omen etapa hee ert os eee THE INTERNATIONAL SCIENTIFIC SERIES. VOL. XI INTERNATIONAL SCIENTIFIC SERIES. NOW READY. I. FORMS OF WATER, in Clouds, Rain, Rivers, Ice, and Glaciers. By Prof. Joun TynpauL. 1 vol. Cloth. Price, $1.50. Il. PHYSICS AND POLITICS; or, Thoughts on-the Application of the Principles of “ Natural Selection” and * Inheritance” to Political Society. By Water BacEuor. 1 vol. Cloth. Price, $1.50. II. FOODE: ay Epwarp Ssirua, M. D., LL. B., F.R.S. 1 vol. Cloth. *rice, $1.7° IV. MIND AND BODY. The Theories of their Relations. By ALEXANDER Bary, LL.D. 1 vol.,12mo. Cloth. Price, $1.50, V. THE STUDY OF SOCIOLOGY. By Herspert Spencer. Price, $1.50. VI. THE NEW CHEMISTRY. By Prof. Josian P. Cooks, Jr., of Uarvard University. 1 vol.,12mo, Cloth. Price, $2.00. VIL. THE CONSERVATION OF ENERGY. By Prof. Batrour Stewart, LL. D., F.R.S. 1 vol, 12mo, Cloth. Price, $1.50. VIII. ANIMAL LOCOMOTION; or, Walking, Swimming, and Flying, with a Dissertation on Aéronautics. By J. Bett Pettigrew, M.D. 1 vyol., 12mo. Illustrated. Price, $1.75. 1X. RESPONSIBILITY IN MENTAL DISEASE. By Henry Mavcps ey, M.D. 1 vol.,12mo. Cloth. Price, $1.50. X. THE SCIENCE OF LAW. By Prof. Sie:pon Amos. 1 vol., 12mo. Cloth. Price, $1.75. XI. ANIMAL MECIIANISM. A Treatise on Terrestrial and Aérial Locomo- tion. By E.J. Marry. With 117 Illustrations. Price. $1.75. XII. THE HISTORY OF THE CONFLICT BETWEEN KELIGION AND SCIENCE. By Joun Wo. Drarer, M.D., LL. D., author of * The In- tellectual Developme nt of Europe.” Price, $1. 75. XIII. THE DOCTRINE OF DESCENT, AND DARWINISM. By Prof. Oscar Soumrpt, Strasburg University. Price, $1.50. XIV. THE CHEMISTRY OF LIGHT AND PHOTOGRAPHY: In its Appli- cation to Art, Science,-and Industry. By Dr. HERMANN VoGEL. 100 Illustrations. Price, $2.00. XV. FUNGI; their Nature, Influence, and Uses. By M. C. Cooxr, M. A., LL.D. Edited by Rey. M. J. BERKELEY, M.A.,, F.L.8. With 109 Illus- trations. Price, $1.50. XVI. THE LIFE AND GROWTH OF LANGUAGE. Ey Prof. W. D. Wuirtnery, of Yale College. Price, $1.50. XVII. MONEY AND THE MECHANISM OF EXCHANGE. By W. STanLey Jevons, M.A., F.R.8. Price, $1.75. XVIIL. THE NATURE OF LIGHT, with a General Account of Physical Opties. By Dr. Eugene Lome, Professor of Physics in the University of Erlangen. With 85 Illustrations and a Plate of Spectra in Chromo-lithog- raphy. Price, $2.00. XIX. ANIMAL PARASITES AND MESSMATES. By Monsieur Van Ben- EDEN, Professor of the University of Louvain, With $3 I}lustrations. Price, $1.50. XX. ON FERMENTATIONS. By P. Seniitzenpencer, Director at the Chem- . ical Laboratory at the Sorbonne. With 28 Illustrations. Price, $1.50. XXI. THE FIVE SENSES OF MAN. By Juuius Bernstery, O. O, Professor of Phy siology in the University of Halle. With 91 Illustrations. Price, $1.75. XXII THE THEORY OF SOUND IN ITS RELATION TO MUSIC. By Prof. Prerro BiLaserna, of the Royal University of Rome. With numerous Woodcuts. 1 vol.,12mo. Cloth. Price, $1.50. XXIIL STUDIES IN SPECTRUM "ANALYSIS, By J. Norman Lockyer. With Illustrations. 1 vol.,12mo. Cloth. Price, $2.50. XXIV. A HISTORY OF THE GROWTH OF THE STEAM-ENGINE. By Zonerr H. Tuourston, A. M.. C. E., Professor of Mechanical Engineering in the Stevens Institute of Technology. Hoboken, New Jersey, ete., ete, With 163 Lllustrations. 1 vol.,12mo. Cloth. Price, $2.50, THE INTERNATIONAL SCIENTIFIC SERIES. ANIMAL MECHANISM: A TREATISE ON TERRESTRIAL AND AERIAL LOCOMOTION. BY E. J. MAREY, PROFESSOR AT THE COLLEGE OF FRANCE, AND MEMBER OF THE ACADEMY OF MEDICINE, WITH ONE HUNDRED AND SEVENTEEN ILLUSTRATIONS, DRAWN AND ENGRAVED UNDER THE DIRECTION OF THE AUTHOR, NEW YORI : Dowie een rON AND COMPANY, 549 AND 551 BROADWAY. 1879. 45403 Ge Coo oat haa wt tita, " TABLE OF CONTENTS. PAGE INTRODUCTION . . ° : . : ooh is : 1 BOOK, THE. EURST: FORCES AND ORGANS. CHAPTER I. OF FORCES IN THE INORGANIC KINGDOM AND AMONG ORGANISED BEINGS. Matter reveals itself by its properties—When matter acts, we con- clude that forces exist — Multiplicity of the forces formerly admitted ; tendency to their reduction to one force in the inor- ganic kingdom—Indestructibility of force ; its transformations —Vital forces, their multiplicity according to the ancient physiologists—Several vital forces are reduced to physical forees—Of laws in physics and in physiology—General theory of physical forces. . ° ° . ° * ° . 5 CHAPTER II. TRANSFORMATION OF PHYSICAL FORCES. To prove the indestructibility of forces, we must know how to measure them—Units of heat and of mechanical work—Ther- mo-dynamics—Measure of forces in living beings—Successive phases of the transformation of bodies ; successive development of force under this influence—Thermo-dynamics applied to living beings . . ° . . : : ° e a lg} CHAPTER III. ON ANIMAL HEAT. Origin of animal heat—Lavoisier’s theory—The perfecting of this theory—Estimates of the forces contained in aliment, and in the secreted products—Difficulty of these estimates—The force v1 CONTENTS. PAGE yielded by alimentary substances is transformed partly into heat and partly into work—Seat of combustion in the organism— Heating of the glands and muscles during their functions —Seat of calorification—Intervention of the causes of cooling—Animal temperature—Automatic regulator of animal temperature . ee CHAPTER IV. ANIMAL MOTION. Motion is the most apparent characteristic of life; it acts on solids, liquids, and gases—Distinction between the motions of organic and animal life—We shall treat of animal motion only —Structure of the muscles—Undulating appearance of the still living fibre—Muscular wave—Shock and myography—Multi- plicity of acts of contraction—Intensity of contraction in its relations to the frequency of muscular shocks—Characteristies of fibre at different points of the body =. . . ° - CHAPTER V. CONTRACTION AND WORK OF THE MUSCLES, The function of the nerve—Speed of the nervous agent—Measures of time in physiology—Tetanus and muscular contraction— Theory of contraction— Action of the muscles . ° . ae: | CHAPTER VI. OF ‘ELECTRICITY IN’ ANIMALS. Electricity is produced in almost all organised tissues—Electrie eur- rents of the muscles and the nerves—Discharge of electric fishes; old theories ; demonstration of the electric nature of this phenomenon—Analogies between the discharge of electrical apparatus and the shock of a muscle—Electric tetanus—Rapidity of the nervous agent in the electrical nerves of the torpedo ; duration of its discharge . : 2 ° : ° ° on, 49 CHAPTER VII. ANIMAL MECHANISM. Of the forms under which mechanical work presents itself—Every machine must be constructed with a view to the kind of work which it has to perform—Correspondence of the form of muscle with the work which it accomplishes—Theory of Borelli— Specific force of muscles—Of machines; they only change the CONTENTS. form of work, but do not increase its quality— Necessity of alternate movements in living motive powers—Dynamical energy of animated motors . CHAPTER, VIII. Vil PAGE 59 HARMONY BETWEEN THE ORGAN AND THE FUNCTION.— DEVELOPMENT HYPOTHESIS. Each muscle of the body presents, in its form, a perfect harmony with the nature of the acts which it has to perform—A similar muscle, in different species of animals, presents differences of form, if the function which it has to fulfil in these different species is not the same—Variety of pectoral muscles in birds, according to their manner of flight— Variety of muscles of the thigh in mammals, according to their mode of locomotion— Was this harmony pre-established ?—- Development hypothesis — Lamarck and Darwin. : : : ° . ° CHAPTER IX. VARIABILITY OF THE SKELETON. Reasons which have caused the skeleton to be considered the least variable part of the organism—Proofs of the yielding nature of the skeleton during life, under the influence of the slightest pres- sure, when long continued—Origin of the depressions and pro- jections which are observed in the skeleton—Origin of the articular surfaces—Function rules the organ—Variability of the muscular system c - 3 : . : . 0 BOOK THE SECOND. FUNCTIONS: TERRESTRIAL LOCOMOTION. CHAPTER. I. OF LOCOMOTION IN GENERAL. Conditions common to all kinds of locomotion—Borelli’s comparison — Hypothesis of the reaction of the ground—Classification of the modes of locomotion, according to the nature of the point of resistance, in terrestrial, aquatic, and aerial locomotion—Of the 69 85 vill CONTENTS. PAGE partition of muscular force between the point of resistance and the mass of the body—Production of useless work when the point of resistance is movable . ° . ° s . “ - 102 CHAPTER II. TERRESTRIAL LOCOMOTION (BIPEDS). Choice of certain types in order to study terrestrial locomotion— Human locomotion—Walking—Pressure exerted on the ground, its duration and intensity—Re-actions on the body during walking—Graphic method of studying them—Vertical oscilla- tions of the body—Horizontal oscillations—Attempt to repre- sent the trajectory of the pubis—Forward translation of the body—Inequalities of its velocity during the instants of a pace. : : s - : . . ° ° . 7 Pa’ CHAPTER III. THE DIFFERENT MODES OF PROGRESSION USED BY MAN. Description of the apparatus for the purpose of studying the various modes of progression used by man—Portable registering appara- tus—Experimental apparatus for vertical reactions—Walking— Running —Gallop-—Leaping on two feet and hopping on one— Notation of these various methods—Definition of a pace in any of these kinds of locomotion—Synthetice reproduction of the various modes of progression. . . ° . ° ° . 124 CHAPTER IV. QUADRUPEDAL LOCOMOTION STUDIED IN THE HORSE. Insufficiency of the senses for the analysis of the paces of the horse —Comparison of Duges—Rhythms of the paces studied by means of the ear—Insufficiency of language to express these rhythms —Musical notation— Notation of the amb/e, of the walking pace, of the trot—Synoptical table of paces noted according to the definition of each of them by different authors—Instruments intended to determine by the graphic method the rhythms of the various paces, and the re-actions which accompany them . - 138 CHAPTER V. EXPERIMENTS ON THE PACES OF THE HORSE. Double aim of these experiments ; determination of the movements under the physiological point of view, and of the attitudes with CONTENTS. 1x PAGE ~ reference to art—Experiments on the trot—Tracings of the pressures of the feet and of the re-actions— Notation of the trot — Piste of the trot—Representation of the trotting horse—Ix- periments on the walking pace—Notation of this kind of motion ; its varieties—Piste of the walking pace—Representation of a pacing horse. . a aes : { . . . oe dbl! CHAPTER: VI. EXPERIMENTS ON THE PACES OF THE HORSE. (Continued. ) Experiments on the gallop—Notation of the gallop—Re-actions— Bases of support—Piste of the gallop—Representation of a galloping horse in the various times of this pace—Transition, or passage, from one step to the other—Analysis of the paces by means of the notation rule—Synthetic reproduction of the different paces of the horse—Modes of walking of various quadrupeds . . . ee ve . . Bg GA eee AMR iE BOO THE THIRD: AERIAL LOCOMOTION. CHAPTER I. OF THE FLIGHT OF INSECTS. Frequency of the strokes of the wing of insects during flight ; acoustic determination ; graphic determination—Influences which modify the frequency of the movements of the wing—Synchronism of the action of the two wings— Optical determination of the move- ments of the wing; its trajectory ; changes in the plane of the wing; direction of the movement of the wing . . - 180 CHAPTER II. MECHANISM OF THE FLIGHT OF INSECTS. Causes of the movements of the wings of insects—The muscles only give a motion to and fro, the resistance of the air modifies the course of the wing—Artificial representation of the movements of the insect’s wing—Of the propulsive effect of the wings of x CONTENTS. PAGE insects—Construction of an artificial insect which moves hori- zontally—Change of plane in flight . : . . . - 196 CHAPTER III. OF THE FLIGHT OF BIRDS. Conformation of the bird with reference to flight—Structure of the wing, its curves, its muscular apparatus—Muscular force of the bird, rapidity of contraction of its muscles—Form of the bird ; stable equilibrium, conditions favourable to change of plane— Proportion of the surface of the wings to the weight of the body in birds of different size . . ; - . : . - 209 CHAPTER IV. OF THE MOVEMENTS OF THE WING OF THE BIRD DURING FLIGHT. _ Frequency of the movements of the wing—Relative durations of its rise and fall—Electrical determination—Myographical determi- nation—Trajectory of the bird’s wing during flight—Construe- tion of the instruments which register this movement—Experi- ment— Elliptical figure of the peers of the point of the wing 226 CHAPTER V. OF THE CHANGES IN THE PLANE OF THE BIRD'S WING AT DIFFERENT POINTS IN ITS COURSE. New determination of the trajectory of the wing—Description of apparatus—Transmission of a movement by the traction of a thread—Instrument and apparatus to suspend the bird —Experi- ment on the flight of a pigeon—Analysis of the curves— Description of the apparatus intended to give indications of the changes in the plane of the wing during flight—Relation of these changes of plane to the other movements of the wing . 244 CHAPTER VI. RE-ACTIONS OF THE MOVEMENTS OF THE WING ON THE BODY OF THE BIRD. Re-actions of the movements of the wing—Vertical re-actions in different species; horizontal re-actions or changes in the rapidity of flight; simultaneous study of the two orders of re-actions—Theory of the flight of the bird—Passive and active parts of the wing —Reproduction of the mechanism of the flight of the bird : 4 ‘ : : : : , ‘ . 264 FIs. Fic. Fic. Fic. Fic. Fic. Fic. Fic. Fic. Fig. Fic. Fic. Fic. Fic. Fig. Fic. LIST OF ILLUSTRATIONS. er APPARATUS FOR EXPERIMENTING ON MOVEMENT. PAGE 2.—Theoretical representation of myograph : 56 Gl 3.—Marey’s myograph . : . - 382 7.—Arrangement of a ee ‘araille Berea two myo- graphical clips. . eon 19. —Experimental shoe, a eeiedl to om the pressure of the foot on the ground, with its duration and its phases 42.—Experimental apparatus to show the pressure of the tS horse’s hoof on the ground : : : 4 . 148 43,—Apparatus to give the signals of the pressure and rise ai the horse's hoof . : ° ° ° . 149 26.—Apparatus to determine the speed of polar at very instant . : . 122 27.—Runner provided oie the apparatus intended i eee his different paces © 26 28.—Instrument to register the sepals re- cote dine the various paces . - . : E c oe) LOY, 44,—Figure to represent a trotting horse, eoned with the different experimental instruments ; the horseman carrying the register of the pace. On the withers aud the croup are instruments to show the re-actions . 150 93.—Apparatus for the purpose of experimenting on the con- traction of the thoracic muscles of the bird. 229 99.—Buzzard flying, with the apparatus for giving signals of the movements of the extremity of its wing 241 103.—General arrangement of the recording instr cient a pigeon attached to it, and conveying signals . : on ee! 104.—Suspension of the bird in the apparatus . . . 25 109.—Apparatus to examine the movements of the aie and the changes in its plane . : ae 200 21.—Transmission of an oscillatory ane to the regis- ; « LG tering apparatus . ° . ° ° ° : Fic. Fic. Fic. Fic. Fia. Fia. Fic. Fic. Fic. LIST OF ILLUSTRATIONS. PAGE 24.—Showing two successive positions of the arm of the instru- ment, and the corresponding Beets ons of the ie points of the levers . 4 120 98.—Elastic point, tracing on a piece of noked eae . 239 . 102.—Transmission of a to-and-fro movement by means of a simple traction thread . ° . . . 245 ILLUSTRATIVE APPARATUS. 1.—Showing the transformation of the electricity of a coil into mechanical work, heat, light, and chemical action. 10 6.—Appearance presented by the waves in a muscular fibre 36 9.—Transformation of heat into work by a strip of india- rubber . - 5 . ° . ° ° 2 ae woo OF THE FLIGHT OF INSECTS. 84,—Artificial representation of the movements of the insect’s wing . ° ° . . . . . . 199 85.—Changes in the plane of the inseet’s wing ‘ : - « 200 87.—Artificial insect, to illustrate its flight 202 88.—Arrangement of the artificial insect, so as to @hiain the hovering motion or the ascending flight 205 Or THE HoveRING OF THE B:rp. 90.— Instrument to illustrate the hovering of the bird . . 217 91.—The same, explaining the upward turn ° . . « 218 92.— » ey downward ditto = : . 219 ANATOMY. 13.—Skeleton of a flamingo (after Alph. Milue-Edwards; the wing is very large, the sternum very short and deep, which indicates the size and the shortness of the pectoral muscles . . . : : ; ee heey 14.—Skeleton of a penguin sternum a, long, wing very short . 73 15.—Skeleton of the wing and sternum of ‘he's sea sw raliow (Hirundo marina); “showing the extreme shortness of the sternum, and the great length of the wing. 74 89.—Different curves in the wing of the bird at various parts of its length . . : ° ° 210 117.—Active and passive parts of the bird’ 8 wing . 276 83. —Structure of the inseet’s wing . 196 Fia. Fic. Fic. Fic. HIG. Fic. Fic. Fic. Fic. Fic. Fic. Fic. LIST OF ILLUSTRATIONS. Xlil PAGE 16.—Muscles of the thigh in man : . ° ° 5 3 we 17.—Muscles of the thigh ofthe magot . ° ° ° a Wt 18.—Muscles of the thigh of the coaita . 6 c Be aS DETERMINATIONS, 8.—Two determinations of the speed of the muscular wave . 38 10.—Determination of the speed of the nervous agent in man. 43 12.—Measure of the time which elapses between the excitation of the electric nerve, and the discharge of the torpedo . 58 82.—Determination of the direction of the moyernents in an insect’s wing “ ° - 195 94.—Experiment to determine by the ieee iad eee methods at the same time, the frequency of the move- ments of the bird’s wing, and the relative duration of its elevation and depression. 2 . 5g wa 26.—Determination of the rapidity of walking He various instants, by means of a chronographic tuning fork . 122 NOTATIONS. 34.—Notation of a tracing of man’s mode of walking Pewecee (80 35.—Synoptical notation of the four kinds of progression used by man . . - : : : 5 @ IBY! 36.—Notations of the aie qoanie : . : . 134 37.—(Upper line) notation of a series of jumps on two feet. (Lower line) notation of hops on right foot ae loo NoTATIONS OF THE PAcES OF THE HorsE, 38.—Notation of a horse’samble . C , . - 142 39.—Notation of the horse’s walking pace . - 6 26 9 lee 51.—Notation of the walking Bach with BecoeeuuEce of the lateral pressures . : . 160 45.—Graphic curves and notation ee the horse’ s tr ot - - 153 4¢,—Notation of a horse’s trot - E . ° ° . 144 46.—Notation of the irregular trot. - . 156 41.—Synoptical notations of the paces of the gay Become to various writers. No. 1. Amble, according to all writers. No. 2 {eon amble, nein to Merche. High steps, according to Bouley. Ordinary step of a pacing horse, according to Magure. No. 3. Broken amble, according to Bouley. Traquenade, according to Lecoq. xiv LIST OF ILLUSTRATIONS. PAGE No. 4. Normal walking pace, according to Lecoq. No. 5. Normal walking pace (Bouley, Vincent and Goiffon . Solleysel, Colin). No. 6. Normal walking pace, according to Raabe. No. 7. Disconnected trot (trot de coursier). No. 8. Ordinary trot. (In the figure, it is supposed that the animal trots without leaving the ground, which oceurs but rarely. The notation only “takes into account the rhythm of the impacts of the feet). No. 9. Norman pace, from Lecoq. No. 10. Traquenade, from Merche : S woe. ne - « 146 Fic. 56.—Gallop in three-time : : . . . . . 166 Fic, 62.—Notation of the gallopinfour-time . ode baad Fic. 63.—Notation of full gallop ; re-actions of this pace ° rae f Fic. 64.—Transition from the walk tothe trot . ° . o « 174 Fic. 65.—Transition from the trot to the walk : . . ~ 174 Fic. 66.—Transition from the trot to the gallop. . . Rielly! Fic. 67.—Transition from the gallopto the trot . . ° - 174 Fic. 68.—Notation rule, to represent the different paces. - 175 Fic. 69.—Notation rule forming the representation of the gallop i in three-time . : : Rf 5 ° . - = L7G PISTES OR FOOT TRACES OF THE HORSE'S FEET. Fic. 52.—Piste of the walking pace, after Vincent and Goiffon . . 162 Fic. 53.—Piste of the amble, after Vincent and Goiffon . : - 162 Fia. 47.—Piste of the trot according to Vincent and Goiffon coeelod Fic. 57.—Piste of the short gallop in three-time. : . - 167 Fic. 58.—Piste of Eeclipse’s gallop, from Cornieu. The prints of the hind-feet are very fur before those of the fore-feet . . 167 REPRESENTATION OF THE HORSE IN ITS VARIOUS PACES. Fic. 54.—Representation of the horse at a walking pace. ‘ - 163 Fic. 48.—Horse trotting with a low kind of pace . ° spe LOd, Fic. 49.—Horse at full trot. The dot placed in the notation corre- sponds with the attitude represented . : ; . 158 Fic. 59.—Horse galloping in the first time (right foot advancing), the left foot only on the ground, . . 2) oo _ Fic. 60.—Horse galloping in the second time (right foot forward) . 169 lic. 61.—Horse galloping in the third time (right foot forward) . 169 Fie. Fic. Fic. Fic. Fic. Fic. Fic. Fic. Fic. Fic. Fic. Fic. Fic. Fia. Fia. Fic. LIST OF ILLUSTRATIONS. XV PAGE TRACINGS. TRACINGS OF THE MUSCLES. 4,.—Character of the shock according to the degree of fatigue of the muscle . : . 34 ’ 5.—Successive transformations of ie none ae a meee be- coming gradually poisoned by veratrine. Underneath and on the left of the figure are shown the first effects of the poison . : : 35 11.—Gradual coalescence of the plas produced ee Sucre excitations of increasing frequency . : : see) 46 Tracincs oF Human Locomotion. 20.—Tracings of the impact and the Pane of the two fect in our ordinary wall . 114 22.—Tracings of the oscillations of the hae fee alae 5 iil? 25. itches of the impact and rise of the right fot fur Breed by a “lever subjected at the same time to 10 vibrations per second, 2 : 5 1 29.—Tracing produced by Follies oe : . c - 128 30.—Tracing produced by running (in man) 6 og URE 31.—Man galloping (right foot foremost). Step-curves and re- actions. There is an encroachment of one curve over the other, and then a suspension of the body 5 US 33.—Series of hops on the right foot. The duration of the time of suspension remains evidently constant, even when that of the pressure of the foot varies. . 132 32.—Leap on two feet at once . 5 : ° : ° - Isl TRACINGS OF THE LocoMorion oF THE HORSE. 50.—Tracing and notation of the walking pace, with equal pressures of the feet, both diagonally aud laterally . . 160 45.—Tracing and notation of the trot. . - a 153 55.—Tracing and notation of the gallop in three- fie “ 6 on Hae TRACINGS OF THE FLIGHT OF INSECTS. 70.—Showing the frequency of the strokes of the wing of a drone. flyandabee , 5 . 183 72.—Graphic tracing of the middle sit tion i the course ath a bee’s wing. . - : : ; ‘ = +» 189 XV1 LIST OF ILLUSTRATIONS. PAGE Fic. 73.—Tracing of the middle zone of a humming-bird moth . 190 Fic. 74. —Tracing of the course of a ha wing showing the upper part ‘of the curve. 5 - ss Fic. 75.—Tracing of the course of a SS s wing : lower loops . 191 Fic. 77. —Tracing obtained from a bee’s wing in a plane tangential to the cylinder - . : ° * sire te Fic. 78 and 79.—Tracing of a wasp’s wing compared with a Wheat- stone’s rod . : : M - 192, 193 Fic. 80.—Tracing of the wing of a humming. bind moth (lower border) 7 Fic. 81.—Tracing of the wing of a a omining: bird moth . . 194 TRACINGS OF THE FLIGHT OF Birps. Fic. 95.—Myographical tracing to determine the frequency of the strokes of the wing in different species . : - . 232 Fic. 96.—Differences of frequency and of merits in the strokes of a pigeon’s wing ° . . 234 Fic. 105.— Tracing of different movements of the pigeon’ s wing - » 258 . 106-107. Si pastries of the trajectory of a pigeon’s wing, 254, 255 . 110.—Simultaneous tracing of be different movements of a buzzard’s wing E = 262 . 111.—Inclination of the plane of he wing, matt ices to ‘the axis of the body during flight ; : : : - 263 . 113.—Vertical oscillations of the bird during flight . - » 266 . 114.—Relation of oscillations with muscular acts. : . 268 . 115.—Simultaneous tracing of two kinds of oscillation in the buzzard . : > a i : wise Dal TRAJECTORIES. 23.—Attempt to illustrate, by means of a metallic wire, the sinuous trajectory passed through by the pubis : - 119 71.—Appearance of a er the tips of whose wings have been gilded. . . ‘ 5 . . > ae kag . 86.—Trajectory of an teat s wing . - , 5 "201 . 100.—Elliptical course of the point ofa bird’s wing. «kn eae 76.—Tracing of a vibrating Wheatstone’s rod . ; . - 191 79.—Do. tipped with a wasp’s wing . «eye 198 . 101.—Ellipse traced by a Wheatstone’s red on a revolving cylinder . ° os ot . ° . ° « 243 ANIMAL MECHANISM: TERRESTRIAL AND AERIAL LOCOMOTION. INTRODUCTION. Livine beings have been frequently and in every age compared to machines, but it is only in the present day that the bearing and the justice of this comparison are fully comprehensible. No doubt, the physiologists of old discerned levers, pulleys, cordage, pumps, and valves in the animal organism, as in the machine. The working of all this machinery is called Animal Mechanics in a great number of standard treatises. But these passive organs have need of a motor; it is life, it was said, which set all these mechanisms going, and it was believed that thus there was authoritatively established an inviolable barrier between inanimate and animate machines. In our time it is at least necessary to seek another basis for such distinctions, because modern engineers have created machines which are much more legitimately to be compared to animated motors; which, in fact, by means of a little com- bustible matter which they consume, supply the force requisite to animate a series of organs, and to make them execute the most various operations. The comparison of animals with machines is not only legiti- mate, it is also extremely useful from different points of view. It furnishes a valuable means of making the mechanical phenomena which occur in living beings understood, by placing them beside the similar but less generally known phenomena, which are evident in the action of ordinary 2 ANIMAL MECHANISM. machines. In the course of this book, we shall frequently borrow from pure mechanics the synthetical demonstrations of the phenomena of animal life. The mechanician, in his turn, may derive useful notions from the study of nature, which will often show him how the most complicated problems may be solved with admirable simplicity. - Animel mechanics is a wide field for exploration. To every function, so to speak, a special machinery is attached. The circulation of the blood, the respiration, &c., may and ought to be treated separately, so that we shall limit this work to the study of one single, essentially mechanical, function, locomotion in the various animals. It is easy to demonstrate the importance of such a subject as locomotion, which, under its different forms, terrestrial, aquatic, and aerial, has constantly excited interest. Whether man has endeavoured to utilize to the utmost his own motive power, and that of the animals; whether he has sought to extend his domain, to open a way for himself in the seas, or to rise into the air, it is always from nature that he has drawn his inspirations. | We may hope that a deeper knowledge of the different modes of animal locomotion will be a point of departure for fresh investigations, whence fuither progress will result. Every scientific research has a powerful attraction in itself; the hope of reaching the truth suffices to sustain those who pursue it, through all their efforts; the contemplation of the laws of nature has been a great and noble source of enjoy- ment to those who have discovered them. But to humanity, science is only the means, progress is the aim. If we can show that a study may lead to some useful application, we may induce many to pursue it, who would otherwise merely follow it from afar, with the interest of curiosity only. Without pretending to recapitulate here all that has been gained by the study of nature, we shall endeavour to set forth what may be gained by studying it still further, and with more care. Terrestrial locomotion, that of man, and of the great mam- mals, for instance, is very imperfectly understood as yet. If we knew under what conditions the maximum of speed, force, INTRODUCTION. 3 or labour which the living being can furnish, may be ubtained, it would put an end to much discussion, and a great deal of conjecture, which is to be regretted. A generation of men would not be condemned to certain military exercises which will be hereafter rejected as useless and ridiculous. One _ country would not crush its soldiers under an enormous load, while another considers that the best plan is to give them nothing to carry. We should know exactly at what pace an animal does the best service, whether he be required for speed, or for drawing loads; and we should know what are the conditions of draught best adapted to the utilization of the strength of animals. It is in this sense that progress is being made; but if we complain with reason of its slow advance, we must only blame our imperfect notion of the mechanism of locomotion. Let this study be perfected, and then useful applications of it will soon ensue. Man has been manifestly inspired by nature in the con- struction of the machinery of navigation. If the hull of the ship is, as it has been justly described, formed on the model of the aquatic fowl, if the sail has been copied from the wing of the swan inflated by the wind, and the oar from its webbed foot as it strikes the water, these are but a small part of nature’s loans to art. More than two hundred years ago, Borelli, studying the stability and displacement of fish, traced the plan of a diving-ship constructed upon the same principle as the formidable Monitors which made their appearance in the recent American war. In modern navigation the dynamic question still leaves ‘several points in obscurity. What form should be given to a ship so as to secure its meeting with the least possible resist- ance in the water? What propeller should be chosen in order to utilize the force of the machine to the best advan- tage? The most competent men in such matters avow that these problems are too complex to admit of the conditions most favourable to the construction of ships being determined by calculation. Must we wait until empiricism, by dint of ruinous guesses, shall have taught us how a problem of which nature offers us such diverse solutions, should be + ANIMAL MECHANISM. solved? Ingenious constructors have already attempted to imitate the natural propellers; they have fitted up small boats with machinery which works like the tail of a fish, oscillating with an alternate motion. And it has been found that this apparatus, although still imperfect, already constitutes a powerful propeller, which will perhaps be preferred hereafter to all those which have hitherto been used. Aerial locomotion has always excited the strongest curiosity among mankind. How frequently has the question been raised, whether man must always continue to envy the bird and the insect their wings; whether he, too, may not one day travel through the air, as he now sails across the ocean. Authorities in science have declared at different periods, as the result of lengthy calculations, that this is a chimerical dream, but how many inventions have we seen realised which have also been pronounced impossible. The truth is, that all intervention by mathematics is premature, so long as the study of nature and experiment have not furnished the precise data which alone can serve as a sound starting point for calculations of this kind. We shall then attempt to analyse the rapid acts which are produced in the flight of insects and of birds; afterwards we shall endeavour to imitate nature, and we shall see, once more, that by seeking inspiration from her we have the best chance of solving the problems which she has solved. We may even now affirm, that in the mechanical actions of terrestrial, aquatic, and aerial locomotion, there is nothing which can escape the methods of analysis at our disposal. Would it be impossible for us to reproduce a phenomenon which we understand? We will not carry our scepticism so far. It was considered for a long time that chemistry, all- powerful when it was a question of decomposing organic substances, would always remain incapable of reproducing them. What has become of this disheartening prediction ? We hope that the reader who follows the experimental researches detailed in this book will draw from them this conviction, that many of the impossibilities of the present, need only a little time and much effort to become realities. BOOK THE FIRST. CHAPTER I. FORCES AND ORGANS. Of forces in the inorganic kingdom and among organised beings—Matter reveals itself by its properties— When matter acts, we conclude that forces exist —Multiplicity of forces formerly admitted ; tendency to their reduction to one force in the inorganic kingdom—Indestruc- tibility of force ; its transformations—Vital forces, their multiplicity according to the ancient physiologists—Several vital forces are reduced to physical forees—Of laws in physics and in physiology— General theory of physical forces. We know matter only by its properties, which we could not conceive of apart from matter. ‘The word property does not answer to anything real : it is an artifice of language ; thus, the expressions, weight, heat, hardness, colour, c., attributed to various bodies in nature, mean that these bodies manifest themselves to our senses by certain effects which have been made known to us by daily experience. When matter acts, that is to say, when it changes its state, there occurs what we call a phenomenon, and by a new appli- cation of language we call the unknown cause which has produced this phenomenon, [orce. A body which falls, a river which flows, a fire which warms us, the lightning which flashes, two bodies which combine, &c., all these correspond to manifestations of forces which we call gravity, mechanical force, heat, electricity, light, chemical affinities, &c. In the first ages of science the number of forces was almost infinitely multiplied. Each particular phenomenon was re- garded as the manifestation of a special force. But by degrees it was recognised that divers manifestations might result from 6 ANIMAL MECHANISM. a single cause; and thenceforth the number of forces which were admitted diminished considerably. Weight and attraction were reduced to one and the same force by Newton, who recognised, in the falling of the apple to the ground, and the retention of the star in its orbit, the effects of an identical cause—universal gravitation. Ampcre reduced magnetism to a manifestation of electricity. Light and heat have long since been regarded as manifestations of an identical force, an extremely rapid vibratory motion imparted to the ether. In our own time a grand conception has arisen, once more to change the face of science. All the forces of nature are reduced to one only, Force may assume any appearance ; it becomes, by turns, heat, mechanical work, electricity, light ; it gives rise to chemical combinations or decompositions. Occasionally, force seems to disappear, but it has only hidden itself; we can find it again in its entirety, and make it pass anew through the cycle of its transformations. Force, which is inseparable from matter, is, like it, inde- structible, and to both the absolute principle, that in nature nothing is created and nothing is destroyed, is applicable. Before we enter upon a detailed exposition of this great conception of the conservation of force and its transformations in the inorganic world, let us see whether any analogous generalisation has been arrived at in the science of organised bodies. The living being, in its manifestations of sensibility, intelli- gence, and spontaneity, shows itself to be so different from the inert and passive bodies of inorganic nature; the genera- tion and the evolution of animals are so peculiar to them- selves; that the earliest observers traced an absolute boundary between the two kingdoms of nature. Particular forces were imagined, to which each of the normal phenomena of life was attributed, while others, like malignant genii, presided over the production of the maladies by which everything that has life may be attacked. The complexity of the phenomena of life hindered observers for a long time fiom discerning the link which united them, and prevented their referring to one and the same cause these FORCES AND ORGANS. 7 manifold effects, and thus reducing the number of forces which had at first been admitted. Man ended by taking the fictions of his imagination for realities. Little by little, the charm of the unintelligible exercising fascination over him, he at last denied that physical laws had any in- fluence upon living beings. ‘This extravagant mysticism represented certain animals as capable of withdrawing them- selves from the influences of weight; according to it, animal heat was of another essence than that of our hearths; subtle and impalpable spirits circulated in the vessels and the nerves. Time has not even yet disposed of all these absurdities ; but we can prove that the science of life tends at present to undergo a transformation as complete as that of the phy- sical sciences, whose development we have just sketched. Physiology, guided by experience, seeks and finds the physical forces in a great number of vital phenomena; every day sees an increase in the number of cases to which we can apply the ordinary laws of nature. That which escapes them remains for us the unknown, but no longer the unknowable. Among the phenomena of life, those which are intelligible to us are precisely of the physical or mechanical order. In the living organism we shall find those manifestations of force which are called heat, mechanical action, electricity, light, chemical action; we shall see these forces transforming themselves one into the other, but we must not hope to arrive immediately at the numerical determination of the laws which regulate the transformations of these forces. The animal organism does not lend itself to exact measurements, its com- plexity is too great for valuations, to which physicists attain with great difficulty by making use of the simplest machines. Each science, according to its degree of complexity, is approaching more or less surely to the mathematical precision at which it must arrive sooner or later. A law is only the determination of numerical relations between different phe- nomena; there is then no perfect physiological law. In the phenomena of life it is scarcely possible to determine and to foresee anything except the manner in which the variation will be produced. Hitherto, the physiologist has reached only that degree of knowledge which the astronomer would possess, who 8 ANIMAL MECHANISM. knew, for instance, that the attraction between two heavenly bodies diminishes when their distance increases, but who had not yet determined the law of inverse proportionality to the square of distances. Or, he is like the physicist who has proved that compressed gases diminish in volume, but who has not found the numerical relation between their volume and the pressure. Without doubt, however, there are numerical relations between the phenomena of life; and we shall arrive at the discovery of them more or less speedily, according to the exactitude of the methods of investigation to which we have recourse. ; If physicists had limited themselves to establishing that bodies dilate as they become heated, and if they had not sought to measure the temperature of those bodies and the volume which they assume with each variation of the temper- ature, they would have had only an imperfect idea of the phenomena of the dilatation of bodies by heat. For a long time physiologists confined themselves to pointing out that such or such an influence augments or diminishes the force of the muscles, causes the rapidity of their motions to vary, increases or diminishes sensibility and motive power. Science, in our time, has become more exacting, and already the rigorous determination of the intensity and duration of certain acts, of the form of different movements, of the relations of succession between two or several phenomena, the precise estimation of the rapidity of the blood, or of the transference of the sensitive or motive nervous agent; all these exact measures introduced into physiology, lead us to hope that from more scrupulous measurement better formulated laws will soon result. In the comparison which we are about to make between the physical forces and those which animate the animal organism, we shall take it for granted that the fundamental notions recently introduced into science, and by which all those forces tend to reduce themselves to one only, that which engenders motion, are known; and shall, therefore, confine ourselves to a rapid sketch of the new theory. The value of a theory depends on the number of the facts FORCES AND ORGANS. 9 which it embraces; that of the unity of the physical forces tends to absorb them all. From the invisible atom to the celes- tial body lost in space, everything is subject to motion. Every- thing gravitates in an immense or in an infinitely little orbit. Kept at a definite distance one from the other, in proportion to the motion which animates them, the molecules present constant relations, which they lose only by the addition or the subtraction of a certain quantity of motion. In general, increase of motion enlarges the orbit of the molecules, and widening their distance from each other, increases the volume of the bodies. By this rule, heat is proved to be a source of motion. Underits influence the molecules, becom- ing more and more separated, cause bodies to pass from solid to liquid, and then to a gaseous state. These gases become indefinitely dilated by the addition of fresh quantities of heat. But that force which lends extreme rapidity to the motion of the molecules, that force which is admitted in theory is rendered tangible by experiment; its intensity is measured by opposing to the dilatation of a body an obstacle which it will have to surmount. Thus it is that the molecules of gases or vapours imprisoned in the cylinder of machines, communicate to the partitions and to the piston the pressure which is employed in producing action by machinery. ‘This mechanical action is, in its turn, trans- formed into heat if the conditions of the experiment be re- versed ; if, for example, an external force, thrusting back the piston of an air-pump, restrains the molecular motions by violent compression. The new theory has thrown light upon certain hypotheses, those, among others, which claimed admission for the latent heat of fusion, or cf vaporisation of bodies, the latent heat of dilatation of gases. It has suppressed others; for instance, the discovery of atmospheric pressure has banished the hypothesis which has now become ridiculous, that nature abhors a vacuum. Although the theory accommodates itself with less ease to the interpretations of luminous and electric phenomena, it admits, according to the great analogy between these phe- nomena and heat, of supposing that they themselves are only 2 10 ANIMAL MECHANISM. manifestations of motion. Besides, the transformation of motion into heat, into electricity, into light, may be proved experimentally. Fig. 1 represents the details of the experiment. Fic. 1.—Showing the transformation of the electricity of a battery into mecha- nical action, into heat, light, and chemical action. Various instruments are so arranged upon a table that an electric current, engendered by a battery P, may be made to pass through them.* The current is conducted in an elliptic circuit, on a small square board, represented in the centre of the figure. This circuit is formed of a thick copper wire; at certain points this wire is interrupted and dipped into cups of mercury, from which other wires communicate with the various apparatus through which the current is to be con- ducted. In Fig. 1, the metallic bridges 1, 2, 3, 4, 5, connect the cups of mercury, and form a complete circuit, which the current may traverse without passing through the various apparatus placed around it. If we take away loop No. 1, the current which passed through that loop is forced to traverse the elliptical circuit without passing through the surrounding apparatus. But if we * Jnstead of the single element represented in the Figure, it 1s necessary to employ a series of Bunsen’s cells, to realise the experiments perfectly. FORCES AND OPGANS. ll afterwards remove loop No. 2, the current must traverse the apparatus M, which is an electro-magnetic motor. This appa- ratus will begin to move and will produce mechanical action. Let us at the same time remove loop No. 3, the current must also traverse a registering thermometer. [That instrument is constructed as follows. It is a sort of Reiss’ thermometer, formed of a spiral of platinum, which the current traverses, and which is conducted into a flask full of air. Under the influence of thé heating of the spiral by the current which traverses it, the air in the bottle dilates, and passes, through a long tube, into the registering apparatus. The latter is composed of a drum of metal, closed on the upper side by a membrane of india-rubber. When the air pene- trates into the drum, the membrane swells, and lifts up a registering lever, which traces on a turning cylinder E, a curve whose elevations and depressions correspond with the rise and fall of the temperature. | By removing loop No. 4, we force the current to traverse an apparatus L, with carbon points, in which electricity gives birth to the bright light with which every one is acquainted. When it passes through the voltameter V, the current produces decomposition of the water. ‘The intensity of the current is measured by the quantity of water decom- posed, z.e., by the volumes of hydrogen and oxygen which are disengaged. We see, in the first place, by means of this apparatus, that electricity can become successively mechanical work in the motor M, heat in the spiral of the thermometer T, light between the carbon points L, and chemical action in the voltameter V. But we also recognise that the electricity which undergoes one of those metamorphoses is taken away from the current whose energy is thus diminished. If, for example, we make the motor M work, we shall see that the register marks a diminution of heat in the thermometer. If we stop the electro-magnetic motor with the hand, an increase in the temperature becomes immediately apparent; the registered curve rises. When the electro-magnetic motor is working, we see the 12 ANIMAL MECHANISM. intensity of the light diminish, and the decomposition of the water in the voltameter grow less. All these phenomena resume their pristine energy as soon as we suppress thie production of mechanical action. During this time, all the force expended in these various forms of apparatus is disengaged from the battery under the influence of a chemical action: the transformation of a certain quantity of zinc into sulphate of ziuc. Thus, in the furnace of a steam engine, the combustion of the coal, that is to say, the oxidation which transforms carbon into carbonic acid disengages heat, which is afterwards converted into work. But this force, disengaged from bodies, was contained in them when the zine was iu the condition of metal, and the carbon in the state of coal; these bodies had employed in their formation the same quantity of force which they have yielded up in passing into another condition. Thus it would be necessary to restore to the sulphate of zine and to the carbonic acid as much electricity or heat as they have thrown out, in order to reproduce the metallic zine or the carbon in a pure state. According to the modern theory, force which manifests itself at a given moment is not created, but only rendered sensible, from being latent. Here in tension is that potential force, which, stored up in a body, waits the opportunity to manifest itself. Thus a stretched spring will at the end of an indefinite time give back the force which has been used to stretch it; and a weight, lifted to a certain height, will restore, the instant it falls, the work that has been employed upon raising it. TRANSFORMATION OF PHYSICAL FORCES, 13 CHAPTER II. TRANSFORMATION OF PHYSICAL FORCES. To prove the indestructibility of forces, we must know how to measure! them—Units of heat and of mechanical work—Thermo-dynamies— Measure of forces in living beings—Successive phases of the trans formation of bodies ; successive throwing off of force under this influ- ence—Thermo-dynamics applied to living beings, We have just seen that force, in the different states which. it presents, may be now latent, or potential, or again in action, in the form of heat, electricity, or mechanical activity. To follow this force through all its different transformations, to establish that no portion of it is lost, a means of measuring it under all its forms is necessary. The chemist can prove the indestructibility of matter, by showing, with a balance, that a gramme of matter will preserve its weight through all the changes of condition that can be imposed upon it. Let that matter be weighed in the liquid state, in the solid state, or in the gaseous state, the, weight of a gramme will always be found under the most various volumes and aspects. A measure is then necessary for the different manifestations of force. Every quantity of heat, of electricity, or of mechani- cal work ought to be compared with a particular unit, as every weight ought to be compared with the unit of weight. Unit of heat. The sensations of heat and cold which we experience at the contact of different bodies do not correspond with the quantity of heat which those bodies contain. Ther- mometrical apparatus are not in a condition to give us the measure of the quantities of heat, since different bodies, presenting to our senses and by the thermometer the same temperature, may yield very unequal quantities of heat. But, to warm the same weight of a body to the same number of degrees, the same quantity of heat will always be necessary. Now, according to the agreement which has been come to in France and in many other countries, the unit of heat or 14 ANIMAL MECHANISM, calorie is the quantity of heat necessary to raise a kilogramme of water from zero to one degree centigrade. Unit of work. Mechanical force has been accurately de- fined only since the notion of work has been introduced into science. The unit of mechanical work admitted in France is the kilogrammetre; that is to say, the force necessary to raise the unit of weight—the kilogramme—to the unit of height, the metre. Kilectric force is measured by one of its effects, the decom- position of water, for it is demonstrated that to decompose the same. volume of water the same quantity of electricity will always be requisite. These measures of forces in action furnish, in their turn, the means of estimating the quantity of potential force con- tained ina body. Thus, it will be demonstrated that ina kilogramme of coal, and in the quantity of oxygen necessary to transform that coal into carbonic acid, there were in tension 7000 units of heat, since by combining all the heat disen- gaged by combustion, a mass of water of 7000 kilogrammes shall have been heated. But a substance which burns is not always completely oxidized; hence, it does not put in action the totality of the force which it contained in tension. A kilogramme of carbon, for example, may undergo only a first degree of oxidation, and thus becoming oxide of carbon it yields only 5000 units of heat. This oxide of carbon burning in its turn, and becoming carbonic acid, will then yield only the remaining 2000 units of heat. Transformation of physical forces takes place, as we have said, without any loss of the transformed force. To demon- strate this, it must be proved that a certain number of units of heat transformed into work, will furnish a constant number of kilogrammétres, and inversely, that this work in becoming heat again, will restore the primitive number of units of heat. The science which explains the relations between heat and mechanical work, and fixes the value of the mechanical equivalent of heat is called thermo-dynamics. 'This conception, which is the complement of the theory of the transformation of forces, and which proves that in their transformation they lose TRANSFORMATION OF PHYSICAL FORCES, 15 nothing of their value, is justly considered the most remarkable of modern times. Partly seen by Sadi-Carnot, clearly formulated by R. Mayer, demonstrated brilliantly by the experiments of Joule, the notion of the equivalence of forces is now admitted by all physicists. Each day furnishes a fresh confirmation of this doctrine, and leads to greater precision in the determination of the mechanical equivalent of heat. The value now generally admitted for that equivalent is 425, that is to say, that work equal to 425 kilogrammetres must be transformed into heat to obtain a unit, and inversely, that the heat capable of heat- ing to one degree one kilogramme of water at zero, if it be transformed into work, can, in its turn, lift a weight of 425 kilogrammes one metre.