
$16 . d .10$.

Nick Mpill

Digitized by the Internet Archive in 2015

THE ARCHETYPE AND HOMOLOGIES

OF

THE VERTEBRATE SKELETON.

BY

RICHARD OWEN, F.R.S.

LONDON:
PRINTED FOR THE AUTHOR, BY RICHARD AND JOHN E. TAYLOR, HI:JI.ION COU及T, FLEETT STKEFT.
1848.

$$
420787
$$

Toptats

TO

WILLIAM JOHN BRODERIP, ESQ., F.R.S., F.G.S., F.L.S., \&c.

My dear Broderip,

THE interest which you have taken in the progress of the researches that are embodied in the present Treatise on the Vertebrate Archetype induces me to dedicate it to you: and I am happy in having this opportunity of gratefully acknowledging your excellent guidance by which my early studies in Zoology were facilitated, and of expressing the affection and esteem with which I am,

Your sincere Friend,

RICHARD OWEN.

ADVERTISEMEN'.

The subject of the following Essay has occupied a portion of my attention from the period when, after having made a certain progress in Comparative Anatomy, the evidences of a greater conformity to type, especially in the bones of the head of the Vertebrate animals, than the immortal Cuvier had been willing to admit, began to enforce a reconsideration of his conclusions, to which I had previously yielded implicit assent. The results*, in so far as they seemed to be fairly sustained by observation of facts, have been successively communicated to the Royal College of Surgeons of England in my Hunterian Lectures for 1844 and subsequent years; and in 1846 I availed myself of the peculiar advantages afforded by the : British Association for the Advancement of 'Science' to bring my general views on the Archetype and Homologies of the Vertebrate Skeleton before the British and Foreign Anatomists assembled at the meeting of the Association at Southampton, in order to submit them to the test of a discussion which could not have been so fully carried out under any other circumstances in this country, where Homological Anatomy had previously excited little

[^0]attention, and had remained almost in the state in which it was left by Cuvier and Geoffiroy St. Hilaire.

The interest which has since been expressed on the subject of those communications, published as a 'Report' in the Transaetions of the British Assoeiation for 1846 , and the wish to make the matter of that 'Report' more aeeessible and intelligible to students of anatomy, have indueed me to reprint it in a separate form, with some additional faets and illustrations.

I beg to express my obligations to the President and Couneil of the British Association for the permission to reprint the substance of my Report, and for the liberal use of the woodcuts with whieh it was illustrated. And I am glad here to have the opportunity to acknowledge the valuable aid which I derived from the skill and care and patienee of Mr. Frederick Gyde, the wood-engraver, in rendering aeeurately the numerous details and referenees in the figures, and to express similar aeknowledgements to Mr. Tuffen West, the lithographer of the plates.

CONTENTS

CHAPTER I. SPECIAL HOMOLOGY Page
Introduction 1
Terms explained 9
Moot points discussed :-
Alisphenoid 19
Petrosal 24
Mastoid 29
Orbitosphenoid 43
Prefrontal 46
Malar 59
Squamosal 60
Opercular bones 63
Hyoid bones 68
CHAPTER II. GENERAL HOMOLOGY.
Historical Introduction 72
Oken (1807) 73
Dumeril (1808) 76
Spix (1815) 77
De Blainville $(1816,1839)$ 77, 79
Cuvier $(1817,1837)$ 78, 141
Bojanus (1818) 77, 117
Göthe (1820) 78
Geoffroy St. Hilaire (1822, 1824) 79, 83
Carus (1828) 79
Grant (1835) 85
Owen (1838) 80
Agassiz (1843) 153
The Typical Vertebra 80
Development of Vertebræ 86
General characters of Vertebræ of the Trunk 89
Summary of modifications of ditto 96
Centrum 96
Neurapophyses 97
Neural spine 98
Parapophyseз 98
Pleurapophyses 98
Hæmapophyses 99
Hæmal spine 101
Diverging appendages 101
The question ' What is a Bone ?' considered 103
Telenlogically compound bones 104
Homologically compound bones 105
Simple brones 100
6. Vertcbre of the SkullPa
In Fishes 11
In Reptiles 1
In Birds $1!$
In Mammals 1 :
In Man 1:
7. Classification of the Bones of the Head 1:
In Zootomy (Cuvier, 1837) $1:$
In Anthropotomy (passim) $1:$
In Ichthyotomy (Agassiz, 1843) $1!$
According to the Natural System, in Fishes 11
in Man 14
8. Objections to the Cranial Vertebre considered 14
9. Vertebre of the Trunk in Man 15
Composition of the Sacrum in Birds 15
General Homology of the Pelvic Arch and appendages 15
CHAPTER III. SERIAL HOMOLOGY.
Vicq d'Azyr (1774) 16
Barclay (1824) 16
Cruvelhier (1830) 16
Cuvier (1836) 16
Flourens (1838) 16
Oken (1809-1843) 16
Carus (1828) 16
Spix (1815) 17
Concluding Remarks 17
Explanation of Plate I. 17
Platc II 17
Ideal Pattern or Archetype of the Vertebrate Endoskeleton 17
Typical Skeleton of the Fish 17
Ditto Reptile 18
Ditto Bird 18
Ditto Mammal 18
Ditto Man 19
Illustrations from Naturc of the Typical Occipital Vertebra 19
Ditto Ditto Pclvic Vertebra 20
Homologies of the Bones of the extremities 189, 20
Table I. Synonyms of the Boncs of the Hcad according to their Special Homo-logies.
Table II. Synonyms of the Elements of the Typical Vertebra.Table III. Synonyms of the Bones of the Head according to their GeneralHomologics.

THE ARCHETYPE AND HOMOLOGIES

OF
 'HE VERTEBRATE SKELETON.

Chapter I.-Special Homology.

Introduction.

THEN the strueture of organized beings began to be investigated, the -rts, as they were observed, were described under names or phrases suggested their forms, proportions, relative position, or likeness to some familiar ob2x. Nuch of the nomenclature of human anatomy has thus arisen, espeilly that of the osseous system, which, with the rest of man's frame, was idied originally from an insulated point of view, and irrespective of any aer animal structure or any common type.
So when the exigences of the veterinary surgeon, or the desire of the turalist to penetrate beneath the superficial characters of his favourite tis, led them to anatomise the lower animals, they, in like manner, seldom anced beyond their immediate subject, and often gave arbitrary names the parts which they detected. Thus the disscetor of the horse, whose ention was more especially called to the leg as the most common seat disease in that animal, specified its 'cannon-bone,' its 'great' and 'small' stern-bones, its 'coffin-bone,' and its 'nut-bone' or 'eoronet': some xuial bones were also named agreeably with their shape, as the 'os quaatum,' for example. The ornithotomist deseribed, in the same irrelative inner, the 'ossa homoidea,' 'ossa communicantia' or 'interartieularia,' \geqslant 'columella' and 'os furcatorium.' Petit* had his 'os grele' and 'os massue;' Herissant \dagger his 'os carré'; which, however, is by no means the ne bone with the 'os carré' or 'os quadratum' of the hippotomist. The restigator of reptilian osteology deseribed 'hatchet-bones' and chevronnes, an 'os annulare' or 'os en ceinture,' and an 'os transversum': he ewise defined a 'columclla'; but this was a bone quite distinct from that called in the bird. The ielithyotomist had also an 'os transversum,' which ain was distinct from that in reptilcs, and he demonstrated his 'os diseoium,' 'os ccenosteon,' 'os mystaceum,' ' ossa symplectica prima,' 'sccunda,' 'rtia,' 'suprema,' 'postrema,' \&c. Similar cxamples of arbitrary names might sily be multiplied; many distinet ones signifying the sane part in different imals, whilst essentially distinct parts often reecived the same name from

[^1]different anatomical authors, occupied exclusively by particular spccie Each, at the beginning, viewed his subject indcpendently; and finding, there forc, new organs, created a new nomenclature for them ; just as the anthre potomist had done, of neccssity, when, with a view to the eure or relief disease and injury, he entered upon the vast domain of anatomical seience b the structure of Man, or of the mammals most resembling Man.

It may well be coneeived with what a formidable load of names the me mory must have been burthencd, if any could have been found equal to i had the anatomy of animals continued and made progress under its primitiv eondition of an asscmblage of arbitrarily described and uncompared facts.

Happily the natural tendeney of the human mind to sort and generalize it ideas eould not long permit such a state of the seience, if scienec it eould b) called, to remain. A large and valuable portion of the labours of the con parative anatomists who have honoured the present eentury, has been devote to the determination of those bones in the lower animals whieh eorrespon with bones in the human skeleton; the results bcing usually expressed b applying to the parts so determined the same names, as far as the nomer: clature of anthropotomy allowed. Fcw, however, of the parts of the huina borly have received single substantive names; they are for the most part ir dicated by shorter or longer descriptive phrases, like the speeies and parts c plants before Linnæus reformed botanical nomenelature.

The temptation to devise a systematic Nomenclature of Anatomy, generall applicable to all animals, increases with the advanee of the science, and fion the analogy of what has taken plaee in other scicnces it may one day b yielded to and exercise the ingenuity of some ardent reformer. But the sam analogy, especially that afforded by chemical seience since the time of Lavo sier, would rather lead the truc friend of anatomy to deprecate the attem to impose an entirely new nomenelature of parts, however closely expressiv of the nature and results of the scienee at the period when it might be deviser For there is no stability in suel descriptive or enuneiative nomenclature; changes, and must change with the progress of the scienee, and thus become a heary tax upon sueh progress.

If the arbitrary term 'ealomel,' which, like 'house' and 'dog,' signifies thi thing in its totality, without foreing any particular quality of its subjec prominently upon the mind, be preferable, on that aceount as well as it brevity, to the deseriptive phrases 'submuriate of mercury;' 'chloride mcreury,' or 'proto-chloride of mereury,' in enumeiating propositions respect ing the substance to which it is applied; and if it possesses the additional ao vantage of fixity, of a steady meaning not liable to be affected, like a descrip tive name or phrase, by every additional knowledge of the properties of th substance; the anatomist, zealous for the best interests of his science, will fer strongly the desirableness of retaining and securing for the subjects of hi propositions similar single, arbitrary terms, espeeially if they are also eapabl of being inflceted and used as noun adjectives.

The praetice of anatomists of the soundest judgement has usually beer to transfer the anthropotomieal term or plirase to the answerable part whe detected in other animals. The objeetion that the original descriptive o otherwise allusive meaning of the term seldom applies to the part with cque force in other animals, and sometimes not at all, is one of really little moment for the term borrowed from anthropotomy is soon understood in an arbitrar sense, and withont regard to its applicability to the modified form whic the namesake of the liuman bone commonly assumes to suit the ends require in the lower speeies. No anatomist, for example, troubles himself with th question of the amount of rescmblance to a crow's or other bird's beak in th 'coracoid' bone of a reptile, or with the want of likeness of the kangaroo
soccys' to the beak of a cuckoo; or of the whalc's 'vomer' to a ploughare; or ever associates the idea of the original mystic allusion in the anaotr term 'sacrum' with his description of that bone in the megatherium other monster. Common sense gratcfully accepts such names when they econe as arbitrary as cat or calomel, and when such concretes or adjectives 'coccygeal,' 'vomerine' and 'sacral' can be employed to teach the prorties or accidents of their subjects.
To substitute names for phrases is not only allowable, but I believe it to be dispensable to the right progress of anatomy; but such names must be arbiary, or, at least, should have no other signification than the homological one, anatomy, as the science of the structure of all animals, is to enjoy the incstiable benefit of a steady and universal nomenclature. I am far from being inusible to the advantages which other sciences have derived from revolutions their technical language; but experience has also demonstrated attendant ils; and these, it is to be feared, would preponderate in the case of anatomy, 1 account of the peculiar character of its origin, and the fact of its cultivators sing for the most part introduced to the science through the portal of anthroJtomr. So long, likewise, as due deference continucs to be paid to the deep rd vital importance of the practical applications of the parent science in edicine and surgery, it will be in vain for any man to expect that his sole thority would suffice for the general reception of an entirely new nomenature, however philosophically devised or clearly enunciative of the highest id most comprehensive truths of the science at the time of its formation.
After maturely considering this subject in its various relations, I have arred at the conviction that the best interests of anatomical science will be insulted by basing the nomenclature applicable to the vertebrate subkingom upon the terms and phrases in which the great anthropotomists of the 3th, 17 th and 18 th centuries have communicated to us the fruits of their mortal labours. For it is only on this firm foundation that we may hope aroid that ceaseless change of terms which follows the device of a systeatic nomenclature significant of a given progress and result of scientific -search. But the names of the parts of the vertebrate animals so based on deduced from the language of anthropotomy must divest themselves of eir original descriptive signification, and must stand simply and arbitraIf as the signs of such parts, or at least with the sole additional meaning indicating the relation of the part in the lower animal to its namesake or mologue in Man. It is an old maxim accepted by the best logicians, that , name is so good as that which signifies the total idea or whole subject, ithout calling prominently to mind any one particular quality, which is ereby apt to be deemed, undeservedly, more essential than the rest.
The chief improvement which the language of anatomy, based upon that anthropotomy, must receive in order to do its requisite duty, is the substition of 'names' for 'phrases' and 'definitions'; and this is less a change nomerclature than the giving to anatomy what it did not before possess, at which is absolutely requisite to express briefly and clearly, and without eriphrasis, propositions respecting the parts of animal bodies. Such names lould be derived from a universal or dead language, and when anglicized, translated into other modern equivalents, ought to be capable of being fiected adjectively.
A few examples will suffice to slow how greatly the advantage of such ames preponderates over the trouble of substituting them in the memory s the definitions which previously signified the idcas.
In the classical Anthropotomy of Socmmerring, a well-defined part of the ull, which is a distinct bone in the human cmbryo, and permanently so in l cold-bloorled Vertebrata, is called "pars occipitalis stricte sic dicta partis
occipitalis ossis spheno-oceipitalis*." Monro, in his justly-cstcemed treatis ' On the Human Bonest,' defines the same bone as "all the part of the (oc cipital) bone above the great foramen." In the 'Elements of Anatomy,' b: Dr. Quain \ddagger, a work of repute for its elearness and minuteness of detail, thit part in question is neither named nor deseribed. The term supra-occipitale Lat. (supra-occipital, Eng.,sur-occipital, Fr.), is obviously a gain to anatomica scienee in all propositions respecting this part in the vertebrate series.

Certain parts of a vertebra, distinct bones at an early period in man, ane throughout life in most reptiles, are defincd by Soemmerring as 'radices ar cûs posterioris vertcbræ,' or 'arcus posterior vertebræ' colleetively §. Monrı deseribes the same parts separately, as "a broad oblique bony plate extender backwards," and together, as "a bony arch produced baekwards" : he names defines and minutely describes the processes, \&e. of these bony plates, whicl in the series of Vertebrata are soon found to be non-essential characters; bu for the plates themselves, whiel are the most constant and essential consti tuents of a vertcbra, he has no name. Dr. Quain defines the same parts as "twe plates of bone, the lamellæ or arehes, which eomplete the central foramen $\|$. They are sometimes more briefly but vaguely spoken of in English work: of Comparative Anatomy as "the vertebral lamellæ" or "vertebral laminæ,' or "perivertebral elements." The term 'neurapophysis,' Lat. and Eng. ('neur' upophyse,' Fr.), applieable to each element individually, under which all its properties may be predicated of by the adjective 'neurapophysial,' withou periphrasis, seems by its adoption in the classieal works of MM. Agassis and Stannius, to be as aceeptable as the term 'sur-oceipital' substituted by Cuvier for the definitions in anthropotomy above cited.

Similar instances of the absence of determinate names, capable of inflection, for parts of the human frame, will be scen in the last column of Table I., and others will oceur to the anatomist, even in regard to most important parts, as the primary natural divisions of the neural axis, for example, to the great hindranee of brief, elear and intelligible deseriptions. So long as the phrases 'marrow of the spine,' 'chord of the spine,' continue to usurp the place of a proper name, all propositions eoncerning their subjeet must continue to be periphrastic, and often also dubious. Thus if the pathologist, spcaking of diseases of the spinal marrow, desires to abbreviate his proposition by speaking of 'spinal diseasc,' he is liable to be misunderstood as referring to disease of the spinal or vertebral eolumn. The vague, but often-used phrase 'ehorda dorsalis' for the embryonic fibro-gelatinous basis of the spinc, adds another souree of confusion likely to arise from the use of the term 'spinal chord,' as applied to that most important part of the neural axis which I have proposed to call 'Myelon If,' a term whieh, if adopted, would be attended by this advantage, that no ambiguity could arise in speak. ing of 'myelonal functions,' 'myelonal affections,' or other properties of this part of the central axis of the nervous system.

Anthropotomy, in respeet to its nomenelature, or rather the want of one, is, as I have already remarked, not unlike what botany was before the time of Linnæus, and we may anticipate the lhappiest effeets from a judiciously reformed teehnieal language in the advancenent of the true and plilosophic knowledge of the human strueture, from the rapid progress of botany when the opposition raised by sloth or envy to the Linnæan reforns was overeome. For a good general anatomical nomenclature, based and regulated upon the

[^2]rineiples above defined, must refleet its benefits upon anthropotomy. I dare ot flatter myself that the names adopted or proposed for the Osscous System f the Vertebrata in my 'Hunterian Leetures'and in the first colunin of Table I. ill meet at onee with aeccptance, but the attempt to establish such a nomenlature will be felt to have been an indispensable step in undertaking a general urvey of the homological relations of the vertebrate skelcton.
In proposing a definite name for eaeh distinct bonc, declaratory of its eeial homology throughout the verteb rate kingdom, I have sought earnestly reduce the annount of reform to the minimum allowed by the exigences the case. Agreeably with Aphorism III. of the 'Philosophy of the Inretive Sciences' (p. Ixvii.), the nomenclature of anthropotomy forms the isis, and all the mames given to parts by one or other of the great Freneh ratomists have been aeeepted, with the modifieations of a Latin or an En. ish termination, wherever such names had not been applied, as is the case ith some proposed by Geoffioy St. Hilaire, to two different parts. In subituting names for phrases, I have endeavoured, conformably with another Dr. Whewell's canons (Aph. XVII. op. cit. p. cxvii.), to approximate the und of the name as nearly as possible to those of the leading terms of the finition or phrase, as e. g. alisphenoid for 'ala media, \&c. sphenoidalis' and -r 'grande aile du sphénoïde'; orbitosphenoid for 'ala superior seu orbilis, \& c. sphenoidalis,' and for 'aile orbitaire du sphénoïde *.'
The corresponding parts in different animals being thus made namesakes, e called technically 'homologues.' The term is used by logieians as synomous with 'homonyms,' and by geometricians as signifying 'the sides of silar figures which are opposite to equal and corresponding angles,' or to rts having the same proportions \dagger : it appears to have been first applied in atomy by the philosophical cultivators of that science in Germany. Geofगy St. Hilaire says, "Les organes des sens sont homologues, comme s'eximerait la philosophie Allemande; e'est-à-dire qu'ils sont analogues dans ur mode de développement, s'il existe véritablement en eux un même prinse de formation, une tendance uniforme à se répéter, à se reproduire de la ėme façon \ddagger." The Freneh anatomist, however, seems not rightly to fine the sense in which the German philosophers have used the term: ere is a looseness in the expression 'analogous in their mode of developent, which may mean either identieal or similar, and also different kinds of nilarity. Parts are homologous in the sense in which the term is used in is Work, which are not always similarly developed: thus the 'pars occicalis stricte sic dicta,' \&c. of Soemmerring is the special homologue of the praoceipital bone of the cod, although it is developed out of pre-existing rtilage in the fish and out of aponeurotic membrane in the human subjeet. also regard the supraoccipital as the serial homologue of the parietal and 3 midfrontal, although these are developed out of the epieranial membrane the fish, and not out of pre-existing cartilage, like the supraneeipital. le femur of the cow is not the less homologous with the feinur of the crodile, because in the one it is developed from four separate ossific eentres, and 3 other from only one such centrc. In like manner the compound mandilar ramus of the fish is the homologue of the simple mandibular ramus of

[^3]the mammal, as the compound tympanic pedicle of the fish is homologou with the simple tympanic pedicle of the bird, the differences expressed b : the terms 'simple' and 'compound' (lepending entirely on a difference o developinent.

Without knowing the precise sense in which Geoffroy St. Hilaire under stood 'analogous development,' one cannot determine how much or how littl it is applicable to the determination of homologies or to the definition o homologous parts. Dr. Reichert seems to have been unduly influenced by th idea of 'analogy or similarity of development in the detcrmination of home logous parts' when he rejected the parietal and frontal bones from the syster of the endo-skcleton, becausc they werc not developed from a pre-existin cartilaginous basis*, or, because they could be easily dctached from subja cent persistent cartilage in certain fishes; the essential distinction betwee these and the supra-occipital in regard to development being, that wherea the cartilaginous stage intervened in the latter between the meinbranous an the osseous stages, in the other, usually more expanded, cranial spines, th osseous change appears to be immediately superinduced upon the primitiv aponeurotic histological condition.
M. Agassiz seems, in like manner, to give undue importance to similarit of development in the determination of homologies, where he repudiates th general homology of the basi-sphenoid with the vertebral centrum, and cor sequently its serial homology with the basi-occipital, because the pointed en of the chorda dorsalis has not bcen traced further forwards along the basi of the cranium in the embryo osseous fish than the basi-occipital \dagger. But th development of the centrum of cuery vertebra begins, not in the gelatinou ehord, but in its aponeurotic capsule, and it is in the expanded aponeuros: dircetly continued from the 'chorda' along the 'basis cranii' that the thi stratum of cartilage.cells is formed from which the ossification of the bas sphenoid, presphenoid and vomer procecds.

There exists doubtless a close general resemblance in the mode of deve lopment of homologous parts; but this is subject to modification, like th forms, proportions, functions and very substance of such parts, without thei essential homological relationships being thereby obliterated. These rele tionships arc mainly, if not wholly, determined by the rclative position an eonncction of the parts, and may exist independently of form, proportion substance, function and similarity of development. But the conncction must be sought for at every period of development, and the changes of rela tive position, if any, during growth, must be compared with the connection. which the part presents in the classcs where vegetative repetition is greates and adaptive modification least.

Relations of homology are often not only eonfounded with those of analogy but in some recent and highly estimable works on eomparative anatomy th terms 'analogy' and 'analogue' continue to be used to express the ideas ' homology and homologue, or are so used as to leave in doubt the meaning the author. Thus when we read in the latest edition of the 'Leçons d'Ane tomie Comparée' of Cuvier, "Les branchies sont les poumons des animau absolument aquatiques," t. vii. p. 164; and with regard to the cartilagino or osscous supports of the gills, "clles sont, à notre avis, aux branchies de poissons, ce que les cerceaux cartilagincux ou osseux des voies aériennes sor aux poumons des trois classes supérieures," Ibid. p. 177, we are left in douk whether it is meant that the gills and their mechanical supports merely perform

[^4]te same function in fishes which the lungs and windpipe do in mammals, or hether they are not also actually the same parts differently modified in rction to the diflerent respiratory media in the two classes of animals. The eeper-thinking Geoflioy leaves no doubt as to his meaning where he argues the 'Philosophie Anatomique' ($8 v 0,1818$, 4ième mémoire, p. 205), that the rauchial arches of tislies are the modified trachcal rings of the air-breathing ertebrates: we perceive at once that he is enunciating a relation of homology. I have elsewhere* discussed the relations, both homological and analogical, the respiratory organs of the air-breathing and water-breathing vertebrate niuals, and have here adverted to them mercly to illustrate the essential stinction of those relations. In the 'Glossary' appended to the first volume by 'Hunterian Lectures,' the terms in question are defined as follows:"Analogue." - A part or organ in one animal which has the same funcon as another part or organ in a different animal.
"Howologue."-The same organ in different animals under every variety form and function \dagger."
The little 'Draco volans' offers a good illustration of both relations. Its re-limbs being composed of essentially the same parts as the wings of a bird e homologous with them; but the parachute being composed of different irts, yet performing the same function as the wings of a bird, is analogous
them. Homologous parts are always, indeed, analogous parts in one sense, asmuch as, being repetitions of the same parts of the body, they bear in aat respect the same relation to different animals. But homologous parts as be, and often are, also analogous parts in a fuller sense, viz. as performg the same fuuctions: thus the fin or pectoral limb of a Porpoise is homogous with that of a Fish, inasmuch as it is composed of the same or answerable arts: and they are the analogues of each other, inasmuch as they have the me relation of subserviency to swimming. So, likewise, the pectoral fin of e flying-fish is analogous to the wing of the Bird, but, unlike the wing of e Dragon, it is also homologous with it.
Relations of homology are of three kinds: the first is that above defined, z. the correspondency of a part or organ, determined by its relative position id connections, with a part or organ in a different animal ; the determination which homology indicates that such animals are constructed on a common pe: when, for example, the correspondence of the basilar process of the man occipital bone with the distinct bone called 'basi-occipital' in a fish crocodile is shown, the special homology of that process is determined.
A higher relation of homology is that in which a part or scries of parts ands to the fundamental or general type, and its enunciation involves od implies a knowledge of the type on which a natural group of animals, e vertebrate for example, is constructed. Thus when the basilar process of :e human occipital bone is determined to be the 'centrum' or 'body of the st cranial vertebra,' its general homology is enunciated.
If it be admitted that the general type of the vertebrate endo-skeleton is ghtly represented by the idea of a serics of essentially similar segments rcceeding each other longitulinally from one end of the body to the other, tch segments being for the most part composed of pieces similar in number id arrangement, and though sometines extremcly modified for special funcons, yet never so as to wholly mask their typical character,-then any ven part of one seginent may be repeated in the rest ol' the series, just as re bone may be reproduced in the skcletons ol different species, and this

[^5]kind of repetition or representative rclation in the segınents of the san skeleton I call 'serial homology.' As, however, the parts can be nainesak only in a gencral sense, as centrums, ncurapophyscs, ribs, \&c.; and sin they must be distinguished by different special names aceording to their pa ticular modifications in the same skeleton, as e. g. mandible, coracoid, pub \&ec., I call such serially related or repeated parts 'homotypes.' The bas oceipital is the homotype of the basi-sphenoid; or in other words, when tl basi-occipital is said to repeat in its vertebra or natural segment of the sk, leton the basi-sphenoid or body of the parictal vertebra, or the bodics of tl atlas and succecding vertebræ, its serial homology is indicated. The stue of this kind of homologies was commenced by Vicq d'Azyr, in his ingenio memoir 'On the Parallclism of the Fore and Hind Limbs.' If we excethe complex and extremely diversified and modificd parts of the radiate appendages of the vertebral segments, to which Vieq d'Azyr restricted h eomparisons, the scrial homologies of the skeleton are neccssarily demo: strated when the general and special homologies have been determined.

In the present section I propose to consider some of thosc examples of sp p cial homology which are least satisfactorily determined and respecting whic different opinions still sway different anatomists. Such instances are forts nately few, thanks to the persevering and successful labours of the great con parative anatomists of the last half-century : pre-eminent amongst whom w cver stand the name of Cuvier, in whose classical works, 'Osscinens Fossile: 'Histoirc des Poissons,' ' Leçons d'Anatomie Comparéc' (posthumous cdition and 'Règne Animal,' 1828, will be found the richest illustrations of the speci homological relations of the bones in the four classes of vertebratc animals.

Second only to Cuvier must be named Geoffroy St. Hilaire, whos memoir on the Bones of the Skull in Birds as compared with those in Manmal in the 'Annalcs du Muséum, t. x. (1807), forms an carly and brilliant examp? of the quest of special honiologies, which could not fail, with other and simile investigations of the same ingenious author, to impart a stimulus to the philosophical department of anatomical inquiry *. In regard to the ostcolog of the crocodile, we find Cuvier and Geoffroy engaged in a long parallel seric of rival researches, the results of which have had the happiest effects in de termining some of the most difficult questions of special homology.

Nor was the co-opcration of zcalous cultivators of comparative anatom wanting in the emincnt schools and universities of Germany. Goethe, is deed, had taken the lead in inquiries of this nature in his determination, in 178 ; of the special homology of that anterior part of the human upper maxillar bone which is separated by a more or less cxtensive suture from the rest c the bonc in the foetus; and the philosophical principles propounded in th great poct's famous anatomical essays called forth the valuable labours of th kindred spirits, Oken, Bojanus, Meckel, Carus, and other eminent culti vators of anatomical philosophy in Germany.

It is not requisite for the purpose I have in view, to trace step by step th progress of the special homological department of anatomy. Its presen state, as regards the skull of the Vertcbrata, will be best exposed by the vict of the fruits of the latest inquiries embodied in Table I. appended to thi Work.

That table gives at one view the general results of the researches int the confornity of structure of the skull throughout the vertcbrate serice

* Oken's famous "Programm, Über die Bedentnug der Sehädelknochen" was publishe in the same year (1807) as Geoffroy's Memoir on the Bird's skinll; but it is deroted less t the determination of 'special' than of 'general homologies': it has, in fact, a mueh highe aim than the contemporary publication of the Freneh anatomist, in whielt we seck in rai for any glimpse of those higher relations of the bones of the skill, the discovery of whiel bas conferred immortality on the name of Oken.
by the two great Freneh anatomists who lave most advaneed this part of osteological seience; by the authors of two classical German works on Comparative Anatony; and by their comitryman Dr. Halhnam, who has detailed in an elaborate treatise his especial investigations of some of the most ditheult parts of this difficult inquiry. I have added the synonyms of the bones of the head of fishes from the great work of the celebrated Swiss naturalist, who has, so happily for ichthyology, devoted himself to the advancement of that interesting branch of Natural History ; and also, the antliopotomical terms for the corresponding parts in the human skeleton. These, after much comparison and deliberation, I have chosen from the justly-celebrated work of Soemmerring, the high reputation of which las been sanetioned by the new edition to which some of the most eminent of the German professors of anthropotomy and physiology have reeently devoted their combined labours. The English teacher of these sciences will find some of the descriptive designations of the parts by Soemmerring not agreeing with those which he may be in the habit of using, and which arc current in the later Nanuals of Anthropotomy published in this country: the 'ossa lateralia lingualia' are more commonly called, with us, the 'cornua majora ossis hyoidei'; the 'os spheno-occipitale' is generally described as two distinct bones, the 'os occipitis' and 'os sphenoide'; the 'pars occipitalis stricte sic dicta,' \&c. is sometimes called 'squama oecipitalis,' or occipital plate; and other synonyms might easily be multiplied from the osteological treatises of Monro and later authors of repute. The fact of such a conflicting and unsettled synonymy still pervading the monographs relating to the human structure, should stimulate the well-wisher to the right progress of anatomy to lend an earnest aid to the establishment of a fixed and determinate nomenclature. A little present labour and the example of adoption, where the reasonableness and necessity of the reform are plain and undeniable, will much accelerate the future progress of anatomical science; and I would respectfully appeal to the Professors and Demonstrators of Human Anatomy for an unbiassed consideration of the advantages of the terms proposed in the first column in Table I. It is designed to express the results of a long series of investigations into the special homologies of the bones of the head, in simple and definite terms, capable of every requisite inflection to express the properties of the parts, and applicable to the same bones from the highest to the lowest of the vertebrate series.

