EIGHTEENTH REPORT

 MICHIGAN ACADEMY OF SCIENCE1916

EIGHTEENTH ANNUAL REPORT

THE NIICHIGAN ICAIEMY OF SCIENCE

PREPARED UNDER THE DIRECTION OF THE COUNCIL

BY
IICHARD A. SNITM
EDITOR

BY AUTHORITY
x

LETTER OF TRANSMITTAl.

To Hos. Woomphoge N. Feras, Govermor of the state of Michigan: She-I hate the honor to submil herewith the XVIIIth Annual Report of the Michigan Scalemy of science for molication, in acrordance with section $1+$ of Let No. $4 t$ of the Public Aets of the Lexislature of 1×99.

Respectfully,
RI('HARI) HE ZEELW',
Secretaro.
East Lamsing. Mirhigan, Nowember, 19月6.

(${ }^{(O N T M E N T S}$

ECONOMICS.

Page
An Agricultural Business Prohlem, ('harles S. Dumford 15
Some Aspects of Mmicipal Accounting, Frank F. Kolbe 22
A Contribution to the Theory of Tax Shifting, R. S. Tucker 30
13otaily.
Pathophytes and Pharmacophytology, A. D. Bush. $4: 3$
A Simplification of the Present Freezing Point Method (Abstract), (O. E. Harrington and R. P. Hibbard. 47
A Simplified Apparatns for Measuring the Conductivity of Electrolypes, R. P. Hibbard. 49
The Influence of an Incomplete Culture Solution on Photo-siynthesis (Abstract), 0. M. Gruzit and R. P. Hibbard 50
The Iformone Theory of ('hromosome Action, Ernst A Bessey 53
The Sexual Cycle in Plants, Ernst A. Bessey. 5!
Fern Notes, Oliver A. Farwell 78
A Convenient Method of Wishing Fixed Preparations, Richard DeZeeuw 9.4
Zoology.
Notes on Pleodorina Californica shaw, Bertram J. Simith 99
The Process of Owulation in Amphibia, Bertram J. Smith 102
Periodical Literature and Publications of Learned societies of Interest to Zoologists contained in the Unisersity of Michigan Library, Robert W. Hegner 106
Hhustrations.
Figure 1. Lotsy's diagrammatic scheme to illustrate his inlea of the relationship of the various groups of plants. 60
Figure 2. Union of similar gametes of Hydrodictyon. (After Coulter) 61
Figure 3. Sexual cycle in Metazoa and in Fucus. \quad R $=$ Reduction division, CU $=$ C'ell union, $\mathrm{NU}^{-}=$Nuclear union, $\mathrm{G}=$ Point of ganete formation (ia
Figure 4. Probable sexual cycle of Ulothrix, Oedogonium, Desmidiaceat, spirogyra, etc. ${ }_{6}{ }^{6}$
Figure 5. Sexual cycle of such Florideat as possess a distinct tetrasporic generation. $\mathrm{C}=$ Point at which carpospores are formed 69
Figure 6. Sexual cycle of Nemalion 69
Figure 7. Sexual cycle of Mosses and Ferns. $\mathrm{SP}=\mathrm{P}$ 'oint of spore production. 70
Figure 8. Sexual cycle of Flowering Plants. 70
Figure 9. Sexual cycle in Pyronema 72
Figure 10. Sexual cycle in the Rusts. 72
Figure 11. Sexual cycle in Tilletia. 73
Figure 12. Sexual cycle in Agaricales. 73
Figure 13. Botrychium multifidum var. dichotomum 87
Figure 14. Tank for washing fixed preparations 95

(OFFICERN FOR 1916-1917.

President, W. H. Momss, Ann Arbor.
Secretary-Treasurer, Rirumbin he Zeut, East Lansing.
Librariam, Crystal Thombson, Amu Arbor.
Editor, Ricumad A. Smbtif, Lamsing.

VICE-IRESIDENTS.

Agriculture, A. C. Anderson, Last Lansing. Geography and Geology, L. I' Bnhnert, Lansing.
Zoology, R. W. Hegner, Aun Arbor.
Sanitary and Medical science, H. W. Emerson, Amn Arbor.
Botany, G. H. Coons, East Lansing.
Ecomomics, Frane T. Carlton, Albion.

J'AST l'RESlWENTS.

IMr. W. .J. Benl, Amherst, Mass.
Dr. W. H. Simerzer, Ypsilanti.
Bryant W'alker, Eso., Detroit.
Professor V. M. Spacldint; Tuesoli, Ariz. Dr. Henry B. Baker, Molland, Mich.
Professor Tacor Relgilard, Am Arbor.
Professor Chas. E. Barr, Albion.
Dr. V. C. Vagghan, Amin Arbor.
Professor F. C. Newconibe, Ann Arbor. Idi. A. C. Lanis, Tufts College, Mass. Professor W. B. Barrows, East Lamsing. Dr. J. B. Pollock, Amin Abor. Professor M. S. W. Jbfferson, Ypsilanti. Dr. ('ias. E. Marshall, East Lamsing. Irofessor Frank Leverett, Anu Arbor. lle. F. G. Novy, Amn Arbor.
Prolexsor War. E. P'rabger, Kialamazoo.
1)R. E. (C. (AsE, Ann Arbor.

Int. A. (i. Iictiven, Inn drbor.

cornclu.

 I'ast-J'residents.

Twenty-frrst Annual Meeting of the

MIC'HICAN A('ADEMY OF SC'IEN('E.

ANN ARBOR, MIC'HIGAN

Mareh 2 s to $3 \mathrm{~B}, 1916$.
(iENERAL PRO(iR.LM.

Tuesday, March 28
4:00 p.m. Council meeting. Room Z 231, Natural Science Buikling. Reports of committees.
$4: 30 \mathrm{p} . \mathrm{m}$. General mecting of the Academy, Auditorium, Natural Sieience Building. Election of members.
$8: 00 \mathrm{p} . \mathrm{m}$. Public lecture by Dr. Charles 13. Davenport, Director of the Station for Experimental Evolution, Carnegie Institution of Washington, on "The Relation of Juvenile Promise to Adult Performance." Auditorium, Natural Science Building.
9:00 p. m. Smoker, given by the Research ('lub) in Almmi Memorial Hall.
Werluestay, March 29
$8: 30 \mathrm{a} . \mathrm{m}$. Council meeting, Room Z $2: 31$, Natural Science Building.
$9: 00 \mathrm{ar} . \mathrm{m}$. Meeting of seetions as follows:
Geology, Room Z 355, Natural Science Building. Sanitary Science, Upper Lecture Room, New Medical Building. Botany, Room B 207, Natural Science Building. Geography and Geology, Room G 217, Natural Sicience Building. Economics, Second Floor, Economics Building.
$1: 30 \mathrm{p} . \mathrm{m}$. Meetings of sections for the reading of papers and election of vicepresidents.
8:00 p. m. Presidential Address by Prof. Ernst A. Bessey, "The Sexual Cycle in Plants." Auditorium, Natural Science Building. Lecture open to the public.
9:00 p. m. General informal social gathering. Room MI 333, Natural Science Building.

Thursday, March 30

8:30 a. m. Council meeting, Room Z 231, Natural Science Building.
9:30 a.m. General business meeting, Room Z 355, Natural Science Building.
10:00 a. m. Meeting of sections which have not completed the realing of papers.
12:00 a. m. Luncheon for biologists, Room B100, Natural Seience Building.

Friday, March 31
$8: 00 \mathrm{p} . \mathrm{m}$. Public :uddress under the auspices of the Department of Geology by Dr. Elten ("hurehill Semple on "Geographie Influence in Japan," Autitorium, Natural Science Building.

SECTION OF GEOLOGY AND GEOGRAPIIY.
I. D. Scott, Chairman

Room (: 217, Natural Seience Building
H'odneslay, March 29, 9 a. m. and 1:30 p.m.
A Conception of Palcography. E. C. Case.
The Extremes of Mountain Clacial Erosion. IV. H. Hobbs. Underground Water Conditions at the Stece Farm. Frank Leverett.
Observations on Certain Paleozoic Corals in the Rominger Collection. C. M. Ehlers. Pre-Agassiz Clacial Lake in Northern Minnesota. Framk Leverett.
The ('rystallography of Anglesite from the Tintic Distriet, L'tah. E. H. Kraus and A. B. Peck.

section of sanitary and medical science.
E. T. Halman, Chairman
West Lecture Room, Medical Building
W'ednestay March 29, 1:30 p.m.

Further studies on the Protein Poison. Dr. V. C. Vaughan. Bacterial Study of the Drinking Foumtain. Miss Zoe Northrup. The Bacterial Flora of the Generative Organs of Cattle. Dr. Ward Giltner. Is Bacterium Abortus (Bang) Pathogenie or Humans? L. H. Cooledge. The Cse of Amniotic Fluid as a Culture Medium. L. (. Ludtum.
Title to be announced. Dr. F. G. Novy.
Title to be amomed. Dr. P. H. DeKriuf.
Viability of Ps. radicicola under Aerobic and Partial Anaerobic Conditions. L. O. Ockerblad.
The Effect of Natural and Modified Hoil Conditions on Bacteria. Oswald M. Gruzit.

> SECTION OF ECONOMICS.
> I'. T. Carlton Chairman
> Serond Floor, Economies Buitding
> Weducstay, Warch $29,9: 00 \mathrm{a} . \mathrm{m}$. and $1: 30 \mathrm{p} . \mathrm{m}$.

The Mdrich-V'reeland Curreney and the European War Crisis. George W. Dowrie, Inimersity of Michigan.

Farm Aecounting: a Business Problem. (". S. Dunford, Michigan Igricultural College.
Influences of the Industrial and social Revolution upon the Agricultural Industry of Ameriea. Roy H. Holmes, Hillsdate ('ollege.
The Teaching of Sociology, Its Place in the College C'urrieulum. (i. S. Dow, Olivet.
Farm Finance. W. O. Hedrick, Michigan Igrieultural College.
Munieipal Aecounts of Dayton. Frank F. Kolbe, University of Michigan.
The Valuation of Land. Floyd E. Armstrong, University of Miehigan.
The Teaching of Statistıes. Warrens. Thompson, University of Michigan.
English Taxation. Rufus S. Tucker, University of Michigan.

SECTION OF BOTANY.

LeRoy H. Harvey, Chaiman
Room B 207, Natural Science Building
Wednesday, March 29, 9:00 a. m. and 1:30 p.m.
Reproduction in Opumtia rafinesquii (Illus.) Wim. E. Praeger.
The Hormone Theory of Chromosome Aetion. (Illus.) Ernst A. Bessey.
Fern Notes. O. A. Farwell.
A Convenient Method of Washing Fixed Preparations. Richard de Zeruw.
A Maerosporium Disease of Red Clover. (Illus.) L. J. Krakover.
On the Pronumeiation of Seientific Names. H. A. Cleason.
Some Studies of the Botrytis Neek Rot of Onion. N1. T. Mumn.
Pathophytes and Pharmacophytology. A. D. Bush.
Plants of ('hippewa County. (By title.) C. K. Dodge.
Plants of schoolcraft County. (By title.) C. K. Dodge.
Influence of an Ineomplete Culture Solution on Photosynthesis. O. M. Giruzit.
A Simplification of the Present Freezing-Point Method for the Determination of Osmotic Pressure of Plant Saps. O. E. Harrington.
Further Studies on a Simplified Method for Determining the Conductivity of Electrolytes. (Illus.) R. P. Hibbard.
Phytophthora infestans in its Relation to Weather. (Illus.) G. H. Coons.
Smuts of Michigan Plants. (Illus.) (i. II. Coons.
Unreported Michigan Fungi for 1915. (By title.) (. H. Kauffman.
Some Mycological Features of the Mountains of Washington. (Illus.) ('. Il. K゙auffman.
The Mucors in Culture and Herbarium. (Iflus.) Alfred H. W. Povah.
The Wintering of Coleosporium solidaginis. E. B. Mains.
The Elementary Speeies of Oenothera; Their Origin by Mutation and Behavior on Hybridization. H. H. Bartlett.
The Effect of Light, Temperature and Length upon the Geotropic Reaction of Primary Roots. Richard M. Holman.
The Ferns and Their Distribution about Douglas Lake, Michigan. Frank T. McFarland. Read by H. A. Gleason.

SECTION OF ZOOLOGY.
W. W. Neweomb, Chairman

Room Z 355, Natmal science Buikding
Heduestay, March 29, 9:00 a. m. ame 1:30 p. m.
The Collection of Formieidat in the Museum of Zoology, Lniversity of Michigan. Frederick M. Gaige.
I Synopsis of the Tadpoles of Michigan Frogs. Helen ThompNon Ciaige.
A New Miehigan Turtle. Alexander G. Ruthven.
Fox's List of Michigan Birds. Bradshaw H. Swales.
(On the Number of Young in the Garter-snakes. Crystal Thompson.
The Birds of the Douglas Lake Region, Michigan. Norman A. Woot.
1 Fossil Musk Ox Skull from Michigan. E. C․ Case.
The Rearing of Volvox in the Laboratory. George R. Larue.
Differential Mitoses in the Ovaries of a (iyrinid Beetle. ('. P. Russell.
The Origin of Differentiation in the Eggs of Certain Inseets. R. WV. Hegner.
leriodieal Zoologieal Literature in the Library of the Eniversity of Michiran. R.
W. Hegner.

Polyembryony in a Parasitic Hymenopteron. R. W. Hegner.
Methods for the Collection and Preservation of Animal Parasitic Worms. Cieorge R. LaRue.

The Crane Flies of the Epper Peninsula. J. Speed Rogers.
I Prefiminary Survey of the Fama of Third Sister Lake. J. Speed Rogers.
Oxygen Favoring Male-production in Rotifers. A. Franklin Shull and Sonia Latoff.
A Problem in Evolution. Bryant Walker.
The Process of Ovulation in Amphibia. Bertram Ci. smith.
Notes on Pleodorina californica Shaw. Bertram G. Smith.
Exhibit of Photographs of Niehigan Animals. A. F. Combs.
Some Conceptions of Palacogeography. E. C. Case.
The Plyylogenetic Position of the American Opossum. E. D. Immtington.
Some Effects of sunlight on Paramoerium. H. M. MeCurdy.
The Opportunities for Zoologieal Work at the Biologieal Station of the University of Michigan. O. (. (ilaser.

ECONOMICS.

$$
\bullet
$$

HM EHARLES S. DUNFORD.

I.

The agitation for farm acronnting in comertion with progressive agrabume is mot a recent propaganda. Experimental methots applied to agrienthmal produetion in the tirst half of the righteenth century induced Arthur Yonng to write, "If this noble spirit continnes. we shall soon see hushanfly in perfection, amd hilt upon as just and philosophical principles as the att of medicine." In the latter part of this rentury, however, he complains, "One can not get the farmers to keep accomens." Murh experimental affort was expended by husbandmen during the eighteenth rentury which resulted in an incrase in the average vield per arre: at the same time accoming fractice seems to have been neglecter. The implieation in Arthur Konges conviction of the neressity for the kerping of accomots in connection with the agricultural dmpiricism of this perion is that, in the emd, agrientine as a hasiness ran mot be rally seimentically eonducted withont the keeping of records from which may be deatuced certain facts and upon the hasis of which imformation a hetter reoreanization of the profuction fartors may be made.

Howerer, amomalons it may seem, very areful records of the farm business were kept during the thirteenth and fourteenth centures he English hushandmen. Reforing to the later patt of the thirtenth rentury, J. E. Thorold Logers in his Economite Interpretation of History satys, "Nothing can be more carefnlly and exhanstively drawn than the bailiff's aceomen. He mate rongh notes of his receipts and expenditures and from the notes, which oceasionally survived, the amflit was hased and the roll engrossed. * * * * * * Everything is accomed for, all receipts, inchading those from the manor comt, all rents and all produce. The aderage sown, the sed requited fore the purpose, the live and dead stock on the farm are carefully noted eren to an egg, a peck of tail corn or a chicken, all losses given, all allowances recorded and the andit completed." Acorrding to lrolessor liogers. these ac-
counts were almost alwas in latin amd seemed for the most part, to have been the work of the memdicant elergy. These crude single entry records madr possible the determination of the approximate gain or loss upon the husiness of the year.

From the standpoint of agricultural production, the characteristic diflerence between the periods of the thirteenth and the fourteenth centuries and of the eighternth century is in the state of the agracultural arts, the prevaling condition in the former being static and in the latter dynamic. Under the static condition of agricultural arts the hushandman felt the pinch of the Law of Diminishing Retmons. The exigency of his position impelled a careful analysis of his lomsiness. The failly exhanstive records kept hey him attest the premeditated extension of his productive activity. On the other hand, by reason of the progress in agricultural practices dmring the eighteenth century less imperative demands were made upon the husbandman for the careful utiliza tion of his productive instrments. The advance in agricultural technique together with the opening for cultivation of large fertile tracts of land in all parts of the world in the period following the Industrial Revolution, outstripped the accumulation of agricultural capital. From a business standpoint this condition freed the agriculturalists of the nineteenth century, in general, from the demands made upon those of the fourteenth century by minimizing the pressure of the Industrial Law of lominishing Retmons.

It is not here implied that dmring an adrance in agricnltural practices accounts are unnecessary, for certainly a wiser use of productive factors may he marle if it be known what expenditures are more profitable and what are less profitable. The keeping of simple accounts in the industrial stage of increasing returns is advisable. Many losses in labor income conld have been averted after the entire rent had been sapped by the extension of productive activity to the better grades of land had the simplest kind of acrounts been kept by those ocenpying marginal land. These accounts certainly would hase arerted some of the porerty of many communities by inducing a redirection of the productive energies during the phastic period of the hmsbandman's life.

The finst half of the second decade of the twentieth century marks the begimning of a period of a comparatively static combition in agricultural arts. Also, practically all of the better grades of land are now utilized. lu these resperts the present rentury at least temporarily, is similar to the thirteenth and fourtenth cen-
turies. leresent day husbandmen, in genemal, most reckon with the business side of their productive enterprises.

II.

The financial status of any business may be determined by taking an inventory at the begiming and at the end of the year; the gain or loss may then be determined by the difference between the net assets of these two periods. Without this inventory method. annual losses of labor income, interest on investment, and tangible assets may be overlooked. Particularly is this true of the farming business, since a considerable part of the living comes directly from the farm. Thas the farmer may be getting the necessities of life at the expense of his capital withont immediately being cognizant of it.

The farming class, however, is not the only derelict group of producers from a business standpoint. Only a few of the 22,000 mercantile and mamfacturing establishments that failed last year had an adequate system of accounts. Ont of 66,000 concerns doing a husiness of over $\$ 100,000$ each last year, according to Mr. Edward N. Hurley, vice-chaiman of the Federal Trade Commission, 30,000 failed to charge off directly anything for depreciation. ${ }^{1}$ Thus, they arbitrarily marketed their goods at cut-throat prices.

While the farmer's competition, for the most part, does not take the form of an arbitrary quoting of prices, yet, through a misinterpretation of results attained, or more especially because of a lack of records for the determination of specific costs, his productive effort maybe extended toward increasing the supply of an already unprofitanle market. The unprofitableness of this action is further increased by reason of the relative inelasticity of the demand for many of his products.

Farm products, in general, are selling today below marginal cost of production, assuming a reasonable cycle of productive activity, if the wages of the operator be measured by tenant's wages. Farms are being operated in many parts of the United States that give litfle or no labor income and some are not even paying a reasonable rate of return on the investment. If the farm business be conducted for profit and not for pleasure, an actual known loss would certainly suffice to curtail the output. Of course, the so-called unearned increment is, in many instances, a conscious compensating element of advantage which tends to offset the relatively low labor

[^0]income. Allowing for this and other compensating adrantages. nerertheless, owners do continue to operate farms from year to year at an actual unconscions loss of labor income. These ammal losses are due to a misinterpetation of results. To some of those who hare $n o$ system of farm aceomts, success is measured by the size of the cash batance at the end of the rear. In reality whether or not the degree of success is in direct proportion to the size of the rash balance depends on the nature of the farm enterprise. Where the farm produce consists of cash erops only, success may be so measured. Those engaged in diversified farming, howerer, who are imbnal with this mercantilistic notion are apt either to overestimate or moterestimate the degree of success with a greater mohability of orerestimation as their efforts will be directed towards securing a large ash halance to the detriment of upeep and assets.

This fart of atotual loss is eleary proved by the results of inrestigations comducted by the Office of Farm Management of the I. S. Wepartment of Agriculture. While these results have been guestioned by some due to the fact that much of the necessary information was given to investigators by the farmers from memory. fot acomate acoonts kept by man of the farmers indicate that on the whole the figmes are fairly reliable. This method of detramining protit or loss by the difference between thr net assets of two periods respectively formishes but lithe useful information. howerer, that will lad to a better reorganization of the productive lactors. By an amalysis and comparison of the results of vereral farms in a given locality, some chance bemefit may be derived. Yet, there is nothing in this method to indieate in what departments of the farm showing large gans, those gatins have been made. Chance and rule of thmmb methods must lie displaced hy a system of acomots which will serve to furnish surlo information as will cmable the famer to pmsh vigomonsy the paying enterprise of to stop an moraranted expenditure.

III.

The straight single entry of domble entrex stem of bookkeeping such as maty be used by a mercantile or mandacturing establishment is meither partiendarly serviceahle nor essential to a farm hmsiness. The buring and selling ogerations which make up most

[^1]of the items of the rity hosimess are comparatively lew in a fiam business. Credit accoments are likewise comparatively few. It is not my purpose here to discourage the keeping ol detailed recorts of receipts and expemditures. In fate it is only by begimning in this matter that the ifeal in farm accounting may be atlained. But after all, the iuformation aroquired by such a system is no mote serviceable, in so far as making possible a better organization among the fatetors of production is comerned, than that obtained by the inventory methot.

For acrumate information regarding the status of the business which will prevent a misdimetion of production, a cost accomnting srstrm is essential. ('osting systems necessarily insolve double entry prindiples. Two entries most be mate for earl thansation. If milk he fed to hogs, the dairy mast be eredited and the hogs ehared with the amomnt, if lahor be pad in kind, farm produce mast be dedited and habor debited, ote. Expediency femands. howerer, that the system be simplified. Aecoracy mast be foregone. The tediousness of the trial balane which is indicative of accuracy in posting, sufferes to stifle the desire for seientitic information of the most anthmiastic farmer. Cost finding requires detailed amalysis of the business operations. The many accounts required to furnish the necesary information and the many entries to the rarions accomots are apt to multiply the adversities
 In the simplitication, fosting may be retuced to a minimum by making the entries immediately in the respertive ledger acomonts. Time cards may he used for the original entries of man habor and horse labor: at the end of the month, the seprarate items may be posted to their respertive ledger arcounts and the total hours credited to the ledger accomets of man habor and horse labor:. Sccounts with the relatively mimportant departments may be dispensed with; the elimination of the cash account sares considerable time and is not patienlarly essential in the determination of costs. To simplify by eliminating some accounts, and by abandoning the trial balance is to court error but the results will be sufficiently correct for all pratical purposes. It must be remembered that the farmer is not producing on eontract amd in riew of this fact, absolute acematy is not so essential as in the case of the shiphilder or steel products manufacturer, ete. The vital thing from the standpoint of the propagandist, at least, is to induce the farmer to departmentize his farm and to make an effort to determine what is and what is not profitable. By the use of a simpli-
fied cost finding system, he will be able to determine in connection with his dairy, for instance, whether it is more profitable to sell whole milk or to sell the cream and use skim milk for feeding hogs or calves or poultry.

The principles of cost finding on the farm are in reality no different from those in the factory, i. e., the underlying theory of cost finding is the same. Any system of cost accounting requires, (1) an accurate determination of direct wages paid, (2) an acrurate determination of materials used and (3) an apportionment of the indirect expense over the entire products. Practically all of the labor on the farm is direct i. e., specifically applied to a certain job or process. The labor of the farm superintendent is indirect or as sometimes referred to in accounting practice non-produc-tive-which term is, howerer, inconsistent with Economic termin-ology-and must be closed into the indirect expense account or allocated separately to the various farm enterprises.

