EIGHTEENTH REPORT MICHIGAN ACADEMY OF SCIENCE 1916

$$
1
$$

EIGHTEENTH ANNUAL REPORT

THE NIICHIGAN ICAIENI OF SCIEICE

PREPARED UNDER THE DIRECTION OF THE COUNCIL

BY
RICHARD A. SMITH
EDITOR

$$
\begin{aligned}
& \text { XA } \\
& \text { N7345 } \\
& 1916
\end{aligned}
$$

LETTER OF TRANSMITTAL.

To Hon. Woodbridge N. Ferris, Governor of the State of Michigan: Sir-I have the honor to submit herewith the XVIIIth Annual Report of the Michigan Academy of Science for publication, in accordance with Section 14 of Act No. 44 of the Public Acts of the Legislature of 1899.

East Lansing, Michigan, November, 1916.

CONTENTS.

ECONOMICS.

Page
An Agricultural Business Problem, Charles S. Dunford 15
Some Aspects of Municipal Accounting, Frank F. Kolbe 22
A Contribution to the Theory of Tax Shifting, R. S. Tucker 30
Botany.
Pathophytes and Pharmacophytology, A. D. Bush 43
A Simplification of the Present Freezing Point Method (Abstract), O. E. Harrington and R. P. Hibbard. 47
A Simplified Apparatus for Measuring the Conductivity of Electrolypes, R. P. Hibbard, 49
The Influence of an Incomplete Culture Solution on Photo-Synthesis (Abstract), O. M. Gruzit and R. P. Hibbard 50
The Hormone Theory of Chromosome Action, Ernst A. Bessey 53
The Sexual Cycle in Plants, Ernst A. Bessey. 59
Fern Notes, Oliver A. Farwell 78
A Convenient Method of Washing Fixed Preparations, Richard DeZeeuw 94
Zoology.
Notes on Pleodorina Californica Shaw, Bertram J. Smith 99
The Process of Ovulation in Amphibia, Bertram J. Smith 102
Periodical Literature and Publications of Learned Societies of Interest to Zoologists contained in the University of Michigan Library, Robert W. Hegner 106
Illustrations
Figure 1. Lotsy's diagrammatic scheme to illustrate his idea of the relationship of the various groups of plants 60
Figure 2. Union of similar gametes of Hydrodictyon. (After Coulter) 61
Figure 3. Sexual cycle in Metazoa and in Fucus, RD $=$ Reduction division, $\mathrm{CU}=$ Cell union, $\mathrm{NU}=$ Nuclear union, $\mathrm{G}=$ Point of gamete formation 67
Figure 4. Probable sexual cycle of Ulothrix, Oedogonium, Desmidiaceae, Spirogyra, etc. 67
Figure 5. Sexual cycle of such Florideae as possess a distinct tetrasporic generation. $\mathrm{C}=$ Point at which carpospores are formed 69
Figure 6. Sexual cycle of Nemalion 69
Figure 7. Sexual cycle of Mosses and Ferns, $\quad \mathrm{SP}=$ Point of spore production 70
Figure 8. Sexual cycle of Flowering Plants. 70
Figure 9. Sexual cycle in Pyronema 72
Figure 10. Sexual cycle in the Rusts. 72
Figure 11. Sexual cycle in Tilletia. 73
Figure 12. Sexual cycle in Agaricales. 73
Figure 13. Botrychium multifidum var. dichotomum 87
Figure 14. Tank for washing fixed preparations 95

OFEICERS FOR 1916-1917.

President, W. H. Hobbs, Ann Arbor.
Secretary-Treasurer, Ricumbi ne Keeuw, East Lansing.
Librarian, Crystal Thompson, Ann Arbor.
Editor, Richird A. Smitir, Lansing.

VICE-PRESIDENTS.

Agriculture, A. C. Anderson, East Lansing. Geography and Geology, L. P. Barrett, Lansing.
Zoology, R. W. Hegner, Ann Apbor.
Sanitary and Medical Science, H. W. Emerson, Amm Arbor.
Botany, G. H. Coons, East Lansing.
Economics, Frank T. Carlton, Albion.

PAST PRESIDENTS.

Dr. W. J. Beal, Amherst, Mass.
Dr. W. H. Sherzer, Ypsilanti.
Bryant Walker, Ese., Detroit.
Professor V. M. Spaulding, Tueson, Ariz.
Dr. Henry B. Baker, Holland, Mich.
Professor Jacob Reighard, Ann Arbor.
Professor Chas. E. Barr, Albion.
Dr. V. C. Vaughan, Anm Arbor.
Professor F. C. Newconibe, Ann Arbor:
Dr. A. C. Lane, Tufts College, Mass.
Professor W. B. Barrows, East Lansing.
Dr. J. B. Pollock, Amn Arbor.
Professor M. S. W. Jefferson, Ypsilanti.
Dr. Chas. E. Marshall, East Lansing.
Professor Frank Leverett, Ann Arbor:
Dr. F. G. Novy, Aun Arbor.
Professor Wh. E. Prateger, Kalamazoo.

Dr. E. C. Case, Ann Arbor.
Dr. A. G. Ruthven, Ann Arbor.
Dr. E. A. Bessey, East Lansing.

COUNCLL.

The Council consists of the above-named ofticers and all resident last-Presidents.

Twenty-first Annual Meeting of the

MICHIGAN ACADEMY OF SCIENCE.

ANN ARBOR, MICHIGAN

March 28 to $31,1916$.
GENERAL PROGRAM.

T'uesday, March 2δ

4:00 p. m. Council meeting. Room Z 231, Natural Science Building. Reports of committees.
4:30 p. m. General meeting of the Academy, Auditorium, Natural Science Building. Election of members.
$8: 00 \mathrm{p} . \mathrm{m}$. Public lecture by Dr. Charles B. Davenport, Director of the Station for Experimental Evolution, Carnegie Institution of Washington, on "The Relation of Juvenile Promise to Adult Performance." Auditorium, Natural Science Building.
9:00 p. m. Smoker, given by the Research Club in Alumni Memorial Hall.
Wednesday, March 29
8:30 a. m. Council meeting, Room Z 231, Natural Science Building.
9:00 a. m. Meeting of sections as follows:
Geology, Room Z 355, Natural Science Building. Sanitary Science, Upper Lecture Room, New Medical Building. Botany, Room B 207, Natural Science Building. Geography and Geology, Room G 217, Natural Science Building. Economics, Second Floor, Economics Building.
$1: 30 \mathrm{p} . \mathrm{m}$. Meetings of sections for the reading of papers and election of vicepresidents.
8:00 p. m. Presidential Address by Prof. Ernst A. Bessey, "The Sexual Cycle in Plants." Auditorium, Natural Science Building. Lecture open to the public.
9:00 p. m. General informal social gathering. Room M 333, Natural Science Building.

Thursday, March 30

8:30 a. m. Council meeting, Room Z 231, Natural Science Building.
9:30 a. m. General business meeting, Room Z 355, Natural Science Building.
10:00 a. m. Meeting of sections which have not completed the reading of papers.
12:00 a. m. Luncheon for biologists, Room B 100, Natural Science Building.

Friday, March 31

$\mathrm{S}: 00 \mathrm{p} . \mathrm{m}$. Public address under the auspices of the Department of Geology by Dr. Ellen Churchill Semple on "Geographic Influence in Japan," Auditorium, Natural Science Building.

SECTION OF GEOLOGY AND GEOGRAPHY.

I. D. Scott, Chairman

Room G 217, Natural Science Building
Wednesday, March 29, 9 a. m. and 1:S0 p.m.
A Conception of Paleography. E. C. Case.
The Extremes of Mountain Glacial Erosion. W. H. Hobbs. Underground Water Conditions at the Steere Farm. Frank Leverett.
Observations on Certain Paleozoic Corals in the Rominger Collection. G. M. Ehlers.
Pre-Agassiz Glacial Lake in Northern Minnesota. Frank Leverett.
The Crystallography of Anglesite from the Tintic District, Itah. E. H. Iraus and A. B. Peck.

SECTION OF SANITARY AND MEDICAL SCIENCE.

E. T. Hallman, Chairman

West Lecture Room, Medical Building
Wednesday March 29, 1:30 p.m.
Further studies on the Protein Poison. Dr. V. C. Vaughan. Bacterial Study of the Drinking Fountain. Miss Zoe Northrup.
The Bacterial Flora of the Generative Organs of Cattle. Dr. Ward Giltner.
Is Bacterium Abortus (Bang) Pathogenic or Humans? L. H. Cooledge.
The Use of Amniotic Fluid as a Culture Medium. L. C. Ludlum.
Title to be announced. Dr. F. G. Novy.
Title to be announced. Dr. P. H. DeKriuf.
Viability of Ps. radicicola under Aerobic and Partial Anaerobic Conditions. L. O. Ockerblad.
The Effect of Natural and Modified Noil Conditions on Bacteria. Oswald M. Cruzit.

SECTION OF ECONOMICS.
F. T. Carlton Chairman

Second Floor, Economics Building
Wedncsday, March 29, 9:00 a. m. and 1:30 p.m.
The . Whrich-V reedand Currency and the European War Crisis. Ceorge W. Dowrie,
University of Michigan.

Farm Accounting: a Business Problem. (C. S. Dunford, Michigan Igricultural College.
Influences of the Industrial and social Revolution upon the Agricultural Industry of America. Roy H. Holmes, Hillsdale College.
The Teaching of Sociology, Its Place in the College Curriculum. (i. S. Dow, Olivet.
Farm Finance. W. O. Hedrick, Michigan Agricultural College.
Municipal Accounts of Dayton. Frank F. Kolbe, University of Michigan.
The Valuation of Land. Floyd E. Armstrong, University of Michigan.
The Teaching of Statistıes. Warren S. Thompson, University of Michigam.
English Taxation. Rufus S. Tucker, University of Michigan.

SECTION OF BOTANY.

LeRoy H. Harvey, Chairman
Room B 207, Natural Science Building
Wednesday, March 29, 9:00 a. m. and 1:30 p. m.
Reproduction in Opuntia rafinesquii (Illus.) Wm. E. Praeger.
The Hormone Theory of Chromosome Action. (Illus.) Ernst A. Bessey.
Fern Notes. O. A. Farwell.
A Convenient Method of Washing Fixed Preparations. Richard de Zeeuw.
A Macrosporium Disease of Red Clover. (Illus.) L. J. Krakover.
On the Pronunciation of Scientific Names. H. A. Gleason.
Some Studies of the Botrytis Neck Rot of Onion. M: T. Munn.
Pathophytes and Pharmacophytology. A. D. Bush.
Plants of Chippewa County. (By title.) C. K. Dodge.
Plants of Schoolcraft County. (By title.) C. K. Dodge.
Influence of an Incomplete Culture Solution on Photosynthesis. (). M. (iruzit.
A Simplification of the Present Freezing-Point Method for the Determination of Osmotic Pressure of Plant Saps. O. E. Harrington.
Further Studies on a Simplified Method for Determining the Conductivity of Electrolytes. (Iilus.) R. P. Hibbard.
Phytophthora infestans in its Relation to Weather. (Illus.) G. H. Coons.
Smuts of Michigan Plants. (Illus.) G. H. Coons.
Unreported Michigan Fungi for 1915. (By title.) C. H. Kauffman.
Some Mycological Features of the Mountains of Washington. (Illus.) ('. H. Kauffman.
The Mucors in Culture and Herbarium. (Illus.) Alfred H. W. Povah.
The Wintering of Coleosporium solidaginis. E. B. Mains.
The Elementary Species of Oenothera; Their Origin by Mutation and Behavior on Hybridization. H. H. Bartlett.
The Effect of Light, Temperature and Length upon the Geotropic Reaction of Primary Roots. Richard M. Holman.
The Ferns and Their Distribution about Douglas Lake, Michigan. Frank T. McFarland. Read by H. A. Gleason.

SECTION OF ZOOLOGY.

W. W. Neweomb, Chairman
Room Z 355, Natural Science Building
Wednesday, March 29, 9:00 a.m. and 1:30 p.m.

The Collection of Formicidae in the Museum of Zoology, Lniversity of Michigan. Frederick M. Gaige.
A Synopsis of the Tadpoles of Michigan Frogs. Helen Thompwon (iaige.
A New Michigan Turtle. Alexander G...Ruthven.
Fox's List of Michigan Birds. Bradshaw H. Swales.
On the Number of Young in the Garter-snakes. Crystal Thompson.
The Birds of the Douglas Lake Region, Michigan. Norman A. Wood.
A Fossil Musk Ox Skull from Michigan. E. C: Case.
The Rearing of Volvox in the Laboratory. George R. Larue.
Differential Mitoses in the Ovaries of a Gyrinid Beetle. C. P. Russell.
The Origin of Differentiation in the Eggs of Certain Insects. R. W. Hegner.
Periodical Zoological Literature in the Library of the Lniversity of Michigan. R. W. Hegner.

Polyembryony in a Parasitic Hymenopteron. R. W. Hegner.
Methods for the Collection and Preservation of Animal Parasitic Worms. Cicorge R. LaRue.

The Crane Flies of the Upper Peninsula. J. Speed Rogers.
A Preliminary Survey of the Fauna of Third Sister Lake. J. Speed Rogers.
Oxygen Favoring Male-production in Rotifers. A. Franklin thull and somia Ladoff.
A Problem in Evolution. Bryant Walker.
The Process of Ovulation in Amphibia. Bertram G. Smith.
Notes on Pleodorina californica Shaw. Bertram G. Smith.
Exhibit of Photographs of Michigan Animals. A. F. Combs.
Some Conceptions of Palaeogeography. E. C. Case.
The Phylogenetic Position of the American Opossum. E. D. Huntington.
Some Effects of Sunlight on Paramoecium. H. M. McCurdy.
The Opportunities for Zoological Work at the Biological Station of the Tniversity of Michigan. O. C. Glaser.

ECONOMICS.

AN AGRICULTURAL BUSINESS PROBLEAK.

BY CIIARLESS S. DUNFORD.

I.

The agitation for farm acoomting in connection with progressire agriculture is not a recent propaganda. Experimental methorls applied to agricultural production in the first half of the eighteenth century induced Arthur Fomg to write, "If this noble spirit continues, we shall soon see husbandry in perfection, anm built upon as just and philosophical principles as the art of medicine." In the latter part of this century, however, he complains, "One can mot get the farmers to keep accomnts." Much experimental effort was expended by hushandmen during the eighteenth rentury which resulted in an increase in the average rield per acre ; at the same time accounting practice seems to have been neglecterl. The implication in Arthur Young's conviction of the necessity for the keeping of accounts in connection with the agricultural empiricism of this perion is that, in the enf, agriculture as a business can mot be really scientifically conducted without the keeping of recorts from which may be derluced rertain facts and upon the basis of which imformation a better reorganization of the protuction factor's may be made.

Howerer, anomalous it may seem, very careful records of the farm business were kept during the thirteenth and fourteenth centuries by English husbandmen. Referring to the later part of the thireenth rentury, J. E. Thorold Rogers in his Economic Interpretation of History says, "Nothing can be more carefully amd exhanstively drawn than the bailiff's account. He made romgh notes of his receipts and expenditures and from the notes, which occasionally survived, the andit was based and the roll engrossed. * * * * * * Everything is accounted for, all receipts, including those from the manor court, all rents and all produce. The acreage sown, the seed required for the purpose, the live and deat stock on the farm are carefully noted eren to an egg. a peck of tail corn or a chicken, all losses given, all allowances recorded and the andit completed." Iccording to Professor Rogers, these ac-
combts were almost alwits in Latin and seemed for the most part, to have been the work of the mendicant clergy. These crude single entry records made possible the determination of the approximate gain or loss upon the business of the year.

From the standpoint of agricultural production, the characteristic difference between the periods of the thirteenth and the fourteenth centuries and of the eighteenth century is in the state of the agricultural arts, the prevailing condition in the former being static and in the latter dynamic. Under the static condition of agricultural arts the husbandman felt the pinch of the Law of Diminishing leturns. The exigency of his position impelled a careful analysis of his business. The fairly exhaustive records kept by him attest the premeditated extension of his productive activity. On the other hand, by reason of the progress in agricultural practices during the eighteenth centurs, less imperative demands were made upon the husbandman for the careful utilizat tion of his productive instruments. The advance in agricultural technique together with the opening for cultivation of large fertile tracts of land in all parts of the world in the period following the Industrial Revolution, outstripped the accumulation of agricultural capital. From a business standpoint this condition freed the agriculturalists of the nineteenth century, in general, from the demands made upon those of the fourteenth century by minimizing the pressure of the Industrial Law of Diminishing Returns.

It is not here implied that during an adrance in agricultural practices accounts are unnecessary, for certainly a wiser use of productive factors may be made if it be known what expenditures are more profitable and what are less profitable. The keeping of simple accounts in the industrial stage of increasing returns is advisable. Many losses in labor income could have been arerted after the entire rent had been sapped by the extension of productive activity to the better grades of land had the simplest kind of accounts been kept by those occupying marginal land. These accounts certainly would have arerted some of the poverty of many communities by inducing a redirection of the productive energies during the plastic period of the husbandman's life.

The first half of the second decade of the twentieth century marks the begiming of a period of a comparatirely static condition in agricultural arts. Also, practically all of the better grades of land are now utilized. In these respects the present rentury at least temporarily is similar to the thirteenth and fourteenth cen-
turies. Present day husbandmen, in gemeral, must reckon with the business side of their productive enterprises.

II.

The financial status of any business may be determined by taking an inventory at the begiming and at the end of the year; the gain or loss may then be determined by the difference between the net assets of these two periods. Without this insentory method, ammal losses of labor income, interest on investment, and tangible assets may be overlooked. Particularly is this true of the farming lousiness, since a considerable part of the living comes directly from the farm. Thas the farmer may be getting the necessities of life at the expense of his capital without immediately being cognizant of it.

The farming class, however, is not the only derelict group of producers from a business standpoint. Only a few of the 22,000 mercantile and manfacturing establishments that failed last year had an adequate system of accounts. Out of 66,000 concerns doing a business of orer $\$ 100,000$ each last year, according to Mr. Edward N. Hurley, vice-chairman of the Federal Trade Commission, 30,000 failed to charge off directly anything for depreciation. ${ }^{1}$ Thus, they arbitrarily marketed their goods at cut-throat prices.

While the farmer's competition, for the most part, does not take the form of an arbitrary quoting of prices, yet, through a misinterpretation of results attained, or more especially because of a lack of records for the determination of specific costs, his productive effort maybe extended toward increasing the supply of an already unprofitable market. The unprofitableness of this action is further increased by reason of the relative inelasticity of the demand for many of his products.

Farm products, in general, are selling today below marginal cost of production, assuming a reasonable cycle of productive activity, if the wages of the operator be measured by tenant's wages. Farms are heing operated in many parts of the United States that give little or no labor income and some are not even paying a reasonable rate of return on the investment. If the farm business be conducted for profit and not for pleasure, an actual known loss would certainly suflice to curtail the output. Of course, the so-called unearned increment is, in many instances, a conscions compensating element of adrantage which tends to offiset the relatively low labor

[^0]income. Allowing for this and other compensating adrantages, nevertheless, owners do continue to operate farms from year to fear at an actual unconscious loss of labor income. These ammal losses are due to a misinterpretation of results. To some of those who have mo system of farm accounts, success is measured by the size of the cash balance at the end of the year. In reality whether or not the degree of success is in direct proportion to the size of the rash balance depends on the nature of the farm enterprise. Where the farm produce consists of cash crops only, success may be so measured. Those engaged in diversified farming, howerer, who are imbued with this mercantilistic motion are apt either to orerestimate or molerestimate the degree of success with a greater probability of orerestimation as their efforts will be directed toWards securing a large cash balance to the detriment of mpkep and assets.

This fact of actual loss is clearly proved by the results of inrestigations comducted by the Office of Farm Manamement of the I. N. Depratment of dgriculture ${ }^{1}$ While these results have been questioned by some due to the fact that much of the necessary information was given to investigators by the famers from memory, fet accurate accombts kept by many of the farmers indicate that on the whole the figures are fairly reliable. This method of detramining profit or loss by the difference between the net assets of two perions respectively fumishes hut little useful information. howerer, that will lead to a better reorganization of the productive factors. By an analysis and comparison of the results of sereral farms in a given locality, some chance benefit may be derived. Yet. there is nothing in this methor to indicate in what departments of the farm showing large gatins, those gains hate been made. ('hance amd rule of thumb methods must be displated hy a system of accomits which will serve to furnish such information as will emable the famer to push vigomously the paygenterprise or to stop an unwarranted expenditure.

III.

The straight single entry or double entry system of bookkecping such as may be used hy a mercantile of manufacturing establishment is neither particularly serviceable nor essential to a farm business. The buying and selling operations which make up most

[^1]of the items of the dity business are comparatively few in a farm business. Credit acoonts are likewise comparatively few. It is not my purpose here to discourage the keeping of detailed records of receipts and expenditures. In fact, it is only by begiming in this matter that the ideal in farm accounting may be attained. But after all, the information acquired by such a system is no more serviceable, in so far as making possible a better organization among the factors of protuction is concermed, than that obtaned by the inventory method.

For accurate information regarding the status of the business which will prevent a misdirection of production, a cost accounting system is essential. Costing systems necessarily insolve double entry principles. Two entries must be marle for eath transartion. If mill be fed to hogs, the dairy monst be eredited and the hogs chatged with the amome if labor he paid in kind. farm produce must be credited and labor debited, ete. Experliency demands, howerer, that the system be simplified. Aecuracy must be foregone. The terlionsmess of the trial hatance which is indicative of accuracy in posting, suffices to stifle the rlesire for scientific information of the most enthasiastic farmer. Cost finding requires detailed analysis of the business operations. The many atecounts required to furmish the necesary information and the many entries to the varions accounts are apt to multiply the adrersities of the average farmer beyond the selastic limit" of his endurance. In the simplification, posting may be reduced to a minimum by making the entries immediately in the respective ledger accounts. Time cards may be used for the original entries of man labor and horse labor: at the end of the month, the separate items maty be posted to their respective ledger accounts and the total hours credited to the ledger accomuts of man labor and horse labor. Accounts with the relatigely mimportant departments may be dispensed with; the elimination of the cash acconnt saves considerable time and is not particularly essential in the retermination of costs. To simplify by eliminating some accounts, and by abandoning the trial balance is to court error but the results will be sufficiently correct for all practical purposes. It must be remembered that the farmer is not producing on contract and in view of this fact, absolute accuracy is not so essential as in the case of the shiphuider or steel products manufacturer, etc. The vital thing from the standpoint of the propagandist, at least, is to indure the farmer to departmentize his farm and to make an effort to determine what is and what is not profitable. By the use of a simpli-
fied cost finding system, he will be able to determine in connection with his dairy, for instance, whether it is more profitable to sell whole milk or to sell the cream and use skim milk for feeding logs or calves or poultry.

The principles of cost finding on the farm are in reality no different from those in the factory, i. e., the underlying thenry of cost finding is the same. Any system of cost accounting requires. (1) an acenrate determination of direct wages paid, (2) an accurate determination of materials used and (3) an apportionment of the indirect expense orer the entire products. Practically all of the labor on the farm is direct i. e., specifically applied to a certain job or process. The labor of the farm superintendent is intirect or as sometimes referred to in accounting practice non-produc-tive-which term is, howerer, inconsistent with Economic termin-ology-and must be closed into the indirect expense account or allocated separately to the various farm enterprises.

Horse hours and machine hours are also all items of direct charge. Br separate accounts with each of the several kinds of farm machinery according to purpose or use, a more exact estimation of costs may he made, e. g., the keeping of a separate account with highly specialized and expensive machinery such as a corn harrester is advisable. Otherwise directly charging the various departments from a single account kept with machinery and equipment, upon the hasis of horse hours would give certain inaccurate results, as the cost of the crops requiring the expensive machinery may be underestimated and the costs of others orerestimated.

The materials expense, consisting of such items as fertilizers, seerls, etc., presents few difficulties. This yearos fertilizing must be apportioned to the sereral crops succeeding depending on its lasting qualities. The accountant must rely upon the agriculturist for this information.

The farm or indirect expense items such as indirect labor, sundries, taxes, insurance, depreciation on buildings, etc., are proportionately charged to the several departments.

I logical and intelligent interpretation of the results obtained hy this methorl is quite as essential as the results themselves for an mwise interpretation may nullify the efort put forth. Whether it is more profitahle to pasture a woodlot or to cultivate for a crop betwern the bows of an orehard can only be determined by a comparison of the results with woodlots and orchards under exactly similar conditions: that are not pastured or eultivated. That a (ertain ('rop pays for all expenses inclurling the expenses of the
orehard is no evidence that the pratere of double ropping is more protitable. It is possible that the (rop alone or the orchard yield without the cultirated crop would have given a greater return than the double crop, in spite of the fact that with the double crop, the orchard yield seemed to have been pure velvet. Furthermore, no particular year can be assumed to be an average year. Returns in many departments can be estimated only upon the basis of returns for a series of years.