* But one restriction must be placed upon the estimation of thermo-dynamic transformations. Carnot suspected, and Clausius had clearly established that in the case of heat being employed to produce work, the heat cannot transform itself altogether, and that the greater part remains still in the state of heat; while in the inverse operation the whole of the work applied to that effect may be transformed into heat. This does not exclude the law of equivalence, of which we have just spoken; for if it be true that, in a steam engine for instance, there is only to be found under the form of work a small quantity, about 12° of the heat produced by the fur- nace, it is no less true that the quantity of heat which has disappeared furnishes in work the exact number of kilo- grammétres which corresponds to its mechanical equivalent. These notions had no sooner been introduced into science than the physiologists endeavoured to use them for the clearing up of the obscure question of heat and work pro- duced by animals. The assimilation of living beings to thermal machines was already in the state of vague con- ception. We shall see what light has been thrown upon it by the new theory. * Some experiments made by Regnault on the rapidity of sound, and on the expansion of gases, give as the true value of the equivalent the number 439, 16 ANIMAL MECHANISM. We have said that forces are produced within the organism. All living beings give out heat and produce work. ‘The- disengagement of these forces is caused by the chemical transformation of food, In the living being it is possible to measure approximately the quantities of heat and work produced, and even to estimate the quantity of force contained in feod; in order to do this it is sufficient to apply the methods which physicists have -employed in the estimation of inorganic forces. Thus, aman placed for some time in a bath will yield to the water a certain number of units of heat, which may be easily measured. Applied to the moving of a machine, the force of a man or an animal will produce a number of kilo- grammétres no less easily to be measured. If the aliment be subjected to the experiments which determine the heating power of different combustibles, it will be found that each of them contaius a certain quantity of potential force. Favre and Silbermann have supplied most valuable information, attained by great labour, on this point; and Frankland has continued their investigations. We now know the calorific power of almost all the alimentary substances, it is, therefore, possible to caleulate what free force their complete oxidation will yield either under the form of heat or under the form of work. But, as we have seen with respect to eombustibles employed for industrial purposes, the oxidation is not always complete. Coal partially consumed, gives solid or gaseous residues, such as coke and oxide of carbon, which, being oxidized in a more complete manner, furnish a certain quantity of heat. In the same way, the residues of digestion still contain non- disengaged force. All these forces ought to be estimated if we want to know how much of their force in tension has been lost by the alimentary matters in passing through the organism, and how much ought consequently to be found again under the form of force in action. ‘The urinary secretion also elimi- nates incompletely transformed products; the urea and the uric acid contain force in tension, which ought to be taken into account in calculations. The watery vapour which saturates the air as it comes out of the lungs removes from the organism and carries away with TRANSFORMATION OF PHYSICAL FORCES, 17 it a certain quantity of heat; the same thing takes place in the boiler of a steam-engine, as well as in cutaneous evaporation. This complication in the measure of force among organized beings shows what difficulties await those who are en- deavouring to verify the principles of thermo-dynamics in animals; yet, nevertheless, it would be illogical to admit with- out proof that, in living beings, the physical forces do not obey uatural laws, Several savants, firmly convinced of the generality of the laws of thermo-dynamics, have attempted to demonstrate them upon the animal organism. J. Béclard was the first who endeavoured to prove that in the muscles of man heat may be substituted for mechanical work, and vice versé. For this purpose he examined the thermometrical temperature of two muscles, both of which contracted, but one worked, that is to say, raised weights, while the other did not work. It might have been expected that less heat would have been found in the first muscle, because a portion of the heat produced during its contraction ought to have been transformed into work. The idea which governed LBeéclard’s experiments was assuredly correct, but the means at his disposal for ascer- taining the heating of the muscles were altogether insufficient. A thermometer was applied to the skin at the level of the. muscle, in order to give the measure of the heat pro- duced; thus the variations of temperature obtained by Beclard according as the muscle worked or not, were so slight that no real value could be attached to them. Herdenheim obtained clearer results by operating upon frogs’ muscles, which he made to contract with or without the production of work, ascertaining their temperature by means of thermo-electric apparatus. Hirn was bolder in his experiments, for he sought to deter- mine the equivalent of mechanical work in animated motors. In order to make Hirn’s experiment comprehensible, let us consider the simpler case of a mechanician desiring to establish the thermal equivalent of the work of a steam engine, knowing how much fuel it has burned, what heat has been given out, and what quantity of work has been produced. First, he will estimate the heat which should correspond 18 ANIMAL MECHANISM. with the combustion of the coal which he has burned; he will prove that the heat which he has obtained is less than this, which is made evident by the disappearance of a certain number of units; this disappearance he will attribute to the transformation of heat into work. Now as he knows the number of kilogrammetres produced by the machine, he will only have to divide this number by that of the units of heat which have disappeared, in order to find the number of kilogrammetres equivalent to each of them. Hirn believed that the combustion effected, the heat given out, and the mechanical work produced by a man could be estimated at the same time. He enclosed the subject in a hermetically closed chamber, and made him turn a wheel which could, at choice, revolve with or without doing work. The air of the chamber being analysed, showed what quantity of carbonic acid had been given out; from thence were deduced the combustion produced and the number of units of heat to which that combustion ought to have corre- sponded. The heat given out in the chamber was ascertained by the ordinary calorimetric processes ; it was, in proportion to the work produced, sensibly inferior to that which ought to have been found according to the quantity of carbonic acid exhaled. This disappearance of a certain number of units of heat was explained by their transformation into mechanical work. From these experiments Hirn deduced a valuation of the mechanical equivalent of heat for animated motors; but the number which he obtained differed considerably from that which has been established by physicists. This difference is in no wise surprising when we think of all the causes of error which are united in such an experiment. There may have been an error concerning the quantity of carbonic acid exhaled; an error concerning the nature of the chemical actions which disengaged this carbonic acid, and therefore respecting the quantity of heat which ought to have accompanied the disen- gagement; an error in the ‘estimation of the heat diffused through the calorimetric chamber; finally, an error as to the quantity of mechanical work produced by the subject. In ANIMAL HEAT. 19 fact, while it is relatively easy to estimate the work of our muscles when employed in lifting a burden, there are other muscular actions which constitute an important sum of work and which we do not yet know how to value with precision ; we allude to the movements of the circulation, and especially to those produced by the breathing apparatus. The remarks which we have made upon the greater number of the physiological experiments from which it has been sought to establish numerical data, apply to that of Hirn. But though it cannot furnish an exact determination, this ex- periment at least enables us to perceive the manner in which the phenomena vary; it shows that a certain quantity of heat always disappears from the organism when external work is produced. No greater precision could be obtained in the measure of thermo-dynamic transformation in the greater number of steam-engines, and yet nobody disputes that in these motors heat and work are substituted for one another in equivalent relations. CHAPTER III. ON ANIMAL HEAT. Origin of animal heat—Lavoisier’s theory—The perfecting of this theory —Estimates of the forces contained in aliments, and in the secreted products—Difficulty of these estimates—The force yielded by ali- mentary substances is transformed partly into heat and partly into work—Seat of combustion in the organism—Heating of the glands and muscles during their functions —Seat of calorification— Interven- tion of the causes of cooling—Animal temperature—Automatic regu- lator of animal temperature. Durtnc a long period, animal heat was considered to be of a peculiar kind, distinct from that which is manifested in the inorganic kingdom; this arose from certain conditions under which the living tissues become hot or cold, without its being easy to discover how this heat appears, or how it disappears. _ It was almost natural to admit that heat is 20 ANIMAL MECHANISM. connected with influences of nervous origin, when it was seen that certain violent emotions produce icy coldness in human beings, whereas others bring into the countenance sudden heat. Now all these facts have found an explanation in which there is nothing to infringe the ordinary laws of physics. In order to comprehend them thoroughly we must pess under our review the production of heat and its dis- tribution throughout the various parts of the organism. It has long since been established that aliment is indis- pensable in the living being for the production of heat, as well as of muscular power. Inanition, at the same time that it reduces the strength of the animal, produces profound cold in it. We owe to the genius of Lavoisier the comparison of the living organism to a grate which burns or incessantly oxidizes substances taken from without, by borrowing from the atmosphere the oxygen requisite for these transforma- tions. ‘This theory has triumphed over all the attacks which have been made upon it, and their only result has been the perfecting of its details. Let us reduce to its true proportions the comparison of the living organism with a burning grate. In both, an oxidable matter finds itself placed in relation with oxygen; but while, in a grate, the natural gas comes in contact with the com- bustible previously raised to an elevated temperature, in the organism the gas dissolved in the blood comes in contact with materials which are themselves dissolved in that liquid, or which have deeply entered into the tissue of the organs. Thus, the circulation transports into every part of the organism the elements which are necessary to the disengage- ment of force. These bodies remain in contact, without acting one upon the other, until the moment arrives when a specific action brings about their combination. This office, analogous to that of the spark which kindles the flame, or to that of the cap which discharges gunpowder, belongs to the nervous system. When the oxidation is at an end, and the forces necessary to the functions have been set at liberty, there remain in the tissues certain products which have become useless, and which may be compared to the ashes in the grate and to the gases ANIMAL HEAT. 21 which go up the chimney. These products must be elimi-. nated. Again, the circulation undertakes this office; the blood dissolves the carbonic acid and the -salts which are the ultimate products of organic oxidation, and then carries them, in its perpetual course, to the eliminating organs, the lungs and the glands. So long as it remained unsuspected that heat and mechanical work could be substituted for each other, an attempt was made to account for all the combustions which take place in the living organism, by estimating the quantity of heat discharged by an animal in a given time. Physicists and physiologists made great efforts to determine this illusory equality between the theoretical heat, which corresponded with the combustions which take place in the organism, and the quantity of heat furnished by the animal under experi- ment. Just as a machine, when it is working, furnishes less heat to the calorimeter than would be given out by a simple grate consuming the same quantity of combustible matter, so the living being gives out less heat in proportion as it executes more mechanical work. We have seen, by Hirn’s experiments, that it is solely according to the difference which exists between the heat experimentally obtained and that theo- retically estimated, that we now endeavour to find the value of the equivalent of mechanical work in living beings. Whatever may be the varied manifestations of force in the organism, a certain portion of that force always appears under the form of heat, and this it is which gives to animals a higher temperature than that of the medium in which they live. May we not, by ascertaining the temperature of the different parts of the body of the animal, discover the points at which heat is formed, and define the actual seat of those com- bustions of which we establish only the distant results ? It is now demonstrated that the lungs, by which the oxygen of the air penetrates into the organism, are not the seat of combustion, because the blood which comes out of that organ is, in general, colder than that which has gone into it. If two thermometers or thermometrical needles be introduced 22 ANIMAL MECHANISM. into the heart of an animal, in order to ascertain the tempe- rature of the blood which is returning through all the veins of the body into the right cavities, and that of the blood which is coming into the left cavities from the lungs, we find that the blood of the right-hand side of the heart is the warmer ; so that it follows that heat is principally produced along the course of the great circulation. If we would more particularly localize the origin of heat, we must take a special organ and investigate, in a com- parative manner, the temperature of the blood which comes to it through the arteries, and goes out of it through the veins. Thus it has been recognized that the muscles, in action, and the glands while they are secreting, are orgavs for the production of heat; and in them the most energetic chemical action takes place. But we must not expect, when examining all the muscles or all the glands at the moment of their action, to find an un- varying elevation in the temperature of their venous blood. A third element enters into the problem; it is the loss of heat which tales place while the blood is passing through the organ. Now, all portions of the body are not equally sub- jected to loss of heat; the most superficial are the most exposed to them, while the deeper organs are sheltered against the causes of cold.* Under these conditions every dis- engagement of heat in the glands ought to be represented by an elevation of temperature in the venous blood. _ If, on the contrary, we lay the sublingual gland bare, in cold weather, and investigate the temperature of the blood in the veins of that gland, we shall find the blood colder than that which has entered through the arteries. Must we conclude from thence that there has been no disengagement of heat in that gland? In no wise. We must simply admit that the loss of heat has exceeded its production. In short, heat appears to be produced in all the organs, but in various degrees, according to the intensity of the * When we wish to ascertain the increase of temperature of the blood in the glands, we must choose, for this investigation, the blood of the veins of the liver or the kidneys, organs sheltered from cooling influences. ANIMAL HEAT. 23 chemical action which takes place in them. Tho temperature of an organ necessarily results from the heat supplied to it by the blood, from that which has been produced in its interior, and from that which it has lost. Thus it is that certain veins, those of the limbs, for example, bring back blood colder than that of the corresponding arteries; whilst others, like the sub-hepatic veins which leave the liver, bring back blood warmer than that which has entered the hepatic gland. In fact, after all compensations are made, the heated venous blood predominates in the living organism over the cooled blood; so that it re-enters the heart 14° warmer than when it came out of it. This leads us to study the question of the temperature of animals, Among the different animal species, some, while producing heat, are subject to the variations of the surrounding tem- perature, so that they have been called cold blooded. They are now called animals of variable temperature, which is more exact. As for the animals called warm blooded, they possess the singular property of having the blood in the deeper portions of their bodies almost always at the same tempera- ture, notwithstanding the variations of the external heat. Thus, a man, sailing from the polar regions to the equator, may be subject, in a few weeks, to changes of 30° in the surrounding temperature, but his blood remains at about 38°. It is easy to understand that in the midst of incessant variations in the production of heat inside the organism, and of the no less great variations in the causes of its waste, such uniformity can only be obtained by means of a regulator of the temperature. We shall now proceed to certain developments of the wonderful functions of the regulator of the animal temperature. Human industry has often found it difficult to provide fixed temperatures, or at least to counterbalance the causes of ex- cessive heat and cold. A hot-house must neither fall below, nor rise above a certain temperature. But this problem is relatively a simple one; the hot-house is always warmer than the external air; it can only be subjected to more or less 24 ANIMAL MECHANISM. intense causes of cooling, which may be compensated by a suitable variation of heat. Bunsen’s regulator solves this problem satisfactorily, by regulating the supply of gas which serves as a combustible, augmenting it if the inclosed air tends to grow cold, diminishing it in the opposite case. In the animal economy, two orders of influences tend in- cessantly to cause variation of temperature in its production and in its expenditure. Causes of loss of temperature exist, as in the instance just mentioned. The temperature of the surrounding air, against which our clothing protects us more or less efficiently, on the one hand, and the more or less easy evaporation by means of cutaneous perspiration, accord- ing to the hygrometrical state of the atmosphere on the other; the action of the wind, or of air-currents; the tem- perature of the baths which we take, all these different causes tend to increase or diminish the waste of heat to which the body is subject. To these influences must be added those of the hot or cold food which we eat; of the hot or cold air introduced into our lungs by respiration, &c. All these constitute in general the causes of loss of heat. Another variable element in the establishment of the animal temperature is the production of heat which takes place in the interior of the organism, and which, as well as its loss, varies under numerous influences. ‘The aliments of which we partake, act, through their nature and quantity, on this production of internal heat; the activity of the glands causes a discharge of caloric; and the case is the same with respect to muscular action, which cannot be produced without the heating of the muscle. It is true that within certain limits our senses warn us to restrict the production of heat, or to promote it, according as external influences diminish or augment its waste. Thus, the amount of food taken varies with climate, so that the en- forced sobriety of the dweller in hot countries has no razson d@étre in cold ones. Obligatory idleness during the heat of the day under a burning sky is one manner of diminishing the production of heat; the Northmen, on the contrary, en- deavour to compensate, by muscular activity, for the cold to which they are subjected. ANIMAL HEAT. 25 But these are not the true regulators of the animal temperature. Our will commands all those actions whose influence may be favourable to the regulation of our tempe- rature; but, in general, Nature, in order to secure the indis- pensable functions of life, removes them from the control of our will. It is in an automatic apparatus that we shall find the real regulator of temperature. This apparatus must obey external and internal influences at the same time, it must retain heat when it tends to be dissipated too rapidly, and, on the other hand, it must facili- tate its decrease when it is produced too abundantly within the organism. This double end is achieved by a property of the circu- latory system: the blood vessels, animated by nerves whose action has been revealed by M. Cl. Bernard, close under the influence of cold, and open under the effect of heat. This property regulates the course of the blood in each of the organs, and at the same time the temperature throughout the entire economy. Let us take an animal which has just been killed; the circulation of the blood is stopped, and with it all the functions. This animal, if placed in a low temperature, becomes cold. According to physical laws, the extremities of the limbs and the surface of the body will lose heat in the first instance, while the central portions will still remain very hot, being sheltered by the more superficial layers against the causes of loss of heat. This corpse will resemble an inert body which has been heated, and is growing cold. The cir- culation of the blood opposes itself, during life, to the unequal partition of heat over the various points of the organism; bringing the arterial blood, at a temperature of nearly 38° (centigrade), to the superficial portions, it warms tl:em when the external temperature tends to chill them. On the other hand, if, in the living animal, the production of heat has been augmented, the circulation opposes the inde- finite heating of the central regions of the body; it brings that heat to the surface, where it is lost in contact with the external colder medium. The effect of the circulation of the blood is therefore to 26 ANIMAL MECHANISM. render the temperature of the organism uniform. But this uniformity is never complete; in fact, except in the case of the animal’s being in a vapour bath at 38°, and losing none of its heat, the surface of the body is always colder than the interior, but no ill effect is produced by the chill, which does not act upon the essential organs. If the circulation of the blood were of equal swiftness in every part, such a uniformity would not result in the preservation of the uniform temperature necessary for the internal regions of the body; we should then merely see it exposed to more general elevations and depressions of temperature, according to the re- spective predominance of causes of heat or the loss of it. To produce uniformity of central heat it is indispensable that some influence should augment the rapidity of the circulation each time that the organism produces more heat, or that the elevation of the surrounding temperature diminishes the causes of cooling. Circulation in the superficial portions of the body is extremely variable, as we may ascertain by observing the varying aspects of those portions, which are sometimes red, hot, and swollen, sometimes pale, cold, and shrunken, accord- ing to the more or less abundance of the blood which circu- lates in them. This variability depends upon the contraction or the relaxation of the little arteries, whose muscular sheaths obey special nerves. When, under the influence of these nerves, named vaso-motors, the vessels contract, circulation slackens, while by a contrary action, the relaxation of the vessels ac- celerates the course of the blood. Now, it is the tempera- ture itself which most generally acts in regulating this state of contraction or relaxation of the vessels, so that the animal temperature possesses in reality an automatic regulator. Every one has observed the influence of heat and cold on the circulation in the skin. If we dip one hand in hot, and the other in cold water, the first will grow red and the second pale; heat has, therefore, the effect of relaxing, and cold of contracting the vessels. In other words, according to what we have already seen, heat, by its action upon the circulation, fayours the loss of heat; while cold acts in an inverse sense, and tends to diminish the intensity of the chilling process, And it is not only under the influence of the variations of the ANIMAL MOTION, Q7 external temperature that these effects are produced; they are equally observed when the animal heat varies in its produc- tion. The heating of the organism which accompanies muscular activity, or which results from taking very hot drinks, produces the acceleration in the superficial circulation, which throws out this excess of heat to the surface. Inanition, muscular repose, the drinking of. iced waters, &c., slacken the circulation near the surface and check its cooling action. Such are, as far as we can explain them in a short chapter, the origin and the distribution of heat in the animal organism. The part played by the circulation of the blood in the distri- bution of heat, perhaps demands more ample details; and, indeed, we have treated it more fully elsewhere.* In the present chapter we have studied heat only as manifestation of force, and have merely designed to show that, notwithstanding all appearances, heat is of the same nature in the inorganic world and in organised beings. CHAPTER IV. ANIMAL MOTION. Motion is the most apparent characteristic of life; it acts on solids, liquids, and gases—Distinetion between the motions of organic and animal life—We shall treat of animal motion only—Structure of the muscles—Undulating appearance of the still living fibre —-Muscular wave —Concussion and myography—Multiplicity of acts of contrac- tion—Intensity of contraction in its relations to the frequency of muscular shocks—Characteristics of fibre at different points cf the body, Morton is the most apparent of the characteristics of life ; it manifests itself in all the functions; it is even the essence of several of them. It would occupy much space to explain the * Physiologie médicale de la Circulation du Sang. Paris, 1863 ; and Théorie physiologique du Choléra, Gazette Hebdomadaire de Medecine. 1867. 238 ANIMAL MECHANISM. mechanism by which the blood circulates in the vessels, how air penetrates into the lungs, and escapes from them alter- nately, how the intestines and the glands are perpetually affected by slow and prolonged contractions. All these move- ments take place within the organs without the exercise of the will; frequently even the individual in whom they occur is unconscious of them; these are the acts of organic life. Other movements are subjected to our will, which regulates their speed, energy, and duration; these are the muscular actions of locomotion, and the different acts of the life of rela- tion. We shall treat specially of this order of phenomena, which are more easy to observe, and to analyse. Suffice it here to say that the absolute division between the acts of organic life and those of the life of relation ought not to be accepted unreservedly. Bichat, who established it, based it upon anatomical and functional differences which are of less importance now than they were in his time. The mus- cular element of organic life is unstriped fibre obedient to the nerves of a particular system called the great sympathetic, on which the will has no action; motions produced by this kind of fibre are manifested some time after the excitement of the nerve or of the muscle, and continue for a considerable time. In fact, the object of those acts which are intended to maintain the life of the individual imprints upon them a special character. The muscular element of the life of rela- tion consists of a fibre of striated appearance, whose action, under the control of the will, is dependent upon nerves emanating directly from the brain or from the spinal marrow. These movements become evident rapidly as soon as they are provoked by excitement; they are of brief duration, and are, generally, not indispensable to the maintenance of the life of the animal. Although this distinction is, in a general way exact, it is plain that it is too arbitrary, and that numerous exceptions to the anatomical and physiological laws which it tends to establish may be quoted. ‘Thus, the heart, an organ directly indispensable to organic life, and not under the governance of the will, is a structure which much resembles the voluntary muscles. Certain fishes of the genus tinca have striated muscles ANIMAL MOTION. 29 in the large intestine, as Ed. Weber has pointed out. Very often, on the other hand, the will has no power over certain muscles which, by their structure, and by the nature of the nerves which animate them, belong to the system of the life of relation. Habit, besides, by repeated exercise, appears to extend the action of the will over the muscles, almost indefinitely. The young animal. shows, by the awkwardness of his movements, that he is not in full possession of his muscular functions; he seems to have to study the simplest acts, and performs them badly; while the gymnast, or the skilled piano forte-player executes prodigies of agility, strength, or precision, without any apparent, effort of the will propor- tionate to the result obtained. Many physiologists think, and we are of the same opinion, that there exist in the brain, and in the spinal marrow, centres of nervous action which acquire certain powers, by force of habit. They attain to the command and co-ordination of certain groups of movements without the complete participation of that portion of the brain which presides over reasoning and the consciousness of our actions. Let us lay aside these questions, which are still under inves- tigation, and examine into the production of motion in a voluntary muscle. The organ which generates motion is composed of several elements. Simple as it is supposed to be, it requires the intervention of muscular fibre, of the blood vessels, which unceasingly convey to it the chemical elements at whose expense the motion is to be produced, and finally, of the nerve which excites motion in the fibre. When the physiologist desires to analyse the actions which take place in the muscles, he does not deal, in the first place, with voluntary motions, whose complexity is too great. ‘The operator isolates a muscle, and induces motion in it, by bringing to act upon its nerve artificial excitements which he has under his control. To give an idea of the part played by each of the elements of the motive apparatus in the production of movemeis, it is sufficient to operate upon the leg of a frog. By laying bare and severing the sciatic nerve, the influence of will upon the muscle may be suppressed, so that the latter will only execute 30 ANIMAL MECHANISM. such motions as are produced by excitation, electric or otherwise, applied to the portion of the nerve which remains in communication with it. On the sides of the sciatic nerve are an artery and a vein. Compression of the artery will prevent the blood from reaching the muscle; compression of the vein will produce stagnation of the blood. The influences which different states of circulation produce upon the muscular function may then be observed; and, finally, by making an incision in the skin of the foot, the muscle will be laid bare, and cold, heat, or the various poisonous substances by which its action is modified, may be brought to bear directly upon it. When the nerve of a frog thus prepared is excited by an electric discharge, a very brief convulsive movement in the muscle is produced; this motion is called Zuckung by the German physiologists, and we propose to call it shock, in order to distinguish it from true contraction. It is so rapid that its phases cannot be distinguished by the eye, so that, to appreciate its characteristics aright, recourse must be had to special instruments. Registering apparatus only can supply this need, for they faithfully render all the phases of motion communicated to them. The general disposition of these forms of apparatus, which for a long time were used almost exclusively in the service of meteorology, is generally known. . The indications of the barometer, of the thermometer, of the force or the direction of the wind, of the quantity of rainfall, &c., register themselves under the form of a curve which, accord- ing as it is elevated or depressed, expresses the increase or diminution of intensity of the phenomenon to be registered. The time during which these variations are accomplished may be estimated by the length occupied by the curve upon the paper, which travels in front of the marking pen with an ascertained and perfectly regular speed. The use of instruments of the same kind has been introduced into physiology by Volkmann, Ludwig, and Helmholtz. We have endeavoured to extend the employment of them to a great number of phenomena, and we have constructed many instru- ments whose description would be out of place here. The apparatus which registers muscular motions bears the name of myograph; it shows the disturbance of the muscle by ANIMAL MOTION. 31 means of a curve which readily allows us to study its phases. We have fully explained elsewhere the nature of this in- strument, the experiments for which it is suitable, and the results which it gives.* At present we shall limit our- selves to a summary description of the chief results of myography. — | i Fic, 2.—The Myograph. In order to explain thoroughly the function of the appa- ratus, let us reduce it in the first place to its essential elements. Fig. 2 shows a muscle of the calf of a frog’s leg, m, suspended by a clip by means of the bone to which the upper part of the muscle is attached. The tendon, t, of the muscle has been cut and then tied by a thread to the lever, L, one end of which can be raised or lowered while the other is fixed ; the nerve, n, is susceptible of electric excitement, which produces certain contractions followed by relaxations in the muscle, that is to say shocks. Each of these movements of the muscle is communicated to the lever, which is raised or lowered, ampli- * Du Mouvement dans les Fonctions de la Vie. Paris, 1867: G. Bailliere. 32 ANIMAL MECHANISM. fying at its extremity the motions which it has received. This lever, which ends in a point, traces on a turning cylinder certain curves, which, when they are raised, indicate the con- traction of the muscle, and when they are lowered, show its return to its primitive length. With the arrangement which we have made in the myograph a muscle may be operated upon without being detached from the animal, which allows of the organ being left in the normal conditions of its function. In Fig. 3 the frog is represented in the experiment, fixed, by means of pins, on a piece of cork. Fic. 3.—Marey’s Myograph. The brain and spinal marrow have been previously destroyed, so as to extinguish all voluntary movement and sensibility. Although, to all appearance, the animal is dead, it will never- OF MOVEMENT IN ANIMALS. 33 theless retain for several hours the circulation of the blood, and the power of motion under the influence of electric discharges. An electric excitator conveys the current from an induction coil to the nerve of the frog. In order to register these movements and to depict them by curves which express their different phases, they are trans- mitted to the myograph in the manner already described. The tendon of the muscle is cut, and connected by a wire which is fastened at the other end to the lever of the registering apparatus ; the latter moves in a horizontal plane, when the contractile force of the muscle is exerted upon it. As soon as the muscle ceases to act, the lever returns, under the pressure of a spring, to its original position. At the free extremity of the lever is a point which traces, on a turning cylinder covered with smoked paper, the motions produced by the alternate contraction and relaxation of the muscle. When the cylinder is motionless, the lever traces, for each muscular shock, a straight line which expresses (by amplifying it in a known proportion) the extent of the coutraction of the muscle. Several authors limit themselves to this kind of myography, by which they ascertain the variations produced by different influences in the intensity of muscular action. By giving the cylinder a rapid rotatory motion, a curve is obtained which expresses by its height the extent of the contraction, and indicates by its inclination, which constantly varies, the speed with which the muscle passes through the different phases of the shock. Finally, in order to obtain, without confounding them, a great number of successive tracings, the foot of the myograph is placed upon a little railroad which works parallel to the axis of the cylinder. Tho writing point then traces an indefinite spiral all round the cylinder, and on this spiral a number of regularly graduated curves (Fig. 5) are traced, answering to a series of electric excitations produced at equal intervals; each of these curves corresponds with one of the electric shocks. If the speed with which the cylinder turns be augmented or diminished, a change ensues in the appearance of the curves, which necessarily occupy a greater or less space on the paper, but if a uniform speed in the rotation of the 34 ANIMAL MECHANISM. cylinder be maintained, the curves retain the same form so long as the muscle gives the same movements. Not only are shocks produced in the muscle by acting upon its nerve by electricity, but also by applying electric excitement to the muscle itself. Pinching, percussion, and cauterization of the nerve are also excitants which provoke shocks of the muscle. The character of these movements changes under certain in- fluences. Fatigue of the muscle, the cooling of that organ, the stoppage of circulation in its interior, modify the form of the shock, diminish its force, and augment its duration. Under these influences the myographic curve passes through different forms, such as 1, 2, 3, Fig. 4. Fic, 4.—Character of the shock, according to the degree of fatigue of the muscle: 1, muscle fresh ; 2, muscle a little fatigued ; 3, muscle still niore fatigued, Among the different species of animals, the durations of the shock vary considerably ; in the bird they are very brief (two to three hundredths of a second). In man they are longer ; in.the tortoise and hybernating animals longer still. Certain poisons modify the characteristics of this movement in so special a manner, that the slightest traces of those poisons introduced into the circulation of the animal may be disco- vered in the form of the tracings. sy Fig. 5, we may judge of the successive forms which will be assumed by the shocks of the muscle of a frog, under the influence of a gradual absorption of veratrine. These experiments still reveal only one fact: it is that the muscle is shortened or lengthened by a movement whose OF MOVEMENT IN ANIMALS. 35 phases vary under the different influences which we have just described. If we endeavour to pursue the study of this phenomenon of the contraction of the muscle, we see that it is only a change in the form of that organ, and that the diminution of length is accompanied by a corresponding dilatation which might be expected in a sensibly incompressible tissue. But the manner in which this dilatation is produced is curious. Fic. 5.—Successive transformations of the shock of a muscle becoming gradually poisoned by veratrine. Underneath to the left of the figure are shown the first effects of the poison. It has been long since observed that there are formed upon living muscles at the points where they are excited, lamps or nodosities which run along the whole length of the muscle, with more or less rapidity, like a wave on the surface of the water. Aeby* has shown that this is a normal phenomenon, and, under the name of muscular wave, he has described this movement, which, from the excited point, passes to the two extremities of the muscle at the rate of about a metre in a second. By means of an apparatus, which we have called * Untersuchungen uber die Fortpflanzungsgeschwindiskeit der Reizungs in der querzgestreijten Muskelfasern. Braunschweig : 1862. 36 ANIMAL MECHANISM. myographical clips, the reality of this movement of the wave may be verified in the living animal. When the wave appears in the muscle, it produces con- traction. During the whole of its passage the contraction continues, and when, having reached the end of the muscular fibre, the wave vanishes, the contraction disappears with it. These facts resemble those which the microscope reveals in living muscular fibre. Let a bundle of muscular fibres be taken from an insect, and placed under the objective of the microscope (the feet of coleoptera are well suited for this purpose) ; we first observe the beautiful transverse striation of these fibres, and then we perceive on their surface an undu- latory movement often alternating, which resembles the motion of waves on the surface of water. Oa examining this phenomenon more closely, we see that the transverse stric of the fibre are, at certain points, very close together, which is shown in the figure by a dilatation of the fibre. This is the wave shown by the microscope; the longitudinal con- densation of the muscle at this point gives it greater opacity than in the other portions (Fig. 6.) This opaque wave travels Fic, 6.—Appearance presented by a wave in muscular fibre. through the length of the fibre. In other words, the points at which the strize approach each other are not always the same, the longitudinal condensation disuppears in one place whilst it is produced in the contiguous parts. Since the contraction of the muscle is accompanied by its transverse dilatation, we may study the characteristics of the motion produced in a muscle, according to this expansion. We have succeeded in registering these changes in the volume of the muscle, as we have registered the changes in its length. Under these conditions we might study muscular action in man himself, because there is no need of mutilation. Let us suppose a muscle held between the flattened ends of 'OF MOVEMENT IN ANIMALS. 37 a clip; at each of its dilatations the muscle will force open the clip, and this movement may be registered. ‘This method enables us to study the phenomenon of the muscular wave, and the speed with which it travels throughout the whole length of the muscle. Fig. 7 exhibits a bundle of muscle held at two points of its length between the myographical clips, 1 and 2. Those instruments are so constructed that when their ends are pushed apart by the dilatation of the muscle, the move- all ||| mS LL G. 7.—Disposition of a bundle of muscle between two pairs of myo- graphical clips. Clip No. 1 holds the electric excitators of the muscle. A wave is represented at the moment when it has just crossed each of the clips. ment compresses a sort of little drum which sends a portion of the air which it contained through an india-rubber tube into a similar little drum. Fig. 7 shows two of these instru- ments fixed upon a foot. The expansion of the membrane lifts a registering lever, and thus gives notice of the dilatation of the muscle at the point where it is compressed by clip No. 1. The movement is shown upon the tracing by a curve analogous to those which we have already seen. 38 ANIMAL MECHANISM. Let us suppose that the muscle is electrically excited the level of the first clip; notice is given of the formation of the wave at that part of the muscle, but clip No. 2 does not yet give its signal. In order that it may act, the wave, as it passes along the muscle, must reach it. As this occurs, clip No. 2 gives the signal in its turn, and it is shown by the tracing, that this second movement is later than the first by a certain space whose duration may be estimated according to the speed of the rotation of the cylinder. The influences which modify the intensity and the duration of the muscular shock have appeared to us to modify the intensity and the speed of the propagation of the wave. Thus the two lower curves represented in Fig. 8 show that the transference of the wave is retarded by cold. Fic. 8.—Two determinations of the speed of the muscular wave. The experiment has been made upon the muscles of the thigh of a rabbit. The clips were placed as far as pos- sible apart, about seven centimetres. Electricity was applied to the lower extremity of the muscle, and the two upper curves of Fig. 8 were obtained. The interval which divides those curves marks the duration of the transference of the muscular wave. After the muscle had been chilled with ice the curves at the bottom of the figure were obtained. We see that the transference of the wave is slackened, for there is a longer interval between these curves than between the first. Production of mechanical force in the muscle. —We have seen that chemical action is the source of muscular force ; through OF MOVEMENT IN ANIMALS. 39 what media does this foree pass before it becomes mechanical work ? In steam engines, heat is the necessary medium between the oxidation of the fuel and the developed mechanical work. It is very probable that the same thing takes place in the muscles. The chemical action produced by the nerve within the fibre of the muscle disengages heat from it : this heat in its turn is itself partially transformed into work. We say partially, since accord- ing to the second principle of thermo-dynamics, heat cannot be entirely transformed into me- chanical work. Certain facts seem to justify these views: thus, by warming a muscle, we change the form of it, and may see it contract in length as it expands in breadth. These effects disappear when the muscle is cooled. Muscular fibre is not singular in its power of transforming heat into work. India-rubber, for in- stance, has an analogous property, and this sabstance may be made to imitate the muscular phe- nomena to a certain degree. If we take a strip of india-rubber (not vulcanised), and, drawing it between the fingers, stretch it out to ten or fifteen times its original length, we see that it becomes white, and of a pearly lustre. Fic. 9.—Transformation of heat into work by a strip of ind.a-rubber. At the same time the strip will become sensibly warm, and it will tend energetically to return to its original condition, so that if we let go either of its ends, it will instantly resume its furmer length, aud fall to 40 ANIMAL MECILANISM. its original temperature. According to our view, tlie sensible heat has disappeared and become mechanical work. If we plunge the strip when extended into water, so as to deprive it of its heat, if remains, as it were, congealed in its extended state, and does not develop any mechanical work. But if we restore to the elongated strip the heat which it had lost, it will recover its elasticity with considerable force. Tig. 9 represents a strip of india-rubber thus pulled out and cov led. It has been laden with a weight that it may have no tendency to recover itself. But, if we take the strip between our fingers, we feel it swell and shorten at the same time that it lifts the weight ; there is again production of mechanical work. If we thus heat the strip at various points we create a series of lateral expansions, each of which raises a certain quantity of the weight. Lastly, if we heat it throughout all its extent, the strip returns to its original dimensions, with the exception of the slight elongation produced by the sus- pended weight. Strong analogies exist between these phenomena, and those which take place in muscular tissue. The identity would be perfect if the wave which heat produces on the strip of india-rubber were transmitted to each end. ‘This transference implies, in the muscular fibre, the successive propagation of the chemical action which disengages the heat. It is thus that if we light a train of powder at one point, the in- candescence spreads throughout its entire length. These analogies have struck us as being remarkable: they seem to us to open uew views of the origin of muscular action. CONTRACTION AND WORK OF TUE MUSCLES, 41 CHAPTER YV. CONTRACTION AND WORK OF THE MUSCLES. The function of the nerve— Rapidity of the nervous agent— Measures of time in physiology—Tetanus and muscular contraction—Theory of con- traction — Work of the muscles. Tue experiments described in the preceding chapter show us the muscle under artificial conditions, which may, perhaps, induce us to suspect the results which they furnish. Can this electrical agent, which has been employed to excite motion, be assimilated to the unknown agent which the will sends through the nerves to command the muscles to act? And these artificially-produced movements, those brief shocks, always similar if the conditions of the muscle be not changed, in what do they resemble the motions commanded by the will, which are so varied in their form and their duration ? These objections deserve at least a brief discussion. The function of the nerve. When a nerve is excited by an electric discharge, the electricity employed does not always pass to the muscle in which the reaction takes place. The shock is produced equally well when all propagation of the electric current along the nerve is prevented, and it exhibits itself equally when excitants of a quite different nature are employed, for instance, pinching or percussion. Thus, the excitant employed only excites in the nerve the transference of the agent which is proper to that organ. Is not this nervous agent itself electricity? Notwithstanding the able labours of the German physiologists, and especially of M. Du Bois Reymond, science has not yet decided on that subject. We know that electric phenomena are produced in the nerve when it has been excited in a certain way, and that their propagation throughout the nervous cord seems to have precisely the same speed as that of the transference of the nervous energy itself. How has this speed been measured ? 42 ANIMAL MECITANISM. Helmholtz had the boldness to undertake this incasurement, and, by determining the speed of the nervous agent, he has furnished physiologists with a method which enables them to measure the duration of other phenomena connected with tlie nervous or muscular functions. Thus the experiment described above, in which we have measured tlie speed of the trans- ference of the wave in a muscle, is only an application of the method of Ilelmholtz. In order to make thg conditions of this experiment thoroughly comprehensible, let us make use of a comparison. Let us suppose that a letter is despatched from Paris to go to Marseilles, and that, being resident in the latter town, we should be informed of the precise instant at which the postal train leaves Paris, while we have nothing to warn us of its arrival at Marseilles except the knowledge of the moment at which the letter is delivered there. How ean we, according to these data, estimate the speed of the mail train? It is clear that the instant at which we receive the letter does not indi- cate that of the arrival of the train; for between that arrival and the distribution, many preliminaries take place, the sorting of letters, delivery, &c., which require a certain time not within our knowledge. In order tu have an exact idea of thie speed of the train which carries the mail, we must receive a signal of the passage of that train through an intermediate station between Paris and Marseilles, Dijon, for instance ; then we shall see that the distribution of letters takes place six hours sooner ufter the departure from D jon than after the departure from Paris. Knowing the distance which separates these two stations, we may ascertain from the time employed in traversing it, the speed of the train. By supposing this speed to be uniform, we shall know the hour at which the train will have arrived at Marseilles, which will give us know- ledge of the time consumed in the sorting and distribution of the letters. Helmholtz, in experimenting upon the nervous motive agent, first excited the nerve at a point very distant from the muscle, and noted the time which elapsed between the excite- ment which despatched the message carried by the nerve, and the appearance of motion in the muscle. Then acting on a CONTRACTION AND WORK OF THE MUSCLES. 43 point of the nerve very near to the muscle, he ascertained that under these new conditions the motion followed the ex- citement more closely. The difference of time which he observed in these two consecutive experiments measured the duration of the transference of the nervous agent along the known length of the nerve, and consequently expressed its speed, which varied from 15 to 30 metres per second. It is feebler in the frog than in warm-blooded animals. Fic. 10.—Determination of the speed of the nervous agentin man. 1. Shock produced when the nerve has been excited very close to the muscle. 2. Shock produced by the excitement of the nerve at a farther dista: ce of 30 centimetres. D, Vib ation of a chronographie tuning-fork vibrating 250 times in a second, serving to measure the time which corresponds with the iuterval of the shucks. Now, it results from the experiments of Helmholtz, that all the time which elapses between the excitement and the motion is not occupied by the transference of the nervous agent; but that the muscle, when it has received the order carried by the nerve, remains an instant before acting. This is what Helm- holtz calls lost time. This time would: correspond, in the comparison which we have employed above, with the duration of the preparatory labour between the arrival of the letters and their distribution. Physiologists have repeated the experiment of Helmholtz with some improvements. In fig. 10 tracings may be seen which we have ourselves obtained while measuring the speed of the nervous agent. Two muscular shocks are successively registered upon the same cylinder, care being taken that the nerve shall be excited in the two experiments, at different points, but at the same instant with regard to the rotation of the cylinder; for example, at the precise moment at which the point of the 44 ANIMAL MECHANISM. myograph passes over the vertical which corresponds with the origin of the lines 1 and 2. In the experiment which regulated the shock of line 1, the nerve was excited very near the muscle. In that which was traced by the shock of line 2, the nerve was excited 30 centi- metres farther off. As the cylinder turns with a uniform motion we can estimate the time corresponding with the distance which separates the two shocks. ‘To facilitate the measurement of this interval, the vertical lines indicate the starting points of these shocks; in fig. 10 the interval which separates them corresponds with a “hundredth of a second, during which the nervous agent has passed over 30 centi- metres of nerve, which corresponds with a speed of 30 metres per second. In order to measure this time with very great exactitude, we use a method invented by Duhamel. It con- sists in making the cylinder trace the vibrations of a chrono- graphic tuning-fork provided for this purpose with a very fine style, which scratches on the sensitive paper. We have recourse to this method in all our experiments. Let us return to fig. 10. If the interval which divides the starting points of the two shocks corresponds with the time which the nervous agent has taken to pass along 30 centi- metres of nerves, tliere is a much more considerable time, which, for each of the lines 1 and 2, is measured between the signal of the excitement marked by the first of the three vertical lines and the first shock. ‘This is the lost time of Helmholtz; it represents more than a hundredth of a second in this experiment. The greater number of authors think that the speed of the nervous agent varies under certain influences; that heat augments it, while cold and fatigue diminish it. It seems to us, on the contrary, that this variability of duration belongs almost exclusively to those still unknown phenomena which are produced in the muscle during the lost time of Helmholtz. Just as the employcs of the post, fatigued or chilled by cold, cause delay in the distribution of despatches, without there having been any change in the speed of the train which has brought them, so the muscle, according to whether it is rested CONTRACTION AND WORK -OF TIIE MUSCLES. 45 or fatigued, heated or chilled, executes more or less rapidly the movement dictated by the nerve. Besides this, all the influences which cause variation in the moment at which the shock of the muscle appears, cause variation of speed in the propagation of the wave in its interior; which proves that the conditions which accelerate or retard chemical actions, the first causes of all these phe- nomena, are solely concerned. Of the contraction of the muscle. Ilitherto, we have applied to the nerve only one single excitation, to which one single motion responded, the muscular shock. Notwithstanding its brevity, this shock has an appreciable duration; in man it takes 8 or 10 hundredths of a second for the muscle to accomplish its contraction ; then a longer time for it to resume its normal length; after which, if it receives a new order from a nerve, it gives a fresh shock. But if the excitations of the nerve succeed each other at such short intervals that the muscle has not time to accomplish the first shock before it receives a second, a special phenomenon is produced; these movements are confounded and absorbed into a state of permanent con- traction, which lasts as long as the excitations go on suc- ceeding each other at short intervals. Thus the shock is only the elementary act in the function of the muscle; it plays therein, after a fashion, the same part as a sonorous vibration plays in the complex phenomenon which constitutes sound. When the will ordains a muscular con- traction, the nerve excites in the muscle a series of shocks which follow one another so closely that the first las not time to end before a second begins, so that these elementary movements combine together and coalesce to produce tlie contraction. Volta pointed out, in a letter to Aldini, this singular fact, that a frog which receives a series of excitations, by the reite- rated contacts of two heterogeneous metals applied to his nerve, does not react at each of these contacts, but undergoes a sort of permanent contraction. Ed. Weber shows that the action of successive induced currents is of the same kind, and he has given the name of tetanus to the state of the muscle thus excited. Helmholtz perceived that the muscle 46 ANIMAL MECHANISM. vibrates in the depths of its tissue under these conditions of contraction, because the ear applied to this muscle hears a sound whose acuteness is exictly determined by the number of the electric excitations sent to the muscle in a second. By means of a very sensitive myograph, we have been able to render visible the vibrations of the muscles under tlie in- fluence of tetanus-producing shocks. Fig. 11 shows how this fusion of shocks is manifested by a contraction of the muscle, permanent in appearance, but in which the tracing reveals vestiges of vibrations. Vibrations may be found in the tetanus which strychnine produces in the muscles of an animal, as well as in that which is caused by the irritation of a nerve by heat and chemical agents. Fic 11.