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ABSTRACT

A random sample of size N is divided into k clusters that mini-

mize the within clusters sum of squares locally. Some large sample

properties of this k-means clustering method (as k approaches °° with

N) are obtained. In one dimension, it is established that the sample

k-means clusters are such that the wi thin-cluster sums of squares are

asymptotically equal, and that the sizes of the cluster intervals are

inversely proportional to the one-third power of the underlying density at

the midpoints of the intervals. The difficulty involved in generalizing

the results to the multivariate case is mentioned.
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1. INTRODUCTION

Let the univariate observations x-,, X2, . . . , x^, be sampled from

a distribution F with density function f. Suppose that these observa-

tions are partitioned into k groups with means z,, ..., z. such that

no movement of an observation from one group to another will reduce the

within groups sum of squares

WSS., = Z min x. - z •
I .

^ i=l l<j<k " ^
J

'

This method for division of a sample into k groups to minimize the with-

in groups sum of squares locally is known in the clustering literature

as k-means. In one dimension, the partition will be specified by k-1

cutpoints; the observations lying between common outpoints are in the

same group. See Hartigan (1975) for a detailed description of the k-means

method, and see Hartigan and Wong (1979) for an efficient computational

algorithm. This method has been widely used in various clustering

applications (see Blashfield and Aldenderfer, 1978). Its asymptotic

properties (when N ^ <=°) for fixed k have been studied by MacQueen (1967),

Hartigan (1978), and Pollard (1979). Here, the sampling properties of

k-means clusters when k approaches °° with N are presented.

The properties of the univariate population k-means clusters when

k -> CO are given in Wong (1982a). It is shown that for large k, the

optimal population partition is such that the wi thin-cluster sums of

squares are equal, and that the sizes of the cluster intervals are

inversely proportional to the one-third power of the underlying density

at the midpoints of the intervals. In this paper, non-standard asymptotics
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are used to obtain the asymptotic properties (when k ^ °° with N) of

the locally optimal k-means clusters for samples from a general popula-

tion F on [0,1]; in particular, it is shown that the locally optimal

partition approaches the population optimal partition under certain re-

gularity conditions. The special difficulties in showing this result

are: (1) the number of clusters k approaches °° with H (such that

the length of each cluster interval approaches zero while the number of

observations in each cluster approaches infinity), and (2) the locations

and sizes of the cluster intervals are determined by an optimization pro-

cedure (so all results concerning the clusters need to hold uniformly

for all clusters) .

Theorem 1 and Theorem 2, respectively, gives the asymptotic expres-

sion for the lengths and the within-cluster sums of squares of the

locally optimal k-means clusters. The result of Theorem 1 is obtained

in Section 2, and Theorem 2 is proved in Section 3. Some concluding

remarks are given in Section 4, in which the difficulties involved in

generalizing these univariate results to many dimensions are also mentioned.
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2. ASYMPTOTIC LENGTHS OF THE LOCALLY OPTIMAL
SAMPLE K-MEANS CLUSTERS

Let X-,, Xp, . . . , X|M be a random sample from a density f which is

positive and has four bounded derivatives in [0,1]. Denote the i th

derivative of f at x by f^^^x), and let B = q^J^P^ f(x) and

b =
p. , f(x). Suppose that the N observations are grouped into

k^i clusters with means z,<Z2 <...< z^ so that the within clusters

um of squares of this locally optimal k^,-parti tion cannot be decreased

by moving any single observation from its present cluster to any other

cluster. Denote the pth order statistic by X/
i

> and let n- be the

number of observations in the jth cluster. Then x , -^ . .
.'

<

(Jp n,+l)

t=0 ^

x . are the observations in the jth cluster, where n|-,=0. And the

( 2 n )

t=0 ^

length e. and the midpoint m. of the jth cluster are defined to be
J J

[x . X/ . , ] and 1/2 [x, .• + x . , ] respective-

( ^z
n^n) - ^J-^

n )
^

i n +1) (^l^ n^)

t=o t=0 t=0 ^ t-0

ly, where x^^^ = and x^j^^^^ = 1.

There may be many locally optimal k-maans partitions. Theorem 1

1/3
states that for any such partition, if k^, = o([N/logN] ), then

max Ik^ e. f(m.)^/^ - A f{x)^^^ dx |
= o (1).