Horse hours and machine hours are also all items of direct charge. By sebarate accounts with each of the several kinds of farm machinery according to purpose or use, a more exact estimation of costs may be made, e. g., the keeping of a separate account with highly specialized and expensive machinery such as a corn harvester is advisable. Otherwise directly charging the various departments from a single account kept with machinery and equipment, upon the basis of horse hours would give certain inaccurate results, as the cost of the crops requiring the expensive machinery may be underestimated and the costs of others orerestimated.

The materials expense, consisting of such items as fertilizers, seeds, etc., presents few difficulties. This rear's fertilizing must be apportioned to the several crops succeeding depending on its lasting qualities. The accountant must rely upon the agriculturist for this information.

The liarm or indirect expense items such as indirect lahor, sumdries, tixes, insurance, depreciation on buildings, etc., are proportionatrly charged to the several departments.

A logical and intelligent interpretation of the results obtaned by this methor is yuite as essential as the results themselves, for an unwise interpretation may mullify the effort pat forth. Whether it is more profitable to pasture a woodlot or to cultivale for a crop between the rows of an orchard can only be determined by a comparison of the results with woodlots and orchards under exactly similar comblions that are not pastured or cultivated. That a certain crop pays for all expenses including the expenses of the
orchard is no evidence that the pratere of double aropping is more protitable. It is possible that the erop atone or the orehard yield without the cultivated crop would have given a greater return than the double crop, in spite of the fact that with the donble crop, the orchard yield seemed to have been pure velvet. Furthermore, no particular year can be assumed to be an average year. lietmrns in many deparments can be estimated only pon the basis of returns for a selies of years.

A step toward the inclusion of cost atcomnting as an element in scientific agriculture, may be made by requiring that all comnty agricultural agents be trained in the principles of accomnting. It is of course essential to teach improved cultural methods but the advice given will result in a more protitable expenditure if it be based upon the study of seientifically determined costs. It is not sulficient to know how to raise more: what to raise moder conditions that effect cost on the particular fam and how to market the product most profitably are likewise important. The function of the agriculturist expert obviously is not minimized by the introduction of costing systems; even tho hay be fomd to be a profitable crop, its perpetual cropping would be inconsistent with scientific agriculture By minimizing guesswork, on the other hand, farmers may be brought even into closer tonch with scientific cultural methods.

The fact is that the individual farmer's business problems are uppermost today. The principles of costing and the principles of marketing are vital both from the standpoint of the farmer and the consmming public. Also, the farmers's commercial credit problems would not be half so difficult of solution if lenders had confidence in his ability to reckon costs, and knew that he did so. That his shortcomings in general along this line may be corrected is evidenced ly the successful keeping of a simplified system of costs by many farmers at the present time. ${ }^{1}$

Department of Economics.
Michigan Agricultural College, East Lansing.

[^2]

I fell yars ago there was mo dity in the comutry whose financial records had been so systematized as to furnish the information necessary for the exercise of administrative judgment and proper control. Jrivate business was kepping its accomots in such a manner that at regular intervals it was able to furnish its owners and manaters with two statements-one, showing the assets and liabilities of the bosiness; the other, the revemues for the period and the expense or cost of getting those revenues. The first statement, that of assets and liabilities. shows the stockholder whether his invostment in the business is being maintained and whether his net assets are increasing or decreasing, and the forms which that investment is taking-whether in quick assets like cash, accounts receivable. or finished goods or in fixed assets like plant and machinery.

While the same importance does not attach to a balance sheet for a public corporation as for a prate one. such in the case of a city would show several things of importance. Thus, it wonld indicate clearly whether the city is making moper provision for the parment of its dehts. It is a common thing for a city to borrow money to build parements. At the begiming it will have the parement in its propery accounts and the debt owned in its liability accomnts. At the ema of the life of the parament it will be taken out of the property acrounts and if the delot is mot extingothed but reftumed, such imporer financing will show itself in the in-
 elrorent deficits will show mp in the same manmer. for Daton in 1907, the city ran hehind some shon,000 which it paid hy a bond issue rmming for fifteen rears. The fears prevons for hane in which the sinking fund is arcommated to paty these bonds will have to hear the expenses of cleaning the streets and fmonishing fire and water protection to the eitizens of 1 gor and also the interest thereon. Furflermore, a statemont of poperty owned is the tirst stej in dixing resposibility for that property. It is impossible to hold anyone dexponsible for athothin muses you know what has been intrusted fo him. Such a statement rontains also the amount of the sinking fumd assets accumulated to retire the bonded debt.

A comparison of these amomots with the amommt that shomble be in the sinking fund as determined by acemate computation will show whether the alministration is putting the propere amomat of moner received fiom taxation into the sinking fund or whether
 thas shalt the rost of the servires which it furnishes to future taxpayers by funding its operating expense or not making the proper provision for the retirement of its lomed debt. If a parement is expected to hast tifterer rams, ons-tifteenth of the cost (apmoximately should be phaced in a sinking fund each vear-mot leaving it for the last rear of the fifteen or for years after that to provide the money with which to retire the bonds and therely pay for the parement used hy previons taxpayers. Any statement which will show the shifting of burdens to periods other that those in which the service is received is a valuable one.

Nor is the mefulness of the property and liability accomuts comfined to giving gemeral information conceming the rolleetive results of the period. Such accomots are supported by detailed schedules so that if anyone wants to know, for instance, to whom the eity owes a certain bill and how long it has owed it, the record is immediately acreessible. Any good system of alcoomting is so arranged that all debts not paid within a reasonable time after delivery of the goods or services are antomatically booght to the attention of the proper official. This will assure that the eity will always get the two per cent discount offard for prompt pay ment. This assures also that there shall be mo discrimination beFween sellers to the eity by holding up payments to some for months and prying others immediately. It is not clamed that a good accomoting system will prevent discrimination or assure a business-like administration but it will assure that the same information and statistical ad will be at hand for the manamement of public hosiness as are at present arailable for private hosiness. It will also provide for holding someone definitely responsible for everyhing that is done. A statement of property and liabilities shows the heweomer his heritage of propery as well as his heritage of deht. Ordinatily only the second is furnished him amd some times nof eren that.

The second statement used by private hasiness is the revenue and expense statement. It is often assmmed that its principal limafion is to monish at statement of prolits eamed. If this were its only function, it would be smerthons, for protits an be determined from the first statement hy fimbing the increase in net prop-
erty after allowing for the increase or decrease in debts. It shows the somres of revenur and the amonnt obtained from each. It classifies all expenses so that it is possible to make comparisons with other firms in the same line between one period and another and between one repartment and another. These comparisons are made not only for totals but also for detailed items. Thus, railroad expenses are subdivided into 120 items, earh one of which cormesponds to some amomm of performance. From these reports the operating offices can tell not only that expenses have increased a certain amonnt but just where their increases have occurred; perhaps, the increase was due to injuries, floods or to an increase in traffic or to any one of a number of other things. Exen though expenses show $n o$ increase they may still be 100 high as shown by the costs of other roads operating in the same territory. From these accomms, may be discovered the cost per mit of work done, for instance, locomotive repairs per locomotive mile or per car mile or per tractive ton mile. The same is true of other classes of equipment and of ties, rails, fences, etc. The expense accounts mmber 122 lut this is just the number reported to the Interstate Commerce Commission. The railroads for their own statistical purposes keep many more. Cities are now waking up to the statistical use of accounts. The city of Denver has the expenses incurred by its police department split up according to the following headings, each of which is further subdivided: atministration, operation and maintenance of police telegraph system, policing the city, special police protection, regulation of traftic. detection of crime, operation and maintenance of police ambulance and patrol. detention of prisoners-adults, detention of prisoners-jurenile, and miscellameons. The cost of other departments is similarly divided. Costs should not only be classified according to the purpose of function ol the work done but anso according to the kind of work. For instance, the expense of an automobile used by the chicf of police would be charged to the police administration account which is charging on the basis of function but it should also be charged to an antomobile accomnt so that the city would know how much it is paying for the use of all automobiles. This account should be supported by a detailed record of each machine so that information would be at hand to eliminate inefficiency in their maintenance and to serve as a guide to future purchase. The following is a page of such a record:

Department -
Feature - Operation of Automobile.
Remarks - E. M. F. —. Cost $\$ 1,300$.
Mileage this month, 1,175; total to date, s,0)6ti.

The following statement of receipts and disbursements of a municipality owned water works together with the acompanying revenue and expense statement shows how much work has to be done before one can tell the amount of the revemes, of the expenses and of the profits and the present disposition of those profts when only receipts and disbursements are given:

WATER DEPARTMENT.
Receipts.
Water rates \$106,85: 62
City's payment for public use of water. . 17,54910
Plumbers licenses 15000
Loan at Bank . 2,50000
Miscellaneous 39.: 03

Disbursements.

Bonds paid	\$25,700 00
Interest on bonds	18,049 00
Salaries	17,371 90
Repairs to mains	46021
Repairs to hyrdrants	1,08』 61

Touls amd memsils－repladements	¢4！：
Suplliss atm lidpatis to stations	テ，心－：：\because
Furel	1：3： 7
	1．9＊T！4
lepatis to soriar	
－fifere expernse	1，1：1 $\because 7$
Minerlammons lepatis	！Tt ！ 4
Inswrallice	1907
Mismellaneous expenses	$\because .150$
Reconstrontion	$4.3: 3$
Pijur extelosions	ロ：3．ここ！）
Impiowaments tostations	7．13．0）11：

The difference between the receipts and dishursements is se．atio． that muth more rash has been recejed than paid ont．DIEs the
 was gotlen hy loorowing and rou ran mot include that in four protits．Money camot be made simply by borowing it．The other items are probably reremues－that is，value that hat arerned to the department from the sale of its services for the period．Ther are not．however．the entire value of the services rendered for some of the water delivered dmring the rear has not yet been paid fors The department has a good clam against these people who hate not yet paid．It is an amoment which was earned in this period but which will mot le paid matil the future．Of comse，if the city Wanted to．it conlal make all delinguent customers paty promptly bey tmonge ofl the water hot they will pay in alithe while so whe resort to such measures．The point is that mot all the reveme earome in this periog is in the form of eash：some of it is in the form of arcombts receivable．The cash receiphs，here phobably eontain somb collections of rexembe earned in past periods and it is assmmed that the reverme earmed in this period hat still in the shape of rlatims amd therefore left ont equals the itoms put in

 sistem womld get the amomat of revenme ontstanding as a leproduct in checking mp lills ontstamblige

The next itan abont which there mas be question is the cityes payment for the use ol water．This may equal the ralue of the
service rembered or it may not. In this case the rathe of the water furnished the rity exceded the payment received from the dity by $\$ 7.950 .90$, which however is not ohtainalle from the statement as fumished but was established by inderendent iusestigation. When a city operates a utility, that molity should be imdividualized. The stockholders of a corporation are not the corporation and the dity is not the water department. The dity's relation is that of owner amd mamager. It is mot mecessaly that the eity actually pay over the eash to the water department only to receive it batek later in the form of protits but it is meressally that the water department be given eredit on its books for the value of all services furnished by it. If water lmonished to the city is not charged for at its corred value, we make two errors-first, that the expenses of the water department appear a much larger percentage of the revemue than they really are amd secomd, that the expenses of ruming other departments of the dity appear moth smaller than they are. The grocer who takes home groceries onght not to resard them as an expense of cost of his sales lom as a withdrawal of his profits. So here, water taker hy the rity ame not paid for is an additional revenme, the money for which never
 made consists of water lates, total value of water furmished the

Are the ath payment equal to the cost of furnishing the watere The first item is Bonds l'aid, *2., 000 . This is not a cost of this period. True you have that much hese cash but you have also freed your property from debt so rou are no poorer. No one ever grew poor by paying his dehts. If the people have batid all their debis of s.sol, 000 , the first year the phant was in ojeration that would not have made the cost of fumishing the water that year s.ano, 000 more than it otherwise wond have been for allhomg they have pated with hat much eash they now own their platht. It is simply a purehase or exchange in which you give up eash fo obtain a greater equity in the business. The cost of operating is not increased thereby. Interest on bonds is evidently a diflerent kind of item than salaries, fuel, ete. These last are operating charges and the man who is responsible for their size is the operating official, but interest on bonds is a timancial charge and the fimount of it is dependent not upon the operating officials but upon the decision of the citizens themselves ; they have decided to borrow the money to buy the pland instead ol contributing it themselves. We will leave it out for the moment. Extensions and improve-
ments are not expenses. They are like bonds paid above. The cash paid for them has been converted into goorls or benefits which we have at the end of the year. If you have a thing at the end, it can not be a cost, for costs are sacrifices and here you have sacrificed nothing. You have merely converted it. The rest of the itens are expenses and total to $\$ 49,661.9$? making a net operating profit of 82.675 .72 . To get the profit belonging to the city, we must next suhtract the Interest on Bonrs of sp, (14!), which leaves a net income of $\$ 6+626.72$. It is impossible to tell whether these are all the expenses or more than the expenses for we have only cash paid to go by. Some of the fuel used this year may have been paid for the preceding year and so have heen left out of our calculations. On the other hand. some of the fuel bought this year may not he used till next. It is impossible to tell, so we will assume that the expenses omitted equal appoximately the items inchaded which are not expenses.

The Reveme and Expense statement is as follows:

Revenues.

Water 1:ates . $\$ 106.850$ gie
Yalue of water furnished the eity 2.-. 50000
Plmmbers licenses 1.5000
Miscellaneons . :3:5 $0: 3$

Total revenue
$\$ 132,33763$

Operating Erpenses.

$$
\text { Salaries . S17,:3i1 } 90
$$

Repairs to mains $460 \quad 21$
Repairs to hydrants 1,08261
Tools and utensils-replarements....... 49. $3: 3$
supplies and repairs to stations $\overline{\text { 万, }}$, $8: 8$
Fuel . 12,319 it
Barn expense . 1,987 94
Repairs to service 1,
Offre expense $1,191 \quad 27$
Miscellameons repairs 974 . 94
Insur:ance . $190 \quad 77$
Misecllaneons expronse 2,15G 23
Reconstruction . 4,3: 0s

Total operating expenses 519,661 !:;
Net oprerating reremue
Interest on bonds 18,049 00
Net income or protit (64, 6i26 ت
Note:-No allowance has been made for depreciation.

The profits having been determined, the next question is where are they. The profit together with the $\$ 2,500$, which was borrowed, making a total of $\$ 67,126.72$, have been disposed of as follows:

Given to the city in the shape of free water $\$ 7,95090$
Retained in cash .
Bonds paid-purchase of a greater equity in the business 2.5,700 00

Extensions . 23.20979
Improvements . 7,600 . 0.3

Total $\$ 67,1 \geqslant 6 \% 2$

In order to get information of real value, the statement as furnished has to be completely made over and the result of such recasting is a statement containing many appoximations and owing to the lack of proper classification, it is of impossible to get as much information as we have lere obtained.

It would seem to the layman that to get out all these statements and details would involve considerable lahor and cost. Eren if it did, the cost would he amply repaid by the results attained as is shown by the fact that precisely, where competition is keenest, are to be found the best accounting systems. Much information comes as a by-poduct. Sou have to know the total tax levy at the beginning of the year for only by so doing can you fix the tax rate. You must know the amount collected by the treasurer in order to know for how much cash he is responsible. It is little tromble then to find out the total taxes outstanding. You almost have to get this figure to be sure that you have charged the freasurer correctly for by adding the paid and mpaid taxes together and comparing then with the total at the begiming, you get an absolute check on the arithmetical accuracy of your work. The same is true of other items. Wherever you most keep a graat deal of detail. you need one account for mains and accomets.

University of Michigan, Ann Arbor.

l. s. TLCKKER.

One of the points in the theory of incidence of taxation on which a large majority of ecomomists are agreed, is the doctrine that taxes on real estates are divisible into two parts-the tax on the land and the tax on the building, and that the first of these cannot he shifted away from the land-owner but the second results in an increased rent to the tenant and is thus shifted to the consmmer of building utilities. This theory is stated by Smith, Ricardo. Mill, and more recently hyoressor Taylor. I quote: "It is almost certain that, of the total tax collected from the owner of a house amb lot, one portion is really paid ly him, while another portion is in the end taken from the tenant in the shape of higher rent : and. what is more significant. for our purpose, it is also quite certain that the dividing line between these two parts corresponds pretty elosely to the line which separates that portion of the total value of the place which constitutes the value of the lot. from that other portion which comstitutes the value of the house."\%
[Bastable qualifies the simple theory be declaring first, that a tax on ground used for building may to a rery slight degree be shifted by the withdrawal of certain sites nearly as well adapted for agriculture and secondly, that an attempt to increase rent in order to jay a tax based on bilding value will check the demamd for houses. thereby throwing some of the tax on the owners of existing lonses and some of it on owners of racant sites for which the demand is lessened.

What I desire to show in this paper is that the division of the tax on real estate into two parts is only formal and without much ral significance ; that in the case of a tax based on capital ralue, or selling price, the forces which bring abont shifting are the samb in hatme whether the tax be levied on the land abone, or on the rombined value of the land amd the building. I think we will all agree that atax on the sole use of a commodity will have as injurions an eflere om the demand for that commodity as atax on the commodity itself would have. If for example shoe-polish were a fixer supply good, a licemse fee charged on hoot-blacks, a duty on the ate of having your shoes shimed, an excise on polishing

[^3]brushes, and eren perlaps a hearl tax on Greek immigrants would all aet to ent down the demand amd hemee the price of shee polish. The only limit to this decline in priee (assuming as we do that the cost of production need not be comsidered) would be the alter native use of shoepolish in blatking stoves and the demamd price for it for that purbose. Bat not all kinds of polish ran be used on stores.

In the same way a hax on the use of motan band for batdings. Whether it be a tax on the himiling. or on ocempieres rent of on the citizens on industries of a town or on the lamd itself, must rednce the demand for lamd lor bulding porboses in that town. This is particulaty the ease with a local tax in a locality exposed to the competition of neighboring taxing districts eqnally or nearly a Well adapted for the residental or industrial needs of the pepulattion. The effect of amy surlh tax will be to redure the demame for land for building purposes, either because the demand of temants has fallen off or becanse the forts of suply ying buldings have increased. The land itself is very mearly a dixed suply good; its price is determined by demamd and is limited by the potit obtainable hy building on it, i. e.. the difference between the rental that temants will pay and the necessary costs of mantenance and res pair, inchuding taxes. This difference capitalized at from 4 to 10%, according to local cipeumstances is the price of the land.
 higher or bower than this are usmally hased not on immediate yield but on speculative values.

It is obvious then that anything which tends either to lessen the demand for buildings or to increase their cost most result in lower land ralnes in the locality affected. This is true not only of taxes but of industrial influences.
lt is of comse not a complete answer to the poblem of poper distribution of taxes to say that the inefdence is here or there the effect of govermmental expenditures must also be taken into ateombt. Moreover we ean not neglect the presence of economic friction and the comsequent neressity of allowing a suthicionty long time for rexistige loases to expire and for temants 10 adjust themselves to changes in comtitions. All I wish to take up in this paper. howerer, is the molerlying law of shifting.

What is it that determines the demand for bildings in any given commmity? In the rase of business bildings it is the opportmity to make money by locating there, amd this in furn depends largely on the momber and buying power of the residents. ln the
case of dwellings it depends partly on the amenities of life, the attractiveness of the town as a place of residence, and partly on the opportunities lor profitable employment. There seems to be a close relation between wages and rentak, it we compare one year with arother in the same place, and also if we compare different phares at the same time. Statistical investigations show a very small rariation in the ratio of rent to family income, for incomes of the same size and families in the same locality. In fact it seems reasonable not only to regard the rent of a site as a residum after dedncting the neressily expenses comnected with utilizing the site from the rental obtainable, but also to regard the rental paid by an individual for this housing accommodation as a residum obtained by deducting from his total income the necessary costs of living, such as those of food, clothing, and fuel. It has heen said, for example, that one reason why house rents are lower in Boston than in New York is because the price of food is higher. It is a well known fact that meighboring suburbs are continually competing for prospective residents, and that in the district which has the best accommodations, especially schools, the rentals of identical buildings will be higher than in the rival districts.

I said that land is practically a fixed supply good. The proportion of land which might be added to the natural supply of sites by means of extraordinary outlays is rery small-so small that we may fairly declare that the supply is incapable of enlargement. On the other hand it cannot be greatly restricted. Land may be deliberately kept ont of use, but this involves a great loss of interest and can only be done hy wealthy owners, and only when land is not hearily taxed. In some cases land can be devoted to use which is not so highly taxed, e. g., agriculture, moler the English system of local rates. But it is obvious that, if the profits to be derived from building are great enough to more than oflset the added tax, the land owner, if guided by economic motives, will prefer to pay the tax for the sake of the extra profits. And if the system of taxation is one that minimizes the difference between the amonnts paid in the two cases (i. e. if taxes are based on the selling value of property, or, even more, on bare land value) this preference will become almost a compulsion. The only exception will be when the owner anticipates a future increment in land value which is incompatible with immediate developnent and which is great emongh to oflset the loss of interest. Such an increment is rather uncommon, both because of the dificulty of anticipating the exatot diredion of submban growth and beamse
compound interest monnts up so raphdly. Assmming or as the net return on land, the value of a site most domble in fifteen vears to make it profitable to hold it idle.

Althongh the effect of almost any kind of local tax is to reduce the ralue of land, and that of all well-planmed govermmental expenditures is to increase land valnes, it is not by any means a matter of indifference on whom and on what basis the taxes are imposed. Total value, land ralue, gross rental and net rental, thongh equally available for the tax-collector, do not stand in the same poportion to each other in a comparison of different moperties. I mention this point only to aroid misunderstanding. Even if the owners as a class must in any case ultimately bear the whole incidence of taxation, the share of each owner would vary according to the base chosen, and the duration and incidental results of the process of shifting might be widely different; and I do not maintain that the whole incidence of local taxes is on the landowners.

It is a matter of common knowledge that not all pieres of land are fit for building sites, and that the difference in value between those that are and those that are not is not determined by the expenditure on the land, in laying out streets, pating down sewers, and so on, plus the original value of the land, if any, for agricultural purposes, but depends on the demand for building accommodation in that particular locality, and the cost of constructing the kind of accommodation demanded. It is not so commonly understood that there are among the higher grades of land relations similar to those between suburban agricultural lands and buiding sites. If for example a certain site is well suited for a bank or a department store, it will not for long be devoted to any other form of development, for such sites are rare, and the return to the land will be much greater, orer and above the costs of buildand maintemance, than if a warehouse or a tencment were put on the site. Occasionally the difference in site rent to be obtained from two competing methods of exploitation is slight, but in most cases the difference is very great. It may not alwars be certain that the development which promises the most site rent is bound to succeed, but granting its success it will usually yield much more than any other development could.

Marginal land for any kind of derelopment is land on which capital incested in that certain way would yield, besides a reasonable return on the capital, no more than would be earned by the land if developed in some other way. A tax on buildings on such
marginal land would obviously be placed by users of those buildings. and if they refuse to pay, the land will be devoted to some other use. But land that is marginal for some specific use is not necessarily no-rent land, or eren land without a site-rent. Before a site becomes eren worthy of consideration for the purpose of erecting a bank or an office building it must have a pretty high site value for other purposes. The more valuable the site for the purpose for which it is used, the less will taxation affect the building, and in cases where the site is much more valuable for that purpose than for any other it may be that all the taxes on the property fall on the site and the building may go scot-free. It may be for example, that a piece of land is well situated for a moving-picture theater, and will earn a much better rent for this than for any other purpose. Its selling price will be somewhere between its value for some other use and the value obtainable by capitalizing all the profits of the theatre after deducting necessary expenses, including taxes. Which extreme of this range becomes the actual selling price will depend on whether the demand of would-be theatre owners is greater or less than the supply of available sites.

Now it would be easy to say, off-hand, that the incidence of a tax ou moving picture theatres would be on the theatre-owner or on the public, if the demand is greater than the supply of suitable sites, and on the land-owners in the opposite case. This conclusion, apparently so simple and certain, is absolutely contrary to the facts. If the demand exceeds the supply the actual price will be fixed by the marginal demand price and the first extra-marginal demand price. A tax will cut down hoth of these amd thas reduce the price so in this case the tax falls on the site.

On the other hand if the supply of suitable sites exceeds the demand, the selling price is fixed by the marginal and first extramarginal sellers' prices and there is nothing in the tax to make them change their estimates and accept less than if there were no tax. Hence the tax most be borne by the theatre-managers or the theatre going rublic.

