Drawing Copies for the
Earliest Instruction. Comprising 200 Sub-
Jjeots on 24 sheets, mounted on 12 pieces of
thick pasteboard. By the Author of
« Drawing for Young Children.” In a Port-
folio, 5¢. 6d.

Drawing Copies for Elementary
Instruction. By the Author of * Drawing
for Young Children.” 2 Sets, each consist-
ing of 12 Subjects, mounted on thick paste-
board. 3s. 6d. each Set, in a Portfolio.

Deacon’s Elements of Perspec-
tive Drawing, or the Science of Deline-
ating Real Objects. Being a Manual of
Directions for using a 8et of Models, com-
posing a variety of Picturesque Forms.
Suitable for the Practice of Beginners.
Ilustrated with Eight Plates, 8vo. 4s.

Drawing Models, consisting of
Forms for constructing various Buildings,
Gateways, Castles, Bridges, &c. The Build-
ings will be found sufficiently large to be
drawn from by a numerous Class at the
same time, In a Box, with a small Trea-
tise on Drawing and Perspective, Price
2], 10s. Length of the Box, 18} inches;
breadth, 13 inches ; height, 8} inches.

DRAWING.

Trachsell’s Drawing Models,
oonsisting of Rectilinear Figures, Polygonal
and Mixtilinear Models, Models chiefly for
Shading, and Models for application and
further practice, Price of the complete set
100. Any Figure may be purchased
separately.

The whole Collection, with the exception of
the houses, is painted white, to resemble
plaster,

A complete Collection on a larger scale, such
as that used in the Mechanics’ Institu-
tion, Liverpool, 157,

*.* A detatled Prospectus may be had on

application.

Drawing Materials.

A Quarto Copy Book of 24 leaves, common
paper, 6d.

Ditto . ditto . .

pq)er of superior quality, 1s. 3d.

Pencils with very thick lead, B.B.B. 2s, per
half dozen.

Ditto . . . « ditto . . F. at
1s. 6d. ditto.

Drawing Chalk,9d. per dozen sticks, in a Box.

Port-crayons for holding the Chalk, 4d. each.

A Set of Apparatus for Hydro-
statics, Hydraulics, and Pneumatics; with
a Pamphlet containing full Descriptions
and Directi for Perf g many Ex-
periments, Price 61, 6s.in abox,

Apparatus for Cohesion, Capil-

Attmotion, Electric and Magnetio

A“ ti bility and Inertia;

with Desoriptiom and Diagrams. Price
21s. in a box.

A Machine for Illustrating Cen-
trifugal Motion; including a representa-
tion of the Governor of a Steam Engine.

In a box, 10s,
Attwood’s Machine for Expla.m-
l.ng the Laws of Falling Bodies:
rtached for Moo ng

Theory of the Pendulum, Price of Att-
wood's Machine, with a ¢ Companion,”
21, 22, ; additional Apparatus, for the Pen-
dnlum, 1. 1s,

EDUCATIONAL MODELS

FOR THE USE OF SCHOOLS, MECHANICS' INSTITUTIONS, AND FOR
PRIVATE INSTRUCTION.

Sets of Mechanical Powers;
containing the Lever—Wheel and Axle—
A Series of Pulleys—The Inclined Plane—

—~Friction—Collision of Elastic Bodies—
Compound Lever. £ s d,

1. For large Lecture-rooms (size of

the frame : height 3 feet 1 inch;
width,3feet) . .. . .. 880

2. For Schools and smaller Lecture-

rooms (height of the frame, 2

feet 6 inches; width 2 feet 3
inches) . . . ... 850

3. A Smaller set, omltdng the Pa-

rallelogram of Forces and Col-

lision of Elastic Bodies (height

of the frame, 2 feet 1 inch;
width, 1 foot 11j inches) . . 212 6

4, A Commoner Set (height of the
frame, 2 feet ; width, 19 inches) ‘1 6 3

The Bent Lever. Convertible
into a Bent Lever or Toggle Joint Press.
With weights, and a description, Price 10s,

®&—
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EDUCATIONAL MODELS—continued.
Apparatus for Magnetism. Price ' Geometrical Solids. The Five