Apology for Terms.-The degree and cxtent of the diversity of my determinations from those of other anatomists are shown in the succeeding columns, headed by their names; and I proceed now to give the reasons which have compelled me, in such instances, to dissent from the high authority of Cuvier, Geoffroy, Meckel, Hallmann and Agassiz: these reasons will exonerate me, I trust, from the reproach of underrating their justly-esteemed opinions, which have been abandoned only where nature scemed elearly to refuse her sanction to them. The instances of such dissent are much fewer than they appear to be at first sight. In most cases, where the names differ, the detcrminations are the same. For 'basilairc,' which Cuvicr exclusively applies to the 'pars basilaris' of the occiput, and which Geoffroy as exelusively applics (in birds) to the 'pars hasilaris' of the sphenoid, I have substituted the term 'basioccipital' (busi-occipilale, Lat.); a term which, as it is more deseriptive of' the bonce in question (1 figs. 1 to 25), will, perhaps, be the more aceeptable to those who prefer a deterninate to a variable nomenclature, since Cuvier himself nas almost as frequently applied to that bonc the term 'oceipital inféricur' as the term 'basilaire.' For the descriptive phrase 'oceipital lateral,' the term 'exoccipital' (exoccipilrle, Lat.), proposed by Geothoy, is preferable for
the bones 2,2 , figs. 1 to 25 ; especially since the paroccipital is the most 'lateral' of the elcments of the occipital bone, in the definite sense in which the term 'lateral' is used in the precise and excellent anatomical nomenclature of Dr. Barclay. For the mumerous synonyms borne by the element: 3 of the occipital segment of the skull, the term 'supraoccipital' (supra-occipitale, Lat.) secmed to best agree with the truest desrriptive phrase of the part, viz. ' occipital supérieur.' The interparietal is no constant cranial element, nor is it a dismemberment of one and the same bone of the skull. It is at best only the largest and most common of the accidentally intercalated 'ossa wormiana.' Sometimes, for example, in the Cebus monkey, it is a dismemberment of the backwardly-produced frontal bone : more frequently it is the detached upper angle of the supraoccipital. But by this term 'supraoccipital,' I signify the totality of the bone 3 (in
 figs. 1, 5, 18, 22, 23, 24, 25), confining the term interparietal to its superior and Disarticulated epencephalic or ncur-occipital arch, anterior apex when detached, or to the viewed from behind: Cod (Morrhua vulgaris). superior and postcrior apcx of the frontal, when it is in like manner detached and wedged between the parictal bones. The inapplicability of the term 'interparictal' to the wholc of the supraoccipital is strongly manifested in those fishes, e.g. the carp and tench, in which the supraoccipital is withdrawn from between the parietals to the back part of the skull, leaving those bones to come into contact and unite by the normal sagittal suture on the mesial line of the vertex. Geoffroy's error is of the same kind, and scarcely greater than Cuvicr's, where he applics the term 'interparictal' to the whole of the parietal bones in Birds*. The supraoccipital thus defined can never be mistaken for the 'sur-occipital' of Geoffroy, who by this term signifies the elements called 'occipitanx externes' by Cuvier. At the same time the term 'sur-occipital' is too near in sound to 'supraoccipital,' and too significant of the highest part of the occipital segment to be retained for elements, which, like the 'paroccipitals' (fig. $1,4,4$), are usually inferior in position to the supraoccipital. Geoffroy, moreover, is not consistent in his application of the term 'sur-occipital.' In his memoir on the skull of the crocodile in the 'Annales des Sciences' for 1824, he applies that term to a part of the bonct, the whole of which he calls 'exoccipital' in his later memoir, on the skull of the crocodile, of $1833 \ddagger$; whilst in the memoir illustrated by the skull of the Sea-perch (Serranus gigas) in the 'Annales des Sciences' for 1825, the term 'suroccipital' is applied to the whole of the bones described as 'occipitaux externes' by Cuvier. I trust, therefore, to have shown the neccssity for the definite name of 'paroccipital' (paroccipitale, Lat.) which is here proposed for the elements, 4 , of the occipital segment of the cranium (figs. 1 and 5). The name has reference to the general homology of the bones in question, as 'parapophyses' or transverse processes of the occipital vertebra. And if the purists who are distressed by such harmless hybrids as 'mineralogy;' 'terminology' and 'mam-

[^6]malogy;' should protest against the combination of the Greek prefix to the Latin noun, I ean only plead that servility to a particular source of the fluctuating sounds of vocal language is a matter of taste; and that it seems no unreasonable privilege to use such elements as the servants of thought; and, in the interests of science, to combine them, even though they come from different countrics, where the required duty is best and most expeditiously performed by such association.

For the same motive that suggested the term basi-occipital, viz. because the anthropotomist lias been long aceustomed to hear that and the corresponding element of the sphenoid bone described as 'basilar processes,' I propose to substitute the term 'basisphenoid' (basisphenoideum, Lat.) for the three different deseriptive phrases applied to the part (5 , figs. 2, 5, 19, \& c.) by Cuvier, for the two additional synonyms of Geoffroy, and for the 'sphenoideum basilare' of Hallmann. 'Alisphenoid' (alisphenoideum, Lat., 6,6 , figs. 2.5, 19, \&c.) seemed to retain most of the old anthroputomical term

Disarticulated mesencephalic or neuro-parietal arch, viewed from behind: Cod-fish. of 'alæ majores,' or wings 'par excellence' of the os sphenoideum; as ' orbitosphenoid' (orbito-sphenoideum, 10, 10, figs. 3 and 20) best rccalls or expresses the idea conveyed by the descriptive phrase 'alæ orbitales,' or 'ailes orbitaires,' often applied to the homologous bones, regarded as processes of the sphenoid in human anatomy. Here, however, in reference to the alisphenoid, We find the first marked discrepancy in the conclusions of the anatomists who have particularly studied its special homologies. The bone which appears as the 'grande aile du sphénoïde' to Cuvier and Agassiz in fishes, is the 'petrosum' to Hallmann and Wagner ; it is also 'rocher' (petrosal) to Cuvier himself in reptiles, and is again 'grande aile du sphénoïde' in birds and mammals. The reasons which have led me to the conclusion that the bones so deñominated, as well as the 'ptéreal' and 'prérupeal' of Geoffroy, are homologously one and the same, are so intimately linked with the consideration of the true petrosal and of other elements of the anthropotomist's 'temporal bone,' that I reserve the discussion of these questions until I have completed the apology for the names proposed in the first column of Table I.
'The 'parietal' (parietale, Lat., $7 . \boldsymbol{\pi}$, figs. 2, 5, 19, Sc.) and 'mastoid' (mastoideum, Lat., 8, 8, figs. 2, 5, 19, \&e.) are amongst the few bones that have had the good fortune to receive, originally, definite names, applicable to them throughout the vertebrate series; although the mastoid, being like the paroccipital, essentially a parapopliysis, loses its individuality sooner than do other bones of its segment, and becomes, therefore, a 'processus mastoicleus ossis ternporis,' in the language of anthropotomy. The hounology of the 'parietal' has fortunately been, with a single exception, universally recognised throughout the vertebrate subkingdom; the exception being furnished by the cecentric homologist Geoflroy, who is, as usual, inconsistent with himsclf, even on this plainest and least nistakcable point.

The term 'presphenoid' (presphenoideum, Lat.s, figs. 3,5,20, 24, 25,\&`e.) is proposed for the 'sphénoïde antérieur,' on the principle of substituting, as the better instrument of thought, a definite name for a deseriptive phrase. For the same reason 'postfrontal' (postfrontale, Lat., 12, 12, figs. 3, 5, 20, \&c.) is substituted for Cuvier's 'frontal postérieur' and its synonyms. The 'frontal' (frontale, Lat. 11, figs. $3,5,20$, ec.) and 'vomer' (vomer, Lat., 13 , figs. $4,5,20,25$), are among the few bones which have had their special homologics reeognised unanimously throughout the vertebrate subkingdom; in the one case even without departure from the original anthropotomical nane, and in the other, with but a single deviation from the established nomenelature. But when Geoffroy was induced to rejeet the term 'vomer' as being applieable only to the peeuliar form of the bone in a small proportion of the vertebrata, he appears not to have considered that the old term, in its wider applieation, would be used without reference to its primary allusion to the ploughshare, and

Fig. 3.

Disarticulated prosencephalic or ncuro-frontal arch, vietred from behind: Cod-fish. that beeoming, as it has, a purely arbitrary term, it is superior and preferable to any partially deseriptive one. 'Rhinosphénal,' it is true, recalls the idea of the vomer forming the continuation in the nasal segment of the skull of the basi- and pre-sphenoidal series of bones in othersegments; but 'vomer,' used arbitrarily, summons equally every idea derived to form the eomplex whole from the general study of the bone throughout the vertebrate series. 'Prefrontal' (prefrontale, Lat., 14, 14, figs. $4,5,21, \& c$.) elaims the same preference over anterior frontal, and its foreign equivalents, as does postfrontal over its synonymous phrases. There is also another reason for proposing the term ; viz. beeause it is applicd to bones in the vertebrate serics generally, aceording to conelusions as to their homologieal relations, which differ from those to which Cuvier and Geoffroy had arrived. The discussion of the discordant denominations at present applied to this important element of the skull will be fully carried out in the sequel. 'Nasal' (nasale, 15, figs. $4,5,21, \& e$.) is another

Fig. 4.

Disarticulated rhinencephalic, or ncuro-nasal arch, viewed from behind: Cod-fish. of the few instanees in which it is possible to retain and generally apply an old and reeeived anthropotomieal term. No one, it is presumed, will con-
tend for the perpetual expression or insertion of the understoud generic word bone' or 'os' in this case any more than in the parietal, frontal, $\&$ c., which, from being originally specific aljectives, have been properly and conveniently converted into definite nouns.

In conforunity with this mode of acquiring an improved as well as bricf and precise expression of anatomical facts, I have substituted for 'pars petrosa' or 'os petrosum' the substautive term 'petrosal' (Lat. petrosum,'figs. 5, 25, 16). The neeessity for some such designation for an essentially and often physically distinct bone iu the vertebrate skull has been felt by buth Cuvier and Geoffroy, wheu they respectively proposed the names 'rocher' and 'rupéal' for the element in question. 'Petrosal' has appeared to me to be the best English equivalent of Cuvier's 'rocher'; as containing the most characteristic vocable of the old anthropotomical descriptive phrase 'pars petrosa ossis temporis,' \&c. 'Rupéal' unfortunately has no determinate meaning : it is applied by its author with certain prefixes to several distinct bones, which already had their proper names. 'Sclerotal' (sclerotale, Lat., figs. 5, 22, 23, 17) for 'ossicula seu laminæ osseæ membranæ scleroticæ,' is proposed on the same grounds as exoccipital, postfrontal, $\& c$., viz. the substitution of a name for a phrase. The sclerotals have not been usually included amongst the bones of the head, though they have precisely the same claims to that rank as the petrosals, or other bony capsules of the organs of special sense. Retaining the old anthropotomical term 'ethmoid,' I restrict its application to the very irregular and inconstant developments of bone in the cartilagc or membrane which is applied to the anterior outlet of the cranium proper, for the support or defence of the cranial part of the organ of smell. The 'ossa turbinata superiora, and the 'cellulæ æthmoideæ' are parts of the capsulc of that sense, exteusively developed in the mammalia, to which the term ethmoid may properly apply; but they must always be distinguished from the modified though constant neurapophyses of the nasal vertebra, called 'prefrontals,' with which the above developments of the olfactory capsule usually coalesce in birds and mammals. 'Turbinal' (turbinale, Lat., figs.5,25,19), like petrosal, is a substitute for the phrase 'os turbinatum inferius,' and its synonym 'os spongiosum inferius.'
'Palatine' (palatinum, Lat., ib. 20) is another of the few fortunate instances of the general recognition of the homologous bone throughout the vertebrate kingdom, with the further advantage of a steady retention of a good old name.
'Maxillary' (maxilla, Lat., ib. 21) is a similar instance; but Geoffroy, as usual, makes hiriself singular by adding an uncalled-for synonym. If Soemmerring's term 'mandibula' for the lower jaw were universally adopted and constantly understood to signify the totality of that part of the tympanomandibular arch throughout the vertebrate series, it would be unnecessary to encumber ' maxilla' with the distinctive epithet 'superior,' which, indeed, expresses a character peculiar only to Man and a few mammalia: in the vertebrate series the 'maxilla' is more commonly anterior than superior to the 'mandibula.'

I have adoptcd the term 'premaxillary' (premaxillare, Lat. ib. 22), as used by M. de Blainville and some other distinguished continental osteologists, in preference to 'intermaxillary;' because that term has already been applied (by Schneider) to another bonc of the skull (the tympanic in birds), of which it is more accurately descriptive, than it is of a bone which is more commonly before than between the maxillary boncs. 'Entopterygoid' (entopterygoidenin, Lat.) elaims preference to the phrases 'ptérygoïde interne' of Cuvier and A gassiz, on the same logical grounds as have already becu urged in favour of ' exoceipital,' 'prefrontal,' \&c. But I have also another reason for proposing a definite term for the bone 23, fig. 5, which I regard as a peculiarly
ielithyic development. Cuvier has applied the term 'ptérygoïde interne' to another part of the diverging appendage of the palato-maxillary arel, whieh part, I eoneur with Dr. Köstlin in regarrling as homologieally distinet from the 'entopterygoid' of fishes. For the part in question, viz. the 'os transverse' of Cuvier in the skull of fishes (24, fig. 5), and its homologue in reptiles, which he ealls 'pterygoïdien interne' (24 , fig. 22), I retain the term 'pterygoid' (pterygoidcum, Lat.), meaning pterygoid proper: and to the bone whieh Cuvier ealls 'transverse' in reptiles (24', fig. 22), I apply the term 'ectopterygoid' (ectopterygoideum, Lat.) ; but this, as the table demonstrates, does not signify Cuvier's 'os transverse' in the skull of fishes. Entopterygoid, pterygoid and eetopterygoid, have, therefore, both the advantages of substantive terms, and of being applied steadily each to a distinct bony element. The 'hérisséal' of Geoffroy, like the 'ptérygoïde interne' of Cuvicr, means one thing in a fislı and another in a eroeodile; Geoffroy has also encumbered the latter bone with a third synonym. 'Malar' (malare or os mala, Lat.) is preferable to 'jugal,' beeause Cuvier applies that name to one bone in a fish, to another in a mammal, and to two essentially distinet though eoaleseed bones in a bird. Malar is also the name most commonly applied by English anthropotomists to the bone, to the true homologue of whiel I would restriet its applieation throughout the vertebrate series.

With regard to the 'squamosal' (squamosum, Lat. pars squamosa, \&e., figs. $22-25,27$), it may be asked why the term ' temporal' might not have been retained for this bone. I reply, beeause that term has long been, and is now universally, understood in human anatomy to signify a peeuliarly anthropotomieal coaleseed congeries of bones whieh ineludes the 'squamosal' together with the ' petrosal,' the 'tympanie,' the 'mastoid,' and the 'stylohyal.' It seems preferable, therefore, to restriet the signifieation of the term' temporal' to the whole (in Man) of whieh the 'squamosal' is a part. 'To this part Cuvier las unfortunately applied the term 'temporal' in one class and 'jugal' in another : and he has also transferred the term 'temporal' to a third equally distinet bone in fishes; whilst to inerease the confusion, M. Agassiz lias shifted the name to a fourth different bone in the skull of fishes. Whatever, therefore, may be the value assigned to the arguments whieh will be presently set forth, as to the special homologies of the 'pars squamosa ossis temporis,' I have felt eompelled to express the eonelusion by a definite term, and, in the present instanee, have seleeted that whiel reealls best the aeeepted anthropotomieal designation of the part, although 'squamosal' must be understood and applied in an arbitrary sense, and not as deseriptive of a seale-like form, which, in reference to the bone so ealled, is rather its exeeptional than normal figure in the vertebrate scries.

The term 'tympanic' (tympanicum, Lat.) appears to have reeeived the most general aeceptanee as applied to that bone whieh the carly ornithotomists have ealled 'os quadratum' and 'os intermaxillare,' (fig. 23,28) and whiel as a proeess of the human temporal, sometimes ealled 'external auditory', supports the tympanie membrane (fig. 25, 25). 'Caisse' is the Freneh and 'pauke' the German equivalent; but Cuvier inore commonly uses the phrase 'os tympanique.' The chief point, in reference to that term, as applied by Cuvier, from which I find myself compelled to dissent from the great and ever-to-be-revered anatomist, relates to the view whieh he has taken of the large and long pediele which supports the mandible in fishes, and whieh, in that elass, is subdivided into sometimes two, sometimes three, and commonly into four pieecs. I regard this subdivision of the elongated supporting pediele as explieable chiefly, if not solely, by referenee to a final purpose, viz. to eombine strength with a eertain elastic yielding and power of reeovery, in the eonstant and powerful movements to whieh it is subject in the transmission of the respi-
ratory currents, and in the prehcusion and deglutition of the food. Cuvier himself regards in the same light the analogous subdivision of the mandibular or lower half of the arch, and both Conybeare* and Buckland \dagger have well illustrated the final purpose which the subdivision of the lower jaw of the Crocodile into overlapping pieces, subserves. Cuvier has given distinct and convenient names to these several pieces of the mandible, but he views them collectively as answering to the simple mandible of the mammal and the bird. I, in like manner, regard the subdivided pedicle supporting the mandible in fishes as answering to the undivided pedicle supporting the mandible in ophidians, lizards and birds. There is the same necessity or convenience for a distinct name to each distinct part of the tympanic pedicle, or upper part of the tympano-mandibular arch, as for the divisions of the mandible or lower part of that arch. But Cuvier unfortunately persuaded himself that the subdivisions of the tympanic pedicle in fishes represented other bones in higher vertebrates besides the tympanic, and applied to them the names of such bones. I have been compelled, therefore, in dissenting from this view to propose new names for the peculiar ichthyic subdivisions of the tympanic, and in doing so I have been careful to rctain the dominant term, and to distinguish the parts by prefixes indicative of their relative position. Time and the judgement of succeeding homologists will determine the accuracy or otherwise of this view; and, should it be ultimately adopted, I feel great coufidence that the terms 'epitympanic' (epitympanicum, Lat., fig. 5, 28a), mesotympanic (mesotympanicum, 286), pretympanic (pretympanicum, $2 s c$) and lypotympanic (hypotympanicum, 2sd), will be preferred to the names proposed by Geoffroy St. Hilaire for the same parts. With regard to the subdivisions of the mandible in cold-blooded vertebrates, I adopt most of those proposed by Cuvier. As, however, 'operculaire' had been applied by the great anatomist to a distinct bone in fishes, it was necessary, in order to avoid its usc in a double scnse, to substitute a distinct name for the part of the jaw in question, and as it is always applied, like a surgeon's splint or plaster to the inner side of most of the other pieces, that of 'splenial' (splenium, Lat., figs. 22, 23, 31) suggested itself to me as the most appropriate name. For an obvious reason I have restored the term 'coronoid' (coronoideum, 31 ') in place of 'complementary;' for the piece into which the crotaphite muscle is always more or less inserted in the mandible of reptiles. There is no ground for disturbing the appropriate names given by Cuvier to the parts of the diverging appendage of the tym-pano-mandibular arch in fishes; and the same principle which he has adopted in distinguishing the different opercular bones (fig. 5, 31-37), has guided me in naming the different parts of the bony pedicle which supports them.

I have gladly adopted as many of the well-devised terms which Geoffroy proposed for the elements of the hyoid arch, as his unsteadiness in their application would permit to be retained. They are obviously preferable to the descriptive phrases by which Cuvier designates the homologous parts.

The substantive terms applied to the corresponding divisions of the branchial arches have been modelled on those of the hyoid system; but I have deviated in one instance from the rule which has governed throughout my nomenclature of the bones, in proposing a second name for a modified homologue in the air-breathing animals, of a part of the branchial apparatus in fishes, viz. that part which is retained cven in the liuman hyoid, and which is known in anthropotomy as the 'os lateralc lingualc,' or 'cornu majus ossis hysirlei ;" for this part I have proposed the name 'thyrohyal,' for the reasons assigned in the note (2) to Table I.

The names assigned to the bones of the scapular arch (figs. $5,22,23,24,25$,

[^7]+ Bridgewater Treatise, vol. i. p. 176.
$23,50-52$) and its appendages (i6. 53-58) agree so closely with those which they have always borne as to require no explanation here. The chief surprise of the anthropotomist will be occasioned by their being included amongst the bones of the head. That the upper or pectoral extremity and its supporting areh form actually parts of the integral occipital segment of the skull, will be proved in the memoir on the general homologies of the bones of the head. I may, here, however, in reference to the terms 'ulna' and 'radius,' request the anatomist to compare the skcletons of the perch or cod with that of the porpoise. The pectoral extremity is in the form of a fin, and in both fish and marine mammal it is applied, in a state of rest, prone to the side of the trunk; in this position it will be seen in the Delphinus, that the radius is downward, and the ulna with its projecting olecranon upwards. I take this as the guide to the homology of the two bones that support the carpal scries of the pectoral fin in fishes. Cuvier, however, gives the name of 'cubital,' perhaps on account of its angular olecranoid prolongation, to the lower bone, and 'radial' to the upper bone: and in these determinations he is followed by M. Agassiz. 13oth bones coalesce with the supporting arch in the lophius and some other fishes; and since, in the lophius, two of the carpal bones are unusually elongated, Geoffroy mistook these for homologues of the radius and ulna. The condition of the pelvic member or ventral fin is, in fact, here repeated in the pectoral; there being no homologous segment of thigh or leg interposed in any ventrals between the supporting (pelvic) arch and the fin-rays representing the tarso-metatarse and phalanges. The earlier stages in the development of all locomotive extremitics are permanently retained or represented in the paired fins of fishes. First the essential part of the member, the hand or foot, appears: then the fore-arm or leg; both much shortened, flattenell and expanded, as in all fins and all embryonic rudiments of limbs: finally comes the humeral and femoral segments; but this stage 1 have not found attained in any fish. It is with considerable doubt that I place, qualified by a note of interrogation, Cuvier's "troisicme os qui porte la nagoire pectorale" as the homologue or rudimental representative of a 'humerus.' Normally, I believe this proximal member of the radiated appendage of the scapular arch not to be distinctly eliminated from that arch in the class of fishes. The Siluroids are examples of a similar confluence of the first segment (preoperculum) of the diverging appendage of the tympanic arch with that arch. With regard to the lower, distal or apical element of the scapulo-coracoid arch, always the largest bone of the arch in fishes, Cuvier's idea that it is the 'humerus,' far less accords with the law of the development, the connections, and the essential nature of that bone, than the morc prevalent view, that it represents the elavicle: a view entertained by Spix, Meckel, and Agassiz, by Wagner, who calls it 'vordere Schlüsselbein,' and by Geoffioy, who calls it 'furculaire.' I have, however, been induced to regard the lower element of the scapular arch, in fishes (fig. 5,52), as homologous with that bone, the 'coracoid,' which progressively acquires a more constant and larger development in descending from manmals to fishes, and which is manifestly a more essential part of the arch than the claviele, since it is more constant in its existence, and always more completely developed in birds and reptiles; and espeeially since it contributes more or less of the surface of attachment for the radiated appendage, which the clavicle never does. With reference, also, to the Cuvierian determination of the hæmapophysial portion of the oecipital inverted arch in fishes, this is unquestionably as essential an element of the arch as is the 'coracoïde' in other vertebrates; and it is the most important part in the piscine class, in no member of which does it present the slightest approach to the character of

Disarticulated boacs of the neural arehes (N I to IV) and sense-capsules; the hæmal arehes (H I to IV) and appendages in diagrammatic outline. Cod (Morrhua rulgaris .
a diverging appendage, such as the humerus essentially is, whenever it has an independent existenee. Hy some ichthyotomists, the bone which I call eoracoid (52) has received the speeial name of 'enmosteon.'

Cuvier's usual judgenment and acum seem to have been in abeyance, when, having detcrmined the rays of the pectoral fin to represent the bones of the land, and the two bones which support then in fisloes to be those of :he fore-arm, he concluded that, therefore, the great bone which eompleted :he scapular arch "répondra done nécessairement à l"humérus."-Hist. des Poissons, tho. i. p. 27-1. The great anatomist assigns no other reason: but be areh supporting the ventral fin does not neeessarily answer to the tibia or the fenmr, beeausc neither of these segments are interposed between the rels and its appendage-the modified foot. The seapula of many reptiles, speeially of the batrachia, is manifestly, he proeeeds to state, eomposed of wo bones. But in those reptiles the arch is eompleted below by a third sone, whieh neither Cuvier nor any other anatomist has called 'humerus.' sow Curier's 'humerale' in fishes preeisely answers to that third bone in eptiles whieh he rightly ealls the 'eorneoid' in that elass.
The coracoid of fishes being thus detcrmined, it neeessarily follows that hat ineonstant bone, or pair of bones (5s) posterior to it on each side, eamot ee, as Curier, Geoffioy, Meckel and Agassiz have supposed, the representaive of the 'os coraeoidien' of the reptile and bird. It holds, indeed, as they are said, the same relative position to the bone 52, here called eoracoid, rhieh the coraeoid in the lizard and bird holds to the clavicle in those aninals. But is no aeeount to be taken of the remarkably though normally adaneed position of the seapulo-coracoid areh in fishes? Granting, as I shall ive evidenee to prove in treating of the general homologies of the bones, 1at the bone (58) called by Cuvier 'eoracoïdien' in fishes appertains to a ertebral segment postcrior to the oeeipital one, yet in the extraordinary baekard displacement which the true seapulo-eoraeoid areh undergocs in the ir-breathing vertebrates, may not the relative position of $5 s$ to that areh ecome reversed, and the part which is behind in fishes beeome before in irds? I entertain no unmeet confidence in the correetness of my view of the seeial homology of Cuvier's 'os coracoïdien' in fishes with the fureulum or claricle' (fig. 25, 52') of air-breathing vertcbrates: the argument against sueh view, from its posterior position in fishes, has not, however, the same weight ith me as it appears to have had with Cnvier and his followers: and, leaving nis as oue of the undeeided points in speeial homology, with the proposition fthe provisional name of 'epicoracoid' (epicoracoilleum, Lat.) for the piscine one in question, I proceed to consider other unsettled points of speeial homoggy, for the determination of whieh there are better and surer grounds.

Moot C'ases of Special Homology.-The first discrepaney, demanding parcular consideration, which meets the eye in the Table I. is that which lates to the determination of no. c. The German authorities regard what believe to be the homologue of the human 'ala major sphenoidalis' in le cold-blooded Vertebrata, to be the homologue of the 'pars petrosa ossis 'mporis.' Cuvier rightly recognises the 'grande aile du spliénoïde' in ammals, birds and fishes, but regards my 'alisphenoid' in reptiles as the 'seher' or "pars petrosa.'. Geoffroy eoneur's with Cuvier and the Geman ratornists so far as to view my 'alispluenoid' in the Croeodile as a disemberment of the potrosal, calling it "prérupéal ;' but he reeognises, like gassi\% and Cuvier, the true alisphenoid in fishes, and with then diflers in at respect from the (ierman homologists. It does not appear that the isphenritl has beren mistaken for any other bone than the petrosal, and e fuestion to the determined, therefore, is, What are the essential chan-
racters respectively of the 'alisplenoid' and the 'petrosal' in the vertebr serics?

Those of the alisphenoid appear to me to be the following :-1st, its c neetion below with the basisphenoid and behind with the petrosal, wher forms the forepart of the 'otoerane' or cavity for the reception of that osse or cartilaginous immediate capsule of the labyrinth or internal organ of he ing: the alisphenoid is also eommonly, but not eonstantly, joined bef with the orbitosphenoid, and above with the parietal: it has other less ci stant connections with the squamosal, the exoccipital, the supraoccipital a the basioecipital: 2ndly, with regard to its essential functions, the alisphen protects more or less of the side of the mesencephalon, or (in ,mammals) the middle lobe of the cerebral hemisphere : it gives exit, by notches or fo mina, to the third, and usually, also, to the second divisions of the trigemi or fifth pair of nerves.

The essential eharaeter of the petrosal is to envelope immediately whole of the vaseular and nervous tunies of the labyrinth or internal orgs of hearing, either in a membranous, a eartilagincus or an osseous sta its histologieal eondition being much less constant than that of the alispl noid.

On viewing the alisphenoid on the interior surface of the human sk (fig. 6, 6), it seems to be the least signifieant and important part of the late

Fig. 6.

Vertical longitudinal section of the human cranium.
walls of the cranial cavity: it forms their smallest portion: it is much su passed in extent by the squamosal (ib. 27) and the supra-occipital ($i b .3$ and still more so by the enormously expanded parietal (7) and frontal (n Nevertheless we find it eonnected, anchylosed indeed, below to the basisplu noid (5), bounding anteriorly the spaee into whieh the petrosal (16) wedged; conneeted in front with the orbito-sphenoid (10), and usuall artieulating by its superior apex with the parietal: I purposely omit the mention of other connections of the alisphenoid in Man which are les eonstant in the vertebrate series. But it is important to observe, notwitl standing the displacement whieh the alisphenoid has undergone through th intercalation of the extraordinarily developed squamosal into the lateral wall
f the cranimm, that it is still perforated by the third (ib. tr) and second ivisions of the fifth or trigeminal nerve.
In tracing the alisphenoid downwards througin the mammalian serios, we canot but be impressed with the conviction of its truc character and importance san essential part of the cranium, from its constancy in the formation of its alls, and by obscrving that, whilst the share which the squanosal takes in them rogressively decreascs,-until in the shecp, for example, it is quite excluded

Fig. 7.

Vertical longitudinal section of the cranium of a sheep (Ovis Aries),
on the cranial cavity,--that of the alisphenoid (fig. 7, b) increases as the vity itself diminishes in size; and, further, that this increasc is not accomnied with any material change in the relative size of the alisphenoid to the sisphenoid. The share which the alisphenoid takes in forming the anteor boundary of the otocrane increases; as does also the extent of its supeor connections, especially of that with the parietal (7). It is important, tracing these modifications, to note, also, the change in the relative position the foramen ovale in the mammalian serics. In Man the foramen ovale g. $6, t r$) is close to the hinder border of the alisphcnoid; and in some sadrumanes the third division of the fifth escapes through a notch in the me border. This position of the foramen ovale relates to the alisphenuid ing pushed forward by the intrusion not only of a large ossificd petrosal 3), but of a still larger squamosal (27). In the sheep, however, the fora$\equiv n$ ovale is no longer at the postcrior margin; but, the alisphenoid, having trograded by the recession of the squamosal towards its more normal exior position in the vertebrate serics, the third division of the trigeminal w perforates its middle part (fig. 7, tr). It may be observed that, conmitantly with this retrogradation of the alisphenoid, the orbito-sphenoid i. 10) acquires larger proportional dimensions than in Man (fig. 6, 10).

In the bird the alisphenoid (fig. $\delta, 0$) is recognizable by the repetition of a connections which it presented in the sheep; the squamosal bcing quite cluded from the crauial parietes, and, indced, never again presenting itself the capacity of a cranial bonc in any of the oviparous vertebrates. The sphenoid (fig. 23, 6) is in contact posteriorly with the petrosal (ib. 10), lich soon beeromes anchylosed with it, as well as with the exoccipital (2), stoid (a), and other bones forming the cavity for the reception of the earpaule, in all birds. The alisphenoid further manifests its truc homology in birl by its other constant character of transmitting the third and also the :oud or maxillary division of the trigeminal nerve; which divisions, in the

Fig. 8.

Partly disarticulated cranium of a young ostrich (Struthio camelus), natural sizc.
young astrich, I found distinetly perforating the middle of its lower bore (fig. $8,6, t r$). The alisphenoid is deeply impressed by the chief ganglions of mesenecphalon, viz. the optic lobes. The proseneephalon or hemispheres still defender prineipally by expanded parictals (ib. 7) and frontals ($i b .11$

In the crocodile these spines of cranial vertebre are much restricted their development, and a larger proportion of the hemispheres is defene by the orbitosphenoid (fig. 9, 10), whieh here surpasses the alisphenoid (ib. in size. This, however, still performs its essential and characteristic fur

Fig. 9.