A step toward the inclusion of cost accounting as an element in scientific agriculture, may be made by requiring that all county agricultural agents be trained in the principles of accounting. It is of course essential to teach improved cultural methods but the advice given will result in a more profitable expenditure if it be based upon the study of scientifically determined costs. It is not sufficient to know how to raise more; what to raise muder condiions that effect cost on the particular farm and how to market the product most profitably are likewise important. The function of the agriculturist expert obviously is not minimized by the introduction of costing systems; even tho hay be found to be a profitable crop, its perpetual cropping would be inconsistent with scientific agriculture. By minimizing guesswork, on the other hand, farmers may be brought even into closer touch with scientific cultural methods.

The fact is that the individual farmer's business problems are uppermost today. The principles of costing and the principles of marketing are vital both from the standpoint of the farmer and the consuming public. Also, the farmers's commercial credit problems would not be half so difficult of solution if lenders had confidence in his ability to reckon costs, and knew that he did so. That his shortromings in general along this line may be corrected is evidenced by the successful keeping of a simplified system of costs by many farmers at the present time. ${ }^{1}$

Department of Economics,
Michigan Agricultural College, East Lansing.

[^2]
SOME ASPECTS OF MUNICIPAL ACCOUNTING:

3Y FRANK F. KOLBE.
I few rears ago there was no city in the comutry whose financial records had been so systematized as to furnish the information necessary for the exercise of administrative judgment and proper control. Private business was keeping its accounts in such a manner that at regular intervals it was able to furnish its owners and managers with two statements-one, showing the assets and liabilities of the business; the other, the revenmes for the period and the expense or cost of getting those revenues. The first statement, that of assets and liabilities, shows the stockholder whether his investment in the business is being maintained and whether his not assets are increasing or decreasing, and the forms which that investment is taking-whether in quick assets like cash, accounts receivable, or finished goods or in fixed assets like plant and machinery.

While the same importance does not attach to a balance sheet for a public corporation as for a private one, such in the case of a city would show sereral things of importance. Thus, it would indicate clearly whether the city is making moper provision for the payment of its debts. It is a common thing for a city to borrow money to build parements. At the begimning it will have the parement in its property accounts and the debt owned in its liability acoomts. It the end of the life of the parement it will be daken ont of the property acoounts and if the deht is mot extinguished but reftuded, such improper financing will show itself in the in(reasing pereentage of debts to property. I) ehts incolved to pay current deficits will show up in the same manner. In Dayton in 190%, the dity 1 ran behind some sloto,000 which it pad by a bond issue ruming for fifteen years. The fears previous to 19, in which the sinking fund is acemmulated to pay these bonds will have to hear the expenses of cleaning the streets and furnishing fire and Water protection to the eitizens of 1 ght and also the interest thereon. Furthermore, a statement of property owned is the first step in fixing responsibility for that property. It is impossible to hold anyone responsible for anything muless you know what has been intrusted to him. Such a statement contains also the amount of the sinking fund assets accumulated to retire the bonded debt.

A comparison of these amounts with the amount that should be in the sinking fund as determined by aceurate computation will show whether the administration is putting the proper amount of money received from taxation into the sinking fund or whether it is spending it on corrent operation. An alministration may thus shift the cost of the services which it fumbses to futme taxpayers by funding its operating expense or not making the proper provision for the retirement of its bonded debt. If a pavement is expected to last fifteen sears, one-fiftenth of the cost capproximately should be phaced in a sinking fund each year-not leaving it for the last year of the fifteen or for years after that to provide the money with which to retire the bonds and thereloy pay for the pasement used by prevons taxpayers. Any statement which will show the shifting of burdens to periods other than those in which the service is received is a valuable one.

Sor is the usefulness of the property and liability accounts contined to giving general information concerning the collective results of the period. Such accounts are supported by detailed schedules so that if anyone wants to know, for instance, to whom the city owes a certain bill and how long it has owed it, the record is immediately accessible. Any good system of accomting is so arranged that all debts not paid within a reasonable time after delivery of the goods or services are automatically brought to the attention of the proper official. This will assure that the city will always get the two per cent discount offered for prompt pay ment. This assures also that there shall be no discrimination between sellers to the city by holding up payments to some for monthes and paying others immediately. It is not clamed that a good accounting system will prevent discrimination or assure a business-like administration but it will assure that the same information and statistical aid will be at hand for the mamagement of public husiness as are at present available for private business. It will also provide for holding someone definitely responsible for everyhing that is done. A statement of property and liabilities shows the newcomer his heritage of property as well as his heritage of debt. Ordinatily only the secomd is furnished him and sometimes not even that.

The second statement used loy privale lowsiness is the revenue amd expense statement. It is often assmmed that its principal function is to furnish a statement of profits earned. If this were its only function, it would be superfluous, for profits can be determined from the first statement hy finding the increase in net prop-
erty after allowing for the increase or decrease in debts. It shows the sources of revenue and the amount obtained from each. It classifies all expenses so that it is possible to make comparisons with other firms in the same line between one period and another and between one department and another. These comparisons are made not only for totals but also for detailed items. Thus, railroad expenses are subdivided into 120 items, eath one of which corresponds to some amomnt of performance. From these reports the operating offices can tell not only that expenses have increased a certain amomet but just where their increases have occurred; perhaps, the increase was due to injuries, floods or to an increase in traflice or to any one of a number of other things. Een though expenses show no increase they may still be too high as shown by the costs of other roads operating in the same territory. From these accomnts, may be discovered the cost per unit of work done, for instance, locomotive repairs per locomotive mile or per car mile or per tractive ton mile. The same is true of other classes of equipment and of ties, rails, fences, etc. The expense accounts number 122 but this is just the number reported to the Interstate Commerce Commission. The railroads for their own statistical purposes keep many more. Cities are now waking up to the statistical use of accounts. The city of Denver has the expenses incurred by its police department split up according to the following headings, each of which is further subdivided: administration, operation and maintenance of police telegraph system, policing the city, special police protection, regulation of traffic, detection of crime, operation and maintenance of police ambulance and patrol, detention of prisoners-adults, detention of prisoners-jurenile, and miscellaneous. The cost of other departments is similarly divided. Costs should not only be classified according to the purpose of function of the work done but also according to the kind of work. For instance, the expense of an antomobile used hy the chief of police would be charged to the police administration account which is charging on the basis of function bat it should also be charged to an antomobile account so that the city would know how much it is paying for the use of all atomobiles. This account should be supported by a detailed record of each machine so that information would be at hand to eliminate inefficiency in their maintenance and to serve as a guide to future purchase. The following is a page of such a record:

Department -.
Feature -. Operation of Automobile.
Remarks -. E. M. F. -. Cost $\$ 1,300$.
Mileage this month, 1,175 ; total to date, 8,066 .

The following statement of receipts and disbursements of a municipality owned water works together with the accompanying revenue and expense statement shows how much work has to be done before one can tell the amount of the revenues, of the expenses and of the profits and the present disposition of those profits when only receipts and disbursements are given:

WATER DEPARTMENT.

Receipts.

Water rates

$\$ 106,3$ อั2 62

City's payment for public use of water. . 17,54910
Plumbers' licenses 15000
Loan at Bank . 2,500 00
Miscellaneous 33503
\$126,886 75

Disbursements.
Bonds paid $\$ 25,70000$
Interest on bonds . 18,049 00
Salaries 17,371 90
Repairs to mains 46021
Repairs to hydrants 1,08261
Tools and utensils--replacements $\$ 49533$
Supplies and liepairs to stations 5,58:3 :3:
Fuel 12,:31! 77
Barn expense 1.987 ! 4
Repairs to service
() Hice (2xpernse $1.1: 127$
Discellaneous Repairs 97 ± 94
Insmrance 190 TT
Miscellaneous expenses 2,156 2:3
Leconstruction 4.38208
Pipe extensions 23.259 79
Improvements to stations 7,650 08

The difierence between the receipts and dishursements is sentio. that much more cash has been received than paid ont. Has the profit, therefore been s.o. 66 ? The fourth item shows that -2.500 was gotten by borrowing and you can not include that in your profits. Money cannot be made simply by borrowing it. The other items are probably revenues-that is, value that hat ateremed to the department from the sale of its services for the period. They are not. however, the entire value of the services rendered for some of the water delivered during the year has not fet been paid for. The department has a good clam against these people who have not yet paid. It is an amount which was earned in this period but which will mot be patar mat the future. Of comse, if the city Wanted to. it conh make all delinquent customers pay prompty by durning ofl the water hat they will pay in a lithe while so why gesort to such measures. The point is that not all the revenue earmed in this period is in the form of cash; some of it is in the form of aroombts receivable. The cash receipts, here. probably contatin some collections of revenure earned in past perionds and it is assmmed that the revembe eatoned in this period hat still in the shape of rlatms amd therefore left out equals the items put in but not calmed during this periot. Asmmptions are alwats dangerous and a good account system makes as few as possible. Here there is no excuse for making one. In fact, a good accounting system would get the amomat of revenue outstamding as a hyporduct in checking up bills outstanding.

The next item about which there may be question is the city's parment for the wse of water. This may equal the value of the
service rendered or it may not. In this case the value of the water fumished the eity exceeded the payment received from the dity by s 7.9 go. 90 . which however is not obtainahte from the statememt as fumished but was extablished by intependent investigation. When a dity operates a mility, that utility should be individual ized. The stockholders of a corporation are not the corporation and the city is not the water department. The dity's relation is that of owner and manager. It is not necessary that the city actually pay orer the cash to the water department only to receive it back later in the form of profits but it is necessary that the Water department be given credit on its books for the value of all services furnished by it. If water furnished to the city is not charged for at its correct value, we make two errors-first, that the expenses of the water department appear a much larger percentage of the revenue than they really are and second, that the expenses of rmming other departments of the city appear murh smatler than they are. The grocer who takes home groceries onght not to regard them as an expense or cost of his sales but as a withdrawal of his profits. So here, water taken by the city and not paid for is an additional revenue, the money for which never aretually changes hambs. The total revemue untere the assumption made consists of water rates, total value of water furnished the

Are the cash payment equal to the cost of furnishing the water? The first item is Bonds Paid, ser, 700 . This is mot a cost of this period. True you have that much less cash but you have also freed your property from debt so you are no poorer. No one erer grew poor hy paying his debts. If the people have paid all their debts of s.ant 0,000 , the first year the plant Was in operation that would not have marle the cost of fumishing the water that rear s.job.000 more than it otherwise would hate been for althomgh they have parted with that much cash they now own their plant. It is simply a purdase or exchange in which you wive up cash to ohtalin a greater equity in the business. The cost of operating is not increased thereby. Interest on bonds is evidently a difleremt kind of item than salaries, fuel, ete. These last are operating chatres and the man who is responsible for their size is the operating official, but interest on bonds is a finameial dharge and the famount of it is fependent not upon the operating ollicials hut upon the decision of the ditizens themselves; they hate decided to borrow the money to buy the plant instead of contributing it themselses. Tre will leare it out for the moment. Extensions and improwe-
ments are not expenses. They are like bouds paid above. The cash paid for them has been converted into goods or beuefits which we have at the end of the year. If you have a thing at the end, it can not be a cost, for costs are sacrifices and here you have sacrificed nothing. You have merely converted it. The rest of the items are expenses and total to $\$ 49,661.93$ making a net operating profit of $\$ 82,675.72$. To get the profit belonging to the city, we must next subtract the Interest on Bonds or sls.04!3, which leates a net income of $\$ 64,626.72$. It is impossible to tell whether these are all the expenses or more than the expenses for we lave only cash paid to go by. Some of the fuel used this year may have been paid for the preceding year and so have been left out of our calculations. On the other hand, some of the fuel bought this year may not be used till next. It is impossible to tell, so we will assume that the expenses omitted equal approximately the items included which are not expenses.

The Revenue and Expense Statement is as follows:
Revenues.
Water rates $\$ 106,35262$
Value of water furnished the city $\ldots .$. . 25,50000
Plumbers' licenses 15000
Miscellaneous 33503
Total revenue
$\$ 132,33765$

Operating Expenses.

Salaries $\$ 17,37190$
Repairs to mains 46021
Repairs to hydrants 1,082 61
Tools and utensils-replacements....... 49533
Supplies and repairs to stations 5,58332
Fuel .. 12,31977
Barn expense 1,98794
Repairs to service 1,57556
Office expense 1,13127
Miscellaneous repairs 97494
Insurance 19077
Miscellaneous expense 2,15623
Reconstruction 4, 4,332 08
Total operating expenses $\$ 49,661$ 93
Net operating revenue $\$ 82,675$ 72
Interest on bonds
Interest on bonds 18,04900 18,04900
Net income or profit $\$ 64,62672$Note:-No allowance has been made for depreciation.The profits having been determined, the next question is whereare they. The profit together with the $\$ 2,500$, which was bormowemaking a total of $\$ 67,126.72$, have been disposed of as follows:
Given to the city in the shape of free water $\$ 7,950 \quad 90$
Retained in cash 2,56600
Bonds paid-purchase of a greater equity in the busi- ness 25,700 00
Extensions 23,259 79
Improvements 7,650 03
Total$\$ 67,12672$

In order to get information of real value, the statement as furnished has to be completely made over and the result of such recasting is a statement containing many appoximations and owing to the lack of proper classification, it is often impossible to get as much information as we have here obtained.

It would seem to the layman that to get out all these statements and details would involve considerable labor and cost. Even if it did, the cost would be amply repaid by the results attained as is shown by the fact that precisely, where competition is keenest, are to be found the best accounting systems. Much information comes as a by-product. You have to know the total tax lery at the begimning of the year for only by so doing can you fix the tax rate. You must know the amount collected by the treasurer in order to know for how much cash he is responsible. It is little trouble then to find ont the total taxes outstanding. You almost have to get this figure to be sure that you have charged the freasurer correctly for by adding the paid and mpaid taxes together amd comparing them with the total at the begiming, you get an absolute check on the arithmetical aceruracy of your work. The same is true of other items. Wherever you mast keep a greal deal of detail, you need one account for mains and accounts.

University of Michigan, Ann Arbor.

It. S. TUCKER.

One of the points in the theory of incidence of taxation on which a large majority of ecomomists are agreed, is the doctrine that taxes on real estates are divisible into two parts-the tax on the land and the tax on the building, and that the first of these cannot he shifted away from the land-owner but the second results in an increased rent to the temant and is thus shifted to the consumer of building utilities. This theory is stated by Smith, Ri(ardo, Mill, and more recently by Professor Taylor. I quote: "It is almost certain that, of the total tax collected from the owner of a honse and lot, one portion is really paid by him, while another portion is in the eud taken from the tenant in the shape of higher rent : and, what is more significant, for our purpose, it is also quite certain that the dividing line between these two parts corresponds prety (losely to the line which separates that portion of the total value of the place which constitutes the value of the lot, from that other portion which constitutes the value of the house." ${ }^{*}$

Bastable qualifies the simple theory by declaring first. that a tax on ground used for building may to a rery slight degree be shifted by the withdrawal of certain sites nearly as well adapted for agriculture and secondly, that an attempt to increase rent in order to pay a tax based on buidding value will check the demand for houses, therehy throwing some of the tax on the owners of existing houses and some of it on owners of racant sites for which the demand is lessened.

What I desire to show in this paper is that the division of the tax on real estate into two parts is only formal and without much real significance; that in the case of a tax based on capital value, or selling price, the forces which bring about shifting are the same in mature whether the tax be levied on the land alone, or on the rombined valne of the land and the buidding. I think we will all agree that a fax on the sole use of a commorlity will have as injurious an eflect on the demamf for that commodity as a tax on the eommodity itself womld have. If for example shoe-polish were a fixed supply good, a license fee charged on boot-blacks, a rhaty on the ate of having your shoes shined, an exeise on polishing

[^3]brushes, and even perhaps a head tax on Greek immigrants would all act to cut down the demand and hence the priee of shoe-polish. The only limit to this decline in price (assuming as we do that the cost of production need not he comsidered) would be the alternative use of shoepolish in blatking stoves and the demand price for it for that purpose But not all kinds of polish ran be used on stoves.

In the same way a tax on the use of urban land for buildings, Whether it be a tax on the bulkling, or on ocempieres rent or on the citizens or industries of atown. or on the land itself, must reduce the demand for land for balding purposes in that town. This is particularly the case with a local tax in a locality exposed to the competition of neighboring taxing districts equally or nearly as Well arlapted for the resiclental or industrial needs of the population. The effect of any such tax will be to reduce the demand for land for building purposes, either because the demand of tenants has fallen off or because the costs of supplying buildings have increased. The land itself is very nearly a fixed supply good; its price is determined by demand and is limited by the profit obtainable by building on it, i. e.. the difference between the rental that temants will pay and the necessaly costs of maintenance and repair, including taxes. This difference capitalized at from + to 10%, according to local cipcumstances, is the price of the land. (O)casional sales showing rates of rapitalization on net yield higher or lower than this are usually based not on immediate yield lout on speculative values.)

It is obvious then that anything which tends either to lessen the demand for buildings or to increase their cost must result in lower land ralues in the locality affected. This is ture not only of taxes but of industrial influences.

It is of course not a complete answer to the problem of proper distribution of taxes to say that the incidence is here or there; the effect of govermmental expenditures must also be taken into atcount. Moreover we can not neglect the presence of economic friction and the consequent necessity of allowing a sufficiently long time for existing leases to expire amd for tenants to atjust themselves to changes in conditions. All I wish to take up in this paper. however, is the underlying law of shifting.

What is it that determines the demand for buildings in any given commmity" In the case of business buildings it is the opportunity to make money by locating there, atur this in turn depends largely on the number and buying power of the residents. In the
case of dwellings it depends partly on the amenities of life, the attractiveness of the town as a place of residence, and partly on the opportunities for profitable employment. There seems to be a close relation between wages and rentals, if we compare one year with arother in the same place, and also if we compare different phaces at the same time. Statistical investigations show a rery small variation in the ratio of rent to family income, for incomes of the same size and families in the same locality. In fact it seems reasonable not only to regard the rent of a site as a residum after deducting the necessary expenses comnected with utilizing the site from the rental obtainable, but also to regard the rental paid by an individual for this housing accommodation as a residum obtained by deducting from his total income the necessary costs of living, such as those of food, clothing, and fuel. It has been said, for example, that one reason why house rents are lower in Boston than in New York is because the price of food is higher. It is a well known fact that neighboring suburbs are continually competing for prospective residents, and that in the district which has the best accommodations, especially schools, the rentals of identical buildings will be higher than in the rival districts.

I said that land is practically a fixed supply good. The proportion of land which might be added to the natural supply of sites by means of extraordinary outlays is rery small-so small that we may fairly declare that the supply is incapable of enlargement. On the other hand it cannot be greatly restricted. Land may be deliberately kept out of use, but this involves a great loss of interest and can only be done by wealthy owners, and only when land is not heavily taxed. In some cases land can be devoted to use which is not so highly taxed, e. g.. agriculture, under the English system of local rates. But it is obvious that, if the profits to be derived from building are great enough to more than offset the added tax, the land owner, if guided by economic motives, will prefer on pay the tax for the sake of the extra profits. And if the system of taxation is one that minimizes the difference between the amounts paid in the two cases (i. c. if taxes are based on the selling value of property, or, even more, on hare land value) this preference will become almost a compulsion. The only exception will be when the owner anticipates a future increment in land value which is incompatible with immediate development and which is great cmough to offset the loss of interest. Such an inerement is rather uncommon, both because of the difficulty of anticipating the exact direction of suburbm growth and hecanse
'ompound interest momnts up so rapidly. Assmming \boldsymbol{J}^{\prime} : as the net return on land, the value of a site must double in fifteen vears to make it profitable to hold it idle.

Alhough the effect of almost any kind of local tax is to reduce the ralue of land, and that of all well-plamed governmental expenditures is to increase land values, it is not by any means a matter of indifference on whom and on what hasis the taxes are imposed. Total value, land value, gross rental and net rental, thongh equally available for the tax-collector, do not stand in the same proportion to eath other in a comparison of diflerent properties. I mention this point only to aroid misunderstanding. Even if the owners as a class must in any case ultimately bear the whole incidence of taxation, the share of eath owner would vary according to the base chosen, and the duration and incidental results of the process of shifting might be widely different; and I do not maintain that the whole incidence of local taxes is on the landowners.

It is a matter of common knowledge that not all pieces of land are fit for building sites, and that the difference in value between those that are and those that are not is not determined by the expenditure on the land, in laying out streets, putting down sewers, and so on, plus the original value of the land, if any, for agricultural furposes, but depends on the demand for building accommosation in that particular locality, and the cost of constructing the kind of accommodation demanded. It is not so commonly understood that there are among the higher grades of land relations similar to those between suburban agricultural lands and building sites. If for example a certain site is well suited for a bank or a department store, it will not for long be deroted to any other form of development, for such sites are rare, and the return to the land will be much greater, over and above the costs of buildand maintenance, than if a warehouse or a tenement were put on the site. Occasionally the difference in site rent to be obtained from two competing methods of exploitation is slight, but in most cases the difference is very great. It may not always be certain that the development which promises the most site rent is bound to succeed, but granting its success it will usually yield much more than any other development could.

Marginal land for any kind of development is land on which capital invested in that certain way would yield, besides a reasonable return on the capital, no more than would be earned by the land if developed in some other way. A tax on buildings on such
marginal land would obviously be placed by users of those buildings. and if they refuse to pay, the land will be devoted to some other use. But land that is marginal for some specific use is not necessarily no-rent land, or even land without a site-rent. Before a site becomes even worthy of consideration for the purpose of erecting a bank or an office building it must have a pretty high site value for other purposes. The more valuable the site for the purpose for which it is used, the less will taxation affect the building, and in cases where the site is much more valuable for that purpose than for any other it may be that all the taxes on the property fall on the site and the building may go scot-free. It may be, for example, that a piece of land is well situated for a moving-picture theater, and will earn a much better rent for this than for any other purpose. Its selling price will be somewhere between its value for some other use and the value obtainable by capitalizing all the profits of the theatre after deducting necessary expenses, including taxes. Which extreme of this range becomes the actual selling price will depend on whether the demand of would-be theatre owners is greater or less than the supply of available sites.

Now it would be easy to say, off-hand, that the incidence of a tax on moving picture theatres would be on the theatre-owner or on the public, if the demand is greater than the supply of suitable sites, and on the land-owners in the opposite case. This conclusion, apparently so simple and certain, is absolutely contrary to the facts. If the demand exceeds the supply the actual price will be fixed by the marginal demand price and the first extra-marginal demand price. A tax will cut down both of these and thus reduce the price, so in this case the tax falls on the site.

On the other hand if the supply of suitable sites exceeds the demand, the selling price is fixed by the marginal and first extramarginal sellers' prices and there is nothing in the tax to make them change their estimates and accept less than if there were no tax. Hence the tax must be borme by the theatre-managers or the theatre going public.

Incidentally it may be remarked that this same lime of argument applies to the incidence of increment taxes. One of the commonest statements as to the incidence of these is that when the demand for the land is great the incidence will be on the purchaser; when the demand is not so great the tax will fall on the seller. But if the demand is great, that is what determines the price, and a tax on increment, collected as it is from the seller, cannot increase the
price; while if the demand is small, supply price is what sets the price and that may be increased by an increment tax.

What is true of moving pictures is true, mutatis mmtandis. of a general tax on buikdings. If a site is much more valuable for an expensive form of exploitation than for a cheap one, it will be used for that form and taxes on it will be borne by the site owner until the whole differential advantage is eaten up. If all urban and suburban land could compete for all kinds of uses, then a fax on any method of exploitation would have to be borne by those Who desired to exploit land in that way. But in real life we find not a continuous series of sites each a little less valuable than the last, but distinct series for each particular kind of development. with great breaks both within and between the series. The incidence of a tax, say on skyscrapers, is absolutely matfected by the potential competition of sites five miles from the business district, or by the possible use of business district sites for agricultura! p:ur. poses.

We must abandon the Ricardian idea of rent when disenssing urban values. Except to some extent for residential purposes. the value of land is not dependent on its superiority over another site, but on its actual value for the use to which it can best be put, whether or not there is another site adapted to the same method of utilization. We must restore Smith's definition of rentthe excess of income orer necessary expenditure and reasonable profits-to the throne from which it was expelled by the differential idea. In this belief I am supported by the theory and practice of all real estate men with whom I have discussed the matter.

There is especially a rery noticeable break between agricultural land and buiding land, due partly to the nature of the outlays necessary to prepare land for buidding, the risk of the enterprise, and the long time needed before profits can be realized even when the adrenture is successful. The growth of cities is not steady in all directions but fitful and in manticipated directions. Land agents who are lucky make immense profits, others incur immense losses. A new car-line will suddenly increase values in the distried served, hut it may incidentally ruin lamd development schemes in some other district. For this reason the contention that the value of land for agricultural purposes constitutes a foundation on which land-owners can plant themselves in resisting attempts on the part of buiders to shift building taxes on to them is erroneous. The foundation is there, but it is so far below the actual price lerels and so detached from them that in many cases it is
of no more assistance to land owners in the struggle to aroid tax burdens than the bottom of the ocean to a man struggling in the middle of the Atlantic.

Having discussed the case of a site adapted for diflerent uses, let us take up the case of several sites competing with one another for the same use, all of them being above the margin for that particular use. The simplest case is that of residence land.