—Gradual coalescence of the shocks produced by cle: tric excitations of increasing frequency. In short, these voluntary contractions seem to be only a series of shocks, combining together by the rapidity of their succession. It has long been known that by applying the ear to a muscle in a state of voluntary contraction, we can hear a grave sound, whose tone several authors have sought to determine. Wollaston, Houghton, and Dr. Collongue are almost agreed upon this tone, which would correspond to a frequency of 32 or 35 vibrations per second. Helmholtz thinks that this tone of 32 vibrations per second is the normal sound given out by the muscle in contraction, and according to his experiments in electric tetanization, he regards this CONTRACTION AND WORK OF TIIE MUSCLES, 47 number as the minimum necessary to produce the state of apparent immobility of the electrically tetanized muscle. If voluntary contraction, studied with the aid of the myo- graph, furnishes no trace of vibrations, we must not be sur- prised, since the essential character of that act consists in the coalescence of shocks. But the existence of the sound which accompanies the contraction of the muscle sufficiently proves the complexity of this phenomenon. Let us add another proof in favour of this theory. When a muscle receives excitations of equal intensity, the contraction which results from thei is all the stronger in proportion to their frequency. Now, in contracting the muscles of the jaws with more or less force, we have been able to convince ourselves that the acuteness of the muscular sound increased with the energy of the effort. We may thus obtain variations of a /ifth in the tone of the muscular sound, We shall also see hereafter how the electric state of the muscles in contraction proves still more the complexity of this phenomenon. The conclusion at which we have arrived is, that during voluntary contraction, the motor nerves are the seat of suc- cessive acts, each of which produces an excitation of the muscle. The latter, in its turn, causes a series of acts, each of which gives birth to a muscular wave producing a shock. It is in the elasticity of the muscie that we must seek for the cause of the coalescence of these multiplied shocks; they are extinguished just as the jerks of the piston of a fire engine disappear in the elasticity of its reservoir of air. Of work done by the muscles. After having seen how mechanical force is produced, let us try to measure it—that is to say, to compare it with the kilogrammetre, the unit of measure of work. If we suspend a weight to the tendon of a muscle which we cause to contract, we easily obtain the measure of work by multiplying this weight by the height to which the muscle raises it. In animated motors, the measure of work is less easy to obtain. Sometimes, indeed, the strength cf an animal is utilized in the lifting of a weight, but the greater part of the acts in which the strength of animals is employed can only 48 ANIMAL MECIIANISM. be estimated by enlarging the definition of mechanical work. Thus, a horse which tows a boat, a man who planes a koard, a bird which strikes the air with its wing, does mechanical work, and yet they do not lift weights. In order to reduce cases of this kind to a general definition, we must admit as the expression of work, the effort multiplied by the space traversed. This effort, besides, may always be compared with the weight, the lifting of which would necessitate an equal effort, so that we say of a traction or an impulse, that it corresponds with 10 or 20 kilogrammes. When a workman planes or turns a piece of metal, if the tool which he drives into it penetrates only on condition of receiving an impulse of one kilogramme, the workman, in order to have effected a kilogrammetre of work, ought to have detached from the mass a shaving of a metre in length. A horse which tows a boat with 20 kilo- gramme force, will have employed a force of 20,000 kilo- grammetres when he has gone 1,000 metres. But still that is not yet sufficient to be applied to all the forms of mechanical labour. If, for example, force be em- ployed to displace a mass, the effort necessary for the move- ment will vary with the speed which is given to that mass. Let us imagine a block of stone suspended freely at the end of a very long rope; the lightest pressure applied to this block for a few instants will produce movement in it, while the strongest blow of the fist will scarcely cause any sensible displacement, because the force requisite to displace masses increases according to tle square of the speed which is com- municated to them.* A force of very short duration applied to a mass, produces only a shock incapable of displacing it. But this same shock, if it be exerted by means of an elastic medium, is transformed into an act of longer duration, and without having added anything to the quantity of motion, becomes capable of pro- ducing work. This elasticity intervenes in the auimal economy to permit the utilization of the very brief act which constitutes the formation of the muscular wave. ‘The formation of the wave, m v2, * This action is expressed by OF ELECTRICITY IN ANIMALS, 49 which lasts only for some hundredths of a second, represents the time of application of each element of the force of the muscle. At each new wave, there would be produced a true shock if the elasticity of the fibre did not extinguish this abruptness, and transform these jerky little contractions into a gradual increase of teusion which constitutes the prolonged effort of the muscle. A motor only works on the double condition of developing an effort, and accomplishing a motion. Thus a muscle which contracts, performs no external work, except while it is con- tracting; as soon as it has reached the limit of its contraction, it ceases to work, whatever may be the effort which it develops. When we sustain a weight after having lifted it, the act of sustainment does not constitute work. But, in tliese conditions, to maintain the elastic force of the muscle, the same acts are produced in its interior as during the work; the muscular waves succeed each other at short igtervals, and heat is disengaged by chemical action. Now, this heat, which cannvot transform itself into action, ought to remain in the muscle, and heat it strongly, ‘This is pre- cisely what we observe, so that in the malady called tetanus, which consists of a permanent tension of the muscles, it is ascertained that heat is produced with an exaggerated intensity, the temperature of the entire body rising several degrees. CHAPTER VI. OF ELECTRICITY IN ANIMALS. Electricity is produced ih almost all organised tissues—Electric currents of. the muscles and the nerves—Discharges of electric fishes ;_ old theories ; demonstration of the electric nature of this phenomenon — Analogies between the discharge of electrical apparatus and the shock of a muscle—Electric tetanus—Rapidity of the nervous agent in the electrical nerves of the torpedo ; duration of its discharge. Mosr of the animal or vegetable tissues are the seat of chemical actions, whence result an incessant disengagement of electricity. In this way, the nerves and muscles of an 50 ANIMAL MECIIANISM. animal furnish manifestations of dynamic electricity. Mat- teucci has discovered the manner in which the muscular current is usually produced. Du Bois Reymond has added much to our knowledge of this current, of its intensity, and of its direction in every part of a muscle. Treatises on phy- siology give copious details of experiments relative to nervous and muscular electric currents. This study has been the more eagerly pursued becaus3 the proximate cause of the function of the nerves and muscles was expected to be found in these electric phenomena. The most interesting fact connected with muscular elec- tricity, with respect to the transformation of force, appears to be the disappearance of the electrical state of a muscle at the moment when it contracts, or when it is tetanized. It appears then that the chemical actions of which the muscles are the seat, are entirely employed in the production of heat and motion. To observe these phenomena, we must make use of a ver sensitive galvanometer. Suppose a muscle connected with one of these instruments; it gives its currents, and deflects the magnetic needle a certain number of degrees. When this de- viation has been effected, and the needle lias become stationary in its new position, it is only necessary to produce tetanus in the muscle, and immediately the needle retrogrades towards zero. Thisis what Du Bois Reymond calls the negative varia- tion of the muscular current. ‘The same phenomenon is ubserved in the voluntary contraction of the muscles. The interpretation of the negative variation is very im- portant. Du Bois Reymond having remarked, that for a single muscular shock no deflection of the needle from zero is obtained, coucluded that this is on account of the short dura- tion of the electrical disturbance accompanying a shock. In tetanus, on the contrary, a series of modifications in the electrical coudition of the muscle correspond to the series of shocks produced—their accumulated influence deflects the magnetic needle, This phenomenon is familiar to physicists: It is known that the needle of a gulyanometer suljected to a frequently- interrupted current, takes a fixed position intermediate be- OF ELECTRICITY IN ANIMALS, 51 tween zero and the extreme point which it would have occupied if the current had been continuous. In the muscles in which the shock is protracted, as in the tortoise, a very prolonged change in the electrical state is produced; and therefore these muscles can by each of their shocks cause a deflection of the magnetic neelle. It is the suiné with the movements of the heart; each of these appears to be only a shock of the cardiac muscle, and yet it deflects the magnetic needle in the same manner as tetanus of an ordinary muscle. This fact, that a negative variation is equally seen in a muscle which is contracted voluntarily, is of the greatest importance. It confirms the theory which assimilates con- traction with tetanus, that is to say, with a discontinuous or vibratory action. One point which has been long under discussion relative to the manifestations of muscular electricity, is whether the negative variation is caused by a change of direction in the musculw eurrent, or by a transitory suppression of this eurrent. ‘The latter hypothesis has been rendered extremely probable by the numerous experiments in which the needle of the galvanometer has never been seen to retrograde beyond the zero point. Thus the phenomenon of negative variation seems to prove the principle which we laid down at the com- mencement of this article, that force is manifested in the muscles in a different manner during activity and repose, and that the manifestation under the form of mechanical work is substituted for that under the form of electricity. Electrie fishes. —Anuimal electricity appears in a much more striking form in the discharges produced by certain fishes. In this case the special organs have for their object the pro- duction of electricity; nevertheless, by their structure, their cheniical composition, and their dependence on the nervous system, these organs remind us of the conditions of the mus- cular apparatus. The number of species provided with electrical organs which was formerly restricted to five,* has been remarkably * The five species formerly known were the Raya torpedo, the Gym- notus electricus, the Silurus electricus, the Tetraodon elcctricus, and the Trichiurus electricus. 52 ANIMAL MECHANISM. increased since Ch. Robin has shown that ail the species of the genus ray have electrical apparatus and functions in a more or less rudimentary condition. Besides, the analysis of this singular act, which is called the electric discharge, las been better studied, as physicists have then selves learned the different properties of the electric agent. In the 18th century, they said, when speaking of the torpedo, that “this fish when it is touched throws out a kind of venom which paralyses and benumbs the hand of the fisher- man.’ Muschenbroeck, in the last century, ascertained the electrical nature of the torpedo's discharge. Walsh, in 1778, saw plainly that the numbness produced by this animal differs in no respect from that which is caused by the discharge ofan electrical machine. He proved by a great number of experi- ments, that the effect produced by this fish is manifestly electrical. He subjected the discharge to a series of trials, in which it had the same effect as the electricity deve- loped by machine. For instance, he showed that the animal might be touched with impunity, by taking as a medium of communication non-conductors of eleciricity. Besides, he made the discharge pass through a chain of individuals holding each other by the hand, and ull felt the same singular effect which is produced by the Leyden jar. At a later period Davy obtained with the current of the torpedo the deflection of the galvanometer, the magnetization of steel needles placed within a spiral of brass wire traversed by the discharge, and the decomposition of saline solutions. Becquerel and Breschet verified the same facts in the wire of the galvanometer, the current circulating from the back to the belly of the animal. The demonstration of the spark came still later. Father Linari and Matteucci obtained this spark by breaking in various ways a metallic circuit through which the current of the torpedo was passing. The inost ingenious process is that of Matteucci, who made use of a file in the following manner : A metallic plate attached to a brass wire is fixed under the belly of the torpedo; on its back is placed a file on which the end of a metallic wire rubs. The animal is then irritated, and one or even several sparks are scen in the dark to pass OF ELECTRICITY IN ANIMALS. 53 between the wire and the file. The production of the spark is probably effected when the circuit is broken at the precise moment of the passage of the torpedo’s current, The use of the file is clearly seen, since the friction causing the circuit to be closed and broken at very short intervals, some of them will necessarily coincide with the dis- charge, as it has but a short duration. Let us observe, in passing, that the production of two sparks during the discharge of the torpedo, shows very clearly that it hasan appreciable duration, measured at least by the time which has elapsed during the passage of tle wire across two successive teeth of the file. A. Moreau succeeded in collecting this electricity on a con- denser which allowed him to measure the variation of the intensity of the discharge by the indications of a gold leaf electroscope. We have seen how our acquaintance with the electrical phenomena of the torpedo has passed through many successive stages, and how the progress of physical inquiry has, on this subject, invaded the domains of physiology. Nevertheless, the discharge of the torpedo, as the above- mentioned experiments have shown, seeins like a kind of hybrid phenomenon, in which the effects of tension machines appear to be confounded with those of a galvanic battery. We must, by new researches, endeavour to assign the place in the series of well-known manifestations of electricity, which the discharge of electric fishes ought to eceupy. Considered in a physiological point of view, this pheno- menon possesses another kind of interest. The most receut discoveries tend to assimilate the function of this electrical apparatus with that of a muscle. If, for example, we com- pare the action of the nervous system on the electrical organs of certain fishes, with that which the nerve exercises over the muscle, we are struck with the following analogies :— The electrical discharges, like muscular shocks, can be produced under the influence of the will of the animal; they may also be considered as reflex phenomena; excitation of the electric uerve produces the discharge, as that of the motor nerve produces, the shock of a muscle; an entire paralysis of the electrical apparatus takes place when the nerve is cut, as 54 ANIMAL MECIIANISM. in a muscle v. hen its nerve is divided. This paralysis takes place also under the influence of curare, although this poison appears to act more slowly on the electric nerves than on the greater part of the nerves of motion. Indeed, the electric tetanus, to employ the happy expression of A. Moreau, is manifested, not only when the nerve of the torpedo is sub- jected to excitations very rapidly succeeding each otker, but ulso when the animal is poisoned with strychnine or any other tetanizing substance. It was natural enough to compare the different cells or laminae of the electrical apparatus in fishes, with the elements of the voltaic pile, and following up this idea, to inquire what was the electro-motive power of each of these little elements, and what were the effects of tension resulting from the association of these pairs. The following is the result of the experiments of Matteucci. A portion of the electrical apparatus of the torpedo, placed en rapport with the extremities of a gulvanometer, gives birth to a current of the same order as that in the apparatus of which it formed a part. The longer the prism thus detached, the more numerous must be the elements of this kind of animal pile, and the greater the deflection of the gal- vanometer at the moment of its discharge; this is produced by exciting the nervous fibre which corresponds with the small portion of the electrical apparatus of the torpedo placed on the pads of the galvanometer. ‘Thus far, the analogy of the electric apparatus with the pile is perfect, since the effects of tension increase with the number of elements which are employed. This analogy holds good with all the electrical fishes, when we endeavour to compare the intensity of the currents obtained in diflerent parts of the apparatus. In the torpedo it is found that the discharges are at their maximum when we touch the two surfaces of its apparatus on the inner side, that is to say, at the thickest part, which con- tains the greatest number of discs superposed on each other. In the gymnotus, whose electrical prisms have so great a length, it is found that the discharge is stronger still, on account of the greater volume and number of the elements. It is proportional to the extent of space contained Letween the OF ELECTRICITY IN ANIMALS, 59 two points which receive this impulse. In the silurus it is tle same; a much greater impression is made on us when we touch different points of the animal at a greater distance from each other. In fact, we may receive a discharge from a single surface of the electric apparatus of the torpedo, by touching unsym- metrical parts, that is to say, points where the number of the elements of the pile is not so great, because of the different length of the prisms which compose it. Thus, although the polarity may be identical on the same surface of the apparatus, the fact of the inequality of electric tension on the different points of this surface suffices to create the possibility of a current, and to determine its direction. As to the origin of the electric force, we think that no one can now see anything in it but the result of chemical actions produced in the interior of the apparatus But before they arrived at this opinion, physiologists ad- vanced many hypotheses as the source of animal electricity. Thus, when Du Bois Reymond had shown that the nervous tissue possesses an electro-motive force sufficiently powerful, and that there exists in living nerves a current in a constant direction, it was thought that the voluminous nerves which belong to the electrical apparatus of fishes carry electricity to it, as the blood-vessels supply blood to the organs. Mat- teucci has demonstrated that a large lobe of the brain of the torpedo is the origin of the nerves belonging to its electrical apparatus. Ile has observed that it is possible to remove all the rest of the brain, without depriving the animal of the power of giving voluntary or reflex discharges; but that it can no longer do so when this lobe is destroyed. Ho has for this reason named this the electric lobe of the torpedo, When a dying animal no Jonger gave spontaneous dis- charges, it was sufficient, said Matteucci, to touch the electric lobe in order to obtain discharges more violent than those which the animal gave voluntarily during the state of perfect activity. Nevertheless, the notion of Matteucci has been exaggerated, when this thought was attributed to him, that electricity is formed in the brain of the torpedo, and is conveyed by its 56 ANIMAL MECHANISM. nerves. It is as much as to say that the motive force is created in the brain and conveyed to the muscles by the nerves of motion. ‘The electricity of the torpedo has its origin in the special organ of this fish—as mechanical work is originated in a muscle. When we see the phenomena of electricity or of motion produced, the motive or electric nerves fulfil only the duty of transmitting the order received from the brain; but the electricity which circulates in the nerves is not that which is manifested so energetically in the discharge of the apparatus. It is, says Matteucci himself, as if we were to confound the effect of the gunpowder with that of the priming which has been used in order to fire the charge. Thus, the most probable theory is that which assimilates the electric nerves to those of motion, the discharge to a muscular shock, the series of discharges to tetanus. In order to verify this theory, we have endeavoured to ascertain* whether the nerves of the torpedo carry out the commands of the will with the same rapidity as the nerves of motion; if, when the electric apparatus -has received the order transmitted by the nerve, it hesitates, like the muscle, an instant before it re-acts (ost time); in fact, whether the dis- charge of the torpedo, contrary to those given by tension machines, possesses a certain duration which may be compared to that of the shock of a muscle. It lias been seen, that heat, cold, the ligature of the arteries, and the action cf certain poisons modify considerably the form and duration of the muscular shock. If experiment showed that as to its retardation, its duration, and its other phases, the torpedo’s discharge corresponds with the shock of a muscle ; if it is proved, that in both cases, the same agents produce thie same effects, we should be right in assimilating still more completely the electrical phenomena with those of motion; the physiology of the furmer would illustrate, in many points, that of the latter. During a stay of a few weeks at Naples we have been able to sketch out this mode of inquiry, which has furnished * Sce, for the details of these experiments, ‘‘ Journal de Vunatoimie et de la physiologic.” 1872. OF ELECTRICITY IN ANIMALS, 57 results as yet incomplete, but which tend to assimilate the electrical with the muscular action. These results are as tollow :— 1. The rapidity of the nervous agent in the electrical nerves of the torpedo seems evidently to be the same as that of the nervous agent producing motion in the frog. 2. The phenomenon called by Helmholtz lost time exists also in the electric apparatus of the torpedo, and lasts about the same time as in the muscle. 3. The discharge of the torpedo is not instantaneous, like that of certain kind of tension electrical apparatus, but it is prolonged about fourteen hundredths of a second ; which is, in a remarkable degree equal to the duration of a shock in a frog’s muscle. We cannot enter here into the details of the experiments which have furnished these results, but we will endeavour, in a few lines, to explain the method which we employed. Registering apparatus measure the slightest intervals of time; this we have seen in speaking of the estimated rapidity of the nervous agent. But, in order to employ the graphic method, we must have motion to give the required signal. Thus, in the experiment of Helmholtz, the muscular shock itself announced that the order of movement which the nerve had to convey had arrived at its destination. In order to obtain the signal of the electric discharge, we have employed it to excite the muscle of a frog, the shock of which was inscribed on the registering cylinder. The trace furnished by the frog-signal is somewhat delayed, it is true, after the excitation has been produced; but this delay is a known quantity, and it can easily be taken into account. é The following is the method adopted to measure with the ordinary myograph the duration of the different acts which precede the discharge of the torpedo. In a preliminary experiment (fig. 12) the nerve of the frog was directly excited, and a note was taken of the time (e g) which elapsed between the instant (e) of the excitation, and the signal (y) given by the frog. In a second experiment the torpedo was excited, still at the 4 5S ANIMAL MECHANISM. instant (e), and the electricity of its discharges was collected by means of conducting wires which sent it to the nerve of the frog signal. ‘This would give its shock at the point (¢). EE Pere Fic. 12.—Measur of the time which elapses between the excitation of the electric nerye, and the discharge of the torpedo. The difference (g t) would express the time consumed by the torpedo between the excitetion of its nerve and the’ dis- charge. By varying the experiment, as we have done for the motive nerves (page 43), we obtain the measure of the rapidity of the electric nervous agent, and that of the lost time in the torpedo apparatus.* Finally, in order to measure the duration of the electrical action, we had recourse to a method which consists in col- lecting this discharge during a very short time (1-100th of a second) to send it to the frog signal, and varying gradually the instant at which the electricity of the torpedo was collected. It was thus ascertained that starting from the point (t) one might, during 14-100ths of a second, obtain a series. of signals from the frog—t’, t’, ¢’”, t’’’, but that beyond that time the frog gave no signals, thus proving that the discharge had terminated. We have not been able to follow out farther the compari- son of the electric with the muscular action; but, according to the results already furnished by experiment, we can foresee * Deprived of appropriate apparatus, we have been obliged to construct for ourselves a kind of registering instrnment which should measure short intervals of time with sufficient precision. We refer the reader, for the real arrangement of the experiments, to the ‘‘ Journal de l’anatomie et de la physiologie,” loc. cit. Fig. 12 represents tracings which one would obtain with the registering instruments already known. ANIMAL MECHANISM. 59 that new analogies will still show themselves between these two manifestations of force in living beings, mechanical work and electricity. CHAPTER VII. ANIMAL MECHANISM. Of the forms under which mechanical work presents itself— Every machine must be constructed with a view tothe kind of work which it has to perform—Correspondence of the form of muscle with the work which it accomplishes—Theory of Borelli—Specific force of muscles —Of machines; they only change the form of work, but do not increase its quality— Necessity of alternate movements in living motive powers—Dynamical energy of animated motors. If we have lingered long over the origin of heat, of mechanical work, and of electricity in the animal kingdom, it was in order to establish clearly that these forces are the same as those which are seen inthe inorganic world. Certain evident differences must have struck the earlier observers, but the progress of science has shown, more and more clearly, this identity, which is now disbelieved only by those whose minds are still under the influence of obsolete theories. Mechanical force, to which our attention must now be exclusively directed, has hitherto been studied only in its origin; we must follow it through all its applications to work of different kinds which it executes in animal me- chanism. In all the machines employed in the arts we must have organs which serve as media between the forces which we employ and the resistance which are required to be overcome. This word organ is precisely that which anatomists use to designate the portions which compose the animal machine. The laws of mechanics are applicable as well to animated motors as to other machines; this truth, however, has to be demonstrated, but, like many cthers, it was for a long time unrecognized. 60 ANIMAL MECHANISM, Of the forms of mechanical work. —When we have at our disposal a certain quantity of force, it is necessary, in order to utilize it, to collect it under conditions which vary according to the nature of the effects which we desire to produce. We have seen that the measure of work actually employed is the product of the resistance multiplied by the space through which it has to pass. Sucha measure, being the product of two factors, may remain constant if the two factors vary inversely. So that a considerable weight, raised to a . slight height, will give the same result of work as a light weight raised to a greater height. These will be two different forms of the same quantity of work ; but, in this case, the form is of extreme importance. In order that the work applied should be available, it is ne- cessary that its form should be the same as that of the resisting foree—that is, of the work required to be done. If we have as a moving power a piston of a steam engine of large diameter and short length, capable of lifting 100 kilogrammes to the height of a centimetre, and that it is necessary with this generator of force to lift one kilogramme to the height of a metre, which equally represents a kilo- grammetre of work, the motive force in this machine cannot be utilized directly ; for at the end of the stroke of the piston the weight of a kilogramme will only have been lifted one centimetre, and 5%°, of the force at our disposal will re- main unemployed. Every machine, therefore, must be con- structed with a view to the special form under which the resistance to be overcome presents itself. It is true that by means of certain contrivances, levers or wheel-work properly combined, it is possible to cause a cer- tain quantity of work to pass from one form to another, and to apply it to the resistance to be overcome. But this will be the object of ulterior study. We have only to consider at this moment the case in which the force is directly applied to the obstacle which it has to surmount, which is a very frequent condition in animated motive powers. Let us return, then, to the hypothesis in which the moving force of the piston of an engine must be applied directly to overcome resistance. Under these conditions the constructor ANIMAL MECHANISM. 61 will be careful to give to the surface of the piston such an area, that the pressure on this surface may be precisely equal to the resistance which it has to overcome; then he will give to the cylinder such a length that it will allow the piston to travel just as far as the resistance ought to move. It is only under these conditions that the machine will do the desired _ work, and utilize all its moving power. On the contrary, in the case in which work answering to a kilogrammetre must be done by lifting 100 kilogrammes to the height of a centimetre, the cylinder must be made so large that the pres- sure of steam on the surface of the piston will develop an effort of 100 kilogrammes, and such a length only must be given to the cylinder, that the movement of the piston may be merely a centimetre, One cannot substitute one of these forms of cylinder for the other, for in one case the force would be insufficient, and in the other, the range would be too restricted. The only thing which is equal in both is the amount of work that the two machines can do, that is to say, the pro- duct of the force employed multiplied by the space passed through; this is again the product of the surface of a section of the cylinder multiplied by its length, or, in other terms, it is the volume of steam contained in each machine, this vapour being supposed to be at an equal tension. This proportion of the volume of the matter which works to the work performed, is found in every case in which a moving force is employed. Two masses of lead falling from the same height will do work proportionate to their volume, or, which is the same thing, to their weight. Two threads of india-rubber of the same length, both of which have been stretched to the same degree, will do work proportionate to their transverse sec- tions, and, consequently, to their respective weights. Lastly, two threads of the same diameter, but of unequal lengths, after having been subjected to the same elongation in pro- portion to their original lengths, will, as they contract, do work proportionate to their respective lengths, that is to say, to their weight. This leads to the consideration of muscle, which conforms 62 ANIMAL MECHANISM. rigorously to the general laws which we have just enunciated. The larger a muscle is, that is to say, the more extensive is its surface, the more susceptible it is of considerable effort. But, on the other hand, a muscle contracts only in proportion to itsown length. We may estimate that the mean shortening of a muscle while contracting, when it is not detached from the animal, is about a third of its length when in repose. It follows that the work done by a muscle will be in proportion to its length and its transverse section; that is to say, to its volume or to its weight. Thus, it is possible to ascertain, according to the anatomi- cal characters of a muscle, what is the force which it pos- sesses, relatively to that of other muscles of the same animal, and what is the form under which its work is done. The substance of the muscles, that is to say, of red flesh, presents the same density in the different parts of the animal frame; in consequence of which the weight is the most exact and the most expeditious method of estimating the relative importance of two masses of muscle, and of predicting the quantity of work which they are able to execute. As to the form under which muscular work must be pro- duced, it is deduced not less easily from the form of the muscle. If it be thick and short, it should produce a strong effect multiplied by a short range; if it be long and slender it will have a more extended range, but will only develop feeble energy. There are many examples in proof of tliis law which regulates muscular action—the sterno-mastoidal, the sarto- rius, and the rectus abdominis, are muscles of a long range, or, as it may be otherwise expressed, having a great ex- tent of movement; they have a fleshy portion of greater length. The large pectoral muscle, the gluteus maximus, or the temporal muscle are large and short muscles, that is to say, capable of a considerable effort, but of slight contraction. Borelli already understood the laws of muscular force ; without the intervention of the notion of work, which was not introduced into mechanics at the time when he lived; he made a very clear distinction between these two opposite ANIMAL MECHANISM. . 63 characteristics of the action of a muscle according to the impulse of its volume or its length. And as a theory is always required to satisfy the mind, this author sought to interpret these different effects by a theory of the structure of the muscles. Let us imagine, said he, a minute chain of metal formed of circular elastic rings, and that an extensile force should be exerted on this chain. Each ring will change its shape and assume an oval form, and the whole chain will be lengthened in proportion to the number of its rings. When it recovers itself, under the influence of elasticity, the chain will grow shorter again in proportion to its length. The minute chain of Borelli is the primitive fibre revealed to us in the animal economy by the microscope. But, said Borelli, if we form a bundle of a great number of these chains, each one of them will resist the extensile force in proportion to the elasticity of its rings, that is to say, the thickness of the bundles, and the force with which the extended bundle will recover itself will be in the same ratio. We do not reason otherwise now that histology has shown us, in a muscle, a bundle of fibres whose actions are com- bined like the chains suggested by the Naples professor. Passing to other considerations, this author studied the influence exerted by the direction of the fibres on the force which they develop. He remarked that the muscles whose fibres converge obliquely on the same tendon, like the barbs of a feather on the central shaft, afford neither a range nor an effort proportionate to their length and their sections. We have no modification to make of this estimate of the composi- tion of forces in the muscular organ. Of the specific force of muscles.— In the machines constructed by man, it is not enough to measure the longitudinal and transverse dimensions of the cylinder, in order to know what quantity of work each stroke of the piston will develop; we must also know under what pressure the steam acts. ‘That is estimated by the number of atmospheres it can lift as it escapes. At other times the force of the steam is measured by the number of kilogrammes of pressure which it exerts on every square centimetre of the surface of the cylinder. In 64 ANIMAL MECHANISM, every case it is an estimate of the specific force of a certain volume of steam which is to be determined. In the same manner, in hydraulic machines, we must know the charge of water or its pressure, in order to ascertain the work which the machine can perform. Physiologists have also sought to determine the specific force of muscular tissue in different animals, and to compare with the unit of transverse section of muscle the effort which it can make. In this manner they have estimated that the muscle of the frog would develop an effort of 692 grammes (E. Weber) for each square centimetre of section ; that human muscle would develop 1087 (Koster). In the bird the force would be about 1200 (Marey); in the insect it would be still greater (Plateau). According to Straus Durkheim, a muscle of the stag-beetle weighing 20 centigrammes would carry, if we measure the moment of power and that of resistance a weight of seven kilogrammes. By such estimates as these, we might compare animated moving powers with machines working under variable pres- sures. The frog, we might say, works with a pressure less than one atmosphere, man with a pressure greater than one atmosphere. ‘There would be a greater pressure in the bird, and still greater in the insect. Of machines.— When mechanical force cannot be directly utilized, because it is not in harmony with the form of work which it ought to effect, various means are employed in the arts to transform it. Machinery known under the names of wheels and levers are continually used for this purpose. In the animal organism contrivances are also found which change the form of the work of the muscles. The lever is almost exclusively used by nature for this purpose. The arrange- ment of the bony levers which form the skeleton is so generally known that it needs no explanation here; but there is a very common error on this point, even among physiologists, which it is necessary to point out. Almost all the levers which are found in the organism belong to the third order, that is to say, where the muscular force is applied between the fulcrum and the resistance. Under these ANIMAL MECHANISM. 65 conditions, the effort that can be developed at the extremity of the lever is less than that of the muscle; but the space passed through by this extremity of the lever is proportionately increased, so that the product of the force multiplied by the distance remains the same. Thus, we find in a great number of standard treatises, a sort of accusation brought against nature, for having entirely wasted a great part of the force of our muscles by causing them to act under a disadvantageous leverage. It is true, that to extenuate this fault, they are willing to grant that this arrangement, unfavourable in an economical point of view, gives to our muscles an elegance which they would not have possessed, if for example, a long muscular band had extended from the sternum to the wrist. These mechanical and esthetic notions ought to give place to more correct ideas. We must, above all, remember that a muscle produces work corresponding to its volume or its weight, whatever may be the proportions of the lever to which it is attached. The effect of the latter is only to regulate the form under which it produces the work, without adding to it or subtracting from it. An error of the same kind is often committed in con- sidering the part played by levers made use of by man in his work. It often happens that human force is unable to raise certain weights; we have recourse in these cases to levers of the first or second order, in which we increase the power of the arm in the ratio of the longer to the shorter arm of the lever. In this manner we utilize a motive force which could not produce external work if we endeavoured to bring it to bear directly on the resistance to be overcome. But a lever which amplifies the force exerted, diminishes as much the extent of the work produced; it adds nothing to the work executed by the motive power. Before the notion of work had been introduced into mechanics, and when it was not clearly understood that it was impossible to increase by mechanism the amount of force at our disposal, many false ideas were entertained with regard to the part played by machinery. When we consider those gigantic masses of stone the pyramids of Egypt, or those al 635 ANIMAL MECHANISM. enormous blocks, called dolmens, which our forefathers erected in prehistoric times, it was admitted that these Titanie works pre-supposed a very advanced knowledge of mechanism. Even now it would require an immense time, or an army of workmen, to execute similar works by employ- ing only the force of man and that of animals. We must not imagine that the old Gauls or ancient Egyptians-were able to escape from the inevitable necessity of employing many men or an enormous lapse of time in these labours at the period when the only source of mechanical work was that derived from living beings. But we live under new and better conditions, thanks to the invention of machinery whith develops mechanical work. In addition to the utilization of natural motive powers, such as water courses and wind, man is now able to employ steam engines, by means of which a small quantity of fuel does the work of a great many animals. It is by these means that Egypt has succeeded in a few years in cutting through the Isthmus of Suez, an enterprise which, four thousand years ago, would have absorbed the efforts of many generaticns. Necessity of alternate motion in living motive powers.—When the piston of a machine has reached, the end of its stroke, the steam which impelled it must escape, and the piston must return in the opposite direction to accomplish fresh work. In the same manner, the muscle, after having contracted, must be relaxed in order to act afresh. But mechanicians have found that in the alternate movements there is a loss of work. When a heavy object impelled forward with rapidity has to be brought back in the opposite direction, it is neces- sary first to destroy the work which it contains, so to speak, under the form of active force. Precisely in the same manner, when a limb suddenly extended is required to be rapidly bent, the momentum acquired must first be destroyed; to do which requires an expenditure of work. To guard against this loss of motive power, mechanicians have recourse, as much as possible, to the employment of circular movements instead of motion to and fro, © ‘Thus, man who is so often inspired in his inventions by the arrange- ments of which nature offers him examples, deviates in this ANIMAL MECHANISM. 67 ease from his model; he endeavours to surpass it, and he is right. To make this understood we cannot do better than quote a passage in which L. Foucault compares the screw- propeller of ships to the organs of swimming in fishes :— “Tn our machines,” said he,* ‘‘ we have usually a great number of parts entirely distinct one from the other, which only touch each other at certain points; in an animal, on the contrary, all the parts adhere together; there is a connection of tissue between any two given parts of the body. This is rendered necessary by the function of nutrition which is continually going on, a function to which every living being is subject during the whole of its existence. We can, besides, understand the absolute impossibility of obtaining a con- tinued movement of rotation of one part on another, while still preserving the continuity of these two parts.” Thus,:a profound difference separates mechanisms employed by nature from those invented by man; the former are sub- ject to special requirement from which the latter can be freed. The muscle can only act under the condition of being attached by its vessels and nerves to the rest of the organism. No portion of the body, not even the bones themselves, which have the least vitality, can be free from this necessity. One might find, in the animal organism, many other mechanical appliances, the arrangement of which resembles that of machines invented by man, but with differences ever of the same kind as those which we have just described. For instance, the circulation of the blood is effected in living beings by a veritable hydraulic machine, with its pump, valves, and pipes. But the fundamental difference between this complicated mechanism and machines constructed by man, arises from the absence of independent portions, and especially of the piston. ‘The heart is a pump without a piston, and its variations of capacity are obtained by the contractility of the coats of the vessels themselves. With the exception of this difference, we find perfect analogies between the circula- tory apparatus of animals and hydraulic motive powers. The function of the valves is identical in both in spite of apparent differences, * « Journal des Débats,” Oct. 22, 1845. 68 ANIMAL MECHANISM. We have formerly noticed in the cirenlation of the blood an influence which regulates and increases the effective work of the cardiac pump; it depends on the elasticity of the arteries.* In like manner, in hydraulic machines, man has recourse to the employment of elastic reservoirs, to utilize more fully the work of pumps, and to render uniform the movement of the liquid, notwithstanding the intermittent character of the motive power. This effect may be compared to that which we have before remarked in the elasticity of muscles. Dynamic energy of animated motors.—Animated motive powers and machines are subject to the same estimation of work; it is the dynamic energy of the former as compared with the latter. The production of external work corresponding to 75 kilo- grammetres per second, has been called the horse-power, or, in more general terms, the motive power of one horse, it being supposed that one horse could develop the same amount of work. But animal motors cannot work incessantly, so that the horse-power would represent at the end of the day a much greater amount of work than the animal could have produced, had it been employed as a motive force. Man is estimated much lower as to his dynamic energy, (+'7 of a horse-power), and yet, if we only require from the muscular force of a man an effort of short duration, it will furnish dynamic energy exceeding that of a horse-power. In fact, the weight of a man is often more than 75 kilogrammes ; each time that the body is raised to the height of a metre per second, in mounting a staircase, the man has effected during this second the work adequate to one horse-power. And if, during several instants, he can give to his ascent the speed of two metres per second, this man will have developed the work of two horse-power. Thus, in our estimate of the work done by the greatest or the smallest animals, we must consider it as a multiple or a fraction of the ordinary measure of horse-power. * < Physiologie médicale de la circulation du sang.” ORGAN AND FUNCTION. 69 CHAPTER VIII. HARMONY BETWEEN THE ORGAN AND THE FUNCTION.— DEVELOPMENT HYPOTHESIS. Kach muscle of the body presents, in its form, a perfect harmony with the nature of the acts which it has to perform—A similar muscle, in different species of animals, presents differences of form, if the function which it has to fulfil in these different species is not the same—Variety of pectoral muscles in birds, according to their manner of flight— Variety of muscles of the thigh in mammals, according to their mode of locomotion—Was this harmony ‘pre-established }— Development hypothesis —Lamarck and Darwin. Tue comparison between ordinary machines and animated motive powers will not have been made in vain, if it has shown that strict relations exist between the form of the organs and the characters of their functions; that this cor- respondence is regulated by the ordinary laws of mechanics, so that when we see the muscular and bony structure of an animal, we may deduce from their form all the characters of the functions which they possess. It is known that the transverse volume of a muscle corres- ponds with the energy of its action; that the athlete, for instance, is recognized by the remarkable relief in which each of his muscles stands out under the skin. But less is known concerning the physiological signification of the length of the muscles, that is to say, the less or greater length of their contractile fibres. And yet Borelli has already given the true explanation. In his opinion, as we have seen, this length of red fibre is proportioned to the extent of movement which the muscle is fitted to produce. This distinction between the contractile or red fibre and the inert fibre of the tendon is of the utmost importance. Experiment has shown that the muscles when they contract are shortened to an extent which represents a constant frac- tion of their length. We may, without erring from the truth, estimate at 1 of their length, the extent to which a muscle 70 ANIMAL MECHANISM. can contract. But, whatever may be the absolute value of this contraction, it is always in proportion to the length of red fibre ; that is the result of the nature of the phenomena which produce work in the muscle. Thus, every muscle whose two points of attachment are susceptible of being much displaced by the effect of contrac- tion, must necessarily be a long muscle. On the contrary, every muscle which has to produce a movement of short extent must of necessity be a short muscle, whatever may be the distance which separates the two points of attachment. Thus, the flexors of the fingers and toes are short muscles ; but they are furnished with long tendons, which convey even to the phalanges of the fingers or toes the slight movement originated at a considerable distance at the fore-arm or the leg. It is easy to estimate, in the dead hody, the extent of the displacement which a muscle can exercise on its two points of attachment. By producing the movements of flexion or extension in a limb, we can ascertain with sufficient exact- ness the extent by which they separate or draw together the osseous attachments of its muscles. Ina recent skeleton we can also judge with sufficient accuracy of the amount of these movements by the extent to which the articulated surfaces can glide over each other. In examining the muscular frame of man we are struck with the extreme length of the sartorius muscle; it is easy to be seen that no other can displace to such an extent its points of bony attachment. The sterno-mastoidal and the magnus rectus abdominis are, after this, the longest muscles ; these also are muscles which have very extensive movements, We might thus cause all the muscles of the organism to pass under review, and in them all we should see that the length of the red fibres corresponds with the extent of the movement which this muscle has to execute. But, in the study, we must be on our guard against a cause of error which would tend to arrange certain short muscles among those which are longer. Borelli himself has noticed this cause of error; he has shown how penniform muscles, that is to say, those whose fibres are inserted obliquely into the tendon, like the barbs of ORGAN AND FUNCTION, 71 a feather into the common shaft, are short muscles. which appear like long ones. These considerations are indis- pensable when we wish to understand the action of the various muscles of the organism; it is only by this means that we can estimate the real length of their contractile parts. Though the harmony between ‘the form and the function of different muscles is revealed everywhere in the anatomy of the human frame, this harmony becomes much more striking if we compare with each other different species of animals. Comparative anatomy shows us, in species closely allied to each other, a singular difference in the form of certain muscles whenever the function of these muscles varies. Thus, in the kangaroo, essentially a leaping animal, we find an enormous development of the muscles of leaping, the ylutei, the triceps extensor cruris, and the gastrocnemial muscles. In birds the function of flight is exercised under very dif- ferent conditions in different species; so, also, the anatomical arrangement of the muscles which move the wing, the pectoral muscles, varies in a very decided manner in different species. To show the perfect harmony which exists between the func- tion and the organ, it would be necessary to enter into long details of the mechanism of flight. ‘The reader will find, farther on, explanations on this head. We will content our- selves with giving in a few words the differences which have been observed in the movements of the wing, and in the form of the muscles which produce them. Every one has remarked that birds which have a large surface of wing, as the eagle, the sea-swallow, &c., give strokes of only a slight extent; that depends on the great resistance which a wing of so Jarge a surface meets with in the air. Birds, on the contrary, which have but very little wings, move them to a great extent, and thus compensate for the slight resistance which they meet with from the air; the guillemot and the pigeon belong to the second group. If it be admitted that the first-mentioned birds must make energetic but restricted movements, and that the second must move with less energy, but with greater amplitude of stroke, the conclusion arrived at must necessarily be that the first ought to have large and short pectoral muscles, while in the 72 ANIMAL MECHANISM. second, these muscles should be long and slender. This is precisely what takes place ; we can be assured of this, by the Fia. 18.—Skeleton of a flamingo (after Alph. Milne-Edwards) ; the wing is very large, the sternum very short and deep, which indicates the size and the shortness of the pectoral muscles, ORGAN AND FUNCTION. 73 simple inspection of the sternum in different species; for this bone measures, in some degree, the length of the pectoral muscles which are lodged in its lateral cavities. Thus, birds with long wings, havo a wide and short sternum ; the others have one which is long and slender. Fig, 14. Skeleton of a penguin; sternum very long, wing very short. The comparison of homologous muscles in mammals of different kinds is not less instructive under the aspect in which we are now considering them. But one is often em- barrassed in this comparison by the difficulty of recognizing the homology. The discrepancies are sometimes so striking 14 ANIMAL MECHANISM. that anatomists have described under various names the same muscle in different species. Still, in the greater number of cases, the homology is not doubtful; it is implicitly admitted by the fact of an identical designation being applied to certain muscles in different species. These are precisely the muscles which we shall take for an example, to show the harmony which exists between the function and the organ. Fic. 15.