Incidentally it may be remarked that this same line of argument applies to the incidence of increment taxes. One of the commonest statements as to the incidence of these is that when the demand for the land is great the incidence will be on the purchaser; when the demand is not so great the tax will fall on the seller. But if the demand is great, that is what determines the price, and a tax on increment, collected as it is from the seller, camot increase the
price; while if the demand is small, smpply price is what sets the price and that may be increased by an increment tax.

What is true of moving pictures is true, mutatis motamtis, of a general tax on homblings. If a site is much more valnable for an expensive form of exploitation than for a cheap one, it will be used for that form and taxes on it will be borme by the site owner until the whole difierential alrantage is eaten up. If all mom and suhurdan lame could compete for all kinds of uses, then a fax on any method of exploitation would have to be borne liy those who desired to exploit land in that way. But in real life we find mot a continuous series of sites each a little less valuable tham the last, but distinct series for cach particular kind of development, with great breaks both within and between the series. The incidence of a tax, say on shscrapers, is absolntely matfected ly the potential competition ol sites five miles from the hasiness district,
 poses.

We must abandon the Ricardian idea of rent when disoussing urban valnes. Except to some extent for residential purposes. the ralue of land is not dependent on its superiority orer another site, but on its actual value for the use to which it cam best be rut, whether or not there is another site adapted to the same method of utilization. We must restore Smith's definition of rentthe excess of income orer necessary expenditure and reasonable mofits-to the throme from which it was expelled bey the differential idea. In this belief I am supported by the theory and practice of all real estate men with whom I have discussed the matter.

There is especially a very noticeable break between agricultural land and building land, due partly to the mature of the outlays necessary to prepare land for buiding, the risk of the enterpre, and the long time needed before profits can be realized even when the adrenture is successful. The growth of cities is not stearly in all directions but fitful and in unanticipated directions. Land agents who are lucky make immense profits, others incur immense losses. A new car-line will suddenly increase values in the district served, but it may incidentally ruin land development solomes in some other district. For this reason the contention that the value of land for agricultural purposes constitutes a foundation on which land-owners an plant themselves in resisting attempts on the part of milders to shift building taxes on to them is erroneous. The foundation is there, but it is so far below the actual price levels and so detached from them that in many cases it is
of tho more assistance to land owners in the struggle to avoid tax burdens than the bottom of the ocean to a man struggling in the middle of the Atlantic.

Maving discussed the case of a site adapted for different uses, let us take mp the case of several sites competing with one another for the same use, all of them being above the margin for that praticular use. The simplest case is that of residence land.

The effect of higher costs of buildings in checking demand we need not consider at length. The demand for housing accommodation among most social classes seems to be fairly elastic, and to the extent that it is, taxes obvionsly camot be shifted on to temants in the shape of higher rents, for they will put up with less accommodation rather than pay more. When this occurs the tax, whether on building or land, will probably fall to some extent on all landlords, but all except the owners of the most expensive residence sites will be able to repiace a large part of the tenants they lose hy other tenants formerly dwelling in more expensive apartments, and thus escape a large part of the burden. The most expensive sites however have no such relief.

But even when the demand for housing accommodation is not at all reduced by an increase in rentals or a tax, I shall atiempt to show that the traditional distribution of the incidence between hmilding and site is unwarranted.

This reasoning covers the two classes of persons whose demand for lonsing is according to Professor Seligman inelastic-those who are too cramped already to be able to get along with less than they hare and those who are so wealthy they are mwilling to get along with less. It ran best be brought out by studying a few trpical cases. Suppose a man with an income of $\$ 2.500$ a year choosing between a central and a submentn dwelling. There are threr fossible hypotheses; (1) he has no preference and is guided only ly fecuniary motives: (2) he prefers to live in the city; and (:3) he preters to live in the comutry. In the tirst case he will estimate the extra amount he is willing to pay for the central site by comsidering the saing in carfare and in time, which we will put at $5 .-$ a month. We will assume that the type of honse he desires
 grommd rent. The city lot obrionsly has a site rent s. wreater than the suhnthan lot, and it will not imalidate the argmment if we take the grombl rents to be respectively s. and mothing.

Now suphose a tax on wross rental, collected from the tenant, of 25%. Since we are assuming that the tenants demand is inelas-
tic, the tax will be added to the rent. The suburban house will cost $5: 3.25$. and the urban one $\$ 3.5 .50$. But the difference which the tenants is willing to pay is only s.o.00. The extra s. 8.2 must come ont of the site rent; it equals $2 . \% \%$ of the site rent in this case, which has induced lierson and others to bay it down as a role that the tax will be divided proportionately between the building and the site.

But if we take the second case, and assume that the man would really prefer to dwell in the city the result is somewhat diflerent. This preference will show itself by his paying somewhat more, or taking a somewhat poorer house, or both. Which, and to what extent, is hard to determine. Suppose we assmme that he will spend $\$ 3.5$ for a house in the city, untaxed, the house itself being worth $\$ 20$, which, of course, leaves $\$ 35$ for the site. The suburban honse is the same as before sez. A tax of ers on gross rental would naturally raise that of the eity house to $\$ t^{\circ} . \pi=$, and the other to $\$: 3.2 .5$, a difference of $\$ 12.50$. But the city house is only $\$ 10$ more desirable to the tenant, so the $\$ \mathbf{S} . .00$ must fall on the site. It is not however $\quad=\%$ of the site value, but only 2.5% of the difference in rent between the two competing honses, includin! both their site and building values.

The opposite case may now be taken, the man who naturally prefers to live in the suburbs. He will not live in the city unless he can get as good a homse at a price which will make his total exfenses less, or else a better house for the same outlay. He will pay $\$ 25$ in the country, $\$ 2.8$ in the city for a similar house, or $\$ 30$ for a house worth, as a house, $\$ 27$ on a site worth $\$ 3$. Add the tax at the rate of 2.5% and the houses will cost, respectively $\$ 31.25, \$ 35$, and $\$ 37.50$. The tenant's estimate of the advantage of city life is only $\$ 3$. Therefore he will pay only $\$ 34.2 .5$ for the smaller city honse, or $\$ 36.25$ for the larger. The difference ($\$ 0.75$ or $\$ 1.25$) must come out of site rent, but it is not necessarily proportioned to site rent. It is always a proportionate part of the estimated differential advantage of one competing honse over the other, and this may be equal to site rent, or greater, or less.

So far I have discussed a tax on rental collected from the tenant. Except for the initial difficulty in shifting while existing leases are in effect, the ultimate result of a property tax onght to be nearly the same, if we assume that the tax can be shifted at all, i. e., if we assume an inelastic demand.

As the value of property is the capitalization of net income, the property with more valuable sites will be taxed more under our

American system than under the gross rental tax, for site rent is nearly all net rent whereas building rent contains a large element of repairs, expenses of management, etc., which must be deducted before capitalizing. Moreover site rent is usually capitalized at a lower rate of interest. So under a property tax there is a tendency for a larger proportion of the tax to fall on the site than unter a tax on rental.

There is a kind of incidence of taxation, if incidence be the proper word, which results in certain teuants getting less accommodation than they would if there had been no tax, and certain siteowners being unable to earn any profit or site rent because of the decreased demand of tenants. But in this case there is no tax paid. If property becomes less valuable as a result of a property tax, or if rentals decline as a result of a tax on them, then the amount of tax paid is less; and where there is no tax it is incorrect to speak of incidence. This is not the case contemplated in the present discussion.

To summarize: (1) Any kind of a tax on the most profitable mode of utilizing a site tends to reduce the value of the site to that point where, under the circmmstances, it becomes more profitable to develop the site in some other way. (2) A tax on real property is not necessarily divisible into a tax on the house and one on the site in froportion to their respective values, but its incidence depends on the willingness of the tenants as a class to restrict their accommodations, or to change their nature, and on the possibility of doing so. As a matter of observation it would seem that, in the case of American cities with many computing suburbs, the proportion of the tax on real property that falls on the site value is usually greater than the proportion of site value to the total value of real estate taxed.

From this discussion it would appear that any attempt to draw np rules for the proper apportiomment of taxes so that after the process of shifting is completed the taxes will be borne by those whom it is desired to tax, must fail because of the complexity of the problem. But one practical consideration makes the outlook less discouraging. That is, that generally the benefits of local expenditures will be transfered at about the same rate of speed as the hurdens of taxation, and if taxes are levied in the first place on the persons who are directly benefited by their expenditure they will probably fall in the end on the persons who receive the ultimate permanent benefit. This would mean adopting the one good leature of English local rates-assessment on the occupier.

The effect of this system in incrasing the number of roters directly interested in the economical management of local affairs I cannot discuss at the present time. This is a paper on theory and I think I have already proved what 1 set out to-that no cleareut line can be drawn hetween the indidence of haxes on sites and taxes on buildings.

Eniversity of Michigan, Mnn Arhor.

BOTANY.

PATHOLHYTES AND 1PIAKMACOHHYTOLOGY.

-1. 1). BUSll.

Limiting the present discussion to what affects directly the human body it may be stated that the vast majority of diseaseproducing plants belong to the group of schizophyta or fission plants, of which the Bacteria are the most important. The Bacteria may berelassified morphologically as Micrococci, Bacilli and Spirillae, each of which has distinguishing characteristics and properties. The normal growth of these plants in such a favoring habitat as is afforded by the warmth and moistmre of the human body, is accompanied by the generation of waste protucts of remarkable toxicity. If unneutralized, these products when absorbed by the invaded organism become highly inimical to the vitality of sereral tissues, especially those of the nervous centres. With some groups the metabolic activity rapidly produces necrosis of the adjacent animal cells, a process which, if taking place in the spinal cord (as in infantile paralysis, for instance) rapidly produces severe disturbances in correlated parts. In any case, but especially in nerous tissue, the plant in its growth activities produces by both mechanical and chemical means a riolent inflammatory reaction, locally, as the system attempts to protect the part from deleterious foreign material. This reaction is accompanied by an exudate whose mechanical pressure is an additional factor in lowering vital resistance and in disturbing function.

Briefly reviewing the several groups we find that among the Micrococci the principal diplococrus is the one cansing cerebrospinal meningitis. Streptococci are bacteria producing erysipelas, puerperal fever, many nose and throat affections, middle ear disease, some of the more serious bone and joint troubles, and probably scarlatina and measles. The staphylococei are responsible for various boils and abscess formations of both skin and bone. The micrococcus lanceolatus produces lobar pneumonia and other serious infections of serous membranes. The gonococeus is the social scourge and, aside from the general misery for which it is the responsible factor, is productive of most of the blindness in the

World and of most of the tronbles resulting in surgical operations on women.

The Bacilli constitute a large group, various members of which are the calusative factors in wide-spread disorders. The bacilli of Diphtheria, Glanders and Inflnenza find their most favorable habitat in the nose and throat primarily, and secondarily in the nervons system; the bacillus of Whooping-congh, in the trachea; the bacillus of Tuberculosis, most frequently in the lungs though it may attack any structure of the body. The bacilli of Yellow Fever and Typhus Fever are primarily active in the alimentary tract and in the red blood corpmseles; the bacilli of Typhoid Fever, in the glandular structures of the small bowel the bacillus of Bubonic llague in the gemeral lymphatic glands of the body; and the bacilli of Leprosi and of Anthrax in the dermis and sub-cuticular structures. Eatch of this group produces prinary local reaction of variable severity followed sooner or later, if unchecked, ly a motommerstemic reation.

The principal spirillae consist of the relatively mild one productive of lidapsing Fever; the virulent one cansing the acutely exhansting Asiatic Cholera; and the one producing the persistent degeneration of circulatory and nervous systems known as Syphilis.

Besides the Schizomycetes some of the higher Fungi are instrmmental in causing painful though less dangeroms troubles, consisting chiefly of indurated inflammations of the skin and mucus membranes. Aphtous stomatitis, or thrush, is due to one of the saccharomycetes, Oidinm albicans, Ringworms of the scalp and body are produced by several of the monlds, Achorion and Trichophyton especially. One of the Streptothrix is responsible for the form of tissue necrosis known as Madura foot.

Turning now to the consideration of phamacophytology we may note the curious and interesting lact that the most powerful of medicines, the alkaloids, also represent waste products arising in the course of vegetable protein katabolism. As it is the toxin waste of the lower fungi that produces serions and dangerous reactions within the human horly, so it is similar substances derived from the spermatophytes that are used as meticines for combating some of the symptoms arising from the activity of the lower organisms. In eath ase the disturbing substance within the body is a regetable product poisonous to that body, but the substances used as medicines are kept under careful control so as to exert a toxic influcnce on the infective germ before such an effect is produced on the harboring body. Or in cases where such direct action is not
possible, the drug poison is used to stimulate the body to such a degree that in the resulting reaction the infective toxin will be incidentally neutralized. Tsually, however, the effect of regetable drugs is simply to so modity systemic processes as to prevent that excessive reaction of the body which of itself might reatly prove inimical to the welfare of that holly. The actual cmative value of most of the atkaloids is either nil or very small ; they simply serve as a more or less effectual aid to mature in time of need. For purposes of cure chief dependence must be placed on matmal or artificial production of immme hodies or antitoxins.

It may be said, therefore, that the vegetable alkaloids do not directly antidote the poisons produced by the infective fungi. Their principal value rests in their power to produce a more or less complete antagonistic ration of the several tiswes of the body. For example, the exhanstive drainage from the intestines produced by the bacillus of Asiatie Cholera may be partially pre rented by the counter action on the secretory and osmotic processes exerted hy Morphine. Or again, the cerebral irritation produced during Typhoid may sometimes be oftiset by Opimm, or the mental depression accompanying Typhns may be partially comteracted by Catleine. This, of course is purely symptomatic treatment, reliance for eure being placed on the normal acquirement of immunity either by the body itself or throngh the medimm of some other agent in which high protective immonity has been earlier induced.

Our principal alkaloids msed in medicine are derived from the angicsperms. From the lammondaceate is obtained a mild gas-tro-intestinal stimmlant Hyblastis, and from another member of the same family, Aconitus mapelns, is obtained an important cere-bro-spinal depressant. From the Solanaceac are derised an excellent antispasmotic, Atropine from Atropa belladomat, and a related rerebral sedative from lyyscramms niger. Gaffeine, onr learling heart stimmlant, and a well-known cerehral excitement, belongs to the gronp Rubiaceae, to which gronp also belongs the related Cinchona ofticilis,-a plant whose alkaloid is highly toxic to the phasmodium of malaria. Cocaine, of the group Sterentaceae, is a motor excitant of the brain and cord, hut when locally applied, is an inhibitor of the nerve impulses of sensation.

Morphine, derived from one of the l'apareraceae, is ome most reliable analgesic in mon-nenralgic pains, a vabuble antispasmodic, and a mareotic of the first class, thongh so interfering with functional activity as to render somewhat slow and dificult resmoption of normal activity. Physostigmine, of the Legmminaceae,
and Pilocarpine, of the Rubiaceac, are both depressors of the motor side of the spinal cord, an activity that may be effectively antagonized by Atropine (of the Solanaceae). Strychnine, of the group Loganiaceae, is a powerful excitant of the spinal cord, greatly heightening ease of sensory-motor response thereby facilitating rellexes of a spasmodic type.

From the group Apocyanaceac is derived a glucosite, Strophanthin which is an exceedingly powerful stimulant of heart muscle, being in fact a cardiac paralyzant in any but minute doses. Another important ghacoside is Digitoxin, from Digitalis purpurea of the group, Scrophylariaciae, which also powerfully affects the heart muscle rendering its diastole more prolonged and its systole more energetic and complete.

These are but a few, though perhaps the more important, of the rital relations existing between plants in the causation of disease and plants in the treatment of disease. An arlequate consideration of these relations would fill many rolumes, but this brief presentation may be of value in indicating one of the exceedingly important applications to life of botanical information.

Department of Botany, Olivet College, Olivet, Michigan.

METHOD FOR TILE 1)ETERMENXTON OH TUE OSMOTIC PRESSIRE OF PLANT SLI'.

(Abstract.)

The paper describes a simplification of the nsual freezmopoint method of determining osmotic pressure of plant sap. By this modification, instead of extracting the sap from the material and determining the freezing point of the extract. a determination is made directly upon the tissue which is in the form of a pulp.

The following are the essential features of the method: The material to be used is first carefully frozen, then ground in an ordinary food grinder, mixed, samples taken and placed in the freezing tubes and allowed to reach a temperature about one degree below its freezing point. Solidification is then brought about by turning the thermometer a few times to create a distarbance in the pulp.

Comparisons have been made hetween results, obtained in this way, with those obtained in the usual way upon the same material and it has been found that the closeness with which the results compare depends upon the thoroughness of the freezing and the thoroughness with which the sap is extracted. When a large press is used, with which it is possible to extract practically all of the sap, the results of the two methods check within the range of experimental error.

There are two special advantages of this modification. First, less time transpires from the time the preparation of the material begins to the end of the process, thus reducing the possibility of change in the composition of the material; second, a more accurate sample of the original material is used than is the case when the sap is extracted.

In as much as the results ohtained by the two methods check within the range of experimental error when great care is exercised in the extraction of the sap, and in as much as the difference in results is greater when the sap is extracted less carefully, it is
believed that aremrate results am be obtained more easily ly this modified method than loy the one in present use.

All of the work to date has been done, howerer, upon fleshy tissues and further work is necessary to show whether or not the method is applicable to driet tissues as well.

Michigun Agricultural College, East Lansing, Mich.

(ONDCOTJVTY OF ELECTROLYTEA.

lif li. 1. 11113B.Lill.

(Abstract.)

Inring the study of rertain problems in plant physiology it became necessary to measure the concentration changes in culture solutions. The Wheatstone Bridge apparatus sermed fitted for this kind of work hat it was later observed that there were many somres of error in the usual set up and the attempt was made to elminatr these as far as possible. As a result of our studies, we have not only simplified the method but increased its alcuraey to a considerable extent. The modifications snggested also make the apparaths much easier to operate, thus eliminating to a great extent the "personal error." The correct bridge setting is made by the aid of the ere instad of the ear. The important changes suggested are as follows: (1) The induction coil is abandoned for a 60 cycle rotary converter on a current of constant potential. The Vreeband Oscillator is to he preferred to this but when this work was done the Vreeland Oseillator was not on the market. It has been shown that in assuming polarization at 60 cyeles we are assuming something neither apparent nor real. We have used the frequency for a period of two years. and have had no trouble from polarization but what could be eliminated. (2) The Curtis Resistance Coils, wound for the annulment of capacity and inductance take the place of the ordinary resistances. (3) An alternating current galvanometer is put in the place of the telephone and in many ways is superior to the telephone tuned to any definite frequency. (4) The roller type of bridge with the "extended" wire should be used. The possible error from the use of the bridge thus modified would not be more than . 002 of 1 per cent. (5) The construction, and the correct selection of suitable electrolytic cells for the different solutions necessitates more attention than is usually given. A preliminary report was published in the 15 th Annual Report of the Michigan Academy of Science, 191:. The completed work has appeared as Technical Bulletin No. 23, of the Michigan Agricultural College Experiment Station.

Michigan Agricultural College Experiment Station, East Lansing, Michigan.

THE INFLUENCE OF AN INCOMPLETE CULTURE SOLU. TION ON PHOTOSYNTHESIS.

(Abstract.)

BY O. M. GRUZIT AND R. I' HIBP.ARD.

We are far from possessing a precise knowledge of the rôle of the rarious mineral elements in plant life. They do not atford a source of energy like the organic compounds, carbohydrates, fats and proteids. There is much evidence to show that they are essential to the protoplasmic molecule and to regulate other chemical and physical conditions, which are at present so little understood.

We do know, however, that normal development is interfered with and in some cases inhibited when one or more elements are lacking in the culture solution. The studies reported in this paper were planned to determine, if possible what influence an incomplete culture solution exercises on the various, so-called vital activities of the plant, and more especially upon the photosynthetic process. The following table gives the amount of photosynthate made per ghm 2 in the different solutions.

TABLE 1.

	Gain in dry weight per glim2.	Gain in dry weight per ghme.
Culture solution	Exp. No. 1.	Fxp. No. 2.
Complete.	0.1557 gms	0.1102 mms .
Distilled Water	0.2297 gms.	0.3236 gms .
Tap Water.	0.29 .15 gms	0.2168 gms .
Tron Omitted .	0.2297 gms.	0. 23361 mms .
Phosphorous Omittad	0.33880 mms .	0.34333 gms .
Nitrogen Omitsed	$0.16 .77 \mathrm{gms}^{\text {c }}$	0.1592 gms .
Potassium Omited	* 0.0722 gims.	0.3650 gms .
Magnesilmm Omilled	0.2697 gms .	0.2585 gms .
Calcium Omitted.	0.3128 gms.	0.452 .1 gms .
Sulphur Omillat	* 0. 069.4 gmas.	0.2454 gms

*The plathts had bexpl injureat abd consequently these tigures are not reliable.

These experiments were earied out in the wreen homse dmring the month of Felomary. P'lats in the opell in the summer time arerage twice as moll photosyothate.

The following conchasion can be dednced from the above table:

1. The dry woight per mit area of leares of seedlings grown
in the complete culture is less than that of leaves of seedlings grown in a solution lacking an element.
2. The assmption that the monnt of photosynthate in leaves is an indication of energetic growth is far from true. In a complete solution as seen from the result, the leaves contain the least amount of photosynthate, while the solutions lacking potassimm, ealcium and phosphorus respectively, show the greatest gain in weight. This by no means indicates metabolic elliciency in plants growing in solutions lafking potassium, calcium, and phosphorons, respectively.
3. These results suggest that the explanation lies in a reduced translocation and a retarded photosynthesis. To test this, three sets of cucumber seedlings were grown in the various solutions. Two sets were used to determine the gain in dry weight per ghm2. Before dawn the leaves from the third set were detached, the cut surfaces of the petiole sealed with melted paraffin and then retumed to their respective solutions. The results are seen in Tahle II.
'TABLE $1 I$.

It shows that the increase of dry weights of detached leaves exceed that of the meut by a very large margin. It is also seen that the greatest per cent gain was in the complete solution, and that this is the arerage amount of photosynthate made under greenhonse conditions. This experiment further lends support to the hypothesis that the absence of an element retards translocation of the photosynthate. The above data also bear out the theory that the rate of photosynthesis is impaired when an essential element is lacking.

It must be remembered that this study is merely preliminary, but our present data in general indicates that the process of photosyuthesis is greatly moditied by absence of a certain element. The
modification apparently is expressed in the retardation of translocation and the reduced power in photosynthesis. Further work is in progress and a more detailed study of the various factors involved is being made and when this is completed the data will be printed elsewhere.

Michigan Agricultural College, East Lansing, Michigan.

THE HORMONE THEORY OF (THROMONOME AC'TION.

By RRNST A. BRSSEY.

That the phenomena of heredity are bound up intimately with those nuclear structures called chromosomes is the conclusion of almost all students of the subject. The reasons for this belief may be briefly reviewed. In ordinary nuclear division (mitosis), we find at one stage a contimons or interrupted thread (the spirem) becoming segmented into a definite number of pieces, the chromosomes. In plants all the chromosomes in a given nucleus are usually very similar to one another, but in many animals, e. g., some insects, they differ markedly. In the further course of mitosis, these chromosomes split longitudinally and the resulting halses are drawn to the opposite poles of the nucleus where each regenerates its missing half and they finally assume their places in the daughter muclei. At the next nuclear division the same mmor ber of chromosomes appear and they will be found to have the same shapes and location as in the previous division. In fact this phenomenon is so widespread that biologists are now very strongly inclined to belicre in the continued individuality of the chromosomes from one nuclear generation to the next.

Still more marked is the peculiarity of the behavior of the chromosomes in reproduction. Both the male and the female sex cells (gametes) are found to have the same number of chromosomes,* and on careful comparison these are foumd to match in the two cells. The zygote nucleus produced hy the mion of the two gamete nuclei has, then, a double set of chromosomes; i. e., two of every kind present in either of the gametes. Before the next sex cells are produced, there occurs that peculiar process called the reduction division or meiosis, in which the number of chromosomes is reduced again to the number found in the previous gametes. Careful investigation has shown that in this process one of eacli pair of chromosomes (which one appears to be a matter of chance) passes entire to one daughter nucleus while the other chromosome of the same pair goes to the other daughter nucleus. This process diflers from ordinary mitosis among other things in that whole chromosomes not merely lialves of the same chromo-

[^4]some pass to the opposite poles. The result is that every new gamete has one of each kind of chromosome present while the zygote mucleus and its descendants possess two of cach kind.