The effect of higher costs of buildings in checking demand we need not consider at length. The demand for housing accommodation among most social classes seems to be fairly elastic, and to the extent that it is, taxes obviously camot be shifted on to temants in the shape of higher rents, for they will put up with less accommodation rather than pay more. When this occms the tax, whether on building or land, will probably fall to some extent on all landlords, but all except the owners of the most expensive residence sites will be able to replace a large part of the tenants they lose by other tenants formerly dwelling in more expensive apartments, and thus escape a large part of the burden. The most expensive sites however have no such relief.

But even when the demand for housing accommodation is not at all reduced by an increase in rentals or a tax, I shall attempt to show that the traditional distribution of the incidence between building and site is unwarranted.

This reasoning covers the two classes of persons whose demand for housing is according to Professor Seligman inelastic-those who are too cramped already to be able to get along with less than They have and those who are so wealthy they are unwilling to get along with less. It can best be brought out by studying a few typical cases. Suppose a man with an income of $\$ 2,500$ a year rhoosing between a central and a suburban dwelling. There are flowe fossible hypotheses; (1) he has no preference and is guided only hy pecuniary motives; (2) he prefers to live in the city; and (:)) he prefers to live in the country. In the first case he will estimate the extra amount he is willing to pay for the central site by considering the saving in car-fare and in time, which we will put at \therefore a month. We will assume that the type of house he desires combld buppled at a rent of so-s if there were no taxes and no groumd rent. The city lot obviously has a site rent Sy grater than the suhmrhan lot, and it will not invalidate the argument if we take the ground rents to be respectively \$5 and nothing.

Now suppose a dax on gross rental, collected from the tenant, of 2.5%. Since we are assmming that the tenants demand is inelas-
tic, the tax will be added to the rent. The suburban house will cost s:3.2.\%, and the uban one \$37.50. But the difference which the tenants is willing to pay is only sy.00. The extra s.2.5 must come out of the site rent; it equals $2 \% \%$ of the site rent in this case, which has induced Pierson and others to lay it down as a mule that the tax will be divided proportionately between the building and the site.

But if we take the second case, and assume that the man would really prefer to dwell in the city the result is somewhat different. This preference will show itself by his paying somewhat more, or taking a somewhat poorer house, or both. Which, and to what extent, is hard to determine. Suppose we assume that he will spend S.: for a house in the city, untaxed, the house itself being worth $\$ 20$, which, of course, leaves $\$ 15$ for the site. The suburban house is the same as before, s.\%. I tax of $2 . \%$ on gross rental would naturally raise that of the city house to 842.75 , and the other to s:3.25, a difference of $\$ 12.50$. But the city house is only $\$ 10$ more desirable to the tenant, so the $\$ 2.50$ must fall on the site. It is not however 25% of the site value, but only $25 / \%$ of the difference in rent between the two competing houses, including both their site and building values.

The opposite case may now be taken, the man who naturally prefers to live in the suburbs. He will not live in the city unless he can get as good a house at a price which will make his total expenses less, or else a better house for the same outlay. He will pay $\$ 25$ in the country, $\$ 2$ in the city for a similar house, or $\$ 30$ for a house worth, as a house, $\$ 27$ on a site worth $\$ 3$. Add the tax at the rate of 2.5% and the houses will cost, respectively $\$ 31.25, \$ 35$, and $\$ 37.50$. The tenant's estimate of the advantage of city life is only $\$ 3$. Therefore he will pay only $\$ 34.2$. for the smaller city house, or $\$ 36.25$ for the larger. The difference ($\$ 0.75$ or $\$ 1.25$) must come out of site rent, but it is not necessarily proportioned to site rent. It is always a proportionate part of the estimated differential advantage of one competing house over the other, and this may be equal to site rent, or greater, or less.

So far I have discussed a tax on rental collected from the tenant. Except for the initial difficulty in shifting while existing leases are in ellect, the ultimate result of a property tax ought to be nearly the same, if we assume that the tax can be shifted at all, i. e., if we assume an inelastic demand.

As the value of property is the capitalization of net income, the property with more valuable sites will be taxed more under our

American system than under the gross rental tax, for site rent is nearly all net rent whereas building rent contains a large element of repairs, expenses of management, etc., which must be deducted before capitalizing. Moreorer site rent is usually capitalized at a lower rate of interest. So under a property tax there is a tendency for a larger proportion of the tax to fall on the site than under a tax on rental.

There is a kind of incidence of taxation, if incidence be the proper word. which results in certain tenants getting less accommodation than they would if there had been no tax, and certain siteowners being unable to earn any profit or site rent because of the decreased demand of tenants. But in this case there is no tax paid. If property becomes less valuable as a result of a property tax, or if rentals decline as a result of a tax on them, then the amount of tax paid is less; and where there is no tax it is incorrect to speak of incidence. This is not the case contemplated in the present discussion.

To summarize: (1) Any kind of a tax on the most profitable mode of utilizing a site tends to reduce the value of the site to that point where, under the circumstances, it becomes more profitable to derelop the site in some other way. (2) A tax on real property is not necessarily divisible into a tax on the house and one on the site in proportion to their respective values, but its incidence depends on the willingness of the tenants as a class to restrict their accommodations, or to change their nature, and on the possibility of doing so. As a matter of observation it would seem that, in the case of American cities with many computing suburbs, the proportion of the tax on real property that falls on the site value is usually greater than the proportion of site value to the total value of real estate taxed.

From this discussion it would appear that any athempt to draw up rules for the proper apportionment of taxes so that after the Hocess of shifting is completed the taxes will be borne by those Whom it is desired to tax, must fail because of the complexity of the problem. But one practical consideration makes the outlook less discouraging. That is, that generally the benefits of local expenditures will be transferred at about the same rate of speed as the hurdens of taxation, and if taxes are levied in the first place on the persons who are directly benefited by their expenditure they will probably fall in the end on the persons who receive the ultimate permanent benefit. This would mean adopting the one qood leature of English local rates-assessment on the ocempier.

The effect of this system in increasing the number of voters directly interested in the economical management of local affairs I cannot discuss at the present time. This is a paper on theory, and I think I have already proved what 1 set out to-that no clearent line cau be drawn between the incidence of taxes on sites and taxes on buildings.

University of Michigan, Ann Arbor.

BOTANY.

PATHOPIITEN AND IPHIML.\&COIHYTOLOGY.

A. D. BUSH.

Limiting the present discussion to what affects directly the human body it may be stated that the vast majority of diseaseproducing plants belong to the group of Schizophyta or fission plants, of which the Bacteria are the most important. The Bacteria may bertassified morphologically as Micrococei, Bacilli and Spirillae, each of which has distinguishing characteristics and mroperties. The normal growth of these plants in such a favoring habitat as is afforded by the warmth and moisture of the human body, is accompanied by the generation of waste products of remarkable toxicity. If unnentralized, these products when absorbed by the invaded organism become highly inimical to the vitality of several tissues, especially those of the nervous centres. With some groups the metabolic activity rapidly produces necrosis of the adjacent animal cells, a process which, if taking place in the spinal cord (as in infantile paralysis, for instance) rapidly produces severe disturbances in correlated parts. In any case, but especially in nervous tissue, the plant in its growth activities produces by both mechanical and chemical means a riolent inflammatory reaction, locally, as the system attempts to protect the part from deleterious foreign material. This reaction is accompanied by an exudate whose mechanical pressure is an additional factor in lowering vital resistance and in disturbing function.

Briefly reviewing the several groups we find that among the Micrococei the principal diplococcus is the one catusing cerebrospinal meningitis. Streptococci are bateria producing erysipelas, puerperal fever, many nose and throat affections, middle ear disease, some of the more serious bone and joint troubles, and probably scarlatina and measles. The staphylococci are responsible for various boils and abscess formations of both skin and bone. The micrococcus Janceolatus produces lobar pueumonia and other serious infections of serous membranes. The gonococcus is the social scourge and, aside from the general misery for which it is the responsible factor, is productive of most of the blinduess in the

Forld and of most of the troubles resulting in surgical operations on women.

The Bacilli constitute a large group, various members of which are the cansative factors in wide-spread disorders. The bacilli of Diphtheria, Glanders and Influenza find their most favorable habitat in the nose and throat primarily, and secondarily in the nerous system; the bacillus of Whooping-cough, in the trachea; the bacillus of Tuberculosis, most frequently in the lungs though it may attack any structure of the body. The bacilli of Vellow Fever and Typhus Fever are primarily active in the alimentary fract and in the red blood corpuscles; the bacilli of Typhoid Fever, in the glandular structures of the small bowel; the bacillus of Bubonic Plague in the general lymphatic glands of the body; and the bacilli of Leprosi and of Anthrax in the dermis and sub-cuticular structures. Each of this group produces primary local reaction of rariable severity followed sooner or later, if unchecked, by a profound systemic reaction.

The principal spirillae consist of the relatively mild one productive of Ielapsing Fever; the virulent one causing the acutely exhatusting Asiatic Cholera; and the one producing the persistent degeneration of circulatory and nerrous systems known as Syphilis.

Besides the Schizomycetes some of the higher Fungi are instrumental in causing painful though less dangerous troubles, consisting chiefly of indurated inflammations of the skin and mucus membranes. Aphtous stomatitis, or thrush, is due to one of the saccharomycetes, Oidium albicans, Ringworms of the scalp and body are produced by several of the moulds, Achorion and Trichophyton especially. One of the Streptothrix is responsible for the form of tissue necrosis known as Madura foot.

Turning now to the consideration of pharmacophytology we may note the curious and interesting fact that the most powerful of medicines, the alkaloids, also represent waste products arising in the course of regetable protein katabolism. Is it is the toxin waste of the lower fungi that produces serious and dangerous reactions within the human body, so it is similar substances derived from the spermatophytes that are used as medicines for combating some of the symptoms arising from the activity of the lower organisms. In each case the disturbing substance within the body is a regetable product poisonous to that body, but the substances used as medicines are kept under careful control so as to exert a toxic influence on the infective germ before such an effect is produced on the harboring body: Or in cases where such direct action is not
possible, the drug poison is used to stimulate the body to such a degree that in the resulting reaction the infective foxin will be incidentally neutralized. Itsually, however, the effect of regetahle drugs is simply to so modify systemic processes as to prevent that excessive reaction of the body which of itself might readily prove inimical to the welfare of that boty. The actual curative value of most of the alkaloids is either nil or very small; they simply serve as a more or less effectual aid to nature in time of need. For purposes of cure chief dependence must be placed on natural or artificial production of immune bodies or antitoxins.

It may be said, therefore, that the regetable alkaloids do not directly antidote the poisons produced by the infective fungi. Their principal value rests in their power to produce a more or less complete antagonistie reaction of the several tissues of the borly. For example, the exhaustive drainage from the intestines produced ly the bacillus of Asiatic Cholera may be patially pre. rented by the counter action on the secretory and osmotic processes exerted by Morphine. Or again, the cerebral irritation produced during Typhoid may sometimes be offset by Opium, or the mental depression accompanying Typhus may be partially comteracted loy Caffeine. This, of course is purely symptomatic treatment, reliance for cure being placed on the normal acquirement of immunity either by the body itself or throngh the medium of some other agent in which high protective immunity has heen earlier induced.

Our principal alkaloids used in medicine are derived from the angiesperms. From the Ramunculaceae is obtained a mild gas-tro-intestinal stimulant Hydrastis, and from another member of the same family, Aconitus napellus, is obtained an important cere-bro-spinal depressant. From the Solanaceae are derived an excellent antispasmodic, Atropine from Atropa belladoma, and a related cerebral sedative from Hyoscramus niger. Caffeine, our leading heart stimulant, and a well-known cerebral excitement, belongs to the group Rubiaceae, to which group also belongs the related Cinchoma officilis,-a plant whose alkaloid is highly toxic to the plasmodium of malaria. Cocaine, of the group Sterculaceac, is a motor excitant of the brain and cord, but when locally applied, is an inhibitor of the nerve impulses of sensation.

Morphine, derived from one of the Papaveraceae, is our most reliable amalgesic in non-neuralgic pains, a valuable antispasmodic, and a narcotic of the first class, though so interfering with functional activity as to render somewhat slow and difficult resumption of normal activity. Physostigmine, of the Leguminaceae,
and Pilocarpine, of the Rubiaceae, are both depressors of the motor side of the spinal cord, an activity that may be effectively antagonized by Atropine (of the Solanaceae). Strychnine, of the group Loganiaceae, is a powerful excitant of the spinal cord, greatly heightening ease of sensory-motor response thereby facilitating reflexes of a spasmodic type.

From the group Apocyanaceat is derived a glucoside, Strophanthin which is an exceedingly powerful stimulant of heart muscle, being in fact a cardiac paralyzant in any but minute doses. Another important glucoside is Digitoxin, from Digitalis purpurea of the group Scrophylariaciae, which also powerfully affects the heart muscle rendering its diastole more prolouged and its systole more energetic and complete.

These are but a few, though perhaps the more important, of the rital relations existing between plants in the causation of risease and plants in the treatment of disease. An adequate consideration of these relations would fill many rolumes, but this brief presentation may be of value in indicating one of the exceedingly important applications to life of botanical information.

Iepartment of Botany, Olivet College, Olivet, Michigan.

A SIMPLIFIC ITION OF THE IRENENT FREDZIN(x-POINT METHOD FOR TIIE IOETERMLNATION OF THE OSMOTIC PRESSURE OF PLANT SAI'.

(Abstract.)

BY O. E. HARIRNGTON AND R. P. HHBBARD.
The paper describes a simplification of the nsual freczing-point method of determining osmotic pressure of plant sap. By this modification, instead of extracting the sap from the material and determining the freezing point of the extract, a determination is made directly upon the tissue which is in the form of a pulp.

The following are the essential features of the method: The material to be used is first carefully frozen, then ground in an ordinary food grinder, mixed, samples taken and placed in the freezing tubes and allowed to reach a temperature about one degree below its freezing point. Solidification is then brought about by turning the thermometer a few times to create a disturbance in the pulp.

Comparisons have been made between results, obtained in this way, with those obtained in the usual way upon the same material and it has been found that the closeness with which the results compare depends upon the thoroughness of the freezing and the thoroughness with which the sap is extracted. When a large press is used, with which it is possible to extract practically all of the sap, the results of the two methods check within the range of experimental error.

There are two special advantages of this modification. First, less time transpires from the time the preparation of the material begins to the end of the process, thus reducing the possibility of change in the composition of the material; second, a more accurate sample of the original material is used than is the case when the sap is extracted.

In as much as the results obtained by the two methods check within the range of experimental error when great care is exercised in the extraction of the sap, and in as much as the difference in results is greater when the sap is extracted less carefully, it is
believed that accurate results can be obtained more easily by this modified method than by the one in present use.

All of the work to date has been done, however, upon fleshy tissues and further work is necessary to show whether or not the method is applicable to drier tissues as well.

Michigan Igricultural College, East Lansing, Mich.

CONDTCTIVITY OF ELECTROLYTES.

BY R. P. HIBBARD.

(Abstract.)

Huring the study of certath problems in plant physiology it became necessary to measure the concentration changes in culture solutions. The Wheatstome Bridge apparatus seemed fitted for this kind of work but it was later observed that there were many somres of error in the usmal set up and the attempt was made to eliminate these as far as possible. As a result of our studies, we hate not only simplified the method but increased its accuracy to a considerable extent. The modifications suggested also make the apparatus much easier to operate, thus eliminating to a great extent the "personal error." The correct bridge setting is made by the aid of the eye instead of the ear. The important changes suggested are as follows: (1) The induction coil is abandoned for a 60 cycle rotary converter on a current of constant potential. The Treeland Oscillator is to be preferred to this but when this work was done the Vreeland Oscillator was not on the market. It has been shown that in assuming polarization at 60 cycles we are assuming something neither apparent nor real. We have used the frequency for a period of two years. and have had no trouble from polarization but what could be eliminated. (2) The Curtis Resistance Coils, wound for the annulment of capacity and inductance take the place of the ordinary resistances. (3) An alteruating current galvanometer is put in the place of the telephone and in many ways is superior to the telephone tuned to any definite frequency. (4) The roller type of bridge with the "extended" wire should be used. The possible error from the use of the bridge thus modified would not be more than . 002 of 1 per cent. (5) The construction, and the correct selection of suitable electrolytic cells for the different solutions necessitates more attention than is usually given. A preliminary report was published in the 15th Annual Report of the Michigan Academy of Science, 1913. The completed work has appeared as Technical Bulletin No. 2S, of the Michigan Agricultural College Experiment Station.

Michigan Agricultural College Experiment Station, East Lansing, Michigan.

THE LNFLTFNCF OF IN INCOMILETE CULTURE SOLU. TION ON PHOTOSYNTHESIS.

(Abstract.)

BY O. M. GRUZI'T AND R. P. HIBBARD.

We are far from possessing a precise knowledge of the role of the various mineral elements in plant life. They do not afford a source of energy like the organic compounds, carbohydrates, fats and proteids. There is much evidence to show that they are essential to the protoplasmic molecule and to regulate other chemical and physical conditions, which are at present so little understood.

We do know, howerer, that normal development is interfered with and in some cases inhibited when one or more elements are lacking in the culture solution. The studies reported in this paper were planned to determine, if possible what influence an incomplete culture solution exercises on the various, so-called vital activities of the plant, and more especially upon the photosynthetic process. The following table gives the amount of photosynthate made per ghm 2 in the different solutions.

TABLE I.

*The plants had been injured and consequently these figures are not reliable.
These experiments were arried out in the green house during the month of Fehruaty. Plants in the open in the summer time average twice as much photosynthate.

The following conclusion can be deduced from the above table:

1. The dry weight per mit area of leaves of seedlings grown
in the complete culture is less than that of leaves of seedlings grown in a solution lacking an element.
2. The assumption that the amount of photosynthate in leaves is an indication of energetic growth is far from true. In a complete solution as seen from the result, the leaves contain the least amount of photosynthate, while the solutious lacking potassium, calcium and phosphorus respectively, show the greatest gain in weight. This by no means indicates metabolic efliciency in plants growing in solutions lacking potassium, calcium, and phosphorous, respectively.
3. These results suggest that the explauation lies in a reduced translocation and a retarded photosynthesis. To test this, three sets of cucumber seedlings were grown in the various solutions. Two sets were used to determine the gain in dry weight per ghm2. Before dawn the leaves from the third set were detached, the cut surfaces of the petiole sealed with melted paraffin and then re1umed to their respective solutions. The results are seen in Table II.

TABLE II.

	Gain in d	weights.	Gain in \% of detached over uncut.
Nutrient solution	Uncut.	Detached.	
Complete.	0.16974 gr .	0.65294 gr .	74%
Iron omitted	0.35160 gr .	0.65884 gr .	45%
Nitrogen omitted	0.29990 gr .	0.44760 gr .	32.9%
Potassium omitted.	0.17850 gr .	0.25950 gr .	31.3\%
Phosphorous omitted	0.64680 gr. 0.10850 gr.	0.89920 gr. 0.08920 gr .	$\begin{array}{r} 28.1 \% \\ -0.17 \% \end{array}$
Magnesium omitted.	0.10850 gr .	0.08920 gr .	

It shows that the increase of dry weights of detached leaves exceed that of the uncut by a very large margin. It is also seen that the greatest per cent gain was in the complete solution, and that this is the average amount of photosynthate made under greenhouse conditions. This experiment further lends support to the hypothesis that the absence of an element retards translocation of the photosynthate. The above data also bear out the theory that the rate of photosynthesis is impaired when an essential element is lacking.

It must be remembered that this study is merely preliminary, but our present data in general indicates that the process of photosynthesis is greatly modified by absence of a certain element. The
modification apparently is expressed in the retardation of translocation and the reduced power in photosynthesis. Further work is in progress and a more detailed study of the various factors involved is being made and when this is completed the data will be printed elsewhere.

Michigan Agricultural College, East Lansing, Michigan.

THE HORMONE THEORL OF CDROMONOME ACNION.

BY ERNST A. BESSEY.

That the phenomena of heredity are bound up intimately with those nuclear structures called chromosomes is the conclusion of almost all students of the subject. The reasons for this belief may be brielly reviewed. In ordinary nuclear division (mitosis), we find at one stage a contimoms or interrupted thread (the spirem) becoming segmented into a definite number of pieces, the chromosomes. In plants all the chromosomes in a given mucleus are usually rery similar to one another, but in many animals, e. g., some insects, they differ markedly. In the further course of mitosis, these chromosomes split longitudinally and the resulting halres are drawn to the opposite poles of the nucleus where each regenerates its missing half and they finally assume their places in the danghter nuclei. At the next nuclear division the same number of chromosomes appear aud they will be found to have the same shapes and location as in the previous division. In fact this phenomenon is so widespread that biologists are now very strongly inclined to believe in the continued individuality of the chromosomes from one nuclear generation to the next.

Still more marked is the peculiarity of the behavior of the chromosomes in reproduction. Both the male and the female sex cells (gametes) are found to have the same number of chromosomes, * and on careful comparison these are found to match in the two cells. The zygote nucleus produced by the mion of the two gamete nuclei has, then, a donble set of chromosomes; i. e., two of every lind present in either of the gametes. Before the next sex cells are produced, there occurs that peculiar process called the reduction division or meiosis, in which the number of chromosomes is reduced again to the number found in the previous gametes. Careful investigation has shown that in this process one of each pair of chromosomes (which one appears to be a matter of chance) passes entire to one daughter nucleus while the other chromosome of the same pair goes to the other daughter nucleus. This process differs from ordinary mitosis among other things in that whole chromosomes not merely halres of the same chromo-

[^4]some pass to the opposite poles. The result is that every new gamete has one of each kind of chromosome present while the zygote nucleus and its descendants possess two of each kind.

The complexity of the process for exactly halving the chromosomes in ordinary mitosis and for properly distributing the whole chromosomes in reduction division makes it seem certain that the chromosomes play a very important role in the cell. The fact that the mode of distribution of the chromosomes at meiosis takes place exactly in the manner that the Mendelian theory requires for the distribution of the structures responsible for the main "mendelizing" characters has led further to the assumption that it is the hereditary characters that are borme by the chromosomes.

We talk very glibly about the "bearing of heredity characters." Just what is meant by this phrase? I feal it is a term that we all use rery frequently without really considering what is included in the expression. We know, in general, that "like begets like." What does this mean in terms of cells and their activities?

Every plant and every animal develops from a single cell, the fertilized egg, leaving out of consideration the rather numerous host of lower plants in which sexual reproduction is lacking (Myxophyceate, ('aulerpa, and scattered forms in other groupsi. The latter, although not producing eggs, mostly possess at one stage of the life cycle but a single cell. Eren in those forms that are always multicellular we find that all parts of the individual arise by cell divisions or in case of coenocytes like Caulerpa by cell enlargement accompanied by nuclear divisions. Thus all the complex features of the structure of the most highly dereloped plants or animals must be bound up in the limits of the single cell which bridges the gap from one generation to the next. We may accept the theory of those who would greatly limit the complexity of these details by arguing, in many cases doubtless with right, that the development that any particular cell of a multicellular plant or animal molergoes is mainly merely a direct response to the immediate envirommental conditions. But even then we must admit that there must be vast differences in the factors present within the nuclens of this cell to acoount for the fact that the eggs of different animals e. g., fishes, frogs, foads, not to mention the host of the acquatic invertehrates, amb of many algate all develop into their own proper species although the external enviromment is identica].

The structure of the mature individual is a result of cell divisions and the modification of the resultant cells in various disections.

There must be sombthing inherent within the reths that deremones just what each cell shall develop into in its own parlicolar emvironment. In plants gemerally and to a large extent in the lower animals any group) of cells is able to regenerate the whole individnal, Thus showing that the directive forees for all the structures of the individual are present in eadch cell and not distributed respectively among the rarious tissues. It is a lact that, in many plants as well as in most amimals, the amount of cytoplasm that is carried into the egg with the serem is rery smatl or sometimes entirely lacking. Inderd, the important feature of fecundation appears to be the union of the male and female nuclei. This fact as well as the features of mitosis and meiosis to which attention has aheady been called makes it seem donbly certain that it is not only the nucleus hat the chomosomes within the nucleus, that decide how the cells shall develop, and this means how the individual will be constructed.

If these chromosomes are of so great importance to the cell as the foregoing would indicate, how do they act? We must first of all consider their position within the uucleus. The "resting" nucleus as distinguished from the nucleus in the process of division may be described as a large vacuole of nuclear sap hounded by a tough plasma membrane of cytoplasmic origin, such as is always found where cytoplasm comes in contact with a body of Water (e. g. at the exterior of the protoplast as well as the "tonoplast" around the large central vacuole). Suspended in the nuclear sap lies the tangled semi-fluid nuclear network consisting of a delicate thread on which are strung at various points irregular lumps of semi-fluid chromatin. A large drop of reserve protein (the nucleolus) chemically closely akin to chromatin is also suspended in the muclear sap, apparently in more or less intimate proximity to the nuclear network. The latter may criss-cross through the central portion of the mucleus or perhaps more of ten lie near its circumference.

A closer examination of the relation of the chromatin lumps in the resting nucleus to the chromosomes that appear during mitosis makes it almost certain that the fine thread with the scattered chromatin masses on it is to be looked upon merely as made up of chromosomes stretched out and that these separated chromatin lumps are identical with the closely crowded deeply staining chromatin borlies visible in the chromosome. If now the chromosomes are the bearers of heredity it must be these scattered chromatin masses in the resting nucleus that have this function.

