

LECTURES

ON

COMIPARATIVE ANATOMY.

LECTURES

0 N

COMPARATIVE ANATOMI.

TRANSLATED FROM THE FRENCH OF

G. CUVIER;

Member of the Nistional Institute, Professor in the College of France, and in the Central School of the Pantheon, \&\&c.

By WILLIAM ROSS;

UNUER THEINSPECTION ÓF

JAMES MACARTNEY,

Lerturer on Compardtive Anatomy and Plyyiology in St. Bartholomew's Hòspital, \&c.

LONDON,

PRINTED, AT THE ORIENTAL PRESS, BY WILSON AND CC. FOR. T. N. LONGMAN ANDO.REES, PATERNOSTER-ROW.

1802 :

Digitized by the Internet Archive in 2015

PREFACE.

The want of any thing like a System of Comparative Ayatomy-the extraordinary opportunities, talents and industry of Citizen Cuvier-and the acknowledged importance and.utility of the subject, all contribute to render a translation of the present Work highly acceptable to the English Reader.

In conducting the translation which is here offered to the Public, all the care and diligence have been employed which the peculiar nature of the subject required.-

No labour or exertion has been spared by Mr. Ross ; and, in revising his manuscript; I have constantly and attentively compared it with the original Work, making such alterations as seemed necessary to render the Author's meaning more plain. The style is of course, the Translator's own; but I consider myself responsible for the fidelity of the Translation, as far as respects the science.

The names of the Muscles, which are introduced from the new French Nomencla= ture, have been rendered into Latin, as being most consistent with the general usage of Anatomists, and to avoid the circumlo: cution they would unaroidably produce in the English language. The same mode has been adopted with respect to many of the terms of Natural History. In every instance;
however, where familiar or common language could with propriety be employed, it has been preferred. Considerable difficulty has been experienced in choosing proper English names to correspond with the genera and sub-gencra contained in the Tables of Classification ; and where these could not be found in popular use, it was judged more expedient to leave blanks, than to create English names, by only altering the termination of the word, which has been the plan pursued in the French Work, where the structure of the language made it more practicable.

I have taken the liberty of correcting some errors in the original, which seemed to have arisen from accidentally substituting one word for another; but in general the
viii PREFACE.
strictest regard has been paid both to the Author's mode of description and expression, as making the chief merit in the translation of any work of science.

JAMES MACARTNEY.

London, March 18, 1802.

T A.BLE

OF

CONTENTS.

VOL.I.
Page
LFTTER to J. C. Mertrud, xix
LECTURE I.
Preliminary Observations on the Animal, Eco- nomy, 1
Article I. General View of the Functions of Animal Bodies, ib.
Art. II. General Idea of the Organs of which the Animal Body is compofed, 20
Art. III. View of the Principal Differences rubich Ani-mals exbibit in their ferveral Organs,
S5
Art. IV. Vierw of the Relations which exift amongif the Variations of the feveral Organs, 46
Art. V. Divifion of Animals founded on the rwbole of their Organization, 61
Vol. I. b LEC.

LECTURE II.

Page
Of the Organs of Motion in general, 90
Art. I. Of the Mufcular Fibre, ibid.
Art. II. Of the Subfance of the Bones, and the hard parts which supply their place, 105
Art. III. Of the Articulations of the Bones, and their Motions, 125
Art. IV. Of the Tendons, of the Compofition of the Muf- cles, and of their Action, 135
Art. V. General Remarks on the Skeleton, 146
LECTURE III.
Of the Bones and Musches of the Trunk, 15 ?
Art. I. Of the Bones of the Spine, ibid.
A. In Man, ibid.
B. In other Mamniferous Animals, 156

1. Number of the Vertebre, ibid.
2. Proportions of the Spine, 160
3. Form of the Vertebra, 102
a. Vertebre of the Neck, ibid.
β. Vertebre of the Back, 364
\%. Vertebre of the Loins, 105
4. Vertebre of the Sacrum, 166
s. Fertebre of the Tail, 167
C. In Birds, 168
D. In Reptiles, i)3
E. In Fiblos, 178
Art. II. Of the Maicles of the Spine, 181
A. In Man, iuid.
B. In other Mammifcrous Animals, 186
a. Muscles that raise the Ta:l, 158
b. Mufcles that deprefs the Tail, 189
c. Mujcles that berdd the tail fiderways, 191
C. I_{12}
Page
C. In Birds, 192
D. In Reptiles, 196
E. In Fibses, 199
Art. III. Of the Ribs and Sternum, 206
A. In Man, ibid.
-B. In otber Mammiferous Animals, 209
C. In Birds, 211
D. In Reptiles, $21 S$
E. In Fijhes, 216
Art. IV. Of the Mufcles of the Ribs and Sternum, 218
A. In Man,. ibid:
B. In other Mammiferous Animals, 222
C. In Birds, 223
D. In Reptiles, 224
E. In Fibhes, 225
Ant. V. Of the Motions of the Head upon the Spine, 226
A. In $M a n$, ibid.
B. In other Manmiferous Animals, 230
C. In Birds, 234
D. In Reptiles, 235
E. In FỉBes, 256
Art. VI. Of the Mufcles of the Head,. 237
A. In $M a n$, ibid.
B. In other Mammiferous Animals, 241
C. In Birds, 242
D. In Reptiles, 243
E. In Fijhes, 246
LECTURE IV.
Ofthe Anterior Extremity, or Pectoral Mem- BER, 248
Art. I. Of the Bones of the Shoulder, ibid.
A. In Man, ibid.
b 2 B. In
Pagc
B. In other Manmiferous Animals, 250
C. In Birds, 254
D. In Reptiles, 257
Art. II. Of the Mufcles of the Sboulder, 259
A. In Man, ibid.
B. In other Mammiferours Animals, $26 s$
C. In Birds, 270
D. In Reptiles, 271
Art. Ill. Of the Bone of the Arm, 273
A. In Man, ibid.
B. In otber Mammiferous Animals, 274
C. In Birds, 377
D. In Reptiles, ilid.
Art. IV. Of the Mufiles of the Arm, 278
A. In Man, ibid.
B. In other Mammiferous Animals, 281
C. In Birds, : 286
D. In Reptiles. 288
Art. V. Of the Bones of the Fore Arm, s.9
A. In Man, ibid.
B. In other Manmiferous Animals, 295
C. In Birds, 300
D. In Reptiles, 301
Art. VI. Of the Muifcles of the Fore Aim, 308
I. Of the Flexors, ibid.
A. In Man, ibid.
B. In otber Mammiferous Auimals, S0년
C. In Birds, ibid.
II. Of the Extenfors, s05
A. In Man, ib:d.
B. In other Manmiferous Animals, 306
C. In Birds, צ0s
III. Of the Supinators, : ibid.
A. In Man, - 3 id.
B. In other Manmiferous Animals, 309
C. In Birds, $i b: d$.
Pag
IV. Of the Promators, 310
A. In Man, ibid.
B. In other Mammiferous Animals, ibid.
C. In Birds, 311
V. Mufcles of the Cubitus in Reptiles, ibid.
Art. VII. Of the Bones of the Hand, S12
I. Of the Bones of the Carpus, ibid.
A. In Man, ibid.
B. In other Mammiferous Animals, 315
II. Of the Rones of the Metacarpus, 319
A. In Man, ibid.
B. In other Mammiferous Animals, 320
III. Of the Bones of the Fingers, 321
A. In Man, ibid.
B. In other Manmiferous Animals. 320
IV. Of the Boizes of the Hand in Birds, 327
V. Of the Bones of the Hard in Reptiles, 328
Art. VIII. Of the Muycles of the Hand, 330
I. Muscles of the Carpus, and Metacarpus,.. ibid.
A. In Man, ibid.
B. In other Mammiferous Animals, 332
C. In Birds, 333
D. In Reptiles, 334
II. Mufcles of the Fingers, 955
A. In Man, and otber Mammiferous Animals, ibid.
5. The Extenfors, ibid.
6. The Abductors, S37
7. The Flexors, 338
B. In Birls, 339
III. Sbort Mufcles of the Fingers, 341
IV. Table of the length, in Metres, of the different Parts of the Pectoral Member in Mammalia, 345
Art. IX. Of the anterior Extremity of Fibes, 34.6
I. Of the Boncs, ibid.
II. Of the Mufcles, S50

LECTURE V.

Poge
Ofthe Posterior Extremyty, or Abdominal Mem- ber, 353
Art. I. Of the Bones of the Pcluis, ibid.

- A. In Man, ibid.
B. In other Mannmiferous Animals, 357
C. In Birds, 301
D. In Reptiles, 3065
Art. II. Of the Mufcles of the Pelvis, 364
A. In Man, ibid.
B. In other Mammiferous Animals, 365
C. In Birds, ibid.
D. In Reptizles, 306
Art. III. Of the Thigh Boue, 367
A. In Man, 368
B. In other Maminiferous Animaals, ibid.
C. In Liirds, 370
D. In Reptiles, ibid.
Art. IV. Of the Mufcles of the Thigh, 371

1. Muscles of the Great Trochanter, ibid.
A. In Man, ibid.
B. In other Mammiferous Animals, 373
C. In Birds, 375
II. Mujcles of the Lietle Trochanter, ibid.
A. I_{n} Man, ibid.
2. In otber Mammiferous Ainizuals, 377
C. In Birrds, ibid.
III. Muscles of the Thbigh in Reptiles, 378
Art. V. Of the Bones of the Leg, 380
A. In Miniz, 381
B. In other Man:miferous Animais, 383
C. In Birct's, S85
D. In Reptiles, ioid.
Page
Art. VI. Of the Mufcles of the Leg, 386
A. In Man, ibid.
B. In other Mammifcrous Aximals, 388
C. In Birds, 390
D. In Reptiles, 391
Art. VII. Of the Bones of the Aucle or Tarfus, and thofe of the Metatarfus, S93
A. In Man, ibid.
B. In other Manmiferous Animals, 395
C. In Birds, 400
D. In Reptiles, 401
Art. VIII. Of the Mufcles of the Aucle or Tarrus, and of the Metatarfus, 402
A. In Mammalia and Birds, ibid.
B. In Reptiles, 407
Art. IX. Of the Bones of the T'oes, and their Motions, 409
A. In Man, ibid.
B. In other Mammiferous Animals, ibid.
C. In Birds, 411
D. In Reptiles, 412
Art. X. Of the Mufcles of the Toes, 413
I. The Extenfors, ibid.
A. In Man, ibid.
B. In other Mammiferous Animals, ibid.
C. In Birds, 414
II. The Flicxors, 4.15
A. In Man, ibid.
B. In otber Mammiferous Animals, 416
C. In Birds, 417
III. Mujcles of the Toes in Reptiles, 419
IV. Table of the length in Metres of the different Parts of the Abdominal Member in Mammiferous Animals, 420
Art. XI. Of the Pofferior Extremity in Fijbes, 421
3. Of the Bones, ibid.
II. Of the Mufcles, 425

LECTURE VI.

Page
Ofthe Organs of Motion in Animals without Vertebre, 428
Art. I. Organs of Motion in Mollufca Cephalopoda, ibid.

1. Mufcles of the Body, ibid.
2. Mufcles of the Feet, 429
3. Mufcles of the Suckers, 431
Art. II. Organs of Motion in Mollufca Gafteropoda, 433
Art. III. Organs of Motion in Mollufca Acepbala,. 436
Art. IV. Organs of Motion in Cruftacea, 443
I. Of the Tail, ibid.
4. Solid Parts, ibido
5. Mufcles, 445
II. Of the Feet, 448
6. Solid Parts, ibid.
7. Mufcles, 450
Art. V. Organs of Motion in the Larver of Infects, 452
I. Mufcles of Caterpillars, 454
II. Muscles of the Laroa of a Scarabrous, 460
III. Muscles of the Larva of a Hydrophilus, 464
IV. Muscles of the Laron of a Cerambix, 466
Art. VI. Of the Organs of Motion in perfect Infects, 467
I. Of the Heaid, 468
II. Of the Corfelet, or Thorax', 471
III. Of the Pectus, or Breaft, 472
IV. Of the Abdomen, or Belly, 473
V. Of the Members, 475
Art. VII. Organs of Motion in Worms, 485
Art. VIII. Organs of Motion in Zoophytes, 489

LECTURE VII.

Page
Of the Organs of Motion considered in Action, 494
Art. I. Of Standing, ibid.
A. Standing on two feet, with the body vertical, 496
B. Standing on two feet, with the body not vertical,. 502
C. Standing on four feet, 505
Art. II. Of Walking, 507
A. Walking on twwo feet, 509
B. Walking on four feet, 512
Art. III. Of the Aations of Seizing and Climbing, 516
Art. IV. Of Leaping, 520
Art. V. Of Swimming, 525
Art. VI. Of Flying, 534

ERRATA.

For	Read
IX-20 are of	are not of
42-24 trachea	trachea
78- 1 fimple	fingle
81-16 anferes-birds	anferise birds
84-17 in	on
84-29 from	form
184-3 between the longiftimus	between the upper part of the longifimus
188-10 lumbo-fupra-cadualis	Lumbo-fupra caudales
217-20 falmorbomboides	Salmo rhomboides
ibid.-21 Syngnatbus bippocumpus, or - little fea horfe	Syngnatbus bippocampus, or little Sca borfo
sbid.-33 his k kin, which furrounds his body	its fkin, which furrounds its body
281-5 mufcles	mufcle
293-7 (epitrocblée) and the external (epicondyle)	the epitrocblea, and the external, the epicondyle
355-20 bone	line
383-20 exterior	extenfor
415-3 Tarfo-pbalangeus	Tilio-phalangeus

LETTER

FROMI

G. CUVIER,

Of the National Institute of France, \&ic.
$T O$

JEAN CLAUDE MERTRUD,

Professor of the Anatomy of Animals in the Museum of Natural Mistory, Paris.

The Book I addrefs to you, owes to you its exiftence; for, whatever intereft my Lectures may poffers, has arifen from the ufe which you and your, colleagues have permitted me to make of the excellent collection now entrufted to your care-that collection, to the perfection of which you have fo greatly contributed, and from which Daubenton drew, while he formed it, materials for the moft important part of an immortal work *.

Enriched

[^0]Enriched by the affiduous labours of an enlightened adminiftration, this collection now furpaffes every thing of the kind that exifts. It prefents, in an arranged and fyftematic order, the moft extenfive development of all the parts of the animal body, prepared in fpecies the moft oppofite-from thofe which, by their perfection, approach neareft to man, to thofe in which. we perceive only a pulp fearcely organized : thus the fudy of Comparative Anatomy is rendered almoft an amufement. A night view is fufficient to enable us to perceive the variations and fucceffive gradations of each organ: but the effects which thefe organs produce, remain fill unexplained; becaufe there is, in living bodies, fomething more than thofe tiffues and fibres which the eye can trace; becaufe the mechanical part of the organization is,
when he was appointed Profefior of Comparative Anatomy. He affifted Daubenton in preparing his Anatomical account of moft of the quadrupeds deferibed in the Grcat Natural Hiftory; and Buffon, who loved and efteemed him, has complimented his talents in feveral of the volumes of that immortal work. His parriotilm has induced him to refufe fome diftinguithed appoint. ments in foreign countrics, and, among others, that of firf furgeon to the King of Naples, which was offered to him in 1770, and that of firft furgeon to the King of Spain, to which be was nominated in 177 . He is the inventor of fereral is. genious proceffes relative to making anatomical preparations.
as it were, only the paffive inftrument of vitality; and becaufe there occurs, between the firft impreffion of the imperceptible elements and the oftenfible motion which is its laft effect, an infinite number of intermediate actions, of which no idea has hitherto been formed.

How many combinations and decompofitions have taken place in this interval! How many affinities have been brought into action!-What Phyfiologift is bold enough to hazard conjectures on the greater number of the operations which are performed in the impenetrable laboratory of the animal body? Notwithftanding the fuccefsful efforts of our co-temporaries, human Chemiftry is but in its infancy when compared with that of Nature!

Thefe difficulties, however, fhould not difcourage us; and the Anatomift muft make the firft attempts to overcome them. It is his province to difclofe to the Phy fiologif the material part of the phenomena and the inflruments by which the proceffes are carried on; to defcribe the canals through which the fluids circulate, and to follow all their ramifications and difcover all their communications. It belongs to him to meafure the velocity and determine the direction of each motion.

But to perform this tafk in a fatisfactory manner, he muft not be contented merely with
a view of what conftitutes the individual character of the phrnomena. It is neceffary he fhould in particular diftinguifh what forms the general and neceffary condition of each. To do this he ought to examine all the modifications that may refult from their various combinations with other phrnomena; and alfo, feparate or difengage them from all the neceffary circumftances with which they are involved. In fhort, he mult not limit himfelf to a fingle fpecies of organized beings, but muft compare the whole ; purfuing life, and the phænomena of which it confifts, throughout all animated nature. Thefe are the only means by which he can hope to remove the myfterious veil which conceals the effence of vitality.

Phyfiology, indeed, is neceffarily in the fame ftate as other phyfical fciences, which, from the complication and obfcurity of the phænomena, have not hitherto been fubmitted to calculation. Poffeffing no demonftrated principle, whence the particular facts might be deduced as confequences, the whole fcience confifts as yet in the feries of thefe facts only; and we cannot hope to difcover general caufes but in proportion as we may be able to clafs the facts, and fucceed in arranging them under certain common laws. But phyfiology does not poflefs the fame advantage for attaining this object as
thofe fciences which are applied to the examination of inorganic fubftances; as for example, chemiftry and experimental philofophy. The problems to be folved by the latter- fciences, may be reduced to a simplicity almoft indefinite; and the fubftances, the nature and relations of which are to be inveftigated, may be feparated from thofe with which they are connected, and fucceffively combined with others. Far narrower are the bounds of phyfrological enquiries: all the parts of a living body are connected : they can perform no functions except when they act in union: to feparate one from the mafs, is to reduce it to the rank of inert matter, which is an entire change of effence. . The machines which are the object of our refearches, canaot be demonftrated without being deffroyed. We have no means of difcovering what would refult from the abfence of one or feveral of their parts, and confequently we remain ignorant of the operation of each of there parts, in producing the total effect.

Fortunately Nature herfelf feems to have prepared for us the means of fupplying that want which arifes from the impoffibility of making certain experiments on living bodies. The different claffes of animals exhibit almoft all the poffible combinations of organs: we find them united, two and two, three and three, and in
xxiv Letter to J. C. Mertrud.
all proportions; while at the fame time it may be faid that there is no organ of which fome clafs or fome genus is not deprived. A careful examination of the effects which refult from thefe unions and privations is therefore fufficient to enable us to form probable conclufions refpecting the nature and the ufe of each organ, or form of organ.

In the fame manner we may proceed to afcertain the ufe of the different parts of the fame organ, and to difcover thofe which are effential, and feparate them from thofe which are only acceffary. It is fufficient to trace the organ through all the claffes which poffefs it, and to examine what parts conftantly exift, and what change is produced in the refpective functions of that organ, by the abfence of thofe parts which are wanting in certain claffes.

But our refearches muft not be confined to a few fpecies. One which is overlooked frequently, contains anexception fatal to a whole fyftem; and the method of reafoning, in phyfiology, juft pointed out, acquires weight only in proportion as we approach to a perfect knowledge of the anatomy of animals. The latter fcience therefore cannot, in its prefent flate, conduct us directly to certain difcoveries, though it already forms a touchftone for the refults obtained by every other means; and a fingle fact, in Comparative

Anatomy, often fuffices to overthrow a complete train of phyfiological hypothefes:

The importance of Comparative Anatomy has therefore been at all times acknowledged. The abufe which prevailed towards the end of the $7^{\text {th }}$ century, of fo often defcribing the human body from the diffections of animals, was the caufe of this branch of fcience being fo much neglected during the early part of the prefent century. But the fudy has been refumed with ardour, and a number of eminent men have, for fome time paft, made it the object of their peculiar attention.

It is due to the National Mufeum of Natural Hiftory at Paris, to obferve, that the learned men connected with that eftablifhment, have conftantly contributed to promote and encourage this ftudy. The names of Duverney; Ferrein, and Petit, are celebrated in the annals of Science. Buffon gave a new attraction to Comparative Anatomy, by difplaying its importance as the foundation of characters in Natural Hiftory; and the vaft labours of his worthy affiftant Daubenton, render it henceforth the fixed bafis of Zoology. The latter encouraged, and aided by his advice, as well as by the ufe of the fubjects entrufted to his care, another of your pupils who would have carried this fcience to its heights had not the misfortunes of the times
xxvi Letter to J. C. Mertrud.
deprived us of his talents in the vigour of life. As an elegant writer, an ingenious phyfiologift, and a profound anatomift, Vicq-d' $A z y r$ never can be replaced; but fortunately thofe who formed him ftill exift; the treafures which were confided to him have increafed; and the fuperintendants of thofe treafures will fill find men equally grateful for their ufe, and equally devoted to the promotion of knowledge.

The learned men who compofe the prefent adminiftration of the Mufeum, are worthy of imitating the glorious examples of their predeceffors. I have received from them, as well as from you, all the affiftance I could have expected from an enlightened love for fcience, rendered more grateful by all the attentions the moft generous friendfhip could fuggeft. Nothing has been fpared that could lead to difcoveries, or to the completion of the fyftem of our knowledge in Comparative Anatomy. The correfpondents of the Mufeum have imitated the example of its depofitories. Citizen Baillon, in particular, fo well known by the valuable obfervations which he furnifhed to Buffon, and by thofe which he continues to make, procured me, with unexampled zeal and generofity, the rareft birds and firhes. Citizen Hombert of Havre, who has applied with the greateft fuccefs to the ftudy of Mollufca and Sea Worms, has favoured me
with a great number of thefe animals, the perfect prefervation of which rendered their examination exceedingly ufeful. Citizens Beauvois, Bofo, and Olivier, the two firft returned from North America, the third from Egypt and Perfia, have kindly comminicated to me fome of the valuable fpecimens they have brought to Europe. I have therefore no reafon to envy the good fortune of Aristotee, when a cona queror, who was the friend of the fciences, made other men fubfervient to him, and placed millions at his difpofal, to enable him to forward the Hiftory of Nature:

This affertion will not furprize, when it is known that I have been permitted to diffect not only the animals which have died in the menagerie, but alfo thofe which have been brought, during a great niumber of years, from all parts of the world, and preferved in fpirits. Time only was capable of bringing this collection to its prefent degree of perfection, and has, in this inftance, performed what no other power was capable of accomplifhing.

In opening to me your treafures - in admitting me to a fhare of the labours neceffary to their arrangement and their augmentation, you have impofed upon me only one condition: that is, to enable other naturalifts to enjoy them, by giving fuch a defcription of them as they merit.

You know with what affiduity I endeavour to perform this tafk, but you alfo know better than any other what time fuch a work requires. However rich may be the acquifitions that are made, more will fill be defired. Sometimes a new fpecies is difcovered, which we wifh to compare with thofe we already know. Sometimes the confideration of an organ induces us to make farther attempts to develope its ftructure. On other occafions it is neceffary to extend our obfervations; becaufe fomething remains to be learned refpecting the object as a whole or the relation of its parts. In Natural Hiftory, in particular, we are always diffatisfied with what we perform, for nature proves to us at each ftep that fhe is inexhauftible. The mechanical part alone, as making preparations, drawings, and engravings, require a time which no care and no expence can abridge.

I cannot therefore reafonably expect to finifh my work for feveral years. But, in the mean time, I endeavour to difclofe to young anatomifts all that is new and important in the collections: I explain to them the relations which facts already permit us to perceive. I do not merely confine myfelf to an expofition of the obfervations contained in printed books, but conceal none that I have had the opportunity of making my felf, in following, though at a dif-
tance, the footfeps of thofe celebrated authors who have preceded me. This franknefs, and the efforts I have made to render the body of the fcience as complete as the prefent fate of our knowledge would permit, having attracted to my clafs fome pupils diftinguifhed for their talents and affiduity, they have taken the trouble to collect my lectures in a very accurate manner. Different manufcripts have been drawn up from thefe notes, which may be confidered as elementary works, varying in their manner, and I believe more complete in the materials, than any that have hitherto appeared on Comparative Anatomy. Imperfect as thefe manufcripts muft in many refpects be, feveral copies have got into circulation, which have been ufefully employed by other Lecturers, and even in fome printed works. This is a flight abufe, which, though it will not prevent me from continuing to communicate my own obfervations to all who may wifh to be acquainted with them, is, however, fufficient to induce me to fecure to myfelf, by means of the prefs, the property of fome.

A reafon of another kind has alfo contributed to determine me to confent to the publication of one of thefe manufcripts; and that is, the advantage which the ftudents attending any courfe muft derive from poffeffing a we:s that details,
in a fuitable order, the facts of which the prafeffor propofes to treat. It is almoft impoffible that this detail fhould be accurately given by a public fpeaker, who is naturally led to expatiate moft on thofe fubjects which are beft calculated to attract the attention of his auditors ; and befides the rapid fucceffion of facts, prevents the fudent from fixing on them with fufficient attention, efpecially when they are fo numerous and fo varied as in Comparative Anatomy. Finally, it appeared to me that this publication might alfo prove both agreeable and ufeful, not only to thofe anatomifts who have it not in their power to hear my lectures, but to all perfons who apply themfelves to the fudy of Phyfiology and Natural Hiftory, who have hitherto poffeffed no'book in the form of a complete fyftem on the internal organization of animals. Though the prefent ought not, and indeed cannot be confidered in any other light than as a kind of abridgement or program of the great work in which I am cngaged; it is not the lefs true, that it already contains a vaft collection of facts, and that it may ferve as the bafis of more extenfive refearches. Perhaps it may prove an inducement, to perfons interefted in its object, to publifh the new or feparate facts that occur to them, and which may occupy a place in my great work. - Perhaps important views and corrections
rections may be pointed out to me. In a word, I fhall not regret that I have fubmitted an imperfect work to the cye of criticifm, if it may be hereafter the means of procuring, either through myfelf or others, fome advantage to Science.
Thefe Lectures were drawn up from my oral demonftrations by Citizen Dumeril, one of my deareft pupils and beft friends, and whofe talents have been lately rewarded by a public appointment to the important place of Chief of the Anatomical Labours of the School of Medicine. Having attended my courfe during four years, he has collected all my obfervations with fo much accuracy, that it would have been difficult for me to have performed the tafk better. I have revifed his manufcript with the greateft care. I have every where fupplied details which could not be conveniently introduced in public lectures. I have rectified fuch ftatements as I had advanced too rafhly. I have added every information connected with thefe lectures that I have obtained fince their delivery by my diffections and reading. I therefore do not hefitate to acknowledge this work as my own, and to avow all the affertions it contains.

It is not, however, with his pen only that Citizen Dumeril has contributed to this work. He always affifted me in the numerous diffec-
tions I found it neceffary to make. He conducted feveral of thefe diffections, according to views peculiar to himfelf, and fuggefted by his èxtenfive knowledge in natural hiftory and phyfiology. I am indebted to his perfpicuity for a number of interefting obfervations and curious facts, which would have efcaped me.

I am alfo much indebted to the complaifance of Citizen Rouffeau, your affiftant anatomift in the Mufeum of Natural Hiftory. , Equally modeft and indefatigable, he merits the thanks of all anatomifts for the laborious duty he performs under your direction, in preferving and augmenting the anatomical collection. Without his affiftance it would have been impoffible for me to have rendered my lectures worthy of publication.

The neceffity of fuch affiftance will be eafily conceived, when it is confidered how many diffections are required in preparing a work of this kind, and how feldom opportunities occur for diffecting certain fpecies. He who defcribes only the human body, may proceed at his leifure in the examination of a fubject, of which only fome minute parts remain to be difcovered, and which he may always replace whenever he wifhes to verify or correct his obfervations. But he who ftudies the fructure of other animals, when he has a new fubject to diffect; is obliged
to defcribe every part; and if the fpecies be alfo fcarce, or that he has no hope of feeing it again, and cannot expect to be able to rectify his obfervations, he is under the neceffity of making his refearches as accurate as extenfive. He muft therefore pafs his days and his nights in purfuits no lefs unhealthful than laborious.

It would indeed be impoffible for one man to undergo the fatigue of even the purely mechanical part of the ftudies neceffary in forming a fyitem of Comparative Anatomy, were he not feconded by friends as zealous as himfelf for the progrefs of knowledge.

The reader will eafily perceive that this affiftance muft have been extremely ufeful to me, as my Lectures are all founded on obfervation, and as, except a few facts, the authorities for which I have carefully cited, I have advanced nothing which is not confiftent with my own knowledge. On this account I have thought numerous references unneceflary in this publication, though I fhall not neglect them in my greater work; becaufe I confider thefe quotations as a tribute of refpect paid to the memory of the firft difcoverers of ufeful facts. In omitting the names of authors, therefore, I do not pretend to any: priority of obfervation, but I would have it underftocd that the ftatements I make may be confidered as additional authori-
xxxif Letter to J. C. Mertrue.
ties to thofe which already exift, refpecting the fame facts.

I muft alfo obferve, that this omiffion of citations as to the facts I have had the opportunity of proving myfelf, and which I have frequently demonftrated publicly in my clafs, or the proofs of which are depofited in the Anatomical Collection of the Mufeum, arofe from the confideration, that thefe public demonftrations and expofitions rendered all other authorities unneceffary, and not from my negligence in inquiring what others had performed before me. I believe I have not remained far behind my predeceffors: in many cafes I have found it more eafy to refort to Nature, than to endeavour to explain the obfcure and unfatisfactory defcriptions of fome moderns, or to fpend my time in bringing to light a few valuable obfervations, which lie buried amidft the difcuffions of fcholaftic philofophy, which fill the pages of the authors of the fixteenth century: but this method, which relieves me from the neceffity of having recourfe to compilation, I regard as an advantage, procured to me by my fortunate fituation, and by no means as a ground of cenfure.

I have, befides, been more particularly diffuaded from ufing foreign materials, by obferving the imperfect works which fome eftimable authors, who wanted the means of obfervation,
have produced by that mode of compilation: it was impoffible they fhould avoid making falfe ftatements, fince they had to rely upon incorrect; and even contradictory authorities; and as the conftant view of Nature did not reftrain the flights of their imaginations, they could not refift the temptation of forming fyftems, nor fecure their judgments from a partiality that induced them to felect, in preference, thofe facts which were moft favourable to their own ideas.

You will eatily conceive, that the greater number of thefe authors are found among a people, who, though celebrated for their inventive genius, and indefatigable patience in every kind of refearch, have not always been able to confine, within due bounds, their defire to difplay.erudition - a defire which perhaps, proceeds from too much modefty, and a miftaken deference for others.

Another people, no lefs admirable for their bold views, and vigorous profecution of the fciences, feem to have fallen into the oppofite excefs of that which I have juft blamed; by: contemning the labours of foreigners, and effeem: ing, and even confulting, almof exclufivel.y, the works of their own countrymen. This kind of pride, which is perhaps ufeful in politics, when carried into the fciences, and above all in the fciences which depend on facts, tends only to pro-
duce contracted ideas, and leads to a barrennefs which forms the character of fome of their authors in Natural Hiftory and Comparative Anatomy.

I hope you will find that I have done every thing in my power to avoid thefe two errors ; and that, though refolved always to examine nature myfelf, I have not attempted to proceed without guides, but have followed thore who were capable of leading me in new or ufeful paths.

I believe I have made ufe of the principal difcoveries of the modern authors, who have treated Anatomy in a phyfiological manner. Stenon, Swammerdam, Collins, Duverney, Petit, Lyonnet, Haller, Monyo, Hunter, Geoffroy, Vicq-d’Azyr, Camper, Blumenbach, Scarpa, Comparetti, Kielmeyer, Poli, Harwood, Barthez, have furnifhed the data with which I commenced my career; and though I have myfelf reviewed a confiderable part of thefe data, the glory of difcovering them is not the lefs due to the celebrated men I have mentioned; and, had it not been for their writings, the greater nymber of facts'recorded in this work would have efcaped my notice.

I ought alfo to acknowledge the advantages I have derived from the moft modern naturalifts. Since Nature is at laft adopted as the bafis of all arrangement in Natural Hiftory, the relations

Letter to J. C. Mertrud. xxxvii
of that fcience with Anatomy are become more intimate ; the one cannot advance aftep, which will not tend to the advantage of the other; the conneitions which the firf eftablifhes, frequently indicate refearches, which the other ought to make: thus, without mentioning Daubenton and Pallas, equally placed in the firft rank in either fcience, I am much indebted for views, and, above all, for the regularity of my plan, to the modern zoologifts, among whom I ought, in particular, to name Ray, Klcin, Linnæus, Buffon, Lacépéde, Lamarck, Bloch, Fabricius, Latreille, and all thofe who have, by different ways, attempted to approach that fimple natural method of claffification, which ought to be the object of all the efforts of naturalifts, though it may perhaps be the philofopher's ftone of their art.

As fome of thefe celebrated men honour me with their friendfhip, I have profited no lefs by their converfation than by their writings. Several of my ideas have originated in theirs, which I have fo generally adopted, that it is with difficulty I can recognize what I owe to each of them.

I have endeavoured to approach nearer to a natural arrangement in the tables connected with this work, than I did in my Elements of Zoology. I have made feveral changes in the diftri-
exxviii Letter to J. C. Mertrudo.
bution of the animals, which appear to me very advantageous; and I alfo owe a part of thefe improvements to the refearches of the learned men I have juft named. It will be eafily difcovered that I have profited by the works of Citizen Lacépéde on Birds and Mainmalia, by that of Ci tizen Lamarck on the Teffacea, and that the divifion of Reptiles is the fame which has been lately propofed by Citizen Brongniard.

In this avowal, your will doubtlefs recognize the defire of rendering a lafting teftimony of the gratitude I owe to all whofe ideas and labours have proved ufeful to me in the execution of this work; but I have alfo another object, which, perhaps, may efcape your obfervation: it is my wifh to promote and maintain that amiable and meritorious fpirit of communication, which now prevails among the greater number of Na turalifts. Employed in cultivating together the vaft field of Nature, they may be faid to live in a community of labour and advantage : if one, therefore, difcover a fact, it is of little import ance whofe name is attached to it.

I befides rely on the judgment of reperfons fkilled in Anatomy, to diftinguifh the obfervations which are peculiar to myfelf; and I hope they will find them fufficiently numerous to juftify my confent to the premature publication of thefe Lectures: I mäy be permitted to exprefs
this hope with the greater freedom, as I pretend to no other merit in preparing them, than that of having profited by a very favourable fituation.
In the part which relates to Human Anatomy, I have not attempted to make any new obfervations : on that branch of the fubject I have juft faid what appeared neceffary to recal the idea of the parts to the Reader ; and though my defcriptions have actually been taken from the dead fubject, fome details in Neurology excepted, for which I have followed Sabattier and Sœmmering, they differ from thofe of my predeceffors only in the expreffion.

Citizen Dumeril has almof every where inferted his new nomenclature, which is analogous to that propofed by Citizen Cbaufier, and which Citizens Dunzas and Girard have each modified according to their manner. Without attaching much importance to this improvement, I may obferve, that it would be ufeful, were Anatomifts to agree in fixing the language of their art.

Phyîology occupies only an acceffary place in thefe Lectures. I have only occafionally introduced it, to diminifl a little the unavoidable tedioufnefs of anatomical defcriptions, and to point out different views, which Comparative Anatony may furnifh to the phyfiologift.

For the fame purpofe I have fometimes ftated facts, which belong more particularly to what
is frictly called Natural Hiftory. It was found frequently neceffary to remind the Reader of fome fact, calculated to fupport the anatomical theories, or to indicate fome corrections, which the obfervations of Comparative Anatomy render neceffary in methodical claflifications:

Such are the motives which have induced me to publifh thefe Lectures. I have now only to exprefs my hope, that Naturalifts will not accufe me of having taken this ftep too haftily, and that the utility they may find in the work will appear to them fufficient to excufe its prefent imperfections:

Grant me then that indulgence, which, if not due to the importance of this Work, is at leaft merited by the fincere and refpectful fentiments with which it is prefented to you, by your Difciple, and Friend.

G. CUVIER:

[^1]
LECTURES

ON

COMPARATIVE ANATOMY.

LECTURE FIRST.

PRELIMINARY OBSERVATIONS UPON THE

ANIMAL GECONOMY.

Article 1.

General Tiew of the Functions of Animal Bodies.
T_{HE} idea of Life is one of thofe general and obfcure ideas produced in us by obferving a certain series of phænomena poffeffing mutual relations, and fucceeding each other in a conftant order. We know not indeed the nature of the link that unites thefe phænomena, but we are fenfible that a connexion muft exift; and this conviction is fufficient to induce us to give it a name, which the vulgar are apt to regard as the fign: of a particular principle, though in fact that name can only indicate the totality of the phenomena which have occafioned its formation.
Vol. I.
B
Thus,

Thus, as the human body, and the bodies of feveral other animals refembling it, appear to refift, during a certain time, the laws which govern inanimate bodies, and even to act on all around them in a manner entirely contrary to thofe laws, we employ the terins life and vital force to defignate what are at leaft apparent exceptions to general laws. It is, therefore, by determining exactly in what the exceptions confift, that we fhall fix the meaning of thofe terms. For this purpofe, let us confider the bodies I have mentioned, in their active and parfive relations with the reft of nature.

For example, let us contemplate a female in the prime of youth and health. That elegant voluptuous form -that graceful flexibility of motion - that gentle warmth - thofe checks crimfoned with the rofes of delight-thofe brilliant eyes, darting rays of love, or fparkling with the fire of genius-that countenance, enlivened by fallies of wit, or animated by the glow of paffion, feem all united to form a moft fafcinating being. A moment is fufficient to deftroy this illufion. Motion and fenfe often ceafe without any apparent caufe. The body lofes its heat; the murcles become flat, and the angular prominences of the bones appear; the luftre of the eye is gone; the cheeks and lips are livid. Thefe, however, are but preludes of changes ftill more horrible. The flefl becomes fucceffively blue, green, and black. It attracts humidity, and while.
while one portion evaporates in infectious emanations, another diffolves into a putrid fanies, which is alfo fpeedily diffipated. In a word, after a few fhort days there remains only a fmall number of earthy and faline principles. The other elements are difperfed in air, and in water, to enter again into new combinations.

It is evident that this feparation is the natural effect of the action of the air, humidity and heat-in a word, of external matter upon the dead body; and that it has its caufe in the elective attraction of thofe different agents for the elements of which the body is compofed. That body, however, was equally furrounded by thofe agents while living, their affinities with its molecules were the fame, and the latter would have yielded in the fame manner during life, had not their cohefion been preferved by a power fuperior to that of thofe affinities, and which never ceafed to act until the moment of death.

Of all the phænomena, the particular ideas of which enter into the general idea of life, this is what at firft fight appears to conflitute its effence, fince we can form no conception of life without it, and fince it evidently exifts without interruption until the inftant of diffolution.

But a further ftudy of any living body convinces us, that the power which preferves the union of the moleculæ, notwithftanding the external forces which tend to feparate them, does not confine its activity to this tranquil operaB3
tion,
tion, and that the fphere of its action extends beyond the bounds of the living body itfelf. At leaft it does not appear that this power differs from that which attracts new moleculx to depofit them between thofe that already exif: and this action of the living body, in attracting the furrounding moleculæ, is not lefs conftant than that which it exercifes in retaining its own; for, befides that the abforption of the alimentary matter, its converfion into nutritive fluid, and its fubfequent tranfmiffion to all the parts of the body, experiences no interruption, and continues from one repaft to the other ; another abforption conftantly takes place at the external furface, and a third by the effect of refpiration. The two latter are thofe only which exift in all living bodies which do not digeft, that is to fay, in all plants.

Living bodies however do not increafe indefinitely. Nature has affigned to each limits which it cannot exceed. It follows, therefore, that they muf lofe, in one way, a great part of what they gain in another; and indeed an attentive obfervation has convinced us, that tranfpiration, and a number of other caufes, tend continually to diminifh their fubfance.

This confideration muft modify the idea which we at firt formed from the principal phænomenon of life. Inftead of a conftant union in the moleculæ, we cannot avoid obferving, that there is a continual circulation from the exterior to
the interior, and from the interior to the exterior of bodies-a circulation which, though uniformly preferved, is notwithftanding fixed within certain limits. Thus living bodies may be confidered as a kind of furnaces, into which inert fubftances are fucceffively thrown, which combine among themfelves in various manners, maintain a certain plate, and perform an action determined by the nature of the combinations they have formed, and at laft fly off in order to become again fubject to the laws of inanimate nature.

It muft be obferved, however, that there is a difference, depending on age and health, in the proportion of the parts which enter into this torrent, and thofe which abandon it ; and that the velocity of the motion ufually varies according to the different conditions of each living body.

It appears, at the fame time, that life is terminated by caufes fimilar to thofe which interrupt all other known motions; and that the hardening of the fibres, and the obftruction of the veffels, render death the neceffary confequence of life, as repofe is of motion, even though the crifis were not accelerated by innumerable caufes which are foreign to the living body.

This general and common motion of all the parts forms fo peculiarly the effence of life, that the parts which are feparated from a living body foon die, becaufe they poffers no motion
of their own, and only participate in the general motion produced by their union. Thus, according to the expreffion of Kant, the mode of exiftence of each part of inanimate bodies belongs to itfelf, but in living bodies it refides in the whole.

The nature of life, as above defcribed, being once well afcertained by the obfervation of the moft conftant of its effects, it would naturally be wifhed to inveftigate its origin, and to inquire how it is communicated to the bodies it animates. Living bodies have therefore been traced to their infancy; and it has been endeavoured to carry this examination as near as poffible to the moment of their formation. But they have never been obferved otherwife than completely formed, and already enjoying that vital force, and producing that vortex-like motion, the firft caufe of which we are defirous of knowing: In fact, however feeble and minute the parts of an embryo, or of the feed of a plant, may be at the moment we are firft capable of perceiving them, they then enjoy a real life, and poffefs the germ of all the phænomena which that life may afterwards develope. Thefe obfervations, extended to all the claffes of living bodies, lead to this general fact, that there are none of thofe bodies which have not heretofore formed part of a body fimilar to itfelf, from which it has been detached. All have participated in the exiftence of other living bodies, be-
fore they exercifed the functions of life by themfelves; and it was even by means of the vital force of the bodies to which they formerly belonged, that they were enabled to develope themfelves fo completely as to become capable of enjoying feparate vitality; for, whough the particular action of copulation is neceffary for the production of a number of fpecies, many are produced without it ; copulation, therefore, is only a circumftarice peculiar in certain cafes, and does not change the effential nature of generation. It appears then that the motion proper to living bodies has really its origin in that of their parents. It is from them they have received the vital impulfe; and hence it is evident, that, in the actual fate of things, life proceeds only from life, and that there exifts no other except that which has. been tranfmitted from one living body to another by an uninterrupted fucceeffion.

Unable to afcend to the origin of living bodies, there remains then within our reach no fource of information refpecting the real nature of the powers which animate them, except the examination of the compofition of thofe bodies, that is to fay, of their texture, and the " compofition of their elements: for, though it may be truly faid, that this texture, and this compofition, are in fome manner the refult of the action of the vital impulfe which has given them being, and which maintains them; it is alfo evident,
that in them only this impulfe can have its fource and foundation: and if the firft union of the chemical and mechanical elements of any living body has been effected by the vital force of the body from which it defcended, we ought to find in it a fimilar power, and alfo the caufes of that power, fince it has to exercife a like action in favour of the bodies which are to defcend from it.

But this compofition of living bodies is too imperfectly. known to enable us to deduce clearly from it the effects they exhibit. We obferve, in general, that they are compofed of fibres or laminx, forming altogether a feries of reticulated fubftances more or lefs compact, which form the bafes of all their folids, as well of thofe that are maffy, as of thofe that prefent the appearance of laminæ and filaments. We are acquainted with the form, the confiftence, and the pofition of the larger of thofe folids; the ramifications of the moft confiderable of their veffels, and the courfe of the fluids they contain : but their more minute branches, and their more fecret texture, cannot be traced by our inftruments. We likewife know the chemical characters of the moft apparent of the different fluids and concrete fubftances: we can even decompofe them to a certain point. This analyfis, however, is not only imperfect, fince we cannot recompofe them, but the phænomena indicate, that there mult exift feveral
other fluids which it has hitherto been imporfible for us to difcover.
The efforts hitherto made by naturalifts to prove a connexion between the phænomena of living bodies and the general laws of nature, have doubtlefs been unfuccefsful. It would, however, be wrong, on that account, to conclude that thofe phænomena are abfolutely of a different kind; but, on the other hand, there would be much temerity in refuming this tafk, while our knowledge of the bodies in which the phænomena appear is fo limited. We fhould be able to give only an empirical expofition, inftead of a rational fyftem. All our labours on organic œconomy mult therefore be confined to its hiftory.

If, however, our knowledge of the compofition of living bodies be not fufficient for the explanation of the phænomena they exhibit, we may at leaft employ it in recognizing thofe bodies when out of a flate of action, and in diftinguifhing their remains long after death; for we find in no inert body that fibrous or cellular texture, nor that multiplicity of volatile elements which form the characters of organization and organized bodies, whether in thofe that are alive, or in thofe that have lived.

We know that inert folids are compofed only of polyædrous moleculæ, which attract each other by their fides, and never move except to feparate-that they refolve into a very fmall number
number of elementary fubftances with refpect to our inftruments - that they are formed of the combination of thofe fubftances, and the accu. mulation of thofe molecules-that they grow only by the juxta-pofition of new inolecules, the ftrata of which envelope the preceding mafs and that they are deftroyed only by fome mechanical agent feparating their parts, or fome chemical agent altering their combinations; but organized bodies, which are tiffues of fibres and laminæ, and have their interfices filled with fluids, refolve almoft entirely into volatile fubftances, are produced by bodies fimilar to themfelves, from which they do not feparate until they are fufficiently developed to act by their own force; conftantly affimilate foreign fubftances, and depofit them between their particles; grow by an internal power, and finally perifh by that internal principle, or by the effect of life itfelf.

Origin by generation, growth by nutrition, termination by death, are the general and common characteriftics of all organized bodies: If, however, there are bodies which perform only thefe functions, and thofe which are fubfidiary to them, and poffefs only the organs neceffary for fuch operations, there are a great number of others which perform particular functions, that not only require appropriate organs, but neceffarily modify the manner in which the general functions are performed, and the organs proper to thofe functions.

Among the lefs general faculties which indicate organization, but which are not the neceffary confequences of it, the faculty of fenfation, and that of voluntary motion, in whole or in part, are the moft remarkable, and thofe which have the greatef influence on the other functions.

We are confcious that thefe faculties exift in ourfel ves, and we attribute them, by analogy, and from their apparent exiftence, to a number of other beings, whom we therefore name animated beings, or, ufing a fingle word, animals.

It appears that the fe two faculties are neceffarily connected, the idea of fenfation is even included in that of voluntary motion; for we cannot conceive volition without defire, and unaccompanied by the fentiment of pleafure or pain. There may indeed exift inanimate bodies, that manifeft external motion produced by an internal principle; but their movements are of the fame nature as thofe which conflitute the functions effential to life, and do not merit the name of voluntary.

On the other hand, the bounty which nature difplays in all her productions, does not permit us to believe that the has deprived beings fufceptible of fenfation; that is to fay, of pleafure and pain-of the power, in a certain degree, of avoiding the one and purfuing the other.Among the misfortunes which afflict our fpecies, one of the moft painful is the fituation of a man
of courage withheld by a fuperior power from refifting oppreffion; and the poetic fictions beft calculated to excite compafion, are thofe which reprefent fentient beings inclofed within immoveable bodies. The fighs of Clorinda iffuing, with her blood, from the trunk of a cyprefs, would arreft the fury of the moft favage of mortals *.

But, independently of the chain which connects the two faculties, and the double fyftem of organs they require, they are accompanied by feveral modifications in thofe faculties which are common to all organized bodies: thefe modifications, joined to the two firft mentioned faculties, are what more particularly confitute the nature of animals.

With refpect to nutrition, for example, vegetables, which are attached to the foil, abforb immediately, by their roots, all the nutritive

[^2]parts of the fluids which they imbibe. Thefe roots are fubdivided to extreme minutenefs; they penetrate into the fmalleft interfices, and proceed, if it may be fo faid, to feek at a diftance food for the plant to which they belong. Their action is tranquil and uniform, and never is interrupted except when deprived by drought of the juices which they require.

Animals, on the contrary, which are not fixed, and which frequently change their place, can tranfport with themfelves a portion of the fubftances neceffary for their nutrition: they have therefore reccived an internal cavity, into which they depofit the matters deflined for their aliment; and the inward furfaces of this cavity are furnifhed with innumerable abforbing pores or veffels, which, according to the energetic expreffion of Boerhaave, are real internal roots: the magnitude of this cavity, in a number of animals, permits them to introduce folid fubftances into it. It was neceffary, then, that they fhould have inftruments for dividing thofe fubfrances, and liquors for diffolving them. In a word, with fuch animals nutrition does not immediately commence upon the abforption of the fubftances which the foil or the atmofphere furnifh them. It is neceffarily preceded with a vât number of preparatory operations, the whole of which conftitute digeffion.

Thus, it appears, that digeftion is a function of a fecondary order, proper to animals, the exift-
ence of which, as well as of the alimentary canal in which it is performed, is rendered neceffary by the faculty they poffefs of voluntary motion; but this is not the only confequence of that faculty.

The faculties of vegetables being very few, their organization is very fimple; almoft all their parts are compofed of fibres, which are cither parallel, or diverge very little. Farther, their fixed pofition admits, that the general motion of their nutritive fluid may be preferved by fimple external agents. It appears that it proceeds upwards, by the effect of the fuction of their fpongy or capillary texture, and the evaporation which takes place at their top, and that its motion in that direction is the more rapid in proportion as the evaporation is great. It appears alfo that the motion of this fluid may even become retrograde, when it ceafes to flow in its ufual courfe, or changes into abforption by the coolnefs and humidity of the air.

It is not only neceffary that animals deftined continually to change their place of exiftence, and to live in all kinds of fituations and temperatures, fhould poffefs within themfelves an active principle of motion for their nutritive fluid; but, their more numerous and more developed faculties requiring a much greater complication of organs, their various parts being differently formed, often at a diftance from each other, and even capable of changing their refpective pofitions and directions, means more powerful.
powerful, and otherwife difpofed than in vegetables, are neceffary for tranfmitting this fluid through fuch a multiplicity of intricate windings.

In the greater part of animals, therefore, this fluid is contained in innumerable canals, which are the ramifications of two trunks communicating with each other, in fuch a mamer that the one receives in its roots the fluid which the other has pufhed into its branches, and carries it back to the centre, to be again driven forward from that point.

Where the two great trunks communicate, the heart is placed: it is merely an organ, the contractions of which drive this fluid forward with great force into all the ramifications of the arterial trunk. It has two orifices, the valves. of which are fo difpofed that the fluid contained in the whole vafcular fyftem can proceed in no other manner than in that we have pointed out; that is to fay, from the heart towards the other parts of the body by the arteries, and from thofe parts back to the heart by the veins.

In this movement, by rotation, confifts the circulation of the blood, which is another func. tion, of a fecondary order, proper to animals, and of which the heart is the principal agent and the regulator; but this function is not fo neceffarily connected with the faculties of fenfation and motion as the function of digertion is; for two numerous claffes of animals
are completely deprived of circulation, and are nourifhed like vegetables, by fimply imbibing a fluid which is prepared in the inteftinal canal.

In the animals that have a circulation, the blood appears to be merely a vehicle which is continually receiving from the alimentary canal, from the external furface of the body, and from the lungs, different fubftances, which are intimately incorporated with it, and with which it replaces thofe it furnifhes to all the-different parts of the body for their prefervation and growth. It is on its paffage to the extremities of the arteries that the blood effects the real natrition of the parts; and alfo changes, in its paffage, its nature and its colour : and it is only by the acceffion of the different fubftances which I proceed to point out, that the veinous blood is rendered proper for nutrition, or, in one word, becomes arterial blood.

It is by particular veffels, called lymphatics, that the veinous blood receives the fubftances with which the fkin and the alimentary canal fupply it. By them, alfo, it receives even the refiduum of nutrition, and the particles which are detached from different parts, to be carried out of the body by various excretions.

With refpect to the lungs, the air that penetrates into them produces, with the veinous blood, a kind of combuftion, which appears to be neceffary to the exiftence of all organized

Bodies; for it takes place in them all, though in very different ways.

Vegerables, and animals which have nocirculation, refpire throughout the whole of their furface, or by veffels which introduce the air at different points into the interior of their bodies. No animals refpire by a particular organ, except thofe that have a real circulation, becaufe, in them, the blood coming from one common fource, the heart, to which it conftantly reterns, the veffels that contain it are fo difpofed that it cannot arrive at the other parts until it has paffed through the lungs. This, however, cannot take place in vegetables, or in thofe animals in which this fluid is every-where diffured in an uniform manner, without being contained in veffe's.

Hence it appears that pulmonary or branchial refpiration is a function of a third order, the exiftence of which depends on that of circulation, and which is one degree removed from thofe facultics that characterize animals.

It is not fo with generation, as the manner in which this act is performed by animals does not depend on their particular faculties, at leaft with regard to the fecundation of the ova; for the faculties they poffefs of moving and ad.vancing towards each other, of defiring and enjoying, has fitted them for tafting all the delights of love: with refpect to the purely mechanical part, therr fermatic fluid has no Vor. I.
occafion for any envelope, and is capable of being tranfmitted directly to the ova; but in vegetables, which do not poffers within themfelves the power of directing this fluid, it was, neceffary that it thould be enclofed in little capfules, which are fufceptible of being tranfported by the winds, and which form what is called the pollen of the famina: thus, while animals, for the performance of moft of their other functions, have, in confequence of faculties peculiar to themfelves, received more complicated organs, they are enabled, by thofecharacteriftic faculties, to exercife the functions of generation in a manner more fimple than vegetables.

Thefe examples fhew how much influence the faculties of fenfation and motion, which animals poffefs in addition to thofe of vegetables, have over the organs of all the other faculties which are common to both thefe kind of beings. The comparifon which we fhall hereafter make of the different orders of animals, will, in the fame manner, demonftrate that the modifications of their principal functions cxercife a fimilar influence on all the others:-Such is the union and harmony, which prevails in all the parts of living bodies.
'We have thus defcribed the principal functions which compofe the animal œconomy. It is obvious that they may be divided into three diftinct orders. There are fome which, in conftituting animals what they are, fit them for fulfilling
filling the part that nature has affigned to them in the general arrangement of the univerfe-in a word, which would be fufficient for their exiftence, if that exiftence were only momentary. Thefe are the faculties of fenfation and motion : The latter enables them to execute certain actions, and the former determines their choice of the particular actions they are capable of performing. Each animal may be confidered as a partial machine, co-operating with all the othe: machines, the whole of which form the univerfe: the organs of motion are the wheels and levers, in fhort, all the paffive parts; but the active principle, the fpring which gives the impulfe to every part, refides only in the fenfitive faculty, without which the animal, plunged in a continual flumber, would be reduced to a flate purely-vegetative;-plants themfelves, as Buffon has obferved, may be called animals which flecp. Thefe two functions form the firft order, and are termed animal funcions. But animal machines, unlike thofe we conftruct, poffefs an internal principle of prefervation and reparation. This principle confifts in the union of the different functions which ferve to nourifh the body, that is to fay, digeftion, abforption, circulation, refpiration, tranfpiration, and the excrelions. Thefe form the fecond order, and are denominated vital functions.

Finally, the duration of each animal's life being determined according to its kind, genera-

$$
\mathrm{C}_{2}
$$

tion
tion is a function of a third order, by which the individuals that perifh are replaced by others, and the exiffence of each fpecies maintained.

Having confidered thefe functions with refpect to themfelves, and to their reciprocal relations, we fhall next examine the organs by which they are performed.

Article If.

General Idea of the Organs of which the Animak Body is compofed.

No part of the animal body is compofed entirely of folid particles; they all yield fluids by expreffion, or lofe them by exficcation; and they all exhibit the appearance of an areolated or reticular texture.

The mechanical divifion of the folids conducts us, in the laft refult, to lamellæ, or filaments, which fcem to be the elementary moleculæ. When the lamellæ are feparate, and intercepted by fenfible vacancies, they form what is called cellulofity. This cellulofity not only envelopes and pervades the moft denfe parts, but it appears to form almoft always their bafis; for membranes confift only of a more compact cellulofity, the lamellic of which are more clofely approximated, and placed more exacily above each.
each other, and are refolved into an ordinary cellulofity by maceration. The veffels are merely membranes rounded into cylinders. All the foft parts of the body, the fibres excepted, feem to be an affemblage of veffels, differing from each other only according to the nature of the fluids they contain, and by their number, their direction, and the ftructure of their coats.

The chemical analyfis of thefe fubftances, folids as well as fluids, exhibit only a few principles, almoft all of which are to be found in each of them, though in very different proportions. Some earths, fome falts, phofphorus, carbon, azote, hydrogen, oxigen, a little fulphur, and a little iron, combined in a great varicty of ways, produce different compofitions, viz. gelatine, albumen, and fibrous matter, \&c. which, uniting in their turn, form animal folids and fluids, fuch as we know them. But, diftant as we are from a complete analyfis, we fee enough to convince us, not only that we alter thefe com_{7} pofitions by our experiments, but alfo that feveral of their principles entirely efcape our inftruments.

The general organ by which we exercife the faculty of fenfation, is the medullary fubftance. In all the animals in which we can diftinguifh it, that fubftance is divided into filaments, which, arifing from certain centres, diffribute themfelves over moft parts of the body, where they appear to ferve other purpofes befides that of pro-

$$
\mathrm{C}_{3}
$$

curing
curing fenfations. The centres from which thofe nervous cords proceed, communicate with each other in a manner more or lefs intimate, and feveral of the filaments feem of no other ufe than to eftablifh thofe communications.

A nerve, when touched by a foreign body, caufes the fenfation of pain, though its contact with the parts of the body which are naturally contiguous to it, produces no fenfible effect in a ftate of health. The nerves, by which we difcern external objects, are provided, at their extremities, with organs, each of which are difpofed in a particular manner, and which always poffefs an admirable relation to the nature of the objeits, a knowledge of which each of thefe fenfes is deftined to convey to us.

The general organ of motion is the flefhy or mufcular fibre. This fibre contracts itfelf by volition; but the will only exercifes this power through the medium of the nerves.--Every fiefhy fibre receives a nervous filament; and the obedience of the fibre ceafes, when the communication of that filament with the reft of the fyftem is intermpted. Certain external agents, applied immediately to the fiore, likewife caufe contraction: and they preferve their action upon it, even after the fection of its nerve, or its total feparation from the body, during a period which is longer or fhorte in different f_{i} eci s of animals. This faculty of the fibre is called its irritability. Does it in the latter care depend upon the por-

Art. II. Structure of the Organs.

tion of the nerve remaining in the fibre after its fection, which always forms an effential part of it? Or is the influence of the will itfelf only a particular circumftance, and the effect of an irritating action of the nerve on a faculty inherent in the mufcular fibre? Haller and his followers have adopted the latter opinion; but every day feems to add to the probability of the oppofite theory.

Be this as it may, all the internal parts of the bodies deftined to produce a compreffion on the fubfances they contain, have their parietes furnifhed with flefhy fibres, and receive nervous filaments; fuch is the cafe with the arteries, the inteftines, the heart, \&c. But the principal ufe of thefe fibres is the formation of mufcles. This is the name given to the bundles of flefhy fibres, the extremities of which are attached to the moveable parts of the animal body. When the fibres which compofe the mufcle fhorten, the two points to which it is attached are brought towards each other: this is the fole means by which all the external motions of the body and the members, even thofe which are neceffary for removing the body entirely from one place to another, are produced.

Animals that can only crawl have their mufcles attached to different parts of their fkin, on which they alternately produce dilatations and contractions, which are the only motions of which they are fufceptible: but thofe which are capable of
maving themfelves by fteps or otherwife, either wholly or partially, have their mufcles attached to hard parts placed extermally or internally. Thofe parts perform the office of levers, and haye points of fupport on each other, which are called their articulations.

All the hard parts taken together form the nkelecon. When they are covered by the mufcles, they receive the name of bone; when they cover mufcles, they are denominated fhell, cruft, or fcale, according to their degree of confiftency. In both cafes they always enclofe vifcera, and determine the exterior form of the body, and the proportions of its different parts.

The articulations are provided with as many mufcles as are neceffary for the different movements of which they are fufceptible; each mufcle moving the bone to which it is attached, in its proper direction. They may be regarded as the moving powers. Their force, the point of their infertion, and the length and weight of the parts attached to the lever they have to move, determine the velocity and the duration of the motion they are capable of producing. On thefe different circumftances depend the force of leaping ${ }_{2}$ the extent of flight, the rapidity of the race, and the prehenfle power poffeffed by different fpecies of animals; but, as we have already obferved, all this organization would remain immoveable, were it not animated by the nervous fyitem.

The foft white fubftance which forms the

Art. II. Structure of the Organs. 25

effence of this fyttem, is divided into filaments that approach each other, and unite in bundles, which contain more filaments in proportion as they are traced nearer to the common fafciculus of all the nerves, called the fpinal marrow, the anterior extremity of which is joined to the brain, that is to fay, to a medullary mafs of more or lefs magnitude, and differently formed according to the various kinds of animals.

From the action of external bodies on our own, we perceive that the nerves affected by that aftion communicate with the common fafciculus, and that it communicates with the brain. A ligature or a rupture intercepts the phyfical communication, and deftroys fenfation.

The only fenfe which belongs generally to all animals, and which pervades almoft the whole furface of the bodies of each of them, is that of feeling. It refides in the extremities of the nerves which are diftributed to the fkin, and makes us fenfible of the refiltance of bodies, and their temperature.

The other fenfes feem to be only modifications of this one, but more exalted, and capable of recciving more delicate imprefions. Every one knows that the other fenfes are feeing, which refides in the eye; hearing, which belongs to the ear; fmelling, which is attached to the membranes within the nofe; and tafting, the feat of which is in the furface of the tongue. Thefe fenfes are almof always fituated in the fame extremity
extremity of the body which contains the brain, and which we call the head.

Light, the vibrations of the air, the volatile emanations which float in the atmofphere, and faline particles foluble in water, or faliva, are the fubftances which act on there four fenfes; and the organs, which tranfmit the action to the nerves, are appropriate to the nature of each. The eye prefents tranfparent lenfes to the light, which refract its rays. The ear offers membranes and fluids to the air, which receive its concuflions. The nofe inhales the air which is to go to the lungs, and feizes, in their paffage, the odoriferous vapours it contains. Finally, the tongue is covered with fpongy papillx, which imbibe the favory liquids that are taken into the mouth.

By thefe means we obtain a knowledge of what paffes around us: but the nervous fyftem likewife makes us acquainted with a great deal of what paffes within us. Independently of thofe internal pains which indicate fome diforder in our organization, and the difagreeable ftate in which we are placed by hunger, thirft, and fatigue, it is in confequence of the operation of this fyftem that we experience the agonies of fear, the emotions of pity, the defires of love. Senfations of this laft kind feem, however, to be rather the effects of the re-action of the nervous fyftem, than immediate impreffions; though, at the fight of any imminent danger, we haften to

Art. II. Structure of the Organs. 27

avoid it before it appears that the mind has had time to act; and the fame obfervation applies to the tranfports we feel on the prefence of a beloved object, or to the tears we fhed over the fpectacle of fuffering virtue. Thefe effects of the nervous fyftem are produced by numerous communications which particular nerves, called Jympatbetics, eftablifh between different branches of the general trunk, by means of which the impreffions are tranfinitted more rapidly than by the brain. The knots called ganglia, when they are confiderable, are each a kind of fecondary brain; and it is obfervable; that they are larger and more numerous in proportion as the principal brain is lefs.

The faculty of fenfation, and that of contraction, the firft of which, in moft animals, is exclufively approprated to the nervous fubfance, and the fecond to the flefhy fibre, appears to be equally diffufed in all the parts. of certain gelatinous animals, in which we cannot perceive either fibres or nerves.

It is by the means of thefe two faculties that animals feel, defire, and are enabled to provide for their wants. The moft irrefiftible feeling of all is that of hunger, which confantly reminds the animal of the neceffity of procuring new materials for its nutrition. This third function commences in the mouth, into which the aliments are taken, and, when they are folid, matticated and moiftened with difolving liquors;
thence
chence they traverfe the alimentary canal, which is longer or fhorter, and more or lefs convoluted and dilated in different animals, and the parietes of which are compofed of feveral continued tunics, analogous to thofe which form the external teguments of the body.

Thefe coats act in a mechanical manner on the fubftances which they contain, by light contractions of their fibres, and in a chemical manner by the liquors which are poured out within them.

The firft dilatation of the alimentary canal is called the ftomach. There are fometimes fevewal ftomachs, or feveral divifions of that organ ; its parietes yield a liquid which reduces the aliments to a homogeneous pulp, during the time they remain in it. The remainder of the canal is more particularly called bowels or inteftines. Independently of the juices which the different coats of the bowels produce, there are fome which are feparated from the mals of blood by glands, and which penetrate the inteftinal canal by particular conduits. The moft remarkable and the moft general of thefe glands are the liver and the pancreas. The firft, which fecretes the bile, is always of a confiderable fize; and befides the effect of its liquid on the in:eftines, produces another very remarkable effect on the blood itfelf, from which it removes feveral principles.

It is in the inteftines that the aliments under-

Art. II. Structure of the Orgazs. 29
go that change which fits them for nutrition. The nutritive part is abforbed, during the act of digeftion, either by the pores of the canal itfelf, in animals that have no circulation, or, in thofe that have, by very fmall veffels which conduct it into the general fyftem of nutritive veffels. Thofe fmall veffels are called lymphatics. They are very diftinct from the veins, in animals whofe Atructure moft refembles that of man: In the more inferior animals they become gradually more like the veins, and cannot be diftinguifhed from them in thofe which have white blood. The membranes which compore the lymphatic veffels and, veins, are thin, and without apparent fibres. Internally they are furnifhed with valves, all opening in the direction in which the fluid they convey has to flow, that is to fay, towards the heart. The arteries, on the contrary, are ftrong and mufcular, but have no valves; the vigorous impulfe of the heart is fufficient to imprefs a conflant direction on the blood they contain.

But the chyle; or the liquor produced by digeftion, is not fufficient for renewing the veinous. blood, and rendering it fit for the nutrition of the different parts of the body. It is neceffary that it fhould experience the contact of the air before it-enter into the arterial fyftem. This is effected by refpiration. The organs of refpiraaion, in animals which have blood veffels, confift in a ramification of thofe veffels, which in-
creafes their furface to fuch a degrec, that almoft all parts of the fluid are feparated from the furrounding element by only a very thin pellicle, which cannot obftruct its action. This ramification takes place on the furface of certain folds or lamellæ in aquatic animals, and on that of certain cells in aerial animals. In the firft cafe the organ is denominated brancbice, in the fecond lungrs. In animals which have no veffels, the air reaches all parts of the body, and acts on the nutritive fluid at the fame moment in which that fluid combines with the parts of the body which it is deftined to nourifh. This is the cafe with infects that have trachcie. It will be eafily conceived that there muft be mufcular organs appropriated to each of thofe fpecies of refpiration deftined to attract or impel the ambient fluid towards the place where it has to act upon the blood. This office is performed by the ribs, the diaphragm, the mufcles of the abdomen, the flaps of the gills, and feveral other parts, according to the nature of the animal.

The air cannot be employed in the formation of the voice, except in the animals that refpire by cellular lungs, becaufe it is in them only that it enters by a fingle and lengthened tube. At one or two parts of this tube there are membranes fufceptible of tenfion, which vibrate when the air acts upon them, and thereby produce the various founds which we call the voice. The animals which have no voice, properly fo

$$
\text { Art. If. Structure of the Organs. } 3 \text { I }
$$

called, are not, however, deprived of the power of producing certain founds, but they are produced in them by other means.

The blood, on its paffage into the organ of refpiration, experiences a kind of combuftion, which removes a part of its carbon, carrying it of under the form of carbonic acid, and which thereby augments the proportion of its other clements. The effect of this procefs on the refpired air, is to deprive it of its oxygen, which is the only aeriform fluid that can be ferviccable to refpiration. Its effert on the blood is lefs known: we know that it heightens the colour of the blood in red-blooded animals, and gives it the power of exciting the heart to contrac.-. tion. There is even reafon to believe that it is this action of the air on the blood which gives, indirectly, to the flefhy fibres their contractile power. It is fill neceffary that the blood fhould lofe feveral other principles: fome are carried off by the kidneys, which fecrete the urine, and which are found in all animals that have red blood: The matter which tranfires through the pores of the fkin, and the fubftances which pafs through the inteftinal canal, a great part of which are carried away with the excrements, relieve the blood of other principles. Thefe three kinds of excretions, to a certain degree, fupply the place of each other, and appear, therefore, to tend towards one common object.

Thefe are all the organs which conftitute the animal,
animal, confidered individually, and which are fufficient for its feparate exiftence, while the object is not the multiplication of the fpecies: Such, I fay, are the whole of the organs in the higher orders of animals. We fhall fee that, in proportion as we defcend in the fcale of being, they fuccoffively difappear, and that at laft we thall find, in the loweft claffes, only what is neceffarily connected with the idea of an animal that is a fack, fenfible, moveable, and capable of digetting.

Upon a clofe obfervation of the action of all thefe organs, it will appear, that all the operations, which take place in the animal body, depend on the combination and decompofition of the fluids contained within it. To the animal procefs, by which one fluid is feparated from another, or is formed from a part of the clements of one, mixed with a part-of thofe of another, we give the name of fecretion: this term, however, is ufually confined to the changes which take place in different kinds of glands, that is to fay, in bodies more or leifs thick, in which the bloociveffels being infinitely fubdivided, permit the liquid which the gland feparates from the blood, to tranfude from their extremities. But the animal œconomy exhibits a number of other transformations, or feparations of humours, which equally merit this name. It cannot be fuppofed that the nerves act on the mufcular fibres without producing a chemical change on
Art. Il. Structure óf the Organs. 33
the fluid that may be contained in the one, by the acceffion of that which the others may tranfmit, nor that external objects act upon the nerves otherwife than by producing a change of the fame kind. The fluid contained in the nervous fyftem muft have been feparated from the blood in the brain, and, in general, in all the medullary organ. The blood itfelf does not attain its ftate of perfection until a multitude of fubftances have been detached from it by the lungs, the kidneys, the liver, $8 x c$. and until after it has received a number of others which have been feparated from the alimentary mafs by the lacteal veffels: on the other hand, this mafs is not capable of yielding chyle until it has in its turn received different liquors which have been fecreted from blood by feveral organs; and the blood only nourifhes the parts to which it is diftributed, by the particles that are detached from its mafs, while other particles are feparated from thefe parts to return into the mafs of the blood through the medium of the lymphatic veffels.

In a word, all the animal functions appear to reduce themfelves to the transformation of fluids. In, the manner in which thefe transform ations are produced, the real fecret of the admirable ceconomy of animals confifts, as health depends upon their perfection and regularity.

If we do not perceive this procefs in a manner fufficiently clear when the embryos of new

$$
\text { Voz. I. D } \quad \text { individuals }
$$

individuals begin to develope themfelves within or without the bodies of their mothers, we can at leaft difcover it in the preparation of the male liquor, which, by its prefence, excites or occafions that development in all the fpecies in which copulation is neceffary. This development takes place in the fame manner as the ordinary growth. It, therefore, comes under the general rule.

The organs of generation, which alone remain to be noticed, are thofe which prepare the prolific liquor, and convey it to the ova, and thofe which are deftined to contain and protect the embryo during its development. The firft conftitute the male, the fecond the female fex.

The tefticles are the glands which fecrete the feminal fluid; feveral other glands prepare liquors which mingle with it. The penis contains the feminal canal; it fwells by the accumulation of blood when the nerves are excited by defire: by that means, it is rendered, capable of penetrating the vagina, which leads to the matrix, or to the oviductus, and of conveying thither the fluid deftined to vivify the ova. The oviduct or tube receives the ovum at the moment in which it is detached from the ovarium; and conducts it without the animal if it be of the oviparous kind, or into the matrix if it be viviparous. The little embryo developes itfelf, and draws its nourifhment, cither from the body
body of its mother, by the abforption of a large tiffie of veffels connected with thofe of its own body, or from an organized mafs attached to it in the fame manner, and which forms the yolk of the egg, or the vitellus. When the embryo attains a certain fate, the matrix expels it; or it breaks the fhell of the egg in which it is contained, and efcapes from its prifon.

Article III.

> Tiew of the Principal Differences which Animals exthibit in their feveral Organs.

IT appears from the preceding Article, that what is common to each kind of organs, confidered in all animals, refolves itfelf into a very fmall compafs, and that frequently they only refemble one another in the effects they producc. This is particularly obvious with refpect to refpiration, which is performed in the different claffes of animals by organs fo various, that their flructure prefents no common point of comparifon. Thofe differences in the organs of the fame kind are precifely the object of Comparative Anatomy; and the flort expofition we are about to make, of the principal of thefe differences, may be regarded as the general
plan of this Courfe of Lectures. We fhall, therefore, return to each of the functions of which we have treated, and examine the different degrees of energy it poffeffes, and the particular means by which it is carried on in different animals.

The organs of motion prefent us at firft fight with two important diftinctions with refpect to their fituation. Sometimes the bones form an internal fkeleton, articulated and covered by the mafcles; fometimes there are no internal bones, but merely fcales or fhells which cover the fkin, within which are the mufcles: in other cafes there is no hard part that can ferve as a lever or point of fupport for the motions of the animal's body.

Animals of the firf kind have the whole body fupported by a ftrong pillar, formed of feveral bony pieces placed one above the other, and called the fpine of the back, or the vertebral column. They are therefore denominated Vertebral Animals. Thefe are the Mamma!iu, Birds, Reptiles, and Fiffes.

The animals without vertebre are either entirely foft, or have their bodies and members enveloped in fcales articulated on one another, or, finally, are enclofed in fhells. Thefe are the Soft Worms, Infects, and the Ticfacea.

It is by the greater or lefs perfection of certain parts that the animals of theíe different claffes become fufceptible of various kinds of motion.

The organs of fenfation prefent confiderable varieties-fome have a relation to the internal part of the nervous fyftem, others to the external fenfes. The firft gave rife to three claffes:that of animals which have no apparent nervous fyftem, and in which we difcover neither veffels nor nerves; fuch are the Zoophytes or the Polyps: -that of animals in which there is only the brain above the alimentary canal, and which have all the remainder of the common bundle of nerves fituated underneath, and contained in the fame cavity with the other vifeera; thefe are the Mollufca, the Crufacea, Infeats, and a part of the Articulated Worms:-laftly, that of animals in which the common fafciculus of the norves is fituated entirely in the back above the alimentary tube, and enclofed in a canal which paffes through the vertebral column; thefe are all the Vertebral Animals.' Their ganglia are placed on the fides of their medullary cord, or difperfed in the large cavities. Among the invertebral animals there are fome that have ganglia only in the large cavities, as the mollufca, and others which have them all on the medullary cord itfelf, of which they appear to be fwellings; thefe are the infects, and fome articulated worms.

The differences in the external fenfes confift in their number, and in the degree of energy that belongs to cach.

All vertebral animals poffefs the fame fenfes as man.

Sight is wanting in the zoophytes, in feveral kinds of articulated worms, in feveral larve of infects, and in the acephalous mollufca. Hearing does not exift, at leaft we have not yet difcovered its organ in fome mollufca and infects. The other three fenfes, but particularly thofe of tafte and touch, appear never to be wanting.

But each of thefe fenfes may vary confiderably, in the degree of its fufceptibility, and the complication of its ftructure. The perfection of the fenfe of touch, for example, depends upon the delicacy of the external teguments, and on the divifion of the extremities that more particularly enjoy that fenfe ; their formation rendering them capable of being applied more or lefs exactly to the bodies of which the animal would acquire a knowledge. Above all, it is in the number and flexibility of the fingers and toes, and the fmallnefs of the claws or nails, that the anatomift difcovers important claracters.

The eyes may be more or lefs moveable, more or lefs covered, and more or lefs numerous. The ears may be funk within the cranium, or expofed outwardly; or they may be provided with an external trumpet, which collects the rays of found. The membranes in which the fenfe of fmelling refides may be more or lefs extenfive: thofe which are the feat of tafte, may be

Art. III. Differences of the Organs. 39

more or lefs delicate and humid; but it is only by particularly confidering each of thofe fenfes that we can take a comprehenfive view of the differences that exift in the various claffes of animals.

The organs of digeftion exhibit two important differences in their general difpofitions. In certain animals, (in the greater part of zoophytes,) the inteftines form a fack with only one aperture, which ferves at once for the entrance of the aliments, and the iffue of the excrements : all other animals have two diftinct apertures, for thofe purpofes, at the two extremities of the fame canal ; but the convolutions of this canal may be fuch as to remove thefe openings to a greater or lefs diftance from each other. Another difference which has much influence on the nature of the aliments appropriated to each fpecies, is, that in certain animals the mouth is armed with teeth, or hard parts proper for grinding folid fubftances, while in others they do not exift. In the latter cafe, the animal can only fwallow whole bodies if its mouth be large, or merely fuck in fluids if its mouth be in the form of a tube. The ftructure of thofe teeth has itfelf much influence on the fubftances the animal can fubmit to maftication. The, remainder of the alimentary canal varies alfo confiderably in its ftructure, according to the different fubfances which the mouth conveys to it, On this likewife depend the length of the

$$
\mathrm{D}_{4} \quad \text { canal, }
$$

canal, and the member of ftomachs, cæca, \&c. 'The details on this fubject muft, however, be referred to particular articles.

The chyle produced by the action of the digeftive organs on the alimentary fubitances is tranfmitted to the various parts of the body in two different ways: " It either fimply tranfudes through the parictes of the inteftinal canal, to bathe all the interior of the body, or it is abforbed by particular veffels which convey it into the mafs of the blood. The firft is the mode in which this operation is performed in zoophytes, and, in my opinion, alfo in common infects, which appear to have no kind of veffels proper for circulation. As to the other animals, viz. the mollusca, and the vertebral animals, that have abforbent veffels, they exhibit τ wo new differences. The latter have red blood, and the lymph and chyle white. Almoft all the others have thefe two fiuids of the fame colour.

Vertcbral animals differ among themfelves, with regard to the colour of the chyle, which is white and opaque in the inammalia, and tranfparent like the other lymph in birds, reptiles, and fithes. 'The three laft claffés, therefore, have no congl bate glands in their chyliferous veffels, while they are very numerous in the firf.

The circulation of the blood is accompanied with very important d.fferences in its organs. In t' efirf place, thereare animals which have no circulation whatever, viz. infects and zoophytes:

Art. III. Differences of the Organs. 41

others have a double, and others a fingle circulation. We call that a double circulation in which no part of the veinous blood can enter the arterial trunk, until it has paffed through the organ of refpiration, which is generally formed of the ramifications of two veffels; the one arterial, the other veinous; each nearly as large but not fo long, as the two principal veffels of the body. Such is the circulation of man, of all mamnalia, of birds, fifbes, and a number of mollusca.

In the fingle circulation a great part of the veinous blood re-enters the arteries without paffing through the lung; becaufe only one branch of the arterial trunk is expanded upon that organ; fuch is the circulation of the Amphibia.

There are befides other differences in the hearts, or mufcular organs, deftined to give impulfe to the blood. In the fingle circulation there is only one heart; but, when the circulation is double, there is fometimes an organ at the bafe of the aorta, and alfo at that of the pulmonary artery. At other times it is at one of the two only.

In the one cafe, the two hearts, or rather the two ventricles, may be united, as in man, mammalia, and birds; or they may be feparate, as in the cuttle fifh.

Where there is only one ventricle, it may be placed at the bafe of the artery of the body, as in frails, and other mollufca; or at the bafe of the pulmonary artery, as in fifhes.

The organs of refpiration are likewife dif. tinguifhed by a number of remarkable differences - When the element that acts on the blood is the atmofpheric air, it penetrates even into the interior of the refpiratory organ ; but when that element is water, it fimply glides over a furface more or lefs multiplied.