The complexity of the process for exactly halving the chromosomes in ordinary mitosis and for properly distributing the whole ehromosomes in reduction division makes it seem certain that the chromosomes play a very important role in the cell. The fact that the mode of distribution of the chromosomes at meiosis takes place exactly in the manner that the Mendelian theory requires for the distribution of the structures responsible for the main "memdelizing. characters has led further to the assumption that it is the hereditary characters that are borne by the chromosomes.

We talk rery glibly about the "hearing of heredity characters." Just what is meant by this phrase? I feal it is a term that we all use rery frequently without really considering what is included in the expression. We know, in gemeral, that "like begets like." What does this mean in terms of cells and their activities?

Erery plant and every animal develops from a single cell, the fertilized egg, leaving out of consideration the rather numerous host of lower plants in whicls sexual reproduction is lacking (Ayxophyctae ('aulerpa, and scattered forms in other groups). The latter, although not producing eggs, mostly possess at one stage of the life cycle but a single cell. Eren in those forms that are always multicellular we find that all parts of the indiridual arise by cell divisions or in case of coenocytes like Caulerpa hy cell enlargement accompanied hy nuclear divisions. Thus all the complex features of the structure of the most high] developed plants or animals must be bound up in the limits of the single cell which bridges the gap from one generation to the next. We may accept the theory of those who would greatly limit the complexity of these details by arguing, in many a ases doubtless with right, that the development that any particular cell of a multicellular plant or animal modergoes is mainly merey a direct response to the immediate envirommental conditions. But eren then we must admit that here mast be vast differences in the factors present within the muclens of this cell to arcoment for the fart that the eggs of different animals e. g., tishes, frogs, toads, not to mention the host of the acquatic invertehates, amol of many algat all develop into their own proper species although the external environment is identical.

The structure of the mature individual is a result of cell divisions and the moditication of the resultant cells in various disections.

There most be something inherent within the rolls that determines fust what each eell shall develop into in its own partioular empironment. In plants gemorally and to a large extent in the lower animals any gronp of colls is able to regemerate the whole individnal, thus showing that the directive fores for all the structures of the individual are present in each cell amm not distributed respectively among the varions tissues. It is a lact that, in many plants as well as in most amimals, the amome of rytoplasm that is carred into the ege with the serem is very small or sometimes entirely lacking. Inteed, the innortant feature of fecundation appears to be the mion of the male amb female nuclei. This fact as well as the featmres of mitosis and meiosis to which attention has already been called makes it seem doubly certain that it is not only the mucleus but the chomosomes within the mucleus, that decide how the cells shall develop, and this means how the individual will be constructert.

If these chromosomes are of so great importance to the cell as the foregoing would indicate, how do they act? We must first of all consider their position within the nucleus. The "resting" nucleus as distinguished from the nucleus in the process of division may be described as a large vacuole of nuclear sap hounded by a tough plasma membrane of cytoplasmic origin, such as is always found where eytoplasm comes in contact with a body of water (e. g. at the exterior of the protoplast as well as the "tomoplast" around the lange central vacuole). Suspended in the nuclear saj, lies the tangled semi-fluit nuelear network consisting of a delicate thread on which are strung at rarious points irregular lumps of semi-fluid chromatin. A large drop of reserve protein (the nucleolus) chemically closely akin to chromatin is also suspended in the nuclear sap, apparently in more or less intimate proximity to the nuclear network. The latter may criss-cross through the central portion of the nucleus or perlaps more often lie near its circumference.

A closer examination of the relation of the chromatin lumps in the resting mucleus to the chromosomes that apear during mitosis makes it almost certain that the fine thread with the scattered chromatin masses on it is to be looked upon merely as made up of chromosomes stretched out and that these separated chromatin lumps are identical with the closely crowded deeply staining chromatin bodies visible in the chromosome. If now the chromosomes are the bearers of heredity it must be these scattered chromatin masses in the resting nucleus that have this function.

The question then is, how can these separate lumps of chromatin, each one perhaps the bearer of some separate trait, exert their influence upon the development and functions of the cell? The bulk of the nuclear network lies near the circumference of the nucleus, it is true, but not all. One can hardly conceive that only those chromatin masses do function that lie near the circumference. Eren these it seems are not all in intimate contact with the cytoplasm but usually lie a short distance inward from the nuclear membrane.

To explain the action of the chromatin upon the crtoplasm various theories have been proposed. Perhaps the most popular of these is that of enyymes. We know that there are enzymes that will hydrolyze starehes into sugars and others that change sugars into alcohol and earbon dioxide; some enzymes facilitate oxidation, others reduction; some digest proteins, others dissolve cellulose or the nearly allied pectose subtances. These are howerer, all more or less catalytic in their nature; they facilitate certain chemical changes that would take place to a slight degree without their aid. It is rather hard to connect any known enzymes with the production of the peculiarities of morphology and physiology of the varions cells of a plant or animal.

There is howerer, mother elass of little known substances which exert profound effects upon the development of the higher animals. These are the "hormones," the secretions of some of the ductless glands of the body. As yet, much that has been written about them is in sore need of critical review, but ret enough is known to make certain of their existence and importance.

Probably the best known of these substances are the secretions of the thyroid ghand, a ductless gland situated in the neck. If this becomes atrophied during ehildhood further development ceases, both physical and mental, and the child remains a dwatl, with the mind of a child, no matter how old he may grow to be Let such a child le fed the extract of the throoid eland of a calf for instance, and derelopment begins ahmost at once and normal growth and maturity, physical and mental, result, provided the thyroid treatment is contimed. If it is finally discontinned varions pathological developments ol the skin ensue and finally a state of mind hordering on imberility results. This can be cured, however, by resumption of the thyroid feeding. Another secretion of this nature is that of the pitnitary gland situated at the hase of the brain. In cases of hypertroply of this organ there results the disease known as acromegaly. This is characterized by the elongation
of the bones of the extremities as well as by a thickening of some bones e. g., those of the skull. Other organs may also be enlarged abnormally. Most of the "giants" exhibited in rircuses are persons aftlicted with this hypertrophy of the pitnitary body and the consequent acromegaly. The so-called secondary sexual characters of the males, such as the spurs, characteristic comb and coloring of the cock or the greater haminess of parts of the borly in other animals or even the characteristic shape of the body, are largely the result of such secretions into the blood stream from the male reproductive organs. By removal of these organs in the early stages of derelopment in the individual these secondiry characters are almost or sometimes entirely suppressed.

Other hormones might be cited but I believe I have made clear the farreaching specific effects of these secretions, eren when in small quantities. Some of these have been analyzed and have been found to be of not nearly so complex a composition as phzymes or proteins. They are, however, keys that fit the very romplex locks, the protoplasm of the various cells of the body, setting free very important activities.

Now let us apply the loregoing to the chromatin masses that make u_{1} the chromosomes. Why can not we assume that the function of the different bits of chromatin that make up the chromosomes is to secrete substances similar to the hormones, nuclear hormones we might call them, which affect the cytoplasm and bring about characteristic reactions and activities in it just as the hormones secreted by the thyroid glands stimulate the continuance of the bodily and mental development, that from the pituitary body govern the growth of the bones, etc? Then the complete complement of chromosomes or, more correctly speaking, of the chromatin masses making up the chromosomes, secretes into the nuclear sap a mixture of many nuclear hormones which diffuse out into the cytoplasm. Here they stimulate activities and bring about a development of the cell to that structure and function typical for that particular organism.

In the case of hybrids we have coming into the cells different sets of chromatin masses from the different parents. In closely related prarents some of the chromosomes or chromatin masses will be identical in their composition and secretions, but some will be difierent. In some cases these different secretions may not interfere with each other so that both paternal and maternal characters may show on a given structure. In other cases, however, one will entirely suppress the action of the other. Possibly the
fact that some crosses hetween nearly related plants never produce seeds may be due to the fact that the different muclear hormones produced by the chromosomes of male and female origin within the zygote muclens are so opposite in their effects on cytopasm that the hatter can not derelop further and so no embryo is formed.

Department of Botany,
Michigan Agricultural College, East Lansing.

By ERN゙NT 1. 1BLSSEY.

There are many groups of phats in which sexuality is entirely lacking. In some of these the intications are that this lack of sexnality is not due to its loss in the course of erolution from sexual ancestors, but that it is primitive; in other words has mot yet been evolyed. The Myxophycate are good representatives of such plants. Possibly, also, some of the leotococoodeae which lack sexuality are to be classed as primitirely sexless, but this is mather doubtiul.

On the other hand we have momerons ases where the absence of sexuality is abmost certainly due to its loss in the comrse of erolution from ancestors that possessed it. Thus we have in the Class Aseomyceteae a gromp of phants that, whaterer theory as to their phylogeny may he arcepted, have descended from forms possessing sexuality. This is borme out by the fart that a form of sexuality is present in most of the species of the class. However, the closely related gemera Eremascus and Eudonyces differ in this that the former possesses and the latter lacks sexuatity. The same is true of the chosely related family sacelabomperaceate, the yoasts, in which ascus formation is preceded loy conjugation in some forms and conjugation does not occur in others. Among the ferms. too, and the flowering plants there are quite a mumber of species in which the new generation is produced apogamonsly, i. e., without the sexual union. Perhips the commonest example is the common dandelion (Leontodon taraxacum L) in which the pollen still continnes to be formed in spite of the fact that the embryo develops from an untertilized egg cell. Such plants as these are therefore secondarily sexless.

What was the origin of sexual reproduction is not yet clear. Dr. Coulter is probably correct in his belief that the original gametes were modified zoospores. It is not so sure, however, that sexuality originated de novo at many different points in the Vegetable and Animal Kingdoms. It is indeed hard to conceive how the almost identical phenomena of sexuality in animals and the various groups of plants can have had separate origin. Indeed,

[^5]Spermaphyta

Fignre 1. Lotsy's diagrammatic scheme to illustrate his idea of the relationship of the various groups of plants.
the similatity of these phemomena is, if almthing, a proot of the extreme age and common origin of this process in all organisms in which sexuality occurs.

I will digress here for a moment and suggest that any system of elassification that disregards this ancient and common origin of sexuality will eventually have to give way to a system in which this is taken into consideration. I know that the currently accepted systems of classification as expressed by Engler and Prantl by Lotsy or by Olmams are in direct opposition to these views. The latter (and to a large extent the former) would derive all algate from those groups of Flagellata in which there is no sexual reproduction. These organisms are one-celled amimals, some possessing and some lacking chlorophyll, motile by means of two flagella, aml reproducing only ly fission in the longitudinal direction. There are several groups which differ in the relative size of the two flagella, in the color of the chloroplast, in the chemical nature of the photosynthate, etc. Each of these is made by Oltmams and Lotsy the point of origin of a different algal series. Thus the Heterocontae, the Peridincac and Acontace the Phacophyceae, and the Volvocineae-Protococcales-Chaetophorales complex all arise according to Lotsy from different, sexless Flagellate groups. (Figure 1.) Within each of these series sexuality is assumed to have arisen independently of the other groups. In so far as the higher animals, the Metazoa, are derived possibly from other groups of Flagellata the sexual process in these has still a different origin. This seems to me to be all wrong and I predict that the ideal phylogenetic classification of plants and animals will change this entirely and indicate by its arrangement of the groups of plants and animals the common origin of the sexual process.

What then are the essential features of sexual reproduction? The most obvious phenomenon is the union of two cells to form one (Fig. 2). In the most primitive organisms in which sexuality is known (and by primitive we mean organisms that have appar-

Figure 2. Union of similar gametes of Hydrodictyon, (after Coulter)
ently progressed least from the lypothetical ancestral forms) these uniting cells (gametes) are alike so far as the most careful scrutiny will reveal. Howerer, as we follow up the various evolutionary lines we find that in most of these isogamy is prevalent at the base of the line with a gradual transformation to heterogamy toward the apex of each line. It is probably beyond dispute that this change from isogamy to heterogamy has taken place independently in many distinct lines. Thus in the Volvocales some species of Chlamydomonas are isogamons, but Yolvox is hetergamous; in the Phaeophyceae some species of Ectocarpus are isogamous and other species of the same genus show stages of heterogamy varying from merely a distinction of sluggish and actively moving, but otherwise indistinguishable gametes to an actual difference in size as well as activity. Higher up in the same great group we find that the larger gamete has lost its motility entirely. A similar development is seen in the Chlorophyceat as we pass from isogamous forms like Ulothrix or Stigeoclonium through various stages of heterogamy to forms like Oedogonium and Coleochaete. Eren in the Conjngatae we find that Mongeotia is strictly isogamous while in the closely related Spirogyra there is a distinction of sex in that the protoplasm passes out of one cell (male) into another cell (female). Some of the Protozoa are isogamous and closely related forms heterogamous. However, in the Animal Kingdom heterogamy entered at a relatively earlier stage of erolution than among plants.

Let us return to the question as to what are the processes taking place in sexual reproduction. In plants like Ulothrix or Ectocarpus we see the mion of two naked, motile cells of equal size. (Fig. 2.) In Fucus we see the union of small, motile almost colorless cells (sperms) with large nom-motile, deeply colored cells (eggs). In Spirogyra the protoplasm of one cell crowds through a narrow conjugation tube to unite with the protoplasm of the other cell. In all these rases it is whole cells that unite. It we turn to the fungi we find in Albngo one or many (depending upon the species) male unclei and probably some cytoplasm passing through a conjugation tube into the oogone; in l'yronema it is many nuclei and probably some cytoplasm that pass from the antherid into the trichogrne and thence into the äogone. In neither case, however, does all the eytophasm of the antherid pass over, so that it is apparent that a union of complete cells is not necessary to the process. In thr flowering plants the male cells enter the pollen tube as true colls, i. e., mucleus and cytoplasm, but in their passage down throngh
the tube the nuclei slip ont of the cytoplasm so that it is only as maked muclei that they enter the embryo-sale, and lertilization is accomplished by the entry of one of these naked nuclei into the egs.

It is clear then that the muclens is the most important structure in sexual reproduction, af least so far as the male cell is concerned.

Further consideration of the process shows that in the lower forms. where the mion is that of whole cells, it is not merely the cytoplasm but also the nuclei that mite. The latter is the case also in the higher forms. Sexmal repotuction, then, is not merely the mion of cells, of the entry of a male nurlens into a female cell, but the mion of the two muclei.

But this mion of cells and muclei is not all of the pocess. To reproduce there must be cell division again, whether it be to produce new individuals at once, in the case of one-celled plants or animals, or to produce the many cells of which the new individual consists, in the case of the many-celled plants and animals.

It will be necessary to review hastily the process of cell and nuclear division in order to understand more clearly what effect the union of muclei has on the subsequent process.

In its essentials the mitotic division of the rell ronsists of the division of all elements of the protophasm into like haves, and the regencration by each half so formed of the missing half. This latter point is as important as the former. Thas the cytoplasm divides into two masses of cytoplasm, the pastids, in many cases at least, into two plastids each, etc. This division occurs either through cleavage due to the formation of racuoles between the two halves-to-be or through a drawing apart of the two halves and gradual pinching off as happens when a drop of ghe drops from a stick or other object.

The nucleus is not a simple drop of slightly different protoplasm but is more complicated in its structure and accordingly in its mode of division, although it conforms to the rules formulated above. It is a racuole (nuclear sap) surrounded by a thin, tough membrane (nuclear membrane, which is a part of the cytoplasm) with a tangled thread suspemed in the vacuole. On the thread, which may have cross connections from one loop to the next, there are irregular lumps of a highly staining protoplasm particularly at the intersections of the threads. These lumps are made of a substance or substances to which the collective name chromatin is given. There is usnally a store of reserve material as a large drop, the mucleolus. This is proteid in nature and is clearly closely related in composition to the chromatin.

Jhast as the cytoplasm and plastids divide into similar halves so We find division gomg on within the mucleus. It is, howerer, only the ehromatin lumps that divide. This division ocenrs in the Mrxophycete where the mucleus is less highly organized than I have described above apparently by the pulling apart of the chromatin masses. ln the better organized nuclei, howerer, a chavage phane is porbed by the formation of varnoles which separate the lumps of chromatin into equal hatres. This is the essential feature of muclear division. The matter is not so simple as this statement wouk make it appear for this cleavage is organized and controlled in a very complicated manner. In brief the process is as follows: the sebarate chromatin masses crowd together into a detinite momber of more or less elongated bodies, the chomosomes. Special structures arise in the cytoplasm and entering the nuclens armange the chromosomes in a definite order and, after they have undergone cleavage, pull apart the halves. These half chromosomes represent merely the crowded together and perhaps partially fused hales of the chromatin hmps of the resting nucleus. As all protoplasm has the power of regenerating itself so each lump regenerates itself exactly (probably using up the food previously stored uj, in the mucleolus for the purpose) and then the lumps reparate and the daughter nuclei are reorganized.

Careful study of a great many animals and plants by investigators in all parts of the world makes it clear that the chromatin lumps always crowd together into the same number of chromosomes, at each muclear division for the same species of organism. These chromosomes, too, often have characteristic shapes and sizes which are constant for the species. It seems probable that not only are the shape and size of the individual chromosomes constant, but eren the relative position in the mucleus. This forces us to the inevitable conclusion that the individnal lumps of chromatin which are united into the chromosomes are themselves permanent cell organs and that the complicated mechanism of mitosis is an arrangement by which the halving and distribution of these chromatin masses to the danghter nuclei is made more certain.

These facts have led bologists to assume that the control of the development and functioning of the cells and consequently the structure and physiological nature of the individual resides in these rarious chromatin masses, in other words, we spak of them as the "rardors of heredity." The further bearings of this theory need not be mentioned here.

When two malei fuse in sexmal reproduction we find that the
resulting molens comtams wice as many ehromosomes ats eath of
 chromosome divides in the mamer described abose, so that eatch datughter maters receives the domble momber of ehtomosomes. When we examine the chromosomes carefolly in the dividing melei of ratrous inseds and womms as well as of some phats we tind that the dhromosomes appear to ocerir hy twos. Thus in forms in Which there are in the gametes as many shates of chromosomes as these ate in momber we tind in the nuclei coming l'om the division of the zyente materns the same nomber of shapes of ehromosomes but dath shape represented by two chromosomes. Fimthermore, the two of a kind usmally lie in close proximity do each other. We mast comeloble that the eorresponding chromosomes are equivalent and that the component lumps of chromatin of which these comes fonting rhromosomes are composed are also equivalent. Thus the zagote molems and its progeny possess two chromatin masses of every kind for every one in the gamete nuclens.

Wentmally, howerer, the time comes for new gametes to be formed. It nothing new were to enter in we would expert these to have donble the mumber of chromosomes that were present in the gametes of the previous generations, so that with each gemeration the chromosome momber would be donbled. Fuch a heaping up of chromosomes is beantifully prevented by the complicated process known as the reduction division or meiosis. This oremrs wherever sexual repodurtion is fomed. By its means the mumber of chromosomes is reduced again from the "diploid" to the original "haphoid" number.

The detals of meiosis have not been worked ont so completely as to be free from controversy. Indeed, there are several theories Which ditfer madically hom which are held hy their adrocates with great temacity. In objects so mimute it is rather matmal that preconceived theories may inthence the observations made by aren the most open-minded of observers. Strashmer reports an ammsing instance of this. Two of the leading adrocates of diametrically opposite viems as to the course ol events in meiosis exclanged their slides and all material upon which they had arrived at their conclusions. Wach one, working with the otheres slides and material arrived, howerer, at his own original conclusions.

In general the process seems to be a spinning out of the chromatin masses and the threads on which they are apparently strumg into a very slender tangled thread that compacts itself into a tight knot in which occur processes the nature and purpose of
which one can only surmise. Later on the thread shortens and thickens and erentually the chromosomes appear in pairs, those of each pair being so closely united as to give to each pair the appearance of a unit. These double chromosomes are naturally haploid in number as each consists of two chromosomes. In the first of the two divisions that make up meiosis these pairs of chromosomes split into their component whole chromosomes, one of which goes to each daughter mucleus, so that the latter receives the haploid number of whole chromosomes instead of the diploid number of half chromosomes. The second of the two divisions is practically normal.

Although it is usually impossible to distinguish the chromosomes from one another in plant cells this is not true of all plants, while in many animals chromosomes have distinctive shapes and positions. In such organisms it has been possible to observe that at meiosis one of each kind of chromosome goes to each daughter nucleus. Since the pairs of such chromosomes arose by the union of the gamete nuclei it is clear that the distribution of the components of the pairs to the daughter nuclei at meiosis must bring to the nuclei the corresponding chromosomes from the two gametes; i.e., the chromosome of male origin goes to one daughter nucleus and that of female origin to the other. There is no reason to believe however, that all the chromosomes from one gamete go to one daughter nucleus and those from the other gamete to the other nucleus. Rather, it seems probable that the question as to whether a given chromosome goes to one or to the other daughter nucleus is wholly a matter of chance.

We can now take a more comprehensive view of the subject of sexual reproduction. It consists of the union of cells, with the nuclear union as the most important feature. But, in order that the process may be repeated, it involves also the reduction of the diploid to the haploid number of chromosomes. This series of events, then, the union of cells, the nuclear mion and the reduction division form the sequence of processes that I call the Sexual Cycle.

Whatever group of plants or animals we study we find that the sequence of erents remains the same for the sexual crele. On the other hand there is the greatest variability as to the time interrening between these different cardinal points of the cycle.

In most animals (at least in most Metazoa) the nuclei of the somatic cells are diploid in character. Reduction division does not occur until those cell divisions that produce the gametes (eggs
and sperms). The union of the gametes gives rise to a zygote with a diploid nucleus, the subsequent nuclei all being diploid until meiosis occurs at gamete production again. The sperm mother cell possesses a diploid nucleus. By meiotic division it produces four haploid nuclei, one for each of the four sperms. Within the ovary or after it leares the ovary the egg mother cell also has a diploid nucleus. The so-called "maturation" divisions that it makes are in reality meiotic and the result is four eggs, of which only one is functional, the other three being the polar bodies. (It must be noted that frequently the first polar body does not divide again, in which case only two polar bodies are apparent.)

Illustrating the sexual cycle schematically as a circle (Fig. 3) we have $C U$ representing the union of the gametes and $N U$ the immediately following nuclear union. The portion of the circle around to the letters RI) (reduction division) represents the long stage of somatic development in which nuclear and cell divisions occur until the reduction divisions take place at the time of forming the next generation of gametes.

Turning now to the Vegetable Kingdom we find that there is no such general uniformity of the sexual cycle as we find in animals. The gaps between the different events of the cycle may occur between any two, or there may be two gaps. It will be understood that these "gaps" represent series of nuclear and cell generations between one point of the cycle and the next.

To find a sexual cyele of the type that is prevalent in animals we must turn to Fucus (Fig. 3). Here the gametes (produced at

Figure 3. Sexual cycle in Metazoa and in Fucus. $R D=$ Reduction division, $C U=C \in l l$ union, $\mathrm{NU}=$ Nuclear union, $\mathrm{G}=$ Point of gamete formation.
Figure 4. Probable sexual cycle of Ulothrix, Oedogonium, Desmidiaceae, Spirogyra, etc.
the point in the cycle indicated by G) produce a diploid magote which develops into the plant body without any meiotic division until the eggs and sperms are produced. Thus the three events of the eycle occur in immediate proximity in the order RD, Cl°, Nr .

In Clothrix and Oedogonium and a number of other Chlorophyceae the life history includes the froduction of gametes, their union to zrespores or oospores, and the germination of these, after a longer or shorter period, by the division of the nucleus into four nuclei and the production of four zoospores, each of which produces a new plant. I In Clothrix according to klebs. these four (ells may possibly lack motility). If conjugation is prevented the gametes ol Clothrix are capable of developing parthenogenetically. These facts lead to the assmmption (which ought to be tested by cytological investigations) that the vegetative cells and the sametes of these plans are haploid. That being the case the ability of the sametes to grow without conjugation would not seem strange. The division of the aygote into fom cells is probably accompanied by the meiotic divisions of the nucleus. The sexual cycle wonld then be illustrated by a diagram (Fig. 4) in which the events are in the order, ('l, NC, lil) with the main part of the eycle in the haploid condition.