Vertical longitudinal section of the cranium of a crocodile (Crocodilus acutus).
tions of protecting the sides of the mesencephalon, and giving issue to tl elief part of the trigeminal nerve. Owing to the diminution in size of th

* The right frontal has been removed to show better the extent and connections of t orbitosphenoid (10) and the prefrontal (14).
etrosal (10), and the retention by a great proportion of this eapsule of the coustie labyrinth of its primitive eartilaginous state, it oceupies a smaller iterval between the alisphenoid (i) and exoeeipital (o). It no longer proudes as a large bony wedge (as in figs. 6 and 7,16) into the cranial cavity, ut pernits the alisphenoid to eome into eonneetion with the exoecipital. the result of this further retrogradation of the alisphenoid, in regard to the dative position of the outlet of the third division of the fifth, is analogons that whieh oceus in the sheep. We saw in that mammal, through the 'cession of the squamosal, the formmen ovale advaneed from the posterior to te middle part of the alisphenoid ; m the erocodite, through the further reoval from the eranial eavity of the interposed petrosal, the foramen ovale is Fanced to the anterior border of the alisphenoid; whieh border, in faet, it stches, the nerve eseaping by a common foramen or 'trou du eonjugaison' ztween the alisphenoid and the orbitosphenoid, the hole, however, being ineipally formed by the alisphenoid (fig. $9, t r$). This position of the 'foraen ovale' loses all its value as an argument in favour of the petrosal elaacter of no. σ, by analogy with the position of the foramen ovale in man the ape, when we take into eonsideration the neeessary consequenees of e suceessive withdrawal of the squamosal and true petrosal from the inner rface of the eranium in deseending to the reptiles. The orbitosphenoid ig. 9, 10), notwithstanding its great relative size, retains all its essential ehaeters: it is perforated or notehed for the exit of the optie nerves (op) and st division of the fifth pair (s); it rests upon the presphenoid (9) below, ad likewise, through its baekward development, partly upon the basispheid, and it articulates with the frontal (11) above, and also through the me backward extension with the parietal (7); it eonstitutes the anterior order of the lateral bony parietes of the eranium, which are interrupted
the orbits, and separated by their interposition in saurians and fishes om the rhineneephalie part of the eranial eavity (at 14 , fig. 9). The ehaeters, in faet, of the orbitosphenoid are so elearly manifested in the erodile, that Cuvier, having been led by the inereased share, as eompared .th mammals, which the erocodile's alisphenoid (fig. 9, 6) takes in the formion of the otoerane, to regard it as the petrosal, and yet pereciving the sential eharaeters of the orbitosphenoid in the bone (ib. 10) anterior to it, as driven to the eonelusion that that bone represented both orbitosphesid ('aile orbitaire du sphénoïde') and alisphenoid (aile temporale du sphéside). The eold-blooded eroeodile, however, is not exaetly the animal in hich we should expeet to find so unusual an instanee of obliteration of tures, as that between the alisphenoid and orbitosphenoid *. The aetual Id most eharaeteristie modifieation of the orbitosphenoid in the eroeodile's .ull, is its retrogradation together with the alisphenoid, or rather the mainnance of its normal eonneetion therewith by increased antero-posterior welopment, whereby it comes into communieation above with the parietal) and below with the basisphenoid (5); whilst the alisphenoid, in like anner, gains a connection with the supra-oceipital (3) above and the basi:eipital (1) below; althongh it still retains its more normal relations with the irietal, and rests in great part on the basisphenoid (5), as the orbitospheid rests in great part upon the pre-sphenoid (a.) The superior connee-

[^8]tions of the orbitosphenoid and alisphenoid are always less constant their inferior ones. By these latter characters, and still better by their ne outlets and their relations to the primary divisions of the encephaton, they rightly and truly determinable. The German authors who have lowed Cuvier in his views of the special homology of the alisphenoid in tiles, are more consistent than the great Frencli anatomist in regard to alisphenoid of fishes. Dr. Hallmam, accepting Cuvier's characters of the trosal, taken from its internal position and lodgement of the whole or of the labyrinth*, maturally applies them to the alisphenoid in fishes, adds to the grounds for regarding that bone as the 'petrosal,' that it i some fishes perforatcd by the opercular branch of the great trigetminal ners But, admitting the homology of the opercular nerve with the facial nerv mammals, yct its wider homology and cssential character as a motor divis of the great trigeminal nerve must not be lost sight of: its origin in c. contiguity with the great sensory portions of the trigeminal in fishes acer better with the character of that nerve as the great spinal nerve of the bri than it usually presents in higher classes; and it is surely no important parture of the alisphenoid from its normal character, that it should give , to both motory and sensory divisions of the great nerve with which it is intimately associated from man down to the fish. Indeed, the progres: withdrawal of the bony petrosal from the interior of the sknll and the e comitant backward extension or retrogradation of the alisphenoid, ought prepare us to expect that nerves which traversc the petrosal in mamm should perforate the alisphenoid in reptiles and fishes. And so we f. in the carp that the glosso-pharyngeal even perforates the posterior hor of the alisphenoid; but its origin close to the acoustic and facial ner in fishes diminishes the force of the argument which might be drawn fir this exceptional perforation in favomr of the petrosal claracter of the sphenoid. I conenr entirely with Cuvier and M. Agassiz in their detern nation of the alisphenoid in fishes; but, if the great share which that be in reptiles (figs. 9 and 10,8) contributes to the formation of the otocran if the anterior position of the foramen ovale, and the superior connection the bone with the supra-occipital, are proofs (as Cuvier befieved) of its hon $\log y$ with the petrosal in the class Reptilia, they ought also, as IIalmann a Wagner contend, to establish the same special homology of the bone (fig. 5, in the class Pisees. But none of these are essential characters of the petros The petrosal is a contentum and not a paries, or any part of the parietes of t otocrane or cranial chamber lorging the organ of hearing : it is the outerme tunic, membranous, gristly, or bony, of the labyrinth or essential part of t acoustic organ. Had the above-cited anatomists clearly appreciated ti general homology of the petrosal, they could searcely have failed to dete its special homologies in the vertcbrate series. Cuvier was evidently guide to the true determination of the alisphenoid in fishes, less by its own esse tial characters, than by obscrving in certain fishes, the perch and cod for e ample, a partial ossification of the acoustie capsule, to which, therefore, 1 assigned the name 'rocher.' And, having thus satisfied himself' of the e: istence of the homologuc of the 'pars petrosa,' \&c., he could not but assig to the bone which rested below upon the basisphenoid, which protected lati rally the optic lobes and gave exit to the third division of the trigeminal nerv. the name of 'grande aile du sphénoïde.' But all these characters cquall coexist in the bone which Cuvier calls 'rocher' (retrosal) in the crocodile an other reptilia. He was not aware, however, that in both gavials and ere codiles a distinct ossicle, the veritable homologue of the intra-cranial pyri

[^9]midal-shaped petrosal of mammals and birds, makes its appearanee between the alisphenoid, exoecipital and basioeejpital, as at 16, fig. 9. Here, however, it is necessary to offer a few observations on the sense in which I use the term 'petrosal' as applied to that ossicle.

The petrosal, properly so ealled, considered in its totality, as the immediately investing eapsule of the labyrintla or intermal organ of hearing, is wholly cartilaginous in many fishes and saurians, and in all batraehians, ophidians and chelonians, and is contained in a eavity or orbit (otoerane) whieli most, or all of the elements of the oecipital and parictal vertebre eoneur in forming. A part of the ear-eapsule remains eartilaginous in the erocodile; but several portions become ossified around the semieireular eanals and rudimental cochlea, which ossifieations contraet slender adhesions to the smooth otocranial surfaces of the supraoceipital, exoeeipital and alisphenoid; and to one of these portions (on the prineiple on whieh Cuvier applies the term 'roeher' in fishes) the name petrosal might more particularly be given, as it is more distinet and moveable than the other partial ossifieations of the eapsule, and contributes to form the 'meatus internus' towards the eranial eavity, surrounds nearly the whole of the 'fenestra rotunda', and one-half of the 'fenestra oralis' towards the tympanie eavity. Looking upon the immer surface of the lateral walls of the cranium (as at fig. 9), one sees at the bottom of the T-shaped suture * uniting the otoeranial laminæ of the exoceipitul, alisphenoid, and supraoceipital bones, a fourth osseous element (16), presenting a convex extremity towards the eranial eavity, and completing, with the exoecipital, the lower half of the foramen for the nervus vagus. If this little bone be pressed upon with a needle or probe, it yields and moves, being divided by smonth harmonire from both the exoceipital (2) and alisphenoid (6).

The protuberance in question, whieh thus projeets into the eranial eavity, is the rounded angle of the border of the inferior plate of the petrosal, whieh joins the exoceipital. This lower horizontal plate of the petrosal forms the upper wall of the 'fissura lacera posterior,' and the lower wall of the 'fenestra coehleæ': the fore-part of the horizontal plate bends upwards, twisting and expanding into a vertical oval plate, articulated by its anterior surfuce to a corresponding sutural surface of the alisphenoid. The lower margin of this plate forms the upper boundary of thie 'fenestra coehleæ,' and is eontinued into a thin plate of bone which divides the 'fenestra eochleæ' from the 'fenestra restibuli' above. This thin plate of the petrosal joins and is usually anchelosed to the exoecipital: it is the only part of the true petrosal notieed by Cuvier, who describes it as a slender filament of bone whieh separates the two fenestræ†. Seen edgewise, looking into the tympanic eavity, the plate appears like a filament: and this plate forms the sole connection, when any exists, between the petrosal and the exoceipital. I have always fonnd the sutures persistent between the petrosal and the alisphenoid. The upper border of the 'fenestra vestibuli' is formed by a petrosal, or rather otocranial, proeess of the alisphenoid.

The part (fig. 9, 16) entering into the formation of the lateral walls of the brain-ease, and whiels is here specially indieated by the name of 'petrosal, seems to have been orerlooked: it is, however, relatively to the alisphenoid or exoccipital, as large as is the petrosal (Cuvier's rocher) in the pereh: it has a true osscous texture, and is quite distinet from the lentieular mass of ealcarems matter in the arljacent eoehlear chamber which Cuvier compares to Etarch ('amidon durei').

[^10]Neither the fignre of the interior surface of the eranium of the croeorlile, whieh Spix gives as that of the Nilotic species in his great 'Cephalogenesis,' tab. ii. fig. 6; nor the figure given by Geoffroy of the skull of lis Crocortilus suchus in the 'Amnales des Sciences,' tom. iii. pl. 16, fig. 2; nor that of the Crocodilus hiporcutus, which illustrates the later memoir by the same author in the 'Mémoires de l'Académic Royale des Seiences,' t. xii. (1833), pl. 1, fig. 2.; nor that (if it be an original figure) published by Dr. Hallmann in his 'Comparative Anatomy of the Tcmporal Bone' (taf. iii. fig. 4.9), give any indieation of this, in the determination of the homology of the alisphenoid and petrosal, most significant and important ossiele. The proof of its normal charaeter will be afforded by eomparisons of the description and figure of the part here given with a seetion of the eranium of any true Crocodilus, Alligator or Gurial. In the latter, the otocranial plates of the alisphenoid, exoecipital and supra-oceipital, projeet considcrably into the cranial cavity. Any one of these plates might be called 'petrosal,' for such reasons as lave induced Cuvier to apply that name to the alisphenoid in the erocodile and other reptiles*. We find, indeed, that Geoffroy has applied the equivalent term, by turns, to cach. But the true idea of the petrosal should inelude all those gristly and bony parts of the immediately investing eapsule of the labyrinth which oecupy the otoeranial excavations of the exoccipital, supraoecipital and alisplenoid; and as the ossified portions of the true petrosal, in the croeodile, usually contract a bony union with the parictes of the otoerane, all these bony portions of the immediate eapsule of the labyrinth might be ealled 'petrosal proeesses' of the bones to which they respectively adhere. That portion which unites to the exoccipital is attached by two lamellar ; it forms a great part of the cochlear eavity, the lower half of the posterior semicircular canal and the hinder half of the external or upper semicireular canals: that plate which belongs to the supra-oceipital is attached to its otocranial surface by three points, and forms the upper third part of the anterior semicireular canal and the erus of the postcrior canal which eommunicates therewith: that part which adheres to the alisphenoid forms the anterior erus of the anterior (in Man superior) semicircular canal and the anterior beginning of the external canal. The proper and usnally distinct bony portion of the petrosal (fig. 9, 15), whieh artienlates with both alisphenoid and exoeeipital, forms part of the 'meatus internus,' nearly the whole of the 'fenestra coehlcæ,' and half of the 'fenestra vestibuli ': it ean only be regarded a 'petrosal process' of the exoccipital by virtue of the very limited anchylosis oceasionally eontraeted by the thin plate dividing the two 'fenestrex,' along with the true petrosal proeess of the exoceipital above deseribed.

If we compare with the inner wall of the erocodile's eranium that of an ophidian, the python for example (fig. 10), we shall find the walls of the 'otocrane' or chamber of the labyrinth to be contributed by the exoceipital, (2) supra-oceipital(3)andalisphenoid (6) in nearly equal proportions; the basioecipital (1), also, being ac-

[^11]sessory to the formation of the floor of the ear-chamber: the threc principal sones are united, as in the crocodile, by a triradiate suture. The petrosal, which, like the squamosal, was gradually more and more withdrawn and hat out from the cranial cavity, as we decended from mammals, now entirely lisappears from vicw: and it retains its primitive cartilaginons state in serjents as it does in elelonians, lizards and batrachians. The essential chaacters of the exoccipital (2) are manilested by its relative position and conrections; by its affording exit for the vagal (v) and hypoglossal (hg) nerves, mal by its protecting the sides of the epencephalon. The alisphenoid (6) is not less clearly iudicated by its constant and essential claracters; it rests below spon the basisphenoid (5), it articulates above with the parietal (3), and jehind with the eartilaginous petrosal ; but the otocranial plate bcing, as in he erocodile, unusually extended backwards, unites with the basioecipital 1), exoccipital (\%) and suproccipital (3), in almost equal proportions, and jecomes directly perforated by the acoustic nerve (ac). Its chief foramen 'tr), however, is, as usual, that which answers to the foramen ovale in the imman alisphenoid, and which gives passage, as in fishes, to the great third livision of the filth, and to the branch which is homologous with the sontribution by the fifth to the 'nervus latcralis' in many fishes, and at he same time with the nerve called 'chorda tympani' in anthropotomy.
In the frog I hare given an external view of the alisphenoid (i) and the eartilaginous petrosal (16) in their undisturbed connections, in fig. 13, with he surrounding bones. The alisphenoid is here perforated, as in Man, by ooth a foramen ovale and foramen rotundum ($t r$.) : it forms posteriorly the ore-part of the chamber for the cartilaginous petrosal, and usually coalesces sith the mastoid (s), which overarches the petrosal: the back wall of the Jtocrane is contributed, as usual, by the exoccipital (2); the floor by the romologue of the coalesced basisphenoid and basioccipital. Had the outer oart of the petrosal (16) been the seat of a partial ossification, a bone would ave resulted eorresponding precisely with Cuvier's 'rocher' in the cod and verch: but the immediate capsule of the labyrinth retains the same histological condition in the batrachia as it does in the carp and pike, and as in the salamandroid polypterus and lepidosteus : in the latter fish, at most, the only ossified part of the petrosal forms a small bony cup covering the postcrior extremity of the outer semicircular canal*.

The attention of the justly celebrated ichthyotomist of Neuchatel appears on have been too exclusively occupied with the persistent cmbryonic condi:ion of the 'petrosal' in these highly organized fishes, to gain that true and clear idea of the essential nature of the petrosal of which its partial ossification in the perch and cod is indicative. Adopting the opimion of Cuvier, in preference to that of Mcekel and Hallmann, touching the spccial homology of the alisplenoid, M. Agassiz origimally diverged into the opposite extreme of repudiating altogether the existence of a petrosal in the class of fishes. Thus, he says, "Il devrait suffire ce me semble de voir l'organe de l'ouïc présenter des modifications graduées dans toutc la séric des vertèbrcs, pour se convaincre que lc rocher n'cxiste pas du tout chez les poissons, par plus que les oselets de la cavité du tympan. S'il y avait nn rocher chez les poissons, ce devrait être un os qui entourcrait la labyrinthe et les canaus semicirculaires; mais nous avons vu que ces parties de l'orcille internc se trouvent daraz la eavité du crảne sans enveloppe osscuse particulière, et protégées seulenent par les parois des os qui cutourent le roelicr, la on il existe \dagger."

[^12]M. Agassiz is perfectly accurate in his character of the petrosal, according to its relative position, as completely investing the entire labyrinth (of which, by the way, the semicircular canals are an integrant part in all vertebrates and the largest part in fishes) ; but he takes a narrow view of its histological characters. The selerotic is not less essentially a sclerotic in the shark, where it is cartilaginous, than it is in the cod, where it is osscous; neither is it less the eye-capsule and homotype of the petrosal in the mammal because it retains the earliest histological condition of the skeleton, viz. that of a fibrous. membrane. And, in point of fact, in those fishes where the esscutial parts of the internal organ of hearing appear to lse protected solely by the parietes of the bones, which, in the animals where the petrosal is ossified, or, as \l. Agassiz expresses the fact, 'exists,' surround such petrosal, the vascular and nervous parts of the labyrinth are actually in such fishes more immediately cnveloped by the petrosal in its membranous or cartilaginous states. What is peculiar to the petrosal in fishes is, that it is never entirely ossified; and, furthermore, that whenever it is partially ossified, the bony part is cxternal and appears on the outside of the skull, instead of the inside as in crocodiles and birds.

In chelonians a larger proportion of the petrosal intervenes between the alisphenoid and exoccipital upon the inner wall of the cranial cavity than in crocodiles; but it is wholly cartilaginous. In birds, on the contrary, the whole petrosal capsule of the organ of hearing soon ossifics and becomes firmly anchylosed to the parts of the exoccipital, mastoid, alisplenoid and basisphenoid that form its primitive chamber or otocrane: owing, however, to the larger relative size of the ossified part of the proper capsule (petrosal proper) which penetrates the cranial cavity, none of the surrounding bones which contribute aceessory protcction, have received the name of 'rocher;' or pars petrosa. It was chiefly through not recognizing or apprceiating the gencral nature or homology of the 'petrosal' that Cuvier failed to perceive its special homology in reptiles. Speaking of the skull of the crocodik, he says that the petrosal, or 'rocher,' is not less recognizable than the 'tympanic' and other so-called dismemberments of the temporal by its internal position, by its lodging a great part of the labyrinth, and by its contributing essentially to the formation of one of the fencstrx (l.c. p. 81). But the part in the crocodile which I regard as homologous with Cuvier's 'rocher' in the perch, is more completely internal in position than is Cuvier's socalled 'rocher' in the crocodile: it contributes a greater share to the formation of the 'fenestra vestibuli,' and it forms almost the whole of the 'fenestra cochleæ.' I have never found the alisplienoid (Cuvier's 'rocher') in the erocodile, lodging a great proportion of the labyrinth*: the otocranial or petrosal process of the alisphenoid lodges a part only of the antcrior senicircular canal, and no part at all of the other semicircular eanals. The cxoccipital is that tributary of the otocrane which lodges the major part of the labyrinth; it contains, for example, parts of two semicircular canals, and the rudimental cochlea: and, when the middle, usually distinct part of the petrosal is joined to it, the exoccipital may be said to form the whole 'fenestra cochlex' and a greater part of the 'fencstra vestibuli.' We sce, then, that the characters by which Cuvier deems his 'rocher' to be so easily recognizable, are more prominent in the exoccipital than in the alisphenoid : and the choiec of the latter by Cuvier as the representative of the 'rocher,' seems chiefly to have been influenced by the more obvious and unmistakeable essential (neurapophysial) characters of the 'occipital latéral' (fig. 9, 2), whilst the accessory character whiel this bone derives from its lodging and becoming confluent with part of the true petrosal, was not allowed
, prevail, as in the case of the alisphenoid, in the detcrmination of its special amology.
The sipraoccipital, by virtue of its internal position and lodgment of part f the labyrintl, has equal clains to the name of 'rocher,' according to the 'uvierian characters of that bone, and Geoffroy St. Hilaire did not make a is arbitrary choice in singling out this elcment as 'Ic scul ruperal*' than uvier did in choosing the alisphenoid, or, as any other anatomist would do 1 preferring any other elcment of a cranial vertebra in the crocodile to spreseut the ossified ear-capsule of the fish or mammal, because portions of lat ossified capsule are protected by, or have coalesced with, such vertebral eunents. Had Cuvier looked beyond the special homology of the bones of te head of the crocodile, and permitted himself to appreciate their higher and ore general relations, he could scarcely have failed to perceive the corresondence of his so-called 'rocher' in batrachians, ophidians, chelonians and turians, to the bone which he so well recognizes as 'the great wing of the shenoid' in the perch and cod-fish.
The Mastoid.-In the human embryo of the fifth month a centre of ossication is established on the outer surface of the mass of cartilage occuying the interspace between the basioccipital (fig. 11, 1) and exoccipital i) below, the tympanic (2s) and squamosal (27) in front, the supraoccipital 1) behind, and the parietal (7) above: this mass of cartilage incloses the lembranous labyrinth, about which a light osseous crust has begun to be ormed; and, from the centre (8) established near the outer border of the osterior semicircular canal, ossification radiates to complete that part of the ranial parietes, which, in the adult skull, is impressed on its inner surface by ie great venous channel called 'fossa sigmoidea,' and developes from its uter surface the 'processus mastoieus.: The primitive independence f the base of this process, which Cerkringius so clearly and accurately elineates in his tab. xxxv. fig. iii. as re posterior of his 'tria petrosi ossis istincta ossiculat,' is a fact of much tore significance than its brief and ansitory manifestation rould lead re anthropotomist to divine. The oalescence of the primitively distinct lastoid with the ossifying capsule of ae labyrinth is very speedy, being sually complete before the fœtus has assed its fifth montl, and a comosite 'petro-mastoid' bone is thus ormed, which, retaining its indivinality in monotremes, marsupials, uminants and many rodents, proteds to coalesce with the additional

Skull of the human embryo ; fifth month. Natural size. lements of the 'temporal' bone in man, and with other surrounding cranial ones in birrls. In the cold-blooded vertcbrata, the mastoid retains, with a few xceptions, its primary embryonic distinctncss, as an independent clement of he skull. In tracing the nodifications of this element downwards from man, ve find the external process from which its anthropotomical name originated,

[^13]inconstant, its functions being transferred in many mammals to another pre cess, sometimes udder-shaped, sometimes of great length (fig. 24, 4), bu which is developed from the exoccipital, and is represented in the human sku by the 'eminentia aspera,' \&c. of Soemmerring (Table I. 4.), and by the "sce brous ridge extended from the middle of the condyle towards the root of th mastoid process" of Munro (op. cit. p. 72) ; but sometimes also here deve loped, as a rare anomaly, on one or both sides, into a process like a seconu but smaller posterior mastoid *. The more constant and essential character of the mastoid are its contribution to the walls of the acoustie chamber earried to anchylosis with the petrosal in birds and mammals, and its sutura connection in the latter with the exoceipital, parietal, and squamosal (the squamo-mastoid suture becoming obliterated in many species, $e . g$. the hog fig. $24,8,27$): it is also grooved, notehed or perforated by a greater or les proportion of the lateral venous simus, whether this is eontinued to the "fora men jugulare,' as in man, or sends a large division to escape by the 'meatu: temporalis' whieh forms the large orifiee between the mastoid and squamosa above the meatus auditorius in the horse and ruminants, and which directly perforates the mastoid in the cchidna (fig. 12, m).

Fig. 12.

I'artially disarticulated cranium of the Echidna selosa. Naturul size,
It is important to keep these cssential eharaeters steadily in view, and to avoid giving undue importance to the apophysial eliaracter of the mastoid, whieh has led to so common a transference of its name, in the great osteologieal works of Cuvier and De Blainville, to a quite distinet element (paroecipital) of the eranial wallst. It is necessary, also, to be prepared for that eliange of the

[^14]mections of the mastoid, which results from the gradual withdrawal, in the mmalian class, of the squamosal from the proper eranial walls. With much sonstancy of relative size in the mastoid, of which the dugrong and the wahrus er two extremes, we discern upon the whole a progressive increase in deending through the mammalian class: in the walrus, for example, the mastoid, petromastoid, forms as large a proportion of the outer lateral walls of the nimm as does the squanosal; and, in the sheep, the removal of the squamosal poses the comection of the petromastoid with the alisphenoid,-a return to a ation common in the oviparous vertebrata: it is shown from the inner side the cranium in the sheep, in fig. 7, 16 and 6 . The mastoid of the cehidna g. $12, s$) presents a most interesting and instructive combination of both the dification of expansion and of that of direct union with the alisphenoid (6), wh is here effected by the mastoid plate independently of the petrosal (10). fig. 12 these characters are well exposed by the removal of the squamosal aud tympanic $2 s$, which retain their primitive independence throughout \geq in the echidna. If now we compare the bones and 10 with the carti;inous and osseous mass s and 10 in the skull of the human cmbryo (fig. 11), d allow for the change produced in the position of the alisphenoid (6) by ? gradual withdrawal of the squamosal (27), traceable in the intervening ms of mammalia, the special homology of the petromastoids at the two exmes of the mammalian class will be obvious and unmistakeable. The bone and is in the echidna, fig. 12 , is connected below and behind with the basisipital and exoccipital (2), behind and above with the supraoccipital (3) and rietal (δ), in front with the tympanic, the squamosal, and also, as a conseence of the modified position of the latter and of its own increased devement, with the alisphenoid (6). All the connections, save that with the sphenoid, are identical with those of 8 and 16 in the human embryo; and ? supervening alispbenoidal connection in the echidna affords an addlitional ht to the determination of the bone in the lower vertebrata, since it is a nsequence of the progressive advance to a lower (oviparous) type, in the scent through the mammalian scale. In regard to the essential functions : the petromastoid, we find the petrosal portion inclosing the menbranous yrinth, and the mastoidal portion giving exit to the blood from the great eral venous sinus and supporting the tympanic*. It will be unnecessary dwell further on the broad and obvious characters by which the homology the bones and 16 in the echidna is established with the equally independent tromastoid in the sheep and walrus, and with the petromastoid portion of human 'temporal boue.'
The continuators of the 'Leçons dl'Anatomie Comparée,' influenced by the -ge proportional size of the petromastoid in the echidna and the share ich it consequently takes in the formation of the cranial parietes, supposed to be the squamosal:-"le véritable temporal, qui n'aurait pour toute ophyse zygomatique qu'un très petit tubercule près de la facette glénoïde,"

[^15]op. cit. t. ii. (1837) p. 377. This tubercle is the rudiment of the masto process, which is so largely developed in birds, and which, in the echidn overhangs the tympanic eavity. There is no glenoid articular surface upe the bone sand 16 . We find, on the other hand, the squamosal under its prop mammalian form and connections, with a long and slender zygomatic proces and performing the function, peculiar to the class Mammalia, of supportir the mandible by the true glenoid articular surface in the echidna (fig. 12, 2i)

Dr. Köstlin, whose painstaking and minutely accurate description of tl osteology of the vertebrate skull renders his conclusions as to their hom. logies worthy of respectful consideration, concurs with me in regard to tl squanosal (27) of the monotremes, but regards the bone , $8-16 \mathrm{in} \mathrm{th}$ echidna as a dismemberment of the alisphenoid. In no mammal, howeve do we find the alisphenoid concerned in immediately protecting the semici cular canals-this is the function of the petrosal: in neither mammal ne bird docs the alisphenoid extend its comections so far back as to the bas ex- and supra-occipitals. In the echidna, as in every other mammal and birt the alisphenoid (6) exists, exclusively exercising its essential function of tran: mitting the third division of the fiftio pair by the large vacuity ($t r$) and wit its normal conncetions modified only, as in the sheep and some other inferic mammalia, through the recession of the squamosal, by joining the mastoic in addition to those which it unites with in man. I confess that I can perceir no other gain to anatomy by Dr. Köstlin's new determination of 8 and 10 i the echicha as 'hintere Abtheilung des Schlïfenflügels' or 'hintern Schlie fenfliggel*' (posterior alisphenoid), than an additional phrase to the synonym of the mastoid.

The discussion of the homologies of this bone under its modifications is the mammalia, and especially in the monotremata, will not be deemed super fluous or too detailed, when it is remembered how valuable a key the craniz organization of the implacental monotremes with their bird-like heads become to the comprehension of the modifications of the cranial structure in bird themselves. If we pass from the comparison of the echidna's skull, as re presented in fig. 12, to that of the ostrich (fig. 8), we shall find there a bon (8) articulated in front to the alisplienoid (6), behind to the exoecipital (2) below to the basi-occipital and basi-sphenoid, above to the parictal 7 , ant coalescing ly its inner surface with the petrosal. The sole modification o note in regard to connective characters, as compared with the mammalian petromastoid, is the loss of the connection with the squamosal, for which wi have becn progressively prepared by the conditions of that bone in rodents, ru minants and monotremes. Ln the bird this least eonstant element of the crania walls (fig. 21, 27) has mudergone a further degradation, is now dismissed en tirely from any share in the formation of even the outer surface of the crania parictes, and is reduced to its mere zygomatic form and function, serving exclusively to connect the jugal (fig. 21, 26) with the tympanic (28); which function it performs in the echidna and in man, besides other superaddec offices arising out of its peculiarly mammalian expansion into a scale-like lamina, or as compensatory of the reduction of the tympanic bone. Dr Hallmann, however, in his elaborate monograph on the temporal bone, considers the bone (fig. 8) to be the squamous or zygomatic element, and cites the following characters of the bone, in the young cassowary t, as establishing its homology with the squamosal:-"its junction above with the parietal, in front with the alisphenoid and post-frontal and behind with the occipital ; also its formation of the upper border of the meatus auditorius externus, and its

* Op. cit. pp. 29, 126.

\dagger Die vergleichende Osteologie des Schläfenbeins, p. 8. pl. 1. fig. 5.
ntribution of the articular surface for the tympanie bone," which surface regards as hounologous with the glenoid eavity of the squanosal for the ver jaw in mammals.
Cuvier, whose homology of no. s he thins adopts, deseribes it in the bird being on the outer side of the parietal, advaneing also to beneath the ntals, oecupying the region of the temporal fossa and giving origin to the nporal musele, and as forming the superior border of the tympanic eavity. The teuporal fossa," adds Cuvier, "is in great part exeavated in the temral bone, and is bounded behind by a special process whieh might be reded as the analogue of the zygomatic did it not remain far removed from -jugal bone *." The annotators add, "that therc are some specics of bird which, nevertheless, such zygomatic proeess does approaeh very elose to jugal \dagger."
First, then, with regard to the character which appears to have most ghed with Curier, from his twice citing it in the above brief definition no. s, - the marks of the origin of the temporal muselc. To conclude that bone impressed by the so-ealled 'temporal fossa' in the skull of the bird, herefore the temporal boue, because such fossa impresses a bone called uporal ' in the mammal, is an cxample of that fallacy which logicians eall uing in a circle. The two propositions by no means reciproeally prove h other. Suppose, for example, that the bone no. s in the bird had been ermined, by way of ascensive comparison from the fish (fig. 5) and croile (fig. 16), to be the homologue of the bone no. 8 in those animals, which will assume to have been rightly called 'mastoid' by Cuvier, and that he arrised at the determination of no. 8 in the bird by this surer method, a by the descent from placental mammals; and supposing that, having thus ognized no. s as the mastoid, the fossa and musele with which it is imzsed in the bird had been called 'mastoidal' instead of 'temporal'; then, sading to the mammalian eranium, Cuvier might with equal reason have it that the bone 2r, figs. 11 and 22, was the 'mastoid,' because it oceupied the on of the mastoidal fossa and gave origin to the mastoidal muscle. The ;ins of museles are not, however, sufficiently constant to beincluded amongst characters of connection or funetion determinative of special homologies. $:$ transference of the 'sterno-mastoideus' from the true mastoid process an, carnivores and rodents) to the angle of the mandible (horse), and to 1 this part and the second cervical vertebra (ruminants), shows that the chments of a muscle must be determined after the recognition of the bone, not the homology of the bone by museular attachments. With the very : in question the uncertainty of the eharacter is illustrated: in the skull he ostrich, for example (fig. 8), the temporal fossa is chiefly formed by the joined portions of the parietal (7) and alisphenoid (6), which intervenc been the mastuid (s) and the postfrontal, the mastoid forming not more of posterior part of the fossa than the postfrontal does of the anterior part. Hallmann probably appreciated the unsoundncss of the argument from muscular impression, since he does not eite it; he repeats, however, the sacter adduced by Cuvier, from the relation of no. 8 to the tympanie ty, or as Hallmann expresses it, the meatus auditorius (äussern Gehör ung), the value of which therefore I next proceed to eonsider.
? the skull of the ostrich, with the tympanie bone and ear-drum in place, upper border of the meatus, as defined by the periphery of the membrana pani, is formed, not by no. s, but by the tympanic anteriorly, and by the scipital process (4) posteriorly. When the tympanie bone and menle are removed, then the descending process of no. 8 overarches the

[^16]upper and forepart of the tympanic eavity so exposed. So mueh for faets of the argument*.

We may next ask, Is the formation of the upper boundary of the me: externus an essential character of the squamosal in mammals; or is it rather a secondary eonsequence of the expansion and applieation of that b to the side of the eranium in this partieular elass? If we were desirou obtaining a homologieal eharaeter by eomparison of the contour of meatus externus or the tympanic eavity in mammals and bircls, ought not rather to seleet the lowest and most ornithoid of mammals, as best eulated to throw light upon the real nature of the modifieations of this of the skull in the respective elasses? In the echidna, then, we find the squamosal does not form the whole of the superior border of the shal tympanic cavity, but that the mastoid forms the posterior half of that bor and sends a short obtuse proeess downwards (at 10, fig. 12), which overha the eavity and gives attaehment to the tympanie (25). Behind the masi is the exoeeipital. Now in birds the antero-posterior extent of the erani between the exoceipital and postfrontal bones is mueh shortened as compa with mammals, and this modification I interpret as the result, in a great gree, of the entire removal of the squamosal from the eranial parietes. the homology of no. 4 as a part of the exoceipital there has been no questi although its development, and the share it takes in the lateral parietes of head, is inereased, as compared with most nammals, rather than diminisli The exoceipital constantly unites anteriorly with the mastoid in mamm from man down to the eelidna; but the extension of the squamosal ba wards to artieulate with the exoceipital is far from being a eonstant eharac in manmals. We ought on that ground therefore to conelude that the bon whieh artieulates with the fore-part of the exoecipital in the bird, is ' mastoid,' rather than that it is the 'squamosal.' It overhangs the tympa eavity by a longer or shorter process; but being more advanced in positi partly by the development of the exoceipital behind, and the non-interposit of a squamosal between it and the alisphenoid in front, it overarehes middle of the upper instead of the posterior part of the upper border of tympanie eavity in the bird; hut it is still in great part posterior to the ty panie pedicle, a relative position whiel is foreign to the squamosal. 'I proeess of no. 8 resembles the mastoid process in mammalia, inasmneh it terminates freely in most birds ; and in those, the parrot for example (pl fig. 1,8), in which it joins another process to form a zygoma or bridge o the temporal fossa, that process answers to the postfrontal, the very bo which the mastoid similarly joins in the crocodile, and does not answer to malar bone, which the squamosal joins in both mannials and croeodiles.