The lamellæ which compofe the organ, in the latter cafe, are ćalled brancbice. They are found in fifhes, and in a number of mollufca: inftead of lamellæ, we fometimes find fringes or tufts.

The air either enters the body by a fingle aperture, or by feveral. In the firft cafe, which is that of all animals that have what is properly called lungs, the canal which receives the air divides into a number of branches, terminating in as many fmall cells, that are ufually united into two maffes, which the animal has the power of compreffing or dilating at pleafure.

When there are feveral apertures, which is the cafe only with infects, the veffels that receive the air are ramified ad infinitum, and convey it to all parts of the body without exception. This we call refpiration by trachea.

Laftly, the zoophytes, if we except the cehinodermata, have no apparent organ of refpiration.

The organs of the voice prefent only two differences, which may be rcgarded as gencral. They depend on the pofition of the glotios in which the found is formed. In birds, it is at

Art. III. Differences of the Orćans. 43
the lower part of the trachea or tube, which conducts the air, where it divides into its two branches to pafs into the lungs. . In quadrupeds and reptiles it is fituated in the beginning of the trachea, at the root of the tongue.

Only thefe three claffes have a glottis; but the other animals produce founds by different means. Sometimes they employ the friftion of certain elaftic parts; fometimes they beat the air with other parts, or produce a rapid motion in certain portions of air, which they fomewhere retain in their bodies.

Generation gives rife to varieties of two kinds. The one relates to the actions which occafion it, the other to the refult.

In a fmall number of animals, belonging almoft entirely to the clafs of zoopbyta, generation is performed without copulation, and the young animal grows on the body of the parent, like a fhoot on a tree: others only produce in confequence of copulation, and are therefore provided with two fexes; but thefe two fexes may be feparate in different individuals, or united in the fame. It is only in the mollufca and zoophyta that this laft cafe occurs: all animals with vertebre, and infects, have the fexes feparate.

Hermaphrodite animals, fuch as the bivalue fhell fifh, generate fingly; in others, a reciprocal copulation take place, each of the two individuals performing the functions of male
and female : this is the cafe with the finails, and other mollufca that crawl on the belly.

The produce of gencration is either a bud which developes itfelf into an animal, remaining fome time on the body from which it proceeds, and of which it forms as it were a branch; or it is a foetus, which unfolds itfelf in the uterus of its mother, to which it is connected by a plexus of veffels, and from which it comes forth alive; or, finally, it is a foetus inclofed in a thell, with a fubftance adhering to it by veffels which it mult abforb before it is difcharged. Thefe are the gemmiparous, viviparous, and oviparous modes of generation.

The firft occurs, in fome zoophytes, and in fome articulated worms ; the fecond in man and other mammalia only; the third is common to all other animals; and when their young come forth alive from the body of the mother, as is the cafe with the viper, it is becaufe the eggs are hatched in the oviduct.

Laftly, if we confider the fates through which the young animal is obliged to pars before it becomes, in its turn, capable of perpetuating its fpecies, we again difcover two principal differences. - Some have at their birth the form which they will always preferve, with the exception of a few inconfiderable parts which have yet to difclofe themfelves, and to change their proportions: the others, on the contrary, have a form altogether different from their per-
fect flate, and not only have to produce and unfold new parts, but muft lofe their old ones: thefe are the animals which undergo a metamorphofis. Hitherto this change has only been obferved to take place among infects, and among the reptiles without fcales, that is to fay, frogs and falamanders.

Such are the chief varieties which the organs belonging to the feveral functions of animals exhibit.

We have, however, yet to notice one very important variety which extends to feveral of thefe functions ; it relates to the organs of fecretion. In the four claffes of vertebral animals, and in fome mollufca, thefe organs are glands, or at leaft expanfions of blood veffels; the name of gland being particularly applied to them when they form mafies of fome thicknefs.

It is not fo in infects, which, inftead of fecretory organs, have only tubes more or lefs long, which attract into the fpongy texture of their parietes, that portion they have to feparate from the mafs of the nutritive fluid.

We are as yet little acquainted with the organs of fecretion in zoophytes, if indeed they can be faid to have any particular organ for that purpofe.

46 Lect. I. Animal OEconomy.

ArticleIV.

Wicto of the Relations which exift amongl the Variations of the feveral Organs.

The preceding Article has pointed out the principal differences of which the organs, belonging to each animal function, are fufceptible in their ftructure and operation. The number of the fe differences would have been much greater had we entered into details, and defcended to the lefs important circumfances. It is obvious, however, from the manner in which we have defcribed them, that, by fuppofing each of the differences of one organ united fucceffively with thofe of every othcr, there would be produced a very confiderable number of combinations, which would correfpond with as many claffes of ánimals. But thefe combinations which appear poffible, when we confider them abftractedly, do not all exift in mature ; becaufe, in a ftate of life, the organs do not fimply join their effects, but act on each other, and concur altogether to one common object. Hence the modifications of any one of them cxercife an influence on thofe of every other. Such of thefe modifications as cannot exift together, reciprocally exclude one another, while others are, as it were, called into the fyftem; and this takes place, not only in the organs which have an immediate
mediate connexion, but in thofe which at the firft view appear the moft feparate and independent.

In fact there is not one function which doss not fand in need of the concurrence of almoft all the others, and which is not more or lefs affected by their degree of energy.

Refpiration, for example, cannot take place without the aid of the motion of the blood,' fince it confifts in bringing that fluid in contact with the furrounding element; but as it is circulation that gives motion to the blood, it therefore is a neceffary mean in producing refpiration.

Circulation itfelf has its caufe in the mufcular action of the heart and arteries: it is produced, therefore, by the aid of irritability. That faculty, in its turn, derives its origin from the nervous fluid, and, confequently, from the function of fenfibility which returns, by a kind of circle to the circulation of the blood, which is the caure of all the fecretions, and of that of the nervous fluid as well as others.

Of what value would fenfibility be, were it not aided by the mufcular force, even in the moft trifing circumftances? What would be the utility of the fenfe of feeling, were we not able to turn our hánds towards palpable objects? And what would be the advantage of feeing, ifwe could not turn the head or eycs in every direction?
It is on this mutual dependance of the functions, and the aid they reciprocally yield to one another, that the laws which determine the relations
lations of their organs are founded-laws which have their origin in a neceffity equal to that of metaphytical or mathematical laws: for it is evidentthat a fuitable harmony between organs which act on one another, is a neceffary condition of the exiftence of the being to which they belong; and that if any one of the functions were modified in a manner incompatible with the regulations of the others, that being could not exift.

We are about to take a view of the moft remarkable of thefe relations, by entering into a comparifon of the different functions of animals. To begin with one of the moft obvious: we obferve that the mode of refpiration conftantly depends on the manner in which the motion of the nutritive fluid is performed. In animals that have a heart and veffels, this fluid is continually collected in a central refervoir, whence it is forcibly impelled towards all the parts of the body. It always comes from the heart, and always returns thither before it revifits the other parts. It can, therefore, be expofed to the action of the air at its fource; and, in fact, before it returns through the aorta and its ramifications to the parts which it has to nourifh, it paffes through lungs or branchix, to be there fubjected to that action. But this is not the cafe with the animals, which, like infects, have neither heart nor blood veffels: their nutritive fluid has no regular motion, and departs from no
Art. IV. Relations of the Organs. 49
common fource. It is not poffible that it fhould be prepared in a feparate organ before it is diftributed to the reft of the body, fince, arifing like a dew from the pores of the inteftinal canal, it conftantly bathes all the parts; and fince thefe parts always receive from it the particles which are depofited between thofe of which they are already conftituted. The action of the air, therefore, can only be exercifed at the time and place of this depofition...This operation takes place very perfectly by the difpofition of the trachex; there being no folid point in the body of infects where the fine ramifications of thefe aerial veffels are not attached, and on which the air does not immediatcly exercife its chemical effect. As we clearly fee the caufes of this relation between the organs of thefe two functions, we are authorized to prefume that other relations equally conftant, which exift between them, have alfo their foundation in caufes of the fame kind, though they are not fo evident to us.

Thus, among the animals that have bloodveffels, and enjoy a double circulation, thofe which refpire the air by receiving it immediately into the cellular lungs, have always the two trunks of their arteries approximated, arrd furnifhed with mufcular ventricles, but joined together in one mafs; while thofe which refpire only through the medium of the water that paffes between the folds of their branchix, have

VoI. I.
E
always
always two feparate trunks, whether they be both provided with ventricles as the Sepia, or have a ventricle for one only, like fifhes and mollufca.

We can more readily perceive the reafon of the relations which connect the mode and extent of refpiration, with the different kinds of general motion of which each animal is fufceptible, and which render the air more neceffary to them in proportion as their manner of moving enables them to procure it with facility; or, what amounts to the fame thing, thofe which can the moft eafily obtain pure air, are precifely thofe to whom refpiration is moft indifpenfably neceffary.

Modern experiments have demonftrated, that one of the principal ufes of refpiration is to reanimate the mufcular force, by reforing to the fibre its exhaufted irritability. We, indeed, obferve, that the animals which refpire immediately, and have a double circulation, and in which none of the veinous blood can return to the various parts until after refpiration, that is to fay, birds and mammalia, not only always live in air, and move in it with greater force than the other red-blooded animals, but each of thofe claffes enjoys the faculty of motion precifely in a degree correfponding to its quantity of refpiration. Birds which are, as it were, alway in the air, are, if I may be allowed the expreffion, equally impreguated by that element both in-

> Art. IV. Relations of the Organs. 5 it

ternally and externally. The cellular part of their lungs is not only very confiderable, but thefe organs have facks and appendices which are prolonged throughout the body. Birds therefore confume, within a given time, a much greater quantity of air, in proportion to their bulk, than quadrupeds. Doubtlefs this is the circumfance which gives to their fibres an in. ftantaneous force fo very prodigious, and which renders their flefh capable of becoming the moving power in machines which require actions fo violent as to fuftain them in the air by the fimple vibration of wings.

With refpect to the force of their motion, and quantity of refpiration, the mammiferous animals feem to hold a middle place between birds and reptiles, which form the oppofite extremes. With the latter, refpiration appears to be only an acceffary circumftance; they may difpenfe with it almoft as long as they pleafe. Their pulmonary veffels are merely branches of the great trunks. On the one part their organs of motion reduce them to remain on the, earth, in obfcure and clofe places, in the midft of foul air : and their inftinct frequently directs them to fhut themfelves up in cavities in which the air cannot be renewed, or even to bury themfelves under water during a great portion of the year: on the other part, their motion is in general very flow; and they pafs a great part of their life in a flate of complete repore.

As it is one of the conditions of the exiftence of every animal, that its wants fhould be proportioned to the ability it poffeffes of fatisfying them, irritability remains longeft unexhaufted in thofe cales in which refpiration is leaft prompt and efficacious in repairing it. This fuggefts the caufe why reptiles are fo remarkable for irritability; and why their fefh palpitates folong after they are dead, while thofe animals that have warm blood lofe that quality as their blood becomes cold.

This relation of the extent of the motive power to the action of the ambient element, is confirmed by the example of fifhes, which having cold blood like reptiles, have alfo, like them, little mufcular force, and an irritability capable of a long duration. The velocity with which fome of them fiwim, muft not deceive us in this refpect; becaufe, being then placed in an element as heavy as themfelves, no force is requifite for their fupport.

If, however, their refpiration have the fame refult as that of reptiles, that refult is obtained by other means. Their circulation, indeed, is double, like that of warm-blooded animals: but as it is air mixed with water which acts on their blood, it is neceffary that the little activity of the element fhould be counterbalanced by the prompt return of the blood into the pulmonary organ. Here we find a new relation between the modifications of the refpiratory organs and thofe

> Art. IV. Relations of the Organs. 33

thofe of circulation. Animals of every clars which refpire by branchiæ, and through the medium of water, have always a double circulation; while, of thofe that refpire the air directly, feveral have a fingle circulation, that is, thofe which do not require an exceffive irritability: but it appears that an inferior degree would have been infufficient to preferve the mufcular force, and that the union of thefe two modes, which both weaken the effect of refpiration, would have prevented the renewal of the energy of the fibre.

The nervous fyftem has likewife its relations to refpiration with refpect to the varieties obferved in both thofe functions. The external fenfes have much lefs energy, and the brain is confiderably fmaller in the animais that have cold blood, in which that organ occupies only a fmall part of the cranium, than in thofe of warm blood, in which the brain fills the whole cavity. Doubtlefs, the little irritability of the fibre in thofe animals requires but a fmall degree of activity in the organs that put it in motion: lively fenfations and ftrong paffions would have too much exhaufted their mufcular force. In this manner the organs of fenfation are immediately connected with thofe of refpiration.

But to what fecret caufe is it owing, that in all the animals which refpire by diftinct organs, the medullary maffes form a fmall number, and are collected in the cranium, or, at leaff, detached

54 Lect. I. Animal CEconomy.
from the fpinal marrow, while in thofe that refpire by tracher, nearly equal ganglions are diftributed throughout the whole extent of their nervous cord? How does it happen, too, that there is no nervous fyftem apparent in animals which have no organs particularly defigned for refpiration? Thefe two relations muft be included amongft thofe whofe caufes are unknown to us.

Digeftion, alfo, has its connection with refpiration: the latter being one of the functions which confume and expel, with the greateft rapidity, the fubftances of which the body is compofed, the digeftive power is generally the greater in proportion as refpiration is more complete, in order that the quantity which is acquired may be equal to that which efcapes.

In confequence of the connection that fubfifts between the organs of refpiration and the modifications of feveral other functions, fome of the latter have relations to one another which at firft fight did not appear neceffary. This is the reafon why birds have in general an exceedingly ftrong ftomach, and a very quick digeftion. This alfo is the reafon why their repafts are fo frequently repeated; while reptiles, which among the red-blooded animals feem to be contrafted to them in every refpect, aftonifh us by the little aliment they take, and the length of time they abftain from food. Thefe differences in the digeftive powers do not depend upon
the nature of the organs of motion which chaw racterife thefe two claffes, but upon that of the organs of refpiration, the modifications of which have an immediate relation with thofe of motion.

It is eafy to perceive that thefe two very different degrees of digeftive powers depend on two difpofitions equally different in the alimentary organs, and that each of thefe difpofitions muft be co-exiftent with a correfponding one in the refpiratory organs. The latter alfo being always connected with a difpofition equally determined in the organs of motion, in thofe of fenfation, and in thofe of circulation, each of thofe' five fyftems of organs may be faid to regulate and govern the others.

The fyftem of digeftive organs has alfo immediate relations with thofe of motion and fenfation. The difpofition of the alimentary canal determines, in a manner perfectly abfolute, the kind of food by which the animal is nourifhed; but if the animal did not poffefs, in its fenfes and organs of motion, the means of diftinguifhing the kinds of aliment fuited to its nature, if is obvious it could not exift.

An animal, therefore, which can only digeft flefh, muft, to preferve its fpecies, have the power of difcovering its prey, of purfuing it, of feizing it, of overcoming it, and tearing it in picces. It, is neceffary, then, that this animal fhould have a penetrating eye, a quick fmell, a fwift motion, addrefs, and ftrength in the claws

$$
\mathrm{E}_{4}
$$

and in the jaws. Agreeably to this neceffity, a flarp tooth, fitted for cutting fleh, is never cocxiftent in the fame fpecies, with a foot covered with horn, which can only fupport the animal, but with which it cannot grafp any thing; hence the law by which all hoofed animals are herbivorous; and alfo thofe ftill more detailed laws which are but corollaries of the firf, that hoofs indicate dentes molares, with flat crowns, a very long alimentary canal, a capacious or multiplied. ftomach, and feveral other relations of the fame kind.

Thofe laws which determine the relations of the organs belonging to the different functions, likewife exercife their powers on the different parts of the fame fyftem, and connect its variations with equal force. The application of thefe laws is particularly evident in the alimentary fyftem, the parts of which are more numerous and diftinct. The form of the teeth, the length, the convolutions, and the dilatations of the alimentary canal, and the number and abundance of the diffol ving liquors poured into it, have always an admirable relation to each other, and to the nature, the hardnefs, and the folubility of the fubftances the animal eats. This comection is fo evident, that the nkilful anatomift, upon knowing one of thofe parts, may cafily conjecture moft of the others, and may, agreeably to the preceding laws, even guefs the extent of the other functions:

Art. IV. Relations of the Organs.

The fame harmony exifts between all parts of the fyftem of the organs of motion; as each of thofe organs acts upon the reft, and experiences their action in its turn, particularly when the animal is completely in motion, all their forms have relation to one another. Not a bone is varied in its furfaces, in its curvatures, or in its eminences, without fubjecting the other bones to proportionate variations: we may, therefore, on the view of one of them, form, with a certain degree of accuracy, an idea of the whole fkeleton.

Thefe laws of co-exiftence, which we have thus far pointed out, may be faid to be reduced by reafoning from the knowledge we have of the reciprocal ufes and functions of each organ. Obfervation having confirmed thefe laws, we are authorifed to follow an oppofite courfe under other circumftances; when, therefore, we obferve conftant relations of form, between certain organs, we may conclude that they exercife fome influence on one another, and we may even make pretty accurate conjectures as to the ufes of both. Thus the confiderable magnitude of the liver in thofe animals which refpire leaft, and its total abfence in infects, which poffers the moft complete kind of refpiration, fince their whole body forms as it were their lungs, have induced us to conclude that the liver, in a certain degree, fupplies the place of the lungs, and, like them, ferves to remove from the blood its two combuftible principles.

In this manner we account for the whitenefs and opacity of the chyle in fome animals, while in others it is as tranfparent as lymph, when we know that the firft are all thofe which have mammæ, and fuckle their young. It is only by a profound fludy of thofe relations, and by the difcovery of thofe which have hitherto efcaped. our obfervation, that we can hope to extend phyfiology. Comparative anatomy may, therefore, be regarded as one of the richeft fources of obfervation for perfecting that important branch of knowledge.

Nature never overfteps the bounds which the neceffary conditions of exiftence prefcribe to her; but whenever fhe is unconfined by thefe conditions, fhe difplays all her fertility and variety. Never departing from the fmall number of combinations that are poffible, between the effential modifications of important organs, fhe feems to fport with infinite caprice in all the acceffary parts. In thefe there appears no neceffity for a particular form or difpofition. It even frequently happens, that particular forms and difpofitions are created without any apparent view to utility. It feems fufficient that they fhould be poffible, that is' to fay, that they do not deftroy the harmony of the whole. In proportion, therefore, as we turn our attention from the principal organs to thofe which are lefs important, we difcover increafing variations; and when we arrive at the furface of bodies

$$
\text { Art. IV. Relations of the Organs. } 59
$$

bodies where the nature of things requires that the parts leaft effential, and the injury of which is leaft dangerous, fhould be placed, the number of varieties becomes fo confiderable, that all the labours of naturaliffs have not yet been able to give us an account of them.

Among thefe numerous combinations there are neceffarily many which have common parts, and there is always a certain number which exhibits very few differences'; by the comparifon therefore of thofe which refemble each other, we may eftablifh a kind of feries, which will appear to defcend gradually from a primitive type. Thefe confiderations are the foundations of the ideas from which certain naturalifts have formed A Scale of Being, the object of which is to exhibit the whole in one feries, commencing with the moff perfect, and terminating with the moft fimple kind of organization-with that which poffeffefs the leaft numerous and moft common properties; fo that the mind paffes from one link of the chain to the other, almoft without perceiving any interval, and, as it were, by infenfible fhades.

Indeed, when we confine ourfelves within certain limits, and particularly when we confider each organ feparately, and follow it through all the fpecies of one clafs, we obferve that its progreffion in the fcale is preferved with a fingular regularity; we even perceive the organ partially, or fome veftige of it in fpecies, in which
it is no longer of any ufe; fo that Nature feems to have left it there only to fhew how ftrictly the adheres to the law of doing nothing by fudden tranfitions: but, on the one hand, the organs do not all follow the fame order of grada. tion; one is found in its higheft degree of perfection in oan fpecies, while another is moft perfect in a fpecies altogether different. If, therefore, we were to clafs the different fpecies according to each organ confidered feparately, it would be neceffary to form as many feries as we fhould adopt regulating organs; and to make a general fcale of perfection, it would be neceffary to calculate the effect refulting from each combination. This, however, is far from being practicable.

On the other hand, the gentle and infenfible thades of gradation prevail fo long as we confine ourfelves to the fame combination of the principal organs, and fo long as the great central fprings remain the fame. All the animals in which this takes place, feem to be formed upon one common plan, which ferves as the bafis of all the little external modifications: but the moment we turn our attention to thofe amimals in which other principal combinations take place, there is no longer any refemblance, and an interval or marked tranfition is obvious to every one.

Whatever arrangement may be given to vertebral animals, and thofe which have no vertebræ,

$$
\text { Art. V. Division of Animals. } 6 I
$$

we never fhall fucceed in placing at the bottom of one of thofe great claffes, and at the head of the other, two animals which fufficiently refemble each other to ferve as a link between them.

Article V.

Diviron of Animals founded on the wothole of their Organization.
I_{T} is the object of Comparative Anatomy to point out the differences which each organ prefents when confidered in every animal ; but this expofition would prove very tedious and intricate, were we obliged at cvery ftep to enumerate all the animals in which particular organs have a uniform ftructure. It is certainly much more convenient to indicate them all at once, under the name of a clafs or genus, which may comprehend the whole: but to enable us, to form this arrangement, it is neceffary that all the animals which compofe a genus or clafs, hould poffers fome refemblance not only in one, but in all their organs; otherwife we fhould be obliged to adopt new claffes and new genera, and a particular nomenclature every time we treated of a particular organ, by which a greater degree of confufion would be produced
than that we are defirous of avoiding. But this confufion would certainly prevail, were we to take the characters of the fubdivifions of the different gradations from organs, and modifications of organs, chofen arbitrarily and at hazard. Though the organ felected fhould be found among the leaft important, and among thofe which have the leaft influence on the whole, it does not follow that the other organs would refemble one another in all the animals in which the likenefs of this one might be preferved. Nothing, therefore, could be affirmed refpecting the other organs belonging to the whole of a clafs or genus of animals, which we fhould have attempted to diftinguifh by characters taken from this unimportant organ.

Suppofe, for example, that we had made three divifions of animals, the aerial, terreftrial, and aquatic, as they were anciently claffed; there would be included, in the firt clafs, befides what are commonly called birds, fome mammiferous animals, (as bats;) fome reptiles, (as the dragon;) fome fifhes, (the different kinds of flying fifh;) and a multitude of infects. Simifar difficultics would occur in a`greater or lefs degree in the other two claffes. If, therefore, we had to defcribe one of their organs, the liver for inffance, it would not be poffible to find a fingle quality which we could attribute to it, throughout the whole of one clafs, nor one which could be faid to belong to it peculiarly
in any one of the three claffes, to the exclufion of the other two.

This example is well calculated to thew how important it is that the characters of our divifions hould be well chofen; for, though in the formation of methods and fyftems of natural hiftory, errors fo flagrant as the above are not now committed, feveral naturalifts, even in modern times, have adopted divifions which, in the detail, lead to fimilar refults.

The object of every good method is to reduce a fcience to its fimpleft terms, by reducing the propofitions it comprehends to the greateft degree of generality of which they are fufceptible. A good method in comparative anatomy muft, therefore, be fuch as will enable us to affign to each clafs, and to each of its fubdivifions, fome qualities common to the greater part of the organs. This object is to be attained by two different means, which may ferve to prove or verify one another. The firft, and that to which all men will naturally have recourfe, is to proceed from the obfervation of fpecies to uniting them in genera, and to collecting them into a fuperior order, according as we find ourfelves conducted to that claffification by a view of the whole of their attributes. The fecond, and that which the greater part of modern naturalifts have employed, is to fix, before-hand, upon certaín bafcs of divifion, agreeably to which, beings,

64 Lect. I. Animal CElonomy.

when obferved, are arranged in their proper places.

The firft mode cannot miflead us; but it is applicable only to thofe beings of which we have a perfect knowledge: the fecond is more generally practifed; but it is' fubject to crror. When the bafes that have been adopted remain confiftent with the combinations which obfervation difcovers, and when the fame foundations are again pointed out by the refults deduced from obfervation, the two means are then in unifon, and we may be certain that the method is good.

But when it is not poffible to employ the firft means, it becomes neceffary to calculate the importance of the diftinctions we adopt, in which we are much affifted by confidering the confequence of thofe organs upon which they are founded. Naturalifts have not been inattentive to thefe principles, and upon them they have eftablifhed their diftinctions between the organs of the firft, fecond, third rank, \&cc.

It would have been better, however, had they directed their inquiries rather to the functions themfelves than to the organs; for all the parts, all the forms, all the qualities of an organ of the firft rank, are not equally calculated to furniflu characters for the fuperior claffes: the only forms and qualities fitted for this purpofe, are thofe which modify, in an important manner, the function to which the organ belongs; thore
which may be faid to give it a new direction, and to produce new refults. All the other confiderations to which an organ, whatever be its rank, may give rife, are of no importance, fo long as they do not directly influence the functions it exercifes. In this refpect fome naturalifts have been mifled: they have believed that every thing was important in an important organ, and have therefore, without any juft reafon, rejected well-formed divifions: this, however, is not the place to difcufs thofe principles, and ftill lefs to apply them. The formation of fyftems is the object of natural hiftory, properly fo called: Anatomy receives them, as it were, ready made ; the latter takes its firft direction from the former, but is not flow in reflecting back the light it has received. By applying a fyftem of natural hiftory to comparative anatomy, we are fpcedily enabled to difcover whether it deviates from the path of nature.

We fhall, therefore, turn our attention to the whole of the animal kingdom, and endeavour to difcover what is common in the organization of each of the families of the different claffes into which it is divided. This general review is further neceffary to us for another object: in the defcriptions we fhall have to make, in the fucceeding Lectures, of the different organs, and their various conformations, we fhall frequently have occafion to refer to the feveral genera and families of animals. It is therefore neceffary

Vol, I.
that
that we fhould poffefs, at leaft, a fummary knowledge of them; and this the following examination may enable us to procure.

The whole animal kingdom is, in the firft place, divided into two great families:-If. That of the animals which have vertebræ, and red blood: 2d, That of the animals without vertebre, almoft all of which have white blood.

The firft have always an internal articulated fkeleton, the principal fupport of which is the vertebral column which joins the head at its anterior extremity, and inclofes, in its conduit, the common fafciculus of the nerves: its pofterior extremity is frequently prolonged to form the tail: the ribs, which are almof always found in animals of this clafs, are attached to both fides of this column. There are never more than four members; two, or all of which, fometimes may, however, be wanting.

The brain is always contained in a particular offeous cavity of the head, called the cranium. All the nerves of the fpine contribute, by filaments, to the formation of a nervous plexus, which derives its origin from fome of the nerves of the cranium, and is diffributed over moft of the vifcera.

The fenfes are always five in number. The eyes are, two, and moveable at will. The ear has at leaft three femicircular canals. The fenfe of fmelling refides exclufively in the cavitics in the fore-part of the head.

The circulation is always maintained by a heart, confifting of at leaft one flefhy ventricle : and when there are two ventricles, they are never feparate. The lymphatic veffels are diffinct from the veins.
The two jaws are placed horizontally; and the mouth always opens by their feparation from. above downwards. The inteftinal canal is continued from the mouth to the anus, which is uniformly fituated in the back of the pelvis, that is to fay, behind the bones which fupport the pofterior extremities. The inteftines are furrounded with a membranous covering called the peritonæum. There is always a liver and a pancreas which fecrète diffolving liquors, and a fpleen, in which a part of the blood which proceeds to the liver undergoes a previous preparation.

There are al ways two kidneys for the fecretion of the urine, fituated on each fide of the fpine, and without the peritonæum. The tefticles are two in number. Above the kidneys there are always two bodies, the ufe of which is not yet known:-they have been named capfulce atrabilaric.

The vertebral animals are fubdivided into two branches, thofe with warm blood, and thofe with cold blood.

The animals that have vertebræ and warm blood, have always two ventricles to the heart, and a double circulation. They breathe by
lungs, and cannot exift without refpiration. Their brain fills up exactly the cavity of the cranium. Their eyes clofe by palpebræ. Their ear has its tympanum funk in the flkull. All the parts of the labyrinth are clofely enveloped by the bones; and in it we always find, befides the femi-circular canals, an organ with two cavities refembling the fhell of a fnail. Their noftrils communicate with the back of the mouth, and ferve as paffages to the air in refpiration. Their trunk is always furrounded with ribs; and almoft all of them have four members.

It is by privations, rather than by common properties, that the vertebral animals with cold blood are to be compared. Several of them are deflitute of ribs; others have no members. Their brain never occupies all the cavity of the cranium. Their eyes very rarely have moveable palpebre. The tympanum of their ear, if it exift, is always level with the head: it is often wanting, as well as the officula auditus. The cochlea is always wanting. The different parts of the ear are not attached clofely to the cranium; they are even frequently at liberty in the fame cavity with the brain.

Each of thefe two branches is divided into two claffes. Thofe of the animals with warm blood are mammalia and birds.

The mammiferous animals are viviparous, and nowifh their young with milk, which is fupplied
Art. V. Division of Animais.
by their mammx: they have always an uterus with two cornua; the males have always a penis, which, in copulation, they introduce into the female organ of generation.
Their head is joined to the firf vertebre by two eminences. The vertebre of the neck are never lefs than fix, nor more than nine. Their brain is more complicated than that of other animals: it has parts which are not found in the other claffes; fuch as the corpus callofum, the fornix, the pons varolii, \&tc.

Their eyes have only two palpebre; their ear has four little articulated bones, and a cochlea truly fpiral ; their tongue is entirely foft and flefhy. The fkin of the greater number is covered with hair, and there is at leaft fome hair on all of them.

Their lungs are enclofed within the thorax, which is feparated from the abdomen by a flefhy diaphragm: they have but one larynx, fituated at the bafe of the tongue, and covered by an epiglottis while the animal fwallows.

The lower jaw only is moveable : both jaws are furnifhed with lips.

Their biliary and pancreatic ducts are inferted at the fame point. Their lacteal vefels contain a white milky chyle, and traverfe a multitude of conglobate glands, fituated in the myfentery. A membrane, called the epiploon, fufpended at the fomach and neighbouring parts, fovers the inteflines anteriorly. The fplecn is
always fituated on the left fide, between the flomach, the ribs, and the diaphragm.

The birds are oviparous. They have but one ovarium, and one oviduct-a ftructure which is entirely peculiar to this clafs. They have the head connected with the firft vertebræ of the neck by one eminence only: the cervical vertebre are very numerous; the fternum is very broad ; the anterior members are only ufed in flying, the pofterior in walking.

Their eyes have three palpebræ : they have no external ear; and their tympanum has only one bone; their cochlea is conical, and flightly twifted; their tongue has a bone internally; the body is covered with feathers; the lungs are attached to the ribs; and the air, in paffing through them, is communicated to all the body, as the animals of this clafs have no diaphragm. Their trachea has a larynx at each of its extremities; the fuperior has no epiglottis : their mouth is a bill, or beak, of a horny confiftence, the two mandibles of which are moveable.

Several ducts proceed from the pancreas and liver, and enter the inteftinal canal at different points. The chyle is tranfparent; and there are no myfenteric glands, nor omentum. The fpleen is in the centre of the myfentery. The ureters terminate in a cavity called the cloaca, which is common to the excrements and to the eggs. They have no urinary bladder.

The clafles of vertebral animals, that have. cold blnod, are reptiles and fibles.

Repules differ with refpect to one another in feveral very important points, and have not, perhaps, common qualities in fo great a number as the other claffes: fome of them walk, fome fly, others fwim, and a great number can only crawl. Their organs of fenfation, particularly the ear, vary almoft as much as thofe of motion; they have, however, no cochlea; their 隹in is either naked, or covered with fcales; their brain is always very fmall; their lungs float in the fame cavity with the other vifcera, but do not fuffer the air to pafs beyond them. The cells of the lungs are very large: there is only one larynx, which has an epiglottis; the two jaws are moveable; they have no omentum, nor inyfenteric glands; their fpleen is in the centre of the myfentery: the female has always two ovaries, and two oviducts; they have an urinary bladder.

Fifhes refpire by organs in the form of combs, placed on both fides of their neck, between which they tranfmit the water: they have, therefore, neither trachea, larynx, nor voice; their body is adapted to fwimming, but their fins are fometimes wanting. Befides the four which reprefent the extremities, they have vertical fins on the back, under the tail, and at its extremity.

Their nofrils are of no ufe in refpiration: F_{4} their
their car is entirely concealed within the craw nium; their fkin is naked, or covered with fcales; their tongue is bony; their two jaws are moveable; the pancreas is frequently replaced by inteftimula caca; they have an urinary bladder: the ovaries are double.

The invertebral animals have not fo many qualities in common, and form a lefs regular feries than thofe of which we have fpoken. If they have hard parts, however, they are generally external, at leaft when they are articulated. Their nervous fyftem has not its connecting parts enclofed in a bony cafe, but floats in the fame cavity with the other vifcera.

There is only a brain above the alimentary canal: it furnifhes two branches, which envelope the oefophagus, like a collar, and the continuation of which forms the remainder of the common bundle of the nerves.

They never refpire by cellular lungs, and mone of them have any voice: their jaws have all kinds of directions, and frequently their mouths are only fuckers; they have neither kidneys nor urine: , if they have articulated members, they are always at leaft fix in number. Confidered anatomically, they ought to be divided into five claffes.

The mollujca form the firf.
In them the body is foft, flefly, and defitute of articulated members; though fometimes there are hard parts placed internally: and though

$$
\text { Art. V. Division of Animais. } 73
$$

frequently it is covered externally with hard fhells, they have arterial and veinous veffels, in which the blood undergoes a real circulation.

They refpire by branchix. Their brain is a diftinct mafs, from which proceed the nerves, and a medulla oblongata. They have ganglions in different parts of the body.

Their external fenfes vary as to number. In fome the eyes and ears are very perceptible, while others appear to enjoy the fenfes of tafting and touch only. There are many that can mafticate, and others that can only fiwallow.
They have a voluminous liver, which furnifhes a great quantity of bile. Their organs of generation are exceedingly various.

The cruftacea form the fecond clafs.
In them the body is covered with fcaly pieces. They have frequently a confiderable number of articulated members. Their nervous fyftem confifts of a long knotted cord, from the ganglions of which all the nerves proceed.

We find in them hard moveable eyes, compofed of different parts; and ears are difcovered which are very imperfect. They have for the fenfe of touch, antennæ and feelers like infects. They have a heart with arterial and veinous veffels, and branchix for refpiration: their jaws are tranfverfe, ftrong, and numerous; the ftomach has internal teeth ; a number of intertinula cæca fupply a brown fluid, which anfwers
inftead of bile. The male has two penes, the female two ovaria.

The infects form the third clafs.
In their perfect ftate, they have antennx and articulated members like the cruftacea. The greater part have wings, which enable them to fly; and the \int e have all paffed through other ftates of exiftence, one of which is frequently completely motionlefs. They all have a nervous fyftem, fimilar to that of the cruftacea; but they have neither heart nor veffels, and refpire only by trachea. Not only the liver, but all the fecretory glands, are in them replaced by long veffels which float in the abdomen. The form of the inteftinal canal is frequently very different in the fame individual, as the infect paffes through its three ftates.

The animals which refemble the larvæ of infects, and have, like them, a knotted medullary cord, might be joined with infects, though they do not undergo a metamorphofis; fome of them, however, have blood veffels very diftinct, and ought, therefore, to form a feparate clafs, intermediate between the mollufca, the cruftacea, and infects; fuch are the terreftrial worms and leeches.

This is the fourth clafs: the zoopbyta form the fifth.

The parts of the body in this laft clafs are formed like a far, or the radii of a circle, in the CCDEIC
centre of which the mouth is placed. They have neither heart nor blood-veffels, and we cannot perceive in them either brain or nerves.

We muft now return to each of the nine principal claffes which form the animal kingdom, and divide them into families of a leffer order.

The mammalia exhibit, in the firf place, an order, the fpecies of which are deprived of the pofterior feet, and have the neck fo fhort, and the tail fo thick, that, at firft fight, we would be inclined to clafs them with fifhes. They live conftantly in water, though they can only refpire in air ; but their noftrils open at the fummit of their head, which enables them to inhale the air, without raifing the mouth out of the water. Thefe noftrils alfo ferve them in expelling the fuperfluous water, which they take in at their mouth every time they attempt to fwallow their prey; they are, therefore, ill calculated for exercifing the ferife of fmelling, for which nature has formed particular cavities.

The cotacea, which is the name given to this order of mammalia, have a fmooth fkin, which عovers a great mafs of fat. They have no external ear: their teeth, which ferve to retain their prey, and not to mafticate, are fometimes replaced by laminre of horn. The ftomach is multiplied; the inteftinal canal is uniform, and has no crecum; the kidneys are much divided; they have lungs, and a liver, the lobes of which are not very numerous: the larynx is of a pyra-
midal form, and opens into the nofe: the tefticles are concealed in the abdomen, and the mammæ are fituated by the fides of the vulva. Their anterior extremities are fo fhort, and the bones and articulations are fo much concealcd under the fkin, that they reprefent oars, and are only fitted for fwimming.

Among the mammiferous quadrupeds, there are a great number which have the toes fo much enveloped by horn, that their feet can only ferve to fupport them in progreffion.

Thefe are all herbivorous, and their tecth are therefore fitted for bruifing vegetables. They have very long inteftines, and large bellies. They form three families.

That of the ruminantia, which is the moft numerous, is cloven-footed. The dentés molares, which are wanting in the upper jaw, are fupplied by round callous eminences. The fomach is divided into four cavities; and the aliments which have paffed through the two firft, return to the mouth to be mafticated a fecond time. The inteftinal canal is exceedingly long, as is alfo the cæcum. Their fat becomes hard and brittle when it has cooled. Their mamma are fituated between the thighs. The penis of the male has no internal bone.

That of the pachydermata has more than two toes to the foot; incifive teeth in both jaws; and frequently cnormous canine teeth. The ftomach in thefe animals has fome contractions,
but it is not divided into feveral cavities, and. they do not ruminate. Their mammæe extend under the belly when they are numerous.

That of the Jolipeda is diftinguifhed by having only one apparent toc to each foot. They have incifive teeth in both jaws; a fimple and fmall ftomach, but very large inteftines, and particularly an enormous cæcum. Their mammæ are fituated in the groin, like thofe of ruminating animals. The cetaceous and hoofed animals have, in general, the liver very little divided.

The mammalia, that have diftinct toes, covered merely with nails or claws at their extremities, form likewife feveral families, to which we may affign common characters deduced from the entire of their organization.

The leaft numerous, and the leaft perfect, is that of the tardigrada. Though their toes are not covered with horn, they are united by the fkin, and cannot be moved feparately; they are befides few in number. The dentes incifores are wanting in both jaws. The fomach is quadruple, as in the ruminantia; but the aliments do not return to the mouth. The mammæ are placed on the breaft. The anterior legs are long, which confiderably embarraffes the motion of the animal in walking.

The edentata is a fecond family, which refembles the former in the little freedom of the toes, and the want of the incifores. Several fpecies are indeed entirely deftitute of tecth:

78 Lect. I. Animal ©eonomy.

they have a fimple ftomach; their mammæ are fituated under the abdomen; they have all a floout more or lefs prolonged; and moft of them have a defenfive covering, confifting of fcales, \&c.

The rodentia form a third family of mammiferous animals with claws, characterifed by two long incifive teeth, at the end of each jaw, which are fucceeded by an interval without any canine teeth. This organization compels them to gnaw their aliments, or to reduce them to very fmall fragments, inftead of cutting them in mouthfuls, as is done by thofe animals that have a number of fhort incifive teeth. The rodentia feed on vegetable or animal fubftances, or on them both mixed, according as their molares have flat crowns, or fharp points, or are merely elevated into blunt tubercles. Their inteftines are long; their fomach fimple; and they have almoft always a large cæcum. Their pofterior feet are longer than the anterior, which gives to their motion the appearance of leaping. Sometimes the difference in the length is fo great, that thefe animals cannot employ the fore feet in walking.
The farcopbaga, which do not differ much from the rodentia in the difpofition of their claws, have, however, a more complete fet. of teeth: their incifors are fhort and ftrong, their canine teeth ftrong and pointed, and their molares fharp and denticulated. Thefe three kinds of
teeth form altogether an uninterrupted feries. The alimentary canal is fhort; the ftomach and the cæcum fmall. The latter, indeed, does not exift in thofe farcophaga which walk wholly on the fole of the foot, or that have long bodies fupported by very fhort feet. In all of them the belly is more or lefs flender, on account of the fmallnefs of their inteftines.

Thefe two families, the rodentia and farcophaga, have their mammæ fituated under the belly, and the urethra partly enveloped in a bone. All thofe quadrupeds we mention have the penis enclofed in a fheath attached to the abdomen.

The amphibious inaminalia form a fmall family, fimilar in many refpects to the farcophaga; but their members are fo fhort that they can fcarcely ferve for any other purpofe than that of fwiming.

The bats likewife form another little family, fomewhat fimilar to the farcophaga in their teeth and inteftines; but the intervals between the toes, (which are very long,) and alfo thofe between their members, are occupied by a fine Rkin. This organization enables them to fly. They have no cæcum. Their mammre is fituated on the breaft, and the penis is pendent.
The two laft circumftances exift in the quadrumana, which, of all the mammiferous animals, are thofe that moft refemble man. Like him they have the thumb feparate from the fingers,
to which it is capable of being oppofed when it is requifite to perform any delicate operation. The feet are fimilarly formed; the great toe is fhorter than the others, which are long, like the fingers. The teeth refemble thofe of man, except that the dentes canini are longer than the others. The alimentary canal, except in fome fpecies, is compofed, as in man, of a fimple ftomach, of fmall and great inteftines, and of a thick and fhort crecum. The liver of animals that have claws, is divided into more numerous lobes than that of man and hoofed animals.

The clafs of birds do not prefent as many anatomical characters as that of mammalia, to enable us to diftinguifh into families the different fpecies that compofe it. The form of their feet does not, as in quadrupeds, determine the nature of their food, becaufe the power of flying, of fwimming, or of diving, affords them other means of purfuing their prey.

Birds of prey, properly fo called, are not the only birds that live on flefh. They are diftinguifhed by their beak and hooked claws. Their ftomach is membranous; their cæea are very fliort; their inferior larynx has only one mufcle.

The pifciourous birds of the family of riverbirds, fuch as the berons, Sxc. have a large membranous ftomach, and one very fhort eæcum.

The other piscivorous birds of the family of fwimming-birds, fuch as the cormorant, pelicans. \&uc.

Stc. of the pafferine family, as the king-fiffor, have likewife a membranous ftomach. This organ is alfo of a fimilar ftructure in the birds that live on worms, fuch as the zoood-pecker, \&x. but it is very mufcular in moft other birds, and particularly fo in thofe that live entirely on grain.

The other internal parts do not furnifh very marked chara\&ters; or it may rather ke faid, that as thefe parts do not exercife a powerful influence on the whole, they have but few variations in their ftructure.

Confining ourfelves, therefore, to the confiderations of the organs of motion, we find, befides the family of the birds of prey mentioned above, that of the fwimming or anferes-birds, which have fhort palmated feet, a clofe plumage, befmeared with an oily liquor, and which live almoft conflantly in water: the families of the wading-birds, or gralle, which have long feet, naked legs, long necks, and bills, and which wade among the water, by the banks of rivers, ftreams and marfhes: that of the gallinaceous birds, which have fhort feet, fly heavy, or do not fly at all, have fhort arched bills, and which refide on the earth, where they live upon grain. The laft have a large ingluvies, a ftrong flefhy gizzard, and the intefines, particularly the two cæca, very long: their inferior larynx has no particular mufcle. The family of the climbers, or fcanfores, are diftinguifhed by two toes placed Vol. I.
before and two behind, and by the power which this ftructure gives them of climbing in all directions; fome of them, as the reood-peckers, have a membranous fomach, and no cæcum; others, as the parrots, have a mufcular ftomach, and alfo want the cæcum: finally, there are others which have cxca, and a gizzard, as' cuckoos, izc. The former live on infects, the latter on fruits.

The numerous genera of birds which cannot be included in the preceding families, are known, by naturalifts, under the general denominations of fparrozos and rollers. It is difficult to affign to them any common characters: we may, however, reduce them into tribes of an inferior order, which form very natural divifions; fuch are, that of the fmall birds with delicate bills, which live upon infects, and leave our climates in winter; that of the little birds with large bills, which live on grain, and injure cultivated fields; that of the birds with long and thick beaks, which live on fruits, grain, and animal fubftances, and fome of which even do not difdain carrion; \&c.

The reptiles may be reduced to a regular divifion much more eafily than birds: thofe which have no feet, as the ferpents, have the body of a long form, to which that of the vifcera correfponds. Their jaws are both moveable, and are capable of fo great a feparation that the animal fwallows bodies thicker than itfelf, their cartilaginous
eartilaginous and forked tongue has a kind of Heath, from which it is thrown out, and into which it returns, at the animal's pleafure. The ftomach is long and membranous. The alimentary canal is flort, and has no cæca. The male has two penes, covered with prickly eminences; the female produces eggs, which are fometimes hatched in the oviduct.

There are very few reptiles with two feet. Among thofe that have four feet we ought to diftinguifh the tortoifes, which are partly covered with an offeous fhell, and the lizards, which have fcales, from the frogs and falamanders, which have naked fkins; becaufe the two firft kinds lay eggs completely fecundated, with a hard fhell from which their young come forth under the form they al ways retain; while the two latter lay foft eggs, that fwell after they are depofited in water, and produce young, which have a form fimilar to that of fifhes, -live like fifhes in water, and refpire during a confiderable time by branchix, after which they affume the form of their parents.

The fifhes are divided into two principal families, which are very different as to number. The fmaller, that of the Cbondropterygii, refembles fome reptiles, particularly in the female organs of gencration, which confift in two very long oviducts, terminating at the one end in the ovaries, and at the other in a common uterus.

The fecond family comprehends all the other kinds of finh; but with refpect to them the anaromift can form no diftinction except what is founded on the ftructure of the bones, and which divides them into cartilaginous fifhes and offeous filbes. The other characters employed by naturalifts, are relative to the pofition of the fins, and to fome lefs important varieties, which are more or lefs apparent in the parts that cover the branchice externally; but which do not indicate any thing uniform in the internal organization of the animal.

The clafs of molufca is diftinguifhed into three families, which appear to form very natural divifions. The firft includes the animals called cepbalopoda, becaufe they have their feet in the head. Their body has the form of a fack. They have three hearts. They refpire in water by branchiæ. Their mouth is placed in the centre of their feet, and refembles a beak. The head is alfo diftinguifhed by very large eyes, and has the ears placed internaily. The fomach is mufcular, like a gizzard. The liver is very voluminous. A particulargland fecretes a black liquor, which they throw out, and which darkens the water around them whenever they wifh to: conceal themfelves. Their fexes are feparate.

The gaferopoda, which are fo called becaufe they crawi on their bellies from the fecond order. -in thefe animals the head is moveable, and frequently provided with tentacula. The heart
is fingle. Their organs of refpiration vary in their form and pofition, according to the genera. The liver is very voluminous. The two fexes are united in the fame individual. They cannot, however, fecundate themfelyes, but for that purpofe require a reciprocal copulation. A confiderable number are provided with fhells, but they are never bivalvular.

The bivalves are found in the third order, that of the acephala. There are alfo fome of thefe animals which crawl on the belly. The head is enveloped in a flefhy involucrum or hood; the fhells are double; properly fpeaking they have no head, but only a mouth. The heart is fingle, and fituated towards the back. The branchix are lamine, or leaves, placed on each fide within the hood.' They do not copulate; feveral of them even experience no change of place, but remain perpetually attached to rocks.

The zoorms, which we place next to the molufca, are the animals that formerly bore that name, in which we obferve a vafcular fyftem, and a fpinal marrow, knotted like that of infects; they form two families. Thofe which have branchix appearing externally, and thofe which have none. The latter appear to have their fexes united like the gafteropoda.

The cruftacea furnifh only two divifions, which correfpond with two genera eftablifhed by Linnæus, under the names of cancer and monoculus,

The infects divide at firft into two great branches. The firft comprehends thofe which cannot mafticate folid bodies, and which live only by fucking vegetable or animal juices; fome, as the bemiplera or ryngota, only undergo a femimetamorphofis; that is to fay, the larvæ differ from the perfect infects only with refpect to the wings, which they want. Thefe infects have a fharp roftrum, containing feveral briftles, which are capable of cutting the ikin; the fomach is fingle and mufcular, the inteftines are fhort.

Others, (as the diptera or antliata,) undergo a complete metamorphofis. Their larva refembles a worm; their nympha is immoveable. The perfect infect has only two wings; its fucking qube is armed with briftles or lancets; fome of them have befides a flefhy probofcis with two lips. The tracher terminate in air-bags, which frequently occupy the greater part of the abdomen.

A third order, that of the butterflies, (lepitoptera or glofjata, alfo undergoes a complete metamorphofis. Their larva (the caterpillar) is provided with long jaws; with a fhort, ftraight, thick, and very mufcular inteftinal canal ; with very long hepatic veffels, and with veffels fitted for producing filk. The perfect infect has very fmall convoluted inteftincs, one inflated ftomach, and tracher, fupplied with veficles, \&ec: the mouth is a double fpiral fyphon.

Finally, there are a fmall number of infects of this clafs, that are nẹver metamorphofed, and never have wings.

The other branch, that of the infects which are proviced with jaws, and which feed upon folid fubftances, likewife includes feveral orders.

The coleoptera have two wings, which fold under two cafes; the metamorphofis of this kind of infects is complete; their larva has fix fhort feet, a vermiform body, a fcaly head, ftrong jaws, fhort and thick inteftines, four long kepatic veffels, tubular tracheæ, \&xc. The perfect infect has four jaws. The feelers are attached to the two inferior jaws, which are partly covered by the lower lip; the inteftinal canal is frequently much longer than in the larva ftate; the parts of generation occupy the greater part of the abdomen.

This order might itfelf be fubdivided into families, feveral of which have very diftinct anatomical characters. For example, the foarabiei, the larva of which have an alimentary canal, divided into a fomach, a fimall inteftine, acolon and rectum; the colon is thick and fwoln, the tracher are tubular. The perfeit infect has long flender inteftines, without any fenfible dilatations; its trachere are veficular, its tefticles very numerous. - Next, the carnivora, which have fix feelers; their inteftinal canal, in the perfect fate, is very fhort; they have two ftomachs, the fecond of which is villous on the external furface, \&tc.

The fecond order of infects with jaws is that of the ortboptera or ulonata. The cafes of their wings are foft; they fold them under, in the manner of a fan; their jaws are covered by a peculiar part. G 4 called
called the helmet (galea); their ftomach is at leaft quadruple, and not unfrequently they have more than four ftomachs;'their hepatic veffels are extremely numerous and intricate. Thofe infects only undergo a femi-metamorphofis; the rudiments of the parts of generation are often obferved in their larvæ.

The third of thefe orders include the neuroplera; the infects of this kind have four membranous articulated wings. Confidered in the whole, they have not many common anatomical characters; but there are fome remarkable families which have an uniform ftructure; as (I) the libellule or odonata, the larvæ of which catch their prey at a diftance, by a fudden extenfion of the lower lip; the alimentary canal is fhort, ftraight, and a little dilated at the part of the ftomach. The rectum is the principal organ of refpiration, as almoft all the tracher arife from it. The internal parts of the perfect infect are fmaller than thofe of the larva, and its trachere are veficular. - (2) The agnatba: the larva of this family exifts a long time previoully to its metamorphofis, but the perfect infect perifhes at the end of a few hours. It exhibits only the veftiges of the jaws, \&xc.

The fourth order is that of the hyizenopicra or piezata: this order has four wings, uhich are veinous, but not reticulated. Thefe infects refemble the coleoptera in the difpofition of their jaws, and the complete metamorphofis they undergo.

The

The inteftinal canal is very large in the larva: but it is much lefs in the perfect fate, in which it difplays only one or two flight dilatations. The hymenoptera includes the infects moft remarkable for induftry, and particularly the bees.

Finally, there area fmall number of infects with jaws, and deftitute of wings; on the anatomy of which no general obfervation occurs.
The zoophytanare very naturally divided according to the fimplicity of their organization. The firft order, the ecbinodermata, includes the zoophytes, that are provided with feet, teeth, adiftinct ftomach and inteftinal canal, and with evident refpiratory organs; thefe are the foa-urchins, the far-fifh, \&ic. A fecond order may be formed confifting of thofe that have their digeftive or refpiratory organs very difinct, but are deftitute of teeth; thefe are, the medufe, the alainie, \&oc.

Finally, the polyps, whether we confider thofe that are naked, or thofe that have calcareous coverings called corals, feem to confift only of a gelatinous fack, the aperture of which is furrounded with fome tentacula. They are placed in the loweft rank of animal life.
N. B. The tables connected with this work contain a recapitulation of this chapter, and an enumeration of all the genera that enter into the different divifions and fub-divifions of which ye have treated,

LECTURE SECOND.

OF THE ORGANS OE MOTION IN GENERAL。

WE propofe to employ the firft part of this Courfe in defcribing the organs of motion, that ịs to fay; the bones and the mufcles; but before we procced to treat of each bone and muicle in particular, we fhall examine the mechanical ftructure, the chemical nature, and the organic functions of the offeous and mufcular fyftems in general, and the variations which occur under those three heads, in the different claffes of animals.

> Article I.

Of the Mrufular Fibre.

Any portion of mufcle prefents, on the firft view, filaments fometimes red, fometimes white, according to the kind of animal from which it is taken. Thefe filaments, which are generally placed parallel and clofe to each other, feem to form fmall fafciculi, or rather large filaments, which, by their union, conftitute the mufcles. Some intervals are obferved between the different fafciculi. In the animals that have red blood, and the moluifa, thefe interftices are

Hhled with a collular fubftance fincr than that which feparates the mufcles, and lefs compact than that which covers them. The filaments that compofe each fufciculus, are united by a cellular membrane finer than the former: and when we examine one of thefe fllaments in' a microfcope, we obferve that they are divided into ftill fmaller filaments, but fimilar to the firft, and united in the fame manner. This divifion continucs as far as we can follow it, and our inftuments are incapable of thewing where it terminates.

The laft of thofe filaments, or the moft delicate fibres we can perceive, do not appear hollow ;-we do not obferve any cavity in them. It fhould feem that they may be regarded as the moit fimple collections of the conftitueni particles. In fact, their formation, or, as it might be termed, their cryfallization, is obvious when the blood congeals. When a mufcle has been freed by boiling, and maceration of its blood; other fiuids, and, in general, all the fubfances it contains that are foreign to its fibre, it exhibits a white filamentous tifue, which is infoluble even in boiling water, and refembles, in all its chemical properties, the refiduum of the craffamentum of the blood, after all the colouring part has been removed by ablution. This matter, in confequence of the abundance of azote which enters into its compofition, poffeffes a sharacter of animality perhaps more Ariking than
than the other animal fubftances. It appears, then, that the elements of fibrous matter are fo clofely approximated in the blood, that very little repofe is fufficient to make them coagulate: In the flate of life, therefore, the mufcles may doubtlefs be regarded as the only organs capable of feparating that matter from the mals of the blood, and appropriating it to themfelves.

The fibrine (for this is the name which the chemifts have given to the fubftance we have defcribed,) is not confined to red blood only; the white fluid, which fupplies the place of the blood in fo great a number of animals, also contains it. But it is not found in the craffamentum of their blood; its filaments merely float in the ferum*.

As the fubflances of which the blood is formed do not contain, at leait in herbivorous animals, any thing that refembles this fibrous matter, and as, even in thofe that are carnivorous, it appears to be decompofed by the act of digeftion, and is manifeftly neither contained in their blood nor their lymph, it may be concluded that it is refpiration which fo changes the compofition of the blood as to render it capable of engendering

* This difcovery has not jet been publifhed by its author; I ought, therefore, to ftate that it belongs to Citizen Hombert, of Havre, a very ingenious chemif, who has applied himelf, with much fuccefs, to the comparative chemiftry of animai fubtances.
engendering the fibrine. This idea is fupported by the nature of the chemical operations which conftitute the act of refpiration, and the effects of that function on the organic fyftem. Refpiration, by removing the hydrogen and carbor from the blood, augments the proportion of its azote; and as it is refpiration which preferves the mufcular irritability, it is inatural to fuppofe that this is performed by increafing the quantity of the fubftance in which that irritability exclufively refides.

But though there is no irritability without fibrine, that property does not fhew itfelf in the pure fibrine when detached from the organic mafs; it only retains it during life, and while its natural connection with the nerves and blood veffels, or at leaft with their moft minute samifications, fubfifts. In fact, there is no part of the body which may be properly called flefhy, that is not penetrated, in every direction, by. nervous fibres; and though we cannot trace nervous filaments in their diffribution over each particular flethy fibre, the fenfibility which pervades the whole mufcular fubftance, even in its fmalleft portions, does not permit us to doubt the exiftence of this diftribution.

The animals that have not diftinct and feparate nerves, have no vifible flefhy fibres, and, as we have already fhewn, irritability and fenfibility do not in them appear to belong exclufively to
any particular fyftem of organs. The exiftence of veffels, and a cellular fubftance, are neither for neceffary nor fo general; for the mufcles of infects, though very diftinct and very powerful, contain neither the one nor the other. The fibres which compofe thefe mufcles are fimply contiguous and parallel, and have no adhefion. As they are only fixed at their extremities, if we cut them at the part by which they are attached, the fibres feparate like the threads of a piece of cloth when the woof is unravelled. Cellular fubftance is cveri very uncommon in the mufcles of molufca, though their veffels are pretty numerous. In all red-blooded animals, however, the mufcular fibres are ftrongly united by cellular membranes, and are every-where interlaced by numerous blood-veffels.

The colouring matter of the blood feems to attach itfelf by a kind of preference to the fibrous fubftance, as it does to the craffamentum at its formation, fince the red colour is more peculiarly proper to mufcular fefh, though other kinds of organs appear to contain proportionally as much blood. Befides, the fibre of whiteblooded animals is, the colour excepted, exactly fimilar to that of the red-blooded; the latter exhibits feveral fhades of red: certain claffes having; in general, the mufcles more pale, as the reptiles and the fiffes; and the mufcles themfelves have not all the fame degrec of rednefs.

Mufcular

Mufcular irritability is that property which the fiefhy fibre poffeffes of fhortening itfelf by ofcillation, and of contracting itfelf, in confequence of certain determinate actions external to the fibre itfelf, and in which the mechanical caufe cannot be difcovered. This property is very diftinct from the elafticity of the fibres, which is common to them, with many other natural bodies; as well as from another faculty, which is common to them, with many other parts of living bodies, by which they tend continually to fhorten themfelves, and, in fact, always contract when they are at liberty fo to do. Irritability is not conftant, but when it exifts, it produces contraction, notwithftanding the ordinary obftacles.

The caufes which occafionally excite the irritability of the fibres, may be divided into five orders: volition, external actions operating on the nerves, external actions operating on the fibre itfelf, mixed actions operating on both the nerves and the fibres, and finally, certain difeafes and certain violent emotions.

When the body is in a fate of health, and awake, the will exercifes a moft conftant and prompt einpire over the greater part of the mufcles, which are for that reafon cailed voluntary. A fmall number are not fubject to the will; thefe produce internally the movements that are neceffary to life, and which cannot
be interrupted; fuch as the motion of the heart and the inteftines. It is to be obferved, how, ever, that fome of the mufcles which act involuntarily in men and feveral animals, obey the will in others: fuch, for example, is the fomach in ruminating animals, the movements of which they can command at pleafure, in two different directions. The motion of fome other mufcles appears to be of a mixed nature; we can ftop their action, but their motion is continued by habit, without our formally willing it, or even without our confcioufnefs-fuch are the mufcles of refpiration.

The mufcles that are abfolutely involuntary, are continually expofed to the action of an irritating caufe of an extraneous nature; for the veinous blood which arrives on each diaftole to the heart, determines that organ to contract itfelf, and the aliments act in a fimilar manner on the ftomach. It feems, therefore, that the will is not neceffary to make thefe mufcles act, and that it cannot ftop their motion. A mufcle laid bare, and expofed to an irritating caufe, would contract itfelf, even in the living fubject, without any participation of the will. It fhould alfo be remarked; that the nerves of the involuntary mufcles are generally fmaller than thofe of the other mufcles. Indeed it was long doubted whether the heart really had any nerves; yet the irritability of the involuntary mufcle is more durable,
durable, and more eafily excited than that of the voluntary kind. This feems to prove that irritability is not entirely connected with the largenefs of the nerves, though, at leaft, it partly depends on thefe organs.

Indeed, volition, 'the irritating caufe which we have at prefent to confider, acts only through the medium of the nerves; and if a nerve be cut, or a ligature made upon it, the mufcles over which it is diftributed no longer obey the will. This action of the will may be imitated by concuffions, punctures, or lacerations, made on the nervous trunks. Thefe operations are immediately followed by convulfions in all the mufcular parts to which the ramifications of the nerves extend, and this takes place even after death. The irritation of the medulla oblongata, after decollation, agitates all the mufcles of the face; and that of the cervical part of the fpinal marrow, throws the whole body into convulfions.

Violent paffions may, in a certain degree, be regarded as the acts of the will ftrongly excited, which, in fome cafes, has an influence even upon the involuntary mufcles: of this the palpitations of the heart and large veffels, and the fufpenfion even of their motions, are examples.

Thefe actions, however, may be prevented by prudently moderating the excefs of that fenfibility which occafions them. Even in nervous difeafes, which appear to have the leant connec-

Vol. I.
H
tion
tion with the pafions, at leaft with thofe, the influence of which is immediately felt; the will is capable of preventing their accefs, when the patient is determined to refift it with firmnefs.

The effect of the will on the mufcles is not then immediate ; it depends on the action of the nerve on the mufcular fibre, which it is in our power to determine by the means of that incomprehenfible influence which the mind exercifes over the nervous fyftem: but if this connection between the underfanding and the nerve appears to be beyond the limits of our knowledge, it fiill feems poffible that we may one day difcover the nature of the relation that fubfifts between the nerve and the fibre, which can only be purely phyfical, or the action of one portion of matter upon another.

The galvanic experiments render it exceedingly probable that this action is performed by an invifible fluid, of which the nerves are the conductors, and which, under certain circumftances, changes the nature or quantity of the fibre.

It is well known, that thefe experiments confift in eftablifhing, between a mufcle and the trunk of the nerves which extend to $i t$, an external communication with one, or a feries of fubftances placed clofe to each other. Metals are not the only means that may be employed in this operation; and, in general, the conductors are not the fame as thofe of electricity. Experi-
ments have fometimes been fuccefsfully performed, when an interval was left in the feries of excitators*: this circumftance proves the exiftence of an atmofphere.
The moment the contact takes place, the mufcle fuffers violent convulfions. Thefe experiments fucceed on the living body, on animals recently dead, and even on parts feparated from the body, precifely in the manner of thole which Haller accounts for on the principle of irritability. Neither pointed inftruments nor acrid liquors are neceffary; and the galvanic experiments even fucceed when thofe means have failed.

It is evident that the galvanic convulfions can only be afcribed to a change in the internal flate of the nerves and fibres, towards the production of which both thofe organs concur. But in the galvanic fenfations which occur in living bodies, when an excitatory communcation is eftablifhed between two branches of nerves, we have a proof that this change may even take place in the nerve alone, whether that change be produced fimply by tranfmiffion, or by a chemical decompofition. The fibre, therefore, may be fimply paffive in its contrations; but it thould al ways be recollected, that it is the only part of the body which is fo conftituted as
H_{2}
to

[^3]to be capable of recciving this kind of impreffion from the nerves; for it is well known that the nerves are diffributed over a number of other parts, which poffefs no appearance of irritability.

The influence and joint operation of the nerves are, thercfore, clearly demonftrated in four of the irritating caufes we have mentioned above; that is to fay, in volition, in the paffions and nervous difeafes, in mechanical actions directed immediately on the nerve, and in galvanifm, in which the nerve and the fibre are both acted upon at once.

A fifth order of irritating caufes remains so be examined-thofe which operate when immediately applied to the fibre, and which act on the fibre only; that is to fay, all external ftimuli, fuch as pointed inftruments, \&xc. But as every portion of mufcular flefh is penetrated by nervous fubftance, it is difficult to fuppofe that the nerve may not be affected upon touching the fibre; and it appears probable that the contractions which the latter in this cafe expericnces, procced, as in all the preceding cafes, from the influcnce of the nerve, in confequence of the ftate of its internal fluid being changed by the action of the ftimulus. A mufcle taken from the body, doubllefs, preferves a fufficient portion of the nervous fubftance to render it, for fome time, irritable; and the mufcles over which volition has lof its empire in confe-
quence of a paralyfis, or the ligature of a nerve, may, notwithftanding, obey external ftimuli, becaufe the nerve, in that fate, ftill retains the faculty of producing, or tranfmitting the fluid, on which the contraction of the fibre depends; for as we are totally ignorant of the manner in which the will acts on nerves, we cannot pretend to fay that the interruption of its action muft neceffarily be accompanied by that which the nerves themfelves exercife on the mufcle.

It fhould be further obferved, that every thing proves that this action of the nerve on the fibre does not require fenfation, and confcioufnefs. This is obvious, from the example of paralytic members, which not only contract when fimuli are applied, but which fometimes even obey the will; from that of the vifcera, which are continually performing motions within us, of which we are infenfible; and finally, by the experiments made on portions of animals ; for it appears repugnant to the notions we entertain of Self, and of the unity of our being, to admit the poffeffion of fenfation to thofe fragments, though it muft be confeffed, that there are feveral examples of animals, in each part of which there appears to be formed, at the very moment of their divifion, a particular centre of fenfation and volition. This difference between irritability, cven that kind which is voluntary, and fenfibility properly fo called, is ftill more eafily proved by the experinents of Arnemann, from which it appears, that H_{3}
a nerve cut, and afterwards united, has recovered the firf of thofe faculties, but not the other. The nerves and their functions are only dependent on the mind, while different ramifications communicate with the general trunk of the nerves; but they appear capable of exercifing, through the medium of their own fubflance, that part of their functions which is purely phyfical: and if thofe functions depend upon a fluid, it may be fuppofed that it is capable of arifing from all the points of the medullary fubfance. This is the opinion of Reil, and it is fupported by experiments, long before made, by Stenon and others, which inew that a ligature on an artery paralizes the mufcle through which it paffes.

The whole of what we have fated above applies equally well to all the different claffes of animals. They are all irritable, and all thofe that have nerves and mufcles apparent are fubject to galvanifm. Mi. Humbolt has adopted an in.. genious method of diftinguifhing the nerves from the arteries, or other parts, in the fmallef animals. He ufes two ncedles, one goid, and another filver: A point of one is applied to the mufcles, and a point of the other to the filament, the nature of which he wifhes to difcover, while the other extremities of thefe inftruments are brought in contact. If the filament be a nerve, contractions immediately take place in the mufculạ fibrc.

When it has once been difcovered that the concurrence of the nerve is neceffary to produce the contractions of the fibre, and that the latter is the only part-over which the former poffeffes this influence, it remains to be inquired by what agent, by what medium, the nerve produces this effect upon the flefhy fibre. 'The principal difficulty whichoccurs in this queftion, is the confideration of the prodigious force with which the mufcles contract, and the great weights they are capable of raifing in a living ftate, while immediately after death they are torn afunder by weights infinitely fmaller. This induces us to believe, that in the moment of action the parricles that compofe the fibre, not only approach towards each other longitudinally, but that their cohefion, or the tenacity of the fibre, becomes inftantaneoufly much greater, without which the tendency to fhorten would not prevent its rupture. Now, were it to be imagined that the texture of the fibres was fuch that the acceffion of a fluid or a vapour might give them this tendency, a fuppofition which at leaft appears very difficult, it muft ftill be admitted, that nothing but a fudden change in their chemical compofition could be capable of augmenting fo promptly, and fo powerfully, their cohefion. We are already acquainted with the prodigious force, with which the particles of fome bodies tend to affume a new fituation whenever their chemical compofition is fomewhat changed. The beft
known example of this kind, is that which is, furnifhed by freezing water. The lofs of a little caloric difpofes its molecules to condenfe into acute folids, and they affume this form with fo much force that they burft the fides of very ftrong veffels. The living and contracted fibre is not therefore, ftrictly fpeaking, the fame body, nor compofed of the fame chemical materials as the relaxed fibre; and this change is produced through the medium of the nerve by the different irritating caufes. Is it by lofing or abandoning to the nerve fome of its elements, or is it by receiving from the nerve fome new principle, that the fibre thus changes its compofition? for we mult adopt one of thefe alternatives. Farther, what is this element which paffes from the one to the other?-Does it exift completely formed in one organ, and is it fimply transfufed into the other?-Is it formed by compofition at the moment of irritation ?-or laftly, does it develope itfelf by decompofition? Thefe are the queftions neceffary to be difcuffed. - The new galvanic experiments, and thofe of an older date, improperly called magnetic, joined to the difcoveries of modern chemiftry, and purfued with that delicacy now introduced into the fludy of nature, permit us to hope for their folution. But men cannot be induçed to give themfclves up to thofe inquiries, if they are habituated to refer every effect toa particular and occult caufe.

Art. II. Substance of the Bones, togi

Article II.

Of the Subfance of the Bones, and the hard Parts which fupply their Place.

The bones of animals that have red blood differ entirely in their ftructure and in the manner of their growth from thofe parts which fupply their place in other animals. It is therefore neceffary that they fhould be feparately treated.

The fubftance of the bones, confidered abft ractedly from the marrow and other foreign bodies; which cannot be completcly removed, yields, uponanalyfis, a variable quantity of animal jelly, or gluten, foluble in boiling water, congealable by cold, alterable by fireand putrefaction ; and an earthy matter, foluble in acids, which has been difcovered to confift of a combination of lime and phofphoric acid, or a phofpat of lime.

The quantity of calcarious phofphat increafes in the bones with age; the gelatinous fubftance, on the contrary, is mof abundant in proportion as we examine it near to the epoch of birth. In the early periods of geftation, the bones of the foetus confift merely of cartilage, or indurated jelly; for cartilages refolve almoft entircly into jelly when fubjected to the action of boiling water. In the very young embryo there is no fuch thing as real cartilage ; in its ftead, we find a fubftance which has all the appearance, and
even the femi-fluidity of ordinary jclly, but which has aiready affumed a certain fhape, and is covered by a membrane, which afterwards becomes the periofteum. In the firft ftage of ofification, the flat bones have the appearance of fimple membranes; thofe which are to move on each other, exhibit vifible articulations, though the periofteum pafs from the one to the other, and envelopes the whole in one common fheath; but thofe which join only by futures, as the bones of the cranium, for example, form a continued whole, in which nothing indicates that thofe futures will one day exift.

The phofphat of lime, which gives confiftence and opacity to the bones, is depofited in this gelatinous bafis: but it is not depofited in an uniform manner; nor do the two fubftances unite in fuch a manner as to form a homogeneous whole.

In offification, we firft obferve fibres or lamellæ developing themfelves feparately; thefe are fucceeded by new fibres or lamellæ, which ferve to unite them, and which are extended in every direction.

The furface of the bones is moft generally formed of clofe and compact fibres, more or lefs regular; that is to fay, of fibres which diverge as radii in flat bones, and are parallel in long bones. Thefe fibres proceed from certain centres, which are called points of offification; each long bone has ufually three points of this kind,

Kind, one towards its middle, which furrounds it as a ring, and the fibres of which extend in a direction parallel to the axis: and another principal point at each extremity of the bone, accompanied fometimes with feveral fmaller points. When the three offeous pieces, formed by the fucceffive extenfion of thefe three points of offification, have even approached fo clofely as to be within contact of each other, they remain for fome time unconfolidated, and there appears between them a quantity of matter purely gelatinous, capable of being deftroyed by boiling water, or by maceration. The extremities, while feparated, are called epiphyfes, in contradiftinction to the body of the bone which is denominated diapbyys. In the flat bones the centres of offification may be compared to funs, of which the offeous fibres are the rays, rendered vifible in the femi-tranfparent cartilage by their opaque whitenefs. In the round bones the fe centres of offification have the appearance of grains, or nuclei. In the very angular bones they affume a variety of pofitions and forms.

When the fibres of one centre have advanced fo far as to come every-where in contact with thofe which are next the m, the bones are then only feparated by futures, which may afterwards be more or lefs promptly effaced. Some of thofe fibres turn afide to join others on the right and left, and thus produce the appearance of latticewort. New ftrata are alfo placed above or below
below the former, and thus the texture of the bones affume a lamellous afpect.

We are accuftomed to regard as fingle boncs; all thofe in which the different parts offify and unite in youth; as the vertebræ, os occipitis, os frontis, \&x. while we confider thofe that do not form a union with the neighbouring bones until an advanced period of life as diftinct bones. Thus the frontal bone, which fometimes remains feparate from the two parietals to a very old age, is regarded as a diftinct bone; but at the fame time it is alfo regarded as a fimple bone, though the two parts of which it is always compofed, in infancy, frequently remain feparate until the age of thirty or forty.

While the bones by the fucceffiveaccumulation of calcarious phofphat, attaina certain confiftency in their furface, theyalforeceive inwardly laminx and fibres from the fame fubftance; but which in general do not approximate fo much as thofe of the former. The internal laminæ are placed irregularly, like thofe of the cellular membrane; fo that generally confidered, they prefent a real cellular ftructure, indurated by the acceffion of earthy matter. In proportion as this fpongy textureacquires confiftency, the gelatinous fubftance, which at firft fills up the whole mafs of the bonc, feems to difippear, and to concentrate itfelf in the parts that are offified. By this means cavernous interftices are formed, which are gradually occupied by an unctuous medullary: fubftance.
fubftance. This is always the ftate of the flat bones, in which this fpongy part imbued with marrow, is included between two compact furfaces, and is called diplöe. In the long bones, however, a confiderable cavity is formed at the middle of the body of the bones: this cavity being extended towards both extremities, to the exclufion of the fpongy fubftance, the bone at laft becomes a real tube. In this cafe, the extremities only are occupied by an offeous, fpongy cancelli, while all the middle parts are filled up with a kind of cylinder of marrow, inclofed ina very fine membrane, and provided with numerous veffels and nerves, which penetrate to it through holes formed in the compact fubftance of the bones.

Offification, whether we confider it in each kind of animal, or in the different bones of the fame animal, does not take place with ain equal rapidity. In man, and all other mammalia, we obferve that the bones of the internal ear are not only firft offified; but that they furpafs all others in denfity, and in the quantity of calcarious phofphat they contain. The bone of the cavity of the tympanum, in the cetacea, and particularly in the whale and the cachalot, is fuperior in denfity and hardnefs to marble. Its fection appears equally homogeneo'ss, and exhibits no veftige either of fibres, cancelli, or veffels. On the contrary, there are other bones that are very flow in acquiring the confiftency they ultimately poffefs. The epiphyfes, for example, do not offify until long
long after the bodics of the bones to which they belong. Finally, thereare fome cartilages which, in certain claffes of animals, never admit a quantity of calcarious phofphat fufficient to render them completely offeous: fuch are the cartilages of the ribs, and the larynx.' It is certain, then, notwithftanding the general predifpofition of the gelatinous parts to receive calcarious matter, (as appears from the example of tendons, and fcveral white parts, offifying with more facility than others,) and though there is no bone which did not formerly exift in the state of a cartilage, that there are feveral cartilages which are never converted into bones.
'The fame differences which exift in this refpec्t between the feveral bones of the fame feecies, are alfo found to fubfift between fpecics and fpecies, on the comparifon of the whole fkeleton.

We not only find that the bones of an animal are flow in arriving at the degree of hardnefs which belongs to them, in proportion to the period of the growth of the animal; but we farther know, that there are fome animals in whichoffification is never complete, and whofe fkeletons are always cartilaginous. This is the cafe with the forks, ray's, fiurgcoins, and all thore fifh which are on that account called cartilaginous, or Cbondropterygii; and though the bones of other fiffes, and of reptiles and ferpents, attain a greater degree of hardncts, they fill however preferve
preferve much more flexibility, and retain a far greater proportion of the gelatinous fubftance, than the bones of animals that have warm blood. Thefe animals therefore grow during the whole courfe of their exiftence: for it is the cartilage only that grows; and when once the bones have attained their proper degree of hardnefs, their dimenfions do not alter. The animal then can only increafe in thicknefs. At this epoch the animal œconomy commences a retrograde progrefs, and the firft fteps are made towards old age and decrepitude. Independent of the rapidity of offification, and the proportions which the con- , ftituent parts of bones bear to one another, animals differ among themfelves, with refpeit to the texture of the bones, and the cavities of various kinds formed within them. In man, the internal texture of the bones is very fine. The laminx of their fpongy fubfance are fmall and clofe, and where this texture is moft unlike latticework, it exhibits long and delicate fibres. In quadrupeds, the texture of the bones is in general coarfer: in the cetacea it is more loofe; their cells are larger, and the laminæ which form them much broader: it is eafy to diftinguifh their external fibres, which in the jaws and ribs of whales, and cachalots, become, by maceration, a: diftinct as thofe of half-rotten wood. With refpect to fize, however, they bear no proportion to the magnitude of the animal to which they belong; for the dimenfions of the bony fibre, as
well as thofe of the mufcular, appear to depend more upon a chemical compofition than upon any other circumflances.

The bones of birds are of a flender, firm, and claftic nature, and feem formed of laminæ foldered one upon the other. The bones of reptiles and fifhes are in general more homogeneous. "He calcarious matter feems more uniformly diftributed in the gelatinous. This obfervation becomes more ftriking as we approach the cartilaginous fifhes, in which the gelatinous fubfance complctely overcomes, and appears to conceal the calcarious phofphat.

Several animals have no large medullary cavities, even in their long bones. We find none in the colaccit and Seals. Caldefi long fince remarked the fame thing with regard to the tortoife; and I have made the like obfervation myfelf. The crocodile, however, has thefe cavities very diftinct.

In fome bones we find other cavities, called finuses, which contain no marrow. They all communicate more or lefs directly with the cyterior of the body. Man has finufes in the os frontis, the os fphenoides, and the offamaxillaria, which communicate with the nafal cavity.

In feveral mammiferous animals thefe finufes cxtend much farther backward, and penetrate through a great part of the body of the craniam. In the \log they proceed as far as the occiput. It is they that fwell fo fingularly the cranium of

Art. II. Substance of the Bones. it 3

the elepbait. They even penetrate into the heart of the bones of the horns of oxen, goats and feeen. The gazells are the only animals with hollow horns that have the nucleus of their horns folid or fipongy without any large cavity.
There are other finufes in the temporal bone which communicate with the cavity of the tympanum. Thefe are particularly extenfive in birds, and in them occupy as much fpace as the nafal finufes do in quadrupeds. They produce the fame effect on the cranium of the owol as the other kind of finufes have upon that of the elephant.

Birds have, in this refpect, a very particular ftructure: their bones, almoft without any exception, are hollow internally; but their cavities contain only air, and never marrow. Thefe are real finufes in their kind, which, inftead of being confined to the head, as in quadrupeds, extend throughout the whole fkeleton, and have a direct communication with the lungs; the air which is pufhed into the trachea arteria, efcaping and returning reciprocally by a hole in fome one of the bones. This organization unites in their bones that levity and ftrength which is requifite for the kind of motion which has been affigned to them, and, like all the reft of their ftructure, tends to feparate them from the cold blooded animals, the cavities in the bones of which are either very few or inconfiderable.

Vol. I.