It is probable that the Desmids and Pond Scums (Kygnematales) are of this same type, for we find the zygote dividing into four cells in Mevotamia or into two cells with two nuclei each (and one of these two disintegrating) in most Desmids, or, as in Spirogra, with the zygote nucleus dividing into four nuclei, with only one finally functioning further. It seems almost certain that the reduetion divisions must occur at this point, but here. 1oo, the matter needs further investigation.

In the higher algae we find that in the Florideae the sexual cycle shows amother modification. (Fig. $\overline{6}$). In the majority of this class two generations are distinguishable the sexmal and the tetrasporic. The zygote nucleus divides by ordinary mitotic divisions and is seen to be diploid. The resulting nuclei may invade other cells or not, hut erentually enter the threards that give rise terminally to the carpospores. These are also diploid as are the cells of the detrasporic plant arising from them. It is worthy of note that this gencration with the diploid nuclei consists of plants as a general rule much larger than the haploid sexual plants of the same age."

[^6]Certain eells of these diphoid, telrasporic phants eularge and their nucke madergo maiotir division protucing the fomr nuclai of the four tetraspores, each of which in forn may produce a new sexual plant.

5

6

Figure 5 . sexaal cycle of shch blordeat as possess a distinct tetrasporic generation. ($=$ Point at which rarpospores are formerl.
Figure 6. Sexual cycle of Nemalion.
In the life cyele of these plants we find a large mmber of nucleat aud cell gromations ocuring between the nuclear union (NC) and reduction division (R1), amd again between the latter and the formation and moion of the gametes, this being illustrated in the figure.

In some of the Florideade, e. g., Nemalion, there is no tetrasporic generation and the carpospores possess haploid muclei (Fig. (i). Wolf has shown for these that the zygote muclei and those first entering into the thrads which produce the carpospores are diploid, but that the chromosome momber becomes redured somewhere along the course of this thread so that the last division which produces the carpospores shows the muctens to be haploid. Thus in the rather closely related phants repesented on the one hand by Nemalion and on the othere for example by lobrsiphonia, the reduction division precedes the carpospore production or follows long after respectively.

In the Bryophyta the alternation of generations hecomes fairly well marked. In these plamts the sexual (cyele (Fig. 7) is moch like that in Nemalion except that the mmber of rell generations is rastly greater between the zygote and the reduction dirisions that take place, just before spore production, in the spore mother
cells. The permanent generation, or the plant borly, of the Moss or Liverwort consists of cells with haploid nuclei. The zygote by its division produces the mass of cells with diploid nuclei, some of which remain sterile and have protective or assimilative functions while others become the spore mother cells within which, after meiosis the four nuclei become the spore nuclei. Because in the Ferns this sporogenous structure that arises from the zygote has an independent existence as a distinct generation botanists usually apply the terms gametophyte and sporophyte to the main plant hody and the sporogenous structure respectively, of the Bryophyta also.

Figure 7. Sexual cycle of Mosses and lerns. SP= Point of spore production. Figure 8. Sexual cycle in the Flowering Plants.

In the Ferns the sexual generation, the gametophyte, is the shortlived one, and the sporophyte long-lived. Otherwise the sexual cycle is the same as for the Bryophyta (Fig. 7). Very incorrectly these two generations are often spoken of as the sexual and asexual generations respectively. I have tried to point out that the rereduction division is as important part of the sexual cycle as the cell and muclear union. The sporophyte is merely a further development of the comparatively few-called structure that arises from the zygote in Nemalion and produces the earpospores: I do not want to be misunderstood as holding that Nemalion is a direct ancestor of the Ferns or Mosses, but I mean that a further development of the same idea that appears in Nemalion gave rise to the sporophyte in these groups). The true asexual reproduction is that by which the same generation is perpetuated, not that repro-
duction that is the complement of the cell mant. Thns the format tion of gemmate on the liverwort gametophyte or of the hulbils on the sporophytes of certain ferms is trone asexal reproduction. The formation of spores in the moss capsule, on the wher hand, is merely the tinal stage of the sexmal reprotuction begun by the mion of suerm and egg in the arehesone.

The fern type of sexalal crede persists in the still higher plants with a shoring of reduction division (RD) lurther and further towards the point of gamete production (G). Finally in the Anthophyta (the flowering plants proper, as distinguished from the Gymmosperms), the haploid stage represents only two nuclear generations in the male gametophyte and three (sometimes less) in the female gametophyte. (Fig. S.) Thus in a very different group of plants we come back to almost the same style of sexual cycle that occurs in Fucus, the prevalent animal type.

In all of the examples that have been mentioned the cell mion has been followed immediately by the nuclear mion. This is not always the ease in plants. In the Ascomyceteae, Claussen worked ont the eytological details from the time of entry of the male nuclei into the oogone up to the formation of the ascospores. The main points are as follows: Lpon the mion of the club-shajed antherid with the trichogyue of the oogone the mumerous male nuclei pass from the former into the latter and then into the oogone proper. Here the male muclei approach but do not unite with the female nuclei. They arrange themselves in pairs and divide simultaneously. By this "conjugate" division numerous pairs of nuclei are produced and these migrate out into the ascogenous hyphae. In these eventually cross walls are laid down so that each cell contains two nuclei, one probably descended from a male uncleus and the other from a female nucleus. Finally at the extremity of each ascogenous hypha the two nuclei unite, forming the single, diploid, nucleus of the young ascus. This divides now by reduction division so that the ascus soon contains fom haploid unclei. Another vegetative division of the nuclei produces the eight nuclei, the number normal to this plant. Abont each is formed an ascospore. These ascopores produce the new plants. In the whole life history of the plant there is but one diploid nucleus, the one formed in the young ascus by the union of the two nuclei of respectively male and female ancestry. The threads that bear the asci, the ascogenous hyphae, contain in their cells two nuclei, but these are haploid. The cells of the vegetative mycelimm have only haploid nuclei. We must note. however, that the rells of the asco-
genons hyphate are diphoid even thongh the two nuclei in each cell are haploid, for so far as the functions of the cells are concerned therre can be little difference whether the two sets of chromosomes, respectirely of the male and female origin, are enclosed in one common nurleal membrane or in two separate membranes.

The sexual cycle (Fig. 9) may be represented graphically with a morlerate gap between the point of cell mion (CU) and that of nuclear mion (NU), this gap representing the muclear generations during which the muclei are in pairs ant division is conjugate. The main regetable growth, howerer, lies between RD and $\mathrm{C}^{\circ} \mathrm{C}$.

Figure 9. sezual cyele is Py ronemat.
ligure 10. rexnal cyale in the Rasts.
In the liusts this scheme is still further modified. The eell union ocems in the atedim, giving rise to a rhain of hinucleate aeciospores. These produce on the same or a different host a myerlium all of whose cells are hinucleate. Secondary traly asextal spores, the merdiniospores, mas oceut to multiply this stage Finally, howerer, himucleate teliospores arr formed. The
 fomber asels the only one in the life history of the rosts. When this materis divides it is by arednetion division to form the four muclei of the fomserelinm and so the nuclei of the minucleate sporidia. The myeremm produced hy these consists of minucleate cells. It is on this merelimm that arise the hyphate which by their union in the aredimb begin the binucleate stage again.

Here as in the Asembereter there exists at stage with binncleate rells and one with minurleate cells, hat the former is msally
the longer. Furthermore, it is completely independent of the uninncleate stage and not dependent upon it as in the Ascomycoteate Its cells are essentially diploid for they contain two macei respectively male and female) bot adeh muclems is haploid. The diagram (Fig. 10) shows the stage befween eell union in the aredum (CD) and nuclean mion in the telospere (N+) as considerathy longer than the stage from reduction division (lal) and sporidial formation to cell union (CU).

Figure 11. Sexual cycle in Tilletia.
Figure 12. Sexual cycle in Agaricales.
In the genus Tillelia (Fig. 11) the bimaleate stage is extended 10 its fullest extent. Here the vegetative myceliun for the whole life history of the fungus consists of binucleate cells. At the time of spore formation the gomg spores are binucleate but the nurlei mite so that the onl! diploid nuclems of the life history is formed. A promycelimm is formed and within it takes place in all probability the reduction division so that the unclai of the sporidia are haphoid again. The sporialia almost invariably conjugate even before becoming detaleded from the promeelinm, the muclens from one passing into the other sporidinm lint with no nuclear fusion. The germ thbe from this binucleate sporidimm has its molei two to earh cell. Here we have the three main events of the sexual cycle in immediate succession, nuclear union in the spore, reduction division in the promycelinn and cell union in the sporidia, with the whole vegetative mycelinm possessing two muclei to a cell.

Finally we most look at the Agaricales in which the point at

Which the mycelimm becomes binucleate is very variable. In some serefes the single nuclens of the basidiospore divides, so that from that point on every cell of the mycelium is binucleate, the nuclear union taking phate in the basidimm, to be followed immediately by reduction division so that the nuclei of the usually four basidiospores are haploid. In other cases, however, the basidiospores remain uninucleate and the vegetative mycelimm possess but one muclens to the cell. Somewhere, howerer, betore the hymeninm is formed the rells become hinucleate, apparently by the omission of a septum alter nucleal division, rather then by a true mion. This is so variable that I have had to indicate (Fig. 12) by a doted line the fact that the point where the cells become binucleate (and which correspond to the point of cell mion) is not fixed.
leviewing now the different sexual cyeles that hawe been illustrated, it will be noted that they all agree in the order of their events, i. e., cell union, nuclear union and reduction division. But these erents are seen to be like movable halls on a wire ring. Ther can be arranged in ahmost any position, in close proximity by threes or by twos or scattered, but they cannot be passed by one another. Thas we have them in threes in the three possible comhinations: RI), CT, NU in Fncus, CL, NC, RD in Clothrix ant (edogonimm. Nl, Rll), Cl, in Tilletia: or ly twos with the third removed to some more distant point in the cycle as CU, NU in Floridae and Mosses, Nr, RD in Ascomyceteae and many other fungi. The arrangement with all three items scattered erenly on the cycle is, however, not known.

We may for a little consider the bearing of the foregoing upon alternation of generations as well as the effect of apogamy or parthenogenesis upon the cycle.
stiashurger Was very insistent that the sporophyte alwas began with the zagote and the gametophyte with the haploid cells produced in the comse of reduction division, and refused to consider as homologons two structures of similat morphological origin if one contaned haploid and the other diphoid nuclei. Thus the carpospores of Nemalion are, following Strasburger, considered by some as entirely lacking homology with those of Polysiphonia, in spite of the fact that they are produced in the same mamer, morophologically. The phant boty of Fucus is called by such botanists a sporophyte in spite of the fact that it bears the antherids and oogone. Is this right? I believe not.

It is in the determination of this question that the cytological studies of apogamous plants have thrown much light. Take the
case of Aspidium falcatum, one of the ferns. For several decades it had been known that the sporophyte developed lion the probifer ation of the cells of the gametophyte, not from a fertilized egg. The gametophyte produces antherids with normal sperms but the archegones degenerate belore the eggs reach maturity so that the latter are never fertilized and in fact never function at all. On the sporophyte are produced typical sporangia within which spores are produced which give rise to the new gametophyte. It has been known for some years that spore production within the fern sporangimm is typically hrought about by the formation of four spores each in usually sixteen spore mother cells, the nuclear divisions being in the nature of reduction divisions. Manifestly reduction divisions cannot continue to occur at each generation unless there is a muclear union somewhere, and this is entirely lacking in the gametoplyyte.

Miss R. F. Allen, accordingly took up this point and investigated the development of the sperms and of the sporangia of the gametophyte and sporophyte respectively. She determined the chromosome number in the gametophyte to be between 60 and 6.5 , with perfectly normal development of the sperms. The sporophyte also had the same chromosome number, a confirmation of the previous observations in which no cell union had been observed. In the sporangia there appeared sixteen cells exactly like the sixteen spore mother cells of normal fern. These, however, mited by pairs with complete fusion of both cells and nuclei, thus producing eight cells with diploid nuclei. Each now acted like a normal spore mother cell and its unclens underwent reduction division and four spores were formed in each cell ; thirty-two for the sporangium instead of sixty-four as for normal ferns.

It is manifestly entirely improper to call the leafy plant on which the sporangia were borne a gametophyte because of retaining the haploid number of chromosomes in its nuclei. If that is done then the sporophyte is only one-celled, for at only one stage is the nucleus diploid, i. e., just after the fusion of the two spore mother cells.

Miss Allen calls attention to cases where the gametophyte retains the diploid number of chromosomes, as in some apogamous flowering plants, e. g., Antemaria, Hieracium, Thalictrm, in which the embryo sac arises without a preceding reduction division although this may be present in pollen production. In such embryo sacs the egg develops apogamously. In certain cultivated rarieties of ferns fertilization and development are normal; in closely related

Varieties of the same speries the sporophyte arises apogamously from the gametoplyte, and the later aposporonsly from the sporangial sorns of the sporophyte, both generations retaining the chromosome mumber equal to the diploid nomber in the elosely related normal plant.
hn view of these fiacts elucidated from the ajogamoms ferns and flowerng plants and of the extreme valiability of the position of the main points of the sexnal crele in dimerent pants it seems far more reasomable to me to distinguish sotophyte and gametophyte on morphological gromuds and to be willing to homologize structures even when the chromosomes are diploid in number in the one and haploid in the other. This wonld permit the strmetme arising from the zeqote in (oleochate to be homologized with the sporophyte of the liverwort, a much needed homology in phylogenetio sperolation.

One thing remains clear, however. The retention of the reduction division seems to demand a sexmal mion somewhere. If this can be in the nomal way, well and good, if this is prevented there must he a substitution mion elsewhere. Thus in Aspialium falcatum when the gametophyte buds off into a sporophyte, thus elminating the normal mion, the sexual mion is replaced by the union of spore mother cells in the sporanginm. In one species of Pronemat stmbed he brown in which the antherid and trichogyne do not fuse

 ratatinly sperm erlls, but ther never have a chance to function so that their phate is takem ly eells adjacent to the oogones. probable modified ongones themselyes.

One forther point, too, is cleare . Inst as the point of cell and molear mion is not atsolutely fixed so the point of reduction division is movable. In Nemalion it is shortly after nuclear mion alld before capospore formation, in loblyiphoniat it after canpospore lormation at the elose of the tetraspore stage. In Fuchs it is al the elose al the regetative growth at satmete production ats
 spore.

I shall not malerake to show whe this is so what is the perpose of sexual reporbation. I have merely attempted to show some of the feathres combeded with this sulbed.
 Lathsing.
 Ferms. Tratmations of the Wiseomsin X catemy of science, Arts amd Ledters. $\boldsymbol{T V}^{1}: 1-56$. pls. 1 -f. Oct. 1911.

Brown. Wiblian M. The berelopment of levonema conthens
 1!11\%.

Coulter, Joln Merle. Erolnfion ol Sex in flants. 110 pases. 46 text figmes. Thiversity of 'licago Sciencer Series, 1914.

Lotsy, J. I'. Vortrige ïbor botanische stammesgeschichte

Oltmanns, Friedridt. Morphologie und Biologie drim Agen.

 1905.
 schlechtes. Apogamie, Parthenogenesis and lednktionsteihng. 1Ot pases, 3 plates. Jena., 1909:

Wolfe, J. T. Cytological Studies on Nemalion. Amals of Botany. 1S:607-630. pls. XL and ILI. fig. 1. Oct., 1904.

FERA NOTES.

H゙ OLINER ATKINS FARTVELL.
During the past few years as a result of researches in field, herbarium, and library, a number of interesting diseoveries and novelties have been brought to light and this paper puts on record some of the results and conclusions arrived at during the course of these studies.

POLYPODIALES.

POLYPODIACEAE.

Iteris aquilina, Linne var. Psendocandata, Clute.
This is a form of the species in which many of the pinnules are norror. entire, and elongated, particularly the terminal ones. It is only rarely met with. I have found it at Detroit, No. $35161 / 2$, Angust 10. 1913, in sterile or sandy situations: also on sandy hills at Rorhester, No. $25601 / 2$, July 14, 1912.

Asplenimm pinnatifidum, Nutt.
I have never seen this species in the field lont in my herbarium I have a sheet showing several plants which were collected at Cobden, Illinois, by Mr. M. B. Waite, June 8, 1885. These, with the exception of one plant, are normal A. pinnatifidum; the one abnormal plant is normal in all respects except segmentation which is exactly that of A. ebenoides, R. R. Scott, i. e., the lobes are lanceolate and acute instead of round-orate and obtuse, and of variable lengths, short and long lobes often alternating. If A. ebenoides is a hybrid between Camptosorus rhizophyllus and Asplenimu phatynemron with a trend toward the latter parent, why may not A. pinnatifidum be a similar hybrid with a tendency toward the former parent? This peculiar plant would seem to so indicate.

Asplenium phatynemron (Lime) Oakes.
A rare fern in Michigan. Beal, in the Michigan Flora, states that Allegan is the meny station in the State. I found it at Williamstown, lngham Co., May 28.190 .5, No. 1903.

Ithyrimm Felix-femina (Lime) Roth.
There is a wide degree of rariation in the pimnation and size of the diffremt forms that hase been refered to this species; the
extremes have been rariously regarded as synonymous with the typical form, as rarieties of it, or as distinct species. Since the indusial characters, texture of fronds, and general appearance is much the same in all the forms the happiest medium probably will he best served by considering them all as varieties of one species. In addition to the type the following varieties are found in Michigan.

Athyrirai filid-femina var. michaunif (spreng.), N. Comb.
Aspidlum angustum Willd., Sp. Pl., 5, 277, 1810.
Asplenimm Michauxii Spreng., Syst. 4, s8, 1827.
Asplenimm Filix-femina var. Michauxii Mett., Fil. Hort. Lips., 79, 1850.

Athyrium asplenoides var. angustum Moore, Index, 179, 1860.
Aspleninm Filix-femina var. angustum D. C. E. Ferns of the South-west. 330, 1878.

Athyrium Filir-femina var. angustum (Willd.) Farwell, Mich. Acad. Sci., 6.201, 1904.

Keweenaw Co.. No. 75T. July 18, 1890. Frequent in rocky situations. Parkedale Farm, No. 3039 a, August 4, 1912. Frequent in dry thickets.

Athyrium Filix-femina var multidentatum (Döll) Milde, Fil. Eur., 50, 1867.

A splenimm Filix-femina var. multidentatum Döll, Rhein. Fl., 12. 1843.

Athyrium Filix-femina var. (yclosorum (liuprecht) Moore. Index., 185, 1860.

The largest and most divided form. Keweenaw (o., No. 502. July 2s, 1887 in moist thickets; common. Detroit. No. 502 a, Oct. 16, 1910, in moist thickets: common.

Athyrium Filix-femina var. latifolium, Moore, Nat. I'r. Brit. Fer. tr. 31B, 1855, Keweenaw county ; No. 590. Sept. 5, 1887 in rocky or sterile situations, frequent.

Filix (Fuchs) Hill, Family Herbal 171, 1755.
Dryopteris Adanson, Fam. Pl. 2, 20 and 550, 1763.
Aspidium Swartz, Schrad. Journ. Bot. 1800, 2, 29, 1801.
Nephrodium Rich., Cat. Jard. Med. Par. 120, 1801.
Lastra Bory, Dict. Class. d’Hist. Nat. 6, 588, 1824.
Underwood and others have adopted Fitix, Adanson, (176:) as the oldest post Linnaean name for those lerns that generally have been known under the name of Cystopteris, Bernhardi (1806). According to Christensen, Ludwig used the name Filix in 17.5. perhaps in the same sense. Hill, however, in the Family llerbal
used it for the Male Fern and the Female Vern. I will puote a few lines from the preface of this volume in order to show the attitude at that time ol sir John Hill, toward botanical seience as well as to show that he intended the volume to be of a botanical nature as well as a medical dispemsatory.
"It grieres a man of publie spirit and humanity, to see those things which are the means alone of the adrantages of mankind studied, while in the end that advantage itself is forgotten. And in this riew he will regard a Culpepper as a more respectable person than a Limmans or a billemnius." "That Botany is an useful study is plain; because it is in rain that we know betony is grod for headaches. or self-heal for wombls, moness we can distinguish botony and self-heal from one another, and so it runs through the whole study."
"We are talught bỵ it to know what plants belong to what names, and to know that very distinctly; and we shall be prevented by that knowledge from wiving a purge for an astringent, a poison for a remedy: let us therefore esteem the study of botany, but let us know, that this use of the distinctions it gives is the true end of it; and let us respect those, who employ their lives in establishing those distinctions upon the most certain foundations, upon making them the most accumatey, and carying them the fartherest possible; these are the botanists; but with all the gratitude we owe them for their habours, and all the respect we show them on that consideration, let us understand them as hat the seconds in this science. The principal are those who know how to bring their discoveries to use, and can say what are the ends that will be answered by those plants, which they have so aceurately distinguished."
"The plants are arranged according to the English alphabet, that the English reater may know where to find them: they are called by one name only in English, and one in Latin; and these are their most familiar names in those langages: no matier what Casper or John Banhine. or Limaens call them, they are here set down by those names ly which every one speaks of them in English; and the Latin name is added, under which they will be found in every dictionary. To this is subjoined a general description of the phant. if it be a common one, in a line of two; that those who already know it, may turn at once to the uses; and for such as do not, a further and more particular acconnt is added."

There is, then, no dombt that he intended the work to be botanical, as well as useful from a therapentic point of view, and it can
not. therefore be ignored any more than other fohmes of at botanical nature. The latin hames are either minomials, binomials, or polyomiats. The work contains no generic descriptions as such but the latin mames are atoompanied by descriptions supplemented, in some instathers, by ilhustrations, so fhat there is 16 question as to the identity of the plant described, thes making the phblication effertive acoording to Article : $\because=\mathrm{n}$ of the
 dexeribed two speries; Male Fern, F'ilis mes and Female Fern, F'ilix Fofmint. The mate Fern is the species known as such at the present bime. The Female Fern is the one that was published by Linne as Ptoris aquilima. The names filix mas and filis formina as here used by Hill most be considered as tron himomials amol not in any semse as generic mames as emphoyed loy him a ram later in the British Hembal. Since the binomial has been eflectively published it follows that cach element of the himomial, that is to say, that the generic name amd the suecific name each has heen eflectively problished and the proper atation for the gemms is Filix (Furlos) Hill, Family Herbal 171, 175\%.

The North America species not ahreaty transferred are as follows:

Filix dmela (II. \& B.) N. Comb.
Polypodiam amplum H. \& B. ex Willd., אן. l'l., i, 207, 1810.
Filin Agtilonaris (Maxol), N. Comb.
Iryoptoris aquilomaris Maxon, Bul. Tors. Bot. Cl., 27, (i:38, 1900.
Filan Boottil (Tuckermion. N. Comb.
Ispidium Boottii Tuckerm., Horey's Magazine. ! , 145, 184%.
Fima (mstata (Linhe), N. Comb.
Polyporlimm cristetım Lime, S]. l'l., 1000, 175.3.
Filan (mastata viar. 'lentonlana (D. C. E.), N. Comb.
Lspidi"m roistatm" var. ('lintomian"m D. C. E. in (ir. Man., Ed.万. 6ifin, 1867.

Filix flormana (Hook), N. Comb.
Vephrodium Floridromm Hooker, Fil. Exot., t. 99, 18.9.
Filid fragrans (lime), N. Comb).
Polypodium frothrans Lime, Sp. IPls, 10s! , 175%.
Fulix (goggilones tschk.), N. Comb).
Sephrodinm unitım R. Br., non Siel., nor Pol!pmetinm unitum Lin., Syst. Nat., X., $2,1826,1759$.

Aspidium goggilodus Schk., Kr. Gew., 1, 19:i, t. : :i:c. 1809.
Filix goldiana (Hooker), N. Comb.
Aspidium Gohlianmm Hooker, Edinb. Philos. Jomrn., 6, :3:3, 1s:3.

Filix goldina var. cels. (Palmer), N. Comb.
Dryopteris Goldiana celsa Palmer, Proc. Biol. Soc. Wash., 13, 65, 1899.