The question then is. how can these separate lumps of chromatin, each one perhaps the bearer of some separate trait, exert their influence upon the development and functions of the cell? The bulk of the nuclear network lies near the circminference of the nuclens. it is true, but not all. One can hardly conceive that only those chromatin masses do function that lie near the circumference. Even these it seems are not all in intimate contact with the cytoplasm but usually lie a short distance inward from the nuclear membrane.

To explain the action of the chromatin upon the eytoplasm various theories have been proposed. Perhaps the most popular of these is that of enzymes. We know that there are enzymes that will hydrolyze starches into sugars and others that change sugars into alcohol and carbon dioxide; some enzymes facilitate oxidation, others reduction; some digest proteins, others dissolve cellulose or the nearly allied pectose substances. These are howerer, all more or less catalytic in their nature; they facilitate certain chemical changes that would take place to a slight degree without their aid. It is rather hard to comect any known enzymes with the production of the peculiarities of morphology and physiology of the various cells of a plant or animal.

There is, however, another class of lit tle known substances which exert profound effects upon the development of the higher animals. These are the "hormones," the secretions of some of the ductless glands of the body. As yet, much that has been written about them is in sore need of eritical review, but yet enongh is known to make certain of their existence and importance.

Probably the best known of these substances are the secretions of the thyoid gland, a ductless gland situated in the neck. If this becomes atrophied during childhood further development ceases, both physical and mental, and the child remains a dwarf. with the mind of a child, no matter how old he may grow to be. Let such a child be fed the extract of the thyroid gland of a calf. for instance, and development begins almost at once amd nomal growth and maturity, physical and mental, result, provided the thyrod treatment is continued. If it is finally discontinued rarions pathological developments of the skin cusue and finally a state of mind bordering on imbecility results. This can be cured, however, by resumption of the thrroid feeding. Another secretion of this nature is that of the pituitary gland simated at the base of the brain. In cases of hypertrophy of this organ there results the disease known as acmomegaly. This is characterized by the elongation
of the bones of the extremities as well as by a thickening of some bones e. g., those of the skull. Other organs may also be enlarged aboormally. Most of the "giants" exhibited in circuses are persons aflicted with this hypertrophy of the pituitary body and the consequent acromegaly. The so-called secondary sexual characters of the males, such as the spurs, characteristic comb and coloring of the cock or the greater hariness of parts of the body in other animals or even the characteristic shape of the body, are largely the result of such secretions into the blood stream from the mate reproductive organs. By removal of these organs in the early stages of development in the individual these secondary characters are almost or sometimes entirely suppressed.

Other hormones might be cited but I believe I have made clear the farraching specific effects of these secretions, even when in small quantities. Some of these have been analyzed and have been found to he of not nearly so complex a composition as enzymes or proteins. They are, however, keys that fit the very complex locks, the protoplasm of the rarions cells of the body, setting free very important activities.
Now let us apply the foregoing to the chromatin masses that make up the chromosomes. Why can not we assume that the function of the different bits of chromatin that make up the chromosomes is to secrete substances similar to the hormones, nuclear hormones we might call them, which affect the cytoplasm and bring about characteristic reactions and activities in it just as the hormones secreted by the thyroid glands stimulate the continuance of the bodily and mental development, that from the pituitary body govern the growth of the bones, etc? Then the complete complement of chromosomes or, more correctly speaking, of the chromatin masses making up the chromosomes, secretes into the muclear sap a mixture of many nuclear hormones which diffuse out into the cytoplasm. Here they stimulate activities and bring about a development of the cell to that structure and function typical for that particular organism.

In the case of hybrids we have coming into the cells different sets of chromatin masses from the different parents. In closely related parents some of the chromosomes or chromatin masses will be identical in their composition and secretions, but some will be different. In some cases these different secretions may not interfere with each other so that both paternal and maternal characters may show on a given structure. In other cases, however, one will entirely suppress the action of the other. Possibly the
fact that some crosses hetween nearly related plants never produce seeds may be due to the fact that the difierent nuclear hormones produced hy the chromosomes of male and female origin within the zygote nuclens are so opposite in their effects on cytoplasm that the latter (an not develop further and so no embryo is formed.

Department of Botany,
Michigan Agricultural College, East Lansing.

THE SEXUAL CYCLE IN PLANTS.*

BY ERNS'I 1. BESSEX.

There are many groups of plants in which sexuality is entirely latcing. In some of these the indications are that this lack of sexuality is not due to its loss in the course of evolution from sexual ancestors. but that it is primitive; in other words has not ret been evolved. The Myxophycate are good representatives of such plants. Possibly, also, some of the Protococcoideae which lack sexuality are to be classed as primitively sexless, but this is rather doubtful.

On the other hand we have numerous cases where the absence of sexmality is ahmost rertain! y due to its loss in the course of erolution from ancestors that possessed it. Thus we have in the ('lass Ascomyceteae a group of plants that, whaterer theory as to their phylogeny may be arcepted, have descended from forms possessing sexuality. This is borne out by the fact that a form of sexuality is present in most of the species of the class. Mowever, the fosely related generat Eremascus and Endomyees differ in this that the former possesses and the latter lacks sexuality The same is true of the closely delated family Sacchanomycetaceate, the reasts, in which ascus formation is preceded by conjugation in some forms and conjugation does not occur in others. Among the ferms, too, and the flowering plants there are quite a number of species in which the new generation is produced apogamonsly, i. e., without the sexual union. Perhaps the commonest example is The common dandelion (Lcontodon taraxucum L) in which the pollen still coutinues to be formed in spite of the fact that the embryo develops from an unfertilized egg cell. Such plants as these are therefore secondarily sexless.

What was the origin of sexual reproduction is not yet clear. Ir. Coulter is probably correct in his belief that the original gametes were modified zoospores. It is not so sure, howerer, that sexuality originated de movo at many different points in the Vegetable and Animal Kingdoms. It is indeed hard to conceive how the almost identical phenomena of sexuality in animals and the various groups of plants can have had separate origin. Indeed,

[^5]Spermaphyta

Figure 1. Lotsy's diagrammatic scheme to illustrate his idea of the relationship of the various groups of plants.
the similarity of these phemomena is, if anything, a proof of the extreme age and common origin of this process in all organisms in which sexuality occurs.

I will digress here for a moment and suggest that any system of classification that disregards this ancient and common origin of sexuality will eventually have to give way to a system in which this is taken into consideration. I know that the currently accepted systems of classification as expressed by Engler and Prantl by Lotsy or by Oltmams are in direct opposition to these riews. The latter (and to a large extent the former') would derive all algae from those groups of Flagellata in which there is no sexual reproduction. These organisms are one-celled animals, some possessing and some lacking chlorophyll, motile by means of two flagella, and reproducing only by fission in the longitudinal direction. There are several groups which differ in the relative size of the two flagella, in the color of the chloroplast, in the chemical nature of the photosynthate, etc. Each of these is made by Oltmams and Lotsy the point of origin of a different algal series. Thus the Heterocontae, the Peridineae and Acontae, the Phaeophyceae, and the Volvocineae-Protococcales-Chaetophorales complex all arise according to Lotsy from different, sexless Flagellate groups. (Figure 1.) Within each of these series sexuality is assumed to have arisen independently of the other groups. In so far as the higher animals, the Metazoa, are derived possibly from other groups of Flagellata the sexual process in these has still a different origin. This seems to me to be all wrong and I predict that the ideal phylogenetic classification of plants and animals will change this entirely and indicate by its arrangement of the groups of plants and animals the common origin of the sexual process.

What then are the essential features of sexual reproduction? The most obrious phenomenon is the union of two cells to form one (Fig. 2). In the most primitive organisms in which sexuality is known (and by primitive we mean organisms that have appar-

Figure 2. Union of similar gametes of Hydrodictyon, (after Coulter)
ently progressed least from the hypothetical ancestral forms) these uniting cells (gametes) are alike so far as the most careful scrutiny will reveal. Howerer, as we follow up the various erolutionary lines we find that in most of these isogamy is prevalent at the base of the line with a gradual transformation to heterogamy toward the apex of each line. It is probably beyond dispute that this change from isogamy to heterogamy has taken place independently in many distinct lines. Thus in the Volvocales some species of Chlamydomonas are isogamous, but Volvox is hetergamous; in the Phacophyceae some species of Ectocarpus are isogamous and other species of the same genus show stages of heterogamy varying from merely a distiuction of sluggish and actively moving, but otherwise indistinguishable gametes to an actual difference in size as well as activity. Higher up in the same great group we find that the larger gamete has lost its motility entirely. A similar development is seen in the Chlorophyceae as we pass from isogamous forms like Ulothrix or Stigeoclonium through various stages of heterogamy to forms like Oedogonium and Coleochacte. Eren in the Conjugatae we find that Mougeotia is strictly isogamous while in the closely related Spirogyra there is a distinction of sex in that the protoplasm passes out of one cell (male) into another cell (female). Some of the Protozoa are isogamous and closely related forms heterogamous. However, in the Animal Kingdom heterogamy entered at a relatively earlier stage of evolution than among plants.

Let us return to the question as to what are the processes taking place in sexual reproduction. In plants like Ulothrix or Ectocarpus we see the mion of two naked, motile cells of equal size. (Fig. :.) In Fucus we see the union of small, motile almost colorless cells (sperms) with large non-motile, deeply colored cells (eggs). In Spirogyra the protoplasm of one cell crowds through a narrow conjugation tube to unite with the protoplasm of the other cell. In all these cases it is whole cells that unite. If we turn to the fungi we find in Albugo one or many (depending upon the species) male unclei and probably some cytoplasm passing through a conjugation tube into the ogogone; in Pyronema it is many nuclei and probably some cytoplasm that pass from the antherid into the trichogym and thence into the öogone. In neither case, howerer, does all the cytoplasm of the antherid pass over, so that it is apparent that a union of complete cells is not necessary to the process. In the flowering plants the male rells enter the pollen tube as true cells, i. e., muclens and cytoplasm, but in their passage down throngh
the tube the nuclei slip out of the eytoplasm so that it is only as naked nuclei that they enter the embryo-sac, and fertilization is atcomplished by the entry of one of these naked nuclei into the egg.

It is clear then that the muclens is the most important structure in sexual reproduction, at least so far as the male cell is concerned.

Further consideration of the process shows that in the lower forms, where the mion is that of whole cells, it is not merely the cytoplasm but also the nuclei that mite. The latter is the case also in the higher forms. Sexual reproduction, then, is not merely the union of cells, or the entry of a male nucleus into a femate cell, but the union of the two nuclei.

But this mion of cells and nuclei is not all of the process. To reproduce there must be cell division again, whether it be to produce new individuals at once, in the case of one-celled plants or animals, or to produce the many cells of which the new individual consists, in the case of the many-celled plants and animals.

It will be necessary to review hastily the process of cell and nuclear division in order to understand more clearly what effect the union of nuclei has on the subsequent process.

In its essentials the mitotic division of the cell consists of the division of all elements of the protoplasm into like halves, and the regeneration by each half so formed of the missing half. This latter point is as important as the former. Thus the cytoplasm divides into two masses of cytoplasm, the plastids, in many cases at least, into two plastids each, ete. This division occurs either through cleavage due to the formation of vacuoles between the two halves-to-be or through a drawing apart of the two halves and gradual pinching off as happens when a drop of glue drops from a stick or other object.

The nucleus is not a simple drop of slightly different protoplasm but is more complicated in its structure and accordingly in its mode of division, although it conforms to the rules formulated above. It is a vacuole (nuclear sap) surrounded by a thin, tough membrane (nuclear membrane, which is a part of the cytoplasm) with a tangled thread suspended in the racuole. On the thread, which may have cross connections from one loop to the next, there are irregular lumps of a highly staining protoplasm particularly at the intersections of the threads. These lumps are made of a substance or substances to which the collective name chromatin is given. There is usually a store of reserve material as a large drop, the mucleolns. This is proteid in nature and is clearly closely related in composition to the chromatin.

Jost as the eytophasm and plastids divide into similar halves so We find division going on within the nuclens. It is, howerer, only the chromatin lumps that divide. This division aecurs in the Myxophyceae where the nucleus is less highly organized than I have described abowe apparently by the pulling apart of the chromatin masses. In the better organized nuclei, howerer, a cleavage plane is produced ly the formation of vacuoles which separate the lumps of chromatin into equal halves. This is the essential feature of nuclear division. The matter is not so simple as this statement would make it appear for this cleavage is organized and controlled in a rery complicated manner. In brief the process is as follows: the separate chromatin masses crowd together into a delinite nmmber of more or less elongated bodies, the chromosomes. Special structures arise in the cytoplasm and entering the nuclens arange the chromosomes in a definite order and, after they have undergone clearage, pull apart the halres. These half chromosomes represent merely the crowded together and perhaps partially fused halves of the chromatin lumps of the resting nucleus. As all protoplasm has the power of regenerating itself so each lump regenerates itself exactly (probably using up the food previously stored up in the mucleolus for the purpose) and then the lumps separate and the daughter nuclei are reorganized.

Careful study of a great many animals and plants by investigators in all parts of the world makes it clear that the chromatin lumps always crowd together into the same number of chromosomes, at each nuclear division for the same species of organism. These chromosomes, too, often have characteristic shapes and sizes which are constant for the species. It seems probable that not only are the shape and size of the individual chromosomes constant, hut eren the relative position in the nucleus. This forces us to the inevitable conclusion that the individual lumps of chromatin which are united into the chromosomes are themselres permanent cell organs and that the complicated mechanism of mitosis is ari ardangement by which the halving and distribution of these chromatin masses to the daughter nuclei is made more certain.

These facts have led hologists to assume that the control of the development and functioning of the cells and consequently the structure and physiological nature of the individual resides in these various chromatin masses, in other words, we speak of them as the "arriers of heredity." The further bearings of this theory need not be mentioned here.

When two muclei fuse in sexual reproduction we find that the
resulting molelns contains twice as many dhromosomes as eatch of the gamete nuclei. When such a zygote nucleus divides each chromosome divides in the manner described above so that eitch daughter nuclens receives the double number of chromosomes. When we examine the chromosomes carefully in the dividing nuclei of various insects and worms as well as of some plants we find that tha dhromosomes appear to oredre by twos. Thus in forms in Which there are in the gametes as many shapes of chromosomes as these are in mumber we find in the nuclei coming from the division of the \%rgote nuchers the satue number of shapes of chromosomes but each shape represented by two chromosomes. Furthermore, the two of a kind usually lie in close proximity to each other. We most conchale that the corresponding chromosomes are equivalent and that the component lumps of chromatin of which these correspombing dhromosomes are composed are also equivalent. Thus the \%ygote mucleus and its progeny possess two chromatin masses of every lind for every one in the gamete nucleus.

Lemtually, howerer, the time comes for new sametes to be formed. If nothing new were to enter in we would expect these to have double the number of chromosomes that were present in the gametes of the previous generations, so that with each generation the chromosome number would be doubled. Such a heaping up of chromosomes is beatifully prevented by the complicated process known as the reduction division or meiosis. This occurs wherever sexual reproduction is found. By its means the number of chromosomes is reduced again from the "diploid" to the original "haploid" number.

The details of meiosis have not been worked out so completely as to be free from controversy. Indeed, there are several theories which differ radically but which are held by their adrocates with great temacity. In objects so minute it is rather natural that preconceived theories may influence the observations made by eren the most open-minded of observers. Strasburger reports an ammsing instance of this. Two of the leading adrocates of diametrically opposite views as to the course of events in meiosis exchanged their slides and all material upon which they had arrived at their conclusions. Eatch one, working with the otheres slides and material arrived, however, at his own original conclusions.

In general the process seems to be a spinning out of the chromatin masses and the threads on which they are apparently strung into a very slender tangled threal that compacts itself into a tight knot in which occur processes the nature and purpose of
which one can only surmise. Later on the thread shortens and thickens and eventually the chromosomes appear in pairs, those of each pair being so closely united as to give to each pair the appearance of a unit. These double chromosomes are naturally haploid in number as each consists of two chromosomes. In the first of the two divisions that make up meiosis these pairs of chromosomes split into their component whole chromosomes, one of which goes to each daughter nucleus, so that the latter receives the haploid number of whole chromosomes instead of the diploid number of half chromosomes. The second of the two divisions is practically normal.

Although it is usually impossible to distinguish the chromosomes from one another in plant cells this is not true of all plants, while in many animals chromosomes have distinctive shapes and positions. In such organisms it has been possible to observe that at meiosis one of each kind of chromosome goes to each daughter nucleus. Since the pairs of such chromosomes arose by the union of the gamete muclei it is clear that the distribution of the compouents of the pairs to the daughter nuclei at meiosis must bring to the nuclei the corresponding chromosomes from the two gametes; i.e., the chromosome of male origin goes to one daughter nucleus and that of female origin to the other. There is no reason to believe however, that all the chromosomes from one gamete go to one daughter nucleus and those from the other gamete to the other nucleus. Rather, it seems probable that the question as to whether a given chromosome goes to one or to the other daughter nucleus is wholly a matter of chance.

We can now take a more comprehensive view of the subject of sexual reproduction. It consists of the union of cells, with the nuclear union as the most important feature. But, in order that the process may be repeated, it involves also the reduction of the diploid to the haploid number of chromosomes. This series of events, then, the union of cells, the nuclear union and the reduction division form the sequence of processes that I call the Sexual Cycle.

Whatever group of plants or animals we study we find that the sequence of events remains the same for the sexual cycle. On the other hand there is the greatest variability as to the time interrening between these different cardinal points of the cycle.

In most animals (at least in most Metazoa) the nuclei of the somatic cells are diploid in character. Reduction division does not occur until those cell divisions that produce the gametes (eggs
and sperms). The union of the gametes gives rise to a zygote with a diploid nucleus, the subsequent nuclei all being diploid until meiosis oceurs at gamete production again. The sperm mother cell possesses a diploid nucleus. By meiotic division it produces four haploid nuclei, one for each of the four sperms. Within the ovary or after it leaves the ovary the egg mother cell also has a diploid nucleus. The so-called "maturation" divisions that it makes are in reality meiotic and the result is four eggs, of which only one is functional, the other three being the polar bodies. (It must be noted that frequently the first polar body does not divide again, in which case only two polar bodies are apparent.)

Illustrating the sexual cycle schematically as a circle (Fig. 3) we have CU representing the union of the gametes and NU the immediately following nuclear union. The portion of the circle around to the letters IRI) (reduction division) represents the long stage of somatic derelopment in which nuclear and cell divisions occur until the reduction divisions take place at the time of forming the next generation of gametes.

Turning now to the Vegetable Kingdom we find that there is no such general uniformity of the sexual cycle as we find in animals. The gaps between the different events of the cycle may occur between any two, or there may be two gaps. It will be understood that these "gaps" represent series of nuclear and cell generations between one point of the cycle and the next.

To find a sexual cycle of the type that is prevalent in animals we must turn to Fucus (Fig. 3). Here the gametes (produced at

Figure 3. Sexual cycle in Metazoa and in Fucus. $\mathrm{RD}=$ Reduction division, $\mathrm{CU}=\mathrm{Cell}$ union, $\mathrm{NU}=$ Nuclear union, $\mathrm{G}=$ Point of gamete formation.
Figure 4. Probable sexual cycle of Ulothrix, Oedogonium, Desmidiaceae, Spirogyra, etc.
the proint in the crele indicated by G) produce a diploid zrgote which develops into the plant body without any meiotic division until the eggs and sperms are produced. Thus the three events of the crole occur in immediate proximity in the order RD, Cl, NU.

In Clothrix and Oedogonium and a number of other Chlorophyreac the life history includes the production of gametes, their union to zygospores or oospores, and the germination of these, after a longer or shorter period, by the division of the nuclens into fome nuclei and the production of four zoospores, each of which produces a new plant. (In Clothrix according to Klebs, these fonn (edls may possibly lack motility). If conjugation is prevented the gametes of Colothrix are capable of developing parthenogenetically. These facts learl to the assumption (which ought to be tested by cytological inrestigations) that the regetative cells and the wametes of these plants are haploid. That being the case the ability of the gametes to grow without conjugation would not seem strange. The division of the zygote into four cells is probably accompanied by the meiotic dirisious of the nucleus. The sexual crele would then be illustrated by a diagran (Fig. 4) in which the events are in the order: ('U, NU, LID with the main part of the cycle in the haploid condition.

It is probable that the Desmids and Pond Scums (Kygnematales) are of this same type, for we find the zygote dividing into four cells in Mesotatenia or into two cells with two nuclei each (and one of these two disintegrating) in most Desmids, or, as in Spirogra, with the zygote nucleus dividing into four nuclei, with only one finally functioning further. It seems almost certain that the reduction divisions must occur at this point, but here, 1oo, the matter needs further investigation.

In the higher algae we find that in the Florideae the sexual cycle shows another modification. (Fig, 5). In the majority of this class fwo generations are distinguishable, the sexmal and the tetrasporic. The zygote nucleus divides by ordinary mitotic divisions and is seen to he diploid. The resulting nuclei mat invade other cells or not, hut eventually enter the threads that give rise terminally to the carpospores. These are also diploid as are the cells of the fetrasporic phant allising from them. It is worthy of note that this generation with the diploid muclei consists of plants as a general rule much larger than the haploid sexmal plants of the same age.*

[^6]Certain cells of these diploid, tetrasporic plamis enlarge and their nuclei madergo meiotic division producing the fome nuclei of the four tetraspores, each of which in fum may produce a new sexual plant.

Figure 5. Sexual cycle of such Florideae as possess a distinct tetrasporic generation. $\mathrm{C}=$ Figure 6 Point at which carpospores are formed.
Figure 6. Sexual cycle of Nemation.
In the life cycle of these plants we find a large number of nuclear and cell generations occuring between the nuclear union (NU) aud reduction division (RD) and again between the latter and the formation and mion of the gametes, this being illustrated in the figure.

In some of the Florideac, e. g., Nemalion, there is no tetrasporic generation and the carpospores possess haploid nuclei (Fig. 6). Wolf has shown for these that the zygote nuclei and those first entering into the threats which produce the earpospores are diploid, but that the chromosome number becomes redured somewhere along the course of this thread so that the last division which produces the carpospores shows the nucleus to be haploid. Thus in the rather closely related phats represented on the one hand by Nemalion and on the othere for example hy Polysiphonia, the reduction division precerles the rarpospore production or lollows long after, respectively.

In the Bryophyta the alternation of generations hecomes fairly well marked. In these plants the sexual cycle (Fig. 7) is much like that in Nemalion except that the mumber of eell generations is rastly greater hetween the zygote and the reduction divisions that take place, just before spore production, in the spore mother
cells. The permanent generation, or the plant body, of the Moss or Liverwort consists of cells with haploid nuclei. The zygote by its division produces the mass of cells with diphoid muclei, some of which remain sterile aud have protective or assimilative functions while others become the spore mother cells within which, after meiosis the four nuclei become the spore nuclei. Because in the Ferns this sporogenous structure that arises from the zygote has an independent existence as a distinct generation botanists usually apply the terms gametophyte and sporophyte to the main plant body and the sporogenous structure respectively, of the Bryophyta also.

Figure 7. Sexual cycle of Mosses and Ferns. SP=Point of spore production. Figure 8. Sexual cycle in the Flowering Plants.

In the Ferns the sexual generation, the gametophyte, is the shortlived one, and the sporophyte long-lived. Otherwise the sexual cycle is the same as for the Bryophyta (Fig. 7). Very incorrectly these two generations are often spoken of as the sexual and asexual generations respectively. I have tried to point out that the rereduction division is as important part of the sexual cycle as the cell and nuclear union. The sporophyte is merely a further development of the comparatively few-called structure that arises from the zygote in Nemalion and prodnces the carpospores: I do not want to be misunderstood as holding that Nemalion is a didect ancestor of the Ferns or Mosses, but I mean that a further development of the same idea that appears in Nemalion gave rise to the sporophyte in these groups). The true asexual reproduction is that hy which the same generation is perpetuated, not that repro-
duction that is the complement of the cell mion. Thus the format tion of gemmate on the liverwort gametophyte on of the buthits on the sporophytes of certain ferms is true asexual reproduction. The formation of spores in the moss capsule, on the other hand, is merely the final stage of the sexnal reproduction begun ly the union of sperm and egg in the archegone.

The fern type of sexual cycle persists in the still higher plants with a shoving of reduction division (RI), forther and further towards the point of gamete production (G). Finally in the Anthophyta the flowering plants proper, as distinguished from the Gymmosperms), the haploid stage represents only two nuclear generations in the male gametophyte and three (sometimes less) in the female gametophyte. (Fig. S.) Thus in a very different group of plants we come back to almost the same style of sexual cycle that occurs in Fucus, the prevalent animal type.