—Skeleton of the wing and sternum of the sea-swallew (Hirundo marina)—showing the extreme shortness of the sternum, and the great length of the wing. Thus the femoral biceps is easily recognized in all mam- mals ; and it varies considerably, especially in its lower attach- ment. In certain quadrupeds it is inserted all along the leg, almost to the heel; in these animals the leg is never ex- tended upon the thigh; in animals which have the power of leaping, the lower attachments of the biceps is more elevated ; it is still more so in the simis, which can almost extend the leg upon the thigh and stand upright. In man the biceps ORGAN AND FUNCTION. 5 is inserted high in the perinwum. If one can rely on the anatomical plates of Cuvier and of Laurillart, the negro has the perineal insertion of the biceps not so high as in the white man, thus approximating to its position in the ape. Neglecting at present the question why there should be this variety in the attachment which regulates the motion of the biceps, let us content ourselves with considering the con- sequences which this arrangement may have upon its function. It is clear that during the movement of the flexion and ex- tension of the knee, each portion of the bone describes around this articulation an arc of a circle which is larger as it recedes from the centre of motion. It is equally evident that each of these points will move to a greater or less distance from the femur or the ischium, according to the extent of the circular movement which it-executes. And as great movemeuts should correspond with long contractile fibres, we ought to find inequalities in the length of the biceps in different mammals. This is precisely what is observed. In man, whose biceps has its lower insertion very near the knee, the extent of the movements of the moveable attachments is not very consider- able, so the contractile fibre will have relatively little length, while the tendon will occupy a certain part of the extent of the biceps. In the ape, the inferior attachment of the muscle taking place lower down will consequently have greater mo- bility ; whence the necessity of a greater length of active muscle, which is effected by the tendinous part beirg shorter. In quadrupeds the tendon of the biceps almost entirely dis- appears, and the muscle is formed of red fibre throughout almost all its extent. The rectus internus muscle of the thigh presents the same variability in its attachments and its structure. If we observe its arrangement in man (fig. 16), we see at once that the attachment of this muscle to the leg is very near the knee, and that its tendon is very long. Let us examine the same muscle in an ape (figs. 17 and 18), we find that its tibial attachment is much farther from the knee, and as a conse- quence of the more extended movements which this attachment executes, we find that the muscular fibre gains length at the expense of that of the tendon, which is extremely short. 76 ANIMAL MECHANISM. This variability in the point of attachment is still very noticeable in the semi-tendinosus muscle, which derives its name from the fact that in man, about half of the length Fie. 16.—Muscles of the thigh in man. The sarterivs muscle (above) and the rectus internus (below), are darkly shaded, that they may be more easily recognized. The rectus internus is, at its lower extremity, pro- vided with a long tendon; its fleshy part is short, which is in harmony with the slight extent of movement in this muszle, the attachment of which is very close to the knee. The sartorius muscle is provided with a short tendon at its inferior attachment. of the muscle is occupied by the tendon. In fact, the inferior attachments of the semi-tendinosus in man is very close to the articulation of the knee, but in apes, where it is attached lower down, the muscle has almost entirely lost its tendon ; it is altogether lost in the greater part of other mammals, in the Couita, for example. ORGAN AND FUNCTION. 77 We might multiply indefinitely examples which prove the perfect harmony between the form of the muscles and the characters of their functions. Everywhere the transverse development of these organs is associated with strength, as in the triceps of the kangaroo, or the masseters of the lion: Fic. 17.—Muscle of the thigh in the Magot ; rectus internus muscle almost entirely formed of red fibres ; the attachments of this muscle being at a considerable distance from the knee, give ita great extent of move- ment in bending the leg upon the thigh, Sartorius muscle, having a very short tendon. everywhere also, the length of muscle is connected with the extent of movement, as in the examples which we have just cited. Is this harmony pre-established, or rather is it formed under the influence of function in different creatures? In the same manner as we see the muscles increase in volume by the habit of employing energetic efforts; we also observe them, 78 ANIMAL MECHANISM. under the influence of more extended movements, acquire a greater length ? Can we see a displacement of the tendinous attachments of the muscles to the skeleton, under the influence of changes in the force of muscular traction ? Such is the second problem which we propose to ourselves, and which experiment should be called on to determine. Fic. 18.—Muscles of the thigh of the Coaita Rectus internus, inserted at a distance from the knee, almost entirely without tendon. The sartorius having its superior attachment very far from the coxo-femoral articulation, has very extended movements ; it possesses in consequence a great length of red fibre, und not of tendon. THE DEVELOPMENT THEORY. The natural sciences have derived at the present day a great impulse from the influence of the ideas of Darwin. THE DEVELOPMENT THEORY. 79 Not that the opinions of the illustrious Englishman are yet universally accepted; it has been recently seen with what vehemence the defenders of the prevalent theory reject the development hypothesis. But the appearance of the Darwinian theory has excited long discussions; to the arguments which Lamarck formerly brought forward in favour of the vari- ability of living beings, many others have been added by the partizans of development. On the other side, the old doctrine has been maintained with a passion which was little antici- pated, so that at the present day, naturalists are divided into two camps; almost all who have devoted themselves to the study of zoology or of botany have taken one side or the other. In one of these camps we find that the old school, those who consider the organized world almost unchangeable, have retrenched themselves. According to them, the very numerous series of animals and plants is limited to a certain number of species, unalterable types which have the power of transmit- ting themselves through successive generations, from their origin to the end of time. It is scarcely admitted that the species has the power of departing even slightly, and in a temporary manner, from the primitive type. Those slight changes, which are brought about by variations of climate or of food, by domestication, or some other disturbing force of the same order pass away when the species is again placed under the normal conditions of its existence. The primitive type then re-appears in its original purity. In the other camp the belief is entirely different ; the living being is incessantly modified by the medium which it inhabits, the temperature which it finds there, and the nourishment which it procures. The habits which it is forced to assume in order to live under new conditions cause it to acquire special aptitudes which modify its organism, and change the form of its body. And because hereditary descent transmits to descendants, within certain limits, the modifications acquired by their ancestors, the species is modified by degrees. Lamarck was the author of this theory of development, to which Darwin anc his followers have recalled the attention of naturalists. Darwin adds to these external influences, which can modify the species of animals, another cause which maintains and increases 80 ANIMAL MECHANISM. these modifications continually, when they are advantageous to the species. This cause is natural selection. If the chances of birth have given to certain individuals a slight modification which renders them stronger or more active, as the case may be, but altogether more fitted to main- tain the struggle for existence, these individuals are destined by that very circumstance to reproduce their kind. Not only does their physical superiority increase their chance of longevity, and give them by that means more time to multiply, but, according to Darwin, the very existence of a physical superiority in an animal causes it to be preferred above others, for the purpose of reproduction. Thus the entire species would be improved by successive acquisitions of new qualities every time that an individual happened to be born with better endowments than the other representatives of this species. The struggle between the old school and that of development threatens to endure yet a long time, without either side finding a victorious argument to overcome the other. Every one knows the reasons which have been alleged on both sides, and for which, in their turn, geology, archeology, zoology, and agriculture have been laid under contribution. When and how will the strife end? No one can as yet answer this ques- tion. Yet, if one might venture a prediction as to the issue of the combat, founded on the actual attitude of the adverse parties, one might predict the defeat of the old school. Their ranks are, in fact, thinned every day; they evidently grow discouraged, and seem to avow their inability to furnish proofs of a scientific character, by sheltering themselves under an orthodoxy that has nothing in common with the dispute. One objection might perhaps be brought against both systems—that of keeping too much to generalities in their discussions, and not bringing sufficiently into relief the promi- nent points of the debate. Thus, we must allow that Lamarck is much too vague in his explanations, when he attributes to outward circumstances the changes in the living organism. Between a need which is manifested and the appearance of a form of organ which corresponds to that need, there is a hiatus which his theory has not filled. He tells us that the animal species which we DEVELOPMENT THEORY. Sl now sce, so admirably adapted, each to the kind of life which it leads—provided, according to their necessities, with claws or hoofs, wings or fins, sharp teeth or horny beaks—have not always lived under this form; that they have gradually acquired these diverse conformations, which are at present in perfect harmony with the conditions under which they live. But, when we ask him to show us a modification of this kind in process of accomplishment under an external influence, the author of the “Philosophie Zoologique” has little wherewith to furnish us, except modifications of slight importance; he objects that scientific observation does not go far enough back into the ages of the world. If we open the tombs of Mem- phis and show Lamarck the skeletons of animals identical with those which live in Egypt at the present day, he replies without being disconcerted: ‘‘It is because these animals lived under the same conditions as those which exist at the present time.” The answer is as good as the attack, but ‘proves nothing. We might carry on the discussion for ever ou such grounds as these. Darwin is more precise when he pleads in favour of natural selection, ‘There is no one at the present time who does not admit the enormous power of selection in modifying the type of organized beings. Breeders have produced the most curious transformations in the animal kingdom, by choosing continually for the purpose of reproduction, individuals pos- sessing in a high degree the physical characteristics which they desire to impress on the race. Selection produces in the vegetable kingdom transformations of a similar kind; so that Darwin has, without giving way too much to hypothesis, attributed the principal part in transformation to a selection which is made naturally, for the reasons that have just been given. But Darwin, as well as Lamarck, only considers under a restricted point of view the causes of the transformation of organized beings. Each of the two chiefs of this doctrine gives the greatest prominence to the cause of variation which he first has pointed out. The new school which, by a judicious eclecticism, endea- vours to make a due partition between these two kinds of influences, in order to explain by successive transformations 5 82 ANIMAL MECHANISM. the surprising variety of living beings, has already furnished important arguments in favour of development. But many savants look with suspicion on these studies; they consider that the immutability and variability of animal species belong to the domain of insoluble questions. It is true, that if we ask the partizans of development to prove experimentally the reality of their doctrine; if we require of them, for example, to transform the ass species into the horse or anything analogous to it, they are forced to avow their inability, and they reply that it is necessary, in order to effect this, to exercise modifying influences during millions on millions of years. It must indeed have been by very slow transitions that the variation of species has been effected, if it indeed has taken place. Consequently, in the absence of an experimental solution, the development hypothesis can neither be proved nor refuted. Learned men, whose minds are habituated to rigorous de- monstration, are not interested in such questions; they have no scientific value in their estimation. And yet science meets with-such every day. When an astronomer studies the in- fluences which may cause the heavenly bodies to move more slowly; when he predicts a modification of the orbit of the earth after the lapse.of some millions of years, or a lengthen- ing of the period of rotation of our planet—changes which would affect all the inhabitants of the earth with a mortal chill—this philosopher is listened to. When he speaks of a cause, however slight it may be, of the retardation of a planetary movement, every one understands that if this cause should continue during many ages, its effects will be exag- gerated by the lapse of time. No one tells this astronomer to wait till some millions of years have proved the accuracy of his reasonings. Why should we be more unjust to the theory of develop- ment? It cannot, it is said, bring before our eyes the trans- formation of one animal into another. ‘This is true, but it may show us some tendency to this transformation. However slight it may be, yet accumulating more and more during many ages, it may become as complete a transformation as we can imagine, DEVELOPMENT THEORY. 83 But what we have a right to demand of the advocates of development, even now, is that they should show us this tendency ; that they should bring it before us under the form of a slight variation iu the anatomical characters of individuals when exposed to certain influences, which continued from generation to generation, would in the end produce the most important modifications in the species. No one denies that the morphological characteristics of individuals are transmitted in different degrees to their descendants. The point which is to be demonstrated is the manner in which an external cause acts in order to impress on the organism the primary modification. Researches of this kind belong to experimental physiology, and this science may even now furnish us with some reliable arguments. At the time when Lamarck lived, scientific logic was not very exact in its requirements. In his opinion, a want which was felt, originated the organic conformation suited to satisfy it. A certain bird which was in the habit of seeking its food at the bottom of the water, made constant efforts to lengthen its neck, and its neck grew longer; another bird wished to advance as far as possible into the waters of a pond without wetting its plumage; the efforts which it made to extend its legs gradually gave them the proportions observed in the wading birds (Grallatores). The giraffe, attempting to feed on the foliage of trees, gained by this exercise cervical vertebree of a surprising length. Lamarck, certainly, attributed to hereditary descent the function of accumulating continually for the profit of the species that which each individual had acquired for his own benefit ; but he did not show what the slight acquisition was which was made by the individual himself, under the influence of external circumstances, and of the habits which he was forced to acquire. J. Hunter reasoned in a similar manner in sciences of a different order. When he wished to explain the cicatrization of wounds and the consolidation of fractured bones, he recognized the necessity that new tissue should be supplied by the blood; but why did the blood carry these elements to the parts which needed them? “It was,” said he, “in virtue of the stimulus of necessity.” S4 ANIMAL MECHANISM. We seek at the present day to state with precision the rela- tion between causes and effects, to ascertain the gradual transi- tions which the animal or vegetable organism is able to pass through when it finds itself placed under new conditions. We have a glimpse of the influence which function exercises over the organ itself which produces it. The short and pithy formula of Mons. J. Guérin, ‘‘ Function makes the organ,” ex- presses in a’ general manner the modifying action of function. This formula will acquire additional force when supported by individual examples. It must be shown how the bones, the articulations, the muscles are modified in various ways by the effect of func- tions of different kinds; how the digestive apparatus, yielding to very varying kinds of food, passes through transformations which adapt it to new conditions; how a change effected in the circulatory function produces in the vascular system, cer- tain anatomical modifications which may be predicted before they take place; how the senses acquire new qualities by exercise, or lose by desuetude their former powers. These changes of function under the influence of the function itself are accompanied by anatomical modifications in the apparatus, physiologically modified. The first demonstration to be furnished will be to ascertain one of these transformations, and to show that it is always produced in a certain manner under certain circumstances. And if, in the second phase of the experiment, it can be proved that hereditary descent transmits even the least part of the modification thus acquired, the development theory will be in possession of a solid starting-point. This seems to be the true course, to follow, if we desire to obtain a solution of this important question. During several years serious efforts have been made in this direction. Having been ourselves for a long time conversant with the problems of animal mechanism, we have often been induced to reflect on the reciprocal relations of the organs of locomotion and of their functions. We will therefore attempt to show how the skeleton and the ‘muscular apparatus harmonize with the movements of each animal under the ordinary conditions of its existence, CLAP THR JX. VARIABILITY OF THE SKELETON. Reasons which have caused the skeleton to be considered the least variable part of the organism—Proofs of the yielding nature of the skeleton during life under the influence of the slightest pressure, when long con- tinued—Origin of the depressions and projections which are observed in the skeleton —Origin of the articular surfaces—Function rules the organ. Awy one who examines the skeleton of an animal, and holds in his hands its osseous portions as hard as a stone; who knows how these bones have survived the destruction of all the other organs, and how they can remain, after the lapse of thousands of ages, the only vestiges of extinct animals, may naturally look upon the skeleton as the unchangeable part of the organism. This skeleton, he argues, is the framework of the body, and the soft parts are grouped around it as best they may, reposing in its cavities, spreading over its surfaces, but always obey- ing a law stronger than their own, and arranging themselves in the spaces which have been allotted to them among the dif- ferent portions of the bony structure. The observer, however little he may be acquainted with anatomy, soon perceives on the surface of the bone a thousand curious details; he sees there numerous small hollows, little abodes which seem to have been destined to receive or to shelter some organ that has disappeared. These hollows correspond with the origin of the muscles which adhered at these points to the excavated bones. Elsewhere there are deep rounded grooves which remind one of the channels found in the curbstones of ancient wells. A cord has also passed in that direction ; it was the tendon of a muscle which incessantly glided along that bone. But at the two extremities of this humerus the bone is polished as if by friction; in the upper part it is rounded like a sphere, and it is lodged in a cavity of the shoulder-blade which it exactly fits. One would say that the movement of these 86 ANIMAL MECHANISM. bones had worn the surfaces smooth; the humerus continually changing its position, and turning upon its axis, seems to imitate the action we employ when we wish to obtain by means of friction a body of a spherical form. It is thus, for instance, that opticians produce the forms and the polished surfaces of convex and concave lenses. At its lower end the shoulder-bone shows the trace of the same phenomenon, a small spherical projection articulating it with the radius; it shows also that there existed movements of two kinds, and close by, we meet with a surface cut like the groove of a pulley; this, in fact, only contributed to the flexion and extension of the fore-arm. If we examine the skull we meet with fresh surprises; here every want is foreseen. Deep cavities lodge in their interior the brain and the organs of sense. The nerves have conduits which allow them to pass through ; each vessel creeps along a furrow which forms a canal for it, and is ramified with the minute arteries whose rich foliation it delicately traces out. If the bone were not so hard, one would really suppose that it had been subjected to external force, of which it bears, as it were, the impression. But it is in vain to press a bony sur- face ; it resists absolutely the force which is applied to it. It is necessary to use a saw or a gouge if we wish to make a channel in it. How could the pressure of soft parts hollow out these cavities which are sometimes so deep ? The foresight of nature has prepared everything in the skeleton so that it may be disposed in the best possible manner to receive the organs to which it offers its solid and invari- able support. Such is the natural argument of all those who have not seen, with their own eyes, these osseous changes take place, and these channels hollowed out. ‘The anatomist as well as the zoologist have necessarily reasoned in this manner. They have considered the skeleton as the unalterable element of the organisin, and therefore they have derived from it the greater part of the specific characters in zoology. It must be very difficult to oppose an opinion which has been for a long time received. ‘Thus, when Mons. Charles Martin, carrying out and rectifying the ideas of Vic. d’ Azir, VARIABILITY OF THE SKELETON. 87 has shown that the humerus of a man or of an animal is the homologue of the femur, but of a femur twisted on its axis, so that the knee turned behind becomes an elbow, zoologists have replied that this torsion was purely virtual. Instead of being the effect of a muscular effort, whose slow and gradual action has reversed the axis of the bone, this singular form is, in their opinion, the result of a pre-established arrange- ment of the organism; for the embryo shows a contorted humerus, before muscular action has been sufficiently developed to produce such a modification of its skeleton. We might, with greater show of reason, argue in a directly opposite manner. No one denies at the present day that the bony system is perfectly yielding in its character. These organs, which are so compact and so hard in the dead skeleton, are, on the con- trary, essentially capable of being modified while the organism is living. If we exert upon a bone a pressure or a tension, however slight it might be, yet if prolonged for a considerable time, it can produce the strangest changes of form; the bone is like soft wax which yields to all external forces; and we may say of the skeleton, reversing the proposition to which we have just alluded, that it is completely under the influence of the other organs, and that its form is that which the soft parts with which it is surrounded permit it to assume. We are indebted to medicine and surgery for the knowledge of important facts, of which many examples could easily be given. Thus, when an aneurism of the aorta is developed, and it happens to meet in its course the sternum or the clavicle, it does not stop at this barrier of bone, but perforates it in a few months. The substance of the bone is absorbed and disappears under the pressure of the aneurism; it certainly resists less the effort of the invading tumour than do the softer parts—the skin, for example. But this pressure of the aneurism differs in no respect from that of the arterial blood; the force with which the aneurismal sac compresses and perforates the bones, is present in every part where an artery touches a bone. The same ab- sorption of the bony material still goes on, so that the artery hollows out for itself a furrow in which it lodges with its dif- 88 ANIMAL MECHANISM. ferent branches, an example of which is seen in the internal surface of the parietal bones of the humanskull. Even a vein is able to form a considerable hollow in a bone. The ab- normal dilatation of those veins which are called varicose, and which is usually produced in the legs, is accompanied with a change of form in the anterior surface of the tibia; the bone wears the impress of the dilated veins. We cannot say that these osseous furrows enter into the pre-established plan of nature; that the skeleton had originally these furrows in order to provide for the swollen state which should hereafter be produced. Surgeons know that these hollows are formed in the bone of an adult, which was in a perfectly normal state before accident had caused the varicose dilatation of the veins. It is a similar mechanism which forms along the bones the furrows imprinted by the muscles, and which gives to the perineum, for instance, the prismatic form by which it is characterized. The hollows in which the tendons are lodged are not formed beforehand in the skeleton; it is the presence of the tendon which has hollowed them out, and which still maintains them. Should a luxation take place and change the position of the bone with respect to the tendon, the former furrow which is now empty is gradually effaced; at the same time a new furrow is formed, and by degrees assumes the necessary depth to allow the tendon to repose in its fresh place. But, it may be said, that the articular surfaces, so perfect in their structure, so well adapted to the movements which they carry on, are certainly organs formed beforehand. Here the bony surfaces are clothed with a polished cartilage moistened with a synovial fluid which facilitates their move- ment still more; all around them, fibrous ligaments prevent the bones from passing the limits allotted to them, and the surfaces from separating from each other. So perfect an ap- paratus could not be formed by the function alone. We have here at least a proof of the foresight of nature and of the wisdom of her plans. Let us turn once more to surgery, which will show us that after dislocations, the old articular cavities will be obliterated and disappear, while at the new point where the head of the VARIABILITY, OF THE SKELETON. 89 bone is actually placed, afresh articulation is formed, to which nothing will be wanting in the course of a few months, neither articular cartilages, synovial fluid, nor the ligaments which retain the bones in their place. Here again, according to the expression which we used just now, function has produced the organ. So much for the furrows formed in the bone. But how can we attribute to external influences those decided promi- nences which we observe everywhere on the surface of the skeleton, those apophyses, as they are called, to which each muscle is attached. The answer is not less easy; it is sufficient to account for the formation of projections on the face of the bone, if we call into play an influence contrary to that which we know to be capable of hollowing out the indentations. We must admit that traction has been exercised on the portion of the bone where the projection is observed. The existence of traction on all the points in the skeleton to which muscles are attached is absolutely evident; it is clear that the intensity of these tractions is proportional to the force of the muscles which produce them. ‘Thus, it is precisely in the tendinous attachments of the stronger muscles that we find the more projecting apophyses; a proof that the prominences in the bone are intimately connected with the intensity of the effort acting upon them. ‘Theright arm, more frequently used than the left, acquires more decided projections on its bony structure. When paralysis of a limb suppresses the action of the muscles, its skeleton is no longer under the influence of muscular power, and the apophyses become less prominent ; in fact, if paralysis dates from birth, the bone remains nearly in its foetal form, which function has not supervened to modify. Comparative anatomy also confirms this general law that the longer the apophysis is, the greater energy it reveals on the part of the muscle which was inserted into it. Mons. Durand de Gros has clearly shown the influences of muscular function on the form of the torsion of the humerus in different species of fossil and recent animals. Thus the humerus in the mole, the ant-eater, and several other burrow- 90 ANIMAL MECHANISM. ing animals is scarcely recognizable, so thickly is it studded with ridges and projections, each of which gave insertion to a powerful muscle. The skull and the lower jaw in the carnivora bear the traces of a powerful muscular action. In the skull a deep hollow retains the impression of enormous temporal muscles ; all around the temporal depression, decided ridges were the solid points of attachment of the muscle; again, a strong and long apophysis by the side of the lower jaw shows the violent tractile force to which it has been subjected in the efforts of mastication. If the effects of muscular actions on the bones augment with the intensity of the force of the muscles, they do not vary less in proportion to the duration of their action. From infancy to old age, the modification of the skeleton goes on more and more, and even allows us, to a certain degree, to determine the age of the subject. Mons. J. Guérin has shown that in the old man the verte- bree have longer apophyses, the ribs more angular curves, &c. Compare the cranium of a young gorilla with that of an adult animal; the form will appear to you so different that unless you had been told that the two skulls belonged to animals of the same species, you would scarcely have believed it. Of a rounded form in the young gorilla, it changes its shape in the adult; it assumes a kind of ridge like the crest of a helmet ; this is the apophysis into which the temporal muscles are inserted. We should never finish if we were to point out all the modifications to which the skeleton is subjected in different species of animals; modifications which from the beginning to the end of life become more and more marked. Medicine, in its turn, furnishes us with curious information as to these questions, by showing us the sudden development of accidental apophyses which are called ewostoses. In certain maladies which attack the entire body, we see the skeleton covered, in a great number of points, with accidental osseous projections; and almost all these prominences are developed at the points of attachment of the muscles, and as they increase, they extend especially in the direction in which muscular traction is applied. VARIABILITY OF THE SKELETON. 9] The curvature of the bones, or their contortion on their axis, is a phenomenon which is frequently observed. I have mentioned that Mons. Ch. Martin has demonstrated that in all the mammalia, the humerus is a contorted femur, whose axis has made half a turn upon itself; this contortion, accord- ing tc Gegenbaiier, is less in the foetus than in the infant, and becomes still more marked in process of age. It is therefore partly effected by causes which are in action during life; and if it be true that every foetus brings into the world a contorted humerus, it is not less true that this form may be ecnsidered as the effect of muscular action accumulated from generation to generation in terrestrial mammals. Articular surfaces are particularly interesting to study when we wish to ascertain the influence of function over the organs. If we admit that the friction of these surfaces has polished them, and given them their curvature, it is easy, when we consider the movement which takes place in each articulation, to foresee the form which these surfaces ought to possess. The surfaces whose curvature has the greater number of degrees, will correspond with the more extensive movements. Moderate movements, on the contrary, will only produce sur- faces whose curvature will correspond with an are of but few degrees. As a necessary consequence, the radius of curvature in the articular surfaces will be very short, if the move- ments are very extended ; it will be very long if the movement is moderate. Let us examine, from this point of view, the articulations of the foot in man; we see in the tibio-tarsal articulation a curvature of small radius, on account of the considerable move- ment of the foot on the leg. In the tarsus the radius of the curvature increases in proportion as the mobility of the bones diminishes. The scaphoid shows articutar surfaces of a great radius; the radius increases still more in the tarso-metatarsal articulations, in which the movements are very limited; then it diminishes again in the articulations of the metatarsals with the phalanges, and of the phalanges with each otber, at which point there is great mobility. Kveryone knows that if the articular movement is only effected in one direction, the surfaces will curve only in that 92 ANIMAL MECHANISM. direction ; such are the trochlear surfaces, of which the articu- lation of the elbow, the condyles of the jaw, &c., are examples. But if the movement is executed in two directions at once, the surfaces will present a double curvature, and in the case of an inequality in the amplitude of the movements, the radii of these curvatures will be unequal. Thus, in the wrist there exist movements of flexion and extension which are consider- ably extensive, but the lateral movements are restricted. The result of this is that in the elliptical head formed by the carpal bone, there is a curvature of small radius in the direc- tion of the movements of flexion and extension, while, in the lateral direction, the curvature belongs to a cirele of much greater radius. It is still more interesting to observe the articular surfaces of a series of animals in different classes and species. Similar articulations present movements of very different kinds, which must bring about no less important differences in the articular surfaces. Let us take, for example, the head of the humerus, and fullow the changes of its form, in man, in the ape, the earni- vora, the herbivora, the birds. We shall see that the perfect equality of movement in every direction which can be exe- cuted by the human arm corresponds with a perfect sphericity to the head of the humerus—that is to say, a curvature of the same radius in every direction. Among apes, those which in walking throw a part of their weight usually on their anterior limbs, have the head of the humerus flattened at the upper part, as if by the weight of the body. Besides this, the movements which are required in walking being more ex- tended, the curvature of the head of the humerus in these animals presents its least radius in the antero-posterior direction. This modification is more marked still in the carnivora, and above all in the herbivora, the head of whose humerus, flat- tened above, presents its short radius of curvature in the direction of the movements which serve for walking, and which predominate in this articulation. Birds possess, in the articulation of the shoulder, two movements of unequal extent. One, by which they spread and fold their wings, and which carries the elbow sometimes VARIABILITY OF THE SKELETON. 93 near to the body, and sometimes very forward; the other, usually more restricted, is made in a direction perpendicular to the former; it is that which constitutes the stroke of the wing. Curvatures of different radii correspond, therefore, to these two movements of unequal amplitude; to the greater move- ment of stretching and folding the wing a curvature of short radius corresponds; to the less extensive movement which raises and lowers the wing during flight, there is a corre- sponding curved surface of very long radius. The result of this is that the head of the humerus in birds assumes the form of a very elongated ellipse, at the level of the articular surface. But the movements of flight present in different species great variations of amplitude. Birds which have sail-like wings give but very small strokes with them, while the pigeon, at the moment when it takes flight, strikes its wings one against the other above and below, producing a clapping noise, which is familiar to every one. To these variations in the extent of the movements corre- spond varieties of surface in the head of the humerus, which in birds with sail-like wings has a very elongated elliptical surface; but in the pigeon it tends to the circular form, and very nearly attains it in the spheniscus, an aquatic bird found in southern seas, and closely resembling the penguin. From all this we may gather, that in the form of the bony structure, everything bears the trace of some external influ- ence, and particularly of the function of the muscles. There is not a single depression or projection in the skeleton, the cause of which cannot be found in an external force, which has acted on the bony matter, either to indent it, or draw it forward. It was not, therefore, a metaphorical exag- geration to say, that the bone is subject, like soft wax, to all the changes of form which external forces tend to impress upon it; and that, notwithstanding its extreme hardness, it resists less than the most supple tissues the efforts which tend to change its form. And will this new form, acquired by means of function, disappear with the individual? Will he not transmit even D4 ANIMAL MECHANISM. the slightest trace to his descendants? Will hereditary descent make an unique exception with respect to these ac- quired characters? ‘This appears very improbable, and yet we must admit it, if we negative the development theory. We «must bring forward a contrary hypothesis, which would reverse the ordinary laws of hereditary descent, if we refuse to certain anatomical characters the power of becoming trans- missible. VARIABILITY OF THE MUSCULAR SYSTEM. We have stated that the bony system is subject to external influences, and especially to those of the muscles, which im- press on each bone the form which we observe in it. The great variety of forms in the skeletons of different animal species corresponds, therefore, with the diversity of their muscular systems. Thus, whenever in animals of different species we find resembiances in certain bones, we may affirm that the muscles which were attached to these bones were also similar. Whenever we observe in an animal, on the contrary, a bone of a peculiar form, we may feel assured of a peculiarity in the muscles which were attached to it. But if the muscle and the bone vary simultaneously, what can be the cause which influences them both? It is under- stood that the skeleton, as it is modified, plays a passive part; that it is subject to the form imposed upon it by the muscle. But what gives to the muscle itself, an organ eminently active, and the true generator of the mechanical force by which the skeleton is in some degree modified, the particular form which is revealed to us by anatomy ? We hope to demonstrate that the power to which the mus- cular system is subjected belongs to the nervous system. ‘The nature of the acts which the will commands the muscles to perform, modifies the muscles themselves, in their volume and their form, so as to render them capable of performing these acts in the best possible manner. And, as this necessity which determines all the actions of animal life, governs the will, it is this, which, according to the external conditions under which every living being is placed, influences its form, VARIABILITY OF THE MUSCULAR SYSTEM. 95 and regulates it according to the laws which we must now endeavour to make known. Nothing in the organic form is under the dominion of chance. ‘The specific varieties of living beings have been too often compared to the fancies of an architect, who, while adhering to an uniform plan, invents a thousand varieties of details, as a musician composes a series of variations on a given theme. In our present inquiry we may say that the great variety which is found in the muscular apparatus, whether in the different parts of the body of an animal, or in the homologous parts of animals of different species; for instance, varieties in the volume or the length of muscles; the very unequal partition of the red contractile fibre, and the inert, white, glistening fibre of the tendon ; that all this is entirely subject to the dynamic laws of muscular function. Adaptation of the form of muscles to the requirements of function. Normal anatomy can only furnish us with examples of the harmony which exists between the form of the organs and their habitual function, Experiment alone can show us that, by changing the function, we may bring into the form of the organs modifications which may harmonize them with the new conditions which may be imposed upon them. It will be easy to make experiments for this purpose. From the moment when we know in what direction the modification ought to be produced, in order to adapt the organ to the function, the changes effected in animals placed by us under conditions of peculiar muscular function, will derive an im- . portant significance. But while we wait for the realization of this vast series of experiments, there are some which we can employ even now. Experiments made ready to our hand are furnished by pathological anatomy. Medicine and surgery are full of information on this in- teresting subject. ‘They show us, for example, that it is movement itself which keeps up the existence of the muscle. A long repose of this organ brings about first the diminution of its volume, and soon a change in the elements which com- pose it. Fatty corpuscles are substituted for the striated fibre which form its normal element; at last, these corpuscles, 96 ANIMAL MECHANISM. becoming more and more abundant, invade the entire sub- stance of the muscle. This phase of alteration, or futty dege- neration, is followed by an absorption of the substance of the muscle, which disappears entirely at the end of a certain time. Thus, not only does the volume of the organ increase or diminish according as the necessities of its habitual function require a greater or less force, but it wholly disappears when its function is entirely suppressed. This effect is observed in paralysis, where all nervous action is destroyed; in certain cases of dislocation, which bring closer together the two inser- tions of a muscle, so as to render its action useless ; sometimes even in fracture and anchyloses, which, by an abnormal con- nection, render the two extremities of a muscle immovable, and prevent any contraction of its fibres. But what will happen, if the muscle, instead of losing all its function, only experiences a change with respect to the extent of the movements which it can execute? After certain incomplete anchyloses, or certain dislocations, we see tlie articulations lose more or less of their movements; as tlie muscles which command flexion and extension only need, in such cases, a part of the ordinary extent of their contraction. If the theory just enunciated be correct, these muscles ought to lose a portion of their length. In order to verify this fact, we have only to make a short excursion into the domain of pathological anatomy. A warm discussion arose, some twenty years ago, as to the transformation which the muscles underwent in those patients who were afflicted with the deformity commonly known by the name of club foot. Sometimes the foot is twisted upon the leg, so that the surface which should be uppermost is next the ground; sometimes the foot is so forcibly extended that the patient walks continually on its extremity. In all these cases the muscles of the leg have only a very limited play ; they undergo, therefore, either fatty or fibrous transformation. Among these muscles, those which have no longer any action undergo fatty degeneration, and then disappear; while those whose action is partly preserved, present only a change as to the proportion of red fibre and tendon. In the latter case VARIABILITY OF THE MUSCULAR SYSTEM. o7 the contractile substance diminishes in length, and is re- placed by tendon, which often assumes a considerable develcp- ment. J. Guerin, when pointing out the fibrous degeneration of the muscles, thought that he saw in it the proof of a primi- tive muscular retraction, which would ultimately have pro-. duced dislocation of the foot. This eminent surgeon also thought that the alteration of the fibre was the only lesion of the muscles in club-foot. Scarpa maintained, on the contrary, that in the greater number of cases the luxation of the foot was the original phenomenon. As to the nature of muscular change, all surgeons at present agree in admitting that it may have two different forms, and that sometimes the muscle undergoes fatty degeneration, and in other cases it is transformed into fibrous tissue. We are especially indebted to the beautiful works of Cuvier, for our knowledge of the conditions under which each of those changes in the muscular substance is produced. An example will illustrate how the muscles are affected according as their function is suppressed, or simply limited in extent. The muscles of the calf of the leg, or gastrocnemians, are two in number; their attachments and their functions are very different. Both are inserted below in the caleaneum, by the tendon of Achilles, and are, consequently, extensors of the foot on the leg. But their superior insertions are different ; the soleus, having its insertion exclusively in the bones of the leg, has no other office than that of extending the foot, as we have said before. The twin gastrocnemii, on the contrary, being inserted in the femur, above the condyles of that bone, have a second function, that of bending the leg upon the thigh. Let us suppose that anchylosis of the foot has been pro- duced; it entirely suppresses the function of the soleus, which passes through the fatty degeneration, and disappears. ‘The two gastrocnemii are in a different condition; if their action on the foot has ceased, there still remains their function of bending the leg on the thigh; these muscles have, therefore, only one of their movements reduced in amplitude. Con- 98 ANIMAL MECHANISM. sequently, under such conditions, the twin muscles lose only a part of the length of their fibres; they undergo what sur- geons call partial fibrous transformation, a modification which is only a change of proportion between the red fibre and the tendon. Those who are accustomed to regard pathology as a com- plete infraction of physical laws, will perhaps be astonished to see us search among these cases of dislocation and anchy- losis for the proofs of a law which regulates the form of the muscular system in its normal state. It would be easy to show that these scruples have no foundation; but it will be better still to bring forward other examples which may not lie open to the objections so often urged against the applications of medicine to physiology. It is again from J. Guerin, that we must quote the facts of which we are about to speak. When we examine the muscular system at different periods of life, we find that it varies greatly in its aspects. It seems that the muscles have distinct ages, and that, formed at first of contractile substance, they lose by degrees, as they grow older, their red fibres, which are replaced by the white and glistening fibres of the tendon. Thus, the diaphragm of a child is principally muscular, while in the old man the aponeurotic centre, the true tendon of the diaphragm, is extended at the expense of the contrac- tile fibre. The substitution of tendon for muscular fibre is still more marked in the muscles of the leg in infancy; they are relatively much more rich in contractile substance than during adult age. In the old man, in fact, the tendon seems to invade the muscle, so that the portion of the calf of the leg which remains is placed very high, and is very reduced in length. The muscks of the lumbar and dorsal regions present the same character; in old age they are poorer in red fibre, but richer in tendon. What then, is the change which takes place in the muscular function during the different periods of life? Every one knows that, except in the very rare cases in which the man keeps up the habit of gymnastic exercises, the muscular function be- comes mcre and more restricted—at least, as far as the extent VARIABILITY OF THE MUSCULAR SYSTEM. SIS, of movement isconcerned. The articulations of the limbs, and those of the vertebral column, undergo normally a sort of incomplete anchylosis, whish continues to lessen more and more the flexibility of the’ trunk. Look at a young child tossing about at his ease: one of his movements is to play with his foot; to take it in his hands and carry it to his mouth appears to him very natural, and as easy as possible. In the adult, the muscular force attains its maximum; but the movements are not so extensive as in infancy; man has no longer, as is well known, the same flexibility in his limbs. The old man can neither stoop readily nor completely draw himself up; his vertebral column has iost its supple- ness; he takes only short steps; to sit down on the ground, with the knees raised, is to him extremely difficult; and if we examine the extent of flexién and extension in his foot, we find that it has become very limited. The function of the muscles, therefore, changes with the different periods of life, and becoming more and more restricted, employs continually less contractile fibre. It is thus that the muscular modification of which we have been speaking is naturally explicable. This modification, which consists in the increase of the tendinous element at the expense of red fibre, may be prevented by keeping up the extent of muscular movements, by means of suitable exercise. Let us now return to comparative anatomy. Since it shows us perfect harmony between the form of the muscles in different species of animals and the characters of muscular function in the same species, the most natural conclusion seems to be that the organ has been subjected to the influence of function. If the race-horse is modified in its form by the special exer- cise which is called training, is it not an evident proof of the influence of function on the anatomical characters of the organism? And if a species, thus modified artificially, returns to the primitive type when replaced under the con- ditions from which it had been taken, is it not the counter- proof of the theory which assigns to function the office of a modifier of the organ ? 100 ANIMAL MECHANISM. These very fucts are, however, interpreted in an opposite sense by the partisans of the invariability of species; they seem to find an unanswerable argument in support of their cause, in the return to the primitive type, when the modifying influences have ceased. To what conclusion can we come when we meet with these contrary opinions? It must be that the partisans of develop- ment have not completed their task, and that they ought to add new proofs to those which they have already given. It is to experiment that the principal part belongs, while theory is not without its importance; by causing us to foresee in what manner a certain kind of function ought to modify a muscle, it will give its proper value to the modification which may subsequently be obtained. Indeed, without theory, the ex- perimenter can seldom recognize the modification which he has observed. We seldom “find in anatomy anything but that which we seek for, especially when we have to do with slight variations like those which we might hope to produce in the organism of an animal. The experiments to be tried are tedious and troublesome ; their plan, however, is easy to trace. If man, adapting to his necessities the domestic animals, has already succeeded in modifying their organization within certain limits, he has produced these changes, as we may say, fortuitously. Only intending, for example, to obtain draught horses or racers, it was not necessary to place the species under conditions entirely artificial. This must, however, be done, if we aim at elucidating the problem of which we speak, and of carrying to the farthest possible limit, changes in the conditions of the mechanical work of animals. Man has utilized the aptitudes of different animals, rather than sought to give them new ones. It would be necessary to do violence to the habits of animals, and to constrain them gradually to perform acts to which their organism is but slightly adapted. If, in order to get its food, a species with an organization unsuitable for leaping, should be com- pelled to take leaps of gradually greater height, everything leads us to suppose that it would acquire at length great VARIABILITY OF THE MUSCULAR SYSTEM. 