Filix marginalis (Lime), N. Comb.
Polypodium marginale Lime, Sp. Il.. 1091, 1753.
Filin maginalis var. bifinxatifidi (Clute), N. Comb.
Nephrodium marginale f. bipinnatifichm Clute, Fern Bul. 19, 50, 1911.

In woods at Detroit No. 1652, August 22 , 1899, rare. This fern has the general appearance of F . spinulosa var. Americana but it is not spinulose and the sori are marginal. It apparently is the same thing described by Clute as Nephrodium marginale forma bipinnatifidum. It may be one of the socalled fern hybrids with Filix marginalis and F. spinulosa var. Americana as the parents.

Filif montaxa (Vogler), N. Comb.
Polypodium moutamum Volger, Dissert. 1781.
Polypodium oreoptcris Ehrh. ex. Willd., Prod., 292. 1787.
Filif noreroraceasis (Linme), N. Comb.
Polypodium Noreboracense Linne. Sp. Pl., 1091, 1753.
Filix opposita (Vahl), (Polypodium oppositum Vahl, Ecl. Amer., 3, 53, 1807) var. strigosa (Fee), N. Comb.

Aspidium strigosum Fee, 11 MeM., 78, t. 29, f. 2, 1866.
Dryopteris contermina strigosa (Fee) Tuderwoor.
Filix oregani (C. Chr.). N. Comb.
Dryopteris Oregana C. Chr.. Ind. Fil., 281, 190..
Filix parasitica (Lime). N. Comb.
Polypodium parasiticum Linne, Sp. Pl., 1090, 1753.
Filix patess (Swartz), N. Comb.
Polypodium patens Swz., Prod., 13:3, 1788.
Filix patexs var. stipulahes (Willd), N. Comb.
A spidium stipulare Willd, S_{p}. Plo, 5, 239, 1810.
Filix patula (Swartz), N. Comb.
Aspidium patulum Swz.. Vet. Ak. Hdl., (1817) 64.
Filix rigib. (Hoffim.) (Polypodirm rigidum Moffim.. Deutsch. Fl.,
2, 6, 1795) var. argnta (Klf.). N. Comb.
Aspidium argutum Klf., Enum., 242, 1824.
Filix setigera (Blume), N. Comb.
rheilanthes setigera Blame. Enum., 138, 1ses.
Filix spinulosa (Muell.) Farwell vap. amelicana (Fischer), N. Comb.

Aspidium spimulosum Amerieamm Fischer ex. Knnz, Imer. Jour. Sci., Ser. 2, 6, 84. 1848.

Filix spinulosa var. concordiana (Davenp.), N. Comb.
Dryopteris spinulosu (Muell.) Swz. var. Concordiana (Davenp.) Eastman, New England Ferns, 1904, and in Gray's New Man., 43, 1908.

Filix sipinulosa var. dilatata (Hoff.), N. Comb.
Polypodium dilatatum Hoff., Deutsch. Fl., 2, 7, 1795.
The F. spiniulosa var. dilatata Farwell, Mich. Acad. Sci., 6, 209, 1904, is the var. Americana.

Filia simulosa var. intermedia (Muhl.), N. Comb.
Polypodium intermedium Muhl. ex Willd., Sp. Pl., 5, 262, 1810.
Filix spinulosi var. pittsfordensis (Slosson), N. Comb.
Dryopteris Pittsfordensis Slosson, Rhodera, 6, 75, 1904.
Cystopteris Filix-fragilis (Lin.) Chiovenda.
A common fern in rocky woods. Besides the typical form three others are frequently met with.

Cystorteris filin-fragilis var. lobulato-dentata (Koch), N. Comb.
C. fragilis var. lobulato-dentata Koch., Syn., Ed. 2, 980, 1845.
C. fragilis var. dentata Hooker, Sp. Fil., I, 19S, 1846.
C. Filix-fragilis var. tenuis (Mx.) Farwell, Mich. Acad. Sci., 6, 200, 1904.

The earliest varietal name is that of Koch.
Keweenaw Co., No. 830, August 30, 1890, in rocky woods. Frequent. Ypsilanti, No. 830a, Tme 11, 1892, in moist woods.

Cystopteris filid-fragilis var. angustata (Hoff.), N. Comb.
Polypodium fragilis var. angustatum Hoff., Roem. et Uster. Mag., IX, Pt. 11, t. I, Fig. 14d, 1790.
C. fragilis subvar: angustata Koch. Syn., Ed. 2, 980, 1845.
C. fragilis var. angustata Luerssen, Farnpfl, 459, 1889.

Keweenaw Co., No. $4051 / 2$, July 8, 1886, in rocky woods; frequent.
Cystorteris filin-frigilis var. haciniata (Davenp.), N. Comb.
C. fragilis var. laciniata Davenp. in D. C. E., Ferns of N. Amer., $2,52,1880$.

Keweenaw Co., No. 8301/2, August 30, 1890, in rocky woods; rare.
These forms or varieties are well illustrated on Plate 5. of Eaton's Ferns of N. America.
ophioglossaceae.
Ophioglossum vilgatum, Lin.
A variable species which, taken as a whole, has an equally variable habitat. I have found it in Keweenaw Co., but it is not frequest even when met with. The typical species has a sessile sterile
fromd near the middle of the stem, abont equalling the fertile segment. or sometimes a little longer or a little shorter. No. ast½, Sept. \quad. $1 \times 5 \mathrm{E}$. in moist, samdy places along the borders of shallow streams.

Ophio!flossam rultulam forma Psemdoporlmm Blake, Rhodora, 15, s. 1918.

A larer plant than the species, the sterile frond more orate, $1 / 2$ to $11 / 4$ inches wide ly $:$; to inches long, and tapering into a petiole like base. No. ist, Sept. in, 18st, in wet meadow lamds with more or less sphagmm and other mosses.

Ophioglossum rnlgatmm var. minns, Moore.
This is the shemerest form of the species as fomm in Keweenaw
 inches longl wate or elliptie, sessile near the hase of the stalk and far orertopped by the fertile segment, the whole phant about 5 inches in height. No. is.s, Sept. $\boldsymbol{\pi}$. 1sit. on sterile hillsides coveral with a sparse growth of grasses and sedges. The whole plant is rellowish whale that of the other two varieties is ereen. Fudombtedly this phant belongs lare lont it is the one that has been reported in Beal's Flora of Michigam as O. Engelmami.

Botryfrlimin Omondarfense Underwood. Bul. Torr. Bot. Cl., 30. 47, 190:3.

No. 1787. Angust, 19t) at Copper Harbor in oak and maple woods. Rare. Forms are found which are intermediate between B. Lanaria, and B. Onomdagense indicating that the latter is only an extreme form and therefore is loetter considered as a variety of the former.

Botrechinm lanceolatum var. angustisegmentum, l'ease and Moore.

The plant listed in Real's Flora of Mieligan as Botrechimm lanceolatmon is the one recently described as the variety angustisegmentum hy lease and Moore. It grows with B. Matricariaefolimm and other forms aplear to be intermediate and to intergrade into either ; further stmly may show that it is not specitically distinct from B. Matricariaefolinm. No. sis, sept. 万, 18st: msmally in momld maler hazel bmshes, ete., lmi sometimes in grassy places ill the open.

Botrychimu Matricariaefolimm, A. Br.
It has been very comehnsively shown that the Osmmmat ramosa, Roth, is not this speries and that when Ascherson transferred Rothes
speritic name to it, it was thronsh a misidentification and resulted in a misapplation of the mame. The American platht ean mot be considered as speritically different l'rom that of Europe. The sterild fromd is extremely variahbe as to the degree of dissection
 ties or sueces based on the deeree of division of the sterile laminat.

 neath tecidmons shabs and trees lant not disdaining to come out
 almost completely hidden from view. I have sedm large colonies
 colony: this fact alome proves that the varions forms are of ome and the same suecies. The typical form has the sterile blate obslong or ovate, simply pimate with the more or less distant pimate lobed or pimatith. the lowest pair somewhat longer than the

 stronil. N. (Omb).

Butrychinm Lanaria viar. rhmmbemm Angstrom, Bot. Not., 70, 18.54.

Butryehintm Matritariafolimm var: subinte!fom Milde. Mon. der dentelss. Ophioglos. 14. 18.5\%.

Botr!!rhimm ramostm, Var. "rallertmm (Wood) Farwell, Mich. Acad. Sri., (i, 200, 190t.

This is a simple form of the sterile fromd whicl is 1 or 2 inches long, simply pinnate with :-9 nearly equal, remmded, oval, or oblong, ohtuse, pimate, more or less foothed or inciserl. No. fis. Thly
 16, 1!12̈, in open, moist, simdy fields, near Algonac.

Botrechimm Matric:ariafolimm var. compositum Milde.
This variety has the lowest pair of pimate moll romgated amel pimate so that the whole fromd apleares to consist of three smbequal amd similar divisions. No. 1610, Angust og. 1s, is, in maple aml oak woods in Keweenaw Co.

Botrychinm dissertmon Sureng., Anleit., :3, 172, 180t.
Botrychilm lumarioves vall. dissertum. . (iro, Man. Bot., (6in. 1848.

Dissertum is the eatliest sperific mame for that gronp of forms that has been bassing as Botrychimm ohliqumand hence Sprengel's name shonld be restored. The ultimate divisions are ovate or ohlonglanceolate incisely tootherl. In moist thirkets amd belds. Detroit, rare. No. 1975, Jume 18, 1906.

Botrgehium obliqumm Muhl. ex Willd.. Sp. Pl., 5, fis, 1810.
Botrychinm lumarioides var. ,bligmmm . . Gr'. Man. Bot.. 6:35, 1848.

The ultimate divisions are cremulate-serrulate. In fields and more frequent than the type. No. Siz, October 15, 1895, at Detroit. Bothemily mssectua rar. elongation (fibbert $\mathbb{\&}$ Harberer), N. Comb).

Botrychium obliqumm var. clongatum Gibbert \& Marberer, Fern Bul., 11, S9, July, 1903.

Tltimate segments lanceolate, elongated, cremmatesermulate. Osscasional, No. $3.3521 / 2$, October 12,1913 , in santy fields at Algonac.

Botrechimm multifidum (Gmel.) Rupr.
Osmmula multifida Gmel., Nov. Comm. Ac. Petr., 12. .517. t. 11. f.1. 176 s .

Osmunda Matricariac Schrank, Bair. Flora, 2, 419, 17s?.
Botrychimm Rutaefolinm A. Br. ex. D̈̈ll, Rhein. Flora, 24. 1843.
Botrychium ternatum A Europacum Milde, Fil. Europ., 199. 1867.
Botrychium termatum var. Rutacfolium D. C. E., Fer. N. Amer., 1, 149, 1879.

This species is similar to the last preceding but it is usually larger, more compound in most of its forms, with the ultimate segments orate or oborate and obtuse. The type is rather a small plant with few, hroad orate, obtuse segments, the lowest sublunate. No. Gi27, July ? $3,18 s s^{\prime}$ Keweenaw Co., in moist, sandy places: No. 2715, Tune 16, 1912, near Algonac.

Bothechiua mathfiduar var. onempense (Gilhert). N. Coml).
Botrychium oblignum var. Oncidense (Gilbert) Waters in Gray's New Manual, 49, 1908.

The broadly oblong, obtuse, sub-cordate segments of this variety seem to place it with this species rather than with the preceding. Keweenaw Co., No. S54, July 5, 1895, in moist meadows.

Botrychinm termatum var. australe D. C. E.. Ferns N. Amer., 1, 149, I'late X X a (largest plant), 1 S 79.

Botrychinm silaifolimm Pr., Rel. Maenk, 1, 76, 18.』.

Bolryrlimm obliquum var. IIarbereri Gilbert.
This is the largest form of the species and many indiriduals carry the sterile lamina of the preceding year well along into the summer so that it may be gathered in good condition with two sterile
fronds on the same plant. Keweenaw Co., No. 708, Sept. 20. 1888. common in grassy dields and meadows; Rochester, No. 6:~ a, Iug. 15, 1909.

Botrychimm ternatum suliar. intormerlimm I). ('. E., Ferns, N. Amer. 1, 149, Plate XX a (Plant in front), 1879.

Intermediate betwen the species and the variety anstrale. Fields and meadows, common, Keweenaw Co., No. 62S, July : $: 1,1885$.

Botrychida melethfindial. nehotomum, N. Var.
Twice dichotomously branched showing two long, and one short-stalked, fertile segments and one short-stalked sterile lamina. The primary and secondary divisions of the stem are about 1 cm . in length, while the tertiary divisions are of variable lengths. The sterile lamina is small (15 mm. long by 10 mm . wide at the base), ovate, pimatified with $5-7$ small, closely placed, semi-lunate to obrate, somewhat cuneate, obtuse lobes, entire or denticnate, on a stalk 1 cm. long; the fertile segment is bipinnate on a stalk a. mm. long; the other two fertile segments are tripinnate on stalks about 10 cm . in length. This curious plant (Fig. 13) was collected in sphagnmm moss and may be a monstrosity but seems to answer to the state found by C. J. Sprague, at Hingham, Mass., as mentioned in Gray's Manual, 5 th Ed. 1. G72. Apparently this differs from the Sprague plant in having the long-stalked fertile segments, which repesent the lateral divisions of the sterile lamina, arising from low down on the common stalk instead of at the normal positions for those divisions. Keweenaw Co., No. 627 a, July 31, 1888.

Botrychium simplex, E. Hitch.
This is a very small plant and in the field, easily overlooked. The typical form las a small, sterile frond, simple, or three-lobed, roundish, or obovate. It is usually found in low wet grounds with, or in the vicinity of, moss. Keweenaw Co., No. 3997½, July 3, 1915.

Botrychium simplex var. angustum, Milde.
Botrychium tencbrosum A. A. Eaton, Fern Bul., 7, 8, 1899.
This rariety has a narrow, pinnate, sterile frond with 2 or 3 pairs of distant lobes. It is more frequently found in rich, moist thickets and is liable to be confused with slender and delicate plants of B. Matricariaefolium with which it is sometimes found in company. Keweenaw Co., No. 644 a, August S, 1888.

Botrychium simplex var. subcompositum, Lasch.
The sterile lamina is pinnate with $3-5$ pairs of contiguous lobes,

Figure 13. Botre̛hinm multifidum var. dichotomum
or with the lower pair remote and marowed to petiole-like bases.
 s. 1 šs.

LJCOPODLALEN゙

L.Y(OPODIACEAE.
 being most propitions for the work, I made athorongh stmoly of the Chb Mosses of the region. Amomg other things ohereved was the propensity of speries of the section Lepidotis to pronher proliferons spikes i. e., spikes with the axes prolonged as leally shoots; the length of the perluncles is rery variable even on the same plant; sometimes the peduncte is ohsolete so that the pedicles of the spikes spring from the apex of the branchlet, thus apearing as peduncles. It is customaty to comsider L. demdroidemm, Michamx, as sumonymons with L. obsemom, Lime, eren though the former has terete branchlets with equal, s ranked leares, while the latter has dorsiventrat banchlets and merpal, f ranked leaves. so tong as this attiture is maintatined there is mo excose for keeping L . alpinmm separate from L. complanatum as exactly the same conditions prevail. In the living plants of these speries the tips of the leares of the upper and lower rows of the dorsirentral branchlets are never appressed as is manally stated, in omr mamals to be the case. The stems ereep along the smbare or at rarions depths down to six inches; these with the branches are alwats torote and bear equal s-ranked leares, the free portions of which are never apmessed.

Lácopodimm Selago. Lin var. patens (Beanv.) Desv.
This variety, as well as the typical species, is rather scarce ou the Keweenaw Peninsuba; the phant is greener than the species which is yellowish, and comser ; the leares are narrow, more sharply pointed, and horizontal or nearly so. In wet, mossy gromeds, No. :39101\%. October 1, 1914.

Lycopodimm davatum, Lin. Var. megastachyon, Fern. and Biss.
The form listed in Beal's Michigan Flora as the var. monostachYon, Hooker, is that pant which has more recently been described by Fermadd and Bissel as L. complanatum val. megastachyon. This name shombl therefore be adopted for the phant fombl in morthern Michigan, as it is rery distinct from Hookers variety.

Lyeopodinm ohscurum, Linne.
Onr local mamals describe lyoopodimm obsemmm Limme as with 6- or S-ranked leares with the $\because \quad$ upper and $\ddot{\sim}$ lower rows appressed. No plant answering to such a desrription conld be lomnd, and it
is reve doubtinl if such a plant can be found anywhere. Linne does not give the momber of ranks in which the leaves aro arranged but does saly that the leaves are sureading foria sparsa attamen variora * * * * * * basi decurrentia s. aduata cauli, deni patula). The only reference given by Linnaeus is "Lycopodioides radiatum dichotomum. Dill. musc. 274, t. 67." Dillenius' plate shows a pant that has the leaves in four ranks, the upper row being represented as now appressed and now spreading. Evidently the drawing was mate from a dried plant in which naturally enough, the upper and lower leares will most generally appear as appressed. In the living pant the leares are four ranked on a dorseiventral axis, and ascending with incursed tips, none appressed: the free portion of the lateral leaves is about $41 / 2 \mathrm{~mm}$. in length; of the upper, about $31 / 2$; and of the lower, 2 . The branches are dichotomously hranched, the branchlets ascending with gracefully spreading, recurved tips. Foliage dark green and glossy: perhaps the most graceful and handsome of our Lycopodiums. Fairly well represented by the plate of Dillenius mentioned above. Stems 1 or \because inches below the surface. Spikes $2-3 \mathrm{~cm}$. Although Limmans said he had not seen the fructitication of this species, yet, on the other hand. the Inillenian plate referred to by him shows several spikes, most of which are represented with a proliferous tip, a condition rery frequently seen in this species.

Another form or variety of this species is the plant known as Lycopodium dendroideum. Mx. It differs much in habit: it is dichotomously branched, as in the specific type, but the hranchlets are neither dorsiventral nor drooping but terete and arect, the upper being shorter, so that the plant has the exact appearance of a miniature spruce tree. The foliage is less glossy and more of a yellowish green in color, the leaves being of equal length, about
 low the smrlace; the spikes are mumerons, sessile, and from $\overbrace{-5}$ (m . in length. This will answer rery well to Michančs description. The only reference Michanx gives is Dill. t. 64. The only American species represented on this plate is the Selaginella apoda. Evidently Michaux made a very poor interpretation of the Dillenian plate, if he refers to Dill. Mus. 1. 64, or else the reference to it is a tyographical ermor. I have no doubt that this form with Sranken, equal leaves, from its remarkable tree-like appearance which is mot evident in the other forms of the species, is the plant that Michanx had in view for his L. dendroideum eren though that athor did not mention the number of ranks in
which the leaves are grouped. Most anthors attribute six ranked leares to Mirhamx's species but they evidently have hat another variety in hamb, one that is exaldy intermediate between this plant and L. obscurnm, lin. The bramehlets are erect with only the tips slightly curving ontward, and are semi-dorsiventral; the leaves are mequal in six ramks, corresponding to three upper and three lower, the latteral row on eath side being obsolete; the lower leaves are from \because to $: 31 / 2$ mm. in length and the upper from $31 / 2$ to 4 mm ; the middle upper row hearing the longest leaves, the middle lower row, the shortest, while the others are successively intermediate. The stems are fiom 4-dinelos below the sum face. Spikes $2-6$ cm. It may be a woss between the other two forms hut it has longer spikes and the stems are deeper in the gromed than in either. It may be known as hroponem onscuma, Lin. variety mymmum, N. Var. The species and its symonymy is as follows:

Lycopodium obscurum Lin., Sp. Pl., 100:2, 175:3.
Lycopodioides rudiatum dichotomum. Dill., Muse., :27t, t. 6it, 174.
Lycopodium dendroideum var. obscurum (Lin.) Torr. ex. Beck., Botany, 460, 1833.

Keweenaw Peninsula, No. 682, September 6, 1888. In rich woods under evergreens. Frequent.

Lycopodium obseurum var. hybridum, Farwell.
Lycopodium Dendroidenm Willd., Sp. Pl., 5, 21, 1910, and maṇ̆ American anthors, not of Michaux.

Lycopodiumobsewwm Eaton \& Wright, N. Amer. Bot., 309, 1840, and many American athors not of Limaens.

Keweenaw Peninsula, No. 3908, September 1914. Along the edge of woods and thickets. The common form.

Lycopodium obscurum var. dendroideum (Mx.) D. C. Eaton in Gray's Manual, 696, 1890.

Lycopodium dendroidcum Mx., Fl. Bor. Amer., 2, 282, 1803.
Keweenaw Peninsula, No. 681, September 6, 1881. On knolls in the open. The rarest form.

Lycopodium complanatum, Lime.
This is a very variable species and its forms have been considered as species by those botanists who think that all variations of plants shonld be considered as distinct species, discarding all minor categories. This species, like I. obscurum, Lime, shows two well marked series; one with the leaves of equal length and in 6-S ranks (stems not dorsiventril) and one with the leaves of unequal length and in 4 ranks (stems dorsiventral). The distinctions between
L. alpinmm and L. complanatmon are not more prononnced than those hetween L. obscormm and L. dembroidemm, ret the former are gemerally comsidered as distinet species and the two latter as one and the same thing. Ss a mater ol fart the distinctions are eren less pronommed for L. alpimm shows both linds of leaves on the same plant while the spikes of L. complamatmm may be sessile as in l. alpinmm. the extremes appear to be distine emongh but a complete series of intermediates comert one with the other. L. atpimm has priority of place in the species Plantarmm hat since this speries has been reduced to a variety of L . complamatmm. the latters according to Article 46 of the Viema lanles. mms be consilered as the type.

Key to the ravieties of L . commplanatmm.

Plants with dorsisentral branchlets, leaves 4 ranked, appressedin the dried plant.
Branchlets e^{-t} mm. wide, very mat, leares megual.
Branchlets elongated. loosely ascemding.
 planatum.
 plantum var. Salinaefolinm.
Pednucles obsolete, spike solitary and sessile-Ly̌opodinm complanatum var. Psendoalpinmm.
Branchlets short, crowded, forming fummels fan shaped when (dried).
Peduncles single, ?-f cm., spikes e-f—heropodimm complanatum rar. flabellatum.
ledmoles similar, spike solitary-lycopoolinm complanatum rar. Wiblei.
Branchlets $1 / 2$ mom. wide, hiconvex, leaves nearly equal.
Leaf tips of lateral rows erect-Lyeopodimm complanatum rar. ('hamatecyparissms.
Leal tips of lateral rows widely speading-lyoopodinm romplanafom var. Sharonense.
I'lants with hoth domiventral and terete branchlets, leares t-ranked, not appressed, spike sessile-lycopoolium romplanatum var. al. pinllom.
Ilants with terete bumdhlets, leares in or maks, equal, ascending, spikes solitary on perluncles less that 1 rom.-Lyopodimm rompanatum var. Sitchense.

The species amd its more important syonyoms are wiven below.

Stems $1-\therefore$ inches below the surfiare. Branchlets elongated, hoad

 sional.
 Comb.

Lyeopodimm alpinmm rall. Ňabimefolium (Willd.) 1). C. E. in Gray`s Man., 696, 1890.

Free portion of leaves longer and narmower, pedmecles shorter, solitary, or in fwos, spikes solitary, upper leaves often in two rows, the beaves then being r-manked, a thansition towad var. sitchense. Stems an inch or so below the suface. Keweenaw (\%., No. Ttfi\%, Inly 12,1890 . Rare.

Lyeopodimm complanatum rar. Habellatum, Doill, Fl. Bad.. 1 , 79, 18.\%.\%.

Lycopodimm \quad "mefps Walh. Limmea, 12, 676, 1840.
Ligcopodiam romplanatmm var. anceps Aschers., Fl. v. Brand, 1. 894, 1864.

Lycopodimm complanatum var. flebelliforme Feruald, Rhodora. : 2s0. 1901.

Lycopodinm flabelliforme (Fernald) Blanchard, Rhodor:i, 1:3, 168. 1911.

This variety is very readily detected in the field by its foliage being arranged in the form of fumels and in herbarimm materials by its short, fan-shaped clusters of branches arranged in distinct series one above another. Its stems are above ground. Keweenaw Co., No. 175.5 and 17א., $1 / 2$, August, 1902 ; No. : 3911 and : $: 912$ (proliferous formi, October, 1914.

