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NOTATION 

Constant defined by an equation in Appendix 1 and used in evaluating Pearson’s 
Type I Curve 

Constant defined by an equation in Appendix 1 and used in evaluating Pearson’s 
Type I Curve 

Number of distributions required to satisfy conditions assumed in Appendix 2 

Deviation of the mean of a sample from the mean of a population 

Frequency of occurrence 

Wave height measured from crest to trough 

Root mean square value of wave heights 

Fraction between 0 and 1 

Mean value of the first pn of n wave heights when arranged in descending order 

of magnitude 

Constant taken from a student’s ‘‘¢’’ table 

Constant defined by an equation in Appendix 1 and used in evaluating Pearson’s 

Type I Curve 

Constant defined by an equation in Appendix 1 and used in evaluating Pearson’s 

Type I Curve 

Total number of elements which make up the distribution 

Number of independent observations required to satisfy conditions assumed in 

Appendix 2. 

Probability 

Constant defined by an equation in Appendix 1 and used in evaluating Pearson’s 
Type I Curve 

Arithmetic mean of the population 

(7 = 1, 2, 3, 4) ‘‘zth’’ arithmetic mean of a sample 

Value of the abscissa in Pearson’s Type I Curve 

Value of the ordinate in Pearson’s Type I Curve 

Ordinate of the Pearson type curve at the mode 

Deviation of any value of f from the mean value of frequency distribution 

Criterion for the Pearson type curves and defined by an equation in Appendix 1 

Criterion for the Pearson type curves and defined by an equation in Appendix 1 

Gamma funetion 

Variable of integration in the evaluation of AP? 

h 



Hy 

Criterion for the Pearson type curves and defined by an equation in Appendix 1 

(¢ = 1, 2, 3, 4) ‘‘cth’? moment about the mean, yp, = 

Instantaneous wave elevation 

Standard deviation of the population 

Standard deviation of a sample 

Sf 2 

N 



Class interval 

Confidence bands 

Distribution 

Frequency 

Normal distribution 

Population 

Probability 

Probability density 

Probability level 

Random 

Sample 

Standard deviation 

Standard error 

Statistic 

“*¢” distribution 

Variability 

Mode 

Significant wave 

height 

vi 

DEFINITIONS 

A grouping of possible values of a variable 

The interval within which the ‘‘true’’ distribution will fall with a 

certain probability 

An arrangement of numerical data according to size or magnitude 

The number of times a value occurs or is observed 

A bell-shaped curve, symmetrical about the mean and defined by the 
mean and standard deviation 

The entire data from which a sample was drawn if all of it were 
available 

The likelihood of occurrence 

A quantity which, if integrated over the independent variation, is 
equal to 1; see probability 

A number which indicates the degree of confidence that can be placed 

on a given result, i.e., probability level 0.90 means that 90 times out 
of 100, a given hypothesis will hold 

The method of drawing a sample when each item in the population has 
an equal chance of selection 

A finite portion of the population 

A special form of the average deviation from the mean, a measure of 
dispersion, o = Y(2 f 22)/N 

The standard deviation of a distribution of means 

The estimate of a number describing the numerical property of a popu- 

lation 

The distribution of student’s ¢, defined by ¢ = (X, = X) VN/o where X; 
is the mean of a random sample of size N from a normal population 
with a mean X and a is the estimate of the standard deviation of the 

normal population as estimated from the sample. 

The variation of the data; the lack of tendency to concentrate 

The most frequent or most common value; its value will correspond to 
the value of the maximum point of a frequency distribution. 

Generally defined as the mean value of the one-third highest waves. 
Reference 12 and correspondence with the Hydrographic Office indicate 
that th- wave heights estimated by observers approximated the 
‘““‘significant’’ wave heights. 



ABSTRACT 

Available observations of wave heights have been assembled and evaluated 

in terms of statistical methods in connection with the study of the service strains 

and motions experienced by ships at sea. Curves have been fitted to the distri- 

bution patterns, and confidence bands, averages, and standard deviations have 

been computed. Distribution patterns for wave heights observed in different parts 

of the world are all of the same type with a peak displaced toward the lower wave 

heights. Pitching motions measured on a ship at sea also follow this same pattern. 