101 facilities for leaping. If the descendants of these animals retained any of the power of their ancestors, they might per- haps, in their turn, develop still more this faculty of leaping. Graduating thus the effort imposed on this particular species, no longer in a utilitarian point of view, which there would be no inducement to surpass, but requiring indefinitely more force or greater extent in the play of the muscles, we might hope that the anatomical development would increase indefi- nitely, and that we might obtain something analogous to that which is now called the passage of one species into another. What we have said of the muscular function applies to all the rest. By modifying in a gradual manner the conditions of the food of animals, as well as those of light and dark- ness, temperature, and atmospheric pressure under which they may be made to live, we may impress upon their organism modifications analogous to those which zoologists have already observed under the influence of climate, and of the various atmospheric conditions and different altitudes in which animals have been placed by nature. These changes, brought about by well-managed transitions always tending to the same end, would have a chance of producing considerable transformations in animal organization, provided that, by persevering determi- nation, these efforts were indefinitely accumulated; as in the case of breeders of animals, who use similar means for the production of selected kinds of stock. We will proceed no farther in the field of hypothesis, but we will, in conclusion, make an appeal to zealous experimen- talists. Many who have been convinced of the great import- ance of this enquiry seem already to be engaged in this enterprise. What question, in fact, can more nearly concern the human race than this: Can our species be modified ? According to the tendency which may be given to it, can it be directed either towards perfection, or degradation ? BOOK THE SECOND. FUNCTIONS: TERRESTRIAL LOCOMOTION. CHAPTER I. OF LOCOMOTION IN GENERAL. Conditions common to all kinds of locomotion—Borelli’s ecomparison— Hypothesis of the reaction of the ground—Classification of the modes of locomotion, according to the nature of the point of resistance, in terrestrial, aquatic, and aérial locomotion—Of the partition of muscular force between the point of resistance and the mass of the body—Pyo- duction of useless work when the point of resistance is movable. Tue most striking manifestation of movement in the dif- ferent species of animals is assuredly lccomotion: the act by which each living creature, according to its adaptation to out- ward circumstances, moves on the earth, in the water, or through the air. Therefore it is more convenient to study movement with regard to locomotion, for we can thus observe it under the most varied types. At the commencement of these studies we ought to consider the general characteristics of the function which is’ to occupy attention, and to point out the general laws which are to be found in all the modes of animal locomotion. But what can be more difficult than to ascertain the common features which unite acts so different as those of flying and of creeping, as the gallop of a horse and the swimming of a fish? Still this has been frequently attempted. Borelli has endeavoured to represent the various modes of terrestrial locomotion, by the different methods which a boatman employs to direct his boat. This comparison may, with some additional developments, serve to explain the mechanism of the principal types of loco- motion, LOCOMOTION IN GENERAL, 103 Let us suppose a man seated in a boat in the midst of a tranquil lake. Under these conditions, his skiff will remain perfectly motionless. If he wishes to advance, he must find what is called a point of resistance. Suppose him to be fur- nished with a pole, he will plunge it towards the bottom of the water till it reaches the ground; then, making an effort, as if to drive from him this resisting body, he will cause his boat to move in the opposite direction. This progression with the point of resistance on the ground is similar to the ordinary conditions of terrestrial locomotion. If the boatman be provided with a boat-hook, he will get his point of resistance under different conditions. Laying hold of the branches of trees, or the projections of the shore, he will drag his pole towards himself, as if to bring near to him the bodies to which it is fastened; and if these bodies resist his efforts, the boat alone will be displaced and drawn towards them. Here are then two opposite modes of progression with bearings on solid bodies; in one the tendency is to repel, in the other, to draw them nearer: the effect is the same in each case. But if the lake be too deep, or if the shores be too distant to furnish the boatman with the solid fulerum which he had used before, the water itself will serve as a medium of resistance. ‘The boatman, armed witha flattened oar, endea- vours to drive the water towards the stern of his boat; the water will yield to this impulse, but the boat, impelled in an opposite direction, will go forward. The various kinds of paddles for steam-boats, the screw, in fact, all nautical pro- pellers, present this feature in common, of driving the water backward, in order to produce in the boat an impulse in the ccntrary direction, and to cause it to advance. Instead of an oar acting on the water, we may suppose the boatman provided with a much larger paddle with which he might drive back the air at the stern; he will propel his boat on the surface of the lake. He might make progress also by turning a large screw like the sails of a wind- mill, or by agitating at the stern some large fan which would drive the air in the direction opposed to that in which he desired to force his boat. 104 ANIMAL MECHANISM. In all these modes of locomotion a force is expended which impels in opposite directions two bodies more or less resisting ; the one is the fulcrum, the other the weight to be displaced. Old writers called the force acting on the boat re-action— they considered it as an effort emanating from the soil, the water, or any resistance whatever to which the effort of the rowers was applied. We can now understand clearly that all the motive force is derived from the boatman. This force can lave as its result, either the repulsion of two points to which it is applied, or their approach to each other. In these two cases one of the points may be fixed, it is then the other which will be displaced; or the two points may be movable, and then, according to their unequal movability, one of them will be displaced more than the other. This gereral principle can be applied to all cases of loco- motion; it will be sufficient for us to notice that which is essential in all the types which we shall consider. The most natural classification seems to be that which is based on the nature of the point of resistance ; accordingly, we may distinguish three principal forms of locomotion—terres- trial, aquatic, or aérial. But in each of these forms, what a variety of mechanism we shall meet with! If it be true that walking and creeping are the two principal types of terrestrial motion, that swimming corre- sponds with the more habitual mode of aquatic locomotion, and fl'ght with aérial locomotion, it is not less true that in certain media many kinds of locomotion are employed. Thus, walking and creeping are used both on the earth and in the water; flight is habitually performed in the air, and yet certain birds take a decided flight in the water. In fact, if we were compelled to assign to every animal its particular type of locomotion, our embarrassment would be as great as if we were classifying these movements. Some, indeed, move with an equal facility on the earth, the water, and in the air. We will not therefore attempt a strictly methodical classification of the different modes of locomotion of which we are about to take a rapid survey. Terrestrial locomotion furnishes two principal types: in one the effort consists in pressing on the ground in the direction LOCOMOTION IN GENERAL. 105 opposite to the intended movement; this is the more usual mode of locomotion; walking, runuing, leaping, belong to this first form. Vor this purpose the limbs serving for locomotion are composed of a series of rigil levers, susceptible of change in length; they can be shortened by the angular flexion of the far auilatipus: and they grow lounger. by being drawn up. If the leg when Lent touches the und at its extremity, and if a muscular effort be made to produce the extension of the limb, this can only be effected Ly removing to a greater dis- tance from each other the ground on which the extremity of the leg rests and the body of the animal which is united to the base of this limb; the ground offers resistance, and the body, yielding to the impulse, is displaced. Sometimes the displacement in terrestrial locomotion is effected, not by a change in length, but by a simple change of the angle formed between the limb which causes the motion and the body of the animal. In the second type, namely erecping, a tractile effort is pro- duced ; the animal lays hold by a part of its body on an ex- ternal fixed point, and then drags the mass of its bulk towards this point. Let us take a snail, and place it on a piece of transparent glass; at the end of a few moments the animal begins to crawl. If we turn the glass over, we shull see throneh the plate the details of its movements. Throughout all the length of its body appears a series of transverse bands, alternately pale and deeply coloured, opaque and transparent. These bands are transmitted by a continual motion, from the tail to the head of the animal; they seem like the spirals of a screw which turns incessantly in the same direction. It we fix our attention on one of these bands in the neighbourhood of the tail, we see it pass towards the head, which it reaches in fifteen or twenty seconds, but it is followed by a continued series of bands which seem to spring up behind it as it advances. ‘These bands remind us of the muscu- lar wave and its progress through a contracting fibre, only with greater dimensions. IJich time that a wave arrives at the cephalic region of the animal, it disappears, producing a forward motion of the head, which slips a little on the surface of the glass and advances slightly without any retrogression. 6 106 ANIMAL MECHANISM. It appears that the cephalic region lays hold on the fixed point towards which all the rest of the body is dragged for- ward. In fact, in the posterior region an opposite phenome- non takes place; each new band which takes its rise there, is accompanied by a backward motion of that region, which moves as if it were drawn by a longitudinal retraction of the con- tractile tissue. Other modes of creeping are not less curious; that, for example, which takes place in the interior of a solid body ; as a worm, when it advances in the tubular cavity which it has hollowed out in the ground. ‘The hinder part of the body, soft and extensible, is assuredly of much less size than the cavity of the hole from which we endeavour to pull it, and yet the worm resists the force of traction, and breaks rather than be drawn out. ‘This is because, within the ground, the anterior portion of the body, shortened but swollen, dilates within the passage, and finds there a solid point of resistance. If we let the worm go we shall see it rapidly shorten its body, and withdraw the rest of it into the ground, being dragged backward towards the anterior portion which has a firm hold on the soil. By the side of the action of creeping we may naturally place that of climbing, in which the anterior limbs seek to liy hold of some elevated projection, and as they bend raise the rest of the body of the animal. ‘The hinder part then fixes itself in its new position, and the anterior limbs, thus set free, seek, higher up, a fresh resting place to make a new effort. What different types in these two modes of terrestrial locomo- tion! ‘The varieties are so great that we can scarcely give an exact idea of them, except by describing the mode of pro- gression adopted by each particular animal. Locomotion in water presents a still greater diversity. In one case, we see a fish which strikes the water with the flat of its tail; in another, a cuttle fish or a medusa, which, com- pressing forcibly its pouch full of liquid, drives out the water in one direction and propels itself in a course directly opposite ; the same phenomenon is produced when a mollusk closes rapidly the valves of its shell, and projects itself in the direction opposed to the current of water which it has produced. ‘The larvee of LOCOMOTION IN GENERAL. 107 dragon-flies expel from their intestines avery strong jet of liquid, aud acquire, by this means, a rapid and forcible impulse. The oar is found in many insects which move on the sur- face of the water. A contrivance is employed by other animals, which resembles the action of an oar used at the stern of a boat in the process called scewling. ‘To this latter motive power may be referred all those movements in which an inclined plane is displaced in the liquid, and finds in the resistance of the water, which it presses obliquely, two component forces, of which one furnishes a movement of propulsion. ‘This mechanism will require some explanation; it will be found in its proper place, with all the developments which it affords. Aérial locomotion. This mechanism is still the same; the motion of an inclined plane, which causes motion through the air. The wing, in fact, in the insect as well as in the bird, strikes the air in an oblique manner, repels it in a certain direction, and gives the body a motion directly oppo- site. With the exception of certain birds which spread their wings to the wind, and which, hovering thus without any other cffort than simply stecring, have received the picturesque name of hovering or sailing birds (oiseaux voiliers), all animals move forward only by an cflurt exerted between two masses unequally movable. It can be easily understood that if one of these points where the force is applied is absolutely fixed, the other alone will receive without diminution the motive work developed ; such is the condition of terrestrial locomotion on soil perfectly solid. But we can understand also that the softuess of the ground constitutes a condition un- favourable to the utilization of the force employed, and that the extreme mobility both of the air and the water offer still less favourable conditions for swimming or flight. But this mobility of the point of resistance varies with the rapidity of the movement; so that a certain stroke of the wing or the oar, which would be without effect if produced slowly, would become efficacious by its very rapidity. In different kinds of locomotion, the resistance which it is necessary to overcome in order to displace the body, does uot vary less than that which serves as an cxternal point of 108 ANIMAL MECHANISM. resistance. This variability depends on many causes. Thus, different kinds of animals, when they move, have not to struggle with the same effort against their weight. ‘The fish, which is of nearly the same specific gravity as water, finds itself suspended in it without having to exert any force; aud if it wishes to move in any direction, it has only to overcome the resistance of the fluid which it is necessary to displace. The bird, on the contrary, if it desires to sus- tain itself in the air, must make an effort capable of neutralizing the action of its weight. If it moves forward at the same time, it must perform, in addition, the work which is consumed in overcoming the resistance of the air. Partition of muscular force between the points of resistance and the muss of the body. When, in physivlogy, we seek to es- timate the work of a muscle, we fix it firmly by oue of its attachinents, and we ascertain the extent passed through by its movable extremity. If we know the weight which this muscle can raise as it contracts, and the extent through which that weight is raised, we have elements by which we can estimate the work effected. But these are almost ideal conditions, which are scarcely ever found in terrestrial loco- motion; nor can we observe them in animals which move in the water, and more especially in those which fly through the air. Let us only compare the effort necessary to walk on a movable soil, on sandy dunes, for instance, with that required in walking on firm soil, We shall see that the mobility of the resisting surface presented by the sand destroys a part of the effort necessary for the contraction of our muscles; in other words, that a greater effort is necessary to produce the same useful work, when the point of resistance is not stable. This amount of work is easy to be understood, and even to be measured. When a man, while walking, places one of his feet on the ground, the corresponding leg, slightly bent, draws itself up, and pressing on the ground below, gives at the same time an upward impulse to the body. If the ground entirely resist this pressure, all the movement produced will be in the direction of the trunk of the body, which will be raised to a certain height, three centimetres for example. But if LOCOMOTION IN GENERAL. 109 the ground sink two centimetres under the pressure of the foot, it is evident that the body will only be raised one centimetre, and the useful work will be diminished by two- thirds. The compression of the soil under the foot certainly con- stitutes work, according to the mechanical definition of this word. In fact, the soil, as it yields, offers a certain resist- ance. This resistance must be multiplied by the extent to which the soil is indented, in order to ascertain the value of the work accomplished in this direction. But this woik is absolutely useless with respect to locomotion: it is an entire loss of the motive force expended. When a fish strikes the water with his tail, in order to drive himself forward, he executes a double work; a part tends to drive behind him a certain mass of fluid with a certain velocity, and the other to drive the animal forward in spite of the resistance of the surrounding water. ‘his last work alone is utilized; it would be much more considerable if the tail of the animal met with a solid point of resistance instead of the water which flies from before it. Is it possible to measure the diminution of useful work in locomotion, according to the greater or less mobility of the point of resistance ? If the ground on which we walk resist perfectly, it must be admitted that no part of the muscular work is lost; but in every case in which a displacement of the resisting surface exists at the same time as that of the body, it is necessary to determine the law according to which this partition is made. A principle established by Newton regulates the science of mechanics; this is that ‘action and re-action are equal.” Does this mean, in the case before us, that half of the work is expended on the resisting surface, and the other half on the displacement of the body of the animal? ‘This cannot be true, if we may judge by the many cases in which a force acts on two bodies at the same time. Thus, in the science of projectiles, the motive force of the powder—that is to say, the pressure of the gases which are disengaged in the cannon, acts at the same time on the pro- jectile and on the piece, giving these masses a velocity in 110 ANIMAL MECITANISM. opposite directions. Thus, the momentum (M.V.) is equally divided Letween the two projectiles, so that the mass of the caunon and of its carriage, multipliel by the velocity of the recoil which is communicated to it, is equal to the mass of the projectile multiplied by the velocity of propulsion which it recvives. As the cannon weighs much more than the ball, the velocity of its recoil is much less than that communi- cated to the projectile. As to the work develope: by the powder against the cannon and against the ball, it is Bustos very unequally between these two masses. In fact, the work produced by an active force being pro- portional to the square of the velocity of the mass in motion (its formula is %*), calculation shows that this work, when the piece weighs 300 times more than the ball, would be 300 times greater for the ball than for the cannon. We shall return to these questions, when in considering the particular kinds of animal motion, we enter on the investiga- tion of liuman locomotion. CHAPTER II. TERRESTRIAL LOCOMOTION (BIPEDS). Choice of certain types in order to study terrestrial locomotion — Human locomotion— Walking — Pressure exerted on the ground, its duration and intensity—Re-actions on the body during walking—Graphic method of studying them—Vertical oscillations of the body— Horizoutal oscillatiuns—Attempt to represent the trajectory of the pubis—Forward movement of the body —Ineqnalities of its velocity during the time occupied by a pace. ACT OF WALKING IN MAN, Tue types of terrestrial locomotion are so various that we must, for a time at least, confine ourselves to the study of the most important among them. Tor locomotion among: bipeds we will tuke as a type that of man. The horse will be chosen TERRESTRIAL MOTION (MAN). TH as the most important reprexentative of the method of walking adopted by quadrupeds. As to other animals, they will be studied in an accessory manner, and especially with reference to the resemblances and differences which the modes of their locomotion present when compared with the types which we have chosen. Many authors have already treated on this sulject; from the time of Borelli to that of modern plisiologists, science has slowly advanced: it seems to us that it can now resolve all obscure questions, and determine them definitely, by the employment of the graphic method. While observation employed alone furnishes only incom- plete and sometimes false data, the graphic method carries its precision into the analysis of the very complex movements concerned in locomotion. We shall sce, when we treat of the paces of the horse, that the disagreement we find among writers on this subject shows clearly the insufficiency of the methods hitherto employed. Ifuman locomotion, though much more simple in its mechan- isin, is still very difficult to analyse; the works of the two Webers, though considered as the deepest investigation of human locomotion that have yet been made, show many omissions an some errors. The most simple and usual pace is walking, which, according to the received definition, consists in that mode of locomotion in which the body never quits the ground. In running and leaping, on the contrary, we shall see that the body is en- tirely raised above the ground, and remains suspended during a certain time, In walking, the weight of the body passes alternately from one leg to the other, and as each of these limbs places itself in turn before the other, the body is thus continually carried forward. ‘This action appears very simple at first sight, but its complexity is soon observed when we seek to ascertain what are the movements which concur in producing this motion. We see, in fact, that each movement of the limbs brings under consideration a phase of impact and one of support in euch of these; the different articulations bend and extend 112 ANIMAL MECHANISM. alternately, while the muscles of the leg and the thigh, which produce these movements, pass through alternations of con- traction and relaxation. The intensity of the pressure of the feet on the ground varies with the rapidity of walking and with the length of the step. Besides this, the body passes through periodical oscil- lations, the re-action of the impact of each foot on the ground; and the different parts of the body are subject to this re-action in various degrees. ‘These oscillations are produced in diffe- rent directions; some are vertical, others horizontal, so that the trajectory which follows any point of a body is a very complex curve. In addition to this, the body is inclined and drawn up again at each movement of one of tle legs; it revolves as on a pivot round the coxo-femoral articulation, at the same time that it is slightly bent following the axis of the vertebral column; and, under the action of the lumbar muscles, the pelvis moves and oscillates with a sort of rolling motion. At the same time the anterior limbs, exerting an alternate halancing power, Jessen the influences which, at each instant, tend to cause the budy to deviate from the straight cvurse which it strives to maintain. All these acts have been analysed with much sagacity by oue of our pupils, Mons..G. Carlet,* from wlum we quote some of the results which he has obtained. The motive force developed in walking, its pressure on the ground in one direction, and its propelling effects on the mass of the body on the other land, are the three elements which will at first occupy our attention. Motive force. ‘This is found in the action of the exterior muscles of the thigh, the leg, and the foot. The lower limb forms, as a whole, a broken column, whose angles are rounded off, and whose return to the perpendicular is effected by pres- sure on the ground below, and on the body above. This is all that we can say on this head, which, if treated more at length, would require considerable amplifications. Pressure on the ground. ‘This pressure, equal, as we have hefore scen, to that in the opposite direction, which tends to impel the body forward, must be studied in its duration, its * G. Carlet, Etude de la Marche. Annales des Sciences naturelles, 1872. WALKING. L138 phases, und its intensity. The registering apparatus enables us to do this perfectly ; an experimental instrument placed under the sole of the foot is connected with a lever which gives the signals of the impact and of the rising of the foot, as well as tie expression of the force with which the foot is pressed upon the ground. We call this first instrument the e perimental shoe, which may be thus described :— Under the sole of an ordinary shoe is fixed with heated gutta percha a strong sole of india- rubber 1} centimetres in Alene. Within this sole there is an air chamber, which in fig. 19 is represented by dotted lines. Fic. 19.—Experimental shoe, intended to show the pressure of the foot on the ground, with its duration and its phases. This chamber, having upon it a small piece of projecting wood, is compressed at the moment that the foot exerts its pressure on the ground. The air expelled from this cavity escapes by a tube into a drum with a lever attached, which registers the duration and the phases of the pressure of the foot. Let us suppose that the experimenter is provided on both feet with similar shoes, and that he walks at a regular pace round a table which supports the registering apparatus; we shall then understand the arrangement of the experiment. The registering instruments employed are already known to the reader; they resemble in all poimts those which have 114 ANIMAL MECHANISM. — served for the investigation of the muscular wave (fig. 7, page 37). Ifwe substitute in this figure an experimental shoe for each of the myographical clips 1 and 2, we shall have the arrangement of the apparatus necessary for the study of fuotsteps or impacts of the foot on the ground. Fig. 20 has been furnished by an experiment in walking. Two tracings are given by the intermittent pressure of the feet on the ground. The full line D corresponds with the right foot; the dotted line with the left. lic. 20.—Tracings of the impact and the rise of the two feet in our ordinary walk. Knowing the arrangement of the apparatus, we can under- stand that each impact of the foot on the ground will be represented by the elevated part of the corresponding curve. In fact, the pressure of the foot on the ground compresses the india-rubber sole and diminishes the capacity of the included air-chamber, A part of the contained air escapes by the con- uecting tube, and passes into the registering drum, We see in fig. 20 that the pressure of the right foot, for instance, Commences at the moment when that of the left begins to decrease; and that in all the tracings there is an uliernation between the impacts of the two feet. The period of support of each foot is shown by a horizontal line which joins the minima of two successive curves. The impacts of the right and left feet liave the same dura- t-on, so that the weight of the body passes alternately from one foot to the other. It would not be the same with respect to a lame person; lameness corresponds essentially with the inequality of the impacts of the two feet. There is always a very short period during which the body iS partially supported by one foot, but when it already be- rea is to rest on the other; this time is scarcely equal to the WALKING. 115 sixth pert cf the duration of a single tpact or pressure of the foot. Litensity of the pressure of the foot upon the ground.—The curves traced by walking may also furnish the measure of the effort exerted by the foot upon the ground. The eaperimental shoes constitute a kind of dynameter of pressure; they com- press the drum, less or more, according to the effort they exert ; and consequently they transmit to the registering lever more or less extensive movements. In order to estimate, according to the elevation of the curve, the pressure exerted by the foot, we must substitute for the weight of the body a certain number of kilogrammes. We see thus that, if the weight of the body (75 kilograimmes, for example) is sufficient to raise the lever to the height which it attains at the com- mencement of euch curve, an additional weight will be required to raise it to the maximum elevation which it attains towards the end of its period of pressure. That proves that, in walking, the pressure of the foot on the ground is not only equal to the weight of the body which the foot has te sustain, but that a greater effort is produced at a given moment in order to give tle body the movements of elevation and progression which we have just been studying. According to Mons. Carlet, this additional effort is not more than 20 kilogrammes, even in rapid walking, but it is much greater In running and leaping. Teactions.—We shall designate by this name the movements which the action of the leg produces on the mass of the body. These movements are very complex; they are effected at tle same time in every direction, and give to the trajectory which a point of the body describes in space, some very com- plicated sinuosities. ‘The graphic method alone can enable us, at least as yet, to appreciate the real nature of these movements. In the first place, what point of the body shall we choose in order to observe the displacement caused by the act of walking? Almost all authors have taken for this purpose the cenire of gravity, the point which Borelli places iter nates et pubim. But if we reflect that the centre of gravity changes as soon as the body nioves, that in the flexion of the legs this 116 ANIMAL MECHANISM. centre rises, that it is altered if we raise our arms, that, in fact, it describes within the interior of the body all sorts of movements, as soon as we cease to be motionless, it is easy to understand that it will be impossible to refer to this ideal and movable point, the reactionary movements produced by the pressure of the feet upon the ground. It will be better to choose a determinate part of the truuk of the body, the pubis, for example, in order to study its movements in the act of walking. Fic. 21.—Transmission of an oscillatory movement tothe registering apparatus. g S Up The instrament which we have already employed will be applicable to the study of these displacements. Let there he two lever drums, united by a long tube T TT. Let a vertical oscillary movement be given to one of these levers, so as, for example, to carry the lever L downwards into the position indicated by the dotted line, the cther lever will be displaced in the opposite direction, and wiil assume the position also shown by the dotted line near it. Under these conditions the lowering of one lever corresponds with the ele- vation of the other, since the compression of the air in one of the drums must lead to its expansion in the other. If we wish to obtain from the two parts of the apparatus indications in the same direction, it would be necessary to turn one of the drums, so as to place its lever downwards. Vertical oscillations of the body —Let us suppose that one of these levers traces a curve on the registering apparatus, while the other rests, by its point, on the pubis of a man who is WALKING. by walking; all the vertical oscillations of the pubis will be registered. But, in order that the experimental lever may receive and transmit faithfully the vertical oscillations which the pubis executes during the act of walking, the drum itself must be protected from these oscillations. For this purpose an instru- ment has been invented, composed of two horizontal arms, which turn on a centre. These arms can move only in a hori- zontal plane, situated at the height of the pubis of the person under experiment; to one of these arms is fixed the experi- mental lever drum. Fic. 22.—The upper curves, one in full line. the other do'ted, represent the phases of the impact and of the rise of the right and left foot. Reading the figure from left to right, each rise of the curve denotes the commence- ment of pressure: the upper horizontal part corresponds with the dura- tion of the pressure, and the descent with the rise of the foot. The lower horizontal part cf the curve indicates that the corresponding foot is intheair. © Pv. Oscillations of the pubis from above downwards, that is. vertically, O Ph. Oscillations in a lateral direction, or hori- zontally. It is evident that two oscillations in the vertical direction correspond with a single horizontal oscillation. The person who walks, follows during this time a circular path, pushing before him the arm of the instrument, to which is fixed the apparatus which is to experiment on the vertical vscillations of the pubis. We get thus the tracing repre- 118 ANIMAL MECIIANISM. sented by the line O Po (fig. 22). It is seen that the pubis rises at the middle of the pressure exerted by each foot, and sinks at the instant when the weight of the body passes from one foot to the other. The real amplitude of these oscillations is about 14 milli- metres, according to Mons. Carlet. This movement, however, varies with the length of the step; it increases with it, but this increase does not depend on the maxima of the curve being more elevated, but on its minima being lower. We may explain these phenomena very easily. When the body is about to quit the support of one leg, this limb is in an inclined position, and the result of its obliquity is that its superior extremity which sustains the trunk is at a Jess height. The other leg, which reaches the ground at this instant, is slightly bent; it will soon draw itself up, and thus raise the body which is supported by it; but in this movement, the leg describes the are of a circle around the foot resting on the ground; therefore, in the series of successive positions which it occupies, the body rises more and more as the leg which supports it approaches the vertical position; it sinks again as the leg becomes oblique. We can easily perceive that the length of the step lowers the trunk, by increasing the obliquity of the legs. Indeed, the constant character found in the maxima of the vertical oscillations is explained by this fact, that the leg, when ex- tended and vertical, constitutes necessarily a constant height —that which answers to the maximum of the elevation of the body. Horizontal oscillations of the body.—The pubis, since that is the point whose displacement we are now studying, is carried alternately from left to right, and from right to left, at the same time as it moves vertically. In order to register these movements, we make use of a lever-drum arranged in such a manner that the membrane is forced inwards and outwards alternately by the lateral movements which are given to the lever. During this time the registering lever, connected with it by means of the tube, oscillates vertically, in which direc- tion alone tracings can be made on the cylinder. If, in the curve which is traced, the elevation corresponds with a trans- WALKING. 119 ference of the pubis towards the right, the depression will express a deviation of this point towards the left. The experiment gives the curve O Ph (fig. 22) for the tracing of the horizontal oscillations. It is first to be ob- served that the number of these oscillations is only half that of those which take place in the vertical direction ; so that the body is carried towards the right side at the moment of the maximum of elevation, which corresponds with the middle of the pressure on the right foot, and towards the left at the middle of the pressure on the left foot. This lateral sway- ing of the trunk is the consequence of the alternate passage of the body into a position sensibly vertical over each foot. If we would give un idea of the true trajectory of the pubis under the influence of these two orders of oscillations com- bined with forward movement, we must coustruct a solid figure. With an iron wire bent in different directions, we inay illustrate very clearly this trajectory. Fig. 23 is intended to reyresent the perspective view of this twisted iron wire ; but we can scarcely expect the reader to comprehend clearly this mode of representation. Fic. 23.—Attempt to illustrate, by means of a metallic wire, the sinuous trajectory passed through by the pubis. To understand the sketch of this selid f gure, we must suppo e the wire to be close to the observer atits left hand extremity, while it is removed from him at the right ex- tremity. The amplitude of the oscillations has been greatly exaggerated to render them more intelligible. In short, according to the formula of Mons. Carlet, the trajectory of the pubis may be inscribed in a hollow half- cylinder, with its concave portion upwards, at the base of 120 ANIMAL MECHANISM. which lie the minima, and on the sides of which, the maxima terminate tangentially. Forward progress of the body.—lIt is clear that during the act of walking, the body never ceases to advance; but the forward movement has not always the same velocity. To appreciate these alternate phases of acceleration and retarda- tion, it is necessary to employ a method which would give the measurement of tle space passed through during each of the Fic. 24.—Showing two snecessive positions of the arm of the instrument and the ¢ rresponding positions of the tracing points of the levers rhe arm of th lever being three metres in length, and the radius of the cylinder being only six centimetres, a similar angular displacement of the person walking, and of the style which writes, will correspond with paces Which will be to each otter as 50 tol movements in the act of walking, and which would also express the time employed in passing through each of these spaces. In order to obtain this double indication, we have recourse to the following method :— It is necessary, first, to ascertain how far the body advances at the different instants of the act of walking. This measure of the spaces passed through, is obtained by inseribing the curves of locomotion, no longer on a cylinder turning with a revular motion, but on an immovable one, on which the WALKING. TOW registering levers are displaced by a quantity proportionate to the space passed through. For this purpose the cylinder is placed on the axis round which the instrument turns, and on the central end of one of these revolving arms the registering instruments are fixed. The ratio of the radius of the cylinder to that of the circle described by the person walking, allows us to estimate in the tracings the length of the space passed through at each instant. This ratio was 50 to 1 in our experiments. Thus, in the tracing obtained, if from one point to another we reckon an interval of a centimetre, this corresponds with 50 centimetres passed over on the ground by the person walking. ‘This first notion would be but slightly interesting in itself, since it would teach us nothing more than what we learn concerning the intervals between two positions of the feet, as measured on the ground. The impressions left by our steps on soft ground would furnish in a very simple’ manner this measurement. But if, in addition to this kuow- ledge of the space traversed, the tracing gives us the intima- tion of the time passed in traversing it, we are provided with a method of estimating the rapidity of the advance of the body at every instant. Fie. 25.—D. Tracing of the impact and rise of the right foot, furnished hy a lever subjected at the same time to 10 vibrations per second. It is seen that the vibrations occuny more space at the end of the pressure of the foot; this expresses the greatest rapidity of the advance of the body at this moment. ‘he same accelerition is observed at the end of the period of support of the right foot; this is explained by the action of the left foot, which is, at th sm ment, at the end of its pressure. Fig. 25 shows (line D) the tracings of the impact and rise of a limb, and those of the vibrations of a chronograph inscribed simultaneously. To obtain these tracings, we cause to converge at the same time, on the same lever-drum, two transmitting tubes, one of which conveys the variations of 12? ~~ ANIMAL MECHANISM. gre pressure to which the experimental shoe is sul,jected (fig. 19), and the other, ten vibrations per second furnished by a chrouo- phic tuning-fork of large size. Fic. 26 A large tunine-fork whose vibrations are reduced by masses of lead to 10 per second acts on the registering lever drum, by an experi mental drum atta hed to on f its branches Chis also receives at the same time, by a tube with two branche th and rising of the foot of the influence both of the impact person who walks Fig. 20 shows how these instruments are arranged. It. 36 seen that the drum will be affected by the double influence WALKING. 123 of the changes in the pressure of the foot on the ground, and of the vibrations of the tuning-fork ; and this produces in a single tracing the interference of two movements, giving at the same time the notion of the spice traversed, and that of the time employed in passing over it. In order to analyse this tracing, let us consider only, in the first place, tle sinuous curve which obeys at the same time the tuning-fork, and tle experimental shoe on the right foot ; and in this curve let us only examine the elevated part—that which cvrresponds with the pressure of the foot wpon the ground. We see that, during the duration of this pressure, the style las passed through a space on the cylinder measuring about 2 centimetres ; therefore, as the displacement of the style is fifty times less than that of the persou walking, he will have advanced about one metre during the pressure of one foot. But while he traversed this metre, he did not advance with an uniform velocity; in fact, during the first half of this distance, the tuning fork made about four vibrations, whilst in the second, it has scarcely made two andahalf. ‘Thus the foot which presses the ground with a force increasing from the commencement to the end of its impact, gives tle body an impulse whose velocity equally increases. During the rise of the foot, the line traced by the tuning- fork indicates also that the body of the person walking progresses with an accelerated motion. That is easily under- stood if we remember that, in walking, the rise of one foot corresponds exactly with the tread of the other. It is, there- fore, the impact of the left foot on the ground which gives the body of the walking person an accelerated motion, which is observed during the rise of the right foot. This method appears to us applicable to all cases in which it is necessary to measure the relative durations of different phases of movement. The inequality in the speed of the man who walks brings with it an important consequence. When a man drags a load, the effort which he makes cannot be constant; at each feot-fall a reduubled energy is produced in the traction that is developed, and as this increase of effort has but a very short duration, a series of shocks, as we may call them, occurs at 124 ANIMAL MECHANISM. each instant. But we know that these shocks are very un- fuvourable to the full utilization of mechanical force; we have explained (page 49) the inconvenience which would arise from them in the work of living motive agents, and the manner in which these shocks are lessened by the elasticity of muscular fibre. Under the conditions in which a man dragging a load is placed, if he is attached by a rigid strap to the mass which he has to draw, the shocks of which we have spoken will be produced, and he will feel their reaction on his shoulders. In order to avoid these painful jerks, and to utilize more fully the effort which he makes, we have placed between the car- riage and the traction strap an intermediate elastic portion, the effect of which has answered our expectations. We are endeavouring to construct analogous contrivances, which may be adapted to the traces of ordinary carriages, so as to lessen the violence of the pressure on the collar, and to utilize more fully the strength of the horse. CHAPTER III. TIE DIFFERENT MODES OF PROGRESSION USED BY MAN. Description of the apparatus for the purpose of studying the various modes of progression used by man—Portable registering apparatus —Experi- mental apparatus for vertical reactions —Walking—Running —Gallop —— Leaping on two feet and hopping on one—Notation of these various methods— Definition of a pace in any of these kinds of locomotion —Syuthetic reproduction of the various modes of progression. Tue principal modes of progression employed by animals, are walking, which we have already described at some length us fur as it relates to man, running at different rates of speed, the gallop, and leaping on one or two feet. The act of walking varies according to the nature or the slope of the ground; we sliuall have to treat of these different influences. In this new study it is no longer possible to employ the MODES OF PROGRESSION USED BY MAN. 2 apparatus which we have used in our previous researches, The cireular and horizontal track on which the experimenter was obliged to walk must be exchanged for surfaces of every kind and of every slope. If the new instruments to which we must have recourse leave the experimenter more liberty in his movements, they are, on the other hand, relatively less complete as to the indi- cations which they furnish; therefore, we can only require from them two kinds of indications ; those of the pressures of the feet on the ground, and those of the vertical re-actions which are communicated to the body by these pressures. Vig. 27 shows a runner furnished with apparatus of the new construction. He wears the experimental shoes which we have already described, and holds in his hand a portable registering instrument, on which are traced the curves produced by the pressure of his feet. As the cylinder of this instru- ment turns uniformly, the curves will be registered in propor- tion to the time, and not to the space traversed during each of the acts by which this curve is traced. In order to facilitate the experiment, and to allow the apparatus to assume a uniform motion before it traces on the paper, we have recourse to a special expedient. The points of the tracing levers do not touch the cylinder; but in order to bring them in contact with the paper, an india-rubber ball must be compressed. As soon as this compression ceases, thie points retreat from the cylinder, and the tracing is no longer produced. In fig. 27 the runner holds this ball in his left liand, and compresses it with his thumb. In addition to this, the runner, in order to obtain the tracings of the vertical re-actions, carries on his head an instrument whose arrangement is represented in fig. 28. It is an experimental lever-drum fixed on a piece of wood, which is fastened with moulding wax on the head of the ex- perimenter, as seen in fig. 27. The drum is provided with a piece of lead placed at the extremity of its lever; this mass acts by its tertia. While the body oscillates vertically, the mass of lead resists these movements, and causes the membrane of the drum to sink when the body rises, and to rise when the body descends. ANIMAL MECHANISM. 126 1 Hi] i ‘= : Fic, 27.—Runner provided with the apparatus intended to register his different paces, MODES OF PROGRESSION USED BY MAN. 127 From these alternate actions a current of air results, which, transmitted by a tube to a registering lever, shows by a curve the oscillatory movements of the body. Fic. 28.—Instrument to register the vertical re-actions during the various p:ces. We will not enter into the details of the experiments which have served to verify the exactitude of the tracings thus obtained ; they consisted in adjusting the weight of the dise of lead and the elasticity of the membrane of the drum, until the movements given to the apparatus are faithfully represented in the tracing. We will eall step-curves each of the curves formed by the pressure of a foot upon the ground, and we will designate by the name of ascending or descending oscillations, the curve of the vertical re-actions on the body. 1. Of walking. —We have already pointed out the distine- {ive character of walking considered as one of the modes of progression in man. We have said that the body, in walking, never leaves the ground, and that the footsteps follow each other without any interval, so that the weight of the body passes alternately from one foot to the other. But this definition cannot apply to walking on an inclined surface, on yielding soil, or upstairs. Being obliged to pass rapidly over these peculiar conditions of walking, we will only give the tracing which corresponds with the act of mounting a staircase (fig. 29). It is to be remarked that the step-curves encroach on each other, showing that each foot is still pressing on the ground, when the other has already planted itself on the next step. Besides this, it is at the time of this double pressure that the lower foot exerts its maximum force; it is at this moment, in fact, that the work is produced which raises the body to the whole height of a step. — ras) es ANIMAL MECIIANISM. Nothing like this is observed in the descent of a staircase ; the step-curves cease to encroach on each other, and succeed each other very nearly as in ordinary walking on level ground. Fie. 29 —Tracing produced by walking upstairs. TD. tracing of the pressure und vise of the right foot (full line. G. tracing of the left foot (dotted line) It is seen that the curves produced by the feet encroach one on the o'ber, and that the maxima of the pressures of the feet correspond with the end of the pressures. 2. Of running.—This mode of progression, more rapid than walking, consists, like it, in alternate treads of the two feet, whose step-curves follow each other at equal intervals ; the body but it presents this difference, that in running, leaves the ground for an instant at each step. Accordingly, as running is more or less rapid, different names are given to it; those of the gymnastic march aud the trot present no utility in a physiological point of view; they correspond, with but slight variations, to running at various degrees of speed. To ascertain the principal characters of this mode of progression, it is only necessary to analyse fir. 30. Fic. 30.—Tracing produced by runn’n¢y (in man). D. (curve formed by a full line), impact and rise of right foot. G. (dotted line) action of the left foot. O. oscillations and vertical re actions of the b dy. The pressures of the feet are more energetic than in walking; in fact, they not only sustain the weight of the MODES OF PROGRESSION USED BY MAN. 129 body, but impel it with a certain speed both upwards and forwards. It is known that to give a mass a rising motion, a greater effort must be exerted than would be sufficient simply to sustain it. The duration of the pressures on the ground is less than in walking; this brevity is proportional to the energy with which the feet tread on the ground. These two elements, force and brevity of pressure, increase generally with the speed at which a person runs. The frequency of the foot- falls increases also with the speed of the runner; but among the various kinds of runniye, there are some in which the extent of space passed over in a given time depends rather on the extent of each pace than on their number. The essential character of running is, as we have said, the time of suspension during which the body remains in the air between two foot-falls. Fig. 30 clearly shows the suspension, by the interval which separates the descent of the curves of the right foot from the ascent of the curves of the left foot, and vice versd. The duration of this time of suspension seems to vary but little in an absolute manner; but if we compare it with the speed of a runner, we see that the relative time occupied by this suspension increases with the speed of the course, for the duration of each tread diminishes in proportion to this speed. How is this suspension of the body at each impulse of the feet produced? We might think, on first consideration, that it is the effect of a kind of leap, in which the body is pro- jected upwards in so violent a manner by the impulse of the feet, that it would describe in the air a curve, in the midst of which it would attain its maximum elevation from the ground. In order to convince ourselves that such is not the case, let us make use of the apparatus which registers the re-actions or vertical oscillations of the body. In fig. 30 is seen (upper line O) the tracing of oscillations inrunning. This trace shows us that the body executes each of its vertical elevations during the downward pressure of the foot, so that it begins to rise as soon as the foot touches the ground; it attains its maximum elevation at the middle of the pressure of this foot, and begins to descend again, in order to 7 130 ANIMAL MECITANISM. reach its minimum, at the moment when one foot has just risen, and before the other has reached the ground. This relation of the vertical oscillatious to the pressure of the feet shows plainly that the time of suspension does not depend on the fact that the body, projected into the air, has left the ground, but that the legs huve withdrawn from the ground by the effect of their flexion; and this takes place at the very moment when the bedy was at its greatest elevation. We shall have again to recur to these phenomena when we come to speak of tlhe paces of the horse, in which a similar suspension of the body exists, and which are called on that account elevated paces. The influence of the different inclinations of the ground acts in nearly the same manner in ruuning as in walking, _ with this difference, that in running, their effects are generally greater. 3. Of the gallop.—In the modes of progression described hitherto, the movement of the limbs is regularly alternate, so that the succession of steps is made at equal intervals. These are the normal J:inds of human locomotion; but man can imitate, to a certain extent, by the movements of his feet, those periodically irregular cadences which are produced by a horse when he gallops Children, in their amusemeuts, often imitate this mode of locomotion, when they play at horses. This abnormal kind of motion is of no interest, except to explain the mechanism of the gallop in-quadrnpeds. By registering together the step-cnrves and the re-actions, it is seen (fig. 31) that the foot placed behind is the first which reaches the ground; that it exerts an energetic and prolonged pressure, towards the end of which the foot in front touches the ground in its turn, but during a shorter time ; after which there is a considerable period of suspension. Thus, there is a moment when the two feet are in the air. In this mode of progression, the re-actions are similar in character, in some respects, to the pressures. In fxef, a long re-action (line O) is produced, in which we recognise the interference of two vertical oscillations, the second of which commences before the first has finished. After this re-action there is observed a lowering of the curve, whose minimum MODES OF PROGRESSION USED BY MAN. 131 corresponds with the moment when the two feet are in the air. Fic. 31.—Man galloping with the right foot first. Step-curves and re- actions. There is an encroachment of one curve over the other, and then asuspension of the body. The curve O, which corresponds with the re-actions, snows the effect of the two successive impulses exerted on the body by the feet. 4. Of leaping.—Although leaping is not a sustained mode of progression in human locomotion, we will say a few words about it, in order to complete the series of the movements which man is able to execute. The two feet being joined together, we can make a series of leaps, and advance thus, by imitating the mode of locomo- tion of some birds, or of certain quadrupeds, as the kangaroo. Fic. 22.—Leap on two feet at once, D and G. The line R, the curve of re- actions, shows that the maximum of elevations corresponds with the middle ot the pressure of the feet. The apparatus intended to illustrate the vertical oscillations ot the body, being placed on the head of the experimenter, 132 ANIMAL MECHANISM. we get three tracings at once ; those of the pressures of the two feet, and that of the re-actions; these furnish fig. 32 We see here that the maxima of the curve of re-actions (line R) coincide with the pressures. Thus, by their united energy, the two legs raise the body, and then let it fall again at the moment when they bend and prepare to act afresh. Hopping on one foot gives the tracings (fig. 33) which only consist in the pressure and rise of a single foot. The elevations of the body coincide with the step-curves In fact, when the speed of the leap is lessened, it is prolonged more especially at the period of the pressure of the foot on the ground, that of suspension remaining very nearly constant. Fic. 33.