18s. in a box, ! Regular Solids —1. Tetrahedron ; 2. Octa-

. | hedron; 3. Icosahedron; 4. Hexahe-

A Train of Spur Wheels, | dron; 5. Pentagonal Dodecahedron; 6

mounted on s mahogany stand, with | Rhomboidal Dodecahedron; 7. Bipyra-

weights, Price 21s. in a box. i ;ﬂvdal Dod &L; ; 8. T . ; =“

. . RAMIDS.—! i lar ; . -

A Double Inclined Plane, with | lateral; 11. H I; 12. Ootagonal

an Application of the Composition and . Prisus.—13. Triangular; 14. Quadri-
Resolution of Forces. In abox, 10s, i lateral; 15. H 1; Oot: 1

. ; 18,
. . 17. Sphere ; 18, Cylinder; 19. Cone. Th
A Portable Hydrostatic Bellows; Sotinabon,fr | > e

1
Tan e a4 | Anther Set, containing the
A Sectional Model of the Steam | A Larger Se{:. Price 11. 11s. 6d.
|

Engine; by which the motions of the

several parts, its internal structure, and rum 1
the high and low pressure prinoipleo’, can An InSt ent fOl‘ Teacblng

Geometry; convertible into a Theodolite,
be easily explained. Price 2I. 2. in a box, Spirit Level, Hadley's Sextant, and Wollas.

A Pyrometer, for Showing the ton's Goniometer. Price 2. 12s. 6d. in
Expansion of Metals, Price 15s. a box.

Diagrams in Wood, to Illus- | A Pair of Large Dividers, for
trate Dr. Lardner's Euclid. Bolid Geo- | making Disgrams on a black board.
metry, Book L. Price 7s. 6d. ' Price 4s.

MINASI’'S MECHANICAL DIAGRAMS.

For the Use of L and Schools. Complete in Five Numbers, each containing Three

Bheets of Diagrams, price 3s. each Number, coloured, illustrating the following subjects :—
1 & 2. Composition of Forces.—3. Equilibrium.—4 & 5. Levers.—6. Steelyard, Brady Ba-
lance, and Danish Balance.— 7. Wheel and Axle.—8. Inclined plane.—9, 10, 11, Pulleys.—
12. Hunter’s Screw.—13 & 14. Toothed Wheels.—15. Combination of the Mechanical Powers.

The Diagrams are printed on large sheets of paper, measuring 2 feet 11 inches by 2 feet.
This size will be found suited for large lecture rooms.

CHEMISTRY.

——

TURNER’S ELEMENTS OF CHEMISTRY. Eighth Edition.
Edited by Justus Liesig, M.D., Professor of Chemistry in the University of
Giessen, and WiLL1AM GREGORY,M.D., Professor of Chemistry in the University
of Edinburgh. 1 vol. 8vo. 17.10s. (See page 1.)

Also, in Two Parts.
Parr L—INORGANIC CHEMISTRY. 15s.
II.—ORGANIC CHEMISTRY. 15s.

¢ The t is, in short, the most complete and the most luminous system of
Chemistrypme g’nglﬁh language ; and we Bnow no one in France or Germany that
comes near it.”—Edinburgh Medical and Surgical Journal, Jan. 1, 1847, .

GREGORY’S OUTLINES OF CHEMISTRY, for the use of
Students. By WiLLiaM GREGORY, M.D., Professor of Chemistry in the Uni-
versity of Edinburgh. Second Edition, revised and enlarged. Complete in
1 vol, foolscap 8vo, 12s. cloth. Part I.—(INorGaNIc CHEMISTRY), 53. cloth.
Part IT.—(Oreanic CHEMISTRY), 7s. cloth.

*¢ This is beyond comparison the best introduction to Chemistry which hasyet a
The directions for preparing substances are usually confined to the best me! 80 that
brevity and selectness are combined. The size and price of this little work, as well as
its intrinsic merits, d it to every student of Chemistry.”—Lancet.
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WILL’S OUTLINES OF THE COURSE OF QUALITATIVE
ANALYSIS FOLLOWED IN THE GIESSEN LABORATORY. By
Henry WiLL, Ph.D., Professor Extraordinary of Chemistry in the University
of Giessen. With a Preface, by Baron Liesig, 8vo, 6s.; or with the Tables
mounted on linen, 7s,
¢ The present work contains an te description of the course I have followed in
my laboratory, with great advantage, for twenty-ﬁve years.”—BaARoN LIEBra.
PARNELL’S ELEMENTS OF CHEMICAL ANALYSIS,
QUALITATIVE AND QUANTITATIVE. By Epwarp ANDREW PARNELL,
Author of “ ApPLIED CHEMISTRY ; IN ARTS, MANUPACTURES, AND Domestic
Economy.” Second Edition, revised throughout, and enlarged by the addition
of 200 pages 8vo, 14s. cloth.