INTRODUCTICN 

The David Taylor Model Basin is making a study of the motions and strains in ships at 

sea for the purpose of evaluating and improving methods for the design of the ship girder and 

its structural components. It is probable that the frequency-distribution patterns of strains 

and motions of ships at sea will be similar to those of wave heights. It is also expected 

that the year-to-year variability in the distribution patterns of wave heights will be of the same 

order of magnitude as the year-to-year variability in the distribution patterns of ship motions 

and dynamic hull-girder stresses inasmuch as the latter are, to a large degree, functions of 

the wave heights and wave lengths. To verify these expectations, observed wave heights 

have been obtained from the Weather Bureau and the U.S. Hydrographic Office. These data 

and data measured by the Model Basin on the USCGC CASCO have been studied to determine 

(1) the type of distribution pattern, (2) the variation in this pattern over a period of time, and 

(3) the mathematical function which will best fit these data. The results of the third phase of 

the study are presented in this report. 

PRESENTATION OF DATA 

Figures 1, 2, and 3 are frequency distributions of wave heights, that is, depth from 

crest to trough, obtained from various sources. These distributions are presented in the form 

of bar-type graphs or histograms. The ordinates of these histograms give the percent of total 

observations or measured values that fell between given limits of wave height as indicated by 

the abscissa. 

OBSERVED WAVE HEIGHTS 

Weather Bureau Data 

Figure 1 shows yearly and combined wave-height data which were furnished by the U.S. 

Weather Bureau at the request of the Taylor Model Basin.! These data represent wave-height 

DRererences are listed on page 13. 
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Figure la - Frequency Distributions of Yearly Samples 

distributions determined from observations made by weather ships at ocean station ‘*Charlie’’ 

(52° N, 37° W) in the North Atlantic from 1 January 1949 to 31 May 1958. The observations 

were made every three hours by trained weather observers in accordance with instructions 

prescribed by the United States Weather Bureau.” The observations are reported as the 

average of the significant* wave heights. Only one quantitative measurement was recorded 

each time the sea was observed. 

Hydrographic Office Data 

Figure 2 shows combined frequency distributions of wave heights for periods of 2, 7, 

and 40 years tabulated by the U.S. Hydrographic Office? at the request of the Model Basin. 

These observations, also at station ‘‘Charlie,’’? were made by German merchant ships from 

1901 to 1939. The data are not as reliable as the data presented in Figure 1; because routes 

*Generally defined as the mean value of the one-third highest waves; see definitions page vi. 
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Figure 1b - Combined Frequency Distributions 

Figure 1 - Frequency Distributions of Samples of Significant Wave Heights Observed at 
Ocean Station “‘Charlie’’ by U.S. Weather Observers 

X is the mean and, Ox is the variance. The observations greater than 30,3 ft were included in the totals given 

but are not shown on the histograms. 

MEASURED WAVE DATA 

were often avoided at times of high seas. Fewer extreme values were recorded. 

Figure 3a is the frequency-distribution pattern of measured wave heights produced by 

the wavemaker at the Taylor Model Basin. These were simulated to represent a characteristic 

confused sea. Only 43 measurements were made. 

Figure 3b shows a frequency distribution of wave heights measured at sea by means of 

a pressure recorder. These data were tabulated on a form that shows the relation between 

wave heights, lengths, and periods.* Since measurements were made for a period of only 30 

minutes, it may be assumed that they represent the characteristics of the sea at that time and 
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at that particular geographic location. It should be noted that the waves were of very small 

height (less than 140cm = 4.6 ft). 