Lycopodimm complanatum var. Chamatecyparissms (A. lis.) Döll. Fl. Batl., 1, 80, 18.5.)

Lyeopotimm tristachyum Pursh, Fl. Am. Sept., (i.is, 181t.
Lycopodiam ('hamaceyparissus A. Br. ex. Mutel. Fl. Frann.. 4. 192, 1s:3.
 Man., lift, 1s67.

The most glaucous form, with the narowest brandhlets, longest peduncles, and most mmerons spikes. The commonest form on the Keweenaw Peninsula. Stems .f-g inches morer the surfice. No. 6\&6. Sept. 10, 1888.

Lfcopodium complanatum var. sharonense (S. F. Blake), N. Comb.

Lycopodium tristachyum var. Sharonense S. F. Blake, Fern Bull., 18, ! $1010,1910$.

Similar to the preceding but the free portion of the leaves are spreading or recurved. Keweenaw Peninsula, No. 746 a, July 12, 1890. Rare.

Lycopodium complanatum var. alpinum (Lin.). Spring. Flora, 1, 180, 1838.

Lycopodium ulpinum Lin., Sp. Pl., 1104, 1753.
The slems are close to the surface; leaves unerual, ascenting. in 4 ranks; spikes sessile. Keweenaw Peninsula, No. 849, June 30, 189. Rare.

Three other varieties may be confidentially looked for. These are: var. Wiblei, Harberer, which is similar to the var. flabellatum but with the spike solitary; lycorodum complanatum var. iseudoalinum, N. var., briefly described as like the specific type but with sessile spikes, a transition toward the var. alpinum; and hycorodiua complanatua var. sitchense (Rupr.), N. Comb. (Lycopodium Sitchense Rupr., Beitr. Pfl. Russ, Reich., 3, 30, 1845). Variety Pseudoalpinum is well represented by plate 233, Journal of Botany, Vol. 20. 1882.

Department of Botany, Parke, Davis \& Co., Detroit, Mich.

A CONVENIENT METHOD OF WASHLAG FLXEI PREPARATIONS.

BY RICHARD DE ZEEUW.

It is comparatively easy to wash a limited amount of material after fixation, but when it comes to taking care of the washing of material for a large class in technique, cytology or embryologr, the instructor in charge is faced by a rather annoying problem. The objection to all the schemes suggested is in the fact that the sink, which above all else should be kept free, is all chattered up.

The writer has constructed a bit of apparatus, which has given very satisfactory service for two years. It has appealed to all who have seen it as answering the purpose admirably. That is the excuse for the present note.

The apparatus (Fig. 14) consists of a galvanized iron box (A), which may be made of any required dimensions. There is a pipe (B) to enable one to have a constant stream of water running in the trough, which has an overflow pipe (C) at the opposite end. The material to be washed is put in Gooch Crucibles. A piece of cheese-cloth is put over the opening, and a rubber band is snapped around it to keep the cheese-cloth in position. The whole is then immersed in water bottom side up. The bottom of the crucible is perforated with small holes. The air is thus allowed to escape and the water to enter the crucible. Care should be taken not to immerse it so far as to cause the water to close up the openings. This will keep that air in, when the crucible drops to the bottom of the trough on being released the air is out. If not, take it out, blow in the holes to free them of water and try again.

The crucibles may have a thread run through one of the holes and a tag fastened to the other end, which hangs on the outside of the trough. This enables any one to remove any particular specimen from the wash-trough without disturbing any of the others.

Since there is a continual current of water in the trough, it has been found advantageous to place the crucibles on their sides with the ends directed toward the ends of the trough. Thus the current will pass in at the cheese-cloth corered end and out at the perforated end ensuring perfect removal of the fixing agent. And,

Figure 11. Tank for washing fixed preparations.
since the rarrent is so gemtle, no damage has erer been done to the most delicate material.

The whole apmatus may rery comveniently be placed on a shelf over or near the sink.

Michigan $\backslash \underline{g r i c u l t m a l ~ C o l l e g e, ~ E a s t ~ L a n s i n g, ~ M i c h . ~}$

ZOOLOGY.

NOTES ON [LLEODORINA C.ILIFORNICA SHAW.

RY HERTRAM (i. SMITH.

On July 23, 1915, the writer fonnd the colonial flagellate Pleodorina californica Shaw in great abundance in a pond near White's Woods, Aun Arbor, Michigan. Pleodorina was most plentiful at the margin of the pond, where by pressing down the mat of regetation hollows were formed which soon filled with water. In a vial of this water held to the light, Pleodorina was barely visible to the naked eye. When the material was placed in a finger bowl in the laboratory, exposed to the light of a north window, the specimens sought the side of the dish furthest from the lighta case of negative phototaxis that seems remarkable in view of the behavior of Eugleua amd Volvox in similar eircumstances. Such a reaction in a chlorophyll-bearing flagellate would seem almost smicidal. Specimens mudergoing reprodnction became less motile and sank to the bottom of the dish. The material does not live long in the laboratory. Ten days later, it had completely disappeared from the pond. The occurrence of Pleodorina has been noted in Califormia, where it was first discovered, also in Illinois, Indiana and in southern France; I am not aware of any previous record for Michigan.

Pleodorina is a colonial protozoan, each specimen in the adult stage consisting of typically 128 greenish bi-flagellate cells enclosed in a common gelatinous envelope and loosely arranged to form a hollow sphere. There is a decirled difference in the size of the cells on opposite sides of the colony. On one side, comprising a little less than a hemisphere, the cells are quite small; these are the somatic or horly cells. On the other side, comprising a little more than a hemisphere, the cells are much larger; these are the reproductive or germ cells. The form of the colony is not exactly spherical, but is msually elongated slightly in the direction of the axis of radial stmmetry ; in other words the colony lats the form of a prohate spheroid, with the body cells segregated about one pole. Since the end composed of horly cells msmally precedes in locomotion, this end may be called the anterior end and the opposite end the posterior end.

Both body and germ cells have each their own individual gelatinons envelopes, which may be made out by careful manipulation of the high power of the microscope. Each kind of cell has two flagella projecting through the common gelatinous envelope. Each cell has a red evespot and mumerous green chloroplasts.
leproduction takes place asexually by the repeated division of the serm cells or parthenogonidia to form daughter colonies. A complete series of derelopmental stages comprises $2,4,8,16,32$, and fit cell stages. The daughter colonies eventually break out from the enclosing parental envelope. At the time of its escape each daughter colony consists of either 64 or 128 cells all of the same size: the germ cells are later differentiated by an increase in size. At the time of the escape of the danghter colonies, the body cells of the parent degenerate and die.

Though Pleodorina is undoubtedly a protozoan colony, it is in some respects transitional to the metazoa and for purposes of comparison with the metazoa it may be regarded as an individual organism. Pleodorina is the simplest and most primitive organism showing a separation or segregation of hody cells from reproductive cells; in other words, it is the simplest organism showing differentiation of structure and division of labor between somatic and germ cells. It is also the simplest organism which clearly undergoes natural death; but it is only the body cells which die, while the germ cells live to give rise to a new generation of bodies and germ cells. In Pleodorina the fundamental biological principles of segregation of the body plasm and continuity of the germ plasm are exemplified in their simplest form, without the complication of sexual reproduction such as is found in Volvox.

The value of such a type for elementary classes in biology is obrions. Pleodorina readily falls in place in the series leading from the simplest colonial flagellates, such as Gonium and Pandorina, to Volvox. Unfortunately Pleodorina is of rather exceptional occurrence, but since when found at all it is likely to be present in abundance, a supply sufticient for several years may be preservel. Material fixed in weak Flemming's solution (one part of strong Flemming to three parts water) for twenty-four hours, then thoronghly washed and preserved in 5% formalin, retains the natural appearane and form of the colony, and for class use is almost as good as fresh material. The writer has prepared Volvox in this way and found it in good condition for about six years, after which the finer details of structure were lost.

Koological Laboratory, State Normal College, Ypsilanti, Mich.

Literature.

Kofoid, C. A., 1900. I'lakton studies. IL. On Pleodorina illinoisensis, a new species from the phankton of the Illinois River. Amals and Magazine of Natural Mistory, Neries T, Vol. 6, July; also Bulletin of the Illinois State Laboratory of Natural Mistory, Vol. V. (Includes a key for the identification of species.)
Shaw, Walter R. 1894. Pleodorina, a new genus of the Volvocinate. Botanical Gazette, Vol. XIX.

にEI'TR.

In all vertebrates. there is discontinnity between the waries and the ducts which convey the eggs to the exterior-a lack of adaptation which becomes intelligible only in the light of sturlies concerned with the origin and evolution of the coelomic eavity. In the higher rertehates, the aproximation of the funmelshaped inner end of the oviduct to the orary safeguards to a considerable extent the passage of the eggs into their proper chamnel ; but in the amphibia the two organs are widely separated, and the problem of how the eges find their way into the oviluct has been a puzzling one. As a result of some observations on Cryptobranchus and Rana pipiens, I have become convinced that the generally-accepted explanation of this process is incorrect. In connection with this study some olservations of minor importance were made on the escape of the egas from the oviry of Cryptobranchus.

1. The escape of the eggs from the orary. Judging from the published accounts, direct observations on the escape of the amphibian egg from the ovary are rare. Brandt (76) examined the outer surface of the ovary of Rana temporaria as the eggs were about to pass into the body cavity and found a small round hole above each egg throngh which a larger or smaller part of the egg protruded. Recently I have observed varions stages of the process in several different adult females of Cryptohanchms which had been killed by pithing and the body cavity immediately opened.

A rery small fordion of the egg tirst protrudes as a minute spherical exovate connected by a rery narrow stalk with the res mainder of the eges which is still covered by the ovarian wall and follicle. Very slowly the exovate becomes barger. Under the conditions moted the process has not been observed (on go rery far: perhaps the pressme of surromeling pats on the ovary, and esperially the movements of the viscera dmring locomotion, are nommally required to complete the expulsion of the exg. But sight pressure with an instrument on the portion of the eggs still in the oray completes the process as follows: The exovate increases in si\%e motil it equals the fart ol the egg still in the ovary ; at this time the egog is shaped like an homrenass. Then the enclosed part of the rag mows out with remarkable suddemess, and the entire
ega immediately rommes into an ohlate sphorod, comsiderably flatter tham the rege at the lime of spawning.

At the time when the egg is hall-way ont of the diary it is constricted to a remarkable degree: the stalk commerting the two halves of the ege is scarcely more than $2(m i l l m e t e r s$ in diameter. while the diameter of the entire egg after it assmmes the spherical form exceeds 6 millimeters. The plasticity of the eqg at this time contrasts strongly with its condition during early deavage. In the first cleavage stage I attempted to separate the first two blastomeres by tring a silk thread around the egg in the plane of the first cleavage fumow: the egg wonld not hear a coustriction of more than 2 millimeters, leaving the constricted portion more than + millimeters in diameter. The greater plasticity of the orarian egg seems to be due to a lesser degree of turgor, or temsion of the egg membrane; perhaps the egg later absorbs water.

As in Bufo (King, 02), the egg donbtless escapes through the stalk of the follicle, since here the egg is enclosed ly only two cellular membranes, elsewhere by three. Since only a small proportion of the eggs are found escaping from the ovary at any given time, the liberation of all the ripe eggs must require a considerable period of time, probably several days.
2. The passage of the eggs down the oriduct. In Cryptobranchus, peristalsis of the uterus and the lower oviduct was ohserved, but none in the upper oviduct. An egg placed in the fimmel of the oriduct of a prostrate specimen mored down the oviduct very slowly. At the end of an hour it had moved 2 centimeters fimether than the position to which it may have been carried by gravity. I scraped the lining of the upper oviduct and examined the scrapings under the microscope; the epithelial cells possessed cilia. One can only conjecture whether the ciliary action in the oviduct is strong enough to carry the eggs along; possibly it is aided by peristaltic action too slow to be observed.
3. How do the eggs get into the oviduct? Newport ('51) believed that, owing to the close attaclment of the oviducts at their immer openings to the walls of the pericardium. at each contraction of the heart the slit-like openings of the oviducts would gape open, and any eggs in the riciuity might be forcet, by suction, into the mouths of the tubes. Also, he thonght that owing to the muscolar movements of the body, and the resultant shifting of the internal organs, the eggs sooner or later pass near the openings of the oviducts, and are then carried into the tube. According to Nussbaum ('95) the eggs, when set free from the ovary into the
body eavity of the frog, are carried into the open mouths of the oriducts by the motion of cilia of the coelomic epithelium ; these cilia drive anteriorly any solid objects lying free in the body cavity. He states that the cilia are not miforms distributed, but occur in patches on the peritonemm of the body wall and mesentery. Nussbaum's version of the matter has been quite generally accepted.

In order to test the ralidity of Nussbaum's conclusions I took sereral female specimens of Rana pipiens during the breeding season when the egs. were still in the ovary, and tested the mesentery and other parts of the peritonem for ciliary action, using powdered carmine, blood and cork filings. There was absolutely no evidence of ciliary action. As a check on this experiment I used the same means to detect ciliary action on the roof of the mouth cavity and oespohagus of the same frogs, and obtained the most lively evidence of ciliary motion. In like manner I have thoronghly tested the peritonemm of female specimens of Cryptobranchus during their breeding season, with absolutely negative results. In both Rana pipiens and Cryptobranchus, I scraped the peritonemm in various parts of the body cavity and by examining the serapings under the microscope found indeed that there were oceasional patches of cilia, but the foregoing experiments indicate that in Cryptobranchus and in Rana pipiens ciliary action is not powerful enowg to carry along foreign particles to any appreciable extent, and certainly not strong congh to move the large and heary eggs. In the absence of sufficient ciliary action, we must look for mechanical factors to insure the transmission of eggs to the oviduct. My observations and experiments lave convinced me that Newport's views, and not Nussbaum's, were essentially correct, at least when we attempt to apply them to the species umbre consideration. The following conclusions were written by me before I was aware of Newport's theory.

The funnel is so placed as to open in an anterior direction. Eggs that by any chance get into it cannot easily get out by retrogressive movements, since they are pressed unon by other eggs and are soon carmied down the oviduct. Thus the fumel acts as a trap to catch eggs. At the beginning of the process some eggs lying free in the body cavity must get into the fumel by chance, aided by the muscular movements of the animal which keep them in circulation. These eggs are carried down the oviduct and collect in the uterus. Since the uterus is located at the posterior end of the body cavity while the fumel is at the anterior end. the pressure of the increasing mass of egrs in the uterus must force the eggs
remaining in the body cavity forward. Thus there is an increasing tendency for them to get into the funnel.

If this interpretation is correct, one would expect that occasionally a lew eggs would be left permamently in the body cavity; such a mechanism could not be expected to work with absolute perfection. Observation shows that his is what actually occurs. In many specimens of Crypobranchus, after sponing, a few equs are still to be found in the body cavity; if the animals were allowed to live these eggs would probably later be absorbed. On the other hand, if eggs were carried into the oviducts by ciliary action, one would expect that none would be left behind.

In examining Newport's extensive contributions on the early development of the amphibia, one cannot fail to be impressed by his masterly analysis of the problems of embryology and by the pioneer character of his work. With almost prophetic insight he has laid the foundations of much of the "experimental embryology" of a later generation.

Zoological Laboratory, State Normal College, Spsilanti, Mich.

Literature.

Brandt, Alexander. 1876. Fragmentarische Bemerkungen uber das Ovarium des Frosches. Zeitscher. f. wiss. Zoologie, Br. XXVIII.

King. II. D. 1902. The follicle sacs of the amphibian ovary. Biological Bulletin, rol. III.
Mor!an, T. II. 1897. The development of the frog's egg (pp. 16 and 15). The Macmillan Co.
Neuport, G. 1851. On the impregnation of the ovom in the amphibia. Philos. Trans. Roy. Soc., London.
Nussbanm, M. 1895. Zur Mechanik der Eiablage bei Rana fusca. Archiv f. mikr. Anat., Bd. 46.

13IBLIO(iliAlPIY

OW


```
        MIGHIGAN LIBRARY.
```

(OMIDHEV HY ROBERT W. HEGNELR.*

This list has been prebrared for the following purposes:
(1) To collect and arrange titles of all periodical literature in the library of interest to zoologists in such a manner that it will he posible to determine quickly whether we have or do not have any jorticular volume or momber.
(吴) To provide an easy method of finding reports by publishing the library all numbers.
(:3) To make it possible to determine the needs of the library with regard to periodicals of this character. (Any suggestions from those interested will be appreciated.)
(t) To aid scientists throughout the state of Michigan by publishing a list which will inform them as to the arailable zoological literature in the libratry

Periodical literature and the publications of the learned societies are classitied in the lniversity of Michigan hibrary according to bewey lerimal sistem.

The publications of learnet societies are in the mper reading room of the gemeral libary. They are paced on the shelses according to (1) the combtry or langage C American, English, German, French. Italian. (atc.), (2) the city in which hey were published, and (:) the intial of the first word of the ofticial title.

Ober periotioal literatme will be fomm in the stacks of the gemeral library or in one of the hameh libraries on the campus as indiaterd in the aprended smmaty of classitication. The official publiations of sorieties are praced either under the name of the sociely. e. g.. the biological Bulletin mater the name Marine Biological Labmatory, or muder the title of the pmblications, e. s., the ofticial organ of the Audubon societies mader Bided Lore. Printed diretories giving the position of perionticals according to call um-

[^7]bers will be found posted in the stards of the gemeral libratr.
The branch libraries that may comtain periodiads of interest to zoologists are as follow:
(1) Natural science Library in the Nithual Science Building:
(2) Histological Library in the Medial Building;
(3) Hygienic Library in the Medical Building:
(4) Chemical Library in the Chemistry Fuilding;
(5) Linssell Library in the Natural sidence Building.

Most of the rorrent beriodicals are plated in the matural science library, in the periodical room of the gemeral library or in the medical periodical room in the Gemeral Library, although rertain publications are pent directly in the stacks.

Number．	Name．	Volimine．	Year．
506.1 .133164	Albany Institute．Transartions	1－12	18：30－1893
5！90 天寺1315	Allsemeinc tiswhereizeitums	$31-10$	1906－1915
	American Assorfation for the Advancentent of Seitnce．［roceredings．	1－62	$1848-1911$
6330.5 .151384	Amprican［3reeder＇s Masazine．Washington	1－1	$1910-1913$
590.5 .1	American Entomological society．Transac－ tions．	1－31	1868－1905
610．5． 5 SS6A5．	American domstal of dmatoms	1－19	1901－1916
610.5 .5 .5 SGP	American Jomrnal of Physiology	1－39	1898－1915
50．jA5Jos 1	American Jomrmal of science	1－190	1818－1916
610.515 .58157	Smerican Journal of Trouical l iseasos	$2-3$（incomup．）	1915－1916
570.515 .179 .116	Smerican Mantlily Nicroscopical Journat	1－23	1870－1902
578． 55.116 i ．	American Mieroscofreal society．＇1ransac－ tions．	$1-\frac{28}{4}$	$\begin{aligned} & 1878-1905 \\ & \text { (incomp.) } \end{aligned}$
\％0．5．1．71163	American Minlama Natmralist	1－1	190！－1916
	American Nusemm of Nataral llistory． Annial Report	$(34 \stackrel{1-46}{\text { lal(king })}$	1870－1914
550.5 .55 .199010.	American Museum of Natural llistors．	1－34	1881－1915
5\％0．5̇5． $1999 . .$.	Ameriran Mnsemm of Natmal Ilistory： Journal	1－15	1900－1915
$5 \% 0.5$ ¢5M99m．	American Musemm of Natural Ilistors． Memoirs	1－14（II．s．	189：3－1914
570.5 A5M99n．．	American Musenm of Natural llistory． Monographs．	1－3	1912
570.545×3	American Naturalist	1－50	1867－1916
$506.145 \mathrm{P}^{\prime} 6 \mathrm{p}$ ．	American Philosophical society，Phila． Proceedings	1－54	17＋4－1913
306．1．${ }^{\text {a }}$ P6t．	American Philosophical society，Plila．， Transaldions	$\underset{1-22^{1-6}(\mathrm{~N} . \mathrm{S.})}{ }$	$\begin{aligned} & 175-1809 \\ & 1818-1915 \end{aligned}$
576.5 A 568	American Society of Naturalists．Records．．	1－2（incomp．）	1S85－1901
（i10．E．151	American Veterinary Review．	10－34	18．60－1909
	Snatomical Re－roma	1－10	1906－1！）16
590.5154164	Anatomischer Inzeiger	1－47	1886－1915
590．5A5－1A61e．	Anatomische Gesellschaft．Verhabllungen． Jenia	1－28	1887－1914
590．5A531113	Anatomische ltefte．Merkel fonnet	1－52，5． 3	1892－1915
570．5．1595136	Anmales de Biohogie lacustre，Braxell	1－6	1906－1913
（110．5 1545E4	Inmales to＇Elererobiologic	1－16	1898－1913
二－0．5．	Smnals and Masitzind of Nathral Ilistory．	$\begin{aligned} & 2 n d \text { ser. V. } 10 \\ & \text { sth ser. v. } 16 \end{aligned}$	1859－1915
	Ammales de Microsraphie	1－10	18ら心－1898
590.5150	Anmales des sciernces Naturelles．	19．3rd ser． 19，9th ser．	185．3－1914
$610.5 .16^{\prime} 1 \times 6$.	Anmals of Tropical Medicine and Parasit－ ology：		1907－1915
570.5 .161286.	Amater Bingivize．．．	1－18（r． 16 -17 lacking．）	$1895-1913$
	Ambotationtes Zowlogicat Japonenses．．．．．．	1－8	1897－1914
591．05．167	Srehiv fïr Anatomie mod Entwickelangs－ geschichte．		$\begin{aligned} & 1 \times 7 .-1914 \\ & \text { (190.j-00 } \\ & \text { lacking) } \end{aligned}$
$6[0.5 .165 .15 \cdot 1$.	Archivfür Anatombe mma Physiologit．		1826－1832
5（15．167（i3！）．	Irehiv fïr dife geschiohte naturwissenselad－ ten und der technik	1－1， 6	1909－1913
540.5167186	Archiv fïr Entwickelungsmerhanik der （）rganisin	1－11	189．1－1915
50.5167119	Archis fär Ilydrotiologie mad Planktonkunde	1－10	1905－1915
5－x．s．167 T （16．	Irchis far mikroskopisole Atatomie und Entwickelnngsqeschichte．	$\begin{gathered} \text { 1-ss (s6-st } \\ \text { laching) } \end{gathered}$	$186.5-1915$