V-J^k^
N J J U p

To show the result of Theorem 1, we need a few lemmas. Lemma 1 is a direct

consequence of a theorem of large deviations given in Feller (1971). It



is useful in proving Lemma 2 which states that if the n.'s are large

enough, the cluster means are suitably close to the cluster midpoints.

This result is then used in the proof of Theorem 1 to determine the

relationship between the lengths of neighboring clusters.

Lemma 1 :

Let X-,, Xp, ..., X|u be a random sample from a distribution F with

density f which is positive and has four bounded derivatives in [0,1].

Put B = J^^ , fix) and b =
^''^

, f(x). Denote the n observations

contained in an open subinterval I of [0,1] by Zp z^j • • • , z„> and

let E[z.-Uj] = and E[(z.-Uj)^] = a^.

Then there exist constants C, D, and N not depending on Uj

and oj (or I) such that if N^N^ and n^N(log N/N)^/^b/16,

Proof :

From the theorem of large deviations given in Feller (1971, p. 549),

since (41ogN) n~ ^0 as n -> °°, we have

D ;
-1 1/2

1

^1 + . ..+^n - uJ > (41ogN)^/2}/(2ll)"^/^(41ogN)"^/2N"2-l

as n ^ °=.

Now since f has bounded derivatives and Ot n I

'-^ " ^^t I

1 ' n '

has a distribution not depending on Uj and a. (or I), the lemma

follows. (In the proof of Theorem 1, it will be shown that when N is

1/3
large enough and if k^, = o ([N/logN] ' ), then each of the k^, clusters

1/3
contains at least N(logN/N) ' b/16 observations, and hence the result

of this lemma can be applied.)



In the application of Lemma 1, n will be the number of observa-

tions in an open subinterval I of [0,1]. Therefore, n is approxi-

mately NF(I), where F(I) = /r dF. More precisely, using Donsker's

theorem for empirical processes (see Billingsley 1968, p. 141), we have

^^P] "j - NF(I)
I

= (N^/2) (2.1)

where ny is the number of observations in I, and the sup is taken

over all open subintevals of I. Both Lemma 1 and Equation (2.1) will be

used in the proof of Lemma 2 to give a uniform estimate of the deviations

between cluster means and midpoints for those clusters that are large

enough.

Lemma 2 :

Let x-|, Xo, . . . , x^, be a random sample from F whose density f

is positive and has four bounded derivatives in [0,1]. Put

B = ^"P. f(x), b = n"""^, f(x), and F(I) = /. dF. Let z. be the mean
0<Xil Oi:Xi:l I 1

of the observations in an open interval I, lit = /t xdF/F(I) be the

conditional mean of F on I, and Sj be the size of the interval I.

Then there exists a constant C such that

P^{ ^'f ^i~'^^^\~^i
-

^i\
^ ^0 (logN/N)^''^} = 1 - o(l), where the sup is

taken over all open intervals I (whose boundary ooints are order

1/3
statistics) containing at least N(logN/N) ' b/16 observations.

Proof:

For any N^N , consider an interval I of the form
J
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(X(p), x^p^^ ^^p, where n^ 2 N (log N/N)^/\/16.

Using Lemma 1 (first conditioning on the two order statistics and

then integrating out), we obtain

p/aj^ rij^/^l Zj - Uj
I

> C(log N)^/^} < DN"^ (log N)"^/^ (2.2)

2 2
where a. = fr (x - Ur) dF/F(I) = conditional variance of F on I.

Now, by the Taylor series expansion of f, f(x) = fim-r) + (x - mr) f^
'

1 2(2)
(fir) + T"(x-mj) f (q^^ ^^'^ ^^^ ^ ^'^ ^' where m. is the midpoint

of I and q^^ is between x and m.. Therefore,

F(I) = f(mj) Sj [l+0(s^)]

1 ^ r 2 4

^I = ^ ^T2 • f(mj • 'l * 0(^1^' ^"^

aj = y^ S^ [1 + 0(s^)]

(Note that the constant in the term depends on the bound of the second

deri vati ve of f)

.

It follows that (2.2) can be written as:

P^ { vl2 Sj^ [1 + 0(s^)] nj^/2
I

5j - ujl :. CdogN)^/^}

^ DN"^ (logN)"^/^

2
Since the number of possible intervals I is bounded by N , we have



P, ( ^JPsjl [1.0 (s2)] n^l/2
l-zj -uj

I

< JLc(logN)l/2j
/1

2

^ 1 - D(1ogN)'^/^ = 1 - o(l).