In all of the examples that have been mentionel the cell mion has been followed immediately by the nuclear mion. This is not always the case in plants. In the Ascomyceteae, Claussen worked out the cytological details from the time of entry of the male nuclei into the oogone up to the formation of the ascospores. The main points are as follows: Upon the union of the clubshaped antherid with the trichogrne of the oogone the numerous male nuclei pass from the former into the latter and then into the oogone proper. Ifere the male nuclei approach but do not unite with the female nuclei. They arrange themselves in pairs and divide simultaneously. By this "conjugate" division numerous pairs of nuclei are produced and these migrate out into the ascogenous hyphae. In these eventually closs walls are laid down so that each cell contains two nuclei, one probably descended from a male nucleus and the other from a female nucleus. Finally at the extremity of each ascogenous hypha the two nuclei unite, forming the single, diploid, nucleus of the young ascus. This divides now by reduction division so that the ascus soon contains four haploid nuclei. Another vegetative division of the nuclei produces the eight nuclei, the number normal to this plant. About each is formed an ascospore. These ascopores produce the new plants. In the whole life history of the plant there is but one diploid nucleus, the one formed in the young ascus by the union of the two nuclei of respectively male and female ancestry. The threads that bear the asci. the ascogenous hyphae, contain in their cells two nuclei, but these are haploid. The cells of the regetative mycelium have only haploid nuclei. We must note howerer, that the cells of the asco-
genoms hyphate are diphoid even thongh the two nuclei in each cell are haploid, for so far as the functions of the cells are concerned there can be little difference whether the two sets of chromosomes, respectively of the male and female origin, are enclosed in one common nurlear membrane or in two separate membranes.

The sexmal cycle (Fig. !) may be represented graphically with a moderate gap between the point of cell union (CU) and that of nuclear union (NU), this gap representing the nuclear generations during which the nuclei are in pairs and division is conjugate. The main regetable growth, howerer, lies between RD and CU.

Figure 9. Sexual cycle in Pyronema.
Figure 10. Sexual cycle in the liusts.
In the Rusts this scheme is still further modified. The cell mion ocemrs in the aecium, giving rise to a dath of binucleate aeciospores. These produce on the same or a different host at mycelium all of whose cells are binucleate. Secondary, truly asexual spores, the mediniospores, may oceur to multiply this stage Finally, howerer. binucleate teliospores are formed. The two murlei fuse amd a diphod murlems is formed; like that of the young ascus the only one in the life history of the rusts. When this nuclens divides it is by a reduction division to form the four nuclei of the pomyeelium and so the nuclei of the uninucleate sporidia. The myerem produced by these consists of minucleate folls. It is on this merelimm that arise the hyphae which hy their union in the aecium begin the binucleate stage again.

Here as in the Ascomyceteae there exists a stage with binucleate eells and one with minucleate cells, hut the former is msablly
the longer. Furthermore, it is completely indepentemf of the uninucleate stage and not depentent upon it as in the Ascomyceteate. Its cells are essentially diploid for they contan two unclei respectively male and female) but (atch moleles is haploid. The diagram (Fig. 10) shows the stage hetween cell mion in the aecium (' C) and nuclear mion in the telospore (NY) as romsiderably longer than the stage from reduction division (RI) and sporidial formation to cell union (CU).

Figure 11. Sexual cycle in Tilletia.
Figure 12. Sexual cycle in Agaricales.
In the gemus Tilletia (Fig. 11 , the binucleate stage is extended to its fullest extent. Here the regetative mycelium for the whole life history of the fungus consists of binucleate cells. It the time of spore formation the young spores are binucleate but the nuclei mite so that the only diphoid nuclems of the life history is formerl. I promycelium is formed and within it takes place in all probahility the reduction division so that the nuclei of the sporidia are haploid again. The sporidia almost invariably conjugate eren before becoming detaded from the promycelimm, the nutlens from one passing into the other sporitlinm but with no nuclear fusion. The germ tube from this binucleate sporidimm has its muclei two to each cell. Here we have the three main events of the rexual cycle in immediate succession, nuclear union in the spore, reduction division in the promycelium and cell union in the sporidia, with the whole regetative mycelimm possessing two nuclei to a cell.

Finally we must look at the Agaricales in which the point at

Which the mycelinm becomes binncleate is rery rariable. In some species the single nuclens of the basidiospore divites, so that from that point on every cell of the mycelimm is binucleate, the nuclear mion taking plate in the basidium, to be followed immediately by reduction division so that the nuclei of the usually four basidiospores are haploid. In other cases, howerer, the basidiospores remain minucleate and the regetative mycelium possess but one nucleus to the cell. Somewhere, however, before the hymenium is formed the rells become binucleate, apparently by the omission of a septum after unclear division, rather then by a drue mion. This is so variable that I have had to indicate (Fig. 12) by a dotted line the fact that the point where the cells become binucleate (and which correspond to the point of cell union) is not fixed.
leviewing now the different sexual cycles that have been illustrated, it will be noted that they all agree in the order of their events, i. e., cell union, nuclear union and reduction division. But these erents are seen to be like morable balls on a wire ring. They can be arranged in almost any position, in close proximity by threes or by twos or scattered, but they cannot be passed by one another. Thus we have them in threes in the three possible comhinations: LIS, ('V, N゙ in Fucus, CC, NC, RD in Clothrix and Oedogonium, NU, RI), CV, in Tilletia; or by twos with the third remored to some more distant point in the cycle as CU, NU in Floridae and Mosses, NT, RD in Ascomyceteae and many other fungi. The arrangement with all three items scattered erenly on the cycle is, however, not known.

We may for a little consider the bearing of the foregoing upon alternation of generations as well as the eflect of apogamy or parthenogenesis upon the cycle.
strashurger Was very insistent that the sporophyte always began With the zygote and the gametophyte with the haploid cells produced in the comse of reduction division, and refused to consider as homologots two structures of similar morphological origin if one contaned haploid and the other diploid nuclei. Thus the carpospores of Nemalion are, following Strasburger, considered by some as entirely lacking homology with those of Polysiphonia, in spite of the fact that they are produced in the same manner, morophologically: The plant bouly of Fucus is called by such botanists a sporophyte in spite of the fact that it bears the antherids and oogone. Is this right? I believe not.

It is in the determination of this question that the eytological studies of apogamous plants have thrown much light. Take the
case of Aspidium fulculum, one of the ferns. For several decades it had been known that the sporophyte developed from the proliferation of the cells of the gametophyte, not from a fertilized egg. The gametophyte produces antherids with normal sperms but the archegones degenerate before the eggs reach maturity so that the latter are never fertilized and in fact never function at all. On the sporophyte are produced typical sporangia within which spores are produced which give rise to the new gametophyte. It has heen known for some years that spore production within the fern sporangium is typically brought about by the formation of four spores cach in usually sixteen spore mother cells, the muclear divisions being in the nature of reduction divisions. Manifestly reduction divisions camot continue to occur at each generation unless there is a nuclear union somewhere, and this is entirely lacking in the gametophyte.

Miss R. F. Allen, accordingly took up this point and investigated the derelopment of the sperms and of the sporangia of the gametophyte and sporophyte respectively. She determined the chromosome number in the gametophyte to be between 60 and 65 , with perfectly normal development of the sperms. The sporophyte also had the same chromosome number, a confirmation of the previous observations in which no cell union had been observed. In the sporangia there appeared sixteen cells exactly like the sixteen spore mother cells of normal fern. These, however, united by pairs with complete fusion of both cells and nuclei, thus producing eight cells with diploid nuclei. Each now acted like a normal spore mother cell and its nuclens underwent reduction division and four spores were formed in each cell; thirty-two for the sporangium instead of sixty-four as for normal ferns.

It is manifestly entirely improper to call the leafy phant on which the sporangia were borne a gametophyte because of retainiug the haploid number of chromosomes in its nuclei. If that is done then the sporophyte is ouly one-celled, for at only one stage is the nucleus diploid, i. e., just after the fusion of the two spore mother cells.

Miss allen calls attention to cases where the gametophyte retains the diploid number of chromosomes, as in some apogamous flowering plants, e. g., Antemaria, Hieracimm, Thatictrum, in which the embryo sac arises without a preceding reduction division although this may be present in pollen production. In such embryo sacs the egg develops apogamously. In certain cultivated varieties of ferns fertilization and development are normal; in closely related

Varieties of the same species the sporophyte arises apogamously from the gametophyte, and the latter aposporonsly from the sporangial sorns of the sporophyte, hoth generations retaining the chromosome number equal to the diploid number in the closely related normal plant.

In view of these facts elucidated from the apogimons ferms and flowering phants and of the extreme variability of the position of the math points of the sexual cyele in diflerent plants it seems far more reasonable to me to distinguish sporophyte and gametophyte on morphological grounds and to be willing to homologize structures eren when the chromosomes are diploid in number in the one and haploid in the other. This would permit the structure arising from the zyoote in coleochate to be homologized with the sporophyte of the liverwort, a much needed homology in phylogenetic speculation.

One thing remains clear, however. The retention of the reduction division seems to demand a sexual mion somewhere. If this can be in the normal way, well and good, if this is prevented there must be a substitution union elsewhere. Thus in Aspidium falratum. when the gametophyte buds off into a sporophyte, thus eliminating the normal mion, the sexual mion is replaced by the union of spore mother rells in the sporangium. In one species of Prronemat studied hy brown in which the antherid and trichogyne do not fuse the paree of the male mate is taken hy other female nurlei already pesent in the bogone. In the rusts the perniospores are almost certainly sperm dells. but they never have a chance to function so that their phate is taken by cells arljacent to the oogones probably modified oogones themselyes.

One further point, too, is clear. Just as the point of cell and nurleat mion is not aboolutely tixed so the point of reduction division is movable. In Nemalion it is shortly after nuclear mion and hefore ralpospore formation, in Polysiphonial it is after carpospore formation at the chase of the tetraspore state. In Fucts it is at the close of the vegetative growth at gamete production (as in animals in lothrix probably at the wermination of the zygo spore.

I shall not mudertake to show why this is so or what is the purpose of sexual reproduction. I have merely attempted to show some of the features connected with this subject.

Department of Botany, Michigan Jericoltuma College, East Lansing.

Allen, Ruth F. Studies in Spermatogenesis and Apongamy in Ferms. Tramsations of the Wiseonsin Seademy of seience, Arts and Letters. $1 \gamma^{1}: 1-56 . ~ p 7 s .1-6$. Oct. 1911.

Brown, William II. The bevelopment of I'yonemat confhems Var inigneum. American Journal of Botany. .2:2S9-298. June, 1915.

Coulter, John Merle. Evolution of Sex in Plants. 140 pages. 46 text figures. University of Chicago Science Series, 1914.

Lotsy, J. P. Vorträge über botanische Stammesgeschichte gehalten an der Reichsuniversital zu Leiden. Erster Band: Agen und Pilze. 828 pages. $\{30$ figures. Jena., 1907.

Oltmanns, Friedrich. Morjhologie und Biologie der Algen. Erster Band, Spezieller Teil. VI 7:3: pl. 46% figs. 1904. V/weiter Band, Allgemeiner Teil. VI+433 pp. Figs. 468-61\%. 2 tables. 1905.

Strasburger, Edward. Zeitpunkt der Bestimmung des Geschlechtes, Apogamie, Parthenogenesis and Reduktionsteilnng. 1öt pages, 3 plates. Jena., 1909:

Wolfe, J. J. Cytological Studies on Nemalion. Annals of Botany. 18:607-630. pls. XL and XLI. fig. 1. Oct., 1904.

FERN NOTES.

135 OLIVER ATKINS FARWELL.

During the past few years as a result of researches in field, herbarium, and library, a number of interesting discoveries and novelties have been brought to light and this paper puts on record some of the results and conclusions arrived at during the course of these studies.

POLYPODIALES.

POLYPODIACEAE.

Pteris aquilina, Linne var. Pseudocaudata, Clute.

This is a form of the species in which many of the pinnules are marour. entire, and elongated, particularly the terminal ones. It is only rarely met with. I have found it at Detroit, No. 35161/2, August 10, 1913, in sterile or sandy situations; also on sandy hills at Rochester, No. $25601 / 2$, July 14, 1912.

Asplenium pinnatifidum, Nutt.
I have never seen this species in the field but in my herbarium I have a sheet showing several plants which were collected at Cobden, Illinois, by Mr. M. B. Waite, June S, 1885. These, with the exception of one plant, are normal A. pinnatifidum ; the one abnormal plant is normal in all respects except segmentation which is exactly that of A. ebenoides, R. R. Scott, i. e., the lobes are lanceolate and acute instead of round-ovate and obtuse, and of variable lengths, short and long lobes often alternating. If A . ebenoides is a hybrid between Camptosorus rhizophyllus and Asplenium platyneuron with a trend toward the latter parent, why may not A. pinnatifidum be a similar hybrid with a tendency toward the former parent? This peculiar plant would seem to so indicate.

Asplenium platyneuron (Linne) Oakes.
A rare fern in Michigan. Beal, in the Michigan Flora, states that Allegan is the only station in the state. I found it at Williamstown, Ingham Co., May 2S, 1905, No. 1903.

Athyrium Felix-femina (Linne) Roth.
There is a wide degree of variation in the pinnation and size of the different forms that have been refered to this species; the
extremes hare been varionsly regarded as synonymous with the typical form, as varieties of it, or as distinct species. Since the indusial characters, texture of fronds, and general appearance is much the same in all the forms the happiest medium probably will be best served by considering them all as rarieties of one species. In addition to the type the following varieties are found in Michigan.

Athyriuai filix-femina var. michauxil (Spreng.), N. Comb.
Aspidium angustum Willd., Sp. Pl., 5, 277, 1810.
Asplenium Michauxii Spreng., Syst. 4, 88, 1827.
Asplenium Filix-femina var. Michanxii Mett., Fil. Hort. Lips., 79, 185 бั6.

A thyrium asplenoides var. angustum Moore, Index, 179, 1860.
Asplenium Filix-femina var. angustum D. C. E. Ferns of the South-west. 330, 1878.

Athyrium Filix-femina var. angastum (Willd.) Farwell. Mich. Acad. Sci., 6.201, 1904.

Keweenaw Co., No. 757. July 18, 1890. Frequent in rocky situations. Parkedale Farm, No. 3039 a, August 4, 1912. Frequent in dry thickets.

Athyrium Filix-femina var multidentatum (Döll) Milde, Fil. Eur., 50, 1867.

Asplenium Filix-femina var. multidentatum. Döll, Rhein. Fl.. 12, 1843.

Athyriam Filix-femina var. (ychosorum (Ruprecht) Moore, Index., 183, 1860.

The largest and most divided form. Keweenaw Co., No. 502. July 28, 1887 in moist thickets; common. Detroit, No. 502 a. Oct. 16, 1910, in moist thickets; common.

Athyrium Filix-femina var. latifolium, Moore, Nat. Pr'. Brit. Fer. tr. 31B, 1855, Keweenaw county; No. 590, Sept. 5, 1887 in rocky or sterile situations, frequent.

Filix (Fuchs) Hill, Family Herbal 171, 1755.
Dryopteris Adanson, Fam. Pl. 2, 20 and 550, 1763.
Aspidium Swartz, Schrad. Journ. Bot. 1800, 2, 29, 1801.
Nephrodium Rich., Cat. Jard. Med. Par. 120, 1801.
Lastrea Bory, Dict. Class. d'Hist. Nat. 6, 588, 1824.
Underwood and others have adopted Filix. Adanson, (176:3) as the oldest post Linuaean name for those ferms that generally have been known under the name of Cystopteris, Bernhardi (1806). According to Christensen, Ludwig used the name Filix in 175T, perhaps in the same sense. Hill, however, in the Family Herbal
used it for the Male Fern and the Female Fern. I will quote a few lines from the preface of this rolume in order to show the attitude at that time of sir . John Mill, toward botanical science as well as to show that he intended the volume to be of a botanical nature as well as a medical dispensatory.
"It grieres a man of public spirit and humanity, to see those things which are the means alone of the advantages of mankind studied. while in the emf that advantage itself is forgotten. And in this view he will regard a C'ulpepper as a more respertable person than a Limmatus or a IDillemins." "That Botany is an useful study is plain ; because it is in rain that we know betony is good for headaches, or self-heal for wounds, maless we can distinguish betony and self-heal from one another, and so it runs through the whole study."
"We are tanght by it to know what plants belong to what names, and to know that rery distinctly; and we shall be prevented by that knowledge from giving a purge for an astringent, a poison for a remedy; let us therefore esteem the study of botany, but let us know, that this use of the distinctions it gives is the true end of it; and let us respect those, who employ their lives in establishing those distinctions upon the most certain foundations, upon making them the most accurately, and carrying them the fartherest possible: these are the botanists; but with all the gratitude we owe them for their labours, and all the respect we show them on that consideration, let us understand them as but the seconds in this science. The principal are those who know how to bring their discoreries to use, and can say what are the ends that will be answered by those plants, which they have so accurately distinguished."
"The plants are arranged according to the English alphabet, that the English reader may know where to find them: they are called by one name only in English, and one in Latin; and these are their most familiar names in those languages; no matter what Casper or John Banhine or Linnatus call them, they are here set down by those names ly which erery one speaks of them in English ; and the Latin name is added, moder which they will be found in every dictionary. 'To this is subjoined a general deseription of the plant. if it be a common one, in a line of two that those who already know it, may turn at once to the uses; and for such as do not, a further and more particular account is added."

There is, them, $n o$ doubt that he intended the work to be botanical, as well as useful from a therapentic point of riew, and it can
not, therefore, be ignored any more than other volumes of a botanical nature. The latin names are either uninomials, binomials. or polymomials. The work contains no generic deseriptions as such but the Latin names are accompanied by descriptions supplementer, in some instances, by ilhstrations, so that there is no question as to the identity of the phat described, thus making the pmblication effective aceorting to Article : $:=\mathrm{A}$ of the Viennal Code. On pages 171 \& 172 , in the order given herewith, II described two speries; Male Fern, F'ilix mas and Female Fern, Filix Formimu. The male Fern is the spercies known as suth at the present time. The Female Ferm is the one that was published by Lime as Pteris aquilina. The names Filix mas and Filix foemina as here used by Hill most he considered as true binomials and not in any sense ats generic names as employed by him a year later in the British Herbal. Since the binomial has been effectively published it follows that each element of the binomial, that is to say, that the generic name and the specific name each has been eflectively published and the proper ritation for the genus is Filix (Fuchs) ILill, Family Herbal 171, 1755.

The North America species not aheady transfered are as follows:

Filix aypla (H. \& B.) N. Comb.
Polypodium amplum H. \& B. ex Willd., Sp. Pl., 5, 207, 1810.
Filix aquilonaris (Maxon), N. Comb.
I)ryopteris "quilomaris Maxon, Bul. Tor. Bot. ('l., 27, (i:38, 1900.

Filix Boottif (Tuckerm.), N. Comb.
Aspidium Boottii Tuckerm., Movey's Magazine, !, 145, 1843.
Filix Cristata (Linne), N. Comb.
Polypodium cristatum Linne, Sp. Pl., 1090, 1753.
Filix Cristata var. clintoniana (D. C. E.), N. Comb.
. Aspidium cristatmm val. Clintomianum D. ('. E. in (ir. Man., Ed. ๖. 665, 1867.

Filix floridana (Hook), N. Comb.
Nephrodium Floridanum Hooker, Fil. Exot., t. 99, 1859.
Filia fragrans (Liune), N. Comb.
Polypodium fragrans Linne, Sp. Pl:, 1089, 1753.
Filix goggilodes (Schk.), N. Comb.
Vephrorlium unitum R. Br., non Nieh., nor Pol!porlinm mиitum Lin., Syst. Nat., X., 2, 1326, 1759.

Aspidium goggilodus Schk., Kr. Gew., 1, 193, t. 33c, 1809.
Filix goldiana (Hooker), N. Comb.
Aspidium Goldirmum Hooker, Edinh. Philos. Journ., 6, :3:3: 1א:2.

Filix goldiana var. celsa (Palmer), N. Comb.
Dryopteris Goldiana celsa Palmer, Proc. Biol. Soc. Wash., 13, 65, 1899.

Filix marginalis (Lime), N. Comb.
Polypodium marginale Linne, Sp. Pl., 1091, 1753.
Filix marginalis var. bipinnatifida (Clute), N. Comb.
Nephrodium marginale f. bipinnatifirlum Clute, Fern Bul. 19, 50, 1911.

In woods at Detroit No. 1652, August 22, 1890, rare. This fern has the general appearance of F . spinulosa var. Americana but it is not spinulose and the sori are marginal. It apparently is the same thing described by Clute as Nephrodium marginale forma bipinnatifidum. It may be one of the so-called fern hybrids with Filix marginalis and F. spinulosa var. Americana as the parents.

Filix montana (Vogler), N. Comb.
Polypodium montanum Volger, Dissert, 1781.
Polypodium oreopteris Ehrh. ex. Willd., Prod., 292. 1787.
Filix noveroracensis (Linne), N. Comb.
Polypodium Noveboracense Linne, Sp. Pl., 1091, 1753.
Filix orposita (Vah1), (Polypodium oppositum Yah1, Ecl. Amer., 3, 53, 1807) var. strigosa (Fee), N. Comb.

Aspidium strigosum Fee, 11 MeM., 78, t. 22, f. 2, 1866.
Dryopteris contermina strigosa (Fee) Underwood.
Filix oregana (C. Chr.), N. Comb.
Dryopteris Oregana C. Chr., Ind. Fil., 281, 1905.
Filix parasitica (Linne), N. Comb.
Polypodium parasiticum Linne, Sp. Pl., 1090, 1753.
Filix patens (Swartz), N. Comb.
Polypodium patens Swz., Prod., 133, 1788.
Filix patens var. stipularis (Willd), N. Comb.
Aspidium stipulare Willd, Sp. Pl., 5, 239, 1810.
Filix patula (Swartz), N. Comb.
Aspidium patulum Swz., Vet. Ak. Hdl., (1817) 64.
Filix rigin. (Hofím.) (Polypodium rigidum Moffm.. Dentsch. Fl., $2,6,1795$) var. arguta (Klf.), N. Comb.

Aspidium argutum Klf., Enum., 242, 1824.
Filix setigera (Blume), N. Comb.
Cheilanthes setigera Blume, Enum., 138, 1828.
Fidix spinulos. (Muell.) Farwell var. ambicina (Fischer), N. Comb.

Aspidium spimulosum Americamum Fischer ex. Kun\%, Amer. Jour. Sci., Ser. 2, 6, 84, 1848.

Filix spinulosa var. concordiana (Davenp.), N. Comb.
Dryopteris spimulosa (Muell.) Swz. var. Concordiana (Davenp.) Eastman, New England Ferns, 1904, and in Gray's New Man., 43, 1908.

Filix spinulosa var. dilatata (Hoff.), N. Comb.
Polypodium dilatatum Hofl., Deutsch. Fl., 2, 7, 179.
The F. spinulosa var. dilatata Farwell, Mich. Acad. Sci., 6, 209, 1904, is the var. Americana.

Filix spinulosa var. intermedia (Muhl.), N. Comb.
Polypodium intermedium Muh1. ex Willd., Sp. Pl., 5, 262, 1810.
Filix spinulosa var. pittsfordensis (Slosson), N. Comb.
Dryopteris Pittsfordensis Slosson, Rhodera, 6, 75, 1904.
Cystopteris Filix-fragilis (Lin.) Chiovenda.
A common fern in rocky woods. Besides the typical form three others are frequently met with.

Cystolteris filif-fragilis rar. lobulato-dentata (Koch), N. Comb.
C. fragilis var. lobulato-dentata Koch., Syn., Ed. 2, 980, 1845.
C. fragilis var. dentata Hooker, Sp. Fil., I, 198, 1846.
C. Filix-fragilis var. tenuis (Mx.) Farwell, Mich. Acad. Sci., 6, 200, 1904.
The earliest varietal name is that of Koch.
Keweenaw Co., No. 830, August 30, 1890, in rocky woods. Frequent. Ypsilanti, No. 830a, June 11, 1892, in moist woods.

Cistopteris filix-fragilis var. angustata (Hoff.), N. Comb.
Polypodium fragilis var. angustatum Hoff., Roem. et Uster. Mag., IX, Pt. 11, t. I, Fig. 14d, 1790.
C. fragilis subvar. angustata Koch. Syn., Ed. 2, 980, 1845.
C. fragilis var. angustata Luerssen, Farnpf1, 459, 1889.

Keweenaw Co., No. 4051⁄2, July 8, 1886, in rocky woods; frequent.
Cystopteris filix-fragilis var. laciniata. (Davenp.), N. Comb.
C. fragilis var. laciniata Davenp. in D. C. E., Ferns of N. Amer., 2, 52, 1880.

Keweenaw Co., No. 8301⁄2, August 30, 1890, in rocky woods; rare.
These forms or varieties are well illustrated on Plate 53 of Eaton's Ferns of N. America.

ophioglossaceae.

Ophioglossum vulgatum, Lin.
A variable species which, taken as a whole, has an equally variable habitat. I have found it in Keweenaw Co., but it is not frequest even when met with. The typical species has a sessile sterile
fromd near the midtle of the stem, about equalling the fertile segment, or sometimes a little longer or a little shorter. No. ast1⁄2. siept. 万. Lset. in moist, sandy places along the borders of shallow streams.

 S7, 1913.

A larger plant than the speries, the sterile frond more ovate, $1 / 2$ to $11 / 4$ inches wide hy :? to $\overline{\text { an }}$ inches long, and tapering into a petiole like hase. No. set. Nept. $5,18 s$. in wet mearlow lands with more or less sphagnum and other mosses.