—D, series of hops on the right foot. The duration of the time of suspension remains evidently constant, even when that of the pressure of the foot varies, In certain species of animals, successive leaps constitute the ordinary mode of locomotion; it will be interesting to study by the graphic method the various paces of these animals. NOTATION OF RHYTHM IN DIFFERENT MODES OF PROGRESSION. Among the characters of various modes of progression, it is the rhythm of the impact of the feet which is the most striking. The strokes of the feet upon the ground give rise to sounds, the order of whose succession is sufficient for a per- son with an ear accustomed to them to recognise the kind of pace which originates them. We will, therefore, endeavour to establish the classification of the various paces by attending to this order of succession. In order to give the figure of each of these rhythms, we shall employ the musical notation, modified so as to furnish at the MODES OF PROGRESSION USED BY MAN. 133 same time the notion of the duration of each pressure, that of the foot to which this pressure belongs, and also the length of time during which the body is suspended. ‘This notation of rhythms is constructed in a very simple manner from the tracings furnished by the apparatus. Fic. 34. Let us return (fig. 34) to the curve which corresponds with the act of running in man. Below this figure let us draw two horizontal lines—1 and 2; these will form the staff on which will be written this simple music, consisting only of two notes, which we shall call right foot, left foot. From the commencement of the ascending part of one step-curve be- longing to the right foot, let us let fall upon the staff a per- pendicular (a); this line will determine the commencement of the pressure of the right foot. A perpendicular (4) let fall from the end of the curve will determine where the pressure of this foot ends. Between these two points, let us trace a broad white line; it will express, by its length, the duration of the pressure of the right foot. A similar construction made on the step-curve (No. 1) will give the notation of the pressure of the left foot. The nota- tions of the left foot lave been shaded with oblique lines to avoid all confusion. Between the pressure of the two feet there is found to be silence in the rhythm; that is to say, the expression of that instant of the course when the body is suspended above the ground. 134 ANIMAL MECHANISM. If we note in this manner the rhythms of all the paces used by man, we shall obtain a synoptical table which will much facilitate the comparison of these varied rhythms. Fig. 25 represents the synoptical notation of the four kinds of progres- sion, or paces, which are regularly rhythinical, and in which the two feet act alternately. Line 1 represents the notation of the rhythm of the walking pace, ‘This is the principle of the representation. The pressure of the right foot on the ground is represented by a thick white stroke, a sort of rectangle, the length of which corresponds with the duration of that pressure. For the left foot there is a greyish rectangle shaded with oblique lines. ‘These alternations of grey and white express, by their suc- cession, that in walking the pressure of ove foot succeeds the other without allowing any interval between the two. Fic. 35.—Synoptical notation of the four kinds of progression used by man. Line 2 is the notation which corresponds with the ascent of w staircase. It is seen, agreeably with what has been already explained (fig. 29), that the step-curves encroach on each other, and that, consequently, the body during an instant rests on both feet at once. Line 3 corresponds with the rhythm of running. After a shorter step-curve of the right fuot than in the walking pace, an interval is reen which corresponds with the suspension of the body ; then a short impulse of the left fuot, followed by a fresh suspension, and so on continually. Line 4 answers to a more rapid rate of running. We find in it a shorter duration of the pressures, a longer time of the MODES OF PROGRESSION USED BY MAN, le Ce or suspension of the body, and a more rapid succession of the various movements Fic. 36.—Notations of the gallop. 1. Left gallop. 2. Right gallop. Fig. 36 is the notation of the gallop of children, a mode of progression in which both the feet do not move in the same manuer. In this figure, line 1 represents the left gallop—that is, with the left foot alwavs forward. It is seen that the right foot presses on the ground first; then the left falls and touches the ground for a shorter time. Then, there occurs a suspension of the body, after which the right foot falls afresh, and so on. ‘The time of the simul- taneous pressure of both feet is measured according to the space by which the shaded rectangle rests on the white one. Line 2 is the notation of the right yallop ; that is to say, when the right foot is always in advance, reaching the ground later than the left. Thus, in the gallop, the body is sometimes in the air, sometimes on one foot, and sometimes supported by two. Finally, the notations represented in fig. 87 would be: upper line, a series of jumps on two feet ; lower line, a series of hops on the right foot only. 1a, 37.—(Upper line), notation of a series of jumps on two feet. (Lower line), notaiion of hops on right foot. It is seen that there is constancy in the durations of suspension, notwitustanding the variability of the pressures, This method of representaticn is less complete than the 136 ANIMAL MECIIANISM. curves given before, for it does not indicate the phases of variable pressure exerted by the foot upon the ground; but it is much more simple, and allows the two modes of progression to be compared much more easily than the other. It will be seen farther on, when speaking of quadrupedal locomotion, that the complication of the subject renders it indispensable. to employ this very simple notation of the rhythm of move- ment. Definition of a pace in any kind of progression.—It is usually considered that a pace is produced by the series of movements which are executed between the action of one foot and that of the other, whether we choose for the commencement of the pace the instant that the feet reach the ground, or that when they rise from it. Thus, in measuring a pace on the ground, we usually take as its length the distance which separates one portion of the print of the right foot from a similar point of the impression made by the left. We shall be obliged to depart from this usage. Although we regret any innovation, yet we shall consider the standard pace only as half a pace, and we shall thus define it: A pace is the series of movements executed between two similar positions of the same foot—between the two successive treads of the right foot, for example, or two successive elevations of the left foot, &c. In the same manner the extent of a pace on the ground will be the distance which separates two homologous points taken in the two successive impressions of the same foot. The pace is estimated in this manner in Mexico. ‘This is the only method of counting which will prevent errors in the very complicated moments of quadrupedal progression. SYNTHETIC REPRODUCTION OF THE MODES OF PROGRESSION EMPLOYED BY MAN. Since we have completed the analysis of a phenomenon of which we now seem to understand all the details, it is by synthesis that we will endeavour to construct a counter-proof. This method has proved very useful in verifying our theories concerning certain physiological actions, as, for instance, the circulation of the blood. It consisted in representing, by arti- MODES OF PROGRESSION USED BY MAN. 137 ficial means, the movements and the sounds of the heart, the arterial pulsations, &c., and we thus proved the correctness of our theories as to the nature of these phenomena. The same method will serve hereafter to verify our theories of the flieht of insects and birds. In the present case it is necessary to represent, according to the data afforded by analysis, the movements of walking and of the other paces employed by man. Every one knows the ingenious optical instrument invented by Plateau, and called by him ‘‘Pheénakistoscope.” This instrument, which is also known by the name of Zootrope, presents to the eye a series of successive images of persons or animals represented in various attitudes. When these atti- tudes are co-ordinated so as to bring before the eye all the phases of a movement, the illusion is complete; we seem to see living persons moving in different ways. This instrument, usually constructed for the amusement of children, generally represents grotesque or” fantastic figures moving in a ridiculous manner. But it has occurred to us that, by depicting on the apparatus figures constructed with care, and representing faithfully the successive attitudes of the body during walking, running, &., we might reproduce the appearance of the different kinds of progression employed by man. Mons. Carlet, whose remarkable studies of walking we have before quoted, aud Mons. Mathias Duval, professor of anatomy at the Ecole des Beaux-arts, have carried out this plan, and, after many attempts, have arrived at excellent results. Mons. Duval is engaged in perfecting his diagram, which furnishes to the eye sixteen successive positions for each kind of locomotion employed by man. Each figure is carefully drawn according to the results afforded by the graphic method. When rotated with suitable speed, the instrument shows, with perfect precision, the different movements of walking or run- ning. But its principal advantage is that, by turning it less quickly, we cause it to represent the movements much more slowly, so that the eye can ascertain with the greatest facility these actions, the succession of which cannot be apprehended in ordinary walking. 138 ANIMAL MECHANISM. CHAPTER IV. QUADRUPEDAL LOCOMOTION STUDIED IN THE ITORSE. Insufficiency of the senses for the analysis of the paces of the horse — ~ Comparison of Duges— Rhytlins of the paces studied by means of the ear—Insufficiency of language to express these rhythms —Musical notation —Notation of the amble, of the walkiny pace, of the trot— Synoptical table of paces noted according to the definition of each of them by different authors—Instramenuts intended to determine by the graphic method the rhythms of the various paces, and the re-actions which accompany thein. Tere is scarcely any branch of animal mechanics which | has given rise to more labour and greater controversy than the question of the paces of the horse. ‘The subject is one of great importance to a large number of persons engaged in special pursuits, but its extreme complexity has caused in- terminuable discussions. Any one who proposed at the present time to write a treatise on the paces of the horse, would have to discuss many different opinions put forward by a great number of authors. While reading these works, on which so much sagacity of observation and such rigorous reasoning have been expended, one is astonished to find that the greater number of these writers are not agreed in their definitions of the paces. ‘This disagreement in similar observers can only be accounted for on the principle of the insufiiciency of the means at their disposal to enable them to analyse the very complex and rapid movements of the horse. ‘The difficulty of expressing in words the rhythms and the durations of these various move- ments adds still more to the confusion. When a horse is running, and passing from one kind of motion to another; when he moves his limbs with a rapidity which makes one dizzy, and according to the most varied rhythms, how can we appreciate and describe faithfully all these actions? It would be as easy a task, after looking at the fingers of a pianist PACES OF TIE IIORSE. 139 when running over the keys, to try and describe the move- ments which have just been executed. S4ill, in the midst of this confusion, it has been found possible, by observation alone, to establish certain divisions which singularly simplify the study. Thus, certain paces give to the ear a rhythm in which the strokes of the hoots succeed each other at sufficiently regular intervals; others, such as the different kinds of gallop, offer au irregular rhythm, recurring at periodical times, These latter paces are the most difficult to analyse. But if we observe a horse either at a walking pace, ambling, or trotting, and if we concentrate our atteution on the anterior limbs alone, or on the posterior ones, we perceive that the rhythm of the impacts and elevations of the right and left foot entirely resemble those of the feet of a man walking or running more or less quickly. ‘The alternation of the strokes of the feet is perfectly regular, if the horse be not lame of one of the limbs under observation. If we then pass to the comparison of the movements in the two fore and hind legs on the same side, we see that the two feet on the right side, for example, make the same number of steps, and that if one of them strikes the ground at a greater or less interval before the other, tlis is preserved as long as the same pace is continued. Add to this that the length of the step is the same for both the fore and tind limbs, of which fact we may convince ourselves by seeing that these two feet always leave on the ground prints situated at the same distance from each other. In general, the hind-foot covers the print left by the corresponding fure-foot; if the prints be not covered, they preserve always the same distance from each other. ‘Thus, the steps of the fore and hind legs are of the same number and the same extent; these facts liave not escaped former observers. Dugés has compared the quadruped when walking to two men placed one before the other, and following each other. According as these two persons (who ought both to take the same number of steps) move their limbs simultaneously, or alternately; according as the man in front executes his move- meuts more quickly or more slowly than the one behind, we 140 ANIMAL MECHANISM, see all the rhythms of the movements which characterise the different paces of the horse reproduced. Every one has seen in the circus or tlhe masquerade those figures of animals whose legs are formed by those of two mem with their bodies concealed in that of the horse. This gro- tesque imitation bears a striking resemblance to the animal, when the movements of the two men are well co-ordinated, so as to reproduce the rhythms of the paces of a real quadruped. In the examination of tle tracings furnished by the graphic method when applied to the paces of the horse, we may havo recourse to the theory propounded by Dugés; we shall then find the curves furnished by human locomotion twice repeated. We shall see that the difference between one pace and another consists in the manner in which the footfalls of the hind leg of a horse succeed each other, with relation to those of the fore leg on the same side. But this determination of the order of the succession of footfalls presents siugular difli- culties, even for the most skilful observers. Many attempts have been made to bring to perfection the means of observation, and to remedy the insufficiency of language in the description of the observed phenomena. Long since, the rhythm of the steps according to the sounds which they produce hus been substituted for their examination by means of the eye. ‘The ear, in fact, is better adapted than the eye to distinguish the rhythms or relations of succession. To ascertain the order in which each limb strikes the ground, certain experimenters have attached to the legs of the hors» bells of different tones, which can be easily distinguished from each other. A point which has been better ascertained with respect to the locomotion of the horse, is the determination of the space passed over on the ground during each of the various kinds of paces. This space has been directly measured by means of the distance between the prints of the feet left on the ground. To render the distinction between the footprints more easy, each of the animal’s feet has been shod in a ifferent manner. Besides this, observers have studied the proportion which exists between the height of the animal and the length of its various paces. All those who have made PACES OF THE HORSE. 14] any progress in this interesting study have arrived at it by the employment of rigorous methods of observation. On the other hand, the manner of expressing the observed phenomena has occupied the attention of different authors. Almost all have had recourse, with great advantage, to the use of drawings, but have agreed but little in their mode of representing the successive actions which characterise the different paces. The most perfect kind of representation is that employed during the last century by Vincent and Goiffon.* A sort of musical staff, eomposed of four lines, served to note the instant of each impaet of the four feet, and the duration of the succeeding pressures on the ground. This notation resembles, to a certain degree, that which we have employed to represent the different rhythms of human loco- motion, and which will hereafter serve to explain the various paces of the horse. But we must not forget that the method of Vincent and Goiffon only expressed a suecession of move- ments observed by the sight or the ear, and that it realised no greater exactitude than that of the individual observer. Our registering instruments resolve the double problem of analysing with fidelity the acts whieh the senses could not accurately appreciate, and expressing clearly the result of this analysis. Before we describe our experiments, we shall, in order that the reader may understand their utility, try to present a summary of the present state of the science, and to show what disagreement exists on various points among different authors. As the standard definitions are not always easy to be under- stood, we shall add to them the notation of each of the paces, trusting that this method of representation will render them more intelligible, and especially more easy to be compared with each other. Notation of the carious paces of the horse.—Recurring to the comparison used by Dugés, let us represent the horse as com- posed of two bipeds walking one behind the other. We must determine the manner in which the rise and full of the feet * Mémoire artificielle des principes relatifs & la fidéle représentation des animaux, tant er. peinture qu’en sculpture, Alford, 1769, 142 ANIMAL MECHANISM. succeed each other, in each of the persons supposed to he walking. Of the amble.—Let us take the simplest case, in which the two persons walking steadily go through the same movements at the same time. If we represent, by the notation before employed, the movements of these two men, placing at the top the notation which belongs to the foremost, and below it that of the hindmost, we shall have the following figure :— LLL LL Fie. 38.—Notation of a horse’s amble. The footfalls of the right and left foot being produced at the same time by the person walking in frout and by him who follows, must be represeuted by cates signs placed exactly over each other. Thus, in the paces of the horse, this agreement between the movements of the fore and hind limbs belongs to the amble. ‘The notation (fig. 38) will be that of a horse’s amble; the upper line referring to the movements of the fore quarters of the animal, and the lower line to the hind limbs. The standard definition is the following: ‘‘The amble is a kind of pace characterised by the alternate and exclusive action of two lateral bipeds.” Authors are entirely agreed on this point. Let us add that in the amble the ear perceives only two beats at each pace, the two limbs on the same side striking the ground at the same instant. In the notation these two sounds are marked by vertical lines joiuing the two syuchronous impacts. ‘In the amble the pressure of the body on the ground is said to be lateral, as the two limbs on one side only are in contact with the ground at the same time. Of the walking pace.—According to the definition of the oreater number of authors, the walking pace consists in an equal succession of impacts of the fvur feet, which strike the ground in the following order: if the right foot be considered as moving first, we shall have the following succession —right fore foot, left hind foot, left fore-foot, and then right hind-foot. PACES OF THE HORSE. 143 To express this succession of movements of the two persons walking, it is only necessary to alter the place of the signals of the hind feet with respect to those of the fore feet. We shall obtain the rhythm indicated by authors by causing the signals of the hind feet to slip towards the left, which will give the following figure :— Why Lille, GLLLLLLLLLLILLLA TILLED, fe pelep.tsLoteD | VILL LLL VDI. ULL Fic. 39.—Notation of the horse’s walking pace It is seen, therefore, that when compared with the amble, the walking pace consists in an anticipation of the hinder limbs, whose footfalls precede those of the corresponding fore limbs by the half of the duration of one of their pressures on the ground. If the notations be read from left to right, like ordinary writing, it is evident that each sign situated farther to the left than another precedes it in order of succession. Thus, in fig. 39, the impact of the right hind-foot precedes that of the right fore-foot. But as it is of little consequence, in the series of successive acts of the same kind of pace, whether we choose one instant rather than another as the point of depar- ture, we shall always take as the commencement the impact of the right fore-foot. The ear distinguishes four beats, separated by regular intervals, each of which is indicated in the notation by a vertical line. Finally, the body rests on the ground twice laterally and twice diagonally during one entire pace. It is easy to ascertain this by looking at fig. 39, in which, after the first impact, the body rests on the right feet (lateral biped L); after the second impact, on the right foot in front, and the left foot behind (diagonal biped D), &e. But this notation only expresses the theory of the most extended pace. ‘The equality of intervals between the strokes of the feet is not admitted by all writers. We shall see, in 144 ANIMAL MECHANISM. the course of our experiments, that the walking puce, in fact, may present different rhythms. Of the trot.—The notation of the trot is obtained by a more decided anticipation of the hinder limbs, each of which will have entirely completed its pressure on the ground, and begun to rise at the moment when the fore-leg on the same side has completed its stroke. Fig. 40 expresses the absolute alternation of the two persons supposed to be walking. Ce ae 777) ee Wilds Fia, 40.—Notation of a horse’s trot Authors agree also on this point, that in the trot, the limbs which act together are associated in diagonal pairs. The ear perceives but two sounds of the hoofs, as in the amble, but with this difference, that it is always a right and left foot together, and not two feet on the same side, which produce each sound. The notation also shows that the pressure of the body on the ground is always diagonal. What it does not express is, that between successive pressures, the body of the animal is, for an instant, suspended in the air. This suspension arises from the fact that the trot is not a walking, but a running pace, and that to represent it faithfully we must place together two notations similar to that which is represented in fig. 34. We have designedly omitted the time of suspension in the former notation; it would have rendered a difficult subject still more complicated. Besides, this suspension does not always take place; certain horses have a low trot, which has nothing to characterise it except its rhythm in double time and the diagonal impacts of the feet. We will not fatigue the reader by detailing the definition of all the paces admitted by different authors. We shall merely present in a synoptical table the series of notations which correspond with them. In this table (fig. 41) it is seen, that all the lower paces may be considered as derived PACES OF THE HORSE. 145 from the amble, and that if we wished to make a methodical classification, we should group them in a series of which the amble would be the first term, and all the other terms would be obtained by means of an increasing anticipation of th movements of the hinder linbs, Fig. 41 represents this series. In the notation of each kind of pace, we have left on the same vertical the impact of the right fore-foot, which we shall choose as the commencement of each pace, and which will serve as a point of reference to characterise each kind of locomotion. This table, prepared from different treatises on the horse, represents as faithfully as we have been able to depict it, that which each author admits as constituting each particular kind of pace. The explanatory notes show the disagreement which exists between the various theories relative to the suc- cession of movements which characterise each of them. ‘Thus we see, that with the exception of the amble, on which all are agreed, all the other kinds of paces are defined in a different manner by various authors. ‘Thus, the notation No. 2, which, aceording to Merehe, would correspond with the broken amble, would be, according to Bouley, the expres- sion of the high step, or the pace of Norman ponies; while this same Norman pace would be, according to Lecoq, that which is represented in No. 9. We also see that the notation of No. 3 would correspond, according to Merche, with the ordinary step of a pacing horse, while Bouley would consider it as a broken auble, and Lecoq the traquenade ; which traquenade, according to Merche, would not differ from the pace repre- sented by the notation No. 10. The ordinary walking pace itself is not understood in the same manner by different writers, and if the greater part of them, with Vincent and Goiffon, Colin, Bouley, &c., admit in this pace a succession of impacts at unequal intervals, it is to be observed that the theory of Lecoq and Raabe, concerning the normal pace, is different. This disagreement can easily be explained: first, tle observation of these movements is very difficult; then, each pace must naturally present, according to the conditions under which it is studied, the different forms which each writer has arbitrarily taken as the type of the normal walking ANIMAL MECHANISM. WIITTITIVLLLLLLA ALELULLLLTLLSS ED VTE LAL be QITTLLMMALA VIIIIIISILELSLL LS HILLLILLLLLLL LL, IFITILITS SS te SLLELELLLETEL LS WTTZLLLEEPETLEL A, WLLL SLILILILLIELSL LE SLITTSTALEL SELL 2 VSLILILESL ES Shh SPTLLIPIULILILLLA WITILILILILLL LLL: IIEAITIILSTTES LELEITLLEL LALLA. VL OIPIDISISES OA, FP, WITT) VIVAL! A Avoure av Fic. 41.—Synoptical notations of the paces of the horse, according to various writers.—See Description at the foot of page 147. PACES OF THE JIORSE. 147 pace. Each one has suffered himself to be guided in this respect by theoretical considerations. Those who admit equal intervals between the four footfalls, have thought that they found in this type more clearness and a more decided dis- tinction between the amble and the trot. The other writers have attempted the realisation of a certain ideal in the kind of pace which served them as a type. For Raabe, it was the maximum of stability, which, according to his theory, is obtained when the weight of the body rests longer on the two diagonal feet than on the two lateral feet; whence arises the choice of the type represented by the notation Nu. 6. Lecoq, thinking, on the contrary, that the most rapid pace is the best, has chosen as his type the pace in which the body rests longer on the two lateral feet than on the diagonal ones (notation No. 4). Whatever may be the value of these considerations, of which practical men alone can judge, it seems to us that the physiologist must first of all endeavour to search for facts, and must take simply such types as experiment may reveal to him. It is for this purpose that the investigations have been made with registering apparatus, the result of which will now be given. APPARATUS INTENDED FOR TILE STUDY OF TILE MODES OF LOCOMOTION OF THE HORSE. For the eaperi.nental shoe employed in the experiments made on man has been substituted, on the horse, a ball of india- rubber filled with horsehair, and attached to the hurse’s hoof by a contrivance which adapts it to the shoe. DESCRIPTION OF Fia. 41, No. 1. Amble, according to all writers. No. 2 Broken amble, according to Merche. Sues { High step, according tu Bouley. Ordinary step of a pacing horse, accor.iing to Mazure, No. 3. 4 Broken amble, according to Bouley. Traquenade, accordins to Lecoq. No. 4 Normal walking pace, according to Lecnq. No. 5. Normal walking pace (Bouley, Vinceut and Goiffon, Soll ysel, Colin). No. 6.. Normal w:lking pace, according to Raabe. No. 7. Irregular trot (trot décousw). No 8. Ordinary trot. (In the figure, it is supposed that the animal trots with- out leaving the ground, which oceurs but rarely. The notation only takes into account the rhythm of the impacts of the fect.) No. 9. Norman pace, from Lecoq. No. 10. Traquenade, from Merche. 148 ANIMAL MECHANISM. By turning an adjusting screw we fix it to the horse-shoe by three catches, which keep the instrument se- curely fastened. C SILLS A Fic. 46.—Notation of the irregular trot. The piste of the trot is represented in fig. 47, according to Vincent and Goiffon. All the prints are double, for the hinder-foot always comes up to take the place of the fore-foot on the same side. In fig. 47 we have rendered this superposition imperfect ON THE TROT. Lon in order to avoid confusion; for the same purpose, we have represented the prints of the fore-feet by dotted lines, those of the lind-feet by full lines. In the trot, the prints of the left f et alternate perfectly with those of the right feet. Fie. 47.—Piste of the trot according to Vincent and Goiffon. According to the speed of the trot, and the size of the horse, the piste varies much with respect to the space which separates the prints on the same side VT ee UUM & MUU MMMM : UUM Fia. 48.—Horse trotting with low kind of pace. The instant corresponding with the attitude represented in this figure, is marked with a white dot on the notation. In the representation of the trotting horse we must dis- tinguish the different forms of this pace. The low and short trot is represented in fig. 48. We usually 158 ANIMAL MECHANISM. make our observations at the start of the animal, or at the moment when he passes from the walking pace to the trot. The diagonal impacts succeed each other without interval, as is seen in the notation placed below the figure. ‘The animal has been depicted from the notation. The instant which the artist has chosen is that which is marked in the notation by a white dot. At this moment, as the superposition indicates, the left fore-foot is at the end of its pressure ; the right fore-foot is about to reach the ground ; the right hind-foot is finishing’ its pressure; the left hind-foot is about to fall. ‘The inclination of the limbs is that which corresponds with each of the phases of the pressures and the rise of the feet. The distance separating the feet is that which is indicated by the prints on the ground. ‘Thus, in fig. 48, it is seen that the trot is shortened, for the hind-foot. WMT Te a WONT Me Wi, Ubddddlle. eT Wiltttltilldls Fic, 49.—Horse at full trot. The dot placed in the notation corresponds with the attitude represented ON TITE WALKING PACE. 159 on the point of striking the ground, will not reach the place of the fore-foot on the same side. The elevated and lenythened trot is represented in fig. 49, which has already served to show the rider and his horse furnishcd with the ivs'ruments for the purpose of forming tracings of the various paces. The animal is depicted at the instant which, in the notation, is represented by a dot; that is to say, during the time of suspension, at the moment when the left diagonal biped has just risen and the right diagonal biped is about to descend. OF TIIE WALKING PACE. Experiments on the walking pace—The explanations into which we have entered in order to analyse the tracings of a trot, will facilitate the interpretation of that of the walking pace, represented in fig. 50. These tracings have been obtained from the same horse as the preceding ones. If we let fall a perpendicular from the points at which the curves commence, we shall have the position of the successive impacts of the four legs, On account of the thickness of the stvle employed to trace these curves, the foot corresponding with each of them is easily recognised, therefore we can mark on each of these perpendicular lines tlie initial letters of the foot which at this moment reaches the ground, ‘The order of succession of impacts is represented by the letters AD, PG, AG, PD; that is to say, right fore-fuot, left hind- foot, left forefoot, right hind foot, which is the succession admitted by writers ou the subject. ‘There remains to be determined the greater or less regu- larity in the succession of these impacts, and the relative extent of the intervals which separate them. Four this purpose it is sufficient to construct the notation of the rhythm of the pressure of each foot according to the registered curves. ‘This notation for fig. 50 shows that the interval which sepa- rates the impacts is always the same, and, consequently, that the horse rests during the same time on the lateral as on the diagonal bipeds. But this is not always the case. That we may render the successive positions of the centre of gravity easily understood, we will explain in few words the SCHANISM. ME ANIMAL 160 is been constructed. ling with each of the ¢ « 50h rr a hich the notation of fi let fall perpendiculars correspon manner in w If we ‘saimssoad [U.194vT 97} JO 9ONETIMIOpoid WIM ‘ooed Suly,ear 94} Jo WOT}VION—'TS ‘Oly VILL ee ULL z Aywa0zR, pue A,jeuosSurp qyoq “aoy aq} Jo sounssoad yuubo ugim ‘aovd Sutyyea oy Jo suot}VjoU pulv ssulowiy— "Og 1A OF TUE WALKING PACE. 161 footfalls, beginning with that of the right fore-foot, which is marked No. 1, we shall divide the figures into successive por- tions, in which will be found the impacts, sometimes of two legs on the same side (lateral biped), at others, of two placed diagonally (diagonal biped). Thus, from 1 to 2, the horse will rest on the right lateral biped; from 2 to 3, on the right diagonal biped (that is to say, on that in which the right foot comes jirst); from 3 to 4, on the left lateral biped; from 4 to 5, on the left diagonal biped ; again, from 5 to 6, the horse pill find himself, as at the beginning, on the mene lateral biped. ‘This experiment has reference entirely to the standard theory of the pace (see No. 5 of the synoptical table), but some horses walk in a manner somewhat different. Fig. 51 is the notation of the walking pace of a horse which rested longer on the lateral than on the diagonal pressures. Sometimes the contrary is observed ; in the transitions from the walk to the trot, for instance, we have found the duration of the diagonal pressures predominate. This study, in order to be complete, ought to have been earried on under more favourable conditions than those which we havo hitherto been able to meet with. It would be desirable to obtain many horses belonging to different breeds ; to study their movements when led by the hand, mounted, or harnessed ; to vary the load which they carry or draw; to experiment on level or sloping ground, &c. All this can sail be effected by men especially interested in these inquiries, and placed in favourable circumstances to undertake them. While making observations on draught horses, it has seemed to us that when the animal strives to re-act against the weight of the carriage pressing upon him, he may have three feet on the ground at once. ‘This Borelli considered to be the normal walking pace; we have just seen, on the contrary, that in the natural walking pace there are never more than two feet on the ground at a time. As to the re-actions during the walking pace, they are not represented in fiz. 50. We have ascertained generally that the re-actions of the fore-limbs are the only ones of any im- 162 . ANIMAL MECHANISM. portance ; we are led to suppose, by the extremely slight re- actions of the hinder parts, that their action consists chiefly in a forward propulsion, but with very slight impulsion of the body in an upward direction. This agrees with the theory somewhat generally adinitted, by which the fore legs would have little to do in the normal pace except to support alter- nately the fore part of the body, while to the hind limbs would belong the propulsive action and the tractive force developed by the animal. The piste of the walking pace, according to Vincent and Goiffon, is analogous with that of the trot, except that it pre- sents a shorter interval between the successive footprints on the same side. Fic. 52.—Piste of the walking pace, after Vincent and Goiffon. In the ordinary walk, this distance would be equal t» the heiglit of the horse, measured at the withers. As in the trot, the prints are covered at each pace; those of the right foot alternate perfectly with those of the left. This character of the piste of the walking pace is, however, observed ouly under Fig. 53.—Piste of the amble, after Vincent and Goiffon : it differs from that of the walking pace, only by the non-superposition of the footprints on the same side. The hind foot is placed on the ground beyond the im- pression of the fove foot. certain conditions of speed, and on level ground. On rising ground the prints of the hind-feet are usually behind those of the fore-feet ; in a descent, on the contrary, they may possibly pass beyond them, which would give the piste of the walk some resemblance to that of the amble, OF THE WALKING PACE. 163 Representation of a pacing horse. The representation of a horse at the walking pace has been given by Mons. Duhousset in fig. 54. The instant chosen is marked in the notation by a dot. We shall not give an enumeration of the positions of the limbs of the animal as shown in the notation, as we have already done so in the representation of the trot. cme OT gay MT tl ggg ltt panes 7) SLL (TT Fia. 54.—Representation of the horse at a walking pace. LO+ ANIMAL MECHANISM. CHAPTER VI. EXPERIMENTS ON THE PACES OF TILE HORSE. (Continued. ) Expcriments on the gallop— Notation of the gallop—Re-actions—Dases of support—Pistes of the gallop—Itepresentation of a galloping horse in the various times of this pace. Transitions, or passage, from one step to the other—Aualysis of the paces by means of the notation rule—Synthetic reproduction of the different paces of the horse. OF TIIE GALLOP. SrverAt different paces, the common character of which is tat irregular impacts return at regular intervals, are compre- hended under this name. Most of the writers distinguish three kinds of gallop by the rhythm of the impacts, aud name them, according to this rhythm, gallop in two, three, and four time. The most ordinary kind is the gallop in three- time; this we shall study in the first place. Experiments on the gallop. Fig. 55 has been obtained from a horse. which galloped in three-time. At first sight, the notation of this pace reminds us of that which we have represented when speaking of human gallop (fig. 36, p. 184), a pace used by children when “ playing at horses.” It appears tliat the notation of the horse's gallop has been obtained by placing one over another two of these notations of the biped gallop; so that, in fact, the comparison used by Dugés is perfectly just, even when it is applied to the gallop. Analysis of the tracing. At the commencement of the figure, the animal is suspended above the ground; then comes the impact P G, which announces that the left hind-foot touches the ground. This is the foot diagonally opposed to that which the horse places forward in the gallop, and whose impact A D will be produced the last. Between these two impacts, and distinctly in the middle of the interval which separates them, comes the simultancous impact of the two feet forming the ‘LOT}NIOU OT} UL Was BE ‘4OO} FYSIA 97} IJIN podoyyed yuourpiodxo siq} A0y posn osi0 7 eq, “‘punoas 99 wo soanssead oy} } J 94F eMOTS YOLYM 4Us4a9 viytloPlsUUd B IAGY Joos OY} JU SUOLJOR-OT OY} JO SvAdNd JU, JIM 04} ye WexBy BU vl JO VAAN “Y “aWT}-90aT} UL dor[es oy} Jo UOI}EIOM pu sSupoVIL—"eg “Oly CG 4 f the notations me VZV superposition o GALLOP. ism. y) 4 THI OF The — L ool 2 ~ =~ or Oo a r Q D ord — —— 7 iped. P D, clearly shows left diagonal b 166 ANIMAL MECHANISM. In this series of movements tle ear has, therefore, dis- tinguished three sounds, at nearly equal intervals. ‘The first sound is produced by a hinder foot, the second by a diagonal biped, the third by a fore-foot. Between the single impact of the fore-foot, which constitutes the third sound, and the first heat of the pace which follows, reigns a silence whose dura- tion is exactly equal to that of the three impacts taken together; then the series of movements recommences. 3y the inspection of the curves, we see that the pressure of the feet on the ground must be more energetic in the gallop than in the other paces already represented, for the height of the curves is evidently greater than for the trot, and especially so as compared with the walk. In fact, the animal must not only support the weight of its body, but give it violent forward impulses. ‘The greatest energy seems to belong to the first impact. At this moment, the body, raised for an instant frum the ground, falls again, and one leg alone sustains this shock. 3 TEMPS WM Fia 56 —Gallop in three-time (A) indiextion of three-time. B. indication of the number of feet which form the support of the body at each instant of the gallop in three timy, If we wish to take account of the successive pressures which sustain the body during each of the steps in the gallop, we have only to divide the duration of this pace into successive instants in which the body is sometimes supported on one or on several feet, arid sometimes suspended. ‘The notation (fig. 535) allows us to follow in (A) the succession of impacts, and shows in (B) the succession of the limbs which cause these presstires on the ground. If we wish to ascertain what are the re-actions produced at the withers, we see them represented in fig. 55 (upper line R). We find an undulatory elevation, which lasts all the time OF THE GALLOP. 167 that the animal touches the ground; in this elevation are recognised the effects of the three impacts, which give it a triple undulation. The minimum elevation of the curve cor- responds, as in the trot, with the moment when the feet do not touch the ground. Therefore, it is not a projection of the hody into the air which constitutes the time of suspension in the gallop. Lastly, by comparing the re-actions of the gallop aie those of the trot (fig. 45), we see that in the gallop the rise aud fall of the body are effected in a less sudden manner. These re-actions are, therefore, less jarring to the rider. though they may, in fact, present a greater amplitude. Piste of the gallop w three-time.— According to Curnieu, this piste is the following :— Fic. 57.—Yiste of the short gallop in three-time. The hindcr feet, whose prints have the frm of an U, reach the ground in front of the prints of the fore feet. The latter have been represcnted by a form somewhat like an O. The piste of the gallop varies according to the speed. In the short gallop of the riding school, the find: feet leave their prints behind those of the fore- fens in the rapid gallop, on the contrary, they come in front of the prints of the fore-feet. A horse which, in the pace of the riding school, gallops almost entirely within his own length, will, when started at full gallop, cever an enormous space. According to Curnieu, the famous Eclipse covered 22 English feet. ‘The following is the piste which this very rapid pace leaves on the ground :-— Fig. £8.—Piste of Evlipse’s gallop. from Curnieu. The prints of the hind- fect are very far before those of the fore-feet, Representation of a horse galloping—For this representation we will give three attitudes, differing much from each other, 168 ANIMAL MECHANISM. and corresponding nearly with the three kinds of time found in this pace. Fic. 59.—Hoerse galloping in the first time (right foot advancing), the hind left foot only on the ground. The white dot, in the notation, corresponds with the instant at which the horse is represented. In the first time, fig. 59, the left hind-foot, on which the horse has just descended, alone rests on the ground. In the second time, fig. 60, the left diagonal biped has just finished its impact, the right fore-foot is about to reach the ground, the left hind-foot has just risen. The third time of the gallop, fig. 61, has been drawn as well as the others by Mons. Duhousset according to the nota- tion; the moment chosen is that in which the right foot alone rests on the ground, and is about to rise in its turn. OF THE GALLOP 169 Fie. 61.—Horse giJloping in the third time (right fot forward). 170 ANIMAL MECHANISM. The figure which represents it is rather strange ; the eye is but little accustomed to see this time of the gallop, which is doubtless very rare. When considering this ungraceful figure, we are tempted to say with De Curnieu, ‘the province of painting is what one sees, and not what really exists.” The gallop in four-time differs from that which has just been described only in this point, that the impacts of the diagonal biped, which constitute the second time, are disunited und give distinct sounds ; we see an example of this in fig. 62. 7 ULL VIM Ly aed 2Psuls 211 [0 Fic. 62.—Notation of the gallop in four-time. (A) determination of each of the successive times. (B) determination of the number of feet which support the body at each instant. According to this notation, the body, at first suspended, is borne successively on one foot, on three, on two, on three, and on one, after which a new suspension recommences. Of the full gallop —tThis very rapid pace could not he studied by means of the apparatus which we have employed hitherto. It was necessary to coustruct a special registering instrument, and new experimental apparatus. To leave the two hands of the rider free, the registering instrument was enclosed in a flat box, attached to the back of the horseman by straps like the knapsack of the soldier. We shall not attempt the detailed description of this instrument, which carried five levers, tracing on smoked glass the curves of the action of the four legs, and the reaction of the withers. The violence of the impacts on the ground is such that they would instantly have broken the apparatus before employed. We have substituted for this a copper tube, in which moves a leaden piston, suspended between two spiral springs. The shocks given to this pisten at each footfall, produce an effect like that of an air-pump acting on the registers. A ball of india-rubber, which can be pressed between the teeth, sets the OF THE GALLOP: Det register going, and allows the tracing to be taken at a suitable time. Through the kindness of Mons. H. Delamarre, who placed at our apace his stables at Chantilly, we have beet able to procure tracings of the full gallop, of which the following is the notation :— WZ MU) meee VII = Baars Fig. 63.—Notation of full gallop; re-actions of this pace. It is seen that this pace is, in reality, a gallop in four-time. The impacts of the hinder limbs, however, follow each other at such short intervals, that the ear can only distinguish one of them; but those of the fore-legs are noticeably more dis- sociated, and can be heard separately. Another character cf the full gallop is, that the longest period of silence takes place during the pressure of the hinder limbs. ‘The time of suspension appears to be extremely short. To get the best possible results from these experiments, it would be necessary to repeat them on a great number of horses, and to ascertain whether there may not be some rela- tion between the rhythm of the impacts and the other characters of the pace. We must leave this task to those who especially addict themselves to the study of the horse. Lastly, let us add, that the ve-actions, in full gallop, repro- duce with great exactness the rhythm of the impacts. Thus, it is observed, that at the moment of the almost synchronous impacts of the two hinder limbs, there 1s a sharp and_pro- longed re-action, after which two less sudden re-actions take place, each of which corresponds with the impact of one of the fore-legs. The line placed above fig. 63 is the tracing of the re-actions 172 ANIMAL MECITANISM. of the withers. This curve, being placed above the notation, enables us, by the superposition of its various elements, to notice with which impact of the limbs each re-action cor- responds. OF THE TRANSITIONS BETWEEN TILE DIFFERENT KINDS OF PACES. An observer finds great difficulty in ascertaining how one kind of pace passes into another. The graphic method fur- nishes a very easy means of followins these transitions; this will perhaps be not one of the least advantages of the employ- ment of this method of studying the paces of the horse. In order thoroughly to understand what takes place in these transitions, we must refer again tu the comparison made by Dugés, and represent to ourselves two persous walking, and following each other's fvotsteps, both in the trot and the gallop. In these continued paces, these two persons present a constant rhythm in the relatiou of their movements ; while, in the transitions, the foremost or hindermost person, as the ase may Le, quickens or moderates his movements so as to change the rhythm of the fovtfalls, Suvme examples will render this more evident. The principal transitions are represented in page 174. Vig. 64 is the notation of the transition from the walking pace to the trot. The dominant character of this change, inde- pendently of the increase of rapidity, consists in the hinder impacts gaining upon those of the fore-limbs; so that the impact of the left hind-foot, P G, for instance, which, during the walking pace, took place exactly in the middle of the duration of the pressure of the right fore-foot, A D, gradually advances till it coincides with the commencement of the pressure A D, and with the impact also, at which time the trot is established. Fig. 65 indicates, on the contrary, the transition from the trot to the walk. We see here, in an inverse manner, the diagonal impacts, synchronous at first, become more and more separated. A dotted line, which unites the left diagonal impacts, is vertical at the commencement of the figure in the part which corresponds with the pace of the trot; by degrees TRANSITION OF PACES. 173 this line becomes oblique, showing that the synchronism is disappearing. The direction of the obliquity of this line proves that the hinder limbs grow slower in their movements in passing from the trot to the walk. In the passage from the trot to the gall p the transition is very curious; it is represented by the notation, fig. 66. We see, from the very commencement of the figure, that the trot is somewhat irregular; the dotted line which unites the left diagonal impacts A G, P D, is at first rather oblique, and in- dicates a slight retardation of the hind-foot. This obliquity constantly increases, but only for the left diagonal biped ; the right diagonal biped A D, P G, remains united, even after the gallop is established. The transition from the trot to the gallop is made, not only by the retardation of the lind-foot, but by the advance of the fore-foot, so that two of the diagonal impacts, which were synchronous in the trot, leave the greater interval between them; that which in the ordinary gallop con- stitutes the great sileuce. An opposite change produces the transition from the gallop to the trot, as is seen in fig. 67. The transition from the gallop in four-time to that in three-time is made by an increasing anticipation of the impacts of the linder limbs. SYNTIIETIC STUDY OF TIIE PACES OF THE TNORSE, The analytical method to which we have hitherto had recourse in describing the paces of the horse may have left many things obscure in this delicate question. We hope to clear them up by recurring to the synthetic method. When tracing, at the commencement of this study, the synoptical table of the different paces, we classed their nota- tions in a natural series, the first term of which is the ainble, and in which the difference between one step and the next consists in an anticipation of the action of the hinder limbs. This transition is just what is observed in animals. A drome- dary, for instance, whose normal pace is the broken amble,* * Through the kindness of Mons. Geoffrey St. Ililaire, director of the “Jardin d’Acclimatation,” we have been permitted to study the paces of different quadrupeds, and especially those of the large dromedary which unat garden possesses. am Sat aes ae cre x an LLL) WLLL WLLL: CLL] \ Cilia .. Wii ‘ 401} OTT} ‘ d . yd 04 doye3 em : ; \ . \ F ' : ‘ TL aaa eee EeEso Bd Sse) [Sa] : 1 CLL ZA WLLL: ULL LLL 20 Saeed eee ona YS/ASTALYD, MMLLLLIL TLD ETD, 3 >, ou} wy VEEL CLL J ATE OT} 0} G01} O19 Ay m0.y UOT}ISU "C9 ‘Oly eee av VU WLLL LLL WLLL , d i UL moa LLL. ile WLLL PA VZEZIELELLLDLL VILLILLELLLLLL A TRANSITION OF PACKS. 175 has given us the whole series of notations, which, in our svnoptical table, separate No. 2 from No. 8. When urging on the animal and forcing him to trot, he first broke his amble in an exaggerated manner, then he began to walk, and after- wards commenced an irregular trot, which soon became a free trot. We have just seen that the paces of the horse are formed in the same order when the animal passes from the walk to the trot. When a horse begins to move more slowly, the change of pace is effected in an inverse manner ; the paces succeed each other by running up the series represeuted in the plate. ‘The greater or less anticipation of the action of the hinder limbs is represented in the plate by a sliding backward of the notation towards the left of the figure. ‘This fictitious sliding may become real by using a little instrument, which enables us to understand and explain very simply the formation of the different paces. It consists of a little rule, somewhat analo- gous to the sliding rule used in calculation, and which carries the notations of the four limbs on four little slips, which can glide side by side, aud be arranged in various positions. Fra. 68.—Notation rule, to represeut the different paces. Figs. 68 and 69 show the arrangement of this little instru- ment. Let us imagine a rule made of black wood, having four narrow grooves, in which slip sliding portions, alternately black and white, or grey and black, in order to represent the notation of the amble, as in No. 1 of the plate. If we push towards the left the two lowest slides simultaneously (fig. 68), we shall form, according to the amount of displacement, one 176 ANIMAL MECHANISM. or other of the notations in the table of regular paces. A scale, marked 1, 2, 3, 4, &e., up to which we can bring the mark representing the left hinder impact, allows us to form without hesitation any notation whatever. To form the notations of the gallop, it is necessary to shift the slides corresponding with the fore-legs, so as to make them encroach on each other as is seen in notation, fig. 69. Fic. 69.—Notation rule forming the representation of the gallop in three- time. The notation rule is thus used. When we are sure that the pace is regular, it is sufficient, for instance, to examine the impacts of the two right feet, in order to construct the whole notation. According as the hinder impact is synchro- nous with that in front, or precedes it by a quarter, half, three-quarters, or the whole of the duration of a pressure, we place the two lower slides in the position which they ought to occupy, and the notation is thus simply constructed ; it shows the rhythms of the impacts, the duration of the lateral and diagonal pressures, &e. The construction of the various paces of the gallop is effected in the same manner. The artist who wishes to represent a horse at any instant of a particular pace, can thus easily determine the correspond- ing attitude. He forms on his rule the notation of the pace of the horse which is to be represented. Then, on the length which corresponds with the extent of a single pace in this notation, he erects a perpendicular line at any point. This line corresponds with « certain instant of the pace. Thus, as he can trace, on the length corresponding with a single pace, PACES OF THE HORSE. 