Now from (2.1), we have uniformly in I, Ht >-2NF(I) > j Nb Sr with

probability tending to one.

Therefore,

p^
{Sup 3jl/2

|-^ _
^^1 ^ ^^ (logN/N)^/^} ^ 1 as N

2 -1/2
where C„ = — b C, and the sup is taken over all intervals of the

form (x^p), X(p^^
^^j)

with n^ ^ N ( logN/N)
^^^

b/16.

The result of Lemma 2 shows that if the k-means clusters are large

enough, the cluster means are suitably close to the cluster midpoints.

When combined with some well-known properties of locally optimal k-means

partitions, this result is useful in establishing the relationship between

the lengths of neighboring clusters. The main difficulty to be overcome

in the proof of Theorem 1 is showing that all the clusters are large

enough.

Theorem 1 :

Let X-, , Xp, . . . , X[u be a random sample from a distribution F

whose density f is positive and has four bounded derivatives in [0,1].

Put B - Q^JJP^ f(x) and b = Q^^^^f(x), let e^ ( j = 1, 2, . . . , k^)

be the length of the jth cluster of a locally optimal k^^^-parti tion of

1/3
the sample. Then, provided that k^, = o ([N/logN] ), we have
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max
1

I
r, n1/3 .1 r, n1/3 ,1 , ,s

where m. is the midpoint of the jth cluster.
J

Proof :

1/3
Consider a locally optimal kj^-parti tion with k^, = ([N/logN] ).

Denote the open interval (whose boundary points ?i.rQ. order statistics)

containing the jth cluster by I.. Then, as before, we have

1

^^^^(^•)
2 4

u. = / .
X dF / F(I .) ^ nij . ^ . -^^ . .] . 0(e]) (2.3)

The proof is in three parts. In part I, it is shown that if a cluster is

of length bounded by 2{B/b)'^^^/k^ and l/(2k^), then both it and its

1/3
neighboring clusters contain at least N(logN/N) b/16 observations.

In part II, using the result of Lemma 2, the relationship between the

lengths of neighboring clusters is established; a bound of the ratio

—^ • ( -rr-^) is given by 1 + k./ (1). Since at least one of
e. f(m.) ^ -^ N p'

vj J

1/3
the k^, clusters satisfies 2(B/b) /k|^ ^ e- ^ l/(2k|^), applying parts

I and II repeatedly gives the result of this theorem.

To avoid wordiness, statements are to be read as if they included the

qualification: "with probability tending to one as N approaches infinity'

[I] Suppose that 2(B/b) ^'''^/k^ ^ e^ ^ l/(2k^). Then F(Ij) ^ b/(2k^).

By (2.1), the jth cluster contains at least Nb/(2k|^) - (N^^^) obser-

vations. Therefore, the number of observations in the jth cluster

1/3
exceeds Nb/4k^, eventually. Since k^, = ([N/logN] ), this number

exceeds N(logN/N)^/^ b/4.
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Applying Lemma 2 to the jth cluster, we have

\~z. - Ujl < Cq (logN/N)^/2 e}^^, (2.4)

where z- is the mean of the observations in the jth cluster. Consider

the (j-l)st cluster, a cluster adjacent to the jth cluster. The

largest observation in the (j-l)st cluster is x ._ , and the

(t=0 \^'

smallest observation in the jth cluster is x . , . Then by

{^z n. + 1)

t=0

local optimality, the midpoint M between z. , and z- must lii

. . and X . ,

(^^
"t^

(^'^
n + 1)

t=0 ^ 4=0 "t
''

ej.i^M- i^_^ = 5. .M = i. - X
^_^ .Op ([logN/ND,

^
t=0 ^

since the largest gap between successive order statistics is ([logN/N]

It follows from (2.3) that

^J-1 ' ^'j " "j^ ^ hj ^ Op([logN/N])

And from (2.4) , we obtain

-j-1 ' i^j - Co [logN/N]^/2 ^_l/2
^ g^ ([logN/Ni:

^ |ej ^ l/(8k^), since e^. .> l/(2kj^).

Therefore, it follows from (2.1) that the (j-l)st interval contains

at least Nb/(8k^) - 0p(Nl/2^
, N [logN/N]^/^ b/16 observations eventually.

