

LECTURES

ON

COMPARATIVE ANATOMY.

LECTURES

ON

COMPARATIVE ANATOMY.

TRANSLATED FROM THE FRENCH OF

G. CUVIER,

Member of the National Institute, Professor in the College of France, and in the Central School of the Pantheon, \&zc.

By WILLIAM ROSS;

UNDER THE INSPECTION OF

JAMES MACARTNEY,

Lecturer on Comparative Anatomy and Physiology in St. Bartholomew's Hospital, \&\&c?

VOL. II.
ON THE ORGANS OF SENSATION.

LONDON,

PRINTED, AT THE ORIENTAL PRESS, BY WILSON AND CO.
FOR T. N. LONGMAN AND O. REES, PATERNOSTER-ROW.

633381
,

$$
4-5
$$

TABLE

OF

CONTENTS.

> VOL. II.

LECTURE VIII.

Page Of the Hrad considered as the Principal Recep-
tacle of the Organs of Sense, 1
Article I. Of the Cranium, of its Form and its Propor- tions, with respect to the Face, 2
A. In Man, and other Mammiferous Animals, 6
B. In Birds, 13
C. In Reptiles and Fijbes,. 14
Art. II. Of the Bores which compofe the Cranium, 15
A. In Man, ibid.
B. In other Mammiferous Animals, 20

1. Number of the Bones of the Cranium in Mammalia, 21
2. Connections of the Bones of the Cranium in Mam- malia, 23
3. Forms of the Bones of the Cranium in Mammalia, 25
C. In Birds, $+8$
Pgae
D. In Reptiles, 30
E. In Fißes, 33
Art. III. Of the Eminences and Depreflons of the Internal Surface of the Cranium, 34
A. In Man, ibid.
B. In other Mammiferous Animals, 36
C. In Birds; 42
D. In Reptiles, 43
E. In Fijpes, 44
Art. IV. Of the Foramina of the Bafe of the Cranium, ibid.
A. In Man, ibid.
B. In other Mammiferous Animals and Birds, 49
4. Optic Foramina, ibid.
5. Spheno-orbitar Fifure, 51
6. Foramen Rotundum, 52
7. Foramen Orvale, 53
8. Foramen Lacerum Anterius, 54
9. Canalis Carotideus, 55
10. Foramen Lacerum Poferius, ibid.
11. Meatus Auditorius Internus, 56
C. In Reptiles, 57
Art. V. Of the Bones which compofe the Face, 59
A. In Man, ibid.
B. In other Mammiferous Animals, 64
C. In Birds, 71
D. In.Reptiles, 74
E. In Fibles, 77
Art.VI. Of the Fofle of the Face, 80
A. In Man, ibid.
B. In otber Animals, 82
12. Nafal Fofla, ib̄id.
13. Orbitar Foffe, 85
14. Temporal Foffa, 88
Mrt. VII. Of the Holes of the Face, ibid.
A. In Man, ibid.
B. In other Animals, 90
CONTENTS.vii
Page
15. Spheno-Maxillary Fiffure, 90
16. Internal Orbitar Foramina, 91
17. Foramen Inciforium, 92
18. Sub-orbitar Foramen, 94
19. Spheno-Palatine Canal, 95
LECTURE IX.
Of the Brain of Animals with Vertebre.
Art.I. Of the Organization of the Nervous Syftem inz general, 97
Art. II. Of the Nervous Syftem confzdered in Action, 109
Art. III. General Comparijon of the different Nervous Syfems, 126
Art. IV. Defcription of the Human Brain, 130
A. The Brain of Man vierved on its Jup ibid.
C. The.Brain of Man viewed inferiorly, 132
D. Dervelopment of the Brain, 136
E. Sections of the Brain, 142
20. Vertical Sections, 143
21. Horizontal Sections, 145
F. Of the Origin of the Nerves, 14.8
22. The Olfactory Nerve, ibid.
23. The Optic Nerve, ibid.
24. The Oculo-Mufcular Nerve, 149
25. The Pathetic Nerve, rbid.
26. The Tri-facial Nerve, 150
27. The Abductor Nerve, 151
28. The Auditory Nerve, or Portio Mollis of the Se- venth Pair, ibid.
29. The Facial Ncrue, or Portio Dura of the Servesth Pair, 152
30. The Glofo-pharyngeus, Par Vagum, and Nervus Spinalis or Accefforius, commonly called the Nerves of the Eightuto Pair, ibid.
Peqe
31. The Great Hypogloflal Neraes, 153
Art. V. Of the Brain of Mammalia, ibid.
32. Proportion of the Mafs of the Brain to the reft of the Body, ibid.
33. Proportion of the Brain to the Cerebellum and Me- dulla oblongata, 157
s. General Form, 160
34. Circumvalutions, 161
35. Derelopment of the internal Parts of the Brain in Mammalia, 143
36. Of the Bafc of the Brain, and the Origin of the Nerves, 164
Art. VI, Qf the Brain of Birds, 165
Art, VII. Of the Brain of Reptiles, 168
Art. VIII. Of the Brain of Fibses, $17!$
37. The Tubercles of the Olfaçory Nerves, 178
38. The Eminences within the Hemijpheres, 174
39. The Cerebellum, 175
40. The Tubercles fitnated bebind the Cerebellum, ibid.
41. Origin of the Nerves, 176
Art. IX. Recapitulation of the Characters peculiar to thee Brain in the Four Clafles of Vertebral Animals. 177
Art. X. Of the Membranes of the Brain, 180.
Art. XI. Of the Vedels of the Brain; 186
Art. XII. Of the Medulla Spinalis, 192
42. Veffels of the Medulla Spinalis, 194
43. Membranes of the Medulla Spinalis, 195
LECTURE X.
Distritutionof the Princifay Nervesin Animals
with Vertebrie. 197
Ast. I. Of the Olfaciory Nerve, or the Finf Pair of the Brain, 198
A. In Man, and other Mammiferous Animal:, ibid.
B. In

CONTENTS.

Page
B. In Birds, 200
C. In Reptiles, ibid.
D. In Fißes, ibid.
Art. II. Of the Optic Nerve, or the Second Pair of the Brain, 201
Art. III. Of the Nerves of the Third, Fourth, and Sixth Pairs, 203

1. Of the Qculo-Muscular Nerve, or the Third Pair,. ibid.
2. Of the Pathetic Nerve, or the Fourth Pair, 204
3. Of the Abductor Nerve, or the Sixtb Pair, 205
Art. IV. Of the Tri-facial Nerves, or the Fiftb Pair, ibid.
I. Of the Nerrous Ophthalmicus, or Firft Branch of theFifth Pair in Man and otber Mammiferous Animals, 206
A. In Man, ibid.
B. In otber Mammiferous Animals, 208
4. Of the Nervus Maxillaris Superior, or Second Branch of the Fiftl Pair in Man and other Mam- miferous Animals, 210
A. In Man, ibid.
B. In other Mammiferous Animals, 213
III. Of the Nervus Maxillaris. Inferior, or Third Branch of the Fifth Pair in Man and otber Mam- miferous Animals, 215
A. In Man, ibid.
B. In otber Mammiferous Animals, 218
IV. Of the Nerve of the Fifth Pair in Birds, 219
V. Of the Nerve of the Fifth Pair in Reptiles, 221
V1. Of the Nerve of the Fifth Pair in Fißes, 223
Art. V. Of the Facial Nerve, or Sympatheticus Minor of Winflow, 227
A. In Man, ibid.
B. In other Mammifcrous Animals, $2: 30$
C. In Birds and Reptiles, 232
D. In Fibses, ibid.
Akt. VI. Of the Auditory Nerve, or Portio Mollis of the Serventh Pair, 23.3
Page
Art. VII. Of the Pnellmo-gaftric Nerve, or Par Vagum, wulgarly called the Eightb Pair, 235
A. In Man, ibid.
B. In other Mammiferous Animals, 238
C. In Birds and Reptiles, ibid.
D. In Fijbes, 239
Art. VIII. Of the Glopo-pharyngeal Nerve, 242
Art. IX. Of the Great Hypogloffal Nerve, or Twelfth Pair, 245
Art. X. Of the Sub-Ocipital and Cervisal Nerves, 247
A. In $M a n$, ibid.
B. In otber Mammiferous Animals, 251
C. In Birds, ibid.
D. Iu Répilecs, 252
E. In Fißes, ibid.
Art. XI. Of the Diaphragmatic Nerve, 253
Art. XII. Of the Dorfal and Lumbar Neries, 255
A. In Man, ibid.
B. In:otber: Mammiferous Animals, and in Birds, 257
C. In Reptiles, 258
D. In Fi/bes, ibid.
Art. XIII. Of the Pelvic and Caudal Nevers, ib:d.
Art. XIV. Of the Brachial Plexus, and the Nerees ofthe T"horacic Member,262
A. In Man, ibid.
5. Of the Median Nerive, 263
6. Of the Ulnar Nerve, 265
7. Of the Radial Nerve, 266
8. Of the Axillary Nerve, 267
9. Of the Thoracic and Scapular Nerves, ibid.
10. Of the External Culaneous, or Mufculon_ma- uechs Nervi', 268
11. Of the Internal Cutaneores Nerve, 2010
E. In otber. Mammiferous Animals, ibid.
C. In Birils, 27!
j). In Rutilos, 278
Page
E. In Fibles, 278
Art. XV. Of the Nerves of the Abdominal Member, 280
A. In Man, ibid.
12. Of the Subpubic, or Obturator Nerve, 281
13. Of the Anterior Femoral, or Crural Nerve, ibid.
14. Of the Ifcbiatic, or Sciatic Nerve, 282
15. Of the Tibial Nerve, or Poplitcus Internus, 285
16. Of the Peroneal Nerve, ar Popliteus Externus, 284
B. Ini otber Manmiferous Animals, 285
C. In Birds, 286
D. In Reptiles, 288
E. In Fijbes, 289
Art. XVI. Of the Great Sympathotic, alfo called the Great
Intercoftal or Trï-fplañchuic Nerve, 290
A. $I_{n} \mathrm{Man}_{\text {, }}$ ibid.
B. In other Mammiferous Animals, 295
C. In Birds, 299
D. In Reptiles, 301
E. In Fißes, 302

LECTURE X1.

Description of the Nervous System of Animals which have no Vertebref, 304
Art. I. Brain and Nerves of the Cephalopodous Mollufca, ibid.
Art. II. Brainand Nerves of the Gefferopodous Mollufca, 308
A. In the Sitail (Helix Pomatia,)'. 308
B. In the Slug (Limax Rufus,) 309
C. In the Aplysia, 310
D. In the Cilio-borealis, 311
E. In the Doris, 312
F. In the Sollea, ibid.
G. In the Sea Ear (Halyotis Tuiberculata,) 313
H. In the Bulimus of Ponds (Helix Stagnalis Lin.) and inthe Planorbis Cornea (IIulix Cornea Lin.)........ 315
Pags
Art. III. Brain and Nerves of the Acepbalous Mollufca, 316
A. In the Auodontites, or Freß-water Mufcles, in Cockles, in the Venus, the Matra, and the Mya, 316
B. In' the Afcidia, 319
C. In the Tritons of Linneus which inbabit the Anatife- rous and Balanite Shells (Lepas Lin.) ib:d.
Art. IV. Bxain and Nerves of the Cruflacea, 321
A. Brain of the common Cxay-Fiß, (Afacus Fluviatilis, Fab.) 329
B. In the Common Crab (Cancer Menas, Lin.) 323
C. In the Onijcus Afellus, 324
D. In Monoculi, 325
Art. V. Brain and Nerves of the Larve of Infects, ibid.
A. Coleoptera, ibid.

1. Larva of the Scarabeeus Naficarnis,: ibid.
2. Larva of the Stag Beeile (Lucanus Cervus, 327
3. Larvec of the Cerambyx, Hydrophilus, Carabus, and Staphylinus, 829
4. Larva of the Water Beetle (Dyti)cus Margizaliss) 330
B. Orthoptera and Hemiptera, $\$ 32$
C. Hymenoptera, ibid.
D. Neuroptera, s33
E. Lepidoptera, 334
F. Diptcra, 389
Art. VI. Brain and Nerves of Perfect Infects, 348
A. Coleoptera, ibid.
5. In the Stag Beetle (Lucanus Cervus,) ibid.
6. In the Scarabreus Naficornis, 344
7. In the Water Beetles (Dyticuss), and the Ground Beetles (Carabus,) 945
8. In the Great Diver (Hydroph:lus Piceus Lin.) 347
B. Orthoptera, 349
In the Cockroach (Blatta Americana,) ibid.
In the Great Green Grafshopper (Gryllus Viridilfr- mus Lin.) 350
In the Mole Cricket (Acbeta Gryllo-talpa,). 553
C. H_{c}
Page
C. Hemiptera, 354
In the oval Water Scarpion (Nepa Cinerea Lin.) ibid.
D. Lepidoptera, 355
In the Zig-Zag Moth (Pbalcna Dijpar Lin.) ibid.
E. Neuroptera, 35%
F. Hymenoptera, ibid.
G. Diptera, ibid.
H. Gnathaptera, 860
Art. VII. Brain and Nerves of Worms, 361
9. In the Aphrodita Aculeata, ibid.
10. In the Leeches, 363
11. In the Earth Worm, 364
12. In the Gordius Argillaceus, s65
13. In the Nereis and Terebella, ibid.
14. In the Sea Worm, (Lumbricus Marinus Lin.). s66
15. In the Afcaris Lumbricoides of Man and the Horfe, ibid.
Art. VIII. Of Animals, in which no diftina Nervous
Syftem bas yet been difcovered, 368
16. In the Sea Stars: (Afterias,) 369
17. In the Holothuria, ibid:
18. In the Sipunculus, 370
19. In the Sea Urchins (Echisus Marinus,;) ibid.
20. In the Adinia and the Medufa, 371
21. In the Polyps with Arms (Hydra) ibid.
LECTURE XII.
Of the Organ of Sictit, or of the Eye, 373
Art. I. General Idea of Vifron, ibid.
Azt. II. Of the Number, Mobility, relative Magnitude, Pofition and Direction of the Eyes in different Animals, 379
Art. III. Of the entire Figure of the Globe of the Eye; of the Form and Proportion of its Chambers; and of the Denfity of its tranfparent Parts, 384
A. Form,
Pago
B. Proportions, 389
C. Denfity, 390
D. Confifense, S91
Art. IV. Of the Firg Coat of the Eye, or the Sclecotica, 394
Art. V. Of the tranfparent Cornea, and of the Con- juinetiva, 399
Art. VI. Of the Second Cuat of the Eye, or the Choroides and its Appendages, 403
A. In Man, ibid.
B. In other Animals, 406
22. Of the Ciliary Procefles, 407
23. Of the Membrana Ruy cchiana, 409
24. Of the Tapetum, 410
25. Of the Choroid Gland of Fißies, 411
Art. VII. Of the Iris and Pupil, and of their Motions, 414
A. Structure of the Iris, ibid.
B. Fibres of the Uvea, 416
C. Motions of the Iris, 417
D. Figure of the Pupil, 418
E. Membrana Pupillaris, 420
Art. VIII. Of the Entry of the Optic Nerve into the Eye, and of the Origin, Nature, and Limits of the Retina,.. ibid.
A. Of the Entry of the Optic Nervie, ibid.
26. In Mammiferous Animals, 421
27. In Birds, 422
28. In Reptiles and Fibes, 425
29. In the Sepice, 427
B. Of the Retina, ibid.
Art. IX. Of the Nature of the Tranlparent Parls of the Eye, of their proper Membranes, \mathcal{O}°. $4 \% 9$
A. Of the Vitreou's Humour, ibid.
B. Of the Cryfalline, 480
C. Of the Aqueous Humour, 482
Art. X. Of the Sufperfion of the Globe of the Eye, and of its Mufiles, 433
Art. XI. Of the Eje-lids and their Motions, 437
Page
A. In Mant, 437
B. In other Mammiferous Animals, 438
C. In Birds, 439
D. In Reptiles, 441
E. In Fibes, 443
F. In Mollufica, 444
Art. XII. Of the Glands that furround the Eye, 4.45
A. In Man, ibid.
B. In other Mammiferous Arimals, 447
C. In Birds, 449
D. In Reptiles, 450
Art. XIII. Of the Eje of Infects and Cruftacea, 451
LECTURE XIII.
Of the Organ of Hearing, or, Ofthe Ear, 455
Art. I. Of Sound, and Hearing in general, ibid.
Art. II. Of the different Forms of the Membrane which
contains the Auditory Pulp, or of the Membranous Laby-rinth,462
A: In Cray-fifb, 408
B. In the Sepice, ibid.
C. In Fifpes that bave free Branchic, 464.
D. In Fifbes that have fixed Branchice, 470
E. In Reptiles, 471
F. In Birds, 474
G. In Mammalia, 475
Art. III. Of the Manner in aubich the Membranous La- byrinth is contained in the Bones, or of the Opious La. byrinth, 478
A. In Fißes that bave free Branchiod, 479
B. In the Chondropterygii, 481
C. In Reptiles; 4.82
D. In Birds and Mammalia, ibid.
Art. IV. Of the Ciavitics fituated betweens the Labyrinth
Page
and the external Element, or, Of the Cavity of the
Tympanum; and its Appendages, 488
A. In Reptiles, 489
B. In Bird's, 491
C. In Mammalia, ± 94
30. External Form of the Cavity of the Tympanum in Mammalia, 495
31. Internal Divifion of the Cavity of the Tympa- num, and Maftoid Cells, 497
32. Form and Proportions of the Fenefira Ovalis, and Feneftra Rotunda, 499
33. Eufachian Tube, 501
D. Particular Defcription of the Basrel or Cavity of the Tympanum, in Cetacea, 509
Art. V. Of the Membrane of the Tympanum, and its $O /$.
Seous Frame, 504
34. Subfance of the Membrana Tympani, ibia.
35. Surface and Direction of the Membrana Tympani, 505
S. Frame of the Membrane of the Tympanum, 507
Art. VI. Of the Olicula which eftabliß a Communication
between the Membrana Tympani and the Feneftra Ova-lis, and of their. Mufcles,510
36. Of the Bones, ibid.
A. In Mammiferous Animals, ibid.
37. The Malleus, 511
38. The Incus, 514
39. The OJiculum Lenticularc, 515
40. The Stapes, 516
B. In Birds, ibid.
C. In Reptiles, 517
1I. Of the Muscles, 519
Art. VII. Of the Mentus Auditorius Externuts, of the
Concha, and of the Mufcles of the External Ear, $5!3$
41. The external Opfous Meatus, 584
II. The external Cartilaginous Meatus, and the Con- cha, 526
Page
ม．Size， 527
b．Directions 528
c．Figure， そ̈bid．
d．Eminericés， 529
e．Compofition， 530
III．The Mufcless， 531
A．In Man， ibid．
B．In Quadrupeds， ibid．
a．Muscles which proceed from the Head to the Scutum， 534
b．Mufcles which proceed from the Head to the Concha，or to its Twbe， 535
c．Mufcles wwich unite the Scutmm to the Concha； or to the Tube of the Ear， 538
a．The Superficial， ibid．
B．The Deep Seated， 539
d．Mufcles which extend from one Part of the Concha of the Ear to another，： ibid．
Art．VIII．Of the Difribution of the Nerves within the 玉̈ar， 540
LECTURE XIV．
Of the Sense or Touch，and its Organs， 547
Arr．I．Of the Senfations produced by Touch or Fceling， ibid．
Art．II．Of the Skin and its Organizations， 55：
1．The Cuticle， 553
2．The Rete Mucafum， 561
3．Corpus Papillare，or the Villous Surface of the Skin， 506
4．The Cutis， $50 ゙ 9$
Art．III．Of the Mufcles of the Skin，or the Panniculus Carnofus， 57%
Art．IV．Of the Glands of the Skin，and the Subcutansous Fat， ． 58.4
1．The Glands， ibid．
Vol．II．
Pag:
42. The Adipofe Subfance, 589
Art. V. Of the Fingers and Toes, and of their Structure relative to the Senje of Touch, 591
Art. VI. Of the Appendices rubich fupply the Place of the Fingers in exercifing the Senfe of Touch, 601
Art. VII. Of the Infenfible Parts which cover the Or- gans of Touch, and protect them againft too ftrong Im- preffions, 607
43. Of Hairs, 608
44. Of Feathers, 615
45. Of Horns, 623
46. Of Nails, 626
47. Of Scales, 630
48. Of the Inferrfible Parts in the Animals witbout Vertebras. 635
LECTURE XV.
Of the Organs of Smell and Taste, 6.37
SECTION I.
Of the Organs of Smell, 638
Art. I. Of the Senfe, and its Orgens in general? ibid.
Art. II. Oftbe Form and Marritude of the Nafal Cavity, $6+3$
Art. III. Of the Simples awtich increafe the Extent of the $6+4$
A. In Man, 045
B. Ir orber Mammiferous Animals, ibid.
49. Tbe Frontal Sinufes, ibid.
50. The Maxillary Sinules, 648
51. Tbe Sphenoidal Sinules, 649
Art. IV. Of the Frojetring lamine which increafe the Internal Surtases of she Najal Cavily, 650
A. I/l Ahluras. ibis.
B. $\sqrt{78}$
Page
B. In other Mammiferous Animals, 652
52. Of the Oda Turbinata Inferiora, iód.
53. Of the Ola Turbinata. Superiora, and of the Ethmoidal Cells, 656
C. In Birds, 657
D. In Reptiles, 658
E. In Fijbes, 659
Art. V. Of the Pituitary Membrane, 660
Art. VI. Of the Nerves whish are diffributed to the Ins- ternal Parts of the Nofe, 669
I., The Olfactory Nerive, 663
A. In Mammiferous Animals, ibid,
54. The Cribriform Lamella, ibid.
55. The Olfattory Nerve, 665
B. In Birds, 666
C. In Reptiles, 667
D. In Fijbes, ibid.
II. The Nerve of the Fifth Pair, ibid,
Art. VII. Of the Cartilages which cover the Aperture of the Noftrils, and their Mufcles, 669
A. In Man, ibid.
I. The Cartilages, ibid.
II. The Mufcles, 670
B. In other Mammiferous Animals, ibid.
C. In Birds, 680
D. In Reptiles, ibid.
E. In Fibles, 681
Art. VIII. Of the Nares and the Spiracles of Cetacea, 682
Art. IX. Of the Organs of Smell in Animals that have no Vertebras, 687
SECTION II.
Of the Organs of Taste, 689
Art. I. Of the Senfation of Tafte, ibid.
Page
Art. II. Of the Snbfance of the Tongue, of its Form, and
of its Mobility, 691
Art. III. Of the Teguments of the Tongue,. 697
A. In Man, ibid.
B. In other Mammiferous Animals, 699
C. In Birds, 709
D. Ir Repitles, 707 708
E. In Fijhes,
Art. IV. Of the Diftribution of the Nerves in the Tongue, ibid.
ERRATA.
```
AGGE-LINE
            For
    21-12 Cherioptera
    72-2q mucleus
183--23 orachnoidea
360-5 Gnothoptera
593-5 Cheriopter2
614-3 Spinois ant-eater (echudna)
6g(m-x7 Stomarys
```


Read

Cheiropters
nucleus
arachnoidea
Gnathaptera
Cheiroptera
Spinous ant-eater (echidna)
Stomoxys

LECTURES

ON

COMPARATIVE ANATOMY.

LECTURE EIGHTH.

Of the Head, confidered as the principal Receptacle of the Organs of Senfe.

IN treating of the organs of motion, we confidered the Head, as far as its figure, its motions, and the mufcles which act upon it, were concerned. Were we to ftop there, our knowledge of this portion of the body would be very imperfect. The hiftory of its bones forms the principal part of Comparative Ofteology, becaufe they are the moft variable and complicated of all the fkeleton; and a knowledge of them is befides of great importance, on account of the number of effential parts which they either fuftain or envelope. The brain-the principal nerves-the organs of feeing, hearing, fmelling, and tafting-thofe of maftication and degluti-tion-and a part of thofe of refpiration, and

Vol. II. B . voice,

2 Lect. VIII. Osteology of the Head.

voice, are either enclofed within the H Head, attached to fome one of its boncs, or pafs through its holes and canals. Having concluded our treatife on the Organs of Motion, it is proper that we fhould now delcribe the Head, which will complete our Syftem of Ofteology, and commen e an account of the Organs of Senfe. We fhall thus fix with precifion the limits of each branch of our fubject.

Article 1.

Of the Cranium-of its Form, and its Proportions with respect to the Face.

The Head allows of two principal divifions, ift. the cranium, which'forms an offeous cafe to enclofe the brain; 2d. the face, which is made up of a collection of different bones, containing very complicated cavities, in which are lodged the organs of fight, fmell and tafte. The organs of hearing are fituated in the lateral parietes of the cranium.

The two organs which occupy the greateft portion of the face are thofe of fmell and tafte. In proportion as the organs of thefe two fenfes are developed, the magnitude of the face, and its proportion, with refpect to the cranium, is increafed. On the contrary, as the brain is enlar-
ged, the cranium which contains it augments in capacity, and becomes more confiderable when compared with the face.

An extenfive cranium and a fmall face, therefore, indicate a large brain, with little develope ment of the organs of tafte and fmell; while a fmall cranium, and a large face, point out the oppofite proportions - a brain of a fmall volume, with very perfect organs of tafte and fmelling.

The nature of each animal depends in a great meafure on the relative energy of each of its functions, and it may be faid to be influenced and governed by thofe fenfations which are the moft powerful. We obferve daily illuftrations of this truth among ourfelves, though the differences which exift in that refpect, between one man and another, are much lefs than thofe which may be remarked between other animals. We fhall fee hereafter that the brain, the common centre of all the nerves, is alfo the point in which all perceptions terminate, and the inftrument by which the mind combines thofe perceptions, compares them, and makes deductions; in a word, reflects and thinks.

We fhall alfo find that animals participate more in this laft faculty, or at leaft appear to enjoy it more perfectly, in proportion as the mafs of the medullary fubftance, which forms their brain, furpaffes that which conftututes the remainder of their nervous fyftem; that is to

4 Lect. VIII. Ostrology or the Head.
fay, in proportion as the central organ of the fenfes exceeds their external organs.

The relative proportion of the cranium and the face, which indicates immediately that of the brain, with refpect to two of the principal external fenfes, is likewife a mark of more or lefs perfection in the internal faculties. But another confideration adds to its importance as an index of this kind, which is, that the two fenfes we have mentioned are thofe which act with the greateft force on animals; thofe which govern them moft powerfully in confequence of the energy which two of the ftrongeft defires, hunger and love, communicate by the means of their perceptions. The actions to which thefe defires determine animals, are thofe into which they enter with the moft blind fury, and the greateft beftiality, if we may be allowed to exprefs ourfelves thus, when man is not the fubject of confideration.

It is not aftonifhing, therefore, that the form of the Head, and the proportions of the two parts which compofe it, are indications of the faculties of animals, of their inftinet, of their docility, and, in a word, of all their fenfitive being. This circumftance renders the ftudy of thefe proportions highly important to the Naturalift.

We fhall foon find that man is the animal which has the largeft cranium, and the fmalleft face; and that, according as this proportion is departed from in other animals, they become more fupid or more ferocious.

Among the different means that have been employed to exprefs conveniently the proportions of thefe parts, one of the moft fimple, but which is not always fufficient, is the facial line of Camper, and the angle which it forms with the bafe of the cranium. The facial line is fuppofed to pafs along the edge of the fuperior dentes incifores, and the moft prominent point of the forehead. The bafilar line of the cranium is that which bifects longitudinally a plane paffing through the external meatus auditorii, and the inferior edge of the anterior aperture of the noftrils. It is evident, that in proportion as the cranium is enlarged, the forehead muft project more forward, and the facial line form a larger angle with the bafilar. On the contrary, in proportion as the cranium diminifhes in fize, that line will incline farther back. We fhall fhew by a table, of the different fizes of the facial angle, that it is wider in man than in any other animal, and that it becomes always more acute in the mammalia, as they are removed from man, and in birds, reptiles and fifhes. The vulgar are even accuftomed to attribute ftupidity to animals which have very long fnouts, as cranes and woodcocks; but when fome circumftances tend to elevate the facial line, without augmenting the capacity of the cranium, as we find takes place in the elephant and the owl, in confequence of the extraordinary thicknefs of the diploë of the os frontis, we fancy we fee in

6 Lect. Vill. Osteology of the Head.

animals of that defcription a peculiar air of'in telligence, and are induced to afcribe to them qualities which they do not really poffefs. We know that the owl has been confidered as the emblem of wifdom, and that the elephant has in India a name which indicates that he poffeffes reafon.

The ancients appear to have been very fenfible of thefe relations. They not only perceived that an elevated facial line was the indication of a noble nature, and one of the characteriftics of beauty; but they even ftepped beyond nature, and made this line incline fomewhat more forward than it does in man, in figures to which they were defirous of giving.a more than human air, as the ftatues of their gods, and thofe of their heroes, or men whom they wifhed fhould appear to partake of divinity. It feems they were defirous of placing man between beings of this fort, or a more ferfect order, and brutes; and that they wifhed to indicate, by the oppofite inclination of the forehead, that their heroes were still more removed than rommon men from the forms or the nature of the inferior animals.
A. In Man and other Mammiferous Animals.

The facial angle being determined in the manner I have pointed out, which is that of Camper, ve find that in European heads this angle is
ufually 80°, in Mongols 75°, and in Negroes 70°, with the variations of fome degrees in refpect to age and individuals. For example, the face in children is fhort, becaufe their pofterior teeth ate wanting. This makes their facial line more perpendicular, and is one of the caufes which renders their countenance always agreeable, and in confequence of which they become almoft ald ways lefs beautiful as they increafe in age. The ancients, when they wifhed to imprefs an auguft character on their figures of men; have increafed the facial angle to 90°, and they have even extended it to 100_{0} in their figures of gods. This finks the eyes more, and renders the branches of the lower jaw fhorter than in nature.

In the ouraing outang, the facial angle is 65°. In the fapajous, and the guenons, it is about 60°. In the magots, and the miacaques, about 45°. Laftly , in the mandrils, which are the moft mifchievous and ferocious of all the apes, it is only 30°. In the fpecies which have the ear much elevated, and the guttural cavity very deep, as the Batavian poingo, and the alouatte, the fmallnefs of this angle does not indicate a proportional elongation of the fnout. To demonftrate this accurately, the bafilar line of the cranium fhould be drawn parallel to the bafe of the noftrils.

Even with this regulation, however, the facial angle is not important, with refpect to the brain; except in the human fpecies, and among the Quadrumana, becaufe they have only very fmall

8 Lect. VIII. Osteology of the Head.

frontal finufes, which do not elevate the facial line in a fenfible degree, and becaufe the nofe falls under that line.

But there are fome quadrupeds, as the Sarcophaga, the bogs, fome Ruminantia, and particularly the elephant, in which the frontal finufes fwell the cranium to fuch a degree, that they elevate the facial line much beyond what the proportion of the brain would require, In others, as the morfe, and the greater part of the Rodentia, the nofe occupies fo large a fpace that the cranium is inclined backward, and none of its parietes are entirely free anteriorly. In this conformation it is impoffible to tell what ought to be the direction of the facial line. Laftly, the Cetacea have the cranium elevated in the form of a pyramid, and fituated above a face which is very much prolonged, but flattened horizontally. The inclination of the facial line would be greater than it ought to be with refpect to the real capacity of their face.

The following, however, is a table of the extent of the facial angle, in a certain number of animals, formed by drawing a line parallel to the bafe of the noftrils, and another paffing along the anterior edge of the alveoli, and touching the convexity of the cranium, whether the point of contact be concealed by the face, or rife above it.
European Infant - - - $-\quad 90^{\circ}$.
Erropean Adult - $\quad 85^{\circ}$.
Aged

Art, I. Form of the Cranium.

Aged' European					750
Adult Negro	-	-	-	-	70°.
Young Ourang-ou				-	670.
Sapajou	-	-		-	65°.
Talapoin Monkey		-	-	-	57°.
Young Mandrill	-	-	-	-	42°.
Coati	-	-	-	-	
Pole-cat	-	-	-	-	
Pug-dog -	-	-		-	

Maftiff-dog, the tangent taken at the external furface of the cranium 41°.
—— at the internal furface - 30°.

Hyæna, at the external furface - 40°.
— at the internal - - - 25°.
Leopard, at the internal furface - 28°.
(A tangent cannot be drawn to the external furface, on account of the convexity of the nofe.)
Hare - - - - - 30°.

Marmotte - - - - 25°.
Porcupine - - - - - 23°.
The three laft are meafured by the internal furface of the cranium, becaufe a tangent cannot be brought to the external.

Pangolin	-	-	-	-	-	39°.
Babirouffa	-	-	-	-	-	29°
Ram	-	-	*	-	-	30°.
Horfe	-	-	-	-	-	
Dolphin						

We may, however, difcover more important relations, in confidering the cranium and the face,

io Leet. Vili. Osteology of phe Head.

face, under the vertical and longitudinal fection of the Head. With refpect to their relative proportions; the cranium, in this fection, occupies an area fometimes greater, fometimes lefs, and fometimes nearly equal to that of the face.

In the European, the area of the fection of the cranium is almof four times greater than that of the face, the lower jaw not included.

In the Negro, the cranium remaining the fame, the area of the fection of the face is increafed about one-fifth. In the Calmuc, it increafes only one-tenth.

The proportion is lefs in the ourang outang. In the fapujous, the area of the face is almort one-half of the cranium. It is nearly equal in the mandrills, and in moft of the Carnivora, except in the varieties of fhort-nofed dogs, as the pug, which have the face fomewhat fmaller in proportion to the cranium. The Rodentia, the Pachydermata, the Ruminantia, and the Solipeda, have all the area of the fection of the face larger than that of the cranium. In the Rodentia, the bare, and the narnotte, have it one-third larger. It is more than double in the porcupine. It is nearly double in the Ruminantia; a little more than double in bogs, nearly triple in the bippopotamus, and almoit quadruple in the borje.

The morfe and the elepbant have a large face, in confequence of the height of the alveoli; but it cannot, in them, be confidered as augmenting the extent of the organs of fenfe.

The Cetacea have the cranium very globulars and the face very flat, in confequence of which the area of the latter is proportionally di, minifhed; befides, the face is not occupied by the nofe throughout its whole extent, and ought not to be confidered here under this relation. The area of the face in the dolphin is perliaps about one-third larger than that of the cranium.

With refpect to figure ; were the curve of the human cranium continued inferiorly from the foramen magnum to the root of the nofe, the fection would form an oval which would be a little narrowed anteriorly, and of which the greateft axis would be nearly parallel to the floor of the noftrils, or at leaft inclined very little backward, and its proportion to the fmall axis would be as $5: 4$. But in the fpace I have pointed out, and which forms the limits of the cranium and the face, there is, inftead of this curve, an irregular line forming a falient angle within the oval. The fection of the face is a triangle, with its greateft fide towards the cranium, and the fmalleft directed outward. The angle, which the latter forms with the third fide, or the palate, is precifely the facial angle.

In monkies, the great axis is fomewhat elongated with refpect to the leffer ; the line which feparates the cranium and the face becomes more fraight, and the anterior and inferior fide of the triangle of the face is fo much elongated, that

12 Lect. VIII. Osteologyofthe Head.

the fide which touches the cranium is the fmalleft of the three in the macaques and the mandrills. It is found the leaft alfo in other quadrupeds. In the Sarcophaga and the Rodentia, the anterior part of the oval of the cranium is the narroweft. In the Ruminantia, and the borfe, the pofterior is the moft narrow. We perceive a ftrong angle within the cavity of the cranium of thofe that have an offeous feparation between the cerebrum and the cerebcllum.

The great axis of the oval inclines forward in the Sarcophaga, with refpect to the bafe of the noftrils, but backward in all the herbivorous fpecies. Its form and direction in the morfe are the fame in the Sarcophaga.

The fection of the cranium of the dolpbin is almoft triangular, the fides are convex, and the angles rounded. One fide is anterior; another, which is pofterior, is perforated by the foramen magnum. The third, which forms the bafe of the cranium, and which correfponds with the line that unites the cranium to the face, in other animals, is, however, fituated completely behind the face, and is even parallel to the arch of the palate.

We may alfo examine the tranfverfe vertical fection of the cranium, that is to fay, a fection made by a plane perpendicular to its great axis.

This forms in man a very confiderable portion of a circle, wanting only a fegment fomewhat lefs than a third of the circumference towards the inferior
inferior part. The cranium of the Negro is flater on the fides than that of the Europedn, becaufe his temporal foffæ are greater and deeper. This diminifhes his face upwards, but enlarges it inferiorly on account of the prominence of the cheeks.

In the Sarcophaga this fection produces a femiellipfis rounded towards the upper part, and having the bafe nearly equal to its height.

In the bog, it is an oval which is longeft vertically, and the fides of which are made irregular by large angles towards the pars petrofa directed interiorly.

In the borfe, the oval is more broad than high, and the inferior half has nearly the fame curvature as the fuperior.

Thefe remarks are the more interefting, as in all mammalia the brain is molded in the cavity of the cranium, which it fills exactly; fo that the defcription of the offeaus part affords us a knowledge of at leaft the external form of that medullary mafs.

B. In Birds.

The longitudinal and vertical fection of the cranium in birds generally reprefents an oval, with its narroweft part anteriorly, the fide correfponding to the face lefs convex than that which is fuperior and pofterior, and the great axis directed upward and forward. The ozels

14 Lect. Vill. Ostrqlogy of tue Ilead.
are the only birds in which this fection is oval, and contracted nearly equally above and below, with the great axis almoft, vertical.

The face of birds being chiefly formed by their bill, their phyfiognomy depends upon the thicknefs and length of that part; but as the nofe occupies a very fmall portion of it, and as the tongue is frequently fo fmall as to take up very little room in the mouth, the proportion which the cranium bear's to the face does not afford the fame indutions in birds as in quadrupeds.

C. In Reptiles and Fifhes.

As the brain of reptiles and fifhes occupies only a fmall part of the cavity of their cranium, no important confequences can be deduced from its flape and fize. In the tortoife this cavity is large, narrow from right to left, elevated anteriorly, and depreffed pofteriorly. Its lateral parietes are almoft vertical, and its bafe is parallel to the palate. The external form of the head, and its apparent magnitude, are occafioned by the acceffory bones, between which and the cranium there is a large fpace occupied by mufcles and glands.

The fmall fize of the cavity of the cranium, with refpect to the external bulk of the hoaj, is ftill more extraordinary in the crocodile. In an individual four metres long, that cavity will hardly
hardly admit the thumb, and the arca of the fection of the cranium is not one-twentieth part of that of the whole head. The figure of the fection is oblong, rather larger anteriorly, and defcending pofteriorly. There is a confiderable depreffion for the pituitary gland. Its breadth is equal to its height; and the lateral parts of the head, as in the tortoife, cover only the temporal foffr.

The craniuin of frogs and falamanders is almoft prifmatic.

That of fifhes is generally very fmall in proportion to the reft of the head, but it varies greatly with refpect to its form, and cannot be compared either with the brain or the furrounding parts. Its fhape, however, approachies moft frequently to an oval.

Article II.

Of the Bones withich compofe the Cranium.

A. In Man.

The offeous cafe which forms the cranjum, is divided into a certain number of bones, which are joined by immoveable articulations, called futures. Thefe difappear more or lefs with age, becaufe the reciprocal indentations by which !

16 Lect. Vill. Osteology öf the Hzad.

the edges of the contiguous bones are united, are fooner or later offified together. As there exifts, however, always fome traces of the feparations of the bones, and as their fituation or difpofition is varied in different animals, a knowledge of them becomes highly ufeful to the Anatomift, who wifhes to difcover the part and the kind of cranium to which fragments of foffile heads fhould be referred. We fhall examine thefe futures, or lines of feparation between each of the bones of the cranium, in the different kinds of animals, beginning with Man.

The human cranium is compofed of eight bones; they are all fupported on one of their number, which is fituated at the bafe of the cranium, to the arch of which it may be faid to ferve as the key. It has been compared to the figure of a bat, and is called os spbenoides, or os cuneiforme, becaufe it anfwers the purpofe of a wedge, with refpect to the bones between which it is enclofed.

We fhall here confider its fhape abftractedly from its eminences and holes. It is bounded before by a curved line, the concavity of which is anterior, and which is continued obliquely on the bottom of each orbit of the eye, the external fide and bottom of which are occupied by the fphenoid bone. This line is called the Jplenoidal future. At the temporal angle of the orbit, it is directed backward in the tempotal foffa, until it comes in contact with the os temporum. It
feparates the fphenoid from the frontal bone throughout almoft its whole length; the two extremities of the os fphenoides only touch the parietal bones. It is bounded on each fide by another curved line, which makes an acute angle with the firft, and which feparates the fphenoid from the temporal bone; this is called the $\int p$ penotcinporal, or temporal juture. The concavity of the bone is external; as it approaches the middle it defcends and is carried backwards, fo that the pofterior border of the bone is much lefs extenfive than the anterior; the pofterior border is divided into three lines, which are nearly ftraight ; a middle one, which is parallel to the middle of its anterior margin; and two lateral lines, directed obliquely backward, each uniting with the external margin of the fame fide by an acute angle. The middle part of the pofterior margin feparates the os fphenoides from the os occipitis. This, which is called the bafilar future, exifts only in youth. The two bones are afterwards united, and form only one; its lateral parts feparate it from the pars petrof of the os temporum. The longitudinal axis of the os fphenoides is nearly one half the length of its pofterior margin, and fomewhat more than a fourth of the anterior.

All the bones of the cranium are feparated by lines which proceed from different points of the os fphenoides. The frontal or coronal future extends from a point very near the lateral fuperior Vol. II.

C
angle

1.8 Lect. Vill. Osteology of the Head.

angle of this bone, to the correfponding point on the other fide, croffing the arch of the cranium almoft at the top. This future is the pofterior boundary of the bone which forms the forehead, and the fuperior arch of the orbits. The name given to this bone is the os frontis. In children it is divided by a longitudinal future, which fometimes remairs even at a very advanced age. This feparation is marked in fome fkulls by a pretty confpicuous depreffion, and in others by a ridge more or lefs elevated. It is called the medial or proper frontal future. The os frontis $\mathrm{i}_{\text {s }}$ nearly of a femi-circular form. It is truncated inferiorly, and bends backward to form the arch of the orbits. Its vertical heighth is mearly two-thirds of its breadth.

At the external and fuperior angle of the fphenoid bone, another future commences, which is continued, along the edge of the os temporum; the curve it forms is nearly circular. It is called the fquamous future, becaufe the edges of the bones which form it have the appearance of fcales; the fuperior and internal edge of the os temporum, covering the external and inferior edge of the os parietale. After defcribing about one-third of a circle, the edge of the temporal. bone turns up, forms with the futurean obtufe and inward angle and is directed pofteriorly until it reaches the os occipitis.
A line proceeds from each fide of the point where the bafilar joins the petro-fphenoidal futu5e,
ture, and feparates the pars petrofa from the os occipitis; thefe two lines bend outward until they arrive oppofite the middle of each occipital condyle, where they are fuddenly carried backward, and re-afcend a little to finifh the outline of the temporal bone. All this pofterior part of the edge of the bone is called the mafboid Juture.

The thin, and almoft circular portions of the offa temporum, form a part of the lateral parietes of the cranium. The pofterior edge of the temporal bone is rounded as it advances to join the occipital. Its inferior edge produces that thick and hard prominence, called os petrofum, fituated between the Lafilar procefs and the pofterior lateral edge of the os fphenoides, and thus forming a part of the bafe of the cranium. This pars petrofa is feparated from the reft of the bone in the human foetus: it extends from the back part obliquely inward and forward.
The lambdoidal or occipito-parietal future, which concludes the figure of the os occipitis, beginsat the middle of the maftoid future, and afcends fomewhat pofteriorly, fo as to form an angle with the correfponding future. It unites the occipital with the parietal bones, which complete the fuperior arch of the cranium. The portion of the occipital bone included between the foramen magnum and the os fphenoides, is called the bafilar or cunciform procefs. It is almoft fquare in man, narrowed a little anteriorly, and very

Lect. Vili. Osteology of the Head.

fhort. In youth it is feparated from the reft of the bone by two futures which interfect the anterior portion of the condyles. The remainder of the bone, which forms what is properly called the occiput, is of an oval form, very concave internally, and pointed fuperiorly. Its pofition is fuch, that when the human body is erect, the cuneiform procefs afcends fomewhat forward, and its other part is directed backward.

The offa parietalia are feparated from each other by a longitudin 1 line, called the parietal or fagittal future. The fhape of thefe bones is quadrangular, the edge by which they touch each other is the longeft. Their temporal margin is the fhorteft and the moft concave. Their convexity is nearly uniform.

The os frontis has a vacant fpace between the two orbits, which is occupied by the cribriform lamella of the os ethmoides. The form of this fpace is that of a long fquare. It is bounded pofteriorly by the os fphenoides. The line of feparation is called the etbmoidal future.
B. In other Mammiferous Animals.

The principal differences obfervable in the cranium of mammiferous animals, confift in the number of the bones which conftitute it ; in the connections of thefe bones; and, laftly, in the particular form which each of them affumes. We thall proceed to confider the craniums of
the different families of mammalia under thefe three general points of view.

1. Number of the Bones of the Cranium in Mammalia.

All the Quadrumana have eight bones in the cranium, but the os fphencides is frequently divided into two parts; one of which forms the orbitar wings, and the anterior clinoid proceffes; and the other the temporal wings, the pofterior clinoid proceffes, and the bafilar foffa. The two offa parietalia unite together at a very early period in the Cherioptera, fo as to form only one bone; the fame thing takes place in almoft all the other Sarcophaga, which alfo generally have the os frontis divided into two parts by a medial future. The cavity of the tympanum is feparated from the reft of the temporal bone, by a future, which feldom offifies in the cat, dog, and civet genera.

This cavity is alfo feparated in the Rodentia, and the os frontis remains divided into two parts. Their parietal bone is fometimes fingle, as in the bares, the cavys, the porcupine, the marmotte, the rats, and fquirrels; and fometimes double, as in the mice, the dormice, and the rabbit.

The os frontis and the offa parietalia of the clepiant are, at a very early period, united by offiC 3 fication

22 Lect. Vili. Osteology of the Head.

fication with all the other bones of the cranium ; fo that the whole forms a brain-cafe, in which no traces of the futures appear.

In the bog, the tapir, and the bippopotamus, the two parietalia form only one piece. Their os frontis is double: the rbinoceros has the frontal and parietal bones double, but the feparation of the laft foon offifies. The os f phenoides of the animals of this and the two fucceeding families, remains for a long time divided into two parts. The one forms the orbitar wing, or the little wings of Ingraffias; the other produces the large wings, or temporal proceffes, which are here much the fmalleft. This difpofition is exactly the oppofite of that obferved in man.

In the Ruminantia and Solipeda the os frontis remains for a confiderable time divided by a medial future. In thefe animals the place of the two parietalia is fupplied by a lingle piece which forms the top of the cranium. The cavity of the tympanum is always diftinct.

The Seals have two parietalia, and the os frontis divided into two parts; this alfo takes place in the morle. The lamantin has only one parietal bone, and the cavity of the tympanum is feparated from the body of the temporal bone.

In the Cetacea the parietalia are very foon united with the occipital and temporal bones, in fuch a maniser that thefe five bones form only one. The bone of the car is always feparate, and is connected with the cranium only by foft
parts. The fphenoides remains long diftinet, and is even divided into feveral pieces.
2. Comnedions of the Bones of the Crantium in Mammalia.

Of all the Quadrumana, the orang-outang has the cranium moft fimilar to that of man in its form. It differs however in the connection of the bones. The temporal wing of the os fphenoides is extremely narrow, and does not extend to the parietal bone. It touches the os frontis with its fuperior extremity only, fo that the temporal partlyarticulates with the frontal bone. The temporal future is indented, and the edges of the bone are not fquamous. In the jocko, this portion of the temporal wing neither touches the os frontis nor the offa parietalia; but the os temporum articulates immediately with the os malæ, by its fquamous part.

In the mandrils, the macaques, the magots, and the guenons, the connection is the fame as in the orang-outang.

In the fapajous, the os frontis does not come in contact with the temporal wing of the f.phenoid bone, and the parietal articulates with the cheek-bone. In the aloulates the connection is the fame as in man.

The connections of the bones of the cranium with each other are the fame in all the Sarcophaga as in man.

24 Lect.VIII. Ostelogy orthe Mead.

In all the Rodentia, the os fphenoides only articulates with the os frontis, and offa tem porum, without touching the offa parietalia. Its extent in the orbitar and temporal foffa is very limited.

In the armadillos, the pangolins, and the folbs, we difcover the fame connections as in the Rodentia; but in the ant-eaters, the offa parietalia are carried under the cranium, and unite in a very extenfive manner with the os fphenoides, at the pofterior part of the temporal and orbitar foffa.

In the elephant, the boncs of the cranium are, at a very early period, united by offification, and form only one piece. The bone of the ear is always diftinct and feparate from the os temporum.

In the bog, the tapir, the rainoceros, and the bippopolamus, the os fphenoides does not unite with the parietal bones, and its large wings occupy on!y a very fmall fpace in the orbitar and temporal foffa. Only a fmall part of the orbitar proceffes appear externally, though they are extended much farther than the large wings. The bone of the ear, which is very diftinct, is, however, offilied at its bale to the circumference of the meatus auditorius.

The os fphenoides of the Ruminantia articulates, as in man, with all the other bones of the cranium, but its orbitar wing, which is very extenfive, is concealed in a great meafure within
the cerebral cavity, and covered by the orbitar lamella of the os frontis.
In the Cetacea in general, the futures which exift after an early age are all of the fquamous kind.

3. Forms of the Eones of the Cranium in the

 Mammalia.The fhape of the os frontis is more irregular in the orang-outang than in man. The arch of the orbits is lefs depreffed. In the fapajous, the frontal bone has the form of a triangle, and terminates in a point towards the crown of the head. In the other monkies, this bone is nearly oval, and the orbitar arches almoft fraight. Thefe arches form, in all monkies, as well as in man, the anterior margin of the os frontis, becaufe the root of the nofe is very narrow. In the makis it begins to affume a broad fhape, and the eyes become oblique. This gives a rhomboidal form to their os frontis.

The os frontis of the Sarcophaga, and in general of all the fucceeding mammalia down to the Cetacea, exhibits the irregular furface of a prifm or cylinder, in which three principal furfaces fhould be confidered; one fuperior, which is connected with the nofe anteriorly, and with the reft of the cranium pofteriorly ; and two lateral, which defeend each into the orbitar and temporal foffa of the fame fide.

26 Lect. Vili. Osteology of the Head.

The form of the fuperior furface is principally determined by the pofition of the orbits. In dogs, cats, bears, ternate-bats, veeafels, oppoflums, ξ^{c}. thefe orbits correfpond with the anterior part of its lateral margins, and give to the whole bone a rhomboidal figure. In the Rodentia, the orbits form notches in the midd!e part of the lateral edges of the os frontis, and give to it a form more or lefs rectangular.

It is the fame in the flying-lennur.
The bedge-bogs, the moles, the forews, the anteaters, the feais, the morfes, and the rbinocerofes have no orbitar arches properly fo called. The frontal bone is fimply contracted, and becomes almoft cylindrical between the orbits. It is enlarged pofteriorly.

In the bippopolamus, the Ruminantia, and the Solipeda, the frontal bone is enlarged, and forms a vault over each orbit.

Laftly, in the Cetacea, the os frontis is narrow from the front backward. It refembles a fillet extended acrofs the cranium; but as, according to the laws which govern the ftructure of the head in mammiferous animals, this bone fhould form the upper part of the orbits; it defcends for that purpofe below the maxillary bones, fo that the order of the pofition of the bones in thefe animals is entirely reverfed to preferve that of their connections.

The offi parietalia of the orimg-outang, differ only from thofe of man in having their cemporad
temporal edges almoft Atraight; thofe of the monkies are narrower, and their angles become more oblique in proportion as the cranium is flat. They return almoft to a refangular form in the Sarcophaga and the Edentata. We have already fhown that they are united into a fingle piece in a confiderable number of the Rodentia. That picce is almoft nearly fquare ; but it is fometimes flat, fometimes rounded, and fometimes furmounted with a creft.

The Ruminantia have alfo a parietal bone in a fingle piece. In the ftags, the greater part of the antelopes, the heep, and the goats, it is broad, and a narrow flip extends on each fide of the temporal foffa. It is fituated before the occipital arch. In the camel it is narrow, and has a longitudinal creft. In the ox, and in the antilopebubalis, it is fituated behind the occipital creft, and refembles a ribbon furrounding the pofterior part of the head tranfverfely.

In the Solipeda, the parietal bone, which is fingle, is almoft fquare, and fituated before the occipital creft.

We have already explained the forms of the os occipitis in the firf volume, when defcribing the motions of the head on the fpinc.

We flall at prefent only notice the fquamous part of the os temporum, referving our account of the pars petrofa until we treat of the ear. In the orang-oulang and moft apes, the fquamous portion of the os temporum is of a trapezoid figure,

28 Lect. VIII. Osteology of the Head.

figure; the fuperior fide is the longeft, and its height varies according as the cranium is more or lefs elevated. It is fhorteft in the fapajous.

The fquamous portion in the Sarcophaga is fimilar to that of the apes.

In the Rodentia it is very narrow pofteriorly.
In the fhort-nofed Edentata, in the Ruminantia, and the Pachydermata, it is rounded a little.

It is neceffary to remark, that the maftoid procefs forms a part of this bone only in man and monkies, and that in all the other mammalia it belongs to the os occipitis.

We fhall defcribe the zygomatic procefs of the os temporum when we treat of the face, and particularly of maftication.

The os ethmoides fhall be defcribed when we treat of the fenfe of fmelling.

The os fphenoides has been fufficiently explained, and we fhall have no occafion to return to it. Its proceffes will be defcribed in our account of the bones of the face.

C. In Birds.

The bones which compofe the cranium of bire's, are united at an carly period, and the futures cannot be perceived except in very young fuhjects.

Thefe boites correfpond in their number and poficon to chose of tinc mamma!i... Timere are
two frontal bones which are prolonged anteriorly to form the roof of the orbits. When birds have a horn, or a creft, it is alfo attached to the os frontis.

There are two fmall offa parietalia behind the frontal bones.

The offa temporum occupy the fides of the cranium and the auricular region.

The os fphenoides cannot be diftinguifhed from the occipital bone, even in fubjects that have the futures very confpicuous.
It fhould be further remarked, that this fphenooccipital bone unites with the offa temporum fooner than the other bones unite with each other.

In new-hatched birds, however, we obferve a future which extends tranfverfely in a ftraight line from the one ear to the other, and which feparates the fphenoid from the occipital bone; the latter is then nearly of an annular form, and is fubdivided into four portions; one fuperior, two lateral, and one inferior, which is very fmall.

The os fphenoides forms the greater part of the bafe of the cranium. It is almoft triangular, and has anteriorly a fmall eminence, which articulates with the palatine arches, which we fhall defcribe when we treat of the face. It wants the pterygoid proceffes, and does not come in contact with the pofterior aperture of the noftrils.

30 Lect. Vill. Osteology of the Head.
The temporal bonc has no zygomatic procefs, but there is a fmall apophyfis which contributes to the formation of the pofterior margin of the orbit.

The os frontis having covered a part of the cranium, is prolonged forward into a lamina more or lefs broad, which forms the fuperior part of the orbits, and the lateral edges of which are ufually notched by thefe foffix. The two orbits are feparated from each other by only a vertical lamina, which alfo belongs to the os frontis, and which is attached to the plate that forms their roof.
'The offeous eminences which we obferve on the heads of the caforvary, the born-bill, the pintado, and fome curasows, \&c. are enlargements of this fupra-orbitar portion. Their interior is filled with diploë of a very loofe texture.

D. In reptiles.

The bone of the bafe of the fkull in the crocodile has the form of a very irregular truncated pyramid. The point of this pyramid is downward, and its bafe contains the cavity of the cranium. This pyramid has three furfaces, one polterior, which forms the occiput, and two lateral. The occipital furface is almoft triangular; one of its angles is inferior, the other two are fuperior, and greatly prolonged backwards and to the fide, in order to form the
enormous articular proceffes, which receive the lower jaw. Their pofition is almoft horizontal. The foramen magnum is fituated in the middle of this furface, and under it the fingle condyle for articulating the head with the vertebral column.

Three futures depart from the foramen magnum, which divide the occiput into particular bones. The fuperior part of the cranium is formed by a fingle parietal bone. Anterior to it, there is an os frontis, alfo fingle, which forms the roof of the orbits.

The offa temporum are fituated on each fide of the parietal bone, and are partly fupported by that articular procefs for the lower jaw already mentioned.

A fmall arch on each fide, different from the zygoma, leaves between it and the parietal bone a large round hole, which perforates the temporal foffa. The arch is partly formed by a procefs of the os temporum, and partly by a particular bone articulated to the junction of the parietal and frontal. This particular bone occupies the place of the poft-orbitar procefs of the os frontis in the mammalia; for it defcends behind the orbit to join the cheek-bone, and with it finifhes the 'frame of the orbit.

A cranium fimilar to this of the crocodile, is found in the other lizards, notwithftanding the great differences in the form, proportion, and the direction of the parts. In the camelion, therefore, the foramina by which the temporal

32 Lect. Vili. Osteology of the Head.

foffre communicate with the cranium, are fo large, and the bony edges which form them fo thin, that the latter reprefent three flender branches rifing to fupport the kind of helmet which diftinguifhes this animal. The articular proceffes are not directed backward, but downward.

The laft peculiarity is alfo obferved in the other lizards, but they have not the crefts of the camelion, and the upper part of their cranium is broad like the crocodiles.

In frogs and falamanders the cranium is nearly of a cylindrical form, flat fuperiorly, and enlarged pofteriorly; the frontal bones have the fhape of an elongated rectangle, and occupy the interval of the orbits. The Surinam toad has the cranium much flatter than the other genera.

The eminences intended to affift in the articulation of the jaw are turned directly towards the fides.

The ftructure of the cranium of tortoifes bears more refemblance to that of crocodiles than of frogs. The frontal bones form only the roof of the orbits, and the cranium does not pafs between thefe cavities. They are very fhort, and the parietalia are three times longer. The latter are not confined to covering the cranium. They extend on each fide, and form an arch over the temporal foffa. In the foa turtoifes this arch is completed by two peculiar bones which extend from the os parietale to the zygoma, and the anterior of which bounds the orbit behind.

The articular proceffes are directed downward, as in the camelion. Above thefe and the meatus auditorius, we find confiderable maftoid proceffes which are pointed fuperiorly in land tor - $_{-}$ toijes, but are rounded and marked by a longitudinal furrow in the Sea tortoifes. .

Serpents have two frontal bones almoft fquare, and a fingle parietal bone. Their cranium advances forward between the orbits, as in frogs. The occipital bone has a procefs directed backward, and connected with a particular moveable bone, analogous to the fquare bones of birds, to which the lower jaw, and the arches which form the upper, are articulated.

E. In Fifhes.

The bones of the cranium of fifhes are foon offified together, and as the futures which unite them are fquamous, it' is not eafy to difcover any traces of their feparation. The cranium of fifhes forms in general a very fmall portion of the head. Its figure varies confiderably ; but as it is covered with fkin only, its forms appear externally; thefe have therefore been well defcribed by Naturalifts, and we have no occafion to give any account of them here.

34 Lect. Vili. Osteology of the Head.

Articee III.

Of the Eminences and Depreflions of the Internat Surface of the Cranium.

A. In Mren.

The fuperior part of the cranium is almont quite fmooth internally; it is only flightly marked by the veffels of the dura mater, and the circumvolutions of the brain. The moft remarkable of the impreffions thus produced, is that which extends along the whole of the middle of this vault, and which correfponds to the longitudinal finus. The bafe or floor of the cranium, however, is more unequal, and we obferve in it fome very confpicuous cavities and eminences. It may be divided into three regions or large foffr.

The paferior foffa is named corebellous, becaufe it is chiefly occupied by the cerebellum. It is the deepeft of the three, and has alfo been called the inferior occipital foffa. Its loweft part is perforated by the foramen magnum of the os occipitis. A flight excavation afcends obliquely forward from this foramen, and terminates anteriorly by an elevated ridge, having on each fide a fimall hook, denominated pofferior clinoid procefs. This ridge forms the anterior boundary of the foffa. It is an apophyfis of the os fphenoides ;

A.III. Internal Surface of the Cranium: $3 \xi^{\circ}$

noides; but the broad canal fituated behind it is chiefly formed by the cuneiform procefs of the occipital bone, and is called the bafilar foffa.

A nother projecting ridge extends from each fide of the clinoid procefs, and is directed obliquely backward. This ridge belongs to the petrous portion of the temporal bone, and completes the anterior limits of the large cerebellous foffa. This foffa is inclofed pofteriorly by an elevated line proceeding like the branches of a crofs from the tuberofity in the middle of the os occipitis. Another elevated line, which proceeds likewife from this tuberofity, defcends to the edge of the foramen magnum, and divides the ccrebellous foffa into two parts, throughout the whole of its length. In this foffa there alfo appear fome impreffions of veffels, of which we fhall fpeak hereafter.

The level of the anterior foffa is more clevated than that of the other two. It is fituated above the orbits and the nofe. It is united anteriorly, without any confpicuous feparation, to the fuperior vault of the cranium. Pofteriorly it is feparated from the middle foffæ by a fharp ridge, which is concave on the back part, and formed by the orbitar wing of the os fphenoides. There two ridges extend towards the middle line, and backward. They are terminated nearly oppofite to the pofterior clinoid proceffes, but fomewhat more outward, each by a hook called anterior clinsid procefs; the interval between thefe two

36 Lect. Vili. Osteology or the Head.

hooks confifts of another ridge, but lefs fharp, which completes the boundary of this foffa pofteriorly. The middle of the foffa is more depreffed; it is formed by the cribriform lamella of the os ethmoides, which bears on its middle a fharp edged ridge in the form of a ploughthare, called the crifa galli, or ethmoidal creft. Its latcral parts are convex and fcabrous.

The middle foffe of the cranium occupy the fpace between the anterior and pofterior; their limits have therefore been already defcribed. Their level is intermediate between that of the other two. As the anterior and pofterior foffe are more extenfive towards the middle than at their fides, they approach each other at that part. The interval, which feparates them, and which is fituated between the four clinoid proceffes, is more elevated than the middle foffr, and is denominated fella turcica, or Sella Sphenoidalis.

> B. In other Mammiferous Animals.

The three large foffr of the cranium exift in the inferior mammalia; but they are lefs decp, and the eminences which feparate them are cffaced in proportion as the animal is removed from man. Even in the jockn, we begin to obferve, that the cercbellous foffa is nearly on a level with the middle foffa; that the fella turcica is lefs marked, and that the ridge of the fnall
A.IIt. Internal Surface of the Cranium. 37
wings is lefs eminent. The cribriform lamella of the os ethmoides is more depreffed, and has no creft.

The mandrils, the magots, and different fpecies of guenons, differ from the jocko, only in having their pofterior foffa narrower, and not fo decp; while their os petrofum extends directly backward, and the occipital furface of their cranium is more elevated. The frontal foffa has two lateral convexities, which are more globular, particularly in the guenons.

In the Japajous, the orbitar wings of the os fphenoides have no ridge. Inftead of the anterior foffa, there is only a convexity : the intermediate foffe are as deep as the pofterior. The fella turcica is nearly on a level with them, and the cribriform lamella is fituated in a narrow depreffion.

In the alouates, the pofterior and the intermediate foffæ, and the fella turcica, form only one plane, from which the two offa petrofa, and the four clinoid proceffes, arife. Inftead of the anterior foffa, there is an oblique furface, the middle of which is depreffed, and leads to a very fmall cribriform lamella.

The fame level exifts in the different parts of the bafe of the cranium in all the Sarcophaga, in which the anterior foffa is feldom diftinguifhed from the intermediate foff $æ$, but forms merely a fhort and broad canal, terminated anteriorly by a very large cribriform lamella. It muft be obferved,

38 Lect. Vili. Osteology of the Head.

however, that, in the bcar, the middle foffx are fepalated from the anterior foffa by a ridge attached to the fide of the cranium, and belonging partly to the os frontis, and partly to the os parietale. In the fial, on the contrary, there, is no anterior forfa, properly fo called, as the front of the cranium rifes perpendicularly like a wall, and has the cribriform lamelia in its fuperior part. The fuperior foffa is more confpicuous in the morfe. With refpect to all thefe animals, it will be eafily conceived, that, in proportion as the cercbellous foffa is flattened, and the foramen magnum is directed backward and upward, the Dafilar foffa muft be elongated. At the fame time the pofterior boundary of the cerebellous foffa will afcend, and terminate by forming a girdle, dividing the cranium vertically, and fituated before the cercbellum. In the greater part of the Sarcophaga, the cerebellous foffa is formed by a broad and thin projecting lamina, which continues over the offa petrofa, and feems to form a particular cavity for the cerebellum. The Sarcophaga have no fella turcica, properly fo called, and their clinoid proceffes are very fmall.

The bafe of the cranium is very level in the Rodentia. There is no diftinction between the anterior and the rindlle foffre. The ridge of the pars petrofa is obtufe. Only a few fpecies, as the bares and the agoutis, have the clinoid proceffes. The place which correfponds with the

A.III. Internal Surface of thr Cranium. 39

fituation of the fella turcica is even depreffed in the cavy.

There is alfo very little difference as to level in the foffr of the cranium of the Edentata. Their cribriform lamella is fituated in a depreffion diftinguifhed by a vertical ridge. The limit between the middle and pofterior foffe is not very apparent in the Roths, the armadillos, and the ant-eaters; but in the pangrolin it is a large vertical feptum, perforated by an oval hole in the middle.
The three foffæ are very diftinct in the elephant. The middle is the moft depreffed; they are feparated by blunt elevations: the cribriform lamella occupies almof the whole of the bottom of the anterior foffa, becaufe the nofe of this animal is fituated under the cranium, as in Man, and not before it, as in the Sarcophaga, the Rodentia, \&ic. The fella turcica is not very much elevated. The clinoid proceffes are fhort, particularly the pofterior.

The anterior and the middle foffe are not diftinguifhed from each other in the rbinoccros. The pofterior foffa is decper than the others, and is feparated from the middle foffe by an acute clevated ridge, which is fituated before them, but is not attached to the pars petrofa. The part which correfponds to the fellaturcica is confiderably more depreffed than the middle foffa, inftead of being elevated, as in man. The part anfwering to the pofterior clinoid proceffes is not

40 Lect. Vili. Osteology of tile Head.

attached, as in other animals, to the bafe of the cranium, but extends like a bridge from the one middle foffa to the other; while the fella turcica, which, as we have obferved, is lower than thefe foffæ, communicates under this bridge with the cuneiform procefs of the os occipitis.

The three foffre, and the fella turcica, are on the fame level in the bippopotamus, and cannot be diftinguifhed from each other, except by a projecting lamina, which correfponds to the pofterior clinoid procefles. The offa petrofa, the figure of which is very irregular, project into the cranium, but they form no regular partitions. It is the fame with refpect to the tapir; but, in the bog, the pofterior foffa is lower than the others, and is diftinguifhed from them, as in the rbinoccros, by an elevation fituated before the offa petrofa. The pofterior clinoid proceffes are attached to the bottom of the cranium ; the anterior procefles do not exift, and the part which correfponds to the fella turcica is depreffed and very broad, The anterior foffa is diftinguifhed from the middle, merely by a little more elevation, and a flight convexity. All thefe Pachydermata have the cribriform lamella of the os ethmoides very broad, much depreffed, and divided into two parts by a very thick creft.

In the Ruminantia the middle foffe are fcarcely perceptible from the anterior. The fella tur-

A.III. Internal Surface of the Cranium. 4 I

cica is very broad, and confiderably lower than the middle foffæ, between which it is fituated. It continues on the fame level with the pofterior foffæ, without any diftinctive mark, except a fmall lamella, which correfponds to the pofterior clinoid proceffes. The fella turcica of fags and camels is lefs depreffed than that of the other genera. The cribriform lamellæ of the os ethmoides are broad, but they are more depreffed, and feparated by a broader creft in the camel than in the other genera. In the cherrotins, the anterior foffa is proportionally fomewhat more elevated than the middle foffre.
In the Solipeda the fella turcica is lefs depreffed than in the greater part of the Ruminantia. On each os petrofum there is an elevated ridge, which extends to the fuperior vault of the cranium, as in the Sarcophaga.

In the Cetacea the cerebellous foffa is diftinguifhed from the middle foffæ by a lateral partition, but the whole bafe of the cranium is nearly level, and there is neither ethmoidal foffa, nor cribriform lamella. The middle foff x are much feparated from each other, and a little more elevated than the cerebellous. There are no clinoid proceffes; the line of divifion between the middle and pofterior foffx is not formed by the os petrofum; that ridge is fituated before it.

42 Lect. Vili. Osteolugy of the Head.

C. In Birds.

The cranium of birds is divided into two principal foffre, one of which is fituated above and fomewhat befure the other. The firft contains the cerebrum, properly fo called, and confequently correfponds to the anterior and part of the middle foffre of the human fkull. The fecond contains the thalami nervorum opticorum, the cerebellum and the medulla oblongata, and correfponds to a part of the middle foffre and the cerebellous foffa of man. The line which feparates thefe two foffe is fharp and horizontal on the fides, but, pofteriorly, it afcends and forms an arch above the cerebellum. The fuperior foffa is feparated into two parts, by a flight convex eminence, produced by the roof of the orbit; but the inferior foffa prefents feveral remarkable cavities.

In the firft place, there is, on each fide, under the ridge which feparates it from the firft foffa, a round cavity which contains the correfponding thalamus. Between thefe two optic cavities there is another which correfponds to the fella turcica, and in which we obferve a particular excavation for the pituitary gland. Thefe three little foffe form together a kind of arch, the convexity of which is directed forward. In the concavity of this arch, and before the fora-

A.III. Internal Surfaceof the Cranium. 43

men magnum, there is a fourth foffa, which correfponds to the bafilar foffa in man, and, like it, fupports the medulla oblongata.

The inferior foffa of the cranium of birds, being coniderably narrower than the fuperior, the body of its lateral parietes is occupied by the cavities of the internal ear.

The differences which exift in birds, with refpect to the internal foffre of their cranium, are very inconfiderable, and confift merely in a greater or lefs degree of depth. In general, we obferve, that their inequality is lefs in the fwimming and wading birds: and that, on the contrary, the parrot kind, and birds of prey, - have thefe inequalities largeft.

D. In Reptiles.

The general form of the cavity of the cranium of reptiles is oblong, and almoft of an equal breadth, being merely a little contracted between the ears. The tortoife has a kind of folla turcica, the four clinoid proceffes of which are directed forward. The fphenoidal foffa is fomewhat depreffed in the Serpents, but it has no clinoid proceffes. It is a femi-lunar depreffion, the plane of which is fituated obliquely from before backward.

The bafilar foffa is lower than the other foffo in the crocodile, and in fome tortoijes.

E. In Fifhes.

We have alfo very little to fate with refpect to the infide of the cranium of fifhes. As the cavity of their cranium is not completely filled by the brain, its form does not correfpond with the eminences of that vifcus, and the different depreffions we obferve within the cranium are not feparated by fharp ridges. The bafe is almoft always plain, with the exception of a depreffion found in fome fpecies, and which correfponds by the place it occupies to the bafilar foffa, but which is deftined to contain the whole of the brain.

The cranium of offeous fifhes is enlarged bet ween the ears inftead of being contracted, becaufe thefe organs are contained in the fame cavity as the brain. The contrary difpofition prevails in the Chondropterygii.

Article IV.

Of the Foramina of the Bafe of the Cianium.

A. In Man.

Tue bafe of the cranium is perforated by a great number of holes, which afford paffages for

Art.IV. Foramina of the Cranium. 45

nerves and veffels. Some communicate with the face, others open into the parts fituated pofteriorly. The moft confiderable of the latter is the foramen magnum occipitale, through which the medulla oblongata, and the veffels that accompany it, pafs. It is fituated at the bottom of the cerebellous foffa, immediately below and behind the bafilar foffa. Its fhape is oval, its greateft diameter is between the fore and back part. Under the anterior of each of its lateral edges, we find one of the prominences by which the head is articulated with the vertebral column, and which are called the occipital condyles. The body of each of thefe condyles is perforated by a fmall canal, which is directed from within outward, and a little forward and upward, and through which the nerves of the ninth pair are tranfmitted. This is the anterior condyloid foramen, which affords a paffage to the nervus hypoglofus major. A little more outward and backward, we obferve another fmall hole, which is fometimes wanting; it is directed backward and downward, and ferves for the paffage of a fmall vein. This is called the pofterior condyloid foramen.

A little farther forward and outward, there is a large hole formed by the pofterior edge of the os petrofum and the os occipitis. It is called the foramen lacerum poferius. It is fituated exactly below an impreffion formed behind the os petrofum by the great lateral finus. A groove, made by the inferior petrous finus, allo joins

46 Lect. Vill. Ostrology of the Head.
this hole, and it is indeed by it that all the blood of the brain defcends into the jugular vein. This hole, at the fame time, affords a paffage for the par vagum, the gloffo-pharyngreus, and the nerous acceflorius of the eighth pair. The part which tranfmits the gloffo-pharyngæus is frequently feparated by a fmall offeous lamina.

At the pofterior furface of the os petrofum, a littleabove the foramen lacerum, we find a conical depreffion directed outward. It penetrates into the interior of the os petrofum, where it terminates in two holes, the inferior of which tranfmits the auditory nerve into the labyrinth of the ear. The other is the orifice of a canal which contains the facial nerve in its paffage through the os petrofum, and which is termihated between the maftoid and ftyloid proceffes by a fmall hole called foramen Aylo-mafoiderm. The depreffion we have defcribed is denominated meatus auditorius internus.

The cerebellous foffa alfo exhibits on each fide fmall holes for the paffage of the bloodveffels. One is fituated in its temporal part behind the maftoid procefs; its courfe is very oblique. It correfponds internally with the cavity of the lateral finus.

Another called aqueduatus Cotunnir, is fituated towards the creft of the os petrofum, above and without the meatus auditorius internus. It admits fome fmall branches of veins.

Art. IV. Foramina of the Cranium; 47

In the middle foffr, we remark the following holes:

The foramen lacerum anterius, fituated between the point of the os petrofum and the pofteriot angle of the fella turcica. Its edges are formed by the temporal, the fphenoid, and the occipital bones. It is clofed in the frefh ftate by a cartilaginous fubftance. There is another hole at its external fide, through which the carotid artery enters the cranium, and which is only the opening of a twifted canal, the orifice of which is in the inferior furface of the os petrofum, immediately before the foramen lacerum pofterius. This is called the canalis carotideus. It tranfmits, befides the artery, the great fympathetic nerve.

In the inferior furface of the os petrofum, and before the orifice of the carotid canal, we obferve the opening of another canal, which communicates with the cavity of the tympanum, and which forms a part of the Euflachian tube, or guttural conduit of the ear.

In the fphenoid bone, a little before the os petrofum, and without the anterior foramen, there is a large hole, called foramen ovale, and which is really of an oval thape. It gives paffage to the third branch of the fifth pair of nerves, called maxillaris inferior.
A little behind, and without the foramen ovale, there is another hole called foramen Spinale, through which an artery paffes.

Internally,

48 Lect. Vili. Osteologt of the Head.

Internally, with refpect to the foramen ovale, and very near the pofterior angle of the fella turcica, there is another fmall hole which tranfmits a vein.

Still more forward, but not quite fo near the fella, we find the foramen rolundum, which is directed forward, and tranfmits the fecond branch of the fifth pair of nerves, called maxillaris fuperior ; it is fmaller than the oval foramen.

Under the fharp ridge which feparates the anterior foffa from the middle foffæ, there is a long flit which proceeds from the anterior angle of the fella turcica, and extends obliquely outward and forward. It communicates with the bottom of the orbit, and tranfmits to it the firft branch of the fifth pair of nerves, or opbtbalinicus of Willis, and the whole of the third, fourth, and $/ i x t h$ pairs of nerves of the brain, as well as the internal orbitar artery; this is called the Juperior orbitar fifure, or Spheno-orbitar fiffure.

The optic foramina open into the cranium a little above the anterior edge of the fella curcica, and on the infide of the anterior clinoid proceffes they are directed obliquely outward into the orbit, to which they convey the optic nerve and the central artery of the retina.

The numerous holes of the cribriform lan 11a, of which there are about 40 , occupy the bottom of the anterior foffa, and afford a paffage for the olfactory nerves to the nofe.

Before the crifta galli, and at its union with

Art. IV. Foramina of the Cranilm. 49
the os frontis, we obferve a fmall hole which tranfmits a vein to the nofe. It is called foramen secum, or forancon fronto-etbmoidale.

B. Inother Mammiferouts Animals, and in Birds.

In examining fucceffively the variations which exift in the mammalia and birds, with refpect to the principal foramina of the cranium; we fhall begin with thofe fituated anteriorly, and fhall omit the foramen magnum, which we have alteady defcribed in the 3 d Lecture, when we treated of the articulation of the head; and the foramina of the cribriform lamella, which will be noticed under the article Smelling.

1. Optic Foramina.

a. Thofe foramina are not fo far feparate in monkies, as in man.

In the Sarcophaga, thefe holes and their intervals are fometimes covered by an offeous lamella, directed from before, backward like a roof.

In fome of the Rodentia, as the agouti, they are feparated by only a thin vertical lamina, which is altogether wanting in the bare. They are however very much feparated in the greater number of the genera.

In the four-loed ant-eater the optic foramina are very large, and united at their origin fo as Vol. II. E.

50 Lect. VIII. Osteologyofthe Heat.

to form a fmall foffa on the orbirar portion of the os fphenoides. In the armadillo, and more particularly in the pangolin, they are very fmall. They exhibit no peculiarity in the floth.

The optic holes of the elepbant arife from a common canal formed upon the body of the os fphenoides, at the origin of which we obferve a hole which penetrates that bone. The direction of thefe holes is oblique; they form a very obtufe angle anteriorly.

They are diftinct in the rbinoceros, and extend almoft directly forward, and form a canal in the body of the bone, of ncarly one decimetre in length.

In the bippopotamus thefe holes are very much removed from one another, and they are more oval than round.

Their direction and their refpective diftance vary in the Ruminantia. In the chevrotin, there is only a fingle optical hole divided by the vomer.
b. The optic foramina of birds, are fituated before the fmall foffa which is placed between their two optic foffr. They are feparated only by the fame vertical lamina which divides their orbits.

The part of this lamina which correfponds to them being fometimes notched, as in the cock, $\& x$. they there appear to form only one hole, when viewed on the infide of the cranium.
9. Splateno-

Art.iV. Foramina of the Cranium. SI

2. Spheno-orbitar Fiffure.

a. The fpheno-orbitar fiffure of monkies is very fhort, and is even reduced to a fimple oval foramen, except in the orang outang, in which it refembles that of man.

In the Sarcophaga it is always oval, and has the form of a canal.

In the Rodentia there is only one hole internally, which fupplies the place of both the fpheno-orbitar fiffure, and the foramen rotundum.

In the tron-toed ant-eater the fpheno-orbitar fiffure, which is very diftinct from the optic hole in the infide of the cranium, is confounded with that hole in the orbitar and temporal foffa. It is rounded, and before it penetrates the cranium, is indicated by a long furrow or canal in its bafe : the fame ftructure prevails in the other ant-eaters and armadillos, as wetl as in the footbs; except that in the latter, the fiffure, inftead of being rounded within the cranium, has there a triangular form.

In the cranium of the elephant this fiffure is a large hole rounded internally ; it proceeds directly downward into the tempero-orbitar foffa, but before it, we obferve another hole which is directed horizontally into the body of the bone. Thefe two holes, as well as that of the optic nerve, are covered on the outfide by an offeous E 2 lamina,

52 Lect. Vili. Osteology of the Head.

lamina, which extends from the fuperior orbitar angle to the moft pofterior part of the os maxillare fuperius; fo that we obferve no hole in the orbit, but merely this large offeous margin.

In the rhinoceros the Ppheno-orbitar fiffure takes the place of the foramen rotundum ; it forms a round canal, the internal opening of which is fituated in the fphenoidal foffa, which is very deep. Its external opening is covered by an offeous ridge at the bottom of the temporal foffa.

In the bippopolamus this fiffure is a fimple round hole, of a large diameter.

In the Ruminantia it is alfo a hole, rounded inferiorly, but truncated and angular fuperiorly.

In the Solipeda it is interfected throughout its whole length, by an elevated offeous line, which divides it into two diflinet holes.
b. There is no fpheno-orbitar fiffure in birds, but its place is fupplied by four diftinct holes; one is fituated above the optic hole, for the nerve of the fourth pair; two behind, very near each other, for that of the third pair; and the ophthalmic branch, of the fifth pair. Laftly, one under the bafe of the cranium anteriorly, which correfponds on the infide to the bafilar foffa, and which ferves for a paffage to the nerve of the fixth pair.
8_{1} Foramen Rotundum.
a. The foramen rotundum of the monkey is marked,

Art. IV. Foramina of the Cranium. 53

marked, for a confiderable length, before it leaves the cranium, by a furrow on the internal furface of the os fphenoides, near the fella turcica.

In the Sarcophaga it is rather oval than round, and very large.

In the Rodentia it is frequently confounded with the fpheno-orbitar fiffure, as in the porcupine; the cary, and the marmot.

In the Edentata the round hote is aways diftinct, and forms a canal of different lengths, according to the genus, within the bone.

In the eleploant the round foramen is confounded with the fpheno-orbitar fiffure. The fame difpofition prevails in the rbinoceros and the bippopotamus; in the Ruminantia and the Solipeda.
b. There is only one hole in birds which occupies the place of the round and oval foramina of man; it exifts in the line which feparates the optic from the bafilar foffa.

4. Foramen Ovale.

In monkies this hole does not perforate the os fphenoides only, but is included between that bone and the os petrofum.

In the Sarcophaga it exifts entirely in the os Sphenoides. In feveral genera, as bears, cats, and the rivet, the extemal edre of this hole is

54 Lect. Vili. Osteology of the Head.

protected by an offeous lamina, which extends along it to the fpheno-orbitar fiffure.

In the Seal, the bear, the badger, and the roufSet, this hole is wanting, or rather it unites with the foramen rotundum.

Amongit the Rodentia, the marnot, the agoutis and the fquirrel, have a diftinct oval foramen; but in the cavy, and the porcupine, it is confounded with the anterior foramen lacerum.

In the ten-banded armadillo, and the four-toed ant-eater, the oval hole does not exift, or is confounded either with the foramina lacera, which are united, or with the foramen rotundum, which is very large, and of an oblong form.

The foramen ovale is very diftinct in the floth.
In the elephant, it is confounded with the anterio foramen lacerum, which is very large. It is the fame with refpect to the bippopotamus.

In the Ruminantia, animals which have no anterior foramen lacerum, the ovale foramen is very large.

It does not exift in the Solipeda.

5. Foramen Lacerum Anterius.

a. This hole is wanting in monkies, and the Sarcophaga. In feveral of the Rodentia, as the cavy, the porcupine, and the marmot, it is very large: we obferve it alfo in the agouti and the bare, but it is not found in the fquirrel.

In the pangolin and the fotbs, this hole is very fmall.

Art.IV. Foramina of the Cranium. 55

fmall. It is confounded with the pofterior foramen lacerum in the armadillo.

It is very large, in proportion to the others, in the elepbant, and very diftinct from the carotid canal.

In the bippopotamus it is confounded with the pofterior foramen lacerum.

It does not exift in the Ruminantia.
In the Solipeda it is confounded with the pofterior foramen.
b. Birds have no anterior foramen lacerum.

6. Canalis Carotideus.

This canal is fimilar in monkies, and in man; but it is much fhorter, and lefs tortuous, in the Sarcophaga.

It does not exift in the Rodentia; and the artery paffes immediately through the anterior foramen lacerum.

In the elephant, it perforates the body of the os petrofum, and terminates at the internal extremity of its anterior angle.

In the bippopotamus it is confounded with the foramina lacera.

The fame thing takes place in birds.

> 7. Foramen Lacerum Pofterius.
a. This foramen exhibits no peculiarity either in monkies or the Sarcophaga. It is fmall in E_{4} moft
moft of the Rodentia; it forms a very round hole in the pargolin, and the forts; but the anterior condyloid foramen is very remarkable in thefe animals, as it is exceedingly large, and fituated before the condyle.

In the cleplaint, the pofterior foramen lacerum is oval, and very great. This animal has no anterior condyloid foramen.

In the rimoceros, the anterior and pofferior foramina lacera are confounded in one large fiffure, which furrounds the os petrofum. The anterior condyloid hole is very diftinct, and very large: there are even fometimes two foramina on the fame fide, which unite and form one.

With refpect to the Ruminantia, the pofterior foramen lacerum, in the fag, is a very narrow fiffure pofteriorly, and round anteriorly ; in the camel it is contracted before, and circular pofteriorly.
b. This foramen, in birds, is a fmall round hole, fituated under and within the external apere ture of the ear.

8. Meatus Auditorius Intermus.

a In the monkies above, and without the meatus auditorius internus, there is another larger depreffion, which receives a projection of the cerebellum; the bottom of this depreffion is not perforated. It is wanting in the orany -ontian! and jocko.

This depreffion is even deeper in the Sarcophaga than in monkies.

The meatus auditorius internus of the elepbant, is covered by a large offeous ridge of the os petrofum, at the point of which it is fituated.
' In the rbinoceros, it is fmall, oval, and fituated in the middle of the petrofe bone. Its greateft diameter extends from before backward.

In the bippopotamus, the meatus is fituated in the middle of the os petrofum. Its diameter is very large, and its edges form a kind of offeous canopy.

It prefentṣ no remarkable peculiarity in the Ruminantia. It is fituated in the centre of the os petrofum. Its place is the fame in the Solipeda.
b. The meatus auditorius internus of birds, is in general pretty confiderable.

C. In Repitiles and Fifhes.

The interior part of the cranium is frequently not clofed by offification in reptiles and fifhes, and the olfactory nerves pafs through a large vacant face, which is not fub-divided into particular holes. This at leaft is the cafe with the camelion, the iguana, lorloifes, the pike, the anarchichas, \&xc. In others, the olfactory hole is contracted, but is ftill fimple, as in the crocodile.

58 Lect. Vilf. Osteology of theilead.

It is double in frogs and falamanders. The rays and the Joarks have alfo two holes, which are confiderably removed from each other.

The optic holes are likewife fometimes united into one, as in the crocodile : thofe of the tortoife are much removed from each other, and are diftinguifhed from the great hole in the front of the cranium, by only a fmall boney partition. The ftructure of the cranium in the pike is fimilar. In the frogs, the ray's, the anarrbichas, and it fhould feem, in the greater number of fifhes, the optic holes are at a great diftance from each other, and perforate the fides of the cranium. Thefe animals have no fpheno-orbitar fiffure, and the fimall nerves tranfmitted to the eyes, pafs each through a particular foramen.

There is, in general, only one hole on each fide for the three branches of the fifth pair of nerves, which, therefore, fupplies the place of the foramen rotundum, foramen ovale, and in part of the fpheno-orbitar fiffure. This hole, however, is divided into three in the carp.

The meatus auditorius internus exifts only in the Reptiles, and the Chondropterygii order of fifhes. The other fifhes, having the cavity of the ear united with that of the cranium, want this hole.

Firties have a large formmen for the eight pair of nerves, which is very confiderable; and a fmall hole befide the foramen magnum, for the ninth
ninth pair. It muft be remarked, that the veins do not pafs through this hole, as in the Mammalia and birds.

Article V.

Of the Bones which compofe the Face.

A. In Man.

$W_{\text {E have already obferved, that the face is that }}$ portion of the head which is fituated under the anterior part of the cranium : its form is chiefly determined by the bones of the upper jaw, or offa maxillaria fuperiora; we fhall commence our defcription with them.

When the maxillary bones are united, the common bafe reprefents a parabola; it is arched inferiorly, to form the palate, and its circumference contains the alveoli of the teeth. A future, which extends from its anterior part backward, divides it into two femi-parabolæ. The body of the bones has the fame curvature, as it arifes from this bafe; but it foon enlarges towards the fides, and becomes flattened anteriorly. Its fuperior part, a proportion of which ferves for the lower furface of the orbit, is plain, almoit triangular, and inclined forward and outward. The internal edges of the fuperior furfaces

60 Lect. Vilf. Osteology of the Head.

faces of the fe two bones, do not come in contact like thofe of their bafe: on the contrary, they are very much removed from each other by the nafal foffa, which penetrates the face horizontally from before, backward, between the two offa maxillaria, and to which the arch of the palate ferves as a bafe. The external angle of the fuperior furface of each jaw-bone is inclined ftill more outward than the other parts; this gives to the lateral enlargement of thefe bones a fharp figure: to this external prominence, which is called the malar procefs, is articulated the cheek bone (os malue, or os jugale), one of the bones by which the face is joined to the cranium.

From the internal and anterior angle of this orbitar furface of the os maxillare, as well as from the anterior edge of the body of the bone, there arifes another apophyfis, called the afcending or nafal procefs, which forms the internal margin of the orbit, and articulates with a correfponding procefs of the os frontis. Between the nafal proceffes of the two offa maxillaria, we find the two bones of the nofe (offa quadrala, or offa luafi), which form a kind of roof above the entrance of the nafal foffe: this is onc of the points by which the face is attached to the cranium.

The os etbmoides is fituated between the orbitar proceffes of the maxillary bones. We have already obferved, in treating of the cranium, that
that the cribriform lamella of this bone fills up the vacant fpace of the os frontis, between the two arches of the orbits: there defcends from each fide of the cribriform lamella, a thin plain ${ }_{i}$ lamina, which joins the internal edge of the fuperior furface of the maxillary bone, and thus forms the internal parietes of the orbit. This lamina was formerly called os planum: between it and the nafal procefs of the os maxillare, there remains a fmall fpace, which is occupied by a thin bone, called os unguis, or lacrymale.

From what has been obferved, refpecting the os ethmoides, it will appear, that it may be faid to form the ceiling of the nafal foffa; this ceiling is very irregular ; we thall defcribe its different laminæ and finufes when we come to the article Smelling: at prefent we fhall juft mention, that there is a vertical lamina extended longitudinally over its middle part, and which, being continued with the romer, by means of a cartilage, divides the cavity of the nares into two portions nearly equal.

This cavity of the nares is extended pofteriorly beyond the offa maxillaria; its pofterior limits are partly formed by the os fphenoides, and partly by the offa palati.

The os fphenoides contributes to terminate the cavity of the nares pofteriorly, by the means of two proceffes, which defcend almoft vertically from each fide of its body, between the foramen rotundum, and foramen ovale; thefe

62 Lect. VIII. Osteology of the Head.

are called the pterysoid, or wing-like proceffes; they are divided pofteriorly by a foffa, into two lamina, called the internal and external wings, into which fome mufcles are inferted.

Between the anterior edge of this procefs, and the pofterior edge of the os maxillare fuperius of the fame fide, we find the os palati, which is a fimall bone, compofed of two laminæ, or principal parts; one is inferior and horizontal, and is continued with the arch of the palate, of which it forms the pofterior border; the other afcends againft the internal parietes of the nafal foffa, paffes over the os maxillare, and is arti-, culated with the fphenoidal and ethmoidal bones in the bottom of the orbit.

We have thus traced the middle junction of the face with the cranium, by the os frontis, os ethmoides, and os fphenoides. It remains for us to fhew how its lateral connection takes place, for which it is only neceffary to defcribe the os malæ.

This bone, as we have already obferved, is attached to the malar procefs of the os maxillare ; its external furface exhibits four edges: 1. That by which it joins the before mentioned procefs, and which forms an oblique future in the front of the face, under the eye : 2. That by which it affits, with the os frontis, and os maxillare, in completing the anterior frame of the orbit ; it is joined in this part to the os frontis, by an afcending procefs, which correfponds to
the external orbitar procefs of that bone: behind this procefs there is a lamina, which extends a little inward and backward. It unites with the orbitar procefs of the os fphenoides, and in concert with it completes the external parietes of the orbit: Laftly, The other two edges of the malar bone are feparated by a procefs called the zygomatic, which is connected with one produced from the os temporum, and with it forms a figure like the handle of a veffel, on each fide of the head, which is named zygoma, or the zygomatic or jugal arch.

The zygomatic procefs of the os temporum arifes a little above and before the meatus auditorius externus, by a double elevated ridge, and forms nearly two thirds of the jugal arch; under its bafe is fituated the glenoid cavity, which ferves for the articulation of the lower jaw. We fhall fhortly notice this laft part, to complete our account of the bones which compofe the face ; it will, however, be defcribed more in detail when we treat of Maftication.

The curvature of the maxilla inferior is nearly the fame as that of the alveolar edge of the offa maxillaria fuperiora. In white men its furface is continued with that of the upper jaw, but in negroes thefe two furfaces form anteriorly an angle of 70° : its lateral parts are more prolonged pofteriorly, and rife towards the zygomatic arch. This afcending branch is nearly fquare ; its fuperior edge is deeply notched; the

64 Lect. Vill. Osteglogy of the Head.

condyle, which ferves for its articulation, is fituated at the pofterior angle. The anterior angle, which is called the coronoid procefs, is Hat and pointed; it affords an attachment to the mufcles, which affift in maftication.

B. In other Mrammiferous Animals.

The flape and fize of the face depend chiefly on the form and extent of the bones of the upper and lower jaw.

Quadrupeds have two bones in the jaws, in aldition to thofe of man : they are called offa inter-miaxillaria, offa inciforia, or offa labialia, and are fituated at the extremity of the mouth, between the offa maxillaria: they contain the dentes incifores. This difference, however, between quadrupeds and man, is not in reality of very great importance ; for the future which feparates thefe bones from the maxillary, exifts alfo in the human foetus, and is obliterated at a very early period, in fome quadrupeds. The fkeleton of the joiko of the mufeum, though young, exhibits no trace of this future, but it is very diftinct in that of the orang-ontang.

The face of monkies, in other refpeits, does not differ from that of man, as to the manner in which it joins the cranium, nor as to the bones of which it is compored. Thic principal difference as to form, is produced by the great
elongation of their offa palati, and offa maxilJaria, in proportion to their height ; and by the anterior part of thofe bones being ificlined more or lefs forward, inftead of being almott vertical, as in man.

This prolongation of the face varies confiderably: in the different feecies : it may be deteromixed by the angle, which its anterior plane Iforms with its bafe, or the palate: this: angle is more acute in proportion as the face is elongated.

Thefe animals have frequently only one nafal bone, which is sery narrow. The fapizous, however, have always two : the interval between the orbits is more contracted than in man, and pofteriorly it is reduced to a fimple partition. It is thus in the guenors, and in the faprijous. But the oratgs, the madgots, and the alouates, have this interval fufficiently broad to allow the nafal foffre to afcend into it.

The face of the Sarcophaga: is diftinguifhed from that of the Quadrumanas ift,: In having the afcending proceffes of the offa maxillaria much broader, which removes the orbits to2 wards the fides; 2dly, Beciulfe the orbitar furface kloes not form the inferior; but the anterior pa--rietes of the orbit; 3dly, Becaufe the os malæ meither articulates with the os frontis nor os fphemoides, and only contributes to form the rygomatic arch, and the inferior edge of the orbit; 4 thly, Becaufe the orbit is not inclofed Vol. II.
li
either
either pofteriorly or inferiorly, and communicates frecly with the temporal foffa; 5 thly, Becaufe the offa palati are much elongated, and form a confiderable portion of the internal parietes of the orbit, to which the os ethmoides contributes nothing.

The fnout alfo differs with refpect to the degree of its elongation; the anterior opening of the nofe is truncated more or lefs obliquely at the extremity.

The os lachrymale advances a little upon the cheek in fome fpecies, as the fiying lemur.

The feparation of the orbits is ftill larger in the Rodentia than in the Sarcophaga; their inter-maxillary bones, which are immenfe, in confequence of the magnitude of their incifive teeth, throw the offa maxillaria very far back : the latter form a great part of the internal parietes of the orbit, in which the palate bones occupy only a fmall fpace. The anterior parietes are formed by a procefs of the os maxillare, which affifts in compofing the zygomatic arch, fo that the cheek-bone is fufpended in the middle of that arch between the maxillary and temporal proceffes; it neither joins the os frontis nor the os fphenoides. The elongation of the bones of the nofe is fuch, that the aperture is always fituated at the extremity of the fnout.

The face of the clepiont has the greateft refemblance to that of the Rodentia; the magnitude of the inter-maxillary bones, the pofition
of the offa maxillaria, and offa malarum, and the connections of the latter are imilar. The height of the alveoli of the turks elevates, however, the fituation of the nofe, and fhortens its bones. This circumftance completely changes the phyfiognomy of the head:

The face of the floths is very fhort fuperiorly, in proportion to the cranium : the offa naxillaria extend to the internal furface of the orbits : the os malre is attached to the os maxillare only; it does not join the zygomatic procefs of the os temporum, and there is a vacant interval between thefe two bones: the offa malarum have a long defcending procefs. Though thefe animals want the incifive teeth, they have two very fmall offa inter-maxillaria, which form the inferior margin of the aperture of the noftrils.

In the long-nofed Ecientata the face has a conical form ; the maxillary bones do not extend to the orbit; the os lachrymale, being very large, feparates them from it; and the os palati, which is very long, forms alone the lower part of the internal parietes of that foffa ${ }_{\text {ar }}$ The pterygoid proceffes are fupplied by two laminæ, which are continued with the offa palati, and which, joining each other inferiorly, prolong the canal of the nares to the foramen magnum. The zygomatic arch is not entirely offified in the ant-eaters and pangolins, but it is completed in the oryeteropus, or cape ant-eater, and in the armadillos. The fituation of the os malx of

68 Lect. Vili. Osteology of the Head.
thefe animals is almoft the fame as in the Rodentia.

The form and difpofition of the bones of the face in bogs, are nearly the fame as in the Sarcophaga, except that the olla lachrymalia advance farther upon the cheek. In the tapir, the os maxillare is directed backward under the orbir, to which it furnifhes a kind of horizontal floor. The bones of the nofe do not form an arch, which, with the offa maxillaria, would inclofe the nafal cavity, but only furnifh to it a kind of projecting roof, which fupports the fuperior part of the probofcis.

The os maxillare of the rbinoceros paffes under the orbit, as in the tapir; the offa nafi do not form a continued canal with the maxillary bones, but a kind of fufpended arch, which is very thick, and which fupports the horn: when there are two horns, the pofterior one is fupported by the os frontis. The inter-maxillary bone is very finall.

The difpofition of the offa nafi is the fame in the bippopotamus as in the hog; the inter-maxjllary bones are very large; the jaw-bones do not form the lower part of the orbits; their anterior portion, which contains the tufks, is directed confiderably outward. This circumftance produces that great breadth of the muzzle obferved in the hippopotamus. The os malæ has a poft-orbitar procefs, which nearly joins that of the os frontis; but it does not unite to the
os fphenoides, and the orbit is not feparated from the temporal foffa pofteriorly, though its frame is almoft complete.

The daman (byrax), which fhould be claffed with the Pachydermata, and not with the Ro dentia, to which order it has hitherto been referred, refembles the hog in the difpofition of the bones of the face : it is only proportionally fhorter, and the maxillary bone paffes under the orbit, fo as to form its inferior parietes, as in the tapir.

The face of the Ruminantia has much refemblance to that of the hog; the inter-maxillary bones are prolonged farther forward, and are not furnifhed with teeth, except in the camel ; the offa maxillaria form a fmall part of the floor of the orbit. The os lachrymale is extended confiderably forward on the cheek, where it is perforated in different ways, and moft remarkably in the deer. The poft-orbitar procefs of the os malx unites by a future to a like procefs of the os frontis, and thus completes the frame of the orbit; but as it does not touch the os fphenoides, there remains a large communication pofteriorly, between the orbit and the temporal folla.

The face of the Solipeda differs little from that of the Ruminantia, except that it is not joined to the os frontis by an afcending procefs of the os malæ; on the contrary, a procefs defcends from the os frontis, and joins the body of the os malæ, behind the orbit.

The orbits are always widely feparate from each other in the Ruminantia and Solipeda.

The magnitude of the alveoli of the dentes canini greatly enlarge the os maxillare of the morre, and give a fwollen appearance to the anterior part of the muzzle, but the connection of the bones is nearly the fame as in the Sarcophaga.

In the lamantin, the offa maxillaria are not much elevated; they form a bafe to the orbit, and afterwards extend to a confiderable diftance behind it. That foffa being much advanced, a procefs of the os frontis, which is extended forward and outward, forms the roof of the orbit, and contributes to inclofe the anterior aperture of the nafal foffa, which is very large, and has its plane directed upward. The inter-maxillary bones are very extenfive, although the incifive teeth are wanting.