The periofeum is a ftrong white membrane, which adheres to the whole fuperficies of the bones, except at their articulations. It is called perichondrium when it covers cartilages only. This membrane has numerous veffels; and through it thofe pafs which convey blood to the cartilages and bones. We know that the principle of the gelatinous fubftance is contained in the blood, and that it forms a confiderablé portion of the ferum, or fluid part, which remains liquid on the formation of the craffamentum. We alfo know that there is phofphat of lime in the blood, and particularly, that milk, which is the natural food of man, and feveral animals, at the period when offification is moft active, contains a great deal of that fubftance. It is, therefore, eafily difcovered whence the bones derive their nourifhment; but the manner in which the calcarious phofphat depofits itfelf, is by no means fo obvious: fome imagine that it tranfudes from the fides of the arteries; others, that it fimply paffes from their open extremities; and finally, others, that the arteries themfelves offify. It is perhaps more probable that it combines with the jelly of the cartilage, and Llat this combination is more particularly effectcd at the time when the blood is fulleft of catsurious thoflat, in confequence of the kind. of nourfenert which the animal receives, or by the ge cal dif ofition of the organs, which ace. in the formation of its blood. We know

Art. II. Substance of the Bones. ilf
too well that there are difeafes in which the calcarious phorphat is removed from the bones by more powerful affinities; and that there are others in which its too great abundance injures certain organs, by inducing rigidity, or produces excrefcences more or lefs monftrous: its difproportion in the living body is the caufe of diforders that are accompanied by much inconvenience and pain.

Among the more remarkable phænomena of ofteogeny, or the developement of the fubftance of the bones, Comparative Anatomy particularly exhibits the formations of the horns of the deer.

Thefe horns, in their perfect ftate, are true bones both in their texture and in their elements: their external part is hard, compact, and fibrous; their internal part is fpongy, but very folid. It has no large cells, no medullary cavity, and no finufes. It is fufficiently weil known what their external forms are, whether in different fpecies, fuch as the elk, the rein-deer, the fallorodeer, the fag, the roe-buck, \&cc. or at different ages in the fame fpecies. But thefe objects belong to natural hiftory, properly fo called. The bafes of the horns adhere to, and form one body with the os frontis, in fuch a manner that, at certain ages, it is impoffible, from their internal texture, to determine the limits between them; but the fkin which covers the forehead does not extend further; a denticulated offeous

116 Lect. II. Organs of Motion.
fubftance, called the burr, furrounds it; there is neither fkin nor periofteum on this fubftance, nor on the reft of the horn; on thefe parts are only to be feen furrows more or lefs deep, which are the veftiges of veffels that were diftributed along their furface when they were foft. Thefe hard and naked horns remain only one year on the head of the ftag; the period of their fall is varied according to the fpecies; but when it is near, there appears, on fawing them longitudinally, a reddifh mark of feparation between them and the eminence of the frontal bone which fupports them. This mark becomes more and more apparent, and the offeous particles of that part lofe, at laft, their adhefion. At that period a very flight fhock frequenily makes the horns drop off; two or three days commonly intervening between the fall of the one and that of the other.

The eminence of the frontal bone, at that time, refembles a bone broken, or fawed tranfverfely, and its fpongy texture is laid open. The fkin of the forehead foon covers it; and when the horns are about to floot again, tubercles arife, which are, and which remain, covered by a production of the fame 登in, until they acquire their perfect fize. During the whole of that time the tubercles are foft and cartilaginous: under the fkin is a true periofteum, in which veffels, fometimes as thick as the little finger, are diftributed, and penetrate the

Art. II. Substance of the Bones. iit. mars of cartilage in every direction. The cartilage offifies gradually as other bones; it paffes through the fame ftages as the bones of a fœetus, or of an infant, and finifhes by becoming a perfect bone. During this time the burr at the bafe of the horn penetrates the indentations through which the veffels pafs, and alfo developes.itfelf. The indentations, by their growth, confine the veffels, and in the end obftruct them. Then the fkin and periofteum of the horns wither, die, and fall off; and the bones again becoming bare, in a fhort while drop off, to fpring up anew, and always more confiderable in fize.

The horns of the ftag are fubject to difeafes exactly fimilar to thofe of ordinary bones; thus, in fome the calcarious matter is extravafated, and has formed different exoftofes; in others, on the contrary, it is found in too fmall a quantity, and the horns continue porous, light, and without confiftence.

Shells are envelopes, formed by a calcarious fubftance, of a foliated texture, and almoft as heavy and hard as marble. Thefe make coverings for a great number of animals of the clafs of molufca; and every one knows that the variety of their forms, their more or lefs vivid colours, and the brilliancy of their mother of pearl, conftitute fome of the finef ornaments of the cabincts of virtuofi. Natural hiftory fufficiently explains thefe forms, and their relation with the orders and genera of the animals which inhabit
them: at prefent I have only to confider their texture, their growth, and the manner in which they are united to the reft of the body.

They are compofed like bones of a calcarious matter, intimately connected with a gelatinous fubftance, and which may be, in like manner, feparated by means of acids; but this matter is not difpofed in lamina, or in fibres; it is uniformly extended throughout the whole body of the fhell.

It is only in fome fpecies that we find ftrata eafily feparated, and, as it were, agglutinated to each other like the leaves of paper in the formation of pafteboard. We know, from obfervation, that thefe ftrata do not all exift in young animals; they have only the mof external; which are, at the fame time, the fmalleft. In proportion as the animal increafes in age, it forms a new ftratum on the internal furface of the fhell, which extends beyond the edges of all the preceding ffrata, fo that each operation of this kind adds to the fize of the fhell, in length, breadth, and thicknefs. There are certain facts; to prove them it is only neceffary to compare fome fhells of the fame fpecies that have belonged to individuals of different ages; the feweft Itrata will always be found in the fhells of the young. Miufcles, which may be obferved when they are very young, and even before they quit the matrix of their mother, have, at that period, inells confifting of one ftratum only; but the

> Art. II. Substance of the Bones. ifg
fhell is not therefore foft and gelatinous ; it poffeffes the fame firmnefs as the adult fhell, and its greater fragility is merely owing to its thinners.

But are the ftrata which thus fucceffively augment the dimenfions of fhells, produced by developement, or by a fimple juxta-pofition? Do the nutritive veffels depofit the calcarious juice at different points, or does it only tranfude through the fkin of the animal, and attach itfelf to the pre-exifting ftrata? Thefe are queftions with refpect to which phyfiologifts are not agreed.

The body of the fnail appears to adhere to its fhell only where the mufcles are attached; but Reaumur having placed thin pellicles between the body and parts of the fhell, which he pur-pofely broke, thefe fractures were not repaired; but when this, or any other obftacle, no longer prevented the juices flowing from the furface of the fkin, the injured part was fpeedily regenerated.

Thefe facts favour the idea of the fimple juxta-pofition of a tranfuded matter: we obferve, however, on the other hand, that the oyfter and mufcle adhere to the fhell not only by their mufcles, but by the whole border of their cloak; befides, the oyfter has always between the two laft ftrata of the convex valve, a confiderable vacuity, which is filled with a foetid acrid liquor, and which communicate with the interior of the body by a particular aperture. How is
this vacuity produced? and, above all, how is it removed upon the formation of each new ftratum, if the arterial and abforbent veffels do not penetrate into the centre of the ftrata, to regulate its pofition, and to remove, from time to time, the particles of the fhell?

Some obfervations feem to prove that there are teftaceous animals, which, at certain periods, caft their old fhells entirely off, and acquire new ones; but this re-production may alfo take place by developement, as in the horns of the deer. If the internal ftrata of thofe fhells which are not caft off, be produced by a developement of this kind, it may be compared to that which forms the internal laminæ of the hollow horns of the ox, fheep, and other ruminating mammalia, and even to that by which the epidermis is produced in all animals; that is to fay, there muft take place a withering, or, as it were, the death of a membrane, which feems to preferve a fort of organization while it remains unexpofed to external elements, or while it has not acquired its proper degree of folidity.

In this manner, it appears, are produced all the hard parts which may be regarded as the bones of animals that have no vertebræ. In cray fifh, for example, the calcarious cruft which, in them, is at once fkin and fkeleton, grows no more after it is completely indurated. The animal, however, continues to increafe in all its foft parts; and when thefe become too much confined by

Art. II. Substance of the Bones. izI
the envelope, the latter fplits and is detached: but a new covering is found below the old one, which is formed while the latter lofes its connection with the body, and as it were dies. The new envelope is at firf foft, fenfible, and even provided with veffels: but a quantity of calcarious particles, previoufly accumulated in the ftomach, is foon depofited in this covering, hardens it, obftructs the pores and the veffels, and renders it in every refpect fimilar to the fhell it has replaced.

The induration of the covering of infects is not completed until they acquire their laft form, after which they have no longer any occafion to change their fkin: but all their fkins they previoufly caft, though foft, are dead, and already replaced by others, which develope themfelves underneath that which is deftined to fall off.

All the hard parts therefore of white blooded animals, whatever may be their confiftence and chemical nature, ought to be compared with refpect to the manner of their growth to the epidermis, to nails, and to hollow horns, rather than to real bones. The fame remark fhould perhaps be applied to certain external parts of fifhes, though their fubftance is ftrictly offeous. I mean the bucklers of the furgcon and cyclopterus, and the fpinous tubercles of the ray.

Some white blooded animals have alfo hard parts internally; but they àre not articulated in fuch a manner as to form the bafce of moveable members,
members, and their texture differs confiderably from that of ordinary bones. The moft remarkable of thofe hard parts are, the teeth in the ftomach of the lobfter, the defcription of which, as well as that of the common teeth, we fhall poftpone until we come to treat particularly of digeftion, and of the bones of cuttle fifh, and calmars, of which we are now about to give an idea.

The common curtle fifh (Sepia officinalis), contains in the flefh of the back an oval fubftance, convex before and behind, white, folid, friable, and of a calcarious nature. This fubftance is notattached to the fleff, but has the appearance of a foreign body introduced into it. There is no indication of any veffel or nerve penetrating it, nor is any tendon affixed to it, It is compofed of thin parallel lamelle, which are not in immediate contact with eath other. The intervals are occupied by an infinite number of fmall hollow columns ftanding perpendicular between one lamellæ and another, and arranged in a very regular quincunx.

As the fuperficies of the lamellæ are plane, and thofe of the bone itfelf convex, they neceffarily interfect each other : the points of interfection are marked on the furfaces of the bone by regular curvilinear ftrix. Thefe bones have a kind of wings which are of a lefs opaque nature, lefs brittle, and have a greater refemblance to thin claftic horn, than the body of the bone.

Art. II. Substance of the Bones. 123

To this laft fubftance the part called the bone in the calmars (Sepia Loligo) bear a refemblance they are tranfparent, elatic, and very brittle: their fhape is fometimes that of a leaf, and fome \rightarrow times it is fimilar to a fword blade. Their connection with the foft parts is the fame as the bone of the cuttle fifh.

We alfo find a fmall femi-cornuous and femifriable plate in the body of the fleflay lobe, which covers the branchix of the $a p l y z a$, and there is even one ftill fmaller in the cloak of the fug.

Every thing tends to convince us that thofe hard parts which are found within molufca, grow by ftrata, like their external envclope, and that they are a kind of internal fhells.

Two gencra, which we place among the zoophytes, but which will perhaps acquire a higher place when their organization fhall be completely known, viz. ftar fifh (afterias), and rea urchins (echinus), have a kind of fkeleton, the nature of which appear very much to refemble that of the fhells of the molufca.

In the urchins, this fkeleton is a folid calcarious envelope, frequently very hard. It has a number of little holes through which pafs membranous feet, furnifhed with tubercles and points analogous to the fubftance of the fhell which play freely on thefe tubercles.

In the flar fifh the calarious part forms a ftalk compofed of a number of fmall articulated vertcbre, which extend under the middle of each of
the branches of the body, and to which is attached a kind of offeous grating, which fupports the remainder of the envelope of the branch to which it belongs, and which is rendered remarkable, cven externally, by its projection, and by the tubercles of different forms that cover the whole of its furface.

Their offeous ftalk cannot be regarded as completely external, fince it is covered outwardly by an epidermis and other foft parts. This is perhaps the moft ftriking exception to the general rule that white blooded animals have no internal articulated fkeleton.

The mode of growth of the fkeleton of the ftar fifh has not yet been fufficiently inveftigated: that of the fkeleton of fome bolotburia is exactly fimilar.
Finally corals, other zoophytes and lithophytes, have hard parts, which are fometimes cornuous, fometimes calcarious, and fometimes fpongy, but which grow by fimple juxta-pofition, or at leaft like hells, by the fucceffive developement of feveral ftrata. In fome, this growth takes place externally, and the fenfible fubftance envelopes the old ftrata, by new ones, with which it again covers itfelf: Such is the cafe in litbopbyta and coratophyta.
In others, the parts which have once attained their proper hardnefs, no longer increafe in thicknefs; but new floots or branches are formed at their extremitics: Such are all the jointed zoophytes.

Art. II. Substance of the Bones. $12{ }_{2}$

All thefe productions contain, like bones and fhells, a mixture of earthy matter and animal gluten.

Article III.

Of the Articulations of the Bones and their Motions.
I_{T} is known that the bones are divided according to their forms, into long bones, flat bones, and bones of which all the dimenfions are nearly equal.

We are alfo acquainted with the names given to their eminences and cavities, and thofe which indicate the ftate of their furfaces: thefe things belong merely to defcription, and might have be n very well expreffed without fo great a parade of technical terms.

We fhall at prefent only notice what relates to the articulations, becaufe they determine the motions of which the bones are fufceptible, and becaufe fome of them have a very great influence in the œeconomy of different animals.

Some articulations admit of no motion what-ever:-by fome an obfcure and very limited motion is performed; while others are difpofed in fuch a manner that the bones of which they are compofed move freely on each other, either in one or in feveral directions.

It not only happens that the correfponding bones are differently articulated, in different kinds of animals, but further, there are bones which, though they do not even touch each other in a great number, are however articulated, or ingrafted into one another, in fome fpecies. There are even fome animals in which we obferve particular kinds of articulation which do not exift in any other.

Articulation without motion, or Synartbrofis, which takes place when two flat bones join each other immediately by their edges, is called future. It is denticular when thofe edges are notched and indented into one another; barmonic when they fimply touch each other; and Squamous when the thin edge of the one covers that of the other. The bones of the cranium and face of màn afiord examples of thofe different kinds of futures; thefe are the only bones that are united in this manner in the human body, but we find other examples in other animals. The ribs of the tortoife are very broad, and indented with one another, and with the vertebra of the back to form the fhell. Thefe futures have even impofed upon feveral naturalifts, who have imagined that foffil fhells of the tortoife were parts of the human cranium. The parts of the fternum, or rather the breaft-plate of the tortoife, are likewife joined by denticulated futures; the fame kind of junction takes place in feveral of the bones that form the offeous girdle to
which the pectoral fins of fifhes are attached. The inferior and middle junction is a very perfect indented future in the Sluri; and in fome other genera it is flattened horizontally in the fore part.

The junction of the bones of the head in mammiferous animals, refembles very much thofe we obferve in the head of man; and in both they difappear with age in confequence of the progrefs of offification. The bones of the heads of birds and fifhes are almoft all connected by harmonic and fquamous futures, and it appears that they unite more readily than thofe of quadrupeds.

In the lateral parts of the head of fifhes, and in the flaps of their branchiæ, we obferve a particular kind of articulation, which refembles the fquamous future, in this, that it confifts of thin edges, of two flat bones overlapping each other, but which differs in admitting a motion by which the bones can bend or flide one upon the other.

Gomphofis is a fecond kind of articulation without motion, in which one bone is inferted as a wedge into a cavity in another bone, or in which it is contained, as a tree in the earth, by its roots. The teeth are the only example of this kind in man and in quadrupeds. The farv f_{i} 后 affords another inftance in the hooks which are funk into both fides of its long muzzle, and which fuggefted the name the animal bears.

Its real teeth, however, are not attached in this
manner more than thofe of rays and Sarks; but are merely connected to the fkin, while in other fifhes they are intimately united with the jawbones; or thefe bones anfwer inftead of teeth.

We ought to notice here a third kind of immoveable articulation, of which there is no example in the human fkeleton. It is that in which a bone or other hard part inferted in one cavity, receives in a cavity, in its own bafe, an eminence arifing from the bottom of that in which it is placed. The nails of cats, and of feveral other quadrupeds that have ftrong claws, are joined in this manner to the laft phalanges of the toes. The culks of the morfe alfo receive a pivot from the bafis of their alveoli.

Amphiartbrofis, or that kind of articulation which admits only of femi-motion, is not thus limited by the figure of the offeous parts which conftitute it, but by the cartilaginous or ligamentous fubftance placed between the bones that form the articulation, and which firmly unites them. The bones of the pelvis are joined by this fort of intermediate cartilage in fuch a manner that without confiderable efforts they can fcarcely have any motion.

The bodies of the vertebræ act more freely upon one another, becaufe the fubftance which unites them is thicker and more flexible. Their union takes place in quadrupeds and fifhes in the fame manner as in man: but in the neck of birds, and throughout the whole extent of the
fpine

Art. III. Articulations of the Bones. I29
fpine of ferpents, their articulation is completely moveable. They join by furfaces which are not united by any other fubftance, and which are held together, like the bones of our hand or foot, by a ligamentous capfule. This, in part, accounts for their great mobility.

We may alfo rank among the half-moveable articulations, thofe of the bones of the carpus and tarfus, which, though provided with few and fmooth articular furfaces, are fo confined by the furrounding ligaments, that they can only move upon each other with confiderable difficulty, and within a very narrow fpace. But the difpofition of their furfaces gives them a more important character, which fhould induce us to arrange articulations of this kind in the third clafs; that of the free articulations, or diarthrofis.

In the joints of the two preceding claffes, the edges or furfaces of the bones which form an union, either come immediately in contact, or are bound one to the other by a fubftance which attaches itfelf throughout the whole of their furfaces or edges. The periofteum is continued from one bone to the other, and is more intimately connected at the place of their junction than to any other part. On the contrary, in the moveable articulations of which we have to fpeak, the oppofite furfaces of the bones are free and diftinct; each is covered with a fmooth and polifhed cartilage; the interyal is occupied by a liquor, and

$$
\text { Vol. I. } \mathrm{K} \text { fometimes }
$$

fometimes by folid bodies, as glands, or a circular piece of cartilage. Both bones are attached to each other by a continuation of the periofteum, which does not cover the articular cartilages, but paffes from the one bone to the other, and thus forms a kind of capfule, in which the articular fubftances are inclofed in fuch a manner that nothing can efcápe from or pafs into the cavity. There áre' frequently other ligaments either within or without the capfule, which ftrengthen it, or'limit the motions of the bones more than the capfule could of fitelf have done.

The number and rigidity of thefe ligaments, but' fill more" the form of the depreffions and eminences of the articular furfaces of the bones, govern the extent and direction of the motions.

A bone articulated with another by one of its extremitics, can only move upon it in two ways, viz. by flexion or torfion: flexion takes place when the extremity of the bone moved, which is fartheft from the joint, approaches the bone which is fixed; for when the two bones are in a ftraight line, that extrernity is moft diftant from the latter. Torfion, or twifting, takes place when the bone moved turns round its own axis, or round an imaginary axis, paffing through the articulation.

It will be readily perceived that torfion can only be performed when the articular furfaces are plane or fpherical, and that the latter only are capable of flexion in every direction; but when

> Art. III. Articulations of the Bones. i3
when the furfaces are cylindrical, or each partly convex and partly concave, the motion muft be confined to one direction; the bone will always remain in the fame plane fo long as that with which it is connected is not difplaced, and will defcribe the fegment of a circle, having its centre in the articulation.

That fpecies of joint which admits of only one kind of flexion is called ginglymus, that which allows it in every direction enarthrofis, or artbrodia, according as the furfaces are more or lefs convex, and the flexions more or lefs complete.

When one bone is connected to another by two extremities, and is reduced to fimply turning round, it forms a kind of ginglymus, which is called rotation.

The head is attached to the trunk, the lower jaw to the head, and all the parts of the extremities are attached to each other by thefe different kinds of moveable articulations; but each particular part is not always joined in the fame manner in the different claffes of animals. The head in mammalia is articulated by ginglymus; that of birds by arthrodia. The radius in man is connected by arthrodia with the humerus, and by rotation with the ulna. In the rodentia, bogs, \&c. the radius is attached to the humerus by ginglymus, and is immoveable at its junction with the ulna; in fome fpecies it is even completely united.

32 Lect. II. Organs of Motion.

Some fifhes exhibit particular modes of moveable articulations, of which the fkeleton of man, and other mammiferous animals, afford no examples.

The firft, which may likewife be referred to ginglymus, is the annular articulation, in which a bone is, as it were, ftrung, like a bead, upon a branch, or at leaft upon a cylindrical eminence, and almoft detached from other bones. The firtt fpines of the anal fins of fome chatedons are articulated in this manner.

The fecond is an articulation which can be rendered immoveable at the pleafure of the animal. The moveable bone has a fmall hook; and it is in the power of the animal, by turning that bone round, to infert the little hook in a hole in the immoveable bone. In' this manner, by a flight flexion, the moveable bone is fo linked, that its pofition cannot be changed except by a motion precifely contrary to that which faftened it to the other, and every effort in another direction is ufelefs. It is thus that the filuri and safteroffei fix the firft fpines of their pectoral fins, when they wifh to ufe them in combat.

We have already noticed the kind of moreable articulation which takes place between the thin edges of two flat bones, and which allows the one to flide over the other. In birds we find another kind of joint, which admits a fimilar motion, but which is produced between plane
furfaces.

Art. III. Articulations of the Bones. 333

furfaces. The palatine arch of the fuperior bill of the duck has this kind of furface, correfponding with others fituated at the bafe of the cranium.

The molufca have no articulations except in their fhells. Thofe of the bivalvular kind are, in general, articulated by ginglymus, more or lefs compofed, in proportion to the number of indentations the fhells form with one another. They have neither capfule nor articular cartilages. Externally there is an elaftic ligament, which forces the valves to open when the mufcles that ordinarily keep them fhut are relaxed. The different pieces which form the multivalve fheils, are either connected together by a common cartilaginous membrane, or they are immediately attached to the body of the animals. The cbitons move their hells by making the edges flide one upon the other. In the anatife there is only one common motion for opening and fhutting, which is performed by ginglymus, as in the bivalves. The opercula of fome univalve fhells, particularly the nerite, are alfo articulated by ginglymus to the principal fhell.

The cruftacea and infects have a common fyftem of articulation, which depends upon the pofition of their hard parts exterior to the mufcles. As thefe hard parts form a kind of cafe, the interior of which is occupied by the mufcles, they cannot be articulated by fimple K 3
and
and complete furfaces; they, therefore, can neither have arthrodia nor enarthrofis. All their moveable articulations are reducible to three kinds; ginglymus is the only one which exifts in thofe parts that require a folid point of fupport, becaufe, the fcaly coverings of the members being tubular, they muft be fupported, at leaft, at two points of their circumference. This neceffarily determines the articulation by ginglymus. With refpect to the parts which require no folid point of fupport, they are either fimply fufpended by ligaments, or articulated by inclufion.

Inclufion occurs when one part enters and is enclofed in another. In this manner the limbs of infects are incafed in the thorax, and the annular coverings of their abdomen into one another. As the part which receives, and that which is received, are each the fegment of a fpheroid, the laft may perform the motion of turning ; it may alfo penetrate more or lefs into the firft, either by the whole of its circumference, or more on the one fide than on the other; but what is properly called flexion, cannot be performed by this articulation.

The parts of infects which are articulated by ginglymus, and which are principally the different portions of their limbs, are very much hollowed on the fide where the flexion muft neceffarily be moft complete; the interval is fupplied with a flexible membrane, and there is no other

Art.III. Articulationsofthe Bones. f35

ligament. The articular tubercles ard depreflions are fo arranged that they cannot be luxated without being broken: the flight curvatures, which form a kind of hooks, tend fill, further to produce this effect.

ArticleIV.

Of the Tendons, of the Compofition of the Aufcles. and of their Aetion.

The mode of articulation determines the number, kind, and direstion, of the motions which the bones that form it are capable of performing.

The number and direction of the mufcles attached to the bones, determine the number, kind, and direction of the motions they really do perform.

The mufcles are attached to the bones by tendons. The tendon, like the mufcle, is of a fibrous texture ; but its fibres are clofer, more firm, and of a filver whitenefs. It is penetrated by fewer veffels, and no nerves. Its fubftance is almoft entirely gelatinous; and it poffeffes neither fenfibility nor irritability; it forms only a paffive link, by which the mufcle acts on the bone.

$$
\mathrm{K}_{4} \quad \text { Portions }
$$

136 Lect. II. Organs of Motion.
Portions of tendon are, however, found both in the infide and on the furface of feveral mufcles. Even thofe tendons by which the mufcles are inferted into the bones, penetrate a certain length into the fefhy fubftance, where they are interlaced in different manners. The form of the tendons varies as much as that of the mufcles. Thofe tendons which are broad and thin are called aponevirofes.

In its gelatinous quality the tendon has a ftrong affinity to the offeous principle, or phofphat of lime: it receives it with facility, particularly when its action is frequently repeated, and when it is employed in violent motions. Heavy birds, that walk much, have the tendons of their limbs offified at a very early period. The fame thing happens to the jerboa, and other animals, that conftantly leap with their pofterior limbs.

The tendons of the cruftacea and infects, in the mufcles of the thigh and limbs, differ, in their nature, from the tendon of red-blooded animals; they are hard, elaftic, and have no apparent fibres; they are covered by the flefhy fibres which are inferted into their furfaces. The tendon is frequently articulated with the fcaly cafe which it has to move, in the fame manner as one bone is articulated with another: it is connected with that cafe by a membranous ligament. This is particularly obfervable in the great claws of cray-fif.

The

The tendons of the molufca are not apparent ; but this is, doubtlefs, owing to the colour being the fame in the tendinous and the flefly parts. With refpect to their chemical nature, it is certain that maceration and concoction completely detach the muicles from the hard parts, a circumftance which can only happen in confequence of the diffolution of their connecting medium ; that medium, therefore, does not confift of fibrine, as in the reft of the mufcle, fince, if it did, it would be indiffoluble.

It is probable that the clementary mufcular fibres all exercife an equal force at the moment of their contraction; but the manner in which they are difpofed in the mufcle, and the fituation of the mufcle itfelf, with refpect to the bone, or part it has to move, afford a more or lefs advantageous employment of that force. The action of a mufcle, thercfore, cannot be eftimated by its mafs only, nor by the number of the fibres that compofe it. Two other circumftances are neceffary to be confidered ; the compofition of the mufcle, and its infertion.

The mufcles are divided into fimple and compound; the fimple are thofe in which all the fibres have a fimilar difpofition; the moft common are the ventriform; their fibres are nearly parallel, and form a long bundle, of a round fhape; their flefhy parts fwell, more or lefs, in the middle, which is called their belly; they become fmaller towards the two extremitics where
where they terminate in the tendons. Another kind of fimple mufcle confifts of thofe that are flat, and have parallel fibres; they form a fort of flefhy membrane, which, inftead of ending in fmall tendons, is terminated by aponeurofes, or tendinous membranes. Both thefe kinds fometimes have tendons, or aponeurofes, in their middle, and at other points of their bodies. It is obvious that, in either, the total action is equal to the fum of all the particular actions of the fibres, and that, if the action experiences any difadvantage, it is owing to the mode of the infertion, and not to the compofition of the mufcle. This is not the cafe with the two other kinds of fimple mufcles-the radiated and the penniform.

Radiated mufcles are thofe that have their fibres difpofed like the radii of a circle, and which, proceeding from a bafe more or lefs extended, incline towards each other, and are inferted in a fmall tendon.

Penniform mufcles have their fibres difpofed in two rows, which unite in a middle line, and form, with each other, angles more or lefs obtufe, fo that they refemble the feathers of a quill. The tendon is the continuation of this middle line.

It will be readily perceived that, in thefe two kinds of mufcles, the total or refulting force is lefs than the fum total of the component forces, and that it is only equal to the fum of the diagonals
diagonals of the parallelograms, which may be formed from every two fibres that unite in producing one angle.

A compound mufcle is formed by the affemblage of feveral which unite in one common tendon. Thefe mufcles may be fimilar in their nature, but fometimes we find very different kinds, as the radiated, the ventriform, \&c. uniting to form one compound mufcle. The particular action of each may be eftimated according to the preceding obfervations. Their total action muft afterwards be calculated according to the degree of their inclination.

Laftly, there are fome mufcles which have only one belly, with divided tendons; others have feveral flefhy parts, and feveral tendons interlaced together in different ways. Thefe laft may be called complicated mufcles.

From thefe different difpofitions refult the abfolute force of the mufcles; their infertion determines their real effect. The mufcular infertions may be referred to eight diftinct kinds.
Mufcles may be deflined to comprefs the foft parts contained in a certain cavity; they then envelope that cavity in different directions, in the form of membranes or bands. Such is the difpofition of our abdominal mufcles and diaphragm; fuch is that of the mufcles of flugs, other molufca, and naked worms, which can contract themfelves in every direction. When thefe mufcles act together, it is for the purpofe
of expelling fome matter from the body, as eggs, cxcrements, \&c. but they ufually actalternately, and then their effect is to enlarge one of the diameters of the cavity they furround, and to diminifh the other. Thus, at each infpiration, the abdomen becomes wider and fhorter, while the contrary happens on each exfpiration. In this manner Jugs and leecbes lengthen and fhorten themfelves, by moving, in the firft cafe, their tranfverfe or annular mufcles, and, in the fecond, their longitudinal mufcles.

In this manner, alfo, the mufcles act which are deftined to lengthen or fhorten, to relax or comprefs, any foft part of the body, fuch as the tongue of man or quadrupeds, or the horns of fnails.

The heart, the inteftines, the arteries, \&c. have likewife mufcles of this kind.

Other mufcles are calculated to widen or contract fome foft aperture: fome of thefefurround the orifice like rings, and are called /plincters; others are inferted in a manner more or lefs directly in the edges of the opening. When they are uniformly extended around the orifice, it preferves its figure, and is always dilated, or contracted, in the fame manner. The eye-lid of the moon $f(f)$, and the anus of the finail, afford cxamples of this kind of motion. When, however, thele mufcles have different directions, and make different angles with the edges they have to move, the form of the aperture is very
variable; fuch, for inftance, are the lips of man. No animal comes near him with refpect to the mobility of this part; and no one, therefore, poffeffes fo expreflive a phyfiognomy.

Another employment of the mufcles is to extend and fold back, like curtains, membranes that are deftined to cover certain parts, fuch as the eye-lids of man, quadrupeds, and birds. When thefe mufcles are placed in the body of the membrane, their difpofitions are fimilar to that of which we have juft fpoken; but, when they are fituated externally, they have the form of very complicated pullies. We fhall explain them when we defcribe the eye of birds.

A fourth employment of the mufcles may be that of turning, or rolling about, a globular mafs, which is free, and fupported on every fide, as the eye in the orbit, or the mouth of the fnail in its head. The mufcles then furround this part as the portions of a hoop, which is turned to the fide of the mufcle that contracts moft ftrongly.

Thefe four modes of action are, in reality, all referable to that of the fphincters, or circular mufcles. They are always performed by a girdle, or portions of a girdle, which contract, or clofe upon the parts they furround.

The following mode, in which the mufcles ato on the bones, and other hard parts, may be compared to the action of ropes, drawing a refifting object in a certain direction. The fubject which is thus drawn, may be equally acted upon
in all its parts, fo as to remain always parallel to itfelf. Such is the motion by which we elevate or deprefs our os hyoides and our larynx. The mufcular fibres may then be regarded as ropes pulling in the direction in which the motion of the part acted upon is to be performed. This is the moft advantageous manner in which they can be employed; and we find it exifts in the ferno-byoideus and the genio-byoideus. If the mufcles diverge, there is an equal quantity of action on both fides, and the refulting force is then employed in the moft advantageous manner: this is what we obferve in the mylo-byoideus and fcapulo-byoideus.

But when the bone acted upon is articulated at any particular point, it cannot be elevated or depreffed all at once: It muft then be confidered as a lever having its fulcrum in the asticulation.

When the articulation is between the two extremities, and the mufcles are placed at one of them, the bone forms a lever of the firft rank. We have an example of this kind in the mandible of the cray fifb. The mufcles which are attached to the olecranon and os calcis, alfo furnifh fimilar examples. The moft remarkable is the tibia of the birds called grebes and divers, which has a long apophyfis elevated above the knee, and which ferves as a fubftitute for the patella.

But

But the moft ordinary cafe is that in which the articulation is at one of the extremities of the bone, then the moft favourable pofition for the mufcle is when it rifes from another bone parallel to that which it has to move, or which forms with it only a very fmall angle; fuch is the care with the mufcles called intercofales, interfpinales, and intertranfverf: and the mufcles which draw together certain bones that have a fan-like figure, as thofe of the membranes, which cover the branchix of fifhes, and the wings of the fying dragon. Still, however, thofe mufcles have an obliquity which is not rendered neceffary by the pofition of the parts to which they are attached, and which confiderably diminifhes their power.

The mufcles which clofe the mouth of man, and the bill of birds, may alfo be compared to the preceding, with refpect to, their advantageous pofition on account of their little obliquity; but they are inferted much nearer to the point of fupport than the former, a circumftance which alfo confiderably diminifhes their force.

The laft mode of infertion, and the moft common of all, is when a mufcle attached to one bone is inferted into another, which laft bone is articulated mediately or immediately with the firft, and may be extended until they both form a right line, or inflected fo as frequently to make a very fmall angle. This mode is the moft difadvantageous of all, from the extreme
obliquity of the infertion, when the moveable bone is extended, and on account of its proximity to the fulcrum. The firft of thefe inconveniences is partly corrected by what are called the heads of bones. Their articular extremities are ufually enlarged, fo that the tendons of the mufcle, by turning round a convexity in order to be inferted below it, form more obtufe angles with the lever or body of the bone than would be practicable if the head did not exift; this diminifhes and renders lefs variable the obliquity of their infertion.

As to the proximity of the fulcrum, that was neceffary to prevent the members from being monftrounly large in the fate of flexion, but particularly for producing a prompt and complete flexion: for as the mufcular fibre lofes only a determinate fraction of its length in contraction, if the mufcle were inferted at a greater diftance from the joint, the moveable bone would only be approximated to the other by a fmall angular quantity : on the contrary, by inferting it near the apex of the angle, a very fmall contraction occafions a confiderable approximation. This effect is produced by the mufcular force; and in this manner thefe fort of mufcles excreife a power which furpaffes all imagination.

Comparative anatomy, however, affords examples of mufcles inferted at a confiderable diftance from the fulcrum. ; Birds have one which extends from the top of the fhoulder to
the extremity of the fore-arm neareft the carpus : But this happens, becaufe all the angle formed by the humerus and ulna, is in them occupied by a membrane intended to augment the furface of the wing.

It is alfo in confequence of the fmall contraction of the mufcular fibre, that the fhort bones, which muft be completely inflected, are moved by mufcles attached to bones at a diftance. The vertebræ and the phalanges of the fingers are in this fituation. Mufcles extended from the one to the other of thofe bones would not have produced a fufficient degree of fle Etion: befides, in the phalanges they would have made the fingers too thick. It is allo neceffary that the tendons of thefe mulcles fhould be attached to the bones over which they pafs: were not this the cafe, whenever the phalanges were bent fo as to form an arch, the mufcles and their tendons would remain in a ftraight line, and appear like its chord. Hence the neceffity for the annular ligaments, the fheaths, and the perforations. This laft organization, which occurs only in the flections of the fingers and toes of man, quadrupeds, reptiles, and the toes of birds, confifts in the mufcles which have to extend farthert, being placed near to the bones, and their tendons, perforating thofe of the mufcles, which are inferted at a fhorter diftance, and which lie over the firft. When there is only three phalanges, there is but one perforation:

Vol. I.
L.

146 Lect. II. Organs of Motion.
but birds, which have one toe with four, and another with five phalanges, have two perforations, and confequently three mufcles; one perforated, one perforating and perforated, and oneperforating.

The vertebre which have to perform great motions; for example, thofe of the neck in birds, and the tail in quadrupeds, have alfo very distant mufcles; but their long flender tendons are inclofed in fheaths, which they do not leave until they are oppofite the points into which they are to be inferted.

Article V.

General Remarks on the Sleleton.
$W_{\text {E have already fhewn that the fkeleton is a }}$ collection of hard parts, fupporting the body, of which it forms as it were the frame. In the invertebral, or white-blooded animals, it is external; and then its form is the fame as that of the animal, fince it inclofes all the other parts. In the vertebral animals, it only determines the moft important forms and proportions. Their fkeletons, therefore, do not differ fo much as their external figures; even amongft them all, there are refemblances which one would not fuppofe to exift, from the afpect of the parts they fuftain.

Arto V: Remarks on the Skeleton. $14 J$

The bones of which the flkeletons are compofed, are in general articulated in fuch a manner as to form a whole, all the parts of which are connected : there are, however, exceptions to this rule; the bones which fupport the tongue in quadrupeds and birds, are not connected with the other bones, except by foft parts, though in fifhes they are properly articulated with the reft of the fkeleton. The whole of the anterior extremities are only attached to the body by mufcles in quadrupeds that want the clavicles; but in other quadrupeds, they are joined to the fternum by fingle clavicles, and by double ones in birds.

In fifhes they are strongly connectd with the fpine by a bony girdle.

On the other hand, their pofterior extremities are generally free, and fimply fixed in the flefh, while the other animals have them ftrongly attached to the reft of the fkeleton by the medium of the pelvis.

The bones which compofe the fkeleton, prefent three principal divifions-the head, the trunk, and the extremities.

The head is never wanting: the extremities are totally wanting in ferpents and fome fifhes; the pofterior extremities are wanting in the apodes clafs of fifhes, that is to fay, in thofe that have no ventral fins, and in the cetacea amongft mammalia. The anterior extremities only are wanting in one fpecies of lizard. No vertebral animal

$$
\mathrm{L}_{2}
$$

has
has more than four extremities, unlefs we include in that number the kind of wing which belongs to the flying-dragon, a little animal next to our lizard.

The trunk is formed by vertebre (the whole of which is called the fpine of the back), the ribs and the fternum. The vertebræ are never entirely wanting, though their number is exceedingly variable. The fternum is abfent in ferpents and fifhes; unlefs we fhould choofe to give that name to the anterior part of the bony girdle which fupports the pectoral fins, or anterior extremities of fifhes. The ribs are wanting in frogs, rays, Jbarks, and a great number of cartilaginous fifhes.

Thofe vertebre which fuftain the ribs are called dorfal. Thofe which are fituated between. the dorfal and the head, cervical; thofe which are pofterior to the dorfal, lunbar; thofe which are joined to the pelvis or pofterior extremities, facral or pelvic; and thofe which form the tail, coccygeal or caudal. Only a very fmall number of mammalia, (the ternate bats,) and the frog kind, have no coccyx. Several fifhes have no neck. It is obvious that in the animals that have no ribs, the diftinction of the three firft kinds of vertebre cannot take place, and that the diftinction of the three laft difappear in thofe that have no pofterior extremities, or where thofe extremities are not attached to the fpinc.

The ribs which proceed from the vertebre and join the fernum are called true ribs: thofe which

Art. V. Remarks on the Skeleton. 149

which do not extend fo far, are called falfe ribs ; the latter are always pofterior in quadrupeds. In birds, they are both before and behind : this diftinction ceafes to prevail in the animals that have no fternum. Particular denominations muft be given to the ribs which proceed from the fternum, and do not join the vertebræ, of which the crocodile affords an example; and thofe which, coming from the vertebre, unite anteriorly with the correfponding ribs, without any fternum exifting between them, as we find in the cameleon.

The head is always placed at the anterior extremity of the vertebral column, and that which is oppofite to the tail. It is divided into three parts, which may vary in their relative proportions, but which are never wanting. Thefe divifions are, (I) the cranium, which contains the brain, and in the partitions of which are fituated the cavities of the internal ear, and frequently a part of thofe of the nofe; (2) the face, which contains the orbits of the eyes, the nafal cavities, and which is terminated inferiorly by the upper jaw; (3) laftly, the lower jaw; this laft is always moveable even in the crocodile, though the contrary has been afferted. The upper jaw is immoveable in man, in quadrupeds, and in fome reptiles, as the cortoife, the crocodile, \&c. But it is more or lefs moveable in birds, ferpents, and finhes.

The extremities, when perfect, are divided into four parts; thofe which belong to the antetior extremities are, the fhoulder, the arm, the
fore-arm, and the hand; thofe of the pofterior are, the hip, the thigh, the leg, and the foot: there diftinctions do not hold amongft fifh whofe extremities confift only of boney rays; that is to fay, of bones conftituted like a fan, and articulated to parts which correfpond with the fhoulder or hip: ftill, however, fome analogy may be found between thofe parts and the divifion of the extremities in other animals.

The fhoulder confifts of the fcapula, placed againft the back, and the calvicule, attached to the fternum. - The laft is wanting in fome quadrupeds, and the cetacea, as will be feen hereafter, but is double in birds, tortoifes, frogs, and many lizards :- the fcapula is never wanting when the extremity exifts. The arm is formed of one bone only. The fore-arm is almoft always formed of two: even when the fore-arm has but one bone, there generally appears a furrow, or fome other veftige of its ordinary compofition. The hand varies with refpect to the number of its bones; but thofe which exift in it always form a wrift or carpus, the body of the hand or metacarpus, and the fingers: this organization prevails even in birds which have their fingers enveloped in a fkin covered with feathers; it likewife prevails in the cetacea, in which the whole of the anterior xtremity is reduced to the figure if a oar or fin.

Th preof the fkeleton are ufually dirpofed with a ftrict regard to ymmetry; fo that the two. halfs,
halfs, formed by a longitudinal fection, are coun-ter-pronfs of each other: In only one kind of fifhes, called pleuronétes, which includes foles, plaice, turbots, \&c. the head is fo formed that the two cyes and the two noffrils are on the fame fide; but the fymmetry of the remainder of the fkeleton is preferved.

Each clafs and each order of animals hav paricular characters relative to their fleleton: they confift in the general form of the trunks and the extremities, in the prefence or abfence of the latter, and in the number of thofe different parts.

We fhall explain all thefe particulars in detail in the following Lectures : it may be proper, however, to remark here, that though an animal of one clafs has fome refemblance to thofe of another, in the form of its parts, and the ufe it makes of them, that refemblance is external, and affects the fkeleton only in its proportions, but not in the number nor the arrangement of the bones: bats, for example, appear to have wings, but an attentive examination demonftrates that they are real hands, the fingers of which are merely fomewhat lengthened: in the fame manner, though the dolpbins appear to have fins all of one piece, we find under the fkin all the bones that compofe the anterior extremities of the other mammalia, fhortened and rendered almoft immoveable. The wings of penguins, which likewife refemble fins in one piece, contain internally the fame bones as thofe of other birds.

152 L. III. Bones and Musclesof the Trunki

IECTURE THIRD.

> OE TIIE BONES AND MUSCLES OF THE
> TRUNK.

> Article I: Of the Bones of the Spine.

> A In MGn:
$T_{\text {he f }}$ pine of Man is divided into five regiona, viz. (1) the caudal, or coccygeal; (2) the facral, or pelvic; (3) the lumbar; (4) the dorfal; (5) the cervical, or tracheal.
The caudal region is of fmall extent; it confifts of three or four little bones, articulated with each other, and fupported by the point of the os facrum, with which the firft piece is frequently intimately united.

The facral region is compofed of five vertebræ, which are confolidated into one bone, called the os facrum: it is parabolic, flat, and thin, at the lower end; concave before, and convex behind: its upper part is articulated with the body of the laft vertebra of che loins by an oval furface, cut obliquely from the front backward, and forming, with

> Art. I. Bones of the Spinit,
swith the loins, a fharp angle anteriorly. This angle is more acute in women than in men. Two other furfaces, directed backward, ferve for its junction with the offa ilii. The os facrum is perforated by four pair of holes, which afford paffage for the nerves. Pofteriorly we obferve eminences that correfpond to all the proceffes of the, vertebræ, which formerly compofed this bone. The fpinous proceffes, in particular, are very confpictous: the two laft are bifurcated.

There are five lumbar vertebre; their bodies are more broad than the vertebre above them ; their fpinous procefs is horizontal, compreffed, and fomewhat truncated at the point; their fuperior articular proceffes have their furfaces turned inward; the inferior have theirs turned outward; their tranfverfe proceffes are long, flat, and pointed directly to the fides.

The dorfal vertebre, which are twelve in number, diminifh in fize from the laft to the fourth or fifth, and afterwards increafe in fize up to the firft: their bodies are fimilar to thofe of the lumbar ; their fpinous proceffes are long, flope downward, and have the flape of a triangular prifm; the three higheft are more elevated, and become almoft horizontal; the fuperior articular proceffes have their furfaces directed backward, and the inferior have theirs turned forward; the tranfverfe proceffes are fhort, horin zontal, and turned fomewhat backward ; anferiorly there is a fmall flat fuperficies, againft which

154 L.III. Bones and Muscles of the Trunk.
which the tubercle of the correfponding rib refts. Thefe fuperficies are turned obliquely downward in the fuperior dorfal vertebre, and upward in the inferior. There is, befides, at the lateral edge of each articulation of their bodies, a fmall cavity, common to every two vertebræ, which receives the head of the rib.

The loweft five of the cervical vertebre are fimilar to thofe of the back, but fmaller. The upper furface of each of their bodies is hollow, and receives the inferior furface of the preceding vertebra. The plane of thefe furfaces is inclined forward; their tranfverfe proceffes are inclined fomewhat forward and downward. They are remarkable for an excavation in the form of a femi-canal, and a fmall hole. The fpinous proceffes are forked, except the two laft.

The fecond vertebra of the neck, called axis, or odontoides, differs from the others in its fpinous procefs, which is much broader, and more clevated; by the hole in its tranfverfe procefs, which, inftead of being perforated vertically, is directed tranfverfely, and thus forms an oblique canal; by a pointed procefs, which rifes from the upper furface of the body of the vertebra, and which has an articular furface anteriorly; finally, by its junction with the firf vertebra, which is performed by the means of two flat furfaces correfponding to the articular proceffes of the other vertebre.

The
Art. I. Bones of the Spine. I55

The firft cervical vertebra, which is ftill called the atlas, is merely a ring; it has hardly any fpinous procefs, and no body; but it has two furfaces for articulation with the fecond vertebra, and two more which receive the condoyles, by which it is connected with the head. The tranfverfe proceffes are very long, and each has a foramen.

The length of the neck is nearly equal to one half of that of the back, and to two-thirds of that of the loins.

When man ftands erect, the vertebral column has four curvatures. The region of the facrum is concave before, the loins are convex, the back is concave, and the neck is convex.

The vertebre of man are fufceptible of a number of finall motions with refpect to each other ; but thefe motions, though very confpicuous in the whole of the fpine, are very obfcure between any particular bones. Each vertebra can move a little forward, by refting on the anterior part of its body ; backward, by inclining in the direction of the fpinous proceffes; and, finally, fideways, by yielding a little in the direction of the oblique procefles. Thefe articulations are firmly fupported by a number of ftrong ligaments; but to defcribe them in one vertebra is almoft fufficient for a knowledge of the whole.

The body of each vertebra is covered, both above and below, by an elaftic cartilaginous fubftance, the folidity of which gradually diminifhes

156 L. III. Bones and Muscles of the'Trunz. minifhes from the centre to the circumference. The articular proceffes have alfo each their capfules. All the anterior part of the bodies of the vertebræ is covered by a large and very folid coat, formed of tendinous or ligamentous fibres, which extends from the firf cervical vertebra to the os facrum. Behind the bodies in the interior of the vertebral canal, there is likewife another tendinous covering, which extends from the tooth-like procefs of the fecond vertebra to the os facrum. Each procefs, whether fpinous or tranfverfe, has alfo a fmall ligament, which unites it to the preceding or the following procefs. The laft vertebra is connected in the fame manner with the os facrum.

B In other Mammiferous Animals.

The fpine of Quadrupeds may differ in the number of the vertebræ, in the refpective proportions of the neck, back, loins, facrum and coccyx, in the total curvature, and in the form of each vertebra,

1. Number of the Vertebree in Mammalia.

The number of the cervical vertebre is always feven, except in the three-toed foth, which has nine. The cetacea have frequently two or more offified together; for example, the two firt in
the
the doipbin and porpoife, and the fix laft in the cacbalots; but the parts are always perceptible; they are merely joined by anchylofis.

As to the other vertebræ, their different numbers, in the different fpecies, have no conftant relation with their natural families, as will appear from the table underneath.

In the cetacea there is, ftrictly fpeaking, no pelvis, and, confequently, no diftinction can be eftablifhed between the vertebræ of the loins, thofe of the facrum, and thofe of the tail.

Only a very fmall number of mammalia want caudal vertebræ, among which are the ternate bats.

> TABLE of the Number of the Vertebrce in Mammiferous Animals.

Species.	($\begin{gathered}\text { Doral } \\ \text { Vertebre. }\end{gathered}$	$\begin{aligned} & \text { Lumbar } \\ & \text { Vertelb. } \end{aligned}$	Sacral Verteb:	Caudal Vertebre.
Man	12	..5.	5	4..9
Orang-outang	12	. 4	. 3	. $4 .$.
Jocko	. 13	. 5	. 4.	. $5 .$.
Long armed Ape	. 14	. 3	. .6..	
Coaita, or 4 fingered Monkey	. 14	. 3	. . 2	.32...
Weeping Monkey 14	. 7.	4.	...25...
. Silky Monkey .	12	. 7 .	. 1	. . 26.
Red Monkey	. 12	. 7	. . 5	more than 16
Rib-noled Ape	. 12	. 7	. 1	... $13 .$.
Hair-lipped Monkey	. 12	. 7 .	1	5...
Chinefe Monkey	. 11	. 7.	-. 3	. . $20 .$.
Baboon 12	. 7 .	$\ldots 1$. . $31 .$.
Magot, or Barbary Ape.	. 12	. 7.	. . 1.	... 3...
Mandril 7	. 313...
Pongo	$\ldots 12$. 4.	. 8.	4...
Howling Baboon	14	. 4 .	. 5	-

158 L.III. Bones and Muscles of the Spine.

Species.	$\text { \|cerfal } \begin{gathered} \text { Dortebre. } \end{gathered}$	$\begin{aligned} & \text { Lumbar } \\ & \text { Verteb. } \end{aligned}$	$\begin{array}{\|c\|} \text { Sacral } \\ \text { Verteb. } \end{array}$	Caudal Vertebre.
Maucaco	12	. 7	. 3.	18
Lori	. 15	. 9.	.. 1	9
'Tarfier, or Woolley Jerboa. .	$\ldots 14$.	.. 5	. 3.	more than 17
Vampyre, or Ternate Bat	. 12.	. 4.	. . $1 .$.	... U...
Common Bat	. 11	5	. 4.	12
Noctule, or Great Bat.	. 12	. 7	. 3	... 6...
Horfe-fhoe Bat.	. 12	. 6.	. 3	12
Flying Lemur	. 12	. 6.	. 1.	. . $22 .$.
Hedge-hog	. 15	. 7.	. 4	... $12 .$.
Tanrec	. 15	. 6	. 3	. 8...
Shrew	. 12	. 7	. 3	17
Mole.	. 13	. 6.	. 7.	. 11
White Bear	.. 13	. 6.	. 7.	. 11
Brown Bear	. 14	. 6.		more than 4
Badger	. 15	. . 5	. 3	16.
Glutton	. 16	. 0	. $3^{\prime \prime}$	18
Coati	. 14	. 6.	. 1	more than 10
Racoon	. 14	. 7	. 3	. 20
Otter	14	. 6.	. 3	21
Martin	. 14	. 6	. 3	18
Weafel	. . 14	. 6.	. 3	14
Civet	. 13	. 6.	. 3	. . .0
Lion	. . 13	. 6	. 3	23
Tiger	13	. 7	. 4.	19
Panther	13	. 7	. 3	2.4
Couguar, or American Lion	. 13	. 7	. 3	22
Cat	. 13	. 7	. 3	2
Dog	3	. 6.	. 3	. 22.
Wol	. 13	. 7	. 3	. 19
Fox	. 13	. 7	. 3	90
Hyena.	. 16.	4	2	morethan 8
Cayenne Opoffum, or Crab eater	13.	6.		more than 16
Marmofe, or Murine Opoffum	. 13	6.		. 29
Phalanger, or Surinam Opoffum	. 19..	. 6.	. 1	. . 30
Porcupine	14.	5.		more than 8
Hare	12	. 7	\cdots	. 20
Rabbit	12	. 7 .	. 2	. . 20
Cabiai.	13	. 6.	. 2	more than 4
Guinear Pig	13	. 6	. 4	6

Art. I. Bones of the Spine.

Species.	Dorfal	Lumbar	$\begin{aligned} & \text { Sacral } \\ & \text { verteb. } \end{aligned}$	$\begin{gathered} \text { Caudal } \\ \text { Vertebrex. } \end{gathered}$
Paca, or Sported Cavy	. 13.	. 6.	. 5	.. 7.
Agouti 12.	. 8.	. 4	7
Beaver	$\ldots 15$. 5	. 3	23
Flying Squirrel	$\therefore 12$.	. 88	. 3.	. 13
Marmotte	. . 13	. 7	. 6.	.. 22
Field Moufe	. 13	. 7	. 3	. 15
Water Rat	. 13	. 7	. 4	23
Black Rat	. 13	. 7	. 3	26
Norway Rat	. 13	. 7	. 4	23
Co. nrıon Moufe	. 12	. 7.	. 4	. 24
Field, or Harveft Rat	12	. 7\%	. 3	23
Hamiter	13	. 6	. 4	15
Fat Dormoufe	. 13	. 718...
Garden Dormoufe	. 13	- 7	. 4	. 24.
Ant-eater	. 16	. 2	. 4	. 40
Pangolin	. 15 .	. 5	. 3	. . 28
Long-tailed Manis	. 18	. 5	. 2	. 45
Armadillo 11	. 4	. 3	. 30.
Two-toed Sloth.	. ${ }^{3}$. 2.	. 4	more than 7
Three-toed Sloth	. 14	. 4	. 3	...13...
Elephan	2	. 3	. 4	$\ldots{ }^{2}+\ldots$
Hog.		. 5	. S	more than 4
Tapir	. 20	. 4	. 3	. . 12...
Rhinoceros	. 10	. 3	. 4	. 22
Camel	. 12	. 7	. 4	... 17
Dromedary		- 7	. 4	. 18
Stag	. 13	6	. 3	. 11
Camelopard	. 14	. 5	. 4	... 18
Antelope. .	. 1	. 6.	. 5	.. 15
Gazelle	. 18	. 5	. 5	. . 11
Chamois	. 1	. 5	. 4	more than 7
Goat	. 18	. 6	.	
Sheep	. 113	. 6.	.	. . 16
Ox	. 18	. 6.	.	. 16
Horfe	. 18	. 6.	. 2	
Couaga	. 18	.	7	- 18
Seal.	15	5.	2.	12
Dolphin Porpoife	$\left.\begin{array}{l}.13 \\ .15\end{array}\right\}$	In	66	

sto L.i.ill. Bones and Musches of the Trunर̌í

2. Proportions of the Spine in different Quadrupeds:

The length of the neck does not depend ori the number of the cervical vertebre, for, as we have already obferved, that number is almoft always the fame in all quadrupeds.

In general, the length of the neck is fuch, that, added to the head, the length of both is equal to the height of the animal's fhoulders from the ground. Were not this the cafe, quadrupeds could not eafily either reach the herbs on which they feed, or the water they drink. Among all thofe in which this rule is obferved, the bulk of the head is in an inverfe proportion to the length of the neck, otherwife the mufcles would not be able to raife it up.

This rule, however, is not adhered to in the animals that lift food to the mouth by the means of hands, or feet conftructed like hands; nor in the elephant, in which the probofcis is fubftituted for hands; nor in the cetacea, which live and obtain their food in water, and which, of all mammalia, have the florteft necks.

The fhape of the body in animals, whether flender, or thick and fhort, is principally determined by the length of loins, which depends upon the number of the lumbar vertebræ. This is obfervable in the lori, Scc.

TABLE

TABLE of the Length in Metres＊of the Regions of the Spine in Mammiferous Animals．

mames．	＋	$\begin{gathered} \text { In } \\ \stackrel{y y y y}{0} \\ \hline \end{gathered}$	$\begin{aligned} & \text { 这 } \\ & \hline \end{aligned}$	咅 雪	\square
Man	0，74	3，1！	3，0i	ग，16	0，14 0003
Orang	0，26	0， $0^{\circ} 4$	，， 11	1，05	0，04 0，02
Pongo	0，66	0，12	1，20	1，13	0，100，02
Sai	0，60	0，03	$\cdots, 0 \leq$	1，09，	0，03 0,42
Ternate Bat	），19	1，05	3，0i	），0	0，04
Common Bat	），11	0，01	1，0：	0，0110	$\xrightarrow[0,010,06]{ }$
Mole	1，185	0，015	1，08	1，os	0，0s 0，03
Hedge－hog	，19	0，02	0，07	1， 04	0，020，04
Sea Bear	1，39	0，31	．， 44	＇，28	0，170，19
Seal．	1，72	0，12	），24	J， 15	0，060，15
Glutton	），70	13，11	－， 29	1，130	10，04（1），20
Racoon	1，64	1， 86	，14	－， 10	0，040，30
Otter	0，98	＇， 11	1，24	1），13，	0，03 0，47
Lion	1，51	1，27	1，44	），35	0，09，0，36
Cat	1，71	0，08	1， 15	0，131001	0，03，0，32
Woif．	1，08	1，18	1，28	0，210	0，050，36
Opoflum	1，68	0，05	U， 11	0， 10^{\prime}	＇0，02 0，40
Hare	1，48	0，07	0，12	0，17	0，030，09
Guinea Pig	1，90	0，04	0，00	0，06	0，020，02
Three－toed Sloth	1，54	0，09	3，es	0，04＇0．	0，08 0，10
Long－tailed Manis	1，84	0，03	1， 11	0，06	0，04，0，61
Elephant	2，85	0，32	1，0 5	0，25	0，211，02
Hog	1，：35	1， 17	3，4：	0，25	0，110，30
Rhinoceros	1，85	1，45	1，40	0，20	0，22 0，69
Dromedary	2，98	1，00	0，85	1），49	0，200，44
Camelopard	1，22	1，82	1，88	0，35	1，240，93
． O x	$\therefore 12$	0，39	1，58	1，35	0，200，60
Stag	1，50	0，47	1，46	0，30	0，120，15
Hor	？，01	0，49	1，64	），24	0，170，47
Dolyhin	1，26	0，04	1，26		0，96
Porpoife					－
	1， 10	1，0．3	0，25		0，82

＊The Metre，which is the unit in this Table，is equal to 3 feet Ir liacs of the old French micafurc，or about 3 feet 3 juches 6 lines Englifh．－T．

Vol．I．M
3．Form

162 L.III. Bones and Muscles ofthe Trunk.
3. Form of the different Vertebre in Mammiferous Animals.
a Vertebre of the Neck.
The cervical vertebre of the genus fimia, differs from ours only in their fpinous procefs being ftronger, and not forked. Their bodies, too, prefs more upon each other anteriorly, which ferves the better to fupport the head.

In the pongo, in particular, their finous proceffes are exceffively long, doubtlefs in confequence of the largenefs of the head and the length of the muzzle.

In the Carnivora, the tranfverfe proceffes of the middle vertebræ of the neck affume a compreffed fhape, both on the anterior and pofterior furfaces. The two laft only form grooves; the holes are almoft in the body of the vertebræ; the axis and atlas are much larger; the tranfverfe proceffes of the atlas are very large and flat on the front and the back; the fpinous procefs of the axis is very highs and is prolonged both upward, upon the atlas, and downward, upon the third vertebra: they thus furnifh fufficient points of infertion for the mufcles that move and fupport the head, which is very difadvantageoufly placed in thefe animals. The other fpinous proceffes, except the laft, are fhort: they are all directed, more or lefs, towards the head.

$$
\text { Art. I. Bones of the Spine. } 163
$$

In the moles and in the ßrezus the vertebre of the neck have no fpinous proceffes at all. They form fimple rings, which admit much freedom of motion.

Among the Edentata, the ant-eaters and the armadillos have the fix laft cervical vertebræ foldered or offified together. The bodies of all thefe vertebræ are large, and compreffed anteriorly. In all the fpecies of this family they form a fort of groove, in which the œfophagus is lodged.

The bodies of the vertebræ of the Rodentia, as well as thofe of the bog, the tapir, and the rbinoceros, are difpofed in a manner nearly fimilar. The tranfverfe proceffes in the bog have the anterior part of their extremities fo much enlarged and compreffed that they feem double.

The clepbant, whofe neck is very fhort, has vertebræ like thofe of the Monkey tribe.

In the Ruminantia, the fpinous proceffes diminifh in proportion to the length of the neck. In the camel, the camelopard, \&c. thefe proceffes are almoft effaced, which is neceffary, otherwife the neck could not be bent backward. The tranfverfe proceffes are compreffed, and form two angles, the fuperior of which is directed forward, 'and the inferior towards the fide. In thofe which have fhort necks, fuch as the ox, the goat, and the 乃eep, thefe two angles form double tranfverfe-proceffes.
The cervical vertebre of the borfe have much M 2 refemblance
164. L.III. Bones and Museles of the 'Trunk. refemblance to thofe of the Ruminantia. In both, the bodies of the vertebre have a fort of longitudinal ridge on their anterior part.

In quadrupeds, in general, the laft but one of the cervical vertebre has, upon the lateral parts of its body, two obtufe eminences, which form a kind of channel.

In the!dolphin, the atlas has a confiderable refemblance to that of man; the axis is very thin, and anchylofed with the atlas. The other five vertebre are nearly as thin as paper.

In the cacbalot the whole feven vertebre are anchylofed ; the five intermediate ones are cx tremely thin.

B Vertebra of the Back.

The dorfal vertebre of monkeys do not materially differ from thofe of man. The fpinous proceffes in the macacques and magots are, however, elongated, and fomewhat elevated.

The bats have no fpinous proceffes on their dorfal vertebra; they are replaced by very fmall tubercles, and cven thefe are wanting in fome fpecies, fo that the fpinal column prefents no afperities on its pofterior part. Their vertebral canal has a very great diameter in this region.

In the true quadrupeds, thefe proceffes are longer, ftraighter, and ftronger, in proportion
as the head is heavy, or joined to a longer neck. It is neceffary, indeed, that they fhould afford to the cervical ligament points of attachment proportioned to the weight it has to fupport; thus the camclopard, the camel, the ox, the rbinoceros, and the elepbant, have thefe proceffes longeff. It is a miftake to imagine that they fuftain the hunch of the camel, it being compofed of fat only.

The dolploin has them of a moderate fize, but ftraight, and lefs than thofe of the lumbar veriebre, becaufe the latter furnifl infertions to the valt mufcles of the tail.

γ Yertebre of the Loins.

The lumbar vertebre of apes have their fpinous and tranfverfe proceffes directed a little towards the head. This is ftill more apparent in the dog and $c a t$, in which thefe proceffes are longer. In the Quadrumana and Sarcophaga there is commonly on the external fide of each pofterior articular procefs, a point directed backward, fo that the anterior articular procefs of the riext vertcbra is received between two prominences. The motion is thus confiderably limited. This point likewife exifts in the Rodentia, but it is generally fhorter: no fuch difpofition is found in the other orders. The mag-

166 L.III. Bones and Muscles of the Trunk. nitude of the tranfverfe proceffes marks the ftrength of the loins, as is obfervable in the ox, the borfe, the porpoife, \&xc.

δ Vertebre of the Sacrum.

The os facrum of quadrupeds is in general narrower than in man, and forms with the fpine one flraight line. It prefents therefore no folid bafe for an erect pofture, as we fhall fee more evidently in treating of the pelvis.

The form of the facrum is generally that of a long triangle. In every genus, thofe fpecies which fometimes ftand erect, have it proportionably larger than others; fuch are, the monkey, the bear, and the floth.

The fpinous proceffes, which in man and the monkey, are very fhort, are fomewhat longer in the carnivorous animals: they almoft touch and form a continued creft in the rbinoceros, and in moft of the ruminating kind ; but this difpofition is moft remarkable in the mole, which has the creft very long, as well as the bone itfelf.

In the ternate bat, the os facrum forms a long compreffed point, the extremity of which unites with the tuberofities of the os ifchium, but has no os coccygis.

ε The Tertelrce of the Tail.

The caudal vertebræ in mammalia are of two forts; thofe that preferve a canal for the paffage of the fpinal marrow, and thofe that do not : the latter are generally of a prifmatic form ; they diminifh gradually in magnitude to the end of the tail ; they have orily flight protuberances for the infertions of the mufcles.

The others are the neareft to the facrum ; they have articular and tranfverfe proceffes, and alfo fpinous proceffes, which are the more diftinct in proportion as thefe animals move the tail with greater frequency and force.

Thofe animals in which the tail is prehenfile, as the fapajous, have on the under fide, and at the bafe of each body of the vertebræ, two little prominences between which the tendons of the flexor mufcles pafs.

The mammalia, in which the tail is long, and much accuftomed to motion, have often two or three little fupernumerary bones, fituated at the inferior furface upon the joints of fome of the vertebre: thefe bones commonly extend from the third or fourth vertebræ, to the feventh or eighth: it has been obferved that their flape refembles a V ; they afford points of infertion for mufcles.

The beaver, which ufes his tail as a trowel, has the caudal vertebre remarkable both for

168 L.III. Bones and Muscles of the Trunk.
the magnitude of the tranfverfe proceffes, and becaufe the inferior fpinous proceffes are larger than the fuperior. To this he is indebted for the force with which he ftrikes his tail downward when forming the carth into mortar.

The fpine of the cetacea differs widely from that of quadrupeds in its form, which more nearly refembles that of fifhes: it may be ufeful, briefly to notice; in this place, its peculiarities.

Of the feven cervical vertebræ the firf alone is quite diftinct, and bears a well defined fpinous procefs.

The dorfal vertebræ have at firft the articular proceffes at the root of the tranfverfe; but towards the ninth vertebra there are only the fuperior ones; for at this height thefe articular proceffes turn backward to the bafis of the fpinous proceffes next the head, and form a kind of groove which receives the preceding fininous procefs.

The vertebra of the loins and tail admit of no diftinction, as there is no pelvis. It may be obferved, however, that the tranfverfe proceffes, which are very long in the firft lumbar vertecra, become fhorter as they approach the tail, and are totally effaced in the laft of tho fe vertebre.

> C. In Birds.

The number of the vertcbre that compofe the
the different regions of the fpine, varies as much in birds as in quadrupeds. This will appear from the following Table:

TABLE of the Number of the Tertebre in Pirits.

species.	$\begin{gathered} \text { Ver. of the } \\ \text { neck. } \end{gathered}$	Ver. of the back.	$\begin{gathered} \text { Yer. of the } \\ \text { facrum? } \end{gathered}$	Ver. of the caccygis.
Vulture	13	7	. 1	. 7 . 7
Eagle	13	. 8	11	8
Bald-Buzzard	. 14	8	. 11	. . . 7 . .
Sparrow-Hawk	11	- 8	11.	8
Common Buzzard.	11	7	. 10.	8
Kite	. 12	. 8	. 11	. 8
Great IornedOwl.	. 13.	. . 7	. 12	. . . 3
Common Owl	11	. . 8	. 11	. . 8
Fly-Catcher.	. 10	8	. . 10.	. . . 8
Blackioird	. 11	.. 8	. 10	. . . 7
Tanager	10.	. 8.	0	. 8
Crow.	. 13.	. 8	. 13.	. 7
Magpic	. 13	. 8	. 13	. . . 8
Jay.	. 12	. 7	.. 11	8
Starling..	. 10	. 8	. 10	. . . !
Grols beak	10	. 7	. . 12.	. 7
Bull-finch	10	. . 6	. 11 ${ }^{\text {a }}$
Sparrow	. 9.	. . 9)	. . 10	
Gold-finch	11.		. 11	8
Timmoule	. 11		. 11	. 7
Lark	. 11.	. 9	. 10	. 7
Red-breaft	. 10.	. 8	. 10	. 8
Sevaliow.	. 11	. 8	. 11	9
Goat-fucker	. 11	8	. . 11	. . . 8
Humming Bird	. 12	. .)	. 3	. . . 8
Hoopoe..	. 12.	. 7	. 10.	. 7
Kills's-fimer	12.	. 7	. 8.	. . . 7
Wood-pecker	. 12.			
'Toucan .	. 12.	. 8.	. 12.	more than 7
rot	$\ldots 11$	9	. 11	. 8
Pigeon.	13	7		
Pcacock	.. 1*			8

1yo L.III. Bones and Muscles of the Trunk.

Species.	$\begin{gathered} \text { Ver. of the } \\ \text { neck. } \end{gathered}$	$\left\|\begin{array}{c} \text { Ver. of the } \\ \text { back. } \end{array}\right\|$	Ver. of the facrum,	Ver. of the coccygis.
Pheafant	. 13	. 7	. 15	5
Turkey	. . 15.	. 7	. 10.	. . . 5
Curafiow Bird	. 15	. . 8	$\ldots 10$. . . 7
Oftrich	18.	8	. 20.	- 9.
Caffowary	. . 15.	. 11	. 19.	. . . 7
Flamingo	. 18	. 7	. 12.	. . . 7
Heron.	. 18	7	. 10..	. . . 7 .
Stork	. 19.	. 7.	. 11	. . . 8.
Crane	. 19.	. . 9.	. 12.	. 7
Spoonbill	17	. . 7	. 14	... 8
Avofet.	14	. 9.	. 10.	. . . 8
Plover	. 15	8	. 10.	.. . 7.
Lapwing	. 14.	8	. 10.	. 7
Woodcoc	. 18	7	. 13	8
Curlew	13	8	. 10.	-. 8
Oyfter-catcher	12	. 9	. 15	
Rail.	. 13	. . 8	. 13	. 8
Coot	. 15	. . 9	. . 7.	. 8
Jacana	. 14	. . 8	. 12 ?	. . 7.
Pelican.	. 16.	. 7	. 14	7.
Cormora	. 16.	. . 9	. 14	. 8
Sea fwallow.	. 14.	. . 8	. io	$\therefore 8$.
Gull.	. 12		. 11	. 8
Petrel	. 14	. 8	. ? ?	8
Swan	. . 23	. 11	. 14	8
Goofe	. 15	. 10.	. 14	. . 7.
Barnacle.	. 18.	. 10	. 14	. . 9 . . .
Duck	. 14	8.	. 15	S
Sheldrake	16	. . 11	. 11	9
Scoter, or Black	15	. 9 .	. 14	. 7 ...
Merganfer	15...	8	. 13	. 7
Grebe.	14	10.	. 13	7

The vertebræ of the neck of birds, are in general very numerous; they vary from ten to twenty-three; the number of the dorfal vertebre varics from feven to eleven. There are no lumbar vertebrx, properly fo called; all thofe which
which extend from the thorax to the tail being offified in one piece with the two offa ilii. The tail is fhort, and has but a few joints; from feven to eleven.

The part which varies moft in point of length is the neck: its length is proportioned to the height of the legs, except in fome water-fowls, where it greatly exceeds that proportion. This is neceffary to enable them to feek their food below the furface of the water in which they fwim.

The bodies of the vertebre of the neck are not articulated by flat furfaces, which only admit of an obfcure motion, but by furfaces forming portions of a cylinder, which allow great flexion. The three, four, or five uppermoft vertebræ can only bend forward, and the reft only backward. This makes the necks of birds refemble the letter S; and it is by contracting or widening the two arches which form this curve, that they fhorten and ftretch out the neck.

The articular proceffes of thefe vertebræ point upward and downward; the others forward and backward.

Inftead of tranfverfe procefs, the cervical vertebræ of birds have only an eminence upon the upper part. The anterior extremity is furnifhed with a ftyloid procefs, which defcends parallel to the body of the vertcbra.

The uppermoft and lowermoft, only, have dif-
tinct fpinous proceffes, and thefe have them both on the anterior and the pofterior part. The intermediate vertebra have anteriorly two ridges, which form a femi-canal; and pofteriorly, a protuberance which is often bifid, and which, when prolonged, prefents two fcabrous lines.

This ftructure was neceffary for lodging the tendons of the mufcles that produce the complicated motions we obferve in the necks of birds.

The allas is fhaped like a little ring; it is. only connected with the head by one furface.

The back of birds is as remarkable for its want of motion, as their neck is for its flexibility. The vertebre which compofe the back have fpinous proceffes, touching each other, and tied together by ftrong ligaments. The greater part of thefe proceffes are often united into a folid piece, which runs, like a ridge, along the whole length of the back. The tranfverfe proceffes fend off from their extremities two points; the one directed forward, the other backward: they join thofe of the other vertebre, and fometimes are foldered to them in the fame manner as the fpinous proceffes are to each other. This difpofition was neceffary, that the trunk might remain firm amidft the violent efforts which the motion of flying requires: indeed, the birds which do not fly, fuch as the oftrich and the caf. forary, retain the motion in their fpine.

The laft dorfal vertebræ are frequently placed under
under the crifta of the ilium, and there, like the lumbar vertebre, they are often anchylofed with the large bone of the haunches; on this account the number of holes which give paffage to the nerves is commonly the only criterion of the number of thefe vertebræ.

The vertebre of the tail are moft numerous in thofe birds that move it with the greateft force, fuch as the magpie, wroallorw, \&xc. They have fpinous proceffes both above and below, and very long tranfverfe proceffes. The lait of all (to which the quills are attached) is largeft, and has the form of a ploughflare, or a compreffed difque. In the caforvary, which has no vifible tail, the laft bone has a conical flape. In the peacock, on the contrary, it has the figure of an oval plate fituated horizontally.

D. In Reptiles.

The number of vertebre, and every other attribute of the fpine, are more varied in this clafs of animals than in any other.

In the tortoifes feven vertebræ are affigned to the neck; the firft is only a fimple tubercle, the annular portion of which is very diftinet. The furface, by which it is articulated with the head, is formed of three planes, one anterior and two lateral. The point in which they unite is the moft prominent, and to this is attached a ftrong

174 L.III. Bones and Muscles of the Trlink.
ligament. The furface which unites it to the next vertebræ is a glenoid cavity; the fecond and the following vertebre have a prominent longitudinal ridge upon the fore-part of their body. The articular proceffes defcend below the body; there are no fpinous proceffes except one to the fecond vertebra, which points forward, and one to the third in the form of a fimple tubercle. The two laft vertebre, at a certain age, become anchylofed.

There are eight dorfal vertebræ, but they are all anchylofed together with the ribs and the back fhell in one immoveable piece. They have, therefore, neither proceffes nor articular furfaces. They are all narrower in the middle than at the ends.

The lumbar and facral vertebre are likewife confolidated with the back fhell, but thofe of the tail are free and moveable.

The condyle, which forms the body of thefe vertebre at its articulation with the others, inclines backward, and not towards the head, as thofe of the neck do. There are likewife upon the fore-part of the body, at its bafe, two fmall tubercles; but all the proceffes of thefe vertebrex refemble thofe of the mammalia.

In the family of lizards, the crocodile has feven cervical vertebre, the five laft of which have their proceffes fo clofely preffed together that the neck cannot be bent towards the fide. The fame number (feven) is found in moft lizards, though
though the cameleon has only two. The facral vertebrex are few in every fpecies, and none of them have a large os facrum.

As frogs have no ribs, no diftinction can be formed with refpect to the three firft orders of vertebre in them.

They have, in general, eight between the neck and the pelvis, all furnifhed with pretty long tranfverfe proceffes. The laft are the longeft, and touch the offa ilii. In the toads the tranfverfe proceffes are very large, and fhaped like hatchet blades. The os facrum confifts of a fingle bone only; it is long, pointed, compreffed, and has no coccyx. In the pipa, which has the tranfverfe proceffes of the fecond and third vertebrer much longer than the others, and almoft like ribs; this bone is offified with the laft vertebre.

The salamanders have fourteen vertebre between the head and the facrum ; they have all nearly the fame flape except the firft, which receives the head, and the laft, which is articulated to the facrum. The two extremes of the fpine alone want the veftiges of the ribs, which confift of fmall oblong moveable bones, actually articulated to the tranfverfe proceffes, which here take a pofterior direction. The articular proceffes are large, and wedged together. The pofterior reft upon the anterior, fo as to impede the motion of the fpine backward. The facrum con-

176 L.III. \#ones and Muscles of the Trunk.
fifts only of a fingle vertebra, but there are twenty-feven in the tail.

In Jerpents, the vertebre alone conftitute ald mofk the whole fkeleton, and they are nearly of the fame form from the head to the tail : the body, as well as the fpinous, articular, and tranfverfe proceffes, are eafily diftinguifhed. In certain kinds, for inftance the boa, the fpinous proceffes, which are continued throughout the whole length of the back, are feparated from each other, and allow reciprocally a motion fufficiently confpicuous. Wherever this difpofition of the fpinous proceffes prevails, the body of the vertebræ, on the fide next the belly, prefents only an obfcure projecting line.

In other kinds of ferpents, as for example the ratilefirake, the fpinous proceffes are long, and fo large as to touch each other. They have, for their bafis, the articular proceffes, which lie on each other. like tiles. In confequence of this ftructure, the motion of the fpine towards the back is very circumfcribed, but its motion towards the belly and fides much augmented. The bodies of the vertebre play very eafily in thefe directions upcin one another, and are armed with a fharp fpine tending towards the tail, which only obftructs their motion when it might produce a luxation.

The firft vertebræ differ from thof of the reft of the body, only in having the rudiments
of the ribs much fmaller : there is no neck int thefe animals.

The vertebre of the tail differ no farther than in having no ribs, and that their fpines, both ventral and dorfal, are double, or form two ranges of tubercles. The articulation of the bodies of the vertebre with each other is very remarkable : the anterior part of the body of the vertebra prefents a fmooth hemispherical tubercle, and the pofterior part a correfponding cavity ; fo that each vertebra becomes connected to thofe next it by a fort of knee joint : this mode of articulation fully explains the motion of reptiles, which is performed winding from fide to fide, and not up and down, as it is reprefented by painters.

TABLE of the Number of the Vertebrce ind Reptiles.

1. Oviparous Quadrupeds.

specirs.	IVerof	$\underbrace{\text { biack. }}_{\text {ver.fet the }}$	$\underbrace{\substack{\text { thelins }}}_{\text {Ver of }}$	\|reot	${ }_{\text {Ver offthe }}^{\text {Vill }}$
Turtie.	8.	. 11.	. 0.0		20.
Crocodile	s..	...11..	. 3.	. 2	36.
Tupina		18.	. 4	. 2.	104
Igrana	$\ldots 5$. $111 .$.	\cdots	$\ldots 2$. 72
Camele	3	. 17.	. 3	. 1	69
Salamander	1.	12.	. 1	..1.	96.
Frog.......................10 in					
Pipa, or Surinam toad. .					
Vol. I,		N			

17 7 L.III. Bones and Muscles of the Trunk.
2. Serpent.s.

Sppcies.	$\|$Vertebrare townich ribsare joind.	$\xrightarrow{\text { verterara of the }}$ cial
$V_{\text {iper (berus) }}$. 189	
Spectacle Snake (naia).192.	68
Garter Snake (natrix). 204112.
Amphiforna.	... 54.7
Boa (conitrietur)	. 2528 $52 . .$.
Common Snake	. 244	more than 60
Rattlefnakc.	17526.
Slow-worm (anguis fragilis)	2 17.

E. In Fishes.

The vertebræ of offeous fifhes have their bodies fometimes cylindrical, fometimes angular, and fometimes compreffed. They are joined by their bodies only. The annular portions do not touch each other, and they have no articular proceffes: they may be divided into two claffes, the caudal, which have a fpinous procefs above and another below; and the abdominal or dorfal, which have the fpinous procefs upon the upper part only. Thefe laft have generally, on the fides, tranfverfe proceffes, to which the ribs are attached.