The mastoid always coalesees with the petrosal, rarely with the sqi mosal, in the mammalia; sueh coaleseence is therefore a more constant el racter of the mastoid than of the squamosal, and the argument beeon cumulative in favour of the mastoid or petromastoid eharaeter of no. s in 1 bird. When we remove the squanosal in the sheep we bring away the me dible which articulates with it, but we leave the distinet and independent ty panie elosely articulated to the petromastoid. Preeisely the same thi happens in the rodentia, in the marsupialia, and especially in the eehid in which the tympanie has the slightest conneetion with the squamosal. I artieulation of the tympanie therefore with the petromastoid is a more ec stant eharacter than its artieulation with the squamosal ; therefore the a1 eulation of the unquestioned tympanie bone in birds with the bone no. 8 is

[^17]onger proof of no. s being the petromastoid than of its being the squamosal : 1 for the same reasons that the articulation of no. s with the exoccipital, and coalescence with the petrosal, are more cssential characters of the petrostoid than they are of the squamosal, so I regard the articular surface nished by no.s to the tympanic bone to be homologous with the articular face of the petromastoid for the tympanic in the ruminants, rodents I other maumals, and am compelled to dissent from Dr. Hallmann's idea its answering to the articular surface furnished by the squamosal to the udible in mammals. In the ostrich a part of the articular cavity for the apanic is excarated in the exoccipital, and would afford as good an arguat to prove that bone to be the squamosal as the one which Dr. Hallmann deduced from the same character in favour of the petromastoid in the 1 being the squamosal. Dr. Hallmann cites the junction of no. 8 (his t, i. fig. 5 , op. cit.) with the postfrontal in a young cassowary as evidence ts squamous character. I have not met with this union in the young ich nor in the young emeu, in which latter bird there is a distinct postntal : the anterior inferior angle of the parietal descends and meets the phenoid in both these Struthionida, at the part where the post-frontal is *ed (at $f^{\prime \prime}$) in Dr. Hallmann's figure above cited. The extremity of the toid process does, however, arch over the temporal fossa to join the postotal process in certain birds, as above mentioned; but this junction, when ascend in our pursuit of the homologies of the elements of the composite poral bone of mammals, as it is safest to do, from fishes to reptiles, from these to birds, forms a repetition of a very characteristic feature he mastoid in the cold-blooded classes, and one that is quite intelligible on we rise to the appreciation of the higher relations of both mastoid and \because frontal as parapophyses of their respective vertebræ.
n every mammal the squamosal is applied to the cranial parietes, and atred by a peculiar suture called squamous; the outer surface of the bone eeding the inner surface. In no bird is the mastoid so united to the surading bones, but joins them by harmoniæ vertical to the surface, as the er true cranial bones are joined before they coalesce; and the outer very e, if at all, surpasses the inner surface, to which the petrosal is confluent. petromastoid of the mammal resembles that of the bird in this respect.
here is no difficulty in the ascensive survey in appreciating the special nology of no. 8 in the bird (fig. 23) with no.s in the crocodile (fig. 22)
in the fish (fig. 5) ; and Dr. Hallmann, retaining a firmer and more sistent view of their common characters than Cuvier, enunciates clcarly homology: but having persuaded himself that the ' mastoid' of the bird its 'squamosal,' he concludes that the bone which Cuvier had called masin the crocodile and fish must also be their squamosal. I believe Cu vier lave rightly determined the bone (no.s) in the cold-blooded classes to be mastoick ; but he is not consistent with himself when he adopts a different clusion with regard to no. 8 in the bird. The greater devclopment of bird's brain, as compared with the crocodile's, requires a greater cxpanof the cranial part of the mastoid, just as the still greater development he brain in mammals calls forth a peculiar expansion and application of cranial end of the squamosal, involving a transference of the mandibular t to that expanderl end.
duvier, in descencling from mammals to the consideration of the lomoloof nor. in the birl, passed too abruptly to the comparison, lacking the ructive link finmisherl by the monotrenes. It might lave sufficed for present report to have demonstrated the lomology of no. a in the bird, ensively, with Covier's well-determinerl mastoids in fisloes and reeptiles:
but since both Cuvier and Dr. Hallmann have elucidated their views o homology by eharacters drawn from the mamnalian class, I have endeavot and I trust satisfaetorily, to meet their objections and to determine the homology of the bone by other arguments drawn from modifications of petromastoid in the same class.

Pursuing therefore the eomparison descensively, I proceed in the next p to eonsider the characters of the mastoid in the croeodile (figs. 19 and 26 Cuvicr premises his determination of the bonc in that reptile by citing following as its characters in the mammalia :-" "La partie mastoïdicnne recouvre le rocher en arrière de l'écailleuse ct de la caisse, mais qui se se de si bonnc heure à ce rocher que l'on paroient à peinc à la reconna comme distincte dans les plus jeunes fétus où ellc est quelquefois doubl The squamosal he defines as a bone "qui devient de plus en plus étrans au crâne à mesure qu'on deseend dans l'ćehclle des quadrupèdes, en s que dans les ruminans elle est plutôt collée dessus qu'ellc n'entre dan composition de ses paroist." If we pause to apply these eharacters to the termination of nos. s and 27 respeetively in the bird, bcfore proceeding the erocodilc, we shall see how far they sustain the conclusions I have rived at, in opposition to the views of Cuvier and his followers, in refere to the truc homologue of the mammalian squamosal in birds. With req to the mastoid in the crocodile, Cuvier says, "Le mastoïdien des crococ proprement dits et des gavials a cela de particulier, quill s'avanee latér ment jusqu'à s'unir au frontal postérieur, et à entourcr avec lui et le p_{t} étal le trou de la face supérieure du crâne qui eommunique avec la fí temporale; dans quelques eaïmans il s'unit même à ces trois os pour cou entièrement eette fosse en dessus, et dans les tortues de mer, non-seulem ils font la même ehose, le temporalc ct le jugal venant aussi à s'unir au in toïdien et au frontal postérieurc, ils couvrent la fossc temporale, même dehors:" \ddagger

Doubtless the German anatomists who dissent from Cuvicr's determinai of the bone s in the erocodile (fig. 22) have been influenced in some deg by the little conformity betwecn the character above assigned to the mast in that reptile and the character Cuvier had previously assigned to the m toid in mammalia. The eonfluenec of the mastoid with the petrosal, example, is a modifieation peeuliar to the warm-blooded vertcbrates, wh the relative position of the mastoid, above and external to the petrosal, abr and behind the tympanic, and behind the squamosal, when this bone is F sent, is a constant eharacter in all vertebrates; to which nust be added, t in most mammals and all other vertebrates the mastoid affords an articu surfaec for the tympanic bone, and devclopes an outstanding (masto process for the attachment of strong museles moving the head upon the tru With regard to the relative position of the mastoid proeess to the eral. walls, its origin ascends as the expansion and elevation of the parietal dil nishes with the decreasing size of the cercbrum: in mammals, the proce when present, extends from the lower border of the postero-lateral wall the eranium : in birds it projects from near the middle of that wall, a nearer the upper surface in the flat-headed Dinornis: in the erocodile it 1 aseended to a level with the upper surface of the cranium, and forms t posterior angle of that surfaee. The paroccipital presents a similar progre sive ascent, but later in the series traeed descensively; it does not gain t level of the mastoid until we arrive at the class of fishes.

* Op. cit. t. v. pt. ii. p. 81.
$+I b$. p. 81. Oken notices the completion of the cranial cavity, independently of squamosal, in the sheep ; in his " Programm", \&c. 4to. 1807, p. 5.
\ddagger 1b. p. 84.

The mastoid, thus determined in the eroeodile, is reeognized with case d certainty in chelonia, lacertia and ophidia. It is a distinct bone in all se reptiles, and preserves with singular constancy its normal relative poion anterior to the exoecipital, superior to and supporting the tympanic, 1 anterior to the squamosal when this is present. In lizards the mastoid auch reduced in size: in scrpents it attains a considerable length. In the thon and most serpents it forms 110 part of the proper wall of the cranium, t overlaps the eontiguous parts of the parietal, alisphenoid, supra-oeeipital, 1 exoccipital, projeeting baekwards beyond the latter. It is large in the pentiform batrachia, but presents in Ceceilia (Cuvier, Règne Animal, 1817, 6. figs. $1 \mathbb{\&} 2, g$) its normal comections with the occipital (f), parietal tympanic (h), and also with the post-frontal, which has coalesced or is mate with the frontal (at d, l. c.). Cuvier does not admit of this conflu:e in the cecilia; and although he assigns the charaeter 'point des fronx postérieures' to the typieal batrachia *, gives the name 'posterior frontal' h a note of doubt, indeed, to g, and assigns to the bone h, which suspends mandible, the name of "mastoïdiens et eaisses réunis \dagger." There is no ual neeessity for assuming so rare a eonfluence to eharaeterize the eæeilia. e mastoid exists with all its normal connections, and beautifully manifests its independence and large size the affinity of the eæeilia to the true ridia. In the typieal batrachia, where the cranium is remarkably chaterized by instances of confluenee which seem borrowed from the warmoded elasses, the mastoid sometimes loses its independence, and appears in exogenous process from the external and posterior part of the parietal, lining however its normal offiee of suspending the tympanie : but in a skull she Rana boans now before me, the suture between the mastoid (fig. 13, s) parietal (τ) is not obliterated, and it further artieulates with the exoeeiL(3) behind and the alisphenoid (0) in front. Cuvier, in his deseription of tympanie of the Rana esculenta \ddagger, says, that its upper braneh articulates b the 'rocher.' In Rana boans that branch articulates exelusively with truneated extremity of the broad outstanding mastoid, which mastoid rhangs, as in all fishes, the petrosal, which is chiefly cartilaginous in the na boans (ib.16). In Rana esculenta the mastoid (Dugés, Reeherches les Batrachiens, fig. 1, 12) appears to have eoaleseed with the alisphenoid figs. $2,6 \& 7,12$) ; and the compound bone las reeeived the name of eher' from Cuvier and that of 'rupéo-ptéreal' from Dugés. The foraa ovale however marks the alisphenoidal part (a distinet bone in my Rana $n s$), and the suspension of the tympanic marks the mastoid, whieh, with other eonneetions, overhangs also in Rana viridis that mass of eartilage§ ich immediately invests the membranous labyrinth and forms the 'fenestra lis' against whieh the plate of the columelliform stapes is applied.
Jrof. J. Nuller has well reeognized the homologue of this sense eapsule in C'acilia hypocyanca, in which he deseribes it as "petrosum cum opereulo estræ ovalis\|." It is situated further back than in Rana, and appears poste--to the tympanie (i) and the large suspending mastoid (h), to which Muller es the name of 'temporale.' In the singularly modified cranium of the thlops the mastoid artieulates above with the parietal and supraoceipital, find with the exoecipital, eoalesces in front with the alisphenoid, as in le batrachia, and affords the usual artieulation below to the tympanic.

Ossem. Fossiles, v. pt. i. p. 386.
Ossem. Possiles v. pt. ii. p. 390.
The precocirus development of this eapsule in the larva of the frog is well shown ly hert, 'Entwickelungsgesehichte des Kopfes,' Ato, pl. i. figs. 13-15, x : it resembles in the myxinoids and lampreys.
Beiträge zur Anatomie der Anphibien; Tiedemann's Zcilschrift fur Plysiologic, iv. 1831, p. 218 , pl. 14. fig. v. k.

How necessary it is to retain a elcar and eonsistent appreciation of these dences of the homology of the mastoid is shown by the second synonym, petrosum,' whieh it has received from the justly-celebrated author of instructive memoir (pl. 20. figg. 10, 12, 13, 14, p). The actual capsul the membranous labyrinth is eovered by the mastoid and exoeeipital, remains wholly eartilaginous, as in other ophidia; and as it likewise dor Rhinophis, where its name 'petrosum' is in like manner transferred by 1 Muller to the coaleseed mastoid and alisphenoid. In Cheirotes the en of confluence proeceds to obliterate not only the suture between the mas and alisphenoid, but that between the mastoid and parietal ; as also of tl between the frontal, parietal and supra-oeeipital; the whole eranium senting almost the extent of coalescenec whieh charaeterizes the hot-bloe bird. Only the immediate covering of the membranous labyrinth rem cartilaginous.

The sides of the superior surfaec of the eranium of bony fishes usu extend outwards as a strong irregular ridge, from which three processes n partieularly projeet, which are supported by three distinet bones, sutur nnited, and each impressed with an artieular glenoid cavity. And het eannot avoid reinarking how bcautifully the prineiple of vegetative r tition* is exemplificd in the lowest class of the Vertebrata, wherc col quently the relations of serial homology of the parapophyses in question ummistakeable. The posterior process or bone which sustains (in part) seapular arch is the paroccipital (fig. 5,4); the anterior one, which susti in part the tympano-mandibular arch, is the post-frontal (ib. 12) ; and intermediate and usnally most prominent bone ($i b .8$), which sustains in 1 the epitympanie ($28 a$), and through that the hyoid arch, is the homologut the bone whose essential characters have been discussed under the name 'mastoid.' 'The paroccipital having now risen to a level with the mast this forms the second strong transverse process at each side of the cranit The process is developed from the outer margin of the mastoid; the in side of the bone is expanded, and cnters slightly into the formation of walls of the cranial or rather the otocranial cavity, its inner, usually cart ginous surfaee lodging the fibro-eartilaginous continuation of the petro whieh immediately covers the external semicircular canal. It is wedged i the interspace of the ex- and par-occipitals, the petrosal, the alisphenoid, parictal and post-frontal bones. The projecting process lodges above ehief mucous eanal of the head, and below affords attachment to the c tympanic or upper piece of the bony pedielc from whieh the mandibus hyoid, and opereular bones are suspended : its extremity gives attachment the strong tendon of the dorso-lateral muscles of the trunk.

It might have been supposed that this eontribution to the walls of 1 eranial cavity, this articulation to the oceipital and tympanie bones, all whieh are constant characters of the mastoid in mammals, and but oecasio: ones in the squamosal-not to speak of the apophysial form and functions the bone in question in the skull of fishes-would have made the balanee cline to the choice of the 'mastoid' rather than of the 'squamosal' elcmen of the human temporal in the judgement of every unbiassed investigator its homologies. The German anatomists, however, in falling with Cuv into the mistake respecting the homology of the 'mastoid' (no.s) in bir with the squamosal in manmals, adhere more consistently to their error a eontinue to apply the name 'squamosal' or its equivalents to the homologo bone in reptiles (fig. 22, 8) and fishes (fig. 5, 8).

* This prineiple or law is explained in the first volume of ny Hunterian Lectures 'On Invertebrata,' 8vo. 1843, in which elasses of animals it is most strikingly and fully exc plified.

The high repute which W. Agassiz has so justly carned in ichthyotomy ders the accession of his name in support of Drs. Hallmann, leichert, 1 Köstlin's determination of the bone in question, onc to which those able nologists and their followers will naturally attach great weight, and which .ed has calused me to pause and retrace more than once, and with the aost pains and care, every step in thic serics of comparisons which have ully brought conviction of the accuracy of the Cuvierian determination of s in fishes.
am not aware that any anatomist has replied to the objections to the vierian view propounded by M. Agassiz. Drs. Halluaun and Köstlin, o have published the most elaborate monographs on the temporal and er bones of the skull since the time of Cuvier, concur entirely with the rned Swiss naturalist. Dr. Reichert, in giving the name of 'squama temalis' to no.s, and that of 'processus temporalis posterior' to its process, nsfers the name 'processus mastoideus' to the paroccipital (no. 4, fig. 5) *. jecomes then necessary to consider the arguments of M. Agassiz in favour the homology of no. s. in fishes with the squamosal no. 27 in mammals. the valuable monograph on the osteology of the pike (Esox) in the 15th iraison' of the 'Recherches sur les Poissons Fossiles,' the author says 66), "Un os de la tête placé entre le frontal postérieur, le frontal prinal, le pariétal, la grand aile sphénoïdale et l'occipital latéral, ne saurait rais être envisagé comme correspondant à l'apophyse mastoïdienne du 1poral. D'après ses liaisons, je crois donc qu'il faut envisager lc mastödien Cuvier conme l'analogue de l'écaille du temporal ou comme le temporal prement dit. C'était déjà l'opinion de Spix, qui est tombé juste sur ce nt." To this I reply that, in regard to the crnnections of the mastoid, those h the parietal, alisphenoid and exoccipital, are more constant than that -h the frontal, which is interrupted in mammalia by the interposition of expanded squamosal, peculiar to that class; but the mastoid retains its cine connection with the postfrontal in many reptiles and some birds. On : other hand, the union of the squamosal with the frontal is by no means onstant character in mammalia : it is rarely found in the orang, still more ely in man, never in the cetacea and monotremes, nor in certain ruminants, \because in the myrmecophaga, \&c. The connection of the mastoid with the ntal is more common than is the connection of the squamosal with the xcipital. It is a bold leap to take from the mammal to the fish in the demination of a variable bone like the squamosal: nevertheless, I would reEst the unbiassed reader to glance at fig. 12, whilst he reads M. Agassiz's scis of the character of the squamosal above cited, and see how far no. 8 dethes from it, save in regard to the frontal comection. Spix, who appears t to have traced the beautiful gradation of the mastoid in the mammalia, d who was unacpuainted with the decisive step to its normal condition in ?uviparous vertebrates made by the monotremes, -and who was influenced, arefore, by seeing that bone in higher inammals pushed back from any conction with the alisphenoid and postfrontal by the interposed squamosal, lich usurps these connections and combines them with others, as with the rietal and tympanic, which the mastoid (no. 8) presents in fishes, -not un23onably concluded that no. a represented the squamosal in that class; and is probable that II. Agassiz, who received his anatomical rudiments at unich, and was carly engagerl in describing the fishes collected in Brazil by eauthor of the 'Cephalogenesis,' might have derived a bias in favour of this ew which prevented his assigning their due value to the connection of no. \& fishes with the paroccipital, and its contribution to the otorranial cavity.

[^18]In urging a reconsideration of the value and significancy of these che ters, I may repeat that in mammals the mastoid constantly presents ts whilst the squamosal very rarcly has the first, and not often the sceond racter. It inust also be remembered that the squamosal loses its connce with the frontal and progressively decreases in the mammalian class to less the dimensions of the mastoid itself, as e.g. in cchidna (fig. 12), whilst in monotreme the mastoid, 8 , besides its comnections with the parietal and ext pital, extends forwards to articulate with the alisphenoid, σ. If ossifica were restricted in mammals to no. 8, fig. 11, in reference to 16, which mained eartilaginous, then no. 8 would have the same relation to the otocr or in other words, would contribute the same protection to the acoustic 1 : rintl, which no. 8, fig. 5, performs in fishes; the external semicire canal at least would be protected by the mastoid in both: only in mamn the mastoid would also extend over the posterior canal. The petrosal 1 no part of its essential character as the capsule or onter tumic of the la rinth by becoming ossified, nor is it less recognisable in fishes within mastoid, by remaining membranous or cartilaginous, than is the scler capsulc of the eye in its chamber or orbit; which capsule, in like man presents all the corresponding histological modifications in one or other 1 of the vertebrate series. The mask which has concealed the truc feature resemblance of the human mastoid to that of fishes, is simply the petri ossified and cemented to it. But the squamosal presents no such relation: the bony capsule of the semicircular eanals in any mammal. Even connection of the squamosal with the tympanic bone is, as we have seen, less constant and intimate in mammals than the connection of the mast with the tympanic*.

In the anatomical description of the existing ganoid fishes which Agassiz has unfortunately called 'Sauroidt,' the bonc no. 8 is described

* From the remark in p. 53, t. ii. pt. ii. 'Rccherches sur les Poiss. Foss.,' it would st that the circumstance of the cxtension of the tympanic air-cells into the mastoid, in cert mammalia, harl weighed with M. Agassiz in determining its homological characters.
\dagger All the characters by which thesc highly organized fishes approximate the Reptilia fomd, not in the highest, but in the lowest order of that class, viz. in the batrachia, and her more especially in the salananders. The air-bladder of Lepidosteus resembles the lung the serpent in its singleness, and those of the salamander in the degree of its cellulari some parts of the structure being peculiarly piscine. The bifid air-blarlder of Polypte resembles the lungs of the salamandroid menopome and proteus, in the want of cell walls. The characteristic large bulbus arteriosus and its numerous rows of valves, wh distinguish the ganoids from most other osseous fishes, are retained in the menopome, 1 are not present in any saurian. The anterior ball and posterior cull of the vertebre of pidosteus are repcated in the salamander and pipa, but in 110 existing saurian. The lal rintlodont character of the tecth of Lepidostcus was developed to its maximum in the gri cxtinet reptiles (Salamandroides, Jäger), which, by their douhle occipital condyle, der gerous double vomer, and bicoucave vertebre, were essentially Batrachia, not Sauria; a which combinced characters now found only in the lower salamandroid Batiachia, with den ones borrowed from fishes, and but feebly manifested by the most fish-like of sauria (Ichthyosaurus). All the so-called sauroid fishes retain the characteristic piscine articu concavity on the basioccipital for the atlas : it is, however, very slallow in the polyptery and is also extended transversely, with the latcral borders or angles so prominent, that, M. Agassiz well remarks, "it nceds very little to change this transverse articulation with two lateral ridges into two distinct articular condyles," t, c, p. 71. But this would conse pro tanto, the polypterus into a batrachian, not into a samian. So far as the character of single convex occipital condyle is valuable as a mark of affinity to the Sauria, it is prese in a fish of a different order from the ganoids, and with much fewer approximations in oth respects to the reptilian class, viz, in the Fistularia tabaccaria. There remains, therefor only the character of the chamelled scales which the polyptcrus and lepidostcus present commou with all the lower organized ganoils, and which to a certain extent rescimble tl bony scutes of the crocorlilia. If the deposition of calcareous matter in and upon the sk were not cssentially a retention of a very low type of skeleton; if it were not presented l
king part, by its large size, in the formation of both the internal and cxrnal surfaces of the cranial* box, which size depends essentially on the gree of deselopment of the frontals, parictals and occipitals: it is further ged that the suborbitals ('apophyse jugale') are likewise attached to it; that e preoperculau'('apophyse styloile') diverges, and is directed or abuts against that, finally, the bone in question (no.8, fig. 5) is, with the exception of the trosal, the sole part of the temporal bone which takes a direct part in e formation of the cranial box. "D'après ces considérations," M. Agassiz oceeds, "il est impossible de prendre l'os No. 12 [no. s, in fig. 5], que uvier a nommé mastoülien, pour autre chose que pour la véritable ćcaille du mporal. Il prend part à la formation de la boîtc cérébrale, il donne inseron à l'arcade zygomatique, cnfin, il prête une articulation au préopercule, 1e hous regardons maintenant comme le véritable représentant de l’apouse styloide du temporal," l.c. p. 63. Admitting, for the sake of the arguent, that the preopercular is the homologue of the stylohyal, and that it artilates with the so-called 'écaille du temporal,' which is not the case in the ajority of fishcs, yet this would prove more for the 'mastoid' than for the "quamosal' character of no. s, fig. 5. The stylohyal unquestionably articutes in nany mammals with the mastoid or petromastoid, between which ud the tympanic it is anchylosed in man, and it rests with M. Agassiz to monstrate the species in which it articulates with the true squamous part the temporal \dagger.
Witl regard to the connection with the suborbital chain of ossicles, which [. Agassiz regards, with Geoffroy, as the jugal or zygomatic arch, even fmitting such connection to be the rule and not the exception, all its arce as an argument in favour of the squamosal character of no. 8 will epend on the ultimate decision of comparative anatomists as to the respectre claims of the upper and lower zygomata in the macaw's skull, for iample (pl. 1, fig. 1), to a special homology with the zygomatic arch in an and other mammals. The orbit in the bird cited, as in other Psitcida, is circumscribed below by a bony frame continued from the lacrymal 3) to the postfrontal (12), and thence to the bone (8) which I regard as 1e mastoid. Below this frame, the slender bone, considered by Cuvier as 1e jugal, and by me as the coalesced jugal (20) and squamosal (27), extends om the maxillary (21) backwards to the tympanic (28), and forms a second \therefore ch or zygoma. According to the Cuvierian and generally-received view of te homology of no. s in the bird, the bridge which it sends forward over the mporal fossa to join the above-described inferior boundary of the orbit, 1 the macaw, would be the zygomatic process; and that boundary would be shat M. Agassiz calls its homologue in fishes, viz. the jugal or 'arcade zygoatique.' But what then is the parallel zygomatic arch below(20,27), con-

[^19]necting the maxillary with the tympanic, and marked $z^{m \prime}$ in fig. 7, taf. i. of Hallmann's monograph? If Cuvier liad been eorrect in regarding no. 8 as squamosal, the name 'jugal' ought to have been transferred from the lo zygoma to the upper one (pl .1 , fig. 1,73) connceted with such squamosa the maeaw : and with a like consistency the name 'jugal' ouglit to have b. retained for the suborbital ehain of dermal bones in fishes (pl. 1, fig. 2, 73) which it had been applied by Geoffroy St. Hilaire, and to which it has bi restored by M. Agassiz. But, in truth, there may be clearly discerned in beautiful modifieation which has been adduced from the Psittacida, a pr of Cuvier's crroneous lomology of the bone no. 8 in the class of birds, and the same time of his accurate homology of the same bone in that ol fishes

Is there no signifieance in the fact of the bone anterior to the orbit, whi we call lacrymal in man down to the lowest reptile, being constantly p forated by a mucous duet? Can we not recognize in this function a glandular relation, as in the commonly thin scale-like charaeter of that bol and its connections in front of the orbit, the repetition of the eliaracters the largest, most anterior, and most constant of the suborbitals in fishes (ib.73 If the rest of that ehain be sometimes wanting, but more commonly prese in that class ; if it should present the condition oceasionally of a strong con nuous bony inverted arch, spanning the orbit below from prefrontal to pos frontal, as in the right orbit of the Hippoglossus and the left orbit of Rhombu ought we to lose our grasp of the guiding thread of 'connections' by beis confronted with a repetition of that condition in the skulls of certain biro caused by a continuous ossification from the laerymal to the post-fronts sceing that a diverging bony appendage of the maxillary arch, unknown in tl class of fishes, has there established a second and true 'zygoma' below tl suborbital one? The extension of the ossification from the post-frontal crt of the suborbital arch to the mastoid is, in truth, a beautiful repetition of a ichthyic cranial character, not unknown however in the reptilia; and whil: it adds a proof of the mastoidal character of no. 8 in the bird, it reflee reciprocal confirmation of the accuracy of Cuvier's determination of the bone in fishes.

The true signification and homologies of the bones in that interestin. elass could never have been clicited from an exclusive study of it, howeve cxtensive, detailed or profound; nor will the feeble rays reflected from an thropotomical reminiscenees lend sufficient light in their determination: the can be elearly discerned only by the full illumination of the beans concen trated from all the grades of organie strueture. M. Agassiz, descending to the determination of the squamosal in fishes from its characters in man, eon cludes that it must be the bone no. 8 , fig. 5 , beeause that bone takes part it the formation of the imer as well as the outer walls of the cranial cavity. Buthis protective function is an execptional one in the squamosal (fig. $6,{ }_{27}$) it is peculiar to that bone only in one elass, and, as we have seen, is not constant even therc; whilst, on the other hand, the mastoid is recognizable from the inner surface of the cranial walls of the highest mammal (in the human cranium where it is impressed with the fossa sigmoidea, fig. 6,8), and in a still greater degree in that of the lowest mammal (Echidna, fig. 12, s); whilst in almost every mammal, by its coalescence with the outer surface of the petrosal, it elosely repeats the protective character in relation to the external semieircular canal, which it presents in fishes,-a function which is altogether foreign to the squamosal in every mammal. I have dwelt thus long, perhaps tediously, and it may be thought unnecessarily, on the true characters and homologies of the petrosal and mastoid, beeause their determination is essential to, and, indeed, involves that of the squamosal and other
memberments of the liuman temporal bone ; and we cannot climb to the sher generalizations of anatomical science, except by the firm steps of truc d assured special homologies. There are more inportant subjects than molugies, no doubt ; but nothing is more important than truth, in whatever th we may be in pursuit of her.
Orbitosphenoid.-As evidence will be given in the scetion on 'Gencral ouology' that both squanosal and tympanic belong to a quite distinct tegory of bones from the parts of the 'temporal' which have just bcen scussed. I shall proceed next to the neurapophyses that precede the sphenoid.
As the determination of this bonc (6 in all the figures) involves that of e orbitospheuoid (10), which has rarely bcen mistaken* for any other bone an 6 , there remains little to be added in proof of its homology after lat las been adranced respecting the alisphenoid. The most constant aracter of the orbitosphenoid is its relation to the optic nerve, which either rforates or notches it, whenever the ossification of the primitive cartilage membrane holding the place of the bone is sufficiently advanced; which not always the case in fishes, especially those with broad and depressed ads, and still more rarely in lacertine saurians. The recognition of the bitosphenoid is also often obscured by another cause, viz. the tendency in e class Reptilia, and especially in ophidians and chelonians, to an extension ossification dowawards into the prinitive membranous or cartilaginous urapophysial walls of the brain-case, directly from the parietal and frontal nes.
In the fishes with ordinary-shaped, or with high and compressed heads, e orbitosphenoids are usually well-developed: they arc, however, reprented by descending plates of the frontal in the garpike; and they are, like the iophenoids, mere processes of the basisphenoid in the polypterus, which thus fers so unexpected a repetition of the human character of the correspondg partst. In the cod (fig. 5, 10) they are semielliptic, raised above the prehenoid (9), suspended, as it were, between the alisphenoid (6) and the ontal (11), and bounding the sides of the interorbital outlet of the cranium: e optic nerves pierce the unossified cartilage closing that aperture, immeately beneath the bone itself. In the malacopterous fishes with higher id more compressed heads, the orbitosphenoids are more developed; they are rectly pierced or deeply grooved by the optic nerves, and are pierced also If the 'nervi pathetici' in the carp. The erura of the olfactory ganglions hinencephala) pass out of the interorbital aperture of the cranium by the pper interspace of the orbitosphenoid, into the continuation of the cranial ivity which grooves the under surface of the frontal, in their conrse between le orbits to the prefrontals. The orbitosphenoids proteet, more or less, the des of the prosencephalon; and this function, their transmission of the optic erves, their anterior position to the alisphenoids, and their articulation bove with the frontals, establish their special homology from the fish up to ian.
In certain fishes a distinct centre of ossification is set up in the median ne of the fibrous membrane or cartilage, closing the intcrorbital aperture f the cranium, below the orbitosplienoids, and extending forwards as the insrorbital septum. 'The bone (represented in pl. 1, fig. 5 , and in outline in ut 5, at a^{\prime}) extends downwards to rest upon the sphenoid (5) or presphenoid

[^20](9), and bifureates, as it ascends, to join and prop up the elevated orbitos noids in the perch and carp (not in the cod). The relations of this ossiel precisely those of the part forming the conjoined bases of the orbitosphen in mammals, and usually called the 'body of the anterior sphenoid,' in th though this is developed from two distinet centres. In the young whe found it supported by a direct extension of the basisphenoid forwards, w] joins the backwardly prolonged voincr, as in fishes. The common bas the orbitosphenoids is peculiar, as a distinct bone, so far as I know, to fis It has been called by Bojauus* the 'basis alarum minorum sphenoidei rostrum sphenoidei'; by Geoffroy 'entosphénal'; and by Cuvier 'le sphénc antérieure.' M. Agassiz opposes these determinations by the following rema founded on the embryological researches of the ingenious Dr. Vogt " In fishes with a short and thick muzzle, the cartilaginous embryonal pl ('plaque faciale' of Vogt), which serves as the base of support to the pr encephalon and the nasal fossæ, is transformed into an independent bo "se transforme intégralement en os." It is then, he says, "represented the cranial ethmoid (le sphénoïde antérieure of Cuvier), an azygous bone, impair,' short, of an almost square form, in which arc pierced the canals the transmission of the olfactory nerves. But in the fishes with elongat muzzles, and of which the eyes in place of preserving their primitive late: position at the sides of the mesencephalon are carricd forwards in advan of the cranium between that and the nasal fossæ, the relations of t 'plaque faciale' are neccssarily altered : part of the plate remaining in primitive situation is transformed into the 'cranial ethmoid,' the other pa is carried forwards, but is never transformed into a distinct bone: it 1 : mains cartilaginous as the nucleus of the muzzle; or if, indeed, the ossit cation of the muzzle is completed, it disappears by virtue of the progressis encroachment of the exterior ossification. This is the reason why fisht have never a true 'nasal ethmoid' (the bones called cthmoid by Cuvier at the nasals), but only a cranial ethmoidt." Influenced by the deservedl high authority of M. Agassiz, I adopted his homology of the bone 9^{\prime} in th 'IUnterian Lectures on Vertebrata,' delivered in 1844. But since the notes o those lectures were printed, having been charged with the formation of a nes Osteological Catalogue of the Hunterian Muscum, I have carefully reconsi dered this question. Passing over, for the present, the assertion that the homo logue of the 'nasal ethmoide' docs not exist in fishes, I would first observe that if the orbital aperturc (or what appears to those who deem the rhinencephalic crura to be olfactory nerves, the anterior aperture) of the eranium were homologous with the aperture closed by the eribriform plate in man, then any bony bar or plate tending to elose that aperture might be held to be homologous with the cribriform plate or crista galli of the ethmoid : but the interorbital aperture of the cranium is always bounded laterally, in fishes, by the orbitosphenoid; and the rhinencephala and their crura extend forwards, to a considerable distance in most fishcs, before the olfactory nerves sent off from the rhinencephala cscape by those perforations in the prefrontals, which are the true homologues of the single foramina of the olfactory nerves in the so-called ethmoid of birds, and of the cribriform foramina in mammals. The interorbital groove or canal in the skull of fishes, which is continued from the presphenoidal or interorbital aperture to the prefrontal foramina, is as essentially a part of the cranial cavity as is that contracted anterior olfactory chamber of the cranium of mammals, which, in the thylacine, for example, extends forwards, from where the orbitosphenoids sustain the frontals, ex-

[^21]rding, to where the frontals and the modified prefrontals (ctlmoid) form actual anterior boundary wall of the cranial cavity; the chief distincI between the condition of this boundary in the mammal and the fish, ng, that whereas it is perforated by numerous apertures in the mammal, olfactory nerves in the fish cscape each by a simgle foramen or groove the homologous bones. As beautiful as truc was that clear perception Bojaus of the homology of the simply perforated prefrontal of the fisl, h its sieve like homologuc in the elass in which the olfactory sense reaches uaxiuum of development and activity, and modifics all around it. The lesced bases of the orbitosphenoids, forming the anterior boundary of the I of the optic chiasma, answer to the separatc ossification called 'ethide cràuien' by Agassiz, in fishes: it has the same relation with that consted area of the cranium answering to the interorbital aperture of the cram in fishes, which the so-called cranial ethmoid (entosphenoid) presents dishes; and this same entosphenoid (fig. 5, 9^{\prime}) has as little relation to the mation of the cauals pierced by the olfactory nerves in fishes, as the itosphenoid has in mammals. The olfactory, rhinencephalic or anterior ision of the cranial cavity in mosi fishes has its lateral bony walls incomte, and it opens freely, in the dry skull, into the large orbital chambers ow, which are then said to have no septum : we see a similar want of detion of the cranial cavity iu relation to the great acoustic chambers in most :es. But in mammals the orbits are always excluded from the rhinencelic, or olfactory compartment of the cranium * ; and a like exclusion ains in some of the highly organized ganoid fishes and in the plagiostomes. the prosencephalic parts of the brain progressively predominate, and the oencephalic parts diminish, in the higher mammals, the compartment of cranium appropriated to the latter loses its individuality, and becomes re and more blended with the general cavity. In the elaborate 'Iconophy of Human Anatomy' by Jules Cloquet, for example \dagger, the small peiarities of the 'trou borgne' and the 'apophyse crista galli' are both inated, and vers properly; but the rhinencephalic or olfactory division of cranial cavity, though defined by the suture between the orbitospheds and prefrontals and lodging the olfactory ganglia or rhincucephala,important an evidence of the unity of organization manifested in man's me and traceable in characters, strengthening as we descend to the lowest eous fishes-is wholly unnoticed. Thus, very minute scrutiny, conated with great acuteness of perception of individual features, qualities thly characteristic of the anthropotomists of the school of Cloquet, being ected from an insulated point of view, prove inadequate to the apprcciaa of sometimes the most constant and important features of their exclusive jeect.
But to return to the homology the orbitosphenoids. In the mepome these neurapophyses are ngated parallelograms, perfoed by the optic nerves, and are tinct bones. In the great bullg (Rano bouns) thcy present it iilar form (fig. 13, 10), but are flluent with the prefrontals (t 1 I):

Fig. 13.