PARNELL’S APPLIED CHEMISTRY; IN MANUFAC-
TURES, ARTS, AND DOMESTIC ECONOMY. With numerous Wood
Engravings and Illustrations.

Vol. 1., 13s. cloth lettered, contains :—
PRELIMINARY OBSERVATIONS—GAS ILLUMINATION—PRESERVATION OF WoOD—
DygINg AND CaLico PrinTING.
Vol. I1., 13s., cloth lettered, contains :—
GLASS—STARCH—TANNING—CA0UTCHOUC—BoORAX AND THE Boracic LaGoons
—S0AP—SULPHUR AND SULPHURIC ACID, AND SODA.

PETZHOLDT’S LECTURES TO FARMERS ON AGRICUL-
g’Ucl}.ztl{. CHEMISTRY. People’s Edition. 1 vol. small 8vo., 4s. 6d. sewed ;
. cloth.

¢ The author does not overload his subject with needless details, which is the vice of
some such books, but he confines the reader to those points only which he ought to be
vc;‘ell a&mnted with, and these he explains in a clear and simple way.”—@ardeners’
roniole.

LIEBIG’S RESEARCHES INTO THE MOTION OF THE
JUICES IN THE ANIMAL BODY. 8vo. 5s. (Seepage l.)

LIEBIG’S RESEARCHES ON THE CHEMISTRY Of FOOD.
8vo, bs. 6d. cloth., (See page 3.)

LIEBIG’S FAMILIAR LETTERS ON CHEMISTRY, AND

ITS RELATIONS TO COMMERCE, PHYSIOLOGY, AND AGRICUL-
TURE. Third Edition. Foolscap 8vo, 4s. 6d. .

LIEBIG’S FAMILIAR LETTERS ON CHEMISTRY, Seconp
Seaizs. THE PHILOSOPHICAL PRINCIPLES AND GENERAL LAWS
OF THE SCIENCE. Foolscap 8vo, 5s.

¢¢ The plan of the Letters is as simple and intelligible as their style. The author sets
out with a general consideration of Ch ; and of the rank to which it is entitled
among the other sciences; treats shortly of chemical affinity and chemical equivalents,
illustrating the symbols and formuls by which these affinities are expressed ; e:flama
the atomic theory ; considers the relation of heat, light, electricity, and gra tht:

chemical force, and shows wherein these forces differ from what has been call

vital principle; and lastly discusses the transformations—fermentation, putrefaction,
and decay—which take pl in organic bodies when removed from influence of
vitality.”—Chambers’ Journal. Notice of Second Series.

LIEBIG’S ANIMAL CHEMISTRY ; or, CHEMISTRY IN ITS
APPLICATIONS TO PHYSIOLOGY AND PATHOLOGY. Third
Edition, almost wholly re-written. Part L., 6s. 6d. cloth, (See page 4.)

LIEBIG’S CHEMISTRY IN ITS APPLICATIONS TO AGRI-
CULTURE AND PHYSIOLOGY. Fourth Edition, revised. 8vo, 10s. 6.
cloth, (See page 3.)

PORTRAIT OF PROFESSOR LIEBIG. 7s. 6d.
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CEEMISTRY —ocontinued.

PLATTNER ON THE USE OF THE BLOWPIPE IN THE
EXAMINATION OF MINERALS, ORES, FURNACE PRODUCTS,
AND OTHER METALLIC COMBINATIONS. Translated, with Nowe,
by Dg. J. S. MuspraTr. With a Preface by Proressor Lieprc. Dlustrated
by numerous Wood Engravings. 1 vol. 8vo, 10s. 6d.

FRESENIUS AND WILL’S NEW METHODS OF ALKA-
LIMETRY, AND OF DETERMINING THE COMNMERCIAL VALUE OF ACIDS, AND
MANGANESE. 12mo, 4s. cloth.

¢ This little work will prove of the highest importance to Calico Printers, Bleachers,

Dyers, Manufacturers of Soap, Puper and Prussiate of Potash; also to Chemists, and
deaimmmknuu Acids, ke =

INSTRUCTIONS FOR MAKING UNFERMENTED BREAD
with Observations on its Properties, Medicinal and Economic. By a ansx-
ciaN. Fourteenth Edition, containing the New Formule. 8vo, 3d.; or,
Postage free, 5d.

e e e A M s e
to the public. ”-—Edmburyh Medical and Surgical Journal.
¢ We recommend this Pamphlet to the serious attcntion of the public.”—T'imes.