Number.	N:1314.	V'olmme.	Y'ear.	
590, 167 N 3	Archiv für Naturgesthichte	2p-81 (incomp.)	185x-1915	
5! 00.5×67	Niederlaemdisches Archiv för hoologie	I-5	\|87	-1582
$610.5167 P_{5} 116$.	Archiv für die cresammate Physiologie. Plouger	1-162	186\%-1915	
610.5167 P966.	Archiv für l'rotistenkunde.	1-36	1902-19 5	
570.5 .167123.	Archiv fïr Rassem-umd (irsellichafts Biologie einschliesslich Rassenturnd (iesellschaftsHygiene.	1-11	$196 \cdot 1-1915$	
$580.5167 \% 5$	Archive für \%ellforschmmers. Leipzigy	1-1.1	1998-1915	
570.54671136	Arehives te Biologis. Paris and (ihent.	1-29)	1880-1914	
610.5A6711612	Archives lntemationales Physiologie	1-1.t	1990t-1914	
$610 . \overline{5}$ d67112.	Archives de I'arasitolostar 'laris.	1-16	1898-1914	
610.5 .167184	Archives des reiences Biologique. st. Petershurgh.	1-17	$1892-1913$	
590.5 .1671787.	Archives de zoologie expérimentale et générale	Lacks some.	1872-1915	
610.5167119	Archives Italiennes de Biolorie.	1-633	15゙2-1915	
$610.54673 F 5$	Arehivio di tisiologia. Florence	1-13	19704-1975	
610.5 .167318.	Archivio Italiano d'inatomio e d'embriologia f'lorpnce	1-1.1	1902-1915	
590.5 .17279	Arkiv für Zoologi, Stockisolnh.	1-9	19705-1915	
610.5185 .153.	Association des Anatomists. Nancy. Comptes Remdins.	1-8	1899-1906	
506.3 192N゙3b.	Augsburg. Berieht. Naturwissensehafthicher Verein für Nchwaben nnd Neuberg..		$\begin{aligned} & 1906,1908 \\ & 1911,1913 \end{aligned}$	
590.5 .192	Auk	10-33	1893-1916	
506.419487	Autun. Socittie d'histoire naturelle bulletin.	25-26	1912-1913	
$506.31313 \mathrm{~L} \cdot 2 \mathrm{~mm}$.	Baden. Mitteil. 13. Landesvereins für Naturk.	226-296	1908-1915	
506.3132 N 3 b	Bamberg. Bericht. Naturforschende Gesellschaft.	19-21	1907-1910	
$506.6132 \mathrm{LA} \mathrm{L}^{3} 3$.	Bareelona. Boletino de la Real Academia ('itncias s. Artes.		1912-1915	
$506.6132 .42 \mathrm{~m} . .$.	Barcelona. Memorias Real Academia Ciencias y Artes.	8-12	1910-1915	
	Basel. Verhandlungen der Naturforschenden Gesellschaft in Basel.	18-25	1905-1914	
150,513417.	Behavior Monograjh.	1-2 (incomp.)	1911-1915	
506.21343 N 3 r .	Belfast natural history and fhilosophical society. Reports and Proceerlings........		1906-1913	
506.213.47.18j.	Bengal Asiatic society. Journal and proceedings.	1-9	1905-1913	
506.21347 A m	Bengal Asiatic soeity. Demoirs.	$2-4$ (incomp).	1907-1913	
506.81351199 a	Bergens, \useum. Aarbbog. Afhemblinger.		1909	
610.5135 f \% .	Bericht äber die Fortschritte der Anatomie und Physiologie.	1856-1871	
506.3 B 5 ¢ 43 a .	Berlin. Abhandlung Foniglich-Akademie der Wissenschaften.	(incomp.)	1788-1913	
$506.3 \mathrm{B5}$ A 3 h .	Berlin Acállemie des coiences. Memoires..	1-13	1745-1757	
506.3 B5 A3m2.	Berlin Academie des siences Nouveaux Mémoires.	1-16	1170-1785	
$506.3 \mathrm{B5}$ A 31 b .	Berlin Bericht Koeniglich-Akademie wissenschaft		1836-1856	
$506.3 \mathrm{B5} \mathrm{~A} 3 \mathrm{gH} . .$.	Berlin. Geschichte Koeniglich-Akademie wissenschaft.	1-3	1900	
570.51359	Berlin Forsehungsberichte. Biologische Station. Plön	1-12	1893-1905	
$506.3 \mathrm{BSA} 3 \mathrm{mn} . .$.	Berlin. Kofniglich-preussiche Akademie der wissenschaften. Monatsberichte.		1857-1881	
$506.3 \mathrm{B5} 43 \mathrm{~s}$.	Berlin. Koeniglich-prenssiche Akademie der wissenschaften. Sitzungsbirichte.		1882-1914	
590.51358.	Bibliographia Zoologrica.	$1-27$	1896-1915	
610.5 B595B9.	Biochernical Bulletin.	1-3	1911-1914	
$610.51359 \% .58$	Biochemical Journal.	1-9	1906-1915	
612.05136	Biocherrisches ('entralblat t	1-9	1903-1912	
610.513625	Biochemische Zeitschrift.	1-68, 70	1906-1915	
570.5 SL 4 b .	Biological Bulketin. Marine Biological Laboratory. Woods Itole............... . .	$1-30$	1899-1916	
570.5 N 341.	Biological Lectures. Marine Biological Laboratory. Wr ols Hole.		1890-1899	
590.5136	Biologisches Cent ralblat	1-3.5	1881-1915	
570.5 B661	Biometrika.	1-11	1901-1915	
590.5136	Bird Lore	1-17	1899-1915	
590.51362	Birds and Nature	4-15	1898-1904	

Number.	Name.	Volume	Year.
610.5 C 41 5 5	Centralblatt für Physiologie	1-28	1887-191-4
$570.5(481)$	Charleston Musenm lubletin	$2-1$	1906-1916
506.4 Cm 2 NtSm	Cherbourg. Societe mationale des sciences maturelles el mathemalicques. Memoires.	36-35	1906-1912
570.5 C 57 S	Cincinnati society of Nialural llistory dournal	1-2!	1878-1914
506.1 (\%2.299	Colorado Mnseum of Natural Ilistory RHport		1914
506.1 C 724.4	Colorado Scientific Sociely Proceedings	2-11	1885-1915
506.102^{1}	Colorado Collegestudies. Scientific series	11-12	1904-1914
6.1C21	Colorado Coniversity Studies	$\begin{gathered} \text { ncom } \\ 1-11 \end{gathered}$	1902-1915
	Concilimm Libliograbhicumb.		
598.25C74	Condor	$9-18$	1907-1916
$506.1075{ }^{\text {a }} 2 \mathrm{~m}$	Connecticut Aculemy of Arts and sciences. Memoirs.	1-1	1910-1915
506.1 C-75A2t	Conmecticut Acalemy of Arts and sciences. Transactions.	1-26)	1866-1916
$506.6 C^{8.82}$	Cordova. Boletin Acalemia Nacional de Ciencias.	(-10, 19	1884-87, 1911
506.2D2N3*	Danzig Naturforschende Gesellschaft. schriften	12	1909
5.0.5D25.12p	Davenport Academy Natural science Pro ceedings.	1-13	1867-1914
506.1-13-116p	Delaware County lnstitute of science Proceedings.	1-7	1905-1916
590.5 D 4979.	Deutsche Zoologische Ciesellscliaft. Verhandlungen	1-22	1891-1912
506.2D8R9p	Dublin Royal lrish Academy Proceedings.	1-32	$1836-1915$
$506.2 \mathrm{DRR9t}$	Dublin Royal Irish Academy. Transactions.	1-33	1787-1916
506.2 D 8R8.11	Dublin Royal society. Scientific Proceed- ings.:	11-14 (N. S.)	1905-1914
506.2 E 2 R 9 p	Edinburgh Royal society Proceerlings.	1-35 (incomp.)	1832-1915
$506.2 \mathrm{ERR9}$	Edinburgh Royal society Transactions	1-50	1788-1914
506.1 E 43 j	Elisha Mitchell scientific Society Jourı	1-31	1883-1915
$595.75 \mathrm{E} 61 \mathrm{M17}$	Entomologische Mitteilungen	4	1915
595.75E6S68a	Entomological Society of America. Anna	1-8	1908-1915
595.75 E 606	Fntomological Society of Ontario. Rep	A few nos.	1907-1914
595.75 E 62	Entomologisk tidskrift	26-36	1905-1915
59	Ergebnisse und Forschritte Zoologie. spengel	1-4	1909-1914
610.5 E 6	Ergebnisse der Physiologie. Ashen a spiro	1-14	1902-1914
570.5E78166	Essex Institute Bulletin	1-30	1869-1898
$575.15 \mathrm{E87}$	Eugenics Review	1-5	1909-1914
590.5 E 96	Experimentelle lieitrage z. Morphologie	1 (incomp.)	1906-1909
506.1 F 45 r	Field Museum of Natural History Repor	Series 1-4	1891-1914
590.5 F 4.5	Field Museum Zoological serie	1-11 (incomp.)	1895-1912
795 F 22	Forest and stream	1-8.3 (incomp.)	1873-1914
506.3(45012	Giessen. Oberhessische Gesellschaft für Natur-und lleilkunde	1-5	190.1-1912
$506.26551 P 6$	Glasgow Philosophical Lociety Proceedings.	7-9	1870-1875
570.50 .85.	Glasgow Naturalist	1-7	1908-1915
506.3 G 95 N 3 a .	Görlitz Abhandlungen der naturforschenden Gesellschaft	$2.5-27$	1906-1911
506.3G6G4g	Göttingen. Koenigliche Gesellschaft der Wissenschaften. Gelehrte Anzeigen.		186.4-1915
506.3G6G4n	Göttingen. Koenigliche Gesselschaft der Wissenschaften. Nachrichlen.	(incomp.)	$1863-1893$
506.3G6G44pa	Göttingen. Koenigliche Gesellschaft Abhandungen.	$\begin{aligned} & 1-40 \\ & 1-1.4 \end{aligned}$	$1838-1895$
506.3G77N゙3m	Graz. Naturwissenschaftlichen Verein für Steiremark. Mitteilungen.	42-49	1!0\%-1912
$506.49830^{\circ} 6 \mathrm{a}$	Grenoble. L'Univers Grenoble Annales.	1-24	1889-1915
506.41115s7a	Hagne. Archives Neerbandaises scipnces exactes et maturelles		1866-1912
506.3H18L6n	Halle. Kaiserlichleopotdinisch-carohnische dentsche Akatemie der Naturforscher. Nova Acta.		1*95-1911

Number.	Name.	Volume.	Year.
$506.7 \times 19014 v$	Moscow: Annales de la soriete Scientifique Experimentelle		1911-1914
506.3M97A3d	Munich. Koeniglich-bayerische Akademie der Wissenschaften	1-9	1808-1824
506.4N18.4t	Nancy. Travail racoltésciences et station Biologique de Cette. Memoires.	3	1911
591.945 N 2 Z 86 m .	Naples. Zoologische Station zu Neapel Mitteilungen	1-22	1879-1915
506.5 N 2 A 196 a	Naples. Atti dell Accademia Pontaniana	36-42	1907-1912
570.945N2Z8888.	Naples. Zoologische Station zu Neapel. Fauna und Flora des Golfes von Neapel.	1-32	1880-1907
540.5N285L53s	Natforschende Geselischaft. Leipzig. Situngsberichte.	32-39	1906-1913
570.5N285£9.	Natforschende Gesellschaft. Luzern. Mitteilungen.	\%	1907
506.1N゙28A2R3.	National Academy of Science. Semi-centennial volume.		1913
506.1 N 28 A 2 b	National Academy of science. Biographical Memoirs.	1-7	187:-1913
506.1 N 28 A 2 m	National Academy of Science. Memoirs	1-13	1866-1915
506.1 N 28 A 2 pr	National Acarlemy of science. Proceedings..	(incomp.)	1915
506.1N28A2r	National Academy of Science. Reports.	(incomp.)	1863-1913
910.5 N 28 G 3	National Geographic Magazine	1-28	1889-1915
$50 . \mathrm{N} 285$	Naturae novitates	15-37	1893-1915
505.N295.	Naturaliste Canadien. ...	37-42	1910-1916
570.5 N 282 H 67 b	Natural History society of New Brunswick. St. John. Bulletin.	1-6	1882-1913
	Naturaleza. Me	(incomp.)	1910-1912
050N3	Nature	1-96	1869-1916
372.35 N 3	Nature study Review	1-12	1905-1916
505 N	Naturwissenschaften. ISerlin	1-3	1913-1915
594.05 N 3	Nautilus.	4-29	1890-1916
505.11 N36 6 S	Nebraska. University Studies	1-14	1888-1914
506.4N48.6	Neuchatel. societe Neuchateloise des siciences Naturelles. Bulletin.	26-40	1897-1913
505.1 N 5 C 6 s	Nevada. University Studies...	1-5	1908-1911
$570.5 \mathrm{~N} 282 \mathrm{H67b}$	New Brunswick Natural History Society Bulletin.................................	1-30	1882-1913
570.5 N 53 s 8 r	New Jersey State Museum. Annual Report	(incomp.	1904-1914
506.2N532	New South Wales. Royal Society Journal and Proceedings.	30-33	1896-1899
506.1 N 3 A 2 a	New York Academy of Science. Anuales.	(incomp.)	1879-1916
506.1 N53A2t	New York Academy of science. Transactions.	1-16	1881-1897
$570.5 N 533 \mathrm{~S} 8 \mathrm{a}$	New York State Cabinet Natural Listory	1-23	1847-1869
570.5N53358a.	New York State Museum of Natural History	4i-66	1893-1912
570.5 N 533 S 8 b .	New lork State Museum of Natural History. Bulletin.	1-178	1887-1915
570.5N533S8m.	New York State Museum of Natural History.	1-13 (incomp.)	1889-1910
590.5N533Z86b.	New York Zoological society. Bulletin	(incomp.)	1904-1905
506.2N535	New Zealand Institute. Transactions and Proceedings...................................	7	18.4
506.3N97N3	Nurnburg Naturhistorische Gesellschaft. Abhandlungen	15-20	1905-1913
570.502	Ohio Naturalist	1-15	1900-1915
506.103788	Ohio state Academy of science I'roceedings.	1-6 (incomp.)	1899-1913
506.104 r	Oklahoma Lniversity Research Bulletin...	1-1	1909-1910
506.109 K9P	Ottawa, Royal society of Canala. Proceedings and Transactions.		1882-1915
0.500	Outing.	$5-67$ (incomp.)	1884-1916
610.5 P 22	Parasitology. supplement to Journal of 1lygiene	1-7	1908-1915
506.4P2A2c.	Paris. L'Academie des sciences, Comptes		
506.4P2A2m2.	Paris. Li Academy des sciences. Memoires.	1-42	$\begin{aligned} & 1835-1915 \\ & 1816-1883 \end{aligned}$
506.4 P 2 A 2 sm .	Paris. L'Académie des sciences. Mémoires 2nd scries.	1-31	1827-1894

Number.	Name.	Volume.	lear.
570.51'23M9m.	Paris. Muséum d'histoire naturelle. Mémoires.	1-20	1815-1832
506.41 CE 19 a	Paris. L'Ecole Normale supérieure.		1864-1915
$\begin{aligned} & 506.1 P 35 \mathrm{~mm} \\ & 506.1 \mathrm{P} 475 \end{aligned}$	Peabody Academy of science Memoires	1-6 (incomp.)	1869-1881
	Perthshire society of Nathral science. Transactions	1-5 (incomp.)	1893-1914
570.5 P - ${ }^{\text {a }}$ 2j	Philadelphia Academy of Sciences. Journal.	1-16	1817-1915
570.5 P 5 A 2 p .	Philadelphia Academy of siciences. Proceedings.	1-67	$1841-1915$
506.1 P 54199	Philadelphia Museums Reports ${ }^{\text {Philippine }}$ /	${ }_{\text {(incomp }}^{5-12}$.	$\begin{aligned} & 1905-1913 \\ & 1905-1913 \end{aligned}$
570 P5SG7	Philippine 1slands Government Laboratory	1-36	1902-1906
$506.1 \mathrm{P} 55 . \mathrm{S}$	Philappine Journal of science.......... . . .	1-9	1906-1915
770.5 P 575	Photo Era (C -Ray Laboratory)	12-36	1904-1916
770.5 P 565	Photo-miniature	1-11	1899-1914
570.5 P 58	Physiological Researches		1901-1915
506.1 P69C3a	Pittsburgh. Carnegie Museum Annales	$\frac{1}{7}-10$	1901-1916
506.1 P69C3r	Pittsburgh. Carnegie Museun Reports.	7-17	1904-1914
506.11P69C3m	Pittshurgh. Carnegie Mfuseum Memoires.	1-7	1901-1915
050 P 83	Popular Science Monthly.............	1-86	1872-1915
$506.9 \mathrm{P9B7ms}$	Prag. Sitzungsberichte der Koniglich schaften.		1909-1912
$595.7 \mathrm{P9} 7$	Psyche.	9-22 (incomp.)	1900-1915
$590.5 Q 2 J 9$	Quarterly Journal of Microscopical science.	1-61	1853-1915
506.4R4[6t.	Rennes L'Universite de Rennes. Traveaux scientifique	4-6	1905-1907
50\%R46G3	Revue général des sciences pures et appliquées.	1-2.5	1890-1914
506.6R6198a	Rio de Janerio. Archivos do Museo Nacional.	14-16	1907-1911
506.11268 2p	Rochester Academy of Science. Proceedings.	1-5	1889-1912
506.5R8Azar	Rome. Real Accarlemia dei lincei. Atti. Rendiconti.		1885-1915
506.5R8A2at	Rome. Reale Accallemia dei lincei. Atti. Transunti.		1886-1874
506.51 RAS 2 am	Rome. Reale Accademia dei Iincei. Atti. Memorie..............................		1876-1908
506.5R8A23a	Rome. Atti dell'Accademia Pontificia dé Nuovi Lincei.		1847-1911
$506.5 \mathrm{R8A} 23 \mathrm{~m}$.	Rome. Atti dell'Accademia. Pontificia de Nuovi Lincei. Memorie.	1-30	1887-1912
506.2L85R9a.	Royal Society of London. Philosophical Transactions	1-18	1865-1800
	Royal Society of London. Philosophical Transactions abridged.	1-9 (incomp.)	1721-1747
$506.2 \mathrm{LS5R9t}$	Royal Society of London. Philosophical Transactions.	1-177	1800-1886
		178-215	1887-1915
506.1519545	Royal society of London. Proceedings.	1-90	1800-1914
506.3N23N35	st. Gallen. Naturwissenschaltlichen Gesellschaft. Jahrbuch.		1907-1913
506.1S23N3j	St. Gallen. Naturwissenschaftlichen Geselischaft. Jahrbuch..		1907-1913
$506.1815 A 2 t$ 506.151516	St. Louis Academy of science. Transactions.	1-23	1856-1915
	St Louis. Congress of Arts and sciences	1-8	1905-1907
506.984s7r	Sao Paulo. Brazil. Revista da Sociedade scientifica de sao Paulo.	1-7	1905-1913
506.7515A3a2.	St. Petersburgh. Imperatorskaya akadenyia nauk. Nova Acta Academiae scientiarum imperialis petropolitanae.	1-15	1778-1806
$506.7 \mathrm{S15A} 3 \mathrm{a} 3$.	st. Petersburgh. Imperatorskaya akademyia nauk. Recueil des actes de la séance solennelle.		1827-1848
506.7S15A3b.	St. Petersburgh. Imperatorskaya akademyia nauk. Bulletin scientifique.		1835-1842
506.6S15A3c2.	St. Petersburgh. Imperatorskaya akademyia Novi Commentarii.	1-20	1750-1776

Number	Name.	Volume.	Year.
595.773U581)	l ${ }^{\text {r S S. Burean of Entomology. Bulletin }}$	$\begin{gathered} \text { incomp. } \end{gathered}$	1884-1915
595.773458b126b.	IT S. Bureau of Entomology. Technical	1-27	1895-1915
570.5458136 b	I S. Dept, of Agriculture. Biological Sur-	1-45	1889-1913
1630 U581)4m.	U. S. Department of Agriculture. Division of Publications. Monthly list of I'ublirations		1895-1916
630.673U58F23b.	1°. S. Department of Agriculture. F'armers' Bulletin	1-708	1889-1916
	1. Fish Commission. Bulletin....	1-33 (incomp.)	1881-1913
	1. S. Nish Commission. Report Musenm. Annual Report....	1-29	1885-1904
506.1 U 58 N 2 s ,	I. S. National Museum. Bulletin...	17-92	1880-1915
$506.1 \mathrm{U}^{58} \mathrm{~N} 281$	I. S. National Mnseum, Proceerling	1-48	15
630.673158031	1. S. Office of Experiment sitions. Bufletin.	$1-256$	1889-1913
015.1058 D 64	U. S. superintentent of Documents Monthly Catalog	1-19	1895-1914
506.5 V 4619 a	Venice. Reale istituto veneto di scienze lettere ed arté.	1-70	1840-1911
506.554619 m .	Venice. Reale istituto veneto di scienze lettere erl arti. Memorie	1-28	1841-1907
$506.2 \mathrm{~V} 64 j$	Victoria Institute. Journal of Transactions.	1-47	1866-1914
506.3 V 66 A 3 ml	Vienna. Kaiserliche Akademie de Wissenschaften. Denkschriften	1-89 (incomp.)	1850-1914
506.3V66U6mm.	Vienna. Kaiserliche Akademie der Wissenschaften. Sitzungsberichte	1-123	1848-1914
506.3 V 66 N 3 Y	Vienna. Nitteilungen des Naturwissenschaftlichen Vereins an der \rniversitat Wein	1-11 (incomp.)	1903-1913
506.1 W13	Wagner Free Institute of sience. Transactions.	1-7	1887-1914
506.1 W 32 A 2	Washington Academy of science. Proceedings.	1-13	1899-1911
506.1 W 32 A 2 j	Washington Academy of Science Journal.	1-5	1911-1915
506.1 W 52 P	Washington Philosophical society. Bulletin.	1-15	1871-1910
006.1 W 36	Washington 1niversity Studies	1-2	1913-1915
598.25 W 72 506.1 V 8 A	Wilson 13ulletin.	4-26 (incomp.)	$1892-1914$ $1870-1914$
506.1 W8U6b	Wisconsin University Bulletin. Scientific Series.	1-3	1894-1909
610.5 P 588	Wurzburg. Physik-Medicinische (iesellschaft. Verhanthongen		1850-1913
610.5 Z	Zeitschrift für allgemeine Physiologie. Jena.	1-16	1902-1914
610.57686	Zeitschrift für Biochemie und Biophysik..	10-18	1910-191:
610.5 Z 5	Zeitschrift für Biologie. Mumich.	1-66	1865-1915
610.5Z5B62	Zeitschrift für Biologische Technik und Methodik. Strassburg.	1-3	1908-1914
570.52514	Zeitschrift für induktive abstammungs-und vererbungslehre.	1-1.5	1908-1915
610.5 Z 5 M 8	Zeitschrift für Morbhologie und Anthropologie. stuttgart	1-18	1899-1915
612.05 H	Zeitschrift für Physiologische Chemie (Hoppe-Seyler)	1-93	1877-1915
150.5Z5P97	Zeitschrift für Psychologie und Physiologie der Sinnesorgane	1-71 (incomp.)	1890-1915
595.75 Z 5 W 8	Zeitschrift für wissenschaftliche insektenbiologie	1-11	1905-1915
578.5 Z 5 W 8	Zeitschrift für wissenschaftliche		
0.5Z5W	Mikroskopic.	${ }_{34-114}^{1-32}$	1884-1915
590.5 Z 56	Zentralblatt für Zoologi	1-6	1912-1915
590-5Z8619	Zoological Rulletin.	1-2	1897-1899
590.5 Z 86 S 7	Zoological society of London. Proceedings.		1830-1912
590.5Z89A6	Zoologische Anzeiger	1-45	1878-1915
$590.5 \mathrm{Z888J} 2$	Zoologische Jahrbucher (supplement-Band).	4-15	1898-1912
590.5Z88J2r	Zoologische Jahrbucher (Systematik, Geographic, u. Biologie)	27-38	1909-1915
590.5Z88J2.	Zoologische Jahrbucher (Anatomic und Ontogenie der Thiere)	1-39	1886-1915

Number.	Name.	Volume.	Year.
590.5789848	Zoologischer beohachter, Frankfurt a m	10	1869
$590.5789 . \mathrm{J} 2$	Zoologischer Jahresberichte		1879-1912
$590.5 Z 9 C 4$	Zoologisches Centralblatt		1895-1894
590.579 C 4		1-18	1895-1911
506.3794 .3 .	Viert eljahrschrift	1-59 (incomp.)	1856-1914

[^0]: ${ }^{1}$ An Address 1 efo e the Annual Meeting of the Rubber Club of America, at the Waldorf Hotel, New York City, Feb. 2, 1916.

[^1]: Nole: ligures Compiled by the States' Relation Service of the U. S. Department of Agriculture for nse in Farm Management Demonstrations during 1915, show that two fifths of 3414 farms investigated indiscriminately in 17 different states, including N. Y., Mich., Neb., Mo., etc., incurred an average loss of labor income.

[^2]: ${ }^{2}$ Cf P. 2 U. S. Dept. of Agriculture, Farmers' Bulletin No. 572.

[^3]: *F゙, M. Taylor, Readings in Economics, P'. 182.

[^4]: *I have left out of consideration here the sex determining chromosomes.

[^5]: *Address of the retiring president March 29, 1916.

[^6]: * A similar difference in size exists berween Oenothera lamarckiana and one of of its mutants, Ue. gigas and it is worthy of note that the latter bas double the number of chromosomes possesserl by the former.

[^7]: *' ${ }^{\prime}$ he writar is imbebted to Miss (irace Powers of the Zoology Department amel to several mombers of the library staff for assistance in preparing this report.