In the Cetacea, the maxillary and inter-maxillary bones are prolonged into a kind of flattened beak, which they divide into four parallel bands, the offa inter-maxillaria forming the two middle, and the maxillaria the two external bands. The latter only contain the teeth in thofe genera which are furnifhed with them. The nafal foffa is perforated vertically in the anterior part of the cranium ; the inter-maxillary bones afcend to it, and inclofe it anteriorly and on the fides. The offa maxillaria alfo afcend fo as to cover all the part of the os frontis, which

Art. V. Bones of the Face.

which forms the arch of the orbit, but they do not enter into that cavity. The offa nafi are two finall tubercles implanted in the os frontis above the aperture of the nares. The os malæ has a ftyloid form, and is fufpended by cartilages below the orbit. The frame of this foffa is completed pofteriorly by a procefs of the os frontis, which defcends to join the zygomatic procefs of the os temporum, but the orbitar and temporal foffæ communicate with each other below that procefs.

C. In Birds.

We have already fhewn that the os frontis of birds is prolonged above the orbits in a plate more or lefs thick, more or lefs narrow, and more or lefs notched, under which is fituated vertically the feptum, which feparates thefe two foffæ, and which adheres by its fuperior edge to the os frontis, and by its pofterior to the os fphenoides. The inferior and anterior edges of this feptum are free from adhefion, but they articulate with the bone of the bill, as we fhall hereafter explain.

The os lachrymale, or os unguis, is articulated to the external and anterior angle of the os frontis. It has two principal proceffes : one extends from above downward, and forms the anterior margin of the orbit; the other is diF4 rected

72 Lect. Vili. Ostrologyofthe Mead.

rected from before backward, and forms the fuperciliary ridge. The laft procefs is moft remarkable in the diurnal birds of prey, in which it is prolonged by an epiphyfis, in the form of a plate, and produces a confiderable projection above the eye:

In the offrich there is a feries of fmall bones, which continues this arch to the fuperior edge of the orbit, leaving a vacancy between it and the os frontis. This procefs is very fhort, or is even altogether wanting in the oruls, the parrots, the grallæ, and the web-footed birds.

The defcending procefs of the os lachrymale is moft confiderable in the parrots; it extends backward to form the inferior margin of the orbit, which is complete irr this genus only.

Next to the parrots the ducks have this procefs the longeft, and the frame of their orbit is almoft complete.

The remainder of the face of birds is formed by the bone of the upper mandible, which, in them, reprefents the offa maxillaria, inter-maxillaria, nafi and palati of the mammalia; we even fometimes obferve futures correfponding to thofe which feparate thefe bones in mammiferous animals.

The form of the bone of the mandible is commonly that of the bill itfelf, to which it ferves as the mould or raucleus. It reprefents more or lefs accurately the half of a cone or pyramid; the convex furface of which is outward
ward and upward, and the plain or concave furface of which fupplies the place of the palate. We thall not here defcribe the forms and curvatures of different bills. That is one of the objects of natural hiftory; and befides we fhall have occafion to return to it when we treat of maftication.

The bafe of the convex furface of the mandibula is united to the anterior extremity of the os frontis, fometimes by a moveable articulation; and fometimes their parts are foldered together, but always in fuch a manner as may admit fome degree of motion, as the offeous lamina at this place is more or lefs elaftic.

The bafe of the palatine furface of the bill is divided into four branches, which extend backward as they diverge, and which are fometimes articulated, and fometimes intimately united with the bone of the mandible. 'The two external branches correfpond to the zygomatic arches ; they are gencrally thin, and articulate pofteriorly to a fmall bone peculiar to birds, called os quadratnm, which moves upon the temporal bone before the ear. The two intermediate arches correfpond to the pterygoid proceffes of nammiferous animals. They arc almoft parallel, are fituated under the feptum of the orbits, and are not above half the length of the zygomatic arches; but there is a fmall flender bone at their pofterior extremity, which alfo joins with the os quadratum. We flall deferibe in detail all thefe parts, and the variations they undergo,

74 Lect. VIII. Osteology of the Head.

undergo, when we come to the article of Maftication, as it is on them the mobility of the fuperior mandible of birds depends. The inferior mandible is articulated to the os quadratum.

D. In Reptiles.

In the crocodile the face refembles one half of a cone irregularly flattened on its convex furface. It is chiefly formed by two offa maxillaria, and two offa nafi, which are fituated almoft parallel to each other, and two offa inter-maxillaria, which form the end of the muzzle, and furround the aperture of the nofe like a ring.

The bones analogous to the lachrymalia are four in number, two on each fide. The os malæ, which is very large, after forming the inferior, and affording a fmall procefs to the pofterior edge of the orbit, extends directly backward to join the great maftoid protuberance: thus the temporal foffa has no communication outwardly, except by a hole which is fmaller than the orbit, and the greater part of which is covered by thefe bones, as, by an arch.

The nafal foffre are continued in a long and narrow tube under the foramen magnum. They perforate the offa palati, and a particular bone which is analogous to the pterygoid proceffes of the os fphenoides. This bone is fituated almoft precifely under the cranium, and is enlarged on each
each fide until it forms a kind of fquare and almoft horizontal wing. An offeous branch unites it laterally to the os maxillare and os malx, in fuch a manner that a large hole is left on each fide of the arch of the palate.

In the camelion the face is concave fuperiorly, and bordered by a ferrated ridge throughout the whole of its circumference. We obferve two holes which communicate with the orbits, and two other oval foramina, which correfpond to the incifive holes in the palatine furface. The bones which compofe the face are nearly the fame as thofe of the crocodile. The other lizards exhibit ftill lefs difference.

The frog and the falamander have the nafal and inter-maxillary bones very fhort, and broader than long, which renders their face round anteriorly. The os maxillare is very narrow, and is farcely contracted in forming the zygomatic arch. The orbits are large, but have no inferior furface, and therefore communicate with the palatine foffa. The offa palati form the anterior edge of the orbitar foffa inferiorly. They refemble portions of a circle. They are furnifhed with pointed teeth on their circumference. The canal of the nares is very fhort in the falamander. There is only a fimple hole in the frog.

The face of the Surinam toad is very flat, but the bones are the fame as in the frog. The orbitar

56 Lect. Vili; Osteolocy of the Head.

bitar foffix are oval, and no aperture fimilar to the canal of the nares can be diftinguifhed.

The face of Serpents is rounded nearly in the. fame manner as that of the lizards. Between the os frontis and os parietale, there is a particular bone which terminates the frame of the orbit pofteriorly. Thefe animals have no os malx. We can, however, eafily diftinguifh two offa nafi, two offa maxillaria fuperiora, two offa inter-maxillaria, and fome bones analogous to the palatine arches of birds, which are furnifhed with teeth, and which are articulated to the bone which fupplies the place of the os quadratum, with refpect to the lower jaw. Two particular bones unites thefe arches to the maxillaria fuperiora.
In thofe that have teeth or poifonous hooks, as the viper, the rattlefnake, \&c. there are befides two fmall peculiar bones, articulated and moveable, which fupport thofe teeth. They are fituated upon the inter-maxillary bones and the anterior extremity of the offeous branch which joins the fuperior maxillary bone to the arch of the palate.

The face of the tortoife is circular before, and rounded on every fide. It is compofed of nearly the fame bones as that of the crocodile. The inter-maxillary bones are, at a very early period, confolidated with thofe of the upper jaw. The bones analogous to the os malx are three in number:
number; one articulates with the os temporim and with the two others; it is fituated pofteriorly, and forms the zygomatic arch. The other two portions are received on its anterios extremity; one extends upwards, and unites with the orbitar angle of the os frontis; the other is directed downward, and arriculates with the pofterior and external procefs of the os maxillare fuperius.

The offa palati are broad, and form the pofierior arch of the nafal foffe.

The bones of the face of tortoifes commonly cover each other at their edges, "which are refined into thin laminæ. It is therefore very difficult to diftinguifh the futures.

In the fea tortoijes the temporal foffre, which are very deep, are covered by an offeous lamina, which forms a very folid arch above then.

> E. In Tishes.

Fifhes, like birds, have commonly a feptum or vertical lamina between the orbits, which proceeds from the bafe of the cranium. This lamina is very remarkable in the anarrbiclas, which has it entirely offeous. In the greater number of other fifhes it is membraneous, and fupported inferiorly by an offeous canaliculated ftalk, which is directed towards the end of the mouth, where it is enlarged, and to which it is offifed. This

78 Lect. Villi. Osteology of the Head.

bone refembles the vomer. It is greatly elongated in the whiting, the turbot, \&c.

The offa palati, which are fmall, receive the anterior extremity of the vomer. They are furnifhed with teeth in a great number of fifhes. The form and difpofition of thefe teeth vary confiderably, as will appear when we treat of Maftication.

Two bones, and even fometimes four, proceed from the anterior and fuperior parts of the cranium to the anterior extremity of the vomer. They reprefent the offa nafi. They cover the olfactory nerves; a fmall interval is left between them in the filurus galeatus.

As in birds, there is on each fide of the cranium a large moveable bone, to which the lower jaw and the arches of the palate are attached, but in fifhes it alfo fupports the operculum of the branchix. It is not fquare as in birds; it is elongated, flattened, and bent lengthways, fo as to prefent its concave edge anteriorly, and its convex edge pofterioply towards the branchiæ. This bone is exceeding large in the pleuronectes. It has fome acceffary laminæ in the perch, the pike, and a number of other fifhes.

* The arches of the palate appear to form part of the offa maxillaria fuperiora. They are articulated to the bones which fupport the lower jaw ; they are frequently flattened, and project from the lateral parts of the mouth, as in the
dory, the whiting, the berring, \&c.: they are cylindrical towards the middle, flat pofteriorly, furnifhed with teeth in the front, and fituated in the centre of the mouth, in the fea-wolf, or anarrbicbas.

The zygomatic arches are fituated obliquely; they defcend from before backward, between the extremity of the fnout, behind the inter-maxillary bones, and the middle or pofterior portion of the lower jaw ; their pofterior extremity frequently does not extend to the bone analogous to the os quadratum of birds: when this is the cafe, it remains free in the flefh, as in the berving, the pike, the perch, the Sea-dragon, and fome pleuronectes, as the plaice and the fole. Thefe zygomatic arches never extend to the teeth.

Two bones, commonly furnifhed with teeth, are fituated before the anterior extremities of the arches; they may be regarded as inter-maxillary bones; they form the anterior part of the frout; they are very large and folid in the anarrbichas; narrow, and much elongated pofteriorly, in the whiting, the perch, and the Sea-dragon; fhort, triangular, and flat in the pike, and the chatodons; that on the fide, which does not contain the eyes, is confiderably more developed in the pleuronettes.

Befides the anterior and pofterior orbitar proceffes which form the anterior part of the cranium, there is a bone, or rather a feries of fmall

80 Lect. Vili. Osteology ofthe'Head.

boncs, fituated under the orbit, which completes the frame of that cavity ; thefe bones appear analogous to the os lachrymale: they are wanting in the falfe orbit which we obferve on one fide of the head of the pleuroneites.

The face of the Chondropterygii, though fimilar in its compofition to that of other fifhes, differs from them with refpect to its connection, as it i articulated with the cranium only, by the means of the bone analogous to the os quadratum of birds.

Article Vi.

Of the Fofle of the Face.

$$
\text { A. } \cdots I_{n} \text { Man. }
$$

A front view of the face exhibits three principal foffe; the nofe and the two orbits.

The anterior aperture of the nofe is oval, and notched in the middle by a friall fpine; 'it is bounded by four bones, the two fuperior maxiltary, and the two nafal. The interior of this fofla will be defcribed more in detail when we come to the article Smelling.

The orbits are two foffe, the margin of thich is irrcgularly rounded, and almoft rhomboidal; they are contrancd into the form of a funnel ;
the edges of their aperture are nearly in the fame plane. Three bones contribute to the formation of thefe edges, the os frontis, the os maxillare, and the os malx. Seven bones form their parietes, viz. the frontal; ethmoid; lachrymal, palatine, maxillary, thalar, and fiphenoid: their internal, external, and inferior parietes are almoft plain; the fuperior is concave, the internal or nafal parietes of the two orbits ate parallel to each other ; the internal fide forms, with the external, an angle of about 45°; and the axes of the two orbits form an angle of fimilar magnitude.

On viewing the face laterally, there appears a large depreffion, fituated behind the orbit. It is called the temporal foffa; a confiderable portion of it is impreffed on the cranium. The zygomatic arch extends like a bridge over this foffa, which becomes deeper as it defcends be-fore-it is moft hollowed at the pofterior furface of the fuperior maxillary bone, and the adjacent portion of the os fphenoides. The part which is oppofite to the zygoma is called the zygomatic foffa; fome mufcles are lodged in it. When the face is viewed inferiorly, this foffa is alfo feen.

In this laft view of the face, we alfo perccive the palatine foffa, or arch of the palate, encircled on the front, and on the fides, by the teeth:- the pofterior extremity of the nafal foffix, and at their fide the plerygoid foffee, fituVoz. II.

G
ated

82 Lect. Vili. Osteology of the Heaid.

ated between the two proceffes of that name, which belong to the os fphenoides.-Laftly, all the fpace included between the foramen magnum, and the pofterior margin of the palate, which is called the guttural foffa.

B. In other Animals.

We fhall proceed to confider each foffa of the face feparately, in all the claffes of animals.

1. Nafal Foflee.

a. The anterior aperture of the nafal foffa in the jocko, is, as in man, broadeft inferiorly.

In the orang-outang, the fapajous, the alouates, and fome guenons, it is oval, and is broadeft in its middle part. In other guenons, as the Cbi_{-} nefe monkey, \&c. in the Barbary ape, and the mandrils, it is broadeft towards the upper part. In all thefe animals this aperture is flattened down upon the face, and furrounded by four bones only, viz. the offa nafi, and the offa in-ter-maxillaria.

In the Sarcophaga, this aperture approaches nearer to the end of the fnout; its form is nearly round, but broadeft towards the upper part ; it is inclined more backward in the feal, than in the other genera.

In the Rodentia, it cuts the end of the muz-
rie vertically ; its form is that of a heart, with the broadeft fide uppermoft.

This form is nearly fimilar in the Edentata. In the flotbs, however, the aperture of the notrils is furrounded by fix bones, viz. the inter-maxillary, maxillary, and the nafal. In the anteaters, this foffu is extended towards the foramen magnum.

The nafal foffe of the eleploant open at nearly an equal diftance between the fummit of the head, and the edge of the alveoli; their breadth confiderably excceds their height, and their form refembles that of two ovals joined together.

In the Pachydermata the offa nafi of the bog form a pointed projection over the aperture of the nafal folle. Between their point, and the correfponding part of the offa inter-maxillaria, there are two fmall peculiar bones, which ferve to flrengthen the frout, called the bones of the finout. In the rbinoceros, and particularly in the tapir, the aperture of the nares is confiderably longer; the offa nafi advance upon it beyond its anterior extremity in the rhinoceros, but only one third of its length in the tapir: in both it is furrounded by fix bones. In the bippopotanous the aperture of the nofe is very broad, and fituated vertically at the end of the muzzle.

In the Ruminantia this aperture is very large, and inclined backward. The offa nafi form only a fhort ferrated projection in the ox, the deer, the camel, and the mu/k. The projection is G 2
pointed
*'4 Lect. VIII. Osteology of the Head.
pointed in the antelopes, the Jicep, and the goats.

In the morfe this projection is long and pointed:

The morfe has a fmall round aperture in the middle of the end of his thick frout; the dugon and the lamantin have a large oval aperture directed upward; their offa nafi are very fmall.
In the Cetacea the aperture of the nares is directed upward, or even backward; it is more broad than long, and furrounded by fix bones; the offa nafi are fmall tubercles.
b. The nafal foffæ of birds do not form a canal paffing from before backward, but merely a cavity which occupies the thickeft part of the bafe of the bill, and which opens upward by two nares, and downward by a fiffure, leaving between them the two palatine arches: it is not feparated from the orbit pofteriorly by an offeous lamina, but by a membrane.

The external aperture of the nares is formed in the bafe of the convex furface of the bill. Its figure and magnitude, which vary confiderably, fhall be defcribed when we treat of the Orgàn of Smell.
c. The nafal foffa of tortoifes forms a large fpace occupying the thick part of the nofe before the eyes; it is very fhort from before backward; it opens outwardly by a large hole almoft fquare, the plane of which is a little inclined, and pofteriorly by two round holes, which correfpond
nearly to the middle of the palate; its anterior aperture is furrounded by fix banes.

In the crocodite the nafal foffa is a long narrow canal, which extends from the end of the fnout to below the occiput ; its anterior aperture is directed upward; it is furrounded by the two offa inter-maxillaria only.
The nares in other lizards open nearly in the fame manner as thofe in birds, that is to fay, outwardly upon the nofe, and inwardly on the middle of the palate. In frogs they are still fhorter.
d. The nafal foffe of rays and 乃orks, are fimple cavities formed in the bone, and do not communicate with the mouth; it is the fame in feveral offeous fifhes, fuch as the gurnards; but in moft of the other, fifhes thefe foffæ are in part offeous, and completed by membranes.

2. Orbitar Fofire.

a. All the monkey tribe have their orbits directed forward, as in man, and the angle formed by their axes is even fmaller than in the human cranium. The form of thefe cavities, and the bones which furround them, exhibit no difference, but the fhape of their margins vary. In the jocko they are fimilar to thofe in man. The orang-outang and the fapajous have them of an oval form, always higher than broad. In the gucinons, the fuperior arch is lefs curvated than
the reft of the margin, which produces a conspicuous angle on the fide of the nofe; the breadth of their foffre exceeds their heighth: this difference is ftill greater in the Barbary ape.

The angle formed by the axies of the orbits, cnlarges in the other animals, as we have already remarked. The margins of the orbitar foffe are nearly round in the Sarcophaga, the Rodentia, the Edentata, and the Pachydermata; but pofteriorly there is always an arch which is not inclofed by the bones; there is alfo no partition between the orbit and the temporal foffa. In treating of the face, we have already pointed out the differences which prevail in the number and kind of the bones that contribute to form this foffa.

The Ruminantia and the Solipeda have a round orbit, the margin of which is complete, but it is not feparated from the temporal foffa.

The roof of the orbit of the Cetacea is femicircular ; their two axes are in the fame right line : they have no inferior parietes.
b. The orbitar foffæ of birds are fimilar to the impreffions which might be produced by two fingers pinching the cranium in a foft fate ; they have no offeous parietes inferiorly: the lamina which feparates the orbits is only partially offfied, and the portion which continues membrarous is even very large in fome birds; but there is nothing uniform in this refpect.
c. The orbitar foffie of reptiles are never fo-
parated'from the temporal foffæ, except by an offeous branch, which even is not complete in the lizards and the tortoies, and which does not exift at all in frogs, falamanders, and ferpents.

The plane of the edges of the orbit is lateral in tortoifes, Serpents, and the camelion: it is directed more or lefs upward in the crocodiles, fa lamanders, and frogs.

It varies from a circular to a triangular form.
The inferior parietes is never complete; it is fometimes entirely wanting; at other times it is perforated by a large hole. The fame obfervation applies to the feptum between the orbits.
d. The orbitar foffa of fifhes varies confiderably with refpect to its fhape, its direction, and the compofition of the bones that form its edges. It is lateral in the greater number, but is directed upward in fome, as in the far-gazer, and feveral others. The pleuronezles have only one perfect orbitar foffa. We can, with difficulty, difcover the fecond in their fkeleton; becaufe it is placed on the fame fide with the other, and is exceedingly frmall and deformed.

The inferior margin of the orbitar foffa is formed, in fome fifhes, by a continued piece analogous to the os malx ; and in the others, by a feries of fmall bones, fufpended by ligaments articulated to each other. There are frequently five of thefe bones.

There is never any offeous feparation between

88

 Lect, Vili. Osteology of the Head.the orbits and the temporal and palatine foffe.

> 3. Temporal Fofie.
a. The extent of the temporal foffa depends on the magnitude of the fpace depreffed on the fide of the cranium, and of the external convexity of the zygomatic arch ; this foffa is entirely occupied by the temporal mufcle which raifes the lower jaw. It appears, however, more proper to refer aur account of this foffa to the article on Maftication.

To the fame article we fhall alfo refer the confideration of the palatine pterygaid, and guttural foffe.

Article VII,

Of the Hotes of the Face.

> A. In Man.

The orbitar foffa communicates with the interior of the cranium, by the optic foramen, and by the Jpheno-orbitar fiffure, of which we have already treated; it communicates with the deep portion of the temporal foffa, by the Jphenomaxillary fiffure, extending between the orbitar procefs of the os fphenoides, and the orbit furface
furface of the os maxillare, which are not united. Part of the fifth pair of nerves paffes through this fiffure, as it proceeds from the orbit into the temporal foffa. The communication of the orbitar with the nafal foffa takes place, firft, by one or two fmall holes, fituated fometimes in the os frontis, and fometimes in the future, by which it joins the os planum ; thefe are called the anterior internal orbitar foramina; they afford a paffage to the nafal nerve, which proceeds from the ophthalmic branch of the fifth pair. Secondly, it communicates with the nofe by the lacbrymal canal, which paffes along the inner margin of this foffa, and is fituated partly in the afcending procefs of the os maxillare, and partly in the os lachrymale; it defcends almoft vertically into the nofe.

The fpheno-maxillary fiffure is prolonged a little as it defcends into the temporal foffr. In its deepeft part is found the spbero-palatinc hole, which is formed by a groove in that part of the palate bone which joins with the body of the os fphenoides ; it extends partly into the nofe, and affilts in forming the orifice of a fmall conduit, which defcends between the os palati and the pterygoid procefs; and which opens towards the pofterior angle of the arch of the palate, by a hole called foramen guffatorinn, or polterior suftatory hote; it affords a palfage to a fmall ramification of the fifth pair of nerves, in its courfe towads the fuperior maxillary branch.

There

90 Lect. Vili. Ostelogy of the Head.
There is alfo in the middle future of the arch of the palate, and immediately behind the dentes incifores, a fingle hole, called foramen inciforium. Some branches of the fuperior maxillary nerve pafs through this hole.

Lafly, we obferve in the front of the face, and under the orbit, another hole, called the fub-orbitar foramen. It ferves as the outlet of a fmall canal, which palfes under the floor of the orbit, and gives exit to the lan branches of the fuperior maxillary nerve. We alfo remark a much fmaller hole above the orbit, which is fometimes merely a notch; it is called the fuperciliary foramen, and tranfmits the frontal branch of the ophthalmic nerve.

B. In other Animals.

We fhall confider the principal holes of the face as they appear in the different claffes of animals.

The lachrymal canal we fhall omit till we have occafion to treat of the Eye.

> 1. Spheno-maxillary Fifure.

The fpheno-maxillary fiffure of the monkey kind is much fhorter than that of man; it is reduced to a limple hole in fome fapajous. It is entirely clofed in the alouate; it is partly fupplied
plied by a hole in the cranium, fituated behind the orbit, at the deepeft part of the zysomatic foffa, and probably alfo by a pretty large round hole fituated in the os malæ.

The animals that have no partition between the orbit and the temporal foffa, have alfo no fpheno-temporal fifure ; the latter, therefore, does not exift in any of the mammalia, except the Quadrumana, nor in any of the orher claffes.

2. Internal Crbitar Foramina.

The anterior and pofterior internal orbitar foramina, are very fmall in the monkies; the latter is even often wanting; when it exifts, it paffes through the os frontis.

In the Sarcophaga, the anterior foramen is very large, and fituated at the inferior part of the orbit in the os maxillare: the pofterior foramen terminates in the cranium by an aperture, fituated behind and above the cribriform lamella.

In the Rodentia, the anterior foramen refembles that of the Sarcophaga; the pofterior is fimaller, and fituated entirely behind the cribriform lamella.

In the Edentata, the anterior internal orbitar foramen is fituated altogether in the lower part of the orbit, and perforates the os palati: the pofterior foramen, on the contrary, is fiteated above,
above, and fomewhat before the orbit, in the body of the os frontis.

In the elephant the two internal orbitar foramina are formed in the os frontis; the anterior fomewhat before the orbitar fiffure, and the pofterior under the offeous ridge which covers that fiffuse; the aperture of the latter, in the cranium, is fituated behind, and a little above the cribriformolamella.

It is nearly the fame with refpect to the other Pachydermata.

In the Ruminantia and Solipeda, the anterior internal orbitar hole is very large, and perforated below and before the orbit, between the os palatiand the os fphenoides: the pofterior is alfo confiderable; it is directed towards the fide, and behind the cribriform lamella.

It is very difficult to trace thefe holes in the Cetacea, becaufe they are covered with offeous laminæ, and are very fmall.

The internal orbitar foramina do not exift in the other claffes of animals.

3. Foramen Inciforium.

a. In all the mammalia, the foramen inciforium belongs to the inter-maxillary bones; it is ifmall and fingle in the jacko and the orang outang; but it is fomewhat enlarged in the other monkies, and in the Sarcophaga it is double.

In the Rodentia the bares have it very large,
even exceeding the folid part of the palate; it. is fmaller in the other genera; it occupies nearly the middle fpace between the incifor and the malar teeth.

The Edentata, which have very fmall intermaxillary bones, have alfo the foramen inciforium fmall, and fituated near the end of the muzzle.

It is fingle and elongated in the tapir and the rbinoceros. In the elephant its place is fupplied by a long narrow canal.

In the Ruminantia it is exceedingly large ; it is oval, double, and fituated quite at the end of the fnout.

It is nearly fimilar, but lefs in borfes and bogs. In the horfe there is a fingle round hole, fituated before the two incifive holes.

It is almoft obliterated in the trorfe; fmall, and much removed from the edge of the alveoli in the dugon; fingle, oval, large, and fituated clofe at the end of the fnout in the lamantin.

The Cetacea have no foramen inciforjum.
b. In fome birds, as the beron, the fiamingos, the eagle, \&c. the incifive foramina are fmall and numerous; there is only one of a middle fize, and fituated towards the bafe of the bill, in the duck, the curaflore, the cormorant, the Spoonbill, \&c. The cafforvary has a fmall foramen fituated towards the point of the bill. The ore/s and the cocks have it pretty large. It is of a very great fize in the offrich.
c. The

94 Lect. VIII. Ostelogy of the Head.

c. The foramen inciforium of the crocoltite i. confiderable; as is likewife that of the frog and the falamander. The cortoife has two very fmall foramina. We have not been able to difcover them in the other lizards.
d. There can be no foramen inciforium in fifhes, as no part of their face can, with propriety, be called the nafal cavity.

4. Sub-orbitar Foramen.

The fub-orbitar foramen is fingle only in the jocko. There are two fmall foramina in the orang-oulang, and the fapajous; three in the greater number of girenons and magols; four or five in the macaques and mandrils; the lemurs have but one.

There is alfo only one in the Sarcophaga; it is pretty large, and fhould rather be named the ante or pre-orbitar foramen: it is fituated farther forward in dogs than in the other genera.

In the Rodentia it is fimple, and exceedingly large. In the cavys, the agoutis, the porcupines, the rats, and particularly in the jerboas, it almoft equals the orbit in fize. It is formed in the malar procefs of the maxillary bone.

In the other genera of Rodentia, as the bares, beavers, fquirrels, and marmots, it is fmall, and fituated upon, or even before the firf dentes molares.

It is fimple and fmall in the flotbs, but in the long-

Art. VII. Holes of the Face.

long-nofed Edentata, it forms a canal in the bafe of the malar procefs of the os maxillare.

In the elepbant it is of a confiderable fize, and opens on the lower part of the malar procefs.

In the other Pachydermata it is nearly the fame as in the dog.

It is the fame in the Ruminantia and Solipeda.

The Jeals, the morfe, and the lamantins, have it fituated in the bafe of the malar procefs.

There are three or four of thefe foramina in the Cetacea, fituated in a longitudinal line; one of them is even perforated in the inter-maxillary bone; thofe that are fuperior have a retrograde direction. The pofition of the os maxillare in thefe animals places the formina above the orbit, inftead of below it.

There are no fub-orbitar foramina in birds, or in the other claffes, as the mammalia alone have lips.

5. Spheno-palatine Canal.

The fpheno-palatine canal of apes does not differ from that of man.

But in all animals, in which the temporal forfa is not feparated from the orbitar, we eafily diftinguifh a fuperior aperture fituated in the lower and fore part of the temporal foffa. It receives two canals, one of which extends to
96. Lect. Vili. Osteology of tue Head. the nofe; and the other to the palate; the latter is fometimes very fhort, and has often two or three openings into the palate. It is almolt horizontal in the Cetacea.

There is none in birds. We find it, however, in reptiles; not indeed in the form of a canal, but as a fimple hole in the palatine bone.

[97]

IECTURE NINTH.

OF THE BRACN OF ANIMALS WITH VERTEBRE.

Article I.

Of the Organization of the Nervous Sylem in General.
The nerves, with the central mafs from which they all arife, that is to fay the fpinal marrow and brain, form the common organ of fenfation and volition.

The fenfations we experience from the action of external bodies on our own, are more perfect in proportion as the nerves terminating at the part which receives the impreffion, arife more immediately from the medulla fpinalis, and through it from the brain.

If thefe nerves, however, are tied or cut, all the parts of the body to which they are diftributed become infenfible, whatever be the difance from the brain at which the fection or ligature is made.

In the fame manner, if we tie or divide the fpinal marrow itfelf in the neck, the whole body Vol. II. H becomes

98 L. IX. Brain of Animals with Vertebrap.
becomes paralytic and infenfible, though the vifcera may for a time continue their motions, becaufe they receive a great part of their nerves immediately from the brain. Finally, a general compreffion of the brain inftantly deftroys every kind of fenfation.

Thefe obfervations have produced the opinion that there exifts a fenforium commune, or centre of fenfation, to which the impreffions of all the nerves are tranfmitted; and this common organ is fuppofed to be the brain.

There are, however, feveral animals in which this union of the branches of the nerves, with their common trunk, is not neceffary to fenfation. We may, for example, completely remove the brain of a tortoife or a frog, and thefe animals will ftill feem to fhew by their motions that they poffefs fenfation and volition.

There are alfo infects and worms, which, when cut into two or feveral pieces, form immediately two or feveral individuals, having each a fyltem of fenfation and volition. It is only in the animals which are the moft perfect, and which approach neareft to man, that the connection of the different parts of the nervous fyftem, and particularly the prefence of its central parts, is abfolutcly neceffary to the cxiffence of its functions.

The neceffity of this comection increafes in proportion to the magnitude of the common trunk, compared with its ranifications. The
A. 1. Organization of the Nervous System. 99 more equally the medullary mafs is diftributed, the lefs effential is the exiftence of central parts: animals which have this fenfitive fubfance diffufed over the whole body, as is the cafe in polyps, may be divided and fubdivided to any degree of ininutenefs, yet each fragment will be endowed with a particular felf-exiftence, and become a feparate and perfect individual of its kind.

From thefeobfervations, it may be conjectured, that the parts of the nervous fyftem are homokeneous, and fufceptible of a certain number of fimilar functions, in the fame manner as the fragments broken from a large magnet, become each a fmaller magnet, having its poles and motion; and that in the higher orders of animals the connexion of parts is rendered neceffary only by acceffory circumfances, and the complication of the functions they have to perform, which is alfo the reafon that each part anfwers a particular ufe.

With refpect to the lait fact, it indeed appeats that the appropriation of certain nerves to the acquirement of determined fenfations, and of others to the performance of particular functions, is the effect of the nature of the external organs, in which the former terminate; and the number of blood veffels which the latter receive at their divifions and unions: in a word, it is rather to be alcribed to any acceffory nerves themfelves.

We fhall render the truth of this obfervation more apparent, by proceeding to confider the general diftribution of the nervous fyftem, and the nature of its fubftance.

With refpect to the difiribution, we find that, in all animals which have diftinct nerves, thefe nerves arife from one common mafs, which moft frequently is of a cord-like figure, and called the Spinal marrow; the anterior extremity of this medullary rope is always more or lefs enlarged, and exhibits feveral tubercles or eminences, which, in animals that have vertebræ, are fituated in the head, and have obtained the common name of brain.

There are animals, as fome Molufca, in which we difcover only a fimple medullary mafs without any cord-like prolongation.

The nerves arife by pairs from the common trunk, or from the mafs which fupplies its place, and ramify like the branches of a tree as they proceed to the parts they are deftined to animate.

Some of thefe nerves have a fimple origin; but the greater part arife or proceed from the trunk in feveral filaments, which afterwards unite and form one common fafciculus.

The principal branches of the nerves do not always continue to fubdivide: on the contrary,
A.I. Organization of ilo NervousSystem. ioi
it frequently happens that feveral branches, whether belonging to the fame or different nerves, unite and feparate again in various manners to form plexus, from which new trunks of nerves arife.

Neither do the ramifications always diminifh in thicknefs, in proportion as they divide. We very often meet with a branch which is thicker than that from which it proceeds.

It is even obvious, that the nerves muft increale in magnitude as they advance towards the extremities; for the fkin, which is fenfible in every part, and which confequently is every where furnifhed with nerves, has feveral hundred times more fuperficial extent than all the roots of the nerves taken together.

Communications are eftabliffed between a great number of very different nerves, by cords which extend from the one to the other : where thefe communications take place, there is almoft always an enlargement or fmall mafs of medullary matter, which feems to be only a very compact plexus, and which is called a ganglion.

Filaments, proceeding from feveral nerves, very often unite into one ganglion, from which other filaments arife, and are tranfmitted to different parts.

Sometimes alfo a fingle nerve fwells into a ganglion, and is afterwards contracted.

From this fummary defcription, it appears

102 L. IX. BrainofAnimalswithVertebrie.
that the comparifon of the nervous fyftem to the trunk of a tree and its branches is not perfectly accurate; it fhould rather be confidered as a kind of complicated net-work, in which the greater part of the threads communicate with each other, and in which there appear, at different places, maffes or enlargements, more or lefs confpicuous, which may be confidered as centers of communication.

The middle part of this net-work always preferves the greateft fize, the moft immediate connexion, and the moft powerful influence with refpect to all the other parts.

But the degrees of this influence vary as much as thofe of its proportional magnitude.

In the animals of the higher claffes, the fize of the medulla fpinalis vaftly exceeds that of the nerves which proceed from it, and the brain alfo greatly furpaffes in fize the fpinal marrow.

Thefe two circumftances are more remarkable in man than in any other animal. His brain is the largeft of all, in proportion to the reft of the nervous fyftem. In the other warm-blooded animals, the volume of the brain diminifhes in proportion as the fpinal marrow becomes larger. In the molufca there is only a brain, from which the nerves proceed like radii, and form foartered ganglia almoft as large as the brain itfelf. In infects, the brain is not larger than each of the numerous ganglia of the fpinal marrow, and the nexyes arife from both in the fame manner:
A. I. Organization of ibe NervousSistem.io3
thus, in proportion as we defcend in the fcale of animals, we find the medullary fubftance lefs concentred in a particular region of the fy ftem, and more equally diffributed to all the parts.

The texture of the nervous fyftem may be confidered in the brain, in the medulla oblongata, in the medulla fpinalis, in the nerves, and in the ganglia.

The brain of animals that have red blood and vertebræ, confifts of a mafs varying in folidity and firmnefs, eafily divided or compreffed, and flightly vifcous. We obferve in it two principal fubftances, the cortical and the medullary; and two others lefs extenfive, which are called the foft and the black fubftances. The brain of coldblooded animals is fofter than that of the warm blooded. Some fifhes have the brain almoft fluid.

The cortical fubftance is reddifh, and femitranfparent ; it appears homogeneous to the eye. Injections, however, penetrate its fubftance to a certain extent, and fhew that it is chiefly compofed of blood-veffels. Its pofition, with refpect to the medullary fubftance, varies in the different parts of the brain; but in the circumference of the hemifpheres, and of the cerebellum, it is external. Hence it has received its name. The limits of thefe two fubftances are very diftinct. They do not change by degrees into each other. The cortical fubftance poffeffes no fenfibility. Its quantity, with refpect to the reft of the brain, decreafes in the cold-

104 L. IX. Brainof Animalswith Vertebra.
blooded animals. It is proportionally greater in man than in other animals.

The medullary fubftance is white, opaque, and firmer than the cortical. It appears to the eye compofed of very fine fibres, the directions of which are various. Few veffels are obferved in it, and injections do not pervade its intimate ftructure. This fubftance forms the greater part of the interior of the brain; and the medulla oblongata, and medulla fpinalis, are its prolongations. Their texture is altogether fimilar to that of the medullary part of the brain. We obferve in them the fame fibrous appearance, mixed internally with a fmall quantity of cineritious fubftance.

The foft fubftance is greyifh, femi-tranfparent, and almoft fluid. In fome parts it covers the furface of the brain. The black, or blackijb fubftance, colours the medullary part of the brain in two places.

The medullary and cortical fubftances of white-blooded animals prefent no difference as to colour, and it is even with fome difficulty that we difcover any in their confiftence. The Cruftacea and the infects only have a kind of fpinal marrow. . It is compofed of a double medullary cord, united at different fpaces by ganglia. Perhaps it fhould rather be regarded as a kind of great fympathetic nerve.

The texture of the nerves ought to be confidered in their courfe, at their cercbral extremity

A.I. Organization of lhe NervousSystem.io5

mity or origin, and at their termination in the different parts of the body.

The nerves are not merely enveloped by membranes, which appear to be continuations of thofe that furround the brain. The membrane to which fome modern anatomifts have given the name of neurilema, (nerve-tunic), penetrates alfo into the interior, and forms fepta, which divide the medullary filaments from each other. The medullary fubftance may be diffolved by alcaline lixivia, and there will remain only the tubes formed by the neurilema. The latter may alfo be diffolved by acids; we then obferve that the meduliary filaments, which ftill remain, anaftomofe together in various ways. The nerves receive a conficicrable quantity of blood, which is tranfmitted to their fubftance by the veffels of the neurilema, in the fame manner as the blood is conveyed to the brain by the veffels of the pia mater.

The term origin of the nerves is applied to that part of them which is neareft the brain or medulla fpinalis, before it has entered the fheath furnifhed by the dura mater.

Some nerves appear to derive the medullary fibres, of which they are compofed, from the furface of certain parts of the brain. Such in particular are the olfactory and optic nerves in all red-blooded animals, and the auditory nerve in mammalia and birds. Others feem to come from the internal fubfance of the brain, into which

106 L.IX. Brainof Animals with Vertebrie.
which their roots may be traced like thofe of a tree into the earth. This is moft remarkable in the third pair of nerves in the mammalia; but the greater part of the nerves arife by filaments, which are connected to the medulla oblongata, or medulla fpinalis, and which unite to form nervous trunks. This, at leaft, is the difpofition which prevails in all animals that have red blood, with refpect to the nerves that fucceed the auditory, that is to fay, reckoning from the par vagum.

It is probable that all the nerves penetrate more deeply into the fubftance of the brain and medulla than it is poffible for us to trace them. It is even fuppofed that they crofs each other, fo that thofe which proceed to the left fide of the body arife in the right fide of the brain ; and that thofe tranfmitted to the right of the body come from the left of the brain. It is certain that wounds received on one fide of the brain have frequeently produced a paralyfis on the oppofite fide of the body. We can alfo clearly perceive the decuffation of the optic nerves of fifhes, and we conclude that the fame thing takes place in otheranimals, as one of the nerves frequently diminifhes in fize above and below the place where they are confounded in crofsing.

The fibres that compofe the medulla fpinalis feem alfo to crofs each other in the groove by which it is divided.

A.I. Organization of ibe Nervous System. 107

In animals that have white blood, the nerves proceed from the brain or the other ganglia; but they never arife immediately from the fpinal marrow. Their fibres, however, cannot be diftinguifhed either in thefe ganglia or the tubercles.

The termination of the nerves is different, according to the parts to which they are tranfmitted. Thofe which are diftributed internally, are accompanied by the neurilema to their moft imperceptible extremities. The optic nerve is terminated by a nervous expanfion which fpreads over the interior of the eye. The acouftic terminates by filaments which fwim in a gelatinous fluid. The nerves that belong to the organ of tafte are dilated in the nervous papillæ of the tongue ; thofe of feeling terminate in the papille of the fkin, \&xc.

The ganglia of red-blooded animals do not appear to differ from neroous plexus, except that the filaments which compofe them are more compact, and more intimately united. Even the fimple ganglia, that is to fay, thofe that are formed by a fingle nerve, are refolved, by maceration, into feveral filaments, which anaftomofe together.

It is the fame with refpect to the Molufea; but in the Cruftacea, the Infects, and the Worms, the ganglia are merely homogeneous enlargements of the medullary cord to which they belong.

From what has been faid, it is obvious, that
io8 L.IX. Brain of Animals with Vertebre.
we have but a very limited knowledge of the real texture of this medullary fubftance which forms the effential part of the nervous fyftem. Is it merely an accumulation of excretory veffels? Is it a kind of gland or parenchyma? Or is it fimply a homogeneous mafs? Each of thefe opinions has its partizans and its adverfaries.

The chemical nature of this medullary fubftance is alfo imperfectly known to us. It is certain, however, that it differs effentially from all other animal matter. It is foluble in cauftic alkali, and partly in oil: it is not fat: and yields no oil by expreffion. It dilutes, but does not diffolve in water; alcohol extracts from it, when warm, a fubftance, which in cooling precipitates into needles or fmall laminæ. This matter may be compreffed or extended between the fingers. It fofters a little at the heat of boiling water, becomes black at a greater heat, and burns without fufing, emitting the fame odour, and leaving the fame carbon as other animal fubftances. The medullary part of the nerves prefents the fame chemical refults as the medullary part of the brain.

Art. II. Action of the Neryous System. 109

Article II.

Of the Nervous Syftem confidered in Adtion.

The nervous fyftem is fufceptible of two kinds of action; one which is confined to our fenfitive faculty; and another which affects our vital and vegetative functions only. Voluntary motions and fenfations belong to the firft of thefe actions; the influence of the nerves on digeftion, circulation, and fecretion, to the fecond. The fympathies and phyfical changes which are the confequence of certain ideas, or of certain paffions, feem to participate in the effect of both.

Senfations may be divided into exlernal, internal, and Jpontaneous. The firft are produced by the impreffions of external bodies on our fenfes. The fecond by changes which take place in the fate of the internal parts of the body, to which the nerves are diftributed. The third refemble both the former as to effect ; but they are caufed by a change in the nerves, or in the brain itfelf, without any external excitement. The fenfations we experience in dreams are fimilar to thofe produced in us by external bodies: they originate, however, from motions produced in the brain by internal caufes, and may be excited or allayed by certain medicines.
ho L.IX. Brainof Animalswith Vertebrac.
Men who have loft their eyes frequently circam that they fee; thofe who have had their limbs amputated, imagine fometimes, even when awake, that they experience pains in the abfent members.

Thefe kind of fenfations tend to throw a light on the nature of others. They confirm what fections and ligatures of nerves had already fhewn; that fenfation does not refide in the external organs, but merely in the centre of the nervous fyftem, and that the external organs ferve only to receive the action of external bodies, and to convey it to the nerves, by which it is propagated to a greater difiance.

They alfo farther demonftrate, that this propagation is not produced by any matter or concuffion, which external bodies could alone communicate, but by a change in the fate of the nervous fubftance, which may arife from internal caufes.

This change may alfo be produced by exterternal caufes altogether different from thofe which ufually occafion it. A blow on the eye; the contact of two different metals, one piece being placed under the upper lip, and another under the tongue, make us perceive a flath in the fame manner as if light had really ftruck the eye: this can only take place in confequence of a change in the optic nerve fimilar to that which light itfelf produces.

Other phenomena afford fome farther no-
tions refpecting the nature of this change. It feems, for example, that the fenfitive faculty is confumed or exhaufted, not only in a body fa tigued by too lively or too long continued fenfations, but alfo in each particular organ. Feeble fenfations are fcarcely perceptible when they fucceed thofe that are much ftronger; a fenfation becomes weaker by duration, though the external bodies which caufe it remain the fame: for example, if at twilight we look ftedfaftly towards a point of the fky, in which fome obfcure body appears upon the azure ground, and afterwards turn the cye to another part of the fky, we fhall ftill continue to fee the figure of the obfcure body; but that figure will then appear more luminous than the reft of the fky . The caufe of this is, that the part of the retina, on which the fhade fell, receives a ftronger impreffion from the light than the part of the fame membrane which was expofed to its rays before, while the former part' experienced a kind of repofe. For the contrary reafon, after the eye has been fixed on a very luminous body, it fees for a time an obfcure fpot of the fame fhape as that body.

The other fenfes afford fimilar cxamples, but they are no fo cvident; becaufe in this we have the advantage of comparing two parts of the fame organ, which have been both acted upon, and one of which has experienced the action for a longer time than the other.

112 L. IX. Brainof Animalswith Vertebret.
This experiment flews that the nerves are not merely paffive agents with refpect to our fenfations; and that they are not fimply the conductors of a matter furnifhed by external bodies, nor even the refervoirs of a matter in which thefe bodies may excite vibrations, but that the fubftance which produces fenfation is liable to be confumed, or to lofe its activity, by exertion.

There are phrnomena which fhew that the general fufceptibility of the nerves, for receiving fenfations, may vary in confequence of caufes external to the nerves themfelves, and which can only operate by altering their fubftance. Certain medicines weaken or revive that fufceptibility-inflammation frequently encreafes it to an exceffive degree. Does this take place in confequence of an increafed fecretion of the nervous matter? the moft remarkable change that occurs in the fufceptibility of nerves, is fleep. It is not unnatural to fuppofe that this change may be occafioned by the temporary lofs of the fubftance which is effentially fenfitive. But how does it happen that fleep depends, in a certain degree, on the will? Why do we awake.fuddenly, or from caufes which do not appear calculated to reftore that fubftance? Why does cold produce fleep? From thefe obferva-tions may it not rather be fuppofed that this ftate is the effect of a change in the chemical nature of the nervous fubitance?

But whether the fubftance contained in the

Art. Il. Action of the Nervous Sistem. II 3
nerves is exhaufted by fenfations, or whether it merely undergoes an alteration in its chenical compofition, and becomes, as it were, naturalized, it muft remain in the nerve throughout the whole of its courfe, and leave it only at one of its extremities. It docs not, however, refemble the blood in the veffels, either as to the manner in which it is retained, or in which it moves in the nerve. There is no evidence of the nerves being tubular. No phranomenon indicates that any matter efcapes from them when they are divided. Befides, what veffels could have parietes fulficiently compatt to retain fo fubtile a fluid as that of the nerves muft be. It is far more probable that it is retained in the nerves, in the fame manner as the electric matter is in electric bodies, by communication and infulation; and that the nervous fyftem is its only conductor, while all the other parts of the animal body are, with refpece to it, cohibent: fubftances.

In whatever manner the received ation is tranfmitted, it is neceffary, at leaft in all the higher orders of animals, that it fhould be propagated to the brain. But what part of the brain is particularly deftined to receive its impreflion? Confederable portions of that vifcus have been loft by wounds, without producing any diminution in the fenfitive faculty. When wounds have penetrated farther, they have caufed pains and convalitions which have too much Vol. II.
altered

114L.IX.Brain of AnimalswithVertebrfe.
altered the refult of the experiment. Thefe means, therefore, are not capable of refolving the queftion. It has been endcavoured to form fome conjectures founded on the ftructure of the parts. It has been generally imagined that the common fenforium mult be found in fome central part, with which all the nerves might be fuppofed to communicate: fome havechofen for this part the pineal gland, others the corpus callofum; but the latter exifts only in the mammalia and the pineal gland, only in redblooded animals; the latter even is not very apparent in all fifhes. The cerebellum is the only part of the brain which conftantly exifts in all animals that have a vifible nervous fyftem; and on this account it might have fome claim to the poffeffion of this common fenforium : but it has been fuggefted by M. Sommering, that a folid part is not fufficiently moveable, nor alterable, with fufficient promptitude, to admit the impreffions of the nerves with that rapidity which really takes place. Having befides obferved, that all the nerves appear to arife mediately, or immediately, from the parietes of the ventricles, and that thefe ventricles always contain a certain quantity of water ; he has fuppofed that it is precifely this fluid which anfwers all the conditions of the problem, and that it ought to be regarded as the common centre of renfation.

To trace the nervo s motion to its centre, and

Art. II. Action of the Nervous System. ifs
to eftablifh, with certainty, what we have him therto advanced only as conjectures, more or lefs probable, is a tank which the anatomift has yet to perform.

How does it happen that an idea or image, of which we are confcious, is formed within us, at the moment this change takes place in the nervous fyftem? How are thofe ideas accumulated in our memory? By what means is our imagination able to re-produce them, and our judgment to combine them, draw conclufions, and form abftractions from them? Thefe, and other effects of habit and attention, the metaphyfician may eftablifh hiftorically, but the phyfologift cannot explain.

Phyfiology, however, fhews us that there is a certain order of corporeal motions which correfpond exactly to thofe fenfations and combinations of ideas: ftudy, too long continued, produces a fenfation of fatigue in the brain. Certain ftates of difeafe change the natural order of ideas ; fupprefs, or conftantly prefent them of a certain kind; perplex and diforder the imagination: age renders our ideas lefs vigorous; wine and opium produces confiderable changes in them. Other aliments, or other medicines, produce lefs important alterations; but each operates according to its fpecies, and according to the difpoftion of the fubject. Befides, the imagination and the will produce phyfical effects on the body, which feem to be a repercuflion of
if6L. IX. Brain of AnimalswithVertebrag。 the influence which the phyfical changes of the body has on them.

Thefe effects of the will and the imagination conftitute two other claffes of animal actions, originating in the nervous fyftem. That which includes voluntary motion was confidered, in the firft volume of this work, in treating of the mufcular fibre: it was there fhewn that the nerves are the organs by which the will excites the contraction of mufcles, and that it is probable this contraction takes place in confequence of a chemical change which the nerve produces in the fibre. But is the matter that caufes this change the fame as that which excites fenfation, and is it tranfmitted by the fame portion of nerve? Hew does it happen that, in certain difeafes, we preferve the free ufe of our members, while they are totally deprived of fenfibility? Is this the confequence of an alteration which affects only the external organ of feeling, and not the nerve? In the night-mare, why is our ftrong defire to efcape from the imaginary objects that opprefs us ineffcctual, and why is the will incapable of producing the fmalleft motion in the body? When a nerve, which has been divided, is afterwards united, why is motion only ree-eftablifhed, and not fenfation?

Some have fuppofed that the envelopes of the nerves form the conductor of their moving power, and their medullary part that of their fenfibility. To the reafons whicti they have advanced

Art. II. Action of the Nervous System. ily vanced in fupport of this opinion, we may add, that the envelopes communicate with the ventricles by the plexus choroides, which are continuations of the pia-mater. It muft be confefsed, however, that this idea can as yet be regarded only as an hypothefis.

There are effects which belong to the imagination, as voluntary motion belongs to the will; they are confined almoft entirely to a fudden augmentation of certain fecretions, or the accumulation of blood in certain parts. Before we attempt to explain thefe effe?s, it is necerfary to enquire how far the nervous fyftem participates in the purely vegetative functions of our body.

The part it performs in that refpect is very decided. We know that the influence of the nerves on the vital organs, and of the latter on the nerves, is reciprocal. Grief, or an excelfive application of the maind, alters digeftion, and diminifhes the fecretion of the gaftric and feminal fluids. On the other hand, an over-loaded ftomach blunts fenfibility, and induces neep. If this kind of excei's be tog frequently repeated, ftupor feizes the mental faculties. Too great a wafte of the fpermatic fluid deftroys memory, extinguifhes imagimation, and produces extreme irritability and fearfulnefs. Remedies, calculated to reftore the powers of the mind, give alfonew energy and vigour to the vital organs. The difeafes which mon enfecble the powers of
if 8 L.IX. Brain of Animale With Vertebrfa.
perception and underftanding, alfo reduce the body to an inert ftate, which is fpeedily followed by diffolution. Mental excitation is ufually accompanied by heat, irritation, and an increafed energy in all the vital motions.

Upon an attentive examination of this fubject, it will appear that the part the nerves perform, in all thefe functions, may be reduced to their influence on the irritability of the arteries: by preferving this irritability the nerves promote circulation to the extremities of the veffels, and keep up all the fecretions. When the excitement of the nerves heightens the irritability, the fecretions are augmented.

All the phyfical changes that take place in the body, in confequence of the images that occupy the mind, belong to the fame clafs of action. In general the mind poffeffes no influence over the organs of circulation, and the will cannot fop their motion: but when lively images heighten the excitement of the whole, 'or a part of the nervous fyftem, the mental influence extends to thofe mufcular fibres which produce circulation : thus the hope of a much defired event caufes the heart to palpitate. Voluptuous ideas make the blood How into the cells of the corpora cavernofa of the penis, and produce erection ; anger or fhame impells it to the fkin of the face, whence it is driven back again by the re-action of the veffels : this is the reafon why thefe paffions produce alternate blufhing

Art. II. Action of the Nervous Sistrm. IIg
blufhing and palenefs. Sudden terror inftantly augments the fecretion of the fluids of the inteftines, and caufes a diarrhœa. The fight of a good meal occafions a great fecretion of faliva in a hungry man ; even mentioning victuals is fufficient, according to the common phrafe, to make bis mouth reater; in the fame manner feakingof difgufting fubftances, ferves to ficken the ftomach of mon of delicate feelings. Exceffive forrow or joy increafes the fecretion of the tears fo confiderably, that they cannot flow through the lachrymal points, but fall upon the cheek.

In other cafes the action of the imagination does not extend beyond the nervous fyftem; it is confined to the production of fenfations in certain parts of the body, independently of any external impreffion. Fear and uncertain hope always excite a fingular fenfation in the præcordial region. This fenfation, which doubtlefs takes place in the nervous plexus of that region, is ufually the precurfor of that alvine excretion which is excited by the nerves procceding from thefe plexus; in the fame manner as, by a contrary movement, the accumulation of blood in the corpora cavernofa of the penis precedes that vivid fenfation which has reached its height at the moment of the expulfion of the femen. Efforts made to recollect certain painful feelings which we have experienced, fometimes bring back thofe fenfations themfelves.
izoL.IX. Brain of Animalswith Vertebrie.
The fufeeptibility of the nervous fyfiem ta be thus governed by the imagination, may be more varied than the capacity it pofleffes for receiving external impreffions. The age, fex, and health of the individual ; the manner in which a perfon has been educated, either with refpect to his body or moral principles; the empire which reafon holds over his imagination, and the temporary ftate of his mind, all produce in this refpect aftonifhing differences; which may be compared to thofe that difeafe, fleep, medicines, \&xc. may occafion in the fufceptibility of the nerves for external impreflions.

There appear befides, in the nervous fyftem, certain phænomena which depend on the union of different nerves, whether that communication be produced by cords paffing from one to the other, or through the medium of the brain. Thefe phenomena are called fympainies: they confift of involuntary motions, or rather of fenfations, experienced in places different from thofe that are affected. Thefe fenfations do not feem to depend upon the influence of the will, or the imagination, and frequently "xift while we are ignorant of the place really affected, of the motion that has occurred.

The fneezing which füccecds to irritations of the noftrils, affords an example of the fympathy produced by the union of nerves: the nerves of the noftrils, which come from the ophthalmic branch of the fifth pair, are conncct-

Art. II. Action ofthe Nervous System. 12e ed by the fympatheticus major, with the nerves of the diaphragm, and by this means the excitement is communicated. The fneezing which takes place upon looking at a bright light, is to be afcribed to the union of the ciliary nerves with the fiftly pair : the irritation is communicated to the nofe, and thence to the diaphragm.

Another example of the fame kind confints in the great changes whict the eyes prefent in different internal difeaies of the body. Thefe changes, fo important to the phyfician, are almoft all produced by the union of the fympatheticus major with the fifth pair, and by that pair with the ciliary nerves.

Sympathetic actions occur ftill more frequently, when different parts of the body receive branches of the fame nerve, which may communicate irritation.

Thus tears arc excited by a ftrong fmell. This is occafioned by the ophthalmic nerve fending at the fame time branches to the noftrils and the lachrymal gland.

The vomiting produced by pufhing a finger into the throat, is owing to the diffribution of the eight pair of nerves, which go both to the pharynx and the ftomach.

This eight pair, or nervus vagus, and the great intercoftal or trifplanchnicus, are the nerves which produce the greateft number of this kind of phanomena, becaufe they are diftributed

122 L. IX. Brain of Animals with Vertebrete.
bured to a great number of parts, and form unions with a great many other nerves; they have therefore been named Jympalbeticus major; and firmpatbetious medius.

To conclude this brief account of the action of the nervous fyftem, we fhould alfo notice the influcice which the nervous fyftem of two different individuals may exercife upon each other. The abufe which has been made of this influence by impoftors, and the exaggeration with which it has been defcribed, have brought the fubject into fuch contempt, that philofophers can fcarcely think themfelves permitted to mention it.

It muft be confeffed, that it is extremely difficult, in the experiments which have this action for their object, to diftinguifh the effect of the imagination of the perfon fubjected to the experiment, from the phyfical effect produced by the operation; and the problem is frequently very complicated. The effects, however, obtained on perfons who were infentible before the procefs commenced, thofe that appear in others after the operation itfelf has rendered them infenfible, and thofe exhibited by different animals, place it beyond all doubt, that the proximity of two animated bodies, in certain fituations, and with certain motions, produces a real effect, independent of any participation of the imagination of one them. It alfo appears fufficiently evident, that thefe ef-

Art. II. Action of the Nervous System. 123
fects take place in confequence of a certain communication being eftablifhed between their nervous fyftems.

Finally, it were to be wifhed that we were able to compare the action of the nervous fyftem, in the different orders of animals, in the fame manrier as we fhall compare its ftructure and diftribution : but this examination prefents infurmountable difficulties; becaufe we have no means of difcovering the manner in which animals are affected, except by very equivocal marks.

In all animals that have nerves, voluntary motions, and direct fenfations, take place by the fame means as in man. The differences in their motions depend partly on the intrinfic mobility of their fibres, and partly on the difpofition of their mufcles, and the parts to which they are attached. Thefe differences have been explained in the firft part of this work.

The differences in their fenfations depend on the number of their fenfes, and the perfection of the organs belonging to each fenfe. The animals that approach neareft to man have their fenfes equal in number to his. In certain fpecies fome of thefe fenfes are even more perfect in the ftructure of their organs, and fufceptible of more lively and delicate impreffions than ours: on the contrary, in proportion as animals are removed from us, the number of their fenfes and the perfection of certain organs are diminifhed;

24 L. IX. Brain of Animale with Vertebrace nifhed; but perhaps fome animals at the fame time poffers fenles of which we can form no idea. We drall particularly confider thefe fubjects in this fecond part of our work.

We know not whether there are differences in the intrinfic fenfibility of the nervous fyftem of different animals; that is to fay, whether an equa! impreflion, applied to an organ equally perfect, would affect every animal with the fame force. This it is evident we flhall never be able to learn.

The animals next in order to man have, like him, fpontancous fenfations. Images are excited in them at times when they receive no immediate impreffion from external objects. Dogs and parrots dream; but we are not certain whether the very inferior fpecies of animals experience fimilar fenfations.

The paffions produce effects in animals which relemble thofe they produce in us. . Love is manifefted in the fame manner in all claffes: terror occafions a difcharge of excrements in quadrupeds and birds: fear makes them tremble, and even renders infects immoveable; but the other animals afford fewer examples of thefe kind of phænomena than man, becaufe they are not maffers of their imagination, cannot direct it towards certain objects and create for themfelves factitious paffions. We are even ignorant whether their imaginations can, like ours, be wrought up to fuch a pitch as to make them experience

Art. II. Action of the Nervous System. I2́S
experience emotions of anger, defire, or fear from fimple ideas or fimple recollections ; and whether the real prefence of the objects which caufe thefe paffions, is not always neceffary to excite them in the inferior animals: we know, however, that thofe which approach neareft to us, the mammalia and the birds, have their forrows. The affliction they feel on the abfence or lofs of a companion, friend or benefactor, is manifefted by evident figns, in the fame manner as they teftify their attachment without any temporary inducement.

The fame animals exhibit frequent proofs of a very perfect memory; fome even appear to poffefs a certain degree of judgment.

But does any thing fimilar exift in the inferior claffes, and particularly in the loweft? of this we fhall probably remain always ignorant.

With fo much refemblance in the ftructure of the nervous fyftem, in its mode of action, and in the number and ftructure of the principal external organs, why is there fo vaft a difference, as to the total refult, between man and the moft perfect animal?

Is this owing to a more accurate proportion in the relative perfection of the external organs, fo that one does not too much furpafs another ? or has the internal organs, in which are performed all the intermediate operations between the fenfation received and the movement exccuted, that is to fay, the organ of perception, memory

I26 I..IX. Brainof Anmals with Verterm.

memory and judgment, greater difierences than we have yet obferved? or finally, is the rubfance by which thefe proceffes are effected of a diffierent nature? Thefe, however, are not anatomical queftions.

The fympathies or cfiects refulting from the connections of nerves with each other, and the influence of the nerves on the vegetable or vegetative functions, are fubject to the fame laws in man and the other animals.

Article III.

Gieneral Comparifon of the different Aierious Syftems.

Ov comparing together all the ner vous fyftems, we find only one common part, which is a fingle tubercle, fituated at the anterior extremity of the fyftem, and always producing two lateral and tranfverfe fafciculi or crura, which unite it to the reft of the fyftem.

This part appears always to correfpond to that named cercbellumi in man. The cerebellumx of animals that have red blood and vertebre, is always preceded by feveral pairs of tubercles, forming ufually a larger mafs than the cerebellum itfelf, and united to the reft of the fy flem
A.III. Comparison or Nervous System. 127
by two longitudinal fafciculi or crura, which are interwoven in croffing with thofe of the cerebellum. This union takes place in fuch a manner that both are confounded in the common mafs which forms the root of the medulla oblongata, and medulla fpinalis, and leave no fpace between them. Thefe tubercles make what we call the cerebrum. They prefent confiderable differences in the various claffes of animals, which we fhall explain in fubfequent articles.

In the white-blooded animals, or thore that have no vertebre, there are alfo tubercles fituated before the part correfponding to the cerebellum; but thefe tubercles are a great deal fmaller, much removed from each other, and connected with the cerebellum only by feparate nervous filaments. The crura of the cercbellum leave a large interval between them, which receives the œefophagus as in a collar.

The long production of the brain, called the medulla oblongata, and medulla fpinalis, in vertebral animals, is fituated on the back, above the inteftinal canal, and is inclofed in the canal of the vertebre. The two faiciculi which form it are intimately united, and no trace of their feparation remains, except a longitudinal furrow before and behind. But in the animals that have no vertebre, when this production exifts, it is furmed below the œefophagus by the union of the two crura of the cerebellum. Thefe two
fafciculi commonly remain diftinct throughout the greater part of their length, and are only united at different fpaces by knots from which the nerves proceed. This production, however, frequently does not exift. In fome animals with white blood, which have no elongation of the medullary fubftance, as in the Molufca, the nervous trunks, which ${ }_{\sim}$ are derived from the crura of the cerebellum, enlarge and form ganglia, or two or three nerves unite with each other to produce a common ganglion; and in general it is only from their ganglia that the nerves, which are diftributed throughout the body, take their origin.

In thofe white-blooded animals that have a knotted and double medullary production, that is to fay, the infects, the cruftacea, and certain worms, the nerves all arife from the knots or ganglia of the medulla, or from fome of the anterior ganglia of the cerebellum.

In the red-blooded animals the nerves of the fpine arife from the medulla fpinalis in two bundles of medullary filaments, which unite after the pofterior bundle has formed a ganglion. They afterwards feparate into two trunks, the anterior of which communicates with the great fympathetic nerve by one or two filaments, and a ganglion is always formed at the place where they unite.

The nerves of the brain do not arife precifuly in the fame manner, the different tubercles
A. III. Comparison of Nervous System. 129
which form it, however, feem to ferve as ganglia. This at leaft is evident in the corpora ftriata, with refpect to the olfactory nerves; and in the thalami nervorum opticorum, with refpect to the optic nerves. The nerve of the fifth pair has a particular tubercle, which is very confpicuous in fifhes. The corpora olivaria may be confidered as the ganglia of the eighth pair. There are no tubercles apparently belonging to the third and fourth, though the tefes may perhaps be affigned to the latter.

The fympatheticus major, which is conftantly found in all red-blooded animals, exifts in none of thofe with white blood; unlefs we fhould regard, as that nerve, the two nervous cords which unite all the ganglia, and which we have called medulla fpinalis in the cruftacea, infects, and worms.

Were this opinion adopted, a medulla fpinalis would no longer be attributed to thefe animals, and the abfence of that production would then be the common character of all the whiteblooded claffes.

130 L. IX. Brain of Animalswith Vertebrea.

Article IV.

Defcription of the IItman Brain.

1. The Brain of Man riezed on its fuperior Surface.

WHEN we remove the upper part of the cranium and the dura-mater, there appears an oval fubftance, the length of which is to its breadth nearly as $4: 3$. This oval contracts a little anteriorly. Its convexity is pretty uniform, and nearly half as high as broad.

A deep fiffure, which receives the falx, divides this oval longitudinally into two nearly equal parts, called hemifpheres.

In this view we do not fee the cerebellum, becaufe that part is entirely covered by the brain.

The furrows of this furface are very numerous and deep. The depth of fome is equal to 0.02 I metre. They convolute in various directions. The parts of thefe intervals, which are vifible externally, are about o.or metre broad, more or lefs; thefe convolutions have the appearance of a number of fmall inteftines.

Reckoning thofe which touch the fiffure that divides the two hemifpheres, we find cightcen or twenty. Reckoning tranfverfely, we find ten
or twelve: but thefe numbers depend upon that part in which they are counted.

The furface by which each hemifphere is oppofed to the other is plane; we find furrows in it as well as in the convex furface. Its height is 0.04. The falx, which is not fo hish, does not feparate thefe furfaces entirely; and the hemifipheres unite below the falx by veffels and cellular fubftance.

On feparating the hemifpheres, we obferve, at the bottom of the fiffure, which divides them, a kind of bridge of medullary fubftance, which extends from the one to the other, and difappears under them. It does not cover the whole length of the fiffure, but leaves anteriorly a fpace equal to one-third of its length; and pofteriorly another fpace which is double the former: the bridge then is only half the length of the hemifpheres. We obferve that it folds under itfelf at both extremities.

B. The Brain of Man ciewed lateraliy.

In this view the fuperior margin of the brain prefents a curved line, which refembles one half of an ellipfis; but its inferior margin is very irregular. It firft exhibits a concave line, which extends downward from the pofterior extremity to the middle of the total length, which is alfo the loweft point. The cerebcllum, which

132 L. IX. Brain of AnimalswithVertebrat.
is entirely covered by the cercbrum, is fituated under this concave line.

The area of the cerebellum, viewed thus in profile, is farcely equal to one-cighth of that of the cerebrum ; the part of the brain fituated above the cerebellum, is called the pofterior lobe of the cerebrum; the part projecting downward, which is terminated by the before-mentioned concave line, is called the middle lobe; this line bends forward, and after being continued in a convex form, terminates in a decp fulcus, which is directed backward on the lateral furface of the brain, and completes the divifion of the middle lobe from the anterior. The anterior lobe, fituated before the fulcus, occupies nearly one-fourth of the whole length of the cerebrum; but inferiorly, and towards the middle line, it is prolonged backward to the internal fide of the middle lobe, at the depreffion which contains the pituitary gland.

The furrows on this lateral furface of the brain are as numerous, and as irregular, as thofe on its fuperior part.

C. The Brain of Man viewed inferiorly.

The lower furface of the human brain exhibits four eminences, which correfpond to the foffa of the bafis cranii: one of thele cminences is fituated pofteriorly, and comprehends the inferior
ferior furface of the cerebellum, the medulla oblongata, and the pons Varolii : the two lateral and intermediate eminences form the middle lobes of the cerebrum: the two that are fitaated fartheft forward, are called the anterior lobes.

Between thefe four eminences there is a deep depreffion, which contains the infundibulum, the tubercula mammillaria, and the origin of the optic nerves, and above which, in this inverted pofition, we obferve the pituitary gland.

The pofterior eminence is an irregular oval, the tranfverfe diameter of which is, to the longitudinal, nearly as $4: 3$: this oval is deeply notched pofteriorly, in confequence of the divifion of the cerebellum; anteriorly, on the contrary, the pons Varolii forms a rounded projection, correfponding to the depreffion in the middle of the bafe of the cranium.

The exterior outline of the two lobes of the cerebellum, is round; their furface is moderately convex, nearly equal, and has two remarkable eminences, viz. one a little without, and behind the place where the pons Varolii lofes itfelf in the fubftance of the brain; and another, which is larger and oval at the anterior part of the line by which the two lobes of the cerebellum join. Their whole furface is marked with flight, and nearly parallel furrows, about a line diftant from each other; their direction is almoft parallel to the edge of the lobes, except towards the anterior, which they cut obliquely.

${ }^{1} 34$ L.IX. Braynof AnimalswithVertebr.e.

The proceffus ammataris, or pons Varolii, reprefents a kind of crefcent; its anterior edge is convex, and almoft femi-circular; its pofterior edge is concave.

Its furface exhibits a medullary fubfance, the fibres of which are parallel to each other, and to both edges ; they approximate outwardly, to form the two horns of this kind of crefcent, and are loft in the cerebellum, under, or rather upon the little round eminence. This annular protuberance correfponds to the bafilar foffa of the os occipitis: its greateft breadth is double its length.

The medulla oblongata appears immediately behind the pons Varolii, by which it feems to be bound, as with a collar; its bafe is broadelt, and it contracts, by degrees, fo as to reprefent a kind of bulb: we obferve a longitudinal furrow on its middle, and another on each of its fides; within each lateral furrow there is a fight oval eminence, which both together are called corpora olivaria: between each corpus olivarium, and the middle furrow, there are fome longitudinal fibres, called corpora pyramidalia; there is a finall triangular depreffion between the bafes of thefe pyramidal eminences, and the pofterior edge of the pons Varolii. Another depreffion is alfo obferved between the corpora olivaria, which feparates them from the fame cdge. The fibres of the portion of the medulla oblongata which is fituated without cach corpus olivarium,
rium, are directed obliquely outward and forward.

The two lateral eminences, or middle lobes of the cerebrum, are nearly of a triangular fhape; they are marked by irregular furrows, like all the other parts of the furface of the cerebrum ; they are feparated from the anterior lobes by a groove, called the fiflure of Sylvius, which receives the pofterior edge of the fmall wings of the fphenoid bone.

All the parts before thefe two eminences belong to the anterior lobes of the brain ; thefe are lefs convex, and lefs elevated; they likewife exhibit irregular furrows, and in this inverted pofition the olfactory nerves are fituated upon them, parallel to the middle line which feparates them.

To diftinguifh the parts fituated between thefe four eminences, the cerebellum, and the pons Varolii, muft be preffed backward, and the middle lobes towards the fides: we then perceive the crura of the cerebrum, which are two cylindrical medullary bodies, and appear to the eye to be the continuation of the medulla oblongata, after its paffage under the pons Varolii: they touch each other by their internal edges; after proceeding forward, and a little outward, they fink each on its refpective fide, under the mafs of the cerebrum, between its anterior and middle lobes: at this place, each of the crura is croffed by one of the optic nerves, which K_{4}
arife

136 L. IX. Brainof Animalswith Vertebrat.
arife from the fame depreffion, and are directed forward, and obliquely inward, to unite in the middle line. Between the crura of the cerebrum, and the optic nerves, there is a fpace at the pofterior part, of which we obferve two round white eminences, called tubercula mannmillaria. The remainder of this fpace is occupied by a cone, formed of an afh-coloured fubftance, and called infundibulum; this cone is prolonged into a flender falk, that adheres to the union of the optic nerves, and terminates in the pituitary gland, which, in this inverted pofition, is uppermoft, and covers it.

D. Developement of the Brain.

To obtain a right knowledge of the internal parts of the brain, it is neceffary to divide the crura cerebri immediately before the cerebellum, and the pons Varolii : we then find that the cerebrum is connected to the reft of the brain, by only a crefcent, about 0,03 broad, which makes precifely the fection of the crura, and which occupies nearly the middle of the inferior furface of the cerebrum, thus feparated.

The continuation of its fuperior margin is interrupted by the fection of the aqueduit of Sylvius, of which we fhall fpeak hereafter. On feparating a little the crura of the cerebrum, we obferve a kind of fimall medullary bridge over this
this aquæduct: on the fuperior furface of this bridge there are four eminences, which have been named tubercula quadrigemina.

The two fuperior and anterior eminences, called nates, are of an oval form, and rather larger than the others; the inferior and pofterior, called teffes, are round, but they are prolonged obliquely to the external fides of the nates.

Where this prolongation meets the root of the optic nerve, which, as we have already obferved, croffes the crus, as it afcends obliquely backward, we obferve another eminence, which may be regarded as forming a third pair of tubercles*. Between the teftes pofteriorly, there is a fmall triangular frænum, which is of a greyifh colour, and fomewhat hard.

A little before the optic nerve reaches the lateral eminence of the tefis, it is enlarged and divided by a furrow into two parts; the moft external of which forms a fmall oval tubercle, and afterwards feems to expand over the pofterior part of the large eminence, called the thalamus nervi optici.

The fuperior furface of the two optic thalami, which is fituated under the cerebrum, reprefents a triangular fpace, having a notch poferiorly, which contains the tuhercula quadrigemina; the fides of this fpace are round, and the middle is
depreffed

[^0]depreffed longitudinally: on feparating the thalami, we obferve that they are intercepted by a cavity, called the ibird ventricle: this cavity is alfo divided : there is extended, from one of its furfaces to the other, a production of a pulpy and almoft fluid fubftance, which is named the foft commiflure of the optic thalaimi.

This ventricle communicates by the aquxductus Sylvii, which paffes under the tubercula quadrigemina, with another which is under the cerebellum, and is called the forrtb ventricle.

The anterior part of the third ventricle penetrates between the tubercula mammillaria, and the union of the optic nerves, to form a kind of funnel of a pulpy fubftance, which we have already noticed, under the name of infundibulum.

Each fuperior edge of the third ventricle is marked by a white line, which is prolonged backward, to form the peduncle of the pincal gland, which is a fnall oval afh-coloured body, fufpended above the tubercula quadrigemina. The fame white line extends forward towards the lower part, and then bends, fuddenly back, to join a thick medullary cord, which forms one part of the anterior pillar of the fornix.

A little more forward we obferve a tranfverfe medullary cord, which paffes from one fide of the cercbrum to the other, and which is called its anterior commiffure.

There is another commifiure nearly fimilar, over the entrance of the aquaciuctus Sylvii, and
under the peduncle of the pineal gland; it is named the paferior commiflurc. The entrance of the aqureduct is denominated the anus.

Between the anterior commiffure, and the union of the optic nerves, there is a fpace which is inclofed only by the pia-mater, and a very thin fratum of that pulpy fubftance which lines the infide of the third ventricle: this is named the vulva.

On the outfide, and before the optic thalami, we find two eminences, which are alfo concealed under the cerebrum; thefe are called corpora Ariate, on account of their internal texture, which we fhall defcribe in another place.

The corpora ftriata are broad anteriorly, where they approach the middle line of the brain; they are contracted pofteriorly, and removed from each other to make room for the optic thalami; they end in a fort of tail, which follows exactly the outline of the thalamus, and the root of the optic nerve, and are terminated inferiorly by a fmall obtufe enlargement ; thus each corpus ftriatum refembles a horfe-hoe, with one of the branches confiderably longer than the other. In the natural pofition of the brain, this horfe-fhoe is fituated on its narroweft fide, fo that the large branch is uppermoft, and a little more forward and inward than the other.

In the furrow, which feparates the corpus friatum from the optic thalamus of the fame
i40 L.IX. Brain of Animalswith Vertebref.
fide, there is a band of medullary fubftance, which takes the fame courfe as the furrow, and is named linea Semi-lunaris.

All the part of the cercbrum that is vifible externally, is a kind of appendix of the corpora ftriata, but an appendix which greatly furpafies them in fize in man. The mafs of each hemifphere is joined to the whole external margin of the corpora ftriata. After proceeding downward and outward, it turns upward and inward, to reft on that of the oppofite fide and join the corpus callofum. The portion of this mafs which joins the inflected cauda of the corpus ftriatum, forms what is called the middle lobe.

The pofterior part of the hemifpheres, and the corpus callofum itfelf, bend downward, and the inflected part penetrates under the former, covering the tubercula quadrigemina and the optic thalami. In this manner, but always contracting, it arrives above the anterior commiffure of the cerebrum, where it is terminated by two medullary cords, which penctrate into the fubftance of each thalamus. This fold has obtained the nance of the forizix with ibree pillars: pofteriorly it is united immediatcly to the inferior furface of the corpus callofum ; anteriorly this union is formed by two medullary laminæ, which form a very thin partition, called (coptunn lucidutin. The margins of the fornix extend backward, feparating at the fame time from each other fo as to form a triangle, and defcend
into the interior of the middle lobe, preferving nearly the fame curvature as the caudr of the corpora ftriata. Behind each of thefe margins there is a fwelling of the breadth of a finger, which ftill keeps the fame curvature, and is called cormu ammonis, or pes bifpocampi: under the fame edge there is a greyifh ferpentine band which appears fringed, and is named corpus fimbriatumb.

The inferior furface of the fornix is marked by one or two longitudinal ftriæ on its middle and anterior part. Pofteriorly we obferve fome tranfverfe fibres, which are the continuation of thofe of the corpus callofum. The different folds of which the hemifpheres are compofed, do not join each other by their internal furfaces; they are intercepted by a large cavity in each hemifphere: thefe two cavities are the anterior evalricles of the cerebrunn. With refpect to their form, they may be compared to an Italic capital \mathcal{L} fituated thus i. The vault of their fuperior branch is formed by the corpus callofum, and it, floor by the corpus friatum : the defeending branch contains the cauda of the corpus friatum anteriorly, and the cornu ammonis pofteriorly. The angle formed by the union of thefe two branches penetrates backwards into the portion of the hemifphere which is fituated above the cerebellum, where it forms a blind cavity which bends inwardly; it has received the name of the digital cavily: on its internal

I42 L.IX. Brain of Δ nimale withVertebrfe.
furface there is a fmall cminence, called the ergot or Spur.

The two ventricles are feparated anteriorly by the Septum lucidum only, and they would open into each other under the fornix, were it not for a production of the pia-mater, which we fhall defcribe hereafter under the name of plexus choroides, and which leaves them no communication except a fmall hole near the anterior pillar. By the fame paffage they communicate with the third ventricle, and by that with the fourth: thus thofe four cavities may be faid to form only one.

There is a fifth cavity between the two layers of the feptum lucidum, but it has no external communication. This is the fifib ventricle.

The cerebellum is connected to the reft of the brain by two medullary trunks, one on the right and the other on the left, which feem to take root in its internal fubfance, in order to produce a crucial intermixture of their fibres with thofe of the medulla oblongata. The fibres of the inferior plane of each of thefe trunks, are continued to form the pons Varolii, and to unite together on the middle line : thofe of the fuperior plane form a more flender fafciculus, which is directed towards the teftes, and which is joined to the fafciculus of the oppofite fide, by a very thin medullary lamina, called viatoula cerebri. The pofterior edge of this valve is united to the mafs of the cerebellum.
Art. Iv. The Human Erain.

The cerebellum is not in contact with the fuperior furface of the medulla oblongata, but is placed over it like a bridge. The interftice between them is called the fourth ventricle.

This cavity communicates with the third by the aquæductus Sylvii. In the bottom of this ventricle we obferve an angular impreffion, called calamus firiptarius.

The cerebellum itfelf is divided into three parts; the two lateral, which are moft confiderable, are called its lobes. The middle, which is the fmalleft, and concealed in the fiffure that feparates the two other parts, is named the vermiform proce/s.

E. Sections of the Brain.

There are different methods of diffecting the. brain, in order to fhew its ftructure. Some fections are vertical, others horizontal and oblique.

1. Vertical Secions.

The inoft important of the vertical fections is that which divides the brain into two equal parts, leaving the two hemifpheres, as well as the corpora ftriata and optic thalami untouched; and bifecting the corpus callofum, the fornix, the three commiffures, the glandula pinealis,

144 L. 1 X. Brain of Animals witio Vertebrte.

nealis, the tubercula quadrigemina, the pons Varolii, and the medulla oblongata.

This fection fhows, ift, that the corpus callofum, has a curvature nearly parallel to that of the vault of the cranium, and that it folds under itfelf both anteriorly and pofteriorly. 2dly, That the fornix is a continuation of its pofterior fold. ${ }_{3} \mathrm{dly}$, That the feptum lucidum is a triangular fpace, included between the corpus callofum and the anterior fold of the fornix. 4thly, That the anterior commiffure, the union of the optic nerves, and the mammillary tubercle, form a triangle which is almoft equilateral. This fection alfo affords a diftinct view of the great fpace in the middle of the brain, which commences anteriorly at the infundibulum, then forms the third ventricle, the aquæductus Sylvii, and the fourth ventricle. The fection of the latter is triangular; that of the aquæduct is long and narrow; that of the third ventricle is nearly femi-circular, and its part which defeends towards the infundibulum, is almoft fquare. The divifion of the medulla oblongata and pons Varolii, exhibits crucial fibres more or lefs remarkable. We fometimes obferve a fafciculus arifing near the fourth ventricle, which, after bending, gives origin to the third pair of nerves.

A fection of the cercbellum difplays fome medullary lineaments, reprefenting a tree with five principal branches, which are fub-divided
twice in fucceffion into fmaller ramifications. This is called arbor vitce. All the parallel fections made more towards the fides exhibit the fame figure.

On penetrating the interior of this vertical fection, towards the external fide, we difcover feveral particulars worthy of notice: I. That the peduncle of the anterior pillar of the fornix paffes into the fubftance of the optic thalamus, to terminate in the tuberculum mammillare: 2 d , That another medullary fafciculus departs from this tubercle, and alfo traverfes the fubftance of the optic thalamus to near its fuperior furface. 3 d , That the fibres of the crura cerebri are continued acrofs the optic thalamus to the corpus ftriatum, and acrofs the pons Varolii to the medulla oblongata. 4th, That a fmall greyifh line winds in a ferpentine manner round the corpus olivarium internally. As this line is feen in whatever direction that eminence is cut, it is obvious that it muft contain a body of a very irregular furface, and covered with a thin layer of a greyifh fubftance, the fections of which exhibit thefe linear appearances.

๓. Horizontal Sections.

The horizontal fections may commence with the fuperior or inferior furface.

When we cut the two hemifpheres fuperiorly at the level of the corpus callofum, we difcover Vol. II.

L
the

146 L.IX. BrainofAnimalswithVertebree.
the greateft medullary fpace that can be demonftrated in the brain. The grey fubftance appears on the edges only, all the reft is white, and is named the centrum ovale of Vieuffens.

If we diffect farther downward, the two anterior ventricles foon appear. From this view we obferve that their anterior cornua are approximated, while the pofterior are removed from each other.

The corpus callofum being completely removed, the fornix is rendered vifible, and we can difcern very diftinctly its triangular form. After this we expofe the fifth ventricle, by feparating the two lamina that form the feptum lucidum. Then cutting the anterior pillar of the fornix, and throwing the fornix itfelf backward, we lay entirely open the fuperior furface of the optic thalami, the aperture of the third ventricle, the three commiffures, and the tubercula quadrigemina. The eye may even penetrate into the infundibulum.

On making deeper fections, we obferve that the interior of the corpora friata is filled with white itriæ, which feem to arife from the optic thalami, and through them from the crura of the cerebrum. From the white ftriæ being feparated by others of a cineritious colour, there eminences have obtained the name of corpora friata.

Penctrating ftill farther, we obferve that the anterior commiffure of the cerebrum extends on
each fide into the fubftance of the optic thalami, in a white line fomewhat refembling a bow. The pofterior commiffure is loft almoft as foon as it enters the fubftance of the optic thalami.

The tubercula quadrigemina, divided horizontally, prefent an almoft uniform greyifh fubftance.

The horizontal fections of the cerebellum exhibit fome white lines paffing from right to left, and which are precifely thofe that form the arbor vitæ in the vertical fections.

The horizontal fections of the medulla oblongata, and pons Varolii difplay the fame direction in the fibres as we have already defcribed. Thofe of the crura of the cerebrum have a dark brown fpot internally.

On making horizontal fections in the inferior furface, we difcover feveral remarkable circumftances; I. The pofterior fold of the corpus callofum, which forms inferiorly a large roll behind what is properly called the fornix, 2. The two corpora fimbriata, each of which proceeds from one of the extremities of this roll, and extends to the pofterior pillars of the fornix, the curvature of which they exactly follow. 3. The fection of the crura of the cerebrum, in which we obferve the black fpot, which in this view appears femicircular. 4. In this manner we flhew the inferior furface of the fornix and lyra in the natural fituation. Laftly, on removing the fornix, we difcover the inferior furface of the corpus cal.

L 2
lofum,

148 L. IX. Brainof AnimalswithVertebre. lofum, that is to fay, the roof of the lateral or anterior ventricles, to the middle part of which the feptum lucidum adheres by the two laminx of which it is compored.
> F. Of the Origin of the Nerves.

1. The Olfadory Nerve.

The olfactory nerve lies under the anterior lobes of the cerebrum, in a furrow near and parallel to the middle line.

The anterior extremity, which is fituated upon the cribriform lamella of the os ethmoides, confifts of a grey fubftance. The remainder of the length of the nerve is white, and of a triangular prifmatic fhape. Its bafe is enlarged and divided into three roots, diftinguifhed by an equal number of white filaments, which terminate in the grey fubftance of the brain. That which is internal is directed outward, until it reaches the fiffura Sylvii, where it is loft. The external afcends upon the internal furface of the hemifphere as far as the corpus callofum. The middle one is much fhorter than the other two, and is even fometimes wanting.

2. The Optic Nerve.

The optic nerve evidently arifes by the fibres, which weobferve at the fuperior part of the optic
thalami. It defcends outwardly, and furrounds, in the form of a ribbon, the crura of the cerebrum, from which it is feparated on its internal edge, but united to them by its external. It approaches to the middle line before the infundibulum, where it is intimately united with its correfpondent nerve, in fuch a manner that neither the eye nor the knife can difcover whether they crofs each other, or are only fimply joined. After this union, they feparate again to go out of the cranium by the optic foramina. The portion which is anterior to their union is cylindrical.

3. The Oculo-mufcular Nerve.

This nerve arifes near the middle of the crus of the cerebrum, a little before the pons Varolii, but its origin may be traced into the body of the crus. It is a medullary filament, which, in afcending, bends backward under the floor of the fourth ventricle. It has been erroneoufly fuppofed that this filament proceeded to the tuberculum mammillare. This nerve is directed a little towards the fide, in order that it may pafs out of the cranium by the fpheno-orbitar fiffure, after it has traverfed the durd mater.

4. The Pathetic Neroe.

Some filaments behind the teftes, at the fide of the little frænum, form the origin of this L_{3} nerve.

T50 L.IX. BratnofAnimalswith Vertebrat,
nerve. Farther back, on the valvula cerebri, we obferve feveral white fibres, fome of which extend to the pons Varolii, and the others diverge, more or lefs, from that direction. Thefe fibres fometimes appear to contribute to the formation of the nerve.
This nerve paffes between the middle lobe of the cerebrum, and the adjacent part of the pons Varolii, and the crus. After a pretty long curve, it goes out of the cranium by the fpheno-orbitar fiffure, behind the pofterior clinoid proceffes.
5. The Tri-facial Neroe.

Each nerve of the fifth pair arifes from that part of the crus cerebelli which contributes to form the pons Varolii, very near where the crus paffes out of the cerebellum, M. Soemmering afferts that it may fometimes be traced into the fubftance of that crus, until it is loft under the floor of the fourth ventricle. It is very foft at its origin, but it foon becomes very hard, and is divided into a number of filaments, arranged in the form of a flat ribbon. This ribbon is compofed of three fafciculi, on which account the nerve has received the name of trigeminous or tri-facial. Thefe fafciculi themfelves have each a particular name, viz. nervus ophthalmicus, maxillaris fuperior, and maxillaris inferior.

6. The Abductor Nerve.

The fixth pair of nerves commence on the pofterior edge of the pons Varolii, by fome filaments which come from the fulcus that feparates that pons from the corpora pyramidalia. Some of the filaments appear to rife from the pons iifelf. They proceed directly under the pons Varolii, advancing towards the f pine of the os petrofum, where they penetrate the cavernous finus, whence they are tranfmitted to the orbit in the manner we fhall hereafter explain.

7. The Auditory Nerve, or Portio mollis of the Seventh Pair.

The acouftic or auditory nerve appears to commence by feveral white fibres, which we obferve on the inferior furface of the fourth ventricle, and which vary, in number from two to five. Thefe filaments approximate and defcend to the fides of the bafe of the medulla oblongata, and there form the origin of this nerve, which feparates from the mafs a little more outwardly than the preceding. It is conveyed into the internal ear, where we fhall follow its diftribution in the article on the fenfe of hearing.

152 L. IX. Brainofantmalswith Vertebric.
8. The Facial Nerce, or Portio dura of the S'venth Pair.
This nerve derives its origin from the fulcus, which feparates the pons Varolii from the medulla oblongata, a little more outward than the corpora olivaria. It arifes by a flat portion, and by another which appears fomewhat more fibrous, but which is intimately united with the former. It enters the canal of the dura mater, which is common to it, and the portio mollis, with which it paffes into the meatus auditorius internus.
9. The Gloffo-pharyngeus, par vagum, and nervus fpinalis or accefforius, commonly called the Nerves of the Eighth Pair.
The glofo-pharyngeus, and the vagum, arife from the fulcus, which forms the external boundary of the corpus olivarium. The gloffo-pharyngeus is fituated fartheft forward, and is compofed of three, faur, of five filaments. The vagum is formed by a far more confiderable number, which occupy all the reft of the fulcus.

The fpinal nerve is formed by feveral filaments which arife on the fides of the medulla fpinalis, as far down as the roots of the fourth, fifth, and fometimes the feventh cervical nerves. It approaches the vagum, and paffes with it and the gloffo-pharyngeus through the foramen lacerum pofterius:
10. The
10. The Great Hypoglofal Nerves.

There form the twelfth pair, though they are generally demonftrated as the ninth. Each nerve arifes from the medulla oblongata, a little below and between the corpora olivaria and pyramidalia, by a great number of fmall filaments which make a kind of circle. Thefe filaments prefently unite into two or three fafciculi, which pafs through the os occipitis by the anterior condyloid foramen.

Article V.

Of the Brain of Mammalia.

The brain of the other mammiferous animals contains precifely the fame parts as that of man, and thofe parts are difpofed in a fimilar order: it varies, however, in the proportion it bears to the reft of the body, to the cerebellum, and to the medulla oblongata; in its general form; in its circumvolutions; in its internal development; and laftly, in the differences which its bafe and the origin of the nerves exhibit.

> 1. Proportion of the Mafs of the Brain to the reft of the Body.

It is very difficult, if not impoffible, to eftaplifh this proportion in a comparative manner, becaufe

154 L. IX. Brain of Animalswith Vertebre.
becaufe the weight of the brain remains the fame, while that of the body varies confiderably according as the animal in whom the comparifon is made, is fat or lean. Thus the proportion of the weight of the brain to that of the reft of the body, has been ftated by one author to be in the cat as I to 56 , and by another as I to 82 ; in the dog as I to 305 , and as I to 47 , \& c.

The following is, however, a table of thefe proportions, collected from different authors, and from my own obfervations. It will appear that, all things confidered, the finaller animals have the brain proportionally the largeft ; that man is furpaffed in this refpect only by a fmall number of animals, all of which are lean and meagre, as mice, fmall birds, \&tc. ; that among the mammalia, the Rodentia have in general the Jargeft brain, and the Pachydermata the fmalleft; and that cold blooded animals have it infinitely fmaller than the warm blooded.

Man - - - . $\frac{8}{22} \frac{8}{25} \frac{7}{30} \frac{7}{15}$
according as he is young or old.
ORANGS.
Long-armed ape, or gibbon - - - - $\frac{\text { े }}{8}$
SAPAJOUS.
Orange monkey (simia sciurea)
Capucin monkey (simia capucina)
Striated monkey (simia jacchus)
Four-fingered monkey (simia paniscus)

GUENONS.

Guenons.

Malbrouck (simia faunus) young	-	-	$\frac{7}{24}$
The green and red monkeys	-	-	$\frac{7}{4}$
Varied monkey (simia mona)	-	-	$\frac{7}{44}$
White eyelid monkey (simia æthiops.)	-	-	$\frac{x}{88}$

MAGOTS AND MACAQUES.
Hair-lipped monkey, or macaque
Barbary ape, or magot
Papion, or great baboon

MAKeS.
Ring-tailed maucauco, (lemur catta) young
Kari (lemur macaco)

CHEIROPTERA.

Great bat (vespertilio noçula) . - \quad gi

PLANTIGRADE.

CARNIVORA.

156 L.IX. Brain of Animalswith Vertebr.立.

RODENTIA.

RUMINANTIA.

> SOLIPEDA.

Horse - - - - - - - - - -
Ass - $\frac{\%}{400}$
$\frac{7}{3 \delta क}$

CETACEA.

2. Pra

* To prevent the neceflity of returning to this fubject in the artickes that treat of the brain of the other claffes, we fhall fub.

2. Proportion of the Brain to the Cerebellum and Medulla oblongata.

The proportion of the weight of the brain to the cerebellum and medulla oblongata, may be obtained
join a table of its proportion to the reft of the body in fome birds and reptiles. It is taken partly from Haller, and partly from our own obfervations.

```
BIRDS.
```

Eagle	-	-	-	-	-	-		${ }^{\text {¢ }}$
Falcon	-	-	-	-	-	-		$\mathrm{x}^{\text {\% }}$
Sparrow	-	-	-	-	-	-		$\frac{8}{15}$
Canary-bir		-	-	-	-	-		${ }^{\frac{8}{4}}$
Sikin	-	-	-	-	-	-		$\frac{1}{2}$
Chaffinch		-	-	-	-	-		${ }_{\text {at }}^{\frac{1}{4}}$
Redbreaft		-	-	-	-	-		$\frac{1}{31}$
Blackbird		-	-	-	-	-		उह
Cock	-	-	\cdots	-	-	-		$\frac{1}{15}$
Duck	-	-	-	.	-			- $\frac{1}{3} \frac{1}{3}$
Goofe	-	-	-	-	-	.		

Land tortoife				-	-	-	-	$\frac{8}{154}$
Sea tortoife	-	-	-	-	-	-	-	588
Collar fnake	-	-	-	-	-	-	-	5
Frog	-	-	-	-	-	-	-	\%

158 L.IX. Brain of AnimalswithVertebrefe obtained with precifion, becaufe no variation in the health, corpulence, \&c. of individuals, has any apparent influence on thefe parts.

This proportion is more confiderable in man, than in almoft all the other mammalia, as will appear from the following table. The Rodentia have the cerebellum largeft, in proportion to the brain.

In man, the cerebellum is to the brain,

The proportion of the brain to the medulla oblongata, is eftimated by the meafure of their diameters. M. Soemmering and M. Ebel have

Thewn, that this proportion is more in favour of the brain in man, than in all the other animals, and that it is an excellent criterion of the degree of intelligence an animal enjoys; becaufe it is the beft index of the pre-cminence which the organ of reflection preferves over thofe of the external fenfes. There are, however, fome exceptions to this rule; and that which the dolphin affords, is very remarkable.

We fubjoin a table of the proportions between the breadth of the medulla oblongata, meafured at its bafe, and the greateft breadth of the brain in fome animals.

In man, the breadth of the medulla oblongata, behind the pons Varolii, is to that of the brain as

iboL.IX. Brain of Animalswith Vertebre.

3. General Form.

The differences in the general form of the brain, depend principally on a greater or lefs magnitude, and development of the two productions of the corpora ftriata, called the hemifpheres ; thefe parts are thicker in every direction, in man, than in any other animal, and hence the peculiar rotundity of his brain.

The brain begins to appear flatter in the monkey kind; their hemifpheres are lengthened backward, like thofe of man, to form the pofterior lobes which lie on the cerebellum. In all the other quadrupeds, however, commencing with the Sarcophaga, the hemifpheres are not only fmall, and confequently the fiffure which feparates them of little depth and the upper furface of the brain flat; but the middle lobes are much lefs convex inferiorly, and the pofterior do not exift at all. The cerebellum appears uncovered behind the cerebrum.