The fpinous proceffes both inferior and fuperior are very long, particularly in thofe which are flat, as the pleurone:tes, chetodons, \&xc. The canal for the paffage of the fpinal marrow is formed in the vacancy of the fuperior proceffes. In the inferior there is a fimilar paffage for the blood veffels. The ftructure of cartilaginous fifhes is nearly fimilar; but as all the cartilages are
confolidated together, the fpinous proceffes can only be diftinguifhed.
The vertebra of a fifh may be eafily known from that of any other animal, by the configuration of its body, which prefents, both anteriorly and pofteriorly, cavities that are united to fimilar depreffions in the adjoining vertebra, and form, throughout the whole vertebral column, cavities compofed of two cones joined at the bafe. Thefe hollow cones contain a cartilaginous fubftance, formed of concentric fibres, of which thofe next the centre are much the fofteff. Upon this cartilage all the vertebre perform their motions.

The laft vertebra of the tail is, for the moft part, of a triangular form, flat, and placed vertically; upon its pofterior extremity it bears articulai impreffions, which correfpond to the fmall and delicate bones of the fin of the tail. Befides the hard parts which fupport the bodies of fifhes, there are certain fmall bones quite detached and unarticulated, which ferve as fulcra to the murcles of the body. There are others which take the fame direction as the fpinous proceffes, and fupport the dorfal and anal fins. Thefe laft vary much in their form in the different kinds of fifh; fometimes they are triangular, and fometimes compreffed, rounded, or ferrated, on one or more of their angles. The little bones are retained in their pofitions by a ligament which connects them to the proceffes of the vertebre. Each fupports one or more of the radii of the fins.

180 L. III. Bones and Muscles of the Trunk.

TABLE of the Number of the Vertebre of Fiffies.

SPECIES.	$\left\|\begin{array}{l}\text { Cervical } \\ \text { vertebred }\end{array}\right\|$ Dorfal ver-	Lumbar lumber	Caudal vertebrac.	
Ray.................	$\left\{\begin{array}{l}\text { infinied } \\ \text { into one } \\ \text { iece. }\end{array}\right\}$		more than 80	
Shark. 207 in all				
Sturgeon. 28 in all.				
Syngnathus acus more than 50 in all				
Synginathus Hippocainpus 62 in all				
Baliftes : . . \| . . . \mid. . 7 . .\|.....	. . $10 .$.			
Offracion quadricornis. 13 in all				
Eel. 115 in all				
Sea Wolfel. . $2 . .1 . .24 . .1 \mid . . ~ . ~ 50 ~$				
Sea 1)rago	13		. 30	
Uranofcop	. 9		15	
Whiting.	. 17	. 4	32. :	
Sea Scorpion 8. . . . $\sim_{\text {. } 15 . . .}$				
Armed Trigla				
Red Gurnard. 13. $21 .$.				
Small flying Trigla.	3 :		. 12	
Stickleback 17... 2				
Doréc 4. . \because. $9 .$. . .2. .				
Zcus Vomier : . . 10				
Stripped Chætodon... . . .	-.. 0		...12..	
Carp.............. . 1. .13. .9.. . 16...				
Cyprinus Nafus. 1.. . 19.. 19...				
Herring.	4....38.		. 18	
Rhomboid iSalmon (Salned				
Pike (Lucius).	. 35		20	
Brazilian Pike				

species.	${ }_{\text {ceren }}^{\text {Cervical }}$ \|erteora.	Dorfal ver telorex.		$\begin{gathered} \text { Coudal verte- } \\ \text { bres. } \end{gathered}$
Silurus Felis	. 1.	. 12.	1	.. $30 .$.
Armour-fifh(Loricaria)	. 1.	. 6.	1..	.. 28
Tolaccoo-pipe-firh-(Fifularia				

Article II.

Of the Mufcles of the Spine.

A. In Man.

IN the lumbar and dorfal region of the human fpine, the motion of each vertebra upon thofe next to it is very obfcure : the total power of flexion is, however, confiderable. In the cervical region, the motion is greater, and con-fidered as a whole; the vertebral column is caw pable to a certain degree of being turned round.

The mufcles of the fpine are numerous and complicated ; pofteriorly there are :-

1. THE INTERSPINALES.

Thefe mufcles are difpofed in two rows between the fpinous procefies of all the vertebræ: there are twenty-thiree on each; they ferve to bend the fpine backward.

182 L.III. Bonesand Muscles ofthe Trunk.

2. The Intertransversales,

Which have nearly the fame fhape as the preceding : thefe are fituated between the tranfverfe procelfes; when the mulcles of one fide only act, they bend the fpine towards that fide; when thofe of each fide aft together, they maintain the fpine in an erect pofition.

3. THE TRANSVERSO-SPINALES.

Thefe mufcles extend obliquely from the inferior tranfverfe proceffes, and from the tubercles of the facrum to the fuperior fpinous procefles. They form a compact mafs, which covers the whole fpine; and is called tranfuerfo-Spinalis magnus, or multifidus spina.

4. THE SPINALIS COLLI

Is attached to the fpinous proceffes of the cervical vertebre from the fecond to the fixth; the fuperior flips covering the inferior. Below it is attached to the tranfverfe proceffes of the feven firft dorfal vertebræ by diftinct tendinous nips.

5. THE SEMISPINALIS DORSI.

This mufcle is fituated tranfverfely upon the spine, and lower than the preceding. It is inferted

Art. II. Muscles oftie Spine. 183
ferted into the fpinous proceffes of the two laft cervical, and the five firft dorfal vertebre, and arifes from the tranfverfe proceffes of the feventh, eighth, ninth, and tenth vertebrex of the back.
6. the spinalis dorsi.

This mufcle is alfo fituated tranfverfely, but partly higher and partly lower than the preceding. It is formed of concentric bundles of fibres. The fuperior part is inferted into the fpinous proceffes of the dorfal vertebræ from the fecond to the eighth. The inferior part is attached. to the fpinous proceffes of the three loweft dorfal, and the two firtt lumbar vertebræ.

7. the longissimus dorsi

Is more fuperficial, and is placed above the preceding mufcles: the direction of its fibres is, however, the reverfe of theirs. It is connected by a ftrong tendon to the os facrum, and is alfo atiached to all the fpinous proceffes of the lumbar vertebræ: hence it afcends to the feventh vertebra of the neck. In its paffage it affixes itfelf by feparate portions internally to the tranfverfe proceffes of all the dorfal vertebre, and externally to the eight loweft ribs.

184 L.III. Bonesand Muscles of the Trunk.

> 8. THE TRANSVERSALIS COLLT, of TRAENS VERSALIS MAGNUS,

Is between the longifimus "dorfi and the preceding mufcles. It extends from five or fix of the firft proceffes of the dorfal vertebræ, to the third, fourth and fifth tranfverfe proceffes of the vertebre of the neck. It is confidered as an acceffory to the longiffimus dorfi.

9. The sacrolumbalis

Is fituated more externally, and rifes along with the longiffmus dorfi, with which it is confounded at the inferior part. The fuperior part is inferted into the angles of all the ribs, and the tranfverfe procefs of the laft vertebra of the neck by an equal number of tendinous flips.
10. CERVICALIS DESCENDENS, Or TRANSVERSALIS TENUIS.

This mufcle is placed between the lougifinus dorfe and the facro-ludibalis. It is attached at the upper part to the tranfverfe proceffes of all the cervical vertebre after the third, and is inferted by tendinous llips, which crors the tenden of the facro-lumbalis into the angles of all the ribs. This mufcle is an auxiliary of the facro-lumbalis.

To form a clear idea of the action of the dif-
ferent

$$
\text { Art. II. Muscles of the Spine, } 185
$$

ferent mufcles of the fpine, they fhould be confidered together.

The mafs of flefhy and aponeurotic fibres which occupies the pofterior part of the fpine, and feems to arife from the os facrum, may be looked upon as a fingle mufcle, and called sacro-spinaLits. It is compofed of three principal branches.

The firft, which is the moft internal, and next to the fpinous proceffes, correfponds to the \int pinalis colli and Jpinalis dorf/. It keeps the fpine ftraight, and draws it backward when it has been inclined forward.

The fecond portion, which is external, forms what anatomifts have named the facro-lumbalis, and its acceffary the cervicalis defcendens. It acts like the preceding.

The third portion is intermediate ; it is formed by the longifemus dorfi and its acceffary, or tranfuerfalis magnus colli, and has precifely the fame ufe as the two others.

We next obferve the fmall mufcles fituated between each pair of vertebre: thefe form three. ferics.

> 1. The Tranfuerfofpinales.
> 1. The Interfpinales.
> s. The Intertranfuerfales.

There is only one mufcle fituated upon the anterior part of the fpine, which acts exclufively upon it: this is called

186 L.IIl. Bones and Muscles of the Trunk.

$$
\begin{aligned}
& \text { LONGUSCOLLI, or PRA-DORSO- } \\
& \text { ATLOIDEUS. }
\end{aligned}
$$

It is attached to the three firft dorfal vertebra, and to the anterior tubercle of the atias ; it bends the neck forward.

The vertebræ of the tail or coccyx are capable of a fmall degree of motion backward and forward, which is performed by means of two pair of mufcles, named,

> 1. THE ISCHIO-COCCYGEUS, or ISCHIOCAUDALIS,

Is attached to the fpine of the os-ifchium and the lateral parts of the bones of the coccyx. When both mufcles act, they pull the bones fomewhat backward.

> 2. THE SACRO-COCCYGEUS, or SACROCAUDALIS.

It comes from the internal furface of the os facrum ; and it is inferted into the internal furface of the os-coccygis, which it elevates by its contraction.

B. In other Mammiferous Animals.

The mufcles of the fpine of monkeys nearly refemble thofe of man; they differ only with refpect to the ftrength of the tendons.

Thofe of the bat are fo thin, that a few tendinous fibres alone are perceivable on the part near the fpine.

The other mammalia differ only in the number of attachments, which depends upon that of the vertebre. In the bog, for inflance, the Jpinalis dorfarifes diftinctly from the firt fpinous procefs of the back by a flehy flip: fimilar portions come from each fuccceding fpinous procefs, and they all unite to tendons which are inferted into the fpinous procefles of each lumbar vertebra.

The motions of the tail are much more vifible in the reft of the mammalia than in man. It is an additional member granted to them hy nature, fince many of them ufe it to faften themfelves to trees, or to fufpend themfelves from them. The greateft part ufe it as a whip to drive away, parafitical infects ; others, as the cetacca, direct their courfe in the water by its motion. The beaver employs it as a trowel to build his habitation, \&c. It is evident, therefore, that, to execute thefe various operations, more mufcles are required in thefe animals than in man.

The tail of mammiferous animals is fufceptible of three forts of motion : one by which it is turned backward, or raifed up; another, by which it is inflected, or lowered; and a third, by which it is directed towards the fides.

The combination of thefe motions produce others of a fecondary kind: thus the tail may be turned upon its own axis, or rolled into a fpiral
form

189 L.III. Bones and Muscles of the Trunf.
form in the fame plane, or like a fcrew, as in thofe animals which have it prehenfile.

Thefe motions are effected by three claffes of mufcles very different from thofe of the human body, as we fhall prefently fee.
a. The Mufcles that ruife or throw back the Tail.

Thefe are always fituated on the fuperior or spinal furface.

1. THE SACRO-COCCYGEI SUPERIORES, O~ LUMBO-ŚUPRA-CADUALES.

Thefe arife from the articular proceffes of the three or four laft vertebræ of the loins, thofe of the facrum, and from fuch of the vertebræ of the tail as have proceffes by flefhy nips, which gradually diminifh in their thicknefs. Small tendons proceed from the common mals oppofite to the flefhy digitations. The firft tendon is the Thorteft; it proceeds from the internal fide, and is inferted into the bafe of the firft of the caudal vertebræ, which have no articular proceffes. The fecond tendon proceeds to the next, and fo on to the end. There are generally thirteen of thefe tendons; they enter a ligamentous groove, which ferves as a fheath to them; all thefe fheaths are joined together by a ligamentous plexus, which enclofes them as, it were in a kind of cafe.

When there two mufcles act together, they raife the tail, or reflect it upwards.
2. INTER-
9. interśpitales, sprivalis obliquús, or Ludibo-sacro-Coccýgeus of Vicq. D'Azyr.

Thefe mufclès are the continuation of the interfpinales of the trunk ; but as the fpinous prò ceffes of the tail are flort, and often replaced by two tubercles which anfwer to the oblique proceffes, the infertions are fomewhat different: This, perhaps, is the reafon why those mufcles liave been regarded as diftinct by màny anato mifts.
b. The Hufcles which deprefs or bend the Taif downtieard.

Thefe arife within the pelvis, and extend more or lefs along the inferior furface of the tail. They confift of four pair.

1. The ileo-subcaudalis, or 1deo-CocctGEUS of Vicq. D'Azy?.

This mufcle arifes from the internal part of the os ilium, forms a long flefly mats, within the pelvis, and is inferted into one of the bones thaped like a V, which are fituated under the tail; fometimes, as in the racoon, the infertion takes place between the fifth and fixth bone; and fometimes between the feventh and eighth, as in the opoffum: This mufcle depreffes the tail, and applies it clofe to the anus.

190 L.III. Bones and Muscles of the Trunk.

2. The sacro-subcaudalis, or sacro-coccygeus inferior of Vicq. $D^{\prime} A z y r$.

This mufcle is the antagonift of the facrococcygeus or lumbo-fupra-caudalis, which it exactly refembles in ftructure. It arifes from the inferior part of the os facrum, and the tranfverfe proceffes of fuch of the caudal vertebræ as poffefs thofe proceffes by a flefly portion, which becomes gradually fmaller, and forms as many tendons as there are caudal vertebræ unfurnifhed with tranfverfe proceffes: Thefe tendons are received into a fheath like thofe of the lumbo-fupra-caudalis, and are inferted into the bafe of each of the vertebræ on the under fide, beginning ufually at the feventh.

3. THE SUB-CAUDALES, or INTER-COCCYGEI

$$
\text { of Vicq. } D^{\prime} A z y r .
$$

Thefe are fituated under the inferior middle line of the tail. They arife at the articulation of the firft and fecond caudal vertebræ, and form an elongated portion, which is firft inferted into the V fhaped bone of the fourth, fifth, and fixth vertebræ. They likewife receive little flefhy flips, which gradually diminifh in thicknefs and, go on to be inferted into the inferior furface of the bafe of each bone of the tail.
4. THE PUBO-SUB-CAUDALIS, or PUBO-COC~ CYGEUS of Vicq. D^{\prime} Azyr.

This mufcle is wanting in the racoon, but is very difinet in the dog and opoffum. It is thin, and arifes flefhy and expanded from the upper part of the pelvis, from whence it proceeds to terminate in a point, and is affixed under the tail to the proceffes or tubercle at the bafe of the fourth and fifth vertebra. Its action is the fame as that of the Ileo-fub-caudalis.
c. The Mufcles rohich bend the Tail fileways.

Thefe are only two, viz.

1. the ischio-caudalis, or ischio-cocci-
geus-externus of Vicq. D'Azyr,

Arifes from the internal furface of the os ${ }^{2}$ ifchium, below and behind the cotyloid cavity, and paffes backward over the tranfverfe proceffes of the vertebrae of the tail.

In the dog, it is only a flefhy llip, which is inferted into the fourth vertebra.

In the racoon, which wants the pubo-fub-caudalis, it is inferted into the feven vertebræ of the tail that follow the third by an equal number of flefhy digitations.

In the opofum it terminates upon the four firt vertebre of the tail.

192 L. IIf. Bones and Múscles of the Trunk.

2. THE INTERTRANSVERSALES.

Thefe mufcles extend as a fingle band, partly mufcular, partly aponcurotic, betweein all the tranfverfe procefics. Their tendons are moft vifible on the upper part of the tail.

It appears, from the above enumeration, that there are eight pair of mufcles belonging to the táil.

> C. In Birds.

Birds have no mufcles for the dorfal part of the fpine. The neck only is moveable. It is furnifhed with a number of mufcles; which are-

The intertranfuerfales; thefe are difpofed nearly in the farne manner as in the mamiferous animals.

The tranfuerfo-/pinales, which proceed obliqueIy from the transverfe proceffes of each inferior vertebra, to the .fpinal procefs of its immediate fuperior; but on that fide only towards which the vertebra moves. Thus the upper vertebra have them only on the anterior, and the lower ones only on the pofterior fide.

There is alfo a mufcle analogous to the corvicalis defcendens, or fucro-lumbalis.

This mufcle arifes from the fpinous proceffes of the back, and is inferted by a very long tendon into the tranfverfe procefs of the fecond vertebra, It detaches five or fix flips accord-
ing to the different fpecies, which are inferted into the inferior tranfverfe proceffes of the neck. Each of thefe at its infertion receives two or three little bundles of mufcular fibres from as many of the inferior fpinous proceffes.

In the buazard, for inftance, the tendon inferted into the fecond vertebra receives five flips from the fpinous proceffes of the five vertebre next to the third: the fecond tendon, which is inferted into the tranfverfe procefs of the fifth vertebra, receives three fafciculi from the fpinous proceffes of the three following cervical vertebræ. In likemanner, the third tendon, which is inferted into the fixth tranfverfe procefs, receives four fafciculi from the fpines of the cervical vertebrex, from the feventh to the tenth, and fo on; but difierent numbers occur in the different fpecies. All the fmall auxiliary flips are fituated between the two grand cervicalis defcendentes.

The longus colli is a very complicated mufcle in birds : each ftyle of the tranfverfe proceffes of the vertebrex that admit of motion backward, receives a tendon from it, and this tendon, as it defcends, receives mufcular fafciculi from feveral of the fubjacent vertebra.

In the buzzard, which we fhall again take as an example, the tendons of the fuperior fyles receive their fafciculi from the vertebra above them.

In the beron, the tendons of the fuperior flyles have their flefhy part or bellies attached to the

Voz. I.
loweft

194 L.III. Bones and Muscles of the Trunk loweft of the vertebræ, and partly enveloping the tendons of the inferior ftyles. We muft, however, except thofe of the three laft cervical vertebre, which are the fame as in the buzzard.

The mufcles of the tails of birds are very diftinct, and eafily diffected; fome are cmployed in raifing or lowering the tail; others in turning it towards the fide.

The mufcles which elevate the tail are only two in number, one for each fide.

THE SACRO-SUPRA-CAUDALES, OV LEVATORES coccrgis of $\operatorname{Lo}^{\prime} i c q . D^{2} A \approx y \mu$,
Arife from the pofterior and fuperior part of the pelvis and facrum, and extend to the external furface of the tranfverfe proceffes of the vertebre of the tail, by tendinous slips: thefe defcend obliquely to the fuperior fpinous procefs of the fame vertcbre, and to the laft bone of the tail, into which they are inferted. When only one of thefe mufcles acts, it not only raifes the tail, but alfo directs it to one fide.

The mufcles employed in depreffing the tail form likewife only one pair. They are

THE SACRO-SUB-CAUDALES, or DEPRESSORES coccyeis of Vicq. D'A Ayp.
Thefe are fituated within the pelvis, and their
form
form is pyramidal. They arife from the poftefior depreffions of the ilium and the point of the facrum. They alfo arife in part from the tranfverfe procefles of the firft vertebre of the tail, and are inferted by tendinous flips into the fpinous proceffes of the fame vertebræ, and into the rhomboidal procefs of the laft bone that fupports the quills. They act precifely like the preceding mufcles, but in the oppofite direction.

The lateral flexors of the tail are all removed from the middle line. There are four of them on each fide.

The firft, which is alfo the longert, is

Thefemoro-caudalis, or cruro-coccygeus
of Vicq. D'Azyr.

It arifes from the femur, to which it is attached towards the uppermoft third of its pofterior furface, and is inferted into the fuperior fide of the rhomboidal procefs of the lat bone of the tail. It directs the tail towards the fide when it acts feparately: when both mufcles act at the fame time, the tail is bent downwatd, or lowered. That powerful infexion of the tail which takes place whien birds run, is to be attributed to the operation of this mufcle.

The second of there mufcles is partly inferted into the ligament which faftens the external quill

196 L. III. Bones and Muscles of the Trunk.
of the tail to the laft bone, and it arifes from the pofterior edge of the branch of the os pubis: when both mufcles áct together, they fpread out the feathers in the form of a fan, and enable the peacock, the turkey, and the phenfant, to difplay the varicgated plumage of their tails.

The third is nearly parallel to the preceding, and fituated on its internal fide: it alfo takes its origin from the pubis, but fomewhat towards the branch of the ifchium ; it is inferted into the lateral angle of the rhomboidal procefs, fituated, as we have already ftated, beneath the laft bone of the tail.

The fourth mufcle is the fhorteft of all. It is
the motor lateralis coccygis
of Vicq. D'Azyr.

It arifes from the external point of the fpinous procefs of the four vertebre of the tail, which follow the firft, and is inferted into the lateral edge of the ligament which unites the quills of the tail: it fpreads the quills, but with lefs force than the fecond, to which it may be confidered an acceffary mufcle.

D. In Reptiles.

There are few fpinal mufcles in frogs.
The mufcle which is analogous to the ifchio coccygeus is large and thin, and occupies all the

Art. II. Muscles of the Spine.

the fpace comprifed between the long bone of the coccyx and the ilea. Its fibres are oblique, and it ferves to draw the coccyx into the direction of the fpine.

That which is analogous to the lumbo-coßalis, arifes above the laft by a fort of point attached to the coccyx. It extends quite to the head, into which it is inferted, and detaches fibres in its progrefs to each of the tranfverfe proceffes, which form a kind of interfection upon its furface.

The obliquus fuperior arifes from the head at the margin of the foramen magnum, and is inferted into the tranfverfe proceffes of the firft dorfal vertebra.

There is only one fmall rectus anterior.
It arifes from. the bafe of the cranium, below the foramen magnum, and is inferted into the firft of the tranfverfe proceffes.

The intertranfuerfales are like the human.
The fpinal mufcles of the falamander much refemble thofe of the frog. Thofe of the tail are very fimilar to the mufcles of. fifloes.

The fpine of the tortoife has no motion except in the parts belonging to the neck and tail. Thofe of the back and loins, which are offified together, have no mufcles.

The mufcles of the neck are very different from thofe of man. The motions they produce are thofe of elongation, by which the head is
ig L.HII. Bones and Musclesofthe Trunga
protruded from the fhell ; and thofe of retrac \rightarrow tion, by which it is withdrawn, the neck being bent in the form of a 2 .

The firft of the mufcles proper to the neck is attached to the under part of the anterior lateral border of the back fhell, and into the tranfverfe procefs of the firft vertebra; it raifes the neck and draws it back.

Another proceeds from the anterior and middle part of the thell: it is inferted by four flefhy flips, which are feparate throughout a confiderable portion of their extent, into the articular proceffes of the third, fourth, fifth and fixth vertebre of the neck. It draws the neck'back when the head is much extended, and pufhes it out when it is retracted.

A mutcle alfo arifes from the articular proceffes of the third, fourth and fifth vertebre of the neck, by three fiefny portions, that afterwards unite, and terminate in two tendons; one of which is inferted into the tranfverfe procefs of the firft, and the other into the. Spinous procefs of the fecond vertebra. This mufcle bends the neck upon itfelf, making it defcribe a curve, which is convex downwards; this motion brings the head under the fhell.

A mufcle analogous to the longus colli, arifes from the under part of the body of the fecond dorfal vertebra, beneath the fhell; it afcends along the neck, and furnifhes aponeurotic flips.
to all the tranfverfe proceffes, as far as the fecond vertebra, where it is inferted. This alfo is one of the retractors of the head.

There are very diftinct interarticulares, which, by their action, clevate each of the vertebrex, and confequently extend the neck.
The tranfucrfo-fpinalis is fituated on the pofterior part of the neck: It arifes from all the fuperior tranfverfe proceffes, and is inferted into all the fpinous proceffes, as far as the fixth.

Finally, a fhort mufcle proceeds from the upper part of the firft dorfal vertebra below the fhell, and is inferted into the articular proceffes of the fixth and feventh cervical vertebre. This mufcle is peculiar to the tortoife, and begins the extenfion of the neck when the head is concealed within the fhell.

> E. In Fifhes.

The mufcles of the fpine in fifhes are very different from thofe of other red-blooded animals; their fituation and actions are totally changed.

In mammalia, in birds, and in reptiles, thefe mufcles are fituated before or behind the vertebræ. In fifhes, on the contrary, they are placed upon the fide. From this difference of pofition refults that of the motion produced; in the former, the vertebral column principally l en s fo:wards, or erects itfelf, and the motion to either
fide is lefs fenfible; but the lateral movement is much more remarkable in fifhes, as in them it produces the action of fwimming, while the motion of the fpine towards the belly and the back fcarcely exifts.

The flefhy fibres which determine the motion of the vertebral column, are interwoven in fuch a manner that they are hardly to be diftinguifhed unlefs as layers, and in this manner we fhall proceed to confider them.

When the fales and fkin are removed, we find underneath a flefhy mafs compofed,

1. Of fibres collected into little bundles, longitudinal and parallel, difpofed in arches with the convexity towards the head. All thefe arches are received one into another, and the interfecting line which diftinguifhes them feems the production of an aponeurofis, in the fubftance of which are often found fpines, or little flexible offified parts. This is eafily obferved in the carp, the pike, the robiting, \&c.
2. Of other mufcular fibres, which, proceeding from the back and the belly, have a different courfe, and unite at the extremities of thefe arches. The fuperior, or dorfal, take two directions, forming a V, or angle, open towards the head. Their fu, face furnifhes aponeurotic filaments, which terminate in fmall tendons; they are inferted a d loft in the fkin.

The inferior or coftal layer of fibres is compofed of little intercoftal mufcles, the length of of each rib, or inferior fpinous procefs.

Thefe three layers of fibres are fo connected together, that they can only be confidered as one and the fane mufcle, attached to the bodies and pioceffes of all the vertebre, and to the head. It has received the name of

MUSCULUS LATERALIS.

It produces all the lateral motions of the body, and more efpecially thofe of the tail. The manner in which it acts is eafily explained: the contraction of the fibres of one fide of the body caufes the tail to approach the head in the fame direction. When the tail is in this fate of lateral flexion, it can only be reftored to its natural pofition by the contration of the fibres of the oppofite fide; but when this contraction carries the tail beyond a right line, a motion oppofite to the firlt is produced. It is by the repetition of thefe lateral and alternate motions that the action of fwimming, or the progreffion proper to finh, is performed.

The offracions, the bodies of which, with the exception of the jaws and members, are inclofed in a horney cafe nearly as hard as bone, have the lateral mufcles fomewhat different. They are found under the parietes of the fkin. They are nearly of equal magnitude, but they are attached to the head and tail only. Infertions

202 L. III. Bones and Muscles of the Trunk.
into the vertebre of the body would have been ufelefs, fince only the part of the tail which is fituated without the cafe is capable of motion. The texture of thefe lateral mufcles is allo much more fimple, as almoft all their fibrez are longitudinal.

As the ribs and mufcles are wanting, there is fubftituted for thofe parts an aponeurofis of a brilliant filver colour, which conftitutes the integuments of the abdomen, and lines the internal farface of the cafe.

The tail of thefe fifhes has a pair of mufcles peculiar to it, and feemingly affiftant to the latesal. Their form is pyramidal; they are placed in the abdominal or inferior part of the body, and extend from about its middle to that part of the tail which is without the cafe. They arife from the inner furface of the ventral parietes of the cafe, and are inferted by fmall tendons into the inferior part of the fides of the three laft vertebre of the tail, which they fome what deprefs at the fame time that they move it to one fide.

In the interval which is left between the two lateral mufcles of the body in fifhes, and towards the dorfal ridge, there appear fome long and thin muicles; their number is various, as it depends upon the exiftence or number of the back fins. They are called mufculi dorfales.

There is only one pair in thofe that have no dorfal fin, as in fome fpecies of the gymuotus. They proceed from the neck, and terminate in the
caudal fin. They are compofed of fmall and very fhort flefny bellies, with long tendinous interfections.

In thofe fithes that have only a fingle dorfal fin, fuch as the loaches, carp, tench, \&uc. there are two pairs of the fe mufcles; the firt between the back of the nech and the dorfal fin, and the other between that in and the caudal fin.

When there are two dorfal fins, as in the motBei, zeus, 疋c. We meet with three pairs of mufcales, one between the neck and the firlt fin, another between the two fins, and the third between the fecond dorfal fin and the cau'a! fin.

All thefe mufcles are inferted into the firft rays of each of the fins, which they move by raifing or unfolding them. There are mufcles perfectly analogous to thefe under the ridge of the belly.

In the carp, for cxample, there are two pairs: the one arifes from the fympiyy fis of thofe bones of a girdle form which receive the pectoral fins, and is inferted on each fide into the hgamentous tiffue which unites the two ventral fins. The little fiefly bellies of which this pair is compofed, are four or five in number: they are placed at a diftance from each other, and refomble beads.

The other pair extends from the junction of the anal fins to the firft rays of the caudal fin. Therr femy bellies are frill thimer, and the tendons much longer than thofe of the former.

The

204 L.III. Bones and Muscles of the Trunk.
The fins of the back, belly, anus and tail, have little mufcles peculiar to themfelves, appropriated to fold and unfold them. ,

The direction and attachments of the little mufcles of the caudal fin are various. The longeft ufually arife from the three vertebræ preceding the laft of the tail: they are the outermof, and are inferted into the five or fix external, or longeft rays on each fide.

Others arife from the two laft vertebre: they fpread, like the preceding, in the manner of a fan, and are inferted into the intermediate rays.

Finally, there are, at the bafis of the rays themfelves, two mufcles with fhort oblique fibres, which are inferted into each of the rays by an equal number of digitations. Thefe are defigned to comprefs the fin, while the former ferve to open or unfold it.

The mufcles of the dorfal fins are difpofed nearly in the fame manner; thofe that extend them arife from the fpinous proceffes of the dorfal vertebræ; thofe that bend them are fhorr, and ftretched obliquely acrofs the little bones or rays that compore thefe fins.

The extenfor mufcles of the anal fin arife from certain particular fpinous proceffes on the abdominal furface of the vertebre: the flexors are flort, and fituated at the bafe of the rays.

We thall finifh this article on the mufcles of the fpine of fithes by a particular explanation of thofe of the ray.

The fpinal mufcles in this fifh approach nearly to the form of thofe which we have already de fcribed in the tails of certain quadrupeds.

They are difpofed in two layers, and are four in number; two laterales fuperiores, and two lazerales inferiores.

The laterales fuperiores arife from the middle of the vertebral column above the abdomen, by a flefly head covered with ftrong aponeurofes: this portion extends as far as the pelvis, and there detaches little tendinous branches which pafs through parallel fheaths, and proceed fucceffively towards the middle line, where they are inferted into the upper part of each of the vertebre of the tail. Flefhy fibres accompany thefe tendons to fome diftance after their feparation from the common fafciculus.

In the inferior part of the tail the fuperior lateral mufcles receive acceffaries from each fide; but thefe are fimple tendons, which feem only intended to guard againft too violent an extenfion either to one fide or the other.

Each tendon of the lateral mufcles pulls that vertebra of the tail into which it is inferted in the direction of its own action, and the flexion or general curvature of the tail upwards is the refult of their common contraction.

The laterales inferiores of the tail arife alfo from the lumbar vertebre like the preceding, but more externally. Their arrangement is nearly the fame, with this difference, that their tendons
eo6 L.IIt. Bones and Muscles of the Trunk.
make a kind of turn, and run under the tail, where they are inferted into each of the vertebræ. They alfo reccive tendinous acceffaries, and produce motions in a direction oppofite to the former, that is to fay, they bend the tail downward: their tendons are more flender than thofe of the fuperior laterales; they divide into two branches at their extremities, and each bifurcation affords a paff age for that of the next vertebra, fo that they mutually ferve as fheaths, and are all, except the laft, both perforating and perforated.

Article III.

Of the Ribs and Sicrmum.

A. In Man.
' T_{He} human thorax is fhaped like a compreffed cone, with the bafe downward, and the apex truncated. It is formed pofteriorly by the dorfal portion of the vertebral column which we have already defcribed, anteriorly by a flat bone called the fermum, and on the fides by twenty-four offeous arches called the ribs.

The fermun is a long flat bone: its fuperior extremity is articulated with the clavicles; the other is free, and fupports a cartilage which fometimes offifies, and which is named the ayplooid, or enfiform cartilage, and in the new nomenclature
-ppendix fernalis6 The two long fides of this bone receive the cartilages of the feven firft ribs into fmall depreffions. The fternum is often found of two parts, but thefe generally become anchylofed with age. This bone is covered on each fide, both within and without the thorax, by a very folid ligamentous tunic. Its abdominal appendix is alfo fupported by a ftrong ligament, which paffes from its external furface obliquely to the cartilage of the laf ferno-vertebral or true rib. This ligament prevents the appendix from being difplaced by violent actions of the chef.

The ribs are twelve in number on each fide. They are long bones, fomewhat compreffed, curvated throughout the whole of their length, and have their concave fides turned towards the inner part of the thorax. One of their extremities terminates in two little articular furfaces, divided by a projecting line. It is received by the lateral part of the bodies of two vertebre. This vertebral extremity of therib becomes fomewhat narrowed, and then prefents a new articular furface at the pofterior part, which correfponds with the tranfverfe procefs of the more inferior of the two vertebre to which the rib is articulated. The rib continues to bend backward in the fame manner, but fuddenly deviates from this direction and comes forward. The point where this change takes place is different in every rib. In the fuperior ribs it is very near the vertebre, but in the inferior removed to a con-

208 L. III. Bones and Muscles of the Trunk.
fiderable diftance from them. This point, which receives the tendons of fome mufcles, is called the angle of the rit. The fternal extremity has a little depreffion, into which the intermediate cartilage that unites it to the fernum is received. Only feven ribs extend directly to the fernum; they are called true ribs, or, with more propriety, Rerno-vertebral: the other five ribs have cartilaginous elongations, by which they are united with one another: they are called falfe ribs, or fimply vertebral.

The human ribs are bent in fuch a manner, with refpect to their axis, that when laid upon an horizontal plane, one end is always elevated.

The ribs have only a limited motion upward and downward. Their articulations are ftrengthened by a great number of ligaments. The articular furfaces of the vertebral extremity have capfules, which retain them upon the bodies and tranfverfe proceffes of the vertebre. The fpace included between thefe furfaces is alfo made fecure by two ligaments, one inferted into the tranfverfe procefs of the fupcrior vertebra on the infide, and the other into the inferior articular procefs of the fame vertebra, but on the external fide. The fternal extremity is allo furrounded by a little capfule, which joins it to the prolonged cartilage. There is, befides, in all the fpaces between the ribs, a ligamentous expanfion, which unites the inferior edge of one rib to the fuperior edge of the next.

The

The laft vertebral rib has a fmall ligament peculiar to itfelf, which attaches it inferiorly to the tranfverfe proceffes of the firft and fecond vertebra of the loins.

B. In other Afammiferous Animals.

The figure of the thorax in the inferior mam malia is liable to variation. In thofe that have no clavicles, it is commonly compreffed on the fides, and the fternum forms an anterior projection more or lefs confpicuous : the breaft is moft elongated in the farcophaga.

The number and form of the ribs vary alfo confiderably in different families. In the Quadrumana they are always from twelve to fifteen. In the vermiform farcophaga they fometimes amount to feventeen, which are generally very clofe. They differ but little with refpect to number in the other families. In the herbivorous quadrupeds they are broad and thick. The borfe has eighteen, the rininoceros nineteen, and the clepbant twenty. The treo-toed Rooth, in which there are twenty-three on each fide, has of all animals the moft. The arinadillo has the two firft ribs exccedingly large in proportion to the reft. The two-toed ant-eater has the ribs fo broad, that they overlap each other like the tiles of a houfe. This conftruction renders the fides of the thorax very frong in that animal.

210 L.ILI. Bones and Muscles of the Trunfo
The fternum of the orang and pongo is broad. In every other fpecies of ape it is narrow, and formed of feven or eight pieces.

All the bats have the fernum narrow, but it cxhibits on its front part a ridge ; and the anterior extremity, which is cnlarged on the fides like a T, paffes over the ribs to receive the clavicles.

In the mole, the clavicular extremity of the Jernum is prolonged before the ribs: it is compreffed laterally, and receives the two fhort clavicles under the neck.

The bog has the fternum much enlarged behind, and narrow before.

In the rbinoccros, the borje, and the cleplant, the fternum is prolonged anteriorly, and flattened on the fides.

The Cetacea have the fternum broad, but of no great thicknefs, efpecially at the anterior part.

> TABLE of the Number of Ribs in Nymmiferous Animals.

SPECIES.	Total.	True.	Falfic.
Seal	. 15	. . 10	.5.0
Glution	. 14y.	. 5
Racoon.	. 149	. . 5.
Otter	. 149	. 5.
Lion	. 13	...9 9	... 4
Cat.	. 12.	... 9.4..
Wolf	. 13.	... 9 4.
Opoffum	. 13	. .7..6:.
Hare	. 12.	... 7 7	. 5.
Guinea Pig	. 13.	. 67.
Three-toed Sloth.	. 16.	..8..8.:
Long tailed Manis	. 13. 6.7..
Elephant	. 20.	. . . 7.	...13..
Hog.	. 14.	. . . 7.	... 7 ..
Rhinuceros.	. 19.	. . . 712..
Dromedary.	. 12.7.	. . . $5 .$.
Girafe	. 14.	. 8	...6.
Ox.	. 13.	... 8.5..
Stag.	. 13.8.	... 5 . ${ }^{\text {a }}$
Horse	. 18.8.	.. . 10..
Dolphin	. 13.	. 0.	. 7.0
Porpoife.	. 13.	. . . 6.	...7.

C. In Birds:

The thorax of birds is in general very large : it is, however, formed by the ribs and the fternum only; but this laft bone differs both as to figure and dimenfions from the fternum of the mammalia.

The ribs exhibit many peculiarities. They may be diftinguifhed into ferno-vertebral, and vertebral, properly fo called; but they are not fituated as in mammiferous animals. The vertebral ribs are moft commonly the anterior, but fometimes ribs of this kind are alfo fithated

212 L.III. Bones and Muscles of the Trunk.
pofteriorly. The vertebral extremity is bifurcated; one of the branches refts upon the body of the vertebra, and the other upon its tranfverfe procefles. The fternal extremity receives an offeous appendage, which fupplies the place of the fterno-coftal cartilage : with this bone it forms an obtufe angle, the open part of which is turned forward.

The middle part of the rib prefents likewife another peculiar characteriftic. On its pofterior edge is a flat procefs, directed obliquely towards the back, above the fucceeding rib, fo that all the ribs have points of fupport on each other.

The fternum of birds is very broad, and almoft fquare, but not thick. It covers not only the thorax, but the greater part of the abdomen. Its internal or pofterior furface is concave. The eyterior convex, and in all thofe that fly, it bears upon its middle line a projecting creft refembling the keel of a fhip. The clavicular extremity of this bone is truncated to receive on each fide the two great clavicles. The abdominal extremity is thinner, and frequently perforated with holes to increafe its levity. It is likewife fometimes truncated, and only forms two angles more or lefs extended; at other times it forms three angles on each side very diftinct, as in jacana and Aing's-fifher.

The magnitude of the flernum, and the flhape of its kecl, feem intended to give very extenfive origins to the mulcle that deprefs the wing.

They

They are various as the habits of the bird with refpect to its mode of Alight, whether it be high or low, fwift or flow, or continued during a longer or fhorter period.

The fernum of the ofrich and cafforvary, which do not fly, has no creft ; but it is large, and rounded like a buckler.

It is the narrownefs of the fternum which gives to rails and ruater hens that compreffed fhape which characterizes their habits.

It is likewife very narrow, and entirely offeous, in the common crane and denvifelles de Numidie, and the males have the prominence of the creft hollowed to lodge the convolutions of the trachea.

In the gallinaceous tribe, the creft of the fternum begins very low, and its elevation is marked by two projecting lines, which rife gradually, in a concave curve, to form that creft. Thefe double lines are likewife found, though much fmaller, in the orol and fpoon-bill.

The berons, the foun, the fparrozes, and the raveri, have only one elevated line at the origin of the creft. In the beron it has a very prominent and convex edge. In the foon and duck it forms a ftraight line.

D. In Reptiles.

The thorax of reptiles is very various in its fructure. Frogs have a fternum, but no ribs;

$$
\mathrm{P}_{3} \text { for }
$$

214 L.III. Bones and Muscles of the Trunk.
rerpents have ribs, but nofternum ; tortoifes have the ribs offified to the back fhell, and the fternum included in the breaft-plate; the crocidile and lizard have perfect ribs, bur their fternum is almoft entirely cartilaginous.

In the crocodile, the firft portion of the fternum is offified and elongated. It receives the two clavicles. The remaining part is entirely carrilaginous. It is united with the os pubis, and fends off cight cylindrical cartilages to the parietes of the abdomen. The ribs are twelve in number ; the two firft. and two laft of which are not attached to the fternum. The intermediate ribs have upon their pofterior edges cartilages partly offified, which fupply the place of the angles of the ribs in birds. All the pofterior ribs, beginning at the fifth, are only articulated to the tranfverfe proceffes of, the vertebræ, which are of great length. The five firft articulate with the vertebre at two points, one on its body, and the other on the tranfverfe procefs.

The iguana and the tupinantbis have only the upper part of the fternum offified. It is broad, and reccives fix ribs and the clavicles. The other ribs are free.

The camelcon poffeffes likewife the upper porfion of the fternum; but almoft all the ribs have cartilages which extend to the middle line, and are there united to the oppofite ones.

Frogs, though they have no ribs, have neverthelefs, a very confpicuous fternum. It fornas
on the anterior part a cartilaginous appendix, furnifhed by a difk fituated below the larynx. It next receives the clavicles, and then expinding, it terminates at laft in another difk fituated under the abdomen, and which affords an origin for mufcles.

The falamander has ribs fo fhort that they feem to be the tranfverfe proceffes of the vertebræ; they have only one point of articulation, upon which they have but little motion. There rudiments of ribs are twelve in number on each fide. This reptile has, properly fpeaking, no fternum, but its place is partly fupplied by the bones of the fhouldcr, as we fhall prefently fee.

The back fhell of the tortoife is formed by the expanfion of eight ribs or offeous flaves, which arife from the joints of the vertebre, and terminate in a border that furrounds the whole fhell: thefe bones are united together by real futures, fituated tranfverfely.

Above and all along the middle part we obferve a row of little offeous plates, almoft fquare, intimately connected by fynarthrofis, and equal in number to the vertebre, of which they conftitute a part.

The offeous margin is made up of a great number of pieces foldered together, which, by their union, form an edge or border with three furfaces, viz. the fuperior, which belongs to the back fhell; the inferior, which is joined to the breaft-plate by a very thick leather-like fkin;

216 L.III. Bones and Muscles of the Trunk.
and the internal, which prefents a groove for the reception of the extremities of the ribs. But this margin affumes a different appearance at its anterior part ; it is there a fquare piece of bone, convex above and concave below, which fuftains a fpine for the attachment of mufces. Its anterior edge has more the form of a crercent; there are alfo fome little peculiar pieces above the tail.

The breaft-plate of the tortoife, when deprived of the thick fkin that covers it, exhibits, in fome fpecies, only one folid plate, formed of feveral pieces, united by fynarthrofis: in others, this plate is perforated quite through, and formed of feveral bones, fome of which are fituated in the middle line between the anterior and pofterior part, while others are placed laterally, ${ }_{2}$ and faftened together by the help of the former, which fupport them.

E. In Fijhes.

Fifhes have, properly fpeaking, no thorax ; all the cavity of the trunk being occupied by the abdominal vifcera. This cavity varies very much in extent and figure; it is compreffed at the fides, and flattened or fomewhat rounded horizontally. In different fpecies, its length conftitutes a greater or lefs portion of the whole length of the body. In general, fifthes of the order abdominales have this cavity proportionably
ably longer; but this rule is not confant. The cavity is bounded pofteriorly by the inferior procefs of the firft caudal vertebre, which is often very large, and has almoft always a peculiar fhape. In the pleuronectes, for inftance, it is large, round in the fore-part, and terminated below by a fort of fpine.

The abdominal cavity is enclofed laterally by the ribs when they exift: For example, the-rays, the /barks, the pipe-ffb, the fun-fif, the porcupinzfifs, the lump-fifb, the fiftularia, \&ic. have no ribs. -The furgeons, the baliftes, the cels, the uranofoopes, the pleuroneztes, the Sca-zvolves, and the dorées have them very flort. The gurnards, the loricarice, the uranofcopes, and the bull-beads, \&c. have their ribs fomewhat horizontal. They furround the cavity almoft to its top in the perch. carps, pikes, chetodons, \&c. Finally, they unite in a fort of fternum in the zeus vooner; the berrings or clupere, the falmorbomboides, \&xc. The fyngnathbus bippocumpus, or little fea-horfe, has a fort of falfe ribs produced by the offeous tubercles of his fkin , which furrounds his body like belts.

Only a very few fifh can be properly faid to have a fernum : befides thofe juft cnumerated, there are fome in which the fternum does not furnifh attachment to the ribs: fuch is the dorce (zeus faber); if indeed that can be called a fternum, which is only a feries of fmall bones, with-

218 L.IIl. Bones and Muscles of the Trunk. out articulation, running along the whole inferior edge of the abdomen.

The number and fize of the ribs are likewife extremely various. The filuri, the carps, and the chetodons have them proportionably larger. In the herring, on the contrary, they are as fmall as hairs: many fifhes have them forked; others have them double, or, in other words, two ribs proceed from each fide of every vertebra.

Article IV.

Of the Mrufcles of the Ribs and Stermum.

> A. In Man.

The ribs, by their motion, do little more than ferve the purpofes of infpiration and expiration. The mufcles acting upon thefe boncs either elevate or deprefs them.

The following are thofe which elevate the ribs:

THE SCALENUS, OR TRACHELO COBTALIS,
Arifes from the tranfverfe proceffes of the five lower vertebre of the neck, and is inferted into the pofterior part of the three firft ribs, by four digitations.

THEINTERCOSTALESINTERNI and EXTERNX.
Thefe mufcles form two layers, and occupy all the intervals between the ribs Their fibres are oblique, and in oppofite directions; thofe of the external layer tend from a fuperior rib towards the cartilage of the next rib; thofe of the internal are directed from the cartilage of the inferior rib towards the angle of the fuperior, or backward.
fhe levatores costarum, or transtergoCOSTALES,
Extend from the tranfverfe procefs of the laft cervical, and from thofe of the eleven firft dorfal vertebre to the angle of the ribs.

THE SERRATUS POSTICUS SUPERIOR, O7 DORSO-COSTALIS,
Arifes from the finous proceffes of the two laft cervical, and the two firft dorfal vertebre, and is inferted into three or four of the uppermoft true ribs, the firt rib excepted.

The mufcles that lower or deprefs the ribs are-

TIIE SERRATUS POSTICUS IN゙FERIOR, or
LUMBO-COSTALIS.

This mufcle arifes from the fpinous praceffes p of the three laft vertebre of the back, and the

220 L.III. Bones and Muscles of the Trunk.
two firft of the loins, and is inferted by digitations into the four laft falfe ribs. It pulls them outward and downward.

The fternum has only one mufcle, and this manifeftly acts in depreffing the ribs: it is called

TRIANGULARIS STERNI, Or STERNO-COSTALIS.
It arifes from the inferior and middle part of the fternum, and afcends to the cartilages of the five loweft true ribs.

Other mufcles are likewife attached to the ribs; but their action upon' thofe bones, which feem only intended to give them firm infertions, is lefs confpicuous. Thefe are the diapbragn and the mufcles of the abdomen, which ferve for refiration, and for the formation of the moveable parietes of the abdomen.

THE DIAPHRAGM.

Is a flefhy and tendinous partition, which divides the cavity of the thorax from that of the lower belly. It is fituated obliquely between the appendix fternalis, and the bodies of the lumbar vertebre. This mufcle is attached to the fternal appendix, the two loweft true ribs, and the edge of the cartilages of all the falfe ribs: pofteriorly it is inferted into the lumbar ver-tebre, by two columns of flefl, called crura. This mufcle is tendinous in the middle, and flefhy about the edges. It is covered above by the pleura,
pleura, and below by the peritoneum: its ufes will be more particularly explained when we treat of Refpiration. It has three perforations in its pofterior part; that on the right gives paffage to the vena cava; the œfophagus paffes through that on the left; and the aorta, vena azygos, and thoracic duct pafs through the pofterior foramen.

The parietes of the abdomen are formed by five pairs of mufcles: thefe are -

THECBLIQUUSEXTERNUS, OBIIQUUSMAGNUS, or COSTO-ABDOMINALIS.

This mufcle arifes from the eight laft ribs by as many digitations, and is inferted into the creft of the os ilium and os pubis. Its fibres defcend from without inwards.

THE OBLIQUUS INTERNUS, OBLIQUUS PARVUS, or ILIO ABDOMINAIIS,
Arifes from the creft of the os ilium and os pubis. It is inferted into the edges of all the falfe ribs, and even the latt true one, and the fternal appendix. Its fibres defcend from within outwardly.

THE RECTUS ABDOMINIS, or PUBO-STERNALIS,
Is attached to the fuperior part of the pubis. It is inferted into the three laf fterno-vertebral
bral ribs, into the firf vertebral rib, and the appendix fternalis, by four digitations. This mufcle in its paffage is covered with an aponeurotic fheath produced from the oblique mufcles. It is even inferted into fome points of that fheath. This occafions the formation of feveral tendinoustranfverfe lines, which are generally four in number.

> THE PYRAMIDALIS, Or PUBO-UMBILICALIS,

Arifes likewife from the fuperior part of the pubis, and, diminifhing much in breadth as it afcends, is inferted into the linea alba, near the umbilical ring.

TIIE TRANSVERSALISABDOMINIS, or LUMBCABDOMINALIS,
Is affixed at one part by a broad, thin, and almoft aponeurotic tendon, to the tranfverfe and fpinous proceffes of the four fuperior lumbar vertebre, and extends its fibres almoft tranfverfely to the linea alba.

The recti and pyramidales bend the trunk forward. The obliqui have the power of inclining it laterally; finally, the tranfverfe mufcles act upon the parietes of the abdomen like a girth, and comprefs it on every fide.

B. In other Mammiferous Animals.

The mufcles of the ribs cxhibit no remarkable difference in the other orders of mammalia.

Thore

Thofe of the lower belly differ fomewhat from the fame mufcles in man as to their proportional length. This difference, however, is more perceptible in the reati and pyramidales; for in the farcophaga the recti often extend to the anterior extremity of the fternum, and then the pyramidales are generally wanting.

The diapbragm, in bats, has two very ftrong crura, which form a kind of flefhy feptum, placed longitudinally on the fpine within the abdomen.

In the article on Generation, we flall defcribe the mufcles peculiar to the abdominal bag of the didelphis or opofum.
C. In Birds.

The foalenus differs in no refped from the levatores coflarum, which extend from the tranfverfe proceffes of each vertebra, to the anterior edge of each rib. 'The fuperior layers are the thickeft, and they become very thin at the laft ribs.

The internal and external intercofals have alfo an oppofite direction in their fibres, but they occupy only the intervals between the bend of the articulations and the angular proceffes, except in the laft ribs, which have no proceffes, and where thofe mufcles are found both on the anterior and pofterior parts.

The triangularis ferni comes from the fuperior

224 L.Ifl. Bones and Muscles of the 'Truní。

and lateral part of the fternum, and proceeds to the edge of the fecond articulation of the firft fterno-vertebral rib. It there fends off other fibres, which are inferted in the fecond and following ribs. Thefe fibres become gradually thinner, and their direction is nearly parallel to the axis of the body of the bird.

There is no diapbragm in birds.
Their abdomen is covered with three layers of mufcles, which are all tranfverfe, though their fibres have different obliquities.

That which is analogous to the obliquus externuus has its fibres tranfverfe. It is attached to the creft of the illium, covers the elongations of the fternum, and is inferted into the fecond or third rib. Its pofterior aponeurofis is very thin; that which unites it to its fellow is very ftrong.

The obliquus internus is entirely flefhy, and is not quite fo broad as the preceding. It arifes from the pofterior edge of the laft rib, and is inferted into the anterior edge of the os ilium.

The mufcle analogous to the tranfuerfalis forms the third layer. Its tranfverfe fibres are fomewhat divided, and as it were fafciculated; it has the fame infertions as the preceding.

Both the mufculi recti and pyramidales are wanting.

D. In Reptiles.

In the frog, which wants ribs, and the tortoile, where they are immoveable, the mufcles which
ufually have their infertions in them, are in thofe animals extended to other parts.
Thus, in the tortoife, whofe breaft-plate occupies the place of the abdominal mufcles, they are inferted into the pelvis, which they move.

With refpect to thofe animals, one very remarkable obfervation may, in general, be made: -It appears that the very fingular fhape of the mufcles and bones depend upon each other. Indeed, as the mufcles are not placed upon the bones, they have not, if we may be allowed the expreffion, fafhioned them; and the want of motion in the bones, which has given an unnatural figure to the trunk, has alfo given to the mufcles other forms and other ufes.

The abdominal mufcles of the frog prefent nothing peculiar, except that the flin does not adhere to their furfaces, and that, inftead of being inferted into the rib, they are faftened to the fternum by a ftrong aponeurofis.

The fame obfervations may be made with refpect to the Salamanders.

E. In Fifhes.

The fpaces between the ribs are filled up by Thort oblique fibrous mufcles, analogous to the intercoftals; but the great lateral mufcles, which are inferted alfo into the ribs, move them all at once, fomewhat in the fame manner as they ać upon the vertebre of the tail.

Voz. I.
Q
Article V.

ArticleV.

Of the Motions of the Head upon the Spine.

The head may be confidered under two points of view. Ift. As an offeous cavity, which contains and preferves the brain and the principal organs of fenfe: this is the view we fhall have to take of it in the fecond part of the courfe

2 d . As a mafs more or lefs weighty, articulated with the neck, and capable of being moved upon it in different directions. In this latter refpect it now claims our attention.

> A. In Man.

The human head is compofed of two parts : firft, an oval cafe, called the cranium, the top and fides of which have almoft the fame convexity, but the inferior furface is more plain, and tends obliquely forward, the pofition of the body being fuppofed erect. Bencath the anterior portion of this divifion of the cranium, is placed the fecond part of the head, which we call the face. The form of this part is nearly prifmatic; the bafe, where the palate is fituated, is parabolical; the face is directly croffed from the anterior to the pofterior part by the camal of the nofrils; and in front, towards the upper part, it is enlarged to make room for the orbits. A kind
of branch, which fprings from each fide, and which, running backward, rejoins the cranium, is called the zygomatic proce/s. Beneath the place where this joins the cranium, is the articulation of the lower jaw, which, with the cylindrical part above mentioned, completes the face. One of the characteriftics peculiar to man is, that the jaws project very little before the fuperior and anterior part of the cranium, which we call the forebead.

We fhall not here enter into a minute detail of the holes, futures, eminences and depreffions of all the different parts of the head, but return to them in a fubfequent article.

The part of the inferior furface of the cranium, fituated farther back than the face, is called the occiput, or, more particularly, the bafis of the cranium. The occiput has an irregular convexity, of a different curvature from that of the cranium, and is feparated from it behind by a projecting line, reprefenting two arches of circles, which are called the occipital arches.

The lateral extremities of this line exhibit each a large tuberofity, called the mafoid process, which is fituated behind the hole of the ear, but fomewhat lower. At the internal part of its bafe is a depreffion called the mafoid groove. Exactly between the two maftoid proceffes is the foramen magnum, which affords a paffage to the fpinal marrow, in its progrefs from

$$
Q_{2}
$$

228 L. III. Bones and Muséles of the T'runk.
the cranium into the common canal of the vertebre.

The offeous part, fituated before this foramen, and at the pofterior bafe of the femi-cylinder, which forms the face, is called the cuneiform or bajilary procefs.

A fraight projecting line extends from the middle of the occipital arch to the edge of the foramen. It is called the $\int p$ pine of the occiput, and its pofterior extremity forms an eminence called the occipital tuberofity.

The head is articulated to the top of the firft vertebra, in fuch a manner that the canal of the latter correfponds with the foramen magnum.

This articulation is formed by two prominent furfaces, fituated on the anterior edges of the foramen magnum, and turned fomewhat forward and outward.

Thefe eminences are called the occipital condyles; they are received by two correfpondent cavities of the atlas, and with it form a ginglimus, that permits no perceptible motion of the head, except forward and backward.

The atlas is articulated in the fame manner by two lateral, and fomewhat anterior furfaces, to the axis or dentata. Thefe furfaces being, however, more plain, permit a rotatory motion to the atlas and head, upon the axis, whence that vertebra derives its name.

The anterior part of this fecond vertebra produces a procefs which rifes behind the anterior

Art. V. Motions of the Head.

part of the atlas, and joins it by an articular furface. It has been compared to a tooth, and called odontoid.

The reft of the rotatory motion of the head is performed by the twifting of the cervical part of the fpine.

Finally, the motion which inclines the head to the right and left, though partly performed by the articulation of the occiput to the atlas, is principally effected by the five lower cervical vertebre, the articular furfaces of which, being turned directly backward, admit of much freedom in the lateral direction.

Several ligaments frengthen this articulation, and facilitate its movements. Some unite the arches of the atlas to the occiput, and form two ftrong membranes; others furround the condyles at their articulation with the atlas, and form a capfular ligament. Befides, a ligament proceeds from the top of the odontoid procefs, and is inferted into the anterior border of the foramen magnum, determining the ax is of motion. There are alfo lateral ligaments; and finally, left this procefs fhould injure the fpinal marrow contained in the vertebral canal, there is a ligament fituated tranfverfely in the interior part of the ring of the atlas, which retains it in its place.

The pofition of the two condyles, upon which the head refts, is fuch that they nearly bifect a line drawn from the moft projecting part of the occiput to the dentes incifores. The con-
fequence

230 L.IIl. Bones and Muscles of the Trunk.
Sequence of this difpofition is, that, in the erect pofition, the head is in equilibrium upon the fpinc.

The plane of the foramen magnum is nearly perpendicular to that of the eyes, and parallel to that of the palate; on which account the eyes and mouth are both directed forward when we ftand upright.

Thefe two difpofitions take place completely in the human fpecies alone. Even the Negroes have the anterior part of the line above mentioned longer than the pofferior, becaufe their jaws are fomewhat elongated.

B. In other Mammiferous Animals.

In the orang-outang, the jaws are not only more elongated, but the occipital hole feems to retire backward, and afcend along the pofterior furface of the cranium, fo that its plane forms an angle of 60° only, with that of the orbits.

This clongation increafes, in quadrupeds, in proportion as they recede from man. The jaws, at laft, not only conftitute three-fourths of the head, but the cuneiform procefs being prolonged, the foramen and the furface of the occiput are gradually removed backward and upward: at laft their pofition is no longer below, but behind the head; and the plane of the foramen, forming angles, more and more acute, with
the plane of the orbits, becomes parallel to it, and at length no longer interfects it below, but above the head.

This accounts for the difference of the direction of the head in quadrupeds, which is fo great, that, were the fpine vertical, the head could not be preferved in equilibrio, unlefs the eyes were turned backward, and the mouth upward.

When fanding upon the four feet, the head of a quadruped is not retained upon the fpine by its own proper weight, but by the mufcles and ligaments only; particularly that ligament called the cervical, which rifes from the fpinous proceffes of the vertebre of the neck and back, and is inferted into the fpine of the occiput.

As man has no need of this ligament in his ordinary pofition, it is in him fo weak that many anatomifts have denied its exiftence.

Quadrupeds, on the contrary, have it ftronger in proportion as the head is larger or longer. In the bor $\int e$, its infertion into the vertebra of the back is as broad as two hands, and it is faftened by ftraps to three or four of the vertebræ of the neck. The Carnivora have it fomewhat lefs; but in the elepbant it is largeft of all, and is there inferted into a particular depreffion of the occiput. The mole has this ligament offified in a great meafure, as it is employed not only in raifing the head, butalfo confiderab!e mafles of earth.

In the inferior mammalia, the occipital furface of the cranium making a much more acute angle

232 L. 1 II. Bones and Muscles of the Trunk.
with the vertex than it does in man, the occipital arches become more diftinct and pointed; and they affume different figures in different fpecies. The maftoid proceffes always preferving the fame inclination to the plane of the palate, gradually diminifh the angle which they make with the occipital furface, till they finally arrive at the fame plane.

In nonkies in general the maftoid proceffes are nearly obliterated. In all thefe fpecies which have the jaw elongated, and ftrong canine teeth, the occipital arches form a projecting ridge. Such in particular is the cafe with the Cbincfeape, Barbary-ape, cynocephalus, bare-lippcd-ape, baboon, mandril and pongo.

The bat has the bafis of the cranium, as it were, curved, and the great foramen fituated on the pofterior part. The tranfverfe proceffes of the firft vertebra are flat on the fides. The proceffes enclofing the organs of hearing, which are very large, and as it were inflated, exhibit a large projection at the bafe of the flull.

The bafe of the cranium and the occiput are deprived of proceffes in the molc.

The bear, and in general ail the large Sarcophaga, have, at the pofterior furface of the head, projecting ridges, in a direction almoft perpendicular to the foramen magnum; the tranfverfe proceffes of the atlas are alfo very large.

The lion, the liger, the roolf, and the fox; have
the occipital protuberance very prominent; their heads are almoft triangular behind.
In the Rodentia the face is very long: the cranium is alfo clongated, and rounded above, and flat below; the articulation behind, and the tranfverfe proceffes of the atlas, are enlarged.

The cranium of the ant-eater is round, and has no projecting proceffes, though the face is conical, and very long.

The elephont has the head truncated almoft vertically behind. The occiput is, as it were, fquare, and the condyles are at the pofterior extremity. The place of the occipital protuberance is occupied by a confiderable depreffion, in which there is a longitudinal ridge for the infertion of the cervical ligament.

In the bog, the occipital tuberofity is large, with depreffions, and almoft perpendicular to the condyles.

The rbinoceros has the occiput more oblique, and the atlas as broad as the head.

The Solipeda and Ruminantia have the tranfverfe proceffes of the at las flatted, and turned forward, and the maftoid proceffes elongated. The motion of the head forward's and to the fide is therefore much circumferibed by this conformation.

Finally, the Cetacea have a broad atlas anchylofed with the axis. Two articular depreffions correfpond with the large condyles of the occiput. The articulation is formed at its pofterior extremity.
C. $I n$

C. In Birds.

The head of birds is fo conftructed as to perform very evident motions upon the vertebral column. It is always articulated behind, by a fingle condyle, or hemifpherical tubercle, fituated at the lower part of the foramen magnum. This tubercle is received into a correfpondent depreffion in the body of the firft vertebra.

Hence there is not only a more extenfive vertical motion, but likewife a horizontal rotasory motion. Indeed we often fee birds, when they wifli to fleep, turn their heads fo as to place their bill betwcen their wings; but no quadruped can put his frout in that pofition.

The maftoid proceffes is prolonged in a prominent ridge, running downward and forward towards the middle line, where it joins that from the oppofite fide.

The occiput is round in thofe that have fhort bills, but it is flattifh, and exhibits a kind of creft in thofe that have the beak long.
In the cormorant, the occipital protuberance fupports a long triangular bone, which feems to be produced by the offification of the cervical ligament.

The firft vertebra in birds is a fimple offeous ring, a little more thick on the anterior part. It articulates above with the occipital condyle, and below by a flat furface with the fecond vertebra.
'The fecond vertebra in birds bears a tooth-like
procefs on the upper fide, but it is very fhort, and proportioned to the height of the ring of the atlas.

D. In Reptilcs.

The articulation of the head of reptiles is considerably behind; but the motions vary in different fpecies.

In the crocodile there is only one condyle, fituated at the under fide of the foramen magnum: the atlas is formed of two portions; the pofterior is ihaped like the fegment of a ring: the anterior, which is thicker, receives the condyle, and is articulated to the fecond vertebra: thereare two lateral proceffes, long, flat, and turned backward, which fupply the place of tranfverfe proceffes.

The odontoid procefs of the fecond vertebra is fhort and thick; it is articulated within a cavity in the body of the atlas. This fecond vertebra has tranfverfe proceffes fimilar to thofe of the firft.

All other lizards have nearly the fame conformation; but the condyle feems divided in two by a longitudinal fuperficial furrow.

The tortoifes have likewife only one condyle. In the land fort it is prolonged, and divided into two, as it is in the lizards. In the marine fpecies it prefents three articular faces, like a trefoil leaf. As this condyle penetrates deep into the correfpondent cavity of the atlas, the lateral motion of the head is much confined. The other motions of the head of the tortoife are thofe of projection and retraction; they depend

236 L. III. Bones and Muscles of the Trune. upon the flexion and cxtenfion of the cervical vertebre, and have been defcribed already.

The frog, the toad, and the falamander, have the head articulated by two condyles upon the firft vertebra, which is almoft immoveable.

Serpents have three furfaces, in the manner of a trefoil, clofe together, upon one condyle, beneath the occipital foramen. The head is not more moveable on the atlas, than the reft of the vertebræ are upon each other.

E. In Fifhes.

The occiput of fifhes appears like a vertical truncation of the cranium. The tubercle by which it is united to the vertcbræ is fingle, and placed below the occipital foramen. This union is effected by the intervention of carrilages with flat or concave furfaces, fo that the motion is much confined on every fide. The fuperior part of the occiput in fome fpecies prefents flat and very prominent lateral proceffes, and, in particular, a longitudinal fpine, which terminates above the foramen magnum.

The bafis of the cranium; in moft kinds, is only formed by a longitudinal ridge, more or lefs round.

In fome fpecies, fuch as the zobiting, the perch, the falmon, \&xc. the occipital protuberance is very long, and fharp-edged.

Art. V. Motions of the Head. 237

The farks and rays have their heads articulated with the vertebral column, by two condyles; but this articulation is almoft immoveable, and is made fecure by ligamentous fibres.

Article VI. Of the Mufcles of the Head.

A. In Mran.

The mufcles which move the human head arife from the firft, the fecond, or from feveral other cervical vertebræ.

Thofe that arife from the atlas are,

1. the rectus capitis tosticus minor, or atloido-occipitalis,

Rifes from the fpinous procefs of the firft vertebra, and is inferted into the middle of the pofterior edge of the foramen magnum. It draws the occiput directly backward, and moves the head upon the atlas.
2. the rectus capitis anticus minor, or TRACHELO-SUB-OCCIPITALIS.
This little mufcle arifes from the anterior annular part of the atlas, and is inferted into the cunciform procefs. The motion it produces is directly

238 L.III. Bones and Muscles of the Trunk. directly the oppofite of the preceding: it bends the head forward and downward.

3. the rectus capitis lateralis, or MASTOIDO-ATLOIDEUS.

This mufcle arifes from the tranfverfe procefs of the atlas, and is inferted into the maftoid procefs of the fame fide: it bends the head a little towards the fhoulder.
> 4. the obirquus Capitis superior, or ATLOIDO-SUB-MASTOIDEUS.

This mufcle arifes from the fame procefs as the preceding, and afcends, internally, towards the pofterior edge of the foramen magnum, juft by the maftoid procefs. Its action produces a flight rotation of the head upon the axis, at the fame time that it brings it backward.

The mufcles which originate from the fecond vertebra, are only two.

1. the rectus capitis posticus major, or ANOIDO-OCCIPITALIS.
This mufcle arifes from the fpinous proceffes of the axis, and is inferted into the occiput over the reflus capitis poficus minor. It covers that mufcle, and participates in its operation, caufing however a more decided motion of the head backwards.

ล. TIIE

2. THE OBLIQUUS CAPITIS INFERIOR, OÖ
 AXOIDO-ATLOIDEUS,

Arifes from the fame fpinous procefs, and proceeds outwardly towards the tranfverfe procefs of the atlas, into which it is inferted; this is, therefore, rather a mufcle of the fpine than of the head. It turns the atlas upon the axis, thus producing the lateral motion of the firf cervical vertebra.

There are five mufcles of the head, proceeding from the other cervical vertebra.

1. the complexus magnus, or tracheloOCCIPITALIS,
Arifes by digitations from the tranfverfe proceffes of the four laft cervical and three firft dorfal vertebre. It paffes over the back of the neck, in its way to its infertion in the occiput, above all the preceding. It is clofely united, by its lower furface, with another called the biventer. This mufcle is evidently an extenfion, or a flexor of the head backward.
2. the biventer cervicis, or tracheloDORSALIS.
This mufcle arifes, in like manner, by digitations from the tranfverfe proceffes of five vertebræ of the back, from the fecond to the fixth, and from the fpinous procefs of the firft. It is

240 L.III. Bones and Muscles of the T'runk.
inferted into the occiput, above the preceding mufcle, to which it is fimilar in ufe. Its middle being narrow and tendinous, it has, from that circumftance, obtained the name of biventer.
> 3. THE COMPLEXUS MINOR, or trachtalo MASTOIDEUS,

Arifes by digitations from the tranfverfe proceffes of the fix laft cervical vertebræ, and three firft dorfal, and afcends along the neck to the maftoid procefs, into which it is inferted. It receives, near its infertion, a long flip of mufcle from the longiffimus dorfi. It bends the head backward, turning it at the fame time a little upon its axis, when it acts without the correfpondent mufcle of the oppofite fide; but when there mufcles act together, they keep the head upright. They are antagonifts of the fterno-cleido-maftoideus.

Thefe three mufcles are covered by,

> 4. THE SPLENIUS CAPITIS, of CERVICOMASTOIDEUS.

This mufcle arifes from the fpinous proceffes of the five laft cervical and two firft dorfal vertebræ. It is inferted into the occipital arch near the maftoid procefs. It has the fame ufe as the complexus minor. Its external part, which rifes from the two next dorfal vertebre, and is inferted into the tranfverfe proceffes of the two upper cervical vertebre, is regarded as
à mufcle of the fpine, and has been named Splenius colli.
5. the rectus capitis anticus major, or TRACHELO-SUB-OCCIPITALIS,
Extends along the cervical vertebre, on the fore part, from the fecond to the fixth, and is inferted into the cuneiform procefs of the occiput. It bends the head forward.

Certain mufcles upon the fhoulder, which are inferted into the head, fuch as the trapezius, ferno-cleido-maftoideus, the mulcles of the larynx; os byoides, and jaze, all act upon the head, and might be demonftrated here.

B. In other Aummiferous Animals.

The fmall mufcles of the head are found in quadrupeds as well as in man, and with the fame attachments; the only difference is, that they increafe in magnitude proportionally with the two firft vertebre. Except, therefore, in the monkey and cetaceous animals, the obliquus capitis inferior, and rectus capitis poficus major, are of very confiderable magnitude.

In general the biventer cervicis is not divided into two portions by an intermediate tendon. In the Carnivora there are, throughout its whole length, tranfverfe tendinous interfections. It lies upon the complexus magnus, from which it is, however, very diftinct; fo much fo, indeed,

[^4]R
that

242 L. III. Bones and Muscles of the Trunk.
that thefe animals appear to have three complexi: but-in the borfe it is completcly united to the complexus on the upper parts.

The fpleinius is inferted into the cervical ligament, in thofe animals which have this ligament confiderably elevated above the vertebra. It is a! ways larger than in man, but is frongeft in the mole. No part of this mufcle is attached to the tranfverfe proceffes of the cervical vertebre in the Carnivora. Such of its fibres as go to the maftoid procefs, are inferted there by a tendon common to them and the complexus minor. In the borfe, the part of the fplenius which belongs to the head is cntirely inferted into the maftoid procefs by a thin tendon common to it and the complexus minor, which receives no hips, except from the third cervical and the two firft dorfal vertebræ. The fplenius furmifnes befides three flips to the tranfverfe proceffes of the three cervical vertebra next to the atlas. The tendon of the firft is common to it and the tranfuerfalis colli.

> E. In Bircls.

Birds have no fflenius. - The Biventer Cervicis is completely feparated from the complexus. It extends from the middle of the back to the occipital arch. Its two bellies are fimple and without proceffes. Its middle tendon is very nender.

It feems to be wanting in thofe birds which have very long necks, as the beron.

The complexus magnus is only inferted into the articular proceffes and lateral furfaces of a few of the cervical vertebræ; for inffance, the third or fourth, or perhaps the fecond or third.

The complexus minor rifes from the anterior fpines of the third, fourth and fifth vertebre, or fometimes from the fecond and third. It is inferted into the occiput mere outwardly than the preceding. Thefe three pairs of mufcles occupy the whole arch.

The recti pofici are threc in number in birds.
The minor and major are analogous to thofe of the human fpecies; and the rectus pofticus maximus, which in them proceeds likewife from the fpinous procefs of the axis, covers the other two.

The obliquus inferior, Seumagnus, is to be found, but not the fuperior.

The rectus lateralis alfo exifts in birds. Finally, the two recti antici are likewife prefent; but the rectus major arifes only from the three or four firft vertebræ.

D: In Reptiles.

The mufcles of the head of the tortoife. cannot be defcribed under names fimilar to thofe of mammiferous animals and birds, becaufe the R 2
fiell
fhell affords infertions to the greater number of them. We will therefore only diftinguifh them by their points of attachment. Thus, on viewing the back part of the neck, we re-mark-
ift. At the anterior part of the back-fhell, near the angle of the lunula, a broad mufcle, which extends to the lateral and pofterior parts of the head into which it is inferted. It pulls the head backward.

2d. Beneath, and from the middle of the anterior lunula of the back-fhell, there arifes another mufcle, which is thin and round, and which, in feparating from that of the oppofite fide, forms an angle like the letter V ; it is inferted on the outfide of the preceding mufcle, and has the fame ufe.

3d. A mufcle analogous to the fplenius capitis rifes from the fpinous proceffes of the fourth and fifth cervical vertebræ, by diftinct flips, and is inferted into the occipital arch. Its ufe is to raife the head.

4th. A mufcle analogous to the rectus major anticus, rifes from the inferior tubercles of the four vertebre next to the atlas, and is inferted, flefly and thick, into the depreflion of the cuneiform procefs below the condyle.

5 th. The trachelo-mafoideus rifes from the inferior tubercles of the fecond and third ceryical vertebre, by two thin aponcurotic tendons. It
is inferted, by a very thick and entirely flefhy portion, into the protuberance that anfwers to the maftoid procefs. Its ufe is to bend the head laterally.
6th. Laftly, at the fuperior part of the cervical fpine there is a fhort mufcle which proceeds from the inferior part of the foramen, formed by the temporal foffa, and is inferted into the fpinous proceffes of the firft, fecond and third vertebræ of the neck.

On viewing the neck in front, we obferve the mufcle analogous to the ferno-cleido-mafoidens, attached to the ftrong aponeurofes that furround the humerus at its articulation with the fcapula. The lower part of it, for one-third of its length, can only be feen, the remainder being concealed by a mufcle compofed of tranfverfe fibres, which fupplies the place of the mylobyoideus, and platyfma-myoides. It is inferted into a procefs correfponding to the maftoid. Its ufe is to draw the head inwardly, and to produce a fmall elevation of the fhoulder.

The longus capitis arifes from the third vertebra of the back, and is inferted by a flender tendon into the cuneiform procefs of the occiput.

The frogs have very few of the mufcles of the head: moft of thofe which are inferted in it are employed in moving the fuperior extremities, or are proper to the vertebral column.

The mufcle analogous to the obliguus fuperior R 3
arifes

246 L. III. Bones and Muscles of the Trunk.
arifes from the firft tranfverfe proceffes of the fpine, and is inferted into the fuperior part of the occiput: its direction is oblique from without in wards.

That which is analogous to the rectus capitis alticus minor, arifes from the tranfverfe procefs of the firft vertebra, and is inferted into the baifis of the cranium, below the foramen magnum.

There are the only two mufcles proper to the head in frogs: They are fimilar in the land falanander.

E. In Fifhes.

Offeous fifhes have no particular mufcle deftined to move the head. The lateral mufcles of the body inferted there occafion but little fenfible motion; but the rays have three mufcles affigned to that purpofe, which we think neceffary to point out in this place. One ferves to move the head upon the trunk, the others to raife and lower the extremity of the muzzle. The firft is fituated above the body and the cavity of the branchix. It is faftened to the fpinal column, and to the antcrior portion of the bony arch that fupports the large wings ; it is inferted into the pofterior extremity of the head, which it moves upward upon the fpine.

With refpect to the two mufcles of the muzzle, the fuperior arifes from the anterior part of the girdle, which fupports the wings or fins by a thort flefhy portion, the fmall cylindrical tendon
of which is received into a mucous fheath: this fheath paffes with the tendon above the branchix, and extends to its infertion at the bafe of the muzzle, which this mufcle moves upward.
The inferior is fituated on the lower part of the body, and in the cavity of the branchir, whence it arifes from the firt cartilages of the vertebral column. It extends obliquely outward, and then inward, defcribing a curve, the convexity of which is external. It is inferted, almoft entirely flefhy, into the bafe of the fnout, which it incurvates or bends towards the belly.

LECTURE FOURTH.

of the anterior extremity, or pec- '
TORAL MEMBER.

Article I.

Of the Bones of the Shoulder.

> A. In Man.

The human fhoulder is formed of two bones called the fcapula and clavicle.

The fcapula, or omoplate, has nearly the form of a right-angled triangle; and its fituation, when at reft, is fuch that one of the fides is parallel to the fpine.

The longeft fide points obliquely outward and downward: it is called the coftal margin. The fhorteft fide is uppermoft, and is called the cervical or fuperior margin. The fuperior, anterior, or external angle, is truncated, and forms an oval articular furface, on which the head of the bone of the arm moves; it is therefore called the buncral angle. Above this articulation there is a projection of the fuperior margin, which is firft
firft directed forward, and then backward. This is called the coracoid procefs.

On the convex furface, at about one-third of its length from the fuperior margin downward, a procefs is produced: this procefs interfects the fcapula tranfverfely, and is called the fpine. It is elongated, and forms a flat detached projection, which extends over the humeral angle, and is called the acromion. The part of the furface which is above the fpine is called fupra-fpinal, and that below it infra-fininal.

The clavicle is a long and ftrong bone, with a double curvature, fupported at one extremity on the top of the fternum, and at the other on the acromion. The latter obeys the motions of the fcapula, which flides in every direction upon the pofterior part of the ribs, to which it is not articulated, but only attached by the mufcles. Each of its margins, and each of its angles, is therefore capable of being elevated, or applied clofer to the ribs.

The human ihoulder, and confequently all the reft of the fuperior extremity, is only articulated to the other parts of the fkeleton, by that end of the clavical which joins the fternum.

Certain ligaments join the fcapula to the clavicle, and the latter to the fternum. The firft proceed from the coracoid procefs, and are inferted into the end of the clavicle next the acromion. The next are (ift.) the inter-clavisular, which conncets the extremities of both clavicles

750 Lect.IV. Anterior Extremitý.
clavicles behind the fternum, and (2d.) others which arife from the inferior furface and paffing obliquely, are inferted into the cartilage of the firftrib. Finally, each extremity of the clavicle is furnifhed with a capfular ligament, one attached to the acromion, and the other to the fternum, at their articulations.

B. In other AFammiferous Animals.

The fhoulder in the inferior mammalia differs from that of man, by the abfence or proportion of the clavicle, and the form of the fcapula.

The clavicle of the Quadrumana refembles that of man : it is entirely wanting in all animals that have hoofs, fuch as the Pachydermata, Ruminantia and Solipeda. In animals with nails, there is nothing general to be remarked. Amongtt the Sarcophaga, the Cheiroptera, (particularly the bats, in which this bone is very large and firong;) the Pedimana, and the greater part of the Plantigrada, namely the moles, foretos, and kc.toc-hogs, have it perfect ; the others, that is to ray the Carnivora, as dogs, cats, wecafcls, bears, coatis, racooms, otters, fials, Eic. have only clavicular boncs fufpended in the flefl, neither touching the acromion nor fternum; and even thefe are entirely wanting in fome individuals.

The clavicle of the mole is particularly remarkable on account of its thicknefs, which exseeds its length; this gives it à very fingular
thape.

Art. I. Bones ofthe Shoulder. 25 tit

fhape. It is connected with the acromion by a ligament, and is articulated with the humerus. by a broad furface.

With refpect to the Rodentia, the clavicle is perfect in the fquirrels, the rats, the beavers, and the porcupines; but is wanting in the damans and carys. Hares have the clavicle fufpended in the flefh.