[II] Now, applying Lemma 2 to the (j-l)st cluster, we h ave

^J-1
- "j-ll ' ^0 (1ogN/N)l/2^._^l/2.

(2.5]

Since M - I._^ = i. - m, we have



[nij_i +
-^j.i

+ Op([logN/N])] - z._^ = ~z. - [m. - ^^ + Op( [logN/N] ) ] (2.6)

From (2.3), (2.6) can be written as

1
f^^^("ii i) ? 4 1 - -

t^j-1 - 12 • f(ni.;j • 'U - ° ^^J-l^ ' 2 ^J-1^
-

^J-1 = ^J
-

f^j -
T2 • -fT^ • ^j - 0(^? - i^j^ ^ 20p([logN/N]) (2.7)

Let f* be the density at the midpoint between m. and m,-_-i- Then

0(ej^)] = ej [fVf(mj)]"^/^ [1 + O(ej^) + Op (logN/N)],

since f* = f(mj) - \ f^^^m^) e^ + 0(ej) + Op ( [logN/N] ) by the expan-

sion of f about m..

Similarly, by the expansion of f about ni-j_i' we have

e,-itl - \ •

^^(^YT^
0(ej.,)l = e..,[fVf(.,..,)]-^/^ 1 ^ 0(e^.,) .

2 Op(logN/N)].

Therefore, (2.7) becomes

("j.l
- Zj-i) + \ ej.i [f*/f(mj_i)]"^^^[l + 0(ej_^)l = (i, - uj +

'J J

\ ^j [^'Vf(m.)]"^''^[l + 0(ej)] + 2 Op (logN/N). (2.8)
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Combining (2.4), (2.5), and (2.8), we can first show the ratio e. ,/e.

is bounded, and then

,'j-

^J

- • [f(mj_^)/f(mj)]^/^ - li ^ 4 Cq [fVf(nij)]^/^(logN/N)^/2ej-^/2

+ 2ej"^ Op(logN/N) + (e^) (2.9)

< k~/ [4 /2 CQ(B/b)^/\^2/2(logN/N)^/2

+ 4k^ Op(logN/N) + 0(kj;;^)]

^n' °p(^)

and this bound does not depend on the intervals involved.

[Ill] From the first inequality in (2.9), we can show by contradiction

1/3
that at least one of the k^ cluster intervals satisfies 2(B/b) /k^

:j e. i l/(2k^,). Then using the bound in (2.9) and carrying on at most
•J '

'

k|^ comparisons of adjacent clusters, we obtain

(e^./e.) • [f(m.)/f(mj)]^/^ = [1 + k'^Opd)] ^ - 1 +Op(l)

uniformly in 1 < i, j < k|^.

k^

Since z e . f (m .)
^^^ ^ /I f(x)

^^"^ dx as N ^ -, the theorem
I

J J ^

fol lows.
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3. ASYMPTOTIC WITHIN-CLUSTER SUMS OF SQUARES OF THE

LOCALLY OPTIMAL SAMPLE K-MEANS CLUSTERS

As in Section 2, let x •_ -, <...< x j denote the n-

(t=0 "t ' '^ (t=o "t)

observations in the jth cluster of a locally optimal k-means partition

of a sample from f, and let z- be the jth cluster mean. The within-

cluster sum of squares of the jth cluster, WSS., is defined to be

"i - 2
Y,

(x . , - Z-) • In this section, we will show that the

wi thin-cluster sums of squares of the k^, clusters are asymptotically

equal. First, a direct consequence of Feller's theorem on large devia-

tions (Lemma 3) is used in the proof of Lemma 4 to obtain a uniform

estimate of the within-cluster sum of squares, which is a function of the

length of the cluster interval and the density at the midpoint of the

interval. The result of Theorem 2 then follows from Theorem 1 and Lemma 4.

Lemma 3:

Let Xp Xp, ..., Xju be a random sample from a distribution F with

density f which is positive and has four bounded derivatives in [0,1].