With

[^1]37

```

\section*{Article II.}

Of the Number, Mobility, relative Magnitude, Pofition and Direction of the E'yes in different Animals.

A ll red-blooded animals, without exception, have two moveable eyes placed in the cavities of the cranium, called orbits, and compofed of the fame effential parts as thofe of man. None have either more or lefs. There are merely fome apparent exceptions, when the eyes are concealed by the fkin, as in the zemni (mus typblus), or when the fame eye, having two pupils, appears double, as in the fifh called cobitis anablebs.

The fame obfervation applies to the mollufca cephalopoda, or cuttle fins.

The greater part of the gafteropoda have alfo two eyes, but very fmall, and placed cither on a level with the head, or on fome of the flefhy and moveable tentacula. In fome they are fituated at the bafe of thefe tentacula; in others, at the middle or the point, as may be learned from the writings of naturalifts. In all this order, only the genera clio, fryllea, and lernea, want the eyes.

In the mollufca of the order aceploala, no eyes are found.

The eyes of infects appear to be of a different
nature from thofe of the animals we have hitherto mentioned. They are divided into the compound or Joagrined, the furface of which, when viewed by the microfcope, prefents a multitude of tubercles; and the fimple, which prefents only one tubercle.

All the colcoptera and the butterfies have only two compound, without any fimple eyes. Thefe eyes are fometimes divided by a bar, and then appear double, This takes place in the water fleas; it is faid that fimple eyes have been obferved in fome moths.

The ortboptera, the bemiptera, the bymenoptera, the neuroptera, and the diptera, have, with fome exceptions, two compound eyes, and three fimple, placed between the former. Among the exceptions are the eplomera and the ploryganea, which have two fimple eyes exceedingly large in fome fpecies of the firft genus; and the hemerobii and lion-ants, which have only two fimple eyes.

All winged infects have compound eyes.
Among thofe that want wings fome have them compound, as the onicci; others have them fimple, viz. the phalanysiz, four; the fpiders and fcorpions, fix or eight; the julus and fcolopendra, a confiderable number; laftly, others, as the lepiima and the limulus, have them of both kinds.

Criay-fish have almoft all their eyes compound, and placed on moveable peduncles.

The larve of infects, which undergo a femi-

\section*{Art. II. Number of Eyes, Ec: 38 s}
metamorphofis, have their eyes fimilar to thofe of the perfect infects, but the larvæ of infects that are completely metamorphofed, always have fimple eyes, which vary greatly as to number in the different fpecies. The caterpillars, for example, have fix on each fide. The falfe calerpillars, or larvæ of the fare fies, have only two: thofe of the bees, Aratyomes, \&c. have the fame number. Several of the larvæ which undergo a complete metamorphofis, have no eyes at all.

An infinite number of other obfervations might be made, refpecting the form, pofition, and direction of the eyes of infects, and of their larvæ, and on the effects thereby produced on their vifion; but as thefe circumftances are external appearances, we fhall leave the defcription of them to naturalifts.-See Article XIII.

Among the articulated worms, there are fometimes found fmall tubercles, which have been regarded as fimple eyes, in confequence of their refemblance to thofe of infects. Some leeches have two, four, fix, or eight. In fome of the nereides we find two or four. In fome naides only two, \&c.

No parts that can be compared to eyes, have hitherto been obferved in any zoophyte.

The eyes are always fituated in the head, ex cept in fome infects that have no wings, in which the head is confounded with the corfelet, that is to fay, in the fpidir, phalangium, frorpion, \&ic.

The relative magnitude of the eye varies, without any relation to the claffes, or even to the natural genera. Large animals, however, have, in general, the eye proportionally fmall: this is obfervable in the Cetacea, and in the elepbant, rbinoceros, and bippopotamus.

It is alfo very fmall in the animals that live. conftantly under ground, as the moles, Joreres, mole-rats, and fome field-mice.

The frugivorous mammalia, that climb trees, have in general the eye large, as the makis, Squirrels, dormice, Ejc.

A very large eye moft commonly indicates that the animal can fee in the dark. Bats form no exception to this rule, becaufe it appears that they are not directed by their fight in flying, as we fhall fhew when we treat of the fenfe of feeling.

Almoft all fifhes have large eyes; doubtlefs becaule they live in a medium which is more obfcure than the atmofphere.

The cephalopodous mollufca have them very large, particularly the calmar: on the contrary, in fuch of the Gafteropoda as poffefs eyes, they are fcarcely vifible.

If we examine all the chagrined and finooth eyes of infects, we will find that they prefent larger ocular furfaces to the light, than any animal of the other claffes, though each particular eye is very fmall.

The cyes of man and monkies are directed forward.
forward. The tarfier (Lemur tarfius Pall. Di-, delpbis macrotarfus Gmel.) is of all the Mammalia that in which the eyes are fituated neareft each other.

In the other quadrupeds the eyes are always more feparate, and fituated towards the fides. They are directed a little downward in the Cetacea. In birds their pofition is lateral, except in the owols, in which they look forwards as in man.

In all reptiles they are on the fides of the head.

Fifhes vary greatly with refpect to the pofition of the eyes. Some have them turned ftraight upward, as in the far-gazer; in others they are directed obliquely, as in the callyonymus and the ray. Some have them both fituated on the fame fide of the body, as the pleuronectes. In the greater number of fiftes, however, the eyes are placed laterally:

All animals, in which the fituation of their organs is perfectly lateral, can contemplate ob* jects only with one eye at a time.
\[
3^{8_{4}} \text { Lect. XII. Ofthe Eie. }
\]

\section*{Article III.}

Of the entive Figure of the Globe of the Eye; of the Form and Proportion of its Chambers; and of the Denfity of its tranfparcnt Parts.

Before we proceed to confider the eye as a dioptric inftrument, it is of importance to acquire a knowledge of the circumftances which may determine the general effect that organ produces. Thefe confift in the forms, proportions, and denfity of the cryftalline lens, and of the two humours which accompany it.
A. Form.

The general form of the eye depends on the nature of the medium, in which the animal it belongs to exifts. It is almoft fpherical in man, and in the quadrupeds that live on the furface of the earth; that is to fay, in the loweft and moft denfe part of the atmofphere. The cornea forms a flight projection at its anterior part, bo caufe its convexity is the portion of a fphere, which is fmaller than that of the reft of the cye; this difference, however, is not apparent in the porcupine, opoflum, \&xc. The globe is in ge-

\section*{Art. III. Form of thb Eye, Esc. 385}
neral a little more convex anteriorly, than pofteriorly *.
In Fifhes, and the Cetacea, which inhabit the water, the flatnefs of the anterior part of the eye is much more confiderable. Indeed, in a great number of fifhes, the eye reprefents a femi-fphere, the plane part of which is forward, and the convex backward. In the ray, the fuperior part is alfo flattened, fo that the eye ap-

\footnotetext{
* To afcertain with Atill more precifion how far the globe of the eye approaches to, or departs from a true fphere, we may form a table of the proportion of its axis to the tranfverfe diameter, in the following manner :
\begin{tabular}{|c|c|}
\hline & Axis, Tranfverfe \(\begin{gathered}\text { didrneter. } \\ \text { dit }\end{gathered}\) \\
\hline Man. & 1: 1 \\
\hline or. & 137: 136 \\
\hline Mankey & The fame. \\
\hline Dog. & 24 : 95 \\
\hline Ox. & 20: 21 \\
\hline Horfe. & 24 : 25 \\
\hline Whale (meafured internally) & 6: 11 \\
\hline Porpoife (meafured externally) & 2: 8 \\
\hline Owl. & 13: 18 \\
\hline Vulture & 13 : 16 \\
\hline Ofrich. & 4: 5 \\
\hline
\end{tabular}

As fome eyes depart from the circular form, in their fection from right to left, we might alfo form a table of the proportion of their vertical diameter, or height, to their tranfverfe diame* ter, or breadth. The following are two examples:

The height is to the breadth -
In the ox, as
In the ray, as

\section*{Vol. II.}

C c
pears
pears like a quarter of a fphere, divided by two great circles, perpendicular to each other. Some fifhes, particularly the gadus lota Lin. formexceptions to this rule, and have alfo the cornea very convex.

In birds, which are always more or lefs elevated in the atmofphere, the eye departs from the fpherical form, in a direction contrary to that of fifhes. On its anterior part, which is fometimes flat, fometimes in the form of a truncated cone, a fhort cylinder is engrafted: this cylinder is terminated by a cornea, which is very convex, and fometimes completely hemifpherical, but which always belongs to a much fmaller fphere than the pofterior convexity.

In owels, in particular, the conical part is mof confiderable ; its axis is double that of the pofterior part; but in the other birds, the cone is commonly very flat. In the vullure, its axis is one half of that of the pofterior part, or the fegment of the fphere.

This difference in the eyes of the three claffes depends on the proportional denfity of the media the animals inhabit, compared to that of the aqueous humour of the eye. As this humour is equal in denfity to water, it cannot refract rays in that medium, and would therefore be of no ufe to fifhes. Thus we find, cither that it does not exift at all in thefeanimals, or that they poffefs it in a very fmall quantity.

Art. III. Form of the Eye, Egc. \(3^{8 \%}\)
In air which is veryomuch rarefied, as that in which birds liy, the refnagibility of the aqueous humour is confiderable. It is therefore aburdant in them, and prefents a very convex furface. Quidrupeds occupy a middle place between thefe two claffes, both with refpect to the ftructure of their eye, and the medium they inhabit. The aqueous humour is entirely wanting in the cutlle-fifues:

The convexity of the cryftalime lens is in an inverfe proportion to that of the cornea; and confequently its thicknefs bears an inverfe ratio to that of the aqueous humour.

The cryftalline of fifhes is almoft fpherical, and fomerimes even perfectly fo; it projects through the pupil, and leaves fcarce any fpace for the aqueous humour. We alfo find the convexity of the cryftalline very great in the Cetacea, and in fome quadrupeds, and birds that dive frequently, as feals, cormorants, \&c. It is likewife very convex in reptiles.

The form of the cryftalline in birds, is that of a flat lens. In the Mammalia it is more convex. Of all mammiferous animals, man has it moft flat. In all thefe animals it is compofed of two fegments of a fphere, the pofterior of which generally belongs to a fmaller fphere *:

\footnotetext{
* The following table of the proportion of the axis to the diameter, affords an opportunity of cumparing the convexities of different cryftallintes. It is founded partly on the obfetva-
}
388 Lect. XII. Of the Eye.
its dimenfions and proporfions are not entirely conftant in each fpecies; it is generally more convex in young fubjects than in old.
It is obvious that this convexity of the cryf-
tions of Petit, (Memoires de l'Academie des Sciences, 1727,) and partly on our own.
The axis is to the diameter-
In Man, as 1: 2 generally
the Monkcy The fame
Ox ..... 5 : 8
Horfe ..... 2: 3
Dog ..... 7: 9
Hare ..... 4: 5
Otter ..... 4: 5
Porpoife ..... 9: 10
Whale ..... 13: 15
Owl ..... 8: 4
Parrot ..... 7: 10
Vulture ..... 8: 11
Tortoife ..... 7: 9
Frog ..... 7 : 8
Salmon ..... 3: 10
Sword-fifh ..... \(25: 26\)
Shad ..... 10: 11
Pike ..... \(14: 15\)
Barbel ..... 11: 12
Carp ..... 14: 15
Mackrel ..... 12: 18
Whiting ..... \(14: 15\)
Shark ..... 21: 22
Ray ..... The fame
Herring ..... \(10: 11\)
Tench ..... 7: 8
Eel ..... \(11: 12\)
Congre ..... 9:10

\section*{Art. III. Form of the Eye, Ėc. 389}
talline is capable of fupplying the deficiency of that of the cornea. In animals which have the cornea convex, when the already converging rays arrive at the cryftalline, it is not neceffary that they fhould be greatly approximated by that lens: the contrary is the cafe in thofe which have the cornea flat.

\section*{B. Proportions.}

To afcertain the fpace occupied by the cryftalline, and the two humours, the eyes muft be congealed, and divided in that ftate by a plane paffing through their axis. This experiment is, however, attended by the inconvenience of producing an unequal dilatation in the different parts of the eye ; but it enables us to difcover that the cryftalline occupies leaft fpace in the human eye, and moft in that of fifhes.

The portion of the axis occupied by each of the three parts of the eye, may be reprefented by the following fractions; the length of the axis being confidered the unit :


C c 3
It

It would be alfo interefing to learn the proportion of the total fpace occupied by exch of thefe tranfparent pafts. Among the mammiferous animals, the eye of man bas the vitreous humour moft abundant; it is twenty times greater than the aqueous: in the ox, it is ten fimes; and in the fhecp, nine times greater.

\section*{C. Denfity.}

If the following table, given by Monro, of the rpecific gravity of the different tranfparent parts of the eye in the ox and the cod be correct, we may conclude that the differences with refpect to denfity between the mammalia and fifhes are not confiderable. Diftilled water iṣ here fuppofed a thoufand.

\section*{SPECIEIC GRAVITY.}

In the \(O_{x}\). In the Cod:
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Of the aqueous humpur} \\
\hline & e vitre & 1013 \\
\hline \multicolumn{3}{|l|}{Of tlie whole crystalinie ....0.ton.e.e....... 114.} \\
\hline \multicolumn{3}{|l|}{Cfits external part ........................... 1070............ 140} \\
\hline Of & s nucleus.................. & .0. -e.e.o. 0.1200 \\
\hline
\end{tabular}

It fhould be remarked, however, that the power of refraction is greater than the denfity indicates, in confequence of the partly inflammable nature of the humours of the eye: It is. alfo poffible that thefe humours contain more inflammable parts in fome fpecies than in others, and that their refrangibility cannot, therefore, be precifely in the ratio of their denfity.
D. Con-

> Art. IIf. Form of the Exe, छ'co
> 391

\section*{D. Comfiftence.}

The cryftalline is hardeft in thore animals in which it is moft convex. The human cryftallines is one of the fofteft : that of the other mammiferous animals and birds may be eafily bruifed; its middle part is, however, hard. In fifhes, that part forms a nucleus, which cannot be divided without fome difficulty. The cryftalline is alfo very hard in the cuttle-fik: its juduration increafes with age in all animals.

The external and fofteft parts of the cryitalline are alfo the leat denfe; it is probable that this difpofition prevents that reflection of the rays which would in a certain degree takf place, were they fuddenly tranfmitted through three different media; this happens in the paffage of the rays, through the objeatiye glaffes of the achromatic telefcope ; and the milky cloud which refults from thefe repeated reflections, is one of the principal defeets of this inftrument.

The aqueous humour, which is wery fluid in warm-blooded animals, is vifcous and filamentous in fifhes.

The confiftence of the vitreous humour is in general fimilar to that of the white of an egg: as it is contained in cells, it has the appearance of a body which is circumferibed, and not Huid. This has incuced a grear number of ailatomifts to name is the virrcous body.

The preceding data are not fufficient to enable us to calculate the effect of the eye accurately. It is alfo neceffary that we fhould know the exact length of the radii of the fpheres, to which the anterior and pofterior curvatures of the cornea and cryftalline belong in each animal; and likewife the length of the axis of the aqueous, cryftalline, and vitreous humours. Laftly, the refractile power of thefe three tranfparent bodies compared with that of diftilled water.

We might then determine the focus of parallel rays, and the diftance at which the animal can eafily diftinguifh objects. By adding to thefe principal points the obfervations we fhall prefently make refpecting the means poffeffed by the different claffes of animals, for changing the figure of their eye, we would afcertain the limits of their vifual faculty.

But the dimenfions I require are very imperfectly known to us : the following is, however, a table of them, drawn up from the writings of Petit, Monro, and my own obfervations:-
\[
\text { Art. III. Form of the Eyx }^{6} \mathcal{E}_{0} \text {. }
\]
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline &  &  &  &  &  &  \\
\hline Man & 0,017 & 0,016 & 0,012 & 10,003 & 00,045 & 0,014 \\
\hline Dog & & 0,014 & 0,012 & 0,005 & 0,008 & 0,008 \\
\hline & & 0,025 & 0,021 & 0,006 & 0,014 & 0,017 \\
\hline Sheep & & & & 0,004 & 0,010 & 0,012 \\
\hline Hors & & & & 0,009 & 0,116 & 0,019 \\
\hline Rabbit & & 0,014 & 0,014 & ........ & 0,011 & \\
\hline Porpoise, 1,5....... & & 0,016 & 0,014 & ...... & 0,012 & .......0 \\
\hline Turkey................ & & 0,012 & 009 & & 0,005 & \\
\hline Horn Owl & & & 0,016 & & 0,012 & \\
\hline Salmon, 0,5... & & 008 & -004 & & 00,045 & \\
\hline Pike, 0,65..... & & 0,010 & 0,009 & & 0,008 & \\
\hline
\end{tabular}

We are almoft entirely ignorant of the refractile power of the three humours. To calculate that of the cryftalline, the curvatures of which are well known, it is neceffary to meafure at what diffance it collects the parallel rays. According to Monro, in the cryftalline of an ox, the radius of the anterior curvature of which was \(\frac{21}{7} \frac{1}{6}\) of an inch, and that of the pofterior \(\frac{15}{48}\), the focus was \(\frac{13}{40}\) behind the pofterior furface; and in the cryftalline of a cod-fift, where the radii of the curvatures were \(\frac{\times 4}{40}\), and \(\frac{13}{40}\) and a half, the focus was only \(\frac{3}{40}\) when in the air, and \(\frac{x 0}{40}\) in water : but he does not fate the thicknefs of the cryftallines, nor explain what meafure he ufed.

\section*{Artiele IV.}

Of the Firft Coat of the Eye, or the Sclerotica:

T\(\Gamma_{\text {He selerotic covers the whole globe of the }}\) eye, the anterior part excepted, where it leaves a large vacaney, which is filled up by the cornea.

The fclerotic detcrmines the fhape of the eye; it therefore can be really foft and flexible only in animals that have the eye nearly globular, that is to fay, in men and quadrupeds, becaufe their fclerotica affumes of itfelf that fhape, in confequence of the nearly uniform refiftance made by the fluids contained in the eye to the preflure of its coats : but in all animals that have the eye more removed from a fpherical form, as the Cetacea, fifhes, and birds, that membrane is fupported by hard acceffary parts, or by a greater folidity of texture, and a more confiderable thicknefs.

In man, and in moft mammalia, the fclerotica is a whitifh opaque membrane, fomewhat foft, moderately thick, and prefenting, at firft fight, no apparent organization. It is refolved, however, by maceration, into a cellular texture, compofed of filaments inter woven in every direction. This ftructure may be difcovered without preparation in the eye of Cetacea, and particularly in that of the revale: inn this ani-
mal the lateral parts of the fclerotica are nearly an inch thick, and its bottom nearly an inch and a half; the lateral parts are very hard. On cutting into them, we obferve that their fubflance confifts of fibres which have a tendinous appearance, and which form a kind of net-work, the mefhes of which contain another fubftance of a fungous nature, browner and more flexible than thefe fibres: the pofterior part is much fofter, becaufe the mefhes are there larger, and partly filled by an oily fubftance; thefe two fubftances, the foft and the hard, are feparated in a very abrupt manner, and do not run gradually into each other.

The optic nerve paffes through the pofterior portion of the fclerotic, by a canal an inch and a half long, the parietes of which are formed by the dura-mater; and it is very vifible that the white fibres which form the bafe of the fcterotic, are fucceffively detached from the external furface of the dura-mater, of which they appear to be an expanfion. This feems to decide the queftion, whether the fclerotica be a continuation of the dura-mater, in favour of the ancients. The queftion is, however, very difficult of folution in other animals, in which thefe two membranes touch only by a very thin portion. The fclerotic of the porpoife is only two or three lines thick, but it prefents the fame ftructure as that of the zobale. . In the true quadrupeds, this membrane differs in nothing cffential
effential from that of man ; in both it is generally thickeft at the anterior part, which is occafioned by the tendons of the mufcles of the eye being inferted there.

In the feal the fclerotic is thick anteriorly, and ftill more pofteriorly, but the middle zone is thin and flexible.

The fclerotic of birds is thin, flexible, and rather elaftic pofteriorly; it has a bluifh and brilliant appearance, but we perceive in it no diftinct fibres; it does not receive the optic nerve by a fimple hole, but by a canal, which paffes obliquely through its fubftance; its anterior part is divided into two laminæ, the interval of which receives a circle of fmall thin hard oblong bones, which lie over each other like tiles, and which give to the anterior part of the edge a great degree of firmnefs, and a fixed form. Thefe officula are almoft flat in the greater number of birds, in which they form only an annular difk of little convexity; they are flightly arched and concave externally in the borned orol, in which they form a fhort tube, in the fhape of a truncated cone. They are ufually twenty in number.

The tortoife has, at the anterior part of the fclerotic, the fame offeous laminæ as birds; thefe laminre are enclofed in that membrane, without being continued into its fubftance, and may be eafily feparated from it.

There are fimilar lamine in the felerotic of
the camelion, and in that of feveral other lizards; but they do not form the anterior difk; they merely furround the lateral part.

In fifhes the fclerotic is cartilaginous, homogeneous, femi-tranfparent, elaftic, and fufficiently folid to preferve its form of itfelf, though very thin in fome fpecies. In the ray it fwells pof. teriorly into a tubercle, by which the eye is joined to a particular ftalk, of which we fhall fpealk hereafter. The fclerotic of the furgeon is thicker than the cavity of the eye; it reprefents a kind of cartilaginous fphere, a part of which contains a fmall cavity, covered by the other membranes.

The falmon has the fclerotica, of the thicknefs of a line pofteriorly, and of an almoft bony hardnefs before. This induration of the anterior portion is obferved in a number of other fpecies.

The fclerotic of the fepice is fingular. Pofteriorly it is much removed from the globe of the eye. The large ganglion of the optic nerve and feveral other glandular parts are fituated between them. The fclerotica, therefore, forms pofteriorly a truncated cone, the pointed part of which is directed to the bottom of the orbit; to this portion the mufcles are attached: the anterior part nearly thuts the globe of the eye ; it is very foft and vifcous ; it is eafily feparated, and prefents a coarfe felt-like texture, which becomes firmer in fpirits of wine. In

\section*{398 Lect. XII. Oftue Eye.}
fome fecies it has a metallic brilliancy. As there is no cornea, the fclerotic is wanting oppofite to the cryftalline; but the hole is not fufficiently large to admit a view of the iris, without diffection.

In all animals, the fclerotic is double: a very thin, and ufually blackifh membrane, clofely adheres to its internal furface, and is believed to be a prolongation of the pia-mater. In the lion we have been able to follow it with cafe under the cornea, where it becomes firm and tranfparent, and from which it may be detached with facility.

The fclerotica not only affords infertions for the fraight and oblique mufcles of the eye, but alfo for thofe of the third eye-lid in birds, and and in a number of reptiles. In all the claffes it tranfmits, through holes which perforate it, the optic nerve, the ciliary nerves; and the internal veffels of the eye.

From its flexibility in man and quadrupeds, it is believed that the mufcles comprefs it, and that the humours being thus pufhed forward, fwell the cornea, and render the eye capable of diftinguifhing very near objects. It camot, however, have this ufe in animals, in which it is wholly or partly inflexible, as in the Cetacea, birds and fifhes: yet their powers of diftincs vifion are, in a number of fpecies, at leaft greater than thofe of man.

\section*{Art. V. Cornea and Conjunctiva. 399}

\section*{ArticleV.}

\section*{Of the tranparent Cornea, and of the Conjunctiva.}

THE cornea is that tranfparent part which feems encafed in the vacancy left by the fclerotic at the fore-part of the eye. We have ftated, in Article III. its varieties with refpect to convexity: it alfo prefents fome differences in its fhape.

It is not always completely circular: in man, and other mammalia, it is more broad than long, and contracted a little towards the fide of the nofe.

Its tranfverfe diameter or breadth is, to its height,

In the ox, as - - - \(27: 23\).
In all animals the cornea is compofed of thin tranfparent laminx, glewed together by compact cellular matter, and forming, by their union, a plate which is thicker in the middle than towards the edges. This part is, therefore \({ }_{2}\) of itfelf calculated to produce a convergency of the luminous rays; its laminæ are cafily feparated by the fcalpel, efpecially after a little maceration.

According to the experiments of Home, the corriea becomes more conver when we examine
near objects, and more plain when we look at thofe that are diftant: in the firft cafe it ap. proximates more powerfully the moft diverging rays.

Some have attributed this effect to the contraction of the ciliary proceffes, others to that of the iris. It is more probable that it is produced by the ftraight mufcles of the eye ; but it is not fufficient to explain diftinctnefs of vifion at very different diftances.

The corne is the only part to which we find an analogy in the eyes of infects; it even appears in them to fupply the place of the cryftalline. It is entirely hard and fcaly.

The cornea was long fuppofed to be a continuation of the fclerotic, but is now acknowledged to be a particular membrane. It is not, however, always attached to the fclerotic, fimply by cellular fubftance : the edges of the two membranes fometimes penetrate reciprocally into each other. This is particularly obfervable in the whale. The fibres of the fclerotic in that animal, pafs into the fubftance of the cornea in the form of very delicate white lines, but pretty long and confpicuous. 'Thefe lines are alfo. eafily diftinguifhed in the rbinoceros.

The line of reparation of thele two membranes is fometimes ftraight, as in the whale, rbinoceros, \&c.; at other times it forms a kind of bevel or flope, and the cornca flides under the edge of the fclerotic. This is the cafe in mun,

\section*{Art. V. Cornea and Conjunctiva. 401}
the ox, \&cc. in fome other animals the edge of the fclerotic is double, ánd embraces that of the cornea in the manner of a forceps. The bare affords an inftance of this kind of connection.

The feparation of the cornea from the fclerotic, may in particular be diftinctly obferved in the tope (Squalus galeus.) There membranes form a flope or bevel, but in fuch a manner that it is the fclerotic which becomes thin behind the cornea, and not the latter as is commonly the cafe. The fclerotica is white, the cornea yellowifh, and there is befides, between the two, a compact but very confpicuous cellular texture. This fubftance appears to be a production of the conjunctiva, which penetrates the eyc, to unite with the ciliary ligament and the iris.

The Sepice have no cornea, and the anterior aperture of the fclerotic is not filled up. The cryftalline projects acrofs it, and there is no aqueous humour. We find, however, under their conjunctiva, a particular membrane which is dry, fine, and tranfparent: it envelopes the fclerotica itfelf, and the anterior part fupplies the place of the cornea.

The conjunetiva is that part of the fkin which, after being reflected, to line the internal furface of the eye-lid, where it affumes a finer texture, and receives more numerous veffels, folds back again in the contrary direction, and, becoming ftill finer, covers the anterior part of the eye.

Vol. II.
D D

It adheres very clofely to the cornea, from which it cannot be feparated, except by maceration. The part of the conjunctiva which covers the cornea, is tranfparent; that which fpreads over the fclerotic, is what we call the white of the eye, and is, in fact, of that colour when its blood-veffels are not diftended, or rendered too vifible by inflammation.

This defcription, taken from man, applies to all animals which have eye-lids, with the exception of the colour of the part analogous to the white of the eye, which fometimes varies; but in the fpecies which have no eye-lids, as in the greater number of fifhes, the fkin paffes directly before the eye without forming any fold : fometimes it even does not adhere very clofely to the eye. This is particularly obfervable in the eel, which may be fkinned without producing any hole in the fituation of the eye, the fkin only exhibits at that place a round tranfparent fpot. It is the fame cafe in the Serpents and cuttle-fish.

In the trunk-fifb (oflracion) the conjunctiva is fo fimilar to the reft of the fkin, that we obferve lines upon it which form the fame compartments as on the body of the fifh.

Among the mammalia we find a kind of rat in which the kin is not even tranfparent over the eye, but is there covered with hairs, as on the reft of the body. The eyc, which is farcely the fize of a poppy-feed, is perfectly ufclefs.

This rat is the zemni (mus Typblus.) An cel (nuurena cacilia,) and the myxine (gafirobrancbus cacus.) are blind in the fame manner, in confequence of the opacity of the conjunctiva.

\section*{Article VI.}

Of the Second Coat of the Eye, or the Choroides and its Appendages.

> A. In Man.
\(T_{\text {he choroides lines all the fclerotica interiorly; }}\) in the concavity of which it is formed. In the greater part of their extent, thefe two membranes are only attached by a very loofe cellular fubftance, but they are connected by nerves and veffels which perforate the fclerotic to proceed to the choroides, or te pafs through it. Their anterior part, that which is next the cornea, is more intimately united by a circle of a cottonlike cellular fubftance moiftened by a whitifh mucus. This is called the ciliary ligament. It is thicker and more compact anteriorly : it becomes thinner and difappears pofteriorly. At the furface oppofite to this ligament, that is to fay, on the concave furface and around the anterior edge of the choroides, we obferve its internal lamina forming very fine folds, difpofed
\[
\text { DD2 } \quad \text { in }
\]
in radii; they have fome refemblance to the difk of a radiated flower, and are named altogether corpus ciliare. The projecting laminæ which refult from thefe folds, have their anterior extremity a little turned towards the axis of the cye as they retreat from the cornea. Thus all the extremities of thefe laminæ intercept a circular fpace, which is precifely the pofition of the cryftalline. It even appears that thefe extremities, which are called ciliary proceffes, are attached to the front of all the more acute border of the capfule of the cryftalline, and contribute to render it fixed. The lamina which compofe the corpus ciliare, make hollow impreffions on the anterior furface of the vitreous humour which occupies all that part of the eye fituated behind them.

After having produced, by thefe internal projecting folds or laminæ, the beautiful wreath which we have juft defcribed, the choroides proceeds to form an annular veil, placed between the cornea and the cryftalline, which is called the uvea: it is perforated in its middle by a hole named the pupil, and its anterior furface covers another mombrane, which is alfo annular, and which is vifible through the cornea. This membrane is the iris, which we fhall defcribe in the next article.

That part of the fecond tunic which is fituated before the cryftalline, is almoft plain in man. It fometimes has a degree of convexity in

> Art. Vi. Of the Chorotdes.
other animals, but always lefs than the reft of the coat, which has precifely the fame curvature as the fclerotica.

The firft chamber of the eye is fituated between this flat part of the fecond tunic, and the greateft convexity of the cornea. The aqueous humour fills this chamber.

The fubftance of the choroides is very thin and delicate; good injections fhew that it is almoft entirely compofed of a triple vafcular texture. Its arteries form, in the firft place, the external part: the greater number pafs through the fclerotic, very near the optic nerve, and are diftributed over the whole choroides, where they divide at very acute angles: they are named the foort ciliary arteries, to diftinguifh them from. two trunks which almoft reach the iris without dividing, and which are named the long ciliary arteries. The internal texture is formed by the extremities of the fame arteries, which having pierced the choroides, form on its internal furface a net-work fo uniform and fofine, that the reticular interftices cannot be diftinguifhed except by a very ftrong magnifying glafs. The third texture is intermediate ; it is formed by the veins, the courfe of which is very fingular. They reprefent irregular arches, which meet at certain points, and form a kind of circle. Thefe are the veffels which we fee moft diftinctly without injection.

The internal furface of the choroides is lined,
in man, by a dark-coloured, or even perfectly black mucus, which may be removed or wafhed off with the finger or a pencil. It ferves to prevent the rays, reflected by the internal parietes of the cye, from difturbing vifion, which is effected by direct rays. For the fame reafon all dioptric inftruments are blackened internally. When this pigment is removed, we can fee by a magnifying glafs a flight villofity. The internal lamina of the choroides feems of a more folid texture than the reft of its body, and is particularly named membrana Ruychiana.

The ciliary proceffes and the uvea have the fame veffels, the fame villous furface, and the fame black varnifh as the reft of the choroides. The ciliary proceffes even leave a remarkable impreffion of this varnifh on the anterior part of the vitreous body, when they are feparated from it. This cannot be done by the reft of the membrane, on account of the pofition of the retina.

\section*{B. In other Animals.}

The choroides exifts in the eyes of all animals which are known to us. It is always vafcular, and at leaft partly covered on its concave furface by a particular mucous fubftance; it varies with refpect to the ciliary proceffes, the colour and texture of its pofterior part, the feparation more or lefs eafy of the membrana Ruyfchiana, and the difpofition of its blood-veffels.
1. Of

\section*{1. Of the Ciliary Proceffes.}

The mammalia and birds have all the ciliary proceffes: we find them alfo in fome reptiles, and even in the cuttle-fifs, but they are wanting in almoft all fifhes.

In man, each of the laminx of the ciliary proceffes reprefents a long irregular triangle; the fide by which the lamina joins the reft of the choroides, is convex; another, which touches the vitreous body, is concave; and the third, which is next the iris, is much fhorter than the other two. The angle which touches the capfule is rounded, all the three edges are flightly denticulated. This denticulation is much more apparent, and even changes into a real fringe in the large animals, as the ox, the borje, and the rbinoceros. It is alfo fimilar in the vobale, in which the angle that retains the capfule, is prolonged more into a point than in the preceding fpecies. In the Sarcophaga, particularly in the lion, the fide which forms the bafe of the laminæ, is fhorter in proportion to the other fides than in the preceding animals, fo that the oppofite angle projects moft : we perceive no denticulation on its edges. In all thefe fpecies, one lamina nut of two or three, is fhorter than the others; but in this refpect a regular order is not obferved.

In birds the ciliary proceffes project little; they are almoft merely ferrated ftrix, a little
undulating. There are, however, differences in the fpecies.

In the born-owol they are fine, compact and numerous. In the oftrich they are larger and more loofe, but in all birds their extremity adheres very firmly to the capfule of the cryftalline.

In the tortoife the ciliary proceffes project ro very little, that we could fcarcely recognize them, were it not for the elegant impreffion they leave on the vitreous body; but in the crocodile thefe proceffes are very beautiful, and very confpicuous; they are each terminated by a nearly right angle. I have obferved thefe proceffes in the form of elongated threads, but few in number, in a large foreign tree-frog; they are alfo fuch, though not diftinct, in the toad. I have not obferved them in the common lizards, nor in the Serpents.

There is a very confpicuous body and ciliary proceffes in the fqualus, galeus : the laminæ projećt almoft as much as in birds, and, after forming a fhort point, which joins the capfule of the cryftalline, they are continued with the ftriæ of the uvea. I have not been able to perceive the fame ftructure in the riy, but it is certain that there is nothing fimilar in the offeous fifhes; their uvea paffes on, without interruption, with the membrana Ruyfchiana, and forms with it an uniform tunic, no part of which projects inwardly.

The ufe of the ciliary proceffes, in retaining
the cryftalline, is no where fo difinctly feen as in the eye of cuttle-fighes and pulps: their ciliary proceffes form a large zone or diaphragm, in the aperture of which the cryftalline is truly encafed. A deep circular furrow paffes completely around the cryftalline, and divides it into two unequal hemifpheres. The ciliary proceffes penetrate into this furrow, where they are fo firmly fixed, that they cannot be removed without being torn. The procefs is not formed of projecting laminx, but of a continued membrane, the two furfaces of which are marked by a circle, confifting of a vaft number of very fine radiated ftriæ; which prefent a very agreeable fpectacle to the eye.

\section*{2. Of the Membrana Ruyfchiana.}

This membrane can fcarcely be diftinguifhed from the choroides in man, monkies, fmall quaatrupeds, and birds; but in the large quadrupeds, although we cannot feparate it without injuring both membranes, it is diftinguifhed by its finer, more compact, and feemingly homogeneous texture. The fection of the choroides prefents to the microfcope only the open mouths of the fmall veffels which compofe it. That of the Ruyfchiana is folid, and refembles the fection of a fimple membrane; for example, of the epidermis. This is particularly obfervable in the eye of the zobale, where the apertures of the vef-
fels are vifible to the naked eyc, and where the three layers are eafily difcovered.

The lateral and anterior parts of the Ruyfchiana are, as we have obferved, covered with a mucous pigment, more or lefs dark; it is of a purple red colour in the calmar, which, with the other fepie, form probably the only exception to this rule. Some birds have it of a deepbrown red. This varnith is fometimes wanting in certain fpecies, in confequence of a difeafe which alfo whitens their hair: the white rabbits, white negroes, and white mice, form examples of this variety: their Ruyfchiana is then tranfparent, and all the parts of the choroides would be of a white colour, if it were not for the numerous veffels diftributed in that membrane, which give it a lively red appearance.

\section*{3. Of the Tapetum.}

The bottom of the Ruyfchiana is frequently covered with a very flight coat of this pigment, through which we can perceive its colour, which varies remarkably in different fpecies. Man and monkies have it brown or blackim. Hares, rabbits, and hogs, of a chocolate brown colour; but the Sarcophaga, the Ruminantia, the Pachydermata, the Solipeda, and the Cetacea have lively and brilliant colours in this part. The ox has it of a beautiful green, cbanging into azure blue. The borfe, the goat, the buffalo, the

Rag, of a filver blue, changing to violet. The greep, of a pale yellow green, fometimes blueifh. The lion, the cat, the bear, and the dolpbin, have it of a pale golden yellow. The dog, the wolf, and the badger, of a pure white, bordered with blue. This coloured part of the Ruyfchiana is named the tapetum: it does not occupy all the bottom of the eye, but merely one fide, that which the optic nerve does not perforate.

It is difficult to account for the ufe of this brilliant fpot in a place fo little vifible. Monro, and others before him, have fuppofed that the tapetum of the ox is green, in order to reprefent to him, more ftrongly, the colour of his natural food; but this explanation does not apply to the other fpecies.

Birds and fifhes have no tapetum ; their Ruyfchiana is uniformly blackifh, and covered every where by mucous fubftance; there is even much more on its bottom than any where elfe in fifhes. The ray forms an apparent exception to this rule; there is at the bottom of its eye a beautiful filver colour, produced by the tranfparency of the Ruyfchiana, which allows the colour of the choroides to be feen through it.

\section*{4. Of the Choroid Gland of Filles.}

The Ruyfchiana and choroides of fifhes form two membranes, which are very diftinct, and eafily feparated. The Ruyfchiana is black, and compofed of an interlacement of innumerable veffels.

\section*{412 Lect. Xil. Ofthe Eye.}
veffels. The choroides is either white, filvery, or gold coloured; it is very thin, and little vafcular.

Between thefe two membranes there is a body which fome have named a gland, others a mufcle, and which deferves to be defcribed : it is ufually of a lively red colour; its fubftance is foft, and rather glandular than mufcular ; at leaft we diftinguifh no fibres in it, though the blood-veffels form deep and almoft parallel lines on its furface; its form is ufually that of a thin cylinder, formed like a ring round the optic nerve: the ring, however, is not complete; a fegment of a certain length being al ways wanting. Sometimes, as in the perca labrax; it confifts of two pieces, one on each fide of the optic nerve: at other times it is not quite circular, but prefents an inregular curvature; this takes place in the falmon, in the moon-fifb (tetraodon-mola,) and in the coid. But in carps, and moft other fifhes, its figure is nearly circular.

Thofe who are of opinion that the eye changes its figure according to the diftances of the objećts that are viewed, fuppofe that the body we have defcribed is a mufcle, intended to produce that effect, by contracting the choroides ; but it would appear, that the numerous vefels which pafs through it, ought to make us rather regard it as a gland, deftined to fecrete fome of the humours of the eye. Thefe veffels are white, fine, nuch rwifted, and appear to pafs through the
Ruyf-

Ruyfchiana; they may be feen very diftinctly in the moon-fifh, and the labrax. In the cod they are exceedingly large ; they anaftomofe together, and are all covered by a white and opaque mucus.

Haller defcribed thefe veffels as a third or intermediate lamina of the choroides, which he named the vafcular: the glandular body itfelf receives a number of veffels and nerves, which are branches of the ophthalmic nerve, the trunk of which proceeds for fome time in a fheath, which is common to it and the optic nerve ; its own theath opening into that of the latter, as a fmall vein into a larger one.

This gland does not exift in the Chondropterygii, as the rays and foarks, the eye of which approaches nearer to that of the Mammalia, as we have already fhewn, with refpect to the \(t a-\) petum and ciliary proceffes. The choroides of thefe two genera confifts, as ufual, of a triple texture of veffels, which has fome thicknefs and confiftency. The Ruyfchiana is very thin and tranfparent; between the two there is a layer of filvery matter.

The fepice, which have feveral glandular bodies between their fclerotica and their choroides, have none between the latter and the Ruyfchiana; the feparation of thefe two membranes is even fometimes difficult: the choroides is more thick, foft, and vafcular ; the Ruyfchiana is thin and dry ; there is no tapetum; all the eye is lined internally by a deep purple varnifli.

414 Lect. XII. Ofthe Eye.

\section*{Article Vil. \\ Of the Iris and Pupil, and of their Motions.}
\(\mathrm{W}_{\mathrm{E}}\) have already fhewn, in the preceding Article, that the urea, or that production of the choroides which forms an annular veil or diaphragm before the cryftalline, is covered on its anterior furface by a particular fubftance named the iris.

\section*{A. Structure of the Iris.}

The iris is a half-fibrous, half-fpungy body, united in the moft intimate manner to the uvea, from which it cannot be feparated without a great deal of trouble, and in the largeft animals. It is thickeft and moft loofe at its greateft circumference, towards the ciliary ligament, where it feems to terminate; it is there moft eafily feparated; but towards the edges of the pupil it becomes gradually thinner, and cannot be diftinguifhed from the uvea.

When the long ciliary arteries arrive at the great circumference of the iris, they are bifurcated, and form a circle around it : the arteries which belong to the iris, proceed from this circle; they are numerous and radiated, and anaftomofe together to form a fecond fmaller circle.

It receives a great number of fmall ramifica-
tions from the ciliary nerves, which, after having perforated the fclerotica, and paffed round the choroides longitudinally, like ribbons, but without penetrating it, are loft in the iris.

The ftrix, which we remark on the iris of man, are diftinguithed by their colour, rather than by their elevations; they refemble little rays of light, which converge as they proceed towards the pupil: on the edge of this hole there is a circle, which is narrower and deeper than the external circle : there lines, which are ftraight when the iris is dilated, and the pupil contracted, are curved when the contrary difpofition takes place.

It is well known that the total colour of the iris varies in different men, from blue to yellow, and to deep orange. Some domeftic animals alfo prefent varieties in the colour of their eyes, as horfes, dogs, \&c.; but wild animals have, generally, a fixed colour for each fpecies.

In the Mammalia this colour is frequently a deep chocolate or brown; they have fewer coloured ftrix than man. In thofe in which the pupil is not round, we frequently obferve unequal folds, which are occafioned by the motions of the iris.

Birds have the iris generally of a fmooth furface, and a dark colour; it varies, however, greatly in different fpecies, and is frequently very lively, as bright yellow, bright red, fky blue, \(8 x c_{0}\); its texture appears, by the microfcope,
fcope, to confift of mefhes, formed by the decuffation of a multitude of very fine fibres. The membrane of the uvea is fo fine in birds, that when the varnifh is wiped off, it is completely tranfparent, and the iris appears of the fame colour on both fides.

In fifhes, on the contrary, the iris is fo fine a membrane, that we fee the uvea through it, which, by its golden and filvery brilliancy, Thews at firft fight that it is a continuation of the choroides, which is of the nature we have already ftated.

The iris of reptiles refembles that of fifhes in its golden colours, but the veffels are more vifible; they form a beautiful net-work on the iris of the crocodile.

\section*{B. Fibres of the Urea.}

The pofterior furface of the uvea prefents fome compact ftrix, which are continued with the ciliary proceffes; thefe ftrix, though little apparent in man, are of a confiderable fize in the large Ruminantia, particularly in the ox, which has them more confpicuous than the borje, though the eye of the former is fmaller; they are ftill larger in the robale.

The rbinoceros has them alfo very large, and extended almoft to the cdge of the pupil. In other genera they leave a fmooth fpace towards that edge. In general, thefe frix do not ap-
pear either in birds or fifhes; we obferve, however, veftiges of them in the eyes of the large Barks, as the tope, white 乃bark, \&uc.

Thefe fibres were long regarded as mufcular ; they are now underftood to be fimple folds of the membrane.

\section*{C. Motions of the Iris.}

The ufe of the iris is to guard againft the admiffion of too many rays from one point into the eye, and to prevent too great intenfity of light from producing a painful fenfation in the retina. For this purpofe, when the objects we look at are very luminous, the iris dilates, and the pupil is contracted; but when thefe objects are obfcure, the contrary motion takes place. As the cone of rays has its apex at the luminous point, and its bafe at the pupil, that bafe is confequently larger, in proportion as the rays it contains are lefs approximated; but the abfolute quantity of the rays remains nearly the fame, unlefs the differences in the intenfity of light be very confiderable.

The motion of the iris is ufually involuntary ; it depends merely on the rays which flrike the retina. Light falling on the iris itfelf, caufes no motion; that membrane is not irritable, and as it has no immediate connection with the retina, the caufe of their fympathy can only be fought for in the brain: when one eye receives the

> Vol. II.

Ee
light,

\section*{418 Lect. XII. Ofthe Eye.}
light, it alone contracts: in fleep the pupil is diminifhed, and the iris dilated. In fome cafes great attention to the examination of certain objects, or a fudden fright, produce motions in the iris, independent of any change in the intenfity of light.

The motion of the iris is, however, completely voluntary in fome animals. The parrot has long been known to poffefs this power; it is entirely wanting, or at leaft fcarcely exifts, in fifhes.

When we regard an object very clofely, our pupil is contracted; firft, becaufe the light tranfmitted by near objects is more abundant : fecondly, becaufe that contraction admits into the eye only the leaft diverging rays, and excludes a part of thofe which would prove too numerous to be united on the retina.

Hunter has, however, proved, that this contraction of the pupil is not fufficient to explain the facility with which the fame eye fees diftant and near objects, and that recourfe muft be had to another theory, though Haller and Sabbatier admit of no other means of refolving the problem.

\section*{D. Figure of the Pupil.}

The form of the pupil varies in different fpecies; when it is dilated, it is generally round; it alfo remains round when contracted, in man, monkies, a number of Sarcophaga, and in the birds; but it approaches a vertical line in the
cat genus, forming different lozenges, always more narrow, according as the light is more intenfe. In the ox, and the other Ruminantia, it is tranfverfely oblong, and in its greateft contraction, becomes a tranfverfe line. In the borfe it is alfo tranfverfely oblong, and its fuperior edge forms a convexity, which has five feftoons, thicker than the reft of the margin. In the whale it is alfo tranfverfely oblong. In the dolphin it approaches to the figure of a heart.

The crocodile has the pupil fimilar to that of the cat. It is rhomboidal in frogs.

The tortoife, the camelion, and common lizards have it round. The gecko has it rhomboidal.

The ray exhibits a very remarkable peculiarity; the fuperior edge of its pupil is prolonged into feveral narrow ftripes, difpofed in radii, and reprefenting together a palm leaf; thefe fhreds, or ftripes, are gilded externally, and black internally. In their ordinary ftate they are folded between the fuperior edge of the pupil and the vitreous humours : but when we prefs the fuperior part of the eye with the finger, they unfold themfelves, and cover the pupil like a windowblind. It is probable that in life they clofe the pupil in this manner, either at the pleafure of the animal, or in confequence of the action of intenfe light. The torpedo can completely fhut its pupil by means of this veil. No other fifhes, not even the /bark, poffers any thing fimilar to this conformation.

In the cuttle-fiff, the pupil is in the form of a kidney.
E. Membrana Pupillaris.

In the human foetus, before the feventh month, the pupil is clofed by a very fine membrane contiguous to the uvea, from which it receives its veffels; it is torn, and afterwards completely difappears, fo that no veftige of it is found in the new-born infant. This membrane is obferved in the foctuses of other mammalia; but it is pretended that it does not exift in birds.

\section*{Article ViII.}

Of the Entry of the Optic Nerve into the Eye, and of the Origin, Nature, and Limits of the Retina.
A. Of the Entry of the Optic Neroe.
\(\mathrm{I}_{\mathbb{N}}\) Lecture IX. we demonftrated the origin of the optic nerve; and in Lecture X. we followed it to its entrance into the eye; it is neceffary that we fhould now defcribe the manner in which it penetrates that organ, and produces the retina.
1. \(I_{78}\)

\section*{1. In Mammiferous Animals.}

When the optic nerve of mammalia reaches the fclerotica, it begins to decreafe in diameter ; in paffing through that tunic, it forms a truncated cone, which varies in length, according to the thicknefs of the fclerotic. When it arrives at the choroides, it paffes through it by a round hole, which is filled with a fmall membrane, full of minute foramina. The medullary fubftance, tranfmitted through the long canals which compofe the optic nerve, feems to flow through thefe fmall holes, in order to be intimately mixed, and to form that nervous expanfion which lines all the concavity of the choroides, and is named the retina.

This point of the optic nerve forms fometimes a flight projection within the eye. In the bare and the rabbit, inftead of a fmall round and cribriform difk, the extremity of the nerve projects within the eye, and forms a kind of oval cupola, which is flightly concave in the middle, and from the edges of which the retina arifes.

In the greater part of mammalia we obferve whitifh fibres around this point, which are fomewhat more opaque than the reft of the retina, and are difpofed in radii.

In the bare and the rabbit thefe fibres make two long pencils, one to the right, the other to the left : their finenefs, and their pure white colour, enliven the brown ground of the cho-
\[
\mathrm{E}_{\mathrm{E}} 3 \ldots \text { roides, }
\]
roides, which appears through the reft of the retina, thus affording a pleating appearance to the eye.

In man we obferve, near the entry of the nerve, and almoft at the point which correfponds to the axis of the eye, a finall fold of \(t_{1} \quad e-\) tina, which forms a flight convexity \(w^{2} \ldots\) ae more external membranes are removed. In the midft of this fold there is a tranfarent point. which, at firft fight, appears like a bole; the edges of this point are tinged with yellow, in adults, but not in the new-born infant. This peculiarity of the human eye, which had efcaped the obfervation of all anatomifts before Sœmmering, is found in no other animals except in monkies. We have obferved it in the cyizocepbalus, in the wibite-noled guenon, \&c. Scc. In the firft, the tranfparent part is confiderably larger than in man, and of an oval form; there is fometimes a yellow fpot at its fide.

The maki, which of all mammalia approaches neareft the monkies, has only a flight fold, without any fpot or tranfparent point. The other fpecies have nothing fimilar.

\section*{2. : In Birds.}

In birds, when the optic nerve has arrived at the fclerotica, it is continued obliquely in a long conic cauda, which paffes into a fheath of the fame fhape, formed in the fubftance of that membrane, and directcd downward, and obliquely
liquely forward. The lamina of this fheath, which is in contact with the eye, is cleft throughout its whole length, by a narrow line, which allows a paffage for the fubftance of the nerve. This fiffure alfo exifts in the correfponding part of the choroides, and is even longer there, bccaufe the point of the nerve preferves its obliquity, after it penetrates the fclerotic. In confequence of this difpofition, the optic nerve does not form a round difk within the eye, as in the mammalia, but a round, narrow, and very white line, the two edges and two extremities of which produce the ratina.

But there is a ftill more remarkable peculiarity; it confifts in a folded membrane, fufpended the whole length of this white line, which fome have named marfupium nigrum, and others the pecten of the eye of birds.

This membrane appears to be of the fame nature as the choroides, though it nowhere adheres to it; it is very fine, very vafcular, and covered with the black pigment; its veffels come from a particular branch of the ophthalmic artery, diftinct from the two which belong to the choroides; they defcend along the folds of the black membrane, and form tufts, which are very agreeable to the eye when injected.

This membrane penetrates directly into the interior of the vitreous body, and appears like a wedge funk into it ; it is fituated in a vertical plane, directed obliquely forward: the angle E \(\mathrm{E}_{4}\) neareft
neareft the cornea, in the fpecies in which it is very broad, and the whole of its anterior edge in thofe in which it is very narrow, comes very near the inferior edge of the capfule of the cryftalline; in fome fpecies it is applied fo clofely to the capfule, that it is difficult to determine whether it is not attached to it. Such is the cafe in the vulture, the fork, and the turkey, according to Petit, \&xc. But there are other birds in which it remains at fome diftance, and appears attached to fome of the numerous laminæ which divide the vitreous body into cells.

In the fork, the beron, and the turkey, this membrane is broader in the direction paralle! to the cauda of the optic nerve, than in the contrary direction. In the of rich, the caffozary, and the born-orol it has oppofite dimenfions. It is folded like a ruffle in the direction perpendicular to the cauda of the optic nerve; the folds are rounded in moft fpecies. In the offich and the caffowary they are compreffed, fharp-edged, and fo high in the direction perpendicular to the plane of the membrane, that at firft fight it has the appearance of a conical purfe, rather than that of a fingle membrane. It was from thefe two fpecies that the firft academicians of Paris, who difcovered it, named it the black purfe. The folds vary as to number: there are fixteen in the fork, ten or twelve in the duck and the vulture, fifteen in the offict, and feven in the great horn-owo.

It is difficult to form an opinion of the real ufe of this membrane. From its pofition, a part of the rays tranfmitted by objects fituated laterally with refpect to the bird, may fall upon it. Petit conjectured that it abforbed thefe rays, and prevented them from injuring the diftinct vifion of objects fituated anteriorly: others have fuppofed, and this opinion has lately been repeated by Home, that it poffeffes a mufcular power, and that its ufe is to approximate the cryftalline to the retina, when the bird wifhes to fhorten its axis of vifion, in order to obtain a better view of diftant objects. We however do not obferve any flefhy fibre in it, and the experiments, which prove that it contracts after death, are not entirely conclufive. Befides, as it is attached to the cryftalline laterally, it could only move it obliquely. Haller confiders it as a fimple fupport of the veffels intended for the capfule of the cryftalline.

\section*{3. In Reptiles and Fifhes.}

In all reptiles the optic nerve paffes through the membranes of the eye directly, and by a round hole, as in quadrupeds; it forms internally a fmall tubercle, from the edges of which the retina proceeds.

It is fimilar in a great number of fifhes, as in the ray, in which the tubercle is papillated, in the 乃bark, all the carps, and a number of others. The radiating fibres, which arife from
the edges of this difk, are even more apparent in this clafs than in moft quadrupeds; but there is a certain number of fifhes, in which the formation of the retina refembles, in fome refpects, that which takes place in birds.

I cannot yet name all the genera in which this arrangement may be found. I have obferved it in falmon and trouts, in berrings, mackecl, percbes, the cod, the zeus faber, and in the \(13001-f i f h\); it probably exifts in a number of others. It is formed thus : the optic nerve really perforates the membranes through a round hole, but after having traverfed the Ruyfchiana, it forms two long white caudæ, which follow the contour of that membrane; thefe caudæ, though parallel, are not contiguous ; a production of the Ruyfchiana paffes between them, in order to penetrate into the vitreous body. The retina is produced from the oppofite edges of thefe caudæ of the nerve, in the fame manner as it arifes in birds, from the fingle white line. The production of the Ruyfchiana has a triangular curvilinear form, and Haller has compared it to a bell; it is black, vafcular like the relt of the membrane, and attached, by its extremity, to one fide of the capfule of the cryftalline, precifely in the fame namner as the pecten of the eye of birds. It alfo appears to furnifh bloodveffels to that capfule.
4. In the Sepice.

In cuttle-fflbes, after the numerous optic filanents have perforated the choroides, they are sonfounded in a fingle membrane, which is the etina.
B. Of the Retina.

This membrane has, perhaps, the leaft confiftency of any in the animal body; it is femiranfparent, foft, and liable to tear by its own weight; but it becomes a little harder, and more opaque, in fpirits of wine; it is merely applied to the choroides, without adhering to any part of it.

In all animals that have ciliary proceffes, it terminates around, and at the root of the fe prozeffes, where it is diftinctly interfected. In birds it even forms a kind of roll or burr at that part.

It may be fuppofed that it is more intimately attached to the anterior furface of the vitreous body, and that it is this adhefion which occafions it to break at that place, on raifing that body. The impreffion which the ciliary proEeffes leave on the fame furface, favours this opinion, and fome have gone fo far as to believe that the retina even covers the anterior part of the cryftalline: they doubtlefs fuppofe that this portion of the retina remains adherent in the furrows which thefe proceffes produce
on the vitreous humour, and that it is covered by the pigment which is left there.

But, in animals which have no ciliary procerfes, the retina terminates fuddenly towards the commencement of the uvea, and nothing prevents us from obferving that the anterior furface of the vitreous body retains no portion of it.

The internal furface of the retina is interfected by numerous veffels which come from the central artery of the optic nerve ; thefe veffels produce more confiltency in the internal lamina, than in the external, which is merely pulpy. In fifhes, in particular, it is eafy to diftinguifh, and even to feparate, thefe two laminæ; the internal, which is named the arachnoid, prefents very delicate, but very conSpicuous fibres.

The retina is the moft fenfible part of the whole animal body, fince light, which affects no other organ, caufes there great pain when it is too intenfe: this is not aftonifhing, for, independent of the completely nervous nature of that membrane, the parts, which are fituated before it, do not tend to diminifh the impreffron of light, as the integuments which cover other nerves blunt their fenfations; but, on the contrary, increafe the effect of the luminous rays, by collecting them into a fmaller fpace.

\title{
Art. IX. Transparent Parts. 429
}

\section*{Article IX.}

Of the Nature of the Tranfparent Parts of the Eye, of their proper Membranes, \&c.

\section*{A. Of the Vitreous Humour.}
\(T_{\text {HIs humour, which occupies the greateft part }}\) of the eye, is inclofed in its proper membrane, which is itfelf inclofed in the retina, but without adhering any-where to the latter membrane, unlefs, perhaps, by fome veffels.

The membrane of the vitreous body, which is alfo named byaloides, is very fine, and completely tranfparent. Spirit of wine does not render it opaque ; its anterior furface is divided into two laminæ, which clofely adhere to the capfule of the cryftalline. Between thefe membranes air may be introduced, which exhibits a circular canal with unequal inflations, called the bullular canal of Petit.

The interior of the vitreous body is divided into a vaft number of cells, by fepta, of the fame nature as the external membrane, which are extended in every direction : in confequence of this difpofition, the membrana hyaloidea cannot be emptied when perforated, as the vitreous humour will not flow at once from all thefe cells.

The vitreous humour is of an albuminous nature,
ture, like the white of an egg; when it has re. mained long in fpirits of wine, it fometimes becomes completely concrete. We preferve the vitreous humour of birds indurated in this manner; at other times the vitreous humour diffolves in alcohol, and only its almoft empty membranes remain. We know not the caufe of this difference.

When harđened by alcohol, or by freezing, the vitreous humour is eafily divided into a multitude of lenticular laminæ, which probably receive that form from the cells in which the humour is contained.

Thefe obfervations are common to all the animals whofe eyes we have defcribed.

\section*{B. Of the Cryfalline.}

The cryftalline lens is inclofed, without being attached, in a membranous capfule, which is foft and tranfparent, and ftrongly fixed in a depreffion of the anterior furface of the vitreous body; this capfule appears to be a fimple cell ; its anterior half is harder than the other ; it retains its tranfparency even more ftrongly than the cryftalline.

The lens is harder in its centre than on its furface ; it is indurated, and hecomes opaque by boiling, and by alcohol; but the central part ftill retains fome tranfparcncy, and affumes only a yellow colour.

In the large animals, the cryftalline, thus prepared, is divided into an infinite number of laminx, which are all inclofed within each orker ; the moft internal are the moft difficult of feparation.

Thefe laminæ are themfelves divided into extremely fine radiated fibres, which proceed from two centres, fituated at the two extremities of the axis, in the fame manner as the meridians extend from the two poles of a geographical globe.

This Aructure is very apparent in the ox, the zubale, \&c.

Sometimes the cryftalline divides rather in the direction of the fibres, than in that of the laminæ; it then forms fectors or quarters of the lens; this takes place in the mammalia and birds, but lefs fo in fifhes.

The cryftalline of the Sepice divides eafily into two hemifpheres, the limits of which are marked externally by a deep furrow ; each hemifphere confifts alfo of a number of concentric caps, compofed of radiated fibres.

Thefe fibres, which exift in all cryftallines, have been, by fome anatomifts, regarded as mufcular, and capable of varying the convexity of that lens, according to the diftance of the objects the animal wifhes to behold; but thofe eyes, from which the cryftalline has been removed, have not the limits of diftinct vifion more confined than others.

Between the cryftalline and its capfule, we generally find a fmall quantity of a particular fluid.

In man, and the other mammalia, that capfule is nourifhed by an artery which comes from the optic nerve; this artery paffes through the vitreous humour, which it alfo fupplies by fome branches, and forms, on the pofterior furface of the capfule, a very complicated net, the branches of which extend to its anterior furface.

In birds it receives its veffels from the folded membrane, commonly called the pecten: thefe veffels arife themfelves from the central artery of the optic nerve.

We believe that the cryftalline lens itfelf receives fome branches; certain anatomifts have fuppofed that it is nourifhed by abforption.

> C. Of the Aqueous Humour.

This is a limpid fluid, fimply diffured in ali that part of the eye which is before the cryf. talline; the greateft quantity is fituated before the iris; the quantity behind that membrane has been the fubject of much difpute ; it is certain, however, that it is very fmall: it is fuppofed that the aqueous humour in man is fomewhat lighter than diftilled water, that is, as 975:1000. It emits no fmell ; its tafte is lightly faltim; it is not rendered opaque by alcohol; it exhales through
\[
\text { Art. X. Muscles of the Eye. } 433
\]
through the pores of the cornea, and its lofs renders that membrane flat after death. There circumftances are common to all, vertebral animals.

\section*{Article X.}

Of the Sufpernion of the Clobe of the Eyc, and of its Mufcles.
Irall red-blooded animals, the eye is fituated in a cavity of the face called the orbit, the form and ftructure of which have been defcribed in different Articles of Lecture VIII. The eye, being capable of various degrees of motion, is fupported in different ways.

The orbit is moft commonly conical or oblong, and a fpace is, therefore, left pofteriorly, unoccupied by the globe of the eye.

In all warm-blooded animals, this fpace is filled with fat ; it forms a kind of cufhion, on which the globe refts and moves without being injured : the finking of the eye in the orbit of old people, is occafioned by the diminution of this fat.

The orbit of birds being proportionally lefs deep than that of mammalia, the fat behind their eye is fmaller in quantity ; on which ac-

Vol. II.
F
count,
count, there is but little motion perceived in the eye of birds.

The ray's and farks have a particular difpofition ; their cye is joined to the extremity of a cartilaginous ftalk, which is itfelf articulated in the bottom of the orbit. In this manner, the mufcles act on a long lever, and have therefore great power in moving the éye.

In other fifhes the eye repofes on a mafs, more or lefs extenfive, of gelatinous matter, contained in a loofe cellular texture : this trembling elaftic mafs affords the eye a point of fupport in all its motions.

The Sepice having a conical fclerotic attached to the bottom of the orbit, it is not between it and the orbit, but between it and the choroides, that the glandular bodies, which ferve to fupport the globe, are fituated. The part fixed to the edges of the optic hole, is pointed ; it preferves, therefore, fome degree of mobility.

The mufcles of the eyc, in man, are fix in number : four are ftraight; thefe are attached to the borders of the optic foramen, and inferted into the anterior part of the globe of the eye, as far as the edge of the cornea, where they increafe the thicknefs of the fclerotic.

The other two are oblique. The obliquus fuperior, or trocblearis, arifes alfo from the bottom of the orbit; it fends its tendon into a cartilaginous pulley, fituated near the vault of that

\section*{Art. X. Muscles of the Eye. \(435^{3}\)}
cavity, and proceeds upwaid, backward, and outward, to its infertion on the fclerotic, under the rectus externus, or abductor. The obliquus inferior arifes from the internal part of the orbit, and paffes under the eye, into which it is inferted, on the external fide.

Monkies have the fame mufcles as man; but the other mammalia have at leaft one more.

This is called the fufpenfory, or aboanoid mufcle, that is to fay, in the form of a tunnel. In the Ruminantia and the horfe it really forms a tunncl, or elongated cone, the point of which is attached at the optic foramen, and the extended part is inferted in the whole of the interval between the four ftraight mufcles, a little pofterior to their infertion. Several feccies, as moft of the Sarcophaga and Cetacea, have this mufcle divided into four, fo that they have eight mufculi recti.

In the rbinoceros it is only divided into two.
The oblique mufcles prefent no variety in mammiferous animals.

Bircis and fifhes have, in all, only fix mufcles ; four ftraight, which arife, as in man, from the edges of the optic foramen ; and two oblique, both of which come from the anterior parietes of the orbit: they are attached very near each other; and one is inferted above, and the other below the globe of the eye; but the fuperior does not pafs through a pullcy, as in the mammalia.

In birds, all thefe mufcles are attached to the foft part of the fclerotic, and we cannot follow their tendons to its offeous part, without lacerating them ; they are, in proportion, much fhorter than in the other claffes.

In the torloife we find the fix common mufcles difpofed like thofe of fifhes, and befides, four fmall ones, which clofely embrace the optic nerve, and fpread over the convex portion of the fclerotic, after being interrupted by the mufcle of the third eye-lid, of which we fhall fpeak hereafter.

The difpofition is precifely fimilar in the crocodile.
In frogs and toads there is a great tunncl-like mufcle, which embraces the optic nerve, and is divided into three portions; its inferior fibres advance more towards the edge of the eye than its fuperior. There is only a fingle ftraight mufcle on the inferior part, and confequently only one depreffor. There is one very fhort oblique mufcle, which is attached to the anterior part of the orbit, and inferted directly into the adjoining part of the globe. The mufcle of the third eyc-lid is fo clofe to the inferior part of the choanoides, that it becomes ftretched when the latter fwells; this accounts for the elevation of the third eye-lid, when the eye is lowered, as we fhall foon explain more fully.

The eye of the cuttle-fifl has only two fimall
inufcles, one fuperior, and one anterior; the head being fuppofed upward.

\section*{Article XI.}

Of the Eye-lids and their Motions.
\(T_{\text {He eye-lids are membranous veils, formed by }}\) the folds of the fkin; they cover the eye in a fate of repofe, and cleanfe its furface by their motions; by fuddenly clofing, they prevent the entrance of fmall bodies which might irritate the eye, and even, in certain cafes, affift vifion, by diminifhing the too great influx of luminous rays.
A. In Main.

Man has only two eye-lids, the commiffure of which is tranfverfe; their fubftance is compofed of mufcles, and a compact cellular tex. ture, which fome have regarded as a ligament. The furface next the eye is very fine, and contains numerous veffels; the external furface is fimilar to the reft of the fkin; the edge of each is Atrengthened by a cartilage, called tarfus, which extends from one end of the commiffure to the other; it is rounded, and produces, with the oppofite tarfus, a conduit, on the fide next
\[
\text { F }=3 \quad \text { the }
\]

438 Lect. Xif. Ofthe Eye.
the cye, by which the tears flow towards tio nofe; thefe cdges of the eye-lids are, befides, furnifhed with a row of hairs, called cilia, or eye-lafbes.

The eye-lids of man have only two mufcles, the orbicularis palpcbrarum, which clofes them, and the levator palpebre fuperioris, which raifes the upper eye-lid; the inferior is lowered by its own elafticity. The orbicularis furrounds the eye-lid with concentric and circular fibres, which are attached to the internal or nafal angle, where there are fome other fibres which have a tranfverfe direction.
'The levator palpebre fuperioris arifes from the bottom of the orbit, above the mufculi recti, and fpreads in the fubftance of the fuperior eyelid.

In the internal angle of the eye-lids there is a fmall fold, in the form of a crefcent, which is only apparent when the eye is turned from the fide of the nofe. This is a rudiment of the third eye-lid, which is developed in other animals.
B. In other Mammiferous Animals.

Monkies do not differ from man, in refpect to the eye-lids.

In the quadrupeds, the third eye-lid becomes more and more confidcrable, though it has no proper mufcle, and cannot completely cover the
eye; it is ufually femi-lunar, as we obferve it in the Ruminantia, the Edentata, and the Pachydermata.

The rbinoceros has it thick and flefhy. In the hare its loofe edge is convex, It is the fame in rats, agoutis, \&c.

In almoft all fpecies we remark a row of pores, which doubtlefs afford a paffage for fome unctuous humour; a part of its body is frequently occupied by a cartilaginous lamina; this part is named unguis by hippotomifts. The hare has it triangular, and very large.

In fome mammalia, befides the ordinary mufcles of the two eye-lids, we obferve two ftrata of fibres, which proceed from the paniculus carnofus, one of which ferves to deprefs the inferior eye-lid, and the other to raife the fuperior.

The Cetacea have their eye-lids fo much thickened by the oily fat fituated-between the two laminæ, that they are almoft immoveable ; they have no cilia, nor any veftige of the third eye-lid.

\section*{C. In Birds.}

Birds have three cye-lids. The two common eye-lids have the commiffure horizontal ; the third eye-lid is vertical, and fituated in the nafal angle of the eye ; it can cover that organ entirely like a curtain. The two firft contain, between their external fkin and the internal, or
\[
\mathrm{F}=4 \quad \text { con- }
\]
conjunctiva, a ligamentous membrane, which is continued into the orbit, and lines the whole of that cavity. It is particularly the inferior eye-lid which covers the eye by elevation; it is larger than the fuperior, and much thicker; its internal furface prefents an oval plate, almoft cartilaginous, and perfectly fmooth. The orbicularis palpebrarum paffes under this plate, but in the fuperior eye-lid it immediately touches the edge. The levator palpebre fuperioris is only inferted towards the external angle; its origin is at the roof of the orbit : the inferior eye-lid has a particular depreffor, which arifes from the bottom of the orbit ; there is no cartilage at the edge of thefe eye-lids, and only a fmall number of birds have cilia: indeed, thefe are rather feathers, with fhort barbs, than real cilia; thefe feathers are remarkable in the born-bill.

Very few birds have the fuperior eye-lids capable of being depreffed, as much as the inferior can be raifed. Among others, in which, however, this may be obferved, are the orols and the goat-fuckers.

The third eye-lid, or membrana niEtitans, has a certain degree of tranfparency; for birds fometimes look at objects through it; and by it the eagle is enabled to look at the fun. It contains no mufcle internally; and this renders the fingular apparatus which moves it neceffary.

Two mufcles have their fixed attachments in
the globe of the eye, at the pofterior part of the fclerotica; one, called mufculus quadratus palpebrec tertic, is fixed towards the upper and back part of the eye; its fibres defcend towards the optic nerve, and terminate in a tendon of a fingular nature; it is no where inferted, but forms a cylindrical canal, which bends a little round the optic nerve, croffing the direction of the fibres of the mufcle. The fecond mufcle, called pyramidalis, is fixed towards the fide and pofterior part of the globe, which is next the nofe'a little inferiorly ; its fibres are collected into a tendon, which forms a long cord, and which paffes through the canal of the preceding mufcle, as if it were the neck of a pulley: having thus defcribed more than a femi-circle, it proceeds in a cellular fheath of the fclerotic, below the eye, to the inferior part of the free edge of the third eye-lid, into which it is inferted.

It will be eafily underfood, that the united action of thefe two mufcles muft pull very forcibly this tendinous cord, and thus draw the third eye-lid over the eye; it returns into the angle of the two other eye-lids by its own elafticity.

\section*{D. In Reptiles.}

Reptiles vary fingularly with refpect to the number and difpofition of their eye-lids : Jerpents have none: crocodiles and tortoifes have three, and the third is vertical, as in birds:
there are alfo three in frogs, but the third is horizontal like the other two.

The horizontal cyc-lids of crocodiles and tortoifes clofe exactly; they have each an enlargement at their edge, but no cilin; their third eyc-lid is feni-tranfparent; it moves from behind forwards, and may cover the whole cye ; it has only one mufcle, which is analogous to the pyramidalis of birds; it is fixed in the fame manner to the pofterior part of the globe inferiorly. After having turned round the optic nerve, it re-paffes under the eye, to fond its tendon to that cyc-lid; but there are neither the mufculus quadratus, norits fheath, as in birds.

In the other lizards there are alfo very remarkable varietics.

The common lizards have, for cye-lids, a kind of circular veil, extended before the orbit, and perforated by a horizontal fiffure, which is capable of being clofed by a fphincter mufcle, and opened by a levator and depreffor ; its inferior part has a fmooth round cartilaginous difk, as in birds; there is, befides, a fmall internal eye-lid, but it has no proper mufcle; it is entirely wanting in the camelion, in which animal alfo the flit of the cyc-lids is fo fmall, that the pupil can farcely be obferved through it. The gecko has no moveable eye-lid; its eye is protected by a night margin of the 1 kin , as in ferpents. \(\Lambda\) fimilar difpofition appears to prevail in the foink.

In frogs and toads the fuperior eye-lid is only a projection of the fkin, and almoft immoveable; the inferior is more moveable, and has a fwoln edge; but the third, which moves from below upward, is moft employed by thefe animals; it is very tranfparent; it has one mufcle fituated tranfverfely, behind the globe, which forms a thin tendon on each fide of the eye, to be inferted into the free edge of the third eyelid.

The falamanders have only two eye-lids, which are horizontal, flefhy, and little moveable ; it appears that they may entirely cover the eye.

\section*{E. In Fißhes.}

In moft fifhes there is no moveable eye-lid; in fome, as we have already obferved, the fkin paffes before the eye, without even producing a fold. Others have only flight projections, which form a kind of eye-brows, rather than eyelids. Moft offeous fifhes have, at each angle of the orbit, a vertical and immoveable veil, which covers only a fmall part of it. This may be eafily obferved in the falmon, mackrel, \&rc.

The moon-fifb (Tetraodon Mola) exhibits a peculiarity, which we have obferved in no other animal; its eye may be entirely covered with an eye-lid, perforated circularly, and which may be clofed by means of a real fphincter.

Five mufcles, difpofed in radii, and attached to the bottom of the orbit, dilate the aperture.
F. In Mollufca.

The fepie and other molluica, which have not the eyes at the extremity of their tentacula, have no eye-lid; the fkin covers the cye, as in ferpents and eels: but the flugs, the frails, \&c. have an organization, which is far more complicated, and much better calculated for the protection of their eye.

This organ is fituated at the extremity of a flefhy tube, called a born, or tentaculum, which may be drawn completely within the head, and protruded by a motion fimilar to the evolution of the finger of a glove. In Vol. I. page 433, we defcribed the mufcles that draw the fnail into its fhell. At the external edge of each of thefe mufcles, the particular mufcle of the eye is attached; this mufcle penetrates to the infide of the horn, to the extremity of which it is fixed ; when it contracts, therefore, but ftill more when affifted by the contraction of the great mufcle of the body, it draws the extremity of the horn inwardly, in a manner which refembles the turning in of a ftocking. The annular fibres, which encircle the horn throughout the whole of its length, unfold the internal part by fucceffive contractions, and thus bring back
back the eye to its external pofition. In the maked fnail, the retractors of the eyes are fimply attached to the flefhy mafs which forms the foot. In the inferior horns, or tentacula, which have no ejes, the mechanifm is alfo the fame.

\section*{Article XII.}

Of the Glands that furround the Eye.
A. In Man.

In animals that live in air, the anterior furface of the eye would foon become dry, and be rendered foul, by duft, were it not conftantly bathed by a limpid fuid.- It would alfo be frequently injured by infects, and a multitude of other fmall bodies, were not unctuous fubftances depofited on the edges of the eye-lids, and between the cilia: thefe purpofes are accomplifhed by the glands, with which the eye is furrounded, and which, in man, confift of three kinds-the glandula lacbrymalis, glandulce Meibomii, and caruncula lacbrynalis.

The lactrymal gland is fituated towards the upper part of the orbit, above the fuperior eyelid, a little towards the temple; it appears to be compofed of whitifh grains, and formed of two fmall lobes. It has fix or feven very fmall canals.
eanals, which defcend in the fubftance of the eyc-lid, and open on its internal furface, a little above the cartilage which forms its margin.

The fluid, called tears, continually exudes through thefe minute apertures; it is diffufed over the front of the eye; and when the cyelids clofe, they prefs a part of it into the fmall triangular canal, which is formed by their edges and the globe, towards their internal or nafal angle.

The glandulce Mcibomiii fecrete a fatty matter, which anoints the edges of the eye-lids, and prevents the tears from wetting, or paffing over them; thefe glands are fituated in the fubftance of bath eye-lids, at their edges; they are compofed of fmall follicles, ranged in rertical and parallel lines; their number excecds thirty in the upper eyc-lid, and twenty in the lower: their apertures are fnall round holes, which appear along the edge of each eyc-lid.

When the lachrymal fluid reaches the mafai angle of the eye, it is abforbed by two fmall pores, called puncta lachaymalia, which are contained in two eminences fituated at that extremity of the cye-lids. Each pore leads into a frmall canal, and both canals into the lachervan? fac, which opens into the nofe by the dut we already defcribed in page sy of this volume.

The caruucula lacherymalis is fituated in the internal, or nafal, angle of the cye-lids, and is apparent without diffiction ; it is a fmall, round, reddifh
\[
\text { Art. XII. Glands of the Eye. } 447
\]
reddifn mais, compofed of feven diftinct follicles, which produce a thick whitifh humour. The ufe of this hunour appears, in particular, to be the protection of the lachrymal pores, by arrefting light fubftances which might be introduced into them.

\section*{B. In other Mammiferous Animals.}

Quadrupeds have, in general, the fame glands as man, and feveral of them have one more.

The lachrymal gland, properly fo called, is fub-divided into two or three bodies in the Ruminantia. Some feparate grains have each a very fhort excretory duct.

In the bare and the rabbit the lachrymal gland is very large; it extends above and below the eye, and occupies the interval between the cranium and the procefs, which, in thefe animals, fuftains the eye-brow; it palfes behind the eye, finks under the zygomatic arch, comes out from the orbit, on the fide of the nofe, and terminates there by a confiderable enlargement; it appears to me to have only a fingle excretory canal, which perforates the upper eyc-lid towards the pofterior angle.

The gland peculiar to certain £pecies of quadrupeds, and which is wanting i: man, is named glandula Harderi, though it was feen and defcribed by more ancient anatomifs; it is always fituated in the internal or nafal angle, and fecretes a thick
a thick whitifh humour, which is poured out by an orifice under the rudiment of the third eyelid. In the Ruminantia it is oblong, and of a pretty hard confiftency. In the hare it appears to be formed of two parts, merely united by cellular fubftance, and each fub-divided into a great number of lobes: the fuperior part, which is the leaft, is whitifh ; the inferior, which is much larger, is reddith. It is large and double in the reater-rat.

It alfo exifts in the Sarcophaga, in the elephont, in the bog, in which it is oval, in the foths, \&ec.

The caruncle exifts in the Ruminantia, as well as in man ; but in them it is formed of a greater number of follicles.

I have not been able to perceive it in the bare, nor in feveral other Rodentia.

There are alfo differences in the manner in which the tears flow.

The Ruminantia have the lachrymal points and ducts as in man. Some genera of that order are rendered remarkable, by the receptacles for the tears, or foffe lachrymales; thefe are fmal! cavities in the cheek, one below each cye, near its nafal angle, and communicating with that angle by a fmall furrow. They are found in deer, and in antelopes.

The bog has iwo lachrymal points. We alfo find them in the floths and ant-caters.

In bares, rabbits, and doubtlefs in all the genera allied to thefe, there are no lachrymal points,
joints, but a crefcent-fnaped fiffure under the nferior edge of the third eye-lid, which leads nto a fingle lachrymal duct. The edges of that iffure are furnifhed with cartilages. There is
fmall femi-lunar valve in the canal, which revents the fluid from returning to the eye.
The Cetacea, like moft animals that live contantly in water, have neither gland nor lachrynal points. We merely obferve, under the spper eyé-lid, fome lacunæ, from which a hick mucilaginous bumour flows.

\section*{C. In Birds.}

We find, in birds, the lachrymal gland, and that of Harderus. There is no caruncula. The Harderian gland is much larger than the other, afually of an oblong form, and of a flefh colour ; it is fituated between the levator and addućtor mufcles, or fometimes, as in the turkey, between the adductor and the obliquus inferior: it produces a fingle excretory duct, which paffes through the fubftance of the third eye-lid, and opens on its internal furface. . This gland fur.. nithes a thick yellow humour. The lachrymal gland of birds is ufually very fmall, almoft round, very red, and fituated at the pofterior angle; it difcharges itfelf by two or three fmall out confpicuous canals, precifely at the angle of the two horizontal eye-lids.

Birds of the duck genus, and other fwimming
Vol. II.
G G
and

450 Lect. XII. Of the Eye.
and wading birds, have a glandular, hard, and granulated body, which occupies all the fuperior part of the orbit, and turns backward, to follow the curvature of the eye. In the tufted duck (anas fuligula) it is fo broad that it touches the correfpondent body, above the cranium: this body appears to fupply the place of the lachrymal gland; but I have not yet difcovered its excretory canal.

All birds have two holes, for the paffage of the tears, placed in the interior angle between the two firf palpebre and the third : they are broad, but have no cartilaginous border, being foft like the reft of the furrounding fkin; they lead almoft immediately into the nafal fac, fituated at the bafe of the nofe.

\section*{D. In Reptiles.}

Reptiles vary as much with refpect to their lachrymal glands, as to their eye-lids.

The fea tortoifes have a very confiderable gland at the pofterior angle; it is reddifh, gramulated, divided into lobes, and extends under the arch which covers the temple.

In the freflo water torloifes we find two fmall blackifh glands, which alfo exift in toads and frog's; but I have not yet accurately obferved their excretory ducts.

Serpents, like fithes, have no gland in the eye.

\section*{Article XIII.}

\section*{Of the Eye of Infects and Cruftacea.}
\(W_{\text {HAT }}\) we have to fay in this article, will relate hiefly to compound eyes; the fimple eyes are too mall for diffection.
The ftructure of the eye of infects is fo very lifferent from that of other animals, even the nollufca, that it would be difficult to believe it n organ of fight, had not experiments, purofely made, demonftrated its ufe. If we cut ut, or cover with opaque matter, the eyes of he dragon-fly, it will ftrike againft walls in its light. If we cover the compound eyes of the rafp, it afcends perpendicularly in the air, ntil it completely difappears; if we cover its imple eyes alfo, it will not attempt to fly, but vill remain perfectly immoveable.
The furface of a compound eye, when viewed ,y the microfcope, exhibits an innumerable nultitude of hexagonal facets, flightly convex, nd feparated from one another by fmall furows, which frequently contain fine hairs, more r lefs long.
Thefe facets form altogether a hard and clafic membrane, which, when freed of the fubances that adhere to it pofteriorly, is very ranfparent.

Each of thefe fmall furfaces may be confidered cither as a cornea, or a cryitalline; for it is convex externally, and concave internally, but thicker in the middle than at the edges; it is alfo the only tranfparent part in this fingular cye.

Immediately behind this tranfparent membrane there is an opaque fubftance, which varies greatly as to colour in the different fpecies, and which fometimes forms, even in the fame eye, fpots or bands of different colours. Its confiftence is the fame as that of the pigment of the choroides; it entirely covers the pofterior part of the tranfparent facets, without leaving any aperture for the paffage of the light.

Behind this pigment we find fome very fhort white filaments, in the form of hexagonal prifms, fituated clofe to each other, like the ftones of a pavement, and precifely equal in number to the facets of the cornea; each penetrates into the hollow part of one of thefe facets, and is only feparated from it by the pigment mentioned above. If thefe filaments are nervous, as in my opinion they appear to be, we may confider each as the retina of the furface, behind which it is placed: but it will always remain to be explained, how the light can act on this retina, through a coat of opaque pigment.

This multitude of filaments, perpendicular to the cornea, have behind them a membrane
which ferves them all as a bafe, and which is zonfequently nearly parallel to the cornea : this nembrane is very fine, and of a blackifh coour, which is not caufed by a pigment, but extends to its moft intimate texture; we obferve n it very fine whitifh lines, which are tracher, ind which produce ftill finer branches, that peletrate between the hexagonal filaments, as far is the cornea. By analogy, we may name this membrane the choroides.
A thin expanfion of the optic nerve is applied io the pofterior part of the choroides. This is a real nervous membrane, perfectly fimilar to the retina of red-blooded animals; it appears that the white filaments, which form the particular retinæ of the different ocular furfaces, are proJuctions of this general retina, which perfoates the membrane I have named choroides, by 1 multitude of fmall and almoft imperceptible holes.

To obtain a diftinct view of all thefe parts, it is neceffary to cut off the head of an infect that has the eyes large, and diffect it pofteriorly: each part will then be removed in an order the reverfe of that in which I have defcribed them.

In the cray fibes, in general, the eye is fituated on a moveable tubercle. The extremity, which is rounded on every fide, and fometimes elongated into a cone, when viewed by a glafs, prefents the fame furfaces as the eyes of infects. When we cut this tubercle longitudinally, we

GG3 obferve

454 Lect. XII. Ofthe Eye.
obferve that the optic nerve paffes through it in a cylindrical canal, which occupies the place of its axis. Arrived at the centre of the con. vexity of the eye, it forms a fmall button, which detaches very fine filaments in every direction: at a certain diftance thefe filaments meet the choroides, which is nearly concentrical with the cornea, and covers the fpherical brufh of the extremity of the nerve, like a hood. All the diftance between the choroides and the cornea is occupied, as in infects, by white filaments, clofely arranged in a perpendicular direction to each other, and which have the extremity next the cornea alfo coated with a black pigment.

There filaments perforate the choroides, and are continuations of thofe produced by the button, which terminates the optic nerve.

\section*{(455)}

\section*{LECTURE THIRTEENTH.}

Or the Organ of Hearing, or, Of the
EAR.

\section*{Article I.}

Of Sound, and Hearing in general.
SOUND is the fenfation we experience, when certain bodies, called fonorous, vibrate, and communicate their tremulous motion to the atmofphere around us, or to any other body in contact with our ear. The ear, being affected by this motion, tranfmits the impreffion it receives to the brain. In this manner we exercife the fenfe of bearing.

The qualities which belong to found, may be diftinguifhed into different kinds, independent of each other, viz.
1. Force, which depends upon the extent of the vibrations of the body from which the found proceeds. The greater the vibrations, the flronger is the found: the extent of the vibrations is determined by the degree of impulfe which produces them.
\[
\mathrm{GG}_{4}
\]
2. Tone,

456 Lect. Xhi, Of the Ear.
2. Tout, which depends upon the velocily of the vibrations. The vibrations made by a fonorous body in a given time, produce a tone which is bigh or acule in proportion as thefe vibrations are more numerous, and low or grave in proportion as they are lefs numerous. The laws of this velocity, and the circumfances which determine it, are well known. All chings cqual it is in the inverfe ratio of the length, and the direct ratio of the tenfion, whether that teinfion be the efiect of external agency, or of the particular nature of the fonorous body itfelf.
3. Refonarce, which arifes out of the intimate compofition of the fonorous body: in it we diftinguifh different tones, as the clear, the foft, the duil, the crackling, \&rc. \&rc. with the laws of which we are not yet acquainted.
4. Simple modulations of vaice, the different kinds of which are expreffed by the letters called vowels, \(a, c, i, 0, u, a i, o u, e u\), \&xc. We are completely ignorant of the real nature of thefe modifications of found, though we are pretty well acquainted with the motions which man and other animals give to their rocal organs in producing them.
5. Articulations, the different kinds of which are expreffed by the confonants, \(b, c, d\), \(\mathbb{E} c\). We know as little of them, as we do of the vowel founds. The imitations of either of theife modifications of found, which we produce by our inftruments, are, therefore, very imperfect.

\section*{Art. I. Sound and Hearing.}

The human ear can diftinguifh all there different qualities with relation to one found: this diftinction is made with wonderful accuracy, by perfons who frequently exercife that faculty, and particularly by profeffional muficians. The other mammalia exhibit proofs that they are capable of diftinguifhing the qualities of found which relate to fpeech, that is to fay, fomple erocal anodulations and articulations; for we may obferve daily, that they remember the found and fignification of feveral words. Some are ftrongly affected by certain founds. Acute tones produce a painful fenfation in dors, and we alfo obferve that thefe animals are terrified by violent noifes: they therefore diftinguifh thefe two properties. Birds have a feeling, no lefs exquifite, of voice, tone, arliculation, and even refonance, fince they learn to fing with great correctnefs, and, when their vocal organs permit them, can completely counterfeit the human fpecch, with all the modifications practifed by the individuals they imitate.

As to cold-blooded animals, it is well known that feveral of them call each other by certain founds, and that others, which are incapable of producing founds, can at leaft underftand them, as curps, which appear when the noife of a bell indicates to them that they are to be fed, \(8 x\) c. \&c. : but we know not what qualities of found they diftinguifh, and how far, in this refpect, the delicacy of their fenfe of hearing extends.

We
\(45^{3}\) Lect. XIII. Ofthe Ear.
We are fill more ignorant refpecting the flate of this fenfe in the white-blooded animals. It is evident, however, that feveral of them are not deftitute of the faculty of hearing.

It would be of importance to determine the limits within which the ear of each animal perceives each of the qualities of found. Thus, with refpect to force, founds, which are fo weak as to be loft to the human ear, are diffinctly heard by certain animals. Other animals alfo may, perhaps, endure founds which would deafen us. With regard to tones, fome are too grave, and others too acute for the human car. Muficians have even fixed the limits of thefe tones at two numbers of vibrations, which are to each other' in the ratio of \(1: 1024\) : perhaps thefe limits are not the fame in all animals. There are great differences between the individuals of the human fpecies, with refpect to the faculty of diftinguifhing two very proximate tones. The difference is, perhaps, ftill greater between one animal and another.

With regard to modulation and arliculation, the people of one country diftinguifh, in their pronunciation, certain letters, between which thofe of another perceive no difference. The fame obfervation applies to the other qualities.

It alfo appear", that an ear of fimilar ftructure is not equally perfect with refpect to all the diflerent qualitics of found: one ear may be found to poffefs great delicacy of hearing,
as to the weakeft founds, and yet be altogether incapable of difcriminating between different tones ; on the contrary, a very fine mufical ear may be deaf to other low founds: if fuch differences are obferved between one man and another, we may reafonably conclude that they exift in a far greater degree in the various kinds of animals.

It is evident that there muft take place in the ear, at the moment of hearing, fome change which correfponds to each of the qualities of found we diftinguifh; but far from being acquainted with its nature, we are even ftill ig norant of the requifites, on the exiftence of which, general bearing, or the fimple perception of found, depends.

This confideration fuggefts to us the advantages that may be derived from Comparative Anatomy. It is natural to fuppofe that the parts, which are conftantly found in all animals that hear, are thofe abfolutely neceffary to the mere perception of found in general ; and that thofe parts muft have a more particular relation to certain qualities of found, which are found more developed in the animals that perceive more perfectly thefe qualities.

But this is the point which prefents the chief difficulty, becaufe it is almoft impoffible for us to afcertain the kind and degree of the perceptions of other animals.

As to the parts effential to hearing, the examination
mination we are about to make, of the organs of that fenfe, in all the animals in which it has been difcovered, will thew that the only part conflantly exifting is a gelatinous pulp, which is covered by a fine and elaftic membrane, and in which the laft ramifications of the auditory nerve are loft: this pulp fills the labyrinth in all fpecies from man to the cuttle-fith. The organs of hearing of thofe anmais which are placed below the cuttle-fifh in the fcale of being, are not yet known, though feveral of them afford manifeft proofs of poffefing that feafe.

It is then almoft demonftrated, that the feat of hearing refides in this pulp, or rather in the nervous filaments that float or are diffributed in it. We may form a very natural idea of the connexion of this fubfance with the extemal movements which are the caufe of found: this quivering gelly will receive, with facility, the concuffions tranfmitted to it by the vibration of fonorous bodies, and communicate them to the nervous filaments. . Thus far may the motion of found be traced; but the procefs, which is afterwards neceffary to produce perception, efcapes the anatomift as well as the metaphyfician.

The other parts, which are not found in all ears, can only be regarded as acceffory fubftances, calculated each in a particular mamer to augment or to modify the fenfation. Very plaufible conjectures may be made with refpect
\[
\text { Art. I. Sound and Hearing. } 4 \text { fi }
\]
to the efiect of fome of thofe parts. It appears evident, for example, that the external ear, which is fo large in fonie quadrupeds, ferves to. increafe found, in the fame manner as the trumpets ufed by perfons who are deaf: it is very probable that the large cavities with offeous parietes which furround the labyrinth in a number of animals, produce a fimilar effect by the refonance of their folid and elaftic vaults. It is fuppofed that the thin and tenfe membrane of the tympanum, by means of the officula attached to it, tranfmits the vibrations of the external air with confiderable force to the labyrinth. It is alfo fuppofed that the will produces, through the medium of the mulcles which act on the officula, that degree of tenfion in this membrane, which is precifely neceffary to bring it in unifon with the founds, to which we are inclined to pay particular attention.

It has been conjectured, that the fpiral and decreafing lamina which divides the cochlea of quadrupeds into two fcalæ, is compofed of offeous fibres; and, as thefe fibres muft diminifh in length from the bafe to the point of that organ, that each is fitted to receive concuffions from a particular kind of tone. Formerly, the fame faculty was afcribed to the offeous rings which compofe the femi-circular canals, and which were believed to diminifh gradually from the two extremities of each canal to its middle.

The Euftachian tube has been regarded by

462 ~ Lećt. XIII. Of the Ear.
fome as a fupplementary paffage for the founds which do not reach the ear by the meatus externus; others have fuppofed, that it ferves as a canal to carry off the fuperfluous humours from the cavity of the tympanum, \&c.

The inveftigations, to which we are about to proceed, may perhaps throw fome light upon thefe interefting queftions.

\section*{Article II.}

Of the different Forms of the Membrane which contains, the Auditory Pulp, or of the 1 Icmbranous Labyrinth.

The membrane which inclofes the auditory pulp is tranfparent, fine, and peculiarly elaftic: with refpect to its form, it may be regarded as relf fuftained, as it preferves its fhape, independent of the affiftance of the parts which furround it. It is, however, finer and weaker in the animals in which it is clofely encircled by the bones, and particularly in man, and the other mammalia. In young animals it is more thick, more humid, and more eafily feparated from the bones, than in the old.

Art. II. Membranous Labyrinth. 463.

\section*{A. In Cray-fijh.}

The membrane in thefe animals fcarcely nerits the name of labyrinth; it refembles a mall purfe, enclofed in a fcaly cylinder, open it both ends. The extremity by which this mall cylinder joins the bafe of the antenna, affords a paffage for the nerves into the purfe. The oppofite extremity is clofed by an elaftic membrane, which may be named tympanum, or, with more propriety, fenefra ovalis.

The air, or water, in which the animal lives, acts immediately on this membrane : the external appearance of this part is readily difcovered, by looking at the inferior furface of the bafe of the large antennre.

Fabricius and Scarpa have defcribed it in dctail.

> B. In the Sepiue,

The ear is almoft as fimple as in cray-fifs: but it is entirely concealed in the body of the armular cartilage, which ferves as the bafe of the great tentacula, or feet of thefe animals.

The membrane of the labyrinth is alfo a fimple purfe, of an oval or roundifh form. In the common cuitle-fiflo (fepia officinalis) it has internally feveral conical eminences, difpofed in an irregular manner: thefe eminences are wanting in the other fpecies. In the pulp which fills
the membrane, there is a linall body fufpondect, which is offeous in the cultie-fif), properly fo called, and fimilar to farch in the actop:rs.

In the Sepia officinalis, it refembles a fimai valve of a concha.

\section*{C. In Fijhes that have fice Branchiat,}

The membranous labyrinth begins to affume a more complicated form. It is uniformly compofed of three femi-circular canals, the dimenfions of which vary, but which all communicate with a fac, more or lefs divided by contractions. Befides the common pulp, this fac contains one, two, or three fmall bones, according to the fpecies. In the offeous fifles thefe bones are as hard as ftone. They are always fufpended in the midft of the pulp, by a great number of nervous fibrillæ. Each of the three femi-circular canals has an enlargement, in the form of a bubble, near the place where it penetrates the fac, and two are united at one of their extremities : in confcquence of this junction, the canals communicate with the fac, by five apertures only, inftead of fix which would have exifted had the union not taken place.

All the circumflances we have pointed out refpecting thefe three canals, alfo exift in the fuperior claffes; the whole apparatus is fituated in the fides of the cavity of the cranium, and

Art. II. Membranous Labyrinth. 465
red there by a cellular tiffue, confifting of :llels and offeous or cartilaginous frena.
Fifhes differ from each other in the form and oportion of the parts of the labyrinth, and thofe of the petrous officula it contains. One of the three canals is directed obliquely rward and outward, in a plane which is nearly ertical ; another is directed backward and outard, alfo in a vertical plane; the third is alloft horizontal, and external to the other two : re two extremities, which join, and open into ie fac by one aperture, are the pofterior extrelity of the firft, and the anterior of the fecond mal : their other two extremities, and the two elonging to the third canal, enter feparately.
The enlargement of the two firft canals takes lace near the extremities, which do not unite. in the third, it is at the anterior termination.
There are fome obvious differences in the pro, ortional length of the canals to the dimenfions f the fac; but in general they are fhorter in he offcous than in the cartilaginous fifhes.
The moon-fi/h, the frog-fifh, and the furgeon, lave them very long and flender. In the offeous iffes, the pike and the tunny have them longer han the carps, eels, falmon, \&xc.
The fac prefents more varieties than the femiircular canals.
In the moon-fifb it is a fimple cone, the point if which is directed towards the brain, and the VoL. II.

H н
bafe
bafe enlarged, to receive the three canals. In the furgeon, it is a broad, flat, and vertical difk, which is fituated on the lateral and internal parietes of the cranium, and which alfo immediately receives the three canals. In the frog\(\mathrm{f}_{\mathrm{f}}^{\mathrm{h}}\), it is alfo a fimple fac. It appears, therefore, that an undivided fac is a general character of all the cartilaginous fifhes with free branchiæ; but in moft of the other fifhes, the part which receives the canals, and which we fhall name the finus, is feparated by a contraction from the other part, which we fhall more particularly call the Jac.

The finus is ufually flender, and elongated from before backward: the fac is oval, and is fo fituated on the bafe of the cranium as to be frequently found very near that of the other ear ; fometimes it lies in a depreffion of the bafe of the cranium.

The pike has a fmall hollow appendix, which is connected with the pofterior part of the finus, by a very fmall canal, and fixed, by its other extremity, to the cranium, near the edge of the occipital foramen: this appendix may be regarded as a third divifion of the fac, and has only, as yet, been obferved in this fifh.

In the moon-fiff, the fac contains no officula; but, inflead of them, we find fome lumps, the fubftance of which is more of a mucous than of a cretaceous nature. In the fiurgeon there is

\section*{Art. II. Membranous Labyrinth. 467}
only a fingle triangular officulum, the hard nucleus of which is partly furrounded by cretaceous matter.

In the offeous fifhes, and even in fome of the cartilaginous kind, as the frog-fifh, there are always three officula: two of thefe are in the fac, viz. the largeft, and a fmall one behind it; the third is alfo very fmall, and is fituated in the common finus of the canals.

The form of the bones, and their mode of adhefion to the fac, deferve to be noticed, particularly with refpect to the largeft.

It is commonly oblong from before backward, fituated obliquely in the fac, convex on its internal furface, and concave on its external.

The internal furface is fmooth, but marked with a furrow, which varies according to the fpecies. The external furface has fome afperities. The fuperior margin is ufually denticulated in a more confpicuous manner than the inferior, and the anterior extremity has frequently fome tubercles or projections ; there are two of thefe in the officulum of the pike, the mackrel, and the berring; three on that of the carp, which has the middle one in the form of a ftyle. In the cod, and other gadi, the roach, the labrus, \&c. the anterior extremity is rounded, and has no points.

The proportional fize of this bone varies confiderably; it is fmall in the ecl, the far-gazer, the plouroneites, the dory, and the pike. Of a
middling fize in the berring; and large in the genus gadus, (particularly in the cod,) in the carp, and a number of the thoracici.

Its general form is oval in the cod, and moft of the gadi; it is almoft round, with an inward angle in the genus cyprinus, as the carf, the bram, the terch, the roach, and alfo in the genus filurus. In the pike, the falimon, and other trouts, and in the fturgion, \&cc. it is irregularly triangular.

The furrow on the internal furface of the bone appears to form, with an internal production of the membrane of the fac, a fmail canal, which paffes through a part of the interior of the fame fac: this furrow is commonly longitudinal; fometimes it is fhaped like a horfethoe; it is almoft circular in the carp. In the cod, its place is fupplied by an elevated ridge.

Some tranfverfe ftrix are almoft alway's obferved to extend from the furrow to the edge; they are intended to lodge the numerous nervous filaments which fufpend the bone: thefe frixe are more particularly confpicuous in the carps, which have them radiated.

The denticulations on the edge of the bone are nearly equal all round in the cod, and in the carp, but the former has them blunt, and the latter pointed; they are found on one fide only in the fitmos, trouts, and perches. The congre ect has only three, which are on the fuperior margin, \&c.

The fecond officulum of the internal ear of fifies is ufually fituated behind the large bone, but a little more outwardly; it is moft commonly of a femi-lunar form, the concave part being turned forward; it is of a particular fliape in the carp, fimilar to the head of a fpear ; its fize varies, but it is always much fmaller than the firft.

The third officulum, we have already obferved, is within the finus; fometimes it is fo near the largeft of the bones, that it can fcarcely be diftinguifhed at firft fight. In the genera gadus, Jomber, \&c. it is triangular ; in the trigla, lenticular. The pike has it rounded, and unequal. It is proportionally larger in the carp, than in the other genera, and its furface is fcabrous, and the edge ferrated.

Cafferius, who firft defcribed the organ of hearing in fifhes, confidered the \(e\) b bones as analogous to the malleus, incus, \&xc. of quadrupeds.

It has fince been conjectured, and Camper, in particular, has fhewn, that fubftances thus fufpended, in a tremulous gelly, which is calculated to be put in motion by the flighteft external vibrations, may communicate the concuffions to the numerous filaments of the auditory nerve, to which they are connected.

A feptum is formed within the fac, by means of its internal membranes, united with thefe officula, and their nervous fibres: this flructure induces us to confider the facs as analogous to H \(\mathrm{H}_{3}\)
the organ, with two apartments, which is, in man, called, from its form, the cochlea.

\section*{D. In Fifles thut have fised Branchice,}

We find the fance parts as in the other fpecies, but they are differently difpofed. The fituation of the fac is nearly horizontal, and its figure is triangular. The angle which is neareft the brain, is prolonged in a canal which.penetrates the cranium, and extends to the external fkin, where it is clofed by only a thin membrane: this fmall membrane may be diftinguifhed without diffection, becaufe it forms a fmall cxternal depreffion near the nucha; it is, perhaps, analogous to the feneftra ovalis in animals, of a more elevated order, and performs alfo the functions of the tympanum.

The fecond angle of the fac is pofterior ; it is round or oval, and contains the largeft of the cretaccous fubftances. The third angle is dire:ted forward and outward, and the two fmall cretaceous bodies are fituated near it.

There are three femi-circular canals, each of which has a bullular enlargement, or ampulla, as in the other fifties : one is anterior, and directed obliquely forward and outward: the fecond is external, and horizontal : the third is pofterior, and fituated in a plane, which is almoft vertical, and directed backward and outward, Thofe extremitics of the three camals, which
\[
\text { Art. II. Membranous Labyrintif. } 4 \text { It }
\]
which have no ampulla, communicate with the internal angle of the fac; the firft and the thirl near the feneftra rotunda, and the fecond a little lower. As to their other extremitics, the firft and the fecond unite, and communicate, by a common canal, with the external angle of the fac; the ampullaceous extremity of the third enters the fac feparately, very near the place whence its other extremity arifes.

The whole of this organ is, as ufual, filled with a gelatinnus pulp. The folid parts contained in the fac do not refemble thofe of the offeous fiffes, with refpect to their confiftence. They are not harder than moiftened farch, and may be bruifed by the fingers: the largeft of thefe fubftances is rounded on one fide, and compreffed and recti-linear on the other; the two fmaller are nearly oval.

All thefe obfervations are common to the rays and Nlarks. The fpecies of thefe two genera differ from each other only in the proportion of the canals and the fac; but the variations thus produced are very unimportant.

\section*{E. In Reptiles.}

The membranous labyrinth in this clafs is, in general, compofed, as in the fifhes, of three canals and a fac: but there are fome fpecies which have an additional part.

In the falamanders, whofe ear, like that of H \(\mathrm{H}_{4}\) fithes,
fifhes, confifts of the labyrinth only. The three canals are fituated above the fac; they are depreffed fuperiorly, and form together a triangle which is almoft equilateral ; cach has its am. pulla, and the fac contains a body of the confiftence of ftarch, as in the rays and Joarks.

Frogs and toads difier very little from falamanders, with refpect to the membranous labyrinth; they have the fanme parts in the fame pofition, and their fac alfo contains no amylaceous fubftance: their three canais form nearly a complete circle, by their junction with the fac.

Crocodiles and lizards have alfo three canals, but they are larger, and each approaches nearer to a perfect circular form: the fac is fituated proportionally more within the head; its membranous parietes are furnifhed with feveral bloodveffels, which are particularly confpicuous in the crocodile. The folid parts it contains are three in number, and they are fmaller, and even fofter than thofe of the Chondropterygious fifhes. Laftly, their labyrinth is rendered remarkable, by having an additional part to thofe we have already defcribed: this is the finf veltige of the cochlea; it is a production of the fat, in the form of a cone flightly arched; it is directed, under the cranium, towards the middle line, and is divided into two compartments, or rather canals, by a double cartilaginous feptum: one apartment communicates with the fac; the other, which is a continuation of the firit, re-

\section*{Art. II. Membranous Laeyrintit. 473}
flected on itfelf, terminates at a very fmall hole, which is clofed by a membrane that feparates it from the cavity of the tympanum.

This organ is precifely fimilar to that which is found in all birds. Comparetti was the firft who defcribed it in lizards. It is very large in the crocodile, and may be eafily prepared from young fubjects.

It is more difficult to find this part in the \(c a-\) molion, and the marbled-liæard. A veftige of it may be obferved in the ferpents. The production which may be compared to this trumpet, or rudiment of the cochlea in the torloije, is very fimilar to the part we named the fac, frictly fo called, in fifhes; and this refemblance confifts not only in its form, but in the fmall amylaceous fubftances it contains: this feems to leave no doubt of the analogy between the fac and the cochlea in man, or of that between the part we called the finus, and the veftibule. We muft, therefore, judge of the perfection of the labyrinths of thefe different ears, by the degree in which the cochlea is developed.

Tortoifes and Serpents have the femi-circular canals, like the other reptiles. In the tortoife they are proportionally very fhort.

The rvarm-blood animals have the labyrinth always clofely enveloped by bones; and in all the fpecies, it is compofed of three femi-circular canals, each of which has an ampulla; of a finus common to thefe canals, called the veflibule;
bule; and of an organ, with two canals or fcalæ, called cochlea, but. which is not really fpiral, except in the Mammalia.

\section*{F. In Birds.}

The part correfponding to the cochlea in birds, we have already obferved, refembles that of the crocodile; it is conical, nightly arched, obtufe at the point, and fituated obliquely from before backward, and from without inward, under the inferior part of the cranium. The fcptum, which feparates it into two fcalæ, is compofed of two narrow cartilaginous laminæ, united by a thin membrane throughout the whole of their length, and flightly twifted on themfelves; they adhere weakly to the parietes of the cochlea. The pofterior fcala is fhorter, and communicates with the cavity of the tympanum by the feneftra rotunda, which is clofed by a membrane. The anterior and longer fcala penetrates into the veftibule, and is not clofed.

The veftibule is fmall, and almoft round. The femi-circular canals are difpofed in the following manner : the largeft is vertical, and directed obliquely from behind forward, and from within outward : the fecond is horizontal, and diretzed outward: the third is vertical, croffes the fecond, and takes a courfe which is the oppofite of that of the firf.

In the Pafferes the firft canal is fmalleft, and fituated
fituated farther back with refpect to the other two, than in other birds. The other differences are not important : they appear, however, more confiderable in the birds of prey, particularly the nocturnal kind; and in the Pafferes, than in the Gallinæ and the Palmipedes.

In the caffowary and the offrich the cochlea approaches more to a vertical pofition; and of all birds, the oftrich has the fmalleft cochlea, in proportion to the other parts. The goofe is the fpecies in which it proceeds moft directly towards the middle line.
> G. In Mammalia.

The labyrinth of the mammalia does not differ from that of other animals, except that the cochlea is really formed with feveral fpiral turns round a conical axis, and may, therefore, with propriety, be compared to the fhell of a fnail.

The thrce canals are almof equal in man; they do not crofs each other ; the horizontal is rather the fmalleft; the anterior,' or vertical canal, and the pofterior, are united at one of their extremities; each of the three has a fmall ampulla; the veftibule is a little rounded; the cochlea is fituated forwards, and a little inward; the plane of its bafe is almoft vertical, and directed obliquely from behind forward, and from
without inward. The breadth of the bafe does not exceed that of the horizontal canal.

The fpiral part forms two turns and a lalf; it diminifhes rapidly, fo that the cochlea approaches, upon the whole, to a giobular form. As the axis is oblique, one fcala is anterior and external, and the other internal and pofterior. The internal, which is neareft the bafe of the cochlea, is a little longer than the other, and turns back, to terminate in the feneftra rotunda, which communicates with the barrel, or cavity of the tympanum. The external, which is nearer the apex, extends to the veftibulum, which is itfelf connected with the cavity of the tympanum by the feneftra ovalis. The relative proportions of the parts of the labyrinth vary confiderably in the different fpecies.

In bats, properly fo called, but more particularly in the borfe-flooe bat, the cochlea greatly exceeds the femi-circular canals in magnitude: the breadth of the cochlea in the hor/e-flooe bat is four times greater than the circumference of one of the canals, and the diameter of its cavity is ten times longer than theirs.

This difproportion is much lefs confiderable in the ternate bat.

In moft of the Sarcophaga, and in the log, elephant, and borle, the cochlea is alfo larger, in proportion to the cabals, than in man. But in the mole it is fmalici. The laur has it alfo proportionally
portionally fmaller than man. Its proportion in the Ruminantia is nearly the fame as in man. In all there animals it has the fhape of thofe fhells which cónchyologifts call turbinated, that is, of a round or globular cone. The number of the turns is as in man, two and a half.

The guinca-pig, the cabiai, and the porcupine, have a turriculated cochlea, with three turns and a half; thefe are the only examples I know of this number. The common rat has, like the other quadrupeds, only two and a half.

The cochlea is very large in the Cetacea, and all its parts are well developed; but the fpiral part remains nearly in the fame plane, without rifing upon its axis ; it makes, befides, only a turn and a half. The femi-circular canals are fo fmall, that Camper long denied their exiftence. They are, however, in other refpects, fimilar to thofe of the reft of the mammalia, and I have made a very perfect diffection of them in the foetus of the robale. *

The proportion between the two fcalæ of the cochlea is not the fame in all mammalia : that which goes to the tympanum is fomewhat larger than the other in man, the dog, the Roth, the eleploant, the boree, the dolphin, \&c. The difference is very remarkable in the bat. The fcalæ are nearly equal in the bippopolamus and the bog. That which communicates with the veftibulum, is the largeft in the calf, the goat, the flocep, the
bare, the rat, the guinca pig, the cat, \&ic. But even in thefe animals, the part of the fcala of the tympanum, which is very near the feneftra rotunda, widens and becomes broader than the other.

In mammiferous animals in general, the labyrinth, confidered as a whole, is much fmaller, in proportion to the reft of the head, than in birds. It contains no folid parts in thefe two claffes; we obferve only fome white parts, which procced from the expanfion of the extremities of the nervous filaments, in the gelatinous pulp which fills it. Of thefe we fhall fpeak hereafter.

\section*{Article III.}

Of the Manner in which the Membranous Labyrinth is contained in the Bones, or of the Olfeous Labyrinth.

Trie membranous labyrinth of vertebral animals is more completcly contained in the bones, and more clofely embraced by them, in proportion as thofe animals are more perfect, and poffefs ears, with which the caternal element freely communicates.

\section*{A. In Fifhes that have free Branchice,}

The labyrinth is contained in the fame cavity as the brain: the parietes of the cranium afford only fome depreffions for receiving it, and it is retained in thefe hollows by veffels and cellular fubftance. Only a part of the femi-circular canals is fituated in pulleys, or fhort offeous canals.

In the moon-fib the large lateral depreffion of the cranium, which contains the ear, is divided by only two fmall cartilaginous columns, one of which is horizontal, and furnifhes a pulley to the pofterior femi-circular canal : the other is vertical, and affords one to the horizontal canal ; but as the interval between thefe columns and the parietes of the cranium is ten times greater than the diameter of the canals, they are fufpended in that fpace by veffels and cellular fubftance. The anterior vertical canal has * even no column of this kind, and there is no depreffion for the fac in the bafe of the cranium.

The cartilaginous columns become broader in the frog-fifh, and approach more to the parietes of the cranium. In the offeous fifhes they are ftill farther enlarged, and there is conftantly a certain portion of all the femi-circular canals contained in others, which are formed of bonc. The pofterior and horizontal canals are always more enclofed than the anterior; the
latter has only a fmall offeous pillar in the cit, the pilie, the raach, and the mackrel. It hias merely. a furrow in the dory, and fome of the jugulares. It has an offeous canal, which is a little longer, in the cod and the carp: the other two are almoft funk in the bones. In the falinon and the carp the fac is commonly fituated in a depreffion at the bafe of the cranium. In proportion as the fac is farther removed from the finus or veftibule, the foffa, which reccives it, becomes deeper. This may be obferved in the cod, but particularly in the carp and the bervins, which have the fac clofely enveloped in an offcous antrum, that has no outlet, except one for the narrow canal, which joins the fac to the finus.

In all the offeous fifhes, the finus, and the extremities of the canals, are at liberty in the cavity of the cranium, and the nerves have not to pais through bones in order to reach them.

In the flurgeon, the ear begins to feparate from the cavity which contains the brain. The three canals are placed in cartilages, throughout the whole of their length : the cartilaginous canals, which receive them, are fomewhat larger than they are; the fac, to which they are joined, is clofely applied to the fide of the cranium; and between it and the cavity for the brain, there is a very thick membrane, conneched by feveral ligamentous productions, and perforated by feveral holes for the paffage of the nerves.

\section*{Art. III. Osseous Labyrinth. 48i}

\section*{B. In the Chondropterygii,}

Or fifhes that have fixed branchiæ, as the rays and the ßarks, the whole of the membranous labyrinth is enclofed in a particular cavity, formed in the fubftance of the cranium; this cavity is fituated on the fide and pofterior part of that which contains the brain, with which it does not communicate, except by the holes that afford paffages for the nerves.

This cavity feems moulded upon the membranous labyrinth itfelf; it is compofed, in the fame manner, of three canals, and of another, with which they join. But all thefe parts are confiderably larger than thofe they contain, and the latter do not adhere to the parictes of thefe cavities, but are fufpended in them by veffels, nerves, and cellular fubftance. In confequence of the fize of the external labyrinth, the termination of the membranous femi-circular canals are fituated within the cavity which contains the fac of the amylaceous bodies. The holes, through which the nerves pafs, correfpond with this cavity on the internal fide ; externally it communicates with the hole called feneftra ovalis, which is clofed only by a membrane, and by the fkin which pafles above it.

482 Lect. XIII. Ofthe Ear.

> C. In Reptiles.

The offeous labyrinth of reptiles refembles that of the Chondropterygii, that is to fay, it envelopes the whole of the membranous labyrinth, but in a manner more or lefs clofely.

In the tortoife, the feptum which feparates the veftibule from the cranium, is not offified; it remains partly membranous.

In the crocodile, and other lizards, the offeous labyrinth clofely embraces the membranous, or completely covers it by a thin and hard lamina.

\section*{D. In Birds and Mammalia.}

The membranous labyrinth in thefe claffes is fo completely, and fo clofely encafed by the bones, that its nature has long been mifunderftood. It has moft commonly been regarded as the internal periofteum of the cavities in which it is contained. When obferved in a dry ftate, and fhrivelled up into hard filaments in thefe cavities, it has been defcribed under the name of the nervous zones of the femi-circular canals, or the membranous feptum of the veftibulum.

Scarpa and Comparetti have, however, affigned to this part its proper importance. Indeed, when we examine it in young and recent fubjects, we find that it does not differ from the

\section*{Art. III. Osseous Labyrinth.}
the analogous membrane in fifhes : that it is really the effential part of the labyrinth, and that the offeous cavities ferve only as its cafe.

The offeous labyrinth of birds is formed by a thin and hard boney plate, fo exactly fitted to the membranous labyrinth, that we can even diftinguith in it the ampulla of the femi-circular canals : as it is fituated in the fubftance of the temporal and occipital bones, the two tables of which are feparated by only a very open diploe, which is eafily removed, it may, without much trouble, be laid bare, fo as to afford a view of all the parts.

Some of thefe parts, particularly two of the femi-circular canals, are even viiible within the cranium, without any preparation. The auditory cells, of which we fhall fpeak hereafter, and which form vacant fpaces around and within the intervals of the labyrinth, render its preparation ftill more eafy.

In mammalia, the labyrinth is ufually enveloped by the fubftance of the pars petrofa of the os temporum, which is fo denfe in the adult animal, that the two parts cannot be distinguifhed. The cavities which compofe the labyrinth, appear to be hollowed out in that petrous fubftance, in the fame manner as quarries, or mines, are formed in rocks.

It is only in the foetus that the offeous labyrinth can be difengaged from the fubftance which envelopes it, and which has not then

484 Lect. Xili. Ortire Ear。
acquired the fame deyree of hardnefs as the laminæ, of which it is formed.

There are, however, fome fpecies, and they are of the number of thofe which hear beft, that have not the petrous fubftance around the thin lamina of their offeous labyrinth.

In the mole, for example, the three femi-circular canals are difengaged, and vifible on the intesior of the cranium, without any preparation. The cochlea is enveloped by cellular ftructure, almoft as lax as that of birds.

The enormous cochlea of bats is vifible, without any preparation, under the bafe of the cranium, where it forms a confiderable projection, fimilar to that made by the cavity of the tympanum, in a number of fpecies: their femicircular canals may be obferved within the cranium, in the fame manner as thofe of the mole.

In the barc-lipped bat (vefpertilio Leposinus,) the cochlea projects within the cranium.

In the guinea pig (cavia cabaya, ) and in the cabiai (cavio capybara,) it projects into the tympanum, under the two fenefiræ, in the form of a nipple. It has the fame appearance in the marmotte and the porcupine; and is more or lefs fimilar in all the Rodentia. It alfo projects a little within the tympanum in the clepplant.

The Cetacea are the animials which have the fubfance of the pars petrofa hardet.

From the defription we have given of the niem-
membranous labyrinth, it will be eafily perceived, that the offeous veftibule muft have five holes for the extremities of the femi-circular canals ; one for the fcala of the cochlea, which communicates with it ; and one communicating with the cavity of the tympanum, which is the feneftra ovalis.

We fhall not ftop to defcribe the differences which occur in the fize, fhape, and relative pofition of thefe feven holes.

The offeous cochlea turns round a conical axis; it may be compared to the fufee of a watch ; the proportions of its height and bafe vary according to the fpecies. The fection of each turn of the offeous cochlea is not round; there is, on each fide of the axis, a fharp ridge, which is the fection of the olleous part of the fpiral lamina that divides all thefe turns into two fcalæ.

In man, only that portion of the lamina which touches the axis is offeous; the other part is entirely membranous. The fame ftructure, however, does not prevail in all mammiferous animals. In the dolpbin there is only one very narrow fiffure, which divides the lamina, throughout its whole length, into two parts; that which touches the axis being three times larger than the other. The fiffure only is completed by a membrane in the frefh fate.

In the dolplinin alfo, the offeous part of this feptum, which touches the axis, has, under its
\[
I_{1} 3 \quad \text { bafe }
\]
bafe, and in the fcala that joins the tympanum, a friall canal, following the fame curvature from one extremity of the cochlea to the other; the tranfverfe fection of this canal is round, and its parietes are very flender: it might be regarded as forming a third fcala in the cochlea, but it is probable that it ferves to envelope a veffel or a nerve; befides, its diameter diminifhes in the oppofite direction of that of the fcalæ, and it is largeft towards the apex of the cochlea. In the Ruminantia we alfo obferve a fimilar canal, but proportionally much fmaller.

We have fufficiently defcribed the external form of the os petrofum of quadrupeds, in Articles III. and IV. of Lecture VIII. That of the Cetacea dcferves to be confidered feparately ; it is not articulated with the bones of the cranium, but is fufpended by ligaments under a cavity, or vault, which is fituated on each fide of the bafe of the cranium, and principally formed by the os occipitis.

The os petrofum may itfelf be confidered as formed of two portions foldered together, viz. the cavity of the tympanum, which we fhall defcribe at the end of the next Article; and the petrous part, properly fo called, which contains the labyrinth.

The fuperior furface of this fecond portion has, towards its internal edge, a femi-circular eminence, which correfponds to a hole in the bafe of the cranium, and where we obforve a
depreffion,
depreffion, which is the internal meatus auditorius. The cochlea is fituated in this eminence. The external portion of the os petrofum is confiderably larger than the eminence we have juft pointed out ; it partly forms an arch above the cavity of the tympanum ; it is oblong.in the dolpbins. In the cachalots it is coarfely rounded, and prolonged backward into a fcabrous procefs. The lamantin has it deeply bilobated.

We fhall now briefly notice the aqueduEts. Thele are two canals, which form a communication between the labyrinth and the interior of the cranium, different from that which affords a paffage for the nerves ; one goes to the veftibulum, near the common orifice of the two united femi-circular canals ; its orifice, on the fide of the cranium, is triangular, and fituated above and behind the meatus auditorius internus : the other arifes from the cochlea, at the fcala tympani, very near the feneftra rotunda, and opens into the cranium, under the inferior edge of the os petrofum, and below the internal meatus : thefe aquæducts are found in all the mammalia. They are very large in the dolphin, particularly that of the tympanum.

In fome other mammiferous animals, as the elepbant and the borfe, the laft duct forms only a narrow fiffure on the fide of the cranium. I have not fufficiently examined them in the other fpecies of this clafs.

According to Comparetti, two analogous canals are found in birds, but their ufe appears to us ftill doubtful.

\section*{Article IV.}

Of the Cavities fituated between the Labyriatho und the erternal Element, or, Of the C'urity of the Tympanam, and its Appenduges.
In the fiflics with free branchia, whether cartilaginous or boney, the labyrinth has no communication externally: all the parts of the ear are inclofed within the cranium, and covered by the bones.

In the fifses with fixed branchice, or the Chondropterygii, the labyrinth communicates by a finall canal, with an aperture fituated behind the head, and clofed by a membrane and the fkin: there is nothing befides this between the ear and the furrounding element.

Among the reptiles, the falamander has the labyrinth completely enclofed within the cranium, and deprived of all external communication, as in the fifhes that have free branchix: but the other genera of the fame order have all a feneftra, called ovia!, fupporting an offcous plate, analogous to the bone, called fapes in

\section*{Art. IV. Cavity of the Tympanum. 489}
man. The lizard genus has another aperture, but which is clofed only by a membrane, and which receives the name of feneftra rotunda. Thefe two apertures exift in all birds, and in all quadrupeds, as has already been fhewn.

The cavity, which is fituated anteriorly, and which is more or lefs complicated in different animals, is called the barrel, or cavity of the tympanum; it communicates with the mouth by a canal, or by a fimple wide aperture, called the Eufactoian tube: another aperture affords a communication with the external element; it is fometimes fhut by a thin membrane, at other times covered with a thick, or even fcaly fkin; thefe parts are called membrana tympani.

The offcous plate, which covers the feneftra ovalis, is connected by a handle-like production of a fingle piece, or by a chain of officula, articulated with each other, and with the membrane of the tympanum, and may therefore communicate the impreffions received by the latter, to the interior of the veftibulum.

The cavity of the tympanum forms the fubject of defcription in the prefent Article.

> 1. In Reptiles.

The barrel, or cavity of the tympanum, cannot be faid to exift in ferpents: the ftalk of the plate is furrounded by the flefh, and its extremity touches
touches the fkin, near the articulation of the lower jaw.

In loads and frogs, the whole of its poferior part is membranouls ; it communicates immediately with the back of the mouth, by a large hole, which may be feen on opening the mouth of the animal. It is very fmall, and almort entirely membranous in the pipa, in which the labyrinth is connected with the feneftra ovalis by only a very long canal.