OBSERVED WAVE HEIGHTS AND MEASURED SHIP MOTIONS 

As pointed out in the introduction of this report, wave-height distributions could 

reasonably be expected to have the same type of pattern as ship motions and stresses. This 

similarity was evidenced by the weather ship USCGC CASCO.° Figure 4 shows the frequency 

distributions of wave-height observations and pitch-angle measurements made during this 

test. Both were made at 3-hr intervals over a period of one month at station ‘‘Charlie.’’ No 

waves less than 1 ft nor pitch angles less than 1 deg were recorded. 



357 : 
9 Total Observations = 43 '] Total Observations — 688 

230)  ReUOS | Rees 
PA of= 1.99 o2 = 883 

i) 
S) 28) | 

& 

Beoh 1 
@ 157 ian 
ye) 
fo) 

S 10+ + 
e 

oe ; 
S 
1S) 

ane) 
| 2 3 4 5 6 tr 8 O 20 40 60 £80 100 120 140 

Wave Height, in. Wave Height, cm 

Figure 3a - Frequency Distribution of Measured Wave Figure 3b - Frequency Distribution of Wave Heights at 
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Figure 3 - Frequency Distributions of Measured Wave Heights 
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ANALYSIS OF DATA 

DISTRIBUTION PATTERNS 

Examination of Figures 1 through 4 shows that all have a similar type of frequency 

distribution, that is, distributions peak towards the lower wave heights. Similar distributions 

presented in Figure 11 of Reference 6 also showed such patterns. The data presented there® 

were compiled from charts of observations made by Japanese merchant ships in the North 

Pacific during the 15-yr period from 1924 through 1938. These charts’ are available at the 

U.S. Hydrographic Office at Suitland, Maryland. Areas of observations were broken down into 

2-deg squares, that is, 2 deg latitude by 2 deg longitude. A study of these charts, which 

present the data in the form of histograms, leads to the conclusion that, in general, these 

histograms are also peaked in the direction of the lower wave heights. 

On the basis of a study of the experimental data thus far available to the author, there 

is a strong indication that the frequency distributions of wave heights may be approximated 

by a straight line when plotted on logarithmic probability paper. Figure 5 shows some of the 

patterns obtained from the data of Figures 1, 2, and 3 and Reference 6. This approximation 

of the wave-height distributions by a straight line means that they approach a logarithmically 

normal distribution, that is, if the frequency is plotted as a function of the logarithm of wave 

height, the distribution will be normal. 

FITTING MATHEMATICAL CURVES TO FREQUENCY DISTRIBUTION 

In addition to the log-normal curve two other types of curves have been fitted to the 

Weather Bureau data (Figure 1) inorder to find a suitable mathematical function which might 

be used to represent the observations. The Weather Bureau data were chosen because they 

appeared to have been obtained by the most reliable and consistent sampling procedure. The 

fitted curves are shown in Figures 6 and 7. The first is a Pearson Type I Curve whose shape 

is based on the values of the moments yp, of the given frequency distribution and whose origin 

is taken at the mode computed from the measured distribution. The curve is defined by the 

equation given in Figure 6 and discussed in Appendix 1. The second fitted curve, Figure 7, 

is of the form known as the ‘‘random walk’? distribution. It has been shown® that if the sea 

elevation é may be represented by a narrow spectrum, the probability that at any fixed location 

the wave height / lies between / and A + dA is approximately 

—p2 

2 

P (h)dh =28 e * dh (W 
h 

where h2 is the mean of h2. If the sea has a narrow spectrum, the elevations & of the wave 

surface have a normal distribution, see Figure 8. 
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Figure 6 - Pearson’s Main Type I Curve® Fitted to Probability Density Distribution of 
Significant Wave Heights Observed at Ocean Station ‘‘Charlie’’ by U.S. Weather 

Observers from January 1949 to June 1953 
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Figure 7 - ‘‘Random Walk’? Distribution Fitted to Probability Density Distribution of 

Significant Wave Height Observed at Ocean Station ‘‘Charlie’”’ by U.S. Weather 
Observers from January 1949 to June 1953 
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Figure 8 - Wave Record Showing Elevation ¢ and Wave Height A 

It is not necessarily true that a sea for which the wave heights follow the probability 

density function [1] will have a normal distribution of &(¢), where €(¢) is the instantaneous 

wave elevation. 