Put B =
Q^,JJP^ f(x) and b = q^"^^ f(x). Denote the n observations

contained in an open interval I by z, , z^, .,., z , and let

E[z. - Uj] = 0, E[(z. - Uj)^]= Qj, and E[(z. - Uj)^] = -,
^

< -. Then

there exist constants C*, D*, and N*, not depending on I such that

if N^ N* and n^N(logN/N) ^^^b/16,

P^ (Yr^^^n"^/^ 1

y (z. - ~z)^ - na?
i

> C*(logN)^/^} ^ D* N"^(logN)"^/^

(Since the proof is similar to that of Lemma 1, it will not be given here,

12-



Lemma 4 :

Let X,, x„, ..., Xj^ be a random sample from F whose density

f is positive and has four bounded derivatives in [0,1], Put

mean of the observations in an open interval I, WSSr be the wi thin-

cluster sum of squares of the observations in I, m^ be the midpoint of

I, and Sr be the size of the interval I. Then there exists a

constant C* such that

P^
(SUP Sj-5/>SSj - ^N f(mj)sj[l + 0(s^)]l ^ C* N(logN/N)^/^}

= 1-0(1),

where the sup is taken over all open intervals I (whose boundary points

1/3
are order statistics) containing at least N(logN/N) b/16 observations.

The proof of this lemma is similar to that of Lemma 2; therefore,

only the differences between the two proofs are outlined here. In this

proof, the Taylor series expansion is carried out to the fourth order

terms. And after some series manipulations, we obtain

al = /j(x - Uj)^dF/F(I) = ^ s^ [1 + 0(Sj)], (3.1)

and Yj = /i(x - Uj)^dF/F(I) = y^ sj [1 + 0(s^)]. (3.2)

Applying (3.1) and (3.2) to the result of Lemma 3 will give this lemma

2
because the number of possible intervals I is again bounded by N .
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Theorem 2 :

Let X-,, X2J . . . , x^i be a random sample from a distribution F

whose density f is positive and has four bounded derivatives in [0,1].

Put B = Q^JJP^ f(x) and b=
J^J^^

f(x). Let VISS. (j = 1, 2, ..., k^)

be the wi thin-cluster sum of squares of the jth cluster of a locally

1/3
optimal k|^-partition of the sample. The provide that k,^ = o([N/logN] ),

we have

12N"^k„^ WSS, - [A f(x)^/2dx)2
I

- oJl)
max

Proof:

1/3
Consider a locally optimal kj^,-parti tion with k^ = o([N/logN] ).

It is shown in Theorem 1 that for all N large enough, with probability

tending to one, (i) the number of observations in each cluster exceeds

N(logN/N)^'^\/16, and (ii) e- = k"^ f(m.)"^^^ G[l+o (1)], where

1 1/3
G = /„ f(x) dx. From (i), we can apply Lemma 4 to obtain

e."^/^
I

WSS. - ^Nf(m.) e^ [l+0(e^)]
|

^ C* N(logN/N) ^/^, uniformly

in l^j^k^,. It follows from (ii) that, we have uniformly in l<j<k^,.

IWSSj - ^ Nk-2 G^ [l+0p(l)]| ^ 2 C* N(logN/N)^/2^j^-5/2^-5/6g5/2^

Therefore,

12N"^k^ WSSj - G^
I

< Op(l) + C** k^^''^ (logN/N)^/2 = 0p(l),

where C** = 2C* b '° G '
. And the theorem is proved.
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Since the globally optimal k-means partition of the sample is

necessarily locally optimal, the results of Theorem 1 and Theorem 2 also

apply to the globally optimal k^j-partition. Moreover, the generaliza-

tion of these results to densities with finite support [a,b] is immediate.
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4. DISCUSSION

In this paper, the properties of univariate sample k-means clusters

when k approaches infinity with the sample size N are presented.

This study is of interest in its own right because we want to examine

the sampling properties of this widely-used clustering method. The

result in Section 2 also indicates that the k-means method would parti-

tion a sample from a distribution with density f on [a,b] in such a

way that the sizes of the cluster intervals are adaptive to f; the

intervals are large when the density is low while the intervals are small

where the density is high. Therefore, k-means can potentially be used

as a method for constructing variable-cell histograms. Indeed, a histo-

gram estimate of f based on the k-means method is proposed in Wong

(1982b); and it is shown to be uniformly consistent in probability.

The multivariate case requires further investigation as the generaliza-

tion of univariate results to many dimensions is not straightforward.

An important first step is to determine the configuration of the optimal

population k-means partition in several dimensions. There is some

indication that the best partition in R is into regular hexagons (Wong

1982c); but it is not clear that the best partition is into regular poly-

topes for higher dimensions.
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