It is alfo membranous pofteriorly and inferiorly in the common lizards, and in the camelion; it communicates with the bottom of the palate by a fhort wide canal.

The barrel of the crocodile may be divided into two parts: one cxternal, which is very wide, and clofed on the outfide by the membrane of the tympanum, and the fkin, but entirely furrounded by the bones ; and one internal, which is feparated from the former by a contraction, and which communicates with the two feneftra, and with fome cavities analogous to the maftoid cells of man, but much larger : one of thefe cavities is placed between the femicircular canals, and the other is directed backward and outward; the barrcl is fituated towards the fuperior part of the cranium.

The cavity of the tympanum in the tortoife is placed more laterally; it is not fo wide externally ; and the contraction, which feparatce
\[
\text { Art. IV. Cavity of the Tympanum. } 49 \text { I }
\]
the external part from the internal, is lefs con§picuous, becaufe the projection, which it forms, is rounded, and not acute, as in the crocodile. The internal portion is prolonged backward, in the form of a large round cell : in the bottom of the cavity, oppofite to the membrane of the tympanum, there is a narrow canal, in which the officulum is funk, and which communicates with the feneftra ovalis. The Euftachian tube is a canal of a moderate length, which proceeds downward, and a little backward, and terminates in the palate, behind and within the articulation of the jaw.

\section*{B. In Birds.}

The cavity of the tympanum is alfo very wide on the outer part, in birds: its pofterior and inferior parietes are formed by a projection of the os occipitis: the anterior is, in a great meafure, completed by a bone peculiar to birds, called os quadratum. We fhall defcribe this bone when we treat of the articulation of the lower jaw.

It communicates with three large cavities, which are more or lefs prolonged into the fubftance of the bones of the cranium, and which particularly characterize the organ of hearing in birds. Thefe cavities, being inclofed by thin and elaftic offeous lamina, are doubtlefs very fonorous, and confiderably augment the cffect
effiect of found, with refpect to the labyrinth, which they furround on all fides. In the owl genus, particularly in the zobite ozol (Arix flammea), they are more extenfive than in any other birds ; the firt opens into the fuperior part of the tympanum, and extends through the whole breadth of the occiput, as far as the correfponding cavity of the oppofite ear, with which it unites above the foramen magnum; the fecond enters the barrel at its pofterior and inferior part ; this cavity extends only between the femicircular canals, and is the fmalleft of the three; the third communicates with the anterior part of the barrel of the tympanum, above the Euftachian tube: it paffes above that tube, and extends through the breadth of the bare of the cranium ; it unites with the cavity of the other fide, under the part which contains the pituitary gland: thus the barrels of the tympana, in the zobite oro!, communicate by two different channels: the third cavity furrounds the part analogous to the cochlea.

This vait extent of cells, attached to the barrel of the tympanum, is found in the rovite orol only. In the other common and borned oze/s, the cavities are a little contracted, and they diminifh more and more down to the caljorary and the ofrich, which, of all birds, have them the fmalleft. The goat-fucker, a nocturnal bird, to which a quick fenfe of hearing is neceffary, has them very large. Diurnal birds of prey, and

\section*{Art. IV. Cavity of the Tympanum. 493}
the Gallinæ, have the firft cavity, and the third, in the form of a narrow conical tube, without any communication from the one fide of the head to the other: the fecond, or that between the femi-circular canals, is larger in the diurnal birds of prey than in the owls, becaufe they extend outward, behind the pofterior edge of the barrel ; thefe cavities are generally fmall in the Anferes and Grallæ. They appear to be entirely wanting in feveral fpecies of parrots, in which the internal fubftance of the bones of the cranium is uniformly a very loofe diploe: their tympanum, however, has a more confiderable concavity pofteriorly, than that of other birds.

The Euftachian tube is completely offeous in birds; it is a conical canal, which commences at the anterior and inferior part of the tympanum, by a large aperture, and which paffes under the third cavity, defcribed above, from which it is feparated by only a thin lamina ; it proceeds obliquely inward, contracting gradually, and terminates in a fmall aperture very near the middle line, and confequently alfo very near the tube of the other fide ; thefe two apertures open into the palate behind the internal nares.

The two feneftra, by which the labyrinth of birds communicates with the cavity of the tympanum, are fituated one above the other, in a depreffion oppofite to the membrana tympani; an offeous bar feparates them. The feneltra

494 Lect. XIII. Ofthe Ear.
called ovalis, or that which communicates with the veftibulum, is above the feneftra named rotunda, which communicates with the cochlea; but they are both of an oval fhape; the feneftra rotunda is the largeft, and frequently exceeds the fize of the other confiderably.

> C. In Mummalia.

The cavity of the tympanum, in mammiferous animals, prefents very remarkable differences, as to dimenfions, form, ftructure, and internal arrangement.

In man this cavity forms almoft a hemifphere, and the membrane may be regarded as its great circle; it neither projects without nor below the cranium; its parietes are very unequal ; that which is oppofite to the membrane of the tympanum, has an angular elevation, which afcends obliquely from before backward, and which is named the promontory. The fenefra ovalis is above it : the longeft diameter of this feneftra is tranfverfe, and almoft double the fmaller; it is exactly oppofite to the membrane of the tympanum: the feneftra rotunda is below the promontory ; it is directed a little downward and backward; they are both a little funk. There are fome flight excavations in the barrel of the tympanum, which might be comipared to the cells of birds, but could only be regarded as very minute veftiges of them; they are not fimilar

Art. IV. Cavity of the Tympanum. 495
fimilar in all individuals; there is one above and before the oval feneftra, and another behind the round; the latter communicates in adults with the cells, which are formed, at a certain age, within the maftoid procefs of the temporal bone. The Euftachian tube begins at the anterior and inferior part of the barrel, by a hole which is nearly round ; it firf forms an offeous canal, which is directed downward and inward, towards the point of the os petrofum, where it is narroweft ; it is continued from this place as a cartilaginous canal, which is enlarged, as it advances, and terminates in the back of the mouth, near the internal pterygoid procefs, and confequently near the pofterior orifice of the nares of the fame fide, by a wide aperturc, like the end of a trumpet, the edge of which forms a projecting burr, or roll.
1. External Form of the Cavity of the Tympanum in Mammalia.
A mongft apes, the guenons and the maggots have not the os petrofum more prominent under the cranium than we obferve it in man, and the barrel, or cavity of the tympanum, remains concealed within it: the maftoid procefs becomes very fmall, or is almoft obliterated; but the maftoid c. 11 s extend farther into the reft of the temporal Lom:

In the other mammiferous animals, beginning the fapajous, the barrel increafes confider-

496 Lect. XIII. Of the Ear.
ably in fize, and forms a large protuberance under the cranium.

This protuberance is oval; and its great axis is longitudinal in the fupajous, badgers, civels, and martins.

It is a little rounded, and its great a x is is directed obliquely inward, in dogs, cats, and coatis.

It is almoft round in bares and beavers.
It is femi-fpherical in ternate bats and pangolins.

It is more or lefs angular in the Ruminantia, the cabiai, the Roth, the bippopotamus, the elephant, and the rbinoceros.

It is plain in the mole, and touches that of the other fide, which makes the cranium appear fmooth inferiorly.

In the ant-eaters, the floor of the noftrils being continued between the two barrels, their projection, under the cranium, cannot be obferved.

In the bear there is no protuberance.
In the hog there is a long projection, like a fac or a club, which is molt contracted at the part joining the cranium.

In moft of the digitated mammalia there is no maftoid procefs, except a flight protuberance arifing from this projecting part of the barrel, or the barrel itfelf fupplies the place of that procefs: but in the cabiai, the guman-pig, logs, the Ruminantia, and borfes; there is, behind the tympanum, a long procefs, which an-

Art. IV. Cavity of the Tympanum. \(49{ }^{\circ} 7\)
fwers to the maftoid. It belongs, however, to the occipital bone.

In moft of the Sarcophaga and Rodentia, the parietes which form this projection are thin, hard, and leave a large vacancy between them. In bofs, on the contrary, the whole of the interior is compact and cellular.

In the Carnivora and the Rodentia, the furrounding lamina which enclofes the cavity of the tympanum, is distinguifhed from the reft of the os petrofum by a future, and is not united to it until thefe animals reach an advanced age.

In cats and civets it is itfelf fubdivided into two parts by another future : the pofterior portion has much refemblance to a cochlea, and, except the difference in thicknefs, is perfectly reprefented by the barrel of the robule.
2. Intcrnal Dirifion of the Cavity of the Tympronum, and Maftoid Cells.
The oval frame which fupports the membrane of the tympanum, is almoft parallel to the oppofite fide of the cavity ; it correfponds nearly to the middle of that fide in man, the monkey, the drg, the budger, weafles, Rodentia, Ruminantia, \&c. In all thefe animals, the promontory correfponds to the middle or poftcrior part of the tympanum ; but a fpace always remains between it and that nembrane ; and the parts of the barrel fituated before and behind the proinontory, are not feparated in a marked manner.
Vol. 11.
K K
10

In the cat and civet genera, however, there is an offcous procefs, which extends from the pofterior and inferior edge of the frame of the membrana tympani, to the promontory, and which, being prolonged obliquely, divides the barrel into two unequal parts that communicate together only by a hole. The anterior and external cavity is the barrel of the tympanum, properly fo called, and contains the officula and the feneftra ovalis. The other part, which is much larger, contains the feneftra rotunda. In the lion, this feneffra correfponds precifely to the line of feparation, and is fituated at the hole by which the two parts communicate. The poflerior part may be regarded as analogous to the large cells of birds, and it appears to be given only to animals that are remarkable for a quick fenfe of hearing.

In a number of Sarcophaga, and even in thore I have named, there is another offeous ridge, but not fo broad as the former, and tranfverfe: it appears to ferve merely as a fupport to the frame of the membrana tympani. The borfe has a number of fimilar pieces.

In the fapajous and the ant-eaters, the cavity has alfo an additional cell formed by an offeous feparation; but this cell is dituated before the cavity of the tympanum, properly fo called, or that part to which the membrana tympani belongs. The flotb has a cell at the balc of the ayromatic arch.

\section*{Art. IV. Cavity of the Tympanum. 499}

The barrel or cavity of the tympanum in the clephant, has no feptum ; but its fides are furnifhed with a great number of prominent laminæ, which crofs each other in every direction, and produce a multitude of irregular cells and finufes. We find the veftiges of fimilar cells in the irregularities and depreffions of the barrel in feveral Rodentia, particularly the cabiai, the guinca pig, the marmotte, and the porcupine.

In the bippopotamus, the barrel, properly fo called, is extremely fmall; but it communicates by a hole with another cavity, divided internally into a great number of irregular cells, analogous to thofe of the lion, civet, \&c.

In the feal, and the morre, the cavity of the tympanum is very large, rounded on every fide, and undivided.
3. Furn and-Proportions of the Fenefta Ovalis, and Feneftra Rotunda.
We have already fhewn, that the feneftra rotunda, which communicates with one of the falæ of the cochlea, is only clofed by a membrane. As it is always directed backward, we may fuppofe that it is chiefly deflined to receive. the founds produced by the refonnance of the pofterior chamber of the barrel, which we have juft defcribed, and which is fo diflinet in nocrurnal animals, the cai, the lion, \&rc. Scarpa-
confiders this membrane of the feneftra rotunda as 'a fecond membrana tympani.

In Man, the fhape of thefe two feneftre is conformable to the names which are given to them, though they are not perfectly regular. The oval feneftra is a little larger than the round.

In the other animals the variations are fo confiderable, both with refpect to figure and dimenfions, that the terms, oval and round, are no longer applicable : we fhall fubftitute in their ftead, the names fonefra veftibularis, and fenefira cocblearis.

Monkies have them fimilar to thofe of man.
In buts, the feneftra cochlearis is the largeft.
Both feneftre are oval in the mole: a bar extends from one edge of the feneftra veftibu!aris to the other, and paffes between the legs of the fapes. This occafioned the miftake of Derham, who believed that the ftapes of the mole had no plate, but that one of its legs refied on the feneftra ovalis, and the other on the feneftra rozunda. The fame fructure is found in feveral other mammiferous animals. In the marmons, the offeous bar, which pafles between the legs of the ftapes, is fo thick, that when the latter tone is removed, there appears to be two fenelfrex veftibulares: this bar is always hollow, and affords a paffage for fome veffels.

In the Sarcophaga, the feneftra cochlearis is commonly the kargeft; it is nearly double the

Art. IV. Cavity of the Tympanum. gol
fize of the other in cats and civets. The ermine has them almoft equal. In the opoffum, the feneftra veftibularis is round ; the cochlearis is irregular and fmaller.

In the beaver and the marmotte, the latter is triangular. In the hare it has the form of a fmall, and almoft perpendicular fiffure. The veftibularis is round, and much larger.

The guinea pig has them nearly equal, both directed upward, and feparated only by a thin bar.

They are both oval, and nearly equal in the Edentata.

In the Ruminantia the cochlearis is the largeft. The calf has it nearly double the fize of the other. It is alfo twice as large, and fituated very near the other in the bog. It is three times larger than the veftibular hole in the bippopotamus. In the elephant, on the contrary, it is very fmall, irregular, and concealed behind an elevation of the promontory.

The cochlear feneftra is largeft in the Solipeda and the Cetacea.
4. Euffachian Tube.

The offeous part of this tube prefents few differences that are remarkable in quadrupeds. That part is florter in the Sarcophaga than in man. In cats and civets it is rather a, narrow fiflure, than a canal : it might be reprefented as a vacant face in the future, which unites
\[
K \times 3
\]
the bone of the barrel to what fhould be frictly called the pars petrofa.

The otter, the badger, and the recazle, \&uc. have a fimple hole, feparated from the reft of the cavity of the tympanum by a projecting longitudinal ridge. In the bare, the origin of the tube within the barrel is a triangular foramen. In the cabiai it commences by a half-formed canal, which becomes complete, in piercing the point of the os petrofum.

In the elephant it is a long and wide canal, which begins under the membrana tympani, and terminates at the point of the os petrofum; its parietes are fmooth, and have no cells.

We have not yet fufficiently examined the cartilaginous part of the tube in quadrupeds to enable us to defcribe it.

In the borfe, the lower end of the cartilaginous tube opens into a large membrannus fac, fituated at one fide of the back of the mouth; this fac, on fome occalions, is filled with pus, and then produces a dangerous preffure on the pharynx.
D. Particular Defcription of the Barrel, (i) Carity of the Tympanum, in Ccracea.

The cavity of the tympanum in the Cetacea deferves to be defribed feparately; it is formed by an offeous lamina, which has the apicarance of being rolled upon itfelf, and which, with reljcis

Art. IV. Cavity of the Tympanum. 503
refpef to its figure, may be compared to the fhell, called bulla, except that the thick fide, inftead of containing a fpiral cavity, is entirely folid: this thick part is internal; it is more than two inches thick in the cacbalot; its edge is blunt and rounded; the oppofite fide is thinner, and its edge is irregular: the membrane of the tympanum is fituated between two of its procefles : this barrel adheres to the os petrofum by its pofterior extremity, and by a procefs of the anterior part of its thin edge. In the dolphins, the anterior proceis of the barrel alfo afcends to the os petrofum; but in the cacbalots it does not reach that part. The anterior extremity of the cavity is entirely open, and there the membranous tube commences; this tube afcends along the pterygoid procefs, and perforating the os maxillare, terminates at the fuperior part of the nofe. This pofition of the orifice, as well as the fize of the tube, muft render it more ufeful than the meatus externus to the Cctacea, in diffinguifhing founds. In treating of the fenfe of fmelling, we fhall fhew that, by a ftructure not lefs fingular, the Euftachian tube alfo conveys the odoriferous emanations to the place where that fenfe refides.

The aperture by which this tube communicates with the nofe, is furnifhed with a valve, which does not permit the water to enter when the animal ejects it by the blow holes.

YO4 : Lect. XIII. Of the Ear.

\section*{Article V.}

Of the Menbrane of the Tympaneme, and its Ofeous Frame.
The membrane, which clofes the external aperture of the barrel, and which immediately receives the vibrations of the air, and tranfmits the impreffions to the internal ear, is called mennbrana tympani, or fometimes fimply tympanum.

\section*{1. Subfance of the Membrana Tympani.}

Animals which want the barrel of the tympanum, as fifhes, falamanders, \&tc. have no membrana tympani. That membrane is alfo *anting in feveral reptiles that have a barrel, as the camelion: the fkin paffes over the external aperture of their ear, without undergoing any change, either in its thicknefs or its lructure, - and the exiftence of the organ of hearing can only be afcertained by diffection. On removing the fkin, and fome portions of the mufcles, we find, in fome fpecies, and particularly in the fore zoorm (anguis fragilis) a kind of membranous expanfion.

In the toitoife, the large external aperture of the barrel is clofed by a very thick cartilaginous plate, which is itfelf covered by a fcaly thin, perfectly fimilar to that of the reft of the head.

\section*{A. V. Membrane of the Tympanum, Ec. 505}

In frogs and toads, the membrana tympani is on a level with the head, and the fkin that covers it becoming finer, it is rendered perceptible by an oval fpot, which is fmoother than the reft of the head, and ufually of a particular colour.

In common lizards, the membrana tympaní is alfo level with the head, but very thin, fmooth, and tranfparent, for at that part the fikin becomes as fmonth and fine as on tbe cornea of the eye.

In the crocodile, it is of the fame nature, but more funk into the head, and covered by two flefly lips, which fupply the place of the external ear.

All warm-blooded animals, birds, Celacca, and quadrupeds, have, like man, the membrana tympani thin, tranfparent, dry, elaftic, more or lefs funk into the head, and preceded by a canal, to which, in fome of thefe animals, is fuperadded the concha, or external ear:

Notwithftanding its fine texture, the membrana tympani is at leaft divided into three lamina : one, which is proper to it; one internal, which is the continuation of the internal membrane of the barrel, and which is itfelf derived from that of the mouth; and one external, which is a production of the fkin.

\section*{2. Surfuce and Direction of the Membrana} Tympani.
The membrane of man, and all other mammiferous

506 Lect. Xill. Ofthe Ear.
mifcrous animals, has a conical furface, the point of which is directed inward, and the concavity outward; this cone is very wide, and its apex does not correfpond to the middle of its bafe. The mole, however, forms an exception to this rule, as its membrana tympani is plane.

In all birds, the difpofition is the contrary of that of the mammalia : the apex is on the outer part.

In lizards, though the point projects lefs than in birds, it is alfo directed outward. It is nearly plane in frogs and tortoifes.

The membrana tympani is on a level with the adjacent paits of the head, and confequently is nearly vertical in all animals in which its fituation is fuperficial; but in thofe which have it funk, its inclination, whether confidered with relation to the head ilfelf, or to the extermal meatus, varies confiderably. We fhall confider it with refpect to the head, which mult be fuppofed upright, and the plane of the palate horizontal.

The membrane of the tympanum inclines obliquely upward, and to one ficie in the crocudile: obliquely downward, backward, and laterally in moft birds; and cuen more downward, in proportion as the bird hears weak founds more diftinctly. In the oiel it is, therefore, very oblique. It is more vertical in the gnofe and the parrot.

In quadrupeds, the membrama tympani is
A. V. Membrane of the Tympanum, Ec. 507
alfo more oblique, with refpect to the external canal, and inclined more downward, in proportion as the animal hears better. The mole, which has the fenfe of hearing very delicate, notwithftanding the want of the concha, has the membrane almoft parallel to the bafe of the cranium, and anfwering as a floor to the barrel of the tympanum: this difpolition doubtlefs takes place, in order that the membrane may be rendered more extenfive. Another rule may, therefore, be deduced from obfervation, name\(l y\), that the larger the membrana tympani, all other circumftances being equal, the more acute is the fenfe of hearing.

In ottirs, weazels, and badgers, the membrane of the tympanum is almoft as oblique as in the mole. It is alfo very oblique in the pangolin.

It is nearly vertical, and directed forward, in man, apes, dogs, cats, civets, and coalis.

It is almoft vertical, and turned dircetly towards the fide, in bares, cabiais, marmolles, and the greater number of Ruminantia.
3. Frame of the Membrane of the Tympanum.

The membrana tympani is attached to an offeous circle, which is called its frame. This frame forms the extremity of the meatus auditorius externus, next the barrel, and is that portion of it which firft offifies; it is nearly round, and makes only a flight projection in ward, before which there is a furrow in man. In a great number

\section*{508 Lect. Xili. Oftuz Ear.}
number of mammalia, it forms a projection within the barrel, which reprefents a narrow plate, circularly or elliptically twifted, one of the edges of which is attached to the external part of the barrel, and the other is unconnected. This free edge is more or lefs fharp and wide, according to the fpecies; it is frequently fuftained by fome prominent fpines, which proceed from different parts of the barrel, and join it perpendicuiarly. We have already noticed them in the laft article.

This projecting frame is not perfectly complete. A fegment, which, according to the fpecies, is a greater or lefs portion of its circumference, is almof conftantly wanting towards the upper part. The guinea-pig, the paca, the feal, and the ant-eater, are the only animals in which I have obferved it entire. In the latter, however; it projects fo little, that it is difficult to diftinguifh where it terminates.

It wants almoft the whole of its upper quarter, in the cat, the dog, the rabbit, and the rat. The part wanting is rather proportionally fmaller in the Ruminantia and the Solipeda. The clephant wants all the upper half.
The figure of the frame is commonly an oval, with the great axis defcending obligucly forward, and the anterior arch lefs convex than the pofterior. This oval is more oblong in the Sarcophace than in herbivorous quadrupeds. It approaches a circular form, and has its fides almof

\section*{A. V. Membrane of the Tympanum, Eic. 509}
almoft equal in the guinee-pig and the paca: next to them the rabbil has it moft regular.

Man and the ant-eater have it almoft circular. It is perfectly round in the mole.

In the Cetacea, the membrane of the tympanum, properly fo called, has no frame; but the barrel has three proceffes, which produce irregular notches in the aperture, and give it the figure of three unequal lobes.

In birds the frame of the membrana tympani is not fo well defined as in quadrupeds, and does not project within the barrel. In fome fpecies, as the rebile owl, it is complete: others, and frequently very nearly allied fpecies, as the great-borned owol, bave it interrupted at its anterior part, and the membrane is attached to the fquare bone for the articulation of the lower mandible, a procefs of which, as we have already obferved, always forms a part of the anterior parietes of the barrel, or cavity of the tympanum.

The figure of the frame of birds is alfo an oblique oval, the gieat axis of which defcends obliquely forward; but it ufually approaches more to the round form than in quadrupeds.

The dircction of the great axis is lefs forward in feveral pafferes; but all thefe differences are of little importance.

In reptiles, the frame is not marked by any prominent edge ; it is interrupted pofteriorly. Its great axis is vertical in the torloife and the

510 Lect. XIII. Ofthe Ear.
common lizards, and its anterior arch is more convex. In the crocodile it is a regular oval, the great axis of which is directed obliquely backward.

\section*{Article Vi.}

Of the Oficula which eftablifh a Communication between the Membrana Tympani and the Fcneffra Ovalis, and of their Mufcles.

\section*{I. Of the Bones.}

ALe the animals which have a real feneftra veftibularis, have it clofed by an offeous plate of the fame fhape. This plate communicates by a pedicle or ftalk with the membrana tympani, or, when that membrane does not exift, with the fkin, or parts near it. The ftalk is fometimes fimple, and forms, with the plate, only one and the fame officulum; fometimes the communication is maintained by two or four little bones of very different figures. This chain of officula is moft complicated in the Mammalia, and with them we fhall commence our defcription.

\section*{A. In Mammiferous Animals.}

All the Mammalia have four officula, which are named Mallens, Incus, Os Lenticulare, and Stapes.

The malleus is always formed of an elongated handle, which is thin and pointed, and which adheres to the membrana tympani, in the direction of a line extending from the fuperior edge of that membrane to the apex of its cone ; and of a head which makes an angle with the handle, and extends backwards and a little upwards within the cavity of the tympanum.

The incus joins the head of the malleus by an articular furface. Its oppofite part is divided into two points; one proceeds directly backward; the other defcends in a direction nearly parallel to the handle of the malleus, but a little more backward and inward. The extremity of this fecond procefs articulates with the officulum lenticulare, which is the fmalleft bone in the body of mammiferous animals, and by it with the fapes. The latter takes its name from its figure, which is that of a ftirrup. It forms almoft a right angle with the branch of the incus which fupports it, and proceeding directly inward, applies its oval plate or bafe to the fenefra ovalis. Each of thefe bones varies in its fize, figure, and pofition in the different fpecies. We fhall examine fome of thefe varieties.

\section*{1. The Mallens.}

In man, the handle of the malleus, or hammer, is flightly compreffed, and bent a little, in fuch a manner that its point is directed obliquely forward; the head is a little fhorter titan the handle,

\section*{512 Lect, Xili. Ofthe Ear}
handle, and forms with it an angle of 120 de grees; it is terminated by an oval mafs, rounded at the end, the pofterior fide of which prefents to the incus an articular furface, compofed of four fmall planes. At the angle, formed by the head and the handle, there is a fmall fpine directed upward, which is called the floort procefs of the malleus. The neck, or portion of tiec head, which is a little contratted, has anteriorly a flender procefs, which is prolonged like a ftile, and which is named proceljus gracilis: behind and above the neck there is alfo a fmall lamina projecting obliquely.

The malleus of the orang outang does not differ from that of man, except in having the head a little more pointed.

In the fapajou the head is one half fhorter than the handle. The articular furface occupies the whole of the pofterior part. The proceffus gracilis is continued in a plate, which extends along the whole of the anterior edge. It is very confpicuous in the gucnons; but in them the head is alfo in a right line with the handle, and forms a projection forward. It is not diftinguifhed from the handle in the fimia beclaelunl, except by its fudden enlargement.

In dogs and cats, the handle has the figure of a long pyramid with three fides, the narroweft of which adheres to the membrana tympani. The angle, which the head forms with it, is as large as in mail; the nock is flender, and turns forward;
forward; but the proceffus gracilis, or anterior apophyfis, which is very long, is extended into a thin plate, and occupies the whole of the angle included between the head and the handle. The fhort procefs is very prominent : there is another apophyfis at the internal furface of the neck, which fupplies the place of the fmall fpine in man.

The other Sarcophaga prefent no differences, except in the length of the proceffes. The anterior, for example, is longeft and narroweft in the badger, and fhorteft and broadeft in the otter.

It is very broad in the mole, and gives to the malleus a figure nearly rhomboidal.

In the Rodentia, the handle is compreffed like the blade of a knife, and adheres to the membrane of the tympanum by one of its edges. The neck makes an obtufe angle with the handle, which bears, as ufual, the fhort procefs. The head, after receiving the incus on its pofterior furface, has its thick portion fituated in the oppofite direction, that is to fay, forward. This maffy portion is oval in the cabiai and the guinea pig, and pointed in the rabbit and the rat. The handle of the flotbs refembles that of the Rodentia; the head is like that of the human malleus. In the ant-eater it differs from the form it has in the floths, in the neck only, which is thinner; and in the pangolin, in having the fame part very fhort.

In all thefe animals, reckoning from the Rolentia, the fmall internal apophyfis, or pofte-

\footnotetext{
Vos. II.
L L
rior
}
rior procefs of the neck, is almoft obliterated. It is, however, found very diftinct in the bog and the Ruminantia, which have the malleus very fimilar to that of the Sarcophaga.

The feal has the handle compreffed; and the neck fhort, with fcarce any anterior procefs; the head is flightly flattened, and circular from before backward.

There is no handle in the dolpbin; but the membrana tympani has the form of an elongated tunnel, and its point is fixed at the bafe of the neck, which feems obliquely truncated. The anterior procefs is long and arched. The articular furfaces for the incus are not directed entirely backward, but partly upward, on account of the pofition of the labyrinth above the barrel. The malleus of the whale is, in every refpect, fimilar to that of the dolphin, but double its fize.

> 2. The Incus,

Or anvil, exhibits fewer differences than the malleus. In all the mammalia thefe two bones are articulated by a very clofe ginglymus, compofed at leaft of two furfaces, and moft commonly of four, in fuch a manner that each bone has a convexity croffed by a concavity. The principal variation in the incus of different feccies, occurs in the relative length and thicknefs of the two proceffes.

In man, the fuperior procefs, which is attached to the bone of the barrel by a ligament, is fhorter and thicker than the inferior, which is articu-
lated to the flapes, through the medium of the os lenticulare; the latter is arched in fuch a manner that its convexity is directed outward; they form nearly a right angle at their junction. The fame difpofition takes place in the orang utang.

In the guenons, the fuperior procefs becomes nore flender. It is almoft as long as the other n the fapajous. In monkies, in general, the aricular depreffion becomes deeper.
The two proceffes are flender, and nearly qual, in the cat. The dog has them like thofe If man. Weafels, otters, and Jeals, have the fuverior very fhort. The incus of the mole is ingular; its inferior, or ftapedian procefs, is ery fhort and fmall; the other is very large, blong, and hollowed pofteriorly like a fpoon. 'erhaps it ferves to lodge a mufcle.
Hares and rats have the ftapedian procefs very ing, and the other fcarce vifible. They are lore equal in the cabiais.
They are nearly equal, and make an obtufe igle, in the floths.
The fuperior is moft flender in the Joeep. They are both directed upward in the dolpbin.

\section*{3. The Oficulum Lenticulare,}

Or orbiculare, notwithftanding its fmallnefs, ries as to form in different fpecies, but the erations it undergoes are too minute to be 'elt on here.

\section*{4. The Stapes.}

This officulum differs, in feveral fpecies, in the feparation and curvature of its branches, in the extent of the vacancy betwcen them, and in the figure of its bafis or plate.

In man, for example, the branches are arched, and the bafis or plate is femi-oval.

In the fapajou, the branches are nearly fraight, and the batis forms a narrow ellipfis.

No animal has the branches more arched, and proportionally more feparate than the mole, in which the bafis has the figure of an elongated and narrow ellipfis.

In all animals, the pofterior branch is thicker than the anterior. Inftead of the two branches, the Cetacea have a folid body, compreffed conically, and perforated by only a very fmall foramen. In the lamavin, this part of the ftapes reprefents a twifted cylinder; on one fide there is an oblique groove, and the foramen has the appearance of the puncture of a pin. The furface, attached to the fenettra ovalis, is exceedingly convex.

> B. In Birds.

Birds have only one officulum, compofed of two branches, which form an elbow: the firft is attached to the membrana tympani, from its inferior and pofterior edge, to the apex of the projecting cone, which that membrane forms externally; its direction is, therefore, almoft
the contrary of that of the malleus, to which this branch correfponds. At its union with the . econd part of the bone, there are two cartilaryinous proceffes, the pofterior of which joins I third branch, which runs back to the firft part of the bone. In this manher, a triangle, nearly -ight angled, is formed, the three fides of which ire attached to the membrane of the tympanum. The other part of the officulum makes an acute ingle with this firft branch, and then paffes di= ectly into the barrel, in the form of a flender iffeous ftalk; it there expands a little, and fomeimes is divided into two or more fmall offeous ilaments, after which it terminates in an oval ir triangular plate, which, like the bafis of the tapes in mammalia, clofes the veftibular feneftra. There is no difference among birds with refpect a this officulum, except in its fize, and the fhape \(f\) the plate. The fmall branches, which adere to the membrana tympani, vary, it is truc, 1 their relative inclination and magnitude, but 1 a manner too unimportant to merit notice.

\section*{C. In Reptiles.}

The frog and the toad have two officula in the ir; one fupplies the place of the malleus, and ie incus : it is attached to the membrana tymani by a flender branch which forms an acute igle with the part that paffes into the barrel ; lat part has the fhape of a club; its internal stremity is the thickeft, and articulates by a ouble furface to the fecond officulum, which
\[
\text { Le } 3 \text { corre- }
\]
correfponds to the ftapes: the latter has a femielliptic form, and is applied to the feneftra ovalis by its plane furface; both thefe bodies, which are offeous in other animals, are cartilaginous in the frog and toad.

Lizards and tortoifes refemble birds, in having a fingle officulum with a thin hard ftalk, and an oval or triangular plate. It is attached to the membrane of the tympanum in the lizards, and particularly in the crocodile, by a cartilaginous branch; but in the tortoife, its outward extremity is directly implanted in the cartilaginous mafs, which correfponds to the membrana tympani itfelf.

In the crocodile, the plate is an clongated ellipfis, the great axis of which is fituated longirudinally.

In the tortoife, the bone is enlarged in the form of a trumpet, and is applied to the feneftra by a regularly oval and concave furface.

Serpents have an officulum, but no membrana iympani; its external extremity touches the bone that fupports the lo:ver jaw ; it is furrounded by the flefh, and is applied to the feneftra by a concave plate, the edges of which are irregular.

In the camelion, the plate alfo refembles the wide end of a trumpet ; its ftalk becomes cartilaginous, and is loft in the flefh.

The feneftra veftibularis of faiamanders is clofed only by a fmall cartilaginous operculum, which has no ftalk, and is conccaled by the flefh.
II. Of

\section*{II. Of the Muscles.}

In man and other mammiferous animals the officula have four inufiles; three to the malleus, and one to the ftapes.

The incus has no mufcle: its head is attached to the pofterior furface of the head of the malleus, and the extremity of its fuperior procefs is fixed to the temporal bone in the upper and pofterior part of the bottom of the barrel of the tympanum. It fhares in all the motions of the malleus, which makes it act like a balance upon its fixed point.

The mufcles of the malleus are,
1. The Tenfor Tympani, or Internus Mallei.

This mufcle arifes from the cartilaginous part of the Euftachian tube, and runs in a half formed canal fituated in the os petrofum, upon the offeous part of that tube. Soon after it enters the barrel, it reaches an eminence fituated before the feneftra ovalis, which has been likened to the rpout of an ewer. Its tendon turns upon this eminence. It is then directed outward, and inferted into the internal furface of the manubrium mallei under the proceffus gracilis. It pulls the malleus completely inward, and ftretches the membrane of the tympanum : by the motion which the malleus communicates to the incus, the fuperior leg of which remains fixed, its inferior leg muft defcribe an arch from without LL 4 inward,
inward, and prefs the ftapes into the feneftra pvalis.

> 2. The Externus Mallei,

Proceeds parallel to the preceding mufcle, but more outwardly. It is inferted into the flender procefs of the malleus, which is itfelf lodged in a fmall canal formed above the fuperior edge of the frame of the membrana tympani. This mufcle is fo delicate that its real nature can farcely be afcertained. When it acts, it muft draw the mallcus forward, and thereby ftretch the pofterior half of the membrana tympani, and communicate a balance-like motion to the incus. In this movement the head of the incus is lowered, the extremity of its inferior procefs is directed backward, and a tremulous flock is given to the ftapes in the feneftra ovalis.

> 3. The Laxator Tympani.
'T'his mufcle arifes from the arch of the meatus externus, near the membrana tympani, paffes through the notch of the frame of that membrane, and is inferted into the fmall oblique procefs, on the neck of the malleus: it pulls that bone outward, and thereby relaxes the tympanum. In confequence of the motion communicated to the incus, it muft, at the fame time, draw the ftapes a little from the feneftra ovalis.

The fingle mufcle of the fapes, or-

> The Stapedius,

Lies within the cavity of a projection fituatcd behind
behind the feneftra ovalis, near the pofterior edge of the barrel, which is called the pyramidal eminence. Its tendon comes forth from the cavity, and proceeds directly to the pofterior part of the fapes, which it pulls backward, raifing at the fame time its anterior part a little.

We have not examined thefe mufcles in a great number of mammalia; but we have feen moft of them, and particularly the ftapedius, and tenfor tympani, in feveral fpecies, in which they have prefented few varieties.

The malleus of the dolphin appears to have no mufcle, but there is evidently one to the ftapes, which is attached very far up, and not in the middle of one of the branches, as in man.

The preffure of the ftapes on the feneftra ovalis muft have a double effect: it firft agitates the whole interior of the labyrinth:-fecondly, it compreffes the gelatinous fubftance which the labyrinth contains, and forces it through the cochlea, on the membrane of the feneftra rotunda, which will thereby be rendered more tenfe.

The fecond effect muft, in particular, depend upon a fixed preffure produced by the ation of the mufcles: there are doubtlefs contracted, when we wifh to liften with great attention.

As to the fimple concuffion, or hook, it may be caufed merely by the agitation communicated to the membrana tympani by the vibra-
tions of the air: this is, probably, one of the immediate caufes of hearing. Animals that have no mufcles to their officula, are only fufceptible of this kind of impreffion: it would be interefting to difcover whether they are capable of paying more or lefs attention to founds.

Birds have a fmall mufcle behind the ear, on the occiput ; it penetrates into the barrel by a hole, and is inferted into the hypotheneufe of the fmall right-angled triangle, formed on the membrana tympani by the three branches of the officulum : this mufcle ftretches the membrane, by drawing its conical apex more outward. Two filaments, which appear to be tendinous, oppofe the action of this mufcle, and prevent it from becoming too great : one filament, which is very long, arifes from the anterior procefs of the cartilage attached to the tympanum, and is fixed in the coll fituated above the Euftachian tube; the other afcends, and is inferted into the column which feparates the entrance of that cell from the one above the labyrinth.

We are not fufficiently acquainted with the mufcles of the internal car of reptiles; and the defcriptions of Comparetti do not poffefs. that clearnefs which might enable us to fupply the want of our own obfervations.

It appears that ferpents, camolions, and falamarders, are entirely deftitute of thofe mufcles, and that they are very indiftinct in tortoifes.

\section*{Article VII.}

Of the Meatus Auditorius E.vternus, of the Concha, and of the Mufcles of the Livternal Ear.

THE reptiles have no external meatus auditorius. In the crocodile only we find fome appearance of that part, becaufe the fkin forms a kind of lip, or operculum, above the membrana tympani; and the latter is entirely concealed, except when this covering is removed. This is, doubtlefs, the part which Herodotus regarded as the external ear of the crocodile, and to which, he fays, the Egyptians attached rings.

The external meatus of birds is very fhort ; the orifice is commonly only a fimple hole, level with the head, and furrounded with feathers of a particular ftructure ; they are fine and elaftic, and their radii, or beards, are fimple, fmall, elaftic, feparate from each other, and allow the air to pafs between them. Thefe feathers are placed with much regularity about the aperture which they cover. In fome birds they are elangated, and affume various forms, as in the buftard, the tufted-necked bumming bird (Trocbilus ornatus), a fpecics of bird of Paradife, (Paradifea aurea,) \&c.

In the owols, the external orifice of the car is fituated in the bottom of a large cavity, hollowed
lowed out on each fide of the head, and fined by a naked fkin, the folds of which form fepta, which divide it like the human concha; this cavity would, indeed, refemble the external car of man, were it projecting, and capable of motion.

The fine feathers which cover the cavity, form the circles that give to the phyfognomy of thofe birds its fingular character. The white orot has a membranous operculum, of a fquare form, at the anterior edge of the cavity.

We fhall now examine the external ear in man, and other mammiferous animals.

\section*{1. The external Ofeous Mcatus.}

The external meatus is offeous at its inner part, or that next the tympanum. The tubular portion of the cartilage of the external ear is attached by membranes and ligaments to this bony part; it fometimes forms only a fingle piece with the concha, and fometimes is fepasate from it.

The Cetacea are the only mammalia that have no offeous meatus: their external meatus is a very flender cartilaginous canal, which commences at tire furface of the fkin, where, in the dolphin, it would fcarcely admit a pin; it takes a ferpentine direction, as it paffes through the lard, under the fkin, to reach the membrana tympani.

In all the other families there is an offcous canal,
canal, of greater or lefs length; at leaft in adults, for it is longer in offifying than moft of the other bony parts of the ear. The frame of the membrana tympani only is offified in infancy, and preferves its fize, while the reft of the temporal bone continues to increafe.

In man, the external offeous meatus is fhort, ftraight, and directed almoft horizontally inward, and a little forward; its fection is an oval, the great axis of which defcends from before backward; its diameter remains nearly the fame throughout its whole length.

It is, proportionally, a little longer and narrower in the guenons, and ftill more fo in the Barbary ape; it defcends a little in thefe fpecies, but is not directed fo far forward as in man ; it is very fhort and circular in the fapajous and the bats.

The Sarcophaga, in general, have it like man, nearly horizontal. In dogs, cats, and the badger, it proceeds directly inward, and does not incline either forward or backward.

It is directed a little forward in the coati.
In the otter, the pole-cat, and, in general, in the genus muftela, it is directed backward.

The external canal of the mole is very fingular; it is flat in the vertical direction, but enlarges in the horizontal; and the great circular membrana tympani ferves for its roof, in the fame manner as it forms the floor of the barrel.

This canal is direited very much downward
in the Rodentia, particularly in the bares. It alfo proceeds forward in this genus, and in the marnotte.

Its direction is inward and downward in the beaver.

The porcupine has it turned backward.
In the cabiais, and the agoutis, it is fhort, and runs ftraight inward; under its inferior edge there is a hole, which penetrates into the cavity of the tympanum, and, in fome fpecies, unites with the meatus by a fiffure.

The Jotins, pangolins, and ant-eaters, have the external meatus very fhort, wide, and circular.

In the elephant it is large and long, and is directed a very little downward and backward.

It defcends at an angle of 45 degrees in the rbinoceros and the bippopotanus, but is neither directed forward nor backward. In the babiroufa it has the fame inclination, but is directed a little forward. In the common bog it defcends fill more, and alfo inclines forward. All thefe animals have it very long and very narrow.

It is fhorter in the borfe, in which it defcends lefs abruptly, and is inclined a little backward.

Laftly, in the Ruminantia it proceeds directly inward, with a flight inclination upward.
II. The external Carsilaginous Meatus, and the Concha.

The Cetacea excepted, there are very fcw mammi-
mammiferous animals which have not, at the orifice of the external meatus, that kind of cartilaginous expanfion, like the end of a trumpet, which is called the concba.

Thofe which want it are, in the Sarcophaga, the mole, and fome foreros. In the Rodentia, the zemni, and fome mole rats. In the Edentata, the pangolins. And in the amphibious mammalia, the morfe, and feveral fpecies of Seals.

We obferve great varieties in the concha, or external ear of different animals: thefe variations relate to its fize, pofition, figure, and internal eminences, to the compofition of its tube, and, finally, to its mufcles.

\section*{a. Size.}

The animals which are remarkable for the fize of the ear, are almoft all timid or nocturnal, and therefore require a delicate fenfe of hearing, as the feeble Ruminantia, the gazelles and deer, the afs, bares, and fome fmall Rodentia, but particularly the bats.

In the laft genus, there are feveral fpecies which have the ear as large as the whole of the head; and one fpecies, the eared bat (vefpertilio auritus, ) has it as large as the body.

The African elephant is diftinguifhed by a large, flat, open ear, fituated clofe to the body, and therefore not well calculated to anfwer the purpofe
purpofe of an acouftic trumpet. The ear of the Indian eleptoant is fimilar, but much fmaller.

\section*{b. Direction.}

Naturalifts have remarked, that the aperture of the concha is moft frequently directed forward in the animals that hunt for their food, and backward in thofe that are their prey; but this pofition depends upon the neceffity of the moment, and not upon any peculiar ftructure of he organ. All animals which have ears of a certain length, may vary their direction at pleafure, except, perhaps, the vefpertilio Spafma, which has the two great ears united by their internal edges, and confequently very little moveable.

Ears with the fuperior part of the concha pendent, are a mark of flavery. Dogs, 乃oeep, grats, and hogs, have them always thus in fome of their domeftic varieties. The elephant has alfo a pendulous ear, but unlike the preceding animals, it is the pofterior and inferior part of the ear that hangs down.

\section*{c. Figure.}

The concha of the human ear has the flape of half an oval, more contracted inferiorly, and terminated by a lobe which is filled with fat. The anterior edge adheres to the reft of the fkin, and is almoft rectilinear, with the exception of
he eminences, of which we fhall fpeak preently : the fuperior and pofterior edges are free, nd dirested ontward.

In the orangs and fapajous, the lobe dimiwifhes, and the free part becomes more confiderble, but remains round. In the guenons and zacaques, it is pointed a little fuperiorly. In he friated monkey (Simia jaccbus), it is even rooved pofteriorly by a finuofity. The form \(f\) the ear varies in the other genera, without ny direct relation to the orders to which they clong. In general it becomes more elliptical s it increafes in fize ; it belongs to ordinary \(\mathrm{Na}-\) ural Hiftory to defcribe thofe fmall variations \(f\) fhape, which are entirely external. It is fufcient, therefore, to refer our readers to plates. hich reprefent quadrupeds.

\section*{d. Eminences.}

The eminences of the human ear are, 1 . The ild of its fuperior and pofterior edge, called lix; it turns inward, below its anterior part, id is terminated above and behind the external eatus. 2. The tharp elevation, which is aloft parallel to the helix pofteriorly, and which terwards croffes the ear obliquely, named thelix. 3. The eminence, fituated before the eatus, and denominated tragus. 4. That which fituated behind the meatus, which terminates e antihelix infcriorly, and which is called titragus.
Vox. II.
M M
The

The fold which forms the belix diminifics in apes, difappears in the Sapajous, the friated monkey, and in all other animals; they have all a fharp edge to the ear. The antibelix becomes flat, and is replaced by a tranfverfe eminence fituated very low down.

The tragus, which fill exifts in the dog, is reduced in the bares, borfes, \&c. to a Пight projection of the fuperior edge of the concha on the inferior.

In the bats, the tragus is particularly developed, and affumes very remarkable forms.

In the eared bat, it is fo large that a double concha has been afcribed to that animal: it is forked in the vefp. Spafma; notched in the v.leporinus, and the v.crenatus; oval, round, pointed, \&cc. in the other feecies. It may ferve to prevent the too violent irruption of air into the ear while the animal flies. The antitragus of bats is generally round; it is fometimes prolonged forward, beyond the tragus, to the angle of the mouth. It is found of that form in the v. moloffus.

In fome forews the antitragus ferves as an operculum to the ear. It clofes it exactly in the aquatic /Brew of Daubenton.

\section*{e. Compofition.}

The external car of man confifts of a fingle piece: the concha becomes tubular, and preferves that form until it reaches the offerns
\[
\text { Art. Vil. External Meatus. } 53 \text { I }
\]
meatus, to which it is intimately united: we obferve only one fiffure or irregular incifion.

In animals which have the ears rather long, and very moveable, the tube of the ear is divided into two parts, one of which is connected with the concha; the other forms a particular ubular cartilage, attached to the offeous meatus yy a ligament, and has, like the portion united o the concha, a longitudinal fiffure. : In conequence of this divifion, the tube may be hortened and elongated, as well as dilated and arrowed.
There animals have', befides, a third cartilage, ituated above the tube of the ear; it is flat, and arms no part of the concavity, but merely rrves as a point of attachment for fome mufcles. This cartilage is triangular in the borfe; luated in the 乃eep; pointed pofteriorly, and bibed anteriorly, in the rabbit ; and rhomboidal t the dog. We fhall call it the foutum.

\section*{III. The Muscles.}

\section*{A. In Mur.}

The number and fize of the mufcles of the ternal ear, depend upon its degree of mobility; sir fhapes and proportions on the pofition of it organ, which, in its turn, is influenced by it of the exterior orifice of the offeous meatus. This orifice is always fituated clofe behind the iculation of the lower jaw; it is, therefore,
\[
\mathrm{M}_{2} \quad \text { farther }
\]
farther back, and nearer the occiput, in proportion to the length of the jaws, compared with that of the cranium. It is alfo more clevated with refpect to the whole head, in proportion as the afcending branches of the lower jaw are higher, and the cranium more flat. Thus defcending from man, we find that its fituation becomes progreffively more upward and backward, and that the two ears approach more and more towards each other, until we come to the Solipeda, in which the approximation is greateft.

The mufcles which act on the human ear are reducible to three which arife from different parts of the head, and five which proceed from one point of the concha to another.

The three firft are-

\section*{1. The Superior Auris.}

This is a thin radiated mufcle; it covers a part of the temple, and is inferted into the fuperior portion of the convexity of the concha.

> 2. The Anterior Auris,

Which is fmall, and not very diftinct from the preceding ; it arifes near the zygomatic arch, and terminates in the anterior part of the convex fide of the concha.
3. The Pofterior Auris.

This is a froall mufcle, diviled into fome
nips which arife from the occiput, and are inferted behind the concha.

The five mufcles of the concha are-

\section*{1. The Major Helicis.}

It arifes above the tragus, and is loft on the anterior edge of the helix.
2. The Minor Helicis,

Which is extended over that part of the helix which runs acrofs the concha.

\section*{3. The Tragicus.}

The fibres of this mufcle are extended tranfverfely over the tragus.

\section*{4. The Antitragicus.}

It arifes from the antitragus, and is loft cn the internal edge of the antihelix.
5. The Tranfoerfus Auris.

This mufcle extends acrofs that hollow fold, on the back of the ear, which correfponds to the projection made by the antihelix upon the concave furface.

Thefe mufcles have no apparent ufe in moft men. Some of them have, however, been oblerved to produce a flight motion of the ear.
B. In Quadrupeds.

The mufcles of the ears of quadrupeds are,
\[
\mathrm{MM}_{3} \text { in }
\]
in general, very numerous: they may be divided into four claffes: I. Thofe which arife from the head, and are inferted in the fcutum : 2. Thofe which have allo their origin in the head, and are inferted in the concha, or its tube : 3 . Thofe which proceed from the fcutum to the concha : 4. Thofe which extend from one part of the concha to another.

Thefe mufcles move the ear in every direction, or turn it on its axis in fuch a manner that the fuperior furface is fometimes placed forward, fometimes backward, and the inferior in the oppofite directions. We fhall defcribe thefe mufcles in the horje, the Joeep, the rabbit, and the dog.
a. Mufcles which proceed from the Head to the Scutum.

\section*{1. The Vertico-Scutalis,}

Arifes in the dog, from the middle line, along the whole of the upper furface of the head; and in the borfe, from the fuperior edge of the temporal foffa: it is inferted into the fuperior edge of the fcutum. In the heep it is reduced to a band, which contes from above and behind the orbit; and in the bare, to a ftill narrower flip, arifing from the occipital creft merely: this is the communis of Lafoffe , and the fronto-auricularis of Girard ; it raifes both ears, and draws their convex furfaces towards each other.

\section*{2. The Jugo-Scutalis.}

This mufcle arifes in the borfe from the zy goma, afcends backward, and is inferted into the anterior edge of the fcutum. In the dog, it. comes from the fkin of the cheeks, and expands confiderably, as it proceeds upward, where it is inferted, not only into the fcutum, but alfo in the anterior edge of the preceding mufcle. It is wanting in the: bare and the ßeep. It draws the ear forward, and a little upward.

\section*{3. The Cervico-Seutalis.}

It comes from the cervical ligament, and is inferted in the pofterior edge of the fcutum ; it is peculiar to the dog and the rabbit, and approximates the ears pofteriorly.
b. Mufcles which proceed from the Head to the Concha, or to its Tube.

\section*{4. The Vertici-Auricularis,}

Arifes from the crown of the head, paffes ander the vertico-fcutalis, and expands on the zoncha towards its anterior edge; it is proper :o the borse and the Meep, and approximates the :onchæ very confiderably while it elevates hem.
5. The Supercili-Auricularis,

Supplies the place of the preceding mufcle M M 4

536 Lect. Xifi. Of the Ear.
in the bare and the dog; it comes from the fuperciliary arch, paffes before the margin of the foutum, and is attached to the concha. In the - bare it is inferted by a flender tendon. In the dog it is united throughout almoft its whole length, to the anterior edge of the vertico-Scutalis, and is inferted by an expanfion very near the anterior edge of the concha.

\section*{6. The Cervici-Auricularis.}

It arifes from the cervical ligament, paffes behind the edge of the fcutum, and expands on the concha, which it moves backward, and draws towards that of the other fide.

\section*{7. The Occipiti-Auricularis,}

Comes from the parts near the occipital creft, and paffes below the fcutum and the mift mufcle; it is attached to the concha, which it elevates, but does not move it backward. It is not found in the bare.
8. The Coribici-Tubatis Profundus.

It arifes from the cervical ligament below the cervici-auricularis; it is inferted at the origin of the tube of the ear, which it draws backward. It is double in the horre, and wanting in the bare.
9. The Occipiti-Anvicularis Rotator, Arifes from the pofterior part of the occiput,

\section*{Art. Vil. External Meatus.}
and is inferted in the form of a band into the concha, near its tube: this mufcle is found in all long-eared animals; it turns the ear on its axis, by directing its concavity outward and backward when it is erect, and downward when it is horizontal:

\section*{10. The Parotido-Auricularis,}

Which comes from the parotid gland, and the parts next the fkin, is inferted under the concha, near the tragus; it lowers the ear, and is always found. The bare has it longer than others.

\section*{11. The Jugo-Auricularis.}

In the 乃eep this mufcle is very confpicuous; it arifes from the anterior part of the zygomatic arch, and runs backward to its infertion in the edge of the concha, next the meatus auditorius. In the \(\operatorname{dog}\) it is double; one portion comes from the 1 kin of the cheek; the other from the pofterior edge of the jugo-fcutalis. In the borfe, one portion arifes from the middle of the zygoma, and another from the pofterior edge of the jugo-fcutalis ; it draws the ear horizontally forward. It does not exift in the hare.
12. The Jugo-Auricularis Profundus.

This is a fmall flender mufcle, found in all the before-mentioned animals; it is attached to the pofterior part of the zygomatic arch, near the articula-
articulation of the lower jaw, and extends to the part of the concha next the tube, a little fuperiorly: it ferves chiefly to florten the tube of the ear.

The borfe has two mufcles belonging to this clafs, which are not found in the other fpecies, viz.

\section*{13. The Tertici-Auricularis Rotator.}

This mufcle comes from the top of the head near the occipital eminence; paffes under the pofterior angle of the fcutum, and over the oc-cipiti-auricularis; proceeds obliquely forward, and is expanded, like a fcarf, on the anterior part of the concha, near its tube: it turns the ear on its axis, directing the concavity forward and inward when it is erect, and upward when it. is horizontal.

\section*{14. The Vertici-Auricularis Profundus,}

Has a common origin with the preceding; it feparates from it under the fcutum, and defcends between the head and the concha; it is inferted in that part of the latter, which is inward, when its concavity is directed outward, and which is neareft the tube; its ufe appears to be to lengthen the tube of the ear.
c. Mrufleswhich unite the Scutum to the Concha, or to the Tube of the Ear.
\(\alpha\). The fuperficial, which are attached to the fcutum.
15. The

\section*{15. The Scutalis Anterior,}

Extends from the inferior edge, and anterior angle of the fcutum, to the front of the concha, which it, turns on its axis, and directs upward and forward when horizontal. It is wanting in the dogs that have hanging ears.

\section*{16. The Seutalis Pofterior,}

Proceeds from the fame edge, and fometimes from the fame angle, and extends backward behind the concha, which it elevates. It is wanting in the bare.
\(\beta\). The deep-feated, which are inferted under the fcutum.

\section*{17. The Scutalis Rotator.}

This mufcle arifes under the fcutum, and proceeds in the form of a fcarf, behind the part of the concha which is next the tube. It turns the concavity of that part towards the earth, and backward when it is horizontal. It is double in the bare.
d. Mufcles rehich extend from one Part of the Concha of the Ear to another.
There are no mufcles of this kind in the foeep, and only one in the borje, vir.

\section*{18. The Tragicus.}

It is fituated on the fiffure of the concha, and produces
produces the croffing of the edges of that part; it confequently contracts the aperture of the external meatus; it alfo exifts in the \(d o g\) and the bare. In the latter it is accompanied by
19. The Tubo-Helicus,

Which comes from the cartilaginous tube of the concha, and which fhortens the tube of the car.

We find in the dog,

> 20. The Plicator Auris.

This mufcle is analogous to thofe of the helix in man; it extends along the anterior edge of the concha, near its bafe; it folds, and depreffes the fuperior part of the ear.

Laftly, the \(\operatorname{dog}\) and the borje have, on the back of their concha,
21. Some fcattered flefhy fibres which are analogous to the tranfverfus auris of man.

\section*{Article VIIY.}

Of the Diftribution of the Nerves within the Ear.
We have defcribed the meatus audilorius internus, in pages 46 and 56 of this volume. Its bortom is fituated neazly oppofite to the middle

\section*{A. VIII. Distributton of the Nerves. 541}
of the cochlea. It is divided into two foffr by an offeous ridge. The fuperior contains a hole for the facial nerve, and a number of fmall foramina for a branch of the auditory nerve. The fecond alfo contains feveral foramina for the other branches of the auditory nerve.

We have defcribed the origin of this nerve pages i5I\&177; and its courfe to the ear, pages \({ }^{2} 33\) 'and 234 . The inferior foffa through which the chief part of the nerve paffes is oval. Its great diameter is tranfverfe. Anteriorly there is a particular depreffion which correfponds to the bafis of the conical axis of the cochlea. It is perforated by a vaft number of fmall foramina, ranged in a fpiral manner, and which extend into the holes of that cavity. In the pofterior part of the foffa there are other clufters of fimilar fmall holes, but difpofed in a circular order. One of thefe clufters leads into the veftibulum, and two others into the femi-circular canals. There is a fourth group, fituated, as we have already obferved, in the fuperior foffa. Thefe fmall foramina lead alfo into the canals.

The nerves are greatly fubdivided in perforating the offeous parietes, fo that they arrive in the labyrinth divided to an incredible degree of minutenefs. Thofe which enter into the cochlea, after having followed the parietes of its axis, penetrate, according to Scarpa, into the fubftance of its bony feptum, and come out on the unconnected fide of that feptum.

The nerve, when enclofed in the internal auditory canal, appears twifted on itfelf; and its filaments, when beginning to be apparent, affume an' oblique fpiral direction.

They foon divide into four fafciculi, one of which correfponds to the beginning of the fuperior femi-circular and external canal ; one to that of the pofterior, and the third to the middle of the veftibulum. The fourth, which is the continuation of the trunk, is twifted fpirally to purfue the feries of frnall foramina which enter into the cochlea. Its filaments fill all the tubes of which thefe fmall holes are the orifices, and it is thus diftributed in this part of the labyrinth to terminate in the membranous part of the feptum. Numerous anaftomofes take place among thofe filaments along the pyramidal axis.

As to the three other fafciculi, the firft, which is the largeft, having penetrated into the offeous veftibulum by one of the fmall fieves of which we have fpoken, is divided into two fmall portions, which extend to the ampulæ of the two neareft femi-circular canals.

The fecond proceeds without dividing into the ampula of the pofterior canal. The filaments of thefe two fafciculi terminate in thefe ampulæ, where they fpread out like a fan, and form a kind of feptum. The canals reccive no nerve in any other part.

The third fafciculus is fituated between the two preceding. It extends into the mem-

\section*{A. Vili. Distrtbution of the Nerves. 543}
branous veftibulum, and is diftributed on its internal furface in a net-work as foft as it is complicated.

We fhall in this place defcribe the courfe of the facial nerve through the ear. We pointed out the origin of this nerve, page 152 . The hole into which it enters at the bottom of the internal meatus, is the orifice of a long canal bent in different directions, and called aquaductus Falopii. This canal perforates, in the firft place, the pars petrofa, as it afcends outwardly. It foon receives another fmall canal, which extends from before backward, and which conveys a branch of the Vidian nerve of the fifth pair, to its union with the facial. (See page 211.) The aqueduct afterwards proceeds fuddenly backward, and croffes the upper part of the barrel, where it is partly membranous. It then becomes offeous, is bent, and defcends vertically parallel to the pofterior part of the barrel, as far as the ftylo-maftoid foramen.

In page 228 and the following pages, we have defcribed the diftribution of the facial nerve after it comes out of the laft foramen; but while it is paffing through the aqueduct, it detaches, Ift, a nerve to the tenfor tympani; 2 d , one to the mufcle of the flapes; and 3 d , a long filament which paffes through the cavity of the tympanum, as we have fhewn in page 227 , to unite with a branch of the inferior maxillary nerve of the fifth pair. This filament has been
named the chorda tympani, becaufe it is fituated behind that membrane in a manner fimilar to the cord which croffes the under head of a drum. It feparates at an acute angle, and afcends in a fmall canal which opens into the cavity of the tympanum, under the pyramidal eminence. It leaves the barrel by the fifura Glazeri. We have already defcribed it in page 227.

The external meatus receives nerves from the inferior maxillary branch of the fifth pair, and from its fuperficial temporal branch (feep.217.) The back of the concha, and its mufcles, derives their nerves from the occipital branch of the facial (fee p. 228,) and from the fecond cervical pair (fee p. 248,) which alfo fends filaments to the concave part of the concha; but this part receives, befide, another branch of the facial nerve (fee p. 228.)

The nerves of the internal ear of mammiferous animals do not differ effentially from thofe of man. The nerves of the external ear are larger, and more numerous, in proportion to the fize of the concha and its mufcles; but they all have the fame origin.

In birds, the depreffion which occupies the place of the internal meatus, is oval, and its greateft diameter almoft horizontal ; it contains five holes for the paffage of the nerves, one of which receives the facial, and four the auditory; three of the latter penetrate into the offeous veftibulum, and one into the cochlea. The three

\section*{A. Vill. Distribution of the Nerves. 549}
tamifications of the auditory nerve, which go to the femi-circular canals, are diftributed to the ampullæ, as in man, and the mammalia. The ramification which goes to the cochlea extends to the uppermoft of the two cartilages which form the feptum of that organ; when it has reached one half of its length, it penetrates it, and is expanded, like a goofe's foot, on the apex of the cone of the cochlea. Several filaments afcend in the contrary direction of the trunk, to proceed to the bafe of the fame cone.

The facial nerve of birds receives a filament from the par vagum, fimilar to that which we have defcribed in the calf, page 230 ; it croffes the ear in an offeous canal, and, having left the :avity of the tympanum, is diftributed princiJally to the palate.
In reptiles and fifhes, but particularly in the atter, we have the opportunity of obferving, till better than in warm-blooded animals, the onftancy with which the branches of the auitory nerve proceed to the ampullæ of the emi-circular canals: in the reptiles, it divides efore it paffes into the offeous labyrinth, which enters by feveral holes. In the chondroptegious fifhes, it penetrates by a fingle hole, id is not divided until it is in the labyrinth. 1 the other fifhes it has no feptum to perforate, e ear being fituated within the cavity of the anium ; but it is detached by feveral branches Vol. II.

N N
from

546 Lect. XIli. Oftife Ear.
from the nerve of the fifth pair, of which it forms a part.

In the rays and the forks there are always two branches; the fmaller one detaches filaments to the fac, near the fmall amylaceous fubftances, and is afterwards divided in the two ampullæ of the anterior and horizontal canals. The other forms an expanfion, like a goofe's foot, in that part of the fac which contains the largeft amylaceous fubftance. Thefe numerous branches frequently anaftomofe.

The facial nerve enters the ear by a particular foramen; it joins a branch of the auditory, which extends into the ampulla of the pofterior canal ; it then feparates, to come out by a fecond foramen, and is diftributed to the tegumants of the head and the adjacent mufcles.

The auditory nerves of fifhes are frequently three or four in number, and are detached feparately from the nerve of the fifth pair; they extend to the ampullæ, and to the fac which contains the fones : they expand, in particular, on thofe ftones; in numerous filaments; when they are large, the net-work formed by the filaments is exceedingly beautiful, as may be obferved in the cod. The fize of the nets decreale with that of the calcarcous bodies.

\section*{[ 547 ]}

\section*{LECTURE FOURTEENTİ.}

Ofthe Sense of Touch, andits Organí:

\section*{Article 1.}

Of the Senfations produced by Touch or Ficeling,
\(T_{\text {he fenfe of touch feems to afford us a more }}\) intimate communication with external bodies than thofe of fight and hearing, becaufe there is no intermediate fubftance between them and us when thefe bodies act upon that fenfe: though, therefore, not entirely free from error; it is lefs capable of deceiving us than the other fenfes, the impreffions of which it ferves to verify and to perfect; particularly thofe of fight. By touch alone we obtain the idea of the three dimenfions of bodies, and confequently of their figures as folids. The preffure, mare or lefs forcible, more or lefs direct, made by the different parts of an external body, when applied :b our fkin, enables us to recognize whether hat body be flat or round, or formed with vaious angles. By the equality or inequality of his preffure, and the degree of friction which
\[
\mathrm{N} \mathrm{~N} 2 \quad \text { takes }
\]

\section*{548 Lect. XIV. Oe Touch.}
takes place when we move any part of our fkin along the furface of another body, we afcertain whether that furface is fmooth or rough. The degrees of refiftance which bodies oppofe to the preffure of ours, in whole or in part, afford us the means of determining whether they are moveable or immoveable, hard or foft, fluid or folid; and the preffure or percuffion of thefe bodies on us, while in motion, or tending to move, makes us acquainted with the force with which they act, and the direction of that force.

All thefe actions of external bodies on our own are purely mechanical. The fenfations they communicate may be the effects of a chemical change in our nervous fyftem; but that change can only be produced in confequence of fimple preffure being capable of forming or deftroying fome of the combinations which enter into this fyftem. This fuppofition is not inconfiftent with analogy: we know, for example, that the combination of fire with water, which produces vapour, may be deftroyed by the fame means.

But the fenfe of touch alfo procures us fenfations of another kind, which appear to be produced by one of the furrounding elements penetrating inore intimately our bodies; I mean the fenfations of heat and cold. Thefe fenfations depend on the proportion which exifts between the quantity of caloric we acquire or lofe in a given moment, and that which vie ac-

\section*{Art. I. The Sensation in general. 549}
quire or lofe in the preceding moment ; but they are not in direct relation with the abfolute heat of bodies, nor even with the proportion between their heat and ours.

All things in other refpects equal, bodies which have an higher degree of temperature than our own appear to us to be warm; thofe which are of a lower temperature feem cold. When, however, we have touched a very cold body, if we come in contact with another which is lefs cold, the latter will appear to us warm, though it may ftill be of a temperature much inferior to that of our own body. Thus cellars and fpring water appear warm in winter, becaufe they preferve their ordinary temperature, while other bodies change theirs.

When we touch in fucceffion two fubftances of different denfity, or, to fpeak more properly, of different capacities for caloric, that which has the greater capacity appears to us colder, though both may be of the fame temperature, becaufe it abftracts more caloric from us in a given time than the other. For this reafon marble and metals appear always cold. Water is colder than the air, and the air, which feems cold before we enter into cold water, appears warm when we leave the water, \(\& c\).

Bodies which are good conductors of caloric, or which tranfmit it rapidly, for the fame reafon appear cold. Thus we find that filk or wool are war:ner than linen of equal thicknefs.

This part of the fenfe of touch is liable to many more errors than that by which we obtain a knowledge of the figure and confiftence of bodies, becaufe our judgment poffeffes more influence in the latter cafe.

The general organ of touch refides in the fkin which covers the whole body, or rather in the extremities of the nerves which terminate in that flkin.

That organ poffeffes greater or lefs fenfibility, in proportion as the nerves diftributed upon it are more numerous, more expofed, and lefs intercepted or covered by callous parts. The heat of bodies, their general refiftance, and their motion, are more perfectly felt when this general fenfibility is moft delicate.

With refpect to the motion, the refiftance and the heat of a liquid or fluid, particularly if the animal experiencing its action is immerfed in it, the degree of the fenfation alfo depends on the extent of the furface which the fenfible body prefents to the fluid; but fomething more is neceffary for recognizing the forms of folids, particularly thofe that are fmall. In this cafe a very fenfible fkin muft be extended over feveral fmall, divided, and moveable parts, capable of embracing the folid, by their different furfacc feeling its flighteft inequalities, and tracing its moft minute parts.

Thus the total perfection of the fenfe of touch depends on the quality of the fkin, the number

Art. I. The Sensation in general. S5i
of its nerves, the extent of its furface, its freedom from infenfible parts, and the number, flexibility, and delicacy of the appendices by which the animal can examine bodies.

As touch is the moft important of all the fenfes, its degrees of perfection have a prodigious influence on the nature of different animals. From the invertigation we are about to make, it will be found, that, of all vertebral animals, man has this fenfe moft perfect. But among the invertebral animals the fenfe of touch improves in proportion as the others degenerate; and thofe which have no other fenfe, poffefs it fo exquifitely that fome of them feem even to feel the light.

Independently of the fenfations of which we have fpoken, and which have a direct relation to the qualities of external bodies, we experience others in the fkin, particularly in the places where it is thinneft, and abounds moft in nerves. Thefe feelings are occafioned by the irritation which the motions, rather than the qualities or nature of bodies, produce upon the nerves, and belong more to the order of internal than external fenfations: thefe are ticklings, prickings, and itchings.

Laftly, the ikin performs a different function from that of touch, which confifts in tranfpiration and abforption; that is to fay, in the exhalation of a part of the elements of our Ruids,
and in the inhalation of a part of the fluids which furround us.

This fecond kind of function does not belong to fenfation. We fhall therefore confider it in another place.

\section*{Article II.}

\section*{Of the Skin and its Organizution.}
\(T_{\text {he whole furface of the animal body is co- }}\) vered by an organ of a particular nature, named fkin. It is a membrane applied to all the fuperficies which terminates the body, and its thicknefs varies according to the fpecies of animals, and the different parts which it covers.

The organization of the fkin appears to be effentially the fame in all the claffes of vertebral animals. The external differences which it prefents are more or lefs connected with the developement of certain fuperadded parts, as we fhall explain in the fequel. The ftructure of the fkin cannot, however, be eftablifhed in fo general a manner in the animals that have no vertebre, though it will be feen that its parts have fome analogy to thofe found in red-blooded animals.

The fkin of all the animals that have verte-
bre is compofed of four layers, more or lefs diftinct, but which the anatomift feparates, and may eafily demonftrate. The loweft is called dernis, cuits, corium, or the true /kin. The next is called corpus papillare, tela manmillaris, or the villous furface. The third, corpus reticulare, or rete muco fum. Laftly, the fourth, or moft external, has been denominated epidermis, or cuticle.

We do not eafily diftinguifh all thefe parts in animals that have no vertebræ. Some of the frata are more diftiner, others lefs fo. There are alfo fome fpecies in which we do not find the whole of them. Thefe differences we fhall point out more clearly in treating fucceffively of each of the layers.

\section*{1. The Cuticle.}

This layer, as we have already obferved, is the moft fuperficial. It is a tranfparent and infenfible pellicle, which prevents the immediate contact of the nerves of animals with the medium in which they live. It is alfo continued into all the apertures of the body, and lines them internally to preferve them from the contact of air or water. Thus we find it on the eye, in the ears, the noftrils, the mouth, the anus, the vulva, \(\& x c\). ; but it is then defcribed under different names, as has alrcady appeared when we treated of the conjungliva and the membrane of the tympanum, and as we fhall thew hereafter in treating of the other organs.

The confiftence of the epidermis varies with the medium in which the animal is immerfed and obliged to exift. It is dry, and as it were horny in thofe that live in air; mucous, and more or lefs vifcous in thofe that inhabit the water.

In the animals which are conftantly fubject to the drying action of the air, the cuticle appears varioufly folded, according to the parts of the fkin to which it adheres. Thefe folds form wrinkles, papillæ, circles, and fpiral lines, which correfpond to the elevations and depreffions of the fkin, but chiefly to thofe of the rete mucofum, and the fcales when thefe laft exift.

In general the epidermis is confiderably the thickeft on the parts which are moft expofed to friction; as the fole of the foot, the palm of the hand, and all the other parts frequently ufed by animals, either in walking or in grafping other bodies.
In the furrows of the cuticle we obferve the holes through which the hairs pafs. Thefe appear as conical elongations, or infundibula, which feem to have been forced outwardly by the hairs, to which they ferve as fleaths.

In the animals which have fcales, inftead of hairs, the epiderinis envelopes thefe parts in every direction, and is intimately attached to them.

In man the cuticle is generally very thin, with the exception of the parts which cover the
fole
fole of the foot and the palm of the hand. Friction, or deficcation, either by heat or certain chemical agents, harden it confiderably. They change it into a kind of horn, which blunts, and even totally deftroys the fenfe of touch. We have very remarkable examples of this change in blackfiniths and dyers, and in men who walk bare-footed on burning fands.

The furrows of the epidermis form figures, with feveral angles, on the back of the hand; pa.fallel and elongated lines on the palm and on the fole of the foot; arches, curves, and very fingular, clofe and fymmetrical fpirals under the extremities of the toes.

The cuticle of the other mammalia is nearly fimilar to that of man. It is thin in proportion as the hairs that cover it are compact. That which covers the wings of the bat is alfo very thin, and has furrows which form many angles, like thofe we obferve on the back of the human hand.

In the porcupine it is thin, and little diffinct from the other ftrata of the Ikin, which is gelatinous.

We find the epidermis deficcated, and as it were fcaly on the prehenfile tails of the beaver, rats, ondatra, \&c. and on the fcales which cover the bodies of the pangoliks and armadillos.

In the eleptant, the rbinoceros, and the bippopotamus, which have the fkin very thick and deeply furrowed, the epidermis, which is alfo thick,
5.56 Lect. XIV. Of Touch.
thick, and covered with fmall plates that feparate from it like fcales, finks into the different furrows. The cuticle of the fole of the foot prefents a very fingular ftructure. It is divided externally by deep depreffions, nearly circular, with fix or eight furfaces more or lefs regular, each of which contain an infinite number of fmall polygons much more irregular. This gives to the whole furface of the fkin the appearance of fhagreen. The epidermis detached from the animal, and examined by its internal furface, exhibits elevated lines correfponding to the furrows of the great polygons. It alfo prefents others which are fmaller, and correfpond to the little polygons. The refult of this difpofition is a kind of net-work, in relief, of a pretty regular defign, and refembling lace with large points.

The Cetacea have a very fmooth epidermis, without any remarkable fold, and always covered with a mucous oily humour, which oppofes the maceration of the animal during its refidence in the water.

In birds the epidermis of the body is very thin, and formed of folds which correfpond to the quincunces in which the feathers are arranged. That of the feet is fmooth, fhining, and formed of horny fcales. It covers the different plates which we obferve on the feet of the gallin \(x\) and grall \(x\), of which we fhall fpeak in the article on Scalcs. It is detached at
certain periods of the year, chiefly in the moulting feafon.

In all the animals we have mentioned, the Cetacea excepted, the epidermis comes off in fmall pellucid fcales, which give to the furface of their fkin a meally appearance. In fome mammalia the cuticle is renewed at certain periods of the year, at the fame time that they change their hair. In others it takes place more infenfibly, and at all times as in man.
The epidermis of tortoifes is not very diftinct, except on the neck and limbs. It is analogous to that of the falamanders, which we fhall defcribe prefently. That which covers the fcales of the back-fhell and of the breaft-plate is extremely thin. It is detached in tranfparent llaminæ, the figure of which is exactly the fame as of the horny plates.

In the falamanders and frogs, the epidermis is a mucous membrane, which covers the whole body, and which falls off in large pieces at feveral periods of the year.

The cuticle of lizards and ferpents covers and entirely envelopes the fcales. It is detached in a fingle piece like a fheath, at a certain period of the year: we obferve, in thefe kind of exuviæ, even the portion of a fphere, which covered the tranfparent cornea.

In fifhes, the epidermis, which ov'rs all the oody, the fins, and other appendices, appears always in a foft ftate ; it fomeumes feems a fim-
\(55^{8}\) Leet. XIV. Of Toucir.
ple mucous fubftance enveloping every part of the animal's body. It is this mucous epidermis which renders it in general fo difficult to feize the body of a fifh. It is alfo detached in large pieces at certain periods of the year.

We fhall fee, in the fequel, when we treat of the internal tunics of the organs, into which the air, the water, or the aliments penetrate, that the prolongation of the cuticle which lines their internal furface, alfo becomes mucous, and that it has a confiderable refemblance to the external epidermis of fifhes.

We alfo find an epidermis in animals that have no vertebre. Thofe which live in water have it commonly mucous, and of a very different thicknefs in the feveral fpecies.

In the Cephalapoda it is nearly the fame as in fifhes.

In the naked Gafteropoda it very much refembles that of the falamanders and frogs.

In the Teftacea in general we find an epidermis on the furface of the fhells. In the fand kind, as the frails, it is a dry pellicle, very eafily detached, when the fhell is, after the death of the animal, expofed to the action of the atmofphere, or plunged into boiling water. In the anodontites, the mufcles, and other bivalves, we obferve a fimilar epidermis, which envelopes the fhell externally. This epidermis is always wanting on the furface of the projecting parts, on which the animal draws its flell along the land:
fand, becaufe it is there worn off. In forne fpecies of thells, the epidermis is thick and villous, and on this account it has been named fea-cloth. This is very remarkable in feveral fpecies of the genus arca of Linnæus ; and to exprefs this peculiarity he has called one of them pilofa.

In all the Teftacea, the epidermis which envelopes the fhell is continued to produce the pellicle which covers the animal ; and it experiences the fame change as that which is prolonged within the body of vertebral animals. It is thin and mucous on all the parts which are not expofed to the action of the ambient fluid. In the fpecies of Gafteropoda, however, whole thell is concealed under the fkin, and does not ferve for a defence, the epidermis does not change its nature. We have examples of this in fome fpecies of aplyjia and /cyllea, as well as in the animal which produces the fhell, called by Linnæus, belix balyotoidea. (Lam. Jigaret.)

In the Cruftacea and the infects, whether in the larva, nympha, or perfect ftate, there is a real epidermis. This fkin , however, when once dry and indurated, is not fufceptible of extenfion, fo as to accommodate itfelf to the growth of the animal. In proportion therefore as the infect increafes in fize, and at fixed periods in each fpecies, but with refpect to which the atmofphere appears to have confiderable influence, the animal quits its epidermis, by drawing itfelf as it were out of a cafe. This is called the moulting period,
period, in effecting which the infect frequently employs feveral days, and which is fometimes mortal to it. The greater part of the caterpillars, of butterflies, and of bombices, change the fkin feven times before they pafs into the chryfalis ftate. The borabyx-caja quits in this manner the fkin ten times. We intend to dwell more particularly on the fubject of moulting in the Article on Metamorphofis, in the Lecture on Generation.

There is a very diftinct cuticle in worms. It is eafily feparated from the fkin in the eaythzoorns, which have been immerfed for a few hours in fpirits of wine, or macerated fome days in water; it is a pretty folid pellicle, which may be removed in a fingle piece. In the worm called /ipunculus faccatus, this epidermis is evenn entirely feparated from the body, which is unconnected and floating within it, as if it were enclofed in a fack. The leeches, and fome other worms, have the cuticle mucous, like that of the gafteropodous mollufca.

It is very difficult to afcertain the nature of the epidermis in Zoophites, or even to difcover whether it exifts in fome of them. The fea-fars, the urchins, and the afininie appear to poffefs it.

The medufa are covered with a peilicle, but fo thin and tranfparent that it cannot be fuppofed to confift of ftrata. The other Zoophites, as the polyps, \&c. have a mucous furface, the foftnefs

> Art. II. The Skin.
foftnefs of which prevents us from diftinguifh ing any membrane.

\section*{2. The Rete mucofum,}

Is fituated, as we have already ftated, immediately between the epidermis and the villous furface of the fkin. It is not membranous, but forms rather a mucous layer, the colour of which varies in different kinds of animals, and rometimes even in different parts of their furace. The colour of an animal's fkin depends in that of this mucous fubftance, for in all thofe which have the fkin coloured, if we remove the pidermis, it is found almoft pellucid, and the utis is alfo free from colour.
It appears that the influence of the folar rays etermines, to a certain degree, the colour of the uman fkin ; it is white in temperate countries, ecomes more and more dark in warm regions, nd, finally, becomes black in the burning clim lates of Africa and Afia. May not the caufe f thefe varieties be referred to the different egrees of light which colours living bodies, by moving their oxygen, and developing the trbon and hydrogen which they contain? We nd , indeed, that men who are expofed to the ys of the fun grow tawny, while thofe who habit fubterraneous places undergo a change nilar to the etiolation of plants, and become ccedingly white.

The colour of the mucous fubftance varies greatly in mammiferous animals. It appears to determine, as will be feen hereafter, that of the nails and hairs. It is even frequently found coloured in the cavities of organs, into which it is prolonged, as on the palate, the tongue, the ear, the conjunctive and nafal membranes of apes, dogs, Ruminantia, and Cetacea.

The rete mucofum of the mammalia is not often of a very vivid colour. It is however white on the cheeks of fome mandrills; red, violet, and carmine on their hips and nofe. It is of a fine filvery white colour on the belly of the Cetacea.

The rete mucofum is thickeft in the laft family of mammalia. In the dolphin and porpoife it is nearly half a millimeter thick on the back parts of the body and the head, which are of a black colour. We cannot compare it better, with refpect to confiftence and colour, than to the black produced by greafe between the nave of a wheel and the axle-tree.

The mucous fubftance is little diftinct in birds, and almoft always white in all the parts covered by the feathers; but its colour on the feet, ccræ, and carunculæ of the head, is fubject to variations.

On the tarfi and the toes, it is frequently black, as in the ravens, the turkies, fome ducks, froans, \&xc.; grey, as in bens and peacocks; blue,
\(s\) in the titmoufe; green, as in the water-ben; ellow, as in the eagle; orange, as in the fork; ed, as in the fcolopax calidris, \&c.
The rete mucofum is black in the caruncle froans, grey in the ceræ of the bill in a numer of parrots, white in the chops of the biue \(r a\), green in the ceræ of the bill of the Spar-rev-bawk, yellow in that of moft diurnal birds prey, red on the neck and cheeks of the king the vultures, \&c. In general, it adheres to the in ; it is even difficult to feparate it by maceo tion.
The colours of reptiles alfo depend on the efence of the mucous fubftance.
In the tortoifes, for inftance, the fkin which vers the feet and the neck, is not only difently coloured by the rete mucofum, but the nmetrical fpots which we remark on the fcales produced by the fame fubftance. This we cover by diffection. The thicknefs of the n greatly diminifhes as it approaches the saft-plate and the back-fhell. It paffes below : fcales which cover thofe parts, and which themfelves covered by the epidermis and e mucofum, the variegated colours of which \(m\) the fpots which we obferve through the nfparent parts。
\(t\) is the fame with refpect to falamanders and , Is. Their mucous fubftance varies ftill more o colour ; it is black, brown, grey, white, ien, and ycllow, red-orange, carmine, \&xc.
\(\mathrm{OO}_{2} \mathrm{We}\)

564 Lect. XIV. Of Touch.
We alfo find a mucous fubftance under the fcales of lizards and Serpents, and its colours are exceedingly various.

Of all vertebral animals, however, fifhes are the moft remarkable for the brilliant and metallic colours which their rete mucofum exhibits, We find in them gold, filver, and copper, tin, lead, and even all the tints which thefe metals affume in different degrees of oxydation. But as the defcription of thefe colours is the province of Natural Hiftory properly fo called, we wifh merely to point out in this place that they are produced by the mucous fubftance which adheres clofely to the internal furface of the fcales, and with which it is frequently removed.

Moft mollufca have a rete mucofum below their epidermis.

In the Cephalopoda it is moft commonly of a blue or red colour, but it forms a very thin layer.

That of the Gaiteropoda varics confiderably, as we may obferve particularly in the flugs. It is thick and vifcous, but diffolves completely in water.

May not the fubftance of the fhell itfelf be really analogous to the rete mucofum, though the term mucous cannot be applied to it? I am very much inclined to believe that this is the cafe.

The calcareous thell is in fact found immediately under the epidermis; and when fome of 1
its parts are removed, it is a kind of cruft without any apparent organization, and not a membrane. It is produced by fucceffive ftrata. Finally, it is coloured, and its fhades are infiiitely various.
In the Cruftacea, the mucous fubftance is alo reprefented by the calcareous cruft fituated ,elow the epidermis. Its colour is ufually a lark-green, but fometimes red, white, or black. llcohol, acids, and particularly the action of ire, change the green colour to a red, which is requently very brilliant. This we obferve every ay at our tables in cray-fifh, lobfters, \&c.
In infects, in the larva ftate, we obferve beween the epidermis and the mufcles, a layer of hucous matter, the colours of which vary innitely in the different fpecies. In caterpillars, nd in the larva of fome Hymenoptera, this ibftance is moft remarkable for its colour. It ives to their bodies the moft beautiful aud vely tints, the fhades and fymmetry of which e truly admirable. White, purple, violet, lue, green, yellow, aurora, black, \&c. \&c. e diffributed in the moft regular and ftriking anner.
We are alfo of opinion that the mucous mat\(r\) dried or mixed with the horny fubftance, oduces the colours exhibited by perfect inIts, for when the Lepidoptera are in their ryfalid ftate, the fmall coloured fcales which terwards ornament the wings of the perfect O○3
infect.
infect, are then found in a mucous ftate, fimilas to that which we obferye in the fkin of caterpillars. The colours of fpiders are alfo the effect of the rete mucofum; we find it under the fkin; it has the appearance of fmall glandular points, the fhades of which vary confiderably. But in the Coleoptera, and feveral other orders, the colours of the fkin are diffufed through the horny cruft, nearly in the fame manner as thofe of the Cruftacea, through their calcareous fhells.

The rete mucofum cannot be diftinguifhed, except in a fmall number of fpecies of Zoophyta; and it is even fo thin, that we cannot feparate it from the fkin, as may be obferved in fome Sea-ftars and aftinic. It appears to be confounded with the calcareous fhell which forms the habitation of feveral other genera. This may be obferved in fome fpecies of urclins and corallines; and in the Ceratophites, and a number of Lithophites.
3. Corpus Papillare, or the Villous Surface of the Skin.

Anatomifts have given this name to that part of the fkin which is fituated between the cutis and the rete mucofum. It is not membranous like the epidermis, but is a furface produced by the aggregation and approximation of a multitude of fmall tubercles of different fhapes, which are fuppofed to be formed by the laft ex-
tremities of the cutaneous nerves; they are, therefore, named nervous papilla.

Though the figures of thefe tubercles are very different, their ftructure is nearly the fame: it is eafily exhibited, by macerating them for fome days in water; we then obferve that each tubercle confifts of a collection of fibrils, united at their bafe, nearly in the manner of hairs in a pencil. Sometimes the fibrils of the center are longer than thofe of the circumference, and then the papilla is of a conical figure. Sometimes they are nearly of the fame length, and in that cafe it is flat.

The fenfe of touch refides particularly in thefe papillæ: we find them, therefore, in the greateft number, and moft confpicuous, on the tongue, the lips, and the extremities of the fingers.

In man, the papillæ are particularly remarkable on the foles of the feet, and on the palms of the hands ; they are fituated clofe together in a very compact manner, and diftributed in lines correfponding to thofe we obferve externally, and of which we have already fpoken in treating of the epidermis. Thofe under the nails produce a villous furface, the compact fibrils of which are all directed obliquely towards the extremity of the fingers. The fibrils of the lips are difpofed in the fame manner, but they are ftill more delicate, longer, and clofer to each other.

It is nearly the fame in all other mammife-
rous animals; but the papillæ are more developed, in proportion as the parts to which they belong are employed in touch. In the mole, the forew, and the bog, the nervous papillæ are very vifible on the fnout; they form tufts, confifting of very clofe fibres. We find them alfo on the probofcis of the elephant, and we have obferved them very diftinctly on the tail of the Cayenne opoffum; it is probable that they exift in the fame manner in all prehenfile-tailed mammalia. We have not obferved them on the fkin of the dolppin and porpoife.

Birds have no diftinct papillæ, except under the fole of the foot, and the toes; they are very clofe fet tubercles, arranged in parallel lines. We eafily demonfrate them on the feet of poultry, when the epidermis is removed by the action of fire. We alfo obferve them on the membrane which unites the toes of the Palmipedes.

Reptiles refemble birds with refpect to the papillæ; we find none, except under their feet; they are very thick, and projecting in feveral fpecies of lizards, and particularly in the camelion. We cannot diftinguifh them in the Seatorloifes, which have the feet in the form of fins. They do not exift in Serpents, or at leaft have not the form of papillæ.

We have obferved nothing under the fkin of white-blooded animals, which can be regarded as nervous papillx. In the cephalapodous mollufca, however, we have feen fome nervous

> Art. II. The Skin.
filaments in the fmall globules, which appeared to us glandular, and with which the fkin is covered. In the other mollufpa we can trace fome nervous filaments into the fubftance of the fkin, but we have never obferved them to form papillæ.

> 4. The Cutis.

This is the name given to that part of the fkin which is fituated moft internally. Anatomifts have developed its ftructure in a very diftinct manner, by the means of certain preparations, and particularly by maceration in water. They have demonftrated, that it is compofed of a tiffue of gelatinous fibres, which crofs each other in every direction, and which are fo interwoven that the whole may be compared to felt: among thefe fibres we difcover a great number of fine ramifications of nerves, and arterial, veinous, and lymphatic veffels, to which we fhall return in a particular article.

The organization of the cutis is fuch, that the fibres, which compofe it, are capable of elongation and extenfion in every direction ; its extenfibility was neceffary to give to the furfaces of animals the power of refifting the phyfical action of other bodies.

Manufacturers have profited by this property of the fkin , to prepare it in certain ways, which fit it for different purpofes, in which ftrength and flexibility are neceffary, and in which a great friction is fuftained; this conftitutes the
art of the currier. The fibres are likewife approximated, or feparated, in order that the leather may be applied to various ufes; and this is the foundation of the arts of the tanner, fkinner, parchment-maker, morocco-maker, \&c.

In man, the cutis is from two to three millimeters thick in certain parts of the body, as in the dorfal and lumber regions; but it is only half a millimeter on the arms and the body. By maceration, and the proceffes ufed by fkinners, we obferve that the fibres, which enter into its compofition, are long, fine, and very folid; but united in a lax manner.

In mammifcrous animals, in general, the cutis is thickeft on the dorfal, and thinneft on the ventral region.

It is much thinner in birds, than in the mammalia. In fome families, however, it has a conifderable confiftence, particularly in birds of prey, and in the anferes. It is exceedingly thin, even proportionally confidered, in fome fpecies of titmoule, and the genus motacilla.

Reptiles, which have the body unfurnifhed with fcales, or only partly covered by them, have a very compact and denfe fkin. We have an example of this in the tortoifer, falanzanders, frogs and toads. In the two laft genera, in particular, the cutis is rendered remarkable, by not adhering to the body in all its points, as in the other animals, in which it is intimately united with the cellular fubftance. In thofe
genera, however, it adheres only at the edges of the mouth, in the middle line of the body, the arm-pits, and the groins. In all the other parts, the body is free within the cutis, which enclofes it like a fac.

The cutis of lizards and ferpents refembles that of fifhes.

In this clafs of animals, we find a very tenacious cutis below the fcales; but it is intimately attached to the mufcles, even much more clofely than in the other claffes, and is very thick in the Jurgeon, the Jarks, the rays, the eel, \&c. on the contrary, it is thin in fifhes which have large fcales, as the carps, breams, \&xc.

We have not obferved a real cutis among the invertebral animals, except in the cuttie-fifh, and the other Cephalapoda; it is applied almoft immediately to the mufcles, by the means of a very denfe cellular fubftance; it is itfelf of a very coriaceous nature, and not eafily lacerated; its fibres are very flender.

In the other invertebral animals, we find no part that can be compared to the cutis. There is, indeed, a pellicle below the fhell of the cruftacea, but it is fine, tranfparent, and has very little confiftence. In infects in the larva ftate, the fkin, which they caft off in moulting, is of the fame nature and the fame thicknefs as that below it, and which is deftined to fucceed it. Even the envelope of chryfalides coarcfate, as thofe of the Lepıdoptera and Diptera, cannot

572 Lect. XIV. Of Toucif.
cannot be regarded as cutis: it is rather a kind of horny epidermis. Finally, in the perfect ftate, we find no part of the teguments of infects that can be compared to the cutis. The fame obfervation applies to the worms and the Zoophites.

\section*{Article III.}

Of the IIufcles of the Skin, or the Panniculus Carnofus.
IN the preceding Article, we have explained the nature and the organization of the different flrata of the teguments. We fhall now proceed to confider the motions of which the fkin is fufceptible, and the organs by which they are produced.

In man, the fkin has very little motion; the mufcles inferted into it have, therefore, very little force: they form three pairs; two of thefe mufcles are particularly deftined to move the fkin of the forchead and the head; the third acts on the teguments of the neck and the cheeks.

All the fpace comprifed between the occiput and the fuperior part of the orbits, is occupied immediatcly below the cutis, by a digaftric mufcle, principally aponeurotic, and which is
named ocipito-fiontalis. The flefly 'fibres are very fhort, and fituated at the two extremities of the large aponeurofis, which forms a kind of cap to the cranium. The anterior fibres are attached to the fkin below the eye-brows : the pofterior are inferted into a tranfverfe line above the occipital bone: their other extremity paffes under the aponeurotic cap, to which they are fixed. Thefe mufcles are more diftinct in fome fubjects, than in others; they raife the eye-brows, corrugate the fkin of the forehead, and produce thofe tranfverfe wrinkles, more or lefs parallel, which we obferve above the brow.

Immediately below the anterior flefhy fibres of the occipito-frontalis, and in the line which correfponds to the eye-brow, we find fome other flefhy fibres, which arife from the nafal eminence of the os frontis, and are inferted partly into the fkin of the eye-brow, and partly into the fibres of the occipito-frontalis, with which they are covered : this fmall mufcle is called the corrugator Jupercilii (fronto-fupercilius;) it. oppofes the effect of the occipito-frontalis, and approximates the eye-brows, and thus corrugates the fkin above the root of the nofe.

Finally, the third pair of cutaneous mufcles, (tboraco-facialis) in man, occupies all the anterior part of the neck; they form a kind of flefhy membrane, fituated immediately below the fkin ; it originates, upon the anterior part of the breaft, by flender and very diftant flefhy
fibres in the cellular fubfiance, which covers the great pectoral and deltoid mufcles, and extends to the lateral parts of the cheeks; it is there partly attached to the lower jaw, and partly to the zygoma; thefe mufcles are exceedingly thin, and loofely connected in the inferior part of the neck. They become thicker, in proportion as they contract.

It is difficult to determine the action of thefe cutaneous mufcles; they act on the mouth by their union with the mufcles of the lips; they have alfo great influence on the expreffion of the countenance. They produce very remarkable wrinkles in the teguments of the neck and the chin.

There are alfo fome mufcular fibres under the fkin of the fcrotum in man, which are denominated the dartos; but thefe fibres are very flender. They vary confiderably, and, ftrictly fpeaking, do not conftitute a mufcle : they are deftined to corrugate the fkin of the fcrotum.

In all the other mammalia, we find thefe cutaneous mufcles; thofe of the head are commonly \(\hat{i}\) efs confpicuous, but that of the neck is moft ftrongly marked : there is, befides, a particular mufcle, which extends under all the fkin of the belly, and even under the thighs, and is inferted into the humerus.

Apes and dogs have an occipito-frontalis; it is alfo very thin, but its flefhy fibres are proportionally longer than the human. We find, befides,
befides, under the fkin of the face, fome flefhy fibres, which perform the action by which thefe animals wrinkle the lateral parts of the cheeks and the nofe.

The cutaneous mufcle of the neck in apes is connected to the fkin by a very compaçt cellular: fubftance: it is prolonged over the face, and unites with the fibres we have already mentioncd.

In dogs, we obferve only fome very flender flefhy fibres on the neck.

The cutaneus of the belly allo adheres very clofely to the fkin in thefe animals; its fibres cover the thorax and abdomen, and all unite below the arm-pit, where they are inferted by one or two tendons, along with that of the great pectoral mufcle, under the head of the humerus. This mufcle has the fame infertion in all the mammalia ; it affifts in the motions of the arms, and may be named dermo-bumeralis.

In the Quadrumana, Cherioptera, and male Sarcophaga, we alfo find mufcular fibres in the fkin of the fcrotum. They are even proportionally more confpicuous in the bat, than in man.

In the racoon, the dermo-humeralis is likewife a very powerful retractor of the prepuce; it forms a bundle of fibres, of the breadth of two fingers, attached to the prepuce, and defcribing an oval, with the bundle of the oppofite fide : the remainder of the mufcle, which covers the belly, is very thin. Anteriorly, the

576 Lect. XIV. Or Touch.
mufcle is attached to the humerus by two diftinct flips.

The cutaneus colli in the marmotte very much refembles that of man : below it, however, we find another thicker mufcle, which forms, as it were, a lining to the firft, but proceeds farther up; it extends to the lateral parts of the head, and even to the face and the muzzle.

The dermo-humeralis occupies the whole of the back, from the origin of the tail, to the pofterior point of the trapezius. The part on the belly arifes from the pubis, the groin, and the thighs : all the fibres unite below the armpit, where they form two tendons, one of which is inferted with thofe of the latiffimus dorfi and teres major, and the other with that of the pectoralis major.

There are very few variations in the other fpecies of mammalia. In almoft all of them there are fome mufcular fibses under the fkin of the male genital parts, particularly in thofe that eject their urine by fquirts.

We find a cutaneous mufcle even in the dolphin; it arifes from the lateral parts of the body, and terminates in the os humeri.

As the European bedge-bog prefents a very complicated and curious organization in the mufcles of the fkin , we fhall here give an abridged defcription of them.

It is neceffary, in the firft place, to obferve, that thofe mufcles, being attached to the flin, change
change their fituation with it, and that they are therefore fixed with refpeit to their points of attachment only. We muft then fuppofe the animal placed in certain pofitions, in order that the parts defcribed may be more readily found.

Let us fuppofe the hedge-hog rolled up as in the pofition the animal affumes for defence. All the body is then enveloped under the fkin, by an oval-fhaped fac, compofed of flefhy and concentric fibres.

Thefe fibres adhere clofely to the fkin, and even to the root of the fpines which cover it, and it is difficult to detach them with inftruments. The flefhy purfe they form is rhickeft at the margin of its aperture, which correfponds to the belly, at which place they form a kind of fphincter or mufcle with orbicular fibres.

When the body of the hedge-hog is elongated, as in ftanding or running, the figure of this mufcle is completely changed. It is fituated on the animal's back, where it forms an oval, the middle part of which is very thin, but the sircular margin confiderably thicker, and more elevated. Several acceffory mufcles arife from different points of the margin.

Towards the head, or at the anterior extremity of the oval, we obferve two pairs of acceffory mufcles; one has its origin in the middle line, and is inferted into the bones of the ofe; the other, which arifes more externally, appears to be confounded with the exterior orVol. II.
bicular
bicular fibres, and is inferted anteriorly into the lateral parts of the nofe and intermaxillary bones.

Another pair of mufcles arife from the pofterior extremity of the oval. They are of a broad pyramidal form, and are likewife continued with the external orbicular fibres. The tendinous point of each is inferted laterally near the end of the tail.

There are alfo fome other fub-cutaneous murcles, fituated towards the belly, or below the great orbicular mufcle.

When the fkin of the belly is removed, we readily perceive three diftinct portions of flefhy fibres.

The firft is fituated under the throat, and correfponds to the cutaneus colli. It comes from the top of the breaft under the fkin , and is inferted on the lateral parts of the head, near the ears. The portion of one fide unites to its correfpondent by a middle line, which is made of fat.

The fecond comes from the middle line of the fternum ; it takes an oblique direction, becoming thicker and narrower above the thoulders, as it proceeds to join the edge of the great orbicular mufcle.

The third ventral portion, which is fill more flender than the two former, extends over the whole furface of the abdomen; it arifes from the circumference of the arms, from the lateral
parts of the tail, and from the tops of the thighs: upon reaching the ribs, it divides. The internal portion, which is the broader of the two, paffes under the arm-pit, and is inferted into the internal fide of the upper end of the os humeri. 'The external is prolonged laterally, and unites with the great orbicular cutaneus, towards the neck.

Thefe are the mufcles of the fuper fial layer: there are fill fome others, which are apmes dices of the fomer, and are fituated under the mulcles of the back.

One arifes from the head, where it is attached, on both fides, to the pofterior edge of the external meatus auditorius. It is loft pofteriorly in the anterior point of the orbicular mufcle.

Another fmall bundle of flefly fibres arifes from the laft cervical proceffes, and is. loft in the cutaneus of the back.

Laftly, below the great orbicular mufcle, we obferve fome tranfverfe fibres, which form a very thin layer. The anterior are attached to the internal and upper part of the humerus: the pofterior, to the external bundle of the third ventral portion.

Let us now confider the ufe of thefe mufcles.
The animal, when rolled up like a ball, is enveloped by the orbicular mufcle. To preferve this pofition, it is fufficient to contract the marginal fibres, which are very ftrong; and
\[
\text { P P } 2
\]
which,
which, in clofing the purfe fo as to cover the belly, have the effect of a fphincter.

When the animal wifhes to return to its ordinary pofture, it unrolls itfelf thus: the middle fibres of the oval contract ; the external fibres at firft relax, and leave the belly and the feet free; all the circular fibres then contract to gether, and gather up towards the back.

By this general contraction, the acceffory mufcles are rendered fixed, and capable of contracting. The anterior move the head upward, and extend it towards the back. The pofterior raife the tail.

Thofe of the deep-feated layer elevate the head and the neck; the animal is then enabled to walk.

If the approach of danger induce the hedgehog to roll itfelf up, the animal accomplifhes this purpofe in the following manner:

The orbicular curaneus relaxes, and the mufcles of the head and the neck elongate the oval; the deep tranfverfe fibres attached to the external portion of the ventral cutaneus, render it broader.

Every thing now yields to the impulfe : the flexors, and the cutaneus of the neck and breaft, draw the head towards the belly; the cutaneus, and mufcles of the abdomen, bring the tail and the thighs towards the head; the flexors of the limbs contract: the great orbicular mufcle then defcends

\section*{Art. III. Panniculus Carnosus. 58 I}
defcends on the ribs, contracts obliquely, and thus, affuming the thape of a purfe, retains the animal in a globular form.

The cutaneous mufcles of armadillos (dafypus) iare not fo ftrong, nor fo complicated as thofe of the hedge-hog, though thefe animals have :alfo the faculty of rolling themfelves up.

The great dorfal cutaneus is thickeft at its ventral margins, by which it ftrongly adheres o the fold that unites the fkin of the abdomen with that of the back ; it is fixed to the fkin of :he groins and arm-pits : it alfo detaches fome lips, which are inferted into the head and the ail; but its flefhy fibres are very flender. A ertain number of fibres are fent off at different paces, and inferted into the anterior edge of ach of the offeous bands which cover the nimal.
The cutaneous mufcles of the belly are allo ery flender ; they furnifh fome flefhy fibres to he penis: and the bundle which thefe fibres orm, very much refembles that which we have bferved in the racoon; but it is lefs thick.
The cutaneus colli exifts, but it is exceedigly fmall ; it is prolonged under the fcales of te face.
Among birds, thefe mufcles are more con,icuous in certain fpecies, particularly when ic bird has the power of moving at pleafure, ic feathers of the creft, neck, or tail, as ic boopoes, cockaloos, berons, \&x. They are Pr 3
very
very eafily diffected in the grofe, and from thiat bird we fhall defcribe them.

The ventral cutaneus arifes from the feventh and eighth ribs, by two flefhy digitations, like the ferratus magnus ; it is broad and flat ; it proceeds obliquely forward and upward towards the fcapular articulation of the humerus, and is inferted into the fkin, above the fhoulder joint.

There are alfo fome flefhy fibres on the external lateral part of each of the great pectoral mufcles. In the fubftance of the fkin, immediately above the arm-pit, thefe fibres are confounded with the tendon of the pectoralis major.

Immediately above the broad flat part of thic bone of the pelvis, between the two ilei, we obferve two fmall flefhy layers below the fkin: the fhort, and apparently papillated fibres of thefe layers, act on the feathers of that part of the pelvis, and erect them.

We alfo remark along the fkin of tiz noth, fome longitudinal mufcular fibres, whicirne that part ; they form two diftinct layers, patticularly on the fides.

There is no curancous mufcle on the trunk of frogs, becaufe the fkin docs not adhere to that part of their body. Under the throat, however, we find fome fibres, which are attached on the margin of the jaw, and inforeed into the cellular fubfrance that unites the fkin to the origin of the breaft.

In toitoifis, the cutancus colli is rory vifible,
and feems to be formed of two parts; it is extended from within the concavity of the lower jaw, to the bottom of the neck, at the anterior part of the breaft-plate. A middle cellular line unites it with the mufcle of the other fide; it takes its origin from the tranfverfe proceffes of the cervical vertebræ. Being fpread over all the mufcles of the neck, it ferves as a girdle to them ; in its lower part it is perforated by the fterno-maftoideus, which, as we have already obferved, arifes from the lateral parts of the breaft-plate.

On removing the fkin of fpinous fifhes, fuch as the carp, we find fome mufcular fibres adhering intimately to it: they are divided into two portions, by a longitudinal line, which correfponds to the fituation of the vertebral column. We here obferve impreffions made by the tendons, inferted in the fkin; they defcribe curves, the convexity of which is towards the tail. Thefe are the only parts that can be regarded as cutaneous mufcles in fifhes.

In the animals without vertebre, that have foft bodies, almoft all the mufcles may be confidered as cutaneous; for the greater number are attached to that integument. But as they are alfo employed in progreffion, we have deferibed them among the Organs of Motion.

\section*{Article IV.}

Of the Glands of the Skin, and the Subcutancous Fat.

\section*{1. The Glands.}

Tife furface of the fkin is fpontaneoully bedewed with fubftances, which appear deftined to preferve it from the action of the furrounding elements, and which vary according to the nature and habitation of different animals.

This humour is unctuous in man, and other warm-blooded animals ; it is a kind of fat, which would gradually accumulate on the fkin, if we did not take care to remove it.

In the cold-blooded animals it is of a vifcous or gelatinous nature, and does not diffolve in cold water: thefe animals have it in the greater abundance, in proportion as they refide more conftantly in the water, and have their bodies lefs completely covered with fcales. It appears to be a fupplement to this laft kind of armour. Fifhes that are deftitute of fcales, thercfore, as rays and foarks, have a great quantity of this fluid, compared with thofe that are covered with large fcales.

Among reptiles, thofe that have fcales, as flakes and lizards, have the fkin almoft dry: but thofe with nated flims, as juhamanders and
frogs, have the furface of the body always copioully lubricated with vifcous matter.

Toads and falamanders have even the power of augmenting the fecretion of this liquor, and of making it exude like a dew through the pores of the fkin.

A mong the animals that have white blood, we find that moft of the mollufca produce a glutinous liquor, which lubricates the whole of their fk in ; they even throw out a corfiderable quantity of it, when they are in the leaft danger. This is particularly remarkable in frails, \& c. In thofe that have a hard and fcaly kin, however, nothing fimilar is exuded, and their excretions take place only at particular parts of the body.

The fame animal does not produce the fame kind of fubftance in all the parts of the fkin. In man, for example, there are three of thefe excretions, befides perfpiration.

A very fubtile oily matter tranfudes through the pores of the whole fkin, and prevents, for fome time, pure water from fpreading upon it. This matter alfo appears upon the hair of the head, and other parts of the body, and at laft gives them a greafy appearance, if they are not frequently cleaned.

A kind of ointment is produced in certain parts, and particularly at the roots of the hairs in the arm-pits and the hams, \&c. from fmall follicles, which are vifible to the eye: this
matter, in hardening, attaches itfelf to the fkin,
- and produces a fort of fcales, which are removed by water and friction.

Laftly, there are glands, the apertures of which are very vifible in certain places, that furnifh a concrete coruminous matter. This fubftance may be compreffed in the form of fmall worms: thefe glands are found on the fides of the nofe, behind the ears, under the eye-lids, around the nipple, on the perinæum, and in the groin: they may alfo be obferved fcattered almoft every where, except, perhaps, on the palm of the hand, and the fole of the foot.

We may include, in the laft kind, that thick fetid matter, which accumulates in lumps between the glans of the penis and the prepuce, and beneath the nymphe, and alfo that which covers the edge of the anus.

We are unacquainted with the organs which produce the firft kind of humour ; it is, perhaps, a fimple exhalation of the fat, which always exifts in a certain quantity under the fkin.

The follicles, which produce the fecond kind of ointment, are very fmall, and round, or oblong. Their excretory canals are fmall and twifted.

The third kind of ointment is produced by glands which are named Jebaccous, and which are fometimes compound.

The fubfances which anoint the fkin of quadrupeds, are fimilar to thofe which we find
on our own: fome have them collected in large clufters; on certain parts of the body, as for example in the groin. The glands, or particular follicles, do not appear confpicuous in the fkin of the Cetacea; an oily fluid exudes from the whole of its furface, in fuch abundance as to render it ceery-where fmooth and תippery.

In birds, the febaceous glands are difficultly feen, and fituated more decply under the fkin. On the rump-there is a conglomerate gland of a particular ftructure, from which they exprefs an oil, which ferves to imbue their feathers: We fhall defcribe this gland when we treat of Excremental Secretions. At the fame time, we fhail notice feveral other glands peculiar to certain kinds of quadrupeds, as thofe which produce \(m u / k\), civet, caftor, \&ec.

The cutaneous glands are more vifible in cold blooded animals, than in the preceding.

The falamanders have Yeveral glands ranged along the back, which form elevations, or lumps on the fkin.

The toads have them fcattered irregularly, on the whole furface of the body; we obferve, in particular, two which are very large, behind their ears; thefe glands produce an acrid humour, which is a poifon to very fimall animals.

In lizarils, we obferve a very regular row of fmall pores, which alfo yield a vifcous humour.

But the pores which tranfmit the vifcous matter to the 1 kin, and the fources which pro-
duce it, are no where fo eafily obferved as in the rays and the 乃arks.

On the fuperior and inferior furface of the body, in thofe firthes, we find a great number of very large pores, which are the orifices of an equal number of tranfparent excretory veffels. In the flarks, thefe veffels are as thick as the tube of a quill; they proceed from certain centers, in fafciculi, which are not divided into branches; thefe centers are more or lefs numerous according to the fpecies, and the gelatinous humour they contain appears to be formed within them: the centers, however, do not refemble glands; we obferve in them only a cellular texture, filled itfelf with the fame humour, and to which a great number of nerves are in particular diftributed. In the ray, there are two principal centers, fituated towards the fides of the mouth. The tope (Squalus galeus) has only one in the fnout. We fhall return to this fubject in the Article on Secretion.

In offeous fifhes, the vifcous liquor chiefly exudes through pores fituated along the furrow, which extends longitudinally on each fide of the body, and is called the lateral line: thefe foramina are the orifices of an equal number of fmall tubes, which communicate with one large tube fituated behind this line, throughout the whole of its length. This great veffel reaches to the head, and is there divided into feveral branches, which fpread over both jaws, and two

\section*{Art. IV. Glands of the Skin. 589.}
of which unite towards the upper part of he fnout. The rays and 乃barks have alfo thefe large vifcous veffels on the head, independent of the numerous fmall veffels which we have juft defcribed, and which are peculiar to them.

We obferve thefe veffels, and the pores, which are the orifices of their fmall branches on the head, more diftinctly in the chimara monfrofa, than in any other fifh. The pores are alfo very vifible in the common pike (efox lucius), and the sea pike (efox bellone).

\section*{2. The Adipofe Subfance.}

A cellular web more or lefs firmly unites the fkin to the flefh; this membrane exifts in almor all animals, except frogs and toads, in the greater part of which the fkin adheres clofely only in fome parts of the body, and is connected with the flefh of the other parts merely by veffels and nerves.

We alfo find in birds, and principally under their axillæ, large portions of k in, which adhere only in a very loofe manner to the flefh. In confequence of this ftructure, the air is admitted into the vacant fpace.

If we may believe Sparman, the ratel, or boney-ealing badger of the Cape, (viverra mellivora, Lin.) prefents a fimilar difpofition.

The fubcutaneous cellular membrane is ufually filled with fat, the quantity and confiftence of which
which varies according to the fpecies, and the fate of each individual. Every one knows, that the bog has the fat thicker, and more uniform, than other quadrupeds, in which it is, therefore, called lard.

The Cetacea have fill a thicker coat of lard than the bog, but their fat is fo liquid, that it runs off in the form of oil, without being expreffed.

Animals, in which the fubcutaneous fat is very abundant, have the fenfibility of the fkin greatly diminifhed.

In the cold-blooded animals, there is, frictly fpeaking, no fubcutaneous fat. Sometimes only we find the inner furface of the fkin moiftened like the reft of the body by an oleaceous fluid. This we obferve, for example, in the falmon and trouts. At other times we find fubftances of a very different nature. The moonfi/b, for example, has, under the fkin, a layer two or three fingers breadth thick, of a fat fubftance, apparently like lard, but which prefents all the chemical characters of albumen.

The ufe of thefe different fubftances placed under the fkin, appears to be to weaken the impreffions of blows, or other external fhocks, and to diminifh their effect upon the flefl. But the fat, in general, has feveral other ufes; it ferves to preferve the flexibility of all the parts between which it is interpofed, and, in particular, forms a kind of magazine of nutritive fubitance,

\section*{Art. V. Division of the Members. 59 t}
fubfance, which may be abforbed, and conveyed again into the blood.

This is chiefly remarkable in animals which exift for a certain period, annually, without food: as thofe that fleep during winter, caterpillars, when they pafs to the chryfalid ftate, \&uc. Such animals do not fall into thefe lethargies, until after they have accumulated a great quantity of fat, which is found to be exhaufted when they awake.

There are particular refervoirs for this fubftance, which we fhall defcribe in the bears, domice, marmolles, caterpillars, \&c. when we come to the Article on Nutrition.

\section*{Article V.}

Of the Fingers and Toes, and of their Structure relutive to the Senfe of Touch.
\(\mathrm{I}_{\mathrm{N}}\) Lectures IV. and V. wedefcribed the number, form, and ufe of the bones and mufcles of the members, and of their extremities, with refpect to their ufe in motlon; we are now about to confider thefe parts in another point of view, namely, with relation to the organ of touch.

The fingers are particularly intended to procure us a knowledge of the forms of bodies.

Two circumflances tend to perfect or dimi-
nifh the faculty of touch : 1 . The divifion of the hand and foot into fingers or tocs, more or lefs numerous, more or lefs long, diftinct and moveable. 2 nd, The form of thefe fingers or toes, and the nature of the teguments which cover, arm, or protect them. Thefe confiderations form the fubject of the prefent article.

The organ of touch is more perfect, in proportion as the hand is divided into diftinct and moveable fingers : man, therefore, poffeffes this fenfe in a very eminent degree. Monkies, indeed, have the hand organized like that of a man; but, as we obferved in treating of the mufcles, Vol. I. p. 335, \&cc. they cannot move the fingers feparately, as they have no proper extenfor or flexor mufcles: befides, their thumb is fhorter, and cannot be fo eafily oppofed to the other fingers. It is, however, on this oppofition of the fingers that the faculty of feizing the moft minute objects, and of diftinguifhing their flighteft eminences, depends. But if the hand of morkics be lefs perfect than that of man in this refpect, they have a more advantageous organization of the foot, the toes of which are longer and more moveable.

In man, and in the greater number of Quadrumana, the fingers are flender, rounded, and covered by a compact fkin, on which numerous nervous papillæ are difpofed in a very regular manner : their extremity is covercd by a mail, on the fuperior part only: this nail is flat, or
femi-cylindrical: only the fagouins (Smia rofalia, jucchus, \(\mathcal{G}\). Lin.) have the extremity of the toe inclofed in a horny and pointed nail, refembling that of the Sarcophaga.

In the Cherioptera, the fingers are not capable of grafping folid, bodies, becaufe they are all inclofed between two fine membranes. They therefore do not poffers, in a high degree, that part of the fenfe of touch which ferves to afcertain the forms of bodies; but the extenfive furface which the membranes prefent to the air, fit them for receiving fuch delicate impreffions of refiffance; motion, and temperature, that fome authors have been induced to afcribe a fixth fenfe to thefe animals.

Spallanzani had obferved that bats blinded, and afterwards fet at liberty, could, notwithftanding their total deprivation of fight, conduct their flight through fubterraneous paffages without Itriking againit the walls; that they even turned exactly as the moft complicated windings required ; that they difcerned the holes in which their nefts were placed; and that they avoided cords, lines, and other obftacles which had been placed in their way.

Spallanzani then endeavoured to afcertain by what fenfe thefe animals directed their motion.

It was not fight, fince that organ was entirely deftroyed; it was not hearing, for the ears of feveral individuals had been completely fopped; it was not fmell, for in others he had taken the

Vol. II.
Qe
precau-
precaution to fhut up the aperture of their noftrils.

He concluded therefore, that bats poffefs a fixth fenfe, of which we have no idea. Citizen Jurine has made other experiments, which tend to prove that it is by the ear they guide their flight; but it appears to us, that the operations to which he fubjected the individuals he deprived of the power of directing their motions were of too fevere a nature, and that fomething more was done than merely preventing the animals from hearing. It appears to us alfo, that the nature of their organ of touch is fufficient to explain all the phænomena bats prefent.

The bones of their metacarpus, and the phalanges of the four fingers which fucceed the thumb, are exceffively elongrated. The membrane which unites them, prefents an enormous furface to the air: the nerves which are diftributed to it, are numerous, and minutely divided; they form a net-work very remarkable for its finenefs, and the number of its anaftomofes. It is probable that, in the action of flight, the air, when ftruck by this wing or very fenfible hand, impreffes a fenfation of heat, cold, mobility, and refiftance on that organ, which indicates to the animal the exiftence or abfence of obflacles which would interrupt its progrefs. In this manner blind men difcern, by their hands, and even by the fkin of their faces, the proximity of a wall, door of a houle, or fide of a ftrect, even
without
without the affifance of touch, and merely by the fenfation which the difference in the refiftance of the air occafions.

The toes of the pofterior feet in bats, are fimillar in their ftructure to thofe of the other Sarcophaga.

Notwithflanding the Plantigrada have the fingers very fhort and little moveable, and gewerally five in number, the fenfation of touch Jught to be fome hat more perfect than in the Carnivora, becaufe the whole fole of their foot -s free from hairs; and as the contact with the rodies which they touch is more immediate, the enfation muft be ftronger and better perceived.

The mole has the hand greatly enlarged, and 111 the fingers united as far as the nail.
The Pedimana come naturally after the Plangrada with refpect to the prefumed perfection touch, as their great toe is feparate from the her toes. This renders their pofterior foot a nd of hand ; the toe is proportionally very ick, elongated, moveable, entirely deprived the nail, and enlarged at its free extremity.
The chefnut coloured, or true orang outang; is e only animal, befides the Pedimana, that has eparate great toe without the nail.
The Carnivora walk on the extremity of their 's, which are fhort, and all placed in the fame ection, and are therefore much lefs favoured to the fenfe of touch, but they are in general npenfated by that of fmell. The greater
Qe2
number have the laft phalanx inclofed in a cutting nail. In the cat and civet genera, this phalanx bend back, and cannot be employed as an organ of touch whilft the animal walks.

Among the Rodentia, the bares, Squirrels, and rats, which walk on the four feet, but on the extremities of the toes, and which have the laft phalanges only feparate from each other, have an elongated conical nail which envelopes all the free part of the toe. Some cavics, and the porcupine, have almoft all the toes inclofed in hoofs like thof of hogs. The aye-aye, (Sciurus Madagafcaviculs Lin.) is particularly remarkahle for the divifion of the toes of the fore feet. All the phalanges are greatly elongated, particularly thofe of the middle toe, by means of which the animal picks infects from under the bark of the trees. This is alfo the only animal among the Rodentia which has the great toe feparate, and oppofeable to the others.

Laftly, the kangaroos and jerboas, which ufe chiefly the hind feet in progreffion, have the fore feet divided like thofe of rats, and armed with pointed nails; but the pofterior feet have the toes enveloped in hoofs.

The Edentata in gencral have the toes united by the fkin as far as the nails, fome of them even, as the floths, walk only on the convexity of the nails, which bend under the fole of the foot. The Cupe aul-ealer has flat and very broad nails. Several ammadilios have them almoft in
the form of hoofs. In all thefe animals the toes vary from four to two, and are capable of no motion except extention and flexion. This difpofition arifes from the deep pullies in the articulations of the phalanges.

The elepbaint and the rbinoceros have all thetoes united by a thick and callous fkin. They are only diftinct externally by the number of hoofs which are placed on the edges of the foot.

The bippopolamus, the tapir, and the bogs, have the toes more feparated; but they walk on their extremities only, which are enveloped in hoofs.

All the Ruminantia, without exception, have only two toes, covered with hoofs of a triangular form, on which they walk. The inferior furface, which touches the ground, is the moft foft, and appears tuberculated. The external is convex and fmooth. The third furface, or that which is next the other toe, is a vertical plane. The samel only differs a little in the form of the hoof, which is fmall, more regularly triangular, and prolonged inferiorly by a piece of horn which invefts all the fole of the foot.

Finally, in the Solipeda there is on!y a fingle toe, terminated by a femi-circular hoof, on which the animal walks.

Before we conclude this article on the divifion of the members in Mammalia, we flall notice fome difpofitions relative to motion, but which have an influcnce on the fenfe of touch.

We have already pointed out one of thele peculiarities in the Cherioptera. Among the Sarcophaga, the otters, the feals, the didelpbis memina, and one fpecies of forew; and among the Rodentia, the beaver, the ondatra, \&c. which fwion and dive frequently, have all the feet palmated, that is to fay, their tocs are united by a membrane.

Laftly, in the morfe, and in the Cetacea, we do not diftinguif the toes which form the feet; they become real fins, on the edges of which we however remark, in the morfes and lamantin, rudiments or veftiges of nails indicating the five toes, which we indeed find, but concealed under the coriaceous fkin that clofely envelopes them.

In birds, the thoracic member is not intended to exercife the fenfe of touch ; it therefore is not divided at the extremity into fingers or appendices, and is alfo almof entirely covered by long and clofe feathers. The feet are the only parts which poffefs the faculty of towch, and in them it is very much blunted by the horay lamine or feales which cover the tarfi and the toes. Sometimes it is rendered ftill more obtufe by feathers, and always by the calloíities in the form of excrefcences and tumors which cover the feet inferiorly.
We have already defcribed, in Vol. I, page 4 II, the number and direction of the toes in different birds. They are not in any fpecies covered with hoofs, but arc merely furnifhed with nails, which

\section*{Art. V. Division of the Members.}
which ftrengthen them, without injuring the fenfe of touch.

In the fivimming or web-footed birds, as the ducks, the anterior toes are united by a membrane which extends to their extremity. Sometimes the pollex is alfo united to the other toes by this membrane. The birds however in which this takes place, are of all the anferes thofe which employ their feet moft frequently in touching and feizing fubftances. A fhort membrane unites merely the bafe of the anterior toes in gallinaceous birds. The two external toes are alfo united at their bafe in a number of the Grallæ and the rapacious birds.

The Pafferine birds have in general the two external toes intimately united by their firft phalanges; and in fome genera, as the king's-fifbers, and the bee-eaters, they are united nearly to the extremity.

The fcaly membranes which border the toes in fome wading birds, and their exceffive length, as well as that of the nails in others, are alfo obftacles to touch.