Ophioglossum rulgatum var. minus, Moore.
This is the slemberest form of the species as found in Keweenaw Co. The sterile blade is small $11 / 4$ to ${ }^{\circ}$ s inch wide hy 3 to $13 / \mathrm{s}$ inches longe orate or elliptic, sessile near the hase of the stalk and fiar overtopped hy the fertile segment, the whole plant about 5 inches in height. No. Ss., Sept. ., 1sis. on sterile hillsides corered with a sbarse growth of grasses and sedges. The whole plant is rellowish while that of the other two varieties is green. Fndoubtedly this pant belongs here but it is the one that has been reported in Beal's Flora of Michigan as O. Engelmanni.

Botrychium lunaria var. onondagense (Underwood), N. Comb.
Botr!!ehinm Omomda!fense T'nderwood, Bul. Torr. Bot. Cl., 30. 47, 1903.

No. 17st, August, 1902, at Copper Harbor in oak and maple woods. Rare. Forms are fomm which are intermediate between B. Lnnaria, and B. Onondagense indicating that the latter is only an extreme form and therefore is better considered as a viriety of the former.

Botrychium lanceolatum var. angustisegmentum, Pease and Moore.

The pant listed in Beal's Flora of Michigan as Botryehium lanceolatum is the one recently described as the variety angustisesmentum hy Pease and Moore. It grows with B. Matricariatefolimm and other forms appear to be intermediate and to intergrade into either; further sturly maty show that it is not spereifically dis-
 in monld muler hazel bushes, ete., but sometimes in grassy plates in the open.

Botrychium Matricariaefolium, A. Br.
It has been rery conclusively shown that the ()smmada bamosa, Roth, is mot this species and that when Ischerson transfered Roth:s
specific mame to it, it was through a misidentifeation and resulfed in a misappleation of the name. The American plant can not be considered as spedifally difmemt from that of Europe. The sterile fromd is extremely variable as to the degree of dissection athe this fact has led to the description and naming of sereral varie ties or speres based on the degree of division of the sterile laminal It is a very common fern in Keweenaw Co., delighting mostly in a rich hamms. comsisting of moulding and decating leates, materneath deciduons shrubs and trees but mot distaining to come out into the open where it may be found in grassy patches when it is almost completely hidden from viell. I hate seen latre colonies of it amb almost every form immaginalote is to be fomm in surh at colony; this fact alone proves that the various forms are of one and the same speries. The typical form has the sterile hade obslong or orate, simply pinnate with the more or less distant pimate lobed or pimatifich, the lowest pair somewhat longer than the others. No. 1612a, August 25, 1898, Keweenaw Co.

Botrychium matricarlaefolium A. Br. var. rhonbeum (Angstrom). N. Comb.

Botrychium Lunaria var. rhombeum Angstrom, Bot. Not., 70, 18.54.
 deutchs. Ophioglos. 14, 1856.

Botrychium rumosum var. neglectum (Wood) Farwell, Mich. Acad. Sci., 6, 200, $190 t$.

This is a simple form of the sterile frond which is 1 or 2 inches long, simply pinnate with 3 -9 nearly equal, rommed, oval, or obJong, ohtuse, pimate, more or less toother or incised. No. fis. July 26. 1sss, in moist shady woods in Keweenaw (\%. No. 2̈7t, Jume 16, 1912, in open, moist, sandy fields, near Algonac.

Botrychium Matricariaefolium var. compositum Milde.
This variety has the lowest pair of pinnae much elongated and pinnate so that the whole frond appears to consist of three sub-
 and oak woods in Keweenaw Co.

Botrychium dissectum Spreng., Anleit., 3, 172, 1804.
Botrychium lunarioides var. dissectum. A. Gr., Man. Bot., 635, 1848.

Dissectum is the earliest specific name for that group of forms that has been passing as Botrychinm ohligumm and hence Sprengel's mame should be restored. The ultimate divisions are ovate or oblonglamcentate incisely tootherl. In moist thickets and fields. Detroit, rare. No. 1975, Jume 18, 1906.

Botrychium dissectuar var．obliquem（Muhl．），N．Comb．
Botrychium obligumm Muhl．ex Willı．．Ap．Pl．，末，6：3， 1810.
Botryrhillm Tuntrioides val．obliqumm ．（ir．．Man．Bot．，（i：\％）， 1848.

The ultimate divisions are cremulateserwulate．In fields and more frequent than the type．No． 872 October 15，1895，at Detroit．

Bothyomy misectrar rar．elongatem（ribbert \＆Harberer）． N．Comb．

Botrychium obliquum var．elongatum Gilbert \＆Harberer，Fern Bul．，11，89，July， 1903.

Tlimate segments lanceolate，elongaterl，cremulateserrulate． Osscasional，No．3252 $21 / 2$ October 12，1913，in sandy fields at Algo－ nac．

Botrychium multifidum（Gmel．）Rupr．
Osmumita multifida Gmel．．Nov．Comm．Ac．Petro，1シ̈，517．t． 11. f．1， 1768.

Osmumda Matricariae Schrank，Bair．Flora，2，419，1789．
Botrychium Rutacfotium A．Br．ex．Döll，Rhein．Flora．2t． 1843.
Botrychium ternatum A Europacum Milde，Fil．Europ．，109． 1867.
Botrychium ternatum rar．Rutacfolium D．C．E．，Fer．N．Imer．， 1，149， 1879.

This species is similar to the last preceding but it is usually larger，more compound in most of its forms，with the ultimate seg－ ments orate or oborate and obtuse．The type is rather a small plant with few，broad orate，obtuse segments，the lowest sublunate． No．G27．July 31，18ss，Keweenaw Co．，in moist，sandy places：No． 2715，June 16，1912，near Algonac．

Bothrcifitam arcitifiduar var．onemense（Gilbert）．N．Comh．
Botrychium obliquum var．Oncirlense（Gilbert）Waters in Gray゚s New Manual，49， 1908.

The broadly oblong，obtuse，sub－cordate segments of this variety seem to place it with this species rather than with the preceding． Keweenaw Co．，No．S54，July 5，1895，in moist meadows．

Botrychium muliffidum var．australe（D．C．E．）．N．Comb．
Botrychium termatum var．austrate D．C．E．．Ferns N．Amer．， 1. 149, Plate XX a（largest plant）， 1879.

Botrychium silaifolium Pr．，Rel．Haenk，1，76， 1825.

Botrychium obliquum var．Harbereri Gilbert．
This is the larges form of the species and many individuals carry the sterile lamina of the preceding year well along into the sum－ mer so that it may be gathered in good condition with two sterile
fronds on the same phant. Keweenaw Co., No. 70s, Scpt. 20, 1sss. common in grassy fields and meadows; Rochester, No. 6:̈́n a, Aug. 15, 1909.

Botrychium trrmutum suhvar. intermerlum I). (${ }^{\text {. E., Ferns, N. }}$ Amer. 1, 149, Plate XX a (Plant in front), 1879.

Intermediate between the species and the variety anstrale. Fields and meadows, common, Keweenaw Co., No. 628 , July 31,185 .

Botrycimum multifidum var. dichotomum, N. Var.
Twice dichotomously branched showing two long, and one short-stalked, fertile segments and one short-stalked sterile lamina. The primary and secondary divisions of the stem are about 1 cm . in length, while the tertiary divisions are of variable lengths. The sterile lamina is small (1.) mm. long by 10 mm . wide at the base), ovate, pinnatified with $\bar{y}-\bar{T}$ small, closely placed, semi-lunate to obvate, somewhat cuncate, obtuse lobes, entire or denticulate, on a stalk 1 cm. long; the fertile segment is bipinnate on a stalk 2..) mm. long; the other two fertile segments are tripinnate on stalks about 10 cm . in length. This curious plant (Fig. 13) was collected in sphagnum moss and may be a monstrosity but seems to answer to the state found by C. J. Sprague, at Hingham, Mass., as mentioned in Gray's Manual, 5th Ed. p. 672. Apparently this differs from the Sprague plant in having the long-stalked fertile segments, which represent the lateral divisions of the sterile lamina, arising from low down on the common stalk instead of at the normal positions for those divisions. Keweenaw Co., No. 627 a, July 31, 1888.

Botrychium simplex, E. Hitch.
This is a very small plant and in the field, easily orerlooked. The typical form has a small, sterile frond, simple, or three-lobel. roundish, or obovate. It is usually found in low wet grounds with, or in the vicinity of, moss. Keweenaw Co., No. 39971/2, July. 3, 1915.

Botrychium simplex var. angustum, Milde.
Botrychium tenebrosum A. A. Eaton, Fern Bul., 7, 8, 1899.
This rariety has a narrow, pinnate, sterite frond with 2 or 3 pairs of distant lobes. It is more frequently found in rich, moist thickets and is liable to be confused with slender and delicate plants of B. Matricariaefolium with which it is sometimes found in company. Keweenaw Co., No. 644 a, August 8, 1888.

Botrychium simplex var. subcompositum, Lasch.
The sterile lamina is pinnate with $3-5$ pairs of contiguous lobes,

Figure 13. Botrychium multifidum var. dichotomum
or with the lower pair remote and narowed to petiole-like bases. In wet, mossy fields or meadows. Keweenaw Co., No. 6tt, August 8, 1888.

LYCOPODIALES.

hycolodiaceat.
When on the Kewcenaw Peninsula in October, 1914, the season being most propitious for the work, I made athorongh sturly of the ('hah Mosses of the region. Among other things observed was the propensity of spectes of the section lepishotis to prorlme protiferous spikes i. e., spikes with the axes prolonged as leafy shoots; the length of the peduncles is rever variable eren on the same plant; sometimes the peduncle is obsolete so that the pedicles of the spikes spring from the apex of the hranchlet, thus appeating as peduncles. It is customary to consider L. dembroidemm, Michanx, as symonymous with L. obscurum, Linne, even though the former has terete branchlets with equal, \& ranked leares, while the latter has dorsiventral branchlets and unequal, t ranked leares. So long as this attitude is maintained there is no excuse for keeping L. alpinmm separate from $\mathrm{L}_{\text {. complanatum as exacty the same condi- }}$ tions prevail. In the living plants of these species the tips of the leaves of the upper and lower rows of the dorsiventral branchlets are nevel appressed as is msmally stated, in our manuals to be the case. The stems creep along the surface or at various depths down to six inches; these with the branches are always terete and bear equal s-ranked leaves, the free portions of which are never appressed.

Lycopodium Selago, Lin var. patens (Beauv.) Desv.
This variety, as well as the typical species, is rather scarce on the Keweenaw Peninsula; the plant is greener than the species which is yellowish, and coarser ; the leares are narow, more sharply pointer, and horizontal or nearly so. In wet, mossy gromuls, No. 39101/2. October 1, 1914.

Leycopodium clavatum, Lin. Val' megastachyon, Fern. and Biss.
The form listed in Beal’s Michigan Flora as the var. monostachYon. Hooker, is that plant which has more recently been describert by Fermald and Bissel as L. comphanatum Var. megastachyon. This name should therefore be adoped for the plant fomm in northern Michigan, as it is rery distinct from Hooker's variety.

Lycopodium obscurum, Linne.
Our local mamals describe Lyeopotimm obscomm Limme as with (6. or S-ranked leawe with the $2 \quad$ upper and 2 lower rows appressed. No plant answering to such a description conld be foumd, and it
is rely domblful if such a plant can be found anywhere. Linne does not give the number of ranks in which the leaves are arranged but does say that the leaves are spreading (Folia sparsal attamen rariora $\% ~ \% ~ \% ~ \% ~ \% ~ b a s i ~ d e c u r r e n t i a ~ s . ~ a d n a t a ~ c a u l i, ~ d e n i ~$ patulat. The only reference given by Limmeus is "Lycopodioides radiatum "lichotomum. Dill. musc. 274, t. 67." Dillenius' plate shows a plant that has the leaves in four ranks, the uper row being represented as now appressed and now spreading. Evidently the drawing was made from a dried plant in which naturally enongh, the upper and lower leaves will most generally appear as appressed. In the living plant the leaves are four ranked on a dorseiventral axis, and ascending with incurved tips, none appressed; the free portion of the lateral leaves is about $4 \frac{1}{2} \mathrm{~mm}$. in length; of the upper, about $31 / 2$; and of the lower, 2. The branches are dichotomously branched, the branchlets ascending with gracefully spreading, recurred tips. Foliage dark green and glossy; perhaps the most graceful and handsome of our Lycopodiums. Fairly well represented by the plate of Dillenius mentioned above. Stems 1 or 2 inches below the surface. Spikes $2-3 \mathrm{~cm}$. Although Limnaeus said he had not seen the fructitication of this species, yet, on the other hand. the Dillenian plate referred to by him shows several spikes, most of which are represented with a proliferous tip, a condition rery frequently seen in this species.

Another form or variety of this species is the plant known as Lycoporium dendroideum, Mx. It differs much in habit: it is dichotomonsly branched, as in the specific type, but the branchlets are neither dorsirentral nor dronping but terete and erect, the upper being shorter, so that the plant has the exact appearance of a miniature spruce tree. The foliage is less glossy and more of a yellowish green in color, the leaves being of equal length, about $81,2 \mathrm{~mm}$., and disposed in 8 ranks; the stems are 2 or 3 inches below the surdace; the spikes are numerous, sessile, and from $2-5$ ($\cdot \mathrm{m}$. in length. This will answer rery well to Michanx's description. The only reference Michaux gives is Dill. t. 64. The only American speries represented on this plate is the Selaginella apoda. Evidently Michanx mate a very poor interpretation of the Dillenian plate, if he refers to Dill. Mus. A. (it, or else the reference to it is a tyographeal eror: I have no dombt that this form with s-rankerl, equal leares, from its remarkable tree-like appearance which is not evident in the other forms of the species, is the plant that Michaux had in view for his L. dendroideum even thongh that anthor did not mention the number of ranks in
which the leaves are grouped. Most anthors attribute six ranked leaves to Michanx's species but they evidently have had another variety in hathd, one that is exatety intermediate between this plant and L. ohsoumm, Lin. The branchlets are erect with only the tips slightly rmring outward, and are semi-torsiventral; the leaves are unequal in six ranks, corresponding to three upper and three lower, the latteral row on eath side being obsolete; the lower leares are from 2 to $: 1 / 2$ mm. in length and the upper from $31 / 2$ to 4 mm ; the middle upper row bearing the longest leaves, the middle lower row, the shortest, while the others are successively intermediate. The stems are from 4 - if inthes below the surface. Spikes 2.6 cm . It may be a cross between the other two forms but it has longer spikes and the stems are deeper in the ground than in either. It may be known as heopoditar obsedreat, Lin. variety mymmua, N. Var. The species and its symonymy is as follows:

Lycopodium obscurum Lin., Sp. Pl., 1002, 1753.
Lycopodioides radiatum dichotomum. Dill., Musc., 27t, 1. 67. 1711.
Lycopodium dendroidcum rar. obscurum (Lin.) Torv. ex. Beck., Botany, 460, 1833.

Keweenaw Peninsula, No. 682, September 6, 1888. In rich wools under evergreens. Frequent.

Lycopodium obscurum var. hybridum, Farwell.
Lycopodium Dendroideum Willd., Sp. Pl., 5, 21, 1910, aud manỵ American authors, not of Michaux.

Lycopodiumobscumum Eaton \& Wright, N. Amer. Bot., 309, 1840, and many American authors not of Linnaeus.

Keweenaw Peninsula, No. 3908, September 1914. Nong the edge of woods and thickets. The common form.

Lycopodium obscurum var. dendroideum (Mx.) D. (. Eaton in Gray's Manual, 696, 1890.

Lycopodium dendroideum Mx., Fl. Bor. Amer., 2, 282, 1803.
Keweenaw Peninsula, No. 681, September 6, 1881. On knolls in the open. The rarest form.

Lycopodium complanatum, Linne.
This is a rery variable species and its forms have been considered as species by those hotanists who think that all rariations of plants should be considered as distinct species, discarding all minor categories. This species, like L , obscurum, Lime, shows two well marked series; one with the leaves of equal length and in fis ranks (stems not dorsiventral) and one with the leaves of unequal length and in 4 ranks (stems dorsiventral). The distinctions between
L. alpinmm and L. complanatum are not more pronomed thatn those between L. obseurum and L . dendroidemm, yet the former are generally considered as distinct speries and the two latter as one and the same thing. As a matter of latet the distinctions are even less pronommed for L. alpinmon shows both kinds of leares on the same plant while the spikes of L. complanatmon may be sessile as in L. alpinum. the extremes appear to be distinct enongh but a complete series of intermediates comnect one with the other. L. alpinmm has priority of place in the species Plantarum hat since this surecies has been reduced to a variety of L. complanatum, the latter, according to Article 46 of the Viemal R mles, musi he considered as the type.

Key to the varieties of L. complanatum.

Plants with dorsiventral branchlets, leaves 4 ranked, appressedin the dried plant.
Branchlets $2-4 \mathrm{~mm}$. wide, very flat, leaves unequal.
Branchlets elongated, loosely ascending.
Peduncles single, 3-12 cm., spikes 2-6-Lycopodium complanatum.
Peduncles, 1 or 2, 1-5 cm., spike solitary-Lycopodium complantum var. Sabinaefolium.
Peduncles obsolete, spike solitary and sessile-Lycopodium complanatum var. Pseudoalpinum.
Branchlets short, crowded, forming funnels if:n shaped when dried).
Peduncles single, 3-6 cm., spikes 2-6-Lycopodium complanatum var. flabellatum.
Jeduncles similar, spile solitary-Lexopodimm (omplanatum var. Wibbei.
Branchlets $1 / 2 \mathrm{~mm}$. wide, biconvex, leaves nearly equal.
Leal tips of lateral rows erect-Lycopodium complanatum var. Chamaecyparissus.
Leaf tips of lateral rows widely spreding-Lycoporlimm romplanatum var. Sharonense.
Ilants with both dowsirentral and ferete branchlets, leares t-ranked, not appressed, spike sessile-Lyeoporlimm complanatum var: alpinum.
I'ants with terete bramehlets, leates in or ranks, equal, ascending, spikes solitary on perduncles less than 1 (1m-L Leoporlium eomplanatum var. Sitchense.

The species and its more important synonyms are given below. Lycopodium complanatum, Lin., Sp. P'l., 1104, 1753.
stems $1 \therefore$ inches helow the surface. Brathehlets elomgaterl, heord

 sional.

Lycopodiuar complanatuar var. sabinaefolium (Willd.), N. Comb.

Lycopodium Sabinacfolium Willd., Sp. Pl., 5, 20, 1910.
L!!copodi"m "lpimem var. Subimuefolium (Willd.) D. (.. E. in Gray's Man., 696, 1890.

Free portion of leates longer and narrower, perluncles shorter, solitary, or in twos, spikes solitary, upper leares often in two rows, the leares then being aranker, a transition toward var. Nitchense. Stems an inch or so below the surface. Keweenaw Co.. No. $7461 / 2$, July 12, 1890. Rare.

Lycoporlimm complanatum var. flabellatum, Döll, F'l. Bad.. 1, 79, 185ั.

Lycopodium anceps Wallr. Linnea, 12, 676, 1840.
Lycopodium complanatum var. anceps Aschers., Fl. v. Brand, 1, 894, 1864.

Lycopodium complanutum var. flebelliforme Fernald, Rhodora, :3. 280. 1901.

Lycopodium flabelliforme (Fernald) Blanchard, Rhodor:s, 1:3, 168, 1911.

This variety is very readily detected in the field by its foliage being arranged in the form of fumnels and in herbarium materials by its short, fan-shaped clusters of branches arranged in distinct series one above another. Its stems are above ground. Keweenaw Co., No. 17, 5 and 17N:51/2, August, 1902 ; No. :3911 and :3912 (proliferous form), October, 1914.

Lycopotium complanatum var. (hamaceyparissus (A. Br.) Döll. Fl. Bad., 1, 80, 1855.

Lycopodium tristachynm Pursh, Fl. Am. Sept., 653, 1814.
Lycopodium Chamaecyparissus A. Br. ex. Mutel, Fl. Fran., 4, $192,18: 37$.
 Man., $674,1867$.

The most glaucous form, with the marrowest hranchlets, longest perluncles, and most mumerous spikes. The commonest form on the Keweenaw Peninsula. Stems of-f inches under the surfate. No. 686. Sept. 10, 1888.

Licomodum complanatum var. sharonense (S. F. Blake), N. Comb.

Lyeropodium tristachyum var. Sharonense S. F. Blake, Ferı Bull., 18, 9-10, 1910.

Similar to the preceding but the free portion of the leaves are spreading or recurved. Keweenaw Peninsula, No. 746 a, July 12, 1890. Rare.

Lycopodium complanatum var. alpinum (Lin.), Spring, Flora, 1, 180, 1838.

Lycopodium alpinum Lin., Sp. Pl., 1104, 1753.
The stems are close to the surface; leaves unequal, ascending. in 4 ranks; spikes sessile. Keweenaw Peninsula, No. S49, June 30, 1895. Rare.

Three other varieties may be confidentially looked for. These are: var. Wibbei, Harberer, which is similar to the var. flabellatum but with the spike solitary; lycopodium complanatum rar. iseudoabincar, N. var., briefly described as like the specific type but with sessile spikes, a transition toward the var. alpinum; and hycopodiem complanatua rar. sitchense (Rupr.), N. Comb. (Lycopodium Sitchense Rupr., Beitr. Pfl. Russ, Reich., 3, 30, 1845). Variety Pseudoalpinum is well represented by plate 233, Journal of Botany, Vol. 20, 1882.

Department of Botany, Parke, Davis \& Co., Detroit, Mich.

A CONYENKENT METHOD OF WANHLNG FLXED PREPARATIONS.

BY RICHARD DE ZEEUW.

It is comparatively easy to wash a limited amount of material after fixation, but when it comes to taking care of the washing of material for a large class in technique, cytology or embryology, the instructor in charge is faced by a rather amoying problem. The objection to all the schemes suggested is in the fact that the sink, which above all else should be kept free, is all cluttered up.

The writer has constructed a bit of apparatus, which has given very satisfactory service for two years. It has appealed to all who hare seen it as answering the purpose admirably. That is the excuse for the present note.

The apparatus (Fig. 14) consists of a galvanized iron box (A), which may be made of any required dimensions. There is a pipe (B) to enable one to have a constant stream of water rumning in the trough, which has an overflow pipe (C) at the opposite end. The material to be washed is put in Gooch Crucibles. A piece of cheese-cloth is put over the opening, and a rubber band is snapped around it to keep the cheese-cloth in position. The whole is then immersed in water bottom side up. The bottom of the crucible is perforated with small holes. The air is thus allowed to escape and the water to enter the crucible. Care should be taken not to immerse it so far as to cause the water to close up the openings. This will keep that air in, when the crucible drops to the bottom of the trough on being released the air is out. If not, take it out, blow in the holes to free them of water and try again.

The crucibles may have a thread run through one of the holes and a tag fastened to the other end, which hangs on the outside of the trough. This enables any one to remove any particular specimen from the wash-trough without disturbing any of the others.

Since there is a continual current of water in the trough, it has been found advantageous to place the crucibles on their sides with the ends directed toward the ends of the trough. Thus the current will pass in at the cheese-cloth covered end and out at the perforated end ensuring perfect removal of the fixing agent. And,

Figure 14. 'Tank for washing fixed preparations.
since the current is so gentle, no damage has ever been done to the most delicate material.

The whole apparatus may very conveniently be phaced on a shelf over or near the sink.

Michigan Agricultural College, East Lansing, Mich.

ZOOLOGY.

NOTES ON PLEODORINA (1 LLIFORNICA NHAW.

BY BERTRAMI G. SMITH.

On July 23, 1915, the writer found the colonial flagellate Pleodorina californica Shaw in great abundance in a pond near White's Woods, Ann Arbor, Michigan. Pleodorina was most plentiful at the margin of the pond, where by pressing down the mat of vegetation hollows were formed which soon filled with water. In a vial of this water held to the light, Pleodorina was barely visible to the naked eye. When the material was placed in a finger bowl in the laboratory, exposed to the light of a north window, the specimens sought the side of the dish furthest from the lighta case of negative phototaxis that seems remarkable in riew of the behavior of Euglena and Volvox in similar circumstances. Such a reaction in a chlorophyll-bearing flagellate would seem almost suicidal. Specimens undergoing reproduction became less motile and sank to the bottom of the dish. The material does not live long in the laboratory. Ten days later, it had completely disappeared from the pond. The occurrence of Pleodorina has been noted in California, where it was first discovered, also in Illinois, Indiana and in southern France; I am not aware of any previous record for Michigan.

Pleodorina is a colonial protozoan, each specimen in the adult stage consisting of typically 128 greenish bi-flagellate cells enclosed in a common gelatinous envelope and loosely arranged to form a hollow sphere. There is a decided difference in the size of the cells on opposite sides of the colony. On one side, comprising a little less than a hemisphere, the cells are quite small; these are the somatic or body cells. On the other side, comprising a little more than a hemisphere, the cells are much larger; these are the reproductive or germ cells. The form of the colony is not exactly spherical, but is usually elongated slightly in the direction of the axis of radial symmetry ; in other words the colony has the form of a prolate spheroid, with the body cells segregated about one pole. Since the end composed of body cells usmally precedes in locomotion, this end may he called the anterior end and the opposite end the posterior end.

Both body and germ cells have each their own individual gelatinons envelopes, which may be made out by careful manipulation of the high power of the microscope. Each kind of cell has two flagella projecting through the common gelatinous envelope. Each cell has a red eye-spot and numerous green chloroplasts.