This bone is found in feveral of the Edentata, fuch as the armadillos, the ant-eaters, and the footbs. In the laft, at the fternal extremity it is furnifned with a procefs which forms nearly a right angle with the axis of the bone. But the clavicle is quite wanting in the pangolins.

The Cetacea have no veftige of the clavicle.
We fee, by this inveftigation, that the clavicle ' is found in all animals that often extend their arms or anterior feet forward, either to feize things, as the monkey, or to fly, as the bat, \&c. That it is wanting in thofe quadrupeds that ufe the anterior extremities for progreflive motion only, and that there are rudiments of it in fuch as bold a middle ftate between thefe two orders.
Indeed the clavicle is a very frong arch, which repreffes the arm, and prevents it from being moved too far forward; it is, therefore, found double in birds.

The fapula of the monkies has the fpinal angle (iwhich anfwers to the pofterior fuperior,) mote obtufe, and confequently the oppofite fide longer than in man. This renders the fide next the

252 Lect. IV. Anterior Extremity.
fpine fhorter. The fame conformation is ob. ferved in the makis.

In the Sarcophaga the fpinal margin, or that next to the fpine, is rounded off, which conformation alfo renders the pofterior angle very obtule. The fupra-fpinal foffa becomes likewife nearly as large, and fometimes even larger than the infra-fpinal. In thofe which have no clavicles the acromion does not project fo far, and there is another eminence pointing backwards almoft perpendicular to the fpine. It is alfo found in the bedge-bogs and Pedimana. The coracoid procefs is, for the moft part, wanting; it is, however, found in the bedge-bog, the Cheiroptera, and the Pedimana. The body of the fcapula is elongated in the bedge-bog, and much more fo in the mole; in the latter it appears to be a long bone, with no mark of a fpine, except towards the pofterior margin, and before the tubercle, which correfponds to the acromion. This bone is fo placed that it is longitudinally parallel to the fpinal column.

The Cheiroptera alone have the fpinal margin very long, and the pofterior angle acute.

In the Rodentia, the fcapula has generally the fame fhape as in the Sarcophaga; for in them the length of the arcomion depends upon the prefence of the clavicle. The fame rule prevails with refpect to the length of the coracoid procefs. - The bares have, upon the acromion, another long projection rifing at a right angle,

$$
\text { Art. I. Bones of the Shoulder. } 253
$$

and turning backward. This recurrent procefs is very long, and rather flender. Towards the pofterior part it forms a very confpicuous projecting angle.

The Ruminantia and Solipeda have the fcapula narrow towards the back, and elongated towards the neck, like the preceding animals. The fpine is nearer to the anterior margin, which we have named cervical qr fuperior in man. It appears truncated, and has neither acromion nor recurrent procefs. It is likewife deftitute of any coracoid procefs.

The bog and the rbinoceros exhibit a ftriking peculiarity in the fpine of the fcapula. This fpine is almoft effaced near the humeral angle, but about its middle there arifes a very bold projecting procefs, inclined towards the coftal margin.

The fcapula of the elephant is rhomboidal : the fpine terminates in two large proceffes, one of which turns forward and forms the acromion, and the other, which is much larger, turns backward. The latter refembles the recurrent procefs which we remarked in certain Rodentia, efpecially in the bare.

Among the Cetacea, the dolphin and porpoife have the fpinal margin of the fcapula rounded, and very large: the fpine is very near the cervical margin, and cannot be diftinguifhed from the plane of the infra-fpinal foffa. The fuprafinal foffa has a deep hollow, that feems to
proceed from a defect in the offification. Above the humeral angle there is a projecting plate, which is continued with the fpine, and feems to correfpond to the acromion. In the other mammalia of this family the foffa fupra-fpinalis is ftill lefs diftinct.

We find that the extent of the fcapula, in the direction parallel to the fpine, is in proportion to the violence of the efforts the animal has to make with the anterior-members; becaufe this configuration affords more extenfive attachments for the mufcles that conneit it with the trunk. Thus, in man, in monkeys, and more particularly in bats and moles, it approaches neareft to that extreme clongation which prevails in birds.

C. In Birds.

In birds the fhoulder is compofed of three bones, the clavicle, the fork, and the fcapula.

The clavicle is a ftraight large bone, flat before and behind. It is articulated by a large and fharp head, with the anterior edge of the fternum in a correfponding hollow, in which it has but little motion. It advances forward, and fomewhat laterally; it is then cnlarged, and divided into fhort proceffes. The firft procefs, which is anterior, inferior, and internal, is connected to the fork; the fecond, which is porterior, fuperior, and external, is articulated to the fcapula,

Art. I. Bones of the Shoulper.

fcapula, and with it forms a cavity into which the head of the humerus is received.

The foapula is elongated in the direction parallel to the fpine, and is very narrow on the oppofite fide. It is often pointed, but fometimes truncated on the pofterior part, and always flat and defitute of a fpine. The head, or humeral extremity, becomes thicker at its junction with the clavicle. Outwards we obferve the furface which thefe bones in common prefent to the head of the humerus, and inwardly a little point which anfwers to the extremity of the fork. Between thefe three bones, however, there is ftill left a fmall vacancy, or free fpace.

The fork, or os furciforme, is fingle, and common to both fhoulders. It is elaftic, and fhaped like a V. Its point is turned backwards, and its two branches fupport the humeral heads of the two clavicles. By its elafticity it hinders them from clofing together in the violent efforts of flying.

Birds of prey that fly by day have the fork very fhort, with crooked branches; their convexity is forward, and the angle of union round, and feparate from the fternum.
Nocturnal birds of prey have the fork weak, with almoft ftraight branches, the angle obtufe and clofe to the fternum.
In parrots it is alfo weak; the branches are convex outward, and the angle of union obtufe, and removed from the fternum.

256 Lect. IV. Anterior Extremity.
In the Pafferes the bone is nearly of a parabolic figure, with the angle clofe to the fternum. However, the fwallore and the goat-fucker muft be excepted, as they have it fmall, like birds of prey.

The Gallinæ have it alfo nearly parabolic. The angle is prolonged in a procefs from which a ligament proceeds to faften it to the keel of the fteraum, which in thefe birds is very low.

The ducks, merganfers, and flamingos, have the fork refembling birds of prey.

In the berons and cormorants, the angle of the fork is articulated with the fummit of the keel of the fternum. It is united to it by offification in the cranes and fork, the jabiru and pelican.

The two branches of the fork are feparate in the ofrich, and each anchylofed with the clavicle and fcapula of the fame fide. Thefe three, therefore, form only one very flat bone, with an opening near the extremity, by which it is joined to the fternum.

In the cafforvary no fork can be found except a fort of procefs at the internal border of the head of the clavicle, which is merely a rudiment.

Thus we fee that the os furciforme is the more detached, ftronger, and more elaftic in proportion to the activity of the bird in flying, and the neceffity of the functions of that bone. But in thofe birds which never fly it can fcarcely be faid to exift, and, at beft, it is far from being
able to feparate, by its reffiftance, the heads of the clavicles: in fact, there remains, in birds of this kind, only the veftige of it.

D. In Reptiles.

In oviparous quadrupeds the glenoid cavity of the fhoulder is partly compofed of the fcapula, and partly of the clavicle.

The fcapula, which is elongated, has no fpine: it contracts, and becomes thicker towards the neck.

The clavicle is fimple, fhort, and flat, and united to the fternum in the crocodile and lizards. It is broad, and almoft fquare, in the iguana and camelion. In the tupinamibis it is oval, and very large and long between the front and back, and has two unoffified parts.

The frog and toad have two clavicles to each fhoulder, attached to the two extremities of the fternum. The fcapula is bent, and compofed of two articulated pieces, with the fuperior one inclining towards the fpine. The fame conformation obtains in the Sitrinam toad. The anterior clavicles appear to correfpond to the os furciforme of birds. The clavicle, the fternum, and the firft piece of the fcapula, are anchylofed together.

The falamanders have the fhoulder formed in a moft fingular manner. The fcapula, clavicle, Vol. I. S

258 Lect. IV. Anterior Extremity.
and fternum confift only of a fingle bone, which receives the head of the humerus. The fhoulder is almoft all cartilaginous; but the part anfwering to the fcapula is more diftinct than the reft. It inclines towards the fpine, where it receives the mufcles by which it is moved. The clavicular part is directed towards the head; that which fupplies the place of the fternum turns towards the breaft, but without uniting with the bone of the oppofite fide: the part on the right fide flides over that on the left. This conformation allows a greater dilatation of the breaft in refpiration.

The tortoife has alfo thefe three bones, which unite to form the glenoid cavity, and correfpond swith the fcapula fork and clavicle. But as their refpective difpofition is very remarkable, it appears neceffary to give a particular defcription of them.

One of the bones extends from the bafe of the rudiment of the firft rib, to which it is fixed by a ligament, as high as the humeral cavity, where it is intimately connected with the other two.

The fecond bone may be confidered as the continuation of the firft, which it joins at the humeral cavity, of which it forms part. Its other extremity is attached to the breaft-plate, and ftrong ligaments likewife unite this extremity to that of the pofterior bone.

Thefe two bones, thus united, are flightly bent outwards, fo as to leave between them and

$$
\text { Art. I: Bones of the Shoulder. } 259
$$

thofe of the oppofite fide, an oval fpace, through which the œfophagus, the trachea, and feveral mufcles, pars.

The firit feems to correfpond to the clavicle, and the fec ond to the os furciforme.

Finally, the third bone of the fhoulder is fituated below the abdominal and thoracic vifcera, nearer the breaft-plate. It is lon , and extends from the humeral cavity, of which it forms the lower part, as far as the abdomen. It feems to fupply the place of the fcapul., by the number of mufcles inferted into it; but its fituation is juft the reverfe of that bone. A very ftrong ligament unites this bone to the fecond.
N. B. As the pectoral member in fifhes cannot, in any manner, be compared to that of the other vertebral animals, it feemed neceffary to give a particular defcription of it, which will be found at the end of this Lecture.

Article II.

Of the Mufcles of the Shoulder.

> A. In Man.

THE human houlder is moved by feveral mufcles, which give to it four principal motions that are often combined together. In one of
thefe motions the fhoulder is brought forward towards the breaft. In the fecond, which is the reverfe of the former, it is drawn back in the contrary direction, and the back becomes covered. In the third, the fhoulders are pulled downward, and retained in that pofition. The neck is then at eafe. By the fourth, the fhoulders are raifed towards the head, or elevated.

Thefe mufcles are eight in number.

1. the serratus major anticus, or costoSCAPULARIS,
Is attached inferiorly to the fpinal margin of the fcapula. It then expands, and is inferted by digitations into the external furface of the ribs from the firft to the ninth. By its inferior digitations, this mufcle pulls the fhoulder, at the fame time, downward and forward; by the fuperior digitations, it draws it upward, or towards the head; and finally, by its middle portions, it holds the fhoulder fixed in a forward pofition.
2. the pectoralis minor, serratus minor anticus, or costo-coracoideus.
This mufcle is inferted, at one end, into the coracoid proceis, and at the other, by three digitations, into the anterior furface of the three ribs, from the third to the fifth. The obliquity of its fibres determines the motion of the humeral

Art. II. Muscles of the Shoulder. 26t.
angle of the fcapula downward, and at the fame time moves it forward.
3. the levator scapule, angularis sca= pule, or trachelo-scapularis,
Is inferted into the pofterior and fuperior angle of the fcapula. It proceeds towards the neck, where it is inferted, by flefhy flips, into the tranfverfe proceffes of the vertebra, from the fecond to the fifth. It raifes the fcapula behind, while at the fame time it fomewhat depreffes the humeral angle, as this bone then becomes a kind of lever.

> 4. THE OMO-HYÓIDEUS, CORACO-HYOIDEUS, or SCAPULO-HYOIDEUS,

Extends from the fuperior cofta of the fcapula, near the coracoid procefs, to the bafe, and up to the horns of the os hyoides, into which it is inferted. Its ufe is to pull down the os hyoides a little. It affifts deglutition, more than it contributes to the motion of the fhoulder.
5. the trapezius, cucularis, or dorso-SUB-ACROMIALIS,
Has its infertions, on one part, in the occipital arch, and all the fpinous proceffes, as well cervical as dorfal; and, on the other, is inferted into the whole length of the fpine of the fcapula, and part of the clavicle. This mufcle, like the ferratus magnus, acts in oppofite directions in its
partial contractions: thus the fuperior portion raifes the fhoulder, the middle draws it backward, and the lower pulls it downward.
6. the rhomboides, or dorso-scapularis.

This is fituated under the preceding mufcle. It arifes from the fpinous proceffes of the fifth, fixth, and feventh cervical, and the four firft dorfal vertebræ; it is then inferted into the fpinal edge of the fcapula below its fpine. Its direction is oblique, and it tends outward as it defcends. This mufcle feems calculated for. moving the fcapula backward, while at the fame time it raifes it a little, in confequence of the afcending obliquity of its fibres.

7. the subclavius, or costo-clavius,

Is fituated below the clavicle, occupying, in an oblique direction only, the fpace between that bone and the firft rib. It fixes the clavicle to the breaft in the violent exertions of the fhoulder.
8. the sterno-cleido-mastoideus.

This mufcle, which we have already defcribed in treating of the motions of the head, may likewife be included in thofe of the fhoulder, on account of the action of that part which is inferted into the clavicle; but the motion it produces is very confined.

$$
\text { B. } \cdot I_{12}
$$

Art. II. Muscles of the Shoulder. 263

B. In other Mammiferoùs Animals.

The ferratus major is more extenfive in the inferior mammalia than in man; for it is attached, by digitations, not only to the ribs, but to the tranfverfe proceffes of the cervical vertebræ. This is neceffary in animals which walk upon all fours, to prevent, more effectually, the fcapula from being preffed towards the fpine. This mufcle, with its correfpondent one, forms a fpecies of girth that fupports the thorax. As it has the fame extent in monkeys, it is one proof that nature intended them to ufe all the four feet in walking. The ferratus major in them even furnifhes digitations to all the cervical vertebræ; while, in fome of the carnivora, the digitations extend only to a part of thefe vertebre. In the cat, for inftance, there are four digitations; the dog , the bear, and the rabbit, have five. In the dolphin, (which does not walk,) the ferratus major has no infertions in the vertebræ of: the neck.

The pectoralis minor is wanting in the carnivorous and hoofed animals. The borfe has a mufcle which fupplies its place; it rifes, by digitations, from the ribs; it then paffes to the anterior edge of the fcapula, but in its way it unites itfelf with the fibres of the pectoralis major, fo as to be inferted partly into the humerus. In the

264 . Lect. IV. Anterior Extremity.
dolphin, its place is fupplied by a mufcle, which has only one digitation inferted into the fernum, near to the anterior extremity; above, it is attached to the humeral cavity of the fcapula.

The levator fcapulce prefents many varieties in. the number and infertions of its tendons. For inflance, in monkeys it is not inferted into the angle, tut into the fpine of the feapula, near the acromion, and it is then covered by the trapezius whis.h is not divided. In the Carnivora, and the Rodentia, ir occupies a larger compafs. It approa hes ftill nearer to the humeral extremity of the fpine of the fcapula, and the trapezius being bifid, it paffes between the two parts. In the cal, it has only two fuperior attachments, one into the tranfverfe procefs of the firf vertebra of the neck, and the other into the cunciform procefs of the occipital bone.

In the dog and the bear, it is inferted only into the firft vertebra of the neck; in the rabbit, it is atrached to the cuneiform, or bafilar procefs of the occiput only. Vicq. D'Azyr has confidered this as a diftinct mufcle, and has called it acro-mio-basilaris.

In the focep, it rifes from the firft cervical vertebra, and is inferted into the pofterior part of the fpine of the fcapula. It is entirely wanting in the borfe.

In the dolphin, it is faftened to the tranfverfe procefs of the firft vertebra, but its tendon is expanded

Art. II. Muscles of the Shourder. 265

expanded over the whole external furface of the fcapula.

The trapezius, and fterno-cleido mafluideus of the monkey, very much refemble thofe of man, but in the other mammiferous animals they are fo complicated, that we are obliged to defcribe them together.

In fuch of the Sarcophaga, and the Rodentia, as have not the clavicle perfect, the cleida-mafuidcus (which is very diftinet from the ferno-maftoideus), and the clavicular portion of the deltoides, not being feparated by a fixed bone, form together only one mufcle, acting upon the humerus; this might be named masto-humeralis. The clavicular portion of the trapezius likewife joins them at their point of union, and thefe three portions form one mufcle, called by anatomifts communis capitis, pectoris, et brachit. This clavicular portion of the trapezius is very diftinct from its fcapular part. It is even feparated from it by the levator fcapulx, which paffes between them. It is more or lefs extended according to the fpecies.

Thus we find that in the dog and the cat its fibres proceed partly from the rervical ligament. In the rabbit, there are none but what come from the occiput. In the bear, the anterior portion of the trapezius is again fubdivided into two mufcles. The fibres, which come from the occiput, form a tendon which is inferted into the
fternum, at the fame place as the fterno maftoidcus.

In the fleep, one tendon only proceeds from the maftoid procefs, which prefently divides into two mu\{cular fafciuli: one of thefe goes to the ffernum; and the other, which correfponds with the cleido mafoideus, is confounded with the clavicular part of the trapezius, almoft oppofite to the midde of the neck; and forms, with that and the clavicular portion of the delloides, a fingle mufcle, extendirg to the humerus, as in the preceding fpecies.

In the borfe, there is only what is called in man, the afcendant portion of the trapezius, which is inferted into the pofterior part of the fipine of the fcapuIa. There is alfo a ferno-maftoidens; but inftead of the levator, the cleido-mafoideus, and the clavicular portions of the trapezius and deltoides, we only find a fingle mufcle attached to the martoid procefs, and the tranfverfe proceffes of fome of the fuperior cervical vertebræ, which paffes before the head of the humerus. This mufcle defcends along the internal furface of the arm, to be inferted inferiorly.

The dolphin has not the clavicular portion of the inapesius. This mufcle which is itfelf very thin, covers all the fcapula, and is inferted near its neck. The ferno-mafoideus is very thick, with a large belly; and on the outfide of it there is another mufcle, much fimilar, which rifes

Art. II. Muscles or tie Shoueder. sút:
from the maftoid procefs, and is inferted below the head of the humerus.

We have ftill to defcribe a thin mufcle belonging to this part in the rabbit. It arifes from the fpine of the fcapula, covering the fupra~ fpinalis, and is inferted into the clavicle.

The rbomboides in apes extends as far as the occiput. Its occipital fibres, which in them are fometimes divided from each other, are always feparate in carnivorous animals, and then form a particular mufcle, named by anatomifts occi-pito-scapularis, or lev'ator scapulef magm. nus.

In the borfe, this anterior portion of the rbonsboides is inferted into the cervical ligament only. This is the levator scapule proprius of hippotomifts.

The rbomboides is fmall in dolphins, and has no diftinct anterior portion.

The.coraco-byoideus has nothing remarkable in. monkies. It is wanting in animals that have no clavicle or coracoid proceffes : even in dogs there is none.

The fubclavius alfo exhibits nothing remarkable in monkies; it is wanting in the mammalia that have no clavicles.

It is neceffary to give a particular defcription of the mufcles of the fhoulder in the mole, on account of their fingularity.

The cervical portion of the ferratus major is fimple, exceffively large and turgid, and is only. attached
attached to the laft vertebra. Inftead of the whole trapezius, there are only two bundles of fibres, which proceed from the loins, and are inferted into the pofterior extremities of the fcapula. . Thefe two fafciculi being almoft parallel, would rather pull the extremities afunder than bring them together, were they not connected by a very ftrong tranfverfe ligament. 'The ufe, therefore, of thefe two mufcular fafciculi is to give to the whole anterior part of the body a kind of balance-like motion in an upward direction.

The rbomboides has almoft all its fcapular attachments at the fame tranfverfe ligament which is common to the two fcapulæ. Its other infertion is in the cervical ligament, which is always offified. Its ufe is, therefore, to raife the head with much force.

This renders the mufcle which is analogous to the occipital portion more effectual. Its fibres are parallel to the fpine; they pafs through thofe of the rhomboides, properly fo called, to be attached to the tranfverfe ligament; the anterior extremity is inferted into the middle of the cranium.

The ferno and cleido mafoidei have nothing particular, and the levator fcapule is wanting.

The pectoralis minor is very thin; it is inferted into the anterior part of the firft ribs, and into the ligament that connects the clavicle to the fcapula.

The clavicle has two mufcles: one, which may be called fuperclavius, arifes from the firft bone of the fternum, at the anterior angle of the great head of the clavicle ; the other alfo arifes from the fternum, but lower down, and is inferted near the firft.

We fhall likewife particularly defcribe the motion of the fhoulder in the bat, fince it widely differs from that ${ }_{j}$ of the other mammalia.

The ferratus major is fituated before the pectoralis minor: it is attached to all the ribs, but not to the neck, and is inferted into the external and inferior border of the fcapula.

The fubclavius is only remarkable for its bulk, which is comparatively very confiderable.

The pectoralis minor has three digitations; it is inferted into the coracoid procefs, which is very ftrong, by a broad tendon.

The trapezius is ncither attached to the fpine nor the proceffes of the neck, but to the eleven firft dorfal vertebræ; it is inferted into the triangular furface of the cervical angle of the fcapula.

The rbomboides has no peculiarity.
The levator fcapula arifes from the fifth and fixth vertebre of the neck.

The Aerno-mafoideus is not attached to the clavicle.

C. In Birds.

The fcapula of birds is moved by four mufcles analogous to thofe of the mammalia: but in general thofe of the upper part are very fmall and flender; they are neither attached to the head nor the neck. This conformation is probably connected with the length and flexibility of the neck.

The ferratus major, or subscapularis of Vicq. $D^{\prime} A z y r$ is divided into four or five flat flips, which arife from the one half of the inferior cofta of the fcapula next its free extremity, and which are inferted into the five firft ribs. The firft is almoft parallel to the fpine; the fecond is more oblique; the three laft are thick, and pafs directly towards the fpine, or, in other words, are perpendicular to it.

The costo-scapularis of Vieq. $D^{\prime} A z y r$ is a mufcle which might be taken for a flip proceeding from the ferratus major; but it arifes from the lower cofta of the fcapula more forward, and defcends to be inferted into the firt ribs.

The trapezius is compofed of two portions; one arifes from the fpinous procefles of the laft vertebra of the neck and the firft of the back, and paffes on towards the inferior and interior branch of the fork. The other part is much longer, it adheres to all the fpinous proceffes of the
the back except the firft, and, paffing obliquely forwards, is inferted into the fuperior, or fpinal edge of the fcapula.

The rhomboides is partly covered by the trapezius, and immediately by the latiffimus dorfi: it likewife rifes from the fpinous proceffes of the dorfal vertebra, and is inferted into the moft pofterior part of the fpinal margin of the fcapula.

D. In Reptiles.

In the frog (which has no ribs) the Serratus major has an extraordinary fhape, which appears to be occafioned in part by the want of the cervical vertebre: it forms three diftinct mufcles.

The firft arifes from the occiput, near to the foramen magnum. It divides into two bellies, which are inferted into the fuperior fpinal angle of the fcapula; one on the internal, and the other on the external fide.

The fecond proceeds from the fecond tranfverfe procefs, and paffes under the dorfal portion of the fcapula, towards its fpinal edge.

The third proceeds from the third tranfverfe procefs, and paffes underneath the preceding, keeping ftill nearer to the edge.

There is befides another mufcle proper to the fcapula, fituated upon its internal furface, between the two conftituent parts, which make it
appear broken. It appears to draw thefe two parts clofer together, and by its contraction renders the angle they form with each other more acute.

There is no mufcle analogous to the pectoralis minor.

The place of the levator, or angulanis fcapuld, is fupplied by a very confiderable mufcle which rifes from the bafe of the occiput; it becomes perceptibly fmaller as it approaches the fhoulder, and is inferted into the pofterior edge of the cartilaginous part of the fcapula.

The omo-byoideus is long and thin; it comes from the great inferior horn of the os hyoides, and is inferted under the neck of the fcapula.

The trapezius is wanting.
The mufcle analogous to the rbomboides is very thin. It arifes from the dorfal proceffes, and is inferted into the fpinal edge of the fcapula.

There is no fubclavius mufcle.
The ferno-maftoideus has only one belly, which extends obliquely from the pofterior part of the head, behind the ear, to the neck of the offeous part of the fcapula. Its action is evidently that of pulling the fhoulder towards the head, and raifing it up.

We fhall defcribe the mufcles of the tortoife feparately, as they differ confiderably from thofe of other red-blooded animals. They are only three in number.

One of them; though very unlike the trapezius, is fimilar in its ufe. It rifes from the lower furface
fraface of the back-fhell among the ribs, from the fecond to the fifth. It is very thin, and paffes to the external margin of the third bone of the fhoulder, which feems to correfpond with the fcapula.
A mufcle analogous to the levator fcapula, is inferted into the curve, formed by the joint of the two firt bones of the fhoulder. It arifes by feven flefhy heads from the tranfverfe proceffes of the feven vertebre of the neck.

Another little long mufcle arifes from the inner furface of the back-fhell near the fernal extremity of the firft rib, and is inferted into the dorfal extremity of the firft. bone of the fhoulder. It is perhaps analogous to the coffo-clavius.

Article III.

Of the Bone of the Arm.

A. In Man.

$T_{\text {He arm is formed of a fingle bone, called the }}$ bumerus, which is joined to the fhoulder and forearm. It is received, at onc end, into an articular cup belonging to the fcapula, in which it moves in every direction. It is a long bone, but we flall only here confider its fuperior articulation, or fcapular extremity. It termiVol. 1 .

274 Lect. IV. Anterior Extremity.
nates in a rounded convex and oblique portion, called the bead of the humerus. This part is diftinguifhed from the reft of the bone by a little circular depreffion called the neck. There may be likewife obferved two proceffes, but not very prominent. The poifterior one, on account of its being larger, is called the great tuberofity, (trochiter;) the anterior, being lefs, is called the litule tuberofity, (trocbin.) The feeminences are feparated by a fort of canal, or longitudinal groove, in which the tendon of the biceps, or fcapulo-radialis mufcle, flides. The head of the humerus is retained in the articular cavity of the fcapula by a ligamentous capfule, which rifes from the bony and cartilaginous edges of the cavity, and extends to the neck of the humerus. The tendon of the biceps mufcle, which penetrates into this articulation, produces, likewife, the effect of a ligament. The middle part of the bone is nearly cylindrical; but there are fome eminences towards the fcapular extremity, for the infertion of mufcles. The bone becomes longer and flatter toward the cubital extremity, which we fhall explain in treating of the articulation of the fore-arm.
B. In other Mammiferous Animals.

In all claffes of animals whatfoever the humerus is fimple. It varies little in its form;
and as to its proportion with the reft of the anterio: extremity, we may remark, that, in the mammalia, it is fhorter according as the metacarpus is longer. In the animals that have cannon bones, or a cylindrical metacarpus, the humerus is. almoft entirely concealed under the " fkin of the thorax. It is very long, in proportion to the body, in bats and jloths.

The guenons have the humerus more arched towards the back part than man. Its fpines are fo fharp that its fuperior part becomes a triangular prifm. The great tuberofity rifes much above the head of the bone.

In the pongo and the other monkies, it refembles the fame bone in man, but is fometimes longer or fhorter.

The large Sarcophaga have the humerus arched, with the head elevated confiderably above the axis of the bone. The great tuberofity is very broad, flat, and rifes above the head.

The reft, and the Rodentia, and Edentata, alfo exhibit no difference that is very perceptible, except in the proportional length of the bone, and the elevation of its fpines. In the beaver; for example, it is much enlarged at the cubital extremity, and bears, at about one third from the top, a large tranfverfe 'procefs. Its figure is triangular.

In the bog, the tapir, and the rbinoceros, the great tuberofity is divided into two parts. The T2 linea

376 Lect. IV. Anterior Extremity.
linea afpera in the laft, is terminated below by a very high tubercle.

It is likewife found, though fmaller, in the borfe, in which the little tubercle has alfo a channel.

The Ruminantia, in general, have the great tuberofity very high, and the linea afpera very prominent. In the camel the little tuberofity is the higheft, and hollowed out into a canal.
In the Cetacea the humerus is extremely fhort, rounded at the top, and has, on its external furface, a fmall tuberofity.

The Mole has the moft fingular humerus of all mammiferous animals. It is not only articulated to the fcapula by a little head, but by another, which feems to appertain to the great tuberofity, with a furface upon the clavicle. Between the latter and the head of the bone there is a deep hollow. The creft of the little tuberofity is fo large that it refembles a fquare placed vertically, with the linea afpera at top. The reft of the body of the bone, which is very fhort, is bent towards the top, fo that the part which articulates with the fore-arm points directly upward. From this conftruction it follows that the elbow is elevated above the fhoulder, and the palm of the hand turned outward, which is neceffary for the mode of life of this animal.
C. In

C. In Birds.

The humerus in birds is articulated at once with the fcapula and clavicle by an eminence refembling a portion of a wheel, which is fituated almoft in the plane of the two fpines. Behind the internal fpine, under the head of the bone, there is a deep cavity. The external fpine is thin, and very prominent; the internal is fhorter, and more obtufe.

In general, the humerus is cylindrical in birds, towards its middle part, except in the manchot, which has it fo fingularly compreffed from left to right, that, at its radial extremity, the two bones of the fore-arm are articulated one over the other in the fame line.

In the offrich the humerus is very long, and curved in the direction of the curvature of the fides. It is very flort in the cafforvary.

D. In Reptiles.

The humerus of the tortoife has a very remarkable fhape. As in birds, it is articulated at once to the fcapula, clavicle, and os furciforme, by a large oval head, the greateft diameter of which lies in the direction of the flatnefs of the bonc. A confiderable eminence rifes above this large head, which, by its curvature and its ufes, has fome relation to the olecranon-a procefs which, in this animal, the bone of the fore-

278 Lect. IV. Anterior Extremity.
arm wants. Below the head there is another eminence, lefs projecting, but more rough, which likewife ferves as a point of infertion to fome mufcles, and fupplies the place of the little tuberofity. The reft of the body of the bone is flatted and narrowed towards the middle.

In the crocodile, the humerus is round, but a little bent like an S in its whole length. At the extremity that joins the fcapula, it refembles the tibia: Its head, inftead of being round, is flat; and its tuberofity, which is fingle, is anterior, in the form of a ridge, and fomewhat inclined inwards.

In the other lizards, and in frogs, the humerus exhibits nothing peculiar.

Serpents, having no limbs, have confequently no humerus.

Article IV. Of the Mufcles of the Arm.

A. In Man.

The human humerus is put in motion by mufcles, of which fome arife from the trunk, and others are attached to the fcapula.

The former are:

1. the pectoralis major, of steriohumeralis.
It rifes from the fternum, the fternal portion of the clavicle, and the feven firf ribs. It covers
the
the breaft in front, and is inferted into that part of the linèa afpera which forms the exterior border of the bicipital groove. It brings the humerus forwards and inwards in whatever pofition it may be. It alfo turns it round uponits own axis.

2. The Latissimus dorsi, or LumboHUMERALIS.

This mufcle extends from the os facrum, the creft of the os ilium, the fpinous proceffes of the lumbar vertebræ, the feven laft dorfal vertebræ, and the four laft vertebral ribs, to the pofterior and inferior part of the fmall tuberofity of the humerus, below which its tendon is inferted, broad and thin. This mufcle covers the back part of the trunk; its ufe is to move the humerus backward, and fomewhat downward.

The latter are divided into two kinds.
a. Thofe which arife from the furface of the fcapula.

1. the supra-spinatus, or supra-scapulotrochiterus,
Is fituated in the fupra-fpinal foffa. Its tendon paffes above the articulation, and is inferted into the great tuberofity of the humerus, which it elevates.
2. the infra-spinatus, or sub-scapuloTrochiterus.
This mufcle occupies the foffa below the fpine. Its tendon is inferted into the anterior T 4 furface
3. Lect. IV. Anterior Extremity.
furface of the head of the humerus, which it rolls outward upon its axis.
> 3. THE SUB-SCAPUTARTG, or sCAPULO-TROCHINEUS,

Is attached to the whole coftal furface of the fcapula, and its tendon is inferted into the little tuberofity of the humerus, which it rolls inward upon its axis, and draws it at the fame time towards the body.
b. Thofe which arife from the eminences of the fcapula:

> 1. THE DELTOIDES, or SUB-ACROMOHUMERALIS.

This mufcle arifes from the whole inferior edige of that half of the clavicle next to the fcapula, from the acromion, and part of the fpine of the fcapula. It is compofed of feveral penniform and radiated bellies, uniting in one common tendon, which is inferted into the intemal linea afpera of the humerus, about onethird of its length from the fcapula, and more outwardly than the pectoralis major. It is the moft powerful clevator of the arm.

2. THE TERES MINOR.

This feems to be a portion of the infra-fpinatus. It rifes from the inferior edge of the fcapula, and is inferted into the external furface of the head of the humerus.
3. The teres major, or scapulo-humeralis,

Arifes from the inferior or coftal angle of the fcapula, and paffes fomewhat below the head of the humerus to its internal furface. Its actions accord with thofe of the preceding mufcles.
4. the coraco-brachialis, or coracoHUMERALIS,
Extends from the coracoid procefs, where it rifes by a tendon common to it and the coracoidal head of the biceps, to the middle of the humerus, in the direction of which it paffes along its internal furface. 'This mufcle raifes the arm towards the fhoulder, and in fome cafes may move the fcapula upon the arm.

B. In other Mammiferous Animals.

All the mufcles of the humerus are found in the mammalia, but with fome modifications.

The pertoralis major is generally more flefhy than in man, and compofed of more diftinct fâciculi.

In monkies the clavicular portion extends to the linea afpera, and alfo lower down. The fibres of the fernal portion pafs in three divifions.

There are befides two coftal portions; one anterior and greater, which is inferted into the great tuberofity; the other pofterior and lefs, which is inferted into the neck of the bone 6 below
below the head. This mufcle, therefore, feems to be compofed of three, four, or five others.

In the mammalia that have not the clavicle perfect, and in the dolpbin alfo, there is firt a fternal portion, which runs perpendicularly'to the linea afpera, forming with its fellow on the oppofite fide a mufcle common to both arms ; it is this which produces the croffing of the four legs: it may be called, ambibrachialis communis.
In the Carnivora, in general, this mufcle is fubdivided into feveral portions, part of which is extended to the lower part of the humerus, tending very obliquely backward. This common mufcle is alfo found in the Ruminantia. The Beep has, befides, a fecond mufoulus communis, totally different, which extends from the fternal region to the cubitus, and thus completely enclofes the humerus in the trunk. It feems to have more relation to the panniculus carnofus than to the pectoralis major. In the borfe, this latter is called by hippotomifts the ambibracbialis communis, and produces a kind of croffing of the fore legs.
A fecond portion of the pectoralis major is much larger, and more deeply feated than the common mufcle, arifes from the whole length of the fternum, and paffing obliquely, is inferted near the humerus; even this is fometimes divided into feveral fafciculi.

The latidimus dorfo of quadrupeds differs but little
little from the human, but thofe animals have one mufcle more; for the panniculus carnofus, or cutano-bumeralis, produces a very remarkable tendon, which is inferted into the humerus, clofe by that of the latifimus dorfi. It unites with the tendon of the teres major, and affords ank attachment to one of the portions of the extenfor cubiti.

In the dolpbin, there is a little mufcle, the direction and ufc of which appears to be the fame with thofe of the latiflimus dorja; but it arifes by digitations from the ribs. It is entirely covered by the dorfal part of the panniculus carnofus.

The fuprafpinatus, infrafpinatus, fubfcapularis, seres major and teres minor mufcles, differ from thofe of mankind no otherwife than in their proportion, which correfponds with the figure of the fcapula.

The fuprafpinatus is generally larger than the infrafpinatus; the contrary occurs in man.

In the dolpbin, thefe mufcles, except the jub, fcapularis, are indiftinct and nearly obliterated.
It has already been fhewn, that in animals which have not the clavicle perfect, the clavicular portion of the deltoid is united to that of the traperius. We have now, therefore, only its fcapular porEion to defcribe.

This fcapular portion feems itfelf divided into two parts; one proceeding from the acromion, and the other from the fpine, or, more frequent-

284 Lect. IV. Anterior Extremity.
$\mathbf{l y}$, from the infra-fpinous portion of the fcapula. They unite, intermix croffways, and form a common tendon, which is inferted into the linea afpera of the humerus.

In the fleep the acromial part is very fmall, and there is none at all in the borfe. The deltoides, therefore, which in this animal takes the fame direction as the infra-fpinatus, is called the arductor longus brachif.

The coraco-bracbialis exifts even in thofe animals that have no coracoid proce?s, and arifes from a little eminence of the fuperior border of the fcapula. Its tendon is common with that of the head of the biceps, which rifes from the coracoid procefs in thofe which have the biceps really with two heads.

Monkies have the coraco-brachialis divided into two portions, the inferior of which extends the whole length of the pofterior and internal furface of the humerus.

In the bear the inferior portion is flender, and proceeds to be inferted at the external condyle. It fends off, from its middle, a flip which joins the biceps, and refembles its coracoid head.

In the dog, the cat, the rabbit, and the borfe, the biccps has only one head, and the coracobracbialis confifts only of one part, which is totally unconnected with the biceps.

In the mole, the peftoralis major is of anf extraordinary thicknefs, and almoft as large as iri birds. It is compofed of fix portions, alt inferted

$$
\text { Art. IV. Muscles of the Arm. } 285
$$

into the anterior furface of the fquare part of the humerus. Four of thefe portions arife from the fternum, and are inferted into different edges and angles of this fquare furface; the fifth rifes from the fternum, and covers the whole furface; and finally, the fixth proceeds tranfverfely from one humerus to the other.

The latifinus dor $\sqrt{2}$ is confiderable. It is divided into two portions, and inferted into the pofterior furface of the fquare part of the humerus. The teres major, which is inferted at the fame place, is of an enormous bulk. "It is by the means of thefe three mufcles that the animal is enabled to dig and puth the earth backward. The other mufcles of the humerus exhibit nothing fingular in the mole, except what arifes from the peculiar figure of the bones.

In the bat, the mufcle analogous to the pectoralis major is compofed of three portions, or rather of three diftinct mufules.

One, fituated as ufual, extends from the falient line of the fternum to the head of the humerus, which it covers, and is inferted into the great anterior tubercle.

The fecond rifes from the whole length of the clavicle and the anterior part of the fpine of the fternum. It is inferted behind the great tubercle, above the preceding, and affifts its action in the motions of the wing.

The third is partly covered by the firf: it arifes from the laft ribs, near their fternal car-
tilages. Its fibres afcend almoft perpendicularly below the arm-pit, to be inferted into the fine of the humerus, which is, in this animal, very long.

The latifimus dorfs is only a flefly band, which arifes from the fpinous tubercles of the two laft dorfal vertebre. It has fome connection with the trapezius, and uniting its tendon to that of the teres major, it is inferted into the humerus in the hollow of the arm-pit.

The fupra and infra--fpinati, as well as the fubfcapularis, prefent no variety worthy of notice.
The deltoides has no connection with the clavicle, unlefs, indeed, we confider the fecond portion of the pectoralis major as making a part of it: it extends over the whole external furface of the fcapula, where it forms two portions: the inferior is more thin than the other. They reunite in a tendon, which paffes over the joint, and is inferted into the fine of the humerus.

There is no teres minor. The teres major has nothing remarkable. Its tendon unites with that of the latifiimus dorfi.

The coraco-bracbialis is wanting.

> C. In Birds.

Birds have three pectoral mufcles, all attached to their very large fternum, and atting upon the head of the humcrus.

Art. IV. Muscles ofthe Arm. 287

1. The pectoraits maximus.

This weighs more than all the other mufcles - of a bird's body together. It rifes from the os furciforme, the keel of the fternum, and from the laft ribs, and is inferted into the very prominent linea afpera of the humerus. It is by means of this mufcle that birds exert the fudden and violent motions of the wings which are neceffary for Hight.
2. the pectoralis medius of Vicq. D'Azyr.

This mufcle is fituated in the angle formed by the body and keel of the fernum, and in the interval between the fork and the clavicle. Its tendon paffes through the hole formed by the union of the fork, clavicle, and fcapula, as if it went over a pully, and is inferted into the humerus, which it raifes. By this pully nature has been enabled to place a levator at the lower part of the trunk, and thus bring the centre of gravity farther down, without which the bird would have been liable to overfet in the air.
3. the pectoralis minimus of Vicq. D^{\prime} Azyp,

Arifes from the lateral angle of the fternum, and the bafe of the clavicle: it is inferted under the head of the humerus, and brings this bone clofe to the body.

There are, befides, two little mufcles attached to the internal furface of the top of the clavicle.

They

They are inferted into the great inferior tubercle of the head of the humerus, which they draw towards the trunk.

The latiflemus dor $\sqrt{2}$ of birds is formed of two parts. The anterior extends directly to its infertion in the pofterior furface of the middle of the linea afpera. The pofterior afcends obliquely, to be inferted under the head of the bone. Both are very thin.

Although the fcapula has neither fpine nor coracoid procefs, we fee mufcles analogous to the fupra and infra-fpinati, and the teres major.

The delloides may be diftinguifhed as divided into a clavicular and fcapular part. The latter arifes only from about. the neck of the fcapula. Their infertion is very low down in the humerus.

> D. In Reptiles.

The pectoralis major of the frog is compored of two portions, placed one above the other. They produce two tendons, which are inferted on each fide of the humeral groove.

The latifimus dorfa arifes from the inferior part of the back, where it is thin. It becomes thicher, and is attached to the broad part of the fcapula, which it entirely covers. It is inferted, by a ftrong tendon, into the internal furface of the

Art. IV. Muscles of the Arm.

the humerus, above onc-third of its length from its fuperior end.

In the frog there is neither the fupra nor infraspinatus.

The Jubfcapularis, or coraco-bracbialis, (for the mufcle of which we now fpeak fupplies the place of both,) arifes from the internal furface of the fcapula, at its junction with the clavicle, and is inferted into the interior part of the humerus, about one-third from the head.

The deltoid is formed of three portions. The firft, which is the longeft, and very flender, proceeds from the anterior part of the fternum. The fecond arifes from the union of the clavicle with the fcapula, at the internal furfacc, runs over the bone above the joint, then fends a thin tendon to the firft, in its paffage, and is partly inferted in the linea afpera, and partly in the inferior portion of the humerus. The third is diftinct: it rifes partly from both the fcapula and clavicle, and is inferted into the fcapular extremity of the humerus.

The teres major and teres minor are wanting.
Befides thefe mufcles, in which we difcover an analogy to thofe of mammiferous animals, there is one which arifes from the fecond tranfverfe branch of the fernum, and is inferted into the inner edge of the groove of the humerus by a broad tendon. It may be regarded as an affelant to the pettoralis major.

Vol. I.

This conformation appears to prevail in the falamander.

If the tortoife has fewer mufcles proper to the fhoulder than common, it has an extraordinary number inferted into the humerus.

- That which correfponds to the pectoralis major is compofed of five portions.

Two are fuperficial; one arifes from the edge of the anterior part of the breaft-plate, and proceeds to its infertion in the leffer tubercle of the humerus. The other is much more extenfive : it rifes from a great part of the internal furface of the breaft-plate, and is alfo inferted, by a flat tendon, into the leffer tubercle of the humerus; but it is prolonged by a fan-like aponeurofis, which extends over the inferior furface of the arm, and even the fore-arm.

One of the three deeper portions of the pectoralis major arifes from the greater part of the fecond bone of thefhoulder, and is inferted into the humerus, below its fcapular arriculation; another rifes from the expanfion of the interoffeous ligament, which unites the fecond bone of the fhoulder to the third, and proceeds to join its tendon intimately with that of the preceding portion. Lafly, the third, which is the moft deep feated of all, arifes from the fuperior furface of the third bone of the fhoulder, or that which is next the back-flecll. Its tendon is conjoind with ihofe of the preceding.

The

The mufcle analogous to the deltoides is alfo compofed of two portions; one arifes from a ridge on the anterior part of the breaft-plate; the other, which is its acceffory, is placed more deeply, and united to its correfponding mufcle. They are inferted, by one common tendon, into the leffer tubercle of the humerus, which they draw towards the neck in the action of fwimming.

There is another mufcle much deeper feated, which feems likewife an affitant to the deltoides. It rifes from the dorfal extremity, and all the internal edge of that bone of the thoulder which correfponds with the clavicle, and proceeds to be inferted in the humerus below the leffer tuberofity.

On the internal furface of the humerus we find a mufcle rifing from the loofe extremity of the fternal face of the third bone of the floulder: it is inferted in the humerus, about one-third from its lower end, by a thin tendon. It bears fome relation to the Aerno-radialis of the frog, and performs the fame office.

The lewator brachii is a very thick mufcle, which arifes from the third bone of the fhoulder, the exterior edge of which it furrounds, and is inferted into the procefs of the humerus, refembling the olecranon, which it pulls upward and outward.

A mufcle analogous to the teres major, arifes from the neck of the third bone of the fhoulder,
externally, and is inferted into the humerus, between the two tuberofities. It pulls the humerus backward.

Another mufcle, which feems a fubftitute for the latiflinus dorf, rifes from the interior part of the back-fhell, to which it is attached obliquely, in the interval between the two firft ribs. It is inferted into the body of the humerus, behind the greater tubercle, by a flat tendon. It pulls the humerus toward the upper fhell, when the animal flands upon all its four feet.

A mufcle, the ufe of which feems the fame as that of the levator bracbii, rifes from the whole internal furface of that bone of the fhoulder which anfwers to the clavicle, and is inferted into the whole length of the olecraniform procefs, or great tuberofity of the humerus. It is very fleihy, and appcars to be formed of two portions.

Finally, the mufcle analogous to the fcapuloradialis, or biccps flexor cubiti, arifes from the anterior border of the humeral cavity, and is inferted into the external and fuperior furface of the humesus by a fmall tendon, which reaches as far as the bafe of the radius. It extends the member, and brings it toward the head.

Art. V. Bones of the Fore-Arm. 293

Article V.
Of the Bones of the Fore-Arma.
A. In Man.

In Man the lower quarter of the humerus is gradually enlarged by two projecting lines arifing from its two fides, which diverge to form confiderable tuberofities, named condyles; the internal (épitrockléé) and the external (épicondyle.) The line on the internal fide is the fhorteft, but its condyle projects moft. This portion of the humerus is compreffed behind and before; the anterior furface being convex, the pofterior flat. The inferior part between the condyles has two eminences which round off this end. The internal, which has the form of a pully, that is to fay, of a circular channel flightly concave, is fomewhat oblique, and its pofterior extremity larger, and turned more outward: above there is a large depreffion to receive the olecranon.

The fecond eminence is fimply convex, and terminates pofteriorly, exactly below the inferior border of the bone, in fuch a manner that its extent is only half of that of the pulley.

The ulna, which is larger towards the humerus, has a femicircular, or figmoid cavity, which receives the pulley of the humerus, by which it feems to have been moulded. Its poftcrior edge

294 Lect. IV. Anterior Extremtty.

is formed by the olecranon, and the anterior, which is the moft prominent, by the coronoid procefs.

The centre of motion is not in the axis of the humerus, but in that of the ulna, on account of the obliquity of the pulley; fo that, in bending the arm, the lower extremity of the ulna is brought nearer the body.

This extremity is not fo large as the other; in has a little head with a flat furface, round and prominent at the external fide, and prefenting a fyloid procefs at the internal.

The bone called radius has a round head, with a flightly concave articular furface, anfwering to the external procefs, or leffer head of the humerus, and capable of moving upon it as the ulna does upon the pulley. But this head is, befides, capable of turning upon its own centre; this is facilitated by an articular furface of the external edge of the coronoid procefs of the ulna, upon which the rounded edge of the head of the radius refts. The inferior head, which is much larger, particularly at the external part, has a fimilar furface, which refts upon the outward edge of the inferior head of the ulna; and as the oppofite edge of this inferior head of the radius is farther from the axis of motion, when the fuperior liead turns upon its centre, that edge defcribes a circle round the little head of the ulna. In this motion the radius carries along with it the hand, which turns, at this time,

Ast. V. Bones of the Fore-Arm. 295

upon the femilunar bone that refts upon the little head of the ulna, like a door upon its hinge.

Hence arifes the motion of Jupination, when the radius forms the outward edge of the forearm, and the palm of the hand is turned forward; and that of pronation, when the radius conftitutes the internal edge of the fore-arm, and the palm of the hand is directed backward.

The ligaments which unite the bones of the fore-arm to the humerus, and to each other, are of various forts. There are, in the firft place, the articular capfules of the correfponding furfaces: next, there are, on each fide of the elbow, two ligaments: one proceeds from the internal condyle, and is inferted into the coronoid procefs; and the other, proceeding from the external, is inferted into the capfular ligament of the radius. The two bones of the fore-arm are kept in their places by the interoffeous ligament which paffes from the ulnar edge of the radius to the radial edge of the ulna, and by a little oblique ligament which extends from the fmall tubercle of the olecranon to the tuberofity of the radius.

B. In other Mimmiferous Aimimals.

In monkies the bones are arranged in the fame manner as in man, except that in the cynocephalus, the mandrills, the maggots, the guenons, and fome U_{4} other
other fpecies, the coronoid procefs of the ulna is narrower, and the articular furface of the radius deeper. In the fapajous, we generally remark a hole pierced in the internal falient line of the humerus. This bone is often perforated at the bottom of the cavity which receives the olecranon in the extended pofition. Their ulna is more compreffed than the human.

The articulation of the fore-arm of the Pedimana, refembles that of the fapajous.

The bat and the fiying lemur have no ulna, or, at moft, only a rudiment of it, in the form of a ftyle, fituated under the radius. It remains diftinct until it reaches within a quarter of the length of that bone from the lower end : confequently thofe animals have no motions of pronation and fupination.

In the Carnivora, the olecranon is compreffed, and extended farther back than in man. The pulley is not concave before, becaufe the articular furface of the radius, increafing with the head of the bone, cuts off too much of the coronoid procels.

In the dog the head of the radius has a cavity for the little head of the humerus, and a ridge for the furrow that divides it from the anterior part of the pulley. On this account the rotation of the radius becomes obfcure. The pofterior border of the figmoid cavity enters into the hole which perforates the bottom of the pofterior
cavity of the humerus. The external linea afpera is more confiderable, and the internal has a, hole as in the fapajous.

Notwithftanding the fhortnefs of the bones in the feal, their articulation is the fame.

It is the fame in fome of the Rodentia, as the paca, agouti, beaver, (which laft has the linea afpera very prominent.) In others, as the cavy, the bare, and the rat, the coronoid procefs of the ulna is entirely effaced, and we fee nothing but the radius at the anterior part of the articulation. Its head forms a ginglymus, having a cavity for the little head of the humerus, and a ridge for the anterior part of the pulley.

The marmotte, the porcupine, \&xc. hold a middle place with refpect to the fmallnefs of their coronoid procefs. Thefe animals have no hole in the linea afpera of the humerus.

The jerboa has proceffes like the monkey.
The Pachydermata, as the rbinoceros, the bog, and the tapir, have the radius entirely anterior, and the ulna behind. They move together by ginglymus_in a lingle pulley. The little head of the humerus is quite effaced inferiorly. The radius is at the internal, and the ulna at the external fide of the fore-arm. Though thefe bones are diftinct, there is not therefore any poffible rotation.

In the eleploant, the anterior part of the figmoid cavity, or coronoid proccfs, is divided into two nidges, with hollow furfaces turning upon the

298 Lect. IV. Anterior Extremity.
projecting edges of a fingle pulley. Between them is the head of the radius; it is fmall, and fuftained by the external ridge and middle channel of this pulley; for, as it is oblong, it cannot turn uponit. The inferior part of the radius is directed towards the internal fide; the fore-arm is therefore always in a ftate of pronation. The inferior head of the ulna is greater than that of the radius, and this is the only inflance of the kind in mammalia.

In the remaining animals the ulna is only an immoveable appendage to the radius; and its figmoid cavity a continuation of the articular furface of the head of the radius, which performs only the motion of a ginglymus upon a fingle pulley.

The ulna is anchylofed with the radius almoft its whole length in the Ruminantia. It is only diftinguifhed from it by a furrow, which has, however, a chink at top and bottom in the giraffe, Aags, and fome gazelles, and at the top only in corvs and fieep, but in no part in the camel and dromedary.

In the Solipeda we find a furrow with a flit at the top.

The Solipeda, the Ruminantia, and the Pachydermata, have the inferior head of the radius compreffed behind and before, and the back of the carpus always turned forward.

From this varicty of ftructure it is obvious that s the rotation of the hand becomes more difficult in proportion as the animal ufes it lefs for grafping,
Art. V. Bones of the Fore-Arm.
grafping, and employs the anterior extremity more exclufively in ftanding and walking. Indeed thefe latter ufes require a conftant pronation, and a firmnefs which is incompatible with fupination.

For a fimilar reafon bats and birds are deprived of rotation. If their hand and radius could turn, the refiftance of the air would produce that effect at every effort of their wings; the plane of which would then become vertical, and flight be thereby rendered impoffible.

Let us now confider fome animals whofe ftructure could not be brought within the general view we have taken.

In the nole, the pofition of the humerus is fuch that its lower head is the moft elevated ; it happens therefore, that, when the fore-arm is in a middle ftate between pronation and fupination, the elbow is carried upward, the radius and thumb turned downward, and the palm outward. Each condyle has a procefs in the form of a hook; pointing towards the fhoulder. The olecranon is very long, and terminated by a tranfuerfe plate. The ulna is a compreffed !ongitudinai lamina. A very ftrong ligament unites the palmar fafcia and the wrift to the internal condyle. The cdge of the head of the radius being prolonged under the little head of the humerus, it feems incapable of turning. The hole is found in the internal linea afpera.

In the feal the ulna is compreffed, inftead of the great figmoid notch, there is one furface for the articulation of the humerus, and another oblique one for that of the radius. This has a large head, the internal edge of which runs in the pulley. The body is compreffed, and very broad downwaid. There is a hole in the internal linea afpera, and the olecranon is compreffed, high and fhort.

In the lamantin the fuperior and inferior heads of the two bones aro anchylofed together.

In the dolpbin thefe two bones are compreffed and flat, and feem united by fynchondrofis with the humerus and carpus.

They are fimilar in the cacbalot, and without doubt in all other Cetacea.

C. In Birds.

The lower end of the humerus is nearly alike in birds and mankind. There are in the fame manner between the condyles, two articular proceffes, of which the external is not a portion of a fphere, but rather a portion of a pulley; fo that the radius may eafily move upon it, but not turn upon its own centre. That which anfwers to the pulley is entirely convex and round. The ulna is capable of extenfion and flexion upon it, by means of a cavity which it poffeffes. It bears alfo another leffer cavity upon the external procefs. The olecranon is very fhort.

The

$$
\text { Art. V. Bones of the Fore-Arm. } 30 \text { I }
$$

The radius, which is flenderer than the ulna, remains parallel to it. Its lower head is lefs than that of the ulna, and terminates in a triangular furface.

The inferior head of the ulna ends in the fegment of a pulley, on which the fecond bone of the carpus performs the motions neceffary for the adduction and abduction of the hand.

The mancbot has this part fomewhat differently conftructed. The bones of the wing in this bird are extended in the fame plane, like thofe of fins. The radius and ulna are quite fat, and articulated by arthrodia to two tubercles, placed one above, and the other at the bottom of the anterior edge of the humerus; fo that the wing of the manchot is to that of other birds what the thoracic member of the Cetacea is to that of the other mammalia.

D. In Reptiles.

The humerus of the crocodile terminates in two round tubercles. The hollow head of the radius turns upon the external one. Between them the round head of the ulna is fituated, but it has neither olecranon nor figmoid cavity. In the upper part it is, the largeft of the two bones, but the fmallef below.

There is nearly the fame conformation in the cameleon, but the bones are more elongated, and the
the inferior head of the radius is lefs than that of the ulna.

In the frog the fingle bone of the fore-arm is articulated by a concave head, with a large round tuberofity on the bafe of the humerus, between its two condyles. On each fide, where the lower part of this bone becomes larger, we obferve a furrow, which is the only veftige of a diftinction into two bones.

The two bones of the fore=arm of falamanders are fituated one above the other. The ulna, which is the loweft, and fomewhat longeft of the two, has no olecranon; but there is a fort of rotula, in the tendon of the extenfor mufcles. The ulnar extremity of the humerus is much enlarged. The articular furface which terminates it is convex, and permits the radius and ulna to turn together in every direction.

The two bones of the fore-arm in the turtle are always in a forced fate of pronation. The radius, which is much longer than the ulna, and fixed to it by a cartilaginous fubftance, is the loweft, and extends even under the carpas.

Thefe two bones much refemble each other in the humeral extremity, being formed by a fingle concave furface received upon a correfpondent pulley of the humerus. Their articulation is fuch that it allows them to move together laterally, and a little upward and downward in the action of fwimming.

Art. VI. Muscles of the Fore-Arm. 30 3

Article Vi.

Of the IIufcles of the Fore-Am.

1. Of the Fifeors.
A. In MIan.

The ulna, in the human fpecies, has but one kind of motion upon the humerus, flexion and extenfion.

The flexor mufcles are :

1. THE BICEPS FLEXOR CUBLTI, or SCAPULO-
RADIALIS. .

This arifes by two tendons, one internal, and common to it and the coraco-brachialis, and attached to the coracoid procefs; it is very fhort: The other is external, and much longer; it comes from the fuperior edge of the glenoid cavity of the fcapula, and runs over the head of the humerus, into the channel between the two tubercles. The mufcle is inferted inferiorly into a tubercle on the ulnar fide of the radius, fomewhat below its neck.
2. the brichialis internus, of humeroULNARIS,
Is attached to about one third of the lower and anterior pare of the humerus, and is inferted
by a tendon into a tubercle, before the coronoid. procefs of the ulna.

13. In other Mammiferous Animals.

Thefe two mufcles are fimilar in moikies, except that the brachialis internus afcends almoft to the neck of the humerus.

In the Carnivora the fcapulo-radialis cannot be called biceps, as it has only one head, which arifes from the edge of the glenoid cavity of the fcapula. In the bear, however, the coracoid head of this mufcle is reprefented by a little flip fent off to it by the coraco-brachialis.

The bracbialis internus arifes from the pofterior and exterior part of the humerus, and is fituated at the external part of the fcapuloradialis. Its infertion is the fame as in man.
The fame conformation obtains in the Rodentia, Ruminantia, and Solipeda. In the laft family, however, the hippotomifts have given thefe two mufcles the names of fexor cubiti longus et brevis.

> C. In Birds.

In Birds the fexor longus, which does not exactly correfpond to the biceps, arifes by a long tendon from the fcapula, and by a very fhort one from the humerus; below its inferior tubercle. It is inferted into the ulna. The flexor brevis

Art. VI. Múscles of the Fore-Arm. 305
is extremely fmall; it arifes from the internal linea afpera, and paffes, after expanding a little, to its infertion in the internal furface of the head of the ulna.
There is, befides, the flexor profundus of Vicq $D^{\prime} A z y r$. It arifes from the external condyle, inder the fupinator brevis, and extending over the fuperior third of the ulna, is inferted into the part next the radius.
2. Of the Extensors.

> A. In Man.

The human fore-arm is extended by the triceps extensor cubiti, or olecrano-scapularis, compofed of three parts uniting in a common tendon inferted into the olecranon. They are diftinguifhed by different names, The firft, which arifes from the edge of the fcapula, below the glenoid cavity, is called the extenfor longus. The fecond, which arifes from the pofterior furface of the humerus, below the head, is named the extenfor brevis. Finally, the third, which arifes from the external lateral furface of that bone, is denominated the brachialis externus.

There is a little bundle of flefhy fibres which come from the external condyle of the humerus, and are inferted into the upper part of the ulna: it affifts the preceding mufcles, and is called ANCONEUS, OU EPICONDYLO-ULNARIS.

Vol. I.
B. In

B, In other Mammiferous Animals.

In the monkey there is a fourth portion, which arifes from the common tendon of the latifimus dorfi and teres major. Befides, the fuperior tendon of the extenfor longus reaches almoft over the whole inferior edge, or cofta of the fcapula.

This fourth part is alfo found in the Carnivora; but in thefe animals the part anfwering to the exilenfor brevis in man, is divided into fevesal portions, which arife from different points of the humerus. This portion is divided into four in the dog, in which the bracbialis externus is extremely large, and the extenfor longus occupies the whole pofterior edge of the fcapula. In the cat, which has the extenfor longus and bractialis externus, like thofe of mankind, it is divided into two.

Among the Rodentia, the rabbit has three portions like thofe of man. There are, befides, that which arifes from the common tendon of the latiffimus dorfi, and teres major, and a fafciculus, which, having the fame origin as the extenfor longzis, mixes its fibres very high up with the bracbialis internus.

The borfe has three portions like man; namely, the extenfor longus, called, by Bourgelat, extensOR MAGNUB, which is triangular, and very thick; the bracbialis externus, or extensor brevis; and the extenfor brevis, or extensor

Art. Vi. Miuscles of the Fore-Arm. 307

Medius of Bourgelat. There is, befides, the fourth portion, which arifes from the common tendon of the latiflimus dorfi and teres major, but which appears very evidently to adhere to the edge of the fcapula.

The great ftrength and complication of the extenfors of the fore-arm in quadrupeds; have their utility in progreffive motion. They perform, in thefe animals, the fame function in the anterior extremity, that the extenfors of the heel do in the pofterir extremity, and are exerted to carry the body of the animal forward, when the foremoft foot is planted on the ground to fupport it. The Cetacea, in which the two bones of the fore-arm are not moveable upon the humerus, want thefe mufcles.
The little mufcle called anconeus in man, is found in all the above-named animals.

The bat has only one flexor and one extenfor mufcle to the fore-arm. The fuperior part of the flexor is formed of two flemy bellies, one of which arifes from the upper part of the humeral cavity of the fcapula, and the other from the coracoid procefs. Their common tendon begins about one third of the length of the humerus from its head, and is inferted into the anterior furface of the humeral extremity of the fingle bone of the fore-arm.

The extenfor is likewife compofed fuperiorly of two bellies, the tendon of one of which is attached behind, and to the large tubercle of the X_{2}
humerus, and that of the other to the top of the humeral angle of the fcapula. Their fibres join about one third from the top of the humerus; they foon after form a tendon, which paffes behind the joint, and is inferted into the olecranon. It contains, in its fubftance, a kind of rotula.

> C. In Bircls.

1. Birds have the extenfor cubiti compofed of two. portions; one proceeding from the fcapula, and called, by Vicq. D'Azyr, extensor longus; the other from the humerus, forming the EXTENsorbrevis of that Anatomift. There is alfo an ANCONEUS MINOR.

3. Oftie Supinators.

The bones of the fore-arm move one over the other, and give to the hand that motion by which the palm is turned upward or downward. Thefe motions are termed fupination and pronation.

> A. In Man.

Supination in man is performed by two mufcles, which are called the long and fhort fupinators.

1. tie supinatorradibrevis, of epicon-DYLO-RADIALIS,
Arifes from the external condyle of the humerus, and the adjacent part of the capfular ligament.

Art. VI. Muscles of the Fore-Arm. 309
ligament. It proceeds obliquely, and embraces the fuperior part of the radius, which it turns upon its axis, from within, outwardly.
2. the supinator radithongus, or humero-super-radialis,
Arifes, likewife, from the external condyle, but above the preceding mufcle. It produces a thin tendon, which is inferted into the lower head of the radius, which it moves round that of eht ulna, from within, outwards.
B. In other Mammiferous Animals.

The monkey has precifely the fame mufcles.
The bat has no mufcles intended for fupination, as that motion would deprive it of the faculty of flying.

The cat and dog have the fupinator brevis, but the longus is wanting.

The tapir has neither. Thefe mufcles are likewife wanting in the Pachydermata, the Ruminantia, and Solipeda.

> C. In Birds.

Thefe animals have no fupinator mufcles.

3 \%o Lect. IV. Añteroor Extremíty.
4. Of the Pronators.

> A. In Man,

Pronation is performed by two mufcles.

1. Thepronator radit teres, or epitrochla RADIALIS,
Is fittiated oppofite the fupinator brevis. It arifes from the internal condyle of the humerus, and is inferted into the interior and fuperior part of the radius.
2. THE PRONATOR RAOHI QUADAATUS, or CUBITO-RADIALIS,
Is extended directly between the inferior or carpal quarter of the ulna and radius, upon their internal furface.

B. In other Mammiferou's Animàls.

The moukey and the Carnivora have thicfe tivo mufcles difpofed in the fame inanncr.

The bat, which has only one bonc of the forearm, or only a rudiment of the ulna, wants the pronator mufcles.

The rabbit has only the pronator teres, the action of which is very much confined on account of the immobility of the radius.

The Ruminantia and Solipeda have no pronators.
In the Cetacea, which have not the fore-arm moveable

Art, VI. Muscles of the Fore-Arm. 3 In moveable upon the humerus, there are no mufcles calculated for fupination or pronation. Some aponeurotic rudiments of mufcles are merely expanded over the whole furface of the bones, and ftrengthen their articulations.
C. In Birls.

Birds have two mufcles which occupy the place of the pronator teres, and have fimilar infertions ; they feem to act as flexors.

There is alfo a fmall one inftead of the fupinator brevis, which feems intended to bend the fore-arm, fo that their ufes are totally changed.
5. Muscles of the Cubitus in Reptiles.

The frog has, properly fpeaking, no biceps: Its place is fupplied by another and much ftronger mufcle fituated on the breaft under the pectoralis major, with which it has the fame infertions. At the articulation of the humerus it fends out a ftrong tendon, which paffes along the groove of the humerus, and through a tendinous ring formed by the two parts of the pectoralis major under the deltoides. It is inferted into the humeral extremity of the radius, and may be named sterno-radialis.

There is no bracbialis internus.
The triceps is compofed of three parts, nearly as in man, but they are proportionably larger.

$$
\mathrm{X}_{4}
$$

There

There is but one fupinator, which arifes from. the external condyle, and is inferted into the carpus.

There is alfo but one pronator, which rifes from the internal condyle, and is inferted into the carpus.

In the turlle thefe mufcles are almof entirely aponeurotic, and produce but very little motion, the place of the member being fupplied by a fin as in the Cetacea. In general the mufcles of the humerus produce the motions of the forearm.

Article VII.

Of the Bones of the Hand.

The hand is compofed of a great nuinber of little bones, which render the fmalleft parts extremely moveable. Some are fituated in the fuperior part, or that adjacent to the fore-arm. Thefe are called the bones of the carpus or wrift.

1. Of the Bones of the Carpus.
^. In Man,

They are little, and prefent feveral furfaces which correfpond to each other at the points of their articulation, They are difpofed in two.
ranges
ranges, each compofed of four bones ; the firft range is articulated to the depreffions at the extremities of the radius and ulna. The radius oppofes to them a large furface, truncated towards the ulna, and fomewhat hollow, bearing a point on the internal fide. The articular furface of the ulna is confiderably fmaller.

Two of the little bones of the firft range are joined to the radius; one of them is called the faphoides, and the other the lunare. A third articulates with the ulna, and is called the $c u$ neiforme. This laft bears upon its infide, near its ulnar border, a little round bone which projects towards the palm of the hand, and is called pijiforme, or inordinatum, according as it is confidered with refpect to its form or its fituation.

Thefe three bones of the firft range, which are articulated to the fore-arm, are retained in their fituation by a very loofe capfular ligament, which contains within it an interarticular cartilage of a triangular form. Ligamentous fibres alfo extend to the cunciform bone. Thefe arife from the articular depreffion of the ulna; and are called the exterial tranfuerfe ligament. There are two other ligaments nearly fimilar, on the infide, which come from the fyloid procefs of the radius; the one is inferted into the fcaphoides, and the .other into the tubercle of the femilunar bone.

In the fecond range of the carpal bones two are articulated to the fcaphoides. Thefe are the trapczium, which fupports the firft phalanx of

3 34 Lect.IV. Anterior Extremity。

the thumb, and has a fharp eminence within the palm of the hand; and the trapezoides, to which the metacarpal bone of the index is articulated. The next is the os magnum, which is articulated both to the fcaphoides and lunare, and fuftains the metacarpal bone of the middle finger, and a fmall part of that of the ring finger; the laft is the unciforme or book-bone, which is articulated to the os cuneiforme; it fupports bath the ring finger and the little finger, and produces towards the palm of the hand a large procefs in form of a hook.

The carpus moves upon the fore-arm both forward, backward and fideways; but though the motions of its parts, with refpect to each other, and the metacarpus, are quite complete, they are fearcely apparent. This mechanifm produces great deficacy of movement in the "bones of the carpus; yet fuch is the effect of their union, that the 'whole hand may be moved 'by a fingle mufcle inferted into one of the bones that compofe it.

A capfular ligament unites the firft range of the bones of the carpus to the fecond, and another joins thefe to the articular bafes of the metacarpal bones. The other ligaments of the carpus are fitted to unite together, in different modes, all thefe bones. Their figure and direction are therefore very various.

B. In other Mammiferous Animats.

The carpus of the monkey has one bone more than that of man. It is fituated between the bafes of the pyramidal and great bone. It feems to be produced by a divifion of the trapezoid. The os pififorme is more prominent, becaufe it is longer, and ferves as a heel to the hand of this animal.

There are, befides, almoft always certain offified points in the tendons of the mufcles, which are commonly confidered as fupernumerary bonés. There are two, for inftance, in the filibom and the maggot; one in the tendon of the ulnaris externus, upon the joint of the pifiform and the cuneiform bones; the other without the range on the edge of the fcaphoides and trapezoides. In the fapajous the former is wanting.

In the rouffette, or ternate bat, there are two bones in the firft range, namely, a large one belonging to the radius, and a very fmall one anfwering to the ulna: the four ordinary bones are found in the fecond range : the third bone, which correfponds with the fecond finger, has a very large furface towards the inner part of the hand.

In the Carnivora in general, but efpecially in the dogs, cats, bedge-bogs, jbrewos, bears, and feials, the fcaphoid and lunar bones only form a large fingle bone by their junction. In the cats
there is at the internal edge of the carpus a little fupernumerary bone refembling the pififorme in man, but fituated at the oppofite fide. The pififorme in the Carnivora is very long, and ferves as a fort of heel to the anterior feet. This laft peculiarity does not occur in the feals.

The bone analogous to the os magnum in man, is very fmall towards the back of the carpus. Thefe that have only a rudiment of the thumb, as the byena, have the trapezium very fmall.

The fame rule applies to the glutton; but that animal has alfo a ftyloid appendix to the carpus, fituated below the os fcaphoides.

In the mole there are the fame nine bones as in the monkey, and, another fimilar to the blade of a fcythe, with which the radial border of the hand is furnifhed throughout its whole length: This bone caufes the great fize and fhovel-like figure of that member, which fuits the habits of the animal. The mole has, befides, this fingu-larity-its toes are very fhort, covered by the fkin and the great-toe nails only vifible on the outfide.

With refpect to the Rodentia, the bare has bones like the monkcy; but the beaver, the marmot, the fyuirrel, and rats, have, like the Carnivora, a fingle bone for the fcaphoides and lunare. The fiipernumerary bone is as large as the common pififorme, and often larger. It fometimes fupports a fecond fupernumerary bone, as in the jcriboa and marmot; fo that on each fide
of the range there is an irregular bone of equal magnitude.

The pyramidale in the Rodentia is, in general, divided in two, as in the monkey. The porcupine differs only in this, that the pyramidal bone is not divided, and that there is a fupernumerary bone between the pififorme and the metacarpal bone of the fifth toe. It is attached to the os unciforme.

In the Cavys, the fcaphoides and the lunare are united without any fupernumerary bone. There is, however, a fmall fupernumerary bone in the guinea-pig. The os pyramidale is not divided in the paca and agouti, though in the cavy, properly fo called, as well as in the guinea pig, it is divided. In both thefe animals the only veftige of the thumb is a finall bone fituated upon the trapezium, with which it is articulated. This rudiment of the thumb confifts of three fmall bones in the marmotte and the agouti.

The two-toed ant-eater has four bones in the firft range of the carpus; two radial, one ulnar, and one long pififorme without the range. There are only two bones in the fecond range; they correfpond with the fecond and third fingers. On the radial edge of the firlt there is the veftige of a thumb formed of a fingle piece. On the ulnar extremity of the other there is a half-articulated veltige of the ring finger: there is alfo a much fmaller bone in a fingle piecs, which is the rudiment of the little finger.

The

318 Lect. IV. Anterior Extremity.

The three-toed folth has only five bones in the carpus; three in the firft range, the pififorme being wanting; and only two in the fecond.

The carpus of the pangolins appears to have feven bones, like that of the Carnivora. The nine banded armadillo has eight, and a rudiment of the little finger.

The carpus of the elepbant, like that of man, has eight bones, but they have a different configuration. The pififorme is clongated : the others are cuneiform.
Among the Pachydermata the bog has, in the firft range, four bones fimilar to thofe of man; but in the fecond range the trapezium is very fmall, and no veftige of the thumb appears upon it: it is the fame with refpect to the tapir, whofe forefoot differs from that of the hog only in the lateral toes being larger. The ftrufture of that foot is exactly fimilar in the bippopotamus.

The Rbinoceros has only three toes; but as the pyramidale, the os magnum, and the unciforme, belong each to one of the three, the trapezium only is wanting. There is, however, a fupernumerary bone on the edge of the fcaphoides, and one on that of the unciforme, as in the porcupine.

The Ruminantia have the four bones that ufually belong to the frift range; but they are more narrow in proportion to their length. Moft of them have two in the fecond range. The camel,

However, has three. The Solipeda have four in the firft range, and three in the fecond.

The bones of the carpus in the dolphins and other Cetacea, are very much flattened, almoft all of a hexagonal figure, and form by their union a compact furface refembling a pavement. There are three bones in the firft range, and only two in the fecond.

2. Of the Bones of the Metacarpus.

Each of the fingers is fupported at its bafe by a long bone which is united with fimilar bones belonging to the other fingers, in fuch a manner as to form with them only very obfcure motions. Thefe are called the metacarpal bones.

A. In Mrar.

The thumb, which has only two phalanges, is the only finger the metacarpal bone of which is capable of a confiderable feparation and approximation with refped to the others. The other metacarpal bones cannot be feparated beyond the extent at which they are fixed by the ligaments between them, called the inter-metacarpal ligaments. Thefe bones are befides faftened to thofe of the fecond range of the carpus, by a number of articular ligaments, which are divided into the palmar, the fub-palmar, and the lateral.

320 Lect. IV. Anterior Extremity.

At the digital extremity of each metacarpal bone there is a fmooth tubercle, which receives the firft phalanx of each finger. The carpal extremity exhibits feveral furfaces, of which the principal one correfponds with the bones of the carpus, and the other fmaller and lateral ones with the neareft metacarpal bones. Thefe bones are almoft ftraight in man.

B. In other Mammiferous Animals.

The Mammalia in general have as many bones in the metacarpus as they have toes: In the Ruminants and Solipeda, however, the two metacarpal bones are, at a very early period, united into one bone, called the cannon bone.

The length of the metacarpal bones varies in proportion as the animal walks more or lefs on the extremities of the toes, or as it ufes the anterior feet, like a hand, to feize objects.
. The whole of the metacarpus is elevated, and forms what is vulgarly called the fore-foot, in dogs, horfes, fheep, 8xc.

In the threc-loed /loth, the three metacarpal boncs are united into one at their bafe, and there is joined to them the rudiment of a fourth bone; at leaft this is the cafe with the adult individual preferved in the Mufeum.

The bones of the metacarpus are likewife intimately joined together, and are exceedingly flat in the Cetacea.
III. The

3. Of the Bones of the Fingers.

The fingers are the free and moveable parts which terminate the hand.

A. In Man.

They are five in number. Each of them, the thumb excepted, is compofed of three phalanges, the firft of which, or that which articulates with the metacarpal bones, is the longeft. The fmall. eft is that which terminates the finger, and which bears the nail (unguinal.) It is eafy to diftinguifh the phalanges from one another. The bafe of the firft. has a fmooth oblong articular cavity, which correfponds with the digital extremity of the metacarpal bones. In the fecond the articular furface of the bafe is compofed of two fmall foffr, feparated from each other by a little projecting eminence. Finally, the laft phalanx is terminated by a fcabrous and inarticular furface.

Thefe three bones gradually diminifh in thicknefs, but they are nearly ftraight throughout their whole length. They have an articular capfule and lateral ligaments at each of their extremities. There are, befides, a number of ligamentous fibres and vaginee, by which the tendons of the mufcles of the hands, inferted in thofe bones, are preferved in their proper pofition.

Vol.I.
Y
B. In

B. In other Mammiferous Animals.

If we include the rudiments, which are fometimes very imperfect, and frequently concealed under the fkin, there are never lefs than three, nor more than five toes, on the anterior feet of the Mammalia.

The Solipeda have two imperfect and one perfect, in all three.

The rbinoceros has three perfect.
The Ruminantia, two imperfect and two perfect, in all four.

The tapir and bippopotamus have four perfect.
All animals with claws have five, reckoning the perfect and imperfect.

Every perfect finger has three phalanges, except the firft, on the fide of the radius, or the thumb, which never has more than two. Thefe phalanges are capable of complete flexion, but none of them can be extended beyond a right line, except the firft, and, in fome fpecies, the laft.

The Quadrumana, like man, have the thumb feparate, and capable of being oppofed to the other fingers. In this confifts the real characteriftic of the hand; but the human thumb is always longer, in proportion to the other fingers, than that of the Quadrumana, whofe hand, in this refpect, does, not poffefs the perfection of ours. It is even obliterated, and concealed under the akin, in the coaita (Simia panifous Linnei.)

The laft phalanx, or that on which the nail is placeds $_{5}$
placed, is lefs flat and more pointed than that of man. The bones of the metacarpus and the firft phalanges, are alfo much more curvated towards the palm of the hand.
The rouffets and common bats have the phalanges exceedingly long, particularly the laft, whicle are very much pointed, and have no nails. The thumb, however, is not fubject to thofe deviations. It is fhort, and has a nail.

In the Carnivora, the thumb remains parallel to the other toes; by this conformation, thefe animals are deprived of the faculty of pinching, or feizing fmall objects. In the feal the great toe is longer than the others; it is almoft of an equal length in the bears, badgers, racoons, and coatis. The opofums have it a very little fhorter.

It is obvioully fhorter in weafels, civets, cats, and dogs.

It is obliterated and reduced to a fingle phalanx in the byona.

The form of the laft and fecond phalanges is very remarkable in the family of cats, the individuals of which have the power of raifing their claws, left they fhould be blunted by remaining on the ground while they walk.

The fecond phalanx is triangular. Two of its furfaces are lateral, and one inferior. The internal lateral furface, or that which is next the thumb, exhibits a kind of twift, in confequence of which the middle part is rendered oblique, and as it were hollowed.

The third phalanx, or that to which the claw is attached, is ftill more fingular in its form, its articulations and its motions.

The figure of this phalanx is that of a hook, confifting of two parts; one part which is directed forward, and is curvated, cutting and pointed, receives the claw, the form of which is nearly the fame. The bafe of this firft portion forms a kind of offeous hood, into which the bafe of the nail is received as in a fheath, but in fuch a manner that it cánnot be pufhed backward. The fecond part of the hook is fituated pofteriorly. It rifes almoft vertically, and is only articulated at its moft inferior part. It is prolonged beneath the articulation in two appendices, to which are attached the two mufcles that project the claw, and bend the phalanxmotions which take place at the fame time. The articulation of this bone is indeed fo difpofed, that, upon its extenfion, which takes place greatly beyond a right line, it experiences an inverfion by being turned upwardly and pofteriorly on the fecond phalan \dot{x}, towards the internal or radial fide. In this fituation the lateral depreffion of the fecond phalanx ferves to receive the third, and the point of the claw far from touching the ground is directed upward.

This inverted pofition is the ftate of inaction. The phalanx is preferved in it by the articular capfule, and two lateral ligaments which proceed from the fecond phalanx.