From what we have ftated, this fenfe appears to be very obtufe in birds; the fcanfores, however, particularly the parrots, are, with the ozols, thofe which poffers it in the greateft perfection, and exercife it moft frequently.

The number of the fingers, and their flexibility, vary more in reptiles than in all the other claffes.

Common liwards have in general five fingers, of difficrent lengths, well calculated to embrace objects in every direction. Some, as the crocodiles, have them palmated, at leaft in the pofterion fect. Others, as the gecko, have them invelted inferiorly with imbricated fcales.

The canclion has them united by the fkin, as far as the nails in two parts which form the forceps. The fkin of their inferior furface is furnifhed with very fenfible papille. The long lizards, called feps and cbalcides, have only three very fmall toes. The falamanders and frogs have them naked, and deftitute of nails; they therefore enjoy a very delicate touch. It ought to be ftill more exquifite in the tree-frogs, which have the extremity of the toes enlarged into a ipongy difk, capable of adhering with force to bodies; but in the tortoifes, which have the toes palmated, this fenfe muft be lefs perfect. Laftly, the ferpents are completely deprived of feet and toes.

This is alfo the cafe with fifhes. Their fins are intended for motion only, and are of no ufe in afcertaining the forms of bodies.

What we have ftated in Lecture Sixth, refpecting the number and divifion of the feet in animals that have no vertebre, appears to us fufficient to enable the reader to form an idea of the different degrees of perfection thefe parts poffers as to the fenfe of touch.

\section*{Article VI.}

Of the Appendices which fupply the Place of the Fingers in exvercining the Senfe of Touch.

Besides the fingers, feveral animals have received different parts, which are fufficiently moveable and fenfible to enable them to exercife the faculty of touch. In the fpecies which want fingers, or which have them enveloped in infenfible fubftances, thefe appendices fupply their place.

The tails of feveral mammiferous animals, as the fapajous, the opolfuns, one fpecies of porcupine, feveral fpecies of ant-eaters, \&c. are fo organized, that they are capable of embracing bodies, and feizing them in the manner of a hand. In Lecture III. we have defcribed the form of the bones, and the difpofition of the mufcles which are employed in this prehenfile motion : the nerves are diftributed to them in numerous ramifications; they arife from the termination of the medulla fpinalis, and come out through the intercaudal foramina. Tails of this kind are ufually deflitute of hair on that part of their inferior furface which is applied to the bodies they feize.

We find fimilar tails in fome reptiles, as the camelion, and the whole body of ferpents, per-
form the fame function, when they twift themfelves round the objects they wifh to feel or comprefs: this faculty is the more ufcful to them, as they are deprived of fingers, and every other appendix fitted to procure them the fenfation of touch.

In the fpecies of mammalia, which have a fmall number of fingers covered with horny hoofs on all the parts that fupport the weight of the body, the fenfe of touch feems to refide in the lips, which are the moft moveable parts. We have an example of this in the Ruminantia and the Solipeda: we fhall not here defcribe the mufcles of thefe parts, as that may be done with more propriety in the Leciure on Maftication. The lips themfelves have a very peculiar organization : the facial nerve, and that of the fifth pair, terminate in them by an infinite number of branches. Thefe ramifications anaftomofe, and form various plexufes, which give to thefe parts a moft exquifite fenfibility. We know that they procure us the moft delicious of all the fenfations of touch.

In feveral animals, we find numerous and compact glands forming a layer below the fkin, which is thin and covered with fine foft hairs; amongft them are placed fome long ftiff hairs, called robijkers, each of which is implanted into a papillated tubercle.

The whifkers, in confequence of their rigidity, eafily communicate, to the nerves of the
lips, the flighteft concuffions they receive from furrounding- bodies: on this account, though infenfible themfelves, they may be ranked among the appendices which affitt the fenfe of touch.

The fuperior lip of the ininoceros is prolonged into a fmall procefs, which that animal employs in feeling, grafping, tearing, \&c. We are not acquainted with its mufcles.

Hogs, moles, and floreres have a long pointed and moveable muzzle, to which the term finout is in particular applied, and which they alfo appear to employ as an organ of touch. In the fubftance of this part, there is frequently a peculiar bone, the form of which differs according to the fpecies; it is fituated between the intermaxillary and the nafal bones, and named the bone of the fnout: the mufcles of the fnout fhall be defcribed when we treat of the fenfe of Smell, in order that we may give, in one view, every thing relative to the nofe of tnimals.

The probofcis of the elepbant, that of the tapir, which is lefs elongated, and the fnout of the mu/k frew, or definan, fhall alfo be defcribed in the fame Lecture ; but as they are employed by thefe animals in the manner of real hands; we notice them here as appendices of the organ of touch.

The crefts, or flefly parts on the heads of feveral birds, particularly in the Gallinaceous family, as cocks, turkies, \&xc. are perhaps alfo ufed as an organ of touch : thefe parts are def-

عitute of feathers ; they are foft and flaccid; and the nerves they receive, though few in number, muft convey to the animal the impreffions of external bodies.
In animals which have no members with moveable fingers calculated to feel bodies, as fifhes, the appendices are more numerous, larger, and more varied. Different names have been given to thefe prolongations of the fkin : thofe which are placed about the mouth, or on the lip, are called cir:i: thofe which proceed from the upper part, or fides of the head, ase named tentacula. When they proceed from lateral parts of the body, they retain the name of fingers.

The cirri are ufually foft; they receive filaments from the fifth pair of nerves. There is only one in the cod, and other fpecies of the genus gadus; two in the furmulcts, \&xc.; four, which are very fhort, in the carp; four in the barbei; fix or eight in the genus cobitis, and in feveral fpecies of filurus, in which the cirri of the upper jaw are frequently very long. The frog-fifu, the gadus tau, and others, have a great number round the lips.

The tentacula are organized like the cirri. In feveral fpecies of the genus lophius, thefe appendices are fufceptible of motion, and can be bent in different directions at the will of the animal. It is even pretended that they are ufed as a bait for catching finall fiff. In the fpecies called bifrin, the anterior tentacula divides like a \(Y\),
a \(Y\), the branches of which terminate in a flefhy mafs. The others are very long and conical. Several fpecies of Blonnius and Scorpcena have them above the eyes.

The lateral appendices of the body, which ichthyologifts name fingers, have an offeous jointed ftalk, which is fimilar to that of the radii of the pectoral fin, from which thefe fingers do not differ except in being free and moveable. They are chietly remarked in the trigla, and in the polynemus.

There are ftill more varieties in the appondices of white-blooded animals.

We fhall omit here the arms of the Cephaldpoda, which we have already defcribed among the organs of motion.

We fnall alfo pafs over the flefhy horns of the Gafteropoda, as we have defcribed thofe of the fnail in the Lecture on the Eye. Thofe of the other genera do not differ, except that they are incapable of that kind of motion by which they are retracted, and protruded like the finger of a glove. Their mufcular fibres only become rigid or relaxed.

Several fpecies have fimilar appendices around the cloak. Such are the limpets, the genus ba\(l_{y}: l i s, \& c\). Among the Acephala, the greater part are provided with the \(i\) appendices, and fome have them in great numbers. In the fpecies which have the cluak completely open. they are placed around it, and particularly towards
wards the anus: this may be obferved in oy hers, mulcles, anodonliles, \&c. In thofe in which the cloak opens by a tube only, the appendices are attached to the circumference of its orifice. Such are the genus venus, cardium, \&c. The tube itfelf furnifhes thefe animals with an excellent inftrument of touch. The flefly and ciliated arms of the genera lingula and teribratula are equally proper for this employment; but thofe of the anatifa are very inferior, in confequence of their horny fubftance.

We alfo find cirri in feveral fpecies of worms; they fometimes appear to be formed of different articulations, like the antennæ of infects. We have obferved nerves procceding into thofe of the apbrodita and nereis. There are none in the lumbricus and the leech, but they are fupplied in the latter by the two difks which terminate their bodies.

The antennæ of infects appear to be principally employed in the fenfe of touch; we have defcribed the nerves that proceed to them. Entomologifts have defcribed their forms, which are very numerous, and have even made them the foundation of characters for the genera. It would, therefore, be fuperfluous to defcribe them here.

Some larvæ have retradtile tentacula, refembling thofe of fnails.

In thofe of feveral fpecies of butterflics, as the podalivius, macbaon, and apollo, a fingle branch
is protruded between the occiput and the body, which is bifurcated at its extremity like the letter Y: this appendix appears rather an inftrument of defence againft the puncture of the ichneumons, than an organ of touch: it is moiftened by a bitter and odorous liquor.

In the fork-tailed bombyx (vinula); the retractile appendices, refembling thofe of fnails, are fituated above the anus, at the extremity of two fiefhy proceffes.

The arms, the tufts, and the flowers of feveral zoophytes; the innumerable tentacula of the fea fars, urchins, and aftinice, and the complicated branches of the medufe, are alfo excellent organs of touch; but thefe are fufficiently defcribed by Naturalifts.

\section*{Article ViI.}

Of the Infenflule Parts rethich cover the Organs of Touch, and protect them againgt too ftrong Imprefions.

The epidermis defends the fkin, and prevents the contact of external bodies from becoming painful ; but it would not, under all circumftances, be fufficient for this purpofe. Nature has, therefore, armed it with various parts, compored
\(60 \$\) Lect. XIV. Of Touch.
pofed of the fame materials as itfelf, but diffeting as to form and thicknefs, which ferve to reinforce it; thefe arc bairs, feathers, fcalis, atals, and borns.

\section*{1. Of Iİuirs.}

Hairs are filaments of a horny fubftarice, which are particularly intended to cover the fkin of mammiferous animals; one of their extremities is implanted in the cutis, and is even frequently rooted in the paniticulus carnofus; this extremity is enlarged into a bulb, more or lef \(f_{3}\) thick, which is inclofed in a membranous fheath, and which contains fometimes a fmall drop of blood. This cell is larger in proportion as the hair is young; if it be punctured at this time, the blood flows from it, and it becomes foft and flaccid.

All the part of each hair which is withot the fkin, is called the foaft; it is a very elongated cone, the free extremity of which forms the apex; the hairs grow from their bafe, and are therefore finer in young animals than in old: for the fame reafon, they feem to augment in number when cut, though, in fact, they increafe only in diameter.

When the hairs rife out of the fkin, they carry with them a finall portion of the epidermis, which forms a kind of fleath at their bafe; this is gradually detached under the appearance of iranfparent and farinarcous fcales.

Some animals have, at their birth, the hair of fome parts of their bodies more or lefs developed. In other parts no hair appears until a certain period of life.

As the hairs of the human body are very flender, it is difficult to examine their ftructure ; but the briftles of bogs, and the whifkers of cats, and other Sarcophaga, may be very well employed in this kind of inquiry.

When we examine with the mictofcope the briftle of a veild boar, we obferve that it is canulated throughout the whole of its length, by about twenty furrows, formed by an equal number of filaments, the union of which conAitutes the furface of the hair: in the middle of the briftle there are two canals, which contain an humour called the medulla. The filaments of the hair feparate by deficcation, the feparation zommencing at the point, as may be obferved in the briftles of brufhes : the cavities are then :mpty, and we obferve in them only fome laninæ which crofs each other in different diections.
The hairs of the elk, the mu/k, the bedge-bog, he tenrec, porcupine, \&c. are not altogether finilar; their furface is covered with a horny amina, the thickncfs of which varies, and on hich we obferve fome furrows: internally they ontain a white fpongy fubftance, which appears
firft fight fimilar to the pith of the elder tree rambucus).
Vol. II.
R R
The

The colour of the hair feems partly to depend on that of the rete mucofum; for, as we have obferved in animals which have the fur of different colours, the various fpots feen upon the hair indicate others below them in the fkin.

Even in the human fpecies there are very friking relations of this kind. Negroes, in general, have the hair black. Perfons who have red hair have almoft always the fkin freckled, or covered with reddifh fpots: thofe whofe hairs are black have commonly a dark complexion.

The colour of the hairs exifts in their horny fubftance, and not in their medulla, which is commonly white. This is particularly evident in the quills of the porcupine : the colours are infinitely various, and fome hairs are coloured differently in feveral parts of their length : the works of Naturalifts may be confulted on this fubject.

The fhape of the hairs is moft frequently round, as thofe of the head, the mane, \&rc. They are flat on the tail of the bippopotamus, and on the body of the great ant-cater. They are, as it were, crimped in feveral fpecies of the Ruminantia, and more particularly in the mu/k (mofchus mof chifervs).

Their furface prefents fpiral channcls in the mules. They are fine, long, and filky in fome varieties of goals, cats, \&rc. They appear crifped and frizzled in the rams. They are ftilf and elevated in the bogs, the kedje bogs, the porita-

\section*{Art. Vil. Insensible Pirtis: Git}

Bines, \&xc. From their great thicknefs in the two laft animals, they have obtained the name of jpines.a.

The climate has great influence on the Hature of the hair, in domeftic animals: in cold regions théy become long and rigit, as we obferve in the Siverian dog, the Iceland ram; \&xc. In the climate of Spain and Syria, they become tufted, fine anid filky, as we find them in the Spanish boep, in the Maltefe dogs, and in the goats, cats, and rabbit's of Angora. In very warm countries they become thin, or are altogether wanting, as in the dogs of Guinea, vulgarly called Turkifb dogs, and in the Africais and Indian fleep:

Different names are given to all the varieties which the hairs prefent on different parts of the jody. Hence the appellations-bair, eye-la/bes, whifkers, beard, \&c.

All mammiferous animals, the Cetacea exsepted, have a certain quantity of hair. We hall briefly indicate its difpofition in the diferent families.

Man has the whole body covered with fcatered hairs, though, in fome parts, they are fo ine that they cannot eafily be perceived: thofe If the head and the beard are the longeft; thofe If the axillæ and the pubis are next in lengrth; hofe of the interior of the nofe and the ears, he eye-lafhes, and the hair of the eye-brows, are till fhorter; thofe of the other parts of the RR2 body
budy rank laft in point of lenseth; there are more on the breaft and on the belly, than on the back, which is contrary to the difpolition in other animals. The palm of the hand and the fole of the foot never have any.

In apes, properly fo called, the hair of thie head is not, in siencral, longer than that on the other parts of the body: the hairs which cover the fore-arm point upwards to the elbow, inflead of being directed towards the hand, as may be feen in the orang outang, and fome other fpecics. This is one of the circumftances in which thefe animals refemble man. In a great number of Cuadrumana the buttocks are callous, and entirely deftitute of hairs.

Among the Cheiroptera, which have the hair flort, fine and villous, we obferve that the fiving lemurrs have fome on the lateral membrane of the tail, and on the ears. The evpertilio lafwrus Lin. has alfo fome on the membrane of the tail. The other feccies have only a few fcattered hairs on the membranes of the wings, on the nofe, and on the ears.

The hodec-hogs have the fpines, of which we have fpoken, placed only upon the back and the head : the members, and inferior furface of the body, are covered with fliff briftles. In this refpect the temecs refemble the ledge-hers. Some foceies have the briftes and the pipines intermixed.

In muics and lh wiens the hair is fe mont, fine
and clofe, that their fkin is as foft to the touch as velvet.

In the Carnivora the hair varies confiderably. In the fpecies which are covered with a fine fur, as the rucafels, fables, ermines, martins, \&c. there are two kinds of hair; one clofe to the fkin, which is very fine, thick-fet, and intermixed ; the other, which is longer and ftiffer, and which alone appears on the furface; thele are the two kinds of hair which conftitute fine furs.

Nearly the fame thing takes place in the fine maired Rodentia. In the porcupines, the fpines in the head, neck and belly, are more flender, hort and flexible, than thofe of the back : on he tail there are about a dozen, which refemble ubes of quills, truncated at their free extrelity; they are fiftular; their other extremity is lled up, and is flender and very flexible; thefe lbes refound when the animal moves its fkin ; nd it even appears that the urine can be conveyed Ito them in order to be thrown to a diftance.
No family prefents more variety with refpect ) the hairs than the Edentata.
In the great ant-ealer (myrmecoplagga jubata) ie hair is broad and flat, and has a longitudinal rrow on both furfaces, fo that each hair rembles a dried blade of grafs. The two-toed t-eaters are, on the contrary, covered with ry fine wool: feveral have hard and cutting ales, placed one above the other like the tiles

6 I4 Lect. XIV. Of Touch.
of a roof, in the manner of the pangolins (maims Lin.) ; others are covered with prickles, as the (pinois ant-eater (ecbudma). The armadillo genus (da/ypus,) have, befides the fcales or offeous bands which cover their back and head in regular compartments, fome fcattered hairs, which are fhort and rigid like thofe of the elepbant: thefe hairs, however, fall off as the animal adyances in age.

Of all the Pachydermata, the logs have the greateft quantity of hairs, which, in them, are called brifles; they are fcattered, and frequently bifid at their free extremity. There are very few in the other genera.

We have already noticed the nature of the hair of the elk and the mulk. The ox, flags, anm telopes, and girafe have, in general, fhort hair. Camels have it very fine and very foft, particularly the camelus vicunna: all have callofities, which are deftitute of hairs on the knees and on the breaft. The hair of goats is long and fine, and they have the chin furnifled with a pointed beard. Shecp have the hair long, and diftinguifhed by a crifped or frizzled appearance, and to it the term wool is applied.

Solipeda have the hair in general flort, like the Ruminantia: that of the neek and tail, which is much the longeft, is more particularly called crines.

The amphibinus mammalia have flort, rigid, and very clofe hair.

We have already obferved that the Cetacea have no hair.

The chemical analyfis of the hair of all thefe animals, whatever form it affumes, whether that of wool, brifles,. Spines, quills, fcales, \&c. affords nearly the fame refults: when fubjected to the action of fire, and in open veffels, it fufes or liquifies at firft by fwelling up; it afterwards emits a white flame, and refolves into a black carbon, the incineration of which is very difficult.

Hair, on diftillation, yields a reddifh liquor, which contains pruffiat of ammoniac, and another falt of an ammoniacal bafis, combined with a particular animal acid, which Berthollet has named zoonate of ammoniac: the charcoal, which remains at the bottom of the ftill, is light: it contains carbon and the phofphat of lime.

The hair does not completely diffolve in boiling water, but there is feparated from it a mucilaginous matter, which is its medulla; it is completely foluble in eauftic alkalis, and in fome acids.

\section*{2. Of Feathers.}

Feathers are proper to birds, as hairs are to mammalia, and fcales to repsiles and fiftes.

Before we defcribe the forms and numerous varieties which feathers prefent, it is right to notice their flucture. To give a diftinct idea
\[
\mathrm{R} \times 4
\]

616 Lect, XIV. Of Touch.
of this part of the fubject, we fhall point out the manner in which they grow.

At the time the young bird leaves the egg, and for fome days after, it is covered more or lefs with hairs, except on the region of the belly. Thefe hairs, which vary in colour and thicknefs, come out of the fkin in fafciculi, each compofed of ten or tweive hairs; they are implanted in a bulb or follicle, which appears to contain the rudiment or fheath of the feather: after a few days the feather appears externally, in the form of a blackifh tube: we then obferve that the common fafciculus of the hairs is attached to the end of this tube, and that it even penetrates into the interior of the fheath.

In proportion as the feather grows, and is developed, the hair falls off. In fome families, as the birds of prey, it adheres for a long timc to the extremity of the feather, in the form of a kind of down.

It is only at this period that we obferve hairs on the bodies of birds; for when the feathers are renewed in the moulting feafon, there is then no appearance of them,

We have already obferved, that the fheath of the feather becomes apparent fome days after the bird is hatched: the quills, or great feathers of the wings and the tail, appear firft; the down manifefts itfelf next, and lafly, the fmall feathers of the body.

The feath is a tube, clofed on all parts, ex-
cept at the extremity, which is fixed in the fkin; we obferve there a fmall hole, or umbilicus, by which the blood veffels pafs into the cavity of the tube; when the feather is plucked out, therefore, a light hemorrage takes place.

On leaving the fkin, the fheath fplits, in confequence of being dried in the air, and the expanfive force of the contained parts. A longitudinal laceration takes place, and the extremity of the hoaft of the feather comes out: in proportion as the fhaft grows, the fheath becomes more torn, and its deficcated tunics are detached in the form of thin pellucid fcales.

If about this period the tube be opened longitudinally, it will be found that it is formed of numerous and cylindrical ftrata of a horny and tranfparent fubftance, and that it contains a cylinder of gelatinous matter, into which the bloodveffels penetrate.

The external extremity of this gelatinous cylinder is conical, and harder than the other parts ; it is covered by a layer of black matter, which is the firft rudiment of the barbs of the feather.

The growth of this gelatinous cylinder takes place longitudinally; the conical part, which forms its apex, comes out of the fheath, and brings with it the ftratum of black matter, which fplits in drying, and forms the firft barbs. The fhaft of the feather clongates and hardens; the firft cone has fcarcely made its exit from the fheath
fheath when a fecond is formed, which comes out in its turn, developing new barbs, and making an addition to the length of the fhaft, which grows always at its bafe: at laft the fhaft, with the whole of its vane, is protruded from the fheath, which becomes deficcated internally: we then obferve only membranous cones inferted into each other, fimilar to thofe which, by their development, protrude the barbs externally, and which form what is called the heart of the feather.

When the growth of the feather is completed, the tubular portion becomes folid, and is continued with the fhaft, the germ of which it formerly contained; it is a cylinder which joins force and elafticity to fpecific levity. The cry and veficular matter we obferve within it, is the refiduum, or veftige of the large flefhy canal which exifted in a lefs advanced age; it is a fort of cavernous body, formed of feveral fmall cups or cells fucceeding each other; thefe cells are more elongated, in proportion as they approach the fhaft ; they then become fimilar to fmall tunnels, which are of different lengths according to the fpecies, and are incafed into each other. The laft of the cells is divided into two ; one paffes without the line in the longitudinal furrnw which appears at that part ; the other penenutes even into the interiof of the fhaft.

The fiaft of the fort or is the continuation of the
the tube. It is a cone more or lefs elongated, convex on one furface, and flat and furrowed on the other. The barbs are attached to its fides. All the fuperficies of the fhaft is covered by horny matter, which feems to proceed from the tube. Internally, it is filled up by a white and very light fpongy fubftance, fimilar to that which we find in the quills of the porcupine.

The barbs are fmall laminx of a horny nature, planted into the fides of the fiaft. They are applied to each other throughout their whole length, like the leaves of a book. Sometimes they are applied very clofely, as in the feathers of the goofe, or the fiwan; fometimes in a more loofe manner, as in the rump feathiers of the peacock.

The beards are themfelves fhafts, from the edges of which an infinite number of hairs proceed. Thefe hairs are fometimes loofe, and detached from each other; fometimes compound and fub-divided, but moft frequently fo fine and fa compact that they can only be perceived with a magnifying glafs. By means of thefe hairs or barbuld, the barbs of the feather àre fo intimately attached to each other as to prevent the paffage of the air.

Such is the general organization of the feathers. We fhall now conlider tie varictics which they prefent.

All birds change their feathers, at leaft onic a year. The old feather is pufhed off by a
one, which obftructs the veffels deftined to the nourifhment of the former. All the feathers do not fall off at once. The moulting in general takes place about the period of laying.

Different names are given to the feathers, according to the regions which they occupy. They are difpofed in quincunces on the body. There are never any on the lateral lines of the neck and of the breaft, nor on the umbilical region. The term quills has been given to the feathers of the wings and tail. Thofe which are implanted in the humerus have been called Secondary. Their number varies confiderably; but there are conftantly ten attached to the metacarpus, and the fingers, which are called primary quills.

We fhall ftate fome examples of the principal varieties of the feathers, independent of their colours, which are fo brilliant and fo numerous that we could not find language to defcribe them.

All the feathers of the caflawary may be called barblefs. The wing quills of that bird are only five in number, and refemble the prickles of the porcupine. The other feathers of the body have two fhafts from one tube, and their barbs are detached, long, and deftitute of barbules. They refemble crines.

The feathers that form the creft of the peacock have no barbules in their middle and inferior part. Thofe which form the creft of the

Salearic crane (ardea pavonina, are twifted fpirally on themfelves, and their barbs are only fine hairs. The creft of the liftle egret (ardea garzetta, ) is alfo compofed of fimilar feathers. In the male turkey there is a tuft of hairs at the bafe of the neck, which may be regarded as barblefs feathers, \&c.

We fhall give the name of loofe featbers to thofe which, though they have the barbules very confpicuous, and frequently very long, are fo far feparate that they cannot be attached to each other. Such are the hypochondriac feathers of the bird of paradije, thofe of the rump of the peacock, of the thighs of the jabiru, and the balearic crane; thofe of the body in toucans, and thofe which furround the ears in ozols, \&ec.

The term floating feathers may be very well applied to thofe of which the barbs, though provided with barbules, are fet wide, and are flexible, as in the feathers of the tail of the oftrich.

The nocturnal birds of prey have foft feathers, the barbs of which are covered with a long and filky down. On this account we fcarcely hear the flapping of their wings when they fly. Feathers of this kind may be called dozuny.

Other birds have the feathers of the body furnifhed with barbs, which are fo fine and gloffy that we may term them filken. Such are thofe of the bullfinch, of the purple-tbriated flycatcber (murcicapa rubricolits,) of the tanagra fepticolor: thofe
thofe of the head of the red-beaded mamakin, and of the momot (ramplafios monnota).

We fhall name thofe fatin feathers which have clofe-fet barbs, bearing long, fine, and filky barbules, difpofed on the furface in fuch a manner as to imitate fatin. Such are the rump feathers of the golden thriff, thofe of the tail of the jay, and thofe of the neck of the common duck.

We fhall apply the term metallic to the feashers which have barbs of brilliant colours, refembling the luftre of polithed metais. We have examples of this kind in the feathers of the bumming-bird, of the jacamar, of the curucui, of the peacock, of the paralifen alurea, \&x. This brilliancy is occafioned by the breadth of the barbs, and the fimooth furface they prefent to the eye.

We. fhall defignate by the word gemmaceous, all the little feathers which have the barbs that terminate the fhaft, coloured by imbricated femicircles like the fcales of a fifh. Of this kind are the head and throat feathers of the rubys necked bumming-bird (trocbilus mofcbitus), and thofe of the head and belly of the ametbyline bumming-bird. They exceed in luttre the preceding kind of feathers, and refemble precious flones. Theeffect is produced by the extremedenfity of their barbs, and the polifh of their furfaces.

Laftly, we flall make but one order of the comnzon featbers, fuch as belong to cocks, pigcons, rollers, ravens, \&xc.

\section*{Art. Vil. Insensible Parts.}

All birds have feathers on fome parts of their body. Several fpecies have them even upon their toes, as orols, and fome varieties of cocks and pigeons. Others are deprived of them in certain parts of the body, as vultures and turkies on the head, the offrich and the wading birds on the thighs. Some even want them on the wings, as the manchots.

Chemical experiments on the compofition of the feathers, prove that they have a very great analogy to hair: The fame refults are obtained from both by the fame proceffes. Feathers however contain lefs mucilaginous matter.
3. Of Horns.

There are prolongations of horny fubftance which grow upon the head of certain fpecies of mammalia, efpecially the Ruminantia. They alfo appear on feveral other parts of animals.

We have already defcribed the development of the antlers or deciduous horns, in Lect. II. Art. 2, when we treated of Ofteogeny. We hall now notice the horns which are formed upon proceffes of bone, and which grow at their root or bafe, and have a great refemblance to the integuments.

In the third month of conception, while the foetus of the cow is Atill enclofed in the membrane, the cartilaginous os frontis prefents no mark of che horns which it is afterwards to bear.

Towards the feventh month, it is in part offified, and prefents in its two portions the fmall tubercle which appears to be produced by the elevation of the offeous lamina. Thefe bony tumours foon after appear externally. They raife the fkin, which becomes callous at that part, in proportion as the tumour grows. It becomes at laft horny as it elongates, and it forms a kind of fheath which covers externally the procefs of the frontal bone. Between this fheath there are numerous branches of blood veffels which ferve to nourifh the offeous part.
- The horns therefore are only folid, hard, elaftic, and infenfible fheaths, which protect the offeous prolongation of the frontal bone. There theaths are generally of a conical figure, and broadeft at the bafe, the extremity from which they grow. Their curvatures vary with the fpecies, and have been defcribed by naturalifts: They alfo prefent different channels or tranfverfe furrows, which depend on the age of the animal, and which denote the number of years it has lived in a very certain manner according to the fpecies.

The texture of the horns appears to be much the fame in the goat, Beep, antelope, and ox. They confift of fibres of a fubftance analogous to hair, which appear agglutinated in a very folid manner. In the two firft genera thefe fibres are fhort, and covered by fuperincumbent lajers
like tiles. In the two laft they are longer, more compact, and form elongated, horns incafed in each other.

The horns of the Rbinoceros appear to differ fomewhat from thofe of the Ruminantia. They have no offeous part, and are not fituated on the os frontis, but on the lines of the nofe. They are formed however of the fame fubftance, and we even oblerve more diftinctly in the horn of this animal the fibres analogous to hairs. The bafe of the horn, indeed, prefents externally an infinite number of rigid hairs, which feem to feparate from the mafs, and which render that part rough to the touch, like a brufh. When fawed traniverfely, and examined with a glafs, we perceive a multitude of pores that feem to indicate the intervals refulting from the union of the agglutinated hairs. When divided ength-ways, numerous longitudinal and parallel urrows alfo demonftrate the fame ftructure. This kind of horn is attached by the fkin only. Thofe of the Rbinoceros bicornis appear always in a degree moveable. When fixed, as in he unicornis, there is a thick mucus interofed between its bafe and the bone on which \(t\) is fituated.
The colour of the horns depends, like that of re hairs, on the mucous fubftance. Their chenical analyfis affords fimilar refults. Heat Jftens, and even fufes them. It is the agent: Vor. II. S s employed
employed in manufacturing them into different articles.

From this examination of the horns, it appears that they differ effentially from the offeous prolongations called antlers of deer. The latter increafe at the extremity. They are covered with fkin during their growth. They fall off, and are reproduced at a certain period of the year. The others grow at the bafe, are not covered by the fkin, and are permanent.

We find feveral other horny parts in animals. Such are the protuberances of the head in bornbills, the guinea-forel, the Caffowary, \&c. Thefe are laminæ of horny fubftance which inveft the offeous finufes, of which we have already fpoken, and which we fhall defcribe hereafter, in treating of the organs to which they belong. In the fame manner we fhall poftpone our accouns of the horn which covers the jaws of birds and feveral reptiles, the fpines of the wings, and the spurs. The external defcription of thefe parts is indeed more the province of the natural hiftorian, than of the anatomift.

> 4. Of Nails.

This name is given to the horny proiongations which arm and protect the extremities of the fingers or toes in mammalia, birds, and reptiles. Their number is in general equal to that of the fingers and tocs. Their form, as we have
already obferved in the article on the divifion of the extremities, appears to depend on that of the laft phalanx. They are to thefe phalanges what the hollow horns are to the proceffes of the os frontis which they cover.

The nails feem incafed in a duplicature of the fkin. The part covered by the fkin is called the root. They grow by that part precifely in the manner of hairs, but the oppofite extremity wears by the friction of the ground, and by other ufes to which animals apply their nails. We obferve, therefore, that they grow exceedingly long in animals that are confined, and have few opportunities of motion.

No part of the nail is fenfible, except that which adheres to the fkin. The free extremity may be cut, or broken, without occafioning any pain.

The colour depends upon that of the rete mucofum, as we have already remarked.

The human nails appear in the third month of conception; the development takes place nearly in the fame manner as in the common horns, which we have already defcribed. At firft they appear like a kind of cartilage, which gradually acquires a proper confiftency. Almoft all animals have at their birth the nails in fome degree formed.

The nails of man, and the greater part of unguiculated animals; appear to be formed of ex:remely thin ftrata placed one upon another. The
anterior laminæ are larger than thofe of the inferior furface; therefore we do not perceive externally the kind of imbrication which takes place: but in difeafes, or upon a tranfverfe fection of the nail, after it has been completely dried, this ftructure becomes manifeft. Frequently we obferve on the fuperficies of the nail, fome ftriæ, or very fine longitudinal and parallel lines, which appear to refult from the man. ner in which this part is moulded upon the laminæ it covers.

The nails feem intended to protect the extremities of the fingers and toes. They are, in general, wanting in thofe animals which do not employ thefe parts either in walking or grafping. We have examples of this circumitance in bats, in the wings of birds, with the exception of fome fpecies of the palamedea, tringa, charadrius', and parra; in the fins of feveral tortoifes; and in the claws of fome other aquatic reptiles, as frogs, falámanders, \&xc.; laftly, in the members or fins of fifhes.

Birds have commonly nails on the toes only. They are ftrong, and refemble thofe of the Sarcophaga and birds of prey. They are flat in the web-footed, flender pointed, and very much elongated on the poiferior toe of larlis and jacanas (parra Lin.)

The nail is ferrated on one of its fides in the middle toe of the soal-fucliers (caprimu! gus Lin.) and of the berans.

There is a fupernumerary nail, or offeous procefs, which forms a kind of horn on the tarfus of the greater number of gallinæ. It is.called the Spur. The Iris peacock (Pavo bicalcaratus) has two. They become very long in the cocli. A curious experiment has been performed when pullets are made capons, by cutting off this fpur, and fixing it in the place of the comb. It takes root there, and grows to a confiderable fize.

The nails prefent no particularity in reptiles.
The chemical analyfis of the nails affords nearly the fame refult as that of the hairs and feathers, parts with which they have much relation, both in their mode of growth, and in their ftructure.

Hoofs differ from nails in the following circumftances. They envelope the phalanx inferiorly as well as fuperiorly. They are neither pointed nor cutting at the extremity, and both furfaces meet to form a round and blunt edge.

Their interior is rendered remarkable by deep and regular furrows, which receive projecting laminæ, and which are not obfervable in nails. Thefe furrows are particularly remarkable in the elepbant and rbinoceros. They are alfo very ftrongly marked in the borfe, but lefs confpicuous in the Ruminantia.

Between the nails and the foft parts of the phalanx, there is always a layer of mucous matter ; and in the inferior part of the hoof, there is a
foft fubftance abounding in nerves, which give a degree of fenfibility to that part.

\section*{5. Of Scales.}

Thefe are laminæ, or fmall plates, of a fubftance which is either horny or offeous, and which cover certain parts of the body of vertebral animals.

Scales have a great refemblance to hairs, feathers, horns, and nails, in the manner of their development, in their ufe, and in their chemical analyfis.

They mighe generally be confidered as very flat horns, as hairs are very flender horns.

Almoft all reptiles, and the greater number of fifhes, are entirely covered with fcales: we obferve them only on fome parts of the body in a very few fpecies of mammalia; and in birds, they are moft commonly found on the feet alone.

The term focales is here applied to very different fubftances; it being ufual to include, under this denomination, all the parts we are about to defcribe in a general manner, in the four claffes of red-blooded animals.

The fcales of the pangolin, and long-tailed manis, are a kind of flat nails, of a horny fubftance; they are thick; their anterior third, which is bevelled and fharp-edged, is free, but they adhere to the flin by their other portion. Their external furface is chanmelled longitudinally,
nally, particularly in the long-tailed manis, in which they ufually terminate in three points; they are furrowed tranfverfely on the fide next the fkin , and appear to be formed of imbricated laminæ.

In the armadillos, the fcales are fmall compartments of a calcareous fubftance, covered with thick, fmooth, varnifh-like epidermis.

The fcales which cover the tail of the beaver, are fimilar to thofe of the feet of birds.

Thofe on the tails of rats and opolfums, and feveral other prehenfile tailed animals, are of the fame kind.

The feales of the feet of birds confift of thin laminx, of a horny fubftance.

The fcales which cover the wings of manchots, are only very fhort feathers, the barbs of which are united to the epidermis.

Among the reptiles the fcales vary greatly, according to the genera. In tortoifes they are plates of a horny fubftance, which are very hard and denfe in the greater number. But in the tefudo coriacea, and feveral others, they are foft and flexible: fometimes thefe fcales are imbricated, as in the bawkes-bill turtle; and then they are fmooth, or channelled longitudinally: at other times they form compartments of different figures ; in the latter cafe they are more or lefs convex, and furrounded with furrows, or concentric channels, in the midft of which
\[
\mathrm{S} \text { s } 4
\]
are points, which are either feabrous, elevated, or blunt, as in the fpecies named geometrica, graca, \&x.

In the crocodile the fcales are offeous, and difpofed in bands, as in the armadillos; they are imbricated like thofe of fifhes, and are marked by a longitudinal ridge, or elevated line.

In the greater number of lizards and ferpents, the fcales are only fmall plates, or compartments of the fkin, between which the epidermis is continued and moulded. The fintks and forcrvorm have real fcales, which lie upon each other like tiles, in the manner of the fcales of fifhes.

In the clafs of fifhes, all the folid parts with which the body is covered are called fcales; but the fliucture and ufe of thefe infenfible parts render it neceffary that we fhould confider them more in detail.

We name foales thofe thin horny plates which are imbricated like ancient coats of mail, and ufually crefcent-fhaped at their unconnected cdge, as in carp, pike, \&ce. Thefe plates moft commonly prefent longitudinal lines, which are rough to the touch : their extemal third is coloured by the rete mucofum. Thofe above the lateral line have ufually a furrow on the furface next the body; fometimes they are perforated by an oblique hole, through which a membranous canal paffes; there fcales are covered with fcabrous points in the balifes. They are finely forrated on their edges in the fole (pleuioncics
\[
\text { Art. VI. Insensible Parts. } 633
\]

Solea). They are very fmall in eels, in which we cannot perceive them until the fkin is dried. But they grow to the length of feven centimeters in the great fcaled bream; in this fifh, in particular, the fructure of the fcales may be eafily obferved. Befides the longitudinal, or rather radiated lines of which we have fpoken, we perceive concentric ftriæ, which feem to indicate that the fales grow in every direction, by the addition of new layers in the manner of horns and nails.

We may name the plates of calcareous matter which are contained in the fkin, offeous efcutchesns. In the trunk-fifs (oftracion), \&c: they are fmall compartments of a regular figure, and difpofed like mofaic work. In the fuirgeon, thefe plates are of different forms, hollowed externally by numerous holes, and bear a longitudinal ridge. In the turbot (pleuronctles inaximus), the fcutcheons are fmall, and in the form of lozenges. In the effox offous the plates are rhomboidal, and covered with a compact and gloffy epidermis.

In the thornback the fpines are curvated points, of a tranfparent offeous fubftance; the bafe of the fpine is white, opaque, and hollow internally; it exhibits the print of the mufcular fibres, into which it is implanted.

Thefe fpines are nearly fimilar in feveral fpecies of diodon, and other genera; but they have not a round and hollow bafe, as in the ray.

In the pilied dog-fifb (fqualus acantbias Lin.) the foules or prolongations which fupply their place are fmall briftly laninx; they are flat, bent, figured like myrtle-lcaves, and have a longitudinal ridge in their middle.

In other fpecies of the fame genus, as the great \(d o g-f i f s\); in the genus theutbis, the remora, Kac. the fkin is covered with fmall tubercles, which are extremely hard, very clofe, rough to the touch, and which cannot properly be called fcales.

The fcales are covered in fifhes, as well as in all the other claffes, by the epidermis, which varies in thicknefs and foftnefs according to the fpecies. It is the epidermis only which is caft by ferpents: the fcales below it continue to adhere to the fkin; it appears that the hairs, horns and nails are alfo formed under the epidermis, which is always found on thefe parts, unlefs it has been deficcated, and worn off by friction.

All the infenfible parts are deftitute of nerves and veffels, except when they include cavitics that contain them, as is the cafe with feathers, the fpines of the ray, \&tc.

They grow like the epidermis, by the addition of new layers, which tranfude from the fkin, and become united to the laminx that have been already formed.
6. Of the Infenfible Parts in the Animals without Vertebrce.
Little remains to be faid on thefe parts, fince the fkin of the greater number of invertebral animals is hard and infenfible, as has been already defcribed.

In Lecture II. Article 2. we have explained the manner in which the fhell is developed. We have alfo, in the Article on the Skin, in the prefent Lecture, made fome obfervations on the colour of the calcareous fhell of the Mollufca and the Cruftacea.

The horny fubftance which ferves both for bone and fkin to the greater number of perfect infects, has alfo been defcribed.

The hairs or fpines appear to be a continuation of the epidermis, for they are caft off with it in moulting; and others are reproduced, which are longer than the preceding.

The fcales of the wings and of the body in the Lepidoptera, and fome other orders of infects, are fmall horny plates, differently coloured, implanted in the fkin, and covering it like tiles upon a houfe.

The plumes of the pterophorus, of fome butterflies, and of the tailed befperia, are only prolongations or fhreds of the wings furnifhed with long hairs on the fides.

A number of animals of the clafs vermes have the body furnifhed with bundles of hairs, which

\section*{636 Lect. XIV. Of Touch.}
are fometimes fliff and retractile, and ferve for feet, as we have pointed out in the genera nereis, terebilla, lumbricus, \&c. In the apbrodita there are, befides thefe briftles employed in progreffion, an infinite number of other hairs, which are long, flexible, and of a changeable fea-green colour; there is alfo a tomentous felt-like fubftance covering the branchix, through which the water is ftrained.

We refer to Lecture. VI. Article 8. for the infenfible parts of Zoophytes.

\section*{[637]}

\section*{LECTURE FIFTEENTH.}

Óf tie Organs of Smelland Taste.,

Taste and Smell have a more immediate relation to Touch, than Seeing and Hearing; they feem indeed only more exalted modifications of the ferife of Feeling, by which we are enabled to perceive the differences of the more minute particles of bodies when they are diffolved in liquids, or in the atmofphere; their organs are effentially the fame as that employed in ordinary touch, and differ from it only by a greater development of the nerves, and a finer and fofter texture in the other parts. The organs of which we have to treat are, indeed, real prolongations of the fkin, formed of all its different layers: we therefore find the epidermis, the rete mucofum, the villous furface, the true fkin, and the cellular fubftance. The tongue of certain animals. is even furnifhed with infenfible teguments, as fcales, fpines, teeth, \&c.

We fhall now defcribe the Organs of Smell and Tafte, in the manner we have examined the other fenfes; that is, both as to their effential parts, and with refpeet to thofe that ferve only to augment or diminifh the force and extent of the fenfations.

\section*{638 Lect. ¿̌V.§ I. Of Smelz.}

\section*{SECTION FIRST.}

> Of the Organs of Smell.

\section*{Article I.}

\section*{Of the Senfe, and its Organs in gencral.}
\(\mathrm{O}_{\mathrm{F}}\) all the fubftances which act on our fenfes, thofe which produce the fenfation of Smell are leaft underftood, though their impreffions on the animal body are, perhaps, of the moft powerful and extenfive kind.

We know, in general, that this fenfation is caufed by volatile particles diffolved or floating in the atmofphere, and conveyed by the air into the nofe, where they are diffufed.

Some bodies are always odorous, becaufe, the whole or a part of their fubftance being volatile, it conftantly exhales. Others becone odorous under certain circumftances: for example, when a volatile principle, which has been retained by its affinity with other fubstances, is extricated by the addition of fome new body; as the falts which contain ammoniac, after a more powerful alkali has difengaged it: of when there
is united to them an external body, capable of forming a volatile compofition, as muriatic acid is changed into oxvgenated muriatic acid, by the acceffion of new oxygen : or, laftly, when a fubftance, which deprived the body into which it had entered, of its volatility, is diflodged; as nitric acid, when it is changed into nitrous, by the lofs of a part of its oxygen. It is, doubtlefs, in one or other of thefe ways that the prefence or abfence of heat, light, or humidity, may render certain bodies odorous: thus fome flowers poffers that quality coly during the night, clay acquires it when it is moiftened, \&zc.

Odours appear, therefore, to be propagated in the air, in the fame manner as one fluid diffufes itfelf, and mixes with another: their motion is not direct like that of light; it is not rapid, and is neither fufceptible of refraction nor reflection; it refembles that of the matter of heat, with this difference only, that the fubfances through which the air cannot pals, are alfo impermeable to odours.

Odours may combine with different bodies by affinity, and are frequently deftroyed by the fame means; they alfo adhere in preference to certain bodies, according to the nature of each. Some are mof eafily retained in fpirits, others in oils, \& c.

Thefe phænomena, it will be perceived, feem: to prove that each fmell is occafioned by a par ticular fubflance floating in the atmofphere. 'There

There are others, however, which appear to intdicate that odour is not always produced in this manner.

Several bodies yield a ftrong fmell for a great length of time, without fuftaining any fenfible lofs of fubftance. Such, for example, is muflk. Some odours are experienced when no evaporation can be obferved, as the fmell which arifes from the friction of copper, that produced by the fufion of a great number of bodies, and even by the melting of common ice. In other cafes, real evaporations produce no fenfible odour; this may be remarked on the difengagement of feveral gazes, and even on the ordinary evaporation of water. Perhaps thefe phænomena only prove that the force of the fenfation is not proportional to the quantity of the fubftance by which it is excited, but that it depends on the nature and degree of the affinity of that fubftance with the nervous fluid. The action of the greater part of odorous fubftances on the nervous fyftem, is rendered manifeft by a number of other effects befides the fenfation of fmell ; fome produce faintings, others giddinefs, or even convulfions. Some, on the contrary, ferve to remove thefe diforders: indced the greater part of medicaments ait in general rather by their volatile and odorous parts, than by their other principles; and afford new proofs of the influence exercifed in the animal econony by the gazcous and impralpable fubfances,
the

\section*{Art. I. The Sensation in general. 64t} the greater part of which are doubtlefs ftill unknown to us.

We know not whether odours have a peculiar vehicle, befides the matter of heat which is common to them all in their quality of vapours or elaftic fluids.

We are ignorant of the circumftances which render them agreeable or difagreeable to us; and we can as little explain why fmells, which are difgufting to us, feem to be pleafing to certain animals, which teftify alfo an indifference for thofe that are delicious to man. Though the human fpecies, and other animals, are in general fond of the odour of thofe fubftances which ferve for their particular food, that odour is difpleafing when they are fed: on the contrary, they fometimes are fond, to a degree of madnefs, of the odour of fubftances which are of no ufe to them, as cats are of nepeta, \&c. Odours that are conftantly difagreeable, proceed in general from fubftances which may prove injurious. Venomous plants, corrupt flefh, and poifonous metals, have almoft always a difagreeable fmell.

Whatever may be the anfwers given to thefe queftions, the organ of Smell, in all the animals in which it has been obferved to exift, is a very fine expanfion of the fkin, abounding in veffels and nerves moiftened by a quantity of mucous matter, and acted on by air or water impregnated with odorous fubftances; for it appears, Fol. II.

T T
that
that a fifh fimells in water in the fame manner as other animals in air: thus odorous fubftances, thrown into water to ferve as bait, attract fifhes from a very confiderable diftance, in the fame manner as they would attract quadrupeds or birds through the medium of the atmofphere. We know not whether fubftances, which are infoluble, indiffufible, and inodorous in the air, but which diffolve in water, as for example falt, act in the latter medium on the organ of fmell of firmes.

In all the red-blooded animals, which refpire by lungs, the organs of fmell are fo fituated, in the paffage of the air; as to be impreffed by it at the moment of infpiration. In fifhes, they are fimply at the end of the muzzle, and muft receive impreffions from the water when the fifh fwims forward.

We are not fufficiently acquainted with the nature of the olfactory membrane, nor with that of the nerves diffributed to it, to enable us to form an opinion refpecting the degree and the kind of fenfations they procure to different animals. It may, however, be at firft fight prefumed, that, all things in other refpects being equal, the animals in which the olfactory membrane is moft extenfive, enjoy the fenfation of fmell moft exquifitely, and experience confirms this conjecture. It would be curious to learn, why the animals which poffers the fenfe of imelf in the highoft degree, are precifely thore which
feed on the moft fetid fubftances, as we obferve in dogs which eat carrion. Perhaps the Sarcophaga have, of all animals, the fineft fmell, as it is neceffary they fhould be able to trace their prey from a great diftance.

In treating of the organs of Smell, we fhall have to examine the ftructure and extent of the pituitary or olfact ory membrane, the fize and number of the nerves diftributed to it, and the means by which it receives the odorous exhalations. Thefe fhall form the fubjects of the following articles.

\section*{Article II.}

Of the \(\mathbf{H}\) orm and Magnitude of the \(\mathbf{N}\) ajal Cavity.
[HIS fubject is included in feveral of the \(\mathrm{Ar}_{\boldsymbol{\downarrow}}\) cles of Lecture VIII: we fhall therefore ontent ourfelves by referring-
For the compofition of the nafal foffre, to ages \(60, \&<c\). of this volume.
The external aperture, pages \(82,8 \mathrm{cc}\). Their fize and their vertical fection, pages \(10_{s}\) c.

Their tranfverfe fectior, and their direstion, pages 82 , \& c.
\[
T \pm 2
\]

We

644 Lect. XV. § Y. Of Smele.
We fhall merely add here, that, in fome fiffes, the nafal foffæ are not formed in the muzzle, but, on the contrary, fuftained upon pedicles, and elevated like drinking-glaffes. Of this number is the frog-fis.

\section*{Article ill.}

Of the Simufes which increafe the Extent of the Naful Curity.

IT is not proved that the fenfe of Smell refides in thefe finufes: the membrane which covers them is thinner than that of the reft of the nofe; and it does not appear to receive any ramifications of the olfactory nerve; no ufe is attributed to them, except that of fecreting an aqueous humour calculated for lubricating the interior of the nofe. It is certain, however, that the animals which have the moft perfect fmell, have thefe finufes the longeft; perhaps they are intended as refervoirs for a great quantity of air impregnated with odorous particles, in order that it may act more forcibly on the olfactory membrane.

Thefe finufes hardly exift in young animals, and are not fully developed until puberty.

They are found only in man and quadrupeds; they
they communicate with the cavity of the nofe by contracted apertures.

There are three finufes, which are named, from the parts they occupy, the frontal, the Pphenoidal, and the maxillary.

\section*{A. In MIan.}

The frontal finufes open into the upper part of the vault of the nofe; they extend about an inch in height, and a little more in breadth on each fide above the eye-brows; they are feparated from each other by a vertical feptum.

The fphenoidal finufes open into the pofterior and inferior part of the nafal vault; they oczupy all the interior of the os fphenoides, under he anterior and middle part of the fella turcica; hey are alfo feparated by a vertical feptum.
The maxillary finufes, or antra Higbmoriana, ill the whole body of the fuperior maxillary ones; they open into the fides of the nafal avity, near its bottom.

\section*{B. In other Mrammiferous Animals.}

\section*{1. The Firontal Sinufes.}

Thele are very finall in monkies. They are ven entirely wanting in the greater number of 'agesois and guenous. But they are confiderably xtenfive in fome of the fupajous.
Among the Sarcophaga, dogs, rvolfs, foxs,
\[
\mathrm{T} \text { T3 } \& \mathrm{c} \text { 。 }
\]

646 Lect. XV. §1. Or Smele.
\&cc. have them mof confiderable; they occupy the whole extent of the os frontis, fill the interior of the two poft-orbitar proceffes, and defcend on each fide in the pofterior wall of the orbit. They are fomewhat lefs extenfive in the bear towards the fides, and in the cat pofteriorly. The finufes of the coati refemble thofe of the cat. Thofe of the civet occupy only the pofterior part of the frontal bone. There are none in the bauger, in bats, nor in the greater number of recafels. The excavations of the poft-orbitar proceffes, it is true, exift in thofe animals, but they are only prolongations of the nafal cavity, communicating freely with it, and not by a narrow aperture.

With refpect to the Rodentia, thefe finufes are wanting in rats, the marinot, the agouti, the fquirrel, the beaver, and the bare. But they are very large in the porcupine, and penetrate even into the fubftance of the nafal bones.

The fame difference occurs among the Edentata. The aint-eater and the pangolin have no frontal finufes. The armadillo has them of a moderate fize. But in the flotb they are very large, and in the adult animal extend nearly to the occiput.

The Ruminantia exhibit varieties equally Ariking. The jag appears to have no frontal finufes. The ox, the goat, and the foecp, have them of an enormous fize, and extending inia the fubftance of the offeous proceffes which fill
the horns. Thofe of antelopes occupy the thicknefs of the os frontis, but the offeous part of the horns is folid. The camel has alfo numerous finufes, which are very much divided, but they do not extend further back than the frontal bone.

Of all animals, the elephant has the largeft frontal finufes. It is their magnitude which gives to his cranium the extraordinary thicknefs which diftinguithes it from all others. They extend through the whole fubftance of the parietal and temporal bones, and even the articular condyles of the os occipitis. Numeraus and fingular laminæ divide them into cells, all of which communicate with each other.

The frontal finufes of bogs are equally extenfive, though lefs elevated. They proceed to the occiput, and are only feparated from each other by fome offeous laminæ, which are placed in a longitudinal or nlightly oblique direction; and which do not entirely intercept communication. There are four rows in the babirouffa, and feven or eight in the common bog. The bippopotamus, and the rbinoceros, want the frontal finufes.

The frontal finufes of the borfe occupy a great part of the os frontis. They do not open immediately into the nofe, but communicate, by a very large aperture on each fide, with the pofterior maxillary finus; for this animal has two.

648 Lect. XV. §I. Of Smere.

\section*{2. The Maxillary Sinufes.}

The relations of thefe finufes do not correfpond to thofe we have pointed out in the frontal. They are rather proportionally fmaller in the Quadrumana than in man. They are reduced almoft to nothing in the Sarcophaga, the greater part of the Rodentia and Edentata, and, in general, in all animals in which the maxillary bone does not form a floor under the orbits. Thefe finufes exift however, and are even very confiderable in the porcupine; but in the greater part of the other unguiculated mammalin, even when the maxillary bone is hollow; the cavity forms a part of that of the nofe, and cannot be called a finus, as it has no contracted aperture.

Hogs have no finus that can properly be called maxillary, but they have one in the bafe of the os malæ, which is particularly extenfive in the Etbiopian bog. The bippopotanus has a fimall one in the fame place.

The maxillary finufes of the Ruminantia are very large, and open into the nofe by a narrow fiffure behind the inferior fpongy honcs.

The borfe has two, the pollerior is the largeft. It opens laterally towards the back and upper part, of the nofe by a triangular hole. Its parietes form a large projection within the nofe, which feparates the portion of the nares, occupicd by the ethmodal foramina, from that in
which the two great turbinated bones are fituated. The anterior maxillary finus opens into the bottom of this laft part.

The interior of the offa maxillaria of the elephant is, like that of the bones of his Nkull , divided into a multitude of very large cells, all of which communicate together, and one opens by a hole into the fide of the nofe.

\section*{3. The Sphenoidal Sinufes.}

Thefe finufes are fmall in proportion as the fella turcica is flat.

Monkeys and malis have them fmaller than man. The Sarcophaga have them alfo fmaller, and of a more elongated form. The otter, the Seal, and the pole-cat, want them entirely. It alfo appears, that there are none in the other unguiculated Mammalia, nor in the Ruminantia. The bog and the bippopotamns have them, but they are very fmall. In the eleploant they are enormous, and occupy even a part of the pterygoid proceffes. They are not divided into fmall cells, like the other finufes of that animal.

In the borfe, each opens into the pofterior maxillary finus of the fame fide.

I have not found finufes of any kind in the bones of the Cetacea.

The cavities of the bones of the cranium in birds, communicate with their ears, and not with their nofe. The large vacuities in the beaks

\section*{650 Lict. XV. §I. Of Smele.}
beaks of the bornbills and toucans, communicate indeed with their nares, which in thefe birds are very fmall; but it appears, in the frefh ftate, that the pituitary membrane clofes this communication, and that it does not penetrate into thefe vacancies which are every-where traverfed by offeous filaments.

Reptiles and fifhes have nothing that can be compared to finufes.

\section*{Article IV.}

> Of the Projeding Lamince which increaje the Internal Surfaces of the Nafal Cavity.

Bestdes the ufe of thefe laminx in multiplying the internal furfaces of the nofe, and thereby augmenting the extent of the pituitary membrane, and the intenfity of the fenfation of fmell, they alfo form conduits which are joined to the apertures of the different finufes.

> A. In Man,

There laminæ are of three kinds, viz. the offa turbinata inferiora, formed by particular bones; the turbinata fuperiora, which are productions of the os ethmoides; and its anfractuofuties.

The

\section*{Art. IV. Projecting Lamines, 65s}

The inferior turbinated bones have the form of a thin lamina, which adheres by one of its edges to a ridge of the maxillary bone, and is nightly twifted in fuch a manner that the free edge points downward. Its convex furface is fuperior and internal. We obferve that it is marked by fome oblique furrows. The aperture of the maxillary finus is above it pofteriorly. The conduit formed by its concavity, proceeds directly from the anterior to the pofterior nares.

The os etbmoides is formed of three laminz perpendicular to each other, and of feveral intermediate lamine. The cribriform lamella, which completes the cranium between the roofs of the two orbits, and the two of a plana, each of which forms a confiderable part of the internal parietes of the orbits, are the three external laminæ. We have already defcribed them. See pages \(20,36,48\), and \(6 i\), of this volume.

Between the two offa plana there is a fingle vertical lamina, which, continued with the vomer, divides the cavity of the nofe into two parts. In the interval which it leaves on each fide, there are fome irregular lamellis which adhere to the os cribriforme, and the os planum of the fame fide only, but not to the middle feptum. Thefe irregular lamellæ form communicating cells which we have named anfrattuofitics, and which may alfo be called elbmoidal finufes. This collection of cells is clofed, on the fi e of the reptum, by a vertical and fulcated lamina. The

652 Lect. XV.§I. Of Smele.
interval which remains between thefe two laminæ, leads directly to the fphenoidal finus of that fide.

The inferior part of the lamina, which is oppofed to the feptum, is prolonged obliquely, and extends a little pofteriorly, where it forms a fold, the concavity of which is directed downward; and the anterior part is continued with a flort canal, which afcending obliquely, and penetrating the ethmoidal anfractuofities, leads into the frontal finus of the fame fide. This reflected lamina is the fuperior os turbinatum.

The two turbinated bones have a more fpongy firuciure than the other offeous laminx; and we obferve, particularly in the fuperior pair, that they contain a multitude of fmall holes.

\section*{B. In other AIammiferous Animals.}
1. 'Of the Ofla Turbinata Inferiora.

We have thewn that thefe bones form only a fimple lamina in man. We fhall now defcribe their different degrees of complication in other animals.

They are fimilar to thofe of man in the monkies of the old continent, but in fapajous they begin to refemble in firucture thofe of the Fa chydermata and Ruminantia; in all which animals the lamina is only imple at its bafc, and is bifurcated at a fmall diftance. The two laming which anife from it, are twifted fpirally

\section*{Art. IV. Projecting Laminex. 653}
on themfelves. They incline from the fide of the maxillary bone, and make two turns, or two and a half, according to the fpecies.

The kind of horn or concha produced by this fpiral turning, is clofed pofteriorly in a point. We know that it contains two canals, one above, the other below the principal lamina. The inferior leads, as in man, into the pofterior nares. In the Ruminantia, the fiffure which leads to the maxillary finus, is found in the hollow of the fuperior canal. In the bogs, this canal is continued pofteriorly by a long furrow, at the extremity of which there is a conduit which goes into the finus in the bafe of the os malæ.

In bogs, the laminx of the offa turbinata are fulid, but in the Ruminantia they are perforated by numerous foramina, more or lefs large. Thefe foramina are fmall in flsecp. They become very large and numerous in deer; and ini the great Ruminantia, as cores, large antelopes, \(\& \circ\). their fize is fo confiderable that they leave between them only offeous filaments, and the bone refembles lace.

The interior of thefe bones is divided by feveral vertical partitions, which are perforated like the reft of the fepta.

In the hipprpotanizs, the two turbinated bours are flattened horizontally, but in other animais vertically. This is occafioned by the form of

654 Lect. XV.§1. Of Smete。
the head. The formina are very fine, and iflnumerable.

The inferior fpongy bones are lefs regular in the Solipeda. The horizontal lamina, inftead of bifurcating folds at firf downward, then bends upward, and is attached behind to the maxillary bone. It afcends pofteriorly to cover the foramen of the inferior maxillary finus; and even to penetrate into it. Laftly, it produces, towards its middle, two or three oblique laminæ, which are attached to the anterior edge of this hole.

In the ant-eaters, the pangolins, the oryeteropus, the armadillos, and even in the three-toed Jloth, the inferior turbinated bones nearly refemble thofe of the Ruminantia, But in the troo-toed ant-eater, they reprefent two prifmatic boxes clofed on all parts, the interior of which is divided by fome vertical laminæ. We find two fimilar boxes in the makis, but no internal divifions.

Among the Rodentia, the rat has the turbi* nated bones fimilar to thofe of the Ruminantia; but the offa turbinata of the other genera of that order, may be divided into two kinds : the firft are formed like thofe of the Sarcophaga 3 the others, which are met with only in the porcupines, the marmottes, and a few other fpecies, confift of a double lamina attached longitudinally, the two parts of which, feparate from each

\section*{Art.IV. Projecting Laminas. 655}
other, afcend by a fpiral convolution, and reprefent a portion of the fhell called turbo.

The other Rodentia, as the bares, rabbits, fiuirrels, beavers, rats, and the greater number of the Sarcophaga, as dogs, bears, badgers, feals, the domeftic cat, \&c. have a very complicated ftructure in the inferior turbinated bones. The lamina by which they are fixed is bifurcated. Each branch is again divided; the laft lamina form, by their parallel fituation, a number of fmall canals through which the air paffes, and which are covered by the pituitary membrane.

The number of thefe laminæ is very variable. The feals and the otters are the fpecies that have moft of them. The dogs and bears rank next. Of all the Rodentia, the beavers have them moft numerous, and the bares the leaft fo.

The direction of the canals is moft ftraight in the Sarcophaga, and moft curved in the Rodentia.

When there are few laminæ, the laft are fpirally rolled as in the animals which have only two.

Some Sarcophaga have the inferior turbinated bones as fimple as the animals firft mentioned. The lion, for example, has only a bifurcation and a double roll, almoft like the Ruminantia. The offeous lamina is pierced with many holes; the civets and gexettes have a fimple rolled bone without holes.

\section*{6;6 Lect. XV. §I. Of Smele.}
2. Of the Ofa Turbinata Superiora, and of the Ethmoidal Cells.
The ethmoidal cells, in a number of animals, are very diftinct from the fuperior turbinated bone. The part of the nafal cavity which contains them, is fometimes feparated from the reft by a particular feptum. In bogs, this feptum is formed inferiorly by a lamina which belongs to the palatine bones, and anteriorly by a projection of the olfa maxillaria, which goes to the feptum of the nares, and only permits the air to pafs by a narrow paffage above it.

In the borfe, this projection does not extend to the feptum. It produces, however, a very evident feparation, and leaves behind it a lateral depreffion, which is occupied by the ethmoidal cells. The fame difpofition prevails in the Carnivora, but neither in the Ruminantia nor the Rodentia, in which the depreffion is inconfiderable.
'Fo form an idca of the ethmoidal cells in the greater number of animals, it is neceffary to imagine a great number of hollow pedicles, all connected to the os cribriforme. They extend forward and outward, and, in proportion as they advance, thofe which are nearefl unite. Veficles arife from them, which increafe in fize in proportion as they become leis numcrous. They are all hollow, and there are an infinite number of conduits or ways between them, ail of which

\section*{Art: IV. Projecting Lamines. 657} communicate with.each other. Such is their ftructure in the Edentata, the Ruminantia, the Solipeda, the Pachydermata, and the Sarcophaga. The latter of thefe orders have them the moft numerous. The Rodentia have very few. The porcupine, for example, has only three or four on each fide. Some genera, as the bare, have irregular cells, like thofe of man. Thofe of the quadrumana are fimilar.

The fuperior turbinated bone is reprefented in the Ruminantia, the Pachydermata, and the Solipeda, by one of the cells, which is larger, and in particular much longer than the others, and which extends to the inferior turbinated bone, which it covers in the manner of a roof. In the bog, it diminifhes towards the lower part, and ends in a lamina, which is joined to the os nafi under its external edge. This edge, therefore, appears to be bent inwards to cover the inferior turbinated bone. The fuperior turbinatum becomes thin much higher up in the Sarcophaga, fo that the hollow part of the cell, of which we fpeak, is not longer than in the other animals.

\section*{C. In Birds,}

The external fide of each noftril is occupied by three kinds of laminæ. The inferior turbinated bone is only a fold connected on one part to the alx of the nofe, and on the other to the feptum. The middle or largeft lamina, the fir-

Vol. II. U u fure

\section*{\(6 g_{8}^{8}\) Lect. XV.§I. Of Smell.}
fure of which Scarpa compares to that of a cu. curbite, adheres by its bottom to the offeous part of the feptum. It folds two and a half times on itfelf. The fuperior lamina, which has fome refemblance to a bell, adheres to the frontal bone and to the os unguis. It contains two apartments, each of which is prolonged into a hollow tube. The moft internal tube extends to the orbit, and the external terminates in a blind cavity behind the middle lamina. Thefe three laminæ divide the nafal cavity into three paffages. They vary in their magnitude and inflexions, according to the fpecies. Scarpa, from whom we borrow this defcription, affures us that the middle makes only one turn and a half in the Gallinæ and the Pafferes, and that the fuperior is in the fame birds very fmall. It increafes a little in the pies, is more confiderable in birds of prey, and is ftill larger in the Anferes. Finally, in the Grallæ it alone occupies two thirds of the cavity, while the middle lamina is very flender, making only a turn and a half, and the inferior is only an indiftinct fold.

Thefe turbinata are in general cartilaginous. Marwood fays, they are membranous in the caforvary and the aibatrofs. To me they appear offeous in the bornbill and the torscan.

> D. In Reptilcs.

Reptiles have alfo different projecting lamine within

\section*{Art. IV. Projectinc Lamine.}
within their nofe ; but they are produced by the folds of the internal membrane, and are not fuftained by offeous parts. The tortoife has three laminæ, which divide the nafal cavity into. feveral foffæ. The middle one correfponds to the external aperture of the noftrils ; between it and the next, there is an oblique canal which leads to the pofterior nares. We find only fome tubercles in frogs and other fmall fpecies. It does not appear that any refearches have been made refpecting thefe parts in the crocodile.
E. In Fi/hes.

The internal laminæ of the nares in fifhes are alfo entirely membranous; but they are more numerous and more regularly difpofed than in the other claffes. In the Chondropterygii, the rays and 乃barks have them.placed parallel to each other on both fides of a large lamina, which extends from one end of the foffa to the other. Each confift of a femi-lunar fold of the pituitary membrane, and has other fmaller laminæ fituated on both its fides, in the fame manner as it is placed with refpect to the great middle lamina.

In the other fifhes, whether cartilaginous or offeous, the laminæ proceed like radii from an elevated and round tubercle. They have a very elegant appearance in the furgeon, where each is divided into more flender laminx, as the branch

660 Lect. XV. §I. Of Smele.
of a tree into fmaller ramifications. In fome fpecies, and particularly in the carp, the middle tubercle is fomewhat oval, and this renders the difpofition of the laminæ more like that which prevails in the Chondropterygii.

> Article V.
> Of the Pituitary Mrembrane.

THIs membrane is a continuation of the external fkin; it unites in the back of the mouth with that production of the fame tegument, which, after invefting the lips and all the interior of the mouth, covers the œefophagus and the reft of the inteftines.

It takes the name of pituitary membrane in all the interior of the nofe, on its feptum, its parietes, its laminæ, and even in its finufes. It is attached to the periofteum of all thefe parts by a compact cellular fubftance, and is itfelf every-where covered by the epidermis.

In the finufes it is exceedingly thin, fimilar to a common membranc, and its veffels can fcarcely be obferved; but in the reft of the nofe it is more thick and foft, particularly at the inferior and pofterior part of the feptum. Its fubftance is pulpy or fungous. We obferve in it a fpongy texture, rendered lefs compact in
finall fpots, which reprefent the mefhes of a net. Its fuperficies is of a beautiful red colour, and it is only by examining it very clofely that we perceive that colour to refult from innumerable ramifications of fmall blood-veffels. We diftinguifh them better, however, near their trunks, particularly at the pofterior part of the feptum, or when they are diftended by inflammation or injections.

The furface of this membrane has a great quantity of fmall pores, from which a mucous humour perpetually exudes. It is fuppofed that thefe are the orifices of an equal number of minute follicles concealed in the fubftance of the membrane. Many of thefe follicles have even been obferved to exift in fome parts, and to have common excretory canals. They were difcovered by Stenon in the nares of the fheep. Ruifch, and after him Haller, perceived feveral to communicate with one common finus, particularly towards the anterior part of the feptum.

There have been obferved in feveral quadrupeds, as the corv and the ßeep, fome parallel white lines between them. I have feen fome of them tranfverfe or oblique on the feptum, and longitudinal on the inferior turbinated bones of the fieep.

A vifcous humour conftantly exudes from all parts of the pituitary membrane. In inflammations produced by colds, this at firft becomes more abundant and fluid, and at laft turns thick, U U 3 ycllow,
yellow, and difagreeable to the fmell. The finufes produce a more limpid fluid, which feems intended to dilute the other.

Except the Cetacea, of which we fhall fpeak feparately, the mammalia exhibit little difference in the ftructure of the pituitary membrane.

In birds, it is, according to Scarpa, very thin on the fuperior turbinatum. The veffels form a beautiful net-work on its furface, and a multitude of pores produce mucous matter in great abundance, particularly on the middle turbinatum, where the membrane is alfo more thick and villous.

In reptiles it is every where furnifhed with reticular ramifications of blackifh veffels. We alfo find thefe black veffels in fome fifhes, and particularly in the pike; but in the greater number of fpecies they are red. We obferve be\(t\) ween them fome fmall papillæ, that fecrete a thick mucilage, which appears to be more abundant in fifhes, particularly in the rays and the Barks, than in the other claffes.

\section*{Article VI.}

Of the Nerves which are diflibibuted to the Internal Parts of the Nofe.
\(T_{\text {hese nerves come from the firft and the fifth }}\) pairs.

Art. VI. Nerves of the Nose.'
663

\section*{I. The Olfadory Nerve.}

We have already defcribed the origin of the firft pair in man, page 148 ; in quadrupeds, page 164 ; in birds, page 168 ; in reptiles, page 170 ; and in filhes, pages 172 and 176 of this volume.

We have defcribed all the portion of the nerve between its origin and its entry into the nafal cavity, by one or feveral foramina, in Lecture X. Article I.; it remains for us now to treat of its paffage through the cranium, and its diftribution in the interior of the nofe.

\section*{A. In Mammiferous Animals.}
1. The Cribriform Lamella.

The mammalia are the only animals that have a cribriform lamella to the ethmoid bone, and we muft, even in them, except the Cetacea, which have neither an olfastory nerve, nor holes for its paffage. All the other animals have only a fimple hole, or a fimple canal.

The pofition, and the concavity of the cribriform lamella, have been defćribed in Lecture VIII. Article 3. § B : it now remains for us to fpeak of its fize, its figure, and its foramina.

In man it has the form of an elongated rectUU4 angle,
angle, and we reckon in it about 40 fimple foramina. In noonkies it is proportionally much narrower, and its foramina are lefs numerous.

In the other quadrupeds, the cribriform lamella is fhaped like a heart, or it is oval ; it is placed at the bottom of a foffa, which a contraction, more or lefs confpicuous, feparates from the reft of the cranium, and is perforated by a great number of holes of different fizes, collected in groups; thefe groups leave between them vacant fpaces, difpofed like the fmall and great branches of a tree, fo that the whole lamella exhibits the appearance of very fine lace.

The number and figure of thefe clufters of foramina are not fubject to conftant laws; but, judging by the animals in which the fenfe of fmell is known to exift, that fenfation feems to be in proportion to the number of the holes.

They are large and numerous in the clepbant, the bippopotamus, the bog, and ftill more fo in the bind, or female fag. The Sarcophaga have them more numerous than all other animals. The bog, the foeep, and the ant-eater have, on each fide of the crifta gुalli, a range of holes which are larger than the others. We alfo find thefe holes, but lefs confpicuous, in fome other fpecies. The Rodentia appear, in general, to have fewer holes than the other orders. The camel has the lamella fmall, and the perforated fpaces

\section*{Art. VII. Nerves of the Nose. 665}
larger than in the other Ruminantia. The Edentara have the lamella large, and furnifhed with many holes.

\section*{2. The Olfadory Nerve.}

This nerve-whether it arife from the hemifphere, as in man, and in monkies-or whether the pia-mater unites it in fuch a manner to the caruncula mammillaris as to appear to form but one body with it, which takes place in the other quadrupeds,-always dilates, by its extremity, to cover the cribriform lamella, and to penetrate through it by as many filaments as that lamella has holes.

Thefe filaments are diftributed to the part of the pituitary membrane which covers the anfractuofities and turbinata of the os ethmoides, and to the intermediate feptum of the nares: they are fo very foft that it is difficult to trace them. We obferve, however, fome principal branches fpreading over the feptum. There are, in particular, two in the ßeep, which are very beautiful. Several authors believe that this nerve does not extend to the inferior turbinated bones. Though we have not made particular refearches on this \(f\) bject, the complication of thefe bones in the animals which have the moft acute fenfe of fmell, would preyent us from adopting the fame opinion.
D. In Birls.

The olfactory nerve in birds arifes only from the anterior extremity of the hemifphere, which has been compared to the caruncula mammillaris of quadrupeds; it paffes through a canal, the length and diameter of which varies according to the fpecies, but which is not fubdivided. On reaching the root of the nofe, the nerve divides like a hair pencil iito a multitude of fibrillæ, which expand in the pituitary membrane of the feptum, and the fuperior turbinata. Scarpa is of opinion that they extend no farther, and fuppofes that the middle and inferior turbinata receive nerves only from the fifth pair, and are not organs of fmell. The only ufe he attributes to them is that of breaking the force of the air, which thefe animals refpire in a greater quantity than others, and thus preventing its fhock from injuring the fuperior turbinata.

He ftates, that his experiments on living birds have convinced him, that fmell is ftrongeft in the fpecies which have the fuperior turbinata and olfactory nerves the largeft. The following is the order in which he places birds with relation to the faculty of fmell, commencing by thofe in which that fenfe is moft delicatethe Gralla, the Palmipedes, the Accipitres, the Pica, the Paficres, the Gallina.

\title{
Art. VI. Nerves of the Nose.
}

\section*{C. In Reptiles.}

The olfactory nerve in this clafs differs little from that of birds, as to its origin and its courfe; it differs ftill lefs in its diftribution, fince it alfo divides, according to Scarpa, upon the feptum, and the fuperior turbinatum, without proceeding farther.
D. In Fi/hes.

When the olfactory nerve arrives behind the folded membrane which forms the naris, it is dilated to be applied to the whole of its internal and convex furface. Sometimes, before it expands, it fwells into a real ganglion. This may be feen in the carp; at other times, its expanfion takes place without any previous enlargement: it is thin, and may be compared to the retina, but we obferve more diftinctly the nervous fibres, of which it is compofed. In rays and Jarks there is a trunk under the principal fold of the pituitary membrane, and branches in the lateral folds; thefe branches produce fmall filaments, which penetrate into the fubftance of the membrane, where they are regularly diftributed.

> II. The Nerve of the Fifth Pair.
. In all vertebral animals, the interior of the nore
nofe receives a ramification of the ophthalmic branch of the fifth pair, as we have fhewn, page 206 of this volume, in man; page 209, in the other mammalia; pagc 220 , in birds; page 222 , in reptiles; and page 223, in fifhes. This ramification is called the nafal nerve.

The fpheno-palatine ganglion of the fuperior maxillary nerve furnifhes, befides, in man and the other mammalia, feveral filaments to the pofterior nares. See pages 210 and 21 I .

The maxillary finus receives fome ramifications from the fame branch; and the frontal finus, fome from the frontal branch of the ophthalmic nerve.

In birds, the firft nafal branch of the ophthalmic arifes at the place where the nerve enters the bill; it is flender, and extends the whole length of the fuperior edge of the feptum ; the ophthalmic afterwards produces a fecond and larger branch, which divides into three or four ramifications, that extend to the middle and inferior turbinata. A third branch is diftributed to the external parts of the margin of the nares.

The diffribution of the fifth pair in the nofe of repules, is not correctly known to us.

In fifhes, the nafal branch of the ophthalmic is fometimes as large as the olfactory nerve itfelf. As thefe two nerves proceed a confiderable way in a parallel fituation in carps, the genus gadus, the pilie, \&cc. fome old anatomitts (Collins among

\section*{Art. Vil. Cartilages of the Nose. 669} among others) believed that thefe animals had two olfactory nerves on each fide : this error has been copied by feveral more recent writers.

The nafal nerve appears to us, to be principally diftributed towards the external edges of the pituitary membrane.

\section*{Article VII.}

Of the Cartilages which cover the Aperture of the Nofirils, and their Mufciles.
\(\mathrm{W}_{\mathrm{E}}\) have defcribed, in page 82 of this volume, the aperture of the nafal foffa, as it exifts in the Ikeleton, when the foft parts have been removed. In the frefh ftate that aperture is furnifhed with feveral cartilages, which more or lefs prolong the nafal cavity anteriorly, and which can enlarge or contract its entrance by their motions.

> A. In Man.

\section*{I. The Cartilages.}

The intermediate feptum of the noftrils becomes cartilaginous at its anterior and inferior part, and is prolonged to the point of the nofe; its anterior edge is reflected upon the part which is immediately under the offa nafi, in two triangular

6 6o Lect. XV.§I. Oe Smelt.
angular laminæ, which extend to the fide of the nofe, and increafe the planes formed by its proper bones.

The interval which remains on each fide between thefe triangular laminr and the feptum, is occupied by an oblong tranfverfe cartilage, reflected in two plates, between which is the vacant fpace that leads into each noftril ; one of thefe folds is placed againft the fuperior edge of the feptum, the other occupies the fubflance of the ala, for fuch is the name given to the inferior part of each of the fides of the nofe. The ala alfo contains, towards its root, one, two, or even three fmall irregular cartilages, which are fometimes membranous: all thefe parts are connected by a fat cellular fubftance, and covered by the fk in.

\section*{II. The Mufcles.}

Several mufcles act on thefe cartilages, and contribute, with the two lips, to give to the human countenance thofe various expreffions which characterize it:

\section*{1. The Pyramidatis Neff.}

This mufcle is a production of the occipitofrontalis, which defcends between the cyebrows, and covers the fides of the nofe; it is terminated by an aponeurofis, which is common to it with the mufcle we have next to notice.

\section*{Art. Vil. Cartilages of the Nose。 67 fe}
2. The Tranfierfalis, or Comprefor Naris,

Arifes below the internal angle of the orbit, and extends along the fide of the nofe, to unite with its correfpondent on the back of that part.
3. The Levator Labii Superioris Alaque Naf.

This mufcle defcends from the internal angle of the orbit towards the lip, and, in paffing, furnifhes feveral fibres to the ala of the nofe.

> 4. The Depreffor Aloe Nafi,

Comes from the part of the maxillary bone which contains the dentes incifores, and extends directly upward to the inferior edge of the ala nafi.

> 5. The Nafalis.

This mufcle has its origin in the inferior part of the feptum, and proceeds downward and laterally, to be confounded with the orbicularis of the lips.

The action of each of thefe mufcles may be very eafily comprehended.
B. In other Mammiferous Animals.

The cartilages of the nofe and their mulcles vary confiderably in the mammalia, as well as the greater number of other external parts.

The cartilages of the nofe of monkies do not: differ from thofe of man, but in their extreme fmallnefs;
fmallnefs; they appear to have no mufcles, ex's cept an expanfion of longitudinal fibres, which uniformly covers the whole face, and which feems to be a continuation of the Panniculus Carnofus ; this at leaft we have obferved to be the cafe in the macaques.

In the Sarcophaga, in which the nofe is not prolonged beyond the mouth, as, for example, the dog, the cartilages are alfo fimilar to thofe of man. The cartilage of the feptum produces two alæ which prolong the bones of the nofe, and the edges of the noftrils are furnifhed with two infected cartilages: there are no diffinct: mufcles, except the levator communis ale nafi, labique fuperioris, which covers the whole cheek, almoft in the fame manner as the expanfion we have defcribed in the monkey; and the deproflor alce nafi, which is very fmall.

In the Sarcophaga, which have projecting and moveable fnouts, as the bears, and particularly the coatis and the moles, the cartulages form a complete tube, which is articulated to the offeous nares.

In the bear, the cartilaginous feptum is reflected inferiorly, as well as fuperiorly; the fuperior ale bend downwards, the inferior upwards ; they meet on the fides, where thcy are united by cellular fubftances, and complete the external parietes of each noftril. The edge of each ala continues afterwards to bend inward, and forms a kind of concha, which makes an

Art. Vil. Cartilaces of the Nose. 673 addition to the inferior os turbinatum, and which is covered, like it, by a prolongation of the pituitary membrane.

This cartilaginous tube is moveable, in every direction, on the end of the offeous fnout: its mufcles are particularly remarkable in the mole; there are four on each fide, all attached above the ear, and extending between the temporal and the maffeter mufcles; they terminate by an equal number of tendons, which are placed round the nafal tube, like ropes round a maft : the moft deep-feated of thicfe mufcles produces the fuperior tendon, which unites with its correfpondent, and a large aponeurofis, which covers all the upper part of the nofe. The two next mufcles proceed to the fide of the nofe, the one a little higher, the other a little lower : the fourth, which is the moft external, unites with the correfponding mufcle under the nofe, as the firft docs above it ; thefe tendons are inferted into the fungous plate which terminates the finout, and cover the extremity of the cartilages : a fmall mufcle alfo arifes from the alveolar edge of the inter-maxillary bone, and depreffes the fnout. The end of the feptum is offified.

The fnout of the bog is, in a great meafure, rimilar to that of the mole ; its cartilages are only proportionally fhorter ; their extremity is Ilfo offified on the end of the feptum: this aninal has likewife four mufcles to the nofe, but
Vol. II.
X x
they

674 Lect, XV. § I. Of Smell.
they are fhorter, and differently fituated; the fuperior arifes from the os lachrymale before the eye; its tendon extends to the fnout, but does not come near enough to the correfpondent mufcles to unite with it: two other mufcles are fituated under the preceding; they arife from the os maxillare before the zygoma, and partly unite, but their tendons procced feparately, the one to the fide, the other towards the lower part of the fnout : the fourth, which is very fmall, proceeds obliquely from the nafal bone, towards the infertion of the preceding mufcle, and paffes under the tendons of the two firf.

The fnout and its longitudinal mufcles are enveloped in the hog, as in the mole, by annular fibres, which are a continuation of the orbicularis of the lips.

In the Solipeda and the Ruminantia, which have the offeous nares very open, directed obliquely upward, and formed by a large notch on each fide of the point of the proper bones of the nofe; a great portion of the foft part of the nares is membranous, and, in particular, bears the name of noftrils; the edge of their aperture only enclofes a cartilage in the borle: this cartilage, called Semi-lunar by Hippotomifts, is analogous to the inferior cartilage of man, and is alfo formed of two branches; one almoft parallel to the feptum, which is long and narrow; the other, which is fituated in the ex-

\section*{Art. VII. Cartilages of the Nose. 675}
ternal ala of the nofe, is fhort, and almoft of a fquare form: all the reft of the external ala is only a fold of the fkin , which forms at firft a blind cavity, the convexity of which is vifible externally, and which is named the falfe naris. A long and narrow fiffure of the internal parietes leads into the true naris: a principal mufcle dilates the falfe naris. It is the pyramidalis of Hippotomifts, and arifes from the maxillary libone, near the origin of the zygomatic arch, by narrow tendon; its flefhy part dilates, and is lloft on the convexity of the falfe naris, and in the orbicularis labiorum : another mufcle placed above the former, and arifing from the os naxillare, near the notch of the offeous nares, penetrates into the fold fituated between the bone nd the falfe naris, and is inferted into a cartiaginous production of the inferior os turbinaum.
The femi-lunar cartilage is approximated to ne feptum, and the noftril is dilated by a mufcle common to both nares, which is named tranjerfalis by Bourgelot; its fibres are parallel to he orbicularis of the lips, from which no feuration diftinguifhes them. Superiorly there e fome fibres which arife from the nafal bone, hd are inferted on the fuperior convexity of e falfe naris; they form the mufculus brevis of purgelot.
The mufculus maxillaris of the fame author ifes from all the anterior part of the forehead,
\[
\mathrm{X} \times 2
\]
proceeds

\section*{б力口 6 Lect. XV.§ I. Of Smele.}
proceeds obliquely to one fide, and downward, and is bifurcated; the external branch paffes over the pyramidalis, and extends to the commiffure of the lips; the internal paffes under the pyramidalis, and intermixes with it, to be inferted in the external convexity of the falfe naris. Finally, the levator labii fuperioris may alfo be confidered as a mufcle of the noftril, on which it acts powerfully; it is a long mufcle, which arifes from the lachrymal bone ; it produces a ftrong tendon, which unites with that of the correfpondent mufcle on the extremity of the offa nafi, and forms with it an aponeurofis, which is inferted into the fuperior lip.

The mufcles of the nofe of the Ruminantia are much lefs complicated ; their cartilages confift only of a duplicature of the feptum, which is continued into the external ala of the nofe by a pointed and arched production : the noftrils are not fo far feparate, and are directed more forward than in the horfe.

There are two mufcles on each fide, which arife fron the inferior part of the os maxillare, ajove the anterior molares; the fuperior divides into two tendons, one of which proceeds to the fupcrior edge, and the other to the pofterior angle of the nuftril; the inferior divides into three other portions, which all go to its inferior edge: there is alfo a depreffors it is fituated anteriorly.

We fhall terminate this defeription of the car-

\section*{Art. VII. Cartilages of the Nose. 677}
tilages of the nofe, and their mufcles, in mammalia, by that of the probofcis of the elephant.

The following defcription is the fubftance of that which was given by the Academicians of Paris:

The probofcis of the elephant is a very elongated cone, broadeft at the root. Its interior is hollow, and divided into a double tube, covered with a ftrong tendinous membrane, and perforated by a number of fmall holes, which are the orifices of an equal number of mucous cryptr, and from which a liquid flows in great abundance. Thefe tubes afcend to the offeous nares; but a little before they arrive there, they are twice inflected, and their communication with the nares is clofed by a cartilaginous and elaftic valve, which the animal can open at pleafure, and which falls down by its own clafticity when the mufcles ceafe to act upon it.

All the interval between the membranous tubes which are in the axis of the probofcis, and the external fkin, is occupied by a very thick flefhy layer, compofed of two kinds of fibres. Thofe of the firft kind extend from the membrane of the tubes, to a tendinous membrane fituated under the external fkin, in fuch a manner that they appear tranfverfe upon a longitudinal fection of the probofcis, and that in a tranfverfe fection they reprefent the radii of a circle. They approximate the external fkin and the membrane of the tubes, and, by comprefing:
\[
\times \times 3
\]

\section*{678 Lect. XV. §I. Of Smele.}
the intermediate layer, produce the elongation of the probofcis, without narrowing the tubes, in the manner of annular fibres; a mode of action which is very remarkable. The other fibmes at the protofcis are longitudina! : the lunt a number of finte and arched fifitan; extremities of which are atrached to tha ... brane of the tubes, and the middle or cons xiey of which adheres to the external membiane. There are fome of thele fafciculi all along and around the probofcis. The effect they produce is to. fhorten it wholly, or in any particular part, as the animal pleafes.

It will be eafily conceived, that thefe partial elongations and contractions, oneither fide, enable the elcphant to give to his probofcis any imaginable flexure; but that which is mof difficult of explanation, is the manmer in which he conveys to his mouth the water which he has taken into his trunk. As there are no annular fibres, he cannot comprefs the tubes, and he has no other means of impelling it forward but by refpiration; but how can this be done at the moment of fwallowing? Perhaps the cnd of the probofcis is conveyed beyond the opening of the larynx.

We have diffected only the fretus of an elephant, which has however enabled us to add fome facts to the preceding defcription. All the fmall loingitudinal fafciculi belong to four large mufcles, which are almoft confounded in
the

\section*{Art. VII. Cartilages of the Nose. 679}
the probofcis, but are fufficiently diftinct at their fuperior attachment. The two anterior are connected, by the whole of their breadth, to the frontal bone above the offa nafi ; the two lateral adhere to the maxillary bones, under and before the eye. The pofterior, or inferior furface of the probofcis, is furnifhed with fibres which feem to be continued with thofe of the orbicularis of the lips. They are directed from above downward, and from within outward; fo that thofe on one fide form a figure like an \(\Lambda\), with thofe of the other.

All thefe mufcles are fupplied by a very large branch of the fub-orbitar nerve, which penetrates, on each fide, between the lateral and inferior mufcles, and ramifies through the whole probofcis.

The probofcis of the tapir, which we have alfo diffected in a fætus, refembles in fome refpects that of the elephant, though it is much fhorter. It is alfo compofed of two membranous tubes, furnifhed with a number of mucous lacunx, and enclofed in a flefhy mafs enveloped by the fkin. The longitudinal fibres are divided only into two fafciculi, which arife below the eye. The tranfverfe fibres extend, as in the elephant, from the membrane of the tubes, to that which is under the fkin; but the tapir has, befides, a mufcle fimilar to the levator labii Juperioris of the horfe. It arifes in the fame manner from the parts adjacent to the
\[
X \times 4 \quad \text { eye }
\]
eye, and unites in a common tendon with its correfpondent mufcle above the noftrils. The occipito-frontalis alfo furnifhes a tendon which is inferted at the bafe of the probofis, and elevates it.

> C. In Birds.

The external nares of birds have neither moveable cartilages nor mufcles. Their aperture is merely contracted by productions more or lefs confiderable, of the fkin which covers the bill. The forms and pofitions of that aperture have been defcribed by naturalifts. It is fituated laterally in the greater number of birds. Some have it at, or even on, the bafe of the bill. The toucans afford an example of the latter cafe. It is fometimes broad, fometimes narrow. In the berons, for example, it is a fiffure into which a pin could with difficulty penetrate. In the fea-fwallows, the two mares correfpond to an aperture of the feptum, fo that we can fee through them acrofs the bill. The Gallinæ have the nares partly covered by a flemy plate. The ravens have them clofed by a fafciculus of ftiff feathers directed forward, \&:c.

\section*{D. In Reptiles.}

The external nares of reptiles are ufually furnifhed with only fome flefhy flrata, which dila e or contract their entrance. This is obfervable

\section*{Art. VII. Cartilages of the Nose. 68i}
fervable in the greater number of \(l i z a r d s\), which differ from each other only as to the pofition of their external nares. They are clofeft to each other in the crocodiles. The tupinambis, the fellions, and the camelions, have them more removed, and fituated more laterally. In the \(f a-\) lamanders they are exceedingly fmall. In frogs, we obferve a fmall tube, the motion of which is very apparent, becaufe it is extremely ufeful in refpiration, as will hereafter be thewn. The torloifes have alfo two very fmall approximated noftrils. In the matamata, and one or two other fpecies, they are fituated at the end of a mort cartilaginous probofcis.

Scrpents have fmall lateral nares, which are capable of only a fight extenfion. The rattlefiake has below and behind each naris a blind hole, pretty deep, the ufe of which is not known, but it gives the animal the appearance of having four noftrils.

> E. In Fijhes.

In fifhes the entry of the foffa, which forms each naris, is narrower than the foffa itfclf. The membrane which furrounds it, is, in a number of offeous fifhes, and particularly in the carp, capable of forming a fhort tube, at the will of the animal; but when the fifh is drawn from the water, this tube difappears.

The greater number of offeous fifhes have the nafal aperture divided into two parts by a mem-
branous

\section*{682 Lect. XV. § 1. Of Smele.}
branous bar, and this gives them the appearance of having four nares. The two holes on each fide are fometimes equal and fometimes unequal. They are infinitely various in fize and in pofition, but thefe external differences have been defcribed by Ichthyologifts.

In the Chondropterygii, the nares communicate by a groove with the angles of the mouth. A part of their aperture is commonly covered by a lobe of the fkin, and the mulcular fibres which open them, are artached to the bones of the jaws. They appear to be contracted by a rphincter. It is difficult to obferve either diftinctly.

\section*{Article ViII.}

Of the Nares and the Spiracles of Cetacea.
The nares of the Cetacea merit a particular defeription, on account of their great difference from thofe of the other Mammalia.

The Cetacea can refpirc only in air; but they eannot receive it by the mouth, which is more or lefs funk in the water, and could not have taken it in by the nares, if their aperture had been fituated at the end of the muzzle; for this reafon their noftrils open on the fummit of the head, which there animais can eafily elevate above

\section*{Art. VIII. Nares of the Cetacea. 683}
above the furface of the water. They form, therefore, their only means of refpiration. They ferve befides to difcharge the water, which they would be obliged to fwallow every time that they open their mouth, if they had not the means of ejecting it through their nares, by a mechanifm which we flall prefently defcribe.

The common pituitary membrane would doubtlefs have been irritated by this conftant and violent paffage of falt water, as we may eafily conceive, from the difagreeable fenfation we feel when a few drops of the liquor we drink enters our nofe. On this account the nares of the Cetacea are lined by a thin dry \(\mathbb{1 k i n}\), which has neither cryptæ nor mucous follicles, and which does not appear fitted to exercife the fenfe of fmell. There are no finufes in the furrounding bones, nor any internal projecting laminæ. The os ethmoides is not even perforated by any hole, which indeed is nor neceffary, as the olfactory nerve does not exift. (See pages 165 and 199.) It is not, however, certain that thefe animals have no fmell; but if that fenfe exilt, it muft refide in a cavity we are about to defcribe.

We have fhewn in page 503 , that the Euftachian tube afcends towards the nares. The part of this canal which is next the ear, has, at its internal furface, a pretty large hole, which leads into a large vacant fpace fituated decply between the ear, the eye, and the cranium, main-
tained by a very compact cellular fubftance, and prolonged in different membranous finules which are attached to the bones. This fac, and thefe finufes, are lined internally by a blackifh, mucous, and very tender membrane. It communicates with the frontal finufes, by a canal which afcends before the orbit. Thofe finufes have no immediate commưnication with the nares, properly fo called. We find in this fac, as well as in the nares, nerves proceeding only from the fifth pair. Hunter ftates, that he had obferved fomething fimilar in two fpecies of whale, but he did not fuppofe that the organ of fmell was to be feen in the dolphin and the porpoife, from which we have taken this defcription.

The following is the mechanifm by which the Cetacea eject the water in thofe fpouts by which they are recognifed from a diftance at fea, and which have procured to feveral fpecies the name of blozvers.

If we trace the œfophagus upwards, we find that, when oppofite to the larynx, it feems to divide into two conduits, one of which is continued into the mouth, and the other afcends into the nofe. The latter is furrounded with glands and flefly fibres, which form feveral mufcles; fome, which are longitudinal, are attached to the margin of the pofterior orifice of the offenus nares, and defcend along that conduit to the pharynx and to its fides: the others are annular, and feen to be a continuation of the proper

\section*{Art. VIII. Nares of the Cetacea. 685}
proper mufcle of the pharynx. As the larynx rifes in this conduit in the manner of an obelifk or pyramid, its annular fibres may clofe it by their contractions.

All this part is provided with mucous follicles, which pour out their liquor by very confpicuous foramina. When arrived at the vomer, the internal membrane of the conduit, which becomes that of the offeous nares, acquires the even and dry texture which we have already defcribed. The two offeous nares are clofed at their fuperior or external orifice, by a fleflyy valie in the form of two femi-circles. This valve is attached to the anterior edge of the orifice, and clofes it by the means of a very ftrong mufcle fituated upon the intermaxillary bones. In order to open it, an extraneous force muft be applied from below. When this valve is clofed, it intercepts all communication between the nares'and the cavities fituated above it.

Thefe cavities are two large membranous facs, formed by a black and mucous fk in ; they are full of rugæ when empty, but when full affume an oval form. In the porpoife, each is of the fize of a drinking-glafs. Thefe two facs are fituated under the fkin, before the nares. They are both continued into an intermediate cavity placed upon the nares, which opens externally by a narrow fiffure, in the form of an arch. Some very flong flethy fibres form

\section*{686 Lect. XV. §I. Or Smele.}
an expanfion which covers all the upper part of this apparatus. They arife in radii frorn the circumference of the cranium, and unite upon two facs, which they appear capable of compreffing very powerfully.

Let us now fuppofe, that one of the Cetacea contains in its mouth a quantity of water which it wifhes to eject: the animal moves the tongue and the jaws, as in the action of fwallowing, and clofing the pharynx, forces the fluid to afcend in the conduit and the nares, where its motion is fo much accelerated by the annular fibres, that the valve is raifed, and the two facs above it diffended. When the water is in the facs, it may remain there until the animal is inclined to eject it. For this purpofe, the valve is clofed, to prevent the water from defcending into the nares, and the facs are ftrongly compreffed by the mufcular expanfions which cover them. The fluid is then thrown out through the narrow crefcent-fhaped aperture, and rifes to a height correfponding to the force of the preffure.

It is faid that whales eject water to the height of 40 feet.

\section*{Article IX.}

Of the Organs of Smell in Animals that have no Vertebrce.
\(W_{\mathrm{E}}\) do not find the nofe, properly fo called, nor even any organ which appears evidently appropriated to fmell in invertebral animals, and yet almoft all of them afford very ftriking proofs that they poffefs this fenfe.

Infects difcover their food at a diftance. Butterflies feek their females, even when inclofed in boxes, and as they are liable to be deceived by refemblances of odour, it is evident that thefe infects are guided in many circumftances by the fenfe of fmell. Thus the fiefh-fly (mufca vomitoria) lays its eggs on plants that have a foetid frnell, imagining that it places them on corrupted flefh, and the larvæ which are thus produced perifh for want of their neceffary food.

As the organ of fmell, in all animals which refpire air, is fituated at the entrance of the organs of refpiration, the moft probable conjec~ ture that has been propofed refpecting its feat in infects, is that of Bafter, fince revived by feveral naturalifts, who placed it in the mouths of the trachere or air tubes. In addition to the reafons hitherto Itated in fupport of this opinion, we may obferve, that the internal membrane of the trachere appears vory well calculated
lated to perform this office, being foft and moiftened, and that the infects in which the trachere enlarge, and form numerous or confiderable veficles, are thofe which feem to poffefs the mort perfect fenie of fmell. Such are all the fcaraber, the fies, the bees, \&c.

The antennæ, which other anatomifts have fuppofed to be the feat of fmell in infects, do not appear to us to poffefs any of the conditions requifite for that organ.

The mollufca, which refpire air, may alfo poffefs the fenfation of fmell at the entrance of their pulmonary veffels; but it is not neceffary to fearch for a particular organ of this fenfe in them, as their whole fkin appears to refemble a pituitary membrane. It is every where foft, fungous, and is always moiftened by a great quantity of mucous matter. Finally, it is fupplied with numerous nerves, which animate every point of its furface.

The worms and foft zoophites, and all the polyps, are probably in the fame fituation. It cannot be doubted but that thefe animals enjoy the fenfe of fmell. It is chiefly by it that they difcover their food, particularly the fpecies that have no cyes. Ariftotle remarked, that certain herbs, which have a ftrong odour, were avoided by cumbe-fiflues and the catopus.

\section*{[ 689 ]}

\section*{SECTION SECOND.}

\section*{Of the Organs of Taste。}

\section*{Article 1.}

Of the Senfation of Tafte.
Having treated fo fully of the four preceding Senfes, little remains to be faid refpecting that of Tafte, which is the leaft removed from the ordinary fenfe of Touch.

The organs of thefe two fenfes are, indeed, fo much alike, that they may ferve for the mutual explanation of each other. Recourfe may be had to the organ of Tafte, in order to obtain an idea of parts which are not fufficiently developed for our obfervation in that of Touch.

The organ of Tafte is particularly characterized by its fpongy texture, which enables it to imbibe liquids. The tongue can only tafte fubftances which are liquid, or are fufceptible of fluidity when diffolved in the faliva. Infoluble bodies are taftelefs. The moft fapid even make no impreffion on the tongue, when it is dry in confequence of ficknefs, or when the Vol. II. Y Y faliva,

\section*{\(6 g 0\) Lect. XV.§II. Of Taste.}
fuliva, confumed by previous maftication, has not had time to be renewed.

Nature has provided plentifully againft this want, by a conftant moifture.

In all animals which do not live in water, numérous glands pour an abundance of fluids into the mouth, as we fhall fee when we treat of Maftication. The total abfence of faliva, and perfect drynefs of the tongue, is one of the moft painful fenfations that can be experienced.

The tafte of bodies feems to be greater in proportion as they are more foluble : falts poffefs it in the higheft degree ; but it will be eafily conceived, that it is impoffible to account for the different kinds of favours attached to each body, and that the explications, founded on the figures attributed to their elementary particles, cannot now be admitted. The change which takes place on the nerve, is doubtlefs the effect of the reciprocal action exercifed between the principle of each tafte, and the nervous fluid; but the nature of that action is ftill unknown to us, and of its connection with the image which refults from it, we muft neceffarily be always ignorant.

The fenfe of tafte in any animal is more per-fect-Ift, in proportion as the nerves, which proceed to the tongue, are more confiderable: 2 d , as the teguments of that part are more capable of being penctrated by fapid fubftances: 3 d , as the tongue itfelf is more flcxible, and

Art. II. Substance of the Tongue. Ggi
can be applied to a greater fuperficies, and embrace more clofely the fubftance which the animal wifhes to tafte.

In the following Articles we fhall confider the Organs of this Senfe, under thefe three points of view.

\section*{Article II.}

Of the Suljfance of the Tongue, of its Formi, and of its Mobility.

THE tongue is at the fame time an organ of tafte, of deglutition, and of feeech; but as the parts which ferve to move it, contribute more to the two laft functions than to the firft, we fhall not notice them at prefent. In the Article on Deglutition, we fhall defcribe the os hyoides, its ligaments, and its mufcles, as well as the mufcles of the tongue, and the motions of which that organ is fufceptible. We fhall, in this place, only explain the nature of its fubftance, and the degree of its general mobility, in fo far as it poffeffes an influence on the perfection of tafte.

In all mammiferous animals without exception, the tongue is flemy and flexible in all its parts, attached by its root only to the os hyoides,
\[
\mathrm{Y}_{\mathrm{Y}} 2 \ldots \text { and }
\]
and by a portion of its bafe to the lower jaw ; it differs only as to the length and extenfibility of its free part or point. The extremes in this reipect are the ant-cater, which can elongate the tonguc exccedingly, and the Cetacea, which have it attached by almoft the whole of its inferior furface.

The other Ppecies prefent no material difference from man, with regard to thefe circumftances.

In birds, the tongue is always fupported by a bone, which paffes through its axis, and is articulated to the os hyoides; it is confequently very little flexible: the point only of the bone, which becomes in a degree cartilaginous, is capable of flexion. The thape of this bone correfponds to the external figure of the tongue, being covered only by fome mufcles, and by the teguments which are thin. In the roori-peckers, and the zory-necks, it is confiderably fhorter than the fkin of the tongue. When their tongue is elongated, therefore, the os hyoides, and its cornua, extend forward, and penetrate into this furplus of the \(\mathfrak{f i n}\), which is thereby extended, and the tongue pufhed forward, as we fhall fhew hereafter.

Repriles vary groatly with refpect to the tongue, as well as in many other circumftances. The tongue of toads and frogs is entirely flefly, attached to the lower jaw, and, in a flate of repofe, inflected in the mouth.

Art. II. Substance of the Tongue. 693
In falamanders, it is attached as far as the point, which is not moveable, and the whole tongue is only free on its lateral parts. Crocodiles have it attached as clofe to the edges as its point, and authors long fuppofed that this animal had no tongue. It is entirely flefly in both thefe genera.

The fellions and the iguanas have a flefhy tongue, which poffeffes nearly the fame mobility as that of the mammalia. The fcinks and geckos differ only in having the tongue notched at the extremity, and in that refpect it refembles the tongue of flow-worms, to which, in general, the fcinks are very much allied.

In common lizards, the tupinambis, or monitor, \(\& c\). the tongue is fingularly extenfile; it terminates in two long flexible points, though femi-cartilaginous; it completcly refembles that of ferpents, if we except the floze-roorms and the amphifbena, which cannot elongate their tongue, but which have it flat, and only forked at the extremity.

The camelion has a cylindrical tongue, which may be confiderably elongated by a mechanifm analogous to that which takes place in woodpeckers.

In fome fiflues, as the Chondropterygii, there is no tongue at all; the lower part of the gullet is fmonth, and has no elevation.

In otber fiflues, as the greater number of thofe that have free branchice, the tongue is formed
\[
\text { YY3 } \quad \text { only }
\]
only by the protubcrance of the middle bone, to which thofe that fupport the branchiz are articulated; that bone has no mufcles, except thofe which elevate or deprefs it in deglutition and refpiration; none of its parts are capable of fexion; it is covered only by a more or lefs thick fkin, and is frequently furnifhed with teeth, which are either fharp, or in the manner of a pavement, and which render the furface almoft infenfible.

The fyren refembles, in this refpect, the fifies that have free branchir.

The fepic, the frails, and the greater part of the gaferopodous mollufca, have a cartilaginous tongue, the very fingular ftructure of which we fiall explain hereafter; it has no motions, except fuch as are connected with deglutition; its anterior part is fixed below the mouth, and it is incapable of embracing fapid bodies.

The acepbalous mollufca do not appear to have any tongue; perhaps they exercife the fenfe of tatte by thofe tentacula, fo fimilar to papillx, with which their cloaks are furnifhed, at the parts where the water, which is the vehicle of their aliments, enters.

There is no tongुue, properly fpeaking, in zoorms, though fome have given that name to the probofe is of the lbalaficina, the ecthinorlincus, \&c. The soophites have alfo no tonguc; hut the tentacula, which furround their mouth, are fiequently fo finc, and of fodelicate a fubitance,

Art. II. Substance of the Tongue. 695
as to be very well calculated for the feat of tafte. Befides, why may not the whole fkin of the polype be fufficiently fenfible to difcern faline fubftances diffolved in water, fince it is capable of feeling the light which paffes through it?

The numerous clafs of inferts prefents great varieties with regard to the organs of tafte.

The coleoptera, and the ortboptera, have the part which has been named, perhaps without much analogy, the inferior lip horny at its bafe, and terminated at its point by a membranous expanfion, which is, in particular, named the tongue: the form of this tongue is infinitely various in the different genera, as may be feen by confulting the works of late Entomologifts. The pharynx opens at the bafe of the tongue.

The bymenoptera, and fome neuroptera, have the tongue fituated at the fame place; but it is concave, and perforated for the pharynx inferiorly, and is frequently prolonged into a probofcis, which fometimes furpaffes the length of the whole body; this probofcis alfo preferves the name of tongue; it is membranous, but we obferve that its fubftance is foft and fungous, and that it is very well fitted for receiving the impreffions of tafte. Accordingly we remark that the infects, in which it is moft developed, are the moft diftinguifhed for the choice of their aliments. The bees afford an example of the truth of this obfervation.

All the diptera with a flefhy probofuis, as the flics, the tabanus, \&cc. feem alfo to have an excellent organ of tafte: the two lips of their probofcis, independent of their foft fubftance, and the delicacy of their teguments, have the faculty of embracing feveral points of fapid bodies.

The lepidoplera, or butterflics, have a tubular tongue; it confifts of two pieces, exactly joined, and very often of a confiderable length, and may be capable of diftinguifhing very accurately the nature of the liquor it fucks up, if the whole of the canal be fenfible to that fort of impreffion. The fame obfervation may be applied to the fucker of the ryngota, or bemiptora, and that of the diplera, which have not a fleflyy tongue, as the afilus, the fomaxy's, the culcx, \&ec. We cannot, however, judge of the perfection of each of theefe inftruments, merely by their proportional extent. It would be neceffary to takic into the account the degree of their particular fenfibility, which camot be cflimated in organs fo minute.

The cimi, the palpi, or amicimula, are filaments more frequently articulated, and attached to certain parts of the mouths of infects, and which thefe animals conflantly move, for the purpofe of touching their food while they eat. Some authors have fuppofed them to be appropriated to the fenfe of tafte, fome to that of fimell, and, finally, others believe them to be fimple

\section*{Art. III. Teguments of the Tongue. 697}
fimple organs of touch.: different as thefe opinions may be, it is not impoffible that thefe organs may not perform at once two or feveral functions. It is obvious, however, that this is a fubject upon which we never can arrive at certainty. We fhall defcribe thefe Palpi along with the reft of the organs of Manducation in infects.

\section*{Article III.}

\section*{Of the Teguments of the Tongue.}

> A. In Man.

The mufcles which form the internal fabric of the tongue, are furrounded by a confiderable quantity of cellular fubftance, and covered by a thick membrane, which is the continuation of that which lines the interior of the mouth, and confequently of the external fkin of the body.

The particular characters of this membrane on the tongue, are the thicknefs and foftnefs of the part analogous to the epidermis, but, above all, the extraordinary development of the papillæ, which, though effentially of the fame nature as thofe of the external fkin, are much larger, more clofe, and afford a more complete view of their intimate ftructure.

All the fuperior furface of the tonglie, from the point to nearly its root, is covered with papillæ, called, on account of their figure, conical; they are clofe, like the briftles of a brufh; on the middle of the tongue, and towards its point, they are fharp and elevated, and their extremity is divided into feveral filaments; towards the fides they become gradually fhorter, and are reduced to fimple blunt tubercles.

Among thefe papillæ others are diffributed, which are larger, but much lefs numeronis; thene are called fiuggiform papillæ; they are placed on a fmall pedicle, and terminate in a large round head; there are more of them towards the end of the tongue, than in any other part.

Laftly, towards the bafe of the tongue there are about ten femi-fpherical tubercles, each furrounded with a circular fold or burr, and on that account called papille in a calry, or incupped papilla; they are difpofed in two lines, which reprefent a \(V\) with the point tucned towards the throat.

The fpace fituated between the point of this V and the epiglottis, has no papillæ, but the membrane is rendered unequal by glands which are below it ; and we noferve that the greater part of its eminences are perforated by holes, through which fluids, prepared by thefe glands, pass into the mouth; the inferion furface of the tongue has alfo no papillx, and its frin docs not differ from that of the reft of the mouth.

Art. III. Teguments of the Tongue. 699
The part analogous to the rete mucofum is fo thin on the human tongue, that we can fcarcely recognize its exiftence; but it is very thick on that of quadrupeds, where the papillæ, which pafs through it, render it completely reticular.

\section*{B. In other Mammiferous Animals.}

The tongue of the other mammalia prefents the fame kind of papillæ as that of man : the difference confifts merely in the form of the conical papillæ, and of the fubftance with which they are fometimes armed, in the fize and abundance of the fungiform papillæ, in the number of the incupped papillæ, and, the figure which their arrangement reprefents.

In the guenons, we obferve no difference from the human tongue, except that the papillæ with a calyx are lefs numerous. The Cbinese monkey has feven difpofed in this manner \(\because\) The macaque has four fituated thus .... ; thie cynocepiolus and the mandrill have only three, which are ranged triangularly \(\cdot{ }^{\circ}\) We alfo find only three in the fapajous, which are farther diftinguifhed by the little prominence of their conical papillæ.

Several hats have the conical papillæ elongated, and almoft refembling hairs ; thefe are particularly obfervable towards thé pofterior part of the tongue : fome of them are alfo found on
the fides of the mouth. Thefe papillæ are as hard as horn in fome fpecies, as the ternate bat, in which the papillæ of the extremity of the tongue have each feveral points; there are only three papillæ with cups on the tongue of thefe animals, and they are very clofe together.

The cat genus has the teguments of the tongue of a very particular nature: all the edges of that organ are furnifhed with fmall foft conical and with fungiform papillæ, fimilar to thofe of the greater number of animals; but all the middle part is covered by other papillæ, which may be divided into two kinds; fome are rounded, and, when a little macerated, reprefent faifciculi of filaments, which feem to be the laft extremities of the guflatory nerves: the others are conical, pointed, and each covcred with a horny cafe, terminating in a point, which is inflected backward; thefe cales render this tongue fo extremely rough, that it tears of the fkin by licking; they may be eafily plucked out, and have then the appearance of fo many fmall claws. The filamentous papillex and the horny points are placed alternately in quincunces, fo that there are as many of one kind as of the other. There are no fungiform papille in all this fpace: I believe they are replaced by the fafcicular, as the conical are by thofe with the horny cafes. The pofterior part of the tongue affumes the nature of the ordinary teguments: the papilla with cups are proportionally
tionally fimaller than thofe of the other genera, and difpofed in two lines, which approach pofteriorly. In the common cat we fometimes obferve on the back part of the fides of the tongue, fome fungiform papillx dependent from very long pedicles. Civets have a tongue fimilar to that of cats.

The opolfims have alfo, at the middle and anterior part, horny cafes, or fcales inflected backward, but they terminate in wedges, or in rounded edges; the point of their tongue is denticulated like a fringe; there are only three incupped papillæ. The ploalangers have the tongue foft, like the other Sarcophaga. Dogs, bears, weafels, feals, \&x. all of which fcarcely differ from man in this organ, and differ from each other only as to the number of the papillæ with cups.

There are five of thefe papillæ in the martin, ten in the racoon, two large and fome very fmall ones in the badger. I have only been able 'to reckon four very fmall ones in a large dog; there are only three, which are very large, in the byenc. All the fpace fituated between the incupped papillx and the epiglottis is furnifhed with large conical papille, which are very acute, and more clofe together

One of the moff fingular tongues among the Rodentia, is that of the porcupine: on its fides, and towards the extremity, it has fome large fcales, with two or three points terminated like wederes.
wedges. The reft of the furface refembles that of the tongues of the other mammalia; there are only two large papillæ with cups. The other Rodentia do not differ from man, except in having fewer of thofe papillæ.

The long-nofed Edentata, as the ant-eaters, armadillos, orycteropus, all have the tongue long, narrow pointed, and fingularly fmooth: in the two latter, the conic papillæ are not diffinctly feen; except with a magnifying glafs; and in the ant-eaters, properly fo called, none are perceptible. There arc but three papillæ with cups in the orycteropus, and only two in the armadillos.

The fotbs have the tongue round at the point. The conic and fungiform papillæ little developed, and only two incupped papillæ.

The tongues of the Pachydermata have the papillæ little evident.

In the Ruminantia, the conic papillæ, which cover the anterior half of the tongue, are numerous, clofe and fine; each terminated by a horny but flexible filament, which is bent backward. Thefe filaments can only be diftinguifhed by a glafs in heep, gazelles, \&c. But in the camel genus they are long, and render the tongue foft to the touch like velvet. The pofterior part of the tongue of thefe Ruminantia is covered with thick tubercles, which fometimes refemble fhort cones, and fometimes are femi-fpherical, and which become fmaller towards

Art. III. Teguments of the Tongue: 703
wards the fides. The papillæ with cups are ranged on the fides of this pofterior part; they are pretty numerous, and cannot be eafily diftinguifhed from the fungiform, which are equally large in this part. The camel, however, muft be excepted, which has the incupped papillæ very large, and concave on their furface.

In the borfe, the conical papillæ are very fmall and compact; the fungiform are only found on the fides of the tongue; there are only three incupped papillix, the furface of which prefents a multitude of irregular tubercles. The face fituated pofteriorly refembles the correfponding part of the human tongue.

There is no diftinct conical papillæ obferved, even with a glafs, either on the tongue of the dolpbin or porpoife: that organ is, in thefe animals, covered, as it were, with fmall pimples, which are moft numerous at its pofterior half: we obferve at its bafe four fiffures, difpofed nearly as the papillæ with cups ufually are ; the edges of its point are divided into fmall, narrow, and obtufe fhreds.

\section*{C. In Birds.}

The tongue of birds has papillr of different forms: fome are flethy, blunt and rounded; others are covered by horny cafes, which are fometimes conical, fometimes cylindrical ; others again are offeous and cartilaginous. The

704 Lect. XV.§II. Of Taste.
latter kind is almoft always found at the pofterior part of the tongue. They are directed backward, and feem rather intended to affift deglutition, by preventing the return of the food, than to exercife the fenfe of tafte.

Vultures have the tongue rounded anteriorly, and horny at its external third. All its furface is fmooth, except the edges, which are ferrated, and raifed as if it were to form a canal. Each denticulation is invefted by a cartilaginous cafe directed backward.

The tongue of falcons is thicker, cntirely fmooth on the edge, and notched on both its extremities.

The nocturnal birds of prey have the tonguc flefhy, and furnifhed pofteriorly with foft conic papillæ directed towards the throat.

In parrots the tongue is very thick, fleflyy, and rounded anteriorly. We obferve on it fome papillæ, which are really fungiform, particularly at the pofterior part.

That of toucans is narrow, and furnifhed on each fide with long and clofe horny briftles, which give it the appearance of a feather.

The woodpeckers and zurynecks have the tongue formed of two parts; one is anterior, protractile, and fmooth. It is pointed anteriorly, and covered with a horny fheath, and furnifhed on its edges with four or five ftiff rpines directed backward, which renders it a kind of harpoon or barbed arrow. The other part of the tongue

Art. III. Teguments of the Tongue. yos
is loofe, and ferves as a fheath to the os hyoides and its cornua, when the tongue is elongated. Its furface is covered with fmall fpines directed backward. Each of thefe fpines appears to be implanted in the centre of a flefhy tubercle. The aperture of the glottis is contained in the loofe part of the tongue.

The Gallinæ have the songue pointed, cartilaginous, and in the form of the head of an arrow. Its furface is fmooth and without any kind of papillæ, except upon the pofterior part.

There are alfo no papillæ on the tongue of the oftrich, which is crefcent-fhaped, broad, and fo flort that feveral authors have fuppofed it did not exift. Its bafe is a fold of the fkin, which fupplies the place of the points in other birds.

The jays, the fares, and a great number of pafferine birds, have the tongue fimilar to that of the gallinaccous family; but in feveral genera the point is more or lefs cleft, divided into feveral fmall briftles, or appear's lacerated. Naturalifts have founded the characters of fome of their genera of birds on the differences of the tongue, and may be confulted as to its forms. We alfo obferve a light furrow, which extends throughout the whole length of its middle part.

The duck genus, in which the tongue is feefhy, flat, and broad, piefonts a number of varicies as to the difpofition of the papillæ.

In the frean there is a decp) furrow formed in
Vol. II.
7. \%
tio

the matuite of the soms:ue. The lurtare of the athemur pats is colvend th a thich later of that and compaci hairs dimeced worats the lides. liarther back, and fow ands tio midtle part alome: the firmon, shore ate three mos of phates or of-
 the harp colse fiox and samad bach ward. More
 tom of thon Wohates, whi.h ate alfe derected bathati fowo ufter latera! furpows limaraie the hatrs fora atwthar sase of oflowts lamma, Ambar (t) shat of the midlle part, but augsatating in branth in preportion as they apfrosh the hate withe whewt.
 wish lons, filf parallel brithes, fitated rers The to each usher, and rewobling the footh of a ciond.
 devided by a conflderable taberele the furface of which is ragous, but inas no popille. be-

 wat... Incep fammes, in the fomm of an dalic a, Apane them form cath cother.

The fartare of the consue of the other frotes
 \(\therefore\) aliv: as a anges of ollows !amma. In the
 - \(\because\) と


Art. III. Teguments of the Tongue. 707
wards the fides. In the velvet diuck, (anas fiffia,) they castend confiderably beyond the edges of the tongue.

In the eider duck, (anas mollifinna,) the point of the tongue has a fmall, round, flat, and horny appendix. The anterior villi are fhorter, and the pofterior furface is almoft fimooth.

In the grallic, the tongue, which is a more or lefs elongated triangle, or in the form of an arrow, is generally fmonth and flat.

In the buffard, the fhape of the tongue approaches that of the grallæ. It differs, however, in having its edges furnifhed with long horny ftiff papillæ, the two laft of which are very broad, fharp, and as it were offeous.

\section*{D. In Reptiles.}

The tongue of the tortoife is furnifhed fuperiorly with long, foft, clofe, conic papillæ, which give it the appearance of velyct.

In the crocodile they are very fhort, and reprefent rather flight ruge than papillæ. They form, on the contrary, a very diftinctly villous furface in the iguanas and the fellions. The tongue of the camelion is furnifhed with deep, clofe, and very regular tranfverfe rugæ; in the lizards, with extenfile and forked tongues; and in the ferpents, that organ is fingularly fmooth, and, as it were, horny towards its points.

The falamanders have, like the igmanas, a fine
vislous
villous furface to the tongue; but in the frogs and toads, the furface is perfectly fmooth to the eye, and always mucous.
No reptile has two kinds of papillx, nor glands with a calyx.

\section*{E. In Fijhes.}

The fkin which is applied to the bones that fuftain the tongue of fifhes, refembles that of the reft of the mouth, and does not prefent to the eye more developed papillæ. The only differences that can be remarked, belong to the teeth, with which the tongue is armed in certain fpecies, and which we fhall defcribe when treating of Maftication.

We alfo referve the defcription of the Tongue, or the organs which replace it, in white-blooded animals, until we come to the fame Article.

Article IV.
Of the Diftribution of the Nerees in the Tongue.
The fenfe of tafie differs from thofe of fight, hearing, and fmell, and refembles that of touch, in having no one pair of nerves entirely appropriated to its funcions, The tongue receives bramehe:
branches from three different pairs in warmblooded animals, and two only fo far as we have obferved in fifhes, but they are not all employed in this fenfation. Thofe which come from the bypogioflus major, and from the gloffo pbaryngens; appear to be diftributed only to the mufcles and the glands, as we have fhewn in pages 243 and 246 : at leaft we are not certain that the filaments of the gloffo-pharyngeus, which go to the incupped papillæ, are appropriated to the fenfe of tafte, as we are ftill ignorant whether thefe papillæ enjoy that fenfation; and the filaments of the fame nerve, which fome fuppofe they have traced to other papillæ, appear very inconfiderable.

The tri-facial nerve, or the fifth pair, which is diftributed to all the organs of fenfe, appears alone to receive the impreffions of tafte, by the lingual branch of the maxillaris inferior, defcribed in page 217 ; for this is the only nerve which is diffributed to the teguments, in which it is evident the fenfation refides; and it is alfo the only nerve, the ligature fection or compreffion of which annihilates tafte.

Such at leaft is the opinion now adopted by phyfiologifts. It feems to us, however, that the anaftomofes of the fifth and ninth pairs are fo numcrous throughout the whole extent of the tongue, that it is difficult to fay which has the greater fhare in the filaments which go to the papillx. The fungiform papillæ receive all of
thefe filaments, which are fufficiently large to be traced by the naked eye; and this circumflance, joined to the hardnefs of the conical papillæ in certain animals, induces us to believe that the principal feat of tafte is in the fungiform papillæ.

The filaments which proceed to the papillze below the point of the tongue, are more cafily followed than thofe diftributed to the fuperior furface, becaufe the principal branches pafs along the inferior part. The filaments which go to the upper furface foon difappear, by their renuity in the fubfance of the flefh through which they are forced to pafs. They afcend, in a parallel and perpendicular direction, to the furface, where they terminate.

The diftribution of the nerves of the tongue prefent no effential difference in the three other claffes of vertebral animals.

END OF THE SECOND VOLUME.
gunted by tils in se co.

WILD LOURI HMLOLN: ANN EIECR

\title{
King's KCollege LONDON
}

GUYM QL805 cuv
Library
Cuvier, oerer deas Lecturiss on Comparateve and Tomy
1802
2010001537

KING'S COLLEGE LONDON
```