Side view of cranium (Rana borms), nat. size. both batrachians an unossified space intervencs between them and the ali-

This is not to be confounded with the olfactory chamber itself, lorging the organ of 'll.
Manuel d'Anatornic Déscriptive, 1to, Atlas, pll. 8, fig. 2.
sphenoid (6). In most lizards the wider roof of the eraninm, supported by t long nastoids, squamosals, postfrontals and malars, like a bony scaffolding each side, is independent of its proper (neurapophysial) walls for support, a these retain, through the œconomy of nature, mueh of their primitive sen membranous, semi-cartilaginous state. A dismemberment of the alispheno (which may be discerned as a proeess of that bone in the piseine genc Xiphias, Sphyrena) props up the parietal npon the pterygoid, so like a pc or pillar, that the name 'columella' may well be retained for it. At t sides of the membrane forming the orbital aperture, rudiments of the ort tosphenoids may be scen in most laeertia: I find them, e.g. in the form a slender osseous filament on each side, slightly bent inwards and bifurea above, in a large Australian lizard (Cyclodus gigus). In the croeodile (fig 9,20 , and 22,10) the orbitosphenoids attain their maximum of developmer but retain all their typical eharacters : they bound the orbital aperture of $t \boldsymbol{t}$ cranium; are notehed below, as in many fishes, by the optie nerves (op are perforated by the pathetie and other orbital nerves at the 'foramen sphen orbitale' (s); they protect the sides of the prosencephalon ; support above th frontals (and by their baekward development also the parietals); and the rest below upon a peculiar development of the presphenoid (9), which seen to answer to the entosphenoid in fishics.

Some salient points of rescmblance between the cranial organization of fish and birds have elieited remarks from more than one comparative anatomis Not to dwell upon the more obvious correspondence arising out of the me hility of the upper jaw, chiefly through its conneetion with the pedicle of the lower jaw, I may indieate the overhanging position of the orbitosphenoi (figs. 8, 23, 10), raised high above the presphenoid (9), at the baek part of th interorbital septum: we see exactly the same position of the orbitosphenoi int many fishes. Cuvicr aceurately represents it in the skull of the pereh' This beautiful trait of unity of organization is eompletely put out of sight b the false homology of the orbitosphenoid in fishes with the alisphenoid i birds and mammals. The progressive reeession of the orbitosphenoid an alsphenoid, as we descend from mammals to fishes, transfers indecd thei eharacteristic nerve-notches or foramina from their posterior to their ante rior margins. But the notch (op, fig. 8) at the posterior margin of the orbite sphenoid in the bird for the cseape of the optic nerve by a foramen commo to it and the nerves of the orbit, is not less significant of its true homolog than is the anterior notel in the croeodile or fish; the osseous conneetion with the sphenoid below, with the frontal above, and with the alisphenoin behind, bcing the same.

Prefrontals.-If the eranimm of a cod-fish be bisected horizontally ani longitudinally, its most contracted part will be found at the upper part o the interorbital aperture, bounded by the orbitosphenoids, whieh mark th division between the prosencephalic and rhinemeeplalie eompartments of the eavity: the latter extends as a triangular ehamel or groove on the unde part of the frontal, opening below into the orbits, gradually expanding as i advances forwards, and dividing into two canals, whieh diverge to the inter spaces left on each side of the nasal, between it and the bones (fig. 4, 14), that mecting behind the anterior expanded end of the nasal, bound the anterio extremity of the true and entire eranium. The diverging eanals of the rhi neneephalic eompartment are formed by the two bones in question: the rhinen cephala or olfaetory ganglions are sometimes lodged at the extremities of thest eanals, and they send out the olfactory nerves by the apertures formed between the bones 14 and 15 , which then ramify upon the vaseular olfaetory sacs

[^22]oorted by the bones 19, fig. 5. For the argmments by which the olfactory glions in the cod are shown to be homologons with the olfactory ganglions rest upon the eribriform plate in man, and by whieh the medullary eords rura connecting them to the rest of the brain are shown to be homologous ithe so-called "ollaetory nerves' in the hmman craminm, and for the geIT homology of both as primary divisions and peduneles of the eneephaton, reader is referred to Dr. Desmoulins, 'Anatomie des Systemes nerveux Animaux ì Vertèbres,' $1825,8 v o . t . i . p .169$; to Mr. Solly's excellent tise 'On the Human Bram,' $1836, p .78$; and to my 'Leetures on the tebrata,' 1836, p. 184. I there adopt the expressive name applied by 1. Vogt and Agassiz to this mose anterion of the four primary divisions he brain of fishes, and apply to the pedunctes of the 'rhinencephala,' oh are frequently of great length in fishes, the name of 'rhinencephatic a, since they are serially homologous with the prosencephalic or cerebral a; and I call that division of the cranial cavity which specially lodges .e crura and their lobes the 'rhinenecphalie' chamber or compartment. right appreciation of the above essential characters of the most anterior sion of the brain and brain-case is indispensable to the accurate purof the homologies of the bones 13,14 and 15 , whose development, espey of the pair no. 14 , is governed by that of the rhineneephalon. In man all-predominating cerebrum, overarehing the mesencephalon and epenalon behind, and the rhinencephalon in front, so modifies the surroundcranial bones as to obliterate every part of the rhineneephalic division, the terminal fossa that immediately supports the so-ealled 'olfactory zolia, which fossa seems, as it were, to be unnaturally drawn in and ded with the great prosencephalie chamber, by reason of the enormous :Telling development of the proper spines or roof-bones of that chamber, frontals. Still, even here, through the absence of any commissural band aecting together the rhinencephala, a fibro-membranous process of the sskeleton extends between them, and into this septum ossification extends is below, called the 'erista galli.' In the cod-fish the homologous partibetween the rhinencephala is eartilaginous, and it extends some way back reen their crura, not being opposed by a coextended overhanging cerewith great transverse commissures. In many fishes (e.g. Xiphias, pl.1, ij) the outlet of the olfactory nerves, which notehes the inner side of 14 in the eod, is converted into a foramen (ib.ob.) by the extension of fieation aronnd the mesial surfuce of the nerves. Where the olfactory res are sent off from the ganglions in great numbers (e. g. Raia), they orate a membrane before reaching and ramifying upon the vascular itary sac. In man, the homologous membrane, or basis of the olfactory -ules, is ossified, and called from its numerous apertures the eribriform e. The holes which these cribriform plates fill up are homologous with 'foramina, or grouves forming the outlets of the olfactory nerves in the es no. 14 in fishes (figs. 4 and 5).
he grounds for this homology are so plain that we camot be surprised they should have been early appreciatch, as $e . g$. by the painstaking and osophic Bojanus in 1818*. I ncver eould comprehend the preeise meanof the statement with which C'uvier opposed his view:-" M Bojanus, parsans doute du trou yu'il a dums plusieurs poissons pour le nerf olfactif, en une lame eribleuse de l'ethmoide ; mais ertte o inion, qui n'a pas ee soutien a toutes les especees, est réfutée d'ailleur's par les autres rapports de eet os les ns voisinsf." Cuvier seems to lave thought the ground of Bojanus's iion to be cut away by the fuct that in the eod and some other fishes the

[^23]\dagger Ilistoire des Joissons, i. p. 235.
olfactory nerves groove instead of perforate the bones no. 14. But the tri ninal still determines the alisphenoid, whether it perforates or notehes t neurapophysis in its escape: the relation of the alisphenoid to the divis of the bth, ineluding the gustatory nerve, and that of the orbitosphenoid the nerve of sight, are not more constant than is the relation of no. 14 to 1 nerve of smell. The differenees of eomnection of no. 14-' les autres ri ports'-are not specified by Cuvier, and I know none that affect its essent eharacter.

No. 14 is however the most anterior of the neurapophysial or late bones of the true cranium, and is in relation with the anterior terminal di sion of the eneephalon and with the first or anterior terminal pair of nery Like all extreme or peripheral parts, it is subjeet, as we should be prepar to find it, to a greater extent and variety of modifieations than the mo central neurapophyses. The difference between its conneetions in the fi and that of the cribriform plates and their sustaining basis in man m therefore be expeeted to reach the extremes of possible homology. It w be interesting to inquire whether there are intermediate modifieations 1 whieh the nature of that difference may be appreeiated, and how many such links are permanently retained in the intervening speeies.

We might anticipate the smallest amount of dcparture from the fut damental vertebrate type, as respects form, size and conneetions of the bon in question, in that elass where the prineiple of vegetative repetition $m o$ prevails and the archetypal plan is least obseured by teleological adaptation Adopting the name modificd from the phrase applied to these bones by C_{1} vier in those vertebrata in whieh they present their most typical charaeter we find the 'prefrontals' in all bony fishes resting below upon the vomer (fig 4 and 5,13) and on part of the presphenoid (9), sustaining by their mesial an upper surfaees the nasal (15) and fore-part of the frontal (11), affording th whole or part of the surfaee of artieulation for the palatine (20) or the palatc maxillary areh, and giving attaehment exteriorly to the large suborbital c lacrymal bone (pl. 1, fig. 2, 73), when this exists. Besides their protectiv funetions, in relation to the olfactory ganglions and nerves, they elose the cra nial cavity and bound the orbits anteriorly. The most eonstant and charac trristic connections appear to be with the vomer, nasal, palatine and fionta In the murænoid fishes, where confluence begins to prevail in the eranial bones we find that the prefrontals coalcsee with the vomer and nasal, not with th true frontal. This faet, though not of a elass materially affeeting relation of homology, is not devoid of signifieaney in regard to the real eharaeter of the bone usually deseribed as one of the 'deux démembremens du frontal*, A clew not to be negleeted in tracing the homologies of the prefrontals i , their histologieal progress, although the value of sueh embryonie eharacters has been overrated and their application sometimes abused. The substramer of their ossifieation, like that of the exoccipitals, mastoids and post-frontals, is a eartilaginous mass, a part of that which M. Dugés has ealled 'eartilage eranio-faciale,' and M. Vogt 'plaques proteetrices latérales.' The frontals and parietals, being ossified in supra-eranial fibrous membrane with so rapid and transitory a cartilaginous eliange as to have escaped general reeognition, have been, on that aecount, rejeeted from the vertebral or endo-skeletal system of bones by Dr. Reichert, and with as little real ground as the rejection of the vomer and sphenoid from the same system, because they are ossified in membrane extended from the under and fore-part of the sheath of an evanescent suberanial 'ehorda dorsalis,' like the homologous basal ossifieation beneath the coaleseed anterior abdominal vertebra of the siluroids.

[^24]1. Dugés, who has accurately figured the 'cranio-facial' cartilage of a id fish in pl. ii. of his valuable Monograph *, gives as acenrate a figure te same cartilage in the Ramu viridls (pl. i. figs. 6, 7, of the same work), of which has been ossified a bone which transmits the olfactory nerve to -use-capsule: this bone (15 in the figures eited) rests below upon the di1 vomer and on the end of the presphenoid, sustains above the nasal and part of the frontal, affords an articular surface on its outer part for the ine, and only fails to repeat every characteristic connection of the preals in fishes, because (as likewise happens in certain of that elass) there , lachrymal bone developed in the Batrachia. The sole modification $1 y$ consequence tending to mask the homology is this; that whereas we in many fishes ossification extending into the persistent part of the cracial cartilage connecting, whilst it separates, the prefrontals, so as to mscribe the canals for the transmission of the olfactory nerves, such ossion proceeds in the anourous batrachia to anchylose the prefrontals with other, and convert them into a single bone. This difference however ed with Cuvier to make of it a new and peculiar bone-an'os en cein-

It would have been as reasonable to have given a new name to the soccipital in the Lepidosteus, because it is divided in the middle line inof being single, or to the frontal in the species where it is single instead cing divided, or to the vomer in the frog because it is double instead of e, or to the exoccipitals in the same reptile, which manifest the same il and annular con luence as the prefrontals. But, adds Cuvier, in refer:to the single bone (fig. 13, 14) resulting from this modification, "Je nc as trouvé divisé, mềme dans des individus très-jeunes qui avoient encore :and espace membraneux entre les os du dessus du crâne." Nor did the anatonist ever find the rudiments of the radius and ulna distinet at any id of development of the single bone of the Batrachia, which he neveris rightly describes as representing both bones of the fore-arm: nor e ever find a division of the single parietal in the embryo crocodile, It he equally well recoguized, nevertheless, as the homologue of the two Lals, which in most fishes have been subject to greater modifications in connections and relative position than the single prefrontal presents in nourous batrachia. These are not the only instances where relations of logy are by no means obscured, nor ought to be, by reason of the concee or even connation \ddagger of essentially distinct elcments. The capsule of Ifactory organ, partly protected by the anterior infundibular expansions ? connate prefrontals, undergoes no partial ossification homologous with :turbinal' (12, fig. 5) of fishes, but remains cartilaginous, like the sclesand petrosal.
e prefrontals, however, are not only connate with each other in the but coalesce with the contiguous neurapophyses-the orbitosphenoids :g. 13). And this modification has led Cuvier, notwithstanding the ection of the bone 10 with the presphenoid below, with the frontal 2, and with the prosencephalon, optic nerve (op) and orbit, to characthe batrachian skull as having "un seul sphénoïde sans ailes temponi orbitaires;" the true and distinct 'alisphenoid ' (6, fig. 13), with its al connections and nerve-perforations ($t r$), being described as the pe-

[^25]trosal, 'rocher*.' But the real difficulties whieh beset the quest of ge truths in comparative osteology are sueh that we may well dispense with over-statements of the amount of deviation from the eranial arehetype w mueh-modified skulls like those of the anourous batrachia may pre Fortunately the light whieh the development of sueh skulls throws their mature eharaeters, is aided by the persistent larval stages manifi by the perennibranehiate species.

In the menopome, for example, the prefrontals remain distinet, both eaeh other and from the orbitosphenoids \dagger, their characteristie connee and funetions being the same as those of their eoaleseed homologues it frog, exeept that they are notehed, instead of being perforated by the o tory nerve, whieh grooves their inner border, as in the eod and some of fishes. Cuvier just hints at the possibility of his 'os en eeinture' in the representing "à̀ la fois le frontal prineipal et l'ethmoïde \ddagger," or as havin equal pretence to one or the other name.

The suture, however, whieh marks the limits between the frontal "1 parietal 7 is persistent in the menopome, and indeed in all batraehians the anourans; and even in the very young larve of these, Cuvier ad (and the observations of M. Dugés warrant the admission) "que l'on sé une partie postérieure de forme ronde de l'antérieure qui est allongée" (1 p. 387). The permanently distinet frontals present a similarly elongated if in the urodeles, and are therefore reeognized by Cuvier in the salaman e.g. at c, pl. xxv. fig. $1, o p$. cit.; in the newt, pl. xxvi. fig. 6 ; in the menope fig. 4 ; in the axolotl, pl. xxvii. fig. 24; in the siren, ib. fig. 2; and in the phimma, il. fig. 6. In all these crania the true frontals are indieated by same letter c; in none of them do they elose the cranial eavity or bound orbits anteriorly, or are perforated by the olfaetory nerves, or artieulate , the vomer below, or perform any of the essential funetions, or combine the racteristic conneetions of the prefrontals of fishes, all of whieh eoneur in 'os en ceinture.' But the frontals do present the chief eomeetions and oee the relative position of the anterior half of the bone (τ and 11 , fig. 13) wt Cuvier ealls the parietal in the frog. The evident tendeney to coaleseene essentially distinet bones which pervades the skeleton in the adult anour greatly diminishes the diffieulty, through the loss of the suture between parietal and frontal, of recognizing the homology of the latter bone, wh with that exeeption, not only repeats the eharaeters of the frontals in fisl but of those in most tailed batraehians.

Next, then, with regard to the ethmoid, the seeond of the two bones which Cuvier restriets the ehoiee of the homologues of the 'os en eeintu no. 14. No name has been applied more vaguely or with a less defir meaning than this same 'ethmoïde.' In the sense in whieh Cuvier wo permit its application in the present instanee, it is a bone whieh forms

* Op. cit. p. 386.
† The menopome, which represents a gigantie tadpole of the failless batrachia, manif a heautiful conformity to the general type, and well illusirates the real nature of the appai deviations which take place in the course of the remarkable metamorphoses of the anour At first sight the orbitosphenoids seem to be barred ont from their normal eomeetion w the frontal by the jumetion of the parictal with the prefrontal in the menopome, as appe: for example, in the figure given by Cuvier in the 'Ossemens Fossiles,' v. ptt.ii. pl. xxvi. fig ' where $c^{\prime} h$ divides c from u. Remove, however, the prefrontal h from the parietal c^{\prime} (wh may be readily done, the suture, whieh is not indiented in the figure eited, being persistel and the anterior and mesial lalf of the orbitosphenoid (u) is then seen extending inwa (mesiad), beneath the parietal and prefrontal, to join a triangular surface formed by a seending process from the middle of the outer edge of the frontal.
\ddagger Op. cit. p. 388.
terior and antero-lateral walls of the cranium, defends the rhinencephata d transmits the olfactory nerves, but is altogether distinct from and posior to the capsules of the organs on which those nerves are ramified. the crocodile Cuvier restricts the term 'ethnoid' to the cartilaginous nire, capsules, or supports of the olfactory ramifications after the nerves ve left the cranium. In mammals the ethmoid is made to include both the nes that close the cranium anteriorly, support the rhinencephala, give exit the olfactory nerves, and those which defend and sustain the enormously veloped and complex superior parts of the organ of smell*. Whilst this ofusion is permitted to ritiate osteology, it is plain that no intelligible mological or other proposition can be predicated of the 'etlomoid.'
When Cuvier, with reference to the hypothetical possibility of the homoue of the frontal forming part of the bone 7 and 11 in the frog, adverts to : second mode of bringing the 'os en ceinture' into the ordinary category cranial bones, by viewing it as the 'ethmoïde,' he adds, that it would then "un ethmoïde ossifié, se que sera une grande singularité" (ib. p. 388). re it is obvious that the predominating idea of the ethmoid was that preted to his mind by the capsules of the olfactory organ in the crocodile and er reptiles, which he had so called, and which are wholly or in great part stilaginous. But the parts of Cuvier's ethmoid in birds and mammals, which in functional and physical relation with the cranial cavity, rhinencephala I olfactory nerves, are ossified: the bone, also, to which he gives the name 'hmoid' in fishes (fig. 5, 15), is ossified; and, what is more to the purpose, bones (14) in fishes, ophidians, chelonians and saurians, which repeat the ential characters of the batrachian 'os en ceinture,' are likewise ossified.
General homology teaches that the bone or bones in relation to the defence the rhinencephala and the transmissiou of their nerves belong to one class, I that the parts of the skeleton, whether membranous, gristly or bony, ich form the capsule or sustain the olfactory organ itself, belong to another I very different class of parts of the skeleton. But, not to anticipate what ongs more properly to a subsequent chapter of this work, observation ws the two parts to be physically distinct in all vertebrates except mam$d s$, and to be distinct in the foetus of these. Whether we restrict the term 'hmoid 'to the neurapophysis or to the sense-capsule (which in mammals ludes the 'conchæ superiores' and cells of the ethmoid), the term must -applied arbitrarily in its extended or homological signification, since the arapophysis dismisses the nerve, not by a 'sieve-like' plate, but by a single amen or groove in all the vertebrates below mammals. The multiplied amina in the neurapophysial orcranial part of the anthropotomical 'ethmoid,' ence that name, as well as the special designation of the part called 'lamina orosa,' are modifications peculiar to the mammalian class, but not constant e, and they form no essential homological character of the bone in question. sppears to me preferable, since we have two essentially distinct parts of the leton combined in the mammalian and human ethmoid, to restrict the term moid to the part which appertains to the sense-capsule, i.e. which is directly .cerned in the support of the membrane and cells of the olfactory organ.

[^26]But leaving for the present the question of names，and returning to thin let us pursue our search and comparisons of the bones whieh continue in t higher classes to repeat the essential eliaracters of those called＇prefronta in fishes．Were it necessary to add to the reasons above assigned for regardi no．14，fig．13，as the homologues of 14 in the fish，notwithstanding they 8 connate in the batrachian，I would cite the structure and relations of the bones in the sword－fish．The whole of the anterior part of the extensi interorbital space is occupicd by the prefrontals（PI．I．fig．5，14）which jo each other at the median line by an extensive vertical cellular surface：th form the anterior border of the orbit，and the posterior wall of the nasal foss they close the cranial cavity anteriorly，and each transmits the olfacto nerve to the capsule by a central foramen．They are almost covered by t frontals（11）above，which they support by a broad flat surface；a very smı portion only appearing on the upper surface of the skull at the anterior ans of the orbital ridge．Were the frontals separated，the prefrontals would th appear，as in the frog，at the median line：were the suture between the to prefrontals to be obliterated in Xiphias，an＇os en ceinture＇would be pr duced like that of the frog．The nasal bone of the sword－fish，which Cuvi calls＇ethmoïde，＇presents a cellular structure of its hase（ $15, n s n$ ）design to break the force of the concussion arising from the blow which is deliver by the＇sword．＇But the prefrontals manifest more extensively this peculi cellular structure，which Cuvier well says，＂l＇on prendrait presquc pour 1 cellules de l＇ethmoïde d＇un quadrupède＊．＂＂

Cuvier，not perceiving or not appreciating the grounds of the homology the＇os en ceinture＇with the prefirontals，deseribes the divided nasal（15，fi 13）in the batrachia as the＇frontans antérieures＇；and reciprocally，havi calted the bones in fishes，homologons with the bone 19，（which he thoug might represent the ethmoid in the frog）＇frontaux antérieures，＇he gives tt maine＇ethnoilde＇to the bone 15，fig．5，whether single or clivided，in fishet It is not necessary to add anything to the arguments hy which M．Agass has sustained the conelusion of Spix，that Cuvier＇s＇ethmoill＇in fishes is th ＇nasal．＇And it needs，I think，only to compare the comeetions of th bones 15 ，fig．13，with either the single or the divided nasals in fishes，and 1 glance at the obvious homology of the bones h in Cuvier＇s pl．xxiv．fig． 1 － with the bones $g g$ in figs． $4 . \& 6$ of pl．xxyi．（＇Ossemens lossiles，＇t．v．pt． 2 to ensure the acceptance of the conclusion，that his＇frontaux antérieures in the frog and the other anouraus are the true nasal bones．

The membranous and cartilaginous hasis of the lateral walls of the cranium especially of its anterior eompartments（prosencephalic and rhinencephalic， are incompletely ossified in all lacertian Sauria．The orbitosphenoids ar represented in most by small styliform ossicles（＇Ossemens Fossiles，＇t．1t pt．2，pl．xvi．fig．1，z）bounding the anterior and inferior part of the prosent cephalic chamber，and which Cuvier，who describes the true alisphenoid a the petrosal（rocher），regards as the representative of both alisplienoid ant orbitosphenoid．The alisphenoid is，however，well charaeterized by its eont nections with the basisphenoid and exoccipital，with both of which it com monly becomes anehylosed；by the share which it contributes to the cham－ ber lodging the true cartilaginous＇petrosal＇；and hy the notch on its fore－ part for the eseape of the third division of the fifth nerve．

The orbits and rhinencephalic groove are bounded anteriorly and divided from the olfaetory compartments by two transversely extended and antero－ posteriorly subcompressed bony columns，resting upon the palatincs below，

[^27]d arching upwards and backwards, expanding as they aseend, and defining ternally the membranous space perforated by the olfactory nerves. These ? the parts in all lizards that repeat the essential characters ol the preintals in batrachians and fishes: they are, morcover, distinct from one anrer, and appear on the upper surface of the skull anterior to the frontals, d thus resume their more typieal character as first displayed in fishes. In 3 large monitors ('Ossemens' Fossiles,' v. pt. 2, pl. xvi. fig. 1, e) there can no mistake as to their spccial homology; since they articulate with the :hrymals (f) (homologues of the great anterior muco-dermal suborbital ne), and also, as in the carp, with a supraorbital ossicle (h): but in many fer lizards and in serpents they are confluent or connate with the lachryals. In this case the external antorbital position and perforation for the icous duct distinguishes the lachrymal portion of the coalesced bones. In ? python the broadest part of the palatine, formed by the process directed vards and by the opposite one sent outwards for the suspension of the willary, articulates with the under surface of the prefronto-lachrymal bone; d the inner part of the true prefrontal portion is notehed by the olfactory rve in its passage to the capsule supported by the ossified turbinal..
The bones, which more resemble the anchylosed prefrontals in the frog, are frontals of the python; but the resemblance is confined to one character 15 , and that an exaggeration of a character common to the frontal bones of thy birds, and of the ornithorhynchus among mammals, vi九. a developant of a median bony partition from the line of the frontal suture into the :dian interspace of the encephalon. In the python each frontal sends wn at the fore-part of this suture such a partition, which is therefore double, the falx essentially is in man and the mammalia, in which it retains its mitive histological condition of a fibrous membrane. The ossified laminæ the falx in the python bend outwards and coalesce below with the external orbitosphenoidal plates of the frontal, and thus surround the lateral divias of the fore-part of the brain (rhinencephala), which are drawn back the progress of the concentrative movement of the cerebral centres, so as occupy the prosencephalic segment of the cranium, the prosencepha1 being, in like manner, protccted chiefly by the mesencephalic bony arch. ie change is precisely analogous to that which takes place at the opposite tremity of the neural axis in higher animals. In the python every segment the spinal choid retains its primitive relation to the segment of the endokleton, through which it transmits its pair of ncrves. In the mammal the ncentrative movements of the spinal chord draw its hinder segments in vance of their proper vertcbræ, and the primary relation is indicated by 3 nerves which these vertebre continue to transmit, and by which alone we ? guided from the segment of the endoskeleton to that of the neural axis ich originally governed its development.
'Accordingly, at the anterior end of the skeleton, we trace the relation of osseous segment, which transmits the olfactory nerves to their caple, to its proper division of the neural axis, by following those nerves back the retracted ganglions (rinencephala) from which they take their origin. te connections of the annular frontals of the python with the parietals and st-frontals l,ehind, with the connate orbitosplicuoids, and through them with e presphenoid below, prevent their homology being mistaken; for they are
from completely representing or repeating the cssential characters of the alesced annular prefrontals of the frog.
Not to lengthern unnecessarily this exposition of the homologucs of the pre-

[^28]frontals (14 , figs. 4 and 5) in fishes, I pass at onee to the highest of existing re tiles, the crocodile. Here we find, in the dry skull, the eondition of the erani eavity in the fish beautifully and closely repeated: the proseneephalie pa opens freely by the aperture bounded by the orbitosphenoids (fig. 9, 10) in the common orbital cavity (or), and the rhineneephalic division of the craniu is prolonged, as a groove upon the under surfaee of the coaleseed fronta (ib. 11) above the orbits, expanding as it advanees, until it is arrested by boundary formed by two bones ($i 6.14$), whieh rest below upon the rom and give attachment there to an ascending proeess of the palatines (20), whic sustain by their mesial and upper expanded surfaees the nasal (15) and for part of the frontal (11); and articulate exteriorly with the large lachrym: bone (fig. 22, 13) perforated as in the fish and lizard by a mueous duet fron the orbit. They are each grooved on their inner or mesial surface (indicate by the numerals 14, in fig. 9) by the olfactory nerve, where it escapes frot the eranium to spread upon the membranes sustained by the cartilaginou capsules anterior to the bones in question; below these grooves the bone (14) extend inwards and meet at the mesial line; but do not eoalesee ther as in the frog, nor extend their mesial union upwards, so as to convert th olfactory grooves into two eomplete canals. They, therefore, retain or resum much more of their primitive piscine charater than do their homologues is the frog, and inanifest it conspicuously by developing a subtriangular externa plate which appears on the upper surface of the eranium at the anterior angl of the orbit between the frontal, the laehrymal and the nasal bones. In short the homology of the bones 14 in the eroeodile (figs. 9, 21, 22) with thost so numbered in the fish (figs. 4. and 5), was quite unmistakeable; and, witl the exeeption of Spix, all anatomists have concurred in this respect witl Cuvier: only some of them have extended further and expressed differently the homologies of the bones in question.

Now, bearing in mind the small brain of the cold-blooded erocodile, and the concomitantly restricted development of the spine or roof-bone in speciai relation with the cerebrum, viz. the frontal (11), whieh is aided in its secondary function in relation to the orbit by distinct supraorbital bones in atl eroeodiles, and contrasting the condition of the part of the brain which ehiefly governs the development of the frontal bone with that of the same division of the brain of mammalia,-let us proceed to make the comparison which Cuvier recommends*, in order to traee the homologues of the eroeodile's prefrontals in the mammalian class.