Reference 8 gives the ratio 
co 

BO i, aay eri 1 [2] 
hp hp hp 

h®) denotes the mean value of the first pN of the N wave heights when arranged in descend- 

ing order of magnitude, where p is a fraction between 0 and 1. Thus the average of the 

‘significant waves’? is A“1/3), It should be noted that, experimentally, it is difficult to find A 

from measurements of inasmuch as the average depends to a considerable degree upon the 

lower limit to which the wave heights are measured; see Reference 4 for a discussion of this 

effect. 

The distribution plotted in Figure 7 is fitted with the mathematical curve given in 

Equation [1]. The value of 42 which gives the best fit is h? = 60.0." As stated on page 10 the 

random walk theory holds only if the sea has a narrow spectrum. It may well be that the 

spectrum of the sea for the wave height distribution shown in Figure 7 will not remain narrow 

due to the fact that the sampling extended over a period of years. 

MEANS AND STANDARD DEVIATIONS 

Means and standard deviations were computed for the distributions shown in Figures 1 

and 2 and are given in Table 1. It will be observed that the average of the data obtained from 

merchant-ship observations is much lower than the average of the Weather Bureau data. From 

the standard error of the mean (the standard deviation of the distribution of the means of 

samples) of the four yearly Weather Bureau samples, it may be stated that there are 99.7 

*The best fit was determined by a Chi square test. 
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TABLE 1 

Means and Standard Deviations for Frequency Distributions of Wave Heights 

Standard 
Standard | Average of cea Number of 

Sample 
Observations 

— 

Computed from Weather Bureau Data (Figure 1a) 

1949 2811 7.36 4.53 

1950 2724 7.50 5.10 7.69 0.45 

1951 2768 8.45 5.90 

1952 2814 7.40 | 4.53 

Computed from Weather Bureau Data (Figure 1b) J 

1 yr 2811 7.36 4.53 | 

2 yrs 59390 7.51 4.81 

3 yrs 8303 7.82 5.22 

mae 12,272 7.76 5.07 | 

4830 

18,627 

chances out of 100 that the average mean computed, 7.69 ft, will be no further away from the 

true mean than 1.35 ft.? (3c = 1.35 ft) for the period 1949 to 1952. 

CONFIDENCE BANDS 

Figure 9 shows confidence bands fitted to the probability density distribution of the 

Weather Bureau data. These confidence bands, computed according to Kolmogorov’s statis- 

tic,!° show the interval within which the “‘true’’ distribution will fall at a probability level 

of 99 percent, that is, in 99 cases out of 100 random sampled distributions, the distribution 

will fall within these bounds. The requirement for the use of Kolmogorov’s statistic is that 

the sampled wave heights be random and that the distribution of wave heights be continuous. 

A plot of the data on probability paper is shown in Figure 9a. The encircled points 

were computed from the observed wave heights and the solid line represents a logarithmically 

normal distribution. In this figure the confidence bands were fitted to the observed points. 

The curve fitted to the probability density distribution shown in Figure 9b was obtained by 

taking the average probability density of the class intervals at their centers and fairing a 

curve through these points to make the area under the curve equal to the area under the 
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histogram. The confidence bands were computed for this curve, utilizing Kolmogorov’s statis- 

tic 

CORRELATICN BETWEEN WAVE HEIGHTS AND PITCH ANGLES 

The scatter diagram* of Figure 10 shows the pitch angles measured on the CASCO 

plotted as a function of wave heights. Except for scattered observations, this diagram indi- 

cates a correlation between pitch angle and wave height which may be approximated by a 

straight line. The figure also indicates that the most probable combination is that correspon- 

ding to about 3-deg pitch angle and 5-ft significant wave height. 

Oo 

(Peak to Peak) (For a given observation) 
Average of One-Third Highest Pitch Angle, deg 

Significant Wave Height, ft 

Figure 10 - Scatter Diagram of Pitch and Wave Height Data of Figure 4 

A straight line was faired by using pitch angle measurements when ship was headed into the waves; these are 

indicated by ©; the numbers give the number of observations. 