[^0]: * Vicq-d'azir, pl, XVI, No. 54.

[^1]: * We fhall here add a fatement of the proportion of the fame parts in fome birds.

 | Falcon | - | - | - | - | - | $15: 94$ |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Owl | - | - | - | - | - | 14 : 96 |
 | Duck | - | - | - | - | - | 10: 87 |
 | Turkey | - | - | - | - | - | 12: 33 |
 | Sparsow | - | - | - | - | - | $7: 18$ |

 With refpect to the external fhape, the brain of monkies very much refembles that of man, in confequence of its oval form ; but in the Sarcophaga it is proportionally narrower anteriorly, and approaches more to the triangular fhape. This is particularly apparent in the dog and the -oppolfum.

 Some Rodentia, as the bares and the rabbits, have alfo this form; but others, as the beaver and the porcupine, have the cerebrum almoft circular.

 In the other herbivorous kinds, the brain is generally of an oval form, broader behind than before.

 The rerebrum of the dolpbin is of a very extraordinary thape; it is very large, and covers the cerebellum fuperiorly: it is rounded on every fide, and almoft twice as broad as long.

 The cerebellum of man having its middle lobe concealed under the other two, feems at firft fight to have no more than two lobes, the general outline of which is nearly round.

 In the other animals, even in monkies, this middle lobe is proportionally larger, and is vifible externally. It is equal to the other lobes in the Rodentia: we find it proportionally fmaller in the dolphin than in monkies.

 ## 4. Circumbolutions.

 The circumvolutions of the brain are deeper Vol. II.

 162 L.IX. Brain of Antmals with Vertebrat.
 in man than in any other animal, and very few have them fo numerous.

 They are much fewer in the nonkey kind, particularly in the fapajous: the pofterior lobe has fcarce any, except in the jocko and the gibbon, in which that lobe is feparated from the reft anteriorly, by a very diftinct tranfverfe fiffure.

 In the Sarcophaga, the furrows of the brain are pretty numerous, and exhibit a certain order, which is preferved throughout the greater number of fpecies; we obferve, pofteriorly, two on each fide, parallel to the middle line, and a fhort one anteriorly, which croffes it.

 The Rodentia have, in general, no fenfible circumvolutions; their hemifpheres are almoft entirely fmooth, or exhibit only very flight furrows; but we find a number of convolutions in the hoofed animals, and particularly in the Ruminantia and the borfe.

 The dolpbin has numerous and deep circumvolutions.

 All the other mammalia have, like man, the furface of the cerebellum marked by tranfverfe furrows, parallel and adjoining to each other; but they differ amonglt themfelves with refpect to the other furrows, which divide the cerebellum into lobules, and which feem to form circumvolutions fimilar to thofe of the cerebrum.

 They are fomewhat numerous in the Sarcophaga, the Ruminantia, and the Solipeda: we obferve fewer in the other orders.
 5. Develop-

 ## Art. V. Brain of Mimmalia.

 5. Derelopment of the internal Parts of the Brain in Mammalia.

 The tubercula quadrigemina are proportionally larger in the animals that are removed from man, and are very confiderable in the herbivorous kinds, whether Rodentia, Ruminantia, or Solipeda; all thefe herbivorous animals have the nates round, and much larger than the tefles; this renders it probable that thefe tubercles were fo named by the ancients, in confequence of their being firft obferved in animals of that order.

 In the monkies, their refpective proportion is nearly the fame as in man; but in the Sarcophaga, the teftes are generally larger than the nates.

 In the dolphin, they are at leaft triple the fize of the nates.

 The tubercles which we have pointed out as forming a third pair in man, become, in the lemur and the dog, as large as thofe of the other pairs ; but they are very little, or not at all, apparent in the Ruminantia.

 The optic thalami, the third and fourth ventricle, and the pineal gland, prefent no remarkable peculiarities.

 The corpora ftriata do not differ, except a little more or lefs in breadth. The fame obfervation applies to the corpus callofum and the fornix. The cornua ammonis are in general

 164 L.IX. Brain of Animals withVertebr灰。 proportionally larger in the quadrupeds; there is no fivoln appearance on their furface, as in man.

 The anterior ventricles have no digital cavity except in man and the monkies: that part exifts in no other mammiferous animal ; its prefence depends on that of the pofterior lobes.

 ## 6. Of the Bafe of the Brain, and the Origin of the Nerves.

 The bafe of the brain prefents much fewer inequalities in quadrupeds than in man; the infundibulum is not fo deep; the middle lobes, and the pons Varolii, are lefs prominent; the corpora pyramidalia are extended farther backward. With rerpect to the nerves, we obferve no remarkable differences, except in the olfactory.

 In the monkies only, the olfactory nerve is, as in man, diftinct at its bale from the mafs of the brain, and forming a medullary filament. In the other animals we perceive only fome whitift marks, and, inftead of the nerve, a large athcoloured eminence, which fills the ethmoidal foffa, and contains a cavity which communicates with the anterior ventricle; this eminence was called, by the ancients, caruncula mammitlaris.

 The dolpbin has no olfactory nerves, nor any thing that fupplies their place. It is the fame in feveral other Cetacea.

 ## Art. V. Brain of Mammalia.
 165

 It refults from thefe obfervations, that the peculiar character of the brain of man, and the monkey, confifts in the exiftence of the pofterior lobe, and the digital cavity: that of the brain of the Sarcophaga, in the fmallnefs of the nates, in proportion to the teffes; that of the brain of the Rodentia, in the largenefs of the nates, and in the abfence or little depth of the circumvolutions ; that of the brain of hoofed animals, in the great fize of the nates, and the numerous and deep convolutions; that of the brain of Cctacea, in its great height and breadth, and in the total abfence of the olfactory nerves. Thus it appears, that all the herbivorous animals have the nates larger than the tefles, and that it is quite the contrary in the carnivorous. Only man, and the quadrumana, have nerves, which, in propriety of language, can be called olfactory. In the true quadrupeds, they are replaced by the carunculæ mammillares; and they are entirely wanting in the Cetacea.

 ## Article VI.

 ## Of the Brain of Birds.

 The brain of birds is diftinguifhed at the firft view, by being formed of fix maffes or tubercles, all vifible externally, viz. two hemi-
 i65L. IX. Brain of Animals with Vertebrie.
 fpheres, two optic thalami, a cercbellum, and a medulla oblorigata.

 The two hemifpheres reprefent the figure of a rounded heart, the point of which is directed forward: the optic thalami are two round tubercles, placed under the hemifpheres, but are not enveloped by them : the cerebellum is only a fingle lobe, compreffed laterally: the medulla oblongata has neither corpora pyramidalia nor olivaria, nor pons Varolii ; it reprefents a large fmooth furface between the two optic thalami: the crura of the cerebellum pafs into it immediately, without forming any projection.

 There are no circumvolutions on the hemifpheres, nor on the optic thalami ; but the cerebellum has fome tranfverfe lines parallel, and clofe together, as in the mammalia.

 Birds want the corpus callofum, fornix, and feptum lucidum. On feparating the two hemifpheres, we obferve that they are diftinct throughout the whole of their height, and that they do not unite to each other except pofteriorly towards the anterior commiffure of the cerebrum. The furface, by which they join, prefents fome white radiated lines, which are derived from this commiffure; that furface is formed by a chin partition, which ferves as the interial parietes to the anterior ventricles. This parcition is, as ufual, a fold of the appendix of the corpus ftriatum, which appendix is very Imall in birds, in which the corpus ftriatum
 forms in itfelf almof the whole of the hemifphere. It takes the figure of a kidney, but has no cauda. The anterior ventricles alfo are not inflected downward, as in the mammalia, and confequently there is no cornu ammonis. Behind their internal partition there is a fiffure, by which they communicate together, and with the third ventricle, if the plexus choroides prefent no obftacle.

 The anterior commiffure is prolonged on each fide into the fubftance of the hemifpheres, as in man and in quadrupeds.

 The third ventricle is fituated between the optic thalami ; the white lines which bound it fuperiorly are prolonged, as ufual, to form the peduncle of the pineal gland. There is an anterior and pofterior commiffure which are white.

 The bottom of the third ventricle communicates with the infundibulum. Its pofterior part communicates likewife with the fourth ventricle, but the arch placed over the aquæeduct of Sylvius does not fuftain the tubercula quadrigemina. It is a fimple thin lamina, which is merely the valvula cerebri extended farther forward.

 The fourth ventricle refembles that of mammalia, and has alfo the longitudinal imprefion, called calamus fcriptorius.

 The optic thalami contain each a ventricle which communicates with the others by the aquæductus Sylvii,

 168 L.IX. Brain of Animals witil Vertebree.
 There are no mammillary tubercles or eminences. The corpora ftriata do not exhibit alternate white and grey ftriæ internally. The arbor vitæ is lefs complex than in the mammalia.

 Between the corpora ftriata, and the optic thalami, there are four round eminences which are better diftinguifhed in the oftrich than in other birds. The firft are fituated before the anterior commiffure, even in the anterior ventricles. The others are behind that commiffure, and project into the third ventricle, nearly at the place where the foft commiffure is fituated in the mammalia. There is nothing analogous to thefe tubercles in the human brain, but we find fimilar ones in that of fifhes.

 The olfactory nerves arife from the point of the hemifpheres, and do not come from their bafe as in the mammalia; they appear to be a mere continuation of thefe bodies.

 The other nerves of the brain do not differ in their origin.

 ## Article VII。

 ## Of the Brain of Reptiles.

 All the parts of the brain of reptiles are fmooth, and without circumvolutions. The optic
 optic thalami are fituated behind the hemiipheres, but are not covered by them. They contain each, as in birds, a cavity which communicates with the third ventricle. At the extremities of this ventricle, we obferve the aprterior and pofterior commiffure, but there is no foft commiffure, nor tubercula quadrigemina.

 In the tortoise the hemifpheres form an oval. Their anterior part is feparated from the pofterior by a fulcus, and reprefents a kind of bulb, which ferves as a root to the olfactory nerves. The fize of this bulb is about equal to one-third of the hemifphere. The interior of the hemifohere is, as ufual, excavated by a ventricle, and contains a fubftance analogous to the corpus ftriatum, and which pretty much refembles in its form that of birds.

 The optic thalami are not larger than the bulbs of the olfactory nerves. Their form is nearly round. They extend downward and forward, under the hemifpheres, to produce the optic nerve. The valve of the cerebrum is fituated between them and the cerebellum. No tubercle is cither placed abowe •it or before it, and it gives origin, as ufual, to the fourth pair of nervés.

 Before the optic thalami, and under the poficrior part of the hemifpheres, there is a tubercle which correfponds to that we have remarked in birds.

 The cerebcllum is nearly hemifpherical. The fourth
 yo L.iX. Braymof Animalswith Vertebrit.
 fourth ventricle penetrates a confiderable way into its fublance.

 In the frog the hemifpheres are longer and narrower. The optic thalami are larger in proportion to the hemifpheres. Their ventricle is very diftinct. It is the contrary in falamanders, which have the optic thalani very fmall, and the hemifpheres almoft cylindrical.

 The cerebellum of thefe two kinds of reptiles is flat, triangular, and lics pofteriorly on the medulla oblongata.

 In the ferpents the two hemifpheres form together a mals which is broader than long. The optic thalami are almolt round, and one half lefs than the hemifpheres behind which they are fituated. The olfactory nerve has no apparent bulb: The cerebellum is exccedinoly finall, flat, and in the form of a portion of a circle.

 In all thefe animals the inferior furface of the brain is nearly fmooth. The optic thalami make no projection downward, and the pons Varolii does not exift.

 The olfactory nerves arife, as in birds, from the anterior extremity of the hemifpheres. The optic nerves feem to derive their origin from a common eminence, fituated under the middle of the hemifpheres. The other nerves exhibit no particularitics as to their origin.

 ## Article Vilf.

 ## Of the Brain of Fifhes.

 The different lobes and tubercles which compofe the brain of fifhes, are fituated behind each other, in fuch a manner that the whole, inftead of appearing as one common mafs, more or lefs, approaching an oval form, refembles a kind of double chaplet. This comparifon is more properly applied to the brains of fifh, than to thofe which we have juft noticed, on account of the greater number of thofe tubercles or lobes.
 .The cerebellum is always fingle. It is proportionally larger than in warm-blooded animals. It even frequently furpaffes the hemifpheres in fize.

 The two hemifpheres always exift. They are generally of an oval form, without any apparent circumvolution, and each contains a ventricle, the floor of which prefents an elevation analogous to the corpus ftriatum.

 The optic thalami are conftantly fituated, as in birds, below the hemifpheres. They are fmaller than the latter, but each of them alfo contains a ventricle.

 On the two fides of the origin of the medulla oblongata, behind the cerebellum, there are almoft always fome tubercles, which appear to

 ## 172L.IX. BrainopAnimalswithVertebre.

 form the origin of feveral pairs of nerves, and which are often as large as the hemifpheres. There is fometimes a fingle tubercle between 13am, which feems to form a fecond cerebel1.0.

 The olfactory nerves, at their origin, form fuentirs or knots, the number of which varies, aed winch are frequently fo large that fome aschicus have miffaken them for the real brain.
 linaliy, in feveral fithes there are under the common arch of the hemifpheres, fometimes two, fometimes four tubercles, which vary in their figure and propurtions, but which would prefent à ftriking analogy to the tubercula quadrigemina, were they not like thofe that refemble them in birds, fituated before and above the optic thalami.

 The brain of fifthes is always very fmall in proportion to their body. It never completely fills the cavity of the cranium. The furface of the hemifpheres is always fmooth. The cerebellum and its lateral tubercles occafionally appear rugous.

 The brain may vary in the different kinds of fifies. Ift. In the number and form of the tubercles of the olfactory nerve. 2. In the number and form of the eminences contained within the hemifpheres. 3. In the form of the cerehellum. 4. In the tubercles which are fituated behind the cercbellum. We procced to examine it under thefe different points of view.

 ## 1. The Tubercles of the Otfacory Nerves.

 In the rays and the Barks the tubercles are united into one mafs of various lengths, but Which is more than double the fize of the hemifpheres. It contains no cavity, and its infide is entirely formed of a homogeneous medullary fubftance. The olfactory nerve, properly fo called, arifes from each of the lateral parts of this mals, which feveral authors have defcriber as the cerebrum, and others as its anterior lobes.

 Thefe tubercles are long and natrow ia the furgeon: they are fimple, oval, and maller iters the hemifpheres in the lumpp fiblo and the :nenan (Tetrodon mola Lin.) The genus gadus, that in : o fay, cod, rebitings, \&ic. have them fimple and round. In the cod they are even al molt as inger as the hemifpheres. The worafes, and ali ato genus cyprimus, that is to fay, rarps, terbers, tenches, \&c. have them alfo fimple and ronad. but diftinguinhed by a flight furrow, which gives them the form of a kidney. In the, pleurozefters the berrings, the pikes, the perches, and in all the falnon genus, which includes the trouts and the finelts, \&yc. there are two pair of tubercles, the anterior of which is finaller than the other, but they do not equal the hemifpheres in magnitude. Finally, in the eel genus there are thrce pair of tubercles, which diminifh in magnitude, begining with the laft. Their brain therefore prefents altogether ten cminences before the cere-
 ${ }^{2} 74$ L.IX. Brain of Animalswita Vertebrie.
 bellum, eight of which are fuperior, viz. the fix tubercles, and the two hemifpheres; and two inferior, which are the optic thalami.

 ## 2. The Eminences rithin the Hemifpheres.

 a. The corpora ftriata are not apparent in the rays and fbarks, and the interior of their ventricle prefents no eminences. In moft of the other fifhes the corpora friata reprefent two fegments of a circle,' the concavity of which is turned inward. From the convex fide fome very fine medullary ftrix proceed, which are prolonged tranfverfely on the internal parietes of the ventricle. Thefe corpora ftriata vary in breadth according to the fpecies. They form two elevatect oval bodies in the robiting. Their anterior extremity approaches nearer to the middle line than she pofterior. The anterior commiffure of the brain is fituated a little below them. Between them we obferve a fiffure, which leads into the third ventricle. The fuperior portion of each hemifphere is not, as in the other red. blooded animals, an appendix of the corpora ftriata, which bends inferiorly to form a vault.
 b. The tubercles, fimilar to the quadrigemina, do not exift in the rays and the Joarks. There is only a fingle pair in the cels, the baddocks, and the berrings, which produces a femi-oval eminence before the cerebellum, between the
 poiterior extremities of the corpora friata. The pikes, the trouts, and felmon, and the percioses, have two pairs, which form four round fmall tubercles, the pofterior of which are rather the largeft.

 In the carp genus there are alfo four eminences, but they are very unequal. The pofterior are fmall and round, the anterior are extremely long, cylindrical, and bent outward and backward, following the curvature of the lateral ventricles, all the cavities of which they occupy. Their pofterior furface is marked by a longitudinal furrow.

 ## 3. The Cerebellum.

 The cerebellum of fifhes does not mercly cover the fourth ventricle; that cavity rifes into its fubftance : it is fometimes rounded, and fometimes approaches more or lefs to a conical form. In the rays and the 乃barks it is irregularly furrowed. It is fmooth in almoft all the other fifh. Internally, we obferve no veftiges of the arbor vitæ, except fome indiftinct whitifh lines. Where its form is conical, as in the cod and the carp, its point is inflected a little backward, which gives it the form of a Phrygian cap.
 4. The Tubercles fituated behind the Cerebellum.

 Thefe tubercles are peculiar to fifhes, unlefs
 y-b L.IX. Brainof Animals with Vertebret.
 we regard them as fupplying the place of the corpora olivaria.

 In the ray they are large, irregularly furrowed, and evidently give origin to the greater part of the fifth pair of nerves.

 The carp has them as large as the hemifpheres, and in the form of kidneys. Between them there is a large round tubercle, which may be called a fecond cercbellum, but which is immediately connected with the dorfal part of the meclullia oblongata, and which enclofes no ventricle.

 In the rebiting and the cod the tubercles are oval, and fituated altogether above the medulla. It is nearly the fame in the common eels and conger eets.

 Thefe parts are little apparent in the pikes, trouts, falmon, and perches.
 5. Origin of the Neries.

 In fithes the olfactory nerves are merely continuations of the tubercles fituated before the hemifpheres. They frequently take a long courfe before they arrive at the noftrils. The optic nerves arife under the cerebrum where the thalami are fituated. Thefe nerves are very large, and are compofed either of diftinct filaments, or of a fingle flat band which is fometimes folded longitudinally on itfelf. They crofs without being confounded, and we plainly

 ## Art. IX. Characters of Brains. IMy

 fee that the nerve of the left fide proceeds to the right eve, and that of the right fide to the left.

 The fifth pair of nerves arife fo near the auditory that they feem but one. The fafcial nerve, on the contrary, is very diftinct from the auditory. The nerve of the eighth pair is very thick; the others prefent no peculiarity.

 ## Article IX.

 Recapitulation of the Characters peculiar to the Brain in the Four Clafjes of Vertebral Animals.

 From the examination we have juf concluded, it refults,

 1. That the character which diftinguifhes the brain of mammalia from that of the other redblooded animals, confifts,
 a. In the exiftence of the corpus callofum, the fornix, the cornua ammonis, and the pons Varolii.
 b. In the tubercula quadrigemina being placed upon the aquæductus Sylvii.
 c. In the abfence of ventricles in the optic thalami, and in the pofition of thefe thalami within the hemifpheres.

 Vol. II.

 178 L.IX. Brainof Animalswith Vertebréc
 d. In the alternate white and grey lines within the corpora ftriata.
 2. The character peculiar to the brain of birds confifts,
 a. In the thin and radiated feptum, which fhuts each anterior ventricle on the internal fide.
 3. The character of the brain of reptiles depends,
 a. On the pofition of the thalami behind the hemifpheres.
 4. The character belonging to the brain of fifhes confifts,
 a. In the tubercles of the olfactory nerves, and the tubercles fituated behind the cerebellum.
 5. The three laft claffes have, in common, the following characters, by which they are diftinguinhed from the firft :
 a. Neither corpus callofum, nor fornix, nor their dependencies.
 b. Some tubercles, more or lefs numerous, fituated between the corpora ftriata, and the optic thalami.
 c. The thalami containing ventricles, and being diftinct from the hemifpheres.
 d. The abfence of any tubercle between the thalami and the cerebellum, as well as the abfence of the pons Varolii.
 6. Fifhes have certain characters in common with birds, which are not to be found in the other claffes: thefe are,

 ## Art. IX. Characters of Bratns. 179

 a. The pofition of the optic thalami under the bafe of the brain.
 b: The number of the tubercles placed before thefe thalami, which are commonly four.
 7. Fifhes and reptiles have for a common character diftinguifhing them from the two firft claffes, the abfence of the arbor vitæ in the cerebellum.
 8. All red-blooded animals have the following characters in common :
 a. The principal divifion into hemifpheres, optic thalami, and cerebellum.
 b. The anterior ventricles double, the third and fourth fingle, the aquæductus Sylvii, the infundibulum, and a communication between all thefe cavities.
 c. The corpora ftriata and their appendices in the form of a vault, called hemifpheres.
 d. The anterior and pofterior commiffures, and the valve of the cerebrum.
 e. The bodies named pineal and pituitary glands.
 f. The union of the great fingle tubercle or cerebellum, by two tranverfe crura, with the reft of the brain, which gives origin to the two longitudinal crura of the medulla oblongata.
 9. It alfo appears that there exift certain relations between the faculties of animals and the proportions of their common parts.

 Thus the intelligence they poffers, appears more perfect in proportion to the volume of the

 130 L. IX. Brain of Animalswith Vertabrac. appendix of the corpus ftriatum, which forms the vault of the hemifpheres.

 Man has that part greater, more extended, and more reflected than the other animals.

 In proportion as we defcend from man, we obferve that it becomes fmaller and fmoother on the furface, and that the parts of the brain are lefs complicated with each other, but feem to be unfolded and fpread out longitudinally.

 It even appears that certain parts affume, in all claffes, forms which have a relation to particular qualities of animals: for example, the anterior tubercula quadrigemina of carps, which are the moft feeble and leaft carnivorous of fifhes, are proportionally larger than in the other genera, in the fame manner as they are in the herbivorous quadrupeds. By following thefe inquiries, we may hope to obtain fome knowledge of the particular ufes of each of the parts of the brain.

 ## Article X.

 ## Of the Membranes of the Bram.

 IN all the red-blooded animals, the brain, as well as the other parts of the nervous fyftem, is covered by three membranes.

 That which is next to it, is named the pia-
 mater; the external is called the dura-mater; and that which is intermediate, has been denominated arachnoides.
 a. The dura-mater is a thick opaque membrane, which lines all the offeous cavity of the cranium, and the vertebral canal.

 The greater part of the fibres of the external furface are longitudinal, and moft of thofe of the internal furface are tranfverfe ; but a confiderable number of others run in various directions.

 Within the cranium the dura-mater is intimatcly united to the bones, and fupplies the place of the periofteum. Its external furface is cellular and flocculent: its internal is fmooth and gloffy. In the vertebral canal it is more loofe, and is not intimately united to the bones; but its organization is the fame. This membrane is regarded by anatomifts as formed of two laminæ, though it is extremely difficult to feparate them. Blood veffels are diftributed between thefe laminæ, and the internal appears to be detached from the external, to form feveral reflections.

 Seven of thefe reflections have been defcribed in man.

 1. The falx of the cerebrum, which extends from the crifta galli of the ethmoid bone, to the internal fpine of the os occipitis. Its inferior edge is unattached. It is narrow anteriorly, broad pofteriorly, and is fituated between the N 3
 two

 182 L. IX. Brain of Animalswith Vertebre. two hemifpheres, which it feparates from each other.
 2. The tentorium cerebelli, which feparates the two pofterior lobes of the cerebrum from the cerebellum. It arifes from the dura-mater; before the two branches of the occipital crofs, and extends towards the pofterior clinoid proceffes, leaving a vacancy for the paffage of the medul. lary prolongations of the cerebrum.
 3. The falx of the cerebellum, which correfponds to the inferior line of the occipital crofs, and is extended fome way between the lobes of the cerebellum.
 4. The two folds which pars from the anterior to the pofterior clinoid proceffes, and in that manner circumfcribe the pituitary foffa.
 5. Finally, the two reflections which feparate the anterior from the middle lobes of the cerebrum, and furround the orbitar proceffes of the os fphenoides, called the little wings of Ingraffias.

 In the other mammalia, the falx of the cerebrum diminifhes greatly both in length and breadth.

 The tentorium cerebelli, on the contrary, is very confiderable: it is even fupported by arr offeous lamina in thofe that run fwift, as we have pointed out in the Ofteology of the Head, Art. 3. This fold feems deftined to prevent the friction of the two parts of their brain, in the fame manner as the falx of the cerebrum pre-

 Art. X. Membranes of the Brain. 183
 vents the one hemifphere from preffing on the other, when the head repofes on one fide.

 The falx of the cerebellum difappears entirely in all animals in which the vermiform procefs projects more than the lateral lobes, as is the cafe in all the real quadrupeds.

 We find the falx of the cerebrum in birds. In the turkey it has the form of the fegment of a circle: it extends from the middle face between the openings for the olfactory nerves, to the tentorium of the cerebellum. The falx of the cerebellum is wanting. The tentorium, which is not extenfive, is fuftained by an offeous lamina, and there are befides two particular folds on each fide which feparate the hemifpheres from the optic thalami.

 None of thefe folds are found in the animals that have cold red blood. The dura-mater of reptiles and fifhes adheres in every part to the internal furface of the cranium : it is even feparated from the brain by a mucous or oily fluid of more or lefs confiftence.
 b. The membrana orachnoidea is thus named from its texture, which is extremely delicate and tranfparent, and which has therefore been compared to that of a Spider's web: it envelopes the pia-mater, but does not penetrate with it into the furrows of the brain : it is fretched over thefe depreffions in the manner of a bridge, except at fome places where the internal lamina of the dura-mater is prolonged : it makes a large fun-
 nel, which receives the medulla fpinalis. In man this fac appears to commence immediately below the origin of the optic nerve.

 The cold-blooded animals in which, as we have already obferved, the brain does not fill the cavity of the cranium, have the arachnoides replaced by a lax cellular fubftance, which occupies all the fpace included between the dura and pia-mater; it is commonly moiftened by a gelatinous fluid, as in the cartilaginous fifhes, and fometimes coloured with blood. In the carp and the falmon this humour appears like an oily froth.
 c. The pia-mater is the membrane which immediately envelopes the fubitance of the brain; it defcends into all the furrows that appear on its furface, and which form its circumvolutions. It would appear to confift altogether of blood-veffels, but the arteries and veins only pafs through it. We obferve that it is much more folid, and has a greater number of veffels at thofe places where it covers the cineritious parts of the brain, than where it envelopes the medullary fubftance and the nerves: it accompanies and invelts the Spinal marrow; it penetrates into the feveral ventricles, but is not attached to their parietes; it floats in their cavi. ty where it fupports the veffels. Thefe productions are called plexus choroides.

 The proceffes of the pia-mater, which are reflected between the convolutions, are attached

 Art. X. Membranes of the Brain. 185
 to the brain by a fine cellular flructure, which appears to be formed by blood-veffels of an extreme tenuity.

 In mammiferous animals the greateft prolongation of the pia-mater is found in the part of the anterior ventricles correfponding to the lower edge of the fornix, and the fuperior of the optic thalami. It is a vafcular web, folded on itfelf, and forming a kind of cord. When extended, its figure is nearly triangular : the veffels which penetrate it are very clofely interlaced on the edges of this web, and thofe parts have more particularly received the name of plexus choroides. There is a plexus fimilar to the middle of the inferior furface of this web, placed exactly upon the aperture of the third ventricle.

 In birds there are two narrow bands which pafs into the ventricles, and occupy the whole of their length.

 There is alfo an analogous ftructure in firhes; but the plexus adheres to the parietes of the ventricles, and does not float within them.

 We find two other productions of the piamater, in the fourth ventricle, fituated under the cerebellum, one on each fide. They appear to be unattached.

 They are wanting in birds.

 ## Article XI. Of the Veffels of the Brain.

 IIN man, fix principal arteries enter the cranium, three on each fide : one is diftributed to the dura-mater, and is called arteria fpheno-fpinalis; the other two, which extend to the brain, are named arteria carotis interna, and arteria vertebralis.

 The \int pinal artery is a branch of the internal maxillary, and paffes into the cranium, through the fmall foramen of the pofterior procefs of the os fphenoides. Upon reaching the interior of the cranium, it afcends towards the internal furface of the parietal bone; it there fpreads upon the body of the dura-mater, by a great number of ramifications, which anaftomofe together in a manner which may be compared to the nervures of a fig leaf.

 This arrangement is the fame in all the mammalia.

 The internal carotid artery comes forth from the offeous conduit of the temporal bone, and proceeds for fome time involved by the duramater, and bathed in the veinous blood contained in the cavernous finus: it afterwards paffes into the cranium behind the anterior clinoid proceffes; it is then named arteria cerebralis: it diftributes feveral fmall ramifications to
 the

 ## Art. XI. Vessils of the Brain. 187

 the adjacent parts, and always fends off a large branch pofteriorly, which is united with the trunk of the vertebral arteries, and is named arteria communicans.

 Two fmall branches, which extend to the plexus choroides, ufually arife from the cerebral artery when it has furnifhed the communicans. The trunk is afterwards bifurcated; and one of the branches goes forward above the corpus callofum, whence it is named arteria callofa. Like all the other branches, it gives off a number of ramifications to the neighbouring parts: the other branch is fomewhat larger than the former ; it is directed outward to the furface of the hemifpheres, into the pia-mater, and fiffure of Sylvius, where it is divided and fub-divided without end, in order to be conveyed by ex, tremely minute veffels, even into the fubftance of the brain.

 The vertebral arteries, after fuffering numerous inflexions in the canal formed by the holes with which the five intermediate vertebræ of the neck are perforated, pafs into the cranium through the foramen magnum ; they then go forward into the bafilar foffa of the os occipitis, where they unite into one common trunk, called ariteria bafilaris; but they previoully detach two branches to each fide of the pons Varolii, which ramify upon the inferior furface of the cerebellum : one of thefe ramifications is denominated Spinalis poficrior, becaufe it penetrates

 ## 188 L.IX. Brain of Animals with Vertebref.

 the fourth ventricle, and accompanies the meduila fpinalis pofteriorly, as far as the lumbar vertebre. The fame vertebral arteries furnifh the \int pinales cinteriores; the fe unite towards the great hypogloflal nerves, into a fingle trunk, which runs down the vertebral canal on the fore part of the fpinal marrow, to the os facrum, fending off a number of fmall branches, which anaftomofe with other arteries.The bafilar trunk is again bifurcated to produce the arteria fuperiores cercbelli, fituated between the cerebrum and cerebellum, and alfo the arteric communicantes, which, as we have already fhewn, are united with the carotids.

 There are no large trunks formed by the veins of the brain; they open into conduits of a particular nature, called finufes; thefe are formed by duplicatures of the dura-mater, attached to the bones by ftrong cellular fubftance, and provided internally with a compact texture and ligamentous frena. The veins are inferted into them in a manner contrary to the courfe of the blood. The object of this organization appears to be, to prevent the reflux of the venous blood, which might affect the brain.

 All the finufes difgorge the blood they contain, either directly or mediately, into a dilated part called the foffa of the jugular veins: this foffa is fituated above the pofterior foramen lacerum, by which the vein paffes out of the cranium.

 The finufes of the human brain are, the poflerior longitudinal, which extends along the convex edge of the falx; the inferior longitudinal, fituated on its concave edge; the fraight, which proceeds from the pofterior extremity of the preceding, and opens into one or other of the lateral finufes: the lateral are diftinguifhed into the right and the left ; the one commonly receives in itfelf alone the blood from the fuperior longitudinal finus; the other ufually receives that which is contained in the right finus: each on its refpective fide follows the fulcus, traced between the cerebrum and cerebellum, to the bafe of the os petrofum, along the pofterior edge of which they defcend into the jugular folla.

 The circular finus of the fella turcica furrounds the pituitary gland; it empties itfelf into the two great refervoirs, fituated on the fides of the fella; called the cavernous finufes, in which the carotid artery, and feveral pairs of nerves, are contained. A venous conduit, which extends from the cavernous finus to the jugular foffa, is named the inferior petrous finus. Laftly, we diftinguifh, under the name of the fuperior petrous finus, another fmall conduit, which accompanies the projecting angle of the os petrofum, and which opens into the right finus.

 The blood-veffels within the cranium of other mammiferous animals, do not differ from thofe of man, except in their pofition. In the eighth

 Lecture we have pointed out the cavities of the interior of the cranium, and the furrows traced upon it, as thefe furrows are impreffions made by veffels; they indicate to a certain degree the directions of thofe veffels : thus, by the defcription of the carotid canal, and the fpinous and vertebral foramina, we are made acquainted with the points from which the arteries proceed. Thofe of the brain are difpofed nearly as in man : but they affume other curvatures, which are determined by the form of the lobes.

 There is, however, a particular arrangement of the veffels around the carotid artery, juft at the part where that veffel paffes into the cranium: this is what the ancient anatomifts called rete mirabile, or wonderful plexus. It was formerly fuppofed that this difpofition of veffels exifted in man; but it is now well known to prew vail only in a certain number of animals. The following is its moft ufual diftribution: the rete mirabile is the produce of arterial ramifications, which proceed from the carotid artery, and which furround the pituitary gland: all thefe minute branches, in which the artery feems to be as it were diffolved, are re-united anew into one trunk. This at leaft appears to be the cafe in the greater number of the Sarcophaga. The elepbant and the beaver do not prefent this arrangement of veffels.

 The arterial and various veffels of birds are atialogous to thofe of mammalia; but we have
 not yet examined them accurately. We propofe, however, to direct our enquiries to that fubject, both in them and in reptiles.

 In fifhes, particularly in the cartilaginous kind, as rays, ßarks, \&c. the arterial veffels of the brain proceed from two recurrent trunks, of the firft pair of branchial veins: thefe two arteries afcend forward towards the cranium, which they penetrate inferiorly, near the point of its union with the vertebral column. Having reached the cavity of the cranium, they divide each into three branches, one of which defcends into the vertebral canal, to be united to its correfpondent of the other fide, and to a fmall middle trunk, of which we fhall fpeak hereafter. The union of thofe three branches forms a large artery, which accompanies the fpinal marrow inferiorly, and may be named the Spinal artery. A number of ramifications feparate from it, which follow the courfe of the nerves. The fecond branch of the vertebral artery extends obliquely forward, under the medulla fpinalis; it there meets the middle trunk, and the correfponding branch of the other fide. The third branch of the vertebral artery is more anterior; having arrived at the root of the medulla fpinalis, it fends off two branches, which extend to a valcular ring, produced by the middle veffel, which runs acrofs it, fo as to form a kind of capital Greek phi ϕ, accompanied with two femi-circles affixed to it

 192 L. IX. Brain of Animalswith Vertebrf.
 in oppofite directions, thus ЈゅС. The branch ftill continues to advance until it reaches the nerves of the eighth pair ; it there detaches two new trunks, which being rejoined, form the commencement of the middle vefiel, which we have feveral times mentioned, and which terminates by producing the fpinal artery, following in this manner the inferior line of the brain : the anterior branch continuing its direction forward, furnifhes a number of fmall arteries to the cerebrum ; it paffes under the origin of the nerve of the fifth pair, and finally arrives under the olfactory tubercle, where it expands, like the foot of a goofe, and furrounds it on every fide.

 Such are all the principal branches in the brain of fifhes: the venous veffels are alfo very numerous, and are diftributed into the greafy or mucous liquor which covers the brain; they are not, however, fufficiently known to us to enable us to defcribe them.

 ## Article Xil.

 ## Of the Medulla Spinalis.

 Tue clongation of the brain, which comes out of the cranium by the foramen magnum, has

 ## Art. XII. Medulla Spinaliṣ. igj

 been named Medulla Spinalis: it appears to be formed, as we have already fhewn, by the union of the two medullary productions of the cerebrum and cerebellum.

 The fpinal marrow appears externally to be entirely compofed of a white fubftance, but affumes a greyifh tinge internally. Covered with its membranes, it has more confiftence than the brain, but it liquifies almoft as foon as the envelope is removed. The form of this medullary prolongation, is that of a cylinder, fomewhat compreffed; it feems to be compofed of two cords, divided by two furrows, one on the fide of the body of the vertebræ, and the other on that of its fpinous procefs : on feparating a little the edges of thefe furrows, we obferve fibres which feem to crofs each other, and unite the two farciculi of the medulla; its thickneIs varies in different parts of the canal through which it paffes. In general, the diameter of the fpinal canal is greateft in the inferior part of the neck. In this place the medulla fpinalis is alfo largeft : it again experiences a kind of enlargement towards the laft dorfal vertebræ. In the lumbar region it contracts, and becomes conical, and finally terminates in a filament, which belongs to its envelope, and which is placed at the extremity of the vertebral canal. The ftructure is nearly fimilar in all the redblooded animals.

 The medulla fpinalis gives origin to as many Vol. II.
 a

 94 L.IX. Brain of AnimayswithVertebre。
 pairs of nerves as there are holes between the vertebræ; thefe nerves receive names from the region of the fpine whence they proceed.

 The cervical nerves are feven in number in moft of the Mammalia; the three-toed floth and the Cetacea excepted. In birds this number is much greater. It is ufually fmaller in the reptiles, and frequently there are none in fifhes.

 The nerves of the other regions likewife vary exceedingly: but we adduce no more examples here, becaufe they would be only repetitions of what we have ftated in Lect. III. Art. I.

 The origin of all the vertebral nerves is nearly fimilar; they appear to be produced by two roots, one of which arifes before and the other behind the medulla. Thefe two roots are feparated from each other by a membranous production, which we fhall notice when we treat of the membranes of the medulla fpinalis. The mervous roots iffue from the vertebral canal by two diftinet holes which perforate the dura-mater before the intervertebral foramina. They afterwards unite and form a ganglion that produces the vertebral nerves, which we fhall dem foribe in the next Lecture.

 ## 1. Veffels of the Medulla Spinalis.

 The arteries of the medulla fpinalis are numerous: two are furnifhed by the vertcbrales; - one pofterior and the other anterior, which are diftin-
 diftinguifhed under the name of fpinales: they are diftributed in the pia-mater, and feveral minute ramifications penetrate into the fubftance of the medulla itfelf. The others proceed from the cervical, intercoftal, lumbar, facral and coccygeal arteries. They enter the canal by the holes through which the nerves pafs out of it; and communicate with other arteries, and with each other, by a number of very fine anaftomofes.

 The veins of the medulla finalis are alfo very numerous. Their fmall ramifications extend through the pia-mater, and empty themfelves into two longitudinal finufes of the duramater that invefts the vertebral canal ; thefe two finufes are united by veins which have tranfverfe communications correfponding to each of the vertebre. The firft of thefe communicating branches difcharges the blood into the jugular foffæ: the others empty themfelves in the following manner, viz. the cervical into the vertebral vein; the dorfal into the intercoffal veins; and finally, the lumbar and facral into the veins of the fame name.

 ## 2. Membranes of the Medulla Spinalis.

 In the article on the envelopes of the brain, we obferved that the membranes of that vifcus are prolonged into the fpinal canal, and cover the medulla fpinalis. The whole is contained in the offeous canal formed by the vertebræ, the number and articulations of which vary confi-
 derably,
 ig6 L. IX. Brain of Animals with Vertebras.
 derably, as we have already fhewn in the third Lecture, when we defcribed the bones of the fpine. We then omitted the ftructure connected with the paffage of the nerves, and fhall now proceed to notice it.

 The annular part of each vertebrr has a notch, which is fituated inferiorly in the lumbar and loweft dorfal vertebre. It is common to both edges of the adjacent vertebre in the firft dorfal, and in the cervical. There is only a fimple hole in the odontoid or fecond cervical vertebræ.

 This is the manner in which the nerves iffue in the greater number of Mammalia and birds, and even in the crocodile. Some quadrupeds, however, as the borfe, have holes inftead of notches. As the annular parts do not touch each other in fifhes, they have neither holes nor notches.