SURGICAL ANATOMY.

——

MORTON’S SURGICAL ANATOMY OF THE PRINCIPAL
REGIONS. Royal 8vo. Plates and Woodeuts.

PERINAUM. Four Plates and Three Woodcuts. 6s. plain, 7s. 6d. coloured.
GROIN FEMOR.AL AND POPLITEAL REGIONS. Eight Plates and Eleven

Engav%s lain, 13s. coloured.

INGUINAL 1A, T STIS AND ITS COVERINGS. Five Plates and
Eleven Woodcuts. 12s. eoloured, 9.

EIGHT PLATES OF THE HEAD A%'{D NECK, THE AXILLA, AND
BEND OF THE ELBOW. 13s. coloured, 7s. 6d. plain.

¢ The production (volume on the Groin) is one whioh ‘Wwe can omauienﬁousli

oo t:rnleotlme‘;::z'king thiltobe . evogwill eonsﬁtnﬁeacomplewan
borate treatise, €anno hishl useful to surgeons in general.”—.
andForemMed’walRevw v

"'l'he preuent;srk Tnguinal Hm is a worthy successor w“tmonm grgin
Peringeum, rove, we doubt, as great a favouri studen
ooy Revo April, 1841,

CUTLER’S SURGEON’S PRACTICAL GUIDE IN DRESS-
ING AND IN THE METHODIC APPLICATION OF BANDAGES.

Second Edition. 100 Engravings on Wood. Foolscap 8vo, 6s. 6d.
“This appears to be a valuable little treatise. The author seems to have spared no

mimin rocuring correct descriptions of all a.wgntprewntem
ban 2 and dressing, bothathomemdme given numerous

tions in the form of well-executed Woodcuts, and has altogether produced what we
conceive to be a very useful, and by no means an expensive publication.”—Medical
Glazette, Nov. 10, 1834

HIND’S TWENTY PLATES OF FRACTURES OF THE
EXTREMITIES. Second Edition. Folio, 1. 4s. cloth.

PORTRAIT OF ROBERT LISTON ESQ. 2s. 6d.
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ANATOMICAL PLATES.

—_—

CHEAP ISSUE (ONE-THIRD LESS THAN THE ORIGINAL PRICE).
On January 1, 1848,
Parr I, 10s. 6d. plain, 20s. coloured, (to be completed in 13 Monthly Parts,) of
A SERIES OF ANATOMICAL PLATES, IN LITHO-
GRAPHY : With REFERENCES AND PHYsioLoGICAL Commm, illustrating
the Structure of the different Parts of the Human Body. Edited by Jones

QuaiN, M.D., and Erasmus Wirson, F.R.S.

., EachPartwilloontainnxteenplatuandthirty—tvmpagesofle royal folio ;
° orwhenaParteonlmnsonl fifteen. plates, the deficiency will be up by an extra
qmtity of letw?:l:u. The total number of plates will be 200, besides a frontispiece

THE WORK MAY ALSO BE HAD IN SEPARATE PORTIONS, BOUND IN CLOTH, AS FOLLOWS :—
Former Price. Present Price. Former Price. Present Price.

Plain. Plain. Coloured. Coloured.

£ s d &£ s d £ s d £ s d

MUSCLES, 51 Plates . . .216 0 118 0 5 5 0 312 o0
VESSELS, 50 Plates . . . .24 0 118 0 318 0 3 30
NERVES, 38 Plates . . . .2 40 110 0 4 20 216 0
VISCERA, 32 Plates . B . .118 0 1 50 310 0 2 8 0
BONES & LIGAMENTS, 30 Plates 2 0 0 1 50 215 0 111 6

Also complete in 2 vols. royal folio, half-bound moroceo, gilt tops, price
81. 83. plain, 141, coloured.

ANATOMY.

—

DR. QUAIN’S ANATOMY. Fifth Edition. Edited by D=.
Suarrey and Mr. QuaiN. Illustrated by several hundred Engravings on
Wood. 2 vols. 8vo. (See page 2.)