177 an indefinite number of perpendicular lines, it follows that the artist may choose in the duration of any pace, in any kind of locomotion, an indefinite number of different attitudes. Sup- pose him to have made his choice, and that he wishes to represent in the kind of pace (fig. 68), the instant which is marked by the vertical line 7, the notation will show him that the right fore-foot has just been placed upon the ground, that the left fore-fvot is therefore beginning to rise, that the right hind-foot is almost at the end of its pressure on the ground, and that the left hind-foot is near the end of its rise. All that is necessary, in order to represent the animal exactly, is to know the attitude of each limb at the different instants of its rise, fall, or pressure, which is a comparatively easy matter. But the artist, guided by this method, will thus inevitably avoid altogether those false attitudes which often cause repre- sentations of horses to be so utterly unnatural. FIGURES ARRANGED TO SHOW THE PACES OF TITE HORSE. Mons. Mathias Duval has undertaken to make, in order to illustrate the locomotion of the horse, a series of pictures, which, seen by means of the zootrope, represent the animal as if in motion in the various kinds of paces. This ingenious physiologist formed the idea of reproducing in an animated form, as it were, that which notation has done for the rhythm of the movements. ‘The following is the arrangement which he employed. Le first drew a series of figures of the horse taken at different instants of an ambling pace. Sixteen suc- cessive figures enabled him to represent the series of positions which each limb successively assumes in a pace belonging to this kind of locomotion. ‘his band of paper, when placed in the instrument, gives to the eye the appearance of an amnbling horse in actual motion. We have said that all the walking paces may be considered as derived from the amble, with a more or less anticipation of the action of the hind limbs. Mons. Duval has realised this in his pictures in the following manner. Each plate, on which has been drawn the series of pictures of the ambling horse, is formed of two sheets of paper placed the one on the other. ‘The upper one has in it a number of slits or openings, 178 ANIMAL MECILANISM. so that each horse is drawn half on this sheet, and the other half on that which is placed beneath. The hind quarters, for example, having been drawn on the upper sheet, the fore quarters are drawn on the under sheet, and are visible through the portion cut out of the upper sheet. Let us suppose that we cause the upper paper to slide as far as the interval which separates two figures of the horse, we shall have a series of images in which the fore limbs will fall back a certain dis- tance towards the hind limbs. We shall thus represent, under the form of pictures, what is obtained under the form of notation, by slipping the two lower slides of the notation rule one degree. And as this displacement to the distance of one degree for each of the movements of the hinder limbs gives the notation of the broken amble, we shall obtain, in the figures thus drawn, the series of the successive positions of the paces of the broken amble. If the paper be made to slip a greater number of degrees, we shall have the series of atti- tudes of the horse at his walking pace. A still greater dis- placement will give the attitudes of the trot. In all these cases, these figures, when placed in the instru- meut, make the illusion complete, and show us a horse which ambles, walks, or trots, as the case may be. ‘Then, if we regulate the swiftness of the rotation given to the instrument, we render the movements which the animal seems to execute more or less rapid, which will permit the inexperienced observer to follow the series of positions of each kind of pace, and soon enable him to distinguish with the eye a series of movements in the living animal which appear at first sight to be in absolute confusion. We hope that these plates, though still somewhat defective, will soon be sufficieutly perfect to be of real use to those who are engaged in the artistic representation of the horse. After these studies of terrestrial locomotion, we ought to explain the mechanisin of aquatic locomotion. Some recent experiments of Mons. Ciotti have thrown great light on the propulsive action of the tails of fishes; not that they have overthrown the theory held ever since the time of Borelli, concerning the mechanism of swimming, but they have ap- prouched the question in another manner, that of the synthetic PACES OF TIE WORSE. 179 reproduction of this phenomenon. This method will certainly permit us to determine, with a precision hitherto unknown, both the motive work and resistant work in aquatic locomotion. It will, therefore, be advisable to wait for the results of experiments which are now being made, and which will be of equal service both to mechanicians and to physiologists. BOOK THE THIRD. AERIAL LOCOMOTION. CHAPTER I. OF THE FLIGHT OF INSECTS. Frequency of the strokes of the wing of insects during flight; acoustic determination ; graphic determination—Influences which modify the frequency of the movements of the wing—Synchronism of the action of the two wings—Optical determination of the movements of the wing ; its trajectory ; changes in the plane of the wing; direction of the movement of the wing. In terrestrial locomotion we have been able to measure by experiment the pressure of the feet on the ground, and hence we have deduced the intensity of the re-actions on the body of the animal. ‘These two forces were easily ascertained by direct measurement. In the problem which is now to occupy us, the conditions are very different. The air gives a certain resistance to the wings which strike upon it, but it is a resis- tunce every instant yielding, for it is only in proportion to the rapidity with which it is displaced, that the air resists the impulse of the wing. When we study the phenomena of flight, it is therefore necessary to know tlie movement of the wing in all the phases of its speed, in order to estimate the resistance which the air presents to that organ. We will propound in the following order the questions which must: be resolved. 1. What is the frequency of the movements of the wing of insects ? 2. What are the successive positions which the wing occu- pies during its complete revolution ? FLIGHT OF INSECTS. Isl 3. Ilow is the motive force which sustains and transports the body of the animal developed ? 1. Irequency of the movements of the wing of insects —The frequency of the movements of the wing variés according to species. ‘The ear perceives an acute sound during the flight of mosquitos and certain flies; there is a graver sound during the flight of the bee and the drone fly; still deeper in the macroglosse and the sphingida. As to the other lepidoptera, they have, in general, a silent flight on account of the few strokes which they give with their wings. Many naturalists have endeavoured to determine the fre- quency of the strokes of the wing by the musical note pro- duced by the animal as it flies. But in order that this deter- mination should be thorouglily reliable, it must be clearly established that the sound produced by the wing depends exclusively on the frequency of its movements, in the same manner as tle sound of a tuning-fork results from the fre- quency of its vibrations. But opinions differ on this subject ; certain writers have thought that during flight there is a movement of the air through the spiracles of insects, and that the sound which is heard depends on these alternate movements. Without giving our adherence to this opinion, which scems to be contradicted by many fucts, we think that the acoustic method is insufficient to furnish an estimate of the frequency with which the wing moves. The reason which would induce us not to employ tl.is method, is that the musical note produced by the flying insect is varied by other influences besides the changes in the’strokes of the wing. When we observe the buzzing of an insect flying with a uniform rapidity, we perceive that the tone does not continue constantly the same. As the insect approaches the ear, the tone rises; it sinks as it goes further from us. Something of an analogous kind happens when we cause a vibrating tuning-fork to pass before the ear; the note at first becomes more shrill and then more grave, and the difference may attain to a quarter or even to half atone. We must, there- fore, take care that the insect on which we experiment should be always at the same distance from the observer. This dis- turbing phenomenon, howevcr, presents no real difficulty of 182 ANIMAL MECITANISM. interpretation; Pisko, the German writer on acoustics, has perfectly explained it. There is no doubt that the vibrations always follow each other after the same interval of time ; when a vibrating plate remains at the same distance from the ear, the vibrations require the same time to reach us, and the phenomenon, uniform for the instrument, is uniform also for our organ. On the contrary, if the instrument be brought rapidly nearer, the vibration which is produced every instant has less space to traverse before it reaches the tympanum ; it thus approximates to that which preceded it, and the sound grows sharper. If the instrument be removed to a greater distance the vibrations are more extended, and the tone he- comes more grave. Every one has remarked, when travelling on a railroad, that if a locomotive passes us while the driver is sounding the whistle, the sharpness of the tone increases as the engine comes nearer, and becomes graver when it las passed by us, and the whistle is rapidly carried to a greater distance. From these considerations we must be eenvinced that it is very difficult to estimate from the musical tone produced by a flying insect, the absolute frequency of the strokes of its wings. This depends to some extent on the variation of the tone thus produced, which passes at each instant from grave to sharp, according to the rapidity and the direction of the flight. Besides this, it is not easy to assign to each wing the part which it plays in the production of the sound. We have also to take into consideration that the wing of an insect may, by brushing through the air as it flies, be subjected to sonorous vibrations much more numerous than the complete revolutions which it accomplishes. The graphic method furnishes a simple and precise solution of the question; it enables us to ascertain almost to a single Leat the number of movements made per second by an insect’s wing. Experiment.—A sheet of paper blackened by the smoke of a wax-candle, is stretched upon a cylinder. ‘This cylinder turns uniformly on itself at the rate of a turn in a second and a-half. The insect, the frequency of the movement of whose wings FLIGHT OF INSECTS. 183 is to be studied, is held by the lower part of the abdomen, in a delicate pair of forceps; it is placed in such a manner that one of its wings brushes against the blackened paper at every movement. Each of these contacts removes a portion of the black substance which covers the paper, and, as_ the cylinder revolves, new points continually present themselves to the wing of the insect. We thus obtain a perfectly regular figure, if the insect be held in a steadily fixed position. ‘These figures, of which we give some examples, differ according as the contact of the wing with the paper has been more or less extended. If the contact be very slight, we obtain a series of points or short cross-lines, as in fig. 70, SAK SERS FE SARK Ap ASA DOD.ww MARE DAA ALES SAA AR ee eS Ae as PAPRR Ry a Ne SHED PRY PBRAAA A CASASBARSV AVERT EMER TARR AVE SE RNT ANS SAA A SARA ERE Fic. 70.—Showing the frequency of the strokes of the wingof a drone-fly (the three upper lines), and of a bee (the lower dotted line’. Th fou th line is produced by the vibrations of a chronographic tunin’- ork, fur- nished with a style which registers 250 double vibrations per second. Knowing that the cylinder revolves once in a second and a-half, it is easy to sce how many revolutions of the wing are thus marked on the whole circumference of the cylinder. But it is still more convenient and accurate to make use of a chronographie tuning-fork, and to register, near the figure traced by the insect, the vibrations of the style with which the tuning-fork is furnished. Fig. 70 shows, by the side of the tracing made by tlhe wing of a drone-fly, that of the vibrations of a tuning fork, which executes a double oscillation 250 times in a second. This instrument, enabling us to give a definite value to any portion of the tracing, shows that the wing of the drone per- formed from 240 to 250 complete revolutions per second. 184 ANIMAL MECHANISM. Tifluences which modify the frequency of the movements of the wing. — Since we know the influence of resistance to the rapidity of the movements of animals, we may suppose that the wing which rubs on the cylinder has not its normal rate of motion, and that its revolutions are less numerous in proportion as the friction is greater. Experiment has confirmed this opinion. An insect performing the movements of flight by rubbing its wings rather strongly against the paper gave 240 movements per second; by diminishing more and more the contacts of the wing with the cylinder, we obtained still greater numbers —282, 305, and 821. ‘This last number may perhaps ex- press with sufficient accuracy the rapidity of the wing when moving freely, for the tracing was reduced to a series of scarcely-visible points. On the contrary, as the wing rubbed more strongly, the frequency of its moyements was reduced below 240. Another modifying cause of the frequency of movement in the wing is the amplitude of these movements. We must compare this cause with the preceding, for it is natural to admit that great movements meet with greater resistance in the air than smaller ones. When we hold a fly or a drone by the forceps, we see that the animal executes sometimes strong movements of flight; we then hear a grave sound; but occasionally, when its wing is only slightly agitated, we perceive ouly a very shrill tone. That which the ear reveals to us with regard to the difference in the frequency of the strokes which the insect gives with its wings, is entirely confirmed by the experiments which we have made graphically. Choosing the instants when the insect is at its strongest flight, and also when it gently flutters its wing, we find that the frequency varies witlin very extensive limits, nearly in the proportion of one to three —the least frequency belonging to the movements of greatest amplitude. The diferent species of insects on which we have experi- mented, presented also very great variations in the rapidity of the movements of their wings. We have endeavoured as far as possible to compare the different species under similar con- ditions, during their swiftest flight, aud with slight friction FLIGIIT OF INSECTS. 185 on the cylinder. The following are the results obtained as the expressions of the number of movements of the wing per second in each species :— Common fly - ° : - . 330 Drone-fly . ° . : Se a) Jee. > ° . . . epee S10) Wasp . : : : ; Ae IND) Ifumming-bird moth ee) St Epa Dragon- fly : ‘ a es 28 Butterfly (Pontia Rape) : : : 9 Synchronism of the action of the two wiings.—By holding the insect in a suitable position we can make both wings rub on the cylinder at the same time. It is then seen, on thie tracing, that the two wings act simultaneously, and that both perform the same number of movemen’s. Independently of this, we may easily convince ourselves that there must neces- iy be a similar motion in both wings. if we move one of the wings of an insect recently killed, we shall find that a similar mouvement is given, in a certain degree, to the other corresponding wing ; if we extend one wing laterally, the other is also extended, if we raise one up, the other rises. The wasp is well suited for this experiment. Still, in captive flight, certain insects can perform great movements with one bE their wings, while the other only exe- cutes slight vibrations. The dung-fly, for instance, usually affects this kind of alternate flight; when it is held with the forceps, its two wings rarely move together. The sudden- ness and the unforeseen condition of these alternations, and the violent deviations which they give to the axis of tiie body, lave prevented us from taking the simultaneous tracings of the movement of its two wings, and from ascertaining whether the synchronism continues under these conditions, in sj ite of the unequal amplitude of the movements. The preceding figures show the regular periodicity of the movements of insect flight, but they also prove that the graphic method cannot represent the whole course of the wing, for this organ can only be tangential to a certain portion of the surface of the cylinder. Whatever may be the movements 186 ANIMAL MECHANISM. which the wing describes, its point evidently moves on the surface of a sphere, the radius of which is the length of the wing, and the centre at the point of attachment of this organ with the mesothorax. But a sphere can only touch a plane or convex surface at one point; thus, we only obtain a number of points for a series of revolutions of the wing, if the turn- ing cylinder be only tangential to the extremity of the wing. More complicated tracings can only be obtained by more extensive contacts, in which the wing bends, and thus rubs a portion of its surfaces or its edges on the blackened paper. We will explain the means by which the graphic method can serve to determine the movements of the wing, but let us first show the results obtained by another method, in order to render the explanation more clear. 2. Optical method of the determination of the movements of the wing.—llaving being convinced by the furmer experi- ments, of the regular periodicity of these movemeits, we have thouglt it possible to determine their nature by the eye. In fact, if we can attach a brilliant spot to the extremity of thie wing, this spot passing continually through the same space would leave a luminous trace which would produce a figure completely regular, and free from the deformity incident to that effected by the friction on the cylinder. This optical method has already been employed for a similar purpose by Wheatstone, who placed brilliant metallic balls on rods pro- ducing complex vibrations, and thus obtained luminous figures varying according to the different combinations of the vibrating movements. By fixing a small piece of gold-leaf at the extremity of the wing of a wasp, and throwing upon it a ray of the sun while the insect was executing the movements of flight, we have obtained a brilliant image of the successive positions of the wing, which gave uearly the appearance represented in fig. 71. This figure shows that the point of the wing descriles a very elongated figure 8; sometimes, indeed, the wing seems to move entirely in one plane, and the instant afterwards the terminal loops which form the 8 are seen to open more and more. When the opening becomes very large, one of the FLIGHT OF INSECTS. 187 loops usually predominates over the other; it is generally the lower one which increases while the upper diminishes. Indeed, by a still greater opening, the figure is occasionally trans- formed into an irregular ellipse, at the extremity of which we can recognise a vestige of the second loop. Ny Danburtau Fic. 71.—Appearance of a wasp, the extremity of each of whose larger wings has been gilded. ‘Ihe insect is supposed to be placed in a sun- bean. We thought that we had been the first to point out the form of the trajectory of the wing of the insect, but Dr. J. B. Petti- grew, an English author, informs us that he had already mentioned this figure of 8 appearance described by the wing, and had represented it in the plates of his work.* It will be seen presently that, notwithstanding this apparent agree- ment, our theory and that of Dr. Pettigrew differ materially from each other. Changes of the plane of the wing.—The luminous appearance given during flight by the gilded wing of an insect, shows * On the Mechanical Applianees by which Flight is Maintained in the Animal Kingdom. Transact. of Linnean Society, 1867, p. 233. 188 ANIMAL MECIIANISM, besides, that during the alternate movements of flight, tl.c plane of the wing changes its inclination with respect to the axis of the insect’s body, and that the upper surface of the wing turns a little backward during the period of ascent, whilst it is inclined forward a little during its descent. If we gild a large portion of the upper surface of a wasp’s wing, taking precautions that the gold-leaf should be limited to this surface only, we see that the animal, placed in the sun’s rays, gives the figure of 8 with a very unequal intensity in tle two halves of the image, as represented in fig. 71. The figure printed thus $ gives an idea of the form which is then produced, if we consider the thick stroke of this character as corresponding with the more brilliant portion of the image, and the thin stroke as representing the part which is less bright. it is evident that the ecxuse of the phenomenon is to be found in a change in tle plane of the wing, and consequently in the incidence of th:e solar rays; being favourable to their reflection during the period of ascent, and unfavourable during the descent. If we turn the animal round, so as to observe the luminous figure in the opposite direction, the 8 will then present the unequal splendour of its two halves, but in the inverse direction; it Lecomes bright in the portion before relatively obscure, and vice versd. “We shall find in the employment of the graphic method, new proofs of changes in the plane of the wing during flight. This phenomenon is of great importance, for in it we seem to find the proximate cause of the motive force which urges for- ward the body of the insect. In order to verify the preceding experiments, and to assure ourselves still more of the reality of the displacement of the wing, which the optical method has revealed to us, we have introduced the extremity of a small pointer into the interior of the figure 8 described by the wing, and we have proved that in the middle of these loops there really exist free spaces of the form of a funnel, into which the pointer penetrates with- out meeting the wing, whilst, if we try to pass the intersection where the lines cross each other, the wing immediately strikes against the pointer, and the flight is interrupted. FLIGHT OF INSECTS. 189 Graphic method employed for the determination of the move- ments of the wing.—The preceding experiments throw great iight on the traces which we obtain by the friction of the insect’s wing against the blackened cylinder. Although the figures thus produced are for the most part incomplete, we are able, by means of their scattered elements, to reconstruct the figure which has heen shown by the optical method. It is to be remarked that without sensibly interfering with the movements of the wing, we can obtain traces of seven or eight millimetres when the wing is rather long. ‘The slight flexure to which the wing is subjected allows it to remain in contact with the cylinder to that extent; we thus obtain a partial tracing of the movement; so that if we are careful to produce the contact of the wing with the cylinder in different parts of the course passed through by the limb, we obtain a series of partial tracings which are complementary to each other, and thus allow us to deduce from them the form of a perfect curve of the revolution of a wing. Suppose, then, that in fig. 71, the curve described by the gilded wing is divided by horizontal lines into three zones: the upper one, formed by the upper loop; that in the middle, comprehending the two branches of the 8, crossing each other and forming a sort of X; the lower one including the lower loop. By registering the movement of the middle zone, we get Fic. 72.--Tracing of the middle region of the course of the wing of a bee, showing the crossing of the two branches of the 8. One of the branches is prolonged rather far, but still the tracing of the lower loop bas not been produced. firures somewhat resembling each other, in which the lines, placed obliquely with respect to each other, cut cach other. ‘This is the case in fig. 72, the middle region of the tracing of a bee, and in fig. 73, the middle portion of that of a humming-bird moth. 190 ANIMAL MECHANISM. The upper zone of the revolution of the wing gives tracings analogous with that of fig. 74, in which t’ e upper 'oops of the 8 are plainly visible. The tracings of the zone which ccrre- Fia. 73.—Tracing of the middle zone in the course described by the wi: g of a humming-bird moth. The numerous strokes ot which this tracing is formed, arise from the extremity of the wing being fringed and present- ing a rough su: face, sponds with the lower course of the wing give also loops like those of the upper arch (fig. 75 shows a specimen of them) ; so that the figure 8 of the tracing can be reproduced by Fie. 74.—This figure shows, in the tracing made by a wasp, the upper ‘oop, and all the extent of one }ranch o° the 8 The middle part of tus branch is merely dot:e | because of the feeble friction of the wing. bringing together the three fragments of its course successively obtained. If we could only once procure the entire tracing formed by the wing of an insect, we should then get a figure identical with that which our learned writer on acoustics, Koenig, was the first to obtain with a Wheatstone rod tuned to the octave, that is to say, describing an 8 in space. This typical form is represented in fig. 76. We shall see that the graphic method FLIGHT OF INSECTS. 191 is adapted to other experiments intended to verify those which we have already made by other means. By varying the inci- dence of the wing on the revolving cylinder, we can foretell what will be the figure traced, if it be true that the wing rally d. scribes the form of aun 8. Thus, if we obtain a figure he) f f f iN , ‘4 bh bid { Fie. 75.—Tracings of the wing of a wasp; several of the lower lo ps are dist.n-tly seen This tracing was obtained by holding the insect so as to rub the cylinder by the hinder point uf the wing, which gives very cx- tenled curves cenformable to that which we have foreseen, it will be an evident proof of the reality of these movements, Fic. 76.—Tracing of a Whertstone’s kaleidophone rod, tuned to the octive, that is tosay. vibriting twice transversely for each tonvitudinal vibration. (This figure is ta'cen from R. Keenig.: The slacken'ny speed of the eylinder produces an approxima ion of the cui ves towards the end of the figure. Let us suppose that the wing of the insect, instead of touching the cylinder with its point, as we have seen just now, brushes it with one of its edges; and let us admit for an instant that the 8 described by the wing is so lengthened that it departs but slightly from the plane passing through the vertical axis of this figure. If we press the wing slightly against the cylinder the contact will be continuous, and the tracing uninterrupted; but the fizure obtained will no longer be an 8; if the cylinder be immovable it will be an are of a circle, whose concavity will be turned towards the point of insertion of the wing, a point which will occupy pre- cisely the centre of the curve described. 192 ANIMAL MECHANISM. If the cylinder revolve, the figure will be spread out like the oscillation of a tuning-fork registered under the same conditions, and we shall obtain a tracing more or less ap- proaching in form to that which is represented in fig. 77. Fic. 77.--Traciny obtained with the wing of a bee oscillating in a plane which is sensibly tangential to the generatrix of tue registering cylinders. This form, which theory enables us to predict, is always produced when the plane in which the wing moves is tan- gential to the generatrix of the cylinder. But in examining these tracings we easily recognise chanyes in the thickness of the stroke—parts which appear to have been made by a greater or less friction of the wing on the cylin- der; we here find a new and certain proof of the existence of a movement in the form of an 8, as we now propose to show by a synthetic method. Let us take a Wheatstone’s rod tuned to the octave ; let us fix on it the wing of an insect as a style, and let us trace the vibra- tions which it executes. We shall obtain, if the cylinder be motionless, figures of 8 when the wing touc'es the paper by its point applied perpendicularly to its surface; and if the cylinder revolve, we shall have lengthened figures of 8. We may obtain, with a rod tuned to the octave, tracings identical with those given by the insect; of which a proof is afforded by the comparison of the two followius figures :— VDDD I'ic. 78 Tracings of a wasp; the insect is h-ld so that its wing touches ‘ the cylinder by its point, and traces especially the upper loop of the » FLIGHT OF INSECTS. 193 The graphic method also furnishes us with the proof of changes in the plane of the wing of the insect during the various instants of its revolutions. Fic. 79.—Tracings of a Wheatstone rod tuned to the octave. furnished with the wing of a wasp, and arranged so as to register especially the upper loop of the 8. Fig. 80 shows the tracing furnished by a wing of a hum- ming-bird moth, arranged so as to touch the cy linder with its posterior edge. By be inging the insect not too near, we can succeed in producing only intermittent contacts; these take place at the moment when the wing describes that part of the loops of the 8 whose convexity is tangential to the cylinder. The contacts which occupy the upper half of the figure alter- nate with those occupying the lower half. It is seen, besides, that it is not the same surface of the wing which produces these two kinds of friction. In fact, it is evident that the Fic. 80.—Tracings of the movements of the wing of a humming-bird moth (macroglossa) rubbing on the cylinder by its lower edge. marks of the upper half, each formed of a series of oblique strokes, are produced by the contact of a fringed border, while the contacts of the lower part are produced by another portion of the wing which presents a region unprovided with fringes, and leaves a whiter trace with boundaries better defined. 194 ANIMAL MECHANISM. These changes of plane are only found in great movements of the wing. ‘This is an important fact, for it will explain to us the method of their production. Fig. 81 was furnished like fig. 80 by the movements of the wing of a moth (macro- glossa); but on account of its fatigue these movements had lost nearly all their amplitude. Fic. 81.—-Tracing of the wing of a fatigued macroglossy. The figure 8 is no longer to be seen, but only a simple penduiar osciilation. We see only in this figure a series of pendular oscillations, showing that the wing merely rose and fell without changing its plane. The bright line which borders the ascending and upper parts of these curves is explained by the alternate flexions of the wing as it rubs upon the paper, and shows that the upper surface was rough, and left a distinct trace, while the lower surface presented no similar roughness. 3. Direction of the movement of the wing.—Oue more very important element is required to give us a complete knowledge of the movements which the insect’s wing executes in its flight. The optical method, while it shows us all the points in the curve described by the gilded extremity of the wing, does not indicate the direction in which this revolution is accomplished ; whatever may be the direction in which the wing moves in its orbit, the luminous image which it affords must be always the same. A very simple method has furnished a solution of this new question. Let fig. 82 be the luminous image furnished by the movements of the right wing of an insect. The direction of these movements which the eye cannot follow is indicated by arrows. To determine the direction of these movements, we take a small rod of polished glass and blacken it with the smoke of a wax taper; when holding the rod at right angles to the direction in which the wing moves, we present the blackened FLIGHT OF INSECTS. 195 end to (a), that is to say, in front of the lower loop. We endeavour to pass this point into the interior of the course described by the wing; but as soon as it enters this region, the rod receives a series of shocks from the wing, which rubs on its surface, and wipes off the soot which covered it. When we examine the surface of the glass, we see that the soot has been removed only on the upper part, which shows that at the point (a) of its course, the wing is descending. The same experiment being repeated in (a’), that is to say, in the hinder part of the orbit of the wing, it is found that the rod has been rubbed Leneath ; so that the wing at a’ was ascending. In the same manner it may be shown that the wing rises at b and descends at LU’. ) ‘| Fic. §2.—Determ‘nation of the direction of the movements of en insect’s wing. We now know all the movements executed by an insect’s wing during its revolution, as well as the double change of plane which accompanies them. The knowledge of this change of plane was given to us by the unequal brightness of the two branches of the luminous 8. Thus we may feel assured that in the course of the descending wing, that is from b’ toa in fig. 82, the upper surface of the wing turns slightly forward, while from a’ to b, that is, in ascending, this surface turns a little backwards. 196 ANIMAL MECHANISM. CHAPTER II. MECHANISM OF THE FLIGHT OF INSECTS. Causes of the movements of the witigs of insects—The muscles only give a motion to and fro, the resistance of the air modifies the course of the wing—Artificial representation of the movements of the insect’s wing —Of the propulsive effect of the wings of insects—Construe- tion of an artificial insect which moves horizontally—Change in the plane in flight. 1. Causes of the movements of the wing.—These exceedingly complicated movements would induce us to suppose that there exists in insects a very complex muscular apparatus, but anatomy does not reveal to us muscles capable of giving rise to all these movements. We scarcely find any but elevating and depressing forces in the muscles which move the wing ; besides this, when we examine more closely the mechanical conditions of the flight of the insect, we see that an upward and downward motion given by the muscles is sufficient to pro- duce all these successive acts, so well co-ordinated with each other; the resistance of the air effecting all the other move- ments. If we take off the wing of an insect (fig. 83), and holding it by the small joint which connects it with the thorax, expose it to a current of air, we see that the plane of the wing is Fic. 83.— Structure of an insect’s wing. inclined more and more as it is subjected to a more powerful impulse of the wind. ‘The anterior nervure resists, but the membranous portion which is prolonged behind bends on account of its greater pliancy. If we blow upon the upper sur- MECIIANISM OF INSECT FLIGIIT. 197 face of the wing, we see this surface carried backwards, while by blowing on it from beneath, we turn the upper surface forwards. In certain species of insects, according to Félix Plateau, the wing resists the pressure of the air acting from below upwards, more than that exerted in an opposite direction. Is it not evident, that in the movements which take place during flight, the resistance of the air will produce upon the plane of the wing the same effects as the currents of air which we have just employed? The changes in the plane, caused by the resistance of the air under these conditions, are pre- cisely those which are observed in flight. We have seen that the descending wing presents its anterior surface forwards, which is explained by the resistance of the air acting from below upwards; while the ascending wing turns its upper sur- face backwards, because the resistance of the air ucts upon it. from above downwards. It is, therefore, not necessary to look for special muscular actions to produce changes in the plane of the wing; these, in their turn, will give us the key to the oblique curvilinear movements which produce the figure of 8 course followed by the insect’s wing. Let us return to fig. 82: the wing which descends has at the same time a forward motion; therefore, the inclination taken by the plane of the wing, under the influence of the resistance of the air, necessarily causes the oblique descent from b’ toa. An inclined plane which strikes on the air has a tendency to move in the direction of its own inclination. Let us suppose, then, that the wing only rises and falls by its muscular action; the resistance of the air, by pressing on the plane of the wing, will force the organ to move forward while it is being lowered. But this deviation cannot be effected without the nervure being slightly bent. The force which causes the wing to deviate in a forward direction neces - sarily varies in intensity according to the rapidity with which the organ is depressed. ‘Thus, when the wing towards the end of its descending course moves more slowly, we shall see the nervure, as it is bent with less furce, bring the wing backwards in a curvilinear direction. Thus we explain 198 ANIMAL MECHANISM, naturally the formation of the descending branch of the 8 passed through by the wing. The same theory applies to the formation of the ascending branch of this figure. In short, a kind of pendular oscilla- tion executed by the uervure of the wing is sufficient, to- gether with the resistance of the air, to give rise to all the iovements revealed to us by our experiments. 2. Artificial representation of the movements of the insect’s wing. —These theoretical deductions require experimental veritica- tion, in order that they may be thoroughly borne out. We have succeeded in obtaining the following results :— Let fig. 84 be an instrument, which, by means of a multi- plying wheel and a connecting rod, gives to a flexible shaft rapid to and fro movements in a vertical plane. Let us take a membrane similar to that in the wings of insects, and fix it to this shaft, which will then. represent the main rib of the wing; we shall see this contrivance execute all the move- ments which the wing of the insect describes in space. If we illuminate the extremity of this artificial wing, we shall see that its point describes the figure 8, like a real wing; we shall observe also that the plane of the wing changes twice during each revolution in the same manner as in the insect itself. But in the apparatus which we now employ, the movement communicated to the wing is only upwards aud dowuwards. Were it not for the 1esistance of the air, the wing would only rise and full in a vertical plane; all these complicated movements are due therefore only to the resistance presented by the air. Consequently, it is this which bends the main rib of the wing, turning it in a direc- tion perpendicular to the plane in which its oscillation is effected, But if the wing be pushed aside from its main-rib at each of its alternate movements, it is evident that the air, acted upon by this wing, will receive an impulse in an opposite direction ; that is to say, it will escape at the side of the flexible portion of the wing, and cause in this direction a current of air. It is seen, in figure 84, that a candle placed by the side of the thin edge of the wing, is strongly blown by the current of air which is produced. In front of the wing, MECHANISM OF INSECT FLIGHT. 199 on the contrary, the air will be drawn forwards, so that the flume of another candle placed in front of the nervire will be strongly drawn towards it. Fic. 84.—Artificial representation of the movements of an insect’s wing. 8. Ofthe propulsive action of the wings of insects.—In the same manner as the squib moves in the opposite direction to the jet of flame which it throws out, the insect propels itself in the course opposed to the current of air produced by the movement of its wings. Each stroke of the wing acts on the air obliquely, and neutralizes its resistance, so that a horizontal force results, 200 ANIMAL MECHANISM. which impels the insect forwards. This resultant acts in the descent of the wing, as well as in its upward movement, so that each part of the oscillation of the wing has «n action favourable to the propulsion of the animal. An effect is produced analogous with that which takes place when an oar is used in the stern of a boat in the action of sculling. Each stroke of the oar, which presents an inclined plane to the resisting water, divides this resistance into two forces: one acts in a direction opposed to the motion of the oar, the other, in a direction perpendicular to that movement, and it is the latter which impels the boat. Most of the propellers which act in water overcome the resistance of the fluid by the action of an inclined plane. The tail of the fish produces a propulsion of this kind; that of the beaver does the same, with this difference, that it oscillates in a vertical plane. Even the screw may be con- sidered as an inclined plane, whose movement is continuous, and always in the same direction. Fic. 85.—Representation of the changes in the plane of the insect’s wing. If we wish to represent the inclination of the plane of the wing at the different parts of its course, we shall obtain fiz. 85, in which the arrows indicate the direction of the course of the wing, and the lines, whether dotted or full, show the inclination of its plane. After this, we need only show the figure traced by Dr. Pet- tigrew in his work on flight, to prove how far the ideas of this English writer differ from ours. The trajectory of the wing is represented by Dr. Petti- grew by means of fig. 86. Four arrows indicate, according to this writer, the direction of movements in the different por- MECHANISM OF INSECT FLIGHT 201 tions of this trajectory. These arrows are in the same direction, and this first fact is opposed to the experiment described in page 195, where we have investigated the direc- tion of the movement of the wing, and have found it pass in opposite directions in the two branches of the 8. In order to explain the form which he assigns to this trajectory, Dr. Pet- tigrew admits that in its passage from right to left, the wing describes by its thicker edge the thick branch of the 8, and the SS <_—_—. —— > ae Fic. 86.—Trajectory of the wing. thin branch by its narrow edge. The crossing of the 8 there- fore would be formed by a complete reversal of the plane of the wing during one of the phases of its revolution. In fact, the author seems to perceive in this reversal of the plane, an action similar to that of a screw, of which the air would form the nut. We will not dwell any longer on this theory, but we have deemed it necessary to bring it forward, in con- sequence of the appeal which has been made to us. 4. Artificial representation of an insect’s flight.—In order to render the action of the wing and the effects of the resistance of the air more intelligible, we have made use of the following apparatus :— Let fig. 87 represent two artificial wings composed of a rigid main-rib connected with a flexible membrane, composed of gold-beater’s skin, strengthened by fine nervures of steel; the plane of these wings is horizontal; a system of bent levers raises or lowers them without giving them any lateral mo- tion. The movement of the wings is caused by a little copper drum, in which the air is alternately condensed and rarefied by the action of a pump. The circular surfaces of this drum 10 3 —18 ‘Olg 8 ssoidoay—"y 2 oq} Juju RPogyav o q 0} JUOTANAYSUT IO ‘yoosat | B t! 4 O}RAYSN] Fq41y oT 8}vOSUT JO My NOL VA-y Ll HALA CUNT AN AVN AH VMOU HAL TAP Meo I is ra HELA MA ET a ————— ‘ MECHANISM OF INSECT FLIGHT. 203 are formed of india-rubber membranes connected with the two wings by bent levers; the air when compressed or rarefied gives to these flexible membranes powerful and rapid move- ments, which are transmitted to both wings at the same time. A horizontal tube, balanced by a counterpoise, allows the apparatus to turn upon a central axis, and serves at the same time to conduct the air into the drum, which produces the motion. This axis is formed of a kind of mercurial gaso- meter, which hermetically seals the air conduits, while it allows the instrument to turn freely in a horizontal plane. Thus arranged, the apparatus shows the mechanism by which the resistance of the air, combined with the movements of the wing, produces the propulsion of the insect. If we set in motion the wings of the artificial insect by means of the air-pump, we see the apparatus soon begin to revolve rapidly around its axis. The mechanism of the mo- tion of the insect is clearly illustrated by this experiment, entirely confirming the theories which we have deduced from optical and graphic analysis of the movements of the wing during flight. It may be asked whether the figure of 8 movements de- scribed by the wing of a captive insect are also produced when the creature flies. We have just seen that the bending of the main-rib is entirely due to the force which carries the insect forward when it has become free. We might therefore sup- pose that the main-rib of the wing does not yield to this force when the insect flies freely, and that the resulting horizontal force is shown only by the impulsion of the whole of the insect forwards. If, after having gilded the wing of the artificial insect, we look at the luminous image produced during its flight, we still . see the figure of 8 remaining, provided the flight be not too rapid. In fact, this figure is modified by the movement of the apparatus ; it becomes more extended, and resembles the 8 registered on a revolving cylinder, but it is not reduced toa simple pendular curve, which would be the case if the main- rib were always rigid. We can understand that this may be caused by the inertia of the apparatus, which cannot be affected by the variable movements which each stroke of the 204 ANIMAL MECHANISM. wing tends to bring to bear upon it. The artificial insect, when once set in motion, is sometimes before, and at others behind the horizontal force developed by the wing: on this account the rib of the wing is forced to bend, because the mass to be moved does not obey instantaneously the resulting horizontal force which the wing derives from the resistance of the air. The same phenomenon must take place in the flight of a real insect. 5. Plane of oscillation of an insect’s wing.—The apparatus which has just been described does not yet give a perfect idea of the mechanism of insect flight. We have been compelled, for the sake of explaining the movements of the wing more easily, to suppose that its oscillation is made from above downwards; that is to say, from the back of the insect towards its lower surface, when lying horizontally in the air. But we need only observe the flight of certain insects, the common fly, for instance, and most of the other diptera, to see that the plane in which the wings move is not verti- cal, but, on the contrary, very nearly horizontal. This plane directs its upper surface somewhat forward, and therefore the main-rib of the wing corresponds with this surface. Consequently, it is from below upwards, and a little forward that the propulsion of the insect is effected. The greater part of the force exerted by the wing will be employed in sup- porting the insect against the action of its weight; the rest of this impulse will carry it forward. By changing the inclination of the plane of oscillation of its wings, which can be done by moving the abdomen so as to displace the centre of gravity, the insect can, according to its wishes, increase the rapidity of its forward flight, lessen the speed acquired, retrograde, or dart toward the side. It is easily to be seen that, when a hymenopterous insect flying at full speed, stops upon a flower, this insect directs the plane of the oscillation of its wings backwards with consider- able force. Nothing is more variable, in fact, than the inclination of the plane in which the wings of different species of insects oscillate. The diptera appear to us to have this plane of oscillation 206 ANIMAL MECHANISM, very nearly horizontal; in the hymenoptera, tle wing moves in a plane of nearly 45°, but the lepidoptera flap their wings almost vertically, after the manner of birds. In order to render the influence of the plane of oscilla- tion more evident, and to show that the force derived from the resistance of the air has the double effect of raising the insect and directing its course, we must arrange the flight instrument in a peculiar manner. It will be necessary, in the first place, to be able to change the plane of oscillation of the wings, which is effected by placing the drum on a pivot at the ex- tremity of the horizontal tube, at the end of which it turns. To show the ascensional force which is developed in this new arrangement, the instrument must no longer be confined to a simple movement of rotation in the horizontal plane, but it must be able to oscillate in a vertical plane like the scale beam of a balance. Fig. 88 shows the new arrangement which we have given to the instrument in order to obtain this double result. In this modification of the apparatus, the air-pump which constitutes the moving force is retained ; as is also the turn- ing column which moves in the mercurial gasometer. But above the dise which terminates this column at the upper end, is fixed a new joint, which allows the horizontally-balanced tube at the end of which the artificial insect is placed, to oscillate in the vertical plane like a scale-beam. In order to establish a communication between the revolving column and the tube carrying the insect, we make use of a little india- rubber tube, sufficiently flexible not to interfere with the oscillatory movements of the apparatus. Other accessory modifications may be seen in fig. 88; one consists in employing a glass tube to convey the air from the pump which moves the insect; the other in a change of the mechanism by which motion is imparted to the wings. ‘The most important alteration is the introduction of a joint which allows us to give every possible inclination to the plune in which the wings oscillate. The apparatus being arranged so that the counterpoise, haviug been brought nearer to the point of suspension, does not cxuctly bulance the weight of the insect, the latter is MECHANISM OF INSECT FLIGIIT. 207 placed so that its wings may move in a horizontal plane, the main-rib being uppermost. Thus all the motive force is directed from below upwards, and as soon as the pump begins to act, we see the insect rise vertically. We can easily esti- mate the weight raised by the flapping of the wings, and as we can vary the weight of the insect by altering the position of the counterpoise, we can determine the effort which is developed according to the frequency or the amplitude of the strokes. By turning the insect half way round, so that its wings, still oscillating in a horizontal plane, should turn their main- rib downwards, we develop a descending vertical force which may be measured by removing the counterpoise to a greater or less distance, and causing it to be raised by the descent of the insect. If we adjust the plane of oscillation of the wings vertically, the insect turns horizontally round its point of support in the same manner as has been previously described and represented in fig. 87. Lastly, if we give to the plane of oscillation of the wings, the oblique. position which it presents in the greater number of insects; that is to say, so that the main-rib turns at once upwards and slightly forward, we see the insect rise against its own weight, and turn at the same time round the vertical axis; in a word, the apparatus represents the double effect which is observed in a flying insect, which obtains from the stroke of its wings, both the force which sustains it in the air, and that which directs its course in space. The first of these forces is by far the more considerable ; thus, when an insect hovers over a flower, and we see it illuminated obliquely by the setting sun, we may satisfy our- selves that the plane of oscillation of its wings is nearly hori- zontal. ‘This inclination must evidently be modified as soon as the insect wishes to dart off rapidly in any direction, but then the eye can scarcely follow it, and detect the change of plane, the existence of which we are compelled to admit by the theory and the experiments already detailed. A curious point of study would be the movements prepara- 208 ANIMAL MECHANISM. tory to fliglt. We speak not only of the spreading of the wings, which in the coleoptera precedes flight, a movement which is sometimes so slow as to be easily observed, nor of the unfolding of the first pair of wings, as wasps do before they fly. Other insects, the diptera, turn their wings as on a pivot around its main-rib in a very remarkable manner, at the moment when the wings which were previously ex- tended on the back in the attitude of repose start outwards and forwards before they begin to fly. Flies, tipule and many other kinds, show this preparatory movement very clearly when tlie insect, being exhausted, has no longer any energy in its flight. We see the main-rib of the wing remain sen- sibly immovable, and around it turns the membranous portion whose free border is directed downwards. ‘This position having been obtained, the insect has only to cause its wing to oscillate in an almost horizontal direction from backwards forwards, and from forwards backwards. If this motion as on a pivot did not exist, the wing would cut the air with its edge, and would be utterly incapable of producing flight. In other species, as in the agrion, a small dragon-fly, for instance, the four wings, during repose, are laid back to back one against the other above the abdomen of the animal. ‘Their main- ribs are upwards, and keep their position when the wings pass downwards and forwards; here no preparation for flight is necessary, In these insects, as in butterflies, the wing has only to set itself in motion when the creature flies. It is interesting to follow throughout the series of insects the variations presented by the mechanism of flight. The confirmation of the theory just propounded is found in the experiments which certain naturalists have made by means of vivisection. For the most interesting of these we are indebted to Professor M. Giraud, All these experiments prove that the insect needs for the due function of flight a rigid main-rib and a flexible membrane. If we cover the flexible part of the wing with a coating which hardens as it dries, flight is prevented. We hinder it also by destroying the rigidity of the anterior neryure. If we only cut off, on the contrary, a portion of the flexible membrane, parallel to its hinder edge, the power of flight THE FLIGHT OF BIRDS. 209 is preserved, for the wing retains the conditions essential to this function—namely, a rigid main-rib and a flexible sur- face. Lastly, in some species the combination of two wings is indispensable to flight; a kind of pseudo-elytron consti- tutes the nervure, and behind this is extended a membranous wing, which is locked in with the posterior border of the anterior one. This second wing does not present sufficient rigidity to enable it to strike the air with advantage, and in these insects flight is rendered impossible, if we cut off the false wing-case; it is as if we had destroyed the main-rib of a perfect wing. CHAPTER III. OF THE FLIGHT OF BIRDS. Conformation of the bird with reference to flight—Structure of the wing, its curves, its muscular apparatus—Muscular force of the bird ; rapidity of contraction of its muscles—Form of the bird; stable equilibrium ; conditions favourable to change of plane—Proportion of the surface of the wings to the weight of the body in birds of different size. ; Tue plan by which we have been guided in the study of insect flight must also be followed in investigating that of birds. It will be necessary to determine, by a delicate mode of analysis, the movements produced by the wing during flight; from these movements we may draw a conclusion as to the resistance of the air which affords the bird a fulcrum on which to exert its force. Then, having propounded cer- tain theories respecting the mechanism of flight, the force required for the work effected by the bird, &c., we will under- take to represent these phenomena by means of artificial instruments, as we have already done with respect to insects. But, before we enter methodically on this study, it will be useful to prepare ourselves for it by some general observa- tions on the organization of the bird, the structure of its wings, the force of its muscular system, its conditions of equilibrium in the air, &e. 210 ANIMAL MECHANISM. Conformation of the bird.