A perfect thumb is found in the family of the Rodentia. It is however fhort in the bares, beavers, jerboas. Squirels, rats, porcupines, the paca, the agouti, \&xc. have a diminifhed thumb, with two phalanges. Finally, the cavy, the guineapig, the marnot, \&c. have a thumb nearly obliterated, of which only a fingle rudiment remains. In general the laft phalanges are very narrow, long, almoft ftraight, and pointed. The great cavy forms however one exception. In it the laft phalanges are triangular, and enveloped in a real hoof.

The Edentata exhibit many variations with refpect to the number of the toes in the anterior feet. The tamanoir or great ant-eater, and the four-toed ant-eater, have the thumb obliterated. The thumb and the little toe are both obliterated in the tbree-toed fotbo or a, in which a number of other very remarkable particularities are obfervable. Its three perfect toes are often intimately united together at their bafes with the metacarpal bones; this very much limits their motion: befides, each of the toes confifts only of two phalanges, the articulations of which, both with the bones of the metacarpus, and with each other, take place by pulleys that have very narrow and deep grooves. This conftruction renders lateral motion abfolutely impoffible. Finally, the laft phalanx is much longer than the firft. It is covered by the nail throughout almoft the whole of its length, and has at its bare
a kind of offeous fheath or hood, which is much deeper on the inferior than on the fuperior part.

The thumb, the index, and the little finger, are obliterated in the two-toed ant-eater, and in the unáŭ, or treo-toed foth.

The eleplant has five perfect toes; but the whole five are almoft entirely concealed under the thick fkin which envelopes the foot.

In the boofed animals, that have four toes, as the bog, the tapir, and the bippopotamus, we alfo obferve a fmall bone which is the rudiment of the thumb. The two lateral toes of the bog are fhort, and do not touch the ground: they are however perfect with refpect to the number of the bones of which they are compofed. In thofe animals the laft phalanx is fet into the interior of the horn which terminates the foot.

The Ruminantia, as we have obferved, have only one metacarpal bone, which fupports the two toes that form what is commonly called the cloven-foot. Several fpecies have alfo, at the roots of the two perfect toes, two little bones, which are frequently covered with fmall nails, and which reprefent two other toes. The laft phalanx of each toe is always of a triangular figure. Two of the furfaces are lateral; the internal being plane, and the external convex.

In the horfe, and the other Solipeda, the only veftige of the lateral toes are two fharp-pointed bones growing on each fide of the cannon-bone. The three phalanges of the only toe that exifts,

$$
\text { Art. VII. Bones ofthe Hand: } 327
$$

are called the paftern, the coronet, and the cafina bone. This laft phalanx has the form of a hoof. It is rounded, flat inferiorly, and convex fuperiorly.
The Cetacea have all the phalanges flattened, united in the form of a fin, and frequently cartilaginous. Such, in particular, is the cafe with refpect to the porpoife, the dolpbin, and the cachalot.
4. Ofthe Bones of the Hand in Birds.

There is only one row of bones in the carpus of birds; the fecond appears to be anchylofed with the part which reprefents the metacarpus.

This row of the carpus confifts only of two bones. The one, which is radial, and of a rhomboid form, prevents the metacarpus from being too much extended. The other is ulnar, in the form of a wedge, and in its internal angle the ulnar fide of the end of the metacarpal bone is implanted. It has frequently a tubercle, which correfponds with the pififorme of Mammalia.

The metacarpal bone is formed of two branches, which are united, by offification, at their extremities.
On the radial fide of its bafe it has a particular procefs, or fmall feparate bone, which bears a ftyloid bone reprefenting the thumb. On the

32S. Lect. IV. Anterior Extremity.

extremity of the metacarpal bone there is a long finger, confifting of two phalanges. The firft is almoft rectangular, and is compreffed like a knife. The fecond is fyliform. There is alfo a fhort firiger of only one phalanx, which has the formof a fillet. The thumb fuftains the falfe or baftard quills; the primary or chief are placed upon the long finger and metacarpal bone. The little finger bears none; it is concealed under the fikin.

All the bones of the hand or wing of the manchots are compreffed, and appear like thin plates.
5. Of the Bones of the Hand in Reptiles,

The frog, the toad, and the falemander, have three ranges in the carpus. The firft confifts of two bones, one radial and one ulnar. The fecond confifts of three bones, the largeft of which bears the rudiment of a thumb with two joints. The third range has likewife three bones. The fecond finger proceetls from the firf of thefe bones. The fourth finger is articulated with the fecond bone. The middle finger articulates with both bones. The little finger joins the third bone. The firf range touches the third inferiorly, becaufe the fecond is cunciform. There is no bone without the range.

In the mud torloiff the firft range is a fingle bone, which feparares the radius from the ulna.

The

Art. VII. Bones of the Hand.

The fecond range confifts of two bones, and a fmall one out of the row, fituated on the ulnar edge. The third range confifts of five bones, one for each bone of the metacarpus.

The fea tortoife has three bones in the firft range. The ulnar bone being longeft, the two anterior bones do not advance much farther. The third range confifts only of three bones for thofe of the metacarpus, and one fmall bone out of the row, fituated upon the radial fide.

In the crocodile the firft range confifts of two long parallel bones. It has befide two little external bones without the range on the radial fide.

The number of the phalanges varies in thefe animals.

The crocodile has the hand rounded: it has two phalanges to the thumb, three to the fecond finger, four to the middle and fourth finger, and only three to the little finger.

The cameleon has three fingers on one fide, and two on the other, which form, with the three oppofite to them, a kind of forceps. The number of the phalanges is the fame as in the crocodile, with the exception of the little finger, which has four.

In the falamander the little finger is obliterated, and the thumb has only two phalanges.

The frog has only one phalanx to the thumb. The two following fingers have only two phalanges. The other two fingers have three.

The

The hand of the fea-tortoife is long, and compreffed in the form of a fin; it terminates in a point. There are two phalanges to the thumb, three to the three fucceeding toes, and two only to the laft.

A fimilar conformation is obfervable in the mud-tortoife; with this exception, that its hand is rounder.

Article VIII.

Of the Mufcles of the Hund.

I. Muscles of the Carpurand
 Metacarpus.

> A. In Man.

The mufcles which act on the carpus andmetacarpus are named radial and ulnar, according to the fide of the fore-arm along which they are extended; and internal and external, according to the condyle of the humerus to which they are attached.

The os pififorme is the only bone of the carpus into which one of thofe mufcles are inferted; that mufcle is.

THE U iNARIS INTERNUS, of EPITROCHLOCARPALIS.
It arifes from the internal condyle of the humerus,

Art. VIII. Muscles of the Hand. $33^{\text {E }}$

humerus, and the pofterior furface of the ulna, and extends along the ulnar fide of the fore-arm.

> THE ULNARIS EXTERNUS, OR CUBITO-SUPER~ METACARPALIS.

This mufcle rifes from the other condyle of the os humeri, defcends on the outfide of the preceding mufcle, and is inferted in the external bafe of the metacarpal bone of the little finger.
> the radialis internus, or epitrochlometacarpalis,

Proceeds from the internal condyle of the humerus, and fends off a tendon, which paffes under the hook of the os unciforme bone, and is inferted into the bafe of the metacarpal bone of the index.

THE RADIALES EXTERNI.
Thefe mufcles are two in number. They arife from the external condyle of the humerus, and proceed, the one upon the other, to the external fide of the radius, and thence defcend to their points of infertion. The firft (humero. super-metacarpalis,) is attached to the external bafe of the metacarpal bone of the index; the fecond (epicondylo-super-metacarpa= lis,) into that of the middle finger.

B. In other Mammiferous Animals.

Monkies have, like man, five mufcles of the hand. The cat and the bear have the fame number.

The dog has only one radialis externus, which divides into two tendons. It is the fame with refpect to the rabbit.

In all thofe, with many fingers, the external mufcles, when acting in concert, approximate the back of the hand to that of the fore-arm.

The internal mufcles have a different effect. When the ulnarate in concert, the hand is turned outward towards the ulnar fide of the fore-arm. The radial produce a contrary motion.

In animals that have cannon-bones, in which the hand is neither capable of flexion or extenfion, the radialis externus, (extenfor recius, anticus of the cannon-bone of Bourgelat,) is fixed to the anterior bafe of the metacarpus, or cannon-bone, and extends it.

The radialis internus, (fenor intcrnus of Bourgelat,) is inferted into the pofterior bafe. The ulnaris internus, (fixor obliquus of Bourgelat,) is inferted in the bone that, correfponds to the os pififorme. The utuaris extertus, (ficxor externus of Bourgelat,) is inferted in the fame bone, and extended under thofe of the carpus.

Thefe mufclez are all flexors.

The mufcles which move the hands of bats are few in number, but they are very remarkable.
That which is analogous to the uharis externus, arifes from the humerus, and from the convexity of the radius as far as its middle. Its tendon is inferted into the fuperior and internal part of the carpus, which it extends by abduction.

The mufcle which correfponds to the ulnaris internus, arifes from a flefhy portion common to all the mufcles of the fore-arm, and is inferted into the external fide of the firt phalanx of the laft finger. It is a flexor or adductor of the carpus.

That which takes the place of the adductor pollicis, arifes alfo from the fame common fefly mafs. Its tendon procceds obliquely to the fuperior furface of the fore-arm, croffing the tendon of the ulnaris externus. It is inferted in the internal fide of the carpus, at the bafe of the thumb.
C. In Birds:

The metacarpus of Birds is not capable of flexion, or approaching the internal furface of the fore-arm; nor of extenfion, or approaching the external furface of that arm. It can only, perform the motion of adduction by approximating the radius and abduction, by coming nearer the ulna. As there are, however, only thefe two motions, we might, in imitation of

Vicq D^{\prime} Azyr, call the mufcles that produce them flexors and extenfors: But as it will be more eafy to compare them to thofe of man, we fhall retain the common names.

The utnaris internus has the fame pofition as in Mammalia. It originates in the fame manner from the internal condyle of the humerus, and is inferted into the tubercle of the bone that refembles a wedge. There is a fmall mufcle under the preceding to which it is parallel. It produces a long tendon, which fends off lips to the fecondary quills, and is. inferted in the back of the metacarpus.

The ulnaris externus is placed on the pofterior furface of the uina. Its tendon paffes between the firf fecondary quill and the laft primary, and is inferted in the internal edge of the bafe of the metacarpal bone.

There is but one radial mufcle, but it confifts of feveral portions, which all arife from the external condyle, except one from the radius. Their common tendon is inferted into the tubercle of the metacarpal bone of the thumb: this tubercle, as we have obferved, is fometimes a fmall feparate bone.

D. In Reptiles.

In the fea-tortoifes, which have the carpus compreffed, and fitted for fiwmming, the mufcles are only fimple bands of aponeurotic

Art. VIII. Muscles of the Hand. 33f

fibres, which ftrengthen the feveral articulations.

We have fill to examine thofe of the other reptiles.

II. Muścles of the Fiveers.

The mufcles of the fingers are extenfors and flexors, adductors and abductors. They are common or proper, and long or fhort, according as they are fituated along the fore-arm, or proceed merely from the carpus and metacarpus.
A. In Man and other Mammifcrous Animals,

The long mufcles of the fingers are,

1. the extensors.

Thefe are fituated on the external furface.
The extensor communis, (epicondyla-super-unguialis,) arifes from the external condyle of the humerus. It fends off tendons to all the fingers except-the thumb, and is found in all quadrupeds. The number of its tendons is equal to that of all the fingers, the thumb not included. In general they are four ; but in the Ruminantia they are two; and in the Solipeda only one, which is the extenfor anticus of Bourgelat, and the extenfor pedis of La Foffe.

The extensor proprius digiti minimis (eptcondyliosuper-unguialis,) is placed on
the ulnar fide of the preceding, and has the fame origin. In man it has a tendon for the .little finger only. In monkies it has another for the fourth. In dogs and bears it fends off a third to the middle finger. Inftead of one mufcle, the cat has two; one for the little or laft finger, and one for the fourth and third. There is but one mufcle in the rabbit, which has two tendons, as in the monkey.

In the Ruminantia this mufcle extends the external toe, and the cxtenfor indicis the internal toe.

There are two mufcles in the borfe; one more removed from the extenfor anticus, analogous to to the extenfor communis. It is called extcinfor lateralis by Bourgelat, and cxtenfor of the paferin by La Foffe. Its tendon is inferted into the fide of the firft phalanx of the toe. A fecond is placed between the two, and its tendon, after having paffed before the carpus, is obliquely united with that of the preceding mufcle. The hippotomifts confider this tendon as a digitation of the extenfor anticus.

The extensor indicis proprius, (cubito-super-unguialis,) is fituated clofe to the inferior and external part of the ulna in man. It has only one tendon, which is inferted into the fore-finger; but it is fometimes accompanied by a proper extenfor for the middle finger.

In monkies it has two tendons; one for the index, and another for the middle finger.

Art. VIII. Muscles of the Hand. 337
In the dog and cat it is fituated as in man, but it extends to the laft articulation. It is entirely wanting in the rabbit, the Ruminantia, and the borre.

The thumb has two extenfores proprii.
The longus (cubito-super-phalangeus,) is placed above the extenfor of the fore-finger. It paffes under the external annular ligament, and extends its tendon to the firft phalanx.

The brevis (cubito super-unguialis,) is placed on the radial fide of the preceding mufcle. Its tendon accompanies that of the abductor, and extends to the fecond phalanx.

In monkies the laft mufcle either intimately unites its tendon with that of the abductor, or is altogether wanting.

The extenfor brevis pollicis is wanting in the cat, the dog, the bear, and the rabbit. The longus exifts in thefe fpecies, and in the bear gives a tendon to the fore-finger.

The Ruminantia and the borse have neither.

2. THEABDUCTORS.

The abductor pollicis longus (cubito super-metacarpalis,) is placed above the preceding mufcles, towards the radial fide of the fore-arm. It croffes the radial mufcles at the inferior head of the radius; and is inferted in the radial fide of the metacarpal bone of the thumb. Vol. I.

Z
'This

This mufcle is fimilar in monkies, dogs, cais, bears, rabbits, \&c.

In the borfe, and in the Ruminantia, it is attached to the internal fide of the bafe of the only metacarpal bone, and becomes what Bourgelat calls the oblique extenfor of the cannon-bone.

> 3. THE FLEXORS.

Thefe are all on the internal furface of the fore-arm.

The flexor sublimis (epitrochlo-phasangrus,) confits of feveral diftinct mufcles, which unite in different ways, and terminate by furnifhing tendinous perforated flips to the fingers which follow the thumb.

The flexor longus pollicis (radio-subunguialis, appears to be united to the former in a very intimate manner. It is fituated on its radial fide, and is extended to the fecond phalanx.

The rexor profundus (cubito-sub-unguialis,) whicli is fituated upon the bones of the fore-arm, tranfmits perforating tendons to the four fingers which follow the thumb: fuch is the defcription of thefe mufcles in the human body.

In monkies the flexor longus pollicis is wanting; but the profundus divides into five flips, one of which proceeds to the thumb, to which the fublimis does not fend any tendon.

In the dog the ficior pollicis unites its tendon with
with that of the profundus, from which it again feparates to proceed to the fecond phalanx of the thumb.

The flexor fublimis fends a tendon to the firft phalanx of the thumb, but it is not perforated.

It is the fame with refpect to the cat ; but the flexor pollicis is not in this animal fo diftinct from the profundus, which, befides, is vifibly divided into as many mufcles as it produces tendons.

The frofundus in the rabbit tranfinits a tendinous flip to the thumb, which is not the cafe with refpect to the fublimis.

In the Ruminantia the fexor fublimis and the profundus tranfmit two tendons each, and the tendon of the flexor pollicis is united with that of the flexor profundus.

There are likewife two of thefe mufcles in the borre, one perforating and the other perforated, but which have each only one tendon.

B. In Birds.

As the fingers of birds can perform no motions except thofe of adduction and abduction, the ufe of the preceding mufcles is changed in the animals of this clafs. Thefe two functions are diftributed among the mufcles without any uniform relation to the fide of the fore-arm to which they adhere. If, therefore, we were to fubftitute for the term'addulion that of extension,

$$
Z_{2} \quad \text { and }
$$

and for abduction that of flexion, which might be done, ftill the flexors would not all be placed on the internal, nor the extenfors all on the external furface of the arm. In this manner, indeed, the mufcles which are flexors in man would be converted into extenfors.

1. the adductors, or extensors of Vice.

$$
D^{\prime} A \approx y r .
$$

The adductor phalangis prime correfponds to the flexor fublinis. It arifes from the internal condyle, proceeds above the ulnaris internus, paffes over the internal fide of the wedge bone along the metacarpal bone, and is inferted into the bafe of the firft phalanx of the great finger.

The adduEZor interius phalangis Secunde, which correfponds to the flexor profundus, proceeds along the internal fide of the ulna. Its tendon approaches that of the preceding mufcle, but proceeds farther, and is inferted into the bafe of the fecond phalanx. There is no perforation.

The adductor pollicis, which correfponds to the flexor pollicis, is fituated between the preceding mufcle and the ulna. Its tendon extends to the radial edge of the thumb.

The adduclor externus ploalangis fecunde is analogous to the flexor proprius indicis. It is attached to the external condyle, and fituated along the external fide of the radius. Its tendon paffes to the back of the metacarpus, and even extends to the fecond phalanx of the great finger.
2. TIIE

Art. VIII. Muscles of the Hand.

2. the abductors, or flexors of Vicq

$$
D^{\prime} A z y r .
$$

The abductor communis, which correfponds to - the extenfor communis in man, arifes from the external condyle, and proceeds without the preceding mufcle, along the external fide of the radius. When its tendon arrives oppofite to the carpus, it divides into two. One goes to the ulnar bare of the thumb, the other to that of the firft phalanx of the great finger.

IV. Short Muscles of the Fingers.

The hand of man has alfo a great number of fhort mufcles which arife from the bones of the carpus or metacarpus, and are inferted into the fingers.

One of them is fuperficial : it is placed under the fkin of the palm of the hand, to which it is attached on one part, and on the other to the palmar aponeurofes. It is called cARO-QUAdratus, and palmaris cutaneus (palmocutaneus.)

Of the other mufcles, fome belong to the thumb; as-

The abductorbrevis, (carpo-super-phalangeus.) It arifes from the trapezium, and is inferted in the external fide of both phalanges of the thumb.

The flexor brevis (carpo-pitalangeus,) arifes from almoft the whole of the inferior furfaces of the bones of the carpus, and is inferted into the firft phalanx.

The opponens (carpo-metacarpalis,) arifes from the ligament of the carpus, and from the os trapezium, and is inferted in the metacarpal bone of the thumb.

The adductor (metacarpo-phalangeus,) extends from the firft and fecond bones of the metacarpus to the firft phalanx of the thumb.

The little finger has alfo two fmall mufcles which are peculiar țo itfelf, viz.

The flexor brevis, or opponens, (carpometacarpalis, arifes from the os unciforme, and is inferted into the internal fide of the metacarpal bone. It renders the palm of the hand concave, and bends the little finger.

The other is the adductor, (carpo-phaiangeus.) It arifes alfo from the os unciforme, and is inferted into the external fide of the firft phalanx.

Laftly, there are fome fmall mufcles of the hand which are common to all the fingers: Thefe are -

The lumbricales (palmo-phalangei,) which are four in number. They arife from the tendons of the flexor profundus, and are inferted in the internal fides of the firft phalanges of the fingers, except the thumb. They are auxiliaries to the flexor profundus.

Art. VIII. Muscles of the Hand. 343

The interosset inferiores fou interni, et superiores feu externi, (metacarpo-superphalanget.) Thefe mufcles occupy the intervals between the metacarpal bones, and are inferted into the two fides and upper part of the firf phalanx of each finger.

The bais have only one extenfor, and fome flexors of the fingers.

The extenfor digitorum is a fmall mufcle which comes from the external condyle of the humerus, paffes to the carpus, and produces a° very fine tendon, which extends to the convexity of each of the phalanges, and is terminated in the laft.

The flexor communis arifes from the flefhy mafs on the inner fide of the fore-arm. It produces a flender tendon, which paffes under the carpus, where it divides into five fmall nips, which afterwards unite with the proper flexor of each of the fingers.

Laftly, the flexores proprii, which are four in number, arife from the carpus at the bafes of the firft phalanges. They there form a fmall flefhy body, which receives the tendon of the flexor communis, and is continued with it to the extremity of the finger, the phalanges of which it bends one over the other.

The thumb appears alfo to have fome fmall peculiar mufcles. Their fhort fibres arife from all the palmar furface of the carpus, and form a little pyramid, the apex of which is inferted into the bafe of the firft phalanx.

344 Lect. IV. Anterior Extremity.

In the Cetacea the above mufcles are only fimple aponeurotic bands fitted for connecting the rudiments of bones, which in them do not move one upon the other.

C. In Reptiles.

The mufcles of the hand of the frog and the falamander are very fimilar to thofe of man.

Thofe of the thumb are wanting, except the extenfor, which comes from the external condyle, and is inferted in the laft phalanges.

There is an extenfor of the two laft fingers, which alfo arifes from the external condyle, and is inferted into the laft phalanges.

The other mufcics vary very little.
In fea tortoifes the mufcles of the hand are replaced by bundles of appneurotic and tendinous fibres, which fupport the articulations in the action of fwimming.

We have not yet had an opportunity of ftudying thofe mufcles in the other reptiles.

[345]

TABLE of the Length, in Metres, of the different Parts of the Pectoral Member in Mammalia.

NAMES	Total	Arm	$\begin{aligned} & \text { Fore } \\ & \text { Arn } \end{aligned}$	Carpus	$\begin{aligned} & \text { Meta- } \\ & \text { carpus } \end{aligned}$	Fingers
Man	0,79	0,33	0,26	0,03	0,07	0,10
Sai	0,28	0,10	0,11	0,01	0,02	0,04
Orang	0,38	0,12	0,14	0,01	0,04	0,07
Pongo	1,00	0,35	0,38 0	0,03	0,10	0,14
Ternate Bat	0,575	0,11	0,15	0,015	0, 11	0,19
Common Bat.	0,19	10,035	0,00	0,005	0,05	0,04
Mole	0,105	0,02	0,02	0,05	0,0	15
Hedge-hog	0,14	0,04	10,04	0,0s	0,015	0,015
Sea-Bear	0,88	0,30	0,33	0,03	0,10	0,12
Glutton	0,84	0,12	0,12	0,01	0,03	0,06
Racoon	0,33	0,10	0,13	0,01	0,03	0,06
Otter	0,24	0,09	0,08	0,01	0,03	0,03
Seal	0,30	0,08	10, 11	0,02	0,02	0,07
Lion	0,85	0,31	0,30	0,03	0,10	0,11
Cat	0,27	0,09	0,11	0,01	0,03	0,03
Wolf	0,53	0,18	0,19	0,02	0,07	0,07
Opoffum	0,19	0,06	0,08	0,01	0,02	0,02
Hare	0,29	0,10	0,12	0,01	0,03	0,03
Guinea Pig	0,11	0,04	0,04	0,01	0,01	0,01
Three-ıod Sloth.	0,5 1	0,19	0,18	0,01	0,03	0,10
Long-tailed Manis	0,15	0,05	0,05	0,005	0,01	0,04
Elephan	1,53	0,77	0,48	0, 11	0,10	0,07
Hog	0,67	0,20	0,24	0,04	0,09	0,10
Rhinoceros	1,42	0,46	0,53	0,0S	0,20	0,15
Dromedary	1,49	0,35	0,57	0,06	0,30	0,21
Giraffe	2,44	0,51	0,91	0,08	0,72	0,22
Ox	1,00	0,26	0,34	0,04	0,18	0,18
Stag	1,10	0,25	0,38	0,04	0,27	0,16
Horfe	0,92	0,22	ก,34	${ }^{0,04}$	0,18	10,14
Dolphin	0,22 in all					
Porpoife	0,18 in all					

Article IX.

346 Lect. IV. Anterior Eitremity.

Article IX.

Of the Anterior Eatremity in Fifhes.

1. Of the Bones.

THE anterior extremities of fithes are their pectoral fins. Thefe, like all the other fins, are compofed of a certain number of offeous radii or sibres, each formed of a multitude of joints, and fuftaining a cominon membrane. Sometimes one or two of thefe radii or rays are made of a fingle bony piece. Thefe are called fpinous.

In moft fifhes the pectoral fin moves in a horizontal plane, which is nearly perpendicular to its own plane; that is to fay, in the ftate of repofe it is placed clofe to the fide of the body, from which it may be raifed to a greater or lefs height, until it forms a right, or even an obtufe angle with the fide.

In others, as the rays, the Joarks, \&c. the two pectoral fins are in the fame horizontal plane; when they move, they ftrike from above downward, or from below upward, preferving a vertical direction.

The pectoral fin is wanting in only a very fmall number of fifhes, fuch as the eels and secilias.

In thofe which have the pectoral fin, it is genefally articulated and firmly attached to the head, as in offeous fiflocs, or to the fpine, as in rays, Stic.

The pectoral fins in rays form thofe large wings which give tothe body a rhomboidal fhape. They are formed of a vaft number of radii, placed very clofe together, and having a number of articulations. They are all connected with a cartilage parallel to the fpine, which may be fubdivided into two or three, and which is itfelf articulated, on the upper part, to another cartilage fixed to the fpine. Beneath there is a fort of tranfverfe bar, common to the cartilages of both fins, and which ferves at once for fternum and clavicles. This inferior bar alfo exifts int Barks; but we obferve in them no articulations with the fpine. Their pectoral fins are much fmaller.

In the offeous fifles, and in feveral others which fhould be regarded as belonging to that clafs, though Ichthyologifts have ranged them among the cartilaginous', (fuch as the balifes, \&xc.) the pectoral fins are attached to an offeous girdle which furrounds the body behind the branchiæ, and which fupports the pofterior edge of their aperture.

This offeous girdle is formed of one bone from each fide, articulated at the pofterior fuperior angle of the cranium, and defcending under the neck, where it unites with the correfponding bone. Thefe bones may be regarded as fcapulco. The portion fituated above the fin is fimple and thin; that which is beneath has anteriorly a projecting plate which anfwers inftead

348 Lect. IV. Anterior Extremity.
inftead of a fpine. The abductor mufcles lie in the angle formed by this lamina with the body of the bone.

The portion of the body of the bone, which is fituated behind the lamina, is more or lefs large according to the extent of the mufcles. At this place there is fometimes an unoffified interval. This is the cafe in the flying trigla, in the zeus, \&c. The fea dragon and the zobiting have two of thefe intervals.

The lamina is extremely broad in the chetodons, the zeus, and the fea-zoolf.

The figure of this bone, the angle under which it joins its correfponding bone, and thofe which interfect it, vary in the different fpecies. In the fifhes, compreffed vertically, they unite by a fharp angle. 'In thofe that are depreffed they are turned inwardly in fuch a manner that their union forms almoft a right line.

In a number of fifhes, particularly in thofe of the family Thoracici, viz. the genera pleuronecles, perches, cottus, zeus, chatodons, \&c. as well as in the balifes, and feveral others, the fuperior part produces a large fpine, which defcends directly behind the fin, and ferves for the attachment of the adductor mufcles. This fpine is moveable, and has, by fome anatomifts, been improperly called the clavicle.

The rays which fuftain the membrane do not articulate immediatcly with the bony girdle. Between them and it there is a range of fmall
flat bones, feparated by cartilaginous intervals, which may be compared to the bones of the carpus. There are four of thefe bones very large in the Sea zoolf, the red gurnard, the armed and the flying trigla; four fmall ones in the whiting and the pleuroneites; eight in two rows in the dory, (zeus faber;) three fmall and cylindrical in the filurus; and five in the chretodons, perches, \&c. When the firlt ray of the pectoral fin is fpinous, as in the loricaria, fome filuri, \&c. it is immediately articulated with the girdle bone.

This difpofition is remarkable in fome filuri and fome ficklebacks, which can, at pleafure, either lay this fpine flat upon the body, or place it firmly fupported in a perpendicular pofition. They are thus furnifhed with an excellent means of defence.

The offeous girdle has for this purpofe a tubercle of a cylindrical form, in the front of which there is a hole. The fpine of the fin articulates with this cylinder by a depreffion, which has a projecting procefs before and behind it. When the fpine is extended, the anterior procefs, which is in the form of a hook, enters the above-mentioned hole, and the fpine turning a little on its axis, the procefs is hooked upon the edge of the hole in fuch a manner that the fpine cannot be inflected until it makes a turn upon its axis in a direction oppofite to the former. This fpine is furnifhed with denticulations, which form a part even of the fubflance of the

350 Lect. İV. Anterior Extremity.
bone. They have oppofite directions upon the two fides of the filurus afpredo, and upon one fide only in the filurus felis, filuris galeatus, and many orhers.

In the trigla birundo, volitans and evolans, fcorpona volitans, exocotus volitans, and fome other fifhes, the pectoral fins are exceedingly long, and ferve for flying.

Their fituation varies coníderably in different fpecies: they are very near the branchiæ in the exocoti: on the contrary, they are confiderably removed from them in the blennies, $\& x$ c.

2. Of the Mufcles:

The pectoral fin of the offeous fifhes is firmly fupported by the flat bone, which is articulated with the pofterior angle of the cranium, and which correfponds with the fcapula. Two ftrong mufcles arife from the inferior or broadeft part of this fpecies of fcapula, and are inferted in the enlarged or pofterior extremity of the cordiform bone which fupports the tongue. Thefe are analagous to the ferno-hyoidai.

Another mufcle, which performs the office of the diaploragm, and which feparates the cavity of the branchix from that of the abdomen, is attached, at the one part, to the point of the bone which fuftains the branchix, and, at the other, to the internal creft of the bafe of the fcapula.

The clavicle is alfo moved by a fmall mufcle, which arifes from its free extremity, and is inferted partly into the fcapula, and partly lofes itfelf in the mufcles that cover the belly.

But the fin is particularly moved upon the fcapula by two fets of mufcles. One fet being fituated at its external and inferior furface, and the other at the internal and fuperior furface.

The firf external mufcle covers all thofe of the fame furface. It occupies the anterior part of the infrafpinous foffa, and is inferted by a great number of tendinous digitations into each of the eminences of the rays of the fin. This mufcle raifes the fin from the flank, and moves it forward, making it cut the water.

The firft being removed, we find two other murcles; one is more internal, and its fibres, which are directed obliquely outward, terminate likewife by fmall tendons in each of the rays. It lowers the fin, moves it towards the correfponding fin, renders it vertical, and turns it downward.

The third mufcle is more external: it arifes. from almoft the whole breadth of the foffa; bus it diminifhes in breadth as it approaches the fin, and terminates at laft by being inferted in the moft external of the rays. By its contractions it removes the fin from the body, and directs it towards the head, making it ftrike the water.

The mufcles of the internal furface are likewife difpofed in layers. The largeft and mont
external extends from the fuperior fpine of the fcapula, which is articulated with the cranium, to the bafe of the radii of the fin. It is confiderably augmented in its progrefs, and it is croffed by the clavicle. It turns the plane of the fin directly outward, by removing it from the body. This mufcle covers another at its inferior part.

This laft mufcle has a number of fibres. It occupies all the part of the fub-fcapular foffa, which is fituated under the clavicle. It performs precifely the fame office as the preceding, but moves the plane of the fin fomewhat more towards the head. There are more of its mufcular fibres attached to the bafes of the radii. Their different directions approximate or remove, with refpect to each other, all thofe little bones, fo as to fpread out or clofe the kind of fan which they conflitute.

The mufcles of the pectoral fins of the ray form two very thick flefly layers, which cover thofe fins fuperiorly and inferiorly, and which are divided into as many bundles as the fins are into radii.

[353]

LECTURE FIFTH.

OF THE POSTERIOR EXTREMITY, OR ABDO~ minal Member.

> Article I.
> Of the Bones of the Pelvis.

> A. In Man.

The pelvis in man is a kind of offeous girdle furrounding the lower part of the trunk obliquely, and fo fituated that its pofterior part, which is ftrongly attached to the fides of the os facrum, is more elevated, and its anterior part lower than. that bone.

The fuperior and pofterior part is compofed of two wings, of a form almoft femicircular. The anterior and concave furface of each is turned fomewhat inward, and the pofterior and convex furface is extended towards the fpine, where it furnifhes the portion which is attached to the os facrum.

The lower part of each of thefe wings is narrowed into a kind of neck, and prolonged

Vol. I. A a fomewhat
fomewhat inferiorly, as far as the great hemifpherical depreffion, called the cotyloid cavity, which ferves to lodge the head of the femur. One branch, which proceeds from the anterior edge of this cavity, is directed forward and inward until it mects the correfponding branch of the other fide, and completes the anterior portion of the pelvis. Another branch proceeds from the inferior edge of the fame cavity. It is direfed downward in fuch a maner as to leave between. it and the facrum a large fpace, called the ifibiatic motch. Having defcended a little lower than the coccyx, this branch afcends by a direction which is forward and inward, until it unites to the firft branch, at the place where it joins the correfponding one from the oppofite fide. Thus there remains; on each fide of this anterior part of the girdle formed by the pelvis, an interval furrounded by an offoous circle, and named the oval, or fub-pubic foramen.

The plane of each half of this anterior portion is turned obliquely downward and to one fide. 'The future which feparates the two halves anteriorly, is called fymployis pubis. The two bones which with the os facrum form the pelvis, are called covire, baunch bones, or offic innominata.

In youth each of thefe bones is divided into three parts, all of which contribute to the formation of the cotyloid cavity. They have beea long regarded as particular bones, and have received different names, viz. I. The os ilium, or fank
bonc, which is the fuperior portion, in the form of a wing; its fuperior and femicircular edge is called the crifta of the os ilium; and the angle produced at its junction with the inward curvature, which affifts in forming the before mentioned neck, is called the fpine. 2. The os pubis, which forms the anterior tranfverfe bar, and the portion which defcends the whole length of the fymphyfis. 3. The os ifchium, which furrounds the foramen ovale pofteriorly and inferiorly. Its moft inferior portion is called the tuberofity of the ifcbium, and it is on this part of the bone we reft in fitting. The margin of this laft portion, which is turned towards the os facrum, has, at the height of the cotyloid cavity, a fmall hooked procefs directed backward: this is called the ifcbiatic Spine.

The fuperior margin of the os pubis is continued on the inferior part of the interial furface of the os ilium in an elevated bone, which extends to the place where the latter bone joins the os. facrum; and which, together with the projection the os facrum itfelf forms at its angle with the reft of the fpine, divides the pelvis into two parts : the great pelvis, which is fuperior; and the little pelvis, which is inferior.

This inward projection is called the anterior ftrait of the pelvis. It forms a kind of ellipfis, the plane of which makes a very marked angle with the facrum, and another with the lumbar part of the fpine. Its diameter between the
anterior and poferior part is fomewhat lefs than that between the fides.

The bones which form the pelvis are united by very ftrong ligaments, fome of which contribute to the formation of its cavity. Thofe which unite the ileal portion of the os innominatum to the facrum, come from the tranfverfe procefs of the laft lumbar-vertebra, or the bafe and proceffes of the os facrum. The bundles which they form are miore or lefs long; and extended. They are inferted in the pofterior part of the creft of the os ilium.

The ifchiatic portion is alfo united by two ftrong ligaments, which complere the cavity of the little pelvis poiteriorly. One extends from the tuberofity to the lateral margin of the facrum. The other arifes alfo from the ifchium, but particularly from its fpine, and extends tranfverfely to the margins of the facrum and coccyx, uniting its fibres with thofe of the preceding ligament.

The os pubis of the one fide is joined with that of the other by an intermediate cartilage, which forms what we have called the fymphyfis. This articulation is covered with a ftrong ligament, which renders it immoveable.

Finally, the bones of the tail or coccyx are firmly united to the os facrum by articular capfules and ligaments, which cover them entirely. Thefe are divided into the anterior, the lateral, and the pofterior.

B. In other Mammiferous Animals. ,

We have obferved, that, in quadrupeds, the facrum is commonly continued in the fame line with the fpine. It may be farther remarked, that were we to place them fo as to render their fpine vertical, the planes of the two anterior halves of the pelvis would be directed forward and outward, and not downward as in man: they would even be turned upward in hoofed animals. Hence it follows, that if thefe planes were continued, they would meet a prolongation of the fpine below the pelvis in man, above it in hoofed animals, and that they would remain parallel to the pelvis in the greater number of animals with claws. This obfervation is important, on account of the pofition of the femur.

The offa ilii of monkies are narrower, flatter, and directed more forward than thofe of man. Their neck is longer. It follows, that the plane of the pelvis is almof in a ftraight line with the fpine, and that the diameter from before backward is greater than the tranfverfe. The pelvis therefore furnifhes a much fmaller bafe to the trunk than in man; for this bafe muft be eftimated by a perpendicular fection of the trunk, or cylinder to which it belongs.

The balavian pongo has the offa ilii much A a 3 broader
broader than the other monkies, but their pofition is as defcribed above.

The fpecies of monkies which have callofities on the buttocks have very large tuberofities to the ifchium.

In the Carnivora, the abdominal furface of the bones of the ilium is not turned forward, but towards the spine. Their fuperior portion is not broader than their neck; it is their external furface which is concave. Their crista has fo little extent, that the figure is almoft that of a hatchet.

In the bear it is somewhat larger, and the fpine is turned outward; but the pofition upon the whole remains the fame. The branch of the ifchium which runs backward is continued with the neck of the ilium in a ftraight line which forms an angle of about thirty degrees with the fpine. As the diameter from the front to the back of the anterior flrail of the pelvis is fhorter than in monkies, its particular proportions have more refemblance to those of man, but the bafe it affords to the trunk is notwithftanding fmaller.

We obferve among the Carnivora two remarkable anomalies. One in the mole, in which the offa innominata are almoft cylindrical, and fituated fo clofe to the fpine throughout the whole of their length, that the anterior frait is exceedingly fmall. The ifchiatic portion is alfo very much prolonged pofteriorly : the other ap-

Art.I. Bones of the Pelvis.

pears in the ternate bat, which has the tuberofities of the ifchium joined to each other and to the extremity of the facrum by anchylofis.

In the Pedimana, or the animals with a pouch, as the opolfun, the marnot, the kanguroo, \&ic. the pelvis is likewife very remarkable, in having the foramen ovale very large, and the dianeter of the frait fmall, but more fo from the prefence of an articulated and moveable bone upon the pubis. This bone gives origin to particular mufcles which fupport the pouch that contains the mammr. This fall be farther defcribed in the article on Generation. Bones of this kind are called marrupial, they are of an oblong form fomewhat compreffed.

In the Rodentia, the general form and pofition of the pelvis is ncarly the fame as in the Sarcophaga. The offa ilii are turned more or less forward, or rather downward, according to the different fpecics: the projecting line of their abdominal furface is continued parallel to the fpine, as far as their creft, which is very narrow. This elevation fometimes gives to thefe boncs the form of a prifm, in which their real margin is only an edge; their fpine is reflected outward.

This is alfo the form of the offa ilii in the armadillos, pangolins, and ant-eaters; while the slotbs have them very broad, and directed forward with a large circular pubis: this renders their flrait or opening very wide, and little oblique. As thefe four genera have the tuberofity
Aa4
of
of the ifchium approximated, or even offificd to the os facrum, they have only a hole inftead of the ifchiatic notch.

The pelvis of the bog differs very little from that of the Sarcophaga, except that the bones of the ifchium extend farther backward, and that the ifchiatic notch penetrates farther into the os ilium.

In the tapir, and more particularly in the Ruminantia, the notch being ftill more enlarged, the neck of the ilium elongated, and its fpine extended outward, this bone affuries the form of the letter T, or a bammer, articulated by one branch to the os facrum, and the neck forming the handle. Its abdominal furface is turned ob. liquely towards the fpine of the back: its neck forms a very obiufe angle with the ifchium. We can obferve the projection of its fpine under the fkin, and alfo the ifchiatic tuberofity, the line which paffes through thefe two points forms a very diftinct angle with the fpine. The cotyloid cavity is nearly in the middle of that line.

In the Rumirantia that are very ftrong backed, like the ox, the anterior part of the ilium is exceedingly large. In the buffalo it is even broader than the bone is long, and almoft perpendicular to its neck. In the fimaller fuecies it becomes more and more nàrrow and obliquc, outward and anterionly. The camel has it rounded. The external furface of the bone is concave in thefe animals. The anterior ftrait of the pelvis forms a large

Art. I. Bones, of the Pelvis. $36 i$

a large angle with the fpine of the back, which affords more room for the belly.

The figure of this bone is nearly the fame in the borfe; but the wings are very large, and the neck very short. The cotyloid cavity correfponds nearly with the pofterior third of the above-mentioned line.

The elephant and the rbinoceros have the anterior part very broad in every direction. The crest is round, and the abdominal farface is concave. The wing next the facrum is larger than the other in the eleplant. In the rbinoceros they are nearly equal, and the neck is proportionally longer. Thefe.enormous pelves give to the bellies of thofe animals that vaft capacity for which they are fo remarkable. The plane of the anterior ftrait is almoft perpendicular to the fpine.

The pelvis of seals resembles that of the Carnivora, and particulanly the otters; it is very long and narrow, and the pelvis, as in the otter, is inflected confiderably backward; but the only veftige of a pelvis to be found in the Cetacca confifts of two thin flat bones, fufpended in the flefh, on both fides of the anus.

C. In Birds.

The offa innominata form, with the lumber vertebræ and the facrum, only one bone in birds. They exhibit therefore only the lineaments of the
the pelvis. In general, however, we obferve the foramen ovale in the fkeleton. As the ifchiatic portion is almof always intimately united with the facrum, the ifchiatic notch becomes a hole. The pubis of the one fide, inftead of joining its correfponding bone, procceds directly backward in the form of a style.

In young birds, the bone analogous to the os facrum is completely perforated between the tranfverfe proceffes of the vertebre, of which this bone is originally conftituted. The oval and ifchiatic foramina are at that time only two notches, which very diftinctly indicate the three portions of the os innominatum.

In Birds of Prey, the foramen ovale is fmall, and the os pubis very thin, long, and frequently articulated with the ifchiatic portion.

In the Pafferes, the foramen ovale is confiderably lengthened, and is larger than the ifchiatic hole. This elongation is fill more obfervable in the Grallæ.

The diver has the os ilium extremely fmall; the ifchium, which is very bulky, is intimately united by offification throughout all its length with the os facrum. The offa pubis are very thin; they are confiderably enlarged where they meet, but they are not completely offified together. This may be remarked, in general, of all zociter birds.

In the ofrich and the cafforeary the ifchium is altogether feparate from the coccyx, which unites

Art. I. Bones of tie Pelvis.

unites with a long production of the ilium. The inferior part of the pubis is confiderably enlarged, and curved, in order to unite with the correfpondent bone in the ofrich, but not in the caforwary: befides, the offa ifchilate in the latter entircly feparate from the pubis, and placed in the fame direction.

D. In Repilies.

In the turlle, that part of the os innominatum which correfponds to the pubis, is the moft confiderable. It proceeds from the cotyloid cavity, by a thick portion, which comes forward and widens into a thin flat lamina, divided into two parts: one is turned towards the middle line, by which the two correfponding bones are united; the other is free, and is directed to the external fide. The portion which correfponds with the ilium is fhort, narrow and thick; it refts on the fhell, and is joined to the facrum: finally, the portion which is analogous to the ifchium, is turned backward and downward, and forms the real offeous circle of the pelvis.

This conformation is fo fingular, that the parts of the pelvis of the turlle, when the whole is vicwed out of its natural pofition, may very eafily be miftaken for one another; for the pubis refernbles the ilium, the ifchium the pubis, and the ilium the ifchium.

There

There is, befidcs, another very remarkable peculiarity in the pelvis of tortoifes; the ilium, and confequently the whole mafs of the pelvis with which that bone is united, is moveable on the vertebral column.

In the crocodile and the tupinambis, the difpofition of the pelvis has a great refemblance to that of the tortoife. In the crocodile the pubis receives the ventral ribs. In the cameleon and the iguana it is narrow, and the bones of the ifchium form by this union a projecting creft.
In the frog, and in the Surinam and common toads, the offa ilii are much elongated: the pubis and the ifchium are fhort, and united in a fingle folid piece, the fymphyfis of which forms a creft more or lefs round.

In the falannander the conformation is precifely the fame. The offa ilii are narrow, and almoft cylindrical; and the offa pubis completely united with the ifchium, forms only a large bony plate without any hole.

Article II.

Of the Mrufcles of the Pelvis.
A. In Man.

Tie mufcles of the pelvis in man are few in number.

Art. II. Muscles of the Pelvis.

1. the quadratus lumborum or ileocostalis.

This mufcle ocćupies the face between the os ilium, from which it arifes, and the laft falfe rib which receives one of its infertions: the others go to the tranfverfe proceffes of the four firft lumbar vertebræ. It acts more manifeftly on the fpine than on the pelvis.
2. tife psoas paryus, or prelumbo-pubalis,

Arifes from the body of the laft dorfal vertebra, and forms a thin flat tendon, which is inferted into the ileo-pectineal eminence. It raifes the pelvis towards the fpine.

B. In other Mammiferous Animals.

Thefe mufcles have the fame origin in almoft all quadrupeds; they differ only in their proportions, which depend upon the number of the lumbar vertebræ. The ploas parous is wanting in the rat.

Bats have no quadratus lumborum; but their ploas parvus is very ftrong, and its aponeurofis is very broad.

C. In Birds.

Birds have neither the ploas parerus, nor the quadratus lumborum.
D. In

D. In Reptiles.

In the tortoife the mufcle analogous to the quadratus lumborum expands under the back fhell. between the laft anterior ribs; it arifes from the ilium towards the articulation of that bone with the os facrum, which in this animal is moveable.

This mobility of the pelvis is affifted by a mufcle analogous to the reElus abdominis, which, as we have obferved, inftead of extending under the belly, is attached under the poiterior extremity of the breaft plate, by two flefhy portions, one anterior, the other pofterior, which are both inferted in the anterior margin of the external branch of the pubis.

There is no ploas parvus in frogs. The quadratus lumborum extends from the long traniverfe procefs of the third vertebra, to the origin of the long bone of the pelvis, which is analogous to the ilium. It is inferted in this bone, which it raifes towards the head; their ilium being moveable, like that of the tortoife.
N. B. We hall poftpone our obfervations on the pofterior extremity, or ventral fin of filhes, until the end of this Lecture.

Artiele III.

Of the Thigh Bone.

The cotyloid cavity is femi-fpherical. In its brim, oppofite to the oval or fub-pubic foramen, there is a notch which correfponds to the axis of the thigh bone when man is erect. The direction of the cavity is from the fide downward and a little forward. The brim of this articular cavity is furnifhed with a very ftrong ligament, which greatly augments its extent in the recent ftate.

In other mammiferous animals the notch of the cotyloid cavity correfponds alfo to the foramen ovale; but the difference of pofition of the plane of that hole renders it neceffary that the bone of the thigh fhould be perpendicular to the fpine, or form an acute angle with it anteriorly, in order that its axis may correfpond with the notch. This indeed is the pofition of the femur when quadrupeds reft tranquilly on their four feet. The angle which the femur forms with the vertebral column is almoft a right angle in the Carnivora: in the hoofed animals it is acuie. The direction of the cavity in mammiferous animals is alfo conformable to the pofition of the femur. It is fuch that when the fpine is horizontal, it is directed outward and downward; but in the animals which fwim much, as- the ather and the baver, it proceeds
direetly

368 Lect. V. Posterior Extremitp.
directly from the fide, and even inclines a little upward.

> A. In Man.

The femur itfelf is a fimple bone, almoft cy lindrical, and fightly arched upon the inner and back part. Its fuperior extremity is elllarged, and has two proceffes: one almoft in the direction of the axis, called the great trochanter; and another, which is directed inwardly, and forms an obtufe angle with the axis inferiorly: the latter is called the neck. It is terminated by a fpherical tuberofity, which moves in every direction in the cotyloid cavity, and is called the head of the os femoris. This articulation is fupported by a capfular ligament which arifes from the whole circumference of the cavity, and is inferted around the neck and the head of the femur. There is befides a round ligament within the articulation, which arifes from the fmall foffa of the cotyloid cavity, and is inferted in a depreffion in the middle part of the head of the bone. Under the neck, and fomewhat anteriorly, there is fituated a fmall tubercle called the little trochanter or trocantin, and along the pofferior furface there is extended an elevated line called linea afpera of the femur.

B. In other Nammiferous Animals.

In all claffes of animals the thigh has only one bone: Its form varies little, but its proportion with

Art. III. Bone of the Thigh 369

with refpect to the other parts of the abdominal member, depends, in general, on that of the metatarfus.

In the Ruminantia and the Solipeda, for example, it is fo fhort that it feems to be concealed within the flefl of the abdomen : on this account, the part which really correfponds to the leg is, in thofe animals, vulgarly called the thigh.

The os femoris is not incurvated in the mammiferous quadrupeds; its neck is alfo fhorter than in man, and more perpendicular to the axis. Thus the head is directed entircly inward, and the great trochanter rifes above it.

In monkies the os femoris is perfectly cylindrical, and has hardly any linea afpera.

In the tapir the middle part of the thigh-bone is very flat; it has, on its external edge, a projecting ridge, which terminates in a procefs refembling an hook.

This conformation is fill moreftriking in the rbinoceros. The great trochariter and this unciform procefs are much prolonged, and clofe again in fuch a manner as to leave a hole between them and the body of the bone.

The unciform procefs is alfo found in the borse, the armadillo, and the beaver.

In the feal the thigh is fo fhort that the two articular extremities make up more than half its length.

- Yol, I,
Bb
C. I_{n}

370 Lect. V. Posterior Extremity:

C. In Birds.

The thigh-bone in birds has only one trochanter. It is always very fhort in proportion to the leg. Its form is cylindrical. It is almoft always ftraight, and rarely incurvated, as in the cornorant, the diver, and the little grebe (colymbus minor.)

In the oftrich the thigh-bone is very thick in proportion to the humerus, its diameter being almoft four times as great. Its two extremities are larger than its middle part, which is nearly triangular.
D. In Reptiles.

The thigh-bone of oviparous quadrupeds refembles that of other animals; it has, howcver, a double curvature, more or lefs evident. In front it prefents a convexity towards the tibial extremity, and a concavity near the pelvis. In the tortoife the trochanters are well defined, but they are not to be found in the lizards and frogs.

The figure of the femur is in general round, except in the Surinam toad, in which it is very Hat.

Art.IV. Muscles of the Thigh. 371

ArticleIV.

Of the Mufcles of the Thigh.

I. Muscles of the Great Trochanter.
T_{He} mufcles which extend to the great trochanter of the os femoris, roll it upon its axis in the cotyloid cavity, either by bringing the toe from within outward, or by producing the oppofite motion. They may alfo extend the thigh a little in the direction of the fpine, or, what amounts to the fame thing, make it diverge from the other thigh :

$$
\text { A. In } M a r \text {. }
$$

The layer next to the bone is compored of the following mufcles :

1. the glutaus minialus, or ilioTROCHANTERUS,
Which arifes from the anterior and inferior part of the os ilium, and is inferted, by a thin tendon, into the anterior and fuperior fide of the great trochanter. It raifes the thigh directly up towards the fide.

372 Lect. V. Posterior Extremity.
9. The pyriformis, or sacro-trochanterus.

This mufcle proceeds from the interior of the pelvis, where it arifes from the fuperior part of the lateral edge of the os facrum, and is inferted, by a flender tendon, into the top of the great trochanter, behind the preceding. It turns the thigh on its axis from within outward.
> 3. The GEMIN , or tschit-trochanteri.

Thefe arife from the pofterior edge of the ifchium, and are inferted into the top of the great trochanter, behind the preceding mufcle, to the tendon of which they in fome degree adhere. They likewife produce the fame effect.
4. the obturator internus, or SUB-PUBOTROCHANTERUS.

This mufcle arifes from the internal part of the border and membrane of the foramen ovale; and is inferted into the great trochanter by a flender tendon that turns round the pofterior edge of the ifchium, between the gemini, which form a fort of theath for it. Its action is fimilar to theirs, but much more powerful, as it is aided by the pulley over which it Mides.
> 5. the quadratus femoris, or ischioTrochanterus,

Arifes from the tuberofity of the os ifchium, and is inferted into the poftcrior edge of the

Art. IV. Muscles of the Thigh. 373

great trochanter, under the preceding. It is a rotator of the thigh, which it moves from within outwardly.

Over the glutæus minimus and pyriformis we find
6. the Gluteus medius, or illo-trocifaxTERUS.

It arifes from all the large circumference of the os ilium, and, collecting its fibres, is inferted into the great trochanter. It raifes the thigh, carrying it, at the fame time, outwards, in the fame manner as the glutæus minimus.

Laftly,
7. the Gluteus maximus, or sacro femoR A LIS.

This covers part of the preceding, and all the fmaller mufcles. It arifes from the pofterior edge of the os ilium and the facrum, and is inferted into the pofterior part of the os femoris, below the great trochanter. It is a very ftrong mufcle, which erects the trunk upon the extremities, carries the thigh backwards upon the trunk, and is one of thofe that act moft powerfully in the motions of the abdominal member.
B. In other Mammiferous Animals.

In the monkey the elongation of the os ilium renders the glutous medius and minimus larger; Bb 3 but
but the mufcle analogous to the glutcus maximus is the leaft of the three.

The quadratus femoris is proportional to the greatnefs of the tuberofity of the ifchium.

Bats have a glutcus minimus, which defcends almof perpendicularly from the ilium to the thigh. They have neither pyriformis, gemini, obturator internus, nor quadratus fenmoris.

In the Carnivorà and Rodentia the fame proportional minutenefs of the gluteus maximus is found as in the monkies.

The glutcus medius and maximus exhibit nothing peculiar.

In the borfe, the mufcle analogous to the glutcus maximus, (but called by Bourgelat glutaus minimus,) is, in a great meafure, aponeurotic. It has a long flender bclly in addition to the ordinary one, which arifes from the fummit of the os ilium.

The glutaus medius, which is very confiderable, arifes likewife from the facrum, and from all the membrane between that bone, and the ilium and ifchium. This mufcle is the principal agent in kicking; it is inferted into that particular procefs which may be confidered as a third trochanter.

The other little mufcles of the great trochanter are the fame in quadrupeds as in man.
Art. IV. Muscles of the 'Thigh.

C. In Birds.

The three glutci have the fame proportions as in quadrupeds.

That which is analogous to the maximus is the mufcle called pyramidalis by Vicq $D^{\prime} A z y r$. The minimus, which arifes from the inferior edge of the os ilium, is his iliacus.

The pyriformis and the gemini are wanting. That analogous to the quadratus femoris is very large.

The obturator internus, inftead of paffing through the hole correfponding to the ifchiatic notch, paffes over that which is analogous to the foramen ovale.

In fome birds there is even a tranfverfe piece of bone which forms a particular foramen.
II. Muscles of the Little Trochanter and the Inside of the Thigif.

The mufcles which go to the little trochanter and the internal furface of the thigh, bend it, or bring it nearer to the other. They are,
A. In ṂTan,

1. the psoas, or prxelumbo-trochantinus.

This mufcle arifes from the fides of the lumbar and laft dorfal vertebre, and is inferted, by a Bb_{4} fmall

376 Lect. V. Postrifor Extremity.
fmall tendon, into the leffer trochanter. It raifes the thigh, and brings it directly forward.
2. the illacus, or ilio-trochantinus.

This arifes from the internal furface of the os ilium, and has its infertion in the leffer trochanter, in common with the proas. It produces the fame effect as that mufcle.
3. thépectineus, of pubo-femoralis,

Arifes from the fuperior margin of the os pubis, and is inferted by a flender tendon below the little trochanter. It affifts a little the action of the preceding mufcles.
4. The tirlee adductors, sub-pubo, subPU'BI, ISCHIT-FEMORALES, or TRICEPS ADDUCTOR,
Arife thus: namely, the firt from the fymphyilis pubis, the fecond from its defcending branch, and the third from the tuberofity of the ifchium. They all extend to the linea afpera of the thigh, where the fecond is inferted between the two others, but fomewhat above them. They bring the thighs inward, or towards each other.
5. THE OBTURATOR EXTERNUS, OV SUB-PUBO TROCHANTERUS EXTERNUS.
This covers the foramen ovale, and is inferted behind and into the cavity of the great trochanter; it rolls the thigh outwards.
Art.IV. Musciles of the Thigh. 377

B. In other Mammiferous Animals.

In quadrupeds in general the pfoas and iliacus are much longer than in man.

The pectineus of the dog is flefhy, and its lower tendon extends to the bottom of the os femoris; but this is not the cafe in other quadrupeds.

Bats have neither pfoas nor iliacus. Their pectincus is long and flender, as well as the obturator extermus. They have but one adductor femoris, which arifes from the fymphyfis pubis, and is inferted into the upper part of the thigh, about one-third from the head.

The Cetacea have not even a rudiment of the mufcles of the thigh.

> C. In Birds.

Birds have neither pfoas iliacus, nor obturator externus. The mufcle which Vicq $D^{\prime} A z y r$ has named iliacus, is no other than the gluteus minimus. They have two adductors in the common fituation.

In the part occupied by the pectineus of quadrupeds, there is a little flender mufcle which is prolonged to the knee. Its tendon paffes obliquely over, and then under the leg, to join the fiexor perforalus of the fecond and fifth toes. We fhall fpeak of it prefently.
D. I_{12}

D. In Repites.

In the frog there is only one glutceus, which is in the place of the medius. It arifes from the elongation which fupplies the place of the os ilium, and is inferted below the head of the femur.

The pyriformis comes ftraight from the point of the coccyx, and is inferted about one-third from the top of the os femoris.

The gemini and the obturator internus are wanting.

The quadratus fenoris is long. It arifes from the pofterior fymphyfis of the ifchium, and is inferted into the inner fide of the thigh-bone, about one-third from the head.
They have neither the pfoas magrus nor parvus.
The iliacus is proportionally elongated.
The pectincus defcends to the middle of the thigh-bone.

The three adductors have the fame origins and infertions as in man.

The obturator externus is to be found, though there is no foramen ovale. It arifes from the fymphyfis pubis, and its fibres are attached to the capfular ligament.

In the tortoife the mufcles of the thigh produce motions proper to fwimming ; that is to fay, the abduction, adduction, depreffion, and elevation of the thigh.

The

Art. IV. Muscles of the Thigif.

The mufcle analogous to the adductor longus arifes from the fymphyfis pubis, and is inferted into the internal part of the thigh-bone, about one-third from its tibial extremity.

Another mufcle, which cannot eafily be compared to any in man, arifes from the interior of the facrum, and is inferted into the little trochanter. It is another adducior feraoris.

A mufcle compofed of different radiated fafciculi, arifes from the broad inferior furface of the os pubis, and forms a thick tendon, inferted into the little trochanter. It occupies the place, and anfwers the purpofes of the pfoas and iliacus.

That which is analogous to the cidductor brevis arifes from the fymphyfis of the bones of the ifchium and the interoffeous ligament of the pubis. It is inferted into the os femoris below the little trachanter.

The mufcle anfwering to the glutreus maximus arifes from tile fpine oppofite to the laft rib, and is inferted into the thigh-bone, below the great trochanter.

The mufcles analogous to the glulceus medius and minimus can hardly be diftinguifhed from each other. They rife from the internal furface of the os pubis, and are inferted into the great trochanter.

That which refembles the obturator intorinus arifes from the internal furface of the ilium and the fuperior edge of the cotyloid cavity, and is inferted into the great trechanter.

ArticleV.

Of the Bones of the Leg.

Thehuman thigh-bone becomes thicker towards the extremity next the tibia. It there forms two eminences, which rife from the axis of the bone, and which are named the internal and external condyles of the os femoris. Each is furnifhed with an articular furface like the fegment of a wheel, which correfponds to another in the tibia, one of the bones of the leg. They are likewife as it were feparated before by a large notch or articular depreffion, in which the rotula, a little bone fituated upon the knee, moves. Behind the condyles there is a hollow which is called the foffa poplitea.

The two condyles of the os femoris are unequal. When that bone is placed in an erect pofition by refting the condyles upon a horizontal plane, its axis leans towards the external fide.

This obfervation is worthy of notice; for; in quadrupeds, the pofition of the condyles is horizontal, and the axis of both thigh-bones parallel in a flate of reft, while the fituation of the condyles in birds is fo oblique, that the coxal cxtremities and the whole axis of the bones bend towards the central line, or take a direction oppofite to the human.

A. In Mar.

The leg is compofed of two bones; a larger, called tibia; and a fmaller, attached to the exterior fide of it, called fibula, or perone.

The tibia is articulated with the thigh-bone ay a broad furface, in which we find two flightdepreffions that correfpond with the condyles of the thigh. The femoral extremity of this bone is much larger than the middle part, and has three longitudinal ridges, which continue almoft three-fourths of the length of the bone. The anterior one is called the \int pine of the tibia, and is flattened towards the top into a large rough triangular furface. That of the outfide is next the fibula, and ferves for the infertion of a membrane, occupying the fpace between thefe two bones, and which is called the interoffeous ligament. The third ridge is internal, and fomewhat pofterior.

The fupcrior extremity of the fibula is connected to the tibia beneath a projection at its external and pofterior angle. And as the bodies of both become fmaller, there is a fpace between them, larger towards the top, but contracted below. The fibula has alfo three longitudinal edges.

Thefe two bones are incapable of that rotatory motion on each other which thofe of the forearm poffiefs.

The fibula is joined to the tibia by theee forts of ligaments. The one a capfule, which binds the articular furface of the fuperior extremity to the head of the tibia. The fecond is a ligamettous membrane, which fills the whole fpace comprized between the two bones, and unites them by thofe ridges which are next each other. The third kind is produced by fibres which arife obliquely from the tibia, and extend to the malleolus externus both before and behind.

Over the articulation of the os femoris with the tibia, and between the condyles of the former, there is placed a little bone, almoft circular, but rather pointed towards the lower part. It is convex, and rough before, and has, on its pofterior part, two articular furfaces, which correfpond with thofe of the thigh-bone. It is furpended, in this place, by ligaments and mufcles, and prevents the extenfion of the tibia beyond a right line. It is called rotula, or patella, and is the bone that forms the angle of the knee.

The articulation of the four bones which form the knee is ftrengthened by a great number of ligaments. There is, in the firft place, a capfule, which rifes from the circuinference of the condyles of the femur, and is inferted into the edges of the rotula and tibia. We next obferve fome fafciculi of ligamentous fibres which pars in different directions. Some rife from the external condyle of the thigh, and are inferted into the inficie

$$
\text { Art. V. Bones of tife Leg. } 383
$$

infide of the head of the tibia. One ligament proceeds from the internal condyle, and is inferted into the external fide of the tibia, and even into the fibula. In the joint itfelf are fituated two ligaments, placed croffways one over the other, and called the crucial ligaments; they proceed from the pofterior part of the condyles of the thigh, and are inferted into the middle of the elevated line that divides the two articular depreffions of the head of the tibia.

Two interarticular ligaments of a femilunar form, are alfo interpofed between the tibia and os fomoris: they are retained in their fituation by little bundles of ligamentous fibres, which rife from different points of the capfule. Finally, the rotula has a peculiar and very ftrong ligament which proceeds from its pointed end to the fpine of the tibia. It feems to be of a tendinous nature, and produced by the termination of the tendon of the exterior mufcles, in the fubftance of which this fuper-articular bone is enclofed.

B. In other Mammiferous Animals.

The bones of the leg are generally the fame in. the inferior mammalia as in man.

In monkies, the anterior fpine of the tibia is not very diftinct.

In the bat, the fibula is extremely flender; and
as the thighs are turned backward, the legs muft have the fibulx facing each other.

In the mole, the fibula is offified to the tibia, about one-third of the lower part of its length.

The tibia of the bear is fomewhat curved forward: the tuberofity of its anterior edge is very prominent, and its articular furfaces very far back.

The dog has the fibula attached to the whole length of the tibia pofteriorly.
The fibula of the opolfun is large and much bent, which feparates it confiderably from the tibia.

The longtailed manis, the armadillo, and the Roth, likewife have the fibula pretty large, curved, and feparate from the tibia.

The Rodentia have the fibula entirely behind. Rats have it offified to the tibia about one-third from its lower end. In the upper part it forms a large vacant triangular fpace.

In the elepbant, the rbinoceros, and the bog, the fibula is flat and anchylofed in its whole length to the tibia.

In the Ruminantia it does not exif. This bone feems fupplied by a fmall offeous fubftance placed on the external edge of the aftragalus below the tibia, and forming the malleolus cxternus.

Finally, in the horfe, the fibula is only a rudiment anchylofed by age to the upper part of the tibia.

C. In Birds.

Birds have the lower part of the thigh-bone nearly difpofed like that of mankind.

The leg is likewife formed by the tibia, the fibula, and the rotula.

The tibia differs but little from that of the mammalia, except in its lower extremity, as we fhall fee in treating of the tarfus. The anterior and fuperior tuberofity has generally two ridges.

The fibula is alway's offified to the tibia, and never reaches its lower extremity.

The diver and the little grebe have the tibia prolonged in the front of its articulation with the thigh-hone: this prominence has three furfaces; it ferves for a rotula, and furnifhes infertions for the mufcles.

In the mancbot, this prolongation of the tibia has already been remarked, but the projection which it makes before the knee is fcarcely the length of a centimetre.

D. In Repitiles.

Oviparous quadrupeds have the tibia and fibula diftinct and feparated from each other throughout their whole length. Thefe two bones are nearly of the fame magnitude in the tortoifes and lizards.

The frog has but one bone, but a furrow feems to indicate the union of the tibia and fibula.

In thefe animals the ribia and fibula are, for the moft part, directly articulared to the thigh-bone.

$$
\text { VOL. I. C } \quad \text { Articher }
$$

386 Lect. V. Posterior Extremity:

$$
\begin{aligned}
& \text { Article VI. } \\
& \text { Of the Mufcles of the Leg. }
\end{aligned}
$$

, A. In Mun.

The extenfors of the leg all terminate in one common tendon, which is inferted into the rotula, and thence continued to the anterior tuberofity of the tibia. Thefe mufcles are four in number: the three firft of which, the vafus intcrnus, the vafus externus, and the crualis, are by many regarded as one fingle mufcle, which they nam
triceps-femorts, ortrifemoro-rotularys.
The cruralis arifes from the whole anterior rurface of the thigh-bone, the vafus extermus from the region of the great, and the internus from that of the little trochanter.

The fourth extenfor is the rectus anterior, or ilio-rotularig,
Which arifes from the fpine of the os ilium, and extends along the whole anterior part of the thigh.

The flexors of the leg are all inferted inta the internal fide of the tibia, except one, which is inferted into the fibula. This is the
BICEPS, or ISCHIO-peroneus,

Which reccives one part of its fibres from the tuberofity
ruberofity of the os ifchium, and the other from the middle of the linearafpera of the os femoris. Thefe two unite in one fmall tendon, which is inferted into the head of the fibula.

From the fame tuberofity of the ifchium, arife two other mufcles fituated behind the biceps, viz.

THE SEMIMEMBRANOSUS, or ISCIIO-SUBTLblalis, and the semitevdinosus, or ISCHIO-PRFTIDIALIS.

The firft is inferted into the tibia by a flat thin tendon, and the other a little lower down, by a round and flender tendon. Under the femitendinofus is inferted
the sartorius, or ilio-pretibialis,
Which arifes from the fpine of the os ilium, and paffes fpirally over the fore part to the infide of the thigh, fomewhat lower than the others.

THE GRACILIS, RECTUS INTERNUS, or PUBIOPRETIBIALIS.

This mufcle arifes from the lower edge of the fymphyfis pubis, and defcends ftraight along the inner fide of the thigh.

Laftly:-

THE POPLITEUS, Or POPLITO-TIBIALIS.
This is a little mufcle fituated bchind the snee; it extends obliquely from the external
condyle of the thigh to the internal part of the head of the tibia.

Thefe mufcles, with the adductors of the femur, \&c. form altogether the long and round mars which furrounds that bone, and is called the thigh. They are all inclofed in an aponeurotic fheath, called the fafcia lata, which is provided with a particular mufcle, ilio-fascialis, the fibres of which are entirely covered by the aponeurofis.

B. In other Mammiferous Animals.

The thigh of the morkey is lefs round than that of man; their mufcles, however, differ but little from his, except the biceps.

In quadrupeds, in general, the thigh being preffed againft the flank, the flefhy mafs becomes more compreffed. The fartorius and gracilis form the anterior edge of the thigh in the Carnivora and Rodentia.

In the borfe the fartorius becomes more confpicuous, and takes the name of aDDUCTOR longus, in oppofition to the gracilis internus, which is called adductor brevis.

In all quadrupeds, and even in the monkey, the mufcle analogous to the biceps in man has only a fingle head rifing from the os ifchium : it covers a large portion of the external furface of the thigh, and not only tranfmits fibres to the fibula,

Art. VI. Muscles of theLeg. 389
fibula, but likewife to the whole length of the fafcia lata, fo that it thus performs the office of an extenfor of the thigh. This is the mufcle which Bourgelat has named vastus longus in the dog and the horse.

The gracilis internus is large in all quadrupeds, and particularly in thofe that have the thigh fhort. In the boofed animals, therefore, it forms a very confiderable mufcle. Bourgelat calls it ADDUCTOR: brevis, and gives the name of gracilis internus to the mufcle which is analogous to the Semitendinofus.

The Semimembranofus and Semitendinofus are found in all quadrupeds as well as in man; but they are both inferted into the tibia by a broad aponeurofis. It muft alfo be remarked that their point of infertion is lower than that of . man. This conformation keeps the leg perpetually in a ftate of femiflexion, and is one of the caufes which prevent quadrupeds from walking upright. In monkies there mufcles are alfo inferted very low in the tibia.

The extenfors, that is to fay the reefus anterior and the triceps, are found in quadrupeds as well as in man, with fome fmall difference in their proportions.

The bats, in which the pofterior extremities feem turned in fuch a manner that they bend backward, have only two mufcles proper to the leg; one, which fupplies the place of the farsorius, the gracilis, the Semitendinofus, and the Semi-
membranofus, rifes by two flefhy bellies feparate from each other, between which the adductor femoris paffes. The firft of thefe portions comes from the anterior part of the ilium, and the other from the pubis and the ifchium. They form one common tendon, which goes to what is commonly the pofterior, but which is here the anterior part of the leg, and is inferted into the tibia below its articulation with the os femoris. This is the fiexor of the leg.

The extenfor of the leg rifes by a fingle flefiny belly, from the fuperior cxtremity of the os femoris. Its tendon is flender, and is inferted into the pofterior extremity of the leg, which, we repeat, is here turned round.

C. In Birds.

The extenfors of the leg in birds are nearly the fame as thofe of quadrupeds; they have three fiexors

The moft external feems analogous to the biceps in man. It rifes from the whole fpine of the ifchium, and fends off a round tendon, which paffes through a ligamentous pulley under the joint of the knce, and is inferted into the fibula.

The internal is analogous to the femimembranofus. It arifes from the extremity of the ilchium, and is inferted in the inner fide of the head of the tibia.

The third, which is intermediate, is wanting
in feveral birds, particularly in thofe of prey. It likewife arifes from the fpine of the ifchium, and its tendon receives a fecond bundle of flefhy fibres from the bottom of the thigh. It paffies between the gaftrocnemii, and is inferted into the pofterior furface of the tibia.

The fartorius forms the anterior edge of the thigh, but it inclines towards the inner fide.

D. In Reptiles.

The frog has the thighs round, like thofe of a man, and the mufcles of the leg very confpicuous.

The triceps femoris is formed only of two very diftinct portions. The vafus externus and the cruralis are manifeftly but one.

There is no rectus anterior.
The biceps flexor cruris has only one belly. It arifes from the pofterior and interior part of the ilium, and is inferted into the exterior and anterior furface of the tibia, for there is no fibula.

The femimentranofus is like the human; but the Semitendinofus is compofed of two bellies, one of which rifes from the fymphyfis pubis, and the other from that of the ifchium.

The farlorius is fituated exactly in the front of the thigh, without any obliquity.

There is nothing remariable in the gracilis.
There is no diftinct popliteus.

392 Lect. V. Posterior Extremity.

Some differences occur in the mufcles of the leg of the tortoife. Thefe have a relation to the faculty of fwimming, for which its extremities are fitted.

The mufcle which takes the place of the femimembranofus arifes from the interoffeous ligament of the pelvis, and proceeds to form a ftrong aponeurofis at the inferior part of the leg.

That which is correfponding to the Semitendinofus arifes also from the interoffeous ligament: it paffes under the ham, and is inferted into the tibia, which it bends.

That which is analogous to the fartorius arifes from the os pubis near the interoffeous ligament, and paffes over the knee, to be inferted into the tibia, which it extends.

A mufcle, compofed of two flefhy portions, both of which arife from the lateral parts of the facrum, is inferted below the head of the tibia, and bends the leg. In its action it much re~ fembles the biceps, from which, however, it differs with refpect to its attachments.

Another mufcle refembling the fafcia lata, and very thin in its flefly part, arifes from the fides of the coccyx. It paffes under the fkin of the fin to its infertion almof oppofite to the heel. It bends the leg upon the thigh, and extends the foot upon the leg.

The mufcle analogous to the biceps arifes from the facrum and ilium. It gocs to the external furface of the leg, where it is inferted into the fibula.

The extenfor of the leg prefents nothing particular.

The mufcle analogous to the rectus anterior arifes from the internal furface of the pubis, and joins the common tendons of the extenfors.

Article Vil.

Of the Bones of the Ancle or Tarfus, and thofe of the Metatarfus.

A. In Men.

T_{HE} tibia, which is nearly triangular at the top and the middle, becomes round towards the. bottom, where it is fenfibly enlarged. It is truncated by a flat articular furface. There is a flight elevation in the middle, paffing from the front backwards; on the inner fide there is a defcending production called the malleolus internus.

Upon the external fide of the inferior extremity of the tibia, there is a depreffed articular furface that receives the fibula, which is here prolonged downward to form the malleolus exterius, that is longer than the internus.

Under the articular furface of the tibia, and between the malleoli, there is a pulley-fhaped or femi-cylindric portion of the aftragalus, the firft bone of the ancle or tarfus.

This bone moves frecly by ginglymus, giving to the foot a motion like a balance; but as the articulation is lax, it-has alfo a confined motion fideways.

The aftragalus, befides its articular part,' has two fhort and thick proceffes, one defcending anteriorly, and turning fomewhat inward; the other pofteriorly, and outward. The firf receives the os foaphoides upon its digital extremity, and is joined by an articular portion of its inferior furface to a particular procefs of the calcancum. The other procefs of the aftragalus extends to the body of the calcancum.

This fecond bone of the tarfus has, befides the procefs on its internal furface which fupports the aftragalus, an anterior production directed fomewhat outward, and parallel to the fide of that of the aftragalus: it is at the fame time lower than the-latter. The other is turned backward, and terminates in a large tuberofity, which projects downward, and forms the heel.

The anterior procefs of the calcancum, or os calcis, fupports the os cuboides, to which the two metatarfal bones of the two laft tocs are applied. Thofe of the three first are fupported by the three offo cunciformia, which arc placed in front of the os fcaphoides.

Several ligaments frengthen the articulation of the bones of the leg with thofe of the ancle. Some extend from the mallcolus externus, or the tarfa!

$$
\text { Art. VII. Bones of the Ancle. } 395
$$

tarfal extremity of the fibula, to the aftragalus and os calcis: one rifes from the malleolus in ternus or tibialis, and is inferted into the aftragalus, and the circumference of the os fcaphoides; its figure is triangular. Laftly, a capfular ligament unites the articular cavity of the tibia to the circumference of the articular furface or pulley of the aftragalus.

The metatarfal bones are parallel, nearly of an equal length, and retained by ligaments analogous to thofe of the metacarpus.
B. In other Mammiferous Animals.

Quadrupeds with toes have almof all the bones of the tarfus nearly refembling thofe of man. The following are the principal differences :

In the monkies the articular furface of the aftragalus, oppofite to the fibula, is almoft vertical ; that next to the malleolus tibialis is, on the contrary, very oblique, and the anterior production of that bone is turned more inward. It hence follows that the foot refts more on its external edge than on the fole.

The os calcis has not the large tuberofity which forms the heel at its pofterior extremity : on the contrary, it is turned upward, except in the Batavian pongo, in which this bone is fimilar io that of man.

The fixt os cunciforme is fhorter than the human, and has an evident groove for the murcles of the great toe.

The metatarfal.bone of the great toe is fhorter by one-half than the others, and can be eafily held afunder from them.

Amongt the lenurs, the tarfier and galago have the calcaneumand os fcaphoides exceffively long, which produces a difproportion in the whole pofterior extremity, and gives to the foot of there animals the appearance of a hand and fore-arm.

The Pedimana, in which the fibula is equal to the tibia at the bottom, have the aftragalus very fmall, and articulated almoft exactly between them. The os calcis is fhort, and the firft cuneiforme is very large, and of a femilunar fhape.

The oporfun has a little fupernumerary bone on the edge of the firft os cuneiforme.

In the Carnivora the middle projection of the lower furface of the tibia is ftronger, and the ginglymus more complete than in man; but the lateral movements are more obfcure.

The firft cuneiform bone is lefs in proportion to the others.

The heel is longer: it terminates quite ftraight in thofe that tread only upon the tocs: but it has a fmall tubercle in thofe that walk entirely on the fole.

Thofe that have only four toes have the firft os cuneiforme fmaller.

In the common bat the os calcis is of a confiderable length. It is a ftyloid bone, concealed in the thickeit part of the membranes of the wing which it fupports; but in the ternate bat the tuberofity of the os calcis turns under the foot, being curved like that of the cunciforme bone of the carpus in man.

With refpect to the Plantigrada, the mole in particularly remarkable in having its tarfus articulated only to the tibia, to which the fibula is completely offified at its lower parts.
The Rodentia have the os calcis much prolonged pofteriorly.

The following facts in thofe that have five perfect toes are remarkable:

In the beaver the os fcaphoides is divided into two parts; one fituated in front of the aftragalus, and fupporting the fecond and third offa cuneiformin; the other at the inner fide of the aftragalus, fuftaining the cunciform bone of the great toe, and a flat fupernumerary bone placed along the imner cdge of the tarfus.

The fame ftructure is obfervable in the marnote:
The porcupine and the paca have the fcaphoides. divided, but the fupernumerary bone is not found in thefe animals.

The fquirrel has this inner portion of the faphoides very fmall; it does not fupport the cuneiform bone belonging to the great toe.

In all, the fcaphoides forms a tubercle under the fole ; that of the para is elongated.

398 Lect. V. Postemior Extremity.
Among thofe that have four toes only, the jerboa of the Cape, which is remarkable for a long foot, has the inferior tubercle of the fcaphoides elongated and very prominent; upon the internal edge of the tarfus are fome long flat bones, which are probably the rudiments of the great toe.

There is nothing fimilar in the rablit and bare; thongh thefe animals refomble the jerboa in' the tubercle of the fcaphoides.

In the cavy and agouti, which have only three toes, we find this internal part of the fcaphoides fupporting a fingle boue that andwers to the firft os cuneiforme, and the rudiment of the great toe externally. Upon the cuboides there is a fmall bone which may be regarded as a rudiment of the little toe.

In the Edentata the tarfus of the there-toed fotb is very remarkable, both with refpect to its articulation and form. It is compofed of only four bones, viz. the aftragalus, the os calcis, and two cuneiformia. The aftragalus is articulated with the fibula, the os calcis and the great cuneiforme. The articulation with the fibula takes place through the means of a conical depreffion in the fuperior furface of the aftragalus, and in which is received the head of the bone, the figure of which correfponds in relief with that of the depreffion of the aftragalus. Upon the internal lateral part there is an articular convex furface which rolls upon the external portion of the tar-
fal extremity of the tibia. From this mode of articulation it follows, that the foot of the floth cannot be moved up and down, and that it is only capable of the lateral motions of adduction and abduction: It poffeffes therefore the faculty of embracing the trunks of trees, and climbing them; but the action of walking is rendered ex tremely difficult.