Reproduction takes place asexually by the repeated division of the germ cells or parthenogonidia to form daughter colonies. A complete series of developmental stages comprises 2, 4, 8, 16, 32, and 64 rell stages. The daughter colonies eventually break out from the enclosing parental envelope. At the time of its escape each daughter colony consists of either 64 or 128 cells all of the same size; the germ cells are later differentiated by an increase in size. At the time of the escape of the daughter colonies, the body cells of the parent degenerate and die.

Though Pleodorina is undoubtedly a protozoan colony, it is in some respects transitional to the metazoa and for purposes of comparison with the metazoa it may be regarded as an individual organism. Pleodorina is the simplest and most primitive organism showing a separation or segregation of body cells from reproductive cells; in other words, it is the simplest organism showing differentiation of structure and division of labor between somatic and germ cells. It is also the simplest organism which clearly undergoes natural death; but it is only the body cells which die, while the germ cells live to give rise to a new generation of bodies and germ cells. In Pleodorina the fundamental biological principles of segregation of the body plasm and continuity of the germ plasm are exemplified in their simplest form, without the complication of sexual reproduction such as is found in Volvox.

The value of such a type for elementary classes in biology is obrious. Pleodorina readily falls in place in the series leading from the simplest colonial flagellates, such as Gonium and Pandorina, to Volrox. Unfortunately Pleodorina is of rather exceptional occurrence, but since when found at all it is likely to be present in abundance, a supply sufficient for several years may be preserved. Material fixed in weak Flemming's solution one part of strong Flemming to three parts water) for twenty-four hours, then thoronghly washed and preserved in Fif formalin, retains the $^{\text {for }}$ natural appearance and form of the colony, and for class use is almost as good as fresh material. The writer has prepared Volvox in this way and found it in good condition for about six years, after which the finer details of structure were lost.

Zoological Laboratory, State Normal College, Ypsilanti, Mich.

Literature.

Kofoid, C'. A., 1900. I'lankton studies. II. On Pleodorina illinoisensis, a new species from the plankton of the Illinois liver. Amals and Magazine of Natural History, Neries 7, Vol. 6, July; also Bulletin of the Illinois state Laboratory of Natural History, Vol. V. (Includes a key for the identification of species.)
Shaw. Watter R. 189t. I Pleodorina, a new genus of the Volvocinate. Botanical Gazette, Vol. XIX.

THE PROCESS OF OVULATION IN AMPHIBIA.

BERTRAM G. SMITH.

In all rertebrates, there is discontinnity between the ovaries and the ducts which convey the eges to the exterior-a lack of adaptation which becomes intelligible only in the light of studies concerned with the origin and erolution of the coelomic cavity. In the higher rertebrates, the approximation of the fumel-shaped inner end of the oviduct to the ovary safeguards to a considerable extent the passage of the eggs into their proper channel; but in the amphibia the two organs are widely separated, and the prohlem of how the eggs find their way into the oviduct has been a puzzling one. As a result of some observations on Cryptobranchus and Rana pipiens, I have become convinced that the generally-accepted explanation of this process is incorrect. In connection with this study some observations of minor importance were made on the escape of the eggs from the ovary of Cryptobranchus.

1. The escape of the eggs from the ovary. Julging from the published accounts, direct observations on the escape of the amphibian egg from the ovary are rare. Brandt ('76) examined the outer surface of the ovary of Raua temporaria as the eggs were about to pass into the body cavity and found a small round hole above each egg through which a larger or smaller part of the egg protruded. Recently I have observed various stages of the process in several different adult females of Cryptobranchus which had been killed by pithing and the body cavity immediately opened.

A rery small portion of the egg first protrudes as a mimute spherical exovate commected by a very narrow stalk with the remander of the egg which is still covered by the ovarian wall and follicle. Very slowly the exovate becomes larger. Under the conditions noted the process has not been observed to go very far : perhaps the pressure of surrombling parts on the ovary, and especially the movements of the viscera during locomotion, are nommally reguired to complete the expulsion of the eqg. But slight pressure with an instrument on the portion of the egig still in the ovary completes the process as follows: The exovate increases in size whtil it equals the part of the eges still in the ovary ; at this time the rag is shaped like an hombegss. Then the enclosed part of the ege flows out with remarkable suddenness, and the entire
egg immediately rombls up into an oblate spheroid, considerably flatter than the egg at the time of spawning.

At the time when the egg is half-way ont of the avaly it is constricted to a remarkable degree: the stalk comnecting the two halres of the egg is scarcely more than 2 millimeters in diameter, While the diameter of the entire egg after it assumes the spherical form exceeds 6 millimeters. The plasticity of the egg at this time contrasts strongly with its condition during early cleavage. In the first clearage stage I attempted to separate the first two blastomeres by tying a silk thread around the egg in the plane of the first cleavage furrow; the egg would not bear a constriction of more than 2 millimeters, leaving the constricted portion more than \nmid millimeters in diameter. The greater plasticity of the orarian egg seems to be due to a lesser degree of turgor, or tension of the egg membrane; perhaps the egg later absorbs water.

As in Bufo (King, '02), the egg doubtless escapes through the stall of the follicle, since here the egg is enclosed by only two cellular membranes, elsewhere by three. Since only a small proportion of the eggs are found escaping from the ovary at any given time, the liberation of all the ripe eggs must require a considerable period of time, probably several days.
2. The passage of the eggs down the oviduct. In Cryptobranchus, peristalsis of the uterus and the lower oviduct was observed, but none in the upper oviduct. An egg placed in the fumnel of the oriduct of a prostrate specimen moved down the oviduct rery slowly. It the end of an hour it had moved 2 centimeters fur ther than the position to which it may have been carried by gravity. I scraped the lining of the upper oviduct and examined the scrapings under the microscope; the epithelial cells possessed cilia. One can only conjecture whether the ciliary action in the oviduct is strong enough to carry the eggs along; possibly it is aided by peristaltic action too slow to be observed.
3. How do the eggs get into the oviduct? Newport ('⿹1) believed that, owing to the close attachment of the oviducts at their immer openings to the walls of the pericardium, at each contraction of the heart the slit-like openings of the oviducts would gape open, and any eggs in the vicinity might be forced, ly suction, into the mouths of the tubes. Also, he thought that owing to the muscular morements of the body, and the resultant shifting of the internal organs, the eggs sooner or later pass near the openings of the oviducts, and are then carried into the tube. According to Nussbaum ('95) the eggs, when set free from the ovary into the
body cavity of the frog, are carried into the open mouths of the oviducts by the motion of cilia of the coelomic epithelium; these cilia drive anteriorly any solid objects lying free in the body cavity. He states that the cilia are not miformly distributed, but occur in patches on the peritoneum of the body wall and mesentery. Nuswbam's rersion of the matter has been quite generally accepted.

In order to test the validity of Nussbaum's conclusions I took several female specimens of Rana pipiens during the breeding season when the eggs were still in the orary, and tested the mesentery and other parts of the peritoneum for ciliary action, using powdered carmine, blood and cork filings. There was absolutely no evidence of ciliary action. As a check on this experiment I used the same means to detect ciliary action on the roof of the mouth cavity and oespohagus of the same frogs, and obtained the most lively evidence of ciliary motion. In like manner I have thoroughly tested the peritoneum of female specimens of Cryptobranchus during their breeding season, with absolutely negative results. In both Rana pipiens and Cryptobranchus, I scraped the peritoneum in various parts of the body carity and by examining the scrapings under the microscope found indeed that there were occasional patches of cilia, but the foregoing experiments indicate that in Cryptobranchus and in Rana pipiens ciliary action is not powerful enough to carry along foreign particles to any appreciable extent, and certainly not strong enough to move the large and heary eggs. In the absence of sufficient ciliary action, we must look for mechanical factors to insure the transmission of eggs to the oviduct. My observations and experiments have convinced me that Newport's views, and not Nussbaum's, were essentially correct, at least when we attempt to apply them to the species under consideration. The following conclusions were written by me before I was aware of Newport's theory.

The funnel is so placed as to open in an anterior direction. Eggs that by any chance get into it cannot easily get out by retrogressive movements, since they are pressed upon by other eggs and are soon carried down the oviduct. Thus the fummel acts as a trap to eatch eggs. At the beginning of the process some eggs lying free in the body cavity must get into the funnel by chance, aided by the muscular morements of the animal which keep them in circulation. These eggs are carried down the oviduct and collect in the uterus. Since the uterus is located at the posterior end of the body cavity while. the funnel is at the anterior end, the pressure of the increasing mass of eggs in the uterus must force the eggs
remaining in the body cavity forward. Thas there is an increasing tendency for them to get into the funnel.

If this interpretation is correct, one would expect that occasionally a few eggs would be left permanently in the body cavity; such a mechanism could not he expected to work with absolute perfection. Observation shows that this is what actually occurs. In many specimens of Cryptobranchus, after spawning, a few egss are still to be found in the body cavity; if the animals were allowed to live these eggs would probably later be absorbed. On the other hand, if eggs were carried into the oviducts by ciliary action, one would expect that none would be left behind.

In examining Newport's extensive contributions on the early development of the amphibia, one cannot fail to be impressed by his masterly analysis of the problems of embryology and by the pioncer character of his work. With almost prophetic insight he has laid the foundations of much of the "experimental embryology" of a later generation.

Zoological Laboratory, State Normal College, Ipsilanti, Mich.

Literature.

Brandt, Alexander. 1876. Fragmentarische Bemerkungen uber das Ovarium des Frosches. Zeitscher. f. wiss. Zoologie, Bd. XXVIII.

King. II. D. 1902. The follicle sacs of the amphibian ovary. Biological Bulletin, vol. III.
Mor!ati, T. I. 1897. The development of the frog's egg (pp. 16 and 17). The Macmillan Co.
Neuport, G. 1851. On the impregnation of the ovum in the amphibia. Philos. Trans. Roy. Soc., London.
N゙ussbutm, M. 1895. Zur Mechanik der Eiablage bei Rana fusca. Archiv f. mikr. Anat., Bd. 46.

BLBLIOGRADHY

OF

HERIODICAL LITERATURE ANH 1'LBLICATIONS OF LEARNED SOCIETIES OE上゙TEREST TO ZOOLOGISTS 1N THE UNIIERSITY OF MICHIGAN LIBRARY.

COMPIEED BY ROBERT W. HEGNER.*

This list has been prepared for the following purposes:
(1) To collect and arrange titles of all periodical literature in the library of interest to zoologists in such a manner that it will be possible to determine quickly whether we have or do not have any particular volume or number.
(ٌ) To provide an easy method of finding reports hy publishing the library call numbers.
(3) To make it possible to determine the needs of the library with regard to periodicals of this character. Iny suggestions from those interested will be appreciated.)
(t) To aid seientists throughout the state of Michigan by publishing a list which will inform them as to the available zoological literature in the library.

Perionlical literature and the publications of the learned societies are classitied in the Unirersity of Michigan Library according to Dewey's Decimal System.

The publications of learned societies are in the upper reading room of the genemal library. They are placed on the shelres according to 11) the comntry or language (American, English, German, French, Italian, etc.), (2) the city in which they were published, and (3) the initial of the first word of the official title.

Other perionical literature will be found in the stacks of the general libraty or in one of the branch libraries on the campus as indicated in the appented summary of classification. The official publications of sorieties are placed either under the mame of the society. r. g., the Biological Bulletin under the name Marine Biological Laboratory, of under the title of the puthlications, e. g., the official organ of the Audubon Focieties under lird Lore. Printed diretories giving the position of periodicals according to call num-

[^7]bers will be found posted in the stacks of the general library.
The branch libraries that may contan periodicals of interest to zoologists are as follows:
(1) Natural Fcience Libnary in the Niatmal Science Builrling:
(2) Histological Library in the Medical Building;
(3) Hygienic Library in the Medical Building;
(4) Chemical Library in the Chemistry Building;
(5) Russell Library in the Natural Science Building.

Most of the current periodicals are placed in the natural science library, in the periodical room of the general library or in the medical periodical room in the General Library, although ere tain publications are put directly in the stacks.

Number.	Name.	Volume.	Year.
0.5 .167	Archiv für Naturgeschichte	$\begin{gathered} 24-81 \text { (incomp.) } \\ 1-5 \\ 1-162 \\ 1-36 \\ \\ 1-11 \end{gathered}$	$\begin{aligned} & 1858-1915 \\ & 1871-1882 \\ & 1868-1915 \\ & 1902-1915 \end{aligned}$
590.51 .167	Niederlaendisches Archiv fur Zoologie		
610.5 A67P57M	Archiv fir die gesammte Physiologie. Plluger		
$610.5467 \mathrm{P}^{966}$	Archiv für Protistenkunde.		
570.5A67 1223.	Archiv fir Rassen-und Gesellschafts Biologie einschliesslich Rassen-und GesellschaftsHyriene.		
570.5A67Z5 $570.54671 \mathrm{B6}$. 610.5 A 67116 P 57 610.5A671P2 610.5 A 671 S 4.	Archiv für Zellforschung. Leipzig. Archives de Biologie. Paris and Ghent. Archives Internationales Physiologie. Archives de Parasitologie. Paris.	$\begin{aligned} & 1-14 \\ & 1-29 \\ & 1-14 \\ & 1-16 \end{aligned}$	$\begin{aligned} & 1908-1915 \\ & 1880-1914 \\ & 1904-1914 \\ & 1898-1914 \end{aligned}$
	Archives de Parasitologie. Paris....... Archives des Sciences 1 Biologique. St. Petersburgh.	1-17	1892-1913
590.5 A 671287.	Archives de zoologie expérimentale et générale Archives Italiennes de Biologie. Archivio di fisiologia. Florence Archivio Italiano d'anatomio e d'embriologia Florence Arkiv för Zoologi, Stockholm	$\begin{gathered} \text { Lacks some. } \\ 1-63 \\ 1-13 \end{gathered}$	$\begin{aligned} & 1872-1915 \\ & 1882-1915 \\ & 1904-1915 \end{aligned}$
610.5 A 67119.610.5 A 673 F 5$610.5 \mathrm{~A} 673 \mathrm{I} 8$			
		1-14	1902-1915
590.5A72Z9		1-9	1905-1915
610.5 A 85 A 53.	Association des Anatomists. Nancy. Comptes Rendus. Augsburg. Bericht. ' Naturwissenschaftlicher Verein für Schwaben und Neuberg..	1-8	$\begin{aligned} & 1899-1906 \\ & 1906,1908 \end{aligned}$
506.3 A 92 N 3 b			
590.5.192	Auk.	10-33	1893-1916
506.4 A! 1s?	Autun. Societie d'histoire naturelle bulletin.	25-26	1912-1913
506.3 B 13 L 26	Baden. Mitteil. B. Landesvereins für Naturk.	226-296	1908-1915
506.3 B 2 N 3 b	Bamberg. Bericht. Naturforschende Gesellschaft	19-21	1907-1910
506.6 B 24 A 2 b	Barcelona. Boletino de la Real Academia Ciencias y Artes.		1912-1915
$506.6 \mathrm{~B} 24 \mathrm{~A} 2 \mathrm{~m} . .$.	Barcelona. Memorias Real Academia Cienciats y Artes. Basel. Verhandlungen der Naturforschenden Gesellschaft in Basel. Behavior Monograph.	8-12	1910-191
		$\stackrel{18-25}{1-2 \text { (incomp.) }}$	$\begin{aligned} & 1905-1914 \\ & 1911-1915 \end{aligned}$
$\begin{aligned} & 506.2 \mathrm{~B} 43 \mathrm{~N} 3 \mathrm{r} . . . \\ & 506.2 \mathrm{~B} 47 \mathrm{~A} 8 \mathrm{j} \end{aligned}$	Belfast natural history and philosophical society. Reports and Proceedings Bengal Asiatic society. Journal and proceedings		1906-191
		1-9	1905-1913
506.8135M199a....$610.513577 . . .$.	Bergens, Museum. Aarbbog. Afhendiinger. Bericht über die Fortschritte der Anatomie und Physiologie	2-4 (incomp.)	$1907-1913$1909
			1856-1871
506.3B5A3a	Berlin. Abhandlung Koniglich-Akademie der Wissenschaften.		
$\begin{aligned} & 506.3 \mathrm{~B} 5 \mathrm{~A} 3 \mathrm{~h} . \\ & 506.3 \mathrm{~B} . \end{aligned}$	Berlin Acádemie des Sciences. Memoires. Berlin Acádemie des Sciences Nouveaux Mimoires. Berlin Bericht Koeniglich-Akademie wissenschaft	$\underset{\substack{\text { (incomp.) } \\ 1-13}}{ }$	$\begin{aligned} & 1788-1913 \\ & 1745-1757 \end{aligned}$
		1-16	1170-1785
506.3B5A31b.			1836-1856
506.3 B 5 A 3 gH	Berlin. Geschichte Koeniglich-Akademie wissenschaft Berlin Forschungsberichte. Biologische Station. Plön Berlin. Koeniglich-preussiche Akademie der wissenschaften. Monatsberichte. Berlin. Koeniglich-preussiche Akademie der wissenschaften. Sitzungsbirichte. Bibliographia Zoologica.	1-3	1900
570.51359		1-12	1893-1905
			1857-1881
			$\begin{aligned} & 1882-1914 \\ & 1896-1915 \end{aligned}$
		1-27	
$\begin{aligned} & 610.5 B 5951 \\ & 610.513595 \mathrm{~J} \\ & 612.05136 \\ & 610.513635 \\ & 570.5 \mathrm{M} 34 \mathrm{~b} \end{aligned}$	Biochemical Bulletin. Biochemical Journal Biochemisohes (ientrablat t Biochtemische Zeitschrift Biological Bulletin. Marine Biological Laboratory. Woods IIole	1-3	1911-1914
		1-9	1906-1915
		1-9	1903-1912
		1-68, 70	1906-1915
		1-30	1899-1916
570.5.1341	Biological Lectures. Marine Biological Laboratory. Wr ols Hole.		$\begin{aligned} & 1890-1899 \\ & 1881-1915 \\ & 1901-1915 \\ & 1899-1915 \\ & 1898-1904 \end{aligned}$
590.5136	Biologisches Centralblatt	1-35	
570.5861	Biometrika	1-11	
$590.5 \mathrm{B6}$	Bird Lore	1-17	
590.51362	Birds and Nat	4-1.5	

Number.	Name.	Volume.	Year.
610.5 C 4 P 57	Centralblatt für Physiologie.	1-28	1887-1914
570.5 C 48 b	Charleston Museum Bulletin	$2-12$	1906-1916
506.4 C 52 S 68 m	Cherbourg. Societé nationale des sciences naturelles et mathematiques. Mémoires.	36-38	1906-1912
570.5 C 57 S 7 j	Cincinnati Society of Natural History. Journal.	1-21	1878-1914
506.1 C 72 M 99	Colorado Museum of Natural History Report		1914
$506.1 \mathrm{C} 72 \mathrm{~S} 4 \mathrm{p} .$	Colorado Scientific Society. Proceedings...	2-11	$1885-1915$
$506.1 \mathrm{C} 72 \mathrm{p}$	Colorado College Studies. Scientific Series.	$\begin{aligned} & 11-12 \\ & \text { (incomp.) } \end{aligned}$	$1904-1914$
506.1 C 72 U 6 s .	Colorado University Studies	1-11	1902-1915
598.25 C 74	Concilum Bibliographicum. Condor	$9-18$	1907-1916
506.1 C 75 A 2 m .	Connecticut Academy of Arts and Sciences. Memoirs.	1-4	1910-1915
$506.1 \mathrm{C75A} 2 \mathrm{t}$	Connecticut Academy of Arts and Sciences. Transactions.	1-20	1866-1916
506.6C8A2.	Cordova. Boletin Academia Nacional de Ciencias.	$6-10,19$	1884-87, 1911
506.2 D 2 N 3 s	Danzig Naturforschende Gesellschaft. Schriften.	12	1909
570.5D25A2p	Davenport Academy Natural Science Proceedings	1-13	1867-1914
506.1D34I6p.	Delaware County Institute of Science Proceedings.	$1-7$	1905-1916
590.5 D 4979	Deutsche Zoologische Gesellschaft. Verhandlungen.	1-22	1891-1912
506.2D8R9p	Dublin Royal Irish Academy Proceedings..	1-32	1836-1915
506.2 D 8 R 9 t .	Dublin Royal Irish Academy. Transactions,	1-33	1787-1916
506.2 D 8188 sp	Dublin Royal Society. Scientific Proceedings.:	11-14 (N. S.)	1905-1914
$506.2 \mathrm{E} 2 \mathrm{R9}$	Edinburgh Royal Society Proceedings .	1-35 (incomp.)	1832-1915
506.2E2R9t	Edinburgh Royal Society Transactions	$1-50$	1788-1914
506.1 E 43 j	Elisha Mitchell Scientific Society Jour	1-31	1883-1915
$595.75 \mathrm{E} 61 \mathrm{M7}$	Entomologische Mitteilungen.	4	1908-1915
595.75 E 6 S 68 a	Entomological Society of America. Annals.	1-8	1908-1915
595.75E606	Entomological Society of Ontario. Reports.	A few nos.	1907-1914
595.75 E 62	Entomologisk tidskrift.	26-36	1905-1915
590.5 E 68.	Ergebnisse und Forschritte Zoologie. Spengel.	1-4	1909-1914
610.5E67P5	Ergebnisse der Physiologie. Ashen u. K. Spiro.	1-14	1902-1914
570.5 E 78 I 6 b	Essex Institute Bulletin	1-30	1869-1898
575.15 E 8	Eugenics Review	1-5	1909-1914
590.5 E 96	Experimentelle Beitrige z. Morphologi	1 (incomp.)	1906-1909
506.1F455	Field Museum of Natural History Repo	Series 1-4	189.4-1914
590.5 F 45	Field Museum Zoological Series.	1-11 (incomp.)	1895-1912
795 F 72	Forest and Stream.........	1-83 (incomp.)	1873-1914
$506.3 \mathrm{G45012b}$.	Giessen. Oberhessische Gesellschaft für Natur-und Heilkunde	1-5	1904-1912
506.2 G 55 I	Glasgow Philosophical Society Proceedings. .	7-9	1870-1875
570.5(15)	Glasgow Naturalist.	1-7	1908-1915
506.3G595N3a.	Görlitz Abhandlungen der naturforschenden Gesellschaft.	25-27	1906-1911
$506.3 \mathrm{G6G4} 4$.	Göttingen. Koenigliche Gesellschaft der Wissenschaften. Gelehrte Anzeigen.		1864-1915
$506.3 \mathrm{G} 6 \mathrm{G4} \mathrm{n}$	Göttingen. Koenigliche Gesselschaft der Wissenschaften. Nachrichten.	(incomp.)	$\begin{aligned} & 1863-1893 \\ & 1911-1914 \end{aligned}$
506.3G6G4pa.	Göttingen. Koenigliche Gesellschaft Abhandlungen.	$\begin{aligned} & 1-40 \\ & 1-14 \end{aligned}$	$\begin{aligned} & 1838-1895 \\ & 1896-1914 \end{aligned}$
506.3 G 77 N 3 m .	Graz. Naturwissenschaftlichen Verein für Steiremark. Mitteilungen.	42-49	1905-1912
506.4G83U6a	Grenoble. L'Univers Grenoble. Annales. .	1-27	1889-1915
506.4 H 15 S 7 a .	Hague. Archives Neerlandaises Sciences exactes et naturelles		1866-1912
506.3 H 18 L 6 n .	Halle. Kaiserlichleopoldinisch-carolinische deutsche Akademie der Naturforscher. Nova Acta.		1895-1911