 The pia-mater has a peculiar formation in the interior of the vertebral canal; it is prolonged from each fide of the medulla, between the roots of the vertebral nerves, in fuch a manner as to make as many denticulations as there are pairs of nerves. This duplicature of the piamater has obtained the name of Ligamentum derticulatum: it commences about the margin of the foramen magnum, and its denticulations terminate towards the firft lumbar vertebre ; it is there confounded with the pia-mater, to which it is applied. The fame difpofition prevails in Mammalia and birds.

 ## [197]

 ## LECTURE TENTH.

 distribution of tie principal nervfs

 ## in animals with vertebre.

 The central part of the nervous fyftem was defcribed in the laft Lecture : we now proceed to follow its branches in their diftribution to the different parts of the body.

 The moft remarkable circumftance this diftribution prefents, is the fidelity with which Na ture follows one general plan, from which the departs as little as poffible in the different fpecies of animals.
 This conftancy, of which we have already had repcated proofs in the fkeleton, and the mufcles, is ftill more remarkable in the nerves, though at firft fight it appears lefs neceffary.

 Analogous parts always receive their nerves from the fame pair in all animals, whatever be the pofition of thofe parts, or however circuitous the courfe of the nerve may be in order to arrive at them. Analogous nerves have always a fimilar diftribution : they proceed uniformly to the fame parts : even the fmalleft pairs, the purpofes of which are moft limited, and which might be moft eafily fupplied by adjacent nerves, as the fourth and the fixth pairs, preferve their exiftence and their proper ufes.

 ## 198 L. X. Distribution af the Nerves.

 From this obfervation it feems reafonable ta conclude, that the nerves are not entirely fimilar to each other, and are not like the arteries, every where the conductors of a fluid perfectly the fame ; but that there is, in the ftructure, mode of action, and fecretion of each, fome peculiarity relative to the functions and nature of the organ to which they are diftributed.

 This is the principal confideration, which renders the detailed comparifon of the nerves in the different claffes interefting to the phyfrologift.

 ## Article I.

 Of the Olfactory Nerve, or the Firft Pair of the Brain.
 A. Ins Man and other Mammiferous Animals.
 $W_{\text {E }}$ have pointed out the manner in which the olfactory nerve arifes in Man, in the Mammalia, and in the other claffes of red-blooded animals; we fhall now follow it through the cavity of the cranium, until it enters the organ of fmell.

 In man, when the olfactory nerve has reached the inferior furface of the brain, it proceeds forward above the membrana arachnoidea. It gradually approaches the nerve of the oppofite fide; and,
 and, when they arrive at the cribriform lamella of the os ethmoides, the two nerves are feparated from each other only by the fal: of the cerebrum. In this courfe the nerve is reccived in a flight furrow of the anterior lobe. When taken out of the furrow, it appears triangular. It is terminated anteriorly by a fmall and very foft tubercle of a cineritious colour, the fibres of which enter the nafal foffax by the holes which pierce the cribriform lamella of the os ethmoides.

 Thefe nerves have nearly the fame difpofition in the monkey kind as in man; but thofe are the only animals that prefent them diftinct, and in an elongated form. In all the other families, inftead of the whitifh cord which conftitutes the olfactory nerve, we perceive only a large afhcoloured eminence which fills the ethmoidal foffr. This medullary part is hollow, and communicates with the cavity of the anterior ventricle. To this fingular difpofition we muft attribute the ignorance in which anatomifts have fo long continued refpecting the olfactory nerve, and the error which induced the antients to conclude that thefe nerves, which they called proce/fus or caruncula mamnilares, were the conduits which conveyed the pretended piluita of the brain into the cavity of the noftrils.

 Amongft Mammalia, the porpoifes and the dolpbins have no olfactory nerves. It is probable that the other Cetacea likewife want them, as they have no ethmoidal holes.

 200 L. X. Distribution of the Nerves.

 ## B. In Birds.

 The olfactory nerve of birds, after feparating from the brain in the manner we have defcribed, paffes into an offeous canal, where it is accompanied by a vein, and thus reaches the cavity of the nofe.

 > C. In Reptiles.

 This nerve proceeds to the noftrils in this clafs nearly in the fame manner as in birds; but it is longer. The canal which receives it is partly offeous and partly cartilaginous. The two canals have only one common aperture within the cranium. The olfactory nerves of reptiles are generally much more folid than thofe of the preceding claffes.

 > D. In Fifhes.

 Cartilaginous fifhes, as the ray and the foarks, have the olfactory nerve very foft. It is in them a bulb, which paffes obliquely forward towards the nares, which are at a greater or lefs diftance from the brain according to the fpecies. In the galeated Joark or tope, the nerve which is at firft flender, afterwards enlarges, and forms a grofs ganglion. In the leffer dog-fifb (the Jqualus cazulus of Linnæus) the nerve has much refemblance to that of the greater number of the

 Mammalia. It is thick, hort, tubular, and furrounded with an afh-coloured fubftance. It is terminated by a femilunar ganglion, which is feparated from the noftril by a membranous feptum. This feptum contains various depreffions, each of which is perforated by feveral holes, which afford a paffage for the nervous ramifications into the membranes.

 The fpinous fifhes have the olfactory nerves very long and flender. In thofe which have the frout elongated, this nerve is received into a cartilaginous tube. In thofe with fhort nofes the nerve is furrounded by only a fine membrane, which appears to be the fame as that which contains the fat or oily humour that cos vers the brain.

 In moft of thefe fifhes the nerve is of equal breadth in its different parts. The genera cyprinus and gadus, however, have it enlarged at the nafal extremity into a round ganglion, which refembles the cup of an acorn.

 ## Article II.

 Of the Optic Nerve, or the Second Pair of the Brain.
 I_{N} this article we fhall defcribe the courfe of the optic nerve, merely from the point where it fepa-

 202 L. X. Distribution of the Nerves.
 feparates from the correfpondent nerve after decuffation, until it enters the globe of the eye to form the retina. We fhall treat of its termination in the Lecture on Vifion.

 In all red-blooded animals, without exception, the optic nerve arifes, as we have already flewn, from a particular tubercle of the brain. After croffing the correfpondent nerve, it proceeds directly to the cye on the oppofite fide.

 In mammiferous animals, birds and reptiles, it is very difficult to diftinguifh thefe nerves at their union: but in fifhes, particularly in thofe that have ann offeous fkeleton, it manifefty appears that thefe nerves crofs each other without being confounded. They are in fact connected to each other by cellular fubfance. We obferve, and very eafily demonftrate, that the optic nerve of the left fide proceeds to the right eye, and vice verfa. In the cartilaginous fifhes this decuffation is lefs apparent.

 The optic nerve of large animals exhibits a very remarkable ftructure. Its neurilema, or the envelope furnifhed to it by the pia-mater, divides it internally into a great number of longitudinal canals which contain the medullary fubftance. This ftructure is rendered very apparent, when the medullary fubftance is diffolved by maceration, and the nerve inflated and dried.-Sections of this nerve, thus prepared, demonftrate the arrangement of the canals which traverfe it.

 Thefe

 Thefe nervous filaments are, however, more feparate in the optic nerves of fifhes, in which they can be demonftrated without any particular preparation. They are commonly flat like the other nerves, and fometimes appear to be formed by a very thin medullary lamina, which is folded feveral times on itfelf, and contracted into the figure of a cord. This is particularly the cafe in the cod and the froord fifh.

 ## Article III,

 Of the Neries of the Third, Fourth, and Sixtlo Pairs.

 1. Of the Oculo-Mufcular Neroe, or the Third Pair.

 A $_{\text {fter en entering the }}$ dura-mater at the fide of the pofterior clinoid procefs, each of thefe nerves paffes in the fubftance of that membrane until it reaches the broadeft part of the fpheno-orbitar fiffure. When arrived in the orbit, the nerve divides into two branches; one, which is fmall, is diftributed to the mufcles called rectus fuperior oculi, and levator palpebræ fuperioris. It frequently contributes to the formation of the ophthalmic ganglion which produces the ciliary nerves. The other branch is fomewhat more

 204 L. X. Disiribution of the Nerves.
 confiderable. It divides into three ramifications; one is fent to the abductor oculi, another into the rectus inferior, and the third terminates in the obliquus major.

 This brief defcription of the oculo-mufcular nerve in man, may be applied to almoft all redblooded animals. In all of them it paffes into the orbit by a particular hole, when there is no fpheno-orbitar fiffure, either fingly, or accompanied by fome of the other nerves appropriated to the organ of vifion, and is diftributed in the fame manner. We fhall, however, have occafion to return to this nerve, and thofe that follow it, when we treat more particularly of the eye. We fhall merely remark here, that in the rays and the Joarks, in which the globe of the eye is fupported upon a moveable peduncle, one of the branches of the oculo-mufcular nerve paffes acrofs that cartilaginous peduncle, by a particular hole, in order to be diftributed in the mufcles fituated below it.
 2. Of the Pathetic Neree, or the Fourth Pair.

 Thefe nerves pierce the dura-mater behind the preceding, and a little more towards the middle line. They are more flender than the nerves which iffue from the bafe of the cranium. Lodged in the folds of the dura-mater, they extend towards the fuperior orbitar fiffure, and pafs into the orbit by the wideft part of it; then
 then turning towards the roof of the orbit, they terminate in the obliquus major.

 The diftribution of this nerve is the fame in moft of the red-blooded animals. We have had the opportunity of examining.
 3. Of the Abductor Nerve, or the S'iuth Pair.

 The fingle trunk, or the two branches which compofe this nerve within the cranium, penetrate the dura-mater above the point of the os petrofum. They advance a fhort way between its lamina, and reach the cavernous finus, where they are united, and bathed in the blood of the finus. The nerve then becomes fomewhat thicker; it receives or gives a number of filaments, which communicate with the great intercostal nerve. It afterwards proceeds into the orbit by the fuperior fiffure, and terminates in the fubftance of the abductor oculi.

 We have obferved that the fame difpofition prevails in other red-blooded animals.

 ## Article IV.

 Of the Tri-facial Nerves, or the Fifth Pair.
 $\mathbf{W e}$ have pointed out the manner in which tho nerve of the fifth pair fenarates in eerebral animits:

 ## 206 L. X. Distribution op the Nerves.

 animals; we fhall now follow each of it branches, in the different claffes, commencina with the opbotbalmic branch, or that which proceeds to the cye.

 1. Of the Nercus Ophthamicus, or Fivg Irench of the Fifth Pair in Man, and other Mammiferous Animals.

 ## A. In Man.

 The firft branch of the fifth pair comes out of the cranium, by the fpheno-orbitar fiffure, with the third, fourth, and fixth pairs. It frequently detaches a very remarkable tranfverfe branch to the fourth pair. Before it reaches the interiof of the orbit, and while it is ftill covered by the dura-mater, it divides into three branches: one is directed towards the nafal edge of the orbit; the fecond towards the arch or frontal edge; and the third towards the temporal edge. The fecond is the thickeft of the three.

 The nafal branch is inferior and internal ; it divides into two fmaller ramifications.

 One of thefe branches proceeds towards the optic nerve, unites with the fmall branch of the third pair, which is fent to the leffer oblique mufcle, and by this union produces a nervous enlargement, called the lenticular or ophthalmic granglion. This gangtion ufually fends off the ciliary nemes difpofed in two bundles. 'They
 are each compofed of feveral filaments, which enter the globe of the eye obliquely, where we fhall have occafion to examine them when we treat of that organ.

 The other branch, called the ethmoidal, alfo frequently furnifhes one or two fmall twigs, which unite to the bundle of the ciliary nerves. It proceeds along the nafal edge of the orbit, and divides near the anterior internal orbitar hole ; one of the filaments enters that hole, follows the canal of which it is the aperture, re-enters the cranium below the dura-mater, comes out again towards the anterior edge of the cribriform lamella, penetrates the nafal membrane, and is loft above the fuperior fongy bones, and on the fides of the vertical lamina. The fecond filament proceeds towards the pulley of the obliquus major, and divides into a great number of fibres, fome of which are diftributed to the fkin of the forchead, near the nafal angle of the orbit ; others to the orbicularis palpebrarum; fome to the frontal mufcle, the caruncle, and the membranes of the lachrymal canal. Some of thefe fibrillæ ufually unite to others which come from the facial and fub-orbitar nerves.

 The fecond branch of the ophthalmic is called the frontal. It is fituated between the periofteum of the roof of the orbit, and the elevator of the fuperior cye-lid. It is feparated almoft from its origin into two branches; one, which is the
 moft internal, is directed towards the obliquus major oculi, and unites with fome filaments produced by the fecond branch of the divifion of the ethmoidal branch; the other, which is more external, proceeds to the outfide of the orbit by the fupra-orbitar hole or notch, and expands on the forehead, giving filaments to the fkin, the adjoining mufcles, and the periofteum.

 Laftly, the third branch of the ophthalmic nerve is called the lachrymal. It is fituated towards the temporal or external edge of the orbit, and procecds towards the lachrymal gland. Before it reaches that gland, it is divided into feveral filaments; one paffes through the gland, and is loft in the tunica conjunctiva: another is diftributed almoft entirely in the gland; a third, and fometimes a fourth, after alfo going through the gland, divides into feven or eight filaments, feveral of which pafs into the temporal foffa by the fpheno-maxillary fiffure, and join with other filaments from the deep feated temporal nerve; one of thefe pierces the os-jugalc, and unites on the cheek with branches of the facial nerve.

 ## B. In other Mammiferous Animals.

 The ophthalmic branch in Mammalia reaches the orbit by the fpheno-orbitar fiffure, or rather foramen, which is alfo the optic foramen. It is feparated into two other branches within the
 cranium,
 cranium, and paffes in the fubstance of the dura mater, with the third, fourth, and fixth pairs. Upon reaching the interior of the orbit, it divides, as in man, into three branches.

 That of the internal part of the orbit, which correfponds to the nafal, is the largeft of the three, It is divided into five or fix fmall branches. Some penetrate the frontal finufes, by fmall holes in the vault of the orbit, which are very apparent in the Joep, others which are confiderably larger enter the nafal cavity by the internal orbitar foramen. Inclofed in an offeous canal, they afcend into the cranium through the large holes in the os cribriforme, which we have already noticed, and then go out again by the ethmoidal foramina, to be diftributed to the nafal membrane. They may be eafily followed in the Ruminantia. One or two others go to the levator palpebræ fuperioris mufcle. One of thefe twigs affilts in forming the lenticular ganglion. In the dog, two ciliary nerves arife from this ganglion, which are afterwards divided : three or four filaments rife from it in the calf. Finally, one or feveral of thefe filaments terminate in the obliquus inferior, and in the glandula Harderi, of which we fhall fpeak in treating of the Organ of Vifion, and the tears. Thefe nerves are particularly remarkable in the Ruminantia.

 The middle branch of the ophthalmic nerve is fuperior. It is fituated under the offeous roof of

 Vol. II.
 P
 the

 ## 210 L. X. Distribution of the Nerves.

 the orbit, and is divided into two principal ramifications ; one, which is external, furnifhes two filaments, that are loft in the rectus fuperior oculi and elevator of the eye-brow, anaftomofing, at the fame time, with other filaments. The internal ramification tranfmits branches to the mufculus rectus internus, and one which is very remarkable, and frequently a very thick twig, paffing through the fuperciliary notch or foramen, fpreads under the fkin of the forehead, where it is loft in the mufcles.

 The third branch of the ophthalmic nerve is compofed of a great number of filaments, which, though clofe to each other, are very diftinct. They are almoft all loft in the lachrymal gland.
 11. Of the Nervus Mavillaris Superior, or Second Branch of the Fifth Pair in Man and other Mammiferous Animals.

 ## A. In Main.

 Having paffed out of the cranium through the round foramen of the os fphenoides, this nerve almoft immediately furnifhes a fmall branch, which enters the orbit by the inferior fiffure of that foffa. This branch unites with another belonging to the lachrymal nerve, with which it paffes, as we have already fhewn, into a fmall canal of the os jugale, to be diftributed on
 the cheek, anaftomofing at the fame time with the facial and fub-orbitar nerves, and fometimes behind with the temporal filaments of the inferior maxillàry.

 The maxillaris fuperior having reached the interval between the bafe of the pterygoid procelfes, and the fuperior part of the malar tuberofity, fends off one or two branches, which in the latter cafe almoft immediately re-unite, and form a ganglion or enlargement, which is fituated be. fore the fpheno-palatine foramen. Several fila ments proceed from this ganglion in differen directions, and form very remarkable nerves: they are fubject to variation in their number, but feldorn in their diftribution.

 Four or five filaments proceed, in the firt place, from the internal fide : thefe enter the noftrils by the fpheno-palatine foramen, and are diffributed to the olfactory membrane.

 We next obferve behind the ganglion, another finall filament, which entering the canal at the bafe of the pterigoid procefs, proceeds pofteriorly to the point of the os petrofum. This has been named the Vidian nerve, from the author who firft defcribed its courfe. On leaving this canal, the nerve forms two branches; one of thefe branches returns into the cranium, paffes through a fmall hole of the os petrofum, which joins the canal of the portio dura, and in which it is united to the facial nerve. The other branch of the vidian nerve enters the canal of

 ## 312 L. X. Distribution of the Nerves.

 the carotid artery, and is united to the filaments of the fifth pair, which join the fympatheticus major. Sometimes this branch accompanies the carotid artery, and only unites with the great fympathetic nerve in the fuperior cervical ganglion.

 Laftly, the largeft branch, which appears to be the continuation of the trunk, arifes from the inferior part of the ganglion; a great part of it enters the pterygo-palatine canal, and it is there divided into feveral filaments, which pars through the bone: fome are diftributed in the olfactory membrane, and others lofe themfelves pofteriorly in the uvula and the fmall mufcles. The trunk comes out by the pofterior palatine foramen, and proceeding forward, is divided into two or three branches on the arch of the palate.

 Having detached the two branches which produce the fpheno-palatine ganglion, the maxillary nerve proceeds towards the aperture of the fub-orbitar canal ; but before it enters that canal, it furnifhes a fmall branch, called the alveolar, which is frequently divided into two others; one enters the maxillary finus, another proceeds to the alveoli, into which it penetrates. It furnifhes alfo a number of filaments to the gums and mufcles of the lips.

 Having paffed into the fub-orbitar canal, this nerve takes the name of fub-orbitar: it detaches a confiderable branch, which proceeds in the fubftance
 fubflance of the bone, penetrates the finus, and is diftributed to the roots of the teeth. The trunk iffues from the bone through the fub-orbitar foramen, and having reached the cheek, all its filaments are loft in the mufcles of the face, a great number of them uniting with the ramifications of the facial nerve.
 > B. In other Mammiferous Animals.

 We have already obferved, that the maxillary nerves come out of the cranium, in the greater number of thefe animals, by the hole fituated in the middle foffa, before the fpine of the os petrofum.
 The fingle trunk, when it arrives on the outfide of the cranium, becomes confiderably enlarged, and its fibres feem to crofs each other in fuch a manner, that the two branches which it foon after forms, appear to be produced by oppofite filaments, viz. the pofterior, or fub-maxillary branch, by the anterior filaments, and the anterior, or fupra-maxillary branch, by the pofterior fibres. This difpofition is very remarkable in dogs, but is lefs confpicuous in the Ruminantia.

 The fupra-maxillary nerve proceeds almoft horizontally from behind, forward. Having reached the anterior and inferior parts of the temporal foffa, it divides into a great number of fafciculi. One bundle, which confifts of

 ## 214 L. X. Distribution of the Nerves,

 four or five confiderable filaments, proceeds towards the fpheno-palatine foramen: this fafciculus then divides into two ; one branch is fent into the cavity of the noftrils, and furnifhes a confiderable ramification, which is fpread out upon the flefhy fubftance of the palate. Sometimes, as in the Ruminantia, this branch feparates from the trunk, even before it enters the fpheno-palatine hole.

 The other branch of the maxillaris fuperior, which enters by the fpheno-palatine foramen, paffes into the body of the os maxillare fuperius, detaches ramifications to all the teeth, and goes out by the fub-orbitar foramen ;' it then expands in the form of a goofe's foot over the face, and anaftomofes with the facial nerve.

 But befides thefe two principal branches produced by the fuperior maxillary nerve, there are fome other very remarkable filaments, which are detached almoft immediately after it leaves. the cranium.

 The firft is a very fimall twig, which, after anaftomofing with a ganglion, of which we fhall fpeak hereafter, is fent into the body of the temporal mufcle, through which it paffes, affording it, at the fame time, a number of filaments ; it afterwards perforates the inferior part of the orbit, and penetrates into the nofe.

 Another, and far more remarkable filament, arifes from the fpheno-palatine branch; it forms a ganglion, which is joined by feveral twigs?
 and among others, by that which we have juft defcribed. A flat nerve afterwards feparates from this ganglion, which, though much larger, appears to be the continuation of the filament at prefent under confideration : it paffes into the body of the bones, between the palatine and the convexity of the pterygoid procefs: it furnifhes feveral filaments, one of which is very diftinet, and defcends to the floor of the noftrils.

 Such is the general diftribution of the fupermaxillary nerve in moft mammiferous animals. This fuccinct defcription, taken from the dog, the rabbit, the /beep, and the calf, proves that the diftribution does not differ from that which takes place in man, except in circumftances neceffarily refulting from the conformation of the bones of the face,
 III. Of the Nertus Maxillaris Inferior, or Third Branch of the Fifth Pair, in Man, and other Mammiferous Animals.

 > A. In Man,

 This is the largeft of the three branches furnifhed by the tri-facial nerve; it comes out of the cranium, as we have already obferved, by the oval foramen of the os fphenoides. It appears, at the bare of the cranium, on the edge which feparates the temporal from the guttural foffa, on the inner fide of the external ptery-

 $$
 \mathrm{P}_{4} \quad \text { goid }
 $$

 ## 216 L. X. Distribution or the Nerves.

 goid mufcle ; it is almoft immediately divided into two principal trunks, one fuperior, the other inferior. The firft is fubdivided into five branches, and the fecond into three. Thus there are eight divifions of this nerve.

 1. The firft branch detaches fóme filaments to the articulation of the jaw, and to the temporal mufcle; then, proceeding upward to the notch between the two proceffes, it penetrates into the heart of the maffeter mufcle, through which it is diftributed.
 2. and 3. The fecond branch of the firft trunk paffes into the pofterior and lower part of the temporal mufcle. The third alfo proceeds in the fame direction, but a little more anteriorly; it frequently anaftamofes with a filament of the lachrymal nerve, as we have already obferyed.
 3. The fourth branch palfes between the two pterygoid mufcles, to which it detaches fome fmall filaments; it then proceeds to the outfide of the buccinator mufcle, where it divides into a great number of filaments, fome of which are diftributed to that mufcle, and the mufcles of the lips in general, while others unite with the facial nerve.
 4. The fifth branch is one of the fmalleft ; is is fent into the internal pterygoid mufcle, and thofe of the velum palati.
 5. The fixth branch appears to be the trunk of the nerve itfelf; it therefore retains the name of maxillaris inferior; it paffes between the two. pterygoid
 pterygoid mufcles, and is directed towards the dental canal of the lower jaw ; but before it enters it, fome filaments are detached to the mylo-hyoideus and digaftricus, and to the fubmaxillary glands. In paffing along the canal, it diffributes branches to each of the teeth, and iffuing from the jaw through the foramen mentale, is loft amongft the mufcles of the lower lip, anaftomofing occafionally with filaments of the facial nerve.
 6. The feventh branch is deftined for the tongue ; it advances, with the preceding, between the pterygoid mufcles; it there receives a fmall filament, which is derived from the facial nerve, and which has been named chorda tympani: it proceeds towards the tongue, and when arrived at the origin of the ftilo-gloffus mufcle, above the maxillary gland, it produces fome fibres, which are frequently united, and form a fmall ganglion, from which fome filaments that penetrate that gland are detached. The nerve afterwards paffes between the hyogloffus and the gland fituated below the tongue, It penetrates the body of that organ, and is diftributed in its fabfance, in the mufcles which fuftain it, and in the fkin which covers it.
 7. Laftly, the eighth branch is the moft porterior: it frequently arifes from two roots, between which a fmall artery is tranfmitted. The fingle trunk paffes behind the condyle of the jaw, before the meatus auditorius: it is fubdi-

 ## 218 L. X. Distribution of the Nerves.

 vided into a number of fmall filaments, many of which unite with the facial nerve on the external part of the temporal mufcle. On this account it has been called the Juperficial temporal nerve.

 ## B. In other Mammiferous Animals.

 We have fhewn the difpofition of this branch in the Mammalia, until its exit from the cranium by the foramen ovalc. It furnifhes, almoft immediately after its feparation, a pretty large branch, which is directed into the parotid and maxillary glands; it afterwards divides into two other branches, one internal, which lofes itfelf by feveral fmall filaments in the body of the mufcles, and even in the fubftance of the tongue; the other, which is external, affords a number of ramifications to the pterygoid mufcles, and to thofe of the cheeks and lips, which they traverfe in their progrefs towards the fkin of the face, where they unite with the filaments of the fub-orbitar and facial nerves. The largeft filament, or the continuation of the branch jtfelf, paffes into the dental canal ; it there fupplics the teeth, and iffuing from the foramen mentale, terminates in the mufcles of the lip, in the form of a goofe's foot. The other fmall filaments are diftributed nearly as in man.

 In the calf the inferior maxillary nerve divides into four principal portions, foon after it leaves
 leaves the cranium. The moft pofterior, which is the third, with refpect to thicknefs, proceeds backward, and below the condyle of the jaw, where it forms two branches: one is flender, and penetrates the parotid gland, where it divides into a number of fmall filaments, which unite with thofe of the facial nerve ; the other branch follows the circuit of the jaw, and advances to the front of the mouth ; it unites, as it paffes along the cheek, with the middle branch of the facial nerve, from which it previoully receives feveral anaftomofing filaments.

 The next branch of the maxillaris inferior is the moft flender of the four ; it is very long, follows the ramus of the jaw, and is loft in the buccinator mufcles and buccinal glands.

 The third branch paffes into the dental canal, and is there diftributed, in mammiferous animals in general, as we have already pointed out.

 Finally, the fourth is the lingual branch; this is the thickeft and the moft anterior; it is flat, in the form of a broad ribbon. It terminates like a fan in radii, which run into the mufcles of the tongue, and the parietes of the mouth.
 IV. Of the Nire of the Fifth Pair in Birds.

 The fifth pair prefents nearly the fame diftribution in birds, as in Mammalia.

 The ophthalmic nerve comes out of the cranium

 ## 220 L. X. Distribution of the Nerves.

 nium by a particular foramen of the orbit on the outfide of the optic nerve. It proceeds fome way in the fubftance of the bone before it reaches its furface. It is thick, and defcribes a curvature which follows that of the arch of the orbit. Its divifion does not commence until it is beyond the foffa; it ufually penetrates into the body of the bones of the face above the nafal finufes. It divides into three branches, the fuperior, which is the fmalleft, is loft in the pituitary membrane. The fecond branch, which is the thickeft of the three and the longeft, is received into an offeous canal, paffes above the nares, and terminates at the extremity of the bill by a great number of filaments. The third branch appears to be entirely loft in the fkin which furrounds the aperture of the noftrils.

 The fuperior maxillary nerve comes out by the fame hole with the inferior, precifely above the os quadratum. It proceeds from behind forward to the inferior part of the orbit. Two filaments are detached from it in its progrefs; one unites with the ramifications of the ophthalmic nerve ; the other afcends towards the internal fide into the body of the pterygoid mufcles. It penetrates the maxillary bones, and lofes itfelf on the lateral parts of the bill. Its diffribution is very remarkable in ducks. Each of the denticulations with which their bill is furnifhed, appears to receive four or five filaments.

 The inferior maxillary nerve feparates from the fuperior, and is directed obliquely downward. It detaches at firft fome branches to the pterygoid mufcles, and to the quadratus, which we fhall defcribe when we treat of maftication: The trunk afterwards defcends outwardly, and when arrived at the inferior jaw, it divides into two branches, one internal and one externalb The internal, which is the continuation of the trunk, penetrates the maxillary canal, and pro ceeds, in that manner, to the anterior extremity of the mandible. In birds that have denticulations, as ducks, each procefs receives filaments from this nerve. The external branch feparates from the preceding, paffes throuch the bone of the mandible, and fpreads upon its outfide, under the fkin or horny fubftance which covers the bill to its extremity.

 ## V. Of the Nerve of the fifth Pair in Reptiles.

 Reptiles have the three branches of the fifth pair. In the fea tortoijes the ophthalmic paffes, fome way, in the dura mater before it enters the orbit. It tranfmits filaments to the mufcles of the globe of the eye, and particularly to the two lachrymal glands. The fuperior maxillary branch is the largeft of the three. It is united to the inferior branch at its origin, but when it reaches the interior of the orbit, it feparates from it to take another direction. It paffes along the floor

 222 L. X. Distribution of the Nerves:
 floor of the orbit, defcribing a very marked curvature, the convexity of which is external. \AA very great number of filaments procced from the concave or internal fide, which are loft in the lachrymal gland. The trunk is afterwards divided into two branches:-one internal, which correfponds to the fpheno--palatine and fub-orbitar nerve. It furnifhes, filaments to the palate and to the nerves; and when arrived at the anterior part of the orbit, it proceeds outwardly and fpreads upon the face. The other brancis of the principal trunk is external; it paffes allo upon the floor of the orbit, to which it gives many filaments, and at length iffuing from the inferior part of the orbit, it expands upon the face, anaftomofing with the other facial nerves.

 The inferior maxillary branch proceeds almoft vertically downward to the pofterior part of the orbit, before the petrous and articular procefs of the os temporum. In its courfe towards the lower jaw, it paffes between the temporal and pterygoid mufcles, to which it fends feveral filaments. Having arrived at the lower jaw, bcfore the articular furface, it enters the oblong aperture, and divides in the fubftance of the bone. It forms feveral branches on the inner part of the jaw, which are loft in the mufcles of the tongue, and on the outfide fome others which ramify under the fkin.

 ## VI. Of the Nerve of the Fifth Pair in Fijhes.

 We alfo find in fithes the three branches of the fifth pair, which we obferve in man.

 The ophthalmic or moft fuperior branch arifes in the cranium, and proceeds obliquely outward and forward towards the pofterior part of the orbit, into which it penetrates. Arrived there, it prefents fome variations in different fpecies with refpect to its fub-divifion. It ufually furnifhes three principal branches as in the carp, the falmon, the cod, and probably in the other fpinous firhes; hut in the ray, and in the faro-fbark (Squalus prifis) this divifion takes place at a greater diftance, and beyond the orbit, as we thall fee in defcribing thefe branches.

 The firft branch is the fmalleft and the moft internal. It terminates at the margin of the cavity of the nares. In the ray the branch paffes out of the orbit without dividing, foon after it detaches two filaments : one, which is thick, croffes above the nares, to which it detaches feveral filaments, and paffes on to lofe itfelf in the lateral parts of the fnout. In the farw-foark, the part of the ophthalmic branch which proceeds to the nares, is not remarkable. It confilts of fingle filaments which are detached from the branch we are about to examine.

 The fecond branch of the ophthalmic nerve of the internal fide in fpinous fifhes, is the moft

 ## $22+$ L. \times. Distrifution of the Neryts.

 confiderable of the three. It divides into twa branches, one of which ramities in the tle ehy parts of the upper lip, where its filaments unite whth thofe of the maxillaris fuperior. The other is diffributed in the fort pares adjacent to the angle of the mouth. This, at leaft, is the dilpoficion in the folman, and the carp. In hays the continuation of the trunk fupplies the place of this branch. It is direcied forward towards the extremity of the fnout where it terminates. In the fazo-/kark, the branch we are now tracing proceeds above the mufcles of the ball of the eye, and is fent forward into a groove formed above the fnout: It there divides at the external fide into an infinite number of filuments, in the form of network, the ramifications of which appear to proceed to the teeth or hooks with which the fnout of this fifh is armed.
 The third branch of the ophthalmicus procecds to the lateral parts of the face, and is dittributed to the mufcles of the jaws in fpinous finies. This branch does not exift in the ray, but in the /azehisark it is very diftinct, and very large. It paffes through the orbit below the two fuperior mufcles of the cye, furnithing fome filaments which extend to the bulb. It is then directed forward, and confounded with the preceding branch.

 We ought not to omit noticing here one very remarkable peculiarity, to which we fhall, however, return in the article on Secretion. The two branches of the ophthalnic nerve appear to
 change their nature at the place where they reunite. They affume a black colour, and particular confiftency. We have had occafion to make the fame obfervation on this black colour of the nerve in the tope, (Squalus galeus), in which it is ftill more confpicuous, and in which its diftribution is highly important. In this fpecies all the advanced part of the head, before the mouth, is perforated with numerous pores, through which a gelatinous humour exudes, on the flighteft compreffion. When the fkin is removed, we obferve that this humour is contained in certain cells, formed by a very compact white fibrous fubftance. A great number of the extremities of the nerves are diftributed to the parietes of thefe cells. We fiall ferturn hercafter to the prefumed ufes of this liquor. It is fufficient at prefent to notice its exiftence.

 The fecond branch of the fifth pait of nefves, which reprefents the maxillaris fuperiot, is ins termediate. It paffes below the optic nerves, towards the middle and inforior part of the craz nium. Having arrived below the frares, it divides into two, three, of feveral brattches, forme - of which proceed towards the angle of the mouth, and terminate in the cirri, when thefe appendages exift; others proceed towards the middle part, where they are diftributed into the fubftance of the lips. This, at lealt, is the cafe Vol. II.

 Q
 in the fpinous fifies we have had the opportunity of examining.

 The faro-foark and the ray exhibit different appearances. In the firft of thefe fifhes, the maxillaris fuperior is divided, almoft immediately after it leaves the cranium below the orbit, into three principal branches. The firft, which is directed forward, and is very thick, paffes below the mufcles of the eye, to which it tranfmits fome filaments. It in particular detaches one which proceeds into the globe of the eye; it then paffes to the inferior furface of the root of the fnout, fends fome filaments to the margin of the nares, and afterwards penetrates into the longitudinal canal of the muzzle, which receives the ophthalmicus. The middle branch confifts of feveral filaments, which are diftributed to the mufcles of the mouth, and principally towards its angle, where they are loft in the fkin which forms the lips. In the thornback (raja clavata) the difpofition is nearly the fame, but we obferve that the filaments which in the fare-ßark appear to terminate in the hooks of the fnout, terminate in the tubercles or fpines, with which the different fpecies of rays are armed.

 The third branch of the fifth pair, or maxillaris inferior, prefents no peculiarity. In the offcous fithes, when it arrives towards the angle of the jaw, it is loft in the bones which form it
 by very fine filaments; the number of which varies. In the chondropterygii, this nerve is directed much more backward, and is diftributed among the mufcles of the lower jaw.

 ## Article V.

 Of the Facial Nerve, or Sympatheticus Minor of Winflow.
 A. In Man.
 W_{E} have explained the origin of this nerve, and fhewn that it is almoft always diftinct from the portio mollis. Having entered the meatus auditorius internus, it paffes into the canal named the aqueduet of Fallopius.

 It follows the different curvatures of that canal, and receives in it the filament of the vidian nerve, which we pointed out in treating of the fpheno-palatine ganglion of the fupra-maxillary branch. It afterwards furnifhes, in the cavity of the tympanum, two fmall twigs to the officula auditus; and another more confiderable one, fome lines before it paffes out, through the ftylo-maftoid foramen. This filament enters a fmall offeous canal, which conducts it into the cavity of the tympanum. It paffes under the incus on the tendon of the internal mufcle of the

 $$
 Q_{2}
 $$

 malleus.

 ## 228 L. X. Distribution of the Nerves.

 malleus. It goes out by a fmall hole in the bafe of the tympanum to communicate with the lingual portion of the third branch of the tri-facial nerve, or fifth pair, to which it unites by a very acute angle.

 Having left the bafe of the cranium, the facial nerve divides into feveral branches, which vary in number, but which frequently amount to fourteen or fifteen.

 The moft pofterior is called the occipital. It proceeds behind the maftoid procefs, unites to a fuperior cervical pair, and is afterwards divided into two fmaller branches, one of which is loft on the concha of the ear, and the other in the fkit, and fuperior part of the mufcles of the neck.

 The fecond branch communicates by one or two filaments with the fuperior part of the cervical ganglion of the fympatheticus major. It terminates in the mufcles which arife from the fyloid procefs, and on that account has been named the fyllo-hyoidean branch.

 The third branch is fent to the digaftric mufcle.

 The trunk of the facial nerve paffes afterwards into the parotid gland, which it croffes, and to which it affords a great number of filaments.

 The fourth branch produced by the facial nerve is diftributed to the anterior part of the concha of the ear, and to the aponeurofis of the temporal mufcle.

 The fifth and fixth branches are difpofed of nearly in the fame manner, and form with each other very numerous anaftomofes. They are called the temporal or jugal nerves.

 The feventh branch very much refembles the preceding. It unites with them and with the adjacent branches, and procceds to the orbicularis palpebrarum mufcle, where it terminates in a kind of plexus.

 The eighth branch is divided almoft immediately after its origin into three others, which alfo extend to the orbicularis, but terminate in its inferior part.

 The ninth branch paffes between the duct of the parotid gland and the rygomatic and maffeter mufcles. It proceeds towards the internal angle of the eye, forming a large plexus on the face, and uniting with a great number of filaments of the fub-orbitar nerve.

 The tenth, eleventh, twelfth, and thirteenth branches alfo go to the face, one under the other. They furnifh filaments to all the mufcles, and form a real nervous net under the Min.

 The fourteenth branch follows the edge of the lawer jaw. It is loft in the mufcles of the lower lip, and mintes with the nervous plexus of the face.

 Lattly, a number of filaments come from the parotid gland, which have arifen from the divifion of the ficial nerve. Some unite with the

 ## 230 L. X. Distribution of the Nerves.

 branches we have defcribed; others are lof in the mufculus cutaneus, and in the fkin.

 It follows from this defcription of the facial nerve, that it covers the whole of the face, the temples, the ears, and a portion of the occiput and neck, and that it communicates with a great number of other nerves; this induced Winfow to name it fympatheticus minor.

 ## B. In other Mammiferous Animals.

 We find almoft all thefe branches in the other Mammalia; the variations depend entirely on the different forms of the parts to which they are diffributed, and the extent of the mufcles. In animals, for example, that have the concha of the ear very long, the branch which unites with the firft cervical pair is much larger, and may be more eafily traced on the furface of the cartilages, where it accompanies the bloodveffels. In the fame naanner, we find that the branches which proceed to the temporal mufcle, are very large in the Sarcophaga. It may in general be remarked, that the facial plexus is more complicated.

 As we have particularly examined this nerve in the ralf, it will not be improper in this place to prefent a fuccing defcription of it.

 It leaves the cranium by the fiffure at the bafe of the maftoid procefs; it croffes the pa... rotid gland, to the rubftance of which it trant-
 mits a number of filaments, It in particular detaches one very remarkable branch, which, as we have already fhewn, unites with another from the maxillaris inferior. Upon leaving the parotid gland, the facial nerve divides into four branches; two afcend before the ear, and proceed to the fupcrior lateral and pofterior parts of the face; the other two branches are fent to its anterior parts. The moft inferior of thefe branches divides, fub-divides, and anaftomofes in every direction with the filaments of the nerve of the chin. The fuperior receives a large branch from the maxillaris inferior, which paffes behind the condyle of the jaw; thus united in a fingle trunk, they form an expanfion like a goole's foot, which anaftomofes with the fub-orbitar nerve.

 This facial nerve prefents a very remarkable peculiarity at its origin: it has two roots; one is the portio dura of the auditory nerve, which enters the internal meatus, from which it efcapes by the fiffura Glafferi, or foramen Atylo-maftoideum, which are in this animal the fame aperture ; the fecond root appears to proceed from a confiderable ganglion of the pofterior part of the par vagum. This ganglion is fituated in a particular depreffion of the inferior furface of the bone of the tympanum : it alio appears to unite with the fympatheticus major, which affumes almoft a cartilaginous confiftence. Two or three fhort filaments concur in the formation

 332 L, X. Distribution of the Nervis.
 of this root; it afterwards becomes thicker, and penetrates into the fiffure, where it mects the other root of the facial nerve ; it tranfmits a filament to that root, and continues to proceed outward, before and below the ear.

 In rabbits the facial nerve comes out of the cranium immediately under the cartilage of the ear, and the meatus auditorius externus, from which it is feparated by only a fmall boney ridge.

 ## C. In Birds and Reptiles.

 The facial nerve exifts in birds and reptiles, but its fize is fmall, becaufe thefe animals have no lips, and becaufe their mouth, as well as a great part of their face, is covered with a horny or fcaly fubftance, in confequence of which thefe parts have but little motion or fenfibility. We find, however, fome of the branches: they are not indeed eafily followed in differtion, but their trunk al ways exifts.

 ## D. In Fifhes.

 The facial herve is very confiderable in carti. laginous fifhes; it is detached from the brain by a fingle trunk, very diftinct from the auditory nerve, which belongs alfo to the fifth pair; but foom after, and even in the cavity of the cranium, it feparates into two branches, one afcencis the cranium, and paffes out through a particular
 particular hole, and is diftributed under the fkin; the other, which is thicker, proceeds horizontally towards the cavity of the ear, which it enters allo by a particular foramen. Arrived in that cavity, it proceeds under the veficle which contains the amylaceous or calcareous matter of the ear, where it unites with the auditory portion of the fifth pair: the common trunk afterwards penetrates the cavity of the ear, to proceed outwardly, and to be diftributed in a great number of ramifications to the foft parts which envelope the head.

 ## Article VI.

 Of the Auditory Nerve, or Portio Mollis of the Secenth Pair.
 I_{N} the Article on the Origin of the Nerves in the different claffes of animals, we have pointed out the manner in which the auditory nerve arifes from the brain. As it is very fhort, and as it paffes into the organ almoft immediately after its origin, we have at prefent only to defcribe, in the cerebral cavity, its connections with the facial nerve, or portio dura.

 In Man, and the other Mammalia, it proceeds, with the facial nerve, into the cavity of the os temporum, which forms the meatus auditorius

 ## 234 L. X. Distribution of the Nerves.

 ditorius internus, and enters into the labyrinth by feveral holes, the number and the magnitude of which vary in different animals. In the Article on the Ear, we fhall point out its farther diffribution in that organ; it is very foft, and we do not difcover fibres in it, as in all the other nerves, the olfactory excepted.

 In birds, the two nerves have nearly the fame connection. The auditory is very large, foft and reddifh; it is received into a deep conduit, on the internal furface of the cranium, whence it penetrates into the labyrinth by feveral fmall foramina.

 In reptiles, it is nearly the fame as in birds.
 But in fifhes, the auditory nerve is very much feparated from the facial ; it even approaches fo near to the origin of the fifth pair, that it may be regardied as a branch of it. In the cartilaginous fifhes, as the rays, it paffes into the cavity of the ear, by a particular foramen, and not by a number of holes, as in the other claffes. In the fpinous fifhes, as the ear is free, and even fituated in the fame cavity with the brain, the nerve is diftributed directly into that organ.
 Art. VII. Pneumo-gastric Nerve. 235

 ## Article VII.

 Of the Pneumo-gafiric Nerve, or Par Vagum, rulgarly called the Eighth Pair.
 A. In Man.

 THE numerous filaments which compofe this nerve, at its origin from the brain, approximate and form a kind of compreffed cylinder; they then pafs out of the cavity of the cranium by an oblong aperture of the dura-mater, fituated below the pofterior foramen lacerum.

 Another nerve, which afcends from the canal of the fpine, where it arifes by feveral filaments from the fpinal marrow, comes out through the fame hole, on which account it is named the accefforius of the eighth pair.

 Having reached the bafe of the cranium, thefe nerves feem to receive a different deftination. The par vagum, properly fo called, is tranfmitted to the lungs and the fomach. The accefforius is directed towards the fhoulder.

 The principal trunk communicates, in the firft place, with the hypogloffal, the great fympathetic, the fuperior cervical, and the gloffopharyngeal nerves.

 It afterwards defcends almoft vertically on the fore part of the neck, to the breaft, and is placed

 ## 236 L. X. Distribution of the Nerves.

 near the carotid artery, and great fympathetic nerve ; but in its courfe, it furnifhes the neigh bouring parts with a number of branches, which we fhall notice.

 One is intended for the larynx, and is diftributed to the mulcles and slands of that part; another is detached towards the middle of the neck, and, forming an arch internally, it afcends towards the great hyporgloffus. Several filaments are given off from the convexity of this arch, and defcend into the breaft; they then proceed to the pericardium, and are ramified in its fubftance, forming the plexus called the fuperior cardiac.

 When arrived near the clavicles, the par vagum of the left fide fends forward fome filaments which unite with the plexus we have juft mentioned. The analogous filaments on the other fide are produced by the recurrent nerve; after this, the truak proceeds inwardly, and paffes into the thorax, between the veins and the arteries: it prefently divides into two large branches; the moft external is the continuation of the trunk; the internal is called nerous recurrens, becaufe it re-afcends, and partly returns again out of the thorax.

 This recurring branch turns round the arch of the aorta on the left fide, and the fub-clavian artery on the right.

 The left recurrent neivedetaches fome branches, which, uniting with fome others, produced

 ## Art. Vil. Pneumo-gastric Nerve. 237

 by the great fympathetic, form a pulmonary plexus round the pulmonary artery and the aorta, and having entered the pericardium, where they form the inferior cardiac plexus, they are diftributed to the heart. The recurrent branches having arrived near the trachea arteria, divide into filaments, fome of which afcend to the larynx, and are diftributed to the fmall mufcles of that organ, under the name of the laryingeal nerves.

 The trunk of the pneumo-gaftric, after furnifhing the recurrent branches, paffes behind the pulmonary veffels, and detaches a number of filaments which furround the bronchia, and produce a plexus, denominated the pulmonary: this plexus receives a filament from the great fympathetic nerve.

 The branches of the par vagum afterwards continue to defcend in the thorax, along the refophagus, to which they afford a number of filaments; one nerve of the pair paffing before the ofophagus, the other behind: in this-manner they both arrive in the abdoinen, where they form a confiderable plexus under the envelope of the ftomach, produced by the peritonæum : they alfo furnifh fome filaments to the hepatic, fplenic, and folar plexufes, as we fhall fhew when we treat of the great fympathetic nervè.

 The trunk of the accefforius feparates from ,the par vagum, as it leaves the cranjum; it is directed a little backward, as it defcends along

 238 L. X. Distribution of the Nerves.
 the neck ; it paffes along the fuperior portion of the fterno-maftoid mufcle, to which it gives fome branches. It afterwards proceeds to the trapezius mufcle, in which it terminates, after detaching fome filaments to the two fplenii, between which it paffes.

 ## B. In other Mammiferous Animals.

 This diftribution of the par vagum was found nearly fimilar in four or five fpecies of Mammalia, which we examined for the purpofe of tracing it. The calf only prefented one peculiarity, which we have pointed out in the Article on the Facial Nerve; but the anaftomofes, with the great fympathetic, the recurrent nerves, the cardiac and pulmonary plexus, exhibited no difference, except in the number of the filaments, fo far as the accuracy of the Diffector may be relied on. The fpecies we diffected were the dog, the raccoon, the bog, and the porcupine.

 ## C. In Birds and Reptiles.

 We have likewife nothing remarkable to fate refpecting this nerve in birds and reptiles, though we have made preparations of it in feveral fpecies. We obferve evidently that it is diftributed to the lungs, the heart, the cefophagus, and flomach, and that it forms plexufes on thefe organs, in the fame manner as the

 ## Art. VII. Pneumo-gastric Nerve. 239

 great fympathetic nerve produces them round all the arteries of the trunk. On leaving the cranium, the par vagum forms decuffations with the lingual and gloffo-pharyngeal nerves; they afterwards feparate from each other: the gloffo-pharyngeus is pofterior, the par vagum in the middle, and the lingual anterior. The par vagum does not always come out of the cranium by a fingle hole ; it is formed of two or three filaments, which afterwards rejoin, upon receiving a communicating filament from the gloffo-pharyngeus, and one farther down from the lingual ; the nerve then augments fomewhat in diameter, and defcends into the breaft.

 ## D. In Fighes.

 The par vagum prefents a very peculiar difpofition in fifhes; this difference depends on the nature of the organs of refpiration, for which that nerve appears to be fpecially intended. As the lungs or branchix of fifhes are fituated immediately below the cranium, it is obvious that the courfe of the nerves muft be very fhort; and as the diftribution of the nerve takes place almoft immediately after it leaves the rranium, it may be faid to have no common trunk.

 We fhall defcribe, in a general manner, what is common in the difpofition of this nerve, and afterwards point out particularities in different fpecies.

 The

 240 L. X. Distribution of the Nerves.
 The branches of the pneumo-gaftric are diftributed to three diftinct parts : the firft, or anterior, which are the largeft, and ufually four in number on each fide, proceed to the branchix; they reprefent the par vagum of Mammalia: the fecond, which are much fmaller, and two or three on a fide, are diftributed to the mufcles, which move the tongue in the bafe of the gills, and to the furface of the ofophagus: laftly, the third are fingle on each fide; they form a very thick nerve, which extends along the whole body of the fifh, under the lateral line.

 The brancbial nerves pafs out of the cranium by one common foramen, and feparating from each other, proceed towards each of the bran. chix: before they arrive at them, they are divided into two ; the pofterior branch paffes into the gutter which runs along the convexity of the bone that fuftains the branchiæ, and, in its courfe, furnifhes a confiderable number of fmall ramifications to the pectinated lamine of the gills.

 The anterior branch is directed into the correfpondent gutter in the concavity of the bone, and is there divided in the fame manner: the anterior branch of the firft ramification reenters the cranium, and appears to be tranfmitted to the ear.

 The middle branches of the par vagum, which we have diftinguifhed with refpect to their difribution, arife fometimes from the fame
 fame trunk as the laft branchial, and afterwards divide into two or three branches; but more commonly they come out of the cranium, as an equal number of diftinct branches by one common hole : one of thefe ramifies upon the mufcles that move the branchix, and thofe which act on the teeth of the palate. Another, which is much larger, proceeds along the œfophagus, to which it is diftributed; it may be traced to the ftomach. The third branch unites with the cervical nerves which proceed to the thoulder, or pectoral fin.

 The laft branch of the par vagum, and which appears peculiar to fifhes, is the long nerve of the lateral line of the body. We have conftantly met with it in every one of the fifhes we have examined, and its diffribution is nearly the fame in all. When we trace it to its origin, it is eafy to difcover that it is the moft pofterior branch of the nerve, which, inftead of defcend ing towards the gullet, proceeds almoft horizontally backward and outward, in fuch a manner as to become almoft fuperficial: It is merely covered by the fkin , and retained by a loofe cellular fubftance. This nerve is nearly of an equal thicknefs throughout the whole of its length, and may therefore be very readily miftaken for a tendon; it docs not appear to analtomofe with the other nerves, or, if it unites with the inter-vertebral, the filaments are exceedingly flender. When it arrives at the tail, Vol. II.

 R
 it

 ## 242 L. X. Disfribution of the Nerves.

 it terminates by very fmall radiated filaments, which are diftributed to the rays of the fin.

 This is the general diftribution of the pneumogaftric nerve in fifhes. The varieties which it prefents refult from the ftructure of the fpecies. Thus, in the Chondropterygii, as rays, foarks, \&rc. this nerve is much longer, and all its ramifications proceed from a fingle trunk, which does not divide until it reaches the part into which it is diftributed. In the fame fifhes, the two longitudinal nerves are fituated towards the back, and nearer each other.

 The other differences are not fufficiently remarkable to merit a particular defcription.

 > Article Vili.

 ## Of the Glofo-pharyngeal Nerce.

 Whave already defcribed the manner in which the filaments which eompofe this nerve arife from the brain, and explained the motives which induce modern anatomifts to confider them as a diftinct pair. We fhall now purfue its diftribution.

 It makes its exit from the cranium, through a hole in the dura-mater, very different from that. - of the eighth paif. The jugular furamen, into which

 ## Art. Vill. Glosso-pharyngeal Nerve. 243

 which the vein of the fame nerve paffes, feparates thefe two nerves. Still enveloped by the dura-mater, it exhibits a fmall enlargement, from which two branches are detached: one is directed pofteriorly towards the meatus auditorius; another perforates the dura-mater, and unites with the par vagum.

 Having reached the bafe of the cranium, it receives filaments from the facial and pneumogaftric nerves ; it afterwards divides into feveral branches-one is partly diftributed to the mufcles attached to the ftyloid procefs, and terminates in the tongue-another unites with the hypogloffus major :-laftly, others àre diftributed to the mufcles of the pharynx, along with fome filaments of the great fympathetic nerve, and form a plexus which envelopes the carotid arteries; but the principal deftination of this nerve is to the tongue and the pharynx.

 Such is the defcription.of this nerve in man. The other mammalia, birds and reptiles, prefent no remarkable difference. We have not indecd carried our tefearches, with refpect to this particular part, fo far in them as in the human body. We have, however, obferved, that this nerve proceeds to terminate in the tongue, after having furnifhed filaments to the mufcles which move it. In the fork, for example, it comes out of the bafe of the cranium, by the hole fituated below the ear, which correfponds to the pofterior foramen lacerum. It lcaves this hole

 ## 244 L. X. Distribution of the Nerves.

 in two filaments, which unite almoft immediately , and form a long quadrangular ganglion, from which a fmall filament is fent inward to the anterior mufcles of the neck: the fame ganglion detaches a fmall branch backward, which unites with the eighth pair ; and a large branch downward, on the front of the neck: the laft is the continuation of the nerve itfelf; it defcends along the œfophagus, and divides into two principal branches; one afcends upon the anterior part of the neck, and is diftributed to the mufcles of the os hyoides, which include it, in the form of cornua; the other defcends on the lateral parietes of the œefophagus, and furnifhes a branch to the lingual nerve, with which it anaftomofes; the remainder of the nerve continues its courfe upon the œfophagus. From this defcription it appears that the diftribution of the gloffo-pharyngeus is nearly the fame as in man.

 The nerve which fupplies the place of the gloffo-pharyngeal in fifhes, is plainly that branch of the pneumo-gaftric which is detached moft anteriorly from the firft branchial nerve: it is divided into a great number of filaments, which penetrate the mufcles of the tongue, in which they are fubdivided. The trunk itfelf is lof in the inferior part of the throat, before and between the branchix.

 ## Article IX.

 $$
 \begin{gathered}
 \text { Of the Great Hypogloffal Nerie, or Twelfth } \\
 \text { Pair. }
 \end{gathered}
 $$

 These nerves leave the cranium, as we have already fhewn, through the anterior condyloid foramen. As foon as they get on the outfide of the cranium, they become cylindrical, and form communications with the par vagum, the two firft cervical pairs, and efpecially with the great fympathetic nerve: after this they proceed forward, and a little outward, until they arrive behind the fterno-maftoid mufcle. At this place they give off a large branch, which accompanies the jugular vein almoft to the middle of the neck, where it forms an arch, and afcends on the anterior part of the neck, and terminates by uniting with fome filaments from the firft cervical nerves.

 Some fmall branches proceed from the convexity of this arch, and terminate in the mufcles.

 About two fingers breadth from this firft branch, the hypogloffal nerves detach another branch, which is entirely loft in the fubftance of the thyro-hyoideus mufcle.

 Finally, the trunks pafs between the hyogloffus, and mylo-hyoideus mufcles, and reR 3
 ceive

 246 L. X. Distribution of the Nerves.
 ceive fome filaments from the lingual branch of the inferior maxillary nerve : they at laft lofe themfelves by minute ramifications in the fubftance of the mufcles of the tongue.

 In the other Mammalia this nerve prefents the fame difpofition as in man. In the calf it is of a bluifh colour, and may at firft fight be taken for a vein. It retains this colour until it arrives near and within the ramus of the inferior jaw. It is diftributed in the mufcies, and even in the fubftance of the tongue towards its middle part.

 In birds, the hypogloffus comes out of the cranium, through the condyloid foramen, behind the par vagum: it is flender at its origin, paffes before the par vagum, which it croffes, and with which it partly unites. At this place a fmall filament is detached from it, which proceeds towards the breaft, accompanying the jugular vein.

 Continuing its courfe forward, the trunk of the hypogloffus croffes the gloffo-pharyngeus: it then paffes under the cornu of the os hyoides, and proceeds towards the fuperior larynx, where it terminates; but it is previoufly divided into two branches, the inferior of which is fent forward and downward from the tongue, and the fuperior upward and inward from the tongue.

 We have not obferved any nerve analogous to the hypogloffus in fifhes.

 # A. X. Sub-occipital E Cervical Nerves. 247

 ## Article X.

 Of the Sub-Occipital and Cervical Nerves.

 ## A. In Man.

 THE trunk formed by the union of the two roots of the fub-occipital nerve, pierces the duramater below the curvature of the vertebral artery. It runs for a fhort way in the fubftance of that membrane, and comes out on the edge of the foramen magnum, behind the condyles: it is then turned towards the notch in the articular procefs of the firft vertebra, where it paffes below the vertebral artery. It then forms a ganglion, from which fome filaments are diftributed to the ftraight and oblique mufcles of the head. The trunk afterwards turns before the tranfverfe procefs; it communicates by an anterior branch with the fympatheticus major, the par vagum, and the hypogloffus, and by a pofterior branch with the firft cervical pair : it then proceeds towards the triangular interval of the fmall mufctes of the head, and is diftributed to almoft all the mufcles which are attached to the os occipitis by their fuperior part.

 The firft cervical pair arifes in the fame manner as the preceding. After paffing through the

 ## 248 L. X. Distribution of the Nerves.

 notch between the firft and fecond vertebre, this pair forms a ganglion which fends off two principal branches. The anterior of thefe communicates with the inferior branch of the fuboccipital nerve, the fympatheticus major, the hypogloffus, and the fucceeding cervical pair. The pofterior branch, which is more confiderable, detaches fome filaments which unite with the pofterior branch of the fub-occipital, and with that of the next cervical pair. The remainder of the nerve is diftributed to the mufcles of the back part of the neck. One of the filaments goes forward, communicates with the hypogloflus, and is loft in fome of the mufcles of the os hyoides, and in the glands of the larynx.

 The Second cervical pair is divided, like all the others, into two branches : the anterior is the largeft; it communicates upwards and downwards with the two adjacent cervical pairs, with the fympatheticus and hypogloffus, and laftly, with the branch of the following cervical pair or pairs, which produce the diaphragmatic nerve ; after which it divides into feveral branches.

 One branch is fent backward into the mufcles of the neck; another forward and obliquely into the lateral parts of the ear, where it communicates with the facial nerve; a third proceeds towards the afcending ramus of the jaw, and is diftributed partly into the parotid gland, and partly into the teguments one ear; a fourth is

 ## A.X.Sub-occipital © Cervical Nerves. 249

 loft in the anterior part of the neck, in the mufculus cutaneus. All the other branches are united with each other, and with the acceffary nerve of the eighth pair. By this union they form 'a plexus, which produces a great number of filaments to the lateral parts of the neck, fome of which communicate with the fympatheticus major.

 With refpect to the pofterior divifion of the trunk of this nerve, it unites with the adjacent cervical nerves, and is loft in the mufcles named fplenius, complexus, longiffimus dorfi, and tranfverfalis colli.

 The notch between the third and fourth vertebree of the neck affords a paffage for the third cervical pair. It is divided, as the others are, into two branches.

 The anterior branch feparates into two. The firft receives a filament from the preceding pair, and is then diftributed to the trapezius mufcle, and the fterno-maftoideus. The fecond forms two filaments; one of which unites with the following pair: it detaches alfo fome others which join the facial nerve, and one very confpicuous branch which conftitutes the diaphragmatic nerve. The other filament joins the fourth pair, and partly unites with the great fympathetic.

 The pofterior branch is diftributed to the teguments and mufcles of the back of the neck.

 250 L. X. Distribution of the Nerves.
 The fourth pair of cervical nerves, on leaving the medullary canal, divides into two branches, in the fame manner as all the vertebral nerves. The pofterior branch is partly loft in the mufcles of the back. The anterior, which is the thickeft, communicates with the branch of the preceding pair, which forms the diaphragmatic nerve : it communicates likewife with the great fymparhetic, and is divided into three branches; two unite with the fuccceding pair, and affift in forming the brachial plexus. The third proceeds towards the fhoulder, and is diftributed to the mufcles of the fcapula.

 The fifth, the fixth, and the feventh pairs of cervical nerves nay be confidered generally: they all communicate with the adjacent pairs, and with the great fympathetic. The fifth pair tranfmits filaments to the pofterior mufcles of the neck, and to thofe of the anterior part of the thorax : fometimes one of its filaments concurs in the formation of the diaphragmatic nerve; it is, at laft, fent into the brachial plexus. The $\sqrt{2} x \mathrm{t}_{h}$ is chiefly tranfmitted by two large trunks to the brachial plexus: the firft trunk receives that of the preceding pair, and detaches fome filaments to the latiffimus dorfi. The fecond likewife fends a filament to the great pectoral mufcle. Finally, the Jeventh pair produces, in the fame manner, two large trunks for the brachial plexus, which are united fooner or
 A. X. Sub-occipital E̛ Cervical Nerves. 25 I
 later to that of the fixth. The inferior branch furnifhes two filaments to the fubclavian and leffer pectoral mufcles.

 ## B. In other Mammiferous Animals.

 The fub-occipital and cervical, nerves exhibit no remarkable differences in any of the Mammalia. They all arife in the fame manner as in man. The bulk and extent of the neryous filements which they produce, depend upon the relative magnitude of the parts to which they are refpectively diffributed. They all have the. fame number of nerves, the tbree-toed fotb excepted, which ought to have two pair more; fince, as we have fhewn in the Third Lecture, that animal has nine cervical vertebrx.

 ## C. In Birds.

 The number of the cervical nerves varics greatly in this clafs. Thie known extremes are ten and twenty-three, equal to the number of the vertebræ. Their difpofition is analagous to that obferved in man. They are, however, refpectively much larger, and undergo many flexures. They are loft, in a great meafure, under the fkin of the neck, where they may be very eafily followed. In general only the laft cervical pair contributes to the brachial plexus: the two laft pairs feldom concur in its formation.
 D. $1 n$

    ```
    252 L. X. Distribution of the Nerves.
    ```


 ## D. In Reptiles.

 Tortoifes have eight pair of cervical nerves, which are diftributed nearly in the fame manner as in Mammalia. The three laft pairs join in forming the brachial plexus. The green lizard has four pair of cervical nerves, but only the two laft enter into the compofition of the plexus. In falamanders and frog's the cervical nerves cannot be properly diftinguifhed from the dorfal, as thefe animals have no ribs. A pair comes out between the firft and fecond vertebre, which is fent to the mufcles of the inferior part of the neck, and under the fkin that covers them. Thefe nerves alfo afford fome filaments to the fhoulder. From this diftribution they may be regarded as real cervical nerves. In frogs only two pairs enter into the compofition of the plexus. In the falamander there are diftinctly four.

 ## E. In Fifres.

 As the cervical vertebre of fifies cannot be pofitively diftinguifhed from the dorfal, it is very difficult to explain the diftribution of their cervical nerves. There are never more than four that merit this name, and frequently there are none to which it can be applied. When there nervesexift, they are diftributed to the parts about the throat, or rather to the peitoral fin, over which

 ## A. XI. The Diaphragmatic Nerve. 253

 which they are fpread, as we fhall thew when we defcribe the brachial nerves.

 ## Article XI.

 ## Of the Diaphragmatic Nerce.

 THis nerve is produced chiefly by the fourth pair of cervical nerves; but it alfo receives, as we have fhewn, a confiderable branch from the fucceeding pair, and fometimes a flender filament from the fixth; befides, very commonly, a fmall branch; which is given off from the convex fidc of the arch, formed on the fore part of the neck by the hypogloffus.

 Thus compofed, this nerve defcends before the neck in a large trunk, to which fome filaments from the two laft cervical pairs, and the cervical ganglion of the great fympathetic, are united. It detaches fome fibrillæ to the fcaleni mufcles, and the thymus gland, when it exifts; after which it proceeds into the thorax, between the fubclavian artery and vein. It is involved in the middle reflection of the pleura, paffes anterior to the pulmonary veffels and veins in the lateral parts of the pericardium, in order to arrive at the diaphragm.

 Here the nerve terminates : it is diftributed by radiated fibres in the fubfance of the mufcle.

 254 L. X. Distribution of the Nerves.
 Some filaments, however, pafs to the abdominal furface, and communicate, with the fubgaftric plexus of the great fympathetic nerve.

 The diaphragmatic nerve of the other Mammalia is in every refpect fimilar to that of man. It has not always the fame origin, but that is alfo fubject to variation in man. It proceeds, however, moft commonly, from the fourth cervical and the two following pairs. It alfo receives the branch from the hypogloffal and great fympathetic nerves. The other circumftances in its diffribution do not merit a detail.

 We have not been able to difcover the diaphragmatic nerve in birds. It is poffible, however, that the mufcles which are attached to the lungs, and which form fo large an aponeurofis, receive fome nervous filaments : we muft confefs, however, that they have efcaped our obfervation.

 Reptiles have no diaphragmatic nerve, unlefs we regard as fuch the cervical pairs which are loft in the mufcles of the neck in thofe reptiles that want ribs, as falanianders and frogs. In them thefe mufcles produce the effect of the diaphragm, as will appear in the Article on Refpiration.

 Fifhes having no lungs alfo want the diaphragmatic nerve. We find, however, fome analogy in the probable function, and particularly in the diftribution of one of the firft vertebral pairs, which is diffributed to the muf-
 A. XII. Dorsal and Lumbar Nerves. 255
 cular feptum that feparates the cavity of the branchix from that of the abdomen. This nerve is particularly remarkable in the ray and the carp.

 ## Article XII.

 Of the Dorfal and Lumbar Nerres.

 > A. In Man.

 T
 The dorfal nerves leave the canal of the medulla fpinalis through the holes which are formed by the correfponding notches of each two contiguous vertebre.

 The firft pair comes out between the firft and fecond dorfal vertebre, and the laft between the twelfth vertebra of the back and the firft of the loins.

 All thefe nerves divide into two branches upon leaving the intervertebral holes; the pofterior, which is the fmaller branch, is diftributed to the mufcles and fkin of the back. The anterior branch, which is the larger, communicates by one or two filaments with the great fympathetic nerve, detaches fome ramifications to the intercoftal mufcles, and thofe of the anterior part of the thorax, and abdomen, and afterwards paffes along the intercoftal faces towards the fternum.

 256 L. X. Distribution of the Nerves.
 The firft pair of dorfal nerves is diftinguifhed by its contributing to the formation of the brachial plexus in conjunction with the lat cervical pair.
 The two following pairs produce fome branches which pafs through the lateral parts of the breaft, and proceed from within outwardly to the teguments of the arm on the internal fide.

 The twelfth pair is partly diftributed to the mufcles of the abdomen, and under the teguments; and partly into the mufcles called quadratus lumborum longiffimus dorfi, and ferratus pofticus inferior, and to the fkin of the buttocks.

 The lumbar nerves vary in number. They are ufually five, fometimes four, and feldom fix. They are large in proportion as the vertebra from which they proceed is more inferior. The fifth therefore is ufually of the greateft fize.

 On leaving the intervertebral holes, they divide into two branches, one anterior, the other pofterior. The firft branch detaches a number of filaments which unite with each of the lumbar ganglia of the great fympathctic nerve, and with each of the preceding and following pairs: it alfo tranfmits fome branches to the mufcles of the abdomen, to the quadratus lumborum, the iliacus, and the fkin. The laft ramifications are commonly flexuous, in order that they may follow the parts in their extenfion.

 The pofterior branch is lof in the mufcles of

 ## A. XII. Dorsal and Lumbar Nerves. 257

 the inferior part of the fpine. The number of its ramifications vary confiderably.The firft lumbar pair furnifhes a fmall branch, which is diftributed to the cremafter mufcle, and the tefticles in men. In women this branch goes partly to the uterus, and partly to the external organs of generation.

 The fecond pair alfo furnifhes fome filaments which are difpofed of in the fame manner as thofe of the preceding : one of them is very remarkable, and fometimes defcends to the knee.

 The diftribution of the third, fourth, and fifth pairs is nearly analogous.

 The principal branches of each of there nerves unite together, and form three very remarkable trunks, which we fhall demonftrate hereafter.

 The firft is the anterior femoral nerve, commonly called the crural.

 The fecond is the $J u b$-pubic nerve, ufually named the obturator.

 The third, which is produced by a plexus of the lumbar with the anterior facral nerves, is the ifchiatic.
 B. In other Mammiferous Animals, and in Birds.

 In thefe animals the dorfal and lumbar nerves are exactly fimilar to thofe of man. They vary only with refpect to their number, an idea of which may be formed by confulting

 Vol. II.
 $\mathrm{S} \quad$ the

 258 L. X. Distribution of the Nerves.
 the tables of the Vertebra which we gave in the Third Lecture.

 ## C. In Reptiles.

 We fhall alfo refer to the tables which indicate the number of the vertebræ in reptiles, in order to flew the number of the nerves which iffue from their foramina. The diftribution of thefe nerves is the fame as in the other animals, and to point it out would only be repeating what we have already defcribed in man.

 > D. In Fi/hes.

 In this clafs there is no diftinction between the different nerves of the vertebral column. They are all diftributed in the intercoftal fpaces, and prefent no peculiarity.

 ## Artícle XIII.

 ## Of the Peticic and Caudal Neres.

 $T_{\text {he pelvic or facral nerves come out of the }}$ vertebral canal, by the holes which are commonly called the facral, and which are ufually five in number, fornetimes more, fometimes lefs. The pofterior branches which come out by the pofterior foramina are the leaft confiderable. On

 ## A. XIII. Pelvic and Caudal Nerves. 259

 their appearance without the holes they unite with the adjoining branches, and are diftributed by a number of filaments to the flin of the buttocks, and to the lateral parts of the anus. The anterior branches are thofe which produce the facral or pelvic nerves, properly fo called.The firf pair proceeds within the pelvis towards the ifchiatic notch. Having furnifhed fome filaments to the inferior ganglia of the great fympathetic nerve, it is united and confounded with the fucceeding facral pair. Advancing a little farther, it receives the large trunk formed by the fourth or fifth pairs of the loins : it befides detaches a branch, which feparates from the ifchiatic portion, while it paffes through the notch, and is diftributed to the mufculus gluteus medius.

 The fecond pair gives off fome branches which are diffributed nearly in the fame manner as the firt ; but it is divided within the pelvis into two portions, the fuperior of which unites with the trunk of the firft pair, as we have already fhewn; and the fecond is confounded with the third pair in order to form the ifchiatic nerve. Two filaments are detached from the pofterior part of this pair, which accompany it into the notch, but feparate from beyond it. The one is loft in the gluteus maximus; the other unites with a branch of the following pair, and forms a fmall fingle trunk, which is again difunited, to be diftributed to the pofterior part of the thigh, and the

 200 L. X. Distribution of the Nerves.
 leg bencath the fkin, and to the teguments of the hip, the anus and the penis, or the vulva.

 The third pair alfo unites, as we have ftated, to the inferior branch of the fecond. It is much fmaller; at firft, it gives fome filaments to the great fympathetic nerve, and afterwards furnifhes a great number which are diftributed within the pelvis on the neck of the bladder in man, and on the lateral parts of the vagina in women. In this place they unite with fome filaments from the great fympathetic nerve, and form a very confiderable plexus. This pair alfo furnifhes a number of other branches, fome of which are fent to the pofterior parts of the thigh, and others beneath the fkin of the buttocks.

 The fourtb pair of facral nerves is diftributed nearly in the fame manner as the preceding. It befides detaches fome filaments to the mufcles of the anus, and a large branch which unites with others that come from the fciatic nerve, thus forming a very remarkable trunk. This trunk paffes between the two facro-fciatic ligaments, and afterwards divides into two branches; one of which is loft in the mufcles of the anus, and the obdurator internus; the other proceeds to the mufcles and teguments of the penis in man, and to thofe of the vulva in females.

 Laftly, the fiftlb pair, which is the fmalleft of the whole, is diftributed nearly in the fame manner as the fourth.

 ## A. Xili. Pelvic and Caudal Nerves. 261

 There are no caudal or coccygeal nerves in man.
 The other Mammalia, and the birds, prefent no difference worthy of notice in their pelvic nerves. There are caudal nerves in the Mammalia. They iffue from the vertebral canal, by holes which are formed in the vertebre of the tail. We fhall delcribe them from the rabbit.

 The $f i r f t$ pair comes out between the laft piece of the os facrum and the firft caudal vertebra. It procceds from the pelvis before the mufculus ifchio-coccygeus by the ifchiatic notch. It then divides into two branches: one is united to the fciatic nerve; the other continues to advance between the pelvis and the tail until it enters a gland fituated under the fixth caudal pair of nerves, where this branch terminates; but, in its courfe, it unites with a number of nerves, and gives origin to others, thus forming a very remarkable plexus, which we fhall name the caudal.

 The firf filament which is detached from this branch, paffes under the glutei mufcles, to which it is diffributed; the branch is afterwards joined on the internal fide by a fmall anaftomofing filament, which appears to be derived from the fecond caudal pair, and on the external fide by three or four filaments, which form a reticular plexus, from whence feveral branches go to the mufcles ; one which is very confiderable, paffes into the pelvis, and is loft upon the penis, where it may be eafily followed, as its fize

 ## 262 L. X. Distribution of the Nerves

 continues undiminifhed: again, the third, fourth, and fifth pair of caudal nerves fend filaments to the internal fide; after which five or fix branches are given off from the external fide of the mufcles of the penis, and thofe which arife from the ifchium. Finally, the trunk of the firlt caudal pair is terminated in the gland we have already mentioned.

 The facral and caudal nerves are not diftinct in reptiles and fifhes. We have pointed out the diftribution of thofe which are fent to the pofterior feet, or ventral fins. Thofe of the tail refemble the intercoftals, and are loft in the mufcles.

 ## Article XIV.

 Of the Brachial Plexus, and the Nerees of the Thoracic Member.

 > A. In Man.
 W_{E} have defcribed the manner in which the cervical nerves produce the brachial plexus by their union. The nature of this nervous intertexture renders it very difficult to follow each of the four pair of nerves which form it, when they feparate to be diftributed to the arm.

 All thefe nerves pafs into the interval included between the fealeni mufcles, and are there
 there ufually united to the firft dorfal pair. When thefe nerves feparate, they form three principal fafciculi, from which all the nerves of the arm arife.

 The middle fafciculus produces the median and ulnar nerves.

 The pofterior fafciculus detaches the radial and the axillary.

 Laftly, the internal fafciculus gives origin to the thoracic, fcapular, external and internal cutaneous nerves.

 This difpofition is, however, fo liable to variations, that nothing pofitive can be eftablifhed refpecting it; but whatever may be the origin of the nerves we have enumerated, their number is conftantly found the fame. We fhall now follow them in their diftribution.

 ## 1. Of the Median Nerve.

 This nerve is one of the largeft of the arm; at the middle and anterior part of which it is fituated on the internal edge of the brachial artery; it defcends in this manner, without producing any remarkable branches, as far as the articulation of the fore-arm; it afterwards paffes between the tendon of the brachialis internus, and the pronator teres mufcles, to which it tranfmits filaments, as well as to the fkin. It produces, at this place, fome other very remarkable branches; one is loft in the radialis externus,

 $$
 S_{4} \text { and }
 $$

 ## 264 L. X. Distribution of the Nerves:

 and may even be followed a confiderable way in that mufcle. The others are fent to the palmaris longus, and to the flexor profundus; but the moft conftant of all is the branch called inter-offeous, which, after receiving an anaftomofing branch from the radial nerve, tranfmits filaments to the flexor longus pollicis, and the profurdus mufcles; perforates the interoffcous ligament, to which it furnifhes a filament; reappears on the external furface of the fore-arm, and is loft in the flexor longus pollicis and pronator quadratus.

 The trunk of the median nerve accompanics the flexor mufcles of the fingers, and reaches the palm of the hand along with the tendons. It detaches feveral branches to the mufcles, the aponeurofis palmaris, and the fkin. Laftly, it divides into four or five principal branches near the digital extremity of the metacarpal bones; the firft of thefe branches is lof in the mufcles of the thumb; the fecond divides into two branches, which, after having given off fome filaments to the adductor pollicis, run along the cdges of the thumb, and at its extremity reunite, forming an arch, from which a confiderable number of filaments are detached. The third branch alfo produces two fmaller portions, which are fent in the fame manmer along the fides of the fore-finger. The fourth is fimilarly diftributed to the middle finger. Sometimes, however, it furnifhes only nef of
 the lateral filaments, that on the radial fide of the finger having been fupplied by the third branch. Finally, the fifth branch is diftributed on the radial fide of the ring finger. The four digital ramifications tranfmit filaments to the mufculi lumbricales, to the fheath of the tendons, and to the teguments, which it is imporfible to trace, although they are exceedingly nu~ merous.

 ## 2. Of the UThar Nerve.

 This nerve defcends along the internal part of the arm, until it approaches the elbow, where it is received into a particular furrow of the epitrochlea of the humerus. It affords fome filaments to the olecranon, and to the mufcles inferted in that part. The trunk of the nerve croffes the origin of the flexor ulnaris mufcle, and proceeds along the palmar furface of the fore-arm on its ulnar margin. In its courfe to the wrift it detaches feveral branches to the articular capfule of the fold of the arm, and to the flexor mufcles of the fingers. At the annular ligament of the carpus, or a little before it, the trunk divides into two branches; one is named the dorfal, and the other the palmar.

 The dorfal branch fubdivides into filaments, which, after uniting among themfelves, and with others from the radial nerve, are loft in the fkin of the back of the hand.

 The

 266 L. X. Distribution of the Nerves.
 The palmar branch furnifhes the two lateral branches of the little finger, and alfo that which anaftomofes with the fifth branch of the median nerve, at the extremity of the ring finger; it likewife fends down fome filaments to the lumbricales and interroffei mufcles.

 ## 3. Of the Radial Nerve.

 The radial is the thickeft nerve of the arm. Soon after it feparates from the plexus, we find it fituated between the ulnar nerve and the axillary artery; it furnifhes almoft immediately fome filaments, which are loft in the fkin , and in the triceps brachialis. The trunk of the nerve paffes afterwards behind the humerus, round which it turns to re-appear on the external furface between the brachialis externus, fupinator longus, and brachialis internus. It alfo produces, at this place, a fub-cutaneous branch, which accompanies the cephalic vein to the wrift, and feveral other branches to the radial and fupinator mufcles. The trunk of the nerve then croffes the fupinator brevis, above the articulation of the radius with the humerus, and continues to proceed on the exterinal furface of the fore-arm. It gives a number of branches to the mufcles, and then divides into two branches, one of which, having paffed under the anmular ligament of the convexity of the carpus, is loft in the 1kin, and the parts which

 $$
 \text { Art. XIV. Bracilial Plexus. } 267
 $$

 cover the back of the hand: the next branch, which is the largeft, divides into two others be fore it reaches the annular ligament of the wrift. One produces two ramifications ; the firft terminates on the dorfal furface of the thumb, and on that of the fore finger; the fecond is alfo diftributed to the fore-finger, the middle, and frequently to the ring-finger. The other ramification alfo proceeds to the convexity of the hand and the fingers, and is diftributed nearly in the fame manner as the former. It is, however, commonly the fmaller of the two.

 ## 4. Of the Axillary Nerve.

 This has alfo been named the articular nerve. It is frequently only a branch of the radial covered by the deltoid mufcle under which it paffes. It tranfmits fome filaments to that mufcle, and to the other mufcles near the articulation of the humerus, as the teres-major, the latiffimus dorfi, the ferratus major, and the fubfcapularis. One of its branches, which is the moft remarkable, is loft in the articular capfule of the humerus.
 5. Of the Thoracic and Scapular Neries.

 The thoracic nerves in fome inftances arife feparately from the brachial plexus. They are diffributed chiefly to the pectoral mufcles, and are loft in the mammary glands, and in the flin

 268 L. X. Distribution of the Nerves.
 of the breaft. There is frequently a pofterior branch which is loft in the fubftance of the latifinmus dorfi, (or lumbo-bumeralis) mufcle.

 The fcapular nerve paffes behind the notch in the coracoid procefs, and gives branches to the fupra-fpinatus and infra-fpinatus mufcles, and to the fub-fcapularis.
 6. Of the External Cutaneous, or MufculoCutaneous N^{\top} erue.
 This nerve perforates the coraco-brachialis mufcle. It is afterwards fituated between the biceps and the brachialis internus, to both of which it furnifhes numerous filaments. Having reached the middle part of the humerus, it divides into two branches; one fuperficial, and the other deep feated.

 The fuperficial branch is the larger: it defcends with the cephalic vein above the tendon of the biceps mufcle in front of the fold of the fore arm, where it divides into a number of ramifications. Some of thefe are partly loft in the fupinator longus, and in the fkin, where they anaftomofe with other filaments from the radial nerve. Other ramifications defcend to the hand, and divide and fub-divide in the fkin.

 The deep feated branch of the external cutaneous nerve is almoft entirely loft in the brachialis internus mufcle; one of the filaments penctrates, wirh the humeral artery, properly fo cailed, into the medullary cavity of the bone.
 7. Of the Internal Culaneous Nerve.

 This nerve comes fometimes from the ulnar: it proceeds along the pofterior and internal fide of the humerus, between the fkin and the mufcles. When arrived at the fore-arm, it divides into a number of branches which enter the 1 kin , and may be traced as far as the hand.

 ## B. In other Mummiferous Animals.

 The brachial plexus is produced in the other Mammalia by the three laft pair of cervical nerves, and by the firft dorfal pair.

 The articular nerve is exclufively formed by the fifth cervical pair in the rabbit, and only one of its filaments enters into the compofition of the plexus.

 The thoracic nerves are detached from the plexus, and are diftributed to the mufcles of the axilla. We alfo find a nerve analogous to the fcapular.

 The internal and external cutaneous nerves are not diftinct, but only branches of the three principal cords which reprefent the median, ulnar, and radial nerves.

 At the middle part of the arm the median produces a branch which is diftributed to the mufcles and the $\cap \mathrm{kin}$, and may be regarded as a mufculo-cutancous nerve. Having arrived before the bend of the fore-arm, it detaches a number

 270 L. X. Distribution of the Nerves:
 of filaments which pafs deeply along with the tendon of the biceps, and are diftributed to the mufcles. The trunk continues to accompany the mufcles of the palmar furface of the forearm. It divides into two branches, which pafs through two particular grooves in the ligaments of the carpus, and are each diftributed to the fingers, nearly as in man.

 The ulnar nerve is the mof external and the flendereft of the three. About the middle of the arm it gives off a branch to the extenfor mufcles of the elbow and to the fkin. This branch appears to fupply the place of the external cutaneous nerve. The trunk of the ulnar having arrived before the articulation of the arm, penetrates the aponeurofes of the mufcles which are inferted in the external condyle : it paffes along the ulna on the inter-offeous ligament, gives branches to the flexor mufcles of the fingers, and terminates in two very long filaments, one of which goes to the external furface of the paw, where it is loft in the 1 kin; the other follows the palmar furface, and is diftributed nearly as in man.

 The radial nerve is alfo the thicken of the three cords : it winds round the humerus, and furnifhes ramifications to the extenfor mufcles of the fore-arnı: having reached the external part of the arm, it glides between the biceps and tricepssmufcles, and divides into feveral branches; one becomes fuperficial, and proceeds
 to the front of the fore-arm under the fkin; the others are loft in the mufcles of the anterior part of the fore-arm.

 Laftly, the trunk, after fupplying the mufcles, divides into feveral filaments, which are loft in the flkin on the convex part of the fingers.

 ## C. In Birds.

 The brachial plexus in birds, is formed exclufively by the laft cervical and the two firft dorfal pairs. Their intermixture produces only one fafciculus, from which all the nerves of the arm are derived.

 The firft cords detached from the plexus, are intended for the pectorales major and medius, and the fub-clavius mufcles: they are large, and four in number.

 A branch, analogous to the articular nerve, is afterwards diftributed to the mufcles which furround the head of the humerus and its articular capfule.

 Two large principal cords then arife, which are fent to the wing.

 One is directed under the internal or inferior furface of the wing. It firft detaches filaments to the biceps and deltoid mufcles, then following the internal edge of the biceps, it arrives at the bend of the fore-arm without affording any remarkable branches. Having advanced above the articulation of the fore-arm, immedi-

 ## 272 L. X. Distribution of the Nerves.

 ately under the fkin, it divides into three branches; the external is the moft flender, and is partly loft in the radial mufcies, and the fkin which covers the pollex, or the baftard wing. The middle branch paffes deeply under the mufcles to which it is diftributed; one of its filaments perforates the inter-offeous ligament to get to the fuperior furface. "Laftly, the third or internal branch, proceeds, as the ulnar nerve, on the internal condyle of the humerus, amongft the tendons of the mufcles which are there inferted. At this place it feparates into a number of filaments : one paffes to the articular capfule of the fore-arm with the humerus, and into the fkin that covers the elbow; fome proceed to the flexor mufcles of the metacarpus. Two others, which are more remarkable and longer, follow the inferior margin of the wing under the fkin, and are loft in the fkin which covers the inner furface of the digiti. This nerve appears to fupply the place of the median, the ulnar, and the mufculo-cutaneous.

 The other principal cord of the brachial plexus turns round the humerus to arrive at its fuperior furface, producing, at firft, fome very confpicuous filaments for the extenfors of the ulna; then two other alfo very remarkable filaments, which are diftributed in the form of a goofe's foot under the fkin, and the membranes fituated between the humerus and the fore-arm. Thefe branches appear analogous to the nevous
 cutaneus internus. The trunk of the nerve continues to defcend along the humerus; and, on reaching the articulation with the ulna, is found fituated on the internal furface, but towards the radial edge of the fore-arm : it paffes through the tendon of the radialis externus mufcle, and upon arriving at the outer, or fuperior furface, divides into two branches; one, which is fhort, is loft under the fkin that covers the external furface of the fore-arm; the other, which is longer, is fituated between the two bones on the inter-offeous membrane. When it reaches the articulation of the carpus, it paffes through a particular groove, and is feen divided into three filaments; a fhort one for the pollex, and the other two for the external fide of each of the digiti, upon which they are diftributed under the fkin as far as the laft joint.

 It is evident that this cord correfponds to the radial nerve, and that one of its branches fupplies the place of the cutaneus internus. This defcription is taken from the duck and the fork. We prefume it is not different in the other birds.

 ## D. In Raptiles.

 In the tortoife, the three laft pairs of cervical nerves, and the firft of the dorfal, procead to the thoracic member, where they form a plexus in the following manner : the fifth cervical pair palfes

 Vol. IL.
 T
 behind

 274 L. X. Distrieution of the Nerves.
 behind the other four pairs, croffes them in their courfe, and unites with thern in its paffage. It then turns round the fcapula, which in this animal is articulated with the firf dorfal vertebra. We fhall return to tlice defcription of this nerve. The fixth cervical pair proceeds directly along the fcapula on its internal furface : it is croffed pofteriorly by the fifth, and towards the lower third of the fcapula receives the feventh cervical pair. The feventh is flender, croffed by the fifth and the firt dorfal pair, and united with the fixth, in the manner we have pointed out. The firf dorfal pair partly joins the feventh ccrvical, almoft at the point where it comes out of the vertebral canal; it is then fent to the mufcles of the fhoulder.

 We fhall now purfue each of the cords we have mentioned to their termination.

 The large nerve produced by the fifth cervical pair, naving arrived behind and near the true articulation of the fcapula with the fpine, divides into three branches; one, which is but a filament, appears to be diftributed to the articular capfule; a fecond, which is very flat, and from the fides of which a vaft number of leffer branches extend to the mufcles of the fkin, appears to take the place of the mufculo-cutancus; the third branch, which accompanies the mufcles of the fcapula under the fkin, defcends to the humerus, without producing any remarkable hranches. At this place, however, it fends off
 fevera!

 ## Art. XIV. Brachial Plexus.

 feveral ramifications to the extenfor mufcles of the fore-arm. The trunk continues its direction forward, expands and lofes itfelf under the fkin, and may be followed as far as the hand: it may, perhaps, be regarded as fupplying the place of the ulnar nerve.

 The fixth pair of cervical nerves having, as we have fhewn, affiffed in forming the brachial plexus, paffes along the internal furface of the fcapula; about the lower third of that bone it receives the feventh pair; the nerve then becomes thicker, but foon after divides into two branches; one, which is slender, palfes into the groove, between the furca and the clavicle, and then fpreads over the articular capfule of the humerus, after furnifhing numerous filaments to the mufcles which furround it; this nerve may be regarded as analogous to the articular in man. The trunk of the nerve, which evidently fupplies the place of the mediah, upon reaching the articulation of the humerus with the fcapula, tranfmits filaments to the adjoining mufcles. On arriving at the palmar furface of the forearm, it divides into three portions, two of which are on the ulnar fide, and fink deeply into the mufcles; the third, which is much larger, follows the radial fide of the fore-arm, and at the bafe of the thumb proceeds to the palm of the hand, and detaches filaments to each of the fingers.

 The feventh cervical pair unites, as we have 'T 2 ftated,

 ## 276 L. X. Distribution of the Néerves.

 ftated, to the fixth, at the pofterior part of the fcapula, to form the mediari and articular nerves. We have therefore no occafion to return to its defcription. The firft dorfal pair is loft in the mufcles of the thoulder, and is not continued throughout the arm.

 The brachial plexus of the lizard differs a little from that of the tortoife; it is formed by two dorfal, and the two laft cervical pairs; the firft of the cervical furnifhes only one of its branches to the plexus; the other going to the neck.

 In the frog, the nerves which are to be diftributed to the arm, proceed from a very thick cord, which comes from between the fecond and third vertebræ: this makes the largeft nerve in the whole body; it is foon after joined by a filament from the fucceeding pair, with which it intimately unites; this cord proceeds towards the axilla-it fends off a branch, which paffes above the fhoulder, and is loft in the mufcles of that part. The trunk continues its courfe to the arm, and wery foon forms two principal branches; and befides thefe, it alfo finds fome filaments to the extenfors of the fore-arm, and the articular capfule of the head of the humerus.

 Of thefe two nervous cords, one is directed forward upon the humerus, and reprefents the median nerve; it detaches fome filaments to the mufcles and the flin. Arrived at the fold of
 the fore arm, the nerve plunges amongft the mufcles, along with the tendon of the fernoradialis, which fupplies the place of the biceps; it afterwards divides into two branches, placed one above the other: the moft flender is fituated bet ween the flexor mufcles of the fingers; the larger upon the furrow, which indicates the union of the two bones of the fore-arm ; thefe pafs under the ligaments of the carpus; having reached the palm, the fuperficial branch is loft in the fkin which covers that part, and the deep feated is diftributed to each of the fingers, nearly as in man. It alfo furnifhes fome filaments to the mufcles of the hand.

 The other cord reprefents the radial nerve; it turns round the humerus, and furnifhes, in the firft place, fome branches to the extenfor cubiti : continuing to defcend round the humerus, it arrives before the articulation with the bone of the fore-arm, on the radial fideit paffes through the fubftance of the mufcles to the external part of the fore-arm : it is afterwards divided ; one of the branches is loft under the flein, the other paffes under the back of the hand, and terminates on the convexity of the fingers. From this defcription it will appear, that the nerves of the arm in frogs very much refemble thofe of the wing in birds.

 In the falamander the nerves of the arm are diftributed as in the frog, but the brachial plexus is formed by two cervical, and two dor-

 278 L.. X. Distribution of the Nervil:
 fal pairs, if we may regard as doffal vertebra thofe which fuftain rudiments of the ribs.

 There are no brachial nerves in ferponts.

 ## E. In Fifhes.

 The nerves of the pectoral fin of ipinous fifhes proceed from the two firft vertebral pairs; thefe two nerves arife at a confiderable diftance from each other, and traverfe the firft mufcle placed between the fpine and the firft rib, which feems analogous to the fcalenus.

 In the falmon the anterior nerve approaches the par vagum, of which it might be regarded as a branch, were it not obferved that it comes out through a particular foramen. In the carp it is feparated by the latt branchial bone. 'The fecond vertebral pair, intended for the thoulder, is fituated more pofteriorly, and ncarer to the middle line of the búdy, behind the ofophacus. 'Ihefe two nerves proceed directly downward to the internal lamina of the feapula, where they re-unite, but are not confounded. The fint vertebral pair then divides into two cords, from which anatomofing filaments are detached to form a kind of plexus. A number of thefe filaments are difributed to the adductor mulches of the fin. The cord, which is given off from the firft vertebral pair, likewife appears to terminate in thefe mufcles; but it previoully produces a remakable filament, which is diftributed
 buted to the membrane that feparates the branchial from the thoracic, or abdominal cavity, which are here confounded. May not this filament be regarded as analogous to the diaphragmatic nerve? we are much inclined to this opinion.

 The two brachial nervous cords pafs through the hole fituated before, and without the articulation of the fin with the fhoulder; they unite there, and produce an irradiation of nervous filaments, feveral of which are loft in the mufcles of the external furface of the fhoulder, and in the oblong articular capfule which receives the fmall carpal bones. Laftly, one of the filaments extends under the fkin, which forms the membrane of the radii of the fins.

 In cartilaginous fifhes, as the rays, both the diftribution and number of the brachial nerves are very various. The firft twenty vertebral pairs are received in a cartilaginous canal, behind the cavity of the branchir ; they unite there, and form a large fingle cord, which extends towards the middle part of the fin, crofsing the cartilaginous bar, on which the radii are articulated.

 This firft cord continues its direction forward, along the cartilaginous bar, defcribing an arch, the concavity of which is anterior, and gives origin to a number of filaments, equal in number to the radii of the fin. All thefe filaments

 280 L. X. Distribution or the Nerve:.
 are lof in the mufcles, and may be followed to the margin of the fin.

 The four or five vertebral pairs, which fuc.. ceed the firft twenty, likewife unite into a thick cord, which is aftereards fubdivided into feven or eight filaments, for the middle radii of the fin. Thefe are almoft perpendicular to the nicdulla fpinalis.

 The pairs of vertebral nerves which follow to about the forty-fourth, unite two and two, and form a cord, which perforates the cartilaginous bar of the pofterior part of the fin ; they divide in the mufcles in the fame manner as the preceding.

 The nerves of the pectoral fin, or wing of the ray, therefore, prefent a very fingular diftribution.
 Article XV.

 Of the Nerees of the Abdominal Memiur.

 > A. In Man.

 IN defcribing the lumbar and facral nerves, we pointed out the formation of the principal trunks that are diftributed to the inferior extremity : we now proceed to trace them particularly.

 1. Of
 2. Of the Subpubic, or Obturator Nerve.

 This nerve arifes from the plexus of the lumbar pairs. The place at which it is feparated varics; it proceeds into the fmall pelvis, along the inner fide of the tendon of the pooas mufcle, and is directed towards the fubpubic foramen : it furnifhes fome filaments to the internal obturator mufcle; it then paffes through the fubpubic foramen, and fends off fome filaments, which go to the external obturator mufcle; after which, it divides into two branches, one anterior, the other pofterior.

 The firft is loft in the pectineus, gracilis, and cruralis mufcles; it defcends almoft to the knee.

 The pofterior branch is diftributed nearly in the fame manner, but is more deep feated.
 2. Of the Anterior Femoral, or Crural Nerve.

 This cord is commonly formed by the plexus of the four firft pairs of lumbar nerves; it accompanies the femoral artery in its courfe through the fmall groove, which the iliacus and and pfoas mufcles leave between them, to which it gives fome filaments. When under the inguinal arch, it divides into a confiderable number of branches deftined for the mufcles.

 One branch is ufually fent to the rectus mufcle; four or five to the triceps femoris; fome to the fartorius, feveral of which afterwards proceed under the fkin. Laftly, others are diftri-

 282 L. X. Distrieution of the Nerves.
 diftributed to the fafcia lata, the peftineus, the gracilis, and the femi-tendinofus.

 Two longer filaments proceed under the fkin of the thigh, on the internal fide: one, which nearly follows the direction of the femoral arter, , fpreads out at the knee; the other is confiderably thicker; it defcends to the font, nearly accompanying the vena faphæna, and is called nervus faphenus; it frequently receives a branch from the fubpubic nerve towards the middle of the thigh; it is chiefly dittributed to the fkin.
 S. Of the Ifchictic, or S'ciatic Nerre.

 This is the largeft nerve in the body; it is ufually produced by the two laft lumbar, and the three firf facral pairs : it iffues from the pelvis, between the gemini and pyriformis mufcles, through the ifchiatic notch; it there produces fome filaments for the obturator internus, the gemini, and quadratus femoris. In this pofterior fituation, it defcends from the ifchiatic tuberofity towards the trochanter. Having reached the middle of the thigh, or fomewhat lower, it divides into two cords, which continue to defcend and pafs into the ham; they then affume the names of the popliteus internus, or tibial nerve, and the popliteus externus, or peroncal nerve.

 In its courfe along the thigh, the ifchiatic nerve furnithes allo a number of fmall branches

 ## Art. XV. Abdominal Member. 283

 to the femi-tendinofus, femi-membranofus, and biceps, and to the adductors of the thigh.

 When in the ham, it fends filaments to the popliteus, femi-tendinofus, biceps, and gaftrocnemii mufcles.

 It alfo frequently produces a branch whicir fometimes arifes from the lower part of the peroneal nerve. This branch proceeds under the mufcles of the tendo Achillis, on the fide of the fibula. It is diftributed to the flin of the foot, and is fometimes continued on the back of the foot, as far as the extremities of the toes.
 4. Of. the Tilial Nerve, or Popliteus Internus.

 This is the internal portion of the trunk of the fciatic nerve, after it reaches below the ham: the cord, which it forms, paffes under the mufcles which compofe the calf of the leg, to which it fends fome ramifications. It like wife furnifhes fome to the popliteus mufcle, and its filaments accompany the tibial aitery, properly fo called, or that which enters the bone ; it likewife detaches filaments to the tibialis pofticus, flexor longus pollicis pedis, and flexor communis digitorum pedis. The trunk, continuing to defcend, proceeds towards the internal mallcolus ; it enters the groove formed between the tibia and the os calcis, along with the tendons of the flexor mufcles. When ar rived under the fole of the foot, it is divided into the inicrinal and cxternal plantar nerees; the firft

 284 L. X. Distribution of the Nervis.
 firft tranfmits filaments to the fmall mufcles of the foot, as the fhort flexors, tranfverfales pedis, and the abduttors and adductors of the great toe, and afterwards divides into four branches, which are diftributed to the lumbricales and interoffei mufcles, and to the fkin : the ramifications which go to the latter, are difpofed of in the fame manner as the branches of the median nerve in the hand, forming alfo an arch with the external plantar.-The external plantar nerve fupplies the fifth toe, and external fide of the fourth.

 ## 5. Peroneal Nerve, or Popliticts Eirternus.

 The external branch of the fciatic nerve affumes this name below the ham : at firft it detaches fome filaments, which are extended forward under the fkin of the leg and foot, and which unite with the cutancous ramifications of the tibial nerve. It afterwards glides along the fibula, and making a curve at the fuperior third of that bone, is there divided into three branches, two of which are fuperficial, and the other deep feated.

 The deep-feated branch is diffributed to the mufcles of the anterior part of the leg; it extends under the fkin of the knee and foot, tranfmitting filaments to the extenfor brevis, and the fuperior interoffei mufcles.

 Both the fuperficial branches proceed under the aponeurofis of the leg : the firft rifes from

 ## Art. XV. Abdominal Member. 285

 it towards its middle part, and paffes in the fkin as far as the foot ; the fecond likewife pierces the aponeurofis, about the middle of the leg, and proceeds under the fkin, towards the malleolus externus: when it reaches the foot, it divides into feveral filaments, which, like the preceding, terminate on the lateral part of each of the toes.

 ## B. In other Manimifergus Animals.

 The lumbar and pelvic nerves, deftined for the abdominal member, form a plexus previoufly to their diftribution. In general it is the fame as that which takes place in man, or the differences are unimportant. The nervous cords are precifely alike in number, and divide in the fame manner.

 The anterior crural nerve arifes moft commonly before the fubpubic. In the groin it produces an irradiation of mufcular filaments ; one, which is very remarkable, accompanies the vena faphæna under the fkin , and may be traced to the foot.

 The fubpubic nerve alfo paffes through the foramen obturatorium; it is diftributed to the mufcles of the thigh.

 The fciatic nerve is alfo produced by the facral pairs; it commonly receives anaftomofing filaments from the caudal pairs. In general, it 6. prefents

 285 L. X. Distribution of tie Nerveso
 prefents no effertial difference from the fame nerve in mãn.

 > C. In Birds.

 The oblurator nerve alfo arifes, in birds, from the plexus, formed by the lumbar pairs; it goes through the fubpubic hole, with the tendon of the obturator internus; foon after it leaves the pelvis, it divides into a great number of branches, which terminate in the mufcles that furround the os femoris, and chiefly in thofe about its articulation, and in the adductor mufcles.

 The femoral nerve is evidently formed by the three laft lumbar pairs, which compofe a plexus above the pelvis, from which the obturator nerve proceeds. On reaching the groin, the crural nerve feparates into three principal brarrches, which afterwards divide and fub-divide in the different mufcles of the anterior and internal furface of the thigh. A confiderable number terminate in the fkin, on which they may be very eafily traced.