The articular furface of the os calcis is a fimple tubercle received in a depreffion of the aftragalus: this alfo affifts the motions we have juft defcribed. Its tuberosity, ar the heel, is confiderably elongated, and forms more than two-thirds of the bone.

The two offa cuneiformia prefent nothing particular in their ftructure. The internal is articulated with the aftragalus, the external with the os calcis.

The elephant has the tarfus and metatarfus wery short; thefe parts have nothing ingular, only that the cúboides turns inwardly quite, béfore the fcaphoides.

In the bog there are, upon the fcaphoides, the three common cuneiform bones, and one below the firft, which seems the rudiment of a great toe.

The tapir and the rbinoceros have only two cunciformia; and here we muft remark, that all the animals hitherto mentioned have as many metatarfal bones as toes.

In the Ruminantia, the cuboides and the fcaphoides are united together, except in the camel, which has them diftinct : at the outward fide of the pulley of the aftragalus, there is a bone which feems to reprefent the inferior head of the fibula. It is articulated to the top of the os calcis.

There are only two cuneiform bones: in the giraffe they are united by offification. The two metatarfal bones are always anchylofed, and form a cannon bone, as in the metacarpus.

In the Solipeda there are two cuneiform bones; and the os fcaphoides is diftinct from the cuboides. The little peroneal bone is wanting, as well as the articular furface of the os calcis that receives it.

The bone of the metatarfus is alfo fingle, and called the cannon bone of the hind leg. It has a little offeous file on each fide.

C. In Birds.

In birds in general, the fibula terminates by uniting into one with the tibia about its middle. The latter ends in two condyles, like wheels, between which there is a fort of pulley. The fingle bone which reprefents the tarfus and metatarfus, has as its hcad a projection in the middle, and two lateral depreffions. It confequently moves in a ginglymus, and bends forward, but it cannot go beyond a right line in the oppofite direction:

Its proportional length varies: it is extremely long in the birds that feek their food on the fides of rivers, lakes, 8 zc . and which are for that reafon called filters or zeaders.

At the lower end it terminates in three proceffes, fhaped like pullies, for the three anterior toes. At the internal fide it produces a little bone that fupports the pofterior toc or pollex.

In the borned ozol the procefs of the external toe has its flexure directed outward, and fimply convex, which permits the toe to turn horizontally upon it.

It is turned directly backward in birds that climb.

In thofe that have no back toe, the little bone is wanting.

The oftrich has only two articular proceffes, which correfpond to its two toes.

The manchot has the three bones which reprefent the tarfus and metatarfus feparate from each other at their middle part; but they are united at their extremities, one of which receives the tibia, and the other the three toes.

D. In Reptiles.

The aftragalus is articulated to the tibia, and the os calcis to the fibula in all reptiles.

The tarfus, of the crocodile has five bones, viz. an aftragalus, an os calcis, two cuneiformia,

Vol. I.
D d anfwering
anfwering to the two middle metatarfal bones, and one out of the range which anfwers to the external metatarfal bone.

There are four metatarfal bones.
The bone fituated without the range ferves to fupport the little toe in the mud tortoife. In the sea tortoife it is very flat. The os calcis and aftragalus are very fmall.

In frog's the aftragalus and the os calcis are very long, and might at firft fight be taken for the tibia and fibula, if they did not form the third joint of the pofterior extremity. There are on the fore part, four little cuneiform, five metatarfal bones, and one in the form of a hook, which is very minute. Thefe are fimilar in the Surinam and common toad.

Article Vili.

Of the Mufcles of the Ancle or Tarfus, and of the Metatar/us.

The mufcles which affect the foot are, ift. Thofe which act upon the heel by means of the tendo Acbillis. They extend the foot, and are the principal agents in walking and leaping. 2d. Thofe which bend it.
3d. Thofe that lift up either of its fides.
The

Art. VIII. Muscles of the Ancle. 403
The tendo Acbillis, which is inferted into the head of the os calcis, has three mufcular bellies.

1. the gastrocnemidus, or bi-femoroCALCANEUS.
Thefe mufcles arife from the two condyles of the thigh, and compore the calf of the leg.
2. the soleus, or tibro-calcafeus

Is fituated before the others. In man, where it is of confiderable magnitude, it rifes from the pofterior furface of the upper part of the tibia and fibula.

There mufcles are very large in man, as he has the calf of the leg much greater than any quadruped.

The three mafcles are always to be found, but the foleus is not fo large in quadrupeds as in man. It arifes from the external furface of the fuperior head of the fibula. It is remarkably nender in the Ruminantia and Solipeda.
3. the plantaris, plantaris-gracilis, or FEMORI-CALCANEUS,
Spreads its tendon, in man, over the outward edge of the tendo Achillis, and has fcarce any function except raifing the capfula. It is therefore very fmall.

In monkies, this mufcle is evidently continued along with the plantar fafcia. We fhall fee D d 2 here-

404 Lect. V. Posterior Extremity.
hereafter, that in the other quadrupeds it fupplies the place of the flexor perforatus.

In birds, the tendons of the gaftrocnemii remain feparate till very near the heel. The foleus runs inwardly, and is inferted iṇto a linea afpera which belongs to the tibia. It is proportionally largr than in quadrupeds.

The fleyion of the foot with refpect to the leg, or of the leg with refpect to the foot, is performed by"

THE TIBIAITSANTICUS, CRURALISANTERIOR,
or TIBIO-SUPER-TARSEUS,

Which arifes from the anterior furface of the tibia. Its tendon having paffed through the annular ligament of the leg, runs to the infide of the foot, where it is inferted into the firft cuneiform and the metatarfal bone of the great toe.

In animals which have no great toe, fuch as the $d o g$ and the rabbit, it is inferted into the metatarfal bone of the fecond toe, which with them is the firtt.

It always raifes in fome degree the infide of the foot.

In the Bifulci and Solipeda, it is inferted into the anterior furface of the bafe of the cannon bone.-It is fimilar in birds.

Befides the action of the tibialis anticus, the inner fide of the foot is likewife raifed by

Art. Vili. Muscles of the Ancle. 405

THE TIBIAIIS POSTICUS, CRURALIS POSTERIOR, or TIBLO-SUB-TAIRSEUS.
This mufcle rifes from the pofterior furface of the tibia. Its tendon runs behind the malleolus internus, and is inferted into the under part of moft of the bones of the tarfus.

In the monkey, its tendon contains a fefamoid bone of confiderable fize, fituated under the os fcaphoides.

In animals that have no great toe, fuch as the $d o g$, the tendon of the tibialis pofticus is inferted into the edge of the bafe of the metatarfal bone of the firft toe; and in the rabbit it even extends to the fecond phalanx. It acts, therefore, as an abductor of that toe.

It is entirely wanting in the quadrupeds that that have cannon bones, and in birds.

The external fide of the foot is raifed by the peroneal mufcles. Man has three which arife from the fibula, and tranfmit their tendons behind the malleolus externus.
the peroneus longus, or peroneo-tarseus.
This mufcle adheres to the under part of the os cuboides, croffes the fole of the foot, and is inferted in the metatarfal bone of the great toe, and the firft os cuneiforme.

406 Lect. V. Posterior Expremity.

THE BREVIS, ON PERONEI-SUPER-METATARSEUS,
Extends directly to its infertion in the metatarfal bone of the little toe.

THE MEDIUS, OR PERONEO-SUPER-METATARSEUS,
Extends to the firft phalanx of the fame toe, and ferves to feparate it from the others.

The peroncus longus, in the monkey, has the peculiar office of bringing the great toe towards the other toes. In animals which have no great toe, it is inferted into the metatarfal bone of the firft toe.

In ruminating animals it croffes below the joint of the cannon bone in the fame manner, and proceeds to its infertion in the firft os cuneiforme.

The two other peronei in the monkey, and all unguiculated animals, refemble the human, cxcept that, in the rabbit, the medius fends off a tendon to the laft but one of the toes, thereby performing the function of abductor to the two outermoft toes.

In the Ruminantia this tendon extends to the two toes, but the brevis is wanting.

The bores has but one peroneus, which unites its tendon to that of the extenfor digiti, about the middle of the anterior furface of the cannon bone.

Art. VIII. Muscles of the Ancle. 407
In birds there is a peroneus brevis, which is inferted into the external bafe of the metatarfal bone; and alfo a mufcle feemingly analogous to the peroneus medius, (flexor digitorum accessorius of Vicq $D^{\prime} A z y r_{0}$) Its tendon is bifid; one paffes backward, and is inferted into the pofterior furface of the head of the metatarfus; the other defcends along the external furface of that bone, and is united with that of the flexor perforatus of the middle toe.

B. In Reptiles.

In the frog the gafromemius has uniy one belly; it has however a fmall tendon by which it is inferted into the outward fide of the head of the tibia. Its tendon runs under the heel, and there fliding over a a fefamoid bone, expands itfelf under the foot to form the plantar fafcia.

There is neither foleus nor plantaris.
The tibialis anticus rifes by a ftrong tendon from the lower part of the os femoris. About the middle of the tibia it divides into two bellies, one internal, the other external. The tendon of the firft is inferted into the tibial bafe of the long bone of the tarfus, and that of the fecond into the fame bone, a little more out.. wardly.

An affiftant to this mufcle arifes from the D d 4 middle
middle and anterior part of the tibia, and proceeds to the internal fide of the bafe of the long bone of the tarfus.

The tibialis poficus refembles the human, but it is only inferted into one bone of the tarfus, viz. that which is long, and fituated at the inner fide.

There is but one mufcle to which the term peroneus can apply. It arifes by a flender tendon from the external condyle of the thigh, and is inferted into the bafe of the tibia on the dutfide, by two tendinous portions, one of which extends to the bone of the tarfus. It extends the leg with refpect to the thigh, or more properly the thigh with refpect to the leg.

Befides thefe mufcles, which extend from the leg to the foot, there is another, which arifes from the metatarfal extremity of the tibia, at its internal edige, paffes between the two bellies of the tibialis anticus, and proceeds very obliquely to its infertion at the digital extremity of the long bone of the tarfus, on its inner fide.

In the fea tortoife the mufcles of the feet are fupplied by aponeurotic fibres, fomewhat flethy, which ferve only to ftrengthen the articulations, and kecp the fins properly extended.

Article IX.

Of the Bones of the Toes, and their Motions.
A. In Man.

Ale the toes have three phalanges, except the $^{\text {a }}$ great toe, which has only two. This, in man, is the longeft and thickeft ; the reft gradually diminifh to the fifth: they are fhort, and remain parallel to each other; their ligaments are the fame as thofe of the fingers.

13. In other Mammiferous Animals.

The Quadrumana and Pedimana have the toes longer than the human; but the great toe is fhorter than the reft, and its metatarfal bone is capable of being brought clofe to the others, or feparated from them like the thumb.

The aye-aye, or Madagafcar Squirrel, one of the Rodentia, feems to poffefs the fame faculty.

In the Carnivora the great toe is always united and parallel to the other toes. The bears, coatis, civets, badgers, racoons, and moles, have it nearly equal to the other toes. The weafels and /brezes have it very little fhorter.

In the cats and dogs it is perfectly obliterated.
Among the Rodentia, the beaver has the great toe nearly equal to the other toes; the marmotte, the

410 Lect. V. Posterior Extremity.
the porcupine, and the rats, have it fhorter. The paca has it almoft obliterated. In the jerboa of the Cape, it is completely obliterated, and reduced to a fingle bone.

The bares have not even a rudiment of it.
In the cavys, the agouti, and the Guinea pig, the great and little toe are each reduced to a fingle bone.

The jerboa (mus jaculus), and the alactaga (mus fagitta), have their three middle metatarfal bones confolidated into one cannon bone. The two lateral toes are diftinct, but fhorter in the jerboa. They are obliterated in the alactaga.

Among the Edentata, the ant-eaters, the orycterape (myrmecophaga capenf/s), the pangolins and the armadillos have five toes. The great toe is fhorter than the others in all; and in the armadillos the little toe is likewife fhorter.

In the foths the great and little toe are reduced to a very fmall fingle bone. The other bones of the metatarfus are offified together at the bafe. There are only two phalanges to the toes; that which fupports the nail being the largeft of the two.

In the families of animals which follow, the metatarfal bones deferve to be confidered by themfelves. In the eleppant and other Pachydermata, the tarfal extremity prefents a flat furface; and that which is oppofed to the phalanges is a convex tubercle, which has on the under fide a projecting longitudinal line in the middle of
the bone. In the Solipeda this line is found both above and below. In the Ruminantia, in which the cannon is formed by the two metatarfal bones, a deep line, like the cut of a faw, at the union of the two bones, may always be remarked. The conformation is the fame in the pectoral member.

The elepbant has five perfect toes.
The bog four.
The tapir and the rbinoceros three.
The Ruminantia have two perfect toes upon a a fingle metatarfal bone, and two little ones attached to the lower part of the fame bone, which fometimes has on each fide a ftyloid procefs.

The Solipeda have one perfect toe, and two imperfect, reduced to a fingle bone in the form of a ftyle.

In Birds.

In Birds the number of phalanges generally increafes from the pollex to the fourth toe, which has always the greateft number.

Thofe that have four toes have the number and order of the phalanges as follows:

$$
2,3,4,5
$$

Ameng thofe that have only three toes, the caforwary has them thus difpofed:

The reft have them thus:

$$
3,4,5
$$

The oftrich, which has only two toes, has four phalanges in each.

Thofe which have four toes have them either all four in front, as the martins, or (more generally) three before and one behind; or, like the Scanfores, two before and two behind; as the parrots, toucans, barbets, cuckows, curucuis, and woodpeckers.

Thofe that have only three toes have them. all before. Thefe are the buftard, the cafowary, the plover, the oyfter-catcber, and the long-legged plover, (cbaradrius bemantopus).

Among the Palmipedes, the albatrofs, the petrell, and the penguin, have the pollex obliterated.

D. In Reptiles.

The number of the toes varies much in reptiles; as may be feen from the following table.

Number of the phalanges of the toes of reptiles, exclufive of the metatarfal bones, beginning at the pollex or internal toe.

Crocodile,	$2,3,4,4$.
Lizard,	$2,3,4,5,4$.
Cameleon,	$3,3,4,4,3$.
Salamander,	$2,3,3,3$.
Sea Tortoife,	$2,3,3,4,2$.
Mud Tortoife,	$2,3,3,3,2$.
Frog,	$1,2,2,3,4,3$.

Article X.
Of the Mufcles of the Toes.
The toes, like the fingers, have extenfors, flexors, abductors, and adductors, either common or proper, long or fhort.
I. The extenfor mufcles are:

> A. In Man.
the extensor longus digitorum pedis, or peroneo-super-unguialis.
the extensor longus pollicis pedis, or peronei-super-unguialis.
Thefe mufcles are fituated on the fore part of the leg behind the tibialis anticus. Their tendons pafs below the annular ligament of the leg. The fecond fends its tendon to the great toe; the firft to the other four toes. They extend to the extremities of the toes.
the extensor brevis digitorum pedis, or
CALCANEO-SUPER-UNGUIALIS,

Extends over the upper furface of the foot, and detaches its 'tendons to all the five toes.
B. In other Mammifcrous Animals.

The monkies have three mufcles, like man ; but there is befides, at the inner fide of the extenfor 10ingus
ongus pollicis, an abductor longus pollicis, which is wanting in man.

Other digitated quadrupeds have only three mufcles like man. The extenfor pollicis is wanting in thofe animals that have no pollex, as in the $d o g$ and the rabbit.

The quadrupeds with cannon bones have flefhy fibres arifing from the cannon, and inferted into the tendon of the extenfor longus, which fupplies the place of the extenfor brevis digitorum pedis.

In the bifulcated quadrupeds the internal toe has an extenfor proprius reprefenting the extenfor pollicis, but in the Solipeda it is wanting.

C. In Birds.

Birds have the long extenfor of the three ano terior toes, anfwering to our extenfor longus digitorum pedis; but there is no longus pollicis.

Inftead of the extenfor digitorum brevis, the anterior furface of the metatarfus is furnifhed with four diftinct mufcles:
I. EXTENSOR POLLICIS PROPRIUS.
2. EXTENSOR DIGITI MEDII PROPRIUS.
3. ABDUCTOR DIGITI PRIMI.
4. ADDUCTÓR DIGITI TERTII.

Art. X. Muscees of the Toes.. 4 \$

II. The flexors of the toes are:-

> A. In Man.

THE FLEXOR LONGUS POLLICIS PEDIS, OR TARSO-. pHALANGEUS, and
THE FLEXOR LONGUS DIGITORUM PEDIS, Or tibio-sub-ungutalis.
Thefe are fituated on the pofterior part of the legs, before the mufcles of the tendo Achillis. They tranfmit little tendons to the laft phalanx of the toes. The tendons of the fecond pars through thofe of the flexor brevis.

THE FLEXOR BREVIS DIGITORUM PEDIS, or CALCANEO-SUB-UNGUIALIS.
This third flexor is fituated under the fole of the foot. It arifes from the os calcis, and fends perforated tendons to the four toes.

The flexor longus pollicis fends off a tendinous flip, which unites with the tendon of the flexor longus digitorum. This tendon has befides a particular flefhy mafs, fituated above the flexor brevis digitorum, and rifing like it from the os calcis, but inferted into the tendon of the flexor longus digitorum. This is what is called the mafla carnea.

The great toe and little toe have, befides, eacls its flexor brevis próprius, (tarso-phalangeus of the great and little toes,) but they are not perforated. They are inferted into the bafe of their firft phalanges.

416 Lect. V. Posterior Extremity.
The plantar fafcia has no connexion with the plantaris mufcle. It is inferted on one part into the os calcis, and on the other into the inferior heads of the metatarfal bones, and the bafes of the firft phalanges. It is not the organ of any voluntary motion.

B. In other Mammiferous Animals.

In the monkey the flexors are differently difpofed.
rft. The plantaris is evidently continued along with the plantar fafcia, and communicates its action to it. 2d. The two flexores longi and the brevis are mingled together in a very complicated manner, as follows :
a. The part of the flexor breves which extends to the firft toe, is alone attached to the os calcis. It tranfmits to that toe a perforated tendon.
b. The flexor longus pollicis (at leaft the mufcle analogous to that which receives this name in man,) fends a tendon as ufual to the pollex, and two perforating tendons to the third and fourth toes.
c. The flexor longus digitorum fends two perforating tendons to the fecond and fifth toes.
d. The three perforating tendons of the third, fourth, and fifth toes, do not arife from the os calcis, as in man, but their flefhy fibres are attached to the tendon of the fleror longus digitorum juft mentioned.
c. The
e. The tendons of thefe long mufcles are Atrongly united.
f. The mafa carnea is attached by a thin aponeurofis to the tendon of the flexor iongus pollicis, and fends a ftrong tendinous band to that of the fic:xor longus digitorum.

The fhort flexors of the great and little toes are like the human. Such is the ftructure of a vaft number of monkeys, and in particular of the mandrill.

In fome, indeed, it is not quite the fime, but there is no very material difference.

In other quadrupeds the flexor brevis digitorum is wanting; but the plantaris, which is larger than that of man, or of the morkcy, fupplies in them the place of the flexor perforatus.

The flexor digitorum longus is in them as ufual a perforant.

Each furnifhes as many tendons as the number of toes requires; four in the dog and the rabbit, two in the Ruminantia, and one in the Solipeda.

Although the dog, the Ruminantia and Solipeda, have no great toe, the fiexor longus pollicis neverthelefs cxifts. Its tendon is intimately united with that of the fcxor digitorum perforans. We have not obferved it in the rabbil.

C. In Birds.

The long flexors in birds are divided into three maffes; two placed before the mufcles of Yol.I.

E e
the
the tendo Achillis, one before thofe, and all clofe to the bone.

The firt is compofed of five portions, three of which may be regarded as forming a fingle ficxor communis perforatus.

It arifes by two bellies, one coming from the external condyle of the thigh, the other from its pofterior furface. The latter forms directly the perforated tendon of the middle toe, which reccives one from the peroncus. The fecond belly fends off thofe of the index and little toe. In this mufcle is lof the accefforius femoralis flesorum, a mufcle fituated on the internal furface of the thigh, the tendon of which paffes over the knee. They are united by fibres which extend from one to the other, and the tendons are inferted into the third phalanges.

The other two mufcles of this firf mafs are the flexors, which are at once both perforating and perforated.

They arife below the preceding; and one is extended to the firft toe, the other to the middle toe, perforating two tendons of the preceding. They are inferted in the laft phalanx but one.

The other two maffes are the flexores perforantes; they furnifh the tendons which go to the laft phalanges. One belongs to the three anterior toes, the other to the poftcrior. The latter fends off a tendon, which unites with the porforating rendon of the inden.

There

Art. X. Muscles of the Toes. ,419

There is a flexor brevis pollicis fituated on the pofterior fide of the tarfus.

III. Mufcles of the Toes in Reptiles.

There is no extenfor longus digitorum in the frog. Neither is there any flexor proprius pollicis.

The extenfor brevis digitorum is very diftinct. It arifes from the whole length of the long external bone of the tarfus, and extends obliquely to all the four toes, the laft excepted. It is inferted into the laft phalanges.

There are fuperior and inferior interofleous mufcles, which are very apparent, to the number of ten. Their direction is very oblique.

The fexor communis digitorum is fituated under the long bone of the tarfus, on the inner fide, and is covered by the aponeurofis of the gaftrocnemius. When it reaches the little bones of the tarfus, it divides into five tendons, which receive, at their inner fide, affiftant flefhy fibres, apparently proceeding from a mufcle fituated below the long bone of the tarfus, on the inner fide. It may perhaps reprefent the flexor longus.

In the fea tortoije all there mufcles have their places fupplied by bundles of aponeurotic fibres.

TABLE of the Length in metres of the different Parts of the Abdominal Member of Mammiferous Animals.

Splecies	Total	Thigh	I.cg	Tarfus	$\begin{aligned} & \text { Micta- } \\ & \text { tirfus } \end{aligned}$	Toes
Man	1,11	10,46	,1,39	0, 11	0, 18	0,06
Sai	i),36	0,13	1,12	0,0.3	1,, 04	0,04
Orang	0,31	0,00	(0,09	0,0!	0, 0.7	0,06
Pongo	0,81	0,28	0,24	0,07	0,10	0, 12
'Iernare Bat	0,175	0,05	0,07	(1,005	U,01	0,04
Common Bat	0,00	10,02	0,02	0,01	1),005	0,005
Mule	0,065	0,02	(0,02	0,005	0,01	0,01
Hedge-hog	0,12	0,03	0,04	0,015	1, 02	0,015
Sea-Bear	0,93	0,35	0,27	(1), 11	10, 09	0,11
Glutton	0, 41	(0,14),13	(0,03	1), 05	0,06
Racoon	1,36	(0, $1=$	0,13	10,0.4	i), 04	0,03
Otter	0,28	0,00	-1,09	0, 0.3	0, 04	0,03
Seal	(0, 37	0,06	1,13	0,00	11, 0.4	10,08
Lion	1,07	0,35	0,39	0, 11	0,12	0,09
Cat	1,9,94	(1), 11	0,11	0,04	0,05	0,0:3
-Wolf	0,61	(1), 0	0,20	0,07	0,07	0,07
Opoffum	0,20	0,07	0,07	0,02	0,02	0,02
Hare	(1,40	0,19	10, 14	0, 04	(0,05	0,05
Guinea Pig	0,15	(), 05	0,05	0,015	0,02	11,015
Three-toed Sloth.	0,37	0,11	0,11	0,04	0,03	0,08
Phatagin, or Lion Manis	0,155	0,05	1),05	0,02	0,01	0,0?5
Elephan	1,71	0,85	0,54	(0, 15	0,08	0,09
Hog	0,81	0,27	0,23	0, 11	0.09	0,11
Rhinoceros	1,47	0,59	0,37	0, 18	0,17	(0, 16
Dromedary	1,57	0,50	(1, 40	(0,15	0,33	0,19
Giraffe	2,10	(1),50	-,60	(0,24	(0,74	0,24
Ox	1,15	0,31	0,31	O, 14	0, 21	0,18
Stag	1,29	0,32	0,38	(0,13	0, 31	0,15
Horfe	1,07	0,33	0,27	(0, 12	0, 21	0,14
Dolphin	0					
Porpoife	0					

Article XI.

Of the Pofterior Extremity in Fifhes.

$1 /$. Of the Boncs.

Theventral fins of fifhes take the place of the abdominal member. The fituation and form of thefe fins vary much; they are even wanting in the family of A podal fifhes, as cels, the gymnotus, the anarbicas, \&ic. and in fome genera of the Chondropterigii and Branchioftegi, as lampreys, the pipe fins, and fome fpecies of balijes, oferacion, tetrodon, \&zc.

Sometimes they are fituated below the throat, beneath the aperture of the gills, and before the pectoral fins. Fifhes thus conftructed have obtained the name of jugulares.

Sometimes they are placed a little behind and below the pectoral fins. Thefe fifhes have been called thoracici.

Laftly, they are placed in a fituation more analogous to that of the abdominal member in other animals, and which alfo feems moft common, that is to fay, under the belly and nearer to the anus than to the pectoral fins. Such are the fifhes mamed abdominalcs.

The ventral fins are compofed of two principal parts; one confifting of radii, covered with a double membrane, always appears externally, and forms what is properly called the fin. The
other is internal, and reprefents the offa innominata, or the pelvis. It is frequently articulated with other bones of the trunk, and always receives the radii of the fin, which move upon it:

The pelvis is never articulated with the fpine; nor does it ever form an offeous girdle round the abdomen. The bones which compofe it are generally flat and of different fhapes; they touch each other only at their internal edges.

The Joarks and rays only have a fingle tranfverfe and nearly cylindrical bone, at the extremity of which the fins are articulated: The fituation of the plane of the bones of the pelvis, with refpect to the parietes of the abdomen, varies according to the fhape of the body. In flat fifhes thefe bones are turned obliquely, and make the keel of the belly with their internal edge. In fifhes, with a broad or cylindrical abdomen, they form a plate more or lefs horizontal.

In the Jugular and Thoracic fifhes, the bones of the peivis are always articulated to the bafe of the girdle that fupports the pectoral fins. Their figure and refpecive fituation varies very much, as we fhall prefently fee.

In the fea dragon and far-gazer thefe two bones are foldered together at their internal cdge; their infcrior furfaces are oppofed to each other, and leave between them an oval fpace. The angle of their junction projects within the cavity of the abdomen.

In the cottus, fciena, chocodon, and the perches, the bones of the pelvis are likewife united by their internal edge. They are fiat and long, and their external edges are directed downward, fo as to form a foffa.

In the trigla cuculus, or red gurnard, thefe bones are only united at the pofterior extremity of their inner edge. They are very broad, flat, and form an oval fhield, the middle part of which is furrowed, and the pofterior extremity long and pointed.

The bones of the pelvis of the pleuroneEles bear the fins at their anterior extremity; they are united into a quadrangular pyramid, the point of which tends upward and backward, and its bafe forward.

In fome of the gafterofleus the bones of the pelvis are feparate, extremely long, and receive near their middle a moveable fpine that occupies the place of the fin.

The dory (zeus faber, Linn.) has the bones of the pelvis triangular and flat; they touch each other in the whole of that part which fhould be the loweft furface. Their anterior angle is rounded, and receives the fin ; the two others are very long and acute. One is fituated within the abdomen, the other over the fide of the fternum outwardly. In the zeus vomer thefe bones are very fmall and cylindrical.

In Abdominal fifhes the bones of the pelvis are never articulated to the fhoulder, or the girdle

$$
\mathrm{Ee}_{4} \quad \text { of }
$$

of the peetoral fins. They are fituated on the middle and inferior part of the belly, at different diffances from the anus.

Thefe bones are in general unconnected with each other, and are preferved in their fituation by ligaments. In corps they are long, and only touch about one-third from the lower end. In herrings they arevery finall, clofe, and form an addition to the little bones that fupply the place of the fternum.

Thofe of the common pike are broad, triangular, and clofe together at the anterior end, but diverge at the pofterior extremity, which is broader, and reccives the fin.

In the anableps they are very far afunder, and bear upon their external border a very long fpine, which afcends towards the vertebral column, and is inflected in the direction of the ribs.

In the fluri the bones of the pelvis are united together: they take the fhape of an efcutcheon, round in the middle, and often fpinous in front. The fins are attached to their external and pofterior edge.

Lafly, in the loricaria the bones of the pelvis are offificd into one piece, the pofterior groove of which forms an aperture for the anus. The fins are articulated to the outward edge.

The fin properly fo called, in ordinary fifhes, confifts of a certain number of bony radii, etther fimple or forked, fupported by one or two rows
of little officula placeed between them and the bones of the pelvis. The rays which form the fin move upon the officula, fo as to open and clofe like the fticks of a fan. This movement produces the expanfion and folding of the fin; but there is ftill another motion, both of the whole fin, and of its officula, upon the bones of the pelvis, by which the fin is alternately raifed and brought clofe to the body.

The radii of the ventral fins are for the moft part fhorter than thofe of the pectoral fins.

The ventral fin of the Chondropterygii has a peculiar conformation. Two principal cartilages are articulated upon the excremity of the bone of the pel vis: the one, which is external, forms a kind of finger of feven or cight joints; the other, which is internal, receives all the remaining radii of the fin, frequently to the number of thirty or more.

> 2d. Of the Mufcles.

The ventral fins move up and down, as well as inwardly and outwardly. The mufcles which move them from above downward, or deprefs them, are fituated on the external or inferior furface of the pelvis. Thofe which elevate them are fituated on the upper or abdominal furface of thofe bones.

There is commonly but one mufcle for depreffing the ventral fin; it occupies all the inferior furface

426 Lect. V. Posterior Extremity.
furface of the bone of the pelvis. In Jugular and Thoracic fifhes, it even extends as far as the clavicle: it terminates by feveral little tendinous flips which are inferted into the officula and bafes of the radii. At the fame time that this mufcle, by the general contraction of its fibres, depreffes the fin, it pulls its two edges afunder in fuch a manner as to unfold or fpread it.

The mufcles which raife the ventral fins are only two, fituated on the abdominal furface of the bone of the pelvis. That neareft the middle is of a pyramidal figure, the officula which fupport the radii are attached to it throughout the whole length of its bafe. It pulls the fin backward, at the fame time that it removes the external edge from the middle line.

The mufcle the moft remote from that line lies directly over the abdominal furface of the bone of the pelvis, and is partly concealed by the preceding. It is the larger of the two. Its fibres run obliquely from without inwardly towards the internal border of the ventral fin, which it moves outwardly, at the fame time that it carrics the whole fin backward.

There are befides, at the bafe, or articulation of the radii of the fin with the inter-articular officula, little mufcles perfectly analogous to thofe we demonftrated in treating of the motion of the fin of the tail.

In the genus cyclopterus, the ventral fins are united

Art. XI. Ventral Fins. 427
united to each other by a membrane, and form a kind of funnel below the pectoral fins.

In the genus gobuis, the two fins only form a fingle one, placed before the anus.

The mufcles of the ventral fins of the ray genus, are difpofed nearly in the fame manner as thofe of the pectoral fins.

[428]

LECTURE SIYTH.

> OF TIE ORGANS OF MOTION IN ANIMALS
> WITHOUT VERTEBRA.

ArticleI.

Organs of MITotion in Mollesca Cephalopoda.
$\mathrm{T}_{\text {He mollufca that have the head furnifhed with }}$ long appendages for progreffive motion, are called cephalopoda, and have two orders of mufcles, one belonging to the body, the other to the feet or tentacula.

1. Mufcles of the Body.

The fack which compofes the body of thefe animals, ftripped of the external fkin, prefents a mufcular tiffue of very compact fibres. Thofe of the outward layer appear to have a longitudinal dircetion; the middle layer is tranfverfe; and the layers of fibres that fucceed thefe have different obliquities. They all act in fuch a manner as to flatten, to elongate, to twift, and to bend
bend the fack; but the action of each of the layers cannot be affigned in a politive manner, on account of their very complicated ftracture.

In the back of thefe animals, under the flin, there is found a body more or lefs folid. In the cuttle fifb it is a fpecies of bone compofed of dif. ferent thin parallel plates one above another, and feparated by little columns difpofed in the form of a quincunx. This bone is oval, thick towards the middle, and thin at the circumference. In other fpecies its form varies much, but its fubftance is generally elaftic, and tranfparent like glafs. Its furface is fometimes marked with longitudinal furrows.

The fepia octopus wants it entirely.
Two firong mufcles arife from the inner furface of the fack, on each fide of this bone. They run towards the head, and, on their arrival there, divide each into two branches. One branch is inferted into the head; the other mixes its fibres with thofe of the fack, at the edge of which it ends.

2. Mufcles of the Foot.

The Cephalopoda have eight' conical feet, of different lengths, arranged in a circle at the top of the head, round the mouth. The animal can turn and bend them in every direction, and faften itfelf to bodies by help of the cups or fuckers with which they are furnifhed. The mufcles which

430 L.VI. Motionof Invertebral Animals.
which perform thefe motions are very numerous; they may, however, be diftinguifhed into thofe that are common to the whole foot, and thofe that are proper to the fuckers.

Below the fkin we find a very thin mufcle, the fibres of which are united by a loofe cellular fubftance. It accompanies the fkin in all its different fhapes, and may perhaps be regarded as a mufculus cutaneus employed to corrugate the fkin, and give greater force to the mufcle fituated within it, and úpon which it acts like a girdle.

Between the feet, and under the flin which unites them at the bafe, we find two thin mufcles fituated one below the other, the fibres of which are tranfverfe. One arifes in the middle longitudinal line of the foot on the fide oppofite to the fuckers, and proceeds directly to its infertion in the fame line of the adjacent foot on either fide.

The other arifes below the fuckers themfelves, goes over the lateral parts of the foot, and, at laft, forms a mufcular membrane with tranfverfe fibres, which paffes under' the preceding mufcle, and proceeds to its infertion in the other foot, exactly in the fame manner as it took its origin. This double mufcular membrane bears fome analogy to that which unites the toes of webfooted birds, fuch as duck's, geefe, \&c. It produces a circular plate, which occupies the intervals between each bafe of the feet. Thefe two mufcles probably ferve to bring the feet nearer
to each other; the fecond may befides feparate the two rows of fuckers. It reaches the whole length of the foot, but it becomes thinner towards the extremity.

Below thefe three layers of mufcles (the two tranfoerfales and the cutaneus,) we find another pretty large one, the conical figure of which determines the fhape of the foot. At the furface it feems entirely formed of tranfverfe fibres; but on cutting it in different directions, we find that it has longitudinal fibres. Thefe fibres are interwóven precifely like thofe of the human lingual mufcle towards its centre. In the centre of this mufcle there is a vacant fpace, in which we find very large veffels and nerves.

The fuckers are faftened to the inferior furface of this mufcle, and to a layer of fibres fill more evidently longitudinal, by little flefhy bands, differing in direction according to the fpecies. It is thought that the cylindrical mufcle ferves to embrace bodies. Its ftructure is conformable to the action it produces.

3. Mufcles of the Suchers.

The fuckers are formed by a mufcular cup of radiated fibres, which, by their contraction, diminifh its capacity. But at its edge, an'd clofe to the plate under the cylindrical mufcle, there is another layer of circular fibres, like a
fphincter,

432 L.VI. Motion of Invertebral Animats。 fphincter, which renders the cup more convex. Finally, each fucker is retained, and moved upon the foot by little mufcular fafciculi interlaced together, and uniting at laft in the inferior tranfverfe mufcle of the foot. At leaft this is the cafe in the fepia octopus.

In the calmar (fepia loligo), and the cuttle fiff, the fuckers are attached by very fmall mufcular peduncles.

When an animal of this kind approaches any body with its fuckers, in order to apply them more intimatcly, it prefents them in a fat or plain flate; and when the fuckers are thus fixed by the harmony of furfaces, the animal contracts the fphincter, and forms a cavity in the contre, which becomes a vacuum. Bythis contrivance the fucker adheres to the furface with a force proportioned to its area and the weight of the column of air and water of which it conftitutes the bafe. This force, multiplied by the number of fuckers, gives that by which all or a part of the feet adhere to any body. This power of adhefion is fuch, that it is eafier to tear off the feet than to feparate them from the fubfance to which the animal choofes to attach itfelf.

In the cuttle fifls and the calmars, the mouth of the fucker is furrounded by a cartilaginous indented zone; in the octopus it is only a flefhy difk, flat, and perforated in the middie.

Befides the cight feet which we have juft defrribed, and which are all. that are poffeffed
by the ocropus, the cuttle-fifs, and the Calmar, have two others that are much longer, much fmaller, and have no fuckers, except at the extremity, which is enlarged. Their ftructure is in other refpects the fame as that of the other feet.

Article II.

Organs of Moiton in Mollufca Gafteropoda.
W_{E} fhall not here defcribe the mufcles that ferve for maftication or deglutition; nor thofe that are appropriated to the organs of generation, fmelling, fight, and feeling : thefe we flall particularly explain in treating of the functions to which they belong.

As to the organs of locomotion in the Gafteropoda, they principally refide in that inferior part of the body on which they drag themfelves forward, and which is called their foot. It is a flefhy mafs, formed of fibres which crofs each other in feveral directions, and give to it every poffible fhape. Moft commonly it has that of an oval, pointed behind; but by the various con-. tractions of which thefe fibres are fufceptible, they extend, or contract it in whole or in part, fo as to produce that flow progreffive motion which every body has remarked in the common fuail or fug.

The tranfverfe mufcular fibres are eafily feen Vol. I.

Fe
in
in the foot of the $/$ lug, if it be opened by the back. They proceed from the edges of the foot to two longitudinal, middle, tendinous lincs. Below thefe we meet with others in a contrary direction, but fo interwoven that it is difficult to trace the layers.

In the fiylloca, the foot is only a longitudinal furrow, impreffed in the whole length of the belly of the animal. By the help of this furrow the animal embraces the ftalks of the fucus upon which it crawls. In other refpects, the organization of its foot is nearly the fame as that of the llug.

In the limpet, the moft inferior layer is compofed of tranfverfe fibres, which, at the edge, are interlaced with a great number of others that are circular. The fuperior layer is a mufcle compofed of two rows of fibres, which meet and form an acute angle upon a middle line, which correfponds to the long diameter of the foot. There are alfo at its edge fome circular fibres.

The inferior layer, by its contractions, lengthcns the ellipfis of the foot, while it leffens its breadth; and the fuperior diminifhes the length, but increafes the breadth. This is the mechanifm which produces the progreffion of thefe animals. Laftly, the circular fibres diminifh the furface on all fides, and render it convex above, thereby producing a vacuum, which makes theanimal adhere firmiy to the furface that fupports it.
The gafteropodal mollufca, which are covered with
with one or more fhells, and are called teffacea, have, befides the mufcles of the naked gafteropoda, others that enable them to retreat into the fhell, and protrude their body from it again.

Thefe fhells, or moveable habitations, vary much in their form. They are moft generally made of one piece of different hapes, fimple, without twifting, as in the limpet; in a flattened fpire, as in the planorbis; in a globular and pyramidal fpire, as in the fhell of the frail, bulimus, dipper-frail, \&x.

There is but one fingle genus of the gafteropoda, the chiton, which has a fhell formed of $\mathrm{fe}-$ veral pieces.

In the limpet, the foot is faftened to the circumference of the fhell by a ring of fibres which are attached all round the fhell, and which, after piercing the outward covering or cloak, are inferted in the edges of the foot, and interlaced with its circular fibres. Anteriorly they leave a free fpace for the paffage of the head. This mufcle, by its contractions, brings the foot and the fhell clofer together, and compreffes the body; on relaxing, it allows the fhell to be raifed up by the clafticity of the body.

In the garden Snail, there are two frong mufcles which draw the foot and the whole body within the fhell. They arife from the columella, or axis of the fhell, and having penetrated the body below its fpiral part, they run forward under the ftomach, and fpread their fibres in fe-
Ffz veral

436 L.VI. Motion ofinvertebral Anmals. veral Alips which interlace with thofe of the mufcles proper to the foot, the fubftance of which they enter. From thefe attachments their mode of action may very eafily be comprehended.

When the animal wifhes to protrude itfelf from the fhell, its head and foot are forced out by circular fibres which furround the body immediately above the foot.

Article III.

Organs of Motion in Mollufca Acephala.

The acephalous mollufca have the body enveloped by a membrane principally mufcular, which is called the cloak. This flefhy integument is more or lefs complete according to the genus, as will be feen hereafter.

The cloak is generally covered by valves, or fhells of various forms and proportions. Few of the genera want this folid covering; among thefe, however, are the afcidia and falpa.
The valves of the fhells are fo difpofed that they can move one upon another, by means of offeous projections, which reciprocally receive each other, thus forming a real hinge. They are befides connected by an elaftic ligament of a horny fubfaince which tends continually to oper them.

The hinge of the thells prefents fo many varieties, that naturalifts have drawn from it the characteriftics of the genera.
In fact, the oyfer, the placuma, the fcallop, the avicula, $\underbrace{3} c$. have no tooth in their joint. The piddoiks, and the mya, or gapers, have it only upon one of the valves; but it is not received into a foffa. The razor-flells have the hinge ftrengthened by a tooth in each fhell which projects inward. Thefe two projections meet and move upon each other.

The anomia, the unio, the fpondilus, or thornyoyfer, the cbama, and feveral others, have one or two teeth upon one valve only, which are received into correfponding cavities in the oppofite valve. The venus, the cockle, and the inadra, have teeth on each fhell, which are mutually received. Finally, the arca has a multitude of little teeth which are clofely indented with each other.

Thefe different conformations ferve either to facilitate the motions of the hinges, or to ftrengthen the joint ; or they permit a greater or lefs opening of the valves.

The claitic ligament, which tends' continually to open the valves, is not always fituated at the fame point of the fhell. The mufcles, for example, have the ligament at one fide of the valves. The placuna have a little offeous appendage, which forms a projection in the infide of each valve; and from this arifes the ligament that

$$
\mathrm{Ff}_{3} \quad \text { holds }
$$

438 L.VI. Motion of Inverterral Animals.
holds them together. The perna has in each valve feveral littlc cavities oppofite to each other in pairs, in which an equal number of fmall ligaments are lodged.

The fhells of the acephala prefent feveral other peculiarities. We find the valves immoveable, and foldered together at the angle in pinna. The teredo, or pipe-zeorm, has the body enclofed in a calcarcous tube, and is armed with two little moveable valves, which are ufed in penctrating wood. - The tercbratula has, on the intier part of one of the valves, two offeous appendages which fupport the body.

The contractile membrane which covers all the body of the acephalous mollufca, and is called the clock, is a real mufcle, which prefents a great many varieties. Sometimes, and indeed moft commonly, it is open before, in the dircction of the valves, as in the oyfer, the mufcle, $\xi^{\circ} c$. ; fometimes in the fhells that have two ends always open, as the rafor-holls, the gapers, the piddock, $\xi_{c} c$. it is perforated at both extremities. Laftly, the cloak envelopes the whole body of the animal, and, like a fack, is open at one end only; this may be obferved in the afridia.

The cloak of the oyfer is compored of two pieses of the fame form as the flhell; they are fixed to the body pofteriorly, or on the fide of the hinge, and cxtend to the cdges of the valves. Their fubftance is foft, femi-tranfparent, and furnifhed with a number of mufcular bands. They
are perforated by the mufcle which clofes the fhells. One of the edges is in folds, like a flounce, and feftooned. The other is furniflied with fmall conical and contractile tentacula.

The cloak of the other acephala differs from what we have defcribed above, in its general form : in the tentacula on its edge; in the tubes which are prolongations of it; and, laftly, in the muifles which perforate it.

Thè aperture which ferves for the ejection of the excrements, and that which receives water, and the different aliments, are fometimes prolonged into a kind of tube, which is a continuation of the cloak: this is called a probofcis. The oyfer, the mufcle, the unio, and the anodontites have only one of thefe apertures, which is the anus. The viater merely enters by the large flit in the cloak. In the cockle, each aperture is a few lines elongated. That which ferves for refpiration is longer and larger than the other. They are ftill more elongated and unequal in the venus, the tellina, the matra, and fome other genera. The rafor-hell has likewife two ; but in the piddock both tubes are enclofed in a very thick Hcflyy probofcis, through the whole length of which they pafs without uniting.

In the acephala that have the cloak open before, the tentacula are placed at the edge of the cloak, and in particular towards the anus; but in thofe that have tubes they are fituated at the orifice

440 L.VI. Motion of Invertebral Animals. of the probofcis. In the edible mufcle, (nyytilus cdulis Linneci,) they are branched.

The valves of thells having a continual tendency to open, in confequence of the action of the elaftic ligament fituated at the fide of the hinge whichoperates as a mufcle, it was neceffary that the contained animal fhould have the power of clofing them at pleafure. There are, therefore, according to the different genera, always one or two mufcles fitted for this purpofe.

In the oylder there is only one mufcle of this kind, fituated near the centre of the fhell, behind the liver, and in the middle of the cloak. It is inferted into both valves, and, by its contraction, brings them together with an aftonifting force. The fame mechanifm prevails in the perna, avicula, and /pondylus.

There are two mufcles for clofing the fhell in the mufcle, rafor-bells, venus, mactra, cockle, E_{c}. They are always feparate from each other towards the extremities of long fhells, and generally approximate at the edge on which the hinge is fituated, in order that a very fmall relaxation on their part may produce a large opening on the oppofite fide.

A great number of the acephalous mollufca have the power of removing their teftaccous covering from one place to another, by the help of a mufcular appendix which they can protrude and retract at pleafure, with which they faften
themfelves to the fand and rocks, and drag themfelves along. This appendix is called the foot of the animal.

The common'oyfer, the Jpondylus or thorny oy/ler, fome fpecies of the fcallop, the anomia, and in general all the mollufca that have fheils with unequal valves, have no foot, and are therefore deprived of the means of voluntary locomotion.

One of the moft fimple of there feet is that of the anodoittites of ponds, (inytilus inatimus Linnæi.) It is fituated before the body towards the margin of the fhells. Its form is a compreffed oblong. We obferve on each fide, externally, a layer of fibres proceeding from the bottom of the fhell. There are alfo fome internal fibres which crofs each other at right angles, and others unite the two external layers, to which they are attached in a circular manner. From this difpofition it will eafily be conceived that the animal may, when it pleafes, change the three dimenfions of the foot, or of one of its parts: by this means it is enabled to place its fhell flat on the ground, and to crawl along like the fnail by the help of its frot.

We find this fimple foot in the piddock. Its form is almoft fpherical, and truncated by a flat furface. The part which Linnæus has obferved in the rafor-/hell, and which he compares to a glans in its prepuce, is the foot by which the animal buries itfelf in the fand, or rifes to the furface. In thefe two genera the foot is protrud-
ed at the aperture of the fhell, which is oppofite to that through which the tubes pals.

The foot of the cardium or cockle is fomewhat complex. It has a triangular appendix, which is capable of inflexion, of feizing with its point the glutinous matter, and drawing it out into threads. But the foot of the fea-mufcle (mytilus edulis) is moft remarkable in its organization. It refembles a fmall tongue, marked with a longi tudinal furrow, fufceptible of confiderable elongation, and of being fhortened into the form of a heart. This organ is moved by five mufcles on each fide. Two arife from the extremities of the fhell, near thofe which clofe it: the other three come from the bottom of the fhell and the depreffion for the nates. They are all inferted into the foot, with the fibres of which they are interwoven, in the fame manner as the external mufcles of the human tongue join the lingual. The organ is completely enveloped in a fheath formed of tranfverfe and circular fibres of an obfcure purple colour. This foot is employed both in fpinning and crawling ; the laft office is performed as in all the other bivalves: it accomplifhes the firft by feizing, with its point, the gluten fupplied by a gland fituated under its bafe, and drawing it out into threads in the above-mentioncd furrow.

The gland that fecretes this humour, of which the thread is formed, fhall loe defcribed hereafter.

Article IV.

 Organs of Motion in Cruftacea.$T_{\text {he }}$ mufcular fyftem of the Cruftacea is confined to the motions of the legs, the tail, and the falle feet: in this clafs there are no murcles for moving the head on the corcelet, as thefe two parts are united together. The antennæ, the mandibles, and the palpi, have their true particular mufcles; but we fhall not defcribe them until we have occafion to treat of the organs to which they belong.

I. Ofthe Tail.

The tall is a principal part of the body in the greater number of the Cruftacea. It is a very ftrong and moveable member, which thofe animals employ with great advantage both in leaping and fwimming.

r. Solid Parts of the Tail.

- In feveral monoculi, the tail is compored of long fillets, which in the polyphemus are folid, and moveable on the bafe only.
The crabs have the tail fhort, flat, and bent under the body, in a depreffion fituated between the feet.

The pagurus, or bermit crab, which is in the habit of introducing itfelf into empty fhells, or

644' L.VI. Motion of invertebral Animals.

 any accidental cavity in a fone, has a foft tail without fcales.The tail of the cray-fifh, properly fo called, merits a particular defcription. It is formed of fix principal fegments, and terminates in five laminæ. The fegments vary a little with refpect to their form. On the upper part they are convex and imbricated: beneath they are narrower, and united by a loofe membrane which admits of much motion. At the angle where the inferior portion joins the dorfal, thefe fegments are furnifhed with a kind of cruftaceous fins, bordered with cilia, and confifting of feveral articulations. Thefe are called pedes nothi, or pedes natatorii. They are moved forward and backward, and a little outward and inward, by fmall mufcles contained within each articulation, but which do not differ fo much from thofe of the real feet as to require a particular defcription.

Of the five laminæ which terminate the tail, two are pairs, and one fingle. The middle one is immediately articulated with the laft fegment. The apertu:c of the anus is, fituated winder this lamina. In fome fpecies it feems broken in the middic, and capable of a fmall degree of motion. The two lateral laminæ are fupported by a common piece, which is articulazed with the laf fegment of the tail. The moft internal lamina is fimple and ciliated at its extremity only, like that of the middle; but the
external feens articulated about one-third of its length from the lower end; or it may rather be faid to be formed of two portions; the firf, covering with its extremity, which is denticulated, the fmaller, which follows it, and which has its margin furnifhed with very clofe cilia.

The mufcles which move this tail have fo fingular a conformation, that it appears neceffary to give a fort of monographical defcription of them.

2. Mufcles of the Tail.

The mulcles of the tail in cray-fifs form two maffes, difinguifhed from each other by the inteftinal canal. The dorfal mafs is the thinneft, and leaft complex. We obferve in it three kinds of fibres.

The firft form a mufcle which arifes from the dorfal portion of the corcelet, about one-fourth of its length forward from the pofterior end. It is afterwards directed obliquely from before backward, and from within outward, to the lateral parts of the firft fegment of the tail, into. which it is inferted. When the mufcle of one fide acts feparately, it moves the tail to the right or left; when they act both together, they raife the tail, if it has been inflected, and preferve it ftraight.

The fecond and the third feries of mufcular fibres extend throughout the whole length of the

446 L.VI. Motion of Tnvertebral Animals.
the back in two parallel and very contiguous lines. They arife from the lateral and fuperior parts of the feptum of the corcelet to which the branchire are applied; they are attached to thefe parts by feveral digitations. Upon tracing them to the firft ring of the tail, we find on the furface a fmall interfection, and obferve that a little bundle of fibres turns off to be inferted in this firft annular fegment. A fimilar infertion takes place in each fucceeding ring. This difpofition gives to the internal band the appearance of a twifted cord.

The external dorfal mafs is formed of diftinct longitudinal fibres.

Thefe three orders of mufcles very much refemble the ftraight mufcles of the back of caterpillars, as will be feen hereafter.

The ventral mafs of the mufcles of the tail is thicker and more complicated than the dorfal. To give a correct idea of its compofition, we fhall defcribe its appearance on the view of three different furfaces. We fhall firft defcribe its back, or fuperior furface, the mufcles of which we have already fpoken, as well as the inteftinal canal being removed; next, its inferior furface, the fcales below the tail and the nerves being removed; finally, an internal lateral furface, produced by the longitudinal bifection of the mufcle, to fhew its interior ftructure.

The ventral mufcle of the tail, viewed on the dorfal furface, arifes from the infide of the thorax,
thorax, above the offeous cancellated part which inclofes the mufcles of the coxa. This mufcle then divides into two, a right and a left, each compofed of three large digitations. At the firft fegment of the abdomen the longitudinal fibres fink under others which are twifted round them. The remainder of the mufcle, throughout the whole length of the tail, is alfo formed of two feries of convex and incurvated fibres, parallel to each other, and feparated by a gutter, in which the inteftinal canal is lodged.

Viewed inferiorly, the fame mufcle exhibits three very diftinct orders of fibres. The firft feries is produced by the inferior furface of the digitations, which are inferted into the offeous cancelli of the thorax. The fecond feries is formed of oblique fibres, which are continuations of thofe of the firf, and which extend from the middle line, where the medullary cord of the nerves is fituated, to the lateral parts of the rings, at the angle formed by the dorfal and ventral portion. There are two ftrong bundles of fibres to each angle of the rings, from the firf to the fixth. The third feries is produced by fingle bundles of tranfverfe fibres, which defcribe arches, with their convexity downward. Thefe flat mufcular hoops correfpond to the interfection of each of the rings, and appear to form an equal number of derivative pulleys for the oblique fibres we have juft defcribed.

Finally, the ventral mufcle of the tail, when bifecied

448 L. WI. Motion of Invertebral Animals.' bifected longitudinally, exhibits the appearance of a rope, the fpiral twiffs of which have little obliquity. The fibres which correfpond to the tranfverfe bundles are diftinct, but narrower.

It refults from this fingular complication, that the mufcle, when detached from the parts to which it adheres, refembles a very clofe twift, the threads of which, inftead of acting longitudinally, move obliquely in the canal formed by the neighbouring fibres.

II. Of the Feet.

The feet of the Cruftacea vary with refpect to their number and their form. In the monoculi they affume very different figures: fometimes they ferve inftead of feelers, jaws, fins, gills, \&zc. Their form is alfo very various in the genus Cancer. As an example of the organs of motion in the feet, we fhall defcribe thofe of the crayfifh fpecies.

1. Solid Parts of the Fect.

The cray-fifh have commonly five feet on each fide. They are all formed with fix joints.

The firft pair is the longeft, and forms what is called the pincers or clazes.

The coxa is conneqed with the thorax. The only direction in which it can move is backward and forward. It fupports one of the divifions
of the branchix, and the fecond portion of the foot, which reprefents the femur. This is flat, fhort, nearly fquare, fmooih, and a little bent. The plane of its articulation is parallel to the length of the part. As the two mufcles which move it are inferted in the two moft diftant points, the fernur is fituated horizontally. It moves by a hinge upon the coxa. 'The motion is compound, the member being directed both backward and forward, and outward and inward. Its motion, with refpect to the iibia, is very limited, being merely upward and downward : by this motion it is applied to the thorax. The third joint, which anfwers to the tibia, is alfo fomewhat flat, particularly at its femoral extremity: it is incurvated a little in the direction of the femur, and thus correfponds with the convexity formed by the corcelet. At its tarfal extremity, the tibia becomes thick, broad, and fpinous. Its motion on the femur is very limited. The fourth articulation is intermediate between the pincers and the tibia, on which it moves at a very confpicuous*angle. The pincer makes the fifth articulation, which is the larget of all. It terminates on the external fide by a flarp finous procefs, and receives; on the internal fide, a moveable pollex, capable of being oppofed to it. The movement of the pincer on the fourth articulation is outward and inward.

The two fucceeding pairs of feet, though much fmaller, alfo refemble pincers, with this differVol.I.

Gg
eince,

450 L.VI. Motion of Invertebral Animals.
ence, that the pollex, or the articulation which reprefents it, is not thicker than the immoveable part.

The two laft pairs are not, like the three former, terminated by pincers, but by a fingle moveable claw or nail. In other refpects they are fimilar to the fecond and third pairs.

2. Mufcles of the Feet.

Each articulation of the feet has two mufcles, all extenfor and a flexor.

The extenfor of the coxa is fituated within the corcelet, on the cornuous portion which fupports the branchix, a little before the coxa, which it moves forward.

The flexor of the coza is alfo attached to the horny part that fuftains the branchix ; but it is fituated pofteriorly, and the motion it produces is the oppofite of the preceding.

The extenfor of the femur is ftronger than the flexor. It arifes within the coxa, from its anterior portion, and is inferted into the fuperior eminence of the articulation of the femur. It ought rather to be called a depreffor.

The flexor of the femur, or more properly the levator, is fhorter than the preceding. It occupies the pofterior internal part of the femur, and is inferted into the inferior eminence of its articulation.

The extenfor of the tibia occupies the whole length
length of the femur internally. It is inferted into the external margin of the articulation of the tibia.

The fiexor of the tibia is not fo ftrong as its extenfor. It lies under it, and is inferted into the internal edge of the articulation.

The extenfor of the firft part of the tarfus arifes internally from the whole of the fuperior edge of the tibia, and is inferted into the moft elevated eminence in the fourth articulation.

The flexor of the fame piece arifes likewife, within the tibia, but from its inferior border: it is inferted into the loweft eminence of the articulation.

The extenfor and the flexor of the pincer occupy and divide the interior of the fourth articulation. Their fituation determines their functions.

The extenfor of the pollex is a very fmall mufcle, which fills the fuperior part of the pincer.

The flexor pollicis arifes from the whole of the other part of the claw. It has an intermediate offeous tendon, which is flrong, flat, and oblong. It is very large.

452 L.VI. Motion of Invertebral Animars.

Article V.

Organs of Motion in the Lavece of Infeats.
$T_{\text {hb }}$ transformations which infects experience at different periods of their exiftence, occafion great variety in their organs of motion. It is therefore neceffary to examine them in all the different flates through which they pafs, if we would acquire an accurate knowledge of this. clafs of animals, with refpect to thefe parts.

All the winged infects which undergo a complete metamorphofis, differ confiderably, in theis firft fate, from thofe which they afterwards aftume. The principal of thefe differences confifts in their organs of motion. In this firf flate they are called larve or caterpillars. The animal exifts in the larva form for a certain time, after it has left the egg.

Infects, while in this ftate, are covered by a foft tender fkin, divided into fegments or rings, capable of being moved towards each other by mufcular bands fituated within the body.

The motion of infects is frequently performed on thefe rings only, cither in the manner of reptiles, or by refting alternately each fegment of the body on the plane which fupports it. Such is that of the larvae of the Diptera, or twowinged infects, and a great number of the Hymenoptera.

Sometimes.

Sometimes the furfaces of thefe rings are covered by fpines, ftiff briftes, or hooks, which ftrengthen their hold on other bodies. This may be obferved in fome fpecies of flies, gadfies, tipula, Aratyomis, fyrpbius, \&ic.

The body of the larva, in fome orders of infects, has inferiorly, and towards the head, fix feet, each formed of three fmall joints, the laft of which is fcaly, and terminates in a hook. By oppofing thefe members to one another, the infect is enabled to embrace a portion of adjacent bodies, to hook itfelf to them, and afterwards draw the remainder of its body towards that fixed point. This is the ufual conformation of the larve of the Colcoptera, and a number of thofe of the Neuroptera.

The other larvee of the Coleoptera, which live in wood, as the cerambix, the rwood beetle, the rhagium, \&c. have the fix feet exceedingly fhort, and almoft obliterated, or of no ufe.

These move in finuofities, formed with their mandibles, which alfo ferve to hook them to other bodies, and by the help of plates or tubercles that rife out of their fkin on the back and belly. This gives to their body a tetrahedrous form. The manner of their motion may be compared to that of chimney fweepers afcending a funnel.

The Lepidoptera and the larvæ of fome genera, of the Hymenoptera have, befides the fix fcaly articulated feet, a variable number of other
Gg3 falfe
-454 L. VI. Motion of Invertebral Animals.
falfe feet, which are not jointed, but terminate in hooks difpofed in circles and femicircles. Thefe hooks, which are attached to the ikin by appendices or retractile tubercles, ferve as cramps to affift their motion on other bodies.

The larvæ of the infects which undergo only a femi-metamorphofis, as the Hemiptera; and of thofe which experience no transformation whatever, as the Aptera, the fiea excepted, differ nothing from the perfect infect with refpert to the feet.

After this account of the external organs of motion in larve, it may-ftill be ufeful to give a particular explanation of the mufcles of fome of them. We fhall therefore defcribe in fucceffion, 1. The Mufcles of Calerpillars; 2. of the Larva of a Scarabeus, which lives under ground; 3. of a Hydrophilus, which fwims: and, 4. of a Cerambix, which inhabits the crevices of wood.

1. Mrufcles of Caterpillars.

The deepeft layer of mufcles in the caterpillar is formed of four principal divifions; two correfponding to the back, and two to the belly. Their direction is longitudinal.

Thofe of the back are feparated from each other by the longitudinal veffel, and from thore of the belly by the trachea.

They

They begin at the union of the firft ring with the fecond, by two fafciculi of fibres fomewhat feparate from each other, which are inferted into a kind of tendinous line, produced by the union of the fecond ring with the third. The fame arrangement prevails between all the annular fegments of the body. Upon the third ring, the fibres of the two fafciculi, although ftill diftinct, are much more grofs. On the fourth ring, the internal fafciculus only has the fibres feparate. The fibre is continued, without any apparent interfection, over all the other rings. It diminifhes in thicknefs towards the laft, and again forms feveral fafciculi, firft three, therr four, and laftly five or fix.

Thefe mufcles, by their contraction, fhorten the body when they att with thofe of the belly; when they act feparately, they bend it upward.

The longitudinal mufcles of the belly are feparated from each other by the medullary cord, and from thofe of the back by the trachex. They have precifely the fame direction. They likewife commence at the union of the firf ring with the fecond, by numerous fafciculi, which unite at the third ring, where they feem to form only a fingle mafs. The fibres afterwards feparate higher or lower according to the fpecies, and form four or five flefhy cords, which terminate at the laft pair of falle feet.

Thefe affitt the dorfal mufcles in fhortening the body: when they act feparately, however, Gg_{4} they
they are the opponents of the former, for they then bend the body downward.

Between the long mufcles of the back and the fkin there are others which are fhort; but their direction is oblique.

Some of thefe are extended from the outfide inwardly, towards the dorfal line, between the annular interfections.

The others are fituated in the fame interval, but their direction is oppofite. They proceed from the infide outwardly, and form, with the preceding mufcles, an angle like the letter V.

Thefe two kinds of oblique mufcles have not ath equal quantity of fibres in every part. Thofe which are fituated in the firf rings are the longeft and narroweft. Thofe of the fourth, fifth, and fixth, are much fhorter. In fome fpecies they afterwards become longer and more numerous. In others, on the contrary, they continue broad and fhort.

Thefe fibres act feparatcly on each ring, which they florten by their fimultaneous contractions: but as they do not extend the whole length of the ring, the parts which correfpond to the folds, and over which the oblique mufcles do not pafs, are elongated, while the action of the fame mufcles diminifles the diameter of the ring. This facilitates progreflion.

There is a fecond layer with oblique fibres, under the long mufcles of the belly. Thicy very much refemble thofe of the back. In con-
fegtience
fequence of their different directions, they may alfo be diftinguifned into two kinds or orders.

Some are near th.e middle ventral line, along which the knotted cord of the nerves extends. In afcending, they pafs from the infide outwardly, in the intervals of each of the rings.

The cthers are not fo oblique, except the three firft fuperior pairs: thefe mufcles therefore form with the preceding an angle fimilar to this kind of A.

The oblique mufcles which run from within outwardly, or the moft internal, have many fibres. They ufually confift of three or four diftinct faíciculi. Thofe which extend from without inwardly, or the moft external, have fewer fibres, and never more than two fafciculi.

The action of thefe mufcles appears to be fimilar to that of the oblique mufcles of the back; but it is probable that they alfo extend immediately the fkin of the feet on which they are fituated.

Befides the longitudinal and oblique mufcles of the back and the belly, caterpillars have fome which are lateral ; that is to fay, mufcles fituated below and above the figmata or apertures, which ought to be defcribed feparately. Thefe mufcles are of three kinds, the fraight, the tranfuerfe, and the oblique.

The fraight latere1 mufcles are fituated between the annular feginents, above the figmata. They are all placed loiagitudinally one over the other.

45: L. VI. Motion of Invertebral Animals.
other. Their points of attachment are covered by the tranfverife mufcles. They feem intended to bend the body towards the fides when they act feparately; but when they contract in concert with the long mufcles of the back and the abdomen, they fhorten the body, and thercby affift its progreffion.

The tranfverfe lateral muicles are of two kinds: fome, which are longer than the others, arife from the intervals unoccupied by the attachments of the ftraight lateral mufcles, and are inferted at the termination of the oblique $\mathrm{cx}-$ ternal mufcles of the abdomen. Their fibres are difpofed fomewhat in the form of a fan. The others have the fafciculi formed of parallel fibres ; they are fhorter, and are extended in each of the rings between the ftraight, lateral, and oblique mufcles of the abdomen. Thefe mufcles diminifh the diameter of each ring, and confequently lengthen it in each of its folds. This mode of action is neceffary for progreffion.

The oblique lateral mufcles are fituated on each fide of the ftraight. They proceed in an oblique direction from below upward, under the infertion of the ftraight lateral mufcles, which they affit when they act together.

Such are the mufcles of the body in general; but the true and falfe feet, and the head, have particular mufcles, which muft be defcribed feparately.

The mufcles of the truc or fcaly feet are fituated
fituated within the three articulations of which thefe feet are formed. They may be diftinguifhed into thofe which move the articulations, and thofe which act on the unguis or claw that terminates them.

The mufcles of the firft joint confift of five or fix fafciculi, which arife from the fuperior margin of this articulation, and are inferted into the fuperior margin of the next. The muíles of the fecond joint are nearly equal in number, and are inferted into the fuperior margin of the third.

The mufcles of the unguis terminate by two tendons; but they are formed of feveral fafciculi, fome of which arife from the fecond and third joints in two very diftinct layers; others from a line which correfponds with the convexity of the unguis; and lafly, others from the line which anfwers to its concavity. Thefe tendons are inferted into two tubercles at the fuperior extremity of the unguis, on the concave fide, towards its point. They ferve to bend the unguis, which probably recovers its pofition by the elafticity of its articulation.

There are two mufcles to each of the membraneous or falfe fect. Their direction with refpect to the body is almoft tranfverfe. They extend from the centre of the feet, into which they are inferted towards the back, and beyond the ftigmata, whence they arife by lateral bands more or lefs oblique.

460 L. VI. Motion of Invertebral hmimble.
Their ufe is to draw the centre of the foot invardly, and to retrate the hooks with which the limb is armed.

It is probable that the contractions of the oblique mufcles of the abdomen produce the oppofite elf̈cct.

With refpect to the mufcles of the head, we flall at prefent defcribe only thofe which produce its entire motion. We thall notice the others in treating of the different functions to which they are fubfervient.

The mufcles which act on the head, bend it upward, downward, and towards the fides.

Thore which bend it upward are very nimerous. They arife from the fecond and firt ring, and are inferted into different points of the occiput; fome near the middle line, others more laterally. They form in general two farciculi. The moft internal is the leaft bulky.

The lateral fiexors are very oblique. They arife from the inferior or abdominal part of the body, and extend to the lateral parts of the occiput.

The inferior flezors, which bend it downward, appear to be the continuation of the ftraight mulcles of the belly. They confift of eight or nine fafcicerli.

9. Itukles of the Lara of a Scarabous.

The larve of the fcarabrus have the body arched, and convex fuperiorly, and concave on
the fide next the feet. The back and the belly are feparated by a membraneous border, which has folds, and is fituated under the ftigmata. Thefe larve have only fix articulated feet, none of which are membraneous.

On opening thefe larvæ longitudinally, either on the back or the belly, we obferve three very' deep layers of murcles-the lateral, the dorfal, and the ventral.

The dorfal layer is formed of two feries of very diftant fibres. One feries is external, and occupies the intervals of the ten firf rings; that is to fay, thofe which are furnifined with the ftigmata. The mufcles which compofe this feries are narrow, and preferve a longitudinal direction. The fecond feries is produced by fibres which are fomewhat oblique, and extended in the fame fpace, but more towards the middle line. Thefe mufcles are broader and ftronger towards the head, and more narrow and lefs fibrous to wards the tail. They terminate between the tenth and eleventh ring by a very narrow flefhy band.

Thefe mufcles feem intended to fhorten the dorfal portion of each of the rings: this action diminifhes the convexity of that part, and thereby ferves to affift progreflion.

Near the middle line, between the ninth and tenth ring, there are two fmall mufcles a little oblique; but between the twelfth and the latt ring we obferve only one feries of fmall fhort mufcles, which occupy all the convexity de-

452 L.VI. Motion of Invertebral Animals.
fribed by the curvature. The action of thefe mufcles is obvioufly the fame as that of the preceding, to which they are acceffories.

When the firft layer of dorfal mufcles is removed, we find fibres precifely fimilar underneath, but running in the oppofite dircction.

Finally we obferve, in the dorfal layer, lines of very fhort mufcular fibres above the inferior plane of the ninth and tenth ring. The ufe of thefe little mufcles is probably the fame as that of all the preceding, though their action is lefs apparent.

The ventral layer very much refembles that of the back. Thefe mufcles, like the dorfal, form planes of oppofite directions; the moft deep-feated procceding from the internal fide, while thofe which are neareft the flim afcend from the external fide. This produces a fmall but very regular rhomboidal figure in the middie of each ring on the line bifecting the belly.

The action of thefe mufcles is the oppofite of that of the dorfal layer.

On the laft fegment, and towards the part that anfwers to the anus, we obferve a bundle of tranfverfe fibres, which, by their contraction, doubtlefs ferve the purpofe of a fphincter.

The lateral layer of mufcles is compofed of three kinds of fibres, which are very diftinet with refpect to their courfe. They reprefent a lace paffed through the mefhes of a net. All thefe mufcies are lituated behind the ftigmata, and inferted
Art. V. Larvie ofinsects.
inferted into the folds which feparate the belly from the back on both fides.

Thofe of the firft order are completely tranfverfe. They extend over the union of each ring with the fucceeding in the fpace included between the ventral and dorfal mufcles. It is obvious that they muft diminifh, by their contractions, the diameter of the body, and confequently extend it longitudinally. Thefe mufcles are in gencral very narrow.

The fecond fet is formed by oblique fibres which afcend from without inwardly towards the middle ventral line, from the union of one inferior ring to the union of the preceding. Thefe mufcles are broad and very frong, they ferve to form the foids of feparation between the back and the belly.

The mufcles of the third order are lefs oblique than the preceding, to which they appear to be acceffories. Each of the mufcles which compofe this divifion arifes from the middle of a ring, and is inferted under the head, where the preceding muf̃cles are inferted, that is to fay, on the ventral fide.

It fhould be remarked, that the two lat rings have no lateral murcles.

The mufcles of the head are very frong, the flexors are attached to the ventral mufcles above the union of the fecond ring with the third. They are formed of three principal fafciculi, which approach each other and are inferted in-
ás L. VI. Motion of Invertebral Animals.
to the pofterior and inferior part of the head, at the bafe of that fcaly piece called, by Latrielle, ganache**

The extenfors or levators of the head confift alfo of three fafciculi, but they are longer and flronger than the former. They have their origin in the fide, and penetrate under the tranfverfe and oblique mufcles: one is attached to the fixth ring; another to the fifth, and another to the fourth. They are inferted into the pofterior lateral parts of the head.
3. Mufcles of the Larea of a Mydrophilus.

The larvæ of the hydrophili are elongated. Their body is fomewhat fiat, and all its rings are diftinct. They not only walk very quick, but they even fwim with great veiocity, in confequence of different inclinations fuddenly and fucceffively given to the body.

Thefe larvx, when opened longitudinally, likewife exhibit fout different kinds or divifions of mufcles. Thofe of the belly, thofe of the back, and thofe of both fides.

The ventral mufcles very much refemble thofe of caterpillars: They are formed of two diftinct layers. The decpeft, or that which firt appears on the belly when examined through an opening on the back, is compofed of longitudinal fibres with interfétions which correfpond to each flin

[^5]ting: the fecond layer, or that which is next the fkin, is entirely covered by the preceding ; it is compofed of oblique fibres, which crofs each other in the form of an K , and which are extended longitudinally in each ring.

The dorfal mufcles are long, extending from the head to the tail, and forming on cach fide two rows of fibres, which appear twifted over each other like ropes. They are broadeft towards the head. Their fibres are inferted partly into the inferior border of an anterior ring, and partly into the fuperior border of the next ring.

Thefe long mufcles cover fome which are oblique, and crofs each other in the form of an X . They extend from the middle part of one ring to the anterior edge of that which fucceed's it.

The deep feated lateral mufcles, which are numerous, haveatranfverfedirection. Eachring has three or four, and their courfe is fuch, that they refemble the letters N or M lying on one fide, thus z 又

Bencath the tranfverfe lateral there are fome longitudinal mufcles that have a fmall degree of obliquity: they form a pretty large furface, which is uninterrupted throughout its whole length, and confounded with the oblique mufcles of the belly. Their fibres determine the chief motions of the body, in the fame manner as the long mufcles of the back and belly.

The mufcles of the feet are the fame as in the perfect infect.

Vol. I.
H b
The

The head has no particular mufcles. The long mufcles of the back, being inferted into the occiput, become extenfors. The firft tranfverfe lateral pair are inferted beneath the head, and produce the lateral flexion. The long oblique mufcles, which terminate at the inferior part of the head, become real flexors.

4. Hufciles of the Laria of a C'rambix.

In the larve of the cerambices we find the fame mufcles as in thofe of the fcarab.ei; but as the thape of the body differs confiderably in thefe two kinds of larve, there refults fome variation. in the form and extent of the mufcular organs.

A great part of the head of the larva of the cerambices can be drawn within the fikin whenever the animal pleafes. Very ftrong mufcles, fimilar to thofe we have defcribed in the fcarabxus, are appropriated to this function. As the head, which is very large, enters into the body, the extremity which receives it is fomewhat thicker than the fame part of the fearabæi, and the mufcles which move the rings are more extenfive than theirs.

The flat flefly tubercles which we find continued along the back and the belly, are a kind of feet, which this larva ufes in progreffion. They move by the alternate contractions of the correfpondent mufcles: this larva, therefore, moves with equal facility on the back and on the belly.

Article VI.

Of ihe Organs of Motion in Perfeat Infects.
The great variety of motions which infects are capable of performing, entitles them to hold the firt rank among the animals that have no vertebre. We difcover, in thefe minute beings, all the requifites neceffary to produce thofe voluntary actions, the execution of which aftonifhes us in vertebral animals of far greater magnitude. They even unite feveral functions which are very feldom found combined in the other claffes; for infects walk, run, leap, fwim, and fly with as much facility as the mammalia, birds and fifhes, exercife one or more of thefe faculties.

Infects are probably indebted for this advantage to the numerous articulations of which their bodies are formed. We muft therefore pay attention to their different articulations, before we proceed to examine the actions they permit or produce.

The bodies of infects may, in general, be divided into the bead, the corfelet, the pertus, the abdomen, and the members. There are fome genera, however, as the forpions, the phalangium, and Spiders, in which the head is not feparate from the corfelet. Other Aptera, as the julus, fcolopendra, ticks, mites, fleas, \&xc. have the corfelet and the abdomen confounded together. laftly, there are fome infects which have the abHh_{2}
domen

468 L.VI. Motion of Invertebral Animal.s. domen prolonged into a moveable tail, allotted to particular functions: fuch are the forpions and the panorp.e.

We fhall now confider the different articulations of all thefe parts, independent of their external forms, the defcription of which comes more properly within the province of what is frictly called Natural Hiftory.

I. Of the Head.

The articulation of the head of infects with the thorax prefents two general difpofitions. In the one, the points of contact are folid, and the motion depends upon the fhape of the parts: in the other, the articulation is ligamentous; and the head and the thorax are united and held together by membranes.

The articulation of the head, by the contact of folid parts, takes place in four different ways.

In the moft common conformation, the head has, at the part anfwering to the neck, one or two fmooth tubercles, which are received into correfpondent cavities on the anterior part of the corfelet. This is obfervable in the fcarabous, the lucanus, the corambix, and a great number of Colcoptera: In this firft cafe the head is moveable forward or backward, and the mouth is directed forward and downward.

The fecond mode of folid articulation takes place when the pofterior part of the head is rounded, and turns on its axis in a correfpondent focket on the anterior part of the thorax. Examples of this conformation are to be found in the rocevils, the attelabus, the brentus, the redurius, \&x. The axis of motion is then in the centre of the joint, and the mouth of the infect can be directed either.forward and backward, upward and downward, or to right and left.

The third fort of articulation, by folid furfaces, occurs when the head is truncated pofteriorly, and articulates by a flat furface, either to a tubercle of the thorax, or to another flat and correfponding furface; as is the cafe in almoft all the Hymenoptera, and in the greater number of the Diptera, fuch as flies, fyrpbus, Araiyoinis, afilus, \&x.

The fourth fpecies of aiticulation allows to the head only the fingle motion of an angular hinge. We know as yet of no examples of this kind, except in fome fecies of the genus altelabus of Fabricius. The head of thefe infects terminates pofteriorly by a round tubercle, which is received into a correfpondent cavity of the thorax : the inferior edge of this cavity is notched, and confines the motion of the head to one direction.

The ligamentous articulation is found only in the Orthoptera order of infects, and in fome of the Neuroptera: In this mode of articulation Hh3
the

4 70 L.VI. Motion ofinvertebral Animals. the head is not confined in its motion, except towards the back. In that direction it is oppofed by a projection of the thorax, but inferiorly it is perfectly frec. The membranes or ligaments extend from the circumference of the occipital foramen to that of the anterior part of the corfelet: This admits a very extenfive motion.

The mufcles which move the head are fituated within the thorax. We fhall defcribe here only thofe moft generally met with. The levalors or cxtenfors of the head are commonly fituated in the fuperior part of the corfelet, and the depreffors inferiorly.

Immediately beneath the middle dorfal part of the corfelet, we find a pair of mufcles which arife from the anterior portion of the fcutellum, when that part exifts; or from the fuperior part of the pectus. Thefe mufcles are inferted into the pofterior and fuperior part of the head, on the edge of the occipital. hole: the $\begin{gathered}\text { draw the }\end{gathered}$ head back, and lift it up when it is depreffed.

On the lateral parts of this firf pair we find another which is more fender: The infertion of this pair likewife takes place at the occipital hole, but more outwardly. They arife obliquely from the lateral parts of the corfelet. Thefe mufcles turn the head to one fide when they act feparatciy; they raife it, and bring the mouth into the middle line when they contract together. It will be eafily conceived that in infects which have the head articulated like a knec, thefe ro-
tatory mufcles are much ftronger, and more. confpicuous.

The flexors of the head are alfo four in number, two on each fide.

The firf pair arifes in the internal inferior part of the pectus, from a fmall homy procefs, which, in the Coleoptera is of a fquare form, and has the four angles terminated by folid branches. Thefe mufcles extend directly to the inferior part of the occipital hole. From their polition they doubtlefs move the head directly backward.

The fecond pair, which are much fhorter, arife from the inferior lateral part of the corfelet, and proceed to the fide of the preceding, with which they concur in their effect when they act together; but when one of the two contracts feparately, it bends the head to fide.

II. Of the Corfelet or Thoraw.

The thorax or corfelet of infects is fituated between the pectus and the head. The firft pair of feet are joined to this part, and it contains the mufcles for moving their firft articulations, and the head. The corfelet is remarkable for its fmall extent in the Hymenoptera. There is often no part of it to be feen on the back. In the cbryfis, however, it forms an articulation before the pectus, which may be very eafily diftinguifhed.

472 L.VI. Motion of Invertebral Animals.
There is another peculiarity in the conformation of the corfelet, which gives to the cluter the faculty of leaping: two pofterior and lateral points prevent it from being thrown too far back, while inferiorly there is a fingle bent fipine which the animal inferts with a fpring into a foffa of the pectus.