DURATION OF SAMPLE 

An estimation of the period throughout which samples must be taken in order to permit 

a statistically valid prediction is often necessary. The details of the computation involved 

for two such methods are given in Appendix 2. 

*A scatter diagram? is a method of showing the relationship between two associated variables. In this form the 

independent variable is placed along the abscissa while the dependent variable is placed along the ordinate. It 

is obvious that if the relationship between the two variables were perfect, every given value on the abscissa 

would indicate a value of the ordinate. If there is a direct simple relationship between the variables plotted, the 

points will tend to fall on some curve, possibly a straight line. 
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CONCLUSIONS 

1. Frequency distributions of wave heights are not normal but tend to peak toward the 

lower wave heights. They do, however, have a pattern which is approximated by a logarith- 

mically normal distribution. 

2. The frequency distribution of pitch.angle for the USCGC CASCO has the same general 

form as that shown to be applicable for the wave heights. It is reasonable to expect that this 

pattern will also hold for other ships. 

3. The frequency distribution patterns of the pitch angles measured on the USCGC 

CASCO show a correlation with those of the wave height observations. 

4. The Pearson Type I Curve may be fitted to frequency distributions of wave heights. 
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APPENDIX 1 

PEARSON-TYPE DISTRIBUTION CURVES 

A set of curves that may be fitted to different frequency distributions was compiled by 

the statistician Karl Pearson. The theoretical derivation and calculations necessary for 

fitting these curves are described in Reference 11. The curve type which best fits a frequency 

distribution may be identified from criteria calculated on the basis of the values of the 

moments p;. 

The steps for identifying and computing the constants for, the fitting of the curve shown 

in Figure 6 are given here. The numerical values are those for the frequency distribution of 

the Weather Bureau data for the 414-yr period, Figure 1. 

The moments measured about the mean value of the distribution are: 

py, -= 2 -0 [3] 
x f 2 Hy =~ = 18.68 [4] 

wie 
By =—— = 40.27 [5] 

See 
hq =< = 593.6 [6] 

where z represents the deviation of the actual value f from the mean, 

f is the frequency, and 

N is the total frequency of the sample. 

The criteria 8,, 8,, and K computed from the preceding moments are: 

ue 
B, =— = 0.6336 [7] 

BS 

By 2 = Bale [8] 
2 

Ho 

B,(B, +3) 
eS 103090 [9] 

4(46, be 38) (2B, 7 38, Te 6) 

Since the criterion K is negative, it identifies Pearson’s Main Type I Curve as the most 

suitable one. This curve is defined by the equation 

y= (1+=] 2 [10] 

1 
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where y, is the ordinate at the mode,” 

z is the distance from the mode, and 

Taieyue2 
are computed from the equations which follow and 

a 2 pp &a 

m, ™ 
pad yet [11] 

lap 

First a parameter 7 must be evaluated 

6(2,- -l 
pm peel aie Ha [12] 

(6 + 38, - 28,) 

a8 - ollie (B, (r + 2)? + 16(r + 1)} = 22.71 [13] 

[14] 

When y, is positive, m, is the root corresponding to the plus sign; if , is negative, m, is the 

root corresponding to the minus Sign. 

For our numerical example 

m, = 0.441 

mM, = 3.493 

Finally m m 
igo Mo S My 2 : P(m, +m, + 2) [15] 

i arita, m+m, U(m, + 1)0(m, +1) 
(m, + my) 1 

Tables of the gamma function are given in the reference 11. With the use of logarithms, y, 

was computed to be 1404, and the mode of the distribution was found to be at 3.99 ft. 

Equation [10] becomes: 

0. b 

pole (t-—2 el ae ae [16] 2.55 20.2 

This gives the frequency distribution in terms of a class interval of unit length. Therefore 

for a class interval of 1.6 ft, the frequency would be 2171. Since the probability density 

distribution was desired, y was divided by N. 