 The fciutic nerve is produced in birds, chiefly by the four fuperior pelvic pairs; it proceeds towards the fciatic notch of the pelvis, behind the cotyluid cavity. Having left the pelvis, it divides into two principal portions ; the pofterior is a fafciculus, compofed of feven or cight branches, which are loft in the glutei mufcles
 and adductors of the thigh. The other portion is a fimple and very thick cord, which appears to be the trunk of the nerve itfelf. It takes the direction of the former, and detaches fome flender branches, which are diftributed to the flexor mufcles of the leg. When arrived at the middle and pofierior part of the thigh bone, the trunk divides into two branches; the larger correfponds to the tibial nerve, and the other, which is fmaller and nearer the bone, appears to be the peroneal nerve.

 When the tibial gets into the ham, it divides into two branches: the thicker of the two feparates into fix or feven filaments, deftined to the mufcles of the pofterior part of the leg, and chiefly to the gemeili and the foleus; the other branch continues to proceed behind the bone of the leg; having reached the heel, it enters a groove, and paffes under the bones of the metatarfus, at the digital extremity of which it divides into four, three, or two portions, according to the number of the bird's toes: thefe filaments are fent to the peroneal edge of each of the toes.

 The peroneal nerve, or the fecond principal branch of the fciatic, is, as we have obferved, neareft the bone. When it arrives under the knee, it paffes towards the peroneal edge of the leg, and divides into a number of filaments, which are left in the anterior part of the 1 cg . Two filaments, which are much thicker and longer,

 ## zS8 L. X. Distribution of tife Nerves.

 longer, accompany the bones of the leg; one on the peroneal edge, the other on the tibial; in this manner they pafs above the articulation of the tarfus, in two grooves, which are proper to themfelves : they approach each other afterwards, and are fituated in the anterior gutter of the metatarfal bone, after which they again feparate. The tibial branch paffes between the fecond and third toe, and the peroneal between the third and fourth, when the latter exifts; they proceed along the edges of the toes, and ierminate under the fkin, near the nail. This defcription is taken particularly from the fork, though we have made fimilar refearches in feveral other birds; it fhews that the nerves of the abdominal member are nearly the fame in birds as in man.

 ## B. In Reptiles.

 In liaards there is only a fmall nervous filament, which proceeds from the femoral nerve, and fupplies the place of the fubpubic. The femoral nerve is itfelf formed of the two laft lumbar pairs, and paffes above the bones of the pelvis, to be diitributed in the mufcles of the anterior part of the thigh. The fciatic nerve is produced by the three pairs of nerves which follow, and which alfo receive a filament from the laft lumbar pair ; the only cord they form, proceeds along the infide of the thigh, rubdividing

 $$
 \text { Art. XV. Abdominat Member. } 289
 $$

 dividing in the mufcles, and extending to the toes.

 The diftribution of the nerves in the abdominal member is nearly the fame in the faldmander: there are no differences except in the manner in which the plexus is formed. The femoral nerve is produced by a fingle lumbar pair, which tranfmits a branch to the fciatic plexus, formed by the two fucceeding pairs.

 In the frog, three pair of nerves enter into the compofition of the femoral plexus; before which they run the whole length of the offa ilii, which are very long: when arrived at the thigh, the plexus fends off a nerve which correfponds to the anterior femoral; it is diftributed in radiated filaments to the fore patt of the thigh. The reft of the plexus proceeds into the pelvis, and forms a large cord, which paffes to the pofterior part of the thigh, and may be regarded as the fciatic nerve. A great number of filaments are afterwards detached from it to the mufcles; about the middle and pofterior part it divides into two branches, which pafs under the ham, and reprefent the two popliteal nerves, the external and internal: thefe are afterwards diftributed to the foot of the pofterior leg, nearly in the fame manner as to the human foot.

 > E. In Fihes.

 The ventral fin, which, in fifhes, reprefents Vol. II.

 U
 the
 $2 g 0$ L. X. Distribution of the Neryes.
 the pofterior extremity, receives nerves from the vertebral pairs.

 In the cartilaginous fifhes, as the ray, eight or nine pairs proceed directly outward towards the ventral fin; the four or five firft pairs unite into one trunk, which paffes through a particular hole in the cartilage that fuftains the radii. The other pairs proceed immediately above the radii. All thefe nerves are diftributed to the mufcles, precifely in the fame manner as in the pectoral fin.

 In the fpinous fifthes, of which we fhall mention the genus Silurus, the vertebral pairs, which are diftributed to the intercoftal mufcles, detach filaments to the mufcles that move the fin. Some of thefe may be diftinctly followed to the membrane which covers the radii.

 ## Article XVI.

 Of the Gireat Sympathetic, alfo called the Great Intercoftal or Tri-fplanchunic Nerie.

 > A. In Man.

 THis nerve cannot be confidered as proceeding immediately from the brain. It communicates with the fifth and fixth pairs of the encephalon, with the thirty pairs of vertebral nerves, with the
 the gloffo-pharyngeus, and with the par vagum. At all thefe points of communication it exhibits very remarkable enlargements.

 The portion of the great fympathetic, which is neareft the brain, appears in the carotid canal of the os temporum, where it forms a plexus round the carotid artery. We have already pointed out the filaments which unite this nerve to the fixth pair and that which it appears to receive from the fpheno-palatine ganglion of the maxillaris fuperior, under the name of the vidian nerve.

 The nervous filaments of the carotid plexus form, at the bafe of the cranium, a fingle trunk, which produces an elongated enlargement of a reddifh colour; it extends nearly to the third vertebra, and is called the fuperior cervical ganslion.

 This ganglion receives filaments at its origin rom the firft and fecond cervical pairs ; fomeimes from the gloffo-pharyngeus and the oneumó-gaftric; to which, as well as to the arotid artery, it is always joined by a very comract cellular fubftance. Its figure is an oblong ival, more pointed inferiorly.
 After this enlargement, the trunk of the erve, which becomes more flender, defcends long and behind the carotid artery, as far as the ferior part of the neck, where it forms a new anglion, named the inferior cervical. In its ourfe it receives or detaches filaments to each

 ## 292 L. X. Distribution of the Nerves.

 of the cervical nerves at its pofterior part. It gives off others from its anterior past to the pharynx and the fat, the fibrils of which uniting together, produce very delicate plexufes round the carotid arteries; the mufcles of the anterior part of the neck alfo receive many filaments. Laftly, among the other ramifications, which, in confequence of their tenuity, cannot be readily traced, we obferve fome which, uniting with filaments from the par vagum, pafs into the thorax, and form the inferior cardiac plexus, as we have thewn in defcribing the pneumo-gaftric nerve.

 The inferior cervical ganglion is flat. Its figure varies. It is oblong, triangular, or fquare in different individuals. It is ufually fituated before the traniverfe procefs of the feventh vertebra of the neck. It is fometimes wanting, and then it is confounded with the frift thoracic ganglion. It commonly receives filaments from the four laft cervical pairs, but feldom any from the dorfal. It appears to produce others which, proceeding to the internal fite, join the recurrent branch of the par vagum, the diaphragmatic nerve, and the nerves which form the fuperior and inferior cardiac plexufes.

 The trunk of the fympathetic nerve enters the thorax behind the vertebral artery. Having arrived upon, or a little below the head of the firlt rib, and fill covered by the fub-clavial artery it experiences a new enlargement, called the

 ## Art. XVI. Great Sympathetic. 293

 fuperior thoracic ganglion. A number of nervous filaments run into this ganglion from the inferior cervical pairs, among which there is always a very remarkable one from the firft dorfal pair, and even fometimes another from the fecond. It produces three orders of branches. The firft unite with the cardiac plexus; the fecond form a plexus round the fub-clavial and vertebral arteries; the others are loft in the mufculi fcaleni and longus colli.

 The remaining part of the great fympathetic nerve, in the cavity of the thorax, is fomewhat thicker than in the neck. It is attached inferiorly to the pleura, and paffes above the heads of the ribs. In its courfe, as far as the diapleragm, it receives filaments from the dorfal pairs, at acute angles ; at each of the points of union it forms enlargements or ganglia, which are named in numerical order. They vary both in form and fize.

 At the fixth ganglion five or fix branches are ufually detached from the nerve. They proceed downward and inward towards the bodies of the vertebra. They are there united, and form a particular cord, which paffes into the abdomen, through an aperture of the diaphragm, to which mufcle it affords filaments. This cord is called the Splancbnic nerve.

 Upon getting into the abdomen, the fplanchnic nerve becomes almoft immediately flat, and forms a kind of nervous crefcent before the

 294 L. X. Distribution or the Nerves.
 aorta. From its form this has been named the femi-lunar ganglion. It is joined inferiorly ta that of the oppofite fide. It fends off a great number of filaments. Some go to the diaphragm, a number of others form a plexus round the aorta, and the renal, cœliac, and fuperior myfenteric arteries.

 That which envelopes the coliac artery is particularly named the folar plexius. It receives a number of filaments from the par vagum. The others, from their fituation with refpect to the arteries, are called the coronary fonnachic, the Splenic, and the bepatic plexufes.

 The trunk of the great fympathetic, which we left in the thorax, continues to defcend to the diaphragm, but it detaches, at the ninth and tenth thoracic ganglion, and fometimes at the laft but one, a filament called the little Jpiancbuic nerve, which unites with the great fplanchnic in its pafage through the diaphragm.

 The fituation of the great fympathetic within the abdomen is nearly the fame as in the thorax. It forms enlargements at eac: lumbar vertebra, which reccive two or three filaments from each of the lumbar pairs. It alfo fends filaments to the plexufes already defcribed; there are then plexufes formed round the inferior myfenteric, fpermatic, and hypogaftric arteries, which are termed inferior mysenteric, Spermatic, and hypogaliric plosulcs. The laft of thefe tranifmits branches to all the adjoining ar-
 reries, to the colon and rectum, to the ureters, the bladder, and the parts of generation.

 Having reached the pelvis, the great fympathetic proceeds to the os facrum. Arrived at the caudal vertebre, the two trunks, which are now very flender, unite and form the laft ganglion. In this courfe there are as many enlargements as there are facral nerves, It happens, however, fometimes, that there is no ganglion.

 In this manner the great fympathetic nerve terminates in man.

 ## B. Ins other Mammiferous Animals.

 The great fympathetic nerve of the other Mammalia is nearly fimilar to that of man. We fhall give a defcription of it, taken from accurate diffections in the roolf, the racoon, the porcupine, the Jocep, and the calf.

 The great fympathetic evidently unites, within the cranium, and in the folds of the dura-mater, with the fifth and fixth pair of nerves. This analtomofis is very remarkable.

 On entering the cranium through the foramen lacerum, it is very diftinct from the par vagum, but it adheres clofely to the periofteum of the temporal bone. When we ftretch the cord which it forms, we obferve that it is divided into dix or feven filaments, which make together a very compact net-work. Two or three lines farther, according to the fize of the animal, all

 ## 296 L. X. Distribution or the Nerves.

 thefe filaments approach each other, and are again united fo intimately, that the ganglion which they produce appears, by its fection, cartilaginous. Numerous filaments proceed from this ganglion, fome of which are very fhort, and are fent to the nerve of the fifth pair. Others, which are longer and fmaller, form a kind of reddifh coloured net, interlaced with blood veffels. This is the net which Willis regarded as a little rete mirabile. It appears that the communication with the fixth pair takes place by means of this net, which envelopes the nerve on every fide, and from which it is feparated with great difficulty. We have not remarked any particular anaftomofing branch in the calf, or in the ram.

 In its courfe through the foramen lacerum, the great fympathetic nerve detaches a nervous filament which enters the cavity of the tympanum. It is alfo there intimately united with the eighth pair, from which it feparates at the bafe of the cranium to form a thick cord.

 Having advanced fome lines from the cranium, the great fympathetic fwells into a large reddifh ganglion of an elongated oval form. This is the fuperior cervical ganglion. It unites with the neighbouring nerves in the fame manner as in man.

 After communicating, by filaments, with the adjoining nerves, the fuperior cervical ganglion proceeds to the anterior part of the neck, before

 ## Art, XVI. Great Sympathetic. 297

 the longus colli mufcle, as far as the feventh vertebra. In its courfe it receives very flender nervous filaments from all the cervical pairs.

 In the front of the laft vertebra of the neck, it forms a curve, which is directed from within outward towards the firft rib, on the head of which it unites with the firft thoracic ganglion.

 Several filaments which go from the convexity of this curve, proceed along the mediaftinum to the pericardium, where they are loft. Others form a plexus around the fubclavial artery.

 The firf thoracic ganglion is of a femi-lunar figure, more or lefs elongated according to the fpecies. Its concavity is inward. On its conical edge it receives or tranfmits four or five filaments. The moft fuperior paffes along the vertebral artery, accompanies it into the canal, and forms around it a plexus which may be followed very high up, and which probably enters into the cranium with the artery. The other filaments unite with the laft cervical, and with the two firft dorfal pairs.

 From the concavity or fuperior and internal edge of this firft thoracic ganglion, one, two, or three filaments are detached, which proceed tranfverfely or obliquely do:nward towards the pulmonary arteries at their entrance into the lungs; they there unite with the par vagum, to form the pulmonary and inferior cardiac plexufes.

 The trunk of the great fympathetic conti-

 ## 298 L. X. Distribution of the Nerves.

 nues to defcend in the thorax as far as the dia. phragm. In its paffage it ferms a ganglion upon the head of each rib, which receives a nervous filament from each of the vertebral pairs. Laftly, it paffes through the diaphragm, forming a fingle cord, which is the real Splaizchnic nerve.

 On entering the abdominal cavity, the Splanchnic nerve proceeds towards the middle line under the ftomach : it is there frequently divided into two cords, which afterwards rejoin. From this kind of nervous ring there arifes either a principal trunk, or four or five filaments, which uniting together near the cœliac artery, form a ganglion which is frequently of a femi-lunar figure. A number of filaments proceed from the edges of this ganglion, and envelope the ftomachic, fplenic, and hepatic arteries, and fupply the place of the folar plexus; others envelope the renal artery, round which they alfo form a plexus,

 The trunk of the great fympathetic fill dcfcends in the abdominal cavity, on the lateral parts of the bodies of the vertebre: each of its ganglia is nearly of an elongated quadrangular form; one of the fuperior angles receives the continuat on of the trunk; the other the vertebral pair. The internal inferior angle tranfmits a branch to the aorta, which affifts in forming fome of the plexufes that furround each of the arteries which rife from that veffel. The

 Art. XVI. Great Sympathetic.
 other angle produces the continuation of the trunk.

 In other refpects the great fympathetic appears to be difpofed in all mammiferous animals as in man: it produces the fame plexufes, with fome differences as to the number of filaments and the fhape of the ganglia: but even thefe circumftances are fubject to variation.

 ## C. In Birds.

 The great fympathetic in birds has many refemblances to that in mammalia: It enters the cranium by the fame aperture as that through which the par vagum and gloffo-pharyngeus come out ; it alfo unites with the fifth and the fixth pairs. The firft ganglion, or that which correfponds to the fuperior cervical, is of a lenticular form ; it is fituated immediately below the cranium, and communicates with the ninth pair, and particularly with the eighth, with which it appears to be altogether confounded.

 We find no trace of the great fympathetic in the neck of birds; but within the thorax we obferve that it detaches to the pulmonary plexus, formed by the par vagum, a very thick nervous filament, which is united to the firft thoracic ganglion.

 Here the great fympathetic of birds begins to affume an appearance truly remarkable.

 ## 300 L. X. Distribution of the Nerves.

 The firft nervous ganglion becomes a centre from which eight different diverging filaments proceed. The firf unites to the plexus of the brachial nerve; the fecond defcends the neck in the vertebral canal along with the artery, and at the middle of each vertebra forms a fmall ganglion, from which filaments are fent off to each of the cervical pairs. We have found it impoffible to follow it as far as the head, in the coot, the duck, the fwan, and the buzzard. The third filament is confounded with the cardiac plexus formed by the par vagum. The three next filaments proceed from the internal fide towards the projection made by the bodies of the vertebre, and produce a particular cord, to which we fhall return. Laftly, the feventh and eighth filaments ferve to unite this ganglion with the fucceeding one ; the one paffing below, and the other above, fo as to form a curvature of a lozenge-like fhape, in which the head of the rib is received.

 Each fucceeding ganglion produces, in this manner, a nervous irradiation, compofed of five, fix, or feven filaments; four of which, two fuperior and two inferior, communicate with the preceding or following ganglion. By one or two a nervous cord is formed, which fupplies the place of the fplanchnic nerve: the laft filament unites with the dorfal pair fituated inferiorly.

 The cord which is produced by all the internal branches of the great fympathetic, and which

 ## Art. XVI. Great Sympathetic. 3oit

 is analogous to the fplanchnic nerve, accom* panies the aorta on each fide. Having reached the part where the coliac artery divides into three, it is united to nervous filaments derived from the thoracic ganglion, and thus forms one, two, or three enlargements, which detach an immenfe number of branches to envelope the arteries on all fides. The ganglia here obvioufly fupply the place of thofe named femi-lunar in man, and the filaments which proceed from them anfwer to the folar plexus. There are alfo other plexufes formed on the renal and inferior myfenteric arteries.

 The trunk of the nerve continues to follow the bodies of the vertebræ, but the ganglia become lefs confpicuous when there are no longer any ribs, and we there perceive only a fmall enlargement at the point where the vertebral pair is united. But from the internal fide of each of thefe fmall enlargements, two or three filaments are detached, and produce a plexus on the aorta, anaftomofing with thofe of the oppofite fide.

 We clearly perceive the continuation of the great fympathetic nerve to the laft vertebra of the tail. It is very eafily traced in the froan.

 ## D. In Reptiles.

 We havo had no opportunity of diffecting the great fympathetic nerve of reptiles, except in

 302 L. X. Distribution of the Nerves.
 the mud-tortoife. It is only diftinct in the interior of the bark fhell: it has a difpofition analogous to that of the cervical ganglion. The pneumo-gaftric nerve, however, adheres foclofely to it, that they cannot be feparated: we did not perceive any filament on the neck which could be regarded as the trunk of the nerve.

 On the peritoneum, and on the bodies of the vertebre, there appear very diftinct nervous ganglia, which are manifeftly produced by the great fympathetic.

 The ganglia are exactly fimilar to thofe of birds. There are two fuperior and two inferior filaments which pafs under the tranfierfe procefs of the vertebra that is united to the back fhell; from the internal edge of each ganglion, a fplanchnic nerve proceeds, which forms plexufes round each of the arteries produced by the aorta: one is alfo fent to affift in forming the pulmonary plexus.

 This nerve may be very eafily traced to the lateral parts of the firft vertebra of the tail.

 ## E. In Fifhes.

 We alfo find the great fympathetic nerve in fifhes, but it is excocedingly nender : it is a fimple nervous filament, fituated on each fide of the vertebral column in the abdominal cavity. It evidently furnifhes filaments to the peritoneum, which extend round the arteries that

 ## Art. XVI. Great Sympathetic. 303

 are loft on the inteftines. We alfo obferve that there are communicating filaments for each of the vertebral pairs, but there are no apparent ganglia at the points where this union takes place.

 The great fympathetic nerve appears to enter the cranium by the canal of the firft vertebra; it there accompanies the blood veffels.

 ## [304]

 ## LECTURE ELEVENTH.

    ```
    DESCRIPTION OF THE NERVOUS SYSTEM O:
    ANIMALS WHICH HAVE NO verterr.e.
    ```

 Animals without vertebre are not formed on a common plan either with refpect to the nerves or the mufcles: they prefent difparities fo great that we are compelled to adopt a mode of defcription different from that purfued in the three laft Lectures. It is neceffary to proceed in the fame manner in which we have treated the organs of motion in thefe animals. We muft confider the nervous fyftem in their different claffes, and in their principal genera. As the characters common to each of thefe claffes are very few, what we have faid on that fubject, in Lect. I. Art. 3 and 5, and in Lect. IX. Art. 3, will fuffice, and we now procced to enter into details.

 ## Article I.

 Brain and Nerees of the Cephalo-podous Mollufca.
 IN the eight-armed Sopia, the cultic fifle, and the calmars, the nervous fyftem appears to refemble

 ArtiI. Nerves of the Cephalopoda. 30 g
 in fome refpects that of red blooded animals: The brain is inclofed in a particular cavity of the cartilage of the head, which is pierced by a number of holes to give paffage to the nerves.

 The cartilage of the head has the form of a hollow and irregular ring ; its pofterior part is the thickeft, and contains the brain; its anterior part contains the ears, and a femi-circular canal which communicates on each fide with the cavity of the brain, and includes the medullary collar. The oefophagus paffes through the centre of this cartilaginous ring, and is confequently, as in all white blooded animals, furrounded by the medullary cord. The lateral parts of the cartilaginous ring have eminences which form a kind of orbit on each fide.

 The brain is divided into two diffinct parts; one next the ofophagus, the furface of which is fmooth; and the other towards the back; which is round, and marked by longitudinal ftrix.

 The medullary collar arifes from the lateral parts of both portions: in the oitopus, it is in the form of a lamina; the anterior part of which produces four large nerves, which, with the four correfponding nerves, proceed forward into the eight feet which crown the head: we thall return to their diftribution. Thefe laminæ join inferiorly, and thus encircle the oefophagus.

 Two other principal pairs of nerves arife from each fide, near the origin of the collar. The

 Vol. II.
 入 tirft

 306 L. XI. Nerves of Invertebral Animais.
 filft is the optic pair: it extends directly into the orbit ; after a fhort courfe it paffes through the felerotic coat, and is there dilated into it ganglion larger than the brain, and which has the form of a kidney with its concave fide turned towards the brain. The fubftance of this ganglion appears to be the fame as that of the brain; its convexity produces a multitude of fmall nerves, as fine as hairs, which pafs through the choroides, by an equal number of fmall holes, to form the retina.

 The fecond pair belongs to the mufcles of the fac; it originates a little above the preceding pair: thefe nerves defcend obliquely; and, after leaving the cerebral cavity, each flips between the mufcles which fuftain the head, and is fent to the lateral part of the fac, near its fuperior edge, between the body and the branchix ; it there divides into two branches, one of which defcends directly towards the bottom of the fac, and the other dilates into a roundifh ganglion, which produces a multitude of nerves, difpofed like radii. Thefe nerves are diftributed to all the fiefhy fibres of the fac and the fins.

 The anterior and inferior part of the collar gives origin to two pairs of nerves. The firft pair is the auditory nerves; they are very fhort, as they only traverfe a cartilaginous lamina to penctrate the ear, where they are diftributed.

 The fecond pair iffues from the cartilage, by two holes placed very near each other, and be- neath the ears: the two nerves which compore it defcend within the peritoneum to the bottom of the fac. When they arrive near the heart, they form a complicated plexus, from which all the nerves of the different vifcera proceed.

 Each foot has a nerve, which paffes from one extremity to another, like an axis, and is fituated in a canal, which we defcribed when we treated of the Mufcles of the Feet. This nerve is enlarged, at different fpaces, by numerous ganglia, which have the appearance of tubercles, and from each of which ten or twelve nervous filaments proceed : thefe filaments diverge and perforate the mufcles of the interior of the foot to which they diftribute branches; but they proceed chiefly to the fuckers.

 This defcription of the nervous fyftem is taken from the Sepia octopus. The other Cephalopoda differ only in having a brain lefs diftinctly divided, and prefenting lefs confpicuous furrows,

 308 L. XI. Nerves of Invertebral Animals.

 ## Article Il.

 Brain tund Nerces of the Gufleropodous Mollufca,

 ## A. In the Siail (Helix Pumutia.)

 The brain of the Shail is fituated upon the æefophagus, behind an oval mafs of mufcles, which envelopes the mouth and the pharynx, and which we fhall defcribe in the Article on Maftication; its fhape is bearly femi-lunar, with its concave part directed pofteriorly. The angles of the crefcent are prolonged on each fide into a branch, by which the oefophagus is encompaffed in a collar. The fativary glands, and the mufcle which retraits the mouth and brain, pafs likewife through this collar.

 The two cords produced by the brain unite below the efophagus and the mufcle, in a large round ganglion, which is more than one half the fize of the brain. All the nerves proceed from one or other of thefe two maffes.

 Thofe furnithed by the brain proceed from the lateral parts of its convex fide.

 There are, in the firft place, two nerves for the fiefhy part of the mouth; next, one on each fide for the fmall horns; then two for each great hom, one of which procecds to the bafe of that horn, and paffes into its mufcular fubftance;

 Art. If. Nerves of the Gasteropoda. 309
 the other goes to the eye. The latter is folded confiderably on itfelf, when the horn is drawn inward. There are, befides, fome other filaments which extend to the bafe of the parts of generation, and to the mufcles which move the head.

 The large inferior ganglion produces, at firt, three great nerves, one for the penis, another for the vifcera, and the third for the mufcles, which draw the whole animal into its fhell : the inferior furface of this ganglion afterwards produces two great fafciculi, which proceed backward, and which, after paffing between the two mufcles before mentioned, are diftributed to all the flemy parts of the foot.

 The figure which Swammerdam gives of the nerves of the fnail, appears to have been taken from the flug, rather than from the thell frail.

 > B. In the Slug (Limax Rufus.)

 The brain is alfo fituated behind the œfophagus in this animal, but it has the form of a narsow ribbon lying crofs ways: it enlarges a little at its lateral parts, each of which produce a filament to encircle the ofophagus. The ganglion which is formed by the union of thefe two filaments is larger than the brain.

 Two principal trunks proceed, each on its refpective fide, in a frait line from this ganglion ; they ratend along the lower part of the body, X_{3} throughout
 throughout its whole length, preferving nearly a parallel direction ; on the external fide they each detach a number of filaments, which penetrate into the flefhy fubftance of the fkin.

 A great number of other filaments alfo proceed immediately from the inferior ganglion to the fkin.

 Further, the inferior ganglion fends off two nerves on each fide, which go to the vifcera, and rake the diftribution of the arteries.

 With refpect to the brain, properly fo called, it furnifhes, in the firft place, a nerve from each fide, for the flefhy mafs of the mouth; then two for each of the great horns, one of which cxtends to the eye, and becomes the optic nerve. The nerves of the fmall horns arife more outwardly.

 ## C. In the Aplyfia.

 'This is a fmall marine animal, very like the flugs, but refpiring through branchix, which form a kind of tuft on the back, and which are covered by a particular operculum.

 The brain is fituated as in the fnail; but the branches which furround the oefophagus produce two ganglia, one on each fide, which are fonjoined by a fmall filament.

 The brain furnifhes, at its anterior part, two flender filaments, which encircle the flemy mars of the mouth, and unite under it in a fmall ganglion,

 Art. II. Nerves of the Gasterofoda. 3 II
 ganglion, whence the nerves of the lips are detached. The brain afterwards affords nerves to the horns and the eyes; which are, in this animal, fituated between the horns, and to the male parts of generation. The two lateral ganglia tranfmit a multitude of nerves to all the flefhy parts of the foot and fkin; they alfo produce each a long cord, which unites to its correfponding cord on the aorta, near the part where it rifes from the heart ; they there form a lenticular ganglion, from which all the nerves of the different vifcera proceed.

 ## D. In the Clio borealis.

 This fmall animal has no foot, and can only fivim. It refpires by two branchir, in the form of wings, fituated on the neck; but in other refpects it very much refembles the flug. Its nervous fyftem is analogous to that of the aply fia.

 Its brain is formed of two roundifh lobes; it furnifhes, immediately, nerves to the tentacula, and gives origin to a double collar ; the anterior extends, as in the aplyfia, under the mouth, to form a fmall ganglion. The pofterior has a ganglion on each fide, which furnifhes nerves to the mufcular fkin that furrounds the body ; each of thefe produce one or two other ganglia, which fend nerves to the vifcera.

 312 L. XI. Nerves of Inverteral Animals.

 ## E. In the Doris.

 This is alfo a fmall marine animal fimilar to the flug, but it refpires by external branchix, difpofed like ftars round the anus. The brain is very large in proportion to the reft of the body, and particularly in comparifon with that of other gafteropoda: it is contracted at its middle part, and feems to form two united lobes; it is elongated tranfverfely, and of a fquare form. It is fituated immediately above the origin of the cefophagus, behind the orbicular mafs of mufcles which form the parietes of the mouth.

 Six nerves proceed from the brain on each fide; one pair is deftined for the mufcles of the mouth, another for the tentacula. The third is a cord, which paffes below the œfophagus, and is loft in the mufcles of the foot, where it may be very diftinctly obferved on the lateral parts of the internal furface. The fourth and the fifth are directed above the mafs of the inteftines, and proceed to the fkin of the back. Laftly, the fixth terminates in the parts of generation.

 ## F. In the Scyller.

 This is another marine animal fimilar to the nug, but which refpires by branchix, in the form of wings ranged in pairs on the back; it

 Art. II. Nerves osthe Gasteropoda. 3 is
 crawls on a furrow in its belly. The collar which furrounds the œefophagus is a fimple cord, and does not enlarge into a ganglion, as it proceeds downward. The brain, which is above it, is of an oval form: it fends nerves to the mouth, and to the horns, but there are no optic nerves, as this animal has no eyes.

 The nerves of the vifcera arife from the inferior part of the collar, and thofe of the mufcles from its fides.

 ## G. In the Sea Ear (Halyotis Tuberculata.)

 This animal has no ganglion above the œfophagus to fupply the place of the brain. We find merely a nervous filament, fituated tranfverfely above the œefophagus, behind the mouth. Four fmall ramifications proceed from the middle and anterior part of this filament, two on each fide, and are loft in the parietes of the mouth.

 At each extremity of the tranfverfe nervous filament there is a very large flat ganglion, from - the circumference of which a number of nerves arc detached to the adjacent parts. Thefe we fhall defcribe.

 Three filaments pafs off on each fide; from the cxternal furface of this ganglion one is fent to the fetiform tentaculum, fituated above the mouth, the other two proceed to the flat icntaculum, like a buckler, placed more pofte-

 314 L. XI. Nerves of Invertebral Λ nymafs.
 siorly, and on the fides. The moft pofterior appears to be intended for the eye. It is the thickeft ; the other feems loft in the mufcular parts.

 A very remarkable filament is detached from the fuperior part; it proceeds above the oefophagus, and joins the correfponding one of the other fide. There is a fmall enlargement at the point of union, from which four nerves proceed, two on each fide of the middle line. The moft external is loft in the mufcles of the tongue ; the other purfues the middle line of the ofophagus, and is ramified over the inteftines.

 Several fmall branches are detached inferiorly, and terminate in the fan-like mufcles that fuf. tain the tongue.

 Laftly, the ganglion is prolonged pofteriorly into a thick nervous cord, fituated on the fides and below the œefophagus, which becomes flat as it proceeds backward: it defcribes a femilunar curve, fo that the two nerves of each fide are approximated, and finally touch each other at the bafe of the tongue, and below the antesior part of the large mufcle which attaches the animal to its fhell.

 The contact of thefe two nerves produces a ganglion, from which two very remarkable trunks, intended for the inteftincs, proceed; they may be followed to above the flomach, and we can perceive that fome of their ramifications enter the liver.

 Art. II. Nerves of the Gasteropoda. 3 I5
 After the formation of the ganglion, which furnifhes nerves to the vifcera, the two trunks penetrate by two different holes into the fubflance of the mufcle of the foot. Thefe two holes are the origin of two canals, which run throughout the whole length of the foot, on the fides of another middie canal, which appears deftined to diftribute the blood of the animal.

 The two nerves, lodged in the lateral canal, are diftributed by a great number of lateral holes into the fubftance of the flefhy mufcles of the foot, and of the fhell, where they may be followed with facility.
 > H. In the Bulimus of Ponds (Heliv Stagnalis

 > Lin.) and in the Planorbis Cornea (Helia
 > Comea Lin.)

 In thefe animals the brain confifts of two lateral maffes, feparated by a cantraction. The recent fubject is remarkable for having thefe maffes of a lively red colour. The diftribution of the nerves differs very little from what we obferve in the common fnail.

 ## Article III.

 Erain and Nerves of the Acephalous Mollufca.
 ' $\Gamma_{\text {he nervous fyftem of Acephalous Mollufca }}$ is formed on a plan far more uniform than that

 316 L. XI. Nerves of Invertebral Animals.
 of the Gafteropoda. In all the teflaceous acephala, from the oyfter to the pholas, and the teredo, there appears no effential difference; it confifts always of two ganglia, one on the mouth, reprefenting the brain, and another towards the oppofite part. Thefe two ganglia are united by two long nervous cords, which take the place of the ufual collar, but which occupy a much greater fpace-as the foot, when it exifts, and the fomach and liver, always pars in the interval between them. All the nerves arife from the two ganglia.
 A. In the Anodontites, or Frefh-reater Mufcles, in Cockles, in the Ienus, the Mactra, and the Mya.

 In thefe, and in general all the bivalves, which have two cylindrical mufcles, one at each extremity of their valves, for the purpofe of bringing them together; the mouth is placed near one of thofe mufcles, and the anus near the other. The foot appears about the middele of the fhell; and the tubes for the excrements and refpiration, when they exift, go out at the end of the fliell, oppofite to that in which the mouth is fituated. The brain is placed upon the anterior edge of the mouth; it is obiong tranfverfely; it fends off two cords anteriorly, which go to the adjacent mufcles, and curning towards each fide, penetrate the lobes of the cinak.

 ## Art. III. Nerves of Acephala. 317

 cloak, paffing through the whole extent of their edge. The brain furnifhes alfo, on each fide, fome filaments to the membranous tentacula, which furround the mouth, and detaches, from its pofterior edge, the two cords, analogous to the medallary collar in other invertebral animals. Thefe cords proceed, each on its fide, under the mufcular ftratum, which envelopes the liver and the other vifcera, and which becomes thicker, as it is continued to form the foot, which is frequently confructed for finning.

 When arrived at the pofterior mufcle which clofes the valves, thefe cords approach each other, and enlarge as they unite, to form the fecond ganglion. This ganglion has the form of two lohes. It is at leaft as large as the brainganglion, and always much more eafily diftinguifhed. It detaches two principal nerves on each fide, and the four together reprefent a kind of St. Andrew's crofs. Tlie two anterior nerves, as they afcend, proceed a little towards the fide of the mouth, and, after having defcribed an arch, penetrate into the branchix. The other two pafs on the pofterior mufcle, precifely in the fame manner as thofe of the brain on the anterior. After detaching fome filaments, they proceed into the cloak, the edge of which they follow, until they join thofe of the brain; they thus form a continued circle. We do not yet know
 $3: 8$ L. XI. Nerves of Invertebral Animalso
 know the origin of the nerves of the vifcera in thefe animals.

 The teftaceous acephala, in which the foot is protruded by an extremity of the fhell, that always remains open, and the tubes, by the oppofite extremities, that is to fay, in razor-fif) and piddocks, the mouth, and confequently the brain, is always near one extremity. The nerves, which proceed from the brain, take therefore a longer courfe before they diverge to join the - cloak. The cords of the collar, however, have a much fhorter diffance to pafs before they unite. There is a confiderable fpace, particularly in the razor-fifh, between the mafs of vifcera fituated in the bafe of the foot, and the pofterior mufcle. The fecond ganglion is fituated in the middle of this fpace, between the branchiæ of each fide: it is round, and much more diftinct than in the other fpecies ; the nerves it produces are however exactly fimilar.

 In the oyfer, which has no mufcle at the anterior part, the brain and mouth are fituated under the kind of hood which the cloak forms towards the hinge. The nerves go directly into the cloak itfelf. The ganglion is fituated on the anterior furface of the fingle mufcle, immediately behind the mafs of vifcera. The nerves it produces are the fame as in the preceding genera.

 ## Art. III. Nerves of Acephala.

 ## B. In the Afcidia.

 Thefe fmall marine animals are enveloped in an immoveable coriaceous, or gelatinous cafe, which has two apertures; one for the expulfion of the excrements, the other for the admiffion of the water to the branchiæ. The branchix are in the form of a large fac, and are enclofed, as well as the other vifcera, in another membranous bag, of the fame form as the external cafe, but fmaller, and completely adhering to that cafe at the two apertures only. The inferior ganglion is fituated on this membranous fac: its pofition is between the two apertures, but neareft that which correfponds to the anus; is produces four principal nerves; two afcend towards the fupcrior, or refpiring aperture; the other two defcend towards that of the excrements. There are fmaller nerves which are difperfed throughout all the membranous fac. We have not yet difcovered thofe produced by the brain, nor the brain itfelf, which is doubtlefs fituated as ufual on the mouth. The mouth is in the bottom of the branchial fac.
 C. In the Tritons of Limmas rehich inhabit the Anatifcrous and Balanite Shells. (Lepas Lin.)

 There animals approach, perhaps, nearer to the Cruftacea, and particularly to the monoculi,

 ## 320 L. XI. Nerves of İnvertebral Animale。

 than to the Mollufca. Their nervous fyftem is of a fort of middle kind between that of the Mollufca and that of the Cruifacea and Infects.

 The brain is placed acrofs the mouth, which is itfelf fituated in the part of the body correfponding to the ligament, and at the bottom of the fhell. It produces four nerves to the mufcles fituated in that place, and to the ftomach, and two others which embrace the œefophagus, and proceed into that clongated portion of the body which bears the numerous articulated and ciliated horny tentacula which the animal protrudes from its fhell. Thefe two filaments approach and form a ganglion, and then proceed clofe to each other among thefe tentacula, furniming a correfponding pair of nerves for each pair of tentacula, but there are no apparent gangiia at the origin of thefe nerves.

 From what we have ftated in this and the two preceding articles, it refults,

 That the nervous fyitem of Mollufca confifts in a brain placed on the œfophagus, and in a variable number of a ganglia, fometimes approximated to the brain, and fometimes difperfed in the different cavitles, or placed under the mufcular envelopes of the body; that the ganglia are always connected to the brain and to each other by nervous cords, which eftablifh a general communication between thefe different medullary maffes ; that the nerves all arife either from the brain or the ganglia; and finally, that the medulla oblongata and the medulla fpinalis.

 ## ArticleiV.

 Brain and Nerves of the Cruftacea.
 $\mathbf{T}_{\text {He Cruftacea, which, in their organs of mo- }}$ tion, very much refemble infects, though thofe of circulation and refpiration are exceedingly different, have alfo a nervous fyftem fimilar to that clafs, at leaft in the effential parts.

 In the long-tailed cray-fifs, the middle part of the fyftem is a knotted cord, which extends from one extremity of the body to the other. The fort-tailed kind, commonly called crabs, have a medullary circle in the middle of the abdomen, from whence the nerves of the body proceed like radii.

 In thefe animals the brain is placed at the anterior extremity of the fnout, and confequently at a confiderable diftance from the mouth, which opens under the corfelet. On this account the cords which make the collar of the defophagus are more elongated than in other animals.

 ## 322 L. XI. Nerves of Invertebral Animals.

 ## A. Brain of the common Cray-Figh, (Aftacus Fluriatilis, Fab.)

 The brain of this animal forms a mals which is broader than long, and diftinctly divided on the fuperior furface into four round lobes. Each of the middle lobes produces an optic nerve from its fore part. This nerve proceeds directly into the moveable tubercle which fuftains the eye, and is there dilated and divided into a multitude of filaments, which form a pencil, and unite to all the fmall tubercles of the eye.

 Four other nerves arife from the inferior furface of the brain; thefe proceed to the four antennre, and detach fome filaments to the neighbouring parts. The cords which form the collar, arife from the pofterior part of the brain. About the middle of its length each detaches a large nerve which extends to the mandibles and their mufcles. Thefe cords unite under the ftomach in an oblong ganglion, which furnifhes nerves to the different pairs of jaws. On leaving this part the two cords remain near each other throughout the whole length of the corfelet, where they form five fucceffive ganglia, placed between the articulations of the five pairs of feet : each foot receives a nerve from its correfponding ganglion, which penetrates to the extremity of the foot: the nerve of the forceps is the largett. The medullary cords extend into the tail, where

 ## Art. IV. Nerves of Crustacea. 323

 they are fo intimately united that it is not poffible to diftinguifh them. They form fix ganglia, the five firft of which produce each two pairs of nerves; the laft produces four, which are diftributed as radii to the fcaly fins that terminate the tail.

 The bermit crab, (Pagurus, Fabr.) the tail of which is not covered by articulated fcales, appears to have much fewer ganglia than the crayfifb. We have obferved only five.

 In the Squilla Fabr. there are ten ganglia without reckoning the brain: that at the union of the two cords which form the collar, tranfmits nerves to the two forceps, and to the three pair of feet which immediately fucceed them, and which in thefe animals are ranged almoft on the fame tranfverfe line ; this ganglion is therefore the longeft of all. Each of the three following pairs has a particular ganglion. There are afterwards fix ganglia in the length of the tail; which diftribute their filaments to the thick mufcles of that part. The brain produces immediately four trunks on each fide, viz. the optic, thofe of the two antennæ, and the cord which forms the collar. As the antenne are slaced more pofteriorly than the brain, their lerves are directed backward.
 3. In the Common Crab (Cancer Manas, Lin.)

 The brain of the crab refembles that of the Y_{2} cray-
 cray-fifh in its form and fituation; it alfo furnifhes analogous nerves, but they are directed more towards the fides in confequence of the pofition of the eyes and the antennæ. The medullary cords which form the collar, detach each a nerve to the mandibles, but the cords are prolonged much farther back ward than in the crayfifl before they unite. They join only in the middle of the thorax, at which place there is produced a medullary mafs of an oval ring-like figure, which is eight times the fize of the brain. The nerves which proceed to the different parts arife from the circumference of this ring. It furnifhes fix nerves on each fide to the jaws and the five feet, and there is a fingle nerve which arifes from the pofterior part, and proceeds to the tail. This medullary ring may be faid to reprefent the ufual knotted cord, but if it has any ganglia they are not vifible.

 ## C. In the Onifcus. Afellus.

 The two cords which compore the middle part of the nervous fyftem in this animal, do not perfectly join. We can diftinguifh them throughout the whole of their length. There are nine ganglia, exclufive of the brain; but the two firt and the two latt are fo clofe together, that the number may be reduced to feven.

 ## D. In Monoculi.

 We know not the nervous fyftem of the molucca crab (linulus gigas, Fab. monoculus polyploemus, Lin.) In the monoculus apus of Linnæus, however, the indiftinct nature of that fyftem, joined to fome other peculiarities of organization, would almoft induce us to clafs the animal with the inarticulated worms. The brain is a fmall globule, nearly tranfparent, fituated under the interval of the eyes. The medullary cord is double, and has an enlargement at each of the numerous articulations of the body; but the whole is fo thin and tranfparent that the real nature of the cord can fcarcely be afcertained.

 ## Artucle V.

 Brain and Nerves of the Larvoce of Infects.

 ## A. Coleoptera.

 1. Larva of the Scarabceus naficornis.

 W f fhall give a particular defcription of the nerves of this larva, becaufe their diftribution is effentially different from that which takes place in the other coleoptera.

 326 L. XI. Nerves of Invertebral Animals.
 The brain is fituated under the great fcale which covers the head immediately above the origin of the œfophagus: It confifts of two approximated lobes, which are very diftinct at the front and back part. Four nerves arife from the anterior part, two on each fide, which are loft in the cirri and parietes of the mouth.

 From the lateral and fomewhat pofterior parts of the brain, there arifes a pair of nerves, which, embracing the œfophagus, proceeds inferiorly to form the nervous cord we fhall prefently defcribe.

 Another pair departs from, the inferior furface of the brain, or that part which refts upon the oefophagus: thefe are firft directed forward; they afterwards turn inward, and proceed above the middle and fuperior part of the œefophagus, in order to approach each other. When they come in contact, they unite and form a fmall ganglion, which produces a fingle nerve; this nerve continuing to proceed pofteriorly, paffes below the brain, and accompanies the œfophagus to the ftomach. It there enlarges again into a ganglion, which furnifhes fome fmall nerves that are fent to the ffomach, and one more confiderable, which is continued along the inteftinal canal, and fends off, at regular diftances, lateral filaments, which are loft in the coats of this tube. This nerve is analogous to that which Lyonnet has defcribed under the name of recurrent, in the caterpillar of the coifns.

 The medulla fpinalis, which, as we have fhewn, is formed by the pofterior pair of nerves of the brain, is very thick at its origin: it forms a large fufiform ganglion about 0,005 metre long, and half a millimeter broad. Four or five contractions appear on its anterior part, but they are fo flight that they feem only tranfverfe furrows. The pofterior part of this ganglion is fmooth.
 From the lateral parts of this large ganglion, which extends very little beyond the third ring of the body, a great number of diverging nervous filaments are produced. Thofe which are neareft the head afcend a little; thofe which fucceed them proceed almoft tranfverfely; and the laft are directed more and more pofteriorly: the length of each is in proportion to its diffance from the anterior part of the ganglion. The two moft pofterior filaments are therefore the longeft.
 2. Larva of the Stag Beetle (Lucanus cervus.)

 The nerves of this larva differ greatly from thofe of the preceding, although the perfect infects are fo nearly allied in genera.

 The brain confifts of two contiguous and almoft fpherical lobes; thefe produce four nerves anteriorly for the antennæ and the parietes of the mouth : two inferiorly, which firft proceed forward, then turn back, pafs again under the brain, and form the nerve known under the
 name of recurrent. Laftly, two pofteriorly, which form a collar round the œfophagus, and join underneath, to compofe the nervous cord of the body.

 This cord is formed of eight ganglia, which extend to the ninth ring of the budy. The diftances between thefe ganglia are very unequal ; they are joined by very flender and clofely approximated nervous filaments.

 The firft ganglion, from the head, is very large, and almoft fpherical ; it is followed almoft immediately by the fecond, which is one half lefs, and which is diftinguifhed from it only by a kind of contraction; the firft produces four pairs of nerves on each fide; one afcends to the head; the other three diverge, and are loft in the mufcles of the abdomen, and in thofe that move the head. The fecond ganglion, befides the two nerves that unite it to the third, produces two other nerves, which are alfo directed backward, and loft in the mufcles of the fourth ring.

 The third ganglion, and thofe that follow as far as the eighth, are fimilar to the fecond; with this difference, that they are much more diftant from each other, and that they produce lenger filaments, in proportion as they are fituated more inferiorly. Laftly, the eighth and ninth ganglia are fo clofe together, that they feem to form but one, with a flight contraction in the middle. This double ganglion produces three pairs
 pairs of nerves, which are much elongated, and extend to the parts near the anus.
 3. Lartce of the Cerambyx, Hydrophilus, Carabus, and Staphylinus.
 The nerves of thefe larvæ being very fimilar, it will be fufficient to defcribe them in one genus only. We fhall take for our example the larva of the great diver (Hydropbilus piceus.)

 The brain in this animal is fituated in the head, above the origin of the oefophagus; it is formed of two lobes, which lie very clofe together. From its anterior part it detaches fome filaments to the palpi, the antenne, and the parietes of the mouth. Its lateral parts produce two cords which furround the œfophagus, and which are the origin of the nervous cord fituated inferiorly. It is probable that recurrent nerves alfo arife from this inferior part, but we have not yet been able to difcover them.

 The chief nervous cord is compofed of ten ganglia, each of which produce three pairs of nerves that are loft in the mufcles of the abdomen, and without any diftinct appearance of their being diftributed to the inteftines. This induces us to believe that there is a recurrent nerve.

 The firft ganglion is very large ; it is prolonged pofteriorly into two nervous filaments, confiderably removed from each other; the fecond is almoft fimilar; but the third is very
 near the fourth, which produces only a fingle filament poiteriorly. All the others, as far as the tenth, prefent no particularity. The laft is divided by a fenfible contraction; from the firft portion a fingle filament arifes on each fide, and from the fecond, three pairs of nerves are detached : thus four pairs of nerves arife from this ganglion. The fourth pair is directed to the rudiments of the parts of generation, which are very diftinct in thefe larvæ in the laft period of their growth.
 4. Larva of the Water-bcetle (Dytifcus Marginalis.)
 The brain of this larva is fpherical, and confifts of a fingle lobe, fituated in the head above the origin of the œefophagus ; its anterior part produces fome filaments for the mouth; and its lateral parts the two optic nerves : the latter are compofed of two parts, which are very diftinct as to form. The firft portion, or that which is next the brain, is of an oval figure, pointed at the extremity which joins the brain: the other extremity is rounded, and produces a flender nerve, which goes directly to the eye. It is nearly of the fame thicknefs throughout the whole of its extent; but it is enlarged at its free extremity into a bulb, from which the nervous filaments of the eye arife.

 The two cords which embrace the œefophagus are fhort and thick; they arife from the inferior furface
 furface of the brain, and immediately unite below the œfophagus, in a large fquare-fhaped ganglion, which produces anteriorly the nerves of the mandibles, and pofteriorly two cords, which pafs from the head into the corfelet.

 There is a greater diftance between this firft ganglion of the nervous medulla and the fecond, than between any of the others. It is more than double that which exifts between the two next ganglia. The fecond ganglion is round; it produces two pair of nerves laterally; the anterior for the mufcles which act upon the head, the pofterior for thofe which move the anterior feet. There are two cords pofteriorly, which are directed into the breaft.

 The third ganglion is fimilar in every refpect to the fecond; it furnifhes nerves to the intermediate pair of feet.

 The fourth ganglion is alfo produced by the two cords which come from the preceding ; it is fituated on the union of the abdomen with the breaft ; it is more broad than long. Laterally it produces two pair of nerves, which run tranfverfely parallel, and are loft in the mufcles.

 The other eight ganglia are placed clofe behind each other, and the fpace between them is fo fmall, that we can fcarcely perceive the two nervous filaments which unite them; they alfo decreafe in thicknefs, without diminifhing in breadth, as they extend pofteriorly. They all furnifh laterally a pair of very long nerves, which
 33^{2} L. XI. Nerves of Invertebral Animals.
 which float in the abdomen, and for the moft part terminate in the mufcles that move the wings. One pair, however, proceeds to the rudiments of the parts of generation.

 > B. Orthoptera and Hemiptcra.

 The nerves of the larvæ of orthoptera and hemiptera prefent no fenfible difference from thofe we abferve in the perfect infects. It will be fufficient therefore to defcribe the nerves of the latter.

 ## C. Hymerioptera.

 In the larva of the farw-fly (Tenthredo, Lin.) which has a large head furnifhed with eyes, the brain is very broad and fhort; it feems to formi four bulbs of equal magnitude, and nearly fpherical ; the two external ferve as the bafe of the optic nerves, which are flender, and which enlarge a little at their other extremity.

 The firft ganglion is produced by two very fmall nerves, which arife from the inferior furface of the brain, and which, after having embraced the œefophagus, unite under the firft ring of the body; it furnifhes filaments to the mufcles of the feet, and terminates pofteriorly in two other nerves, which, at the diftance of one line, produce a fecond ganglion, and fo on in fuccefinon: the nervous cord is in shis manner formed of eleven ganglia, without reckoning the
 the brain; the farther the ganglia are removed from the head, the more they diminifh in thicknefs ; they are all nearly of a round form.

 ## D. Neuroptera.

 In the larva of the lion-ant (Myrmeleon Formicarius) the nervous fyftem has fome relation to that of the larva of the dipterous infects, which we fhall afterwards defcribe.

 There is a brain fituated in the head; it produces nerves analogous to thofe we have already pointed out in the other larvæ.

 The nervous medulla confifts, in the firft place, of two ganglia, which are compofed of two lobes, fituated clofe together; thefe two firft ganglia are feparate from the others, and contained in the part correfponding to the feet, or in the thorax.

 The remainder of the nervous medulla is enclofed in the abdomen ; it confifts of eight ganglia, placed in an exceedingly clofe feries, and each formed of two lobes; the firft is nearly double the fize of the other feven. This fucceffion of ganglia appears to the eye like the extremity of the tail of a rattle-fnake; the laft is round ; the others are more broad than long. All thefe ganglia furnifh nerves to the mufcles. It is probable that this difpofition and approximation of the ganglia have a relation to the changes which take place in the infect at the

 ## 334 L. XI. Nerves of Invertebral Animale,

 moment of its metamorphofis, as its abdomen then occupies fix times the fpace it does in the larva ftate.

 In thofe larva of Neuroptera, which are nearly as long as the perfect infect, we find that the ganglia are feparated in the ufual manner.

 The larva of the ephemera has eleven ganglia, without including the brain, which furnifhes two large optic nerves. There are three ganglia in the thorax, and feven in the abdomen : the firft fix, reckoning all the ganglia, furnifh more nerves than the five laft.

 The larvæ of the dragon-fies have a fmall two-lobed brain, which produces optic nerves, larger or fmaller according to the fpecies. The genus ä̈/bna has them the largeft. The reft of the nervous fyftem forms a feries of ganglia of different fizes. In the aëbbna, the corfelet contains fix, the two laft of which are the largeft of all. There are feven fmall and equal ganglia in the abdomen.

 ## E. Lepidopitera.

 The nervous fyftem of caterpillars confifts of a feries of thirteen principal ganglia, which furnifh filaments to all the other parts of the body.

 The firft of thefe thirteen ganglia is fituated in the cavity of the head; it lies above the nefophagus, and fupplies the place of the brain:
 it appears formed fuperiorly by the union of two round tubercles. Inferiorly it is concave, and correfponds to the convexity of the œfophagus.

 This ganglion communicates with the reft of the nervous cord by two thick filaments, which embrace the ofophagus, and which are united below it to the anterior and lateral part of the next ganglion; it befides produces eight pairs of nerves.

 The firft partly unites with other filaments; produces fome for the œfophagus, and forms feveral remarkable ganglia below the upper lip. The largeft and moft pofterior, which Lyonnet has named the firft frontal ganglion, is prolonged pofteriorly into a thick recurrent nerve, which is continued the whole length of the body, near the back; this recurrent nerve furnifhes filaments to the œefophagus and its mufcles ; it penerrates into the dorfal veffel, and it afterwards re-appears, and glides along the œfophagus as far as the ftomach. This nerve produces, at certain diftances, very folid filaments, which keep the øefophagus attached to the fkin of the back.

 Befides the recurrent nerve we have juft no T_{-} ticed, feveral filaments are furnifhed by the pofterior frontal ganglion to the mufcles of the oefophagus, and two to the fecond frontal ganglion: the latter alfo detaches feveral filaments to the œefophagus, and, in particular, a very
 remarkable one, which, by a fudden enlargement, conflitutes the third frontal ganglion. This ganglion likewife affords feveral filaments to the cefophagus.

 The fecond pair of the brain appears chiefly intended for the antennæ, though it furnifhes feveral filaments to the neighbouring parts.

 The third pair terminates particularly in the antennæ, and the mufcles which move them.

 The fourth pair is proper to the eye of each fide; it accompanies the air tube which goes to that part, and is divided into fix branches, that penetrate into the fix eyes, which, by their union, form that of the caterpillar.

 The fifth is directed a little backward, where it divides into two branches; one pofterior, for the adductor mufcles of the jaw ; the other anterior, which is loft in the membranes that cover the frontal fcales.

 The fixth and feventh pair unite to form a ganglion, from which feveral filaments are detached to the oefophagus and its mufcles.

 Finally, the laft pair of the brain is entirely loft on an air tube.

 But befides thefe nerves produced by the firft nervous ganglion, feveral others are detached from it, which we thall briefly notice. In the firft place, we obferve, that it furnifhes feveral filaments to the dorfal canal: it afterwards gives origin to a pretty long filament, which terminates on the air veffels, between the fecond and third
 third ganglion. Laftly, it produces a nervous ring, which embraces the œfophagus inferiorly, like a girth, and fupplies it with feveral filaments.

 The fecond ganglion is intimately united with the third, and is diftinguifhed from it only by a contraction. The nerves which proceed from the anterior part appear to be produced by the fecond ganglion, and thofe which arife from the pofterior part, feem to belong to the third.

 Befides the two filaments which form the collar round the œfophagus, and which unite the firft to the fecond ganglion, the latter has fout pairs of very diftinct nerves.

 The moft anterior pair is fent forward to the mouth, but in its courfe it divides into two branches : one terminates in the tongue and the adjacent parts; the other branch proceeds to the lateral parts, where it fub-divides, to fupply the mandible, the jaw, and upper lip, communicating, at the fame time, with the firft ganglion, and with the fecond frontal.

 The fecond pair proceeds to the jaw, but detaches a number of filaments to the mufcles of the neighbouring parts.

 The third pair is deftined for the fpinning apparatus ; in its courfe it gives filaments to the filk veffels and mufcles of the head.

 The fourth pair arifes near the contraction, which indicates the union of the two ganglia, between the head and the firft ring; it is loit in

 Vol. II.
 Z
 the
 the fat, in the flim of the neck, and in the mufcles inferted into the head.

 The third ganglion, which, as we have obferved, is united to the fecond, produces only three pairs of nerves : the pofferior is merely the continuation of the nervous trunk of the other two pairs ; the anterior is entircly loft in the mufcles and the flin; the intermediate pair fupplies that part alfo; but it is diftributed chiefly to the mufcles, which move the articulations of the leg.

 We have already ftated, that each ganglion communicates with that which precedes, and that which follows it, by two filaments, that are diftinct from their origin, and are the bifurcation of a fingle trunk. The middle of this bifurcation, from the third to the eleventh ganglion, produces a fmall nerve, which Lyonnet has named the fpinal freenum: this fingle nerve is fituated in the middle line; it prefently divides into two branches, which follow the divifions of the air tubes, and penetrate with fome of them into the longitudinal veffel.

 The fourth and fifth ganglia produce the fame number of nerves, the diftribution of which is alfo nearly fimilar; their anterior pair proceeds to the mufcles, and to the fkin of the rings to which it correfponds; the intermediate pair furnithes, more particularly, filaments to the mufcles of the leg.

 The fixth ganglion, which correfponds to
 the fourth ring of the body, alfo furnifhes two pair of nerves, which are loft in the mufcles and the fkin.

 The nerves of the five following ganglia are diftributed nearly in the fame manner.

 The twelfth ganglion, and the thirteenth, which is the termanation of the nervous cord, are very clofe to each other, though diftinct. The diftribution of the nerves, produced by the firft, prefent nothing remarkable. Thofe furnifhed by the fecond are very long, being fent to the laft rings, in the fkin and mufcles of which the firft pair is partly loft. The fecond pair is only fub-divided when it has reached the firft ring; it there produces a plexus, from which a number of filaments are detached to the great inteftine. The trunk appears to end on the parietes of the recum towards the anus.

 ## F. Diptera.

 The nerves of the larva of the fratyomis have fome refemblance to thofe of the larva of the fcarabeus naficornis.

 The brain is formed of two lobes, placed clofe together, and almoft fpherical; it is fituated above the œefophagus, on a level with the fecond ring of the body. A number of fmall nervous filaments arife from it.s anterior part, and are diftributed to the parietes of the mouth, to the mandibles, and to all the adjacent parts. Z_{2}

 There

 340 L. XI. Nerves of Invertebral Animals.
 Thefe nerves are very diftinct, particularly thofe which are removed from the middle line.

 The pofterior part of thefe two lobes fends off two thick branches, which embrace the œfophagus, and form the origin of the nervous medulla.

 This nervous cord is very fhort, and its diameter is one half lefs than that of the brain; it confifts of eleven ganglia placed very near each other, each of which produces one pair of nerves.

 Thefe nerves proceed directly backward. Swammerdam has erroneoufly reprefenied this cord as twifted, like the tail of a fcorpion, and producing nerves on the left fide only. It is true, that thofe which arife from the right fide are parallel to the cord, while thofe of the left fide remove farther from it. The ganglia, thus approximated, are eleven in number, and in a Itraight direction ; they produce long nerves, which are loft in the mufcles.

 The nerves of the cheefe-worm (mufca putris Lin.) are diftributed in a very curious manner.

 The brain is fituated immediately above the origin of the œfophagus, behind the head; it is very large in proportion to the reft of the body; it is rounded pofteriorly, and notched anteriorty, as if it were formed of two lobes.

 A pair of nerves arife from the anterior part of the brain, procced forward, and are diftributed to the mouth, and even to the parietes of
 that cavity. It fhould be remarked, that thefe nerves experience a very confpicuous enlargement previoufly to their diftribution.

 Pofteriorly the brain prefents an aperture, which affords a paffage for the efophagus : the nervous part, fituated on its fides, may be regarded as the cords which produce the medulla, and all below the œfophagus as the medulla itfelf.

 Two pairs of nerves arife from the origin of the nervous medulla; thefe are directed forward, and principally diffributed to the vifcera, and to fome of the mufcles of the anterior rings.

 The third pair of nerves which this medulla produces, is the moft remarkable; it comes from the part which nearly correfponds to the third ganglion; I fay nearly, becaufe in this infect the ganglia are fo clofe to one another, that the medulla feems to form only one piece on the furface, of which we merely perceive twelve tranfverfe wrinkles, which indicate the number of ganglia. This third pair extends almoft tranfverfely. At a certain diftance from its feparation it fwells into a ganglion, and then divides into feveral filaments; thefe are the ganglia which Swammerdam fuppofes are intended for the mufcles of the wings, when they thall exift in the perfect infect.

 Another pair of nerves, which go to the mufcles of the body, arife from each of the

 342 L. XI. Nerves of Invertebral Animafs. other contractions ; but they require no particular remark.

 ## Article Vi.

 ## Brain and Neries of Perjéa Infects.

 A. Colcoptera.

 1. In the Stago-bcetle (Lucanus Cerous.)
 W_{E} find in this infect, as in its larva, a brain compored of two approximated fpherical lobes, fituated above the œfophagus; its anterior part produces two pair of nerves, which terminate in the palpi, and other parts of the mouth. There is probably a recurrent nerve, but our refearches have not yet difcovered it.

 There are two ganglia on the lateral parts of the brain, which are almoft as large as each of the lobes. In their form they refemble a pear, and reft upon the brain by their bafe; they are prolonged tranfverfely into a large nerve on each fide, chiefly intended for the eye. Before the nerve arrives at that part, we obferve it detach a flender filament, which enters into the great mandible ; then, more externally, another filament which enters into the cavity of the an-
 rennæ; laftly, the nerve itfelf having reached the eye, fwells again into a bulb, and produces a number of nerves, which we fhall defcribe when we treat of the Organ of Vifion.

 Pofteriorly the brain produces two very long and 隹帾er nerves, which accompany the œfophagus to the point where the head unites to the thorax, immediately above the articular condyle. The two nerves fituated above the œefophagus, then produce a ganglion of a long oval form, from which feveral nervous filaments are detached to the mufcles that move the mandibles, and thofe that act on the head. This ganglion terminates pofteriorly in two parallel nerves, which proceed to the middle of the thoray, above the origin of the two pair of feet, and there form a fecond gangtion of an hexagonal figure ; this ganglion furnifhes filaments to the mufcles of the feet, and likewife terminates pofteriorly in two nerves, which extend above the union of the corfelet, with the pectus; they there unite and form a third ganglion, which is crefcent-haped, with the convexity pofterior: two other nerves proceed from this convexity, which almoft immediately produce another ganglion of the fame form, buit fmaller. This ganglion gives origin to five nerves : two lateral, deftined to the mulcles of the intermediate feet, into the coxæ of which we obferve them enter: pofteriorly two, which are flender, and diftributed to the mufcles of the hind feet and
 the wings. The fifth is fituated in the middle line ; it is alfo thicker: it fwells almoft immediately into an oval fhaped ganglion, which is divided pofteriorly into two exceedingly flender filaments. Thefe filaments, which pafs into the abdomen, form a kind of bridge in the breaft, in which they occupy the middle line, and leave between them the mufcles of the feet and wings of either fide.

 ## 2. In the Scarabous naficornis.

 With refpect to the nerves, this infect differs in the perfect ftate from the defcription we have given of its larva.

 The optic nerves, which are very diftinct and large, proceed to the eye, into which we obferve them enter by a multitude of filaments when we make a horizontal fection of that organ.

 The nervous cord prefents a very confpicuous difference. In the larva there is only a fingle ganglion; but the perfect infect has feveral, which are very diftinct.

 The firft is fituated above the condyle; it procceds from the two pofterior filaments of the brain, and is diftributed to the mufcles which move the head on the corfelet. Its pofterior part produces two filaments, which pals into the breaft, where they unite towards the middle part, and form a triangular ganglion; from the fides of which three pairs of nerves arife, and are diftributed to the mufcles. Its pofterior angle detaches
 detaches two parallel nerves, which proceed into the breaft, where they form a third and a fourth ganglion, fituated very near each other, and apparently divided into two lobes by a longitudinal furrow. All the other nerves of the body depart from thofe two ganglia by an irradiation, precifely in the fame manner as in the larva.
 > 3. In the IWater Beetles (Dytifcus) and the Ground Beetles (Carabus.)

 The nervous fyftem is entirely fimilar in thefe infects. The brain is formed of two large hemifpheres, feparated from each other by a longitudinal furrow. The anterior part produces the nerves of the mouth, and the lateral parts thofe of the eyes and the antennæ. The nerves of the eyes are fhort, and differ greatly from thofe of the ftag beetles; they are of a pyramidal form : their bafe correfponds to the eye, and their apex to the brain. We have not obferved any recurrent nerves.

 The two filaments which produce the nervous cord depart from the brain, not pofteriorly, but inferiorly, on the fide of the optic nerves: they are very fhort, as they pafs immediately under the cefophagus. They furnifh fome filaments to the mufcles and the œefophagus.

 The firft ganglion they form lies under a kind of bridge, formed of horny fubftance, which is fituated in the middle of the head, and which affords a point of attachment to the mufcles of

 346 L. XI. Nerves of Invertebral Animals.
 the jaws; it is of an elongated and quadrangular figure, and occupies almoft the whole fpace that correfponds to the condyle above which it is placed.

 It is terminated pofteriorly by two filaments which proceed in a parallel direction, and form a fecond ganglion in the middle part of the corfelct. This ganglion furnifhes nerves to the mulcles of the anterior feet. We obferve them enter into the cavity of the coxæ.

 The third ganglion appears bilobed, or formed of two oval bulbs, the union of which is marked by a longitudinal furrow. This ganglion is fituated longitudinally above the anterior inferior edge of the breaft. It fends filaments to the mufcles of the intermediate feet.

 The fourth ganglion is very near the preceding; it is of a roundifh form, and is diftributed to the mufcles of the pofterior fcet and the wings.

 The face between the fifth and the fixth ganglion is very fmall: their form is round; and they furnifh filaments to the mufcles that move the abdomen on the breaft.

 The remainder of the medullary cord is formed by a feries of five granglia, fituated fo clofe to one another, that they appear to the maked cye to form only one; but with a glafs they may be obferved very diftinctly. We cven perceive the two filaments produced by each to form the fucceeding ganglion. The fifth prefents a tranfverfe
 verfe furrow, which feems to indicate the union of two ganglia. The end of the medulla appears to float in the abdominal cavity, but above the inteftines.
 4. In the Great Diter (Hydrophilus piceus Lin.)
 The brain of this infect, which is fituated in the head, and above the origin of the oefophagus, confifts of two fpherical bulbs clofely united. The lateral parts give origin to the optic nerves which proceed towards the eyes without changing their diameter, but which terminate there by a triangular bulb that produces a vaft number of filaments externally.

 The anterior part of the brain detaches fome filaments intended for the parietes of the mouth. We alfo remark, at the fame place, a fmall fpherical ganglion, which appears to belong to the recurrent nerve that accompanies the oefophagus.

 Two filaments, which fhould produce the medullary cord, arife inferiorly: they embrace the œfophagus at their feparation, unite immediately below it, and again, in the cavity of the head, to form a fmall ganglion, which furnifhes nerves for the mufcles of the mandibles and the palpi.

 Two nervous cords are detached from the pofterior part of this firft ganglion. Almoft immodiatcly after their origin, they pafs under a horny
 a horny arch, which is produced by the internal furface of the ganache. We obferve that they re-appear pofteriorly, and proceed into the corfelet.

 They form a fecond ganglion exactly in the middle of the corfelet ; its figure is quadrangular. The anterior and polterior angles produce the nerves of the medulla, and the lateral thofe intended for the mufcles of the anterior feet.

 The interval included between the fecond and third ganglion of the medulla is very great. The third ganglion correfponds to the infertion of the intermediate feet: it is large, and of a round form ; it furnifhes nerves to the wings, and to the intermediate pair of feet. Pofteriorly it produces two cords, which, at the diffance of about half a line, fwell and form a fourth ganglion, almoft as large as the preceding. This ganglion detaches, from its inferior part, a number of filaments for the mufcles of the pofterior feet, which are fpecially appropriated to fwimming. Two other very fhort cords produced by the pofterior part of this ganglion fwell into a fifth, which is one half lefs than the former, and which furnifhes a fingle cord pofteriorly. This cord paffes into a kind of longitudinal groove, formed above the horny appendix, that furnifhes attachments to the mufcles of the coxæ, and which we have defcribed in the firft volume.

 A fixth ganglion is fituated at the pofterior and wide part of this appendix : at a certain diftance,
 diffance, and exactly above the union of the abdomen with the breaft, a feventh appears. Thefe two ganglia produce only one pair of nerves, which are diftributed to the mufcles.

 There are only two ganglia in the abdomen ; one correfponds to the middle part of the fecond ring; the other, which is the laft and ninth, is fituated above the union of the fecond fegment with the third. The laft ganglion but one is in every refpect fimilar to the two preceding; but the ninth is one half larger, and produces pofteriorly four pair of nerves, which are diftributed on both fides to the parts of generation.

 ## B. Orthoptera.

 ## In the Cockroach (Blatta Americana.)

 The brain of this infect is compofed of two lobes, feparated by a very-diftinct notch anteriorly. The optic nerves arife on the fides, and its anterior part detaches fome filaments to the parietes of the mouth, and to the inftruments of manducation.

 The nervous cords which form the medulla arife from its inferior furface. They proceed directly downward, and clofely embrace the œfophagus. They afterwards proceed in a parallel direction, but very diftinet from each other, towards the corfelet. When they reach its middle, they form a very large ganglion, which pro-
 duces three pairs of nerves laterally, and one pofteriorly. The firft lateral nerves afcend obliquely towards the hicad, and furnifh filaments to the mufcles that move it on the thorax, and which act on the antenne and the parts of the mouth. The others are diftributed to the mufcles of the firtt pair of feet.

 The pofterior ncrves proceed in a parallel direction backward. At the middle of the pectus they produce a ftill more coniderable gangtion than the fecond, which furnifhes laterally nerves to the intermediate and pofterior feet, as well as to the mufcles of the wings. It alfo fends of two cords pofteriorly, which, by their union at the junction of the abdomen and the breaft, form a fourth ganglion, fituated on a projecting horny fubftance to which the inufcles of the coxæ are attached.

 After this fourth ganglion there is only a fingle nerve, which has, at certain fpaces, fmall enlargements. Five of thefe fwellings may be counted. Each produces a pair of nerves for the mufcles of the rings of the abdomen: the fifth is the largeft, and furnifhes befides two nerves which ramify in the parts near the anus.

 ## In the Grat Green Cirufshopper (Ciryllus Firidifimus, Lin.)

 The brain is fituated in the liead ahove the œfophagus: it confifts of two lobes, which have the form of pears, united at their bafe, and pro-
 longed at the other extremity into an optic nerve for the eye of each fide.

 The anterior part alfo produces two nerves of a pyramidal form, the bafe of which refts upon the brain. Some filaments arife from the apex of the pyramid, which are loft in the mandible, the jaw and its galea, as well as in the upper lip.

 Between thefe two anterior nerves we obferve afmall ganglion, which is produced by the union of the two filaments of the inferior furface of the brain. This is the recurrent nerve which follows the inteftinal canal.

 Pofteriorly, and a little inferiorly, we obferve the origin of the two cords which form the nervous medulla. They embrace the œfophagus, below which they are immediately directed, and form a ganglion.

 This firf ganglion is protected and covered by a kind of horny bridge of a reddifh colour. It furnifhes nerves to the mufcles of the mouth, and to thofe of the head within which it is inclofed. Pofteriorly it produces two long nervous cords, which penetrate into the corfelet.

 Thefe two cords unite about the middle of the thorax before the appendix, which gives attachment to the mufcles of the coxx and the anterior pair of feet. At this union they form a large bilobed ganglion, of an irregular quadrangular figure, the fides of which produce feveral filaments for the mufcles of the anterior feet.

 352 L. XI. Nerves of Invertebral Animals:
 , The pofterior part of this fecond ganglion furnifhes two filaments, which penetrate into the breaft. The folid appendices of the coxæ, which afford infertions for the mufcles, pafs between thefe two filaments. They form a third ganglion, which correfponds to the middle'face included between the two intermediate feet. This ganglion fends nerves to the mufcles of the wings and the feet.

 The fourth ganglion is alfo contained in the breaft. It is fituated before and between the poflerior pair of feet. It is produced by two nervous cords from the preceding ganglion; and furnifhes two pofteriorly, which are fo clofe to each other that they appear to the naked eye to make only one cord. This nerve is received and contained in a kind of groove formed above the triangular piece, which affords an attachment for the mufcles of the feet.

 The other ganglia, which are all fituated in the abdomen, are fix in number. They are, the laft excepted, of the fame fize and form, placed at equal diftances, and produced by two fimilar and clofely approximated cords. Each furnifhes two pair of nerves for the mufcles of the abdominal rings.

 The laft ganglion of the medulla is one half larger than the five preceding. It is fituated below the parts of generation, to which it is diftributed by four pair of filaments.

 ## In the Mole-criclict (Acheta gryllo-talpa.)

 The brain of this infect is alfo compofed of two rounded lobes, which are particularly diftinct at the pofterior part.

 We can clearly perceive the origin of the inerves of the palpi, of the antennæ, of the fmooth eyes, and the eyes properly fo called.

 In general the nerves of the principal medulla are fimilar to thofe we have defcribed in the cockroach. The two firft ganglia are produced by two nerves. The firft, which is in the corfelet, fupplies the mufcles of the head, breaft and anterior feet. The fecond, which is larger, and in the breaft, gives filaments to the mufcles of the wings, and the intermediate and pofterior feet. It alfo fends two nerves pofteriorly, which produce the abdominal ganglion. The cord :hen becomes fingle and flat, like a ribband, and contains only four ganglia, occurring at different diftances. Each produces two pair of nerves, which are directed pofteriorly, and diftributed to he mufcles. The firft correfponds to the mid3le part of the firft abdominal ring; the fecond :o the third, the third to the fifth, and the laft o the ninth.
 This laft ganglion is the moft remarkable of 111. It is of an oval fhape, and produces, from he whole of its circumference, nerves which re diftributed to the neighbouring parts. Two, which are longer than the others, diverge as
 Vol. II.
 A Λ
 they

 ## 354 L. X. Nerves or 1nvertibral Animals.

 they proceed backward, and thus reprefent a bifurcation of the medullary cord. Thefe branches furnifh filaments to the parts of generation.

 ## C. Hemiptera.

 In the oral IT ater Scorpion (Nepa Cinerea, Lin.)
 The nervous fyftem of this infect confifts of three ganglia.

 The firft, which fupplies the place of the brain, is fituated in the head. It is formed of two approximated lobes. Thefe lobes are pyriform, and touch each other at their bafe. Their fummits are directed obliquely forward towards the eyes, in which they terminate, and thus anfwer to the optic nerves by their anterior extremity. The middle and anterior part of thefc lobes alfo produce fome filaments for the parts of the mouth.

 Pofteriorly, the brain detaches two cords which embrace the œefophagus as they pafs below it. They unite at the origin of the breaft in a tetragonal ganglion; each of the angles of which produces or receives feveral nerves. The anteterior receives the two cords which come from the brain; the pofterior, the two which are the continuation of the medullary cord.

 Each lateral angle produces a fafciculus, compofed of four nerves, which are directed to the mufcles of the breaft and anterior feet. We obferve
 obferve one of them enter into the cavity of the coxa.

 The two nerves produced by the pofterior angle of the fecond ganglion proceed in a parallel direction backward. Having arrived in the breaft above the horny appendix, to which the mufcles of the coxæ of the intermediate and pofterior feet are attached, they fwell into a large round ganglion, confiderably more voluminous than the brain. A vaft number of nerves are detached from the edges of this ganglion, like folar rays.

 The two moft remarkable filaments are exceedingly long and flender. They extend from the breaft nearly as far as the anus : we have obferved them to terminate by three minute branches in the parts of generation of the male, furnifhing, at the fame time, fome filaments to the adjacent parts.

 All the other filaments, which proceed from this third and laft ganglion, are deftined to the mufcles. We can very plainly diftinguifh thofe that belong to the middle and intermediate feet, as they are fomewhat larger than the others.

 ## D. Lepidoptera.

 In the Zig=Zag Moth (Phalcena Difpar, Lin.)
 The brain in this fpecies is almof fpherical. We, however, perceive a longitudinal furfow on the middle line. Its anterior part produces

 $$
 A A_{2}
 $$

 fome

 356 L. XI. Nerves of Invertebral Animals.
 fome exceedingly flender nerves. There are two large optic nerves on the fides, which proceed into the concavity of the eye, where they terminate by a bulb, which produces a great number of filaments.

 The æfophagus paffes immediately behind the brain, through a fmall triangular interval, the pofterior fides of which are formed by the two cords of the medulla. Thefe cords afterwards unite, and proceed in the form of a fingle trunk, on the middle part of which we perceive only a longitudinal furrow. Arrived in the corfelet it forms a ganglion, the furface of which is reddifh. This ganglion produces two nerves pofteriorly, which leave between them an interval that affords a paffage for the horny appendices to which the mufcles of the coxæ are attached. The two cords again unite behind thefe appendices in the fame cavity of the breaft, and produce a much larger ganglion, the lateral parts of which furnifh nerves to the mufcles of the wings and feet. It is prolonged pofteriorly into a fingle cord, which again enlarges when it arrives above the articulation of the breaft with the abdomen into a third ganglion.

 It fhould be remarked, that this large ganglion, which has the form of a heart, is the only one, befides the brain, of a completely white colour. All the others exhibit darker flades, and, when viewed by a glafs, we obferve in them reddifh points more or lefs elongated and finu-
 ous, that refemble the blood veffels of injected glands.

 The third ganglion is prolonged into a fingle cord, which produces a fourth ganglion above the firlt ring of the abdomen. The latter, as well as thofe that fucceed it, detach on each fide a long flender nerve which paffes under the mufcular fibres, precifely in the fame manner as the threads of the woof pafs through the warp in cloth. Their direction is completely tranfverfe.

 The fifth ganglion does not differ from the preceding. It is prolonged into a fingle cord, upon which we can ftill very diftinctly perceive the longitudinal furrow. It is fituated in the middle part of the third ring of the abdomen.

 The fixth ganglion is, in every refpect, fimilar to the preceding ; it is placed in the middle of the fourth ring.

 Finally, the feventh and laft ganglion is much larger than thofe that precede it in the abdomen. It is of an oval form, and fituated upon the lunula that terminates the fifth abdominal ring pofteriorly. Befides the nerves intended for the mufcles of the fifth ring, which are detached from this ganglion in two diftinct parts, it produces four other pairs pofteriorly. Thefe nerves appear to be diftributed to the parts of generation, and to the mufcles of the laft abdominal rings, which, in the female, are elongated like a tail to affift in laying eggs.

 $$
 \text { A\& } 3 \quad \text { E. Neu- }
 $$

 ## E. Neuroptera.

 The infects with naked wings, that is to fay, the Hymenoptera, Neuroptera, and Diptera, which have frequently very large eyes, have alfo the optic nerves of a proportional fize. This is particularly obfervable in the dragon flies. Their brain is formed of two very fmall lobes; but their optic nerves are dilated into the form of t wo large plates, which have the figure of a kidney, and which is fpread upon all the inner furface of the eye next the head. The remainder of their medullary cord is exceedingly flender, and furnifhed with twelve or thirteen fmall ganglia, the laft of which is, as ufual, connected with the parts of generation.

 ## F. Fymenoptera,

 The brain of the bee is fmall, and divided inta four lobes. It produces immediately the nerves which are diftributed to the different parts of the mouth, and the two large optic nerves which are dilated and applied behind each eye as in the dragon fies. There are afterwards feven ganglia, three of which are in the corfelet, and four in the abdomen. The nerves of the laft chiefly fupply the parts of generation.

 ## G. Diptera.

 The apiform fly (mufcatenax; Lin.) has a fmall braill, formed of two lobes, which are fituated
 very clofe together, but diftinguifhed by a longitudinal furrow ; the anterior part produces á large nerve, which is afterwards diftributed to the antennæ and the probofcis.

 The optic nerves are very thick, cylindrical, and equal in diamcter to the length of the brain, on the lateral parts of which they reft; they terminate at their extremity in a very large bulb, which correfponds to the breadth of the eye.

 The firft ganglion of the medulla is produced by two cords, which come from the pofterior part of the brain, and embrace the œefophagus as a collar; it is very flender, and fituated in the breaft ; it furnifhes a pair of filaments to the muicles of the anterior feet.

 The fecond and the following ganglia, in all three in number, are united to each other merely by a fingle cord. The laft ganglion is one half larger than that which precedes it. Pofteriorly it produces cight or nine filaments, which are intended for the parts near the anus; the firf of the three is fituated in the breaft, where it furnifhes nerves for the mufcles of the wings and the feet; the other two ganglia are in the abdomen; the laft but one is placed above the union of the third ring with the fourth; and the laft on the interior and inferior edge of the fifth ring.

 In the boritet-fly (afilus crabroniformis) we alfo obferve a fingle cord uniting the abdominal ganglia, which are fix in number.

 360 L. XI. Nerves of Invertebral Animals.
 The brain is fimilar to that of the Syrpous; but the bulbs, formed by the optic nerves, are ftill broader, in proportion to the extent of the eyes they have to invert.

 ## H. Gnathoptera.

 In the great foolopendra (Scolopendra morfitans; the brain has a very fingular form : it is, as ufual, compofed of two lobes, which are almoft fpherical; it produces laterally the optic nerves, which are very fhort, and may be obferved to divide long before they reach the eye. The filaments are four in number; but two nerves arife anteriorly, which are fo very thick, that they appear a, part of the brain, to which they are equal in diameter. Thefe nerves are particularly intended for the antennæ, into which we obferve them enter, and in which they may be followed, on account of their magnitude.

 The two cords which embrace the œefophagus proceed directly downward, and form a large ganglion at the union of the firft ring with the head. The firft ganglion produces two nerves pofteriorly, and feveral towards the fides. A ganglion, precifely of the fame thape, is placed above each of the articulations: thus there are, in all, twenty-four very diftinct ganglia; the laft of all is fmalleft, neareft the preceding, and feems to float in the abdomen; each detaches
 three pair of nerves; one which afcends towards the head, a fecond which runs tranfverfely; both thefe are diftributed to the mufcles of the $a b-$ domen : the third defcends, and then proceeds backward and upward; it furnifhes filaments to the lateral mufcles, and to thofe of the back.

 ## Article VII.

 Brain and Nerves of Worms.
 Some genera of worms prefent a very diftinct nervous fyftem, organized nearly like that of the Cruftacea and infects. In others, however, that fyftem becomes fo obfcure, that we can fcarcely recognize its exiftence. Thus the clafs of worms which, in feveral of its genera, ranks above infects, with refpect to the organs of circulation, is reduced almoft to a level with the zoophytes, when confidered with regard to the organs of fenfation.

 ## 1. In the Aphrodita Aculeata.

 The nervous fyftem is very diftinct in this animal. Immediately behind the tentacula, fituated above the mouth, we obferve a large nervous ganglion, which is the brain; it has the form of a heart, the broadeft and bilobed part of which is directed backward. 'The point-

 ## 362 L. XI. Nerves of Invertebral Animals.

 ed and anterior part produces two fmall filaments for the tentacula; and the lateral parts fome other filaments, which are fill more flender for the parietes of the mouth. This ganglion is fituated immediately above the origin of the œfophagus.

 The two cords which arife from the brain, and form the collar, are very long and delicate; they gradually increafe in thicknefs, as they approach the point of their union. Each then produces a large filament, which we thall call the recurrent nerve; thefe nerves are very diftinct ; they are directed forward towards the part where the œfophagus, which is very fhort, joins the ftomach; they may be eafily followed by the naked eye to the lateral parts of that vifcus, which is very long and mufcular ; before they reach the inteftines that follow the fomach, they fwell into a ganglion, which produces a great number of nervous fibrils:

 The two nerves of the collar produce a very large ganglion at their union; it is bifurcated anteriorly, and fituaied immediately behind the mouth, and above the efophagus; it is the anterior extremity of the chief nervous cord. We do not obferve any filaments proceeding from it. To this firf ganglion another fucceeds, which is diftinguifhed from it by only a fmall contraction; the latter produces two nervous filamcits, which go forwards into the mufcle: of the abdomen. A feries of ganglia, the faces
 between which are confiderably greater, afterwards fucceed ; each of thefe fends off fix nerves, three on a fide, which are loft in the mufcles. Thefe ganglia are twelve in number.

 The nervous cord which fucceeds, and which occupies the pofterior third of the body, no longer exhibits any apparent enlargement ; but pairs of nerves are ftill detached at certain fpaces. Finally, this cord may be followed to the extremity of the body.

 ## 2. In the Leeches,

 The nervous fyftem is a longitudinal cord, compofed of twenty-three ganglia.

 The firft is fituated above the œefophagus; it is fmall and rounded ; anteriorly it produces two flender filaments, which proceed above the difk of the mouth. The lateral parts furnifh a thick pair of nerves, that form a collar round the œfophagus, as they proceed downward, and unite at the fecond ganglion.

 This ganglion is of a triangular figure ; it appears to be formed by the union of two tubercles. Two of thefe angles are anterior and lateral; they receive the nerves that proceed from the firft ganglion. The other is pofterior; it is prolonged into a nerve rather more than half a line long, which produces the third ganglion : the anterior part of the triangular ganglion which we defcribe, detaches two fmall
 nerves that are loft on the œefophagus, around the mouth.

 The nine fucceeding ganglia are precifely of the fame form, and produce each two pair of nerves; they differ only in the greater or lefs diftance at which they are placed with refpect to each other.

 The third, as we have obferved, is very near the fecond. The three following are at the diftance of nearly a line and a half: but thofe which fucceed, from the feventh to the twentieth, are at the diftance of three or four lines: finally, the three laft are very clofe together.

 All thefe ganglia are fituated longitudinally below the inteftinal canal, to which they furnifh, from their fuperior furface, a number of nervous filaments; they produce on each fide two nerves, which pafs into the longitudinal and tranfverfe mufcles, in the fubftance of which they are loft. Thefe nerves run in oppofite directions, fo that they reprefent the figure of an X .

 The coat of thefe nerves is black, and very folid: on this account, before the parts have been immerfed in alcohol, the nerves appear like a fyftem of veffels.

 > 9. In the Earth Worm,

 The nervous cord derives its origin from a ganglion fituated above the œfophagus; this ganglion
 ganglion is formed of two clofe, but very diftinct tubercles; it produces a pair of fmall nerves, which proceed to the parietes of the mouth, and two large cords, which embrace the œefophagus in the form of a collar; thefe unite to form the nervous cord, the origin of which, therefore, appears bifurcated. Three pair of fmall nerves are detached at this place; one from the cord itfelf, and the others from its lateral parts. They all proceed into the mufcles of the mouth.

 The nervous trunk is continued to the anus, along the inferior part of the inteftine; its fize is not fenfibly diminifhed, and the contractions are not very remarkable: there are, therefore, no real ganglia.

 A pair of nerves arifes between each of the rings of the body; thefe nerves pafs under the longitudinal mufcles, and difappear between them and the fkin.

 When the nervous cord reaches the anus, it terminates by forming a plexus, which is loft on the parietes of that aperture.
 4. In the Gordius Argillaceus.

 There is only a fingle nervous cord in this animal, fimilar to that of the earth worm, but its contractions are ftill lefs apparent.

 > 5. In the Nereis and Terebella.

 In thefe animals we find, within the finin of

 366 L. XI. Nerves of Invertebral Animals.
 the belly, a longitudinal cord, which may be regarded as nervous: it has as many contractions as there are rings in the body. We have obferved no nervous filament proceeding from this cord.
 6. In the Sca Worm, (Lumbricus Marinus Lin.)

 Which, by its external characters, approaches nearer to the nereis than the lumbricus. The nervous fyftem is the fame as in the nereides, but the cord gradually increafes in thicknefs towards the middle of the body, where it is much more diftinct.
 > 7. In the Afcaris Lumbricoides of Man and the Horfe.

 This animal appears to have two nervous cords; they are obfervable throughout the whole length of the body, on the lateral parts of the abdomen.

 They unite above the œefophagus exactly at its origin on the mouth; they are very flender, and produce no remarkable ganglion ; they are fmaller at their origin than towards their extremity, that is to fay, towards the anus; but they are equal, and precifely fimilar to each other with refpect to their different parts. We at firft obferve fome fmall granular points, which enlarge in proportion as the nerve defcends. When it has reached the middle of the body longitudinally, it forms fquare ganglia, at a fhort
 fhort diftance from each other. Laftly, towards the termination, for the length of nearly fix lines, the nerve becomes more and more flender, and ends in a very fmall filament, which unites with that of the other fide.

 The details into which we have entered in Articles IV. V. VI. and VII. of this Lecture, evidently demonftrate that there exifts an analogy in the organization of the nervous fyftem of the three claffes of Cruftacea, Infects, and Worms, no lefs ftriking than that which prevails in the external forms, in the difpofition of the mufcles, and in the fingular divifion, into a feries of rings or fegments, which we obferve in thofe animals. This analogy muft prevent us from eftablifhing, between thefe three claffes, limits equally diftinct with thofe that fubfift between them and the Mollufca.

 The uniform diftribution of nearly equal ganglia upon a cord, extending throughout the whole length of the body, feems defigned to furnifh each fegment with a brain peculiar to itfelf. Thus we are gradually conducted to that general diffufion of the medullary fubfance which takes place in zoophytes.

 ## Article VIII.

 Of Animals, in which no diftinct Neroous Syjem has yet been difcovered.
 $\mathbf{W}_{\text {e }}$ do not include, in this divifion, the animals of the clafs of Worms, or the Mollufca, in which the minutenefs or foftnefs of the parts have not yet permitted us to trace the nervous fyftem. Analogy will not allow us to doubt its exiftence, when the parts, which accompany it, uniformly exift. Thus the flukes (fafciola) having veffels, or liver, \&cc. muft alfo be fuppofed to have nerves, though we have hitherto been unable to demonftrate them.

 We even doubt not the exiftence of a nervous fyftem in feveral inteftinal worms, particularly thofe which have a cylindrical form, which we fuppofe to have a medulla nearly fimilar to that we have defcribed in the large afcarides. It is found in the gordius. Why fhould it not exift in the echinorbinchus, frongylus, \&c. \&cc.?

 But there are animals in which analogy will not ferve us, and to which we cannot attribute a nervous fyftem, unlefs we diftinctly obferve it ; thefe are fome inteftinal worms, very different in form from thofe we have mentioned, and the greater part of zoophites.

 We fhall examine fome of them.

 Art. VIIf. Animals without Nerves. 369

 ## 1. In the Sea Stars, (Aferias.)

 Thefe animals have parts which may be regarded as very fimilar to nerves; but galvanic experiments ought to be made on living individuals, to prove completely their nature. Round the œfophagus we obferve a girth of a foft whitifh fubftance, which produces ten filaments, t wo to each of the branches, which form the body of the ftar ; the two filarnents belonging to each branch having arrived at the bafe of the offeous and articulated ftalk, which ferves for the principal fupport of the animal, unite to form a fhort cord, which extends directly from the one to the other; they afterwards both continue along the ftalk to the extremity of the branch, diminifhing always in thicknefs. At the place where they are united, each produces a fafciculus of filaments, which are diftributed to the ftomach, which, in thefe animals, is fituated in the midft of the body, between the five branches.

 The appearance of all thefe filaments is rather tendinous than nervous, and that circumftance has hitherto chiefly prevented us from forming a decided opinion of their nature.

 ## 2. In the Holothuria.

 In the Holothuria, properly fo called, among which we do not include either the thalia, or the bolotburia phyfalus of Linnæus, we find
 VoL. II. Be fome.

 370 L. XI. Nlrves of Invertebral Animals.
 fomething fimilar to what we have defcribed in the fea ftar, but the appearance of the cord is much more nervous, and this we confider a ftrong confirmation of our conjectures.

 The parts of which we fpeak appear moft diftinctly in the fpecies of holothuria, which have five longitudinal pairs of mufcles, as the priapus and the pentacta. Between the two murcles which compofe each pair, there is extended a white cord, flightly ferpentine, and marked by tranfverfe rings, precifely like common nerves. The five'cords enlarge as they proceed towards the ofophagus, where it appears to us they unite to furround that canal.

 ## 3. In the Sipunculus.

 Thefe are more fimilar to the holothuria than to any other animal, though naturalifts have hitherto placed them next the Lumbricus; they have only a fingle whitifh cord, but it completely refembles thofe of the holothuria, and it proceeds in the fame manner to embrace the œefophagus by its antcrior extremity.

 If thefe obfervations apply to real nerves, it will be neceffary to feparate the ecbinodernata from the other zoophytes, and eftablifh them as a diftinct clafs.
 4. In the Sea Urchins (Echinus Marimus.)

 We have not obferved in thefe animals any thing that refembles nerves, but analogy will

 Art. VIII. Animals without Nerves. 37 r
 not permit us to feparate them from the fea ftars and holothuria. One fpecies of this genus has been formerly very properly named the coriaceous urchin.

 ## 5. In the Aainia and the Medufa.

 Thefe animals form, in the clafs of zoophytes, a fecond family, which approaches pretty near to the preceding, and particularly to the genus bolotburia, with refpect to the arrangement of the parts ; but it is impoffible to perceive any thing in them like nerves.
 6. In the Polyps with Arms, (Hydra.)

 With refpect to thefe and the neighbouring genera, which form, with the animals of the coral kind, the third and the moft fimple family of zoophyta, we have already had occafion feveral times to obferve, that we difcover in their bodies unly a gelatinous and homogencous pulp, which exhibits no apparent organization.

 All thefe animals have however very diftinct fenfations: their fenfe of touch is very delicate; they not only perceive the motions which agitate the water in which they live, but they completely feel the degrees of heat and light. The expanfion of the actinix correfponds precifely to the ferenity of the atmofphere. The hydra perceives very diftinctly the prefence of light ; it prefers it, and conftantly turns towards it.

 The microfcopic animals appear to approach, B в 2

 372 L. XI. Nerves of Invertebral Animals.
 in fome meafure, the nature of polyps, by their uniform and gelatinous ftructure. There are fome, however, in which we obferve a more complicated organization, and feveral kinds of internal vifcera; but it will be readily imagined that we have not even thought of afcertaining whether they poffefs a nervous fyftem.

 ## (373)

 ## LECTURE TWELFTH.

 Of the Organ of Sight, or of the Eye.

 ## Article I.

 General Idea of Vifion.
 B_{y} fight we diftinguifh the quantity, the colour, and the direction of the luminous rays which ftrike our eye. The difference of colours marks the limits of bodies in height and breadth; and the difference in the intenfity of light, joined to the experience acquired by the fenfe of touch, enables us to recognize their cavities and inequalities. Laftly, from the direction of the rays, we form an opinion as to the line in which thefe bodies are fituated.

 We cannot obtain an immediate knowledge of real diftance by fight only. We muft in this cafe alfo avail ourfelves of the experience acquired from the fenfe of feeling, and judge of the diftance of objects, according to their known magnitude, compared with their apparent magnitude and degree of illumination.

 As vifion can only immediately afford ideas

 $$
 \text { B в } 3 \text { of }
 $$

 of the quantity, quality, and motions of the rays of light, we are fubject to make erroncous conclufions with refpect to the objects from which thefe rays procced. Thus rays reflefted by a mirror, exhibit objects in a direction in which they do not exiff. Rays refracted by glaffes, change the apparent magnitude of bodies: when we know not the real fize of an object, we are deceived with refpect to its diftance, and vice verfa: a very luminous body appears neareit to us, when thofe which are between us and it are in the fhade, \&cc. \&c.

 Rays doinot excite any fenfation, unlefs they fall upon a nervous membrane of the eye, called the retina; and they communicate no fenfation conformable to the body which tranfmits them, unlefs they fall upon the retina precifely in the order in which they are detached from that body. To produce this effect it is neceffary that all the rays which proceed from any one point of a body, fhould be collected in one point of the retina, and that all the points of union thus formed fhould be difpofed in the fame manner as in the body of which they form the image.

 This neceffity is a matter of fimple experience; for it is eafy to conceive that we are no better acquainted with the intimate nature of fight, than with that of all the other fenfes, and that we fhall never be able to learn why thefe are the conditions of the ideas it procures us.

 Rays which proceed from any point, necerfarily
 farily diverge as they advance, and therefore cannot re-unite in another point unlefs they are refracted by fome tranfparent body through which they pafs. This takes place in the eye, in the fame manner as in the optical inftrument called a camera obfoura. The eye is perforated by a hole named pupil, behind which there is a tranfparent body of a lenticular form called cryfalline, more denfe than the medium in which the animal exifts, and than the other fluids contained in the eye. The cone of rays which proceeds from any luminous point to the pupil, forms, after paffing through the cryftalline, another cone, the apex of which falls upon the retina. Thefe two cones have their axes almoft in a ftraight line. That which is perpendicular to the middle of the cryftalline proceeds directly to the bottom of the eye ; that which comes from above, falls inferiorly ; that of the left proceeds to the right, and fo on with refpect to the others. Thus an inverted image of the object is formed on the retina; but as we judge of the fituation of each luminous point by the rays it tranfmits, it follows that we muft fee bodies, as we really do fee them, in their proper pofition.

 If the rays were parallel, they would unite in the point which is called, in Dioptrics, the focus of parallel rays; but as thofe which come from a point, the diftance of which is finite, diverge, they unite in a point a little nore removed from
 the cryftalline than this focus; and as thore which proceed from a very near point, diserge ftill farther, they alfo unite ftill more remotely.

 A particular eye therefore fees diftinctly only objects placed at a certain diffance. If its cryftalline has much refractile power, that is to fay, if it is very denfe and very convex ; or, if its retina is removed from the cryftalline, it can only diftinguifh near objects : if its cryftalline is flat and lefs denfe, or its retina too clofe to the cryftalline, it will only diftinguifh diftant objects.

 This produces different extents of fight in one man compared with another, and ftill greater differences in the various kinds of animals.

 The fame man may, with fome attention, diftinguifh the fame object at different diftances, the limits of which may be affigned with refpect to each individual.- Certain animals can difcern objects, the diftances of which are extremely variable. Birds, for example, perceive their prey from immenfe heights in the air, and ftill retain it in view until they feize it: it muft follow therefore, that the cye is capable of changing the pofition of its parts, by approximating and removing the retina with refpect to the cryftalline; or that it is capable of augmenting its refractile power by increafing the convexity of fome of its tranfparent parts; or finally, that, in viewing very near objects, it only admits the rays which are neareft to the axis, and which
 are confequently the leaft diverging. We fhall point out hereafter the means by which each of thefe changes is fuppofed to take place. None of thefe means however completely refolve the problem. Perhaps the limits of diftinct vifion are much more confined than we imagine them to be ; and it is probable that, in many cafes, it only appears diftinct, becaufe it is affifted by the recollection we have of the object.

 Before the cryftalline there is ufually an humour, called aqueous, equal in denfity to pure water; and behind it there is always another, which is much more abundant, and a little more denfe, named the vitreous. The aqueous is only wanting in fome animals which live always in water. It is fuppofed that the union of thefe three bodies, of different denfities, muft produce the fame effect as the three objective glaffes in achromatic telefcopes, that is to fay, they correct the difference of refrangibility in the rays. Thefe rays are indeed ufually compound. The white confift of feven fimple rays; and as they are not all refracted at the fame angle, the images formed on the retina would, as in thofe produced by common telcfcopes, be bordered by an iris, if this difpofition of the three humours did not exift.

 The eye, however, fometimes fees what are called accidental colours. When the retina is ton much fatigued by certain colours, it becomes lefs fenfible of them. If we then behold a co-
 lour which admits in its compofition that which had fatigued the eye, the latter will ceafe to be vifible.

 Thus when we fix the cye on a white fpot, and afterwards turn it towards white bodies, we obferve on them a dark fpot of the fame fhape as that to which the eye was firft directed. If the fpot on which the cye was fixed was black, the eyc, wherever it turns, will perceive one of a lighter colour. If it was red, we obferve a greenifh fpot on white bodies; if yellow, a bluifh; if green, a reddifh, \&c. \&c.

 It muft not be forgotten, that the aqueous humour has alfo, by its convexity, a great influence on the refraction of rays, particularly in animals which live in air. That convexity, joined to what is poffeffed by the vitreous, probably fupplies the effect of the cryftalline in eyes which have undergone the operation of the cataract, that is to fay, when the cryftalline has been removed on account of its opacity.

 A number of animals can only fee the fame object with one eye at a time. Man alfo employs only one when he wifhes to fee very diftinetly. In ordinary vifion, when the images fall on the correfponding points of both retinx, and when both eyes are nearly equal, we do not diftinguifh thefe feparate images, and we fee objects fimple: but if one eye be turned in a different direction from the other, or if they be very unequal, we fee double.

    ```
    Art. II. Number of the Eyes, &`c. ```