Number．	Name．	Volume．	Year．
305.586 R 12	Journal of Race Develo	1－5	1910－1915
578.5128 M 6 j	Journal of the Royal Microscopic Society		1878－94， 1916
610.5 J 86 T	Journal of Tropical Medicine	2－16	1899－1913
570.5 K 16	Kansas Academy Science Transactio	1－19	1872－1904
506．1K16． 2 L	Kansas Academy of Science Transaction	4－26（incomp．）	1875－1913
506.1 K16U6 506.1 K 16 U 6 S 506.3 K 18 N 3 v 506.3 K 47 N 35 520 5だち	Kansas University Quarterly	1－10	1892－1901
	Kansas University Science Bulletin	1－9	1902－1915
	Karlsruhe．Naturwissenschaftlicher Verein．	19－25	1905－1912
	Kiel．Naturwissenschaftlicher Verein für Schleswig－Holstein．Schriften．．．．．．．．．．．．	3－15	1878－1913
	Knowledge	1－38	1881－1915
9K99m	Kyoto Imperial University Memoires．Col－ lege of Science and Engineering．	4－6	1912－1914
506.9 K 992 m	Kyoto Imperial University Memoires．Col－ lege of Science．	1	1914－1915
506.41 .7 S 7 m	Liége．Société Royale des Sciences． Memoirs．	3d ser．8－9	1909－1912
506．4L73U6．．．	Lille．L＇Universite de Lille．Traveaux et Memoires．	1－10	1889－1902
	Linnean Society of London．Proceed	1－2（incomp．）	$\begin{aligned} & 1902-1903 \\ & 1875-1914 \end{aligned}$
590.5 L 7	Linnean Society of London．Zoology． Journal	13－32	1878－1914
590.5 L 7	Linnean Society of London．Zoology． Transactions．	1－17（incomp．）	1879－1914
$\begin{aligned} & 570.5 \mathrm{~L} 76 \mathrm{~N} 53 \mathrm{t} \\ & 506.6 \mathrm{~L} 8 \mathrm{~A} 2 \mathrm{sb} . \end{aligned}$	Linnean Society of New York．Transactions．	1－2	1882－1884
	Lisbon．Academia Real das Sciencias Boletin．．	1－7	1903－1914
506.1 L 89 b	Louisiana State Museum Rep	2－4	1910－1914
$\begin{aligned} & 570.5 \mathrm{~L} 98 \mathrm{~N} 53 . . \\ & 506.4 \mathrm{~L} 99 \mathrm{~A} 2 \mathrm{~m} 3 \\ & 506.4 \mathrm{~L} 99 \mathrm{U} 6 \mathrm{a} . \\ & 506.6 \mathrm{M} 2 \mathrm{~A} 2 \mathrm{~m} . \end{aligned}$	Lyceum of Natural History．New York．		
	Annals． Lyon L＇Académie des Sciences，Belles－lettres	1－11（incomp．）	1824－1976
	et Arts．Memoires．	3 d ser． 14	1914
	Lyons．L＇Universitat de Lyon．Annales，	1－35（incomp．）	890－1913
	Madrid Real Academia de ciencias ex fisicias y naturales．Memorias．．．．	14－15	1891－1908
506.6 M 2 A 2 r	Madrid．Revista de la Real Academia de ciencias	4－12	1906－1914
570．5M19a	Madgeburg．Museum fur Natur－und Hei－ matkunde Abhandlungen und Berichte hrse v A Mertens．		1909－1912
$\begin{aligned} & 506.1 \mathrm{M} 27 \mathrm{I} 6 \mathrm{p} . \\ & 506.2 \mathrm{M} 27 \mathrm{~L} 8 \mathrm{~m} . \end{aligned}$	Manchester Institute．Proceedings．．．	1－4	1899－1902
	Manchester．Literary and Philosophical Society．Memoires．	1－59	1785－1915
$\begin{aligned} & 506.1 \mathrm{M} 39 \mathrm{~A} 2 \mathrm{t} \\ & 506.2 \mathrm{M} 5 \mathrm{R} 9 \mathrm{p} . \end{aligned}$	Maryland Academy of Science Transactions．	n．s．1－2	1888－1903
	Melbourne．Royal Society of Victoria Proceedings．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	n．S． $1-26$	1888－1914
506．2M5R9t	Melbourne．Royal Society of Victoria Transactions．	5	1909
506.1 M 56 S 4 p	Meriden．Scientific Association．Transac－ tions．．．	2－3	1885－1888
506.4 M 6 A 2 m	Metz．Mémoires de L＇Academie de Metz	3d ser．34－41	1904－1912
506．1 M62A2ז	Michigan Academy of Science．Reports	1－16	1900－1914
590.5 M 62 F 5	Michigan Fish Commission．Reports．	1－21（incomp．）	1890－1914
$\begin{aligned} & 570 . \mathrm{M} 66 \mathrm{~A} 2 \mathrm{~b} . . \\ & 506.1 \mathrm{M} 66 \mathrm{~A} 2 \mathrm{c} \end{aligned}$	Minnesota Academy of Science．Bulletin	（odd nos．）	
	Minnesota Academy of Science．Occasional Papers．	$1-1$	1894
590．5M66U6c．．	Minnesota University Contributions．De－ partment of Anatomy	1－2	1909－1913
506．1M68U6b．．	Missouri University Bulletin．Scientific Series．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	1－2	1912－1914
506.1 M 68 U 6 s	Missouri University	1－2	1901－1904
506．1M68U6s2．	Missouri University Studies．Scientific Series．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	1－2	1905－1911
	Monist	1－26（incomp．）	1890－1916
989.5 M 78	Montevideo．Museo nacional．Anal	1－2	1904－1905
590.5 M 87	Morphologische Arbeiten（Schewalbe）	1－8	1892－1898
590.5 G 3	Morphologisches Jahrbuch（Gegenbaur）	1－49	1879－1915

Number.	Name.	Volume.	Year.
506.7×19014	Moscow. Annales de la Societe Scientifique		
506.3M97A3d	Munich Koeniglich-bayerische Akademie		91
506.4 N 18 S 4 t	Nancy. Wissenschaften. Travail Facuite Sciences et Station	1-9	1808-1824
51.915N2786m	Biologique de Cette. Memoires...	3	1911
591.945 N 2 Z 86 m	Naples. Zoologische station zu Nea Mitteilungen.	1-22	1879-1915
506.5N2A196a	Naples. Atti dell' Accademia Pontaniana	36-42	1907-1912
570.945 N 2 Z 88 S 8	Naples. Zoologische Station zu Neapel. Fauna und Flora des Golfes von Neapel.	1-32	1907
570.5 N 28.5 L 53 s	Natforschende Gesellschaft. Leipzig. Situngsberichte.	32-39	1906-1913
570.5 N 285 L 9.	Natforschende Gesellschaft. Luzer		07
506.1 N 28 A 2 R 3	National Academy of Science. tennial		3
506.1 N 28 A 2 b	National Academy of Science. Biographical Memoirs	1-7	1877-1913
506.1 N 28 A 2 m	National Academy of Science. Memoir	1-13	1866-1915
506.1 N 28 A 2 p		(incomp.)	15
506.1 N 28 A 2 r 910.5 N 28 G 3	National Academy of Science. Reports National Geographic Magazine.	(incomp.)	1863-1913
505 N 285	Naturae novitates.	5-3	1893-1915
505.N295 570.5 N 282 H 67 b	Naturaliste Canadien Natural History Society of New Brunswick. St. John. Bulletin Naturaleza. Mexico	37-42	1910-1916
			13
			910-1912
	Nature situdy		${ }_{1905-1916}$
505 N	Naturwissenschaften. Berlin		1913-1915
$\begin{aligned} & 594.05 \mathrm{~N} 3 . \\ & 505.11 \mathrm{~N} 36 \mathrm{U} 6 \mathrm{~s} \text {. } \\ & 506.4 \mathrm{~N} 48 \mathrm{~S} 7 \mathrm{~b} . \end{aligned}$	Nautilus. . University Studies Neuchatel. Société Neuchateloise des Sciences Naturelles. Bulletin. Nevada. University Studies. New Brunswick Natural History Society Bulletin.	4	1890-1916
		26-40	1897-1913
505.1 N 5 U 6 s . 570.5 N 282 H 67 b		-5	1908-1911
		1-30	82-1913
570.5N53S8r..... 506.2 N 532	New Jersey State Museum. Annual Report New South Wales. Royal Society Journal and Proceedings.	(incomp.	904-1914
			9
506.1 N53A2a	New York Academy of Science. Annales. New York Academy of Science. Transactions.... Sork Stabinet Natural History	$1-2$	16
570.5 N 533 S 8 a .		1-23	1847-1869
$570.5 \mathrm{~N} 533 \mathrm{~S} 8 \mathrm{a} .$.570.5 N 533 S 8 b.	New York State Museum of Natural History	47-6	1893-1912
	New York State Museum of Natural His-		
570.5 N 533 S 8 m	New York State Museum of Natural History.	-178	1887-1915
$590.5 N 533 Z 86 \mathrm{~b} .$ 506.2 N 535.		1-13 (incomp.) (incomp.)	$\begin{aligned} & 1889-1910 \\ & 1904-1905 \end{aligned}$
	New York Zoological Society. Bulletin.... Nroceedings.	7	1874
506.3N97N3.	Nurnburg Naturhistorische Gesellschaft. Abhandlungen Ohio Naturalist. Ohio State Academy of Science Proceedings Oklahoma University Research Bulletin Ottawa, Royal Society of Canada. Proceedings and Transactions.		
		15-20	1905-1913
$\begin{aligned} & 570.502 \\ & 506.1037 \mathrm{~S} 8 \mathrm{p} \\ & 506.104 \mathrm{r} . \\ & 506.109 \mathrm{~K} 9 \mathrm{P} . \end{aligned}$			
		$1-6 \underset{1-4}{1-6} \text { (incomp.) }$	1899-1913 $1909-1910$
			82-1915
$\begin{aligned} & 0500 \\ & 610.5 \mathrm{P} 22 . \end{aligned}$	Outing......	5-67 (incomp	884-1916
	Hasitology. Supplement to Journal of		5
P2A	Paris. Licadémie des Sciences, Comptes		(108-1015
506.4P2A2m2. 506.4 P 2 A 2 sm	rendus hehdomadaires des sciences	57	1835-1915
	Paris. L'Académy des Sciences. Memoires Paris. L'Académie des Sciences.		
	Mémoires 2nd S	1-31	1827-1894

Number.	Name.	Volume.	Year.
i.70.5P23M9m.	Paris. Muséum d'histoire naturelle. Mémoires.	1-20	1815-1832
$506.41^{2} 2 \mathrm{E} 19 \mathrm{a}$	Paris. L'Ecole Normale Supérieure. Annales.		1864-1915
$\begin{aligned} & 506.1 P 3.5 \mathrm{~m} . \\ & 506.1 P^{2} 47 \mathrm{~S} 7 \mathrm{t} \end{aligned}$	Peabody Academy of Science Memoires.	1-6 (incomp.)	1869-1881
	Perthshire society of Natural science. Transactions.	1-5 (incomp.)	1893-1914
570.5P5A2j	Philadelphia Academy of Sciences. Journal.	1-16	1817-1915
570.5 P 5 A 2 p	Philadelphia Academy of Sciences. Proceedings.	1-67	1841-1915
506.1 P54М199	Philadelphia Museums Reports	(incomp.)	1905-1913
$506.1 \mathrm{P} 55 \mathrm{B95}$	Philippine Bureau of Science. Repor	5-12	1905-1913
$570 . \mathrm{P} 5 \mathrm{SC} 7$	Philippine Islands Government Laboratory	1-36	1902-1906
506.1 P 55 J 8	Philappine Journal of Science..............	1-9	1906-1915
770.5 P 575	Photo Era (X-Ray Laboratory)	12-36	1904-1916
770.5 P 565	Photo-Miniature	1-11	1899-1914
570.5 P 58	Physiological Researches		1915
506.1 P 69 C 3 a	Pittsburgh. Carnegie Museum Annales	1-10	1901-1916
$506.1 \mathrm{P}^{\prime} 69 \mathrm{C} 3 \mathrm{r}$	Pittsburgh. Carnegie Museum Reports	7-17	1904-1914
506.1 P 69 C 3 m	Pittsburgh. Carnegie Museum Memoires .	1-7	1901-1915
050 P 83.	Popular sicience Monthly.....	1-86	1872-1915
$506.9 \mathrm{P} 9 \mathrm{B7ms}$	Prag. Sitzungsberichte der Koniglich Bohmischen Gesellschaft der Wissenschaften.		1909-1912
$595.7 \mathrm{P9} 9$	Psyche	9-22 (incomp.)	1900-1915
590.582 J 9	Quarterly Journal of Microscopical Science	1-61	1853-1915
$506.4 \mathrm{R} 4 \mathrm{C6t}$	Rennes L'Universite de Rennes. Traveaux scientifique.	4-6	1905-1907
505R46G3	Revue général des sciences pures et appliquées.	1-2.5	1890-1914
506.6R6M98a	Rio de Janerio. Archivos do Museo Nacional.	14-16	1907-1911
506.1 R 68 A 2 p	Rochester Academy of Science. Proceedings.	1-5	1889-1912
	Rendiconti.		1885-1915
506.5R8A2at	Rome. Reale Accademia dei lincei. Atti. Transunti		1886-1874
506.5 R 8 A 2 fam	Rome. Reale Accademia dei lincei. Atti. Memorie.		1876-1908
506.5R8A23a	Rome. Atti dell'Accademia Pontificia dé Nuovi Lincei		1847-1911
506.5R8A23m.	Rome. Atti dell'Accademia. Pontificia de Nuovi Lincei. Memorie.	1-30	1887-1912
506.2L85R9a.	Royal Society of London. Philosophical Transactions.	1-18	1865-1800
506.2L85R9a2.	Royal Society of London. Philosophical Transactions abridged.	1-9 (incomp.)	1721-1747
506.2 L 85 R 9 t	Royal Society of London. Philosophical 'Transactions.	1-177	1800-1886
506.2 L 85 R 9 P	Royal Society of London. Proceed	$178-215$ $1-90$	$1887-1915$ $1800-1914$
506.1519 S 4 b	San Antonio. Scientific Society Bulletin	-	1905-1914
$506.3 \mathrm{~S} 23 \mathrm{Naj}^{5}$	St. Gallen. Naturwissenschaftlichen Gesellschaft. Jahrbuch.		1907-1913
506.1 S 23 N 3 j .	St. Gallen. Naturwissenschaftlichen Gesellschaft. Jahrbuch.		1907-1913
$506.1 \mathrm{S15A} 2 \mathrm{t}$	St. Louis Academy of Science. Transactions.	1-23	1856-1915
$506.1 \mathrm{S15I} 6$	St. Louis. Congress of Arts and Sciences Biology.	1-8	1905-1907
506.9S4s7r	Sao Paulo. Brazil. Revista da Sociedade scientifica de Sao Paulo.	1-7	1905-1913
506.7 S 15 A 3 a 2.	St. Petersburgh. Imperatorskaya akademyia nauk. Nova Acta Academiae scientiarum imperialis petropolitanae.	1-15	1778-1806
506.7 S 15 A 3 a .	St. Petersburgh. Imperatorskaya akademyia nauk. Recueil des actes de la séance solennelle.		1827-1848
506.7S15A3b.	St. Petersburgh. Imperatorskaya akademyia nauk. Bulletin scientifique.		1835-1842
506.6 S 15 A 3 c 2 .	St. Petersburgh. Imperatorskaya akademyia Novi Commentarii.	1-20	1750-1776

Number.	Name.	Volume.	Year.
506.7 S 15 A 3 cm	St. Petersburgh. Compte Rendu		1849-1857
506.7 S 15 A 3 h	St. Petersburgh. Imperatorskaya akademyia		$1803-1822$
373.0583754	Gchool Science and Mathematics	1-16 (incomp.)	1901-1916
050 S 39	Science	1-43	1883-1916
505 S 4 P 96	Science Progress	1-10	1906-1915
505 S 42	Scientia	7-17 (incomp.)	1910-1915
$050 \mathrm{S4A5}$	Scientific American	3-114	1847-1916
050 S 4 A	Scientifie American supplement	1-81	1876-1916
050 P83.	Scientific Monthly	1-2	1915-1916
506.9 S 47 T 6582	Sendai, Japan. Toholu gakum. Science Reports......................................	1-4	1912-1915
506.1566 c	Smithsonian Institution. Contributions to Knowledge.	1-35 (incomp.)	1848-1907
506.1 S 66 m	Smithsonian Institution. Miscellaneous Collections.	1-65	1862-1916
506.1 S 66 r	Smithsonian Institution. Annual Report.		1850-1914
506.1S66rs 595.75 S 676 E 6 b	Smithsonian Institution. Annual Report. Societá Entomologica Italiana. Florence.	(incomp.)	1871-1914
	Bolletino.	1-45	1869-1913
610.5S678A53 610.5567816.	Société a natomique Bulletin. Paris	1-88	1826-1913
610.5 S 678	Société de biologie, Paris. Comptes rendus des séancés et mémoires	1-78	1849-1915
595.75 S 678 E 6 a	Société Pentomologique. Belgique Brussels. Annales.	1-51	1857-1907
610.5 S 68 E 9	Society of Experimental Biology and Medicine Proceedings	1-11 (incomp.)	1903-1914
570.5S677	Societatés Fauna et Flora Fennica. Acta.	27-38	1904-1914
270.5N68S4	Nancy. Bulletin des séances de la société des sciences de Nancy et de la réunion biologique de Nancy		1906-1914
505 S73A2	South African Journal of Science.	6-12 (incomp.)	1909-1915
	South African Museum. Annals	1-7 (incomp.)	1898-1912
506.1 S 77 M 99 r .	Springfield. Museum of Natural History Report	(incomp.)	1898-1914
506.1 S 8 A 85 m	Staten Island Association of Arts and Sciences Museum Bulletin.		1908-1916
506.1 S 8 A 85 p	Staten Island Association of Arts and Sciences Proceedings.	2-5 (incomp.)	1908-1914
506.8 S 86 V 6	Stockholm. Ofversigt Kongliga svenska akademien	1-59	1844-1902
506.2T2R9p.	Tasmania Royal Society. Papers and Proceedings	(incomp.)	1851-1913
506.1T35A2t	Texas Academy of Science. Transactions and Proceedings	1-12	1892-1912
506.1T35U6b	Texas University Bulletin.	(incomp.)	
506.9 T 6513 j .	Tokyo. College of Science. Journal. Imperial University	1-35	1887-1914
506.1T69C2a.	Toronto. Canadian Institute. Annual Report.		1886-1894
506.1 T 69 C 2 c .	Toronto. Canadian Journal	$\begin{aligned} & 1-3 \\ & 1-12 \end{aligned}$	$\begin{aligned} & 1800-1855 \\ & 1856-1867 \end{aligned}$
506.1T69C2p.	Toronto. Canadian Institute. Proceedings	$1-12 \stackrel{5}{5} \text { (incomp. }^{\text {a }}$	$\begin{aligned} & 1886-1888 \\ & 1897-1902 \end{aligned}$
506.1 T 69 C 2 t	Toronto. Canadian Institute. Transactions	1-10	1890-1913
506.4T73A	Toulouse. Academie des sciences, inscriptions et belles-lettres. Mémoires.		1905-1909
$506.4{ }^{\prime} 73 \mathrm{~N} 6 \mathrm{a}$	Toulouse. Universite de Toulouse. Faculte des sciences. Annales		1887-1912
506.1 T91s	Tufts College Studies. Scientific Series.	1-4	1894-1914
506.5 T 94 A 2 a	Turin. Reale academia delle scienze. Atti.	1-50	1865-1915
506.5 T 94 A 2 m	Turin. Reale academia delle scienze. Memorir		1759-1913
590.5 T 94	Turin. Regia universita degli studi Musei de - zoologia ed anatomia comparata		
	13ollettino.	1-29	1886-1914
636.073U581395,	U. S. Bureau Animal Industry. Bulletin..	1-167	1893-1915
$6361073 \mathrm{U} 58 \mathrm{B95b}$.	U. S. Bureau Animal Industry. Circulars.	$\underset{1-118}{(n \operatorname{comp})}$	1895-1915

Number	Name.	Volume.	Year.
595.773U58b.	U. S. Bureau of Entomology, Bulletin.	$\begin{gathered} 4-115 \\ (\text { incomn } \end{gathered}$	1884-1915
$595.773 \mathrm{U} 58 \mathrm{bE6b}$..	U. S. Bureau of Entomology. Technical Series.	1-27	1895-1915
570.5 U 58136 b	U. S. Dept. of Agriculture. Biological Survey, Bulletin.	1-45	1889-1913
1630 U58D4m.	U. S. Department of Agriculture. Division of Publications. Monthly list of Publications		1895-1916
590.5 U 58 Fsr	U. S. Fish Commission. Bulletin	$\begin{gathered} 1-33 \text { (incomp.) } \\ 1-29 \end{gathered}$	1871-1906
506.1 U 58 N 28	U. S. National Museum. Annual Repo	(incomp.)	1885-1914
506.1 U 58 N 28 b	U. S. National Museum. Bulletin....	17-92	1880-1915
506.1 U 58 N 28 p	U. S. National Museum. Proceedings	1-48	1878-1915
$630.673 \cup 5803 \mathrm{~b}$	U. S. Office of Experiment Stations. Bulletin.	1-256	1889-1913
015.1058	. S. superintendent of Documents Monthly C'atalog	1-19	1895-1914
506.5 V 46 I 9 a .	Venice. Reale istituto veneto di scienze lettere ed arté.	1-70	1840-1911
506.5 V 4619 m .	Venice. Reale istituto veneto di scienze lettere ed arti. Memorie.	1-28	1841-1907
506.2 V 64 j	Victoria Institute. Journal of Transactions..	1-47	1866-1914
506.3 V 66 A 3 md .	Vienna. Kaiserliche Akademie de Wissenschaften. Denkschriften.	1-89 (incomp.)	1850-1914
506.3 V 66 U 6 nm .	Vienna. Kaiserliche Akademie der Wissenschaften. Sitzungsberichte.	1-123	1848-1914
506.3 V 66 N 3 v	Vienna. Mitteilungen des Naturwissenschaftlichen Vereins an der Universitat Wein.	1-11 (incomp.)	1903-1913
506.1 W13	Wagner Free Institute of Science. Transactions.	1-7	1887-1914
506.1 W32A2	Washington Academy of Science. Proceedings.	1-13	1899-1911
506.1 W32A2j	Washington Academy of Science. Journal.	1-5	1911-1915
506.1W52P	Washington Philosophical Society. Bulletin.	1-15	1871-1910
506.1 W36s	Washington University Studies	1-2	1913-1915
598.25 W 72	Wilson Bulletin	4-26 (incomp.)	1892-1914
506.1 W8A2	Wisconsin Academy of Science. Transactions	1-17	1870-1914
506.1W8U6b	Wisconsin University Bulletin. Scientific Series.	1-3	1894-1909
610.5P588.	Wurzburg. Physik-Medicinische Gesellschaft. Verhandlungen		1850-1913
610.5 Z 5 A 4	Zeitschrift für allgemeine Physiologie, Jena.	1-16	1902-1914
610.576 B 6	Zeitschrift für Biochemie und Biophysik....	10-18	1910-1915
$610.575 B 6$	Zeitschrift für Biologie. Munich.	1-66	1865-1915
$610.525 B 62$	Zeitschrift für Biologische Technik und Methodik. Strassburg.	1-3	1908-1914
570.5 Z 5 I 4	Zeitschrift für induktive abstammungs-und		
610.585 I 87	vererbungslehre. Zeitschrift für Morphologie und Anthro-	1-1.5	1908-1915
	pologie. Stuttgart	1-18	1899-1915
$612.05 \mathrm{H} 7 \mathrm{Z5}$	Zeitschrift für Physiologische Chemie (Hoppe-Seyler)	1-93	1877-1915
150.5Z5P97.	Zeitschrift fur Psychologie und Physiologie der Sinnesorgane	1-71 (incomp.)	1890-1915
$595.75 \mathrm{Z5W8}$	Zeitschrift für wissenschaftliche insektenbiologie.	1-11	1905-1915
578.5 Z 5 W 8	Zeitschrift für wissenschaftliche		
590.52511	Meitschrift fur wissenschaftliche zoolog	${ }_{34-114}$	$1884-1915$ $1880-1915$
590.5756	Zentralblatt für Zoologie	1-6	1912-1915
590-5Z86B9	Zoological Bulletin.	1-2	1897-1899
590.5Z86S7	Zoological Society of London. Proceedings..		1830-1912
$590.5789 \mathrm{A6}$	Zoologische Anzeiger	1-45	1878-1915
$590.5788 . \mathrm{J} 2 \mathrm{~s}$	Zoologische Jahrbucher (Supplement-Band).	4-15	1898-1912
$590.5 \mathrm{Z} 88 . \mathrm{J} 2 \mathrm{r}$	Zoologische Jahrbucher (Systematik, Geographic, u. Biologie)	27-38	1909-1915
590.5Z88J2.	Zoologische Jahrbucher (Anatomie und Ontogenie der Thiere).	1-39	1886-1915

Number.	Name.	Volume.	Year.
590.5789 B48	Zoologischer beobachter, Frankfurt a. m	10	1869
590.5 Z 89 J 2	Zoologischer Jahresberichte.		1879-1912
$590.5 \mathrm{Z9} 9 \mathrm{C} 4$	Zoologisches Centralblatt	1-18	1895-1894
590.57 .9 C 4.	Zoologisches Zentralblatt. . . . ${ }_{\text {a }}$	1-18	1895-1911
$506.3794 N 3 V$	Zürich. $\begin{gathered}\text { Naturforschende Gesellschaft } \\ \text { Vierteljahrschrift....................... }\end{gathered} . .$.	1-59 (incomp.)	1856-1914

[^0]: ${ }^{1}$ An Address hefo e the Annual Meeting of the Rubber Club of America, at the Waldorf Hotel, New York City, Feb. 2, 1916.

[^1]: 'Note: Figures Compiled by the States' Relation Service of the U. S. Department of Agriculture for use in Farm Management Demonstrations during 1915, show that two fifths of 3414 farms investigated indiscriminately in 17 different states, including N. Y., Mich., Neb., Mo., etc., incurred an average loss of labor income.

[^2]: ${ }^{1}$ Cf P. 2 U. S. Dept. of Agriculture, Farmers' Bulletin No. 572.

[^3]: *F. M. Taylor, Readings in Economics, P. 182.

[^4]: *I have left out of consideration here the sex determining chromosomes.

[^5]: *Address of the retiring president March 29, 1916.

[^6]: * A similar differemee m sizu exists between Oenothera lamarckiana and one of of its mutants, Oe. gigas and it is worthy of note that the latter has double the number of chromosomes possessed by the former.

[^7]: *The writer is indebted to Miss Grace Powers of the Zoology Department and to several members of the library staff for assistance in preparing this report.