*The mode is the most frequent or common value; it will correspond to the maximum ordinate of the frequency 

distribution. 



17 

APPENDIX 2 

DURATION OF SAMPLE 

Assume in the first approach that for the specific locale indicated, one of the wave- 

height distributions has a mean 

X = 7.76 ft 
and 

o, = 5.07 ft 

Then, by standard statistical procedure, the sample size necessary to obtain a sample mean 

which differs from the true mean by no more than 5 percent with a confidence coefficient of 

90 percent can be obtained by solving for n in the equation 

ee = [17] 
0.05 X 

vn 

where + & is the particular abscissa on the ‘‘¢’’ distribution with n defined such that the area 

under the ‘‘¢’’ distribution between * & is 90 percent. By substitution 

pe [SOO age 
ORC || 

that is approximately 467 indcpendent and random observations are necessary. 

Weather observations are characterized by the lack of independence in successive ob- 

servations when the time interval between observations is relatively short. The duration of 

interval necessary to insure independence cannot be determined. If one independent obser- 

vation can be obtained every 10 days, then by the above calculations, more than 13 years are 

necessary to obtain a sample fulfilling the stipulated conditions. If 7 days are sufficient, 

then about 9 years are necessary. 

As another approach, suppose that the means of the wave heights obtained for each 

year (Table 1, page 10) represent independent observations. In this treatment the statistical 

“‘population’’ is the totality of these independent observations. Basing the following compu- 

tations on the observed mean values, it is found that n = 7. This implies that 7 years of rather 

extensive observations are necessary to fulfill the conditions imposed. 

Problem: 

Find the number of samples which are required to make 

|2-1) <0.0% [18] 
x; 

with a probability of 0.90, where ¥ is the mean of the population and X, is the mean of the 

ith sample. 
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Procedure: 

1. Find the n means of n distributions, XeP Mop nee 

2. Assume the mean of the population to equal the average of these means and compute 

xX ap Ae) #P 000 ah [19] 

3. Assume that the standard deviation of the means of n yearly distributions is equal to 

the standard deviation of the population of means of yearly distributions and compute 

_ Vc 7 - Vad [20] 

where d is the distance of the mean of the sample from the mean of the population. 

4, The mean of any one distribution of c yearly means may take on a range of values 

X is the mean value of the population, 

o is the standard deviation of the population, 

aa = Ska [21] xe is a sample of c means of the population, 

é k is taken from a student’s ‘‘z’’ table at probability level 

0.90 and (c — 1) degrees of freedom, and 

c is the number of distributions required; in other words 

the number of independent observations. 

5. From Equations [18] and [21] obtain 

ko 

Ve 
< 0.05 |X,| 

Thus, solving for /c, gives 

k 
“ [22] > = 

vez 0.05. t 

6. Values of c are assumed until Equation [22] is satisfied. 

Example: 

Assume each Weather Bureau yearly distribution to represent one sample. Then, from 

Figure 1 (with n = 4) se 

X, = 7.36 (year 1949) 

P< | 7 = 1.50 (year 1950) 

X, = 8.45 (year 1951) 

x, = 7.40 (year 1952) 
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Therefore 

Xx - 30.71 _ 769 
4 

a -\/2 d? [23] 
= It 

o =] /0-10 + OBE 0.591 + 0.08 _ 9 xo 

and 

0.52 i ’ ec > 14" _— 1.4% from Equati 22, 
Ve> aap (7.36) guaonie 

when x, is used. 

As a first approximation, assume c = 5. The value &(¢) from the ‘‘2’’ table at a 0.90 

probability level and four degrees of freedom is 2.13 

V5 > 1.4 - 2.18 

As a second approximation, assume c = 6 

V7 = 1.4 - 2.02 

Therefore c = 7, indicating that measurements would have to be made over a period of 7 yr to 

establish a distribution pattern which would be valid at a probability level of 0.90 such that 

Equation [19] is satisfied, providing that no year-to-year bias exists in the data. 
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