Also (for a short time) in Three Parts.
Parr 1. 13s. | Panr I, 14s. | Papr IIL. &

MACLISE’S MORPHOLOGICAL STUDIES IN SEARCH

OF THE ARCHETYPE SKELETON OF VERTEBRATED ANIMALS,
Nlustrated in 54 Plates. One volume, small folio, 2. 12s. 6d. (See page 3.)

MATERIA MEDICA.

—

BALLARD AND GARROD’S ELEMENTS OF MATERIA
%’E«B}CAI ;%DtEHERAPEUTICS One volume 8vo, with Disgrams on
. clo

¢ As a manual for students, it is the best that huyet?peared,andwmbeﬂoundto
contain much matter well worthy of perusal by the practitioner.”—Ranking’s Report
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PHYSIOLOQY.

MULLER’S ELEMENTS OF PHYSIOLOGY. Translated, with
Notes, by WirLiam Bary, M.D. Steel Plates and very numerous En-
gravings on Wood. 2 thick vols. 8vo. 20s. each.

“ We do, however, recommend it very strongly, and we have no hesitation in saying
that it will supersede all other works as a Text Book for Lectures, and one of reference for
students. It steers a middle course between the superficial i:revx of many eof our
modern woplr'll:l’s, q&% the pleonastic and metaphysical jargon of Bmdach "— Med.-Chir,
IE"“w’

RECENT ADVANCES IN THE PHYSIOLOGY OF MO-
TION, THE SENSES, GENERATION AND DEVELOPMENT. By
WiLLiam Bary, M.D,, F.R.S,, Physician to Milbank Prison, and W. S.
Kirkes, M.D.; being a Supplement to the Second Volume of Professor
l%iiller’s Elements of Physiology. With nunerous Illustrations. 8vo, 5s. 6d»

ow read
( “ To{h)ose who ?ueu Maller’s Elements, it is indispenuble—to others who have
not this wseful work it will be found most serviceable in giving themat a small expense
an insight into the recent progress of Physiology.”—Medical Gazette.

MEDICINE.

MURPHY’S (PROFESSOR) LECTURES ON NATURAL
AND DIFFICULT PARTURITION. One volume 8vo, with numerous

Engmvm on Wood. 9s. cloth.
e whole of these Lectures, which refer to dlﬂicult and laborious labours, and to
pplication of instrumeuts, will be found of the very est value.”—Lnancet.

CHLOROFORM IN THE PRACTICE OF MIDWIFFRY
By Epwarp W. Mureny, A.M,, M.D., Professor of Midwifery in Univer-
sity College, London. 8vo. 1ls. Free by post, 12. 4d.)

DR. DAVID D. DAVIS’S ELEMENTS OF OBSTETRIC ME-
DICINE. Second Edition. With a 4to Volume containing all the Plates of
the original 4to Edition. 1l. 7s. 6d. cloth.

WALSHE ON THE NATURE AND TREATMENT OF

CANCER. One vol. 8vo, with Illustrations. 16s.
“The chapter upon this most important subject (Tmtment) is very full and com-

plete DrWalahehastakengm; to examine th vm:ues f alinost every
and of every plan of medical onthathnbeen ro '— Medico-Chir. Review.

WALSHE ONZTHE PHYSICAL DIAGNOSIS OF DISEASES

OF THE LUNGS. Foolscap 8vo. 6s. 6d. cloth.
¢¢ The treatise is one of extraordinary merit. Indeed we do not hesitate to say, that
the Diseases of the

there exists in no language any work on the Physical Diagnosis of
Lungs, suited for students, so c{m precue, a.nd at the same time so comprehensive

ractical, as this.”—British and Foreign
DR. BENCE JONES’S APPLICATION OF LIEBIG’S PHY-
SIOLOGY TO THE PREVENTION AND CURE OF GRAVEL, CAL-
CULUS, AND GOUT. 8vo. 6a.
DAVIS (DR. DAVID D.) ON ACUTE HYDROCEPHALTUS.
8vo. 9. 6d.
ALLEN ON THE CLASSIFICATION OF THE INSANE.

8vo. G6s.

MR. QUAIN'S WORK ON THE ARTERIES.

: +.* The Publishers have much pleasure in announcing that 460 out of the 500
Copxes have been subscribed for, an g delivered. Gentlemen intending to subscribe
for the remaining Copies are requested to favour the Publishers with their names as
soon as possible, either direct or through their respective Booksellers. A1
Marci 848,

BRADBURY AND EVANS, PRINTERS, WHITEFRIARS,

%