We place the skull of a ruminant (the red deer, c.g.) by the side of that of a eroeodile, and delineate a suture which would detach a portion from the frontal, having the same superficial eonnections as the upper peripheral plate of the prefrontal has in the erocodile. It appears to be far from presenting the same fignre; but most assuredly sueh artificially detached portion of the ruminant's frontal has not the same functions ('emploi') as the prefrontal has in the eroeodile. For if we even include with the part so detaehed the anterior portion of the descending orbital plate of the frontal, we find it joining below the orbitosphenoid without any comection with the vomer, or any attaehment to the palatine: it forms no immediate part of the supporting plate of the rhinencephalon, nor of the foramina for the exit of the olfactory nerves. Such artificially detached portions of the mammalian frontal are entirely separated from eaeh other ; whilst one of the important

* "Il sufitit en effet de placer une tête de mammifềre, de ruminant par exemple, à côté
d'unc tête de eroeodile, pour s'assurer qu'il s'est fait iei ('du frontal antérieur') un démem-
brement du frontal. On pourroit, sans rien déranger, dessiner sur le frontal du mammifère
la suture qui existe dans le croeodile, et on détacheroit ainsi dans le premier un frontal
antérieur qui auroit la nême position, presque la même figure, et absolument le même emploi
que dans le eroeodilc."-Ossem. Fossiles, v. pt. ii. p. 73.
its of resemblance between the prefrontals of the crocodte and those of fish are the mesial approximation and jnuction of their descending (ncuophysial or thinencephalic) plates-the most constant and important parts he bones iu question.
f the frontal of the ruminant or other mammal were expanded only at parts correspouding with the detached boncs called "frontaux antéres" in the crocodile, there might then be a primat facic probability that 1 expansions were connate parts, dismembered in the crocodile's skull. more ebret less vertical convex expansion of the frontal in the highest comitant class, naturally indicate, in the first place, an inquiry into the hat boue is mainly governed; and if such modification should then be id to exist, in the cerebrum, for cxample, which, from the asccrtained elative progress of the frontal in other classes, ought to cause or be ciated with such a general development of that bone as charactcrises the I in the mammalian class, it must surely be superfluous and gratuitous xplain that development by the hypothesis of a coalescence of another atially distinct element of the cranial parietes: especially if that element roved, by a similar tracing of its relations to the progressive development he cerebral centres, to have as essential and exclusive a dependence 1 the rhinencephalon as the frontal bone has upon the prosencephalon. he position of the upper peripheral part of the prefrontal in the situation hich it is seen in the crocodile, is, in fact, the least constant and importof the characters of that bone. In the bull-frog, for example, the exd part of the prefrontal is mesiad of the conjoined parts of the nasals frontals instead of being lateral : in the sword-fish the prefrontals barely ar, and in the python they do not appear at all, upon the upper surface ae skull; but they retain in each their more typical neurapophysial pon, with all their more constant and essential characters. The enormously loped froutal of the mammal masks these characters, and usurps the constant and least important one, viz. superficial position, on which alone ier iusists as proving the prefrontal of the crocodile, with its complex tions and connections, to be such a dismemberment of the true frontals ie ruminunt, as may be marked off with the pen on the upper surface of kull!
he descending [rhinencephalic] plates of the prefrontal in the crocodilc 9,14) are subcompressed in the axis of the skult, and cxpanded laterally, cially at their upper part ; where, in the alligator, I find them forming a ow cup, concave forwards for the lodgment of the cartilaginous olfactory ule,-of that part, namely, which is ossified in mammalia, and there dcped into the great labyrinth of the superior turbinals and ethmoidal cells. vertical plates, continued forwards from the prefrontals, which extend ' e to the nasal suture and descend into the vomerine groove below, to aid rming the 'septum narium,' are cartilaginous in the crocodilc: they arc \geq or less ossified, and form the 'lamina perpendicularis cthmoidei' in imals. The median plate, dividing the olfactory nerves at their exit, and toped backwards as a partial septum of the rhinencephatic chamber of sranium, and continued into the simple interorbital septum of the crocoalso remains cartilaginous: when ossified in mammats, it forms the sta galli.' Now not one of these eartilaginous representatives of the parts he compound bone ealled 'ethmoil' in anthropotony, is united or' coned with the portions of the frontal in mammals which Cuvier has assumed e the homologues of the prefrontals in the crocodile; those bones being
in that reptile, as the prefrontals are in fishes, chiefly eoneerned in elos the anterior end of the eranial eavity, in giving exit to the olfactory ner in suspending the palatine arel, in eonnecting the vomer with the nasal, tieally, and the nasal with the frontal and laerymal horizontally, repeating the erocodilc for the lattcr purpose the development of the upper or horizo: plate whieh had alnost or cutircly disappeared in some of the interven forms of reptilcs. In most ehelonians this portion of the prefrontal coales or is eonnate with the short nasal: but I have found the instructivc except presented by the existing fresliwater tortoise (Hydromedusa) of the persist suture between the nasals and prefrontals, repeated in two fossil eheloni (Chelone planiceps and Chelone pulchriceps)*.

Proceeding in the ascensive track of the homologies of the prefront I have seleeted from the elass of birds the skull of the ostrich (figs, 8 and \& the representative of an aberrant order, in which every deviation from type of the elass that has been supposed to tend towards the Mammalia, te equally or more towards the Reptiliat, and in whieh, eonformably with lower development of the respiratory system, the original sutures of cranium, or in other words, the signs of the vertebrate archetype on whie is construeted, are longest retained. Were we to eut off the corresponding terior angles of the frontals, no. 11, to those supposed to represent in mann the bones we are in quest of, we should have even fewcr of their eharaet than in the higher elass alluded to, beeause the descending orbital plat less developed, and the frontal, though its general size is much augment retains more of its oviparous horizontality as an expanded spine or roof-bi of the eranium.

There is a large bone (fig. 23, 73) bounding the anterior border of the or and from which, as we have scen in the parrots, ossifieation somctimes exte: baek wards along the inferior contour of the orbit to the postfrontal. But bone, besides its repetition of the connections of the laerymal in the fish a eroeodilc, resting as in the latter animal upon the truc malar bone, is eit perforated or grooved by the laehrymal duet, whieh it defends in its cou from the eye to the nose, and has none of the essential eharaeteristies of prefrontal. But we sce on the exterior of the skull of the ostrieh and oth struthious birds \ddagger, a distinet rhomboidal plate of bonc interposed betwcen frontals and nasals, preeisely in the situation in whieh the upper surface the eoaleseed prefrontals appears in the skull of the frog and other anour batraehians. In a nearly full-grown ostrieh's skull, I removed the left fri tal, nasal, laerymal and tympanie bones, and the zygomatie arch, as in fige and found the faect in question to be the upper and postcrior cxpano surface of a large irregularly subquadrate eompressed bonc ($\mathrm{i} . \mathrm{L}_{14}$), eonsi ing of two vertical eompaet plates eoalesced at their periphery, and includi a loose canecllous texture. The upper and posterior expanded surface of I bone extends a short way baek boneath the frontals, deseends and eloses 1 anterior aperture of the eranium, and sends out from caeh side a plate bone which arehes over the olfactory nerves and forms the canals by whi they are condueted along the upper part of the orbits. The anterior and upt surfacc of the bone again expands (at 14^{\prime}, figs. 8 and 23), and therc sustai and is covered by, the nasal boncs, and again overarehes, and is sometin

[^29]forated by the olfactory nerves (the course of which along the rhinen,halic continuatiou of the eranial eavity, is shown by the arrows, ol. 1.1, S. 8 and 23) prior to their final expansion on the olfaetory organ; the in bolly of the bone forms the fore-part of the intcrorbital scptum and back part of the nasal septum, a slight outstanding ridge or angle iding the two surfaces: it rests below upon the rostral prolongation of presphenoid, which, however, barely divides it from the semicylindrical ored vomer (13) which sheathes the under part of that proeess. The :tcrior extremities of the palatines develope broad horizontal plates mesiad 1 upwards (fig. 23. 20), which join the lower border of no. 14, where it rests on the presphenoid. The outcr margins of the anterosuperior expansion no. it come into contaet with the lacrymals : the posterior border of the tieal or rhinencephalic plate joins and soon eoalesces with the orbitospheds (10). Thus we lave all the essential eharacters of the prefiontals in fish, the frog and the erocodile, with a repetition of their first inportant dification in the tail-less batraehians, viz. that of median eonfluence; and -s not unimportant to observe that this is assoeiated with the obliteration of aer cranial sutures, by whieh also those batrachians resemble birds. The It step in the progress of this median approximation of the prefrontals, is : development of the plates whieh, in eertain fishes, convert the olfaetory ooves into foramina; these mesial plates next come into contaet at the middlc , e.g. in Xiphias and Ephippus ; they proeeed to coalesee in the frog, and prefrontals are so much further compressed in the bird that the olfaetory joves open upon the outer or lateral instead of the inner or mesial surfaees of rhinencephalie plates: they are, however, very deep grooves in the ostrich. 1 in the apteryx are canals proteeted by a distinct external plate. The erruption of the direet vomerinc connection by the prolonged presphenoid the chief secondary modifieation of the prefrontals in the bircl. No other ae in the bird's skull repeats the more essential eharaeters of the prefrontals ishes and reptiles, save the bone no. 14, figs. 8 and 23. Cuvier calls this bone 'ethmoïde'; but blames the clear-sighted and consistent German anato--sts who applied that name to the prefrontals in fishes and reptiles; yet the Et of Cuvier's ethmoid in the bird answering to the 'lamina eribrosa' of the mmal, sometimes gives passage to the olfactory nerve by a single foramen, netimes by merely a groove, a difference which does not prevent him opting the homology here, though he opposes it to the adoption, by janus, of the homology of the same part in the fish (ante, p. 215). The ooth plate forming, with the orbitosphenoid, the interorbital septum, is 'os planum,' or papyraeeous plate of the bird's ethmoid, with Cuvier : masking of this part in most mammals by the downward development the orbital plates of the frontal, offered no diffieulty to the ethmoidal deemination of no. 14 in the bird; and it forms as little valid objection to :en's mode of expressing the ethmoidal homology of the prefrontals in the ld-blooded ovipara.
For the reasons before assigned, viz. that the terms 'frontal antérieur' d been given to the bone in question, no. 14, in those animals in which it viates least from its general type, as the nasal neurapophysis, I retain the me 'prefrontal' for it under all its metamorphoses. Cuvier, after balaneing ? charaeters of the bones nos. 15,22 and 73 (fig. 23) in birds, inelines to the inion that 15 is the true nasal, and 22^{\prime} an essential part (nasal proeess) of e premaxillary: with regard to 73, he says, "les os externes et plus voisins l'orbite seraient presque comme on le voudrait, ou des frontaux anté"urs ou tles lacrymaux." In which case, no. 14 having been described as e 'ethmoid,' one or other of the above-naned boues would be wholly absent
in birds. "Ce que pourrait faire eroire que c'est le frontal antérieur manque, e'est que dans les oiseaux il n'y a point de frontal postérieur, et q la paroi antéricur de l'orbite, à l'endroit ou le frontal antérieure se trou ordinairement, est manifestement forméc en grande partic par une laı transverse de l'ethmoïde*." But the postfrontal is not always absent birds : it is present as a distinet bone, though small, in the emeu's sku figured in the 'Memoir on the Dinornis' above-eited; and it is still mo developed in that remarkable extinet (?) genus of wingless birds. Besid to antieipate the subject of a subsequent chapter of this work, a parapophy: always disappears from a typical segment of the skeleton sooner than neurapophysis. The rest of Cuvier's difficulty in the reeognition of the pr frontal in birds was more nominal than real.

The ethmoid, in the restricted sense in which Cuvier applies the term in tl eroeodile and other animals with divided prefrontals, and in which I wou apply it in those animals also in which the prefrontals have coaleseed, present but remains eartilaginous in the bird. In the mammal it becom bony and eontracts anchyloses not only with the still more reduced debris. the coaleseed prefrontals, but also,-in consequenec of the ehange of positic of the prefrontals through the further progress of concentration, wherel they are drawn baekwards eloser to the prosencephalie part of the craniun and in eonsequenec of the concomitant expansion of the true frontals,-wit the orbital plates of the frontals ; and aceordingly these plates usurp in mo mammals the offiee and the position of the external parts of the prefronta in the eold-blooded vertebrata \dagger.

The posterior part of the eoaleseed prefrontals (figs. $24 \& 25,14$) divide the anterior aperture of the cranium into two outlets, upon the inner cireun ference of which the rhineneeplala rest; caell outlet being commonly elose by part of the olfactory eapsules, which are ossified and perforated to receiv the divisions of the olfactory nerves. When the prefrontals extend baekwarc and beyond the cribriform plates, they form what is termed the 'erista galli this exists in comparatively few mammalia ; but is as large in the seal tribi as in man. In the tapirs the prefrontals expand above and overareh the o factory eapsules, but their upper horizontal plates are overlapped by the nasals and true frontals. In the Delphinide, where the olfaetory eapsulc are absent, the prefrontals expand posteriorly, and diverge from their media eoaleseed portions constituting the septum of the masal passage, in order t form the posterior boundaries of those passages and the anterior wall of th cranial eavity. They again expand and form a thiek irregular mass anterio to the nasal passages in some Delphinida, and in Zipliues ossification extend along the fibrous continuation of the prefrontals forwards to near the end o the premaxillaries \ddagger. They are connate with the orbitosphenoids behind, ant soon coalcsce with the vomer below; they rise anterior to the frontals and support the stunted masals which are wedged between the prefrontals anc frontals. The eetaeca are the only mammalia in which the prefrontals appea upon the exterior of the skull, and whieh in this respect resemble the reptilia

[^30]Cuvier describes the postcrior and supcrior expanded and diverging plates the prefrontals as "la lame cribreuse de l'ethmoide:" the coalesced part curing the septum, he ascribes to the vomer*. Dr. Köstlint, also, who jards the ethmoid as no proper bone of the skull, but only an ossified gan of sense, yet describes, after the antliropotomists, the coalesced preiutals as the cribriform and azygos processes of the ethmoid ('Sicbplatte' d'Scheidewand des Siebbeins,' pp. 85. 89) in cetacca which have no zan of smell. In a young balænoptera, in which the frontals, the vomer d the nasals were ossified, I find the prefrontals as two cartilaginous plates, tending from the nasals above to the groove of the vonicr below. In the satee the essential parts of the prefiontals which close the cranial cavity teriorly, aud give exit to the olfactory nerves, are thick and unusually panded. But in no mammal do these parts, with their continuation, the mina perpendicularis,' which, as the coalesced neurapophysial plates of efrontals, brings the romer below in connection with the nasals above, er undergo such modifications as to obliterate their true and essential hological characters.
In proceeding next to consider the special homologies of the bones of the oh closed by the premaxillaries (22) and constituting the 'upper jaw', I mmence with the palatines (20), because they form, throughout the verteate series, the most constant medium of suspension of that arch to the terior cranial segment formed by the vomer, prefrontals and nasal. This ecret affinity,' as Goethe would have termed it, before the knowledge of general type had revealed its nature, is manifested by the process of the datine in man, which creeps up, as it were, into the orbit to effect its wonted ion with the prefrontal, to that part of the bone, viz. of which Cuvier had sognised the homologue in his 'ethmoilde' of the bird \ddagger. It is the very astancy, indeed, of these and other connections which has exempted the latine from the different determinations and denominations attached to er bones, and which renders further discussion of its special homology necessary here.
Passing over, for the same reason, the maxillary (21) and premaxillary (22), . d referring to the excellent treatise by Dr. Köstlin§ for the grounds of determination of the 'pterygoid' (24), I proceed to notice other bones .ich, diverging from the maxillary arch, serve to give it additional fixation d strength in the air-breathing vertebrates. The first of these is the malar ne (fig. 11, 20), the homology of which has been traced without difference opinion throughout the mammalian class ; where, however, the inconstancy its proportions, number of connections, and very existence, is sufficient to licate its comparative unimportance as an elenıent of the maxillary arch. is absent in many insectivores (Centetes, Echinops, Sorex): it has not en detected as a distinct bone in the zygomatic arch in the monotremes, on count perhaps of its early coalescence, as in hirds, with the maxillary \%. 12, 21, 26) : in Myrmecophaga gigantea and Manis, it projects backrds, as a styliform appendage, from the maxillary, but does not attain the uamosal; whilst in the sloths and their extinct congencrs the gigantic -gatherioids, the malar prescuts its maximum of development and complex1. In the Delphinidee, again, the malar is much reduced: its slightly exnded maxillary end forms part of the orbit and joins the frontal ; the rest tending backwards, as a very slender style, bencath the orbit to the squa-

[^31]mosal. The malar joins the post-orbital proeess of the frontal in the Mar tus senegalensis, the hippopotamus, the solipeds, and ruminants, some ear vores and the lemurs; in the true quadrumanes and man it joins the alispl noid, and sometimes also the parietal.

The presenec, form and conneetions of the malar are mueh more eonst\& in the class of birds; where, however, it must be sought for as an indepe dent bone at an early period. In the young ostrieh (fig. 23, 26) it is reduc to the form of a simple, straight, slender style, and coalesees first with t similarly-shaped squamosal (27), and next with the malar proeess of t maxillary ($21^{\prime \prime}$). In the croeodile the malar bone (fig. 22, 26) beeomes mo developed, and adds the connections with the postfrontal (12) and the eet pterygoid (24') to the more constant ones with the maxillary (21) and squ mosal (27), which alone sustain it in birds. In most of the chelonians t malar presents the same commeetions as in the erocodile, but is transmuti from a 'long' to a 'flat' bone. It retains the expanded shape in the agam. but in most other lizards it resumes the styloid form; being broadest, hor ever, in those genera, e. g. Iguana, Thorictes, Tejus, in which it extends fro the maxillary to the postfrontal and squamosal ; in the Varani it projec freely backwards, like a styliform appendage of the maxillary, as in tl toothless mammalian Bruta, above-eited.

There is no malar bone in ophidians and batraehians. The lower portic of the tympanie pediele in the Anoura sends forward a process which joins backward prolongation of the maxillary: in all other batraehia the lowi portion of the tympanie pediele is restrieted to its normal conneetions and 1 its function of affording articulation to the lower jaw. With regard, theri fore, to the zygomatie modification of this portion of the pedicle in anourot Batrachia, some may deem it the homologue of the malar; and, in marst pial quadrupeds, the malar aetually forms part of the glenoid eavity for th lower jaw : or it may be regarded as the squamosal, whieh constantly sul ports the lower jaw in mammals : or it may be viewed as the eoalcseed home logue of both bones: or finally, as a simple modified dismemberment of th tympanie pediele of the higher reptiles and birds; effeeting a union wit the maxillary bone whieh makes it analogous to, but not, thercfore, homolo gous with, the distinet malar and squamosal in those higher vertebrates. Thi is a question of speeial homology on whieh I am unwilling at present t express a deeided opinion : but viewing the ineonstaney of the squamosal it reptilia, and its deprivation of the funetion of exelnsively supporting th mandible in all ovipara, I am disinelined to adopt the idea of its sudden resti tution to that mammalian funetion in frogs and fishes; yet, if either of the bones 26 and 27 are to be selected as the homologue of the hypotympanie ($28 d$ l of batraehians and fishes, I should regard the elaims of the squamosal to bi stronger than those of the malar, whieh Cuvier has chosen. The further sub division, however, of the tympanie pediele in fishes, prepares us, in the as censive eomparison, for the simple division of the pediele in batrachia, anc for reeognising in the lower artieular portion a vegetative dismemberment o ${ }_{2 s}$ in the crocodile.

The eharaeters and ehief ehanges, in respect of eonncetions and functions of the squamosal (27) in the mamnalia have already becn notieed in the discussion of the homologics of other elements of the complex 'temporal bone in that elass. In birds the bone (fig. 23, 27) undergoes the same eliange of form whieh has been notieed in the jugal, viz. from the squamous to the styloid. It continues, however, to connect the malar with the tympanie as it does in figs. 11 and 12, but it has no comections with other bones. $\mathrm{Cu}-$ vier having been led to recognise the squamosal in the mastoid (fig. 23, 8) of
ds, does not distinguish 27 from 20, the true 'jugal :' and Gcoffroy viewing 'portion écailleuse' of the temporal in that cranial bone of the bird, whichi figures under the letter R, fig. 17, pl. 27 (Amanes du Muséum, x.), calls true squamosal, the origimal separation of which from the malar he had :iced in the chick, 'jugal postérieure.' He did not adnit that this division the yygomatic style was constant or common in the osteogeny of the skull birds: but I have always found such division in the cmbryo, and it conaes longer than usual in those very species, e, g. the (luck and ostrich ., 23, 26, 27), in which Geoffroy denies its cxistence (l.c., p. 361). Oken surately describes the two constituents of the zygoma in the skull of the sse, in his characteristic and origiual Essay *, where he calls the postcrior ce (2r) the humerus, and the anterior one (26) the radius of the licad. ianust, who also recognised the fact of the essential individuality of the ie (2t) in birds, but who saw the homologue of the squamosal rather in the panic (2s), calls it 'os zygomaticum posterius.' I could cite other testinies to the primitive existence of the distinct bone in birds connecting the lar with the tympanic ; but the fact which chiefly concerns us here is, that the special homology of no. s with the mastoid, and that of no. 28 with tympanic be proved, we then have a bone presenting the most constant inections of the squamosal in no. 27 : if, however, that name be transferred, ass been done by Cuvier, Bojanus \ddagger and Geoffroy, to other bones, then a ; boue and a new name must be introduced into vertebrate craniology, which, as I trust I have shown, there is no sufficient ground.
3oth Oken and Bojanus rightly discern in the permanently distinct bone ch, in the crocodiles (fig. 22, 27) and chelonians, connects the malar (26) h the tympanic (2s), the homologue of the bone they call 'cranial humeor 'zygomaticum posterius' in the.bird. Cuvier is morc accurate in his ermination of this bone (fig. 23, 27) as the 'squamosal' in reptiles; but in at the expense of his consistency in regard to the characters of his amosal in the bird: for the homology of no.s (Cuvier's 'squamosal') in 22 with no. s (Cuvier's 'mastoid') in fig. 23, is as obvious and unmistake3 as is that of no. 27 (Cuvier's 'squamosal') in fig. 22 with no. 27 (his clisaberment of the jugal) in fig. 23. The squamosal is relatively stronger in codiles than in birds, and in many chelonians resumes its flat, scale-like n; although, as Cuvier well observes, it answers, in function, only to the omatic part of the mammalian squamosal :-"c'est un temporal dont la tie crâniale a disparu§." In lizards the squamosal again resumes the zyaatic or styloid shape, connecting the mastoid and tympanic with the tfrontal, and usually also with the malar; the posterior connections being 3, as in mammals, the more constant ones.
Is the squamosal varies in form with the malar, so it likewise disappears ? it in ophidians; unless the anatomist, tracing it descensivcly, prefers to it again in the peculiarly developed hypotympanic of the anourans. Acling to this view of the sudden resumption of its mammalian function in ard to the lower jaw in batrachia, the name 'squamosal' may be transed to the hypotympanic in fishes; and, if we must view the pedicle $a-d$, fig. 5) as 'homologically componnd,' and not, like the mandibular us, 'teleologically compound,' $2 s d$ seems to me a lcss arbitrary selection n the pieces of that long and subdivided pedicle, for the represcutative

Ueher die Bedeutung der Sehädelknochen, 4io, 1807, p. 12.
Anatome Testudinis Europase, fol. Parergon, 1821, p. 178, fig. 196, i.
The tympanic bone 23 is described in the same work as 'squamosum sive quadratum, $19 f, g$.) : the mastriil is rightly named.
Ossemens Possiles, 1 to. t. v. pt. ii. p. 85.
of the squamosal, than the proximal or uppermost piece (2sa) to whieh vier has applied that name. If, indeed, Bojanus could lave determine his own satisfaetion or that of other anatomists, that the pediele (2s, fig. articulated by one end to the mastoid, and by the other to the mandible birds, was the 'squamosum,' then there would have been some ground regarding the bone ($2 \mathrm{~s} a$, fig. 5) conneeted in fishes, with the mastoid as 'squamosum.'

But when Cuvier had persuaded himself that the bone no. s, fig. 22 birds, to which the tympanic pediele is articulated, was the 'éeaille du t poral,' we feel at a loss to know on what principles special homologies be traced, when we find the name transferred to the upper part of the t panie pediele in fishes (fig. 5 2s a), which is articulated to the bone (8) equirocally answering to Cuvier's "éeaille du temporal' in birds. M. Aga is more consistent, and abandons with reason the Cuvierian determination the squanosal in fishes: if, however, the grounds assigned are conelusiv, to the homology of no. s, figs. $8 \& 23$ in birds with the mastoid of mamm and reptiles, M. Agassiz cannot be eorreet in regarding the bone no. s, 5 in the fish, as the 'éeaille du temporal.'

With reference to the idea entertained by Spix, Geoffroy and Agassiz the homology of the suborbital mueiferous seale-bones in fishes (pl. 1, fig 73) with the malar bones of higher vertebrates, I may refer to what already been said in regard to the actual repetition of the osseous areh e neeting the prefrontal with the postfrontal in certain birds (ib. fig. 1 , where that areh coexists with, and independently of, the bone (il.26) ree nised as the 'malar' by both Spix and Geoffroy. The conneetion of malar, even in mammals, with the laerymal and post-frontal is less const and characteristie of the bone than that with the maxillary and squamo And it may further be remarked, that the functional elaracter of eireu seribing a mueous duet, manifested by the laerymal or anterior end of upper zygomatic or suborbital areh in the parrot, is superadded to the c raeter of eonnections in proof that such areh, and not the true zygome areh below, is homologous with the suborbital ehain of bones in fishes. these diserepaneies as to the jugal and squamosal in fishes arise, in my o nion, out of the eireunstance that those bones are normally absent in t class; both 26 and 27 , figs. 11, 22, 23, 24, 25, being aecessory' parts, develol only in saurians, ehelonians, birds and mamnals, for additional fixation of , upper jaw, or for additional expansion of the cranium, or for both purpose

Aceording to this view, I regard the tympanie (28) as essentially char: terized in the oviparous vertebrates (fishes, reptiles, birds) by its free artit lation by a convex condyle with the mastoid above, and by a convex cond with the mandible below; and I regard its subdivisions in the lowest these rertebrates, in the same light as the subdivisions of the mandible its, The formation of the tympanic cavity and support of the tympanic membra are sceondary functions. The tympanic pediele is essentially a single cran element, and actually so in all air-breathing vertebrates above batraehia We see plainly, even in the frog, that the portion whieh supports the 'me: brana tympani' is a mere exogenous process of the pedicle: it has still less t appearance of a distinet part or proeess in the saurians, ehelonians and bird and when the tympanie is exeluded by the squamosal in manmals from normal office of supporting the mandible, it still manifests its character

[^32]ity, whether it be expanded into a 'bulla ossea,' extended into a long tube meatus, or both, as in fig. 24, 2s, or whether, as in fig. 25, it be reduced to mere ring or hoop supporting the tympanic membrane, until it coalesces th other parts of the temporal, to form the tympanic or 'external auditory cess' of that bone. In no air-brcathing vertebrate have I ever found, or -n described, the separation of the part of the tympanic forming the wall the tympanic chamber from the part supporting the tympanic membranc, the distinct, save in batrachia, from the part supporting the lower jaw *. e tympanic pedicle is still further subdivided in fishes; but M. Agassiz's ginal idea of the 'epitympanic' as a dismembernent of the pedicle, which proposed to call 'os carré supérieur,' is, in my opinion, much more consistwith nature than lis later determination of that bone as the ' mastoid,' than Curier's attempts to find the homologues of both the mammalian juamosal' and 'jugal' in the piscine subdivisions of the same pedicle. ere is as little ground for making the zygomatic process a distinct elcment m the squamous portion, as for severing the annular process from the rest the trnipanic. This idea of the zygomatic as an independent piecc, which Köstlin has also adopted, seems to rcst only on the mal-determination IBojanus and Oken of the true squamosal in birds and reptiles as the SSomaticum' or 'jugale posterius': and the idea was perhaps further engthened in the mind of M. Agassiz, by what he deems to be the essen1 and characteristic function of the squamosal. But its protective cere1 or cranial scale is a peculiarly mammalian development; much reduced the ruminants and cetacea, and totally disappearing in the oviparous verrates. The zygomatic functions and connections are, notwithstanding a exceptions, as in the scaly manis and a few lizards, the cssential homorical characters of the 'squamosal.' The necessity for forming an opinion the essential nature and general homologies of the parts blended together the human 'os temporis' by the ascensive or synthetic method, is strikingly mplified by the results of the application of M. Agassiz's idea of its nature bis determination of the bones in the head of fishes.
Is the palato-maxillary arch in most air-breathing vertebrates supports, acding to my views, certain appendages, $e . g$. the malar and squamusal, which not present in fishes; so, I believe, with Cuvier, that the tympano-mansular arch supports in fishes, certain appendages, which are not developed lany other class. It is this fact, chiefly, that has led to so much discrepancy :the attempts to determine by reference to bones in higher vertebrates the arcular bones of fishes,-the chief battlc-field of homological controversy. the four opercular bones forming the diverging appendage of the tym-no-mandibular arch (fig. 5, 34 to ${ }^{37}$) were deemed by Cuvicr to be peculiar thyic super-additions to the ordinary vertebrate skeleton; whilst by Spix, offroy, and De Blainville they are held to be modifications of parts which
M. Agassiz applies the subjoined analysis of the 'temporal bone' to elucidate the homoes of the skull of fishes:-" Nous distinguons eneore dans le lemporal complet les parties antes: l'écaille, servant de complénent à la paroi latérale du crâne daris sa partie postéure; le mastridlien, servant de rempart postéricur à la cavité tympanal; la caisse, logeant parties principales de la eavité tyınpanale; l'ameau tympanique, servant d'appui à la nbrane flu tympan; l'apophyse juyal, formant l'appui postérieur de l'areade zygonatique ; ophyse styluide, offrant ure insertion à l'os lyyoide, par laquelle ee dernier se fixe au erâne; nfin l'us carrf́, formant la surface articulaire sur lapuclle la mâchoire inférieure excree mouvernens. La manière variće rlont ces diffóreutes piéces se soudent ensemble, se séprarent e enmbinent, necasionneut ces innombrables variations auxquelles le temporal est sujet a son ensemble. J'ṕcaille du temporal cst destinée, comme nous venons de le voir, ì prour les parties cérél)rales postéricures de la téte, sur la face latérale du erane."-Recherelics les Poissons Possiles, t. ii. pt. 2, 1813, p. f2.
exist in the ordinary or endo-skeleton of other vertebrata. The lea Professor of Comparative Anatomy in King's College, London, who reg this as "the more philosophieal mode of considering them*," las br stated the homologies proposed by the supporters of this view, viz. that opercular bones are gigantie representatives of the ossieles of the ear (s Geoffioy, Dr. Grant \dagger): or that they are dismemberments of the lower (De Blainville, Bojanus), -a view refuted by the discovery of the eon eated structure of the lower jaw in eertain fishes, whieh likewise possess opercular bones : he then eites a third view, viz. that they are parts of dermal skeleton; "in short, seales modified in subservieney to the breatl function;" an opinion which Professor Jones frankly states that he der from my Leetures on Comparative Anatomy, delivered at St. Bartholom Hospital in 1835, and which he adopts, although its aecordance with his proposition is not very elear. I have subsequently seen reason to modify view, though it has received the sanction of the greatest ichthyologist of present day, M. Agassiz; and, as I have since found, had presented itsel early as 1826, under a peeuliar aspeet to the philosophical mind of Proie: Von Baer. In his admirable papcr on the endo- and exo-skeleton, M. V on 1 expresses his opinion, that the opereular bones are (dermal) ribs or lat portions of the external cineture of the head \ddagger. The idea of the relations of the opereular flaps to loeomotive organs is presented by Carus, under fanciful view of their homology with the wing-eovers of beetles and the val of a bivalve shell §. In 1836, M. Agassiz propounded his idea of the relat of the opercular bones to seales in a very preeise and definite mann though, as I have elsewhere shown \|, the chief ground of his opinion is en neous. IIe says, "Les pièces opereulaires des poissons ne croissent 1 comme les os des vertèbres en général, par irradiation d'un ou de plusie points d'ossification; ee sont, au contraire, des véritables écailles, forme comme celles qui reeourrent le trone, de lames déposées suceessivem les unes sous les autres, et dont les bords sont souvent même dente comme ceus des écailles du corps. Tels sont l'opereule, le sub-opercule:

* Professor Rymer Jones, General Outline of the Animal Kingdom, Sro, 1S.11, p. 509 \dagger Leetures, Lancet, Jan. 11, 1834, p. 5 -3; Ontlines of Compl. Anat. p. 64.
\ddagger "In manehrer Bezichmng gehören die Kiemendeckel zu ihr, und ich halte sie um mehr für (1laut) Rippen, d. h. fur Seitentheile der änssern Ringe des Kopfes, da ieh sie at in den gewohnliehen knockenfischen für niehts anderes ansehen kann. Hat bei diesen a der oberste knoehen des Kiemendeekels wenig Aehnliehkeit mit Rippen, so geht dage! der muterste so unverkenubar in die strahlender Kiemenhaut iiber, das der Uebergang nielht 7.11 verkemen ist." - Meckel's Archiv, 1826, 3 heft, p. 369.
An analogons iden of the relation of the operenlar bones to the inferior or costal arehes proposed byenffroy St. Hilaire (see Ammales des Seiences, t. iii. pl. 9, and Cuvier, Hist. Poissons, i. p. 232), aud has been adopted by the learned Professor of Comparative As tomy in University College, who, speaking of the necipital vertebra, says, "The two exter and the two lateral oceipitals form the upper areh, and the two opereular and two st operenlar hones constitute the lower areh." (Leetures, Laneet, 1834, p. 543.) He sul, quently, however, adopts and illustrates (p. 573) the homology of the operenlar bones w the 'ossienla auditûs' of mammalia; and in the 'Outlines of Comp. Anat.' eites only '? Spixian and Blainvillian hypotheses ($1 \mathrm{p} .64,65$). In my Humterian Leetures (vol. ii. is: $1 p .113,130$), I have addineed the gromuds which have led me to the conclusion that t operenlar bones are neither ribs of the exo-skeleton, nor inferior areles of the endo-skeletr but persistent radiating appendages of an inferior (hamal) arel! ; not, however, of the oceipi vertehra, but of the frontal; jnst as the branchiostegal rays are the appendages of the hna arch of the parictal, and the peetoral fins of that of the oceipital vertebre. Tlat parts both endo- and exo-skeleton may combine to constitute the operenlar fin is the more pr^{-} bable, inasmuch as we see the same comhination of eartilaginons and dermal rays in t peetoral fins of the plagiostomes, and in the median fins of most fishes.
§ Urtheilen des Knochen und Sehalengeriistes, fol. p. 122.
|| Leetures on Vertebrata, p. 139.
ter-opercule. Le supra-scapulaire même peut être cuvisagé comme la mière écaille de la ligne latérale, dont le bord est égralement dentelé. On rrait dire aussi que le seapulaire n'est qu'unc très grande éeaille de la tie antérieure des Hancs*." And he adds, "L'opinion que j'ai ćmise à régard prouve que je suis loin d'idmettre les rapports que l'on a cru iver entre les pitees operculaires et les osselets de l'oreille interne \dagger. '
apprehend that the idea of the development of the opercular bones by successive excretion or deposition of layers, one beneath the other, acding to the mode in which M. Agassiz supposes scales to be formed, was ived iuerely from the appearanee of the concentrie lines on the opercular, opercular, and interopercular bones in many fishes. I have cxamined derelopiuent of the opercular bone in young gold-fish and carp, and I that it is effected in preeisely the same manner as that of the frontal and etal bones. The eells which regulate the intussuseeption and deposition he earthy particles make their appearance in the primitive blastema in cessive concentric layers, according to the same law which presides over concentric arrangements of the radiated eells around the medullary canals he bones of the higher vertebrata: and the term 'suceessive deposition,' he sense of excretion, is inapplicable to the formation of the opereular es. The argument in favour of their demal eharacter drawn from the somena of the development of the opereular flap, would equally apply to 'e the bones (ulna, radius, earpus, \&c.) supporting the peetoral fin, to be -mal' bones \ddagger.
he interopercular as well as the preopereular bones exist in the Lepiren annectens with all the characters, even to the green eolour, of the rest ae ossified parts of the endo-skeleton; the preopereular, as an appendage ne trmpanic arch, retaining its primitive embryonal subcylindrieal form, interopereular being partly attached to the hyoid areh. Of the suprasular there is no trace in the lepidosiren; but in the sturgeon it plainly ts as part of the cartilaginous endo-skeleton, under the same bifurcate . 2 , and double conneetion with the cartilaginous skull, which it presents zost osseous fishes. The large triangular bony dermal scale firmly adheres -s broarl, triangular, flat, outer surfaee. The epi- and meso-tympanic ilages in like manner expand posteriorly, and give a similar support to large opercular ganoid scale. Were the supporting eartilages of the - eular and supraseapular seales to become ossified in the sturgcon, they at beeome anchylosed to the dermal bony plates, and bones, truly homous with the opercular and supraseapular in ordinary osseous fishes, ld thus be eomposed of parts of the endo- and exo-skcleton blended ther. I eannot, therefore, coneur with Von Baer in the opinion that the cular bones are ribs of the exo-skeleton, nor with Agassiz that both the cular and suprascapular bones are merely modified scales. In explaining riews ol' the opereular bones, I am eompelled, believing them to have no ial homologues in higher animals, to express those views in the terms of gher gencralization. The suprascapular bone (fig. 5, 40) is the upper or part of the hæmal areh of the oceipital segment of the skull, and correids in serial homology with the epi-tympanic portion ($23 a$) of the mandir arch, and with the palatine portion (20) of the maxillary arel. The cular bones are the diverging appendages of the tympano-mandibular

[^33]arch, and correspond, in serial homology, with the branchiostegal append of the hyoid and the pectoral appendages of the scapular arches, and the same title to be regarded as cephalie fins, and as parts of the no system of the vertebrate endo-skeleton; but neither opercular bones branehiostegal rays are retained in the skeletons of higher vertcbrata. diverging appendages of vertebral segments make their first appearanc the vertebrate series as 'rays'; and the opereular bones are actually re sented by cartilaginous rays, retaining their primitive form in the ple stomes. In the conger the subopercular still presents the form of a long. slender fin-ray.

The opercular and subopercular, in ordinary osseous fishes, may freque coalesce, like the suprascapular', with their representative seales of the del system; but they are essentially something more than peculiarly develc rcpresentatives of those scales. M. Agassiz, indeed, excepts the preo cular bone from the eategory of "pièces cutanées," believing it to be homologue of the styloid process of the temporal bone in anthropotomy the 'stylo-hyal' of vertebrate anatomy, as the piece, viz. which completes hyoid areh above. "C'esten effet," he says, "cet os à la face interne duw l'os hyoide des poissons est suspendu, qui s'articule en haut avec le mas dien et très sonvent même sur l'écaille du temporal." So far as my ob vation has gone, it is a rare exeeption to find the hyoid arch suspender the preoperculum; the rule in osscous fishes is to find the upper stylife piece of the hyoid arch (fig. 5, 38) attached to the epi-tympanic (28 a) e to its junction with the meso-tympanic bone (28 b). It is equally the rul find the preopercular (31) artieulated with the epi-, meso-, and hypo-t. panies; and it is an exception, when it rises so high as to be comected i the mastoid ('écaille du temporal' of Agassiz). If the stylo-hyal be not upper piece of the hyoid arch displaced, and if the upper piece comeet that arch with the mastoid is to be sought for in osseous fishes, I sho rather view it in the posterior half of the epi-tympanic ($2 \mathrm{~s} a$), whieh is usu: bifureate below and very commonly also above, when the posterior up division artieulates with the mastoid, and one of the lower divisions with hyoid arch.

The nomal position, form, and comnections of the preoperculum eles bespeak it to be the first or proximal segment of the radiated appendage the tympano-mandibular areh: the opereular, subopercular, and interol cular bones form the distal segment of the same appendage.
M. Vogt, in supporting M. Agassiz's views of the Ganoid order, reitera his original idea that the preopereular bone is the proximal piece (stylo of an arel distinet from the tympano-mandibular one; but as the chief grou of this opinion rests on a simple question of fact casily determinable, whether, as a rule, the hyoid arch is suspended from the preopereulum, a this from the mastoid in fishes, neither of which accord with my observati of their connections of those parts, the verdict may be left to the experier of other observers. From a remark of M. Vogt's*, viz. that "M. Muil attache, à ce qu'il parait, trop peu d'importance à ce fuit, que toujours préoperculc, et cela aussi chez les Siluroïdes, sert de point d'attache à l's hyoïdien," it wonkd seem that, perhaps, the accomplished plysiologist a iehthyologist of Berlin had not found the fact; and, therefore, gave not mot than its due importance to the rare exceptional circumstance of such an al tachment. The preopercular can be removed in most fishes, except when as in the siluroids, it coalesces with the tympanie arch, without disloeatil

[^34]listurbing the comections of the true stylo-hyal (fig. 5,38) with the epiipanie (osa) from which it is nomally suspended.

1. Voget correctly observes that the 'temporal' (epitympanic, 2s a), 'symstique' (mesotympanic, ws b), and 'jugulairc' (hypotympanic, 23 d), "ì seuls forment déjà un arc suspensoir complet, à la face postérieure juel le préopercule est seulement accolé*." But this only proves that the spercuhum is an appendage to such arch, not that it is a suspensory pier second arch.
the only essential motification which the siluroids present is the confluence he preoperculum with the true tyupanic pedicle, here reduced to a single :e. But this does not disprove its character as an appendage of the pano-mandibular arch, any more than does the confluence of the uha and us with the scapular arch in the sturgeon disprove the character of those aents as appendages of that arch. I lave not been able to trace in the roids the primitive boundaries of the coalesced preoperculum to such an ont as to justify the statement, that it is intercalated between the epitymic and hypotympanic, replacing the mesotympanic: but, if the preopercular ald extend in any siluroid fish so far as M. Vogt describes, this excepal development would rather prove it to belong essentially to the tymic and not to the hyoidean arch: at least it is only through this abnorcncroachment that the preopercular can detach the stylohyal from the ympanic.
is the otosteals, or 'ossicula auditûs,' have borne a prominent share in the ussions of the special homologies of the tympanic pedicle and its appendi, I may here remark that the extension in the embryo manmal of the ; and slender process of the malleus in the direction of the mandible, and ontinuation or connection with the cylindrical cartilage (hæınal portion ae tympano-mandibular arch) from which the lower jaw is subsequently sloped, is a circumstance which renders the idea of the malleus, at least, zg a modified element of the tympano-mandibular arch in batrachians fishes, worthy of consideration. The prolongation from the mesotymc of the cylindrical cartilage, described by Meckel, and around which mandible is ossified in fishes, and the characteristic cylindrical or styloid .1 of the mesotympanic, have induced M. Vogt \dagger to view that bone, the iplectique' of Cuvier, as the homologue of at least part of the malleus; at the same time of the bone called 'tympano-malléal' by Dugés (my notympanic') in the batrachians. M. Vogt offers 110 other reasons for determination. I find that the cartilage which in the batrachians forms medium of communication between the semi-ellipsoid ossicle (stapes) ng the fenestra ovalis and the tympanic membrane, is repeated or reproad in the more malleiform cartilage connecting the columelliform stapes it saurian reptiles to the membrana tympani. In birds a portion of the lage attached to the tympanum becomes ossified and coalesces with the melliform stapes; and at the angle of union one or two cartilaginous esises exist, which some anatomists have compared with the incus. But natomists have concurred in recognising the homology of the peripheral - down portion of the long columella, which adheres to the membrana oani, with the part of the malleus called 'manubrium,' or handle, in imalia. The superadded modifications characteristic of the otostcals in class, have their seat between the manubrium mallei and the stapes, and Ay result in the developinent of the new bone called 'incus' and its epiis, which has been termed the 'os orbiculare.' Notwitlistanding, therethe conucction of the 'processus gracilis mallei' with the embryonic
[^35]+ Loc. cit. p. 58.
hæmal or viseeral cartilage of the mandibular areh in mammals, the h_{1} $\log y$ of the malleus is so elearly traceable down to its first independent nifestation in coexistenee with the tympanic membrane of the batraehi whieh it conneets the unequivocally acoustic ossiele representing the 'sta that the referenee of all the additional ossicular meehanism of the ear-t to the same system of the skeleton as the petrosal itself, appears to me t most consonant with the reeognised faets in their development and eomp tive anatomy.
M. Agassiz has never eountenaneed the idea of the reproduction ot mammalian tympanie ossieles in a magnified form in either the tymp areh or its opercular appendages. Returning to the eonsideration of t bones in the last volume (p.68) of his admirable 'Recherehes,' he reaff his opinion, that the opercular, subopercular, and interopereular are ' c lets particuliers de la peau;' but ealls them 'branehiostegal rays.' If had meant that they were parts essentially distinet, but comparable to true branchiostegals, he would have aceurately enuneiated their 'serial mology.' M. Agassiz, however, expressly repudiates this idea of repre tative relation, and affirms them to be part of one and the same seric rays. "Mais en disant que les pièees opereulaires sont des rayons brane stègues, je n'entends point faire une simple eomparaison, mais bien affirr que je considère ces plaques osseuses simplement eomine les rayons bu chiostègues supérieurs*." This idea is, in fact, a neeessary eonsequene M. Vogt's conelusion, that the preoperculum is the upper or styloid elen of the hyoidean areh. The eombination of the opereular rays or bones the branehiostegals in the support and movements of the eontinuous eover and gill-membrane, does not prove them to be diverging appenda of the same areh, any more than the similar combination of the rays of peetoral and ventral fins in the sueker of the Cyclopterus proves those r to be parts of the same areh. And I may repeat that, admitting the hume to be, as Bakker surmised, confluent in all fishes with the bone 52 , fig. and sinee in the plagiostomes, sturgeons and lophioids, the seeond segment the rudimental fore-limb is not liberated from the supporting areh; so, li wise, the proximal member of the opereular limb may remain, or beeome some instances confluent with its sustaining areh, withont that exeeptio state invalidating the determination deduced from its more constant and gular eharacter as the proximal element of the free appendage to that are

Hyoid Bones.-The third inverted areh of the skull is suspended in fisl by a slender styliform bone, the 'stylohyal' (fig. 5,38), from the lower end the epitympanie ($28 a$) elose to the joint of the styliform 'mesotympan $(28 b)$; and it is conneeted, through the medium of the posterior division an joint of the epitympanie, with the mastoid (8). Now, either that divisit of the epitympanie may be viewed, by virtue of its proper artieular conds above, and its comection with a distinet inverted areh below, as the proxim piece of that areh, coaleseed with the proxinal pieee of the next areh advanee, which articulates with the post-frontal; or, it may be viewed as ar excessive development of the proximal piece of the tympano-mandibular ard which, extending baekwards, has displaced the hyoid from the mastoid, jus as the squamosal, by a similar baekward developuent, in mammals, displact the mandibular areh from the tympanie.

Aceording to the first view, the bone no. 38 would be a dismembermen of the proximal element of the hyoid areh; aceording to the second view, it woukd be the entire element reduced and displaced: in both eases it wonle be homologrous with the proximal slender piece of the hyoid arel in al.

[^36]ebrata, aud to whieh piece the term 'styloid' or' 'stiliform' has been in from the fish up to man (see TableI.). The homology, indeed, is so ious, that M. Agassiz, in aceepting the conclusion of M. Vogt, that the e (fig. 5,34), peculiar to osseous fishes, which so rarely articulates dily with the mastoid or with the hyoid arel, aud so constantly sustains distal segment of the opereuhm, was the homologue of the 'processus formis ossis temporis,' nevertheless retains the name 'styloïde' for the 110. 38 in question.
he true homology of no. 3t, already explained, removes the anomaly of ing that peculiarly piseine bone as the homologue of a constant element he hyoid arel in all the vertebrate elasses, and the greater anomaly of introduction of a new element-a styloid piece of the os hyoides-in tion to the 'styloid process of the temporal' in fishes. The 'stylohyal' sulates below to the apex of a triangular piece (39), which is pretty cont in fishes, and to which I give the name of 'epihyal,' as being the upper ie two prineipal parts of the cornu or areh : the third longer and stronger e is the 'ceratohyal' (ih. 40).
he keystone or body of the inverted hyoid areh is formed by two small zubical bones on each side, the 'basihyals' (ib.41). These complete the 5 areh in some fishes: in most others there is a median styliform ossicle, nded forwards from the basi-hyal symphysis into the substance of the ;ue, called the 'glossohyal ' (ib.42), or 'os linguale'; and another symmeal, but usually triangular, flattened bone, which expands vertieally as it nds backwards, in the middle line, from the basihyals; this is the 'urohyal' 43). It is connected with the symphysis of the coracoids, which eloses below fourth of the eranial inverted arehes, and it thus forms the isthmus whieh arates below the two branchial apertures. In the conger the hyoidean 1 is simplified by the persistent ligamentous state of the styloliyal, and she confluence of the basi-hyals with the ceratohyals: a long glossohyal ticulated to the upper part of the ligamentous symphysis, and a long pressed urohyal to the under part of the same junction of the hyoid areh. glossohyal is wanting in the Murcenophis.
"he appendages of the hyoidean areh in fishes retain the form of simple, agated, slender, slightly curved rays, articulated to depressions in the outer posterior margins of the epi- and cerato-hyals: they are called "branostegals," or gill-eover rays, because they support the membrane which es externally the branchial ehamber. The number of these rays varies, their presence is not constant even in the bony fishes: there are but se broad and flat rays in the earp; whilst the elupeoid Elops has more 1 thirty rays in each gill-cover: the most common number is seven, as he cod (fig. 30, 4s). They are of enormous length in the angler, and 'e to support the membrane which is developed to form a great receptacle each side of the head of that singular fish.
n the class of fishes, eertain bony arehes, which appertain to the system the visceral skeleton, suceeed the liyoidean areh, with the keystone of ch they are more or less closely eonneeted. Six of these arehes are priily developed, and five usually retained; the first four of these support gills, the fifth is besct with teeth and guards the opening of the gullet: - latter is termed the 'pharyngeal areh,' the rest the 'branchial arches.'

The lower extremities of these arehes adhere to the sides of a median ehain ossicles, which is eontinued from the posterior angle of the basilyal, or n above the urohyal, when this is ossified: the bones whieh form those remities are the 'hypobranchials'; and they support longer bent pieees, ed 'ecratobranchials.' It is with these clements of the branchial arches
in fishes and peremibranchiate batrachians that we are chiefly couce in tracing the homology of the hyoid apparatus in the air-breathing bratcs. With regard to the branchial and pharyngeal arches, which their full development only in the elass of fishes, I regard them as appe ing to the system of the splanchno-skeleton, or to that eategory of bo which the heart-bone of the ruminants and the hard jaw-like pieces sul ing the teeth of the stomach of the lobster belong. The branchial are sometimes cartilaginous when the true endoskeleton is ossified: thi never ossified in the perennibranchiate batrachians, and are the first t appear in the larvæ of the caducibranchiatc species; and both their and mode of attachment to the skull demonstrate that they have no css homological relation to its endoskeletal scgments.

The hyoid arch or apparatus retains most resemblance to that of fisl the Siren lacertina; the basihyal is simplified into a single osseous s late piece, with the bowl of the spoon anterior, and supporting a broad flat semicircular glossohyal. A strong and thick ceratohyal is articu by means of a small cartilage to the sidc of the expanded part of the hyal, and a cartilaginous epihyal arehes backwards from its mpper end cartilaginous urohyal extends from the hind end of the basihyal, ant pands into a radiated disc, which supports the membranous trachea anc simple glottis. One pair of bony 'hypobranchials' is articulated to basi-uro-hyal joint and a second pair to the sides of the urohyal: and $t r$ upper and outer ends of these are attached four pairs of cartilaginous 'ce: branchials.' The fimbriated branchiæ are attached to the threc ants ceratobranchials.

In the proteus the urohyal is absent, and it is not again developed in batrachian. The long subeylindrical basiliyal supports a subeircular e. laginous discoid glossohyal, and at the angle of union the bony ceratoli are sent off. A pair of hypobranchials diverge from the end of the basilh. to which a second small pair of basibranehials are loosely connected b: aponeurosis. These support threc ceratobranchials on cach side, which bony.

In the newts there is neither a glossohyal nor uroliyal, or but a rudin of the latter, to each side of which are articulated two hypobranchials, wl distal chds converge on each side to support a single cartilaginous gillridiment of a ecratobranchial. The special homologies of all those parts the complex hyoid, rendered more complex by the retention of part of branehial skeleton, are clearly demonstrated by pursuing the metamorphe of the hyo-branchial skeleton in the larva of the anourous batrachians. the full-gilled tadpole a short and simple basiliyal supports laterally 1 thick and strong ceratolyals, and posteriorly two short and broad hy branchials, to which four ceratobranchials are attached: all the parts cartilaginous. The type of this stage is retained in the siren, with the his logical progress to bone in the hyoid and hypobranchial picces. The seco well-marked stage in the tadpole slows an extension of the external a posterior angles of the hypobranchials, with progressive absorption of 1 cartilaginous ceratobranchials. The growth and divergence of the poster angles of the hypobranehials refer to the development of the larynx, ne commencing, which part they are destined to support. That period may deseribed as the third stage at which the ceratobranchials lave disappeare and the posterior angles of the hypobranchials increase in length and assunt the character of posterior comua of the os hyoides. The last and ade stage shows the ossification of the elongated angles of the hypobranchial the coalescence of their cartilaginous bases with the basihyal, the expansic
he basihyal and extension of its anterior and external angles ; in front of ch the now long and slender ceratohyals usually coalesce with the basi1; their opposite ends having shifted their attachments and retrograded, other limmal arches of the skull, in the course of the metamorphosis. .he case of the hyoid arch of the frog, the change of place is from the panic pedicle backwards to the persistent cartilaginous petrosal: and is a very suggestive and significant change. All the parts of the hyoid ain cartilaginous except the appended and persistent detachments from visceral system of the branchial arches: these long 'hypobranchials' mues thyroidliennes' of Cuvier and Dugés) diverge and include the larynx heir fork. The relative position, connexions and office in subserviency he larynx, to which the retained parts of the splanchoo-branchial arches introduced in the lowest of the air-breathing vertebrates, are preserved in the higher classes. The 'hypobranchials' are as constant in their cx" ce, therefore, as the upper larynx itself, and attach themselves more cially to the thyroid element of that larynx. We recognise them by this tion in birds and man (46 , figs. 23 and 25), where they always much exI the parts of the true hyoid arch (cerato- and epi-hyals) in length; and irds, where these elements (40 , fig. 23) are sumetimes obsolete and always mental, the hypobranchials have been mistaken by both Cuvier and firos* for the ceratohyals or anterior cornua.
or the modifications and special homologies of the complex hyoid appasin lizards, I refer to my 'Lectures on the Vertebrata.' The crocodiles : a well-marked ordinal difference from those inferior sauria in this as 1nst other parts of their structure. The basihyal and thyrohyals have esced to form a broad cartilaginous plate, the anterior border rising like a e to close the fauces, and the posterior angles extcnding beyond and susing the thyroid and other parts of the laryinx. A long bony 'ccratohyal' 22, 40), and a commonly cartilaginous 'cpihyal' (ib. 39), arc suspended t ligamentous 'stylohyal' to the paroccipital process ; the whole arch ing, like the mandibular one, retrograded from the connection it presents shes.
1 birds as in chelonians, the ceratohyals are much redueed, and the chief :nua' of the hyoid are represented by the hypo- and epi-branchials (thyials), which here attain their maximum of length and tenuity. The basiI (fig. 23, 41), as in Chelys, is long and slender, but is always a simple : ; and, as in lizards, is usually most expanded posteriorly, from which ansion the thyrohyals (+4) are sent off. Conforming with the long and der tongue in most birds, the basihyal extends forwards, and is articud with the rudimental ceratohyals (40), when these exist, at some distance a the thyrohyals. A commonly long and slender, sometimes spatulate sohyal (t 2), is articulated to the fore-part of the basihyal ; and a contly long, slender and pointed urohyal (43) is articulated with the posterior of the basihyal, and extends backwards beneath the trachea. The thyroIs (is) diverge and include the larynx in their fork; and support at their "emities a bony or gristly' (ceratobranchial) style (97). This is never ched by ligarnent to the base of the skull, but is suspended freely, as in chelonia, by the ghlossohyoid and omohyoid muscles; it, however, curves r the back and upper part of the cranium in the woodpeckers, and the emities of both cerato-branchials are inserted, by way of rare exception hat bird, into the right nostril.
n mammals the normal completion of the hyoidean areh, as it. first ap-
Dagis appears to have first prointed ont this crror, but without, however, perceiving the homolngy of his 'cornes thyrödiennes' with the biypoluranchials of fishes.
pears in fishes, is again resumed, and that not by a slender cartilage the frog, but by a chain of bones, in which we again recognise the (fig. 24, 40), epi- (39) and stylo- (33) hyals suspending the basihyal (4 the tongue to the base of the skull, often to the petrosal, sometimes tympanic, or to the mastoid, or to the exoccipital. The ungulates a true carnivora best display this type.

In man (fig. 25) the ceratohyals are reduced, as in birds, to mere cles of bone (to), and the extent of the arch between them and the hyals, which become anchylosed to the temporal bones, retains its pri ligamentous condition. Occasionally, however, ossification extends the stylohyoid ligament, and marks out, as in the specimen figur Geoffroy St. Hilaire (Philosophie Anatomique, pl. 4, fig. 87), the mor mal proportions of the ceratohyal, and also the epiliyal. Other examp this ' monstrosity' are recorded in works on anthropotomy. The hyal (18) -the last remnant of the branchial arches-maintains more stancy in its existence and proportions; but manifests its true charac free suspension below the skull, and an articulation by short ligaments angles or horns of the thyroid cartilage.

The remarks already made on the special homologies of the parts o scapular arch and its appendages, preclude the necessity of further extel the present chapter of this work.

Chapter II.-General Homology.

Historical Introduction.

On taking a retrospect of the results of the researches of anatomists the special homologies of the cranial bones, the student of the science, little soever practised in such inquiries, cannot but be struek with the an of concordance in those results. It must surely appear a most remark circumstance to one acquainted only with the osteology of the human fris that so many bones should be, by the common consent of comparative tomists, determinable in the skull of every animal down to the lowest osse fish. This fact alone, so significant of the unity of plan pervading the tebrate structure, has afforded me, at least, a large ground of hope much eneouragement to perseverance in the reconsideration of those pe on which a difference of opinion has prevailed; and in the re-investigatio what is truly constant and essential in characters determinative of spe homologies.

In this, as in every other inquiry into nature, the first labours are ne sarily more or less tentative and approximative : but if errors have to eliminated in the course of successive applications of fresh minds to task, truths become confirmed and established. And I regard the bods such truths (see Table I.) to be now so great, in respect of the deterninai of the liomologous bones in the heads of all vertebrate animals, as to im rativcly press upon the thinking mind the consideration of the more gent condition upon which the existence of relations of special homology depen

Upon this point the anatomical world is at present divided, lacking required demonstration. The majority of existing authors on comparat anatomy have tacitly abandoned *, or with Cuvier and M. Agassiz, he

[^37]tly opposed the idea of ' special homology' being included in a higher If uniformity of type.
it the attenipt to explain, by the Cuvicrian principles, the facts of special slogy on the hypothesis of the subscrviency of the parts so determined nilar ends in different animals,- to say that the same or answerable boncs r in them because they have to perform similar functions-involve many ultics, and are opposed by numerous phænomena. We may admit that ultiplied points of ossification in the skull of the human foetus facilitate, were designed to facilitate, childbirtli; yet something more than such a purpose lies beneath the fact, that most of those osseous centres reprepermanently distiuct bones in the cold-blooded vertebrates. The crai f the bird, which is composed in the adult of a single bone, is ossified the same number of points as in the human embryo, without the posty of a similar purpose being subserved thereby, in the extrication of hick from the fractured egg-shell. The composite structure is repeated e minute and prematurely-born embryo of the marsupial quadrupeds. zover, iu the bird and marsupial, as in the human subject, the different s of ossification have the same relative position and plan of arrange: as in the skull of the young crocodile, in which, as in most other repand in most fishes, the bones so commencing maintain throughout life primitive distinctness. These and a hundred such facts force upon the mplative anatomist the inadequacy of the teleological hypothesis to unt for the acknowledged concordances expressed in this work by the 'special homology.' If, therefore, the attempt to explain them as the ts of a similarity of the functions to be performed by such homolo.. parts entirely fails to satisfy the conditions of the problem; and if, rtheless, we are, with Cuvier, to reject the idea of their being manifesns of some higher type of organic conformity on which it has pleased divine Architect to build up certain of his diversified living works, : then remains only the alternative that special homologics are matters rance.
his conclusion, I apprehend, will be entertained by no reasonable mind; reverting, therefore, to the more probable hypothesis of the dependence be special resemblances upon a more general law of conformity, we next to inquire, what is the vertebrate archetype? The gifted and -thinking naturalist, Oken, obtained the first clew to this discovery by
is subject. "It is not by any means our intention to engage our readers in discussing le conflieting and, sometimes, visionary opinions entertained by different authors reto the exact homology of the individual boues forming this part of the skeleton; and lall, therefore, content ourselves by placing before them, divested as far as possible of tuous argumentation, Curier's masterly analysis of the labours of the principal inquiries arming this intricate part of anatomy."-p. 494. A later English author, who has em? a most raluable amount of eareful and exact osteological observation in the article lozy" of the 'Eneyclopedia Metropolitana' (4to, 1845), seems scarcely to regard even letermination of special lomologies as a necessary olject of anatomical research. Thus, "Cussing the differences of opinion respecting the coracoid (fig. 5, 48). he says, "Bakker's however, if it lse absolutely necessary to hunt up analogies, seems more correct."2.
is reserve is, however, perhaps less obstructive to the philosophical progress of anatomy In the requisite resumption of original inquiry to that end, than the mere reproduction ie transcearlental siews of others without criticism or attempt to explain or refute the ations to such views which have lieen promulgated by so great authorities as Cuvier and isiz. Thus Bojanus's f.verteloral theory of the cranial part of the skull is adopted by le Blainville (Ostiongrapllie, fto) ; whilst 1)r. Graut (Outlines of Comparative Anatumy, [83.5, p. f33) decms the composition of the skull, in fishes, to correspond nearly with Froy's theory of this part of the skeleton being cormposed of seven vertebre, caeli coniz of a body with four clements albove and four clements below.
the idea of the arrangement of the cranial bones of the skull into segmu like the vertebre of the trunk. He informs us that walking one day in Hartz forest, he stumbled upon the blanehed skull of a deer, pieked up partially disloeated bones, and eontemplating them for a while, the t_{1} flashed across his mind, and he exclaimed "It is a vertebral eolumn!*" O afterwards tested and matured this happy inspiration by examining the sk of a ectacean, a chelonian, and a cod-fish in Dr. Albers's museum at Brer and on his return to Jena in 1807, he published his beautiful generalizatio a now very searec Introductory Leeture, or "Programm beim Antritt der 1 fessur," contitled 'On the signifieation of the bones of the skull't. He il trates his views by referenee to the skull of a ruminant. "Take," he s "a young sheep's skull, separate from it the bones of the orbit, also th. eranial bones which take no share in the formation of the 'basis eranii,' the frontal, parietal, ethnoid and temporal, and there will remain an osse column whieh any anatomist, at first glanee, would recognise as three bor of a kind of vertebræ with transverse proeesses and foramina. Replaee cranial bones with the exeeption of the temporals, for, without these, cavity is still elosed, and you have a cranial vertebral column, whieh dif from the true one ('von der wahren') only by its more expanded neu canal (Ruckenmarkshöhle). As the brain is a more volnminously develol spinal chord, so is the brain-ease a more voluminous spinal column. the eranium ineludes, then, three vertebral bodies, so must it have as naa vertebral arehes. These are next to be sought out and determined. C sees the sphenoid divided into two vertebre; through the foremost pass 1 optie nerves, through the hindmost the maxillary nerves (par trigemimu. I call one the 'eye-vertebra' (Augwirbel), the other the 'jaw-verteb (Kieferwirbel). Upon this latter abuts the basilar process of the oeeipi bone and the petrous bones: both belong to one whole. As the optic uer perforates the 'eye-vertebra,' and the trigeminus the 'jaw-vertebra,' so 1 acoustie nerve takes possession of the hindmost vertebra. I eall it, then fore, 'ear-vertebra' (Ohrwirbel): and I regard this as the first cranial vt tebra; the jaw-vertebra as the seeond, and the eye-vertebra as the third." ib. p. 6 .