—By the simple inspection of a bird’s wing, it is easy to see that the mechanism of its flight is altogether different from that of an insect. From the manner in which the feathers of its wing lie upon each other, it is evident that the resistance of the air can only act from below upwards, for in the opposite direction the air would force for itself an easy passage by bending the long barbs of the feathers, which would no longer sustain each other. This well-known arrangement, so carefully described by Prechlt,* has caused persons to suppose that the wing only needed to oscillate in a vertical plane in order to sustain the weight of the bird, because the resistance of the air acting from be- low upwards is greater than that which it exerts in thie opposite direction. This writer has been wrong in basing on the inspection of the organ of flight all the theory of its function. We shall find that experiment contradicts in the most decided manner these premature inductions. If we take a dead bird, and spread out its wings so as to place them in the position represented in fig. 89, we see that at Fic. 89.—Various curves of the wing of a bird at different points in its length. different points in its length, the wing presents very remark- able changes of plane. At the inner part, towards the body, the wing inclines considerably both downwards and_back- wards, while near its extremity, it is horizontal and some- times slightly turned up, so that its under surface is directed somewhat backward. Dr. Pettigrew thought that he could find in this curve a surface resembling a left-handed screw propeller; struck with the resemblance between the form of the wing and that of the serew used in navigation, he considered the wing of a * Untersuchungen iiber den Flug der Vogel. S8vo. Vienna: 1846. THE FLIGHT OF BIRDS. PA ih bird as a screw of which the air formed the nut. We do not think that we need refute such a theory. It is too evi- dent that the alternating type which belongs to every muscular movement cannot tend to produce the propulsive action of a screw; for while we admit that the wing revolves on an axis, this rotation is confined to the fraction of a turn, and is fol- lowed by rotation in the opposite direction, which in a screw would entirely destroy the effect produced by the previous movement. And yet the English writer to whose ideas we refer has been so fully convinced of the truth of his theory that he has wished to extend it to the whole animal kingdom. He proposes to refer locomotion in all its forms, whether terrestrial, aquatic, or aerial to the movements of a screw propeller. Let us only seek in the anatomical structure of the organs of flight the information which it can afford us ; that is to say, that which refers to the forces which the bird can develop in flight, and the direction in which these forces are exerted. Comparative anatomy shows us in the wing of birds an analogue of the fore limb of mammals. The wing when reduced to its skeleton, presents, as in the human arm, the humerus, the two bones of the fore-arm, and a rudimentary hand, in which we still find metacarpal bones and phalanges. The muscles also present many analogies with those of the anterior limb of man; some parts of these bear such a resem- blance both in appearance and in function, that they have been designated by the same name. In the wing of the bird, the most strongly developed muscles are those whose office it is to extend or bend the hand upon the fore-arm, the fore-arm on the humerus, and also to move the humerus, that is say, the whole arm, round the articula- tion of the shoulder. In the greater number of birds, especially of the larger ° kinds, the wing seems to remain always extended during flight: Thus, the extensor muscles of the different portions “of this organ would serve to give this organ the position necessary oe rendering flight possible, and for maintaining it in this posi- tion ; as to motive work, it would beexecuted by other muscles, nuh stronger than the preceding —namely, the pectorals. 212 ANIMAL MECHANISM. All the anterior surface of the thorax of birds is occupied by powerful muscular masses, and especially by a large muscle, which by its attachments to the sternum, to the ribs and the humerus, is analogous with the large pectoral muscle in man and the mammals; its office is evidently to lower the wing with force and rapidity, and thus to gain from the air the fulcrum necessary to sustain, as well as to move the muss -of the body. Underneath the large pectoral is found thie medium pectoral, whose action is to raise the wing. On the exterior, the small pectoral, acting as accessory to the large one, extends from the sternum to the humerus. Since the force of a muscle is in proportion to the volume of this organ, when we consider that these pectoral muscles represent about one-sixth part of the whole weight of the bird, we shall immediately understand that the principal function of flight devolves on these powerful organs. Borelli endeavoured to deduce from the volume of the pec- toral muscles the energy of which they are capable; he con- cluded that the force employed by the bird in flight was equal to 10,000 times its weight. We will not here refute the error of Borelli; many others have undertaken to combat his notions, and have substituted for the calculations of the Italian physiologist others whose correctness it would be difficult to prove. Such great contradictions as are to be found in the different estimates formed of the muscular force of birds have arisen from the fact that these attempts at measurement were premature. Navier, depending on calculations which were not based on experiment, considered himself authorized in admitting that birds develop enormous mechanical work: seventeen swallows would exert work equal to a horse-power. ‘‘ As easy would it be,” said M. Bertrand, facetiously, ‘‘to prove by calculation that birds could not fly—a conclusion which would rather com- ‘promise mathematics.” Besides, we find that Cagniard Latour admitted, basing his assertion on theory, that the wing is lowered eight times more quickly than it rises. Experiment, however, proves that the wing of the bird is raised more quickly than it descends. Estinate of the inuseular force of ‘he bird.—We must at the FORCE OF BIRDS. 213 present day measure mechanical force under the form of work. It is necessary for this purpose to know what’ resistance is met with by the wing at each instant of its movements, and the direction in which it repels from it this resisting medium. Such an estimate requires a previous knowledge of the resistance of air against surfaces of different curvature moving with various degrees of velocity ; it supposes at the same time that we know the movements of the wing as well as their velocity and direction at every instant. .This problem will perhaps be the last which we may hope to solve, but we may even now study from other points of view the force exerted by the muscles of the bird, and esti- mate some of its characteristics. Thus, we may obtain experimentally a measure of the maxi- mum effort which these muscles can exert. This measure may not really correspond with the real effort displayed in flight, but it may keep us from forming exaggerated estimates. If the calculations of Borelli, or even those of Navier were correct, we ought to find in the muscles of the bird a very considerable statical force. Experiments show, however, that these muscles do not seem capable of more energetic efforts than those of other animals. Experiment.—Our first experiment was made upon a buz- gard. The creature being hoodwinked was stretched upon its back, with its wings held on the table by bags filled with small shot. The application of the hood plunges these birds into a sort of hypnotism, during which we can make any num- ber of experiments upon them, without their evincing any pain. We laid bare the great pectoral muscle and the humeral region, we placed a ligature on the artery, disarticulated the elbow-joint, and took away all the rest of the wing. A cord was fixed to the extremity of the humerus, and at the end of this cord was placed a scale-pan, into which small shot was poured. The trunk of the bird being rendered perfectly im- movable, we excited the muscle by means of interrupted in- duced currents ; while the artificial contraction was produced, an assistant poured into the pan the small shot, until the force of contraction of the muscle was counteracted. At this 214 ANIMAL MECHANISM, movement, the weight supported was 2 kilogrammes 880 grammes (about 6°38 lbs. troy). If we take into account the unequal length of the arms of the lever, on the side of the power and that of the resistance, we find that the pectoral muscle had been able to produce a total effort of 12 kilogrammes 600 grammes (about 33°78 lbs. troy), which would correspond with a traction of 1298 grammes (3°66 lbs. troy) for each square centimetre of the transverse section of the muscle. A pigeon placed under the same conditions has given, as its entire effort, a weight of 4860 grammes, which, according to the transverse section of its muscle, raised to 1400 grammes the effort which each muscular bundle could develop for every square centimetre of section. If we admit that the electrical action employed in these experiments to make the muscles contract, develops an effort less than that which is caused by the will, it is not less true that these estimates, which are less than those which we generally obtain in the muscles of mammals under the same conditions, do not authorize us in recognizing in the bird any special muscular power. Lastly, if we were to take into account in this estimate the laws of thermo-dynamics, we might affirm that the bird would not develop in flight a very especial amount of work. All work, in fact, can only be performed with a certain waste of substance, and if the act of flying involved a great expenditure of work, we ought to find a notable diminution of weight in a bird when it returns from a long flight. Nothing of this kind is observed. Persons who train carrier pigeons have given us information on this point, from which we gather that a bird which has traversed in a single flight a distance ot fifty leagues (which it seems to do without taking any food), weighs only a few grammes less than at its departure. It would be interesting to make these experiments again with greater exactitude. Of the rapidity of the muscular actions of birds.—One of the most striking peculiarities in the action of a bird’s muscles is the extreme rapidity with which force is engendered in them. Among the different species of animals whose muscular RAPIDITY OF BIRDS. 215 acts we have determined, the bird is that which, after the insect, has given the most rapid movements. This rapidity is indispensable to flight. In fact, the wing when lowered, can meet with a sufficient resistance in the air only when it moves with great velocity. The resistance of the air against a plane surface which strikes upon it and repels it, evidently increases in the ratio of the square of the velocity with which this plane is displaced. It would be of no use for the bird to have energetic muscles, capable of effecting considerable work, if they could only give slow movements to the wing; their force could not be exerted for want of resistance, and no work could be pro- duced. It is otherwise with terrestrial animals which run or creep on the ground, with a speed more or less rapid accord- ing to the nature of their muscles, but which in every case utilize their muscular force by means of the perfect resistance of the ground. The necessity of velocity in the movements of fishes has been already observed, since the water in which they swim resists more or less, according to the rapidity with which their tails or their fins act upon it. Thus the muscular action of fishes is rapid, but much less so than that of birds, which move in a medium far more yielding. In order to understand the rapid production of movements in the muscles of the bird, we must remember that these movements are connected with chemical action, produced in the very substance of the muscle, where they give rise, as in machines, to heat and motion. We must therefore admit that these actions are excited and propagated more readily in the muscles of birds than in those of any other species of animals. Inthe same manner the different kinds of powder used in war differ much from each other in the rapidity of their explosion, and consequently give very different velocities to the projectiles which they impel. Lastly, the form of movement presents in different species of birds peculiarities which we have already noticed. We have seen in Chapter VIII. how much the dimensions of the pectoral muscles vary according as the strokes of the wing are required to have much force or great extent; therefore we shall not recur again to this subject. 216 ANIMAL MECHANISM. Form of the bird.—All those who have studied the flight of birds have very properly paid great attention to the form of these creatures, as rendering them eminently adapted to flight. They have recognised in them perfect stable equilibrium in the aerial medium. They have thoroughly understood the part played by the large surfaces formed by the wings, which may sometimes act as a parachute, to produce a very slow descent; while at other times these surfaces glide through the air, and following the inclination of their plane, allow the bird to descend very obliquely, and even to rise, or to hover while keeping its wings immovable. Some observers have gone so far as to admit that certain species of birds play an entirely passive part in flight, and that giving up their wings to the impulse of the wind, they derive from it a force capable of carrying them in every direction, even against the wind. It seems to us interesting to discuss, in a few words, this important question in the theory of flight. The stable equilibrium of the bird has been well explained ; there is nothing for us to add to the remarks which have been made on this subject. The wings are attached exactly at the highest part of the thorax, and consequently when the outstretched wings act upon the air as a fulcrum, all the weight of the body is placed below this surface of suspension. We know also that in the body itself, the lightest organs, the lungs and the air vessels, are in the upper part; while the mass of the intestines, which is heavier, is lower; also that the thoracic muscles, which are so voluminous and heavy, occupy the lower part of the system. ‘Thus the heaviest part is placed as low as possible beneath the point of sus- pension. The bird, as it descends with its wings outspread, will thus present its ventral region downwards, without its being neces- sary to make an effort to keep its equilibrium; it will take this position passively, like a parachute set free in space, or like the shuttlecock when it falls upon the battledore. But this vertical descent is an exceptional case; the bird which allows itself to fall is almost always impelled by some previous horizontal velocity; it therefore slides obliquely upon the air, as every light body of large surface does when placed FORM OF THE BIRD. 217 under the conditions of stable equilibrium which we have just described. Mons. J. Pline has carefully studied the different kinds of sliding movement which may take place; he has even represented them by means of small pieces of appa- ratus which imitate the insect or the ‘bird when they fly without moving their wings. If we take a piece of paper of a square form, and fold it in ] ° | -}—_$_ '___—_&_--— 3 -g—_ —_——_o- Fre. 90.—R: presenting, on the left, a contrivance intended to imitate the hovering of birds; it is placed in equilibrium by two equal weights attached to the extremities of a wire which is fixed in the lower part of the angle formed by the folded paper. This piece of apparatus falls verti- cally, as shown by the successive positions of the wire when attwched to the two weights. On the right is seen the same contrivance connected with one we.ght only. Its fall is parabolic, as shown by the dotted trajectory. the middle, so as to furm a very obtuse angle (fig. 90); then, at the bottom of this angle, let us fix with a little wax a piece of wire attached to two masses of the same weight; we shall have a system which will maintain stable equilibrium in the air. If the centre of gravity pass exactly through the centre of the figure, we shall see it descend vertically when we let it go, the convexity of its angle being directed down- wards. If we take away one of the weights, so as to alter the position of the centre of gravity, the apparatus, instead of descending vertically, will follow an oblique trajectory, and will glide through the air with an accelerated motion (fig. 90, to the right). 218 ANIMAL MECHANISM. The trajectory passed through by this little instrument will be situated in a vertical plane, if the two halves of the appa- ratus are perfectly symmetrical; but if they are not, it will turn towards the side in which while it cuts the air it finds the greater resistance. These effects, which are easily un- derstood, are identical with those which the resistance of the rudder causes in the advancing motion of a ship. They can also be produced in a vertical direction ; so that the trajectory of the apparatus may be a curve with its concavity above or below, as the case may be. Every thin body which is curved tends to glide upon the air according to the direction of its own curvature. Fic 91.—We have turned back the rivht hand corner of the two planes which form the angle. After a descent in a parabolic curve, the apparatus rises again, as shown by the dotted trajectory. If we turn back either the anterior or posterior edge of our little apparatus, we shall see it at a given moment of its descent rise in opposition to its own weight, but it will soon lose its upward movement (fig. 91). Let us consider what has taken place. So long as the paper descended with but slight rapidity, the effect of its curvature was not perceptible, because the air resists surfaces only in the ratio of the velocity with which they move. But when the rapidity was sufficiently great, an FORM OF THE BIRD. 219 effect was produced similar to that of a rudder, which turned up the anterior extremity of the little apparatus, and gave it an ascending course. Immediately, the weight which was the generating force of its gliding movement through the air began to retard it; in proportion as it rose, it lost its velo- city until it reached the poiut of rest. After that, a downward movement commenced, then an ascent in the opposite direc- tion, so that the paper descended to the ground by successive oscillations. If we give the apparatus a slight concavity downwards, the opposite effect is produced; we see (fig. 92), at a certain See 2 ees | = _— bee Fic. 92.—The right hand corner of the pline of the angle has been bent downwards. After a parabolic desceut, the apparatus falls very rapidly in a perpendicular direction. moment, the trajectory turns abruptly downwards, and the falling body strikes the ground with considerable violence. In this second case, when the rudder-like effect is produced, the new direction has in its favour the weight which hastens the fall of the little instrument, as in the former experiment it rendered the re-ascent more slow. We have dwelt upon these effects, because they often occur in the flight of birds. They are mentioned in the old treatises on falconry, which describe the evolutions of birds used in 220 ANIMAL MECHANISM. hawking. Without going further back, we find in Huber* the description of these curvilinear movements of falcons, to which they gave the name of passades, and which consisted of an oblique descent of the bird, followed by a re-ascent, which they called ressource (from the Latin, resurgere). ‘‘ The bird,” says Huber, ‘‘ carried forward by its own velocity, would dash itself against the ground, were it not that it exercises a cer- tain power which it possesses of stopping when at its utmost speed, and turning directly upwards to a sufficient height to enable it to make a second descent. This movement is able not only to arrest its descent, but also to carry it without any further effort, as high as the level from which it started.” Surely, there is some exaggeration in saying that the bird can rise, without any active effort, to the height from which it stooped; the resistance of the air must destroy a portion of the force which it had acquired during its descent, and which must be transformed into a rising impulse. We see, how- ever, that the phenomenon of the ressource has been noticed by many observers, and that it has been considered by them as, to a certain extent, a passive motion in which the bird has to employ no muscular force. The act of hovering presents, in certain cases, a great ana- logy with the phenomena just described. When a bird—a pigeon, for example—has traversed a certain distance by flap- ping its wings, we see it suspend all these movements for some instants, and glide on either horizontally, ascending or descending. ‘The latter kind of hovering motion is that which is of longest duration; in fact, it is only an extremely slow fall, but in which the weight assists the movement, while it checks it in the horizontal or ascending course. In the last two forms, the wing, directed more or less obliquely, derives its point of resistance from the air, like the child’s plaything called a kite, but with this difference, that the velocity is given to the kite by the tractile force exerted on the string when the air is calm, while the bird when it hovers utilizes the speed which it has already acquired, either by its oblique fall or by the previous flapping of its wings. We have already said, that observers had admitted that * 8vo. Geneva, 1784. FORM OF THE BIRD. 221 certain birds which they called ‘sailing birds” could sustain and direct themselves in the air solely by the action of the wind. This theory has all the appearance of a paradox; we cannot understand how the bird, when in the wind, and using no exertion, should not be affected by its force. If the passades, or the changes which it effects in the plane of its wings, can sometimes carry it in a direction con- trary to that of the wind, these can be only transient effects, compensated afterwards by a greater force driving them before the wind. Nevertheless, this theory of sailing flight has been advo- cated with great talent by certain observers, and especially by Count d’Esterno, the author of a remarkable memoir on the flight of birds. “Every one,” says this author, ‘‘ must have seen certain birds practise this kind of sailing flight; to deny it, is to contradict evidence.” We know s0 little yet of the resistance of the air, especially with reference to the resolution of this force when it acts against inclined planes under different angles, that it is im- possible to decide on this question as to sailing flight. It would be rash absolutely to condemn the opinion of observers, by depending on a theory or on notions as vague as those which we possess on this subject. Fiatio of the surface of the wings to the weight of the body.— One of the most interesting points in the conformation of birds consists in the determination of the ratio borne by the surface of the wings to the weight of the bird. Is there a constant relation between these two quantities? This question has been the cause of many controversies. It has already been shown that, if we compare birds of different species and of equal weight, we may find that some have their wings two, three, or four times more extended than the others. The birds with large wing surfaces are those which usually give themselves up to a kind of hovering flight, and have been called sailing birds; while those whose wing is short or narrow are more usually accustomed to a flight which resembles rowing. If we compare together two “rowing” or two “sailing” birds; if, to be more 222 ANIMAL MECHANISM. exact, we choose them from the same family, in order to have no difference between them except that of size, we shall find a tolerably constant ratio between the weight of these birds and the surface of their wings. But the determination of this ratio must be based upon certain considerations which have _ been long disregarded by naturalists. Mons. de Lucy has endeavoured to compare the surface of the wings with the weight of the body in all flying animals. Then, in order to establish a common unit between creatures of such different species and size, he referred all these esti- » mates to an ideal type, the weight of which was always one kilogramme. ‘Thus, having ascertained that the gnat, which weighs three milligrammes, possesses wings of thirty square millimetres of surface, he concluded that in the gnat type each kilogramme of the animal was supported by an alar sur- face of ten square millimetres. Having drawn up a comparative table of measurements taken in animals of a great number of different species and sizes, Mons. de Lucy has arrived at the following re- sults :— Surface per | Species. eight of omens ie? of Wings. Kilogramme. nat . 4 4 3 milligr. 30 sq. millim. 10 sq. millim. Butterfly. - 20 centigr. |1663 ,, e 398 abse Pigeon .| 290 grammes. | 750 sq. centim. |2586 sq. centim. Stork . +: | 2265 - 4, AGOB os asks LORS = SSS od ae Fic 93.—Apparatus to investigate the contraction of the thoracic muscles of the bird. The upper convex surface is formed of a membrane of india- rubber supported by a spiral spring; this part is applied to the muscles. The lower surface, in contact with the corset, carries four small hooks which are fastened in the stuff and keep the instrument in its place, The bird flies in a space fifteen metres square and eight metres high. ‘The registering apparatus being placed in the centre of the room where the experiment is made, twelve metres of india-rubber tubing are sufficient to establish a constant communication between the bird and the apparatus, A sort of corset is fixed on a pigeon (see figure 94). Under this corset, between the stuff, which is tightly stretched, and 230 ANIMAL MECHANISM. the pectoral muscles, a small instrument is slipped, which is intended toshow the dilatation of the muscles, and is constructed in the following manner : A little metal pan (fig. 93), containing within it a spiral spring, is closed by a membrane of india-rubber. This closed pan communicates with a tube transmitting air. Fic. 94.—Experiment to determine by the electrical and myographical methods, at the same time, the frequency of the movements of the wing and the relative durations of its elevation and depression. Each pressure on the india-rubber membrane depresses it, and the spring gives way ; the air is driven out of the pan, and escapes by the tube. When the pressure ceases, the air is returned to the instrument by the elasticity of the spring MOVEMENTS OF THE WINGS OF BIRDS. 231 which raises the membrane. Alternate outward and inward currents of air are thus established in the tube, and this movement transmits to the registering apparatus the siguals of the less or greater pressures exerted on the membrane of the small pan. The registering instrument is the lever drum, with which the reader is already acquainted. It gives an ascending curve while the muscle contracts, and a descending one when it is relaxed. Vig. 94 represents the general arrangement of the experi- ment, in which the electric telegraph and the transmission of air are used at the same time. It shows a pigeon fitted with a corset, under which is slipped the instrument which is to show the action of the pectoral muscles. ‘The transmitting tube ends ina registering apparatus, which writes on a révolving cylinder. At the extremity of the pigeon’s wing is the instrument which opens or closes an electric current, as the wing rises or siuks. ‘The two wires of the circuit are represented as separated from one another; within the circuit are seen two elements of Bunsen’s pile, and the electro-magnet which, being furnished with a lever, registers the telegraphic signals of the movements of the wing, Expceriment.—The bird is set free at one extremity of the room, the dove-cot in which it is usually kept being placed at the opposite end. The bird as it flies naturally seeks its nest in which torest. During its flight we obtain the tracings represented by fig. 95. -It is seen that the tracings differ according to the kind of bird on which the experiment is made. IJlowever, we ob- serve in each of the tracings the periodical return of the two movements a and 6, which are produced at each revolution of the wing. : On what do these two muscular acts depend? It is easy to discover that the undulation a corresponds with the muscle that elevates the wing, and 6 with that which depresses it. This can be proved: first, by collecting, at the same-time as the muscular tracing, those of the ascending and descending movements of the wing transmitted by electricity. When | SY Sutoviy sig ¢ I [IA HAOf- 5 ‘ Pa | y j i Pp synyjosq? ue j SULINP sp4iq jo so1oeds quo ) Wody PeUulyzyo sul [e.ojood oy} Jo sou 7 ‘ j WAV AVAVAVAVAVAVAE AAAI INV DIIIIIIMIPINISIDIIIIIN INNIS III DIINIIIINIININS MOVEMENTS OF TIIE WINGS OF BIRDS. 233 these two tracings are placed over each other, they show that the time of the elevation of the wing agrees with the dura- tion of the undulation a, and the time of its depression coin- cides with the undulation b. From this we may see how the undulations a and b are produced in all the muscular tracings obtained from birds. In fact, close by the portion of the bird’s breast on which the experiment is made, and near the projecting edge of the sternum, there are two distinct layers of muscle; the more superficial one is formed by the large pectoral, the depressor of the wing; the deeper one by the middle pectoral, or ele- vator of the wing, whose tendon passes beliind the forked part of the sternum to attach itself to the head of the humerus. These two muscles, being superposed, will act by their dilatation on the apparatus applied to them; the elevator of the wing, swelling as it contracts, gives its signal by the un- dulation a; the great pectoral signals the depression of the wing by the undulation 8. We may verify the correctness of this explanation by means of a very simple experiment. Anatomy shows us that the muscle which elevates the wing is narrow, and only covers the depressor in its most inward part, situated along the ridge of the sternum; so that if we displace the little apparatus which shows the movement of the muscles, and remove it a little outwards, it will occupy a part where the depressor of the wing is not covered by the elevator, and the tracing will only present a simple undulation, corresponding with b in the curves of fig. 95. Itis thus plainly shown that the undulations a and b in the muscular tracings of the birds on which we have experimented correspond exactly with the actions of the principal muscles-which elevate and depress the wing; but we cannot attach great importance to the form of the tracings, in order to deduce from them the precise nature of the movement performed by the muscle. These movements seem, in fact, to encroach on each other; so that the relaxation of the elevator of the wing is probably not completed when the depressor begins to act. We expcct nothing more from these tracings than that 231 ANIMAL MECHANISM. which they more readily furnish ; namely, the number of the revolu- tions of the wing, the greater or less regularity of these movements, and the equality or inequity of each of them. Confining the question within these limits, experiment shows that the strokes of the bird’s wing differ in amplitude and in frequency from one moment to another as they fly. When they first start, the strokes ate rather fewer, but much more energetic ; they reach, after two or three strokes of the wing, a rhythm almost regular, which they lose again when they are about to settle fir. 96). ‘oonds . < a ® = = = o $ - roe > ae > “a car Pes ' ry a » . 2 — i _ - rs; : od -~ , ~< 2 « . ~~ Ua) = INTERNATIONAL SCIENTIFIC SERIES. NOW READY. I. FORMS OF WATER, in Cleuds, Rain, Rivers, Ice, and Glaciers. By Prof. Joun TynpatL, 1 vol. Cloth. Price, $1.50. Il. PHYSICS AND POLITICS; or, Thoughts on the Application of the Prin- ciples of ‘ Natural Selection” and “ Inheritance” to Political Socicty. Water Bacrnor. 1 vol. Cloth. Price, $1.50. III. FOODS. By Epwarp Smita, M.D., LL.B. F.R.S. 1 vol. Cloth. Price, $1.75. 1V. MIND’ AND BODY. The Theories of their Relations. By ALEXANDER Baty, LL.D. 1 vol.,12mo. Cloth. Price, $1.50. V. THE STUDY OF SOCIOLOGY. By HmRBERT SPENCER. Price, $1.50. VI. THE NEW CHEMISTRY. By Prof. Jositan P. Cooxr, Jr., of Marvard University. 1 vol.,12mo. Cloth. Price, $2.00. VU. THE CONSERVATION OF ENERGY. By Prof. Batrour Srewart, LL. D., F.R.S. 1 vol.,12mo. Cloth. Price, $1.50. Vill. ANIMAL LOCOMOTION ; or, Walking, Swimming, and Flying, with a Dis- sertation on Aéronautics. By J. Bett Perrigrew, M.D. 1 vol., 12mo. Illustrated. Price, $1.75. IX. RESPONSIBILITY IN MENTAL DISEASE. By Henry Maupstey, M.D. 1 vol.,12mo. Cloth. Price, $1.50. X. THE SCIENCE OF LAW. By Prof. Suetpon Amos. 1 vol., 12mo. Cloth. Price, $1.75. XI. ANIMAL MECHANISM. A Treatise on Terrestrial and Aérial Locomotion. By E. J. Marry. With 117 Illustrations. Price. $1.75. XII. THE HISTORY OF THE CONFLICT BETWEEN RELIGION AND SCIENCE. By Joun Wm. DRAPER, M.D., LL. D., author of ‘* The Intel- leetual Development of Europe.” Price, $1.75. XIU. THE DOCTRINE OF DESCENT, AND DARWINISM. By Prof. Oscar Scumipr, Strasburg University. Price, $1.50. XIV. THE CHEMISTRY OF LIGHT AND PHOTOGRAPHY: In its Applica- tion to Art, Science, and Industry. By Dr. Hermann Voce. 100 Illustra- tions. Price, £9.00, XY. FUNGI; their Nature, Influence, and Uses. By M. ©. Cooxe, M. A., LL. D. Edited by Rey. M. J. Berkretey, M.A., F.L.S. With 109 Illustrations. Price, $1.50. XVI. THE LIFE AND GROWTH OF LANGUAGE. By Prof. W. D. Wurtr- nky, of Yale College. Price, $1.50. XVII. MONEY AND THE MECHANISM OF EXCHANGE. By W. STan.ey Jrevons, M.A., F.R.S. Price, $1.75. XVIII. THE NATURE OF LIG HT, with a General Account of Physical Optics. Dr. Evugenrt LomMMEL, Professor of Physics in the University of Erlangen. With 88 Illustrations and a Plate of Spectra in Chromo-lithography. Price, $2.00. XIX. ANIMAL PARASITES AND MESSMATES, By Monsieur VAN BENEDEN, Professor of the University of Louvain. With 83 lllustrations. Price, $1.50. XX. ON FERMENTATIONS. By P. Scutirzenpercen, Director at the Chemical Laboratory at the Sorbonne. With 28 Illustrations. Price, $1.50. XXI. THE FIVE SENSES OF MAN. By Juuius BERNSTEIN, Oz O. Professor of Physiology in the University of Halie. With 91 Illustrations. Price, $1.75. XXII. THE THEORY OF SOUND IN ITS RELATION TO MUSIC. By Prof. Prmrro Buiaserna, of the Royal University of Rome, With numerous Woodcuts, 1 vol., 12mo. Cloth. Price, $1.50. XXL STUDIES IN SPECTRUM ANALYSIS. By J. Norman Locxyer. With Illustrations. 1 vol.,12mo. Cloth. Price, $2.50. XXIV. A HISTORY OF THE GROWTH OF THE STEAM-ENGINE. Rosert H. Tauvrsron, A. M., C. E., Professor of Mechanical Engineering in the Stevens Institute of Technology, Hoboken, New Jersey, etc., ete. 163 Illustrations. 1 vol.,12mo. Cloth. Price, $2.50. D. APPLETON & CO., Pusuisners, 549 & 551 Broapway, New York. INTERNATIONAL SCIENTIFIC SERIES. VOLUMES IN PREPARATION. THE SUN. By Prof. Youn, of Princeton College. With numerous Illustrations CHROMATICS. From the Modern Point of View. By Prof. O. N. Roop, of Columbia Colleze. ripe | Saha tl OF THE LOGIC OF SCIENCE. By Cuartes S, EIRCE. BREAD: The Theory and Science of its Production. By Prof. E. N. Horsrorp. THE FIRST PRINCIPLES OF THE EXACT SCIENCES EX- PLAINED TO THE NON-MATHEMATICAL. By Prof. W. Kincpon CLIFFORD. (/x press.) THE = Saat ve ie OF THE SEA, By W. B. Car- PENTER, LL. D., THE BRAIN ee tie FUNCTIONS. By J. Lvys, Physician to the Hospice de la Salpétriére, With Illustrations. (/ press.) THE HELMHOLTZ (.), Professor of Physics in the University of Berlin. Popular Lectures on Scientific Subjects. Translated by E. Atkinson, Ph. D., F.C.S. With an Introduction by Prof. Tyndall. 12mo. Cloth. Price, $2.00. D. APPLETON & CO., 549 & 551 Broadway, New York. Works of Charles Merivale. D. D. I History of the Romans under the Empire. _ Beautifully printed. 7 vols., small 8vo. Cloth, $14.00; half calf, extra, $28.00. ri, Conversion of the Northern Nations. The Boyle Lectures for the Year 1865, delivered at the Chapel Royal, Whitehall. 1 vol., large 12mo. Cloth, $1.50. Il. The Conversion of the Roman Empire. The Boyle Lectures for the Year 1864, delivered at the Chapel Royal, Whitehall. Large 12mo. Cloth, $1.50. LY; History of the Romans. Complete in 8 vols., small 8vo, hand- somely printed on tinted paper. (The eighth volume containing the “Conversion of the Northern Nations” and the ‘‘ Conversion of the Roman Empire.’’) Half calf, extra, $35.00, Ve. A General History of Rome, from the Foundation of the City to the Fall of Augustulus, B. c. 753, 4. p. 476. I1vol.,12mo. Cloth, $1.50. ——— +@+ = Smith’s (Philip, B.A.) Ancient History, from the Earliest Records to the Fall of the Western Empire. With Maps, Plans, and Engravings. 3 vols., 8vo, Cloth, $10.50; sheep, $13.50. Taylor’s Manual of Ancient and Modern History. Edited by Professor Henry. 8vo. Cloth, $3.50. Ancient History, separate. 8vo. Cloth, $2.00. Modern History, separate. Svo. Cloth, $2.00. D, APPLETON & CO., 549 & 551 Broadway, New York. A New Volume of the ‘‘ International Scientific Series.” we ELS tO RY ? OF THE Growth of the Steam - Engine. By ROBERT H. THURSTON, A.M, C.E., Professor of Mechanical Engineering in the Stevens Institute of Technology, Hoboken, N. J., ete., ete. With 163 Illustrations, including 15 Portraits: 1 vol., 12mo. : c ‘ 5 5 . s 5 a Price, $2.50. GOWN EDEN aS. A. THE STEAM-ENGINE AS A SIMPLE MACHINE. Il. THE STEAM-ENGINE AS A TRAIN OF MECHANISM. Ill. THE DEVELOPMENT OF THE MODERN STEAM-ENGINE. IV. and Y. THE MODERN STEAM-ENGINE. VI. THE STEAM-ENGINE OF TO-DAY. Vil. and VIII. THE PHILOSOPILY OF THE STEAM-ENGINE. “This is the most exhaustive, lucid, and trustworthy account of a most interesting subject. There are two features of the work to which we would direct particular at- tention. One is the full and careful synopsis of the records and traditions relating to the first discovery and gradual development of the essential principle of heat-engines. The other is the chapter outlining the direction and limitations of improvement in the future."—New York Sun. “Prof. Thurston almost exhausts his subject; details of mechanism are followed by interesting biographies of the more important inventors. If, as Prof Thurston con- tends, the steam-engine is the most important physical agent in civilizing the world, its history is a desideratum, and the readers of the present work will agree that it could have a no more amusing and intelligent historian than our author.”—Boston Gazette. “One of the most interesting and valuable volumes in Appletons’ ‘ International Scientific Series. -— New York Haupress. ~The work is all that it professes to be—a brief encyclopedia of the genesis and development of that great instrument which is to-day the right hand of human power. It isa work of real erudition and much practical use.”— Philadelphia North American. “Tt gives not only the history of the steam-engine, but of the several inventors of all countries who have created and improved it, with descriptions of all kinds and varieties of engines and their improvements, stationary, pumping, locomotive, steam- boats, propellers, iron-clads, fire-engines, beam, horizontal, oscillating, single, coupled, direct, compressed, high and low pressure, link-valves, slide-valves, ball and poppet- valves, lever valves, condensing and noncondensing, all sorts of boilers, ete., with many anecdotes and interesting incidents.°— Boston Post. D. APPLETON & CO., 549 & 551 Broadway, New York. RAMBLES IN WONDERLAND; oR, Up the Yellowstone, and among the Geysers and other Curiosities of the National Park. ; By EDWIN J. STANLEY. WITH MAP AND TWELVE ILLUSTRATIONS. Large 12m0. Puper ecver, price, 75 cents; cloth, $1.25. “The natural wonders of the Great West, and especially those of the Yellowstone region, have been frequently described. But it can be safely said that, however familiar they may have become, either through books or by travel there, every one will find these sketches of them well worth reading. It is a most impressive volume; and this comes from the fact that the author gives a plain and clear description, and does not attempt to portray the wonder or the admiration which he himself felt. The re- sult is, that the grandeur of the objects themselves reaches, directly and naturally, the soul of every reader. We commend the volume as one which, in the first place, has an abundance of things which every Ameri- can, at least, ought to know, and one which, in the second place, is un- usually readable." —N. Y. Churchman. “Mr. Edwin J. Stanley has made a book with the title ‘Rambles in Wonderland’ out of his notes and letters written during a season of travel up the Yellowstone River and through the Yellowstone Park. The book pretends to no special literary excellence, but is briskly written, and may be read with interest. Some of its descriptions are very graphie and picturesque, and, with its excellent illustrations, it is a travel-sketch of much interest and value.’—N. Y. Evening Post. “The famous cafions, the hot springs or geysers, the National Park, the Indian agencies, the tribes of the Sioux, Crows, and other aboriginals ; Indian figiting, the massacre of pleasure-parties in the National Park, hunting, fishing, and the usual adventures of travel in a wild country, are among the subjects treated.’"—V. Y. Home Journal. “ An account of the summer rambles of a Methodist preacher in the wondrous Yellowstone region, The numerous chapters are vivid pictures of the journey to and through that enchanted land.’—J. Y. Christian Advocate. “This is a well-printed book of 179 pages, by a worthy and useful Southern Methodist preacher—one of our brethren on the far frontier of the new Northwest. There is much in the book to interest and instruct. It is pleasant reading for a man; it would delight a boy with any soul in him,.”’—Macon (Ga.) Wesleyan Christian Advocate, D. APPLETON & CO., 549 & 551 Broapway, New York. Wye OP ERole S WILLIAM CULLEN BRYANT. Illustrated 8vo Edition of Bryant’s Poetical Works. 100 Engravings by Birket Foster, Harry Fenn, Alfred Fredericks, and other Artists. 1 vol., 8vo. Cloth, gilt side and edge, $4.00; half calf, marble edge, $6.00; full morocco, antique, $8.00; tree calf, $10.00. Household Edition. 1 vol.,12mo. Cloth, $2.00; half calf, $4.00; morocco, $5.00; tree calf, $5.00. Red Line Edition. With 24 Illustrations, and Portrait of Bryant, on Steel. Printed on tinted paper, with red line. Square 12mo. Cloth, extra, $3.00; half calf, $5.00; morocco, $7.00; tree calf, $8.00. Blue and Gold Edition. 18mo. Cloth, gilt edge, $1.50; tree calf, marble edge, $3.00; morocco, gilt edge, $4.00, Letters from Spain and other Countries. Ilvol.,12mo. Price, $1.25. The Song of the Sower. [Illustrated with 42 Engravings on Wood, from Original Designs by Hennessy, Fenn, Winslow Homer, Hows, Griswold, Nehlig, and Perkins ; engraved in the most perfect manner by our best Artists. Elegantly printed and bound, Cloth, extra gilt, $5.00; morocco, antique, $9.00. The Story of the Fountain. With 42 Illustrations by Harry Fenn, Alfred Fredericks, John A. Hows, Winslow Homer, and others. In one handsome quarto volume. Printed in the most perfect manner, on heavy calendered paper. Uniform with ‘The Song of the Sower.” 8vo. Square cloth, extra gilt, $5.00; morocco, antique, $9.00. The Little People of the Snow. Illustrated with exquisite En- gravings, printed in Tints, from Designs by Alfred Fredericks. Cloth, $5.00; morocco, $9.00. D. APPLETON & CO., 549 & 551 Broapway, New York. A New Volume of the “ International Scientific Series.” STUDIES IN SPECTRUM ANALYSIS. By J. NORMAN LOCKYER, F.R.S., CORRESPONDENT OF THE INSTITUTE OF FRANCE, ETC. With 60 Illustrations. - . - - 1vol.,12mo. Cloth, $2.50. From the New York Evening Post. “The peculiar excellence and high rank of all the preceding volumes of this series is at once a guarantee of the high value and character of this. Mr. Lockyer has in this work entitled himself to a place among the rare, good, industrious, and every way faithful men of the times, who are so successfully disseminating the highest and most advanced kinds of useful knowledge among the people. These men are, par excellence, the uplifters and civilizers of humanity.” From the New York Times. ‘*Many colored plates and woodcuts assist the eye in this pleasantly-written little treatise. A certain amount of historical matter is interspersed here and there. To Sir William Herschel, and the elder Draper, of New York, the author vives the credit of the first steps in i ag co photography; but the telescope of . M. Rutherfurd, of New York, says Mr. Lockyer, is the instrument of the future, so far as stellar astronomy is concerned.”’ From the New York Evening Express. “The study of spectrum analysis is one fraught with a peculiar fascination, and some of the author’s experiments are exceedingly picturesque in their results. They are so lucidly described, too, that the reader keeps on, from page to page, never flagging in interest in the matter before him, nor putting down the book until the last page is reached.” From the Boston Gazette. “Mr. Lockyer’s work on spectrum analysis is admirably adapted to instruct the non-scientific reader, and to make him acquainted with the results of one of the most important discoveries of the century.” From the Philadelphia Weekly Times. “Mr. Lockyer is one of the very foremost authorities in this important and interesting department of scientific research. The difficulties of the subject are in large measure relieved by an abundance of illustrations, and especially by the colored plates and the remarkable reproductions of spectrum photographs.” From the Providence Journal. ‘**Mr. Lockyer is a scientist who speaks with authority. He shows the mar- velous agency of spectrum analysis, and tells us not only the constituents of the sun, but clearly explains the process by which the result is reached.” From the Baltimore Gazette. ‘*The freshest work upon this interesting subject.” D. APPLETON & CO., 549 & 551 Broapway, New Yor«g. TENT-WORK IN PALESTINE: A Record of Discovery and Adventure. By CLAUDE REIGNIER CONDER, R.E., OFFICER IN COMMAND OF THE SURVEY EXreDITION. Published for the Committee of the Palestine Exploration Fund. With 33 Illustrations by J. W. WHY MPER. 2 VoLs., 8v0. . 5 2 2 Crora, $6.00, © ° ° CONTENTS. THe Roap To JERUSALEM. SHECHEM AND THE SAMARITANS. Tue Survey oF SAMARIA. THe Great PLAIN oF EspR#LON. Tue Nazareto HILts. CARMEL AND ACRE, SHARON. : Damascts, BAALBEx, AND Hermon. Samson’s CountrY. BETHLEHEM AND Mar Sua. JERUSALEM. Tus TempLte AND CALVARY. JERICHO. THe JornDAN VALLEY. Hepron AND BrERSHEBA. Tue Lanp oF BENJAMIN. THe Drsert oF JUDAH. THE SHEPHDAH AND PHILISTRIA,. GALILEE, THe ORIGIN OF THE FELLAHIN. Lire AND HaBits OF THE FELLAHIN. Tue Bepawin. Jews, Russrans, AND GERMANS. Tue Fertitity OF PALESTINE. This book is intended to give as accurate a general description as possible of Palestine, which, through the labors of the Committee of the Exploration Fund, is brought home to us in such a way that the student may travel, in his study, over its weary roads and rugged hills without an ache, and may ford its dangerous streams and pass through its mala- rious plains without discomfort. D. APPLETON & CO., 549 & 551 Broapway, New York. AM Shir EXPERIMENTAL SCIENCE SERIES. In neat 12mo0 volumes, bound in cloth, fully illus- trated. Price per volume, $1.00. Tus series of scientific books for boys, girls, and students of every age, was de- signed by Prof. Alfred M. Mayer, Ph. D, of the Stevens Institute of Technology, Hoboken, New Jersey. Every book is addressed directly to the young student, and he is taught to construct his own apparatus out of the cheapest and most common materials to be found. Should the reader make all tbe apparatus described in the first book of this series, he will spend only $12.40. NOW READY: I.—LIGHT. A Series of Simple, Entertaining, and Inexpensive Experiments in the Phenomena of Light, for Students of every Age. By ALFRED M. MAYER and CHARLES BARNARD. II—SOUND: A Series of Simple, Entertaining, and Inexpensive Experiments in the Phenomena of Sound, for the Use of Students of every Age. By ALFRED MARSHALL MAYER, Professor of Physics in the Stevens Institute of Technology; Member of the National Academy of Sciences; of the American Philosophical Society, Philadelphia ; of the American Academy of Arts and Sciences, Boston ; of the New York Academy of Sciences ; of the German Astronomical Society ; of the American Otological Society ; and Honorary Mem- ber of the New York Ophthalmological Society. In AcTIVE PREPARATION. III, Vision and the Nature of Light. IV. Electricity and Magnetism. Vv. Heat. VI. Mechanics. VII. Chemistry. VIUl. The Art of experimenting with Cheap and Simple In- struments. D. APPLETON & CO., Pullishers, 549 & 551 Broadway, New York. A thoughtful and valuable contribution to the best religious literature of the day. RELIGION AND SCIENCE. A Series of Sunday Lectures on the Relation of Natural and Revealed Religion, or the Truths revealed in Nature and Scripture. By JOSEPH LE CONTE, PROFESSOR OF GEOLOGY AND NATURAL HISTORY IN THE UNIVERSITY OF CALIFORNIA, 12mo, cloth. Price, $1 50. OPINIONS OF THE PRESS. ‘¢ This work is chiefly remarkable as a conscientious effort to reconcile the revelations of Science with those of Scripture, and will be very use- ful to teachers of the different Sunday -schools.”—Dedrozt Union. «Tt will be seen, by this résumé of the topics, that Prof. Le Conte grapples with some of the gravest questions which agitate the thinking world. He treats of them all with dignity and fairness, and in a man- ner so clear, persuasive, and eloquent, as to engage the undivided at- tention of the reader. We commend the book cordially to the regard of all who are interested in whatever pertains to the discussion of these grave questions, and especially to those who desire to examine closely the strong foundations on which the Christian faith is reared.” —ZBoston Fournal. «¢A reverent student of Nature and religion is the best-qualified man to instruct others in their harmony. ‘The author at first intended his work for a Bible-class, but, as it grew under his hands, it seemed well to give it form inaneat volume. The lectures are from a decidedly re- ligious stand-point, and as such present a new method of treatment.” —Philadelphia Age. «©This volume is made up of lectures delivered to his pupils, and is written with much clearness of thought and unusual clearness of ex- pression, although the author’s English is not always above reproach. It is partly a treatise on natural theology and partly a defense of the Bible against the assaults of modern science. In the latter aspect the author’s method is an eminently wise one. He accepts whatever sci- ence has proved, and he also accepts the divine origin of the Bible. Where the two seem to conflict he prefers to await the reconciliaticn, which is inevitableif both are true, rather than to waste time and words in inventing ingenious and doubtful theories to force them into seeming accord. Both as a theologian and a man of science, Prof. Le Conte’s opinions are entitled to respectful attention, and there are few who will not recognize his book as a thoughtful and valuable contribution to the best religious literature of the day.” —Mew York World. D. APPLETON & CO., Publishers, 549 & 551 Broadway, N. Y. APPLETONS’ AMERICAN CYCLOPADIA. NEW REVISED EDITION. Entirely rewritten by the ablest writers on every subject. Printed from new tyfe, and illustrated with several thousand Engravings and Maps. The work originally published under the title of THE New AMERICAN CycLoPpaDIA was completed in 1863, since which time the wide circulation which it has attained in all arts of the United States, and the signal developments which have taken place in eve Pecnchs of science, literature, and art, have induced the editors and publishers to submit it to an exact and thorough revision, and to issue a new edition entitled THE AMERICAN CycLopzepia. Within the last ten years the progress of discovery in every department of knowledge has made a new work of reference an imperative want. ‘The movement of political affairs has kept pace with the discoveries of scierce, end their fruitful application to the industrial and useful arts and the convenience and refine- ment of social life. Great wars and consequent revolutions have occurred, involving national changes of peculiar moment. The civil war of our own country, which was at its height when the last volume of the old work appeared, has happily been ended, and a new course of commercial and industrial activity has been commenced. Large accessions to our geographical knowledge have been made by the indefatigable explorers of Africa. ‘The great political revolutions of the last decade, with the natural result of the lapse of time, have brought into public view a multitude of new men, whose names are in every one’s mouth, and of whose lives every one is curious to know the particulars. Great battles have been fought, and important sieges maintained, of which the details are as yet preserved only in the newspapers, or in the transient public: itions of the day, but which ought now to take their place in permanent and authentic history. In preparing the present edition for the press, it has accordingly been the aim of the editors to bring down the information to the latest possible dates, and to furnish an ac- curate account of the most recent discoveries in science, of every fresh production in literature, and the newest inventions in the practical arts, as well as to give a succinct and original record of the progress of political and historical events. The work was begun after long and careful preliminary labor, and with the most ample resources for carrying it on to a successful termination. None of the original stereotype plates have been used, but every page has been printed on new type, forming in fact a new Cyclopedia, with the same plan and com- pass as its predecessor, but with a far greater pecuniary expenditure, and with such improvements in its composition as have been suggested by longer experience and enlarged knowledge. The illustrations, which are introduced for the first time in the present edition, have been added not for the sake of pictorial effect, but to give greater lucidity and force to the explanations in the text. They embrace ‘all branches of science and of natural his- tory, and depict the most famous and remarkable features of scenery, architecture, ané art, as well as the various processes of mechanics and manufactures. Although intended! for instruction rather than embellishment, no pains have been spared to insure their artistic excellence; the cost of their execution is enormous, and it is believed that they - will find a welcome reception as an admirable feature of ‘the Cyclopedia, and worthy of its high character. This work is sold to subscribers only, payable on delivery of each volume. It is completed in sixteen large octavo volumes, each containing about 800 pages, fully illus- trated with several thousand Wood Engravings, and with numerous colored Litho- graphic Maps. PRICE AND STYLE OF BINDING. In extra cloth, per vol. ...cccccueee $5.00 j Jn half russia, extra gilt, per vol. .$8 00 In library leather, per vol.........+ 6.00 | Jn full mor. ant., gilt edges, per vol.10.09 In half turkey morocco, per vol..... 7.00 | In full russia, per VOl.... 601.0004 + +%O.00 *,* Specimen pages of the AMERICAN CycLopp1A, showing type, illustrations, etc.. .. # -P 1 pag tne £ ’ gty will be sent gratis, on application. New York: D. APPLETON & CO., PUBLISHERS. Matar y woe fos 4° aac Se ee ee oe SD os (G53 Sad St