III. Of the Pectus or Breffl.

The pectus is the third articulation of the body of infects. The wings in thofe that have them, are attached to it fuperiorly, and the four pofterior feet inferiorly: the dorfal furface of this part is frequently furnifhed with a horny procefs or appendix, the figure of which is various, and which is called the foutclum or cfoutcheon; the fituation of this appendix between the wings appears to indicate that it ferves as a point of fupport to thefe members in flight. It is wanting however in the Lepidoptera.

There is alfo inferiorly, in the middle line between the coxx, a longitudinal ridge, which is called the fermum, and which is more or lefs clevated in differetit genera. It is very remarkable in the buprefis, the dytifous, and the bydroploilus.

The breaft contains the mufcles that move the wings and the four pofterior feet, as will be feen when we treat of the members. It alfo appears that this part is capable of being compreffed and dilated,
dilated, at leaft we find within it fome very ftrong mufcles which feem to approximate the dorfal and ventral furfaces: they may indeed affit in the general movement of the wings, but this we have not yet been able to determine with precifion. They are, however, fourin number on cach fide, and differ very much in their colourand texture from the other mufcles; for they are of a reddifh ycllow hue, and their texture is extremely loofe.

IV. Of the Abdomen or Belly.

The abdomen of infects is the fourth and laft divifion of the trunk. It commonly confifts of feveral rings, the number of which is very variable : fometimes it is feffils, that is to fay, fituated fo clofe to the pectus that it feems to be a continuation of it ; as in'moft of the Coleoptera, tenibredn, lirex, fcorpions, Esc. Sumetimes it is petiolated, that is to fav, there is a very confpicuous contraction between the pectus and the abdomen, as in evafps, in the greater number of Hymenoptera; fome Diptera, fpiders, छsc. Sometimes the abdomen is terminated by a ling, brifles, plates, points, bairs, long lbreads, Esc. but it belongs to the Naturalift to defcribe thefe peculiarities. We muft confine ourfelves to the confideration of the motions of the abdomen : the fe are of two kinds, one total, and another partial.

474 L. VI. Motion of Invertebral Animals.
The total movement of the abdomen is not very obvious, except in the infects which have that portion of the body pediculated: It has then a real joint, a kind of hinge, in which the firft ring is indented fuperiorly, and receives a projecting procers of the pectus, on which it moves. This articulation is rendered fecure by claftic ligaments, which have a confiderable degree of force. Some mufcles which arife within the pectus, are inferted into the firft ring, and determine the extent of its motions.

With refpect to the infects in which the abdomen is feffile, the mufcles that move the firt piece are the fame as thofe that act from one ring to another.

The partial motion of the rings is produced by very fimple mufcles: they confift of fibres which extend from the anterior edge of one ring to the pofterioredge of that which immediately precedes it. When the dorfal fibres contract, the fuperior part of the abdomen being fhortened, it turns up towards the back; but when the contraction rakes place in the ventral or lateral fibres, the abdomen is inflected towards the belly, or directed towards one of the fides. The extent of the motion, however, depends upon the number of the rings, and the mode of their junction. In the Coleoptera, for example, the rings only touch each other by their cdges, and the motion is very limited; but in the liymenoptera they are fo many fmall hoops which are incafed
into one another like the tubes of a telefcope, and often only one-third of their extent appears externally.

Such are all the motions that belong to the abdomen of perfect infects.

V. Of the Mcmbers.

The organization of the members remains fill to be confidered. We fhall begin with the fect, and defcribe in fucceffion their number, their general form, their fruclure, their refpeitive proportion, and their motions.

The number of the feet varies. There is never more nor lefs than fix in the winged infects; but the number is very unequal in thofe that have no wings: lice, fleas, podura, lepifma and mites, have fix attached in the fame manner as thofe of winged infects: foorpions, fpiders, and the plalangiun have eight, the onifcus, julus and foolopendra, have them attached to all the rings of the body, the head and tail excepted. In fome we find two pair to each ring, and in others only one pair.

The general form of the feet of infects depend upon their mode of life. Thofe that inhabit water, and fwim, have their feet flat, long and ciliated : In thofe that employ them in, digging the earth, they are broad, ferrated and faarpedged; if ufed in walking only, they are long

476 L.VI. Motion of Invertebral Animals. and cylindrical; when they are calculated for leaping, the femur is thick, the tibia long, and frequently arched. From thefe different conformations it is very eafy to recognize the habits and mode of living even of the dead infect.

The feet of infects are compofed of four principal parts, which are denominated the bounch or coxa, the thigh or femur, the leg or tibia, the toe or tarjus.

Each of thefe parts is enveloped in a cafe of a horny fubftance. 'They move on one' another by ginglymus, becaufe the hard fubftance being external, the articulation cannot take place by lefs than two tubercles. The motion of each joint is therefore performed in a fingle plane, that of the coxa excepted, as we thall prefently fee.

The cova joins the member to the body, and moves in a correfponding cavity of the corfclet, or the pectus, without being articulated in a pofitive manner, but as it were incafed. The form of the coxa varies. The infects in which the feet ferve for walking only, as the cerambix, the cbry fonela, the greater number of the Hymenoptera, Diptera, \&cc. have the coxa globular, and forming a real mechanical knee: but thofe in which it is neceffary the feet fhould poffers that lateral motion which is requifite in fwimming, removing the earth, \&c. have the coxa broad and flat, and, in general, its longef diameter in the tranfverfe direction of the body. There are even
fome,
fome, as the dytifus, or wouter bectles, in which the poflerior coxa is confolidated with the trunk, and immoveable. It is compreffed into the form of a plate in the blatta, the lepima, and fome other genera which walk very rapidly.

The fermur immediately follows the coxa, to the internal part of which it is articulated, in fuch a manner that, when the animal is in a fate of repofe, it is parallel to the inferior furface of the body. It is limited to a forward and backward motion, with refpect to the firft piece. The nature and extent of the motions of the femur appear to determine its form. In the infects that walk much, and fly little, as the carabus, the ciciudila, Esc. the femur has one or two eminences, called trochanters, at its bafe. Thefe appear to be intended for removing the mufcles from the axis of the articulation. Thofe that require ftrong mufcles, fuited to leaping, have the thigh thick, and frequently elongated, as in the grafs-bopper, altica, fome queevils, fleas, Ec. In thofe that dig the earth, the femur, which is moved with much force, has an articular furface correfponding to the flat part of the coxa, on which it refts. This is obfervable in the anterior feet of fome fcarabci, fcarites, mole-crickets, ε c. In fine, the form of the femur is always fubordinate to the kind of motion it has to perform.

The tibia is the third joint of the limb. It moves in an angle, with refpect to the femur, and

475 L.VI. Motion of Invertebral Anmalis. and is not fufceptible of any other direction. The figure of the tibia depends effentially on the ufes to which it is applied: this may be remarked in the fwimming infects, which have it flat and ciliated; and in thofe that dig the earth, which have it ferrated and fharp-edged. In the nepa, mantis, and feveral others, the anterior foot is terminated by an unguis, and forms with the femur a kind of forceps, which thefe infects employ to retain their prey while they devour it living.

The tarfus or toe of infects forms the laft portion of the foot. It confifts, in general, of feveral joints, the laft of which is terminated by one or two hooked ungues, or claws. Thefe joints move upon each other, and fometimes they are capable of being oppofed to the tibia, and thus form a kind of pincers: The figure of the tarfus is always conformable to the infect's mode of life. The articulations are flender, fcarcely diftinct, and deftitute of tufts, or balls, in the great number that burrow, in the earth, and feldom walk on its furface, as the fiarabaus, bifter, Pheridium, foaritis, the favages, ©ic. They are flat like fins, ciliated on the edges, and often defitute of claws in the infects that fwim, as the bydrophilus, zoater-ficas, the naucoris, figara, Erc. They are furnifhed with vifcous balls, briftly tufts, or vafcular fiefly tubercles, in thofe that move upon fmooth and Ilippery bodies, as flies, chryfoncla, ccrambices, thripes, Esc. They
are formed into two moveable and oppofable claws, in infects that crawl along hairs, and hook themfelves to them, as common lice, ricini, and miles. In the males of fome fpecies of the gerius crabro, and fome dylifci, one of the articulations is very much enlarged, and covered with hairs difpofed in parallel lines.

The tarfus is terminated by a fingle claw in fome may beetles, the zuatcr-foorpion, ξ_{c}; by two in the greater number of infects; and by two and an appendix forked in the middle, in the fag beetles.

There is a particular variation with refpect to the number of joints which compofe the tarfus. In moft of the Coleoptera, and in all the Hymenoptera and Diptera, it confifts of five articulated portions ; in the genera curculio, cbryfonela, cerambix, and gryllus, of four; in the dragon-flies and ear-zoigs, of three; in the anterior feet of the mantis, nepa, and naucoris, of one only ; the anterior feet of the papiliones nymphales have none.

The relative proportion of the feet determines in a certain degree the manner of each infect's motion in walking: for example, when the legs are all equal, the movement is uniform, but its rapidity varies accordmg to their length. The fpecies therefore which have long legs run very quickly: this is obfervable in the phalanzium, Spider, foolopendra, cfilus, rhagio, cerambix, molorcluus, cicindela, carabus, \& On the contrary, thofe that have fort
legs are remarkable for a very flow pace: of this kind are the julus, ticks, gall infocls, \&xc.

When the anterior fect are longeft, they retard motion: this takes place in the ephemera, the mantis, the nepa, ranatio, and in fome of the farabrei, the ceranbix, clytra, \&xc. Feet of this kind, therefore, are of little ufe to the infect that is provided with them, except in enabling it to lay hold of bodies to hook itfelf to them.

When the poftcrior feet are longeft, they give to the infect the faculty of leaping. This cffect may be remarked in the gra/s-boppers, crickets, fieas, \&c. There are, however, fome, infects diftinguifhed for leaping, in which the pofterior legs are not longer than the others, but they poffers this faculty in confequence of their thighs being very thick, and furnifhed with particularmufcles. Such are the altica, cicada, fome accevels, and fome icbuchnons.

Laftly, there are fome infects which do not leap, though the pofterior legs are longeft, and the thighs very thick. Among thefe are fome of the bruchi of Fabricius, the boria, ademica, leucofpis, cbalcis, \&xc. but all thefe infects have a great curvature in the legs.

We may now examine the organs of motion in the feet. The motion of each joint is performed in a fingle plane. It is provided by only two mufcles, which are enveloped in the preceding joint. Thefe are an extenfor and a flexor.

In the Coleoptera the coxæ move by a kind of rotation
rotation on their longitudinal axis, which, as we have already, obferved, is fituated tranfverfely, and forms, with the middle line of the body, an angle more or lefs approaching 90°. As the femur is attached to the internal extremity of the coxa, the diftance between the thighs is greateft in thofe infects in which the femur is moft bent with refpect to the coxa, to which it is articulated. It is obvious, therefore, that the pofition of the plane in which this flexion is made, depends upon the fituation of the coxa: when it is turned forward, the plane is vertical; when turned backward, the plane is always more oblique; and in the infects that fwim, it is even horizontal. It appears then that the almoft imperceptible motion of the coxa determines the moft remarkable movements of the feet.

The mufcles of each pair of coxæ and femora are fituated in the fuperior part of the corfelet or of the pectus. To obtain a proper view of them, it is neceffary to cut the body of the infect in a vertical direction.

Over the laft pair in the pectus there is a fcaly fubftance, in the form of a Y. The ftalk of this part affords an origin to a mufcle which turns the coxa backward, and is inferted into its pofterior edge. The mufcle which turns it forward arifes from the back, and is inferted by a thin tendon into its anterior edge.

The mufcle which extends one femur, while it is approximated towards the other, is very con-

Vox. I.
I. ㄴ
fidcrable.

482 L.VI. Motion of İnvertebral Animals.
fiderable. It arifes from the whole branch of the piece, in the form of a Y, and is inferted into the internal edge of the head of the femur. Its antagonift is fituated within the body of the coxa.

The mufcles which extend the two pairs of anterior femora, arife from the correfponding dorfal parts, and not from particular internal fubftances: the flexors, however, are always fituated within the body of the coxæ.

The mufcles which turn the femora arife alfo from the parietes of the corfelet, viz. the mufcle which moves it backward to the dorfal part, and that which moves it forward to the lateral part. In the roater beetles, which, as we have obferved, have the pofterior coxa confolidated and immoveable, thefe mufcles feem to extend to the femur, which is therefore furnifhed with four, two extenfors and two flexors.

The other orders of infe?s have nearly the fame conformation as the Coleoptera.

The mufcles of the tibia are fituated within the femur. The extenfor, which is fhort and flender, is attached to its external edge, (the femur being fuppofed extended in the longitudinal direction of the body:) the flexor is much ftronger and longer. It is fituated on the inner fide, and in the whole of the fuperior part.

These are likewife two mufcles to each joint of the tarfus: one, which is fmall, and placed on the fuperior or dorfal furface, acts as an ex-
tenfor. The other, which is more confpicuous, and fituated on the inferior fide, acts as a flexor.

The wings, as we have already remarked, are members attached to the lateral parts of the pectus. They are particularly appropriated to flight. One entire order of infects, the Aptera, is deprived of them; another order, the Diptera, has only two; but the greater number have four. In the latter, however, there is much variety in the texture of the wings. In the Hymenoptera and the Neuroptera the four wings are entirely membranous. Thofe of the Lepidoptera are covered with farinaceous fcales of different colours. In the Coleoptera the two fuperior wings are horny cafes, more or lefs folid, called elytra. They completely cover the two inferior wings, which are membranous, and fold upon each other, forming a doubling at their external edge. In the Orthoptera the fuperior wings confift of elytra or femimembranous cafes. They cover the inferior wings, which fold longitudinally, without any tranfverfe doubling, the genus forficula excepted. Laftly, in the Hemiptera the inferior wings fold croffways under elytra, which are partly coriaceous, and partly membranous.

In the Diptera order, there is under each wing the rudiment of another, which terminates in a little button or fmall folid head. There parts are calied halteres or balancers, becaufe it is fuppofed they ferve to maintain the

484 L.VI. Motion of Invertebral Animals.
equilibrium of the infect's body during the rapid motion of its wings: this much at leaft is known with certainty, that every time the infect ftrikes the air with its wings, a very quick motion is perceived in the balancers. There is alfo found in the Diptera, between the balancer and the wing, a hollow membranous fcale, refembling a fpoon without a handle. When the balancer moves, it flrikes againft this part, and appears in that manner to produce the well-known buzzing found made by flies when they are on the wing.

The mufcles that move the wings are not yet well afcertained. They appear to be two kinds. Some, which are fmall and fhort, are fitted to extend or fold the wings, at the "fame time that they move them to or from the body: the others, which are fomewhat longer, are calculated to produce the motions of elevation and depreffion which the wings perform.

The elytra of the Coleoptera, Orthoptera, and Hemiptera, do not appear to affift in the action of flying, at leaft they are not moved in the fame manner by the mufcles of the pectus.

The manner in which the wings are folded or plaited merits fome confideration. Citizen Jurine, of Geneva, has made fome very curious obfervations on the appearance of the nervous lines and divifions of the fuperior wings in the Hymenoptera: he has fhewin that thefe appearances are highly characteriftic, and has founded

Tome very natural genera- upon them. This method, applied to the other orders, would per-haps afford refults cqually fatisfaciory. The genus cicindela, for example, has a kind of tranfparent difk at the corner of the wing. The wings of the forficula are folded three times tranfverfely, and afterwards plaited throughout their whole length, \&xc.

We fhall here clofe our examination of the organs of motion in perfect infects.

Article VII.

Of the Oigans of Motion in Worms.

The organs of motion in worms are not fo perfect as in catcrpillars. Having neither fcaly nor membranous feet, feveral of them crawl or drag themfelves along by the help of fiff hairs or briffles, with whicin they are wholly or partly covered : of this defcription are the genera apbrodita, terebella, nereis, lumbricus, \&xc. Two kinds of mufcles contribute to their motion.

The onc extends the whole length of the body, and forms four principal farciculi, two of which belong to the belly, and two to the back. Thefe four nufcles may be faid to conflitute the mafs of the body. We find them immediately below the flin. Their fibres are parallel; but their Iis length

486 L.VI. Motion of Invertebral Animals.
length does not exceed that of the rings, being interrupted in the folds of each ring by a very compact cellular tiffue. The ftructure of thefe mufcles is, however, moft diftinctly obferved on the infide. We there find that they are feparated from each other by a longitudinal line, and enveloped in a kind of fack, of a clofe cellular fubftance, which correfponds to each ring of the body. Thefe four mufcles produce the principal motions. When thofe of the back contract wholly or partially, they raife the portion of the body to which they belong: the fame effect, but in the oppofite direction, is produced by the contradion of the ventral mufcles.

The fecond order of mufcles in worms is particularly appropriated to the motion of the fpines or briftles. Their number is equal to that of the tufts of hairs. The defcription of one of them will be fufficient to give us a know.ledge of the whole.

The hairs, briftles, fpines, tubercles, \&xc. which project more or lefs from the furface of the bodies of thefe animals, are maniffefly moveable. They are retracted and pufhed out at pleafure. The mufcles which produce thefe motions are vifible only when the animal is laid open, the inteftinal canal takein out, and the fkin ftripped off. We then obferve that each tuft of hairs is received in the concavity of a fleflhy cone, the bafe of which is attached to the longitudinal mufcles, and the apex to the internal extremity
extremity of the hairs. All the fibres which form this cone are longitudinal, but enveloped by a compact cellular fubfance. They move the hairs outwardly, and in the direction which their contraction may determine. This firft clafs of the mufcles, which belong to each bunch of hairs, may be called the protractors of the fpines.

The motion by which the fpines are drawn within the body, is produced by another fet of mufcles, which may be called retractors. They have fewer fibes than the former; their adion is therefore very feeble. They are fituated under the internal furface of the long mufcles, at a ihort diftance from the holes with which the latter are perforated for the paffage of the hairs. They are inferted into the tufts of fpines, nearly on a level with the point which thefe reach when completely retracted. It may be conceived that the protractors, when they act, pufh the retractor outward; but the latter, when contracting in its turn, tends to recover the parallel fituation of its fibres, and thus draws the fpines inward.

It is by the help of thofe mufcles, and the fpines on which they act, that the imperfect locomotion of thefe worms is effected.

There is another family of worms which want both fpines and briftles, and have therefore a different mufcular organization. Their manner of crawling varies confiderably from that of the former.

Their progreffion is accomplifhed by the help of the two extremities of their bodies, which they apply alternately to the furface on which they crawl. They are fitted for this. kind of motion by a peculiar ftructure. We may divide them into two orders.

The firft, as the leecbes, and feveral intefinal worms, have the head and the tail terminated by a kind of contractile flefhy difcus, fomewhat refembling thofe of the cuttle fish. The fructure of thefe two difks, which perform the office of fuckers, cannot be eafily afcertained, for when the fkin which covers them is removed, we obferve only fome very fmall fibres interwoven in different directions.

Though the worms with fuckers poffefs a great power of contraction, it is extremely difficult to trace the mufcles that move their bodies. Their whole fkin may indeed be regarded as one mufcle, or a kind of flefhy fack, furnifhed with circular and longitudinal fibres, and containing the veffels, vifcera, and glands. This mufcular fkin is thick, and lined with a véry folid and compact cellular fubftance.

When the worm wifhes to change its place, the body is fixed at one of the extrenities by the means of the fucker that terminates it; the circular mufcles of the fkin then feparately act, which elongates the animal's body by diminifhing its diameter: when the free extremity has in this manner reached the place to which the
worm choofes it fhould be extended, it is applied and made faft to that fpot by the fucker, and becomes the fixed point of a new motion: the animal having removed the fucker firft made ufe of, draws it by the operation of the longitudinal fibres of the fkin, towards the fecond fucker, and proceeds in this manner to fix each extremicy alternately. This is the mechanifm by which progreffion is effected in the worms that have terminating difks.

The fecond order of worms which move by fixing their extremities, comprizes the greater part of the vermes intefina. Thefe poffefs a lefs degree of contractile power than the leecbes, and their motions are therefore lefs extenfive. Their head, inftead of being terminated by a difk, is fometimes provided with hooks, by the means of which they faften themfelves to the parts they fuck. Such are the common, teria, the tenia Solium, the bydatigena, the baruca, the echinorbyncbus, the uncinaria, \&cc. \&cc. The difpofition and curvature of the hooks, which vary confiderably, have been defcribed by Naturalifts.

Article ViII.

Organs of Motion in Zoophytes.
The organs of motion in the zoophyta vary confiderably, in their nature, their form, and their action.

490 L.VI. Motion of Invertebral Antmals.
action. It is therefore neceffary to the obtaining a juft idea of thefe organs, that we fhould take a particular and fucceffive view of them in certain orders of thofe animals. There is indeed often more difference as to form between one of the Infuforia and one of the Echinodermata than between a reptile and a fifh, or even between a fifh and fome mammalia.

In treating of the parts which contribute to the motions of zoophytes, we fhall follow the courfe traced out to us by Naturalifts; we muft therefore firf examine them in the order Echinodermata, the greater part of which is diftinguifhed by numerous retractile feet, and an envelope more or lefs folid.

Thefe retractile feet are a kind of fuckers, and have nearly the fame organization in the three genera which compofe this order. Each of thefe fuckers can be contracted feparately. In their. form they refemble a globular phial, or ampulla, with a long tube. They are filled with a fluid, and their parictes are formed of circular fibres. The elongated or tubular portion of the ampulla is the only part that appears without the animal when the feet are extended. It is terminated by a kind of difk, which is concave in the middle. The fpherical portion is fituated within the body. From this confruction of the foot, the mechanifm of its action will be eafily under-ftood.-The liquor contained in the ampulla, becomes, by a change of place, the caufe of mo-
tion: when the foot is drawn into the body, the fpherical portion of the ampulla is greatly enlarged : when the foot protrudes, the parietes of the ampulla contract and impel the contained fluid into the tubular part, which confequently increafes both in length and circumference. In the retractile motion of the foot, the tunic of the tube is contracted, and the liquo thereby forced back into the body of the ampulla.

The number and portion of thele feet vary confiderably, even in the fpecies. This will be apparent from the viesw we are about to take of the different genera.

The bolotburia are covered with a thick coriaccous fkin, which the animal can lengthen or fhorten at pleafure. Thefe two mutions are produced by longitudinal mufcular bands, which vary as to their length and breadth in different fpecies, and fmaller tranfverfe bands extended over the whole internal furface of the body. The animals included in this genus have their feet difpofed in different manners, and in fome fpecies they are even wanting. In the others we find them either fpread irregularly over the whole body, fituated upon one fide only, or placed in longitudinal rows.

The aflerias or fea-fars have the covering of the body of a very clofe fibrous texture, the interftices of which are filled with grains of calcarious matter of various forms and dimenfions. This kind of cruftaceous fkin is, however,

492 L.VI. Motion of Invertebral Animals.
however, fufceptible of a certain motion, which, though flow, is very remarkable. The body of the animal is commonly divided into five branches to which the feet are attached. Thefe laft are ranged in feveral files throughout the whole length of the branches from the mouth. The branches are fometimes furniflhed with fpines, their middle portion is frequently entirely calcarious, but articulated at its origin, and moveable upon the central part of the body.

The ecbinus or fea-eggs are encrufted by a complete calcarious fkin, the furface of which is covered with tubercles difpofed in a very regular manner. Moveable fpines of various fhapes and fizes are articulated to thefe tubercles. It is very difficult to difcover the fibres by which the fpines are moved at the will of the animal; for in their joints we obferve only a folid ligamentous fubftance, which cannot be eafily cut. The feet are protruded from the body of the animal through holes which perforate the fhell with a great deal of regularity, and which form uniform and parallel lines, called by riaturalifts ambulacra, becaufe they have compared them to the alleys of a garden.

The orgais which produce motion in the other orders of zoophyta are not more apparent. They efcape our obfervation in confequence of their tranfparency. A great number of them have their mouths furnifined with tentacula, which are moveable at the will of the animal,
and with which it feizes its prey. The medufa fwim by difplacing the water with alternate motions, which render their bodies at the one time flat, and at the other convex. The coriaceous fkin which covers the aftinia, poffeffes fo. extraordinary a power of contraction, that there animals can affume the moft diffimilar forms at pleafure. Sometimes they are flattened into a difk, fometimes elevated into a cone, fometimes lengthened into a cylinder, \&xc. Src. In the bydra we find only fome moveable tentacula. In the vorticella and the rotifer, we can obferve, by the help of inftruments, fome cilia of different figures turning round their axis with aftonifhing rapidity.

We now clofe our anatomical view of the organs of motion: we have not thought it neceffary to defcribe their external forms, becaute that has already been done by Naturalifts, and becaufe our object is merely the examination of their internal ftructure.

(494)

LECTURE SEVENTH.

OF THE ORGANS OF MOTION CONSIDERED

 IN ACTION.IN the firft part of this work we have defcribed the forms, the connexions, and the relations of all the organs of motion.

Our attention has been principally directed to the articulations of each bone, and the particular action of each mufcle, and to the variations which thefe organs undergo in different animals.

We fhall now confider the effect which refults from the united or fucceffive action of all thefe organs, in producing the general and partial motions performed by animals; and examine how far thefe effects are modified by the different organs in each family.

Article I.

Of Standing.

$\mathrm{S}_{\text {tanding }}$ is that pofition in which an animal fupports itfelf firm and erect on its legs.

If a man, or any other animal, fuddenly dies while ftanding, or ceafes, in confequence of fome othor
other caufe, to make the neceffary efforts for preferving that pofition, all the articulations of the legs yield to the weight of the body, and bend under it. Standing is then folely the effect of the contimued action of the extenfor mufcles of all the joints; the flexors contribute nothing to it. This is one of the caufes which renders it more fatiguing to ftand long, than ta walk during an equal time; as in walking the extenfors and the flexors act alternately.

There are, however, fome animals in which certain articulations are maintained in a ftate of extenfion, in confequence of their particular form, and the ligaments attached to them. The fork affords an example of this. The furface of the femur that articulates with the tibia, has in its middle a depreffion which receives a projection of the latter bone. In bending the leg, this procefs is lifted out of the depreffion, and removed to its pofterior edgc. By this motion the ligaments are neceffarily more ftretched than during the extenfion of the leg, in which the procefs remains in its focket. Thefe ligaments therefore preferve the leg extended in the manner of fome fprings, without receiving any affiftance from the mufcles.

This ftructure enables birds of this kind to pafs whole days and nights on one foot without being fatigued.

It is not fo with man and quadrupeds; they are preferved in a flanding pofition by the action

496 L.VII. Organs of Motion in Action.
of the mufcles only: but the extenfion which that action produces is not to be regarded as a ftate perfectly motionlefs. It rather confifts of very finall alternate flexions and extenfions.

Animals may fland on two, on four, or on a greater number of feet.

Thofe which ftand upon two feet, may have the body either vertical, or inclined towards the horizon.
A. Standing on two feet woith the body vertical.

To retain a body in a vertical pofition, it is neceffary that all its parts be fo difpofed as to be cafily preferved in a fate of equilibrium ;-that the mufcles have the power of continually correcting all motions which might produce a deviation from this balanced flate; - that the centre of gravity of the whole body fall within the limits of the plane occupied by the fupports of the body, or its feet;-and finally, that thefe feet be placed firmly on the ground, and fo formed as to accommodate themfelves to its inequalities,

Man is the only animal that poffeffes all thefe requifites in the neceffary degrec.

It is obvious that the more extenfive the furface which the feet include, the lefs is the danger of the centre of gravity being removed beyond its boundaries. This obfervation applies peculiarly to man, whofe feet are very broad, and
who can feparate them to a much greater dife tance than the other animals.

The power of feparating the feet in man depends, ift, on the width of the pelvis, which is proportionally greater than that of all the other animals, who, in other refpects, poffefs fome of the conditions requifite for a perpendicular pof.. ture; as may be obferved in the Quadrumana and Sarcophaga : 2d, on the length and obliquity of the neck of the femur, which carries that bone more outward, and removes it farther from its articulation than in any other animal.

The great fuperficies of the human foot is a confequence of the tarfus, metatarfus, and all the toes refting on the ground. This does not take place fo perfectly in any other animal as man. The end of the os calcis is elevated even in monkies and bears, while in man, on the contrary, it forms a downward projection to fuftain the foot pofteriorly. The genus didelpbis alfo very much refembles man in the hind feet, but thefe animals want all the other requifites for ftanding. The quadrupeds which have the tarfus longer than that of man, have it at the fame time narrower, and touch the ground with the points of their toes only.

Man, likewife, furpaffes all quadrupeds in the advantageous form of his foot, and its aptitude to place itfelf firmly on the ground.

It is flat inferiorly, and both its edges reft upon the earth. In other animals the foot is

YoL. I. Kk commonly

498 L.VII. Organs of Motion in Action
commonly convex, or rather as in the monkies; it is articulated in fuch a manner with the tibia, that it refts only on its external fide. This difpofition is, however, neceffary to them, as it gives them the free ufe of their pollex or great toe, and of their long toes. Even the length of the toes, which is fo ufeful to monkies in feizing the branches of trees, is extremely inconvenient when they are placed on level ground; for their power is diminifhed, in proportion to their length, when they merely prefs upon a plane furface, and have no round part to encircle. The toes of man, on the contrary, are fhort and thick: his pollex is very ftrong, and longer than the other toes. This conformation, which adds to the extent of the foot, does not occur in the other mammalia. It fhould alfo be obferved, that the human toes have neither nails nor horn inferiorly, which would obftruct their application to the ground, and prevent them from difcerning its inequalities.

Laftly, the flexor brevis digilorum pedis in marx is fituated entirely under the foot, and arifes before the heel: it has nothing in common with the mufcle improperly called planlaris gracilis, which is inferted into the os calcis, along with the other extenfors of the foot: the flexor longus paffes by the fide of the os calcis; fo that neither of thefe mufcles are confined by the heel when it refts upon the ground.

On the contrary, the planaris gracilis ferves
even partly in the monkey, and more completely in the other mammiferous animals, to bend the toes: It paffes over the head of the os calcis, and its action would be obftricted were it compreffed between that bone and the earth.

The weight of the body tends to bend the leg forward on the foot: it is therefore maintained in its proper pofition by the extenfors of the heel. Thefe mufcles are the gemelli and the foleus. They are proportionally thicker in man than in the other mammalia, except perhaps in thofe that are remarkable for great leaps. This is the reafon why man is the only animal that has real calfs to the legs, and why the men that exercife thofe mufcles moft, as the perfons who practife leaping, have them always thicker than others.

The thigh of man, when flanding, forms one line with the trunk and the leg: In quadrupeds, on the contrary, it is fituated clofe upon the flank, and frequently forms an acute angle with the fpine. In confequence of this difference, the thigh is flat in thofe animals, and round in man.

The extenfors of the thigh are proportionally ffronger in man than in other animals: It is the contrary, however, with the flexors, which, befides, defcend much lower on the leg in quadrupeds, and thereby prevent the complete extenfion of the leg upon the thigh.

In the extenfion of the leg, the rotula afcends in a groove, fituated below, and before the femur:
this reaches higher up in man than in the other mammalia.

The thigh moves upon the pelvis in every direction, but the weight of the body tends chiefly to bend it forward. On this account its extenfors, and particularly the gluteus maximus, are fo confiderable in man, that he is the only animal poffeffed of what are properly called hips, as he is the only one that has true calfs.

In confequence of this ftructure, our inferior extremities are furnifhed with a fufficient bafe, and folid columns for fupporting the trunk. It was alfo neceffary that the trunk itfelf fhould be maintained in equilibrium in all its parts.

The firft advantage which man poffeffes in this refpect, confifis in the breadth of his pelvis. Its form is fuch, that his trunk refts on an extenfive bafe; and the mufcles of the abdomen, as well as all thofe that proceed from the pelvis, have a fufficient hold, at their inferior attachments, to enable them to counteract, inftantly, the mof minute deviations of the trunk from. its erect pofition. In all the multidigital animals, the pelvis is fo narrow that the trunk refembles an inverted pyramid. It will be eafily conceived, that, with fuch a form, it would be much more difficult to preferve the equilibrium of the body, were thefe animals to attempt to ftand upon their pofterior feet. In the animals that fomewhat refemble man with refpect to the breadth of the pelvis, viz. thofe with hoofs, there
there are a number of other circumftances which prevent that part of their ftructure from becoming ufeful to them. Bears and jloths are the only animals in which the width of the pelvis, which, however, is much lefs confiderable than in man, is not completely counteracted by the form of the fect. Thefe fpecies, therefore, ftand more frequently on their hind feet than any others.

The fecond advantage poffeffed by man is the facility with which he holds his head crect. In treating of its articulation, we have fhewn that this is owing to the pofition of the foramen magnum, under the middle of the head, and the horizontal direction of the eyes and mouth. Thefe two peculiarities are as unfavourable to his progreffive motion on the four members, as they are ufeful to him while he preferves himfelf on two only. Man, walking on all-fours, could not fee before him: It would even be painful to him to raife his head, which is very heavy, as its mufcles are weak, and it wants the cervi-- cal ligament.

We obferve, befides, fome circumftances in the ftructure of man, which, though they do not affift him to ftand upon his legs, prevent him from ufing the four extremities. His pofterior members are very long in proportion to the anterior: in confequence of this, weak children, that cannot walk on their legs, are obliged to crawl on their knees, or to feparate the legs,

302 L.VII. Organs of Motion in Action.
in a manner that renders their pofition very conftrained; but even then their head is fo filled with blood, that they are obliged to feek fomething to cling to in raifing themfelves up.

The quadrupeds that fometimes try to ftand on their hind feet only, in order that they may either employ their fore-fect in taking hold of fome object, or avoid keeping their head too low, feem rather to fit than to ftand. Their trunk refts at the fame time on the hind feet, as far as the heel, and on the buttocks: it is ftill neceffary, however, that their head and neck flould be proportionally fmall, as in monkies, fquirrels, oppolfums, EGc. otherwife the weight of thofe parts would be too great for the force employed in their elevation; but even when feated, the animal is generally obliged to reft on the fore-feet, as may be obferved in dogs, cats, $\xi^{\circ} c$.

Some quadrupeds ufe their tail as a third foot, to enlarge the bafe of the body; and when it is ftrong, it is capable of contributing to their fupport for fome time. We find examples of this in the kanguroos and jerboas.

B. Standing on Two Feet, with the Body not rertical.

As the anterior extremitics of birds conflitute their wings, they cannot be employed by thofe animals, cither in fupporting themfelves on the ground, or in feizing objects. This rendered it neceffary,
neceffary, that, though flanding on their pofterior extremities, they fhould be able to reach the earth with their bill. It was alfo a neceffary confequence, of the faculty of flying, that the body fhould have its centre of gravity nearly under the fhoulders, in order that it might be fuftained by the wings. It follows, therefore, that the bodies of birds mult be heavieft anteriorly. Thefe two requifites are the caufes of all the peculiarities we obferve in the fkeleton of the animals of this clafs.

It muft alfo be obferved, that, to fuftain the fame centre by the feet, when ftanding, it was neceffary that thefe members fhould be directed forward: hence the great flexion of the femur, and that of the tarfus on the leg. The length of the anterior toes alfo contributes to extend farther, in the fame direction, the furface on which the line of gravitation falls; and in general, the length of thefe toes is fuch, that birds can eafily ftand upon one leg, without allowing the vacillatory motions of the body to remove that line beyond fo broad a bafe.

The birds which have their feet fituated far back on the body, as the grebes, and the penguins, are obliged to fupport themfelves in nearly a vertical pofition.

The length and fexibility of the neck is alfo of very great ufe, in varying the pofition of the centre of gravity, fo as to preferve the equilibrium of the body. In fanding, birds generally $\mathrm{K}_{\mathrm{k}}^{4}$

504 L.Vil. Organs of Motion in Actiono
carry the head erect: in fleeping, they turn it towards the back, and place it under the wing, in order to lay the greateft weight on the point above the feet.

At the commencement of this Lecture we defribed the mechanical means by which the long-legged birds keep the tibia extended on the tarfus, without any voluntary contraction of their mufcles. Borrelli long ago explained the mechanifm by which perching birds clafp the branches of trees, and maintain their hold without a conftant attention, and even fleep in that pofition. It confifts in the tendons of the flexors of the toes paffing over the articulation of the heel, and their union with a mufcle which comes from the region of the pubis, and paffes over the knee. By the flexion of thefe two articulations the tendonss are neceffarily drawn upward, which caufes the toes to bend. In confequence of this conformation, the knee and the heel, even of a dead bird, cannot be bent without producing at the fame time an inflexion of the toes. The mere weight of the body of birds, preffing down the femora, and tibix, is therefore fufficient to make their toes grafp ainy twig on which they choof to perch. I am not of opinion that the objections which have been made to this ingenious cxplanation are well founded, or that the theories which have been offered in its ftead are admififible.
C. Standing

C. Standing on Four Fect.

We have already pointed out the caufes which prevent quadrupeds from ftanding erect. Thefe caufes become the more powerful in proportion as the animals are more completely quadrupeds; that is to fay, as they are lefs capable of difpenfing with the ufe of their four feet in ftand ing, and as thefe members are provided with a peculiar ftructure calculated to favour that pofition.

An animal which ftands on four feet is fupported on a very confiderable bafe; but, in confequence of the weight of the head and neck, the centre of gravity is fituated nearer to the fore than the hind legs. It follows, therefore, that the anterior extremities, which give no fupport to the human body, fuftain almoft the whole burthen in quadrupeds. They are therefore furnifhed with very ftrong mufcles, particularly thofe of the fore-arm, as we have fhewn in defcribing them. The fituation of the fcapulæ being very low, the body is fuftained between them by the ferratus magnus, which is much larger than it is found in man. In thort, all that the pofterior extremity feems to want in mufcular force, appears to be transferred to the anterior.

As the head inclines towards the horizon, and is projected forward by a neck which is often

go6 L.VI. Organs of Motion in Action.

very long, it requires very powerful means to fuftain it: they are found in the great fize and extenfive attachments of the mufcles of the neck, and the ftrength of the cervical ligament. Thefe are tiwo peculiarities that do not exift in man, whofe head is fupported by its vertical pofition. The ftrength both of the mufcles and ligament is in proportion to the weight of the head and the magnitude of the horns. But when they have to raife burthens of an extraneous nature, as is the cafe with the mole, the mufcles are furprifingly ftrengthened, and the cervical ligament is offified.

The body hangs between the four legs, and tends by its weight to bend the fpine downward. This effect, however, is counteracted by the abdominal mufcles, and particularly by the mufculi recti, which produce a curvature in the oppofite direction. The extenfors of the fpine do not affift in the operation; on the contrary, their action aids that of the weight of the trunk. The abdominal mufcles act with peculiar force in bending the vertebral column upward, and giving it an arched-like form in all the mammalia that arc covered with fcales or fpines, and which are accuftomed to roll themfelves up on the approach of danger, as the bedgebug, the armadillos, and the pangolins. Thefe mufcles are therefore ftronger in them than in the other families. The long-tailed pangolin, or phatagin, has two tendinous, and cven almoft offificed,
offified, productions, which extend from the xiphoid cartilage nearly to the pelvis.

The legs of mammiferous quadrupeds move forward and backward in planes nearly paralle! to the fpine, and not far diftant from the middle plane of the body upon which the weight operates. In oviparous quadrupeds, on the contrary, the thighs are directed outward, and the inflexions of the limbs take place in planes perpendicular to the fpine. In the latter cafe, then, the weight of the body acts with a much longer lever in oppofing the extenfion of the lnee. Thefe animals, therefore, have the knees always bent, and the belly dragging on the ground between their legs. On this account they have receixed the name of reptiles.

Ârticle II,

Of Walking.

$A_{L L}$ the progreffive motions by which man and the inferior animals remove their bodies from one place to another, require that a determinate velocity fhould be communicated, in a particulardirection, to their centres of gravity To effect this, it is neceffary to extend a certain number of articulations, which have been more or lefs bent,

jo8 L.VII. Organs of Motion in Action.

bent, and having fuch a pofition that their extenfion may be eafy on the fide to which the centre of gravity inclines, and difficult on the oppofite lide, in order that the principal part of the movement may take place in the former direction.

The body of an animal which attempts to make a complete change of pofition, may be compared to a fpring divided into two branches, one of which refts upon a refifting body. If thefe branches, after being brought together by external force, are again fet free, their elafticity will tend to make them recede equally, until they form the fame angle with each other which they formed before their comprefion. But the branch which bears againft the fixed body not being able to overcome its refiftancc, the movement will wholly take place in the oppofite direction, and the fpring's centre of gravity will be forced from the refifting body with more or lefs velocity.

This is the moft fimple and correct idea which can be formed of the progreffive motion of animals. The flexor mufcles of the part which they employ in each kind of movement, reprefent the external force that compreffes the fpring. The extenfors correfpond to the clafticity which tends to make the branches fly afunder, and the refiftance of the ground, or that of the fluid in which they move, reprefents the obftructing body.

Walking is a motion on a fixed furface, in which the contre of gravity is altemately moved by one part of the extremities, and fuftained by the other, the body never being at any time completely fufpended over the ground. By this definition it is diftinguifhed from leaping, in which the whole of the body is projected into the air ; and from rumning, which is only a fucceffion of fhort leaps.

A. Walking on Two Feet.

Animals which fiand erect on two legs, fuck as man and birds, walk alfo on two legs. But feveral quadrupeds that cannot ftand on two feet but with great difficulty, may yet move in that pofture for fome time with fufficient eare. This arifes from its being in general lefs painful to walk than to ftand, the fame mufcles not being continued fo long in action; and alfo, it is lefs difficult to connect the unfteady motions of the body by contrary and alternate vacillations, (a thing eafy in walking,) than it is to prevent them altogether.

When man intends to walk on even ground, he firft advances one foot: his body then refts equally upon both legs, the advanced leg making an obtufe angle with the tarfus, and the other an acute angle. The ground not yielding to the point of the foot, the heel and the reft of the leg mult of neceffity be raifed, otherwife the

gio L. Vill. Organsor Miotionin Action。

the heel could not be extended. The pelvis aiid trunk are confequently thrown upward, forwiard, and fomewhat in a lateral direction. In this manner they move found the fixed foot as a cenitre, with a radius confifting of the leg belonging to that foot, which, during this operation, continually diminifhes the angle formed with the tarfus. The leg, which communicated this impulfe is then thrown forward, and refts its foot upon the ground; while the other, which now forms an acute angle with its foot, has the heel extended in its turn, and in like manner makes the pelvis and trunk turn round upon the former leg.

It will be feen that by thefe movements the centre of gravity of the body is carried forward at each progreffive ftep, iuclining, however, at the fame time, to the right and left alternately, fo as to be fupported by each leg in its turn. It will allo be feei that each leg, immediately on extending its heel, bends and rifes, in order to its being moved forward; extends in order to ref its foot upon the ground; turns upon this foot as on a fixed contre, fo as to fupport the weight of the body; and then extends its heel anew, in order to transfer this weight to the cther leg.

Wach leg fupporting the body in its turn, in the fame manner as in the pofition of fanding on one foot, the extenfors of the thigh and the snee are thon brought into adtion, to prevent
thefc articulations from giving way. The flexors, zoo, of the fame articulations, act immediately after, when that leg, having thrown the weight of the body on the other, muft be raifed previounly to its being carried forward. The three principal articulations of each leg are fituated in contrary directions, in order that, during their flexion, the foot fhould be raifed immediately over the place it occupied during their extenfion. Were not this the cafe, it would be impoffible to bend them without throwing the foot forward or backward.

It is the impofibility of regulating this undulatory motion in a manner perfectly equal on both fides, that prevents man from walking in a ftraight line, or cven from keeping an uniform dircetion, if he be not very carcful to correct his deviations. This is the reafon why a man cannot walk in a ftraight line with his eyes fhut.

In walking down an inclined plane, or defcending a fair-cafe, the advanced leg is placed lower than that which remains behind, and the body would fall on it with a fatiguing and dangerous rapidity, were it not carefully checked by means of the extenfors of the hip, which permit it to defcend only by degrees. This is the reafon of the loins being fatigued in defcending.

In walking upwards on an inclined plane, or in afcending a ftair-cafe, it is requifite, at each ftep, not only to tranfport the body horizontally,

512 L.VII. Organs of Motionin Action.

as in walking on level ground, but to bear it up againft its own weight, by means of the extenfors of the knee of the advanced leg, and thofe of the heel of that which is behind: this is the reafon of the knee and calf of the leg being fatigued in afcending. We have then an advantage in inclining the body forward, becaufe the lever by which its weight acts on the knee is hortened in an equal proportion.

In walking with a very wide ftep, one feels a fatigue fimilar to that produced by the action of afcending; becaufe the legs being confiderably apart, the body finks lower at the moment of their feparation, and it is neceffary that it fhould be proportionally raifed when turning alternately on each leg.

Man feldom fwings his arms in order to affift his walking, except in a very narrow path from which he cannot depart ; and then he employs all poffible means to correct the vacillatory motion of the body. But apes always require the affiftance of thefe cxtremities in walking, and thofe which have the longeft arms ufe them with the greateft advantage, as the long-armed monkey, and the orang outang.
B. Walling on Four Feet.

In the action of walking, a quadruped firf flightly bends the articulations of the hind legs, and then extends them in order to carry forward
the
the body. The breaft being thrown forward by this movement, to which the extenfors of the knee and the heel particularly contribute, the fore-legs become inclined backivard; and the animal would certainly fall, did it not inftantly throw them forward in order to fupport itfelf. It then draws up the trunk upon the fore-legs fixed in this pofition, and the hind-legs are again brought into action.

But it mult be obferved, that thefe movements are not performed at the fame moment, by the two legs of each pair in the action of walking; for, in that cafe, the animal would neceffarily be completely fufpended for a moment over the ground; and its motion would then be no longer a walk, but a fucceffion of leaps, particularly denominated a full-gallop, of which we fhall treat in the fequel.

Each ftep is executed by two legs only; one belonging to the fore-pair, and the other to the hind-pair; but fometimes they are thofe of the fame fide, and fometimes thofe of the oppofite fides.

The latter is that kind of motion in horfes which grooms term a pace. The right foreleg is advanced fo as to fuftain the body, which is thrown upon it by the extenfion of the left hind-foot; and at the fame time the latter bends in order to its being moved forward. While they are off the ground, the right hind-foot begins to extend itfelf, and the moment they touch it the Vol. I.
L. 1
left

514 L.VII. Organg of Motion in Action。

Icft fore-foot moves forward to fupport the impulfe of the right foot, which likewife moves forward. The body is thus fupported alternately by two legs placed in a diagonal manner.

When the right fore-foot moves in order to fuftain the body, pufhed forward by the right hind-foot, the motion is then called an amble. The body being alternately fupported by two legs of the fame fide, is obliged to balance itfelf to the right and left, in order to avoid falling : and it is this balancing movement which renders the gait fo foft and agreeable to women and perfons in a weak ftate of body.

In the animals that have the fore-feet longer than the hind, and have their ftrength chiefly in the anterior part of the body, the principal impulfe is given by extending the fore-foot. The hind-foot then rifes to follow it, and it is not until the moment that the latter extends itfelf in its turn, that the fore-foot is raifed. This is the manner in which the giraffe is faid to move.

But when the fore-legs are greatly difproportionate to the others, and particularly when the pofterior extremities are feeble and badly articulated, as in the foths, the animal is obliged to drag itfelfonward, by firft extending the anterior legs, and then bending them fo as to draw the body after them; the hind-legs affording but very little affiftance by their impulfion. It is this circumftance which renders the progreffion of the floths fo laborious.

Thofe animals which have their fore-legs very flort in proportion to their hind ones, would be incapable of fuficiently fupporting their bodies, and muft fall down forward on each impulfe of the latter, had they not the precaution to make a prancing movement; that is, to arife the anterior extremities entirely off the ground; previouf!y to their being impelled onward by means of the hind-feet. Accordingly fuch animals cannot in propriety of language be faid to walk; they only move forward by leaps. This is the cafe with the greater part of the Rodentia, fuch as the bares, the rats, and particularly the jerboas. lndeed thefe animals cannot be fiild to walk at all, except in the action of afcending. When they attempt to walk flowly on level ground, they are obliged to move themfelves by the fore-feet, and merely to drag after them the hind-pair. This may be obferved in rabbits, and ftill more diftinctly in frogs.

When the hind-feet are very much feparated, their impulfe becomes more lateral. It thence refults that, at each ftep, the trunk is alternately impelled fide-ways, and that the line of motion becomes crooked. This may be remarked in the fwimming animals, whofe manner of life requires that there flould be a confiderable fpace between the hind-less; fuch as the otters, the beavers, the lortaijes, Efic.

Article III.

Of the Adions of Seizing and Climbing.

\mathbf{M}_{AN}, and a certain number of other animals, are capable of feizing objects, by furrounding and grafping them with their fingers. For this purpofe it is neceffary that their fingers fhould be feparate, free, flexible, and of a certain length. Man has fuch fingers on his hand only; but apes and fome other kinds of animals have them both on their hands and feet.

Only man, apes, and lemurs, have the thumb feparate, and capable of being oppofed to the other fingers, fo as to form a kind of forceps. Thefe are therefore the only animals that can hold moveable objects in a fingle hand. We fhall fhew hereafter the great difference between the hand of the ape and that of man, and the advantage which the latter poffeffes for all delicate operations, in which it is neceffary to handle, or pinch minute bodies. The other animals, that have the fingers fufficiently fmall and flexible to cnable them to take up objects, are obliged to hold them in both hands. This is the cafe with Squirrels, rats, oppofiums, Ecc. Others which have the toes florter, and which befides are under the neceffity of refling on their fore-feet, as dogs and cats, can only hold fubftances by fixing them upon the ground with their paws. Lafty, thofe that have the toes united and drawn together under
der the flkin, or enveloped in corneous hoofs, are incapable of cxercifing any prẹenfile power.

We have already fhewn that perfect prehenfion always requires the power of rotating the hand upon the fore-arm, and that in all the animals which poffefs thefe faculties, the bones of the fhoulders fhould be fo fituated as to prevent the difplacing of the fcapula forward.

The faculty of feizing or grafping firmly is particularly ufeful to animals in that fpecies of progrefion called climbing. This motion confifts in hanging from, and ftrongly grafping the incqualitics of branches, or any other object fufceptible of being feized or grafped, and rifing in this manner by fucceffive efforts, in a direction oppofite to the animal's weight.

Man is a very indifferent climber, becaufe he can only grafp with his hands. His feet are merely fitted for fupporting him, and this circumftance gives them much lefs fecurity in elcvating the body by the extenfion of the heels and knees. He is obliged to employ his arms chiefly by extending them forward, and drawing up his body after them when he has fixed his hands.

Of all climbers the quadrumanous animals are the beft. They can feize equally well with their four extremities; and the pofition of their hind-feet, the foles of which turn inward, inftead of teing directed downward, is ftill farther favourable to them.

5 i8 L.VII. Organs of Motion in Action.
'The other animals that climb conftantly, as the oppoffums, the phalangers, the amb-culers, and the fotbs, have a fimilar conformation. The two firft have the thumb almoft always directed backward, and forming a kind of heel, very powerful in its operations. The foolos and the ant-eaters have a confidcrable protuberance on the heel, which accomplifhes in a certain degree the fame cffect.

Several Quadrumana, the oppolfims, phationgers, and ant-cators, may be faid to have a fifth member which affifs them in climbing. They can feize bodies with their tail almoft as powerfully as with the hand. The mufcles which produce this motion do not differ from thofe of other tails, except in poffeffing a greater degree of force.

The animals of the cat genus climb by fixing their fharp cutting and hooked claws into fubfances. We have already explained the manner in which their nails are retained between the toes, with the point elevated, independently of the will of the animal, by two claftic ligaments. When they wifh to ufe them, they are protruded by the action of the Hezor profundus digitortim, which moves the lat phalanx on the pecedine one, and directs the point of the nail downward. This is the mechanifin which enables ials to feize moveable objects, and to tear their prey.

The difpofition of the lignments is ver! differcont in the flothe. Their nails are natumally inflect -

$$
\text { Art. III. Seizing and Climbing. } 519
$$

ed under the toes, and when the animal wifhes to ufe them, it is obliged to raife them by the extenfor mufcles. Thefe toes, befides, are not very convenient, as they are compofed of only two phalanges; one of which is very fhori, and the other entirely covered with the nail. The metacarpal bones, too, are offified together, and immoveable.

The climbing birds likewife fix themfelves to the inequalities of the bark of trees by their claws. It is the pofterior toes which are chiefly ufed in fupporting them, and preventing them from falling. .Some genera, as the creepers and the nut-batches, have only one pofterior toe; the greater part have two. The roood-peckers, and the creepers, have another fupport in their tail, the quills of which are very ftiff, and capable of being ftrongly fixed upon the furfaces over which thefe birds climb.

Birds can only exercife the faculty of prehenfion with their feet; but as thefe are neceffary to fuftain them, few genera employ their toes in this manner, except when flying, becaufe then their feet are free, or fometimes in fwimming with a fingle foot, as the pelicans and the cormorants.

Some birds can lift food to the mouth with one font, while they ftand upon the other. The parrots and the ocols are moft remarkable for the exercife of this faculty; the former on account of the convenicnt difpofition of the toes, and the later in confequence of the weight of the head,

520 L. Vil. Organs of Motion in Action.
which would occafion them to fall frequently were they always to extend it downward in order to peck.

Wading birds, being capable of preferving the articulations of their legs in an extended ftate, without much effort, are alfo frequently accuftomed to ftand on one foot: to balance themfelves more perfectly in this pofition, they hold a ftone or fome other heavy fubflance in the other.

The forceps, like hands, and prehenfile tail of the camclion, feem to give to that animal, though belonging to the clafs Amphibia, a form not lefs advantageous for climbing than that of the Quadrumana among mammalia.

Article IV.

Of Leaping.

Leaping is a motion in which the body rifes completely from the earth, darts as it were into the air, and remains without any fupport for a momentary period, the duration of which depends upon the force of the projection.

Leaping is performed by a fudden extenfion of all the inferior articulations, immediately after they have undergone an unufual degree of flexion. This extention gives to the bones that compofe thefe articulations, a violent motion, the impulfe of which being communicated to the
centre of gravity of the body, it is projected with a determined velocity, which is more or lefs in oppofition to its weight.

A leaping body may then be confidered as a projectile which gradually lofes the acquired velocity by which it afcended, becaufe the power of gravity is every moment counteracting that velocity. The projectile force therefore being given, we may afcertain the arch a leaping body will defcribe in the air, and the time and place of its defcent.

The projectile force, and confequently the extent of the leap, depends on the proportional length of the bones and the firength of the mufcles. The animals therefore that leap beft, are thofe which have the pofterior legs and thighs longer and thicker than the anterior, as the kanguroos, jerboas, frogs, alticre, grylli, fieas, \&xc.

The finall animals leap proportionally much farther than the larger. This muft be obvious, if we confider, that when the projectile force impreffed on two bodies is in proportion to their different magnitudes, their velocity will be equal, and that the extent of the fpace through which they will pafs depends entirely upon their refpective velocities. The leaps of fmall and large animals are therefore nearly equal.

The direction of a leap depends on the fituation of the centre of gravity, with refpect to the member by which the impulfe is given. This is the reafon why man and birds are the
only animals which can leap vertically, becaufe they only have the trunk fituated above the members, by which the leap is effected. They may, however, leap forward, by impreffing a greater degree of force on the rotatory motion of the thigh than on that of the leg; or they may even leap backward, by making a contrary exertion.

Quadrupeds and moft infects can only leap forward. Spiders, however, which have feveral long feet on each fide of their bodies, can leap fideways, as well as forward.

Running is ancries of low leaps performed alternately by each leg. It only differs from walking in the body being projected forward at each ftep, and in the pofterior foot being raifed before the anterior touches the ground. It is more rapid than the quickeft walking ftep, becaufe the acquired velocity is preferved and augmented at each bound by the new velocity which is added to it. An animal therefore cannot fop inftantaneoufly when running, though a ftop may be made in walking at each fep. The velocity acquired by running is advantageous in leaping forward, as it adds to the velocity of the leap itfelf in the fame direction, but it would prove unfavourable to a vertical leap, and even entirely prevent it. An animal in running inclines its body forward, in order that the contre of cravity may be in the proper pofition for receiving; an impulfe in that direction from the pofterior
leg. It is alfo obliged to move the anterior leg rapidly forward, to guard againft falling. The leaft obftacle which would ftop this leg, and prevent it from reaching the ground foon enough to fupport the body, would occafion a fall.

Interruptions of this kind are, on account of the greater velocity, much more dangerous in rumning than in walking. On that account, too, falls occur moft frequently in the former motion.
Man never varics his manner of running, except in taking longer or fhorter fteps, or in giving to his motion a greater or lefs degree of rapidity; but quadrupeds vary their mode of running by the different order in which they raife each foot, or bring it to the ground.

Trolling is a mode of running in which the feet diagonally oppofite rife at once, and fall at once, each pair alternately, but in fuch a manner that, for a moment, all the four feet are off the ground. This produces a regular motion, and the found of the animals fteps are heard two and two in fucceffion.

Gralloping is a running motion in which the animal raifes the anterior feet at each ftep, and throws the body forward by the extenfion of the pofterior feet. When the two fore-feet defcend at the fame time, and are followed by the two hind-feet alfo defcending together, the motion is called a full gallop, which is the moft rapid a horre can perform, and the only mode of running in logs, bares, \&xc. In this kind of gallop the

524 L. Vil. Organs of Motion in Action.
fteps of the horfe are likewife heard by two beats at a time. The common gallop is when the two fore-feet are lifted unequally and fall one after another. This may be divided into gallops in which the horfes footfteps are heard by a feries of three or of four beats, becaufe the pofterior feet may fall to the ground either both together, or one after the other. All thefe circumftances have been fufficiently explained by riding-mafters and hippotomifts.

There are feveral kinds of animals which leap by the means of organs different from feet, but always by a fudden extenfion of feveral articulations.

Serpents leap by folding their bodics into feveral undulations, which they unbend all at once, according as they wifh to give more or lefs velocity to their motion; fome may be affifted by the fcales of their belly, whieh they can elevate and deprefs, but only a few gencra are capable of employing this means.

Some fifhes alfo leap to the tops of cataracts by bending their bodies ftrongly, and afterwards unbending them with an elaftic fpring.

The long-tailed cray-fifbes, particularly the Sorimps, leap' by extending the tail after it has been previoufly bent under the body.

The larva of the fly, vulgarly called the maggot, forms itfelf into a circle, contracts itfelf as much as poffible, then fuddenly unbending, darts forward to a confiderable difance.

The

The podure have a tail formed of two articulations, which being inflected under their abdomen, and afterwards extended, enables them to make very confiderable leaps.

> Article V.

Of Sweimming.

Leaping commonlytakes place on a fixed furface, which poffeffes the power of refiftance, in confequence of its magnitude and its firmnefs. Though this furface yield to a certain degree, in confequence of being either foft or elaftic, leaping can ftill be performed; but the retrograde motion of the furface produces a diminution in the velocity of the leap, compared with that which is made from firm ground; and the velocity is always greater in proportion as the refiftance is perfect. To continue the example which we before adopted, of a fpring of two branches tending to feparate from each other, it is evident that if one extremity did not experience a greater reffiftance than the other, the middle of the fpring would not change its place: but in proportion as there is a difference in the refiftance, a motion mutt be produced in the direction oppofite to the reffifting body.

Swimming and flying are leaps which take

526 L.VII. Organs of Niotion in Action. place in fluids, and are produced by the refiftance thefe fluids make to the impulfe of certain furfaces; which fwimming or flying animals. move with great rapidity.

This velocity is neceffarily great in proportion to the rarity of the medium. The mufcles which produce it require, therefore, a force vaftly fuperior to that which is neceffary for a fimple leap upon a folid furface; but there is ftill another requifite for motions which take place in fluids: The body being entirely furrounded by thefe mediums, would find an equal refiftance on all fides, and the velocity acquired by ftriking the fluid pofteriorly, would, foon be overcome by the quantity that muft be difplaced anteriorly, if the animal had not the power of confiderably diminithing its furface'immediately after it has ftruck the fluid.

Swimming and flying belong to different claffes of animals. There are fome, however, which unite both thefe fpecies of motions; but the one is performed in the moft perfect manner by fifhes, and the other by birds. We fhall, in the firft place, confider the means which thefe two claffes employ, and compare them afterwards with thofe employed by the fpecies of other claffes.

As all birds do not fly, fo all fifhes do not fivin. Thofe which fiwim beft have the body fomewhat elongated, and moderately comipreffed.

An animal may either fiwim in an horizontal
plane, or in a direction more or lefs inclined. We fhall, in the firft place, confider this motion as it takes place in a horizontal plane. A fiff, when in equilibrium with the water, (a fate in which it can place itfelf by means which we thall hereafter explain,) and wifhing to advance, bends its tail in two different directions, fimilar: to the figure of the letter S, by the means of thofe ftrong and complicated lateral mufcles which we have already defcribed. The animal then extends the dorfal, the anal, and the caudal fins, as much as poffible, in order to augment the furface of the tail. This member is next extended with great velocity, and according to the principle we have eftablifhed above, the refiftance of the fluid, that is to fay, the difference of the velocity it admits, with that which the effort of the fifh tends to imprefs upon it, anfwers, as it were, inftead of a folid furface. The body of the fifh is therefore impelled forward by the remainder of that velocity.

The water before the fifh gives lefs reffifance to its progreflive motion; ift, becaufe the velocity by which it advances is much lefs than that which it employs to extend the tail; 2d, becaufe when the tail returns to a right line, the fifh prefents to the fluid only the thicknefs of its body, which is far from being confiderable.

It is necentary that the fifh floould bend its tail again to give a fecond firoke to the water. This motion, however, is dircetly contrary to

528 L.VII. Organs of Motion in Action.

that by which the tail is extended, and produces, in the fluid, a refiftance in the oppofite direction, which would be equally powerful, and would completely counteract the animal's progreffive motion, if the furfaces of the body remained the fame; but the dorfal and anal fins are then laid down upon the body; the caudal fin becomes folded and narrow; befides, the curvature of the tail takes place very flowly, while its extenfion is fudden and violent. After having returned to the right line, the tail is incurvated a fecond time; it then bends precifely in the oppofite direction, and the impulfe which refults from it having an equal obliquity, but oppofite to that which refulted from the firt froke, the courfe of the body is rendered ftraight.

It is by ftriking the water with more force on one fide than on the other, that the fifh is enabled to move to the right or the left, and to turn horizontally.
With refpect to the power of rifing or finking in the water, it appears in the greater number of fifhes to depend on the air-bag or fwimming-bladder. We fhall defcribe the form, the connection, and the ftructure of this imporiant organ, when we treat of fecretions. At prefent we can only confider its ufe in progreffive motion. It is fuf.ficient to obferve, that it is a bladder of greater or lefs magnitude, fituated within the abdomen, clofe to the fpine, fometimes fimple, fometimes double; but, in the latter cafe, the two parts communicate
communicate by a fmall canal. There is frequently a duct which leads from this bladder into the œfophagus or the ftomach; but it appears that the air contained in the bag cannot pafs through this duct without the confent of the animal. This air is produced, as I think I fhall be able to prove in the Lecture already referred. to, by the means of certain organs, which feparate it from the blood, and in a healthy fifh it keeps the bag always diftended.

When the air-bag is burft, the fifh is no longer able to rife in the water, but remains always on its back. It follows, therefore, that this bag communicates to the back the degree of levity proper to preferve it uppermoft, and that in the fate of its greateft extenfion, it renders the whole body fufficiently light to enable it to afcend in the water. There are even fome fifhes which are capable of being fo difated by the heat, that when they remain for fome time on the furface of the water, acted upon by an ardent fun, they cannot fufficiently comprefs this bag to enable them to defcend again. But in an ordinary fate the fifn can comprefs the bag precifely to that degree which is neceffary to preferve an equilibrium with the water when it wifhes to remain in an horizontal plane. It compreffes the bag ftill more when it wifhes to defcend.

This compreffion is accomplifhed by the lateral mufcles of the body, which tend to con-

[^6]tract the bladder by clongating it. In this manner, though its furface remains equal, its capa ity is diminifhed, fince it is farther removed fror ípherical form.

Fines that have no air-bags, poffefs lefs facility in changing their elevation in the water. The greater part remain at the bottom, unlefs the difpofition of their body enable them to frike the water from above downwards, with great force. This the rays do with their large pettoral fins, which are very properly called wings, fince the means thefe fifhes employ in elevating themfelves, are precifely the fame as thofe employed by birds in flying.

The pleuronectes ftrike the water from above downwards, with the fides of their bodies', becaufe they do not fwim. like other fifh; with the back upward, and the belly downward, but in a very oblique pofition, which they are compelled to take in confequence of their eyes being both fituated on the fame fide of the head.

As the rays and the pleuroneates camot conveniently ftrike the water on the right and left, they are obliged to make a fucceffion of leaps, in order that the whole of their motions may have a horizontal direction. They ftrike the tail downward with great force, which elevates them a little, and this motion combining with the power of gravity, brings them back after defcribing a curve to the horizontal line. They depart from this line by a new leap, as we fhall
explain hereafter when we treat of the flight of birds.

The Cetacea employ the fame means. Their bodies, it may be obferved, are as perfectly organifed for fwimming as thofe of fifhes. They differ, however, in this refpect, that in the Cetacea the principal efforts of the tail are made in a vertical direction. The ufe of the air-bag is in them fupplied by the lungs, which are compreffed and dilated by the attion of the intercoftal mufcles and the diaphragm.

The pectoral and ventral fins do not appear to be of much ufe in the progreffion of fifhes, but they employ them to preferve themfelves in equilibrio, or a flate of reft, and they extend them whenever they find it neceffary to correct the vacillations of the body. They employ them likewife in the night turnings of their progreflive motion, and to prevent themfelves from falling on one fide when fwimming. Thofe, however, which have them very large, doubtlefs make a more efficacious ufe of them, but our obfervations on this fubject are not yet fufficiently accurate.

There are feveral claffes of animals which fwim in the manner of fifhes, that is to fay, by inflecting the body, fuch are ferpents, and the larvæ of infects, that have long bodies and no fins, as thofe of the zeater beetles, the bydropbilus, the day fies, the aquatic tipula, and gnats.

But the mammiferous quadrupeds, the exater Mme2
birds, the oriparous quadripeds, and the Crufacea, fwim by the help of their feet, which are to them what oars are to a boat.

The oar in a ftate of reft forms two angles with the fide of the boat ; one anterior, and the other pofterior, which may either correfpond or be unequal. The boatman moves the oar fo as to render the anterior angle more obtufe, and the pofterior more acute. If the water did not refift, the boat would not change its place ; but its refiftance oppofing the oar, the angle ir queftion widens by the progreffive motion of the boat. This impulfe once given, the boatman draws back his oar or turns its edge that it may not interrupt the motion, and then recommences the fame operation to give the boat a fecond impulfe.

The body of aquatic birds is naturally lighter than the water, on account of their feathers, which are oily and impervious to moifture, and on account of the great quantity of air contained in the cells of their abdomen. They are therefore precifely in the fituation of a boat, and have no occafion to employ their feet, except in: moving forward. The feet are fituated farther back than thofe of other birds, becaufe their effort is more direct; and there is no neceffity for their giving any fupport to the anterior pare of the body, which is fufficiently fuftained by the water. The thighs and legs are fhort, that the reffifance of the water on the mufctes may be
as little as poffible. The tarfus is compreffed for cutting the water, and the toes are very much expanded, or even united by a membrane, in order to form an oar of greater breadth, and capable of acting upon a greater furface of the water. But when the bird inflects its foot in order to give a new ftroke to the water, it clofes the toes upon each other to diminifh the refiftance.

When thefe birds wifh to dive, they are obliged to comprefs with much force their breaft in order to expel the air it contains, to elongate the neck in order that the body may acquire an inclination forward, and to frike with their feet upward in order that they may be forced downward.

Some acquatic birds, particularly the fionn, fpread their wings to the wind in fwimming, and ufe them as fails.

The quadrupeds which are the moft perfect fwimmers, are furnifhed with membranes between the toes, as the otter, the beaver, $E_{0} c_{0}$; but the others may alfo fwim with more or lefs facility, by ufing their four feet. The pofterior ferve to pufh them forward, and the anterior to fuftain the fore-part of the body, which is heavieft. Of all the mammalia man has moft occafion to make ufe of his hands in fwimming, on account of the weight of his head. He is even almoft the only animal of this clars which cannot fwim naturally.

534 L.VII. Organs of Motion in Action.

The feals and the morfes, which have the greateft refemblance, to the Cetacea, and fifhes in the form of their body, are the beft fwimmers of all the mammalia, and they are properly called amphibious.

Article VI,

Of Flying.
$\mathbf{W}_{\text {HeN }}$ a bird wifhes to fly, it firf darts itfelf: into the air, either by leaping from the ground, or throwing itfelf from fome height; meanwhile it elevates the humerus, and with it the whole of the wing, which hitherto remained folded. It afterwards unfolds it in a horizontal direction, by extending the fore-arm and the hand. The wing having thus acquired all the fuperficial - extent it is capable of attaining, the bird fuddenly depreffes it, that is to fay, it moves it downward, until it forms, with the vertical plane of the body, an angle more obtufe fuperiorly, and more acute inferiorly. The reiffance of the air to this motion, which is fuddenly performed in it, produces a re-action of part of the effort upon the body of the bird, which is moved in the fame manner as in other leaps. The impulfe once given, the bird re-folds the wing by bending the articulations,
and clevates it again to give a new flroke to the air.

The velocity which the bird thus acquires in afcending, is, like that of every other projectile, gradually diminifhed by the effect of gravitation; and a moment occurs in which the velocity ceafes, and the bird neither tends to afcend nor to defcend. If the animal feizes precifely this moment to give a new ftroke with the wing, it will acquire a new afcending velocity which will carry it as far as the firft, and by repeating this it will afcend in a uniform manner.

If the fecond ftroke of the wing takes place before the velocity obtained by the firft is loft, an additional impulfe will be received, and by continuing this action the bird will afcend with an accelerated motion.

If the wings do not vibrate at the moment when the afcending velocity is loft, the bird will begin to defcend with greater rapidity. If it allows itfelf to fall down to the point from which it departed, it cannot afcend as high as before, except by a much ftronger excrtion of the wings; but if a point is feized in the fall, fo fituated, that the acquired defcending velocity and the fmall fpace there is to re-defcend reciprocally compenfate each other, the bird may, by a feries of equal vibrations, keep itfelf always at the fame height.

When a bird wifhes to defcend, it has only to repeat the vibrations of its wings lefs frequently,

536 L.Vil. Organs of Motion in Action.

or even to fupprefs them altogether. In the latter cafe it comes down with all the acceleration of gravity, as in the darting of birds of prey.

A bird, when defcending, may alfo fuddenly break its fall by extending its wings ; becaufe the refiftance of the air augments in proportion to the fquare of the velocity, and by adding fome movement of the wings, it may enable itfelf to rife again. This is called a recover.

We have hitherto regarded flight as fimply vertical, without confidering its other directions. It can be of this kind only in the birds which have the wings entirely horizontal: fuch they probably are in larks, quails, and the other birds which we obferve to fly ftraight upwards ; but in the greater part the wing is always more or lefs inclined and turned backward. This chiefly arifes from the length of the quills, which afford much advantage to the refiftance of the air acting on their extremities, and which are the more elevated by it, on account of their fixed points being at the roots. It appears, however, that this inclination may be varied to a certain degree at the will of the bird.

Be this as it may, we may confider the oblique motions as confifting of a vertical one, upon which gravity alone can act, and of a hórizontal motion which it cannot affect.

When a bird therefore wifhes to fly horizontally, it muft rife in an oblique direction, and make a fecond movement of the wings when it
is ready to defcend below the point from which it departed. It will not fly in a ftraight line, but will defcribe a feries of curves fo very much depreffed, that the horizontal motion will overcome the vertical.

If it wifh to afcend obliquely, it is neceffary that the wings fhould vibrate quicker; if it wifh to defcend obliquely, they fhould move flower: but thefe two motions are both performed by a feries of curves.

It appears that there are birds which have not the power of diminifing as much as they wifh the obliquity of the wings, and in which the horizontal motion is always very confiderable. If this motion be favoured by the wind, thefe birds are obliged to afcend by a very inclined line; for this reafon, the birds of prey called noble by the falconers, are under the neceffity of lying againft the wind when they wift to rife perpendicularly, otherwife they would be carried to great diftances.

They have a proportionally greater horizontal motion than other birds, becaufe the anterior quills of their wings are very long, and their extremities prefs clofe upon each other. In the ignoble birds, the quills at the end of the wing have their extremities feparate, and allow the air to pafs between them. This renders the wing lefs capable of affuming an oblique pofition.

The deviations of flight, to the right or left, 6

538 L.VII. Organs of Motion in Action.
are principally produced by the vibrations of the wings. In turning to the right, the left wing vibrates ofteneft, or with the greateft force; the left fide then moves moft rapidly, and the body muft of neceffity turn. The right wing produces the fame motion towards the left fide. The more rapid the flight is forward, the greater is the difficulty of one wing furpaffing the other in velocity, and the deviations are lefs fudden. This is the reafon why the birds which fly with the greatell velocity make large circuits in turning.

The tail, when fpread out, contributes to fuftain the pofterior part of the body. If it is depreffed when the bird has acquired a progreffive velocity, it prefents an obftacle which clevates the pofterior part of the body, and depreffes the anterior. If it is turned up, the contrary effect is produced. Some birds incline it to one fide, to affift them like a rudder, when they wifh to change their horizontal direction.

The firft motion of a bird is an ordinary leap with the feet. Thofe which have the fect very fhort, and the wings very long, like the martins, the booby, Esc. cannot leap fufficiently high to obtain the neceffary fpace for the extenfion of their wings. When on the ground they therefore commence their flight with confiderable difficulty.

It is fcarcely neceffary to obferve, that the refiftance of the air is in proportion to the mafs which is ftruck at one time, and that it is on
this account the hort-winged birds are obliged to repeat their yibrations very frequently, which foon fatigues them, and prevents them from flying long at a time. Thefe are the motions which conftitute flying in birds. Let uṣ now confider how thefe animals are enabled to execute them.

Their trunk is an oval, which is broadeft anteriorly, and narroweft pofteriorly. Their fpine is almoft inflexible, and proportionally thorter than that of quadrupeds. This gives lefs fatigue to the fpinal mufcles, and renders it more eafy to change the pofition of the centre of gravity, which muft be between the wings in flying, and under the feet in ftanding. The head is generally fmall, and the bill tapering to a point, which is a convenient form for cleaving the air. Their neck is longer, and more flexible than that of the mammalia. It therefore fupplies the want of arms, and that of flexibility in the trunk. and enables them, when neceffary, to change the centre of gravity, by moving the head forward, or drawing it backward.

It is neceffary that the centre of gravity fhould conftantly refide in the inferior part of the body, otherwife the bird would fall úpon its' back. This is produced by the magnitude of the pectoral mufcles that deprefs the wing, and the polition of the levators, which are fituated under the thorax, and not above it, as in quadrupeds.

The levity of the body of birds, likewife, gives

540 L.VII. Organs of Motion in Actron.
more facility to their elevation. It is occafioned by their bones being hollow, which renders them light without weakening them, an empty cylinder being ftronger than a full one of the fame weight and length; and ftill more by the large air cells contained in feveral parts of the body, and which all communicate with the lungs. The air which birds refpire diftends them in every part, particularly on being dilated by the warmth of their body. We fhall defcribe all thofe cells when we ticat of the organs of refpiration.

Finally, the texture of the feathers, efpecially that of the quills, and their clafticity, greatly promote flight by the lightnefs and extent which they give to the wings. We fhail defcribe them in detail when we treat of the teguments of thefe animals. But it is not the feathers only which Serve to increafe the wing. The angles included between the humerus and the fore-arm, and between the humerus and the trunk, are furnifhed with an expanfion of the fkin, extended by particular mufcles, which we fhall defcribe in treating of the panniculus carnofus.

There are birds which never fly. Thefe are, officbes, among the terreftrial birds; and the penguins, and the manchotr, among the aquatic. Their wings are fo fmall that they appear only to pofer's them, that they may not form too marked an exception to the rules of refemblance in the different claffes of animals.

On the contrary, there are mammalia which My pretty well although they have no wings; thefe are the bats: their humerus and fore-arm, and particularly their four fingers, are greatly elongated, and include a large fpace occupied by a fine membrane which extends to the feet and both fides of the tail. It forms a furface of fufficient extent and firmnefs to aaife the animal to which it belongs into the air. The bats have, befides, very ftrong pecioral mufcles; their body is fhort, narrow, and flender behind, in fuch a manner that the centre of gravity is fituated under the wings; but this difpofition of the body, which fits them for flying, confines them alfo to crawling, becaufe their hind legs alone are not capable of fuftaining them.

The other mammalia, viz. the flying lemurs, the polatoucbes, or flying Squirrels, and the fying phalangers, have membranes between the feet, but no elongation of the tocs. They cannot employ thefe membranes in raifing themfelves, but they ferve to fupport them for a certain time in the air, and enable them to take great leaps in defcending, which, however, ought not to come under the denomination of flying.

The dragon is a fmall lizard of the Eaft Indies, which fupports itfelf for fome moments by a membrane fuftained like a fan on a few offeous radii, articulated to the fpine of the back.

The wings of flying fifthes are fomewhat analogous in their ftructure to thofe of the dragon,
.542 L.VII. Organs of Motionin Action.
but they are formed by the extenfion of the pectoral fins, or by fome radii fituated under thefe fins. They only enable the animal to fly for a fhort time.
N. B. In defcribing the mufcles and other organs of motion in white-blooded animals, we have fufficiently explained the manner in which they are employed, and have therefore no occafion to return to that fubject.

TABLE II.
 CLASSIFICATION OF BIRDS.

\{ Cardium Cockles.
Ifocardia.
$\left\{\begin{array}{l}\text { Mactra. } \\ \text { Lutraria. } \\ \text { Craffatella. }\end{array}\right.$
Venus. Meretrix. Cyclas. Paphia. Capfa.

Cardita.
Tridacna.
Hippopus.
$\left\{\begin{array}{l}\text { Arca. } \\ \text { Petunculus. } \\ \text { Nucula. }\end{array}\right.$
Solen. Razor Joells.
Sanguinolaria.
Gapers.
Mya
Glycimeris.
Cyrtodaria.
Pholas. Piddocks.
Giœnia.
Teredo
Piper.worms.
\{ Fittulana.
$\left\{\begin{array}{l}\text { Terebratula. } \\ \text { Calceola. } \\ \text { Hyalxa. }\end{array}\right.$

Bells.

TABLE III.

CLASSIFICATION OF REPTILES.

IPHIBIA

TABLE IV.
 CLASSIFICATION OF FISHES.

TABLE V.

CLASSIFICATION OF MOLLUSCA.

KINGS
 Kallege LONDON
 GU4PR QL805 CWV
 cuvier, Georces
 lecturis ons comparative and Tonly
 1802
 2010001733

 KING'S COLLEGE LONDON

[^0]: * Citizen Mertrud held the fituation of Demonftrator of Anatony in the Garden of Plants, from 1750, until that eftablifhment was converted into a School of Natural Hiftory, when

[^1]: Garden of Plants,
 2sth of Ventofe, and Year 8 (1800.)

[^2]: * In this elegant illuftration, Citizen Cuvier has made a very happy ufe of the fable of Taffo:
 - Pur tragge al fin la fada, e con gran forza
 - Percote l'alta pianta; O merariglia:
 - Manda fuor fangue la recifa fcorza,
 - Efal la terra intorno a fe vermiglia:
 - Tuto fi raccapriccia, et pur rinforza
 - Il colpo, c'l fin vederne ci fi configlia.
 - Allhor, quafi di tomba, ufcir nefente,
 - Un' indiftinto gemito dolente. Sx."

[^3]: * The name given to the foreign frbflances that aft on the mufcles, in the galvanic experiments.

[^4]: Vol. I.

[^5]: * Sec--Tablean Elomentaire de l'Histoire Naturelle des Animaux, par Cuvisk. Livre 7 , Chap. ${ }^{\circ} \cdot$.

[^6]: Voz. I.
 M m
 tract