After entering upon the difficulties whiel beset lim in determining wheth the petrosal belonged to the first (Ohrwirbel) or the sceond (Kieferwirbe and emnciating his views on the essential relations of each eranial verteb with a single special sense (exeluding, however, smell and taste, as bein inferior in dignity to the others), Oken proeeeds, in his charaeteristie bo metaphorieal langnage :-"Bones are the earthy hardened nervous systen Nerves are the spiritual soft osseous system-Continens et eontentum."
" Between the sphenoid and oceipital, between the sphenoid and petrose between the parietal (the temporal being removed) and the oecipital, the runs a line whieh defines the anterior boundary of the first vertebra. In tl line between the two sphenoids, or that whielt in man extends anterior

[^38]iterygoill processes laterally and upwards through the fissura orbitalis rior, anterior to the great ala, and finally betwecn the frontal and the tal bones, we trace another linc, which divides the sccond from the vertebra" (ib. p. 7).
Now," says Oken, "take the car-vertcbra from a fotus of any mammal man, place near it an immature dorsal vertebra, or the third cervical crocodile, and compare the pieces of which they consist, their form, their ents, and the outlets for the nerves.
Hceording to Albinus and all anthropotomists, each vertebra of the s consists of three distinct parts-the body and the two neurapoplyses entheile). You have the same in the occipital bone, but nore clcarly more distinctly: the 'pars basilaris' is separated as the body of the veris from the 'partes condyloidex,' which form the lateral parts: these still nore distinct from the 'pars occipitalis' which forms the spinous ess: even this part is often bifid, like the spinous processes in spina z."

Since then the foramen magnum is the hinder or lower opening of a bral canal, the condyles true oblique vertebral processes, the foramen cun an iutervertebral foramen, and the crista occipitalis a spinous proproved to be such by both its position and the muscles inserted into it,lastly the whole occipital bone in relation to its form as well as its tion-inclosing the cerebellum as a production of the spinal cliord,-is se and in every sense characteristic vertebra, it is unnecessary to dwell 3 diffusely on parts, the bare mention of which suffices to make their re recognizable."-ib. p. 7.
this will serve as an example of the close observation of facts, the philoical appreciation of their relations and analogies, and, in a word, of the t in which Oken determines the vertebral relations of the cranial bones 1e skull : and I refer to Table II. for his conclusions as to the parts of second and third cranial vertebræ.
everting to the petrosal, Oken thus beautifully and clearly enunciates essential nature and homology:-"You will say I have forgotten the "s petrosa.' No! It seems not to belong to a vertebra, as such; but to 'sense-organ' (Simnorgan), in which the vertebral- or car-ncrve loses 'f; and, therefore, is as distinct an organ front a vertebral element as is other viseus (Eingeweide), or as is the eyeball itself. The (cause of) sion (as to the homology of the petrosal) lies in this, viz. that it must be jed agreeably with its nature (wesen), just as the eye must be crystallized." Ithough Oken does not in this essay formally admit a fourth vertebra rior to the 'eye-vertebra,' he recognises the vertebral structure as being ied out rudimentally or evanescently, by the vomer, as the prolongation he cranio-vertebral bodics, by the lacrymal bones, as their neuraposes, and by the nasal bones, as the spinous process. His ideas of a ebra have evidently at this period not extended beyond the ordinary ropotomieal one of centrum and neural arch with its transverse, oblique, spinous processes. When lie indicates (beautifully and truly) the general mology of the palatinc boncs, as pleurapophyses, under the name of anloser or immoveable ribs of the head, it has reference to the transecntal idfa of the repetition in the head of all the parts of the body. Thus "quamosal in mammals and the tympanic in birds represent the 'scapula' :he head, and at the sanc time, also, the ilium. 'The homologuc of the amosal (fig. 21, 27) in the bird is the 'hmmerus capitis': the malar (26) the maxillary (21) are the 'oberarm' (radius and ulna capitis) : the presillary (22) is the 'manus capitis.' The segments of the hind limb are
represented by divisions of the compound lower jaw in the crocodile embryo bird (see Table, No. III.). The pterygoids (24), the essential stinction of which from the sphenoid Oken clearly recognises, are his ' C culæ capitis.' Oken hints at, without aceepting, the (scrial) homolog the hyoid areh with the pelvis; but he regards the stylohyal (38) as 'sacrum capitis' (ib. p. 16).

The year after the publication of Oken's famous 'Introductory Lecti Prof. Duméril, apparently unaequainted with its existence, communic: to the French Institute a memoir entitled 'Considérations générales l'analogie qui existe entre tous les os et les muscles du trone dans les maux,' the second paragraph of which is headed "De la tete considd comme une vertèbre, de ses museles et de ses mouvements." In this pi graph, repeating the homological correspondenees, demonstrated by OH between the basioccipital as a vertebral centrum, the condyles as 'obli processes,' and the occipital protuberanee as a spinous proeess, he adds, 1 the mastoid processes are entirely conformable to transverse processes. M. Duméril has, I believe, here the merit of having first cnuneiated general homology of the mastoids, although he does not aim at showing which vertebral segment of the skull they properly belong. Nor, inde with the exeeption of an observation that "very often the body of the sp noid, like the 'apophyse basilaire' of the oeeiput, resembles the body' vertebra," does lie push the transecndental comparisons further. Geoff, St. Hilaire tells us*, that even the moderate and very obvious illustratid of the gencral homologies of the cranial bones, which M. Duméril dedut from the anatomy of the occiput, excited an unfavourable sensation in bosom of the 'Aeadémic;' and that the phrase 'vertèbre pensante,' whie. facetious member proposed as an equivalent for the word 'skull,' and wh cireulated, not without some risibility, along the benches of the learr during the reading of the memoir, reaching the ears of the ingenious auth the dread of ridicule checked his further progress in the path to the higl generalizations of his scienee, and even induced him to modify consideral many of the (doubtless happy) original expressions and statements in printed report, so as to adapt it more to the conventional anatomical idr of his colleagues.

As the truth of Oken's generalization began to be appreeiated, it was reme bered, as is usually the case, that something like it had occurred before others. Autenricth and Jean-Pierre Frank had alluded, in a general way, the analogy between the skull and the vertebral eolumn: Ulrieh, reproduci formally, Oken's more matured opinions on the cranial vertebre, say "Kielmeyerum preeeptorem pic venerandum quamvis vertebram tanqua caput integrum considerari posse in scholis anatomieis docentem audiv And the essential idea was doubtless present to Kielmeyer's mind, thous he reversed M. Duméril's proposition, and, instead of calling the skull a vi tebra, he said each vertebra might be called a skull. But these anticipatio detract nothing from the merit of the first definite proposition of the theon It would rather be an argument against its truth, if some approximative id had not suggested itself to other observers of nature, who only lost the met of developing it, from not appreeiating its full importance. He, howere becomes the true discoverer who establishes the truth : and the sign of tl proof is the general acceptance. Whoever, therefore, resumes the investigi tion of a neglected or repudiated doctrine, elicits its true demonstratiou and discovers and explains the nature of the errors that have led to its tac

[^39]

 N

 - $1=1$
+
 2 NAB...

 1, , "Eine

 Hat

 ",

sens, le styloïde, les branches de l'hyoïde, qui sont ordinairement formés plus ou moins grand nombre de pièces placées bout à bout. Quelqu ces appendices sont libres ì leur extrémité, d'autres fois ils se rémis dans la ligne médiane inférieure en entr'elles, ou au moyen d'une pic̀ce diane, qu'on peut comparée, jusqu'à un certain point, au corps des tèbres ; d'ou il résulte ce qu'on nomme 'sternum' dans les mammifi appareil branchial des poissons, hyoïde, sternum des oiseaux," ctc. (ib. I p. 110). Reserving the consideration of some of these propositions f subsequent chapter of the present work, I shall only notice, en pussent, complete concordance between these views of the gencral homology of locomotive members with those which Oken expresses with his usual al ristic brevity :-"Freye Bewegungsorganc können nielits anderes als gewordene lippen seyn."

Cuvier includes amongst the general characters of the class Mammalia arrangement of thcir cranial bones into three amular segments, corresponc essentially with those of which Oken had demonstrated the vertebral relati "Leur crâne sc subdivise comme en trois ceintures formécs; l'antérie par les deux frontaux et l'ethmoïde ; l'intermédiaire, par les pariétanx e sphénoïde; la postérieure, par l'occipital : entre l'occipital les pariétau: le sphénoíde, sont intercalés les temporaux, dont une partie appartient prol ment à la face*."

What M. de Blainville (1816) pledges his efforts to demonstrate, O , (Isis, 1817) was exulting in the reception of, 'not only in Germany but Europe." "Seit Erscheinung dieser Schrift und nun 10 Jahre verflossen Man spricht nun von Kopfwirbeln, Kopfarınen und Füssen, von Bedeut der einzelnen Skeletknochen wic von cincr uralten Sache; dic schon in Bibel und den Propheten gestanden," p. 1201. The chief differences, compared with Oken's definition, are, that Cuvier, finding the frontal a to rest upon both ethmoïd and presphenoid, assigns to the former bone completion of the anterior cranial cincture below; and completes, in 1 manner, the parietal cincture by the sphenoid in its anthropotomical sen making no distinction between the anterior and the posterior divisions of bone. Cuvier docs not apply this principle of arrangement of the cran bones to the skull of the lower elasses of vertebrata (in which, neverthele it is more clearly manifested than in mammals): in gencralising on the cc stitution of the vertebrate skull, he classifies the bones, after the anthropo mists, into 'those of the cranium which encompass the brain, and those the face, which consist of the two jaws and the receptacles of the organs sensc.' \dagger With regard to the skull of fishes, in which Bojanus had found clear an illustration and confirmation of the Okenian views, Cuvier mere says, it is almost always divisible into the same number of bones as th of other ovipara. The frontal is composed of six pieces; the parietal three; the occipital of five; five of the pieces of the sphenoid and two of cal of the temporals remain in the composition of the cranium \ddagger.

In his great works the 'Histoire des Poissons' and the 'Leçons d'Aur tomie Comparée,' posthumous edition, Cuvier expresses more decidedly li objections to the views of the segmental or vertebral structure of the skull.

Göthe, in a small fasciculus of 'Essays of Comparative Anatomy,' whic he published in the year 1820, entitles the 8th, "Can the bones of the sku

[^40]dueed from those of the vertebral enlumn, and thenee receive an extion of their forms and functions?" He states that the idea of the facial rertebre vecurred to him in the year 1790 , prior to whieh time ss "die drei hintersten erkemnt ieh bald." The idea is developed in his as follows:--" The skull of mammalia is eomposed ef six vertebra; for the hinder division inelosing the eerebral treasure ; three eomposing ore part which opens in presence of the exterior world, whieh it seizes otroduces.
'he first three rertebre are admitted (he alludes to Oken and Spix) :
are,-
he oceipital.
he posterior splienoid.
he anterior sphenoid.
he tbree others are not yet admitted; they are,-
he palatine bone.
the upper maxillary.
Che intermaxillary.
if some of the eminent men who ardently cultivate this subjeet should aterested by this simple enuneiation of the problem, and would illusit by some figures indieating by signs and eiphers the mutnal relations eeret affinities of the bones, its publication would strongly draw the ing mind in that direetion, and we may, perhaps, one day, ourselves :ome notes on the mode of considering and treating these questions."
ofessor Carus of Dresden has best responded to this appeal of his imal countryman: but it must be admitted that the detailed and eomplex ition of the theory of the six vertebræ and intervertebræ, of whieh the ral results are given in Table III., have yielderl to anatomieal seience a which is hardly equivalent to the zeal and pains manifested in the at\therefore or to the artistic merit of the illustrations, published by the accom'd author of the 'Urtheilen des Knoehen und Sehalengerüstes' (fol.).
offroy St. Hilaire deems the skeleton of the head to be eomposed of vertebræ; and lie has the merit of having more steadily sought the logies of the inferior arehes of the eranial vertebre than his predeceswho seem not to have suffieiently appreeiated the essential eharaeter of portions of the primary segments of the vertebrate endo-skeleton. rtheless it must be admitted that Cuvier has made good the grounds of jection of Geoffroy's theory, as one based less on observation than on I a priori views, according to whieh the bones of the skull, real or inary, are arranged into seven vertebræ, eomposed of nine pieees each*. aranio-vertebral system of Geoffroy is liable to the further objection, ae has combined, as in the ease of his typical vertebra from the tail of ounder, parts of the exo-skeleton (c.g. the suborbitals) with parts of ndo-skeleton to whieh alone the vertebral theory is applicable.
the fasciculi of the magnifieent 'Ostéographie' with which Professor de ville has enriehed his seience, the deseriptions follow the plan of the fieation of the bones of the skeleton propounded in the above-eited Me; in the 'Pulletin des Scienees' for 1816 and 1817. In the Prospeetus of Ostéographie', M. de Plainville briefly refers to the great questions of arative anatomy, which the German organologists have comprehended r the name of 'Signification of the Shelcton,' in allusion ouly to the ss errors and opinions almost extravagant, of some of the persons who occupied themselves with these questions:" whilst he reprobates, on the

[^41]other hand, in equally general terms, "those who have been unable to themselves to these kind of questions, partly on aecount of the nature minds, partly from the want of proper and sufficient subjects of cont tion *."

Neither the first step, the most difficult of all, nor any of the suce steps in the acquisition of such vicws of the 'Signification of the Ski as M. de Blainville adopts are noticed : no objection to the rertebral of the skull is answered: 10 error that may have opposed itself to a ree of the doetrine is explained or refuted : of the particular labours al coveries of individual homologists the author of the 'Ostépraphie' is "He defines a vertebra, in the language of anthropotomy, as a single bo "Une vertèbre, considérée d'une manière générale, et par conséquen son état complet, est un os court, médian, symmétrique, formant un partie principale de la vertèbre, aux deux faces opposées de laquelle, e: on dorsalc, interne ou ventrale, s'applique un are plus ou moins dével d'ou résultent deux canaux, l'un au dos, l'autre au ventre." (ib. fase. i. We discern the influence of the ideas of his ingenious contemporary, Get St. Hilaire, in the admission of the ventral or inferior, as well as the dor superior arch; and, like Gcoffroy, he recognises the physiological rel of the upper areh to the protection of the nervous system, and that o lower arch to the protection of the vascular system : but, overlooking , jecting the idea of the relation of the ribs as the inferior protecting arel the expanded central organ of the vaseular system, he considers the ve (hæmal) arehes as arriving at their maximum of development in the tail. dorsal and thoracic vertebre are, accordingly, characterized as those whic. provided with costiform appendages diversely articulated to them ; . looking, I may remark, the costal appendages of the cervical vertebre it saurians and those which become anelylosed to the cervical vertebr birds, as do, frequently, their serial homologues to the dorsal vertebree it same elass. M. de Blainville seems, also, wholly ignorant of the fact that bent-forward ends of the long transverse processes of the lumbar vertebr the hares, eavies, and many other rodents, are primarily developed as dist costal rudiments: the same rudiments of lumbar ribs are found in the fc of the hog, and in the first lumbar vertebra of many mammals \dagger. "Les I baires," says M. de Blainville, "n'ontiplus de côtes, même incomplètes."

The ribs not being regarded as essentially parts of the inferior or hex arches of vertebrex, the sternal bones which complete these greatly expan arches are aceordingly regarded as a distinct series of bones, and eal 'sternebers.' M. de Blainville, as we have seen, had before (1817) compa them to vertebral bodies. In the 'Ostéographie,' however, he rightly rega the body of the hyoid as their serial homologue, but does not extend his ec parison to the bones that in like manner complete the mandibular and m illary arehes. These, with the corma of the hyoid, and the sternal and ver bral ribs, he classes with the bones of the extremities, under the name appendages (appendices), adopting, in his larger work, as in his original essi essentially the idea of Oken, that the locomotire members are liberated rib:

The Typical Vertebra.-After mueh additional researeh and comparis since the first publication of my ideas of the constitution of the typical if tebra or primary segment of the endoskeleton \ddagger, I have found no reason modifying them, but have derived additional evidence of their aecuracy; al I therefore reproduce the diagrammatic figure with which they were original

[^42]rated (fig. 1t). Althouglt my investigations of the findamental type e vertcbrate skeleton were first made upon the class of fishes, where vere\geq uniformity or irrelative repetition most prevails, and where, therefore, ype is least obscured by the modification of one part in mutual subserY with another, I soon tound that 1 should be led astray by confining my vations to fishes, and by borrowing illustrations from that class exclu-

Comparison of the piscine skeleton with those of the higher animals mstrates that the matural arrangement of the parts of the endoskeleton is series of segments succeeding each other in the axis of the body. These ents are not, indeed, composed of the same number of bones in any class roughout any individual animal. But certain parts of each segment do tain such constancy in their existence, relation, position, and offices, as force the conviction that they are homologous parts, both in the constiseries of the same individual skeleton, and throughout the series of brate animals. For each of these primary segments of the skeleton I a the term 'rertebra'; but with as little reference to its primary signifia, as a part speciaily adapted for rotatory motion, as when the compaanatomist speaks of a sacral vertebra. The word may, however, secm ? anthropotomist to be used in a different or more extended sense than a which it is usually understood; yet he is himself, unconsciously perhaps, , habit of including in ccrtain vertebree of the human body, elements : he excludes from the idea in other natural segments of the same kind, nced by differences of proportion and coalescence, which are the most ble characters of a bone. Thus the rib of a cervical vertebra is the 'pro; transversus perforatus,' or the 'radix anticus processus transversi verteolli' *: whilst in the chest, it is 'costa,' or ' pars ossea costæ.' But the ulna I an ulna in the horse, although it be small and anchylosed to the radius. e osteology of man, therefore, cannot be fully or rightly understood the type of which it is a modification is known, and the first step to nowledge is the determination of the vertebral segments, or natural ss of bones, of which the myelencephalous skeleton consists.
efine a vertebra, as one of those segments of the endo-skeleton which conthe axis of the body, and the protecting canals of the nervous and lar trumks: such a segment may also support diverging appendages. sive of these, it consists, in its typical completeness, of the following uts and parts :-

Heal typical vertebra.

[^43]The names printed in roman type signify those parts which, being usu developed from distinet and independent centres, I have terined 'aut' nous' elements. The italics denote the parts, more properly called cesses, which shoot out as continuations from some of the preceding eleme and are termed 'exogcinous': e.g. the diapophyses or upper 'transv processes,' and the zygapoplyses, or the 'oblique' or 'articular processes human anatomy.

The autogenous processes generally circumseribe holes about the centr which, in the chain of vertebræ, form canals. The most constant and ex sive canal is that (fig. 14, n) formed above the centrum, for the lodgmen the trunk of the nervous system (neural axis) by the parts thence ter 'neurapophyses.' The sccond canal (fig. 14, h), below the centrum, i . its entire extent more irrcgular and interrupted; it lodges the central ol and large trunks of the vascular system (hæmal axis), and is usually for by the laminæ, thence termed 'liæmapophyses.' At the sides of the trum, most commonly in the cervical region, a eanal is circumseribed by plcurapophysis or costal proecss, by the parapophysis, or lower tranlsw process, and by the diapophysis, or upper transverse process, which c includes a vessel, and often also a nerve.

Thus a typieal or perfect vertebra, with all its elements, presents canals or perforations about a common centre; such a vertebra we fin the thorax of man and most of the ligher classes of vertebrates, als the neck of many birds. In the tails of most reptiles and mammals, hemapophyses (as in fig. 14) are articulated or anchylosed to the u1 part of the centrum ; space being needed there only for the caz artery and vein. But where the central organ of cireulation is to lodged, an expansion of the hæmal areh takes place, analogous to that w the neural arches of the cranial vertebree present for the lodgment of the brain. Accordingly in the thorax, the plcurapophyses (fig. 15, pl) are mueh elongated, and the liæmapophyses (fig. $15, h$) are removed from the centrum, and are articulated to the distal ends of the pleurapophyses; the bony hoop being completed by the intercalation of the hæmal spine (fig. 15, hs) betwecn the ends of the hæmapophyses. And this spine is here sometimes as widely expanded (in the thorax of birds and chelonians, for example) as is the neural spine (parietal bone or bones) of the middle eranial vertebra in mammals. In both cases, also, it may be developed from two lateral lialves, and a bony interniuscular crest may be extended from the mid-line, as in the skull of the hyæna, and the breast-bone of the bird (fig. 15, hs). To facilitate the comparison of the merits of the preceding view and nomenelature of the typical vertebra with those of other comparative anatomists, I have thrown the results into the form given in

Fig. 1 b.

the question why I sloould lare invented new names when Gcoffroy St. ire had already proposed others for the vertebral elcments, I can ouly rethe regret with which I found myself compelled to that invidious step, haviug arrived at the conviction, that the learned Parisian lrofessor had aines applied the same term to two distinct elements, and sometimes distinct names to one and the same element : and I ann glad to be able to the authority of Cuvier for the propriety and advantage of such a step. sords are in reference.to an analogous case, "Donncr à un mot connu un noureau est toujours un procédé dangereux, et, si l'on avoit besoin orimer une illée nouvelle, il vaudroit encore micux inventer un nouveau e, que den détourner ainsi un ancien *." Now there is scarccly one term e first column in Table II. which is synonymous with its opposite in the ad column, or which expresses exactly the same idea; and the discrepancy mes greater in regard to the terms applied to the vertebral elements of the , in columns 1 and 5 of Table III. The respective concordance of the views e vertebral archetypc entertained by Geoffroy and inyself with Nature will etermined and judged of by succeeding impartial and original observers. ith regard to the term cycléal, "de кúk入os, cercle, pour rappeler sa e annulaire, permanentes chez les premiers," (Articulata, DermoverteGeoff.) "et, au contraire, non persévérante chez les derniers" (Verte., Hauts-vertébrés, Geoff.), it is understood by its author to apply to the lar segment of the crust of the insect, as well as to the 'centrum' of the skeletal vertebra. Geoffroy's primary division of the parts of a vertebra to the centre or nucleus (noyau) and the latcral branches. The upper uches laterales' or 'périaux' are equivalent to my neurapophyses and to my neural spine, in fishes: the lower lateral branches or 'paraaux' are etimes free and floatingt, when they answer to my 'pleurapophyses'; they are sometimes so united as to form a canal, when they answer 7y 'parapophyses' in the tail of fishes \ddagger, and to my 'hæmapophyses' in ail of cetaceans. Geoffroy supposed, for example, that the hæmal canal se tail in all fishes was formed by the ribs, bent down and anchylosed oth ends§, and that the hæmal canal in the tail of the crocodile and e was constituted by a like metamorphosis of the same vertebral elements. also, argued that, as the small spinal chord of fishes did not demand reat a development in breadth of the neurapophyses, they were permitted tain to unusual length; and that, coalescing together, they thus consti1 not only the neural arch but the neural spinc, to which latter, therefore, xtended the name 'périal'; whilst to the corresponding part in mammals gives the name of 'épial'. But, again, in fishes, he calls the dermal es developed in the embryonic median fold of integument which is metaphosed into the dorsal fins, 'épiaux' ; and the corresponding dermal spines se rentral fin 'cataaux.' The lepidosiren, however, manifests the neural e distinct from botli the neurapopliyscs below and the dermo-neural spine re: and such neural spine is unequivocally homologous with the anchyd neural spine in osseous fishes $\|$. It is quite in harmony with the position ue class of fishes at the bottom of the vertebrate scale that they should ent a greater rlegree of calcification of the parts belonging to the same gory of the skeletal system as the shells and crusts of thic invertebrates: ce it is that whilst the median dermal fins of the marinc mammalia have

As they are illustrated in the ahdominal vertelora of the fish figured by Gicoffroy in the mnires du Muséurn,' t. ix. (1822), pl. 5, fig. 4, polypterus, o.
$\$ \mathrm{Ib}$. fig. 2 , o o.
This orcurs as an exceptional condlition, in the lepillonteus, and perhaps in the lepido-
their supporting skeleton in the primitive histulogieal fibrous state, the eorresponding parts are ossified in fishes: rarely, however, are such parts in answerable number to the vertebræ; and the true spines of these vertebre, when the median fins and their bony spines are removed, in fishes, show as little indieation of the place or existenee of such fins, as do the vertebre in the porpoise of the existence of its dermal fin. In proportion as ossification has extended into the dermal system of fishes it has been arrested in the vertebræ, which in the truak and tail of fishes present their least complex condition. Two of the autogenous elements, the 'lixmapophyses,' are absent, and are eommonly represented, in the tail, by the modified 'parapophyses.' The seeming complexity of a fish's vertebra arises from the intercalation of bones appertaining to the system of the dermo-skeleton : it would have been an unusual exception to the general course of development if the lowest of the vertebrate classes should have presented the vertebral skeleton in its lighest state of complication; and Geoffroy St. Hilaire was unfortunate in taking a tish's vertebra with its extrinsic evertebrate complications, as the perfeet type of that primary segment of the my elencephalous skeleton (fig. 16). He was still more unlueky in having for the subjeet of his figure* a specimen from which two of the pieces had been accidentally lost, as Cuvier afterwards pointed out ; yet Gcoffroy's mutilated caudal vertebra of the plaice continues to be copied in some conpilations of comparative anatomy, as the type of a vertebra! To obtain the dermal spines (pro-epial and proeataal) of the vertieally extended caudal vertebre of fishes, Geoffroy had recourse to a hyputlietical division lengthwise of the interncural and interlremal spines (which are represented as being single in lis figure), and to as gratuitous a displacement of one of the lalves from the side to the summit of the other t. Now the interneural and interhemal spines are actually double in relation to the neural and hemal spines ; yet they eoexist with a dermoneural and dermohæmal ray, whieh therefore needs no imaginary change of place of either of its supporting spines to account for its existence. I subjoin in fig. 16 an entire vertebra answering to the mutilated one figured by Geoffioy; and for the better understanding of the difference between his determinations of the vertebral elements and those given in the present work, the names respeetively indicating those different determinations are added to the figure. In the description of the plate in the 'Mémoires du Muséum,' Geoffroy explains that the 'pro-épial' is the left half or 'épial gazche,' and the en-épial the right half or' ' épial droit' : that the en-eataal is the right

Endo- and exo-ske. letal clements of caudal vertelora of a Plaice (Pleuro necles). half or ' eataal droit,' and the pro-eataal the left half or 'eataal gauche,' of imaginarily divided epivertebral and catavertebral elements (l.c. p. 115).

[^44]ie trunk of fishes, in respect of its viscera and the degree of development e pudoskeleton, answers to the lumbar and candal regions of air-breathertebrates, where the vertebre usually lose some of their elements, at as bones. The heart and respiratory organs are placed in the head of ish; and it is only in this region that the vertebral segments attain to al completeness in that class. Geoffroy, in stuclying the special and ral homologies of the bones of the head of fishes, blends indiscrimij, as in the supposed typical vertebra from the tail, elements of the oskeleton (suborbitals and lacrymals, e. g.) with those of the endoton; and also presses the capsules of the special organs of sense into the rosition of the seven cranial vertebre of his system. It needs only to are the synonyms of the elements of these vertebræ in Table III. to sive how impossible it would have been to have expressed the ideas bI wish to expound and illustrate in the present work by the use of the s for the vertebral elements proposed by Geoffroy, or of english equits. The prefrontals, $e . g .($ no.14 $)$, which I regard as the neurapophyses e nasal vertebra, are, according to Geoffroy, epials of the 2nd or labial bra in the class of fislies; butare epials of the lst or nasal vertebra in rocodile, according to the tables given in the 'Annales des Sciences,' t. iii. and 'Atlas,' p. 44; whilst they are the perials of the 2nd vertebra in cheme of 1825 , cited in the fifth column of Table III.
cave deemed it requisite to enter the more fully into the grounds for doning the analysis and nomenclature of the typical vertebra proposed eoffroy, because they have received the sanction in this country of the ed Professor of Comparative Anatomy at University College. Dr. Grant** erts the French names into English equivalent phrases; 'cyclo-vertebral ent' for cycléal, 'perivertebral element' for périal, \&c.; and abandous dvantage of a definite name, without remedying the disadvantages of ouble emplosment of the same names for two distinct elements, and of .pplication of different phrases for the same element. If, for example, eural spine of the reptile or mammal be, in nature, the homologue of eural spine of the fish, then the latter is called an 'epivertebral element,' t the former is called a 'perivertebral element.' If the dermo-neural s of the dorsal fin of a fish be, in nature, homologous with the fibrolentous tissue supporting the dorsal fin of the dolphin, then the term 'ertebral element' is applied to a spine of the exoskeleton in the fish, and spine of the endoskeleton in the mammal, which spine co-exists with such al spine in the fish (see fig. 16). If the parapophysis or inferior transverse ess in the fish be a distinct element from the diapophysis or superior verse process in the mammal, the same phrase, 'paravertebral element,' died to each. Dr. Grant, moreover, gives the same name, 'catavertebral ents,' to the free vertebral ribs in fig. 28, B. g. p. 58, op. cit., as he applies ie hæmapophyses in the tail of the reptile or cetacean, in fig. 28, C. g. U.; whilst Geoffroy applies the uame 'cataaux' to the sternal ribs, and o the vertebral ribs: as the caudal vertebræ of the menopome (fig. 28) that it is with the sternal ribs that the chevron bones in the tails of repand cetaceans are homologous, both parts are 'hæmapophyses' in my m . 'The transfercnce of the term 'catavertebral elcinents' (for cataun), the 'cotes sternales' to the pair of ribs extended from the ends of the mophyses of the ablomen of fishcs, is a deviation from the original veril system of Gcoffroy, which seems to lead further away from nature. If neant that the outstretcherl parapophyses in the diagran of the abdominal :bra of a fish (fig. 28, 13.f.f. loc. cit.), and whieh are there called' para-

[^45]vertebral clements,' are the homologues of the 'côtes vertébralcs' of hi vertebrates, to which Geoffroy assigned the name 'paraaux,' this appe: be another misapprehension of the relations in qucstion.

Development of vertebra.-Before applying the idea of the arche vertebra, or primary scgment of the cudo-skcleton, given in figs. 14 an to the elucidation of the modifications of those segments in the differen tebrate classes, I shall premise a few obscrvations on the mode of der ment of the vertebre in those classes.

The chief condition of the development of distinct vertebre in the is the conjunction of nerves with, or their progress from the spinal el at least, this circumstance, with the concomitant exit of blood-vessels the neural canal, scems to determine the devclopment of the ncurapoph and the vertebral bodies are not slow in coinciding in number with thos portant arehcs; and in determining with the regular primary pairs of (custal, lumbar, Sce.) arteries, the inferior or hæmal arches. We may learn much the development of the neurapophyses and vertebral bodies dep in the trunk, upon the conjunction of nerves with the spinal chord, b fact that, in the regenerated tails of lizards, the vertebral axis renains tinuous and unjointed, because there is no co-extensive spinal chord g off pairs of nerves.

An extremely delicatc fibrous band, with successively accumulated ge nous cells, compacted in the form of a cylindrical column, and inclosed membranous sheath, is the primitive basis, called 'notochord'* (chorda di lis seu gelatinosa, Lat., gallertsüule und ruckensaiie, Germ.), in and arr which arc developed the cartilaginous or osseous clements by which vertebral column is established in every class of Myelencephald.

The cartier stages of vertebral development are permanently represes with individual peculiaritics superinduced, in the lower forms of the cla fishest. In the Dermopteri or cyclostomous fishes, the ncural and ha canals are formed by a separation of the layers of the outer part of the neurotic sheath of the gelatinous chorda: in the lancelet (Amphioxus) t is no distinction of structure in the cramial part supporting the anterior of the neural axis, with which the trigeminal, optic and olfactory nerves municate, and the rest of the rudimental vertebral column: a labial c laginous arch supporting the tentacula is, at least, the only lineamci development which sketches out the skull. In the myxinoids the skul cludes a complex system of cartilages, but the vertebral column of the tr has not advanced beyond the gelatino-aponcurotic stage. In the lam cartilaginous laminæ are developed in the outer layer of the fibrous she and give the first indication of neural arches \ddagger. In the sturgeons (Sta) Pohyodon) the imner layer of the fibrons capsulc of the gelatinous notocl has increased in thickncss, and assumed the texture of tough hyaline ef lagc. In the outer layer are developed distinct, firm, and opake ci lages, the ncurapophyses, which consist of two superimposed pieces on e side, the basal postion bounding the neural canal, thic apical portion parallel canal filled by fibrous clastic ligament and adipose tissue; above is the single cartilaginous ncural spine. The parapophyses are now stinctly developed, and joined tugether by a continuous expanded base, fo ing an inverted arch beneath the notochord for the vascular trunks, ever the abdomen. Pleurapophyses are articulated by ligament to the ends of

[^46]ally projeeting parapoplyses in the first twelve or twenty abdominal ver$x:$:in the anterior ones these 'vertebral ribs' ure composed of two or : distinct cartilages*: the posterior plewrapophyses are short and simple. parapophyses gradually bend down to form hemal arehes in the tail, at and of which we find hremal cartilaginous spines corresponding to the al spines above. The tapering anterior end of the notochord is conod forwards into the basal elements of the cranial vertebre. Vegetative tition of perivertebral parts not only manifests itself in the composite apophyses and pleurapoplyses, but in a small accessory (interneural) care , at the fore and back part of the base of the neurapophysis; and by a ar (interhæmal) one at the fore and back part of most of the parapoes \dagger.
mongst the sharks (Squalicke) a beautiful progression in the further lopment of a vertebra has been traced out, chiefly by J. Müller \ddagger. In sanchus (Squalus cinereus) the vertcbral centrcs are fecbly and vegcely warked out by numerous slender rings of hard cartilage in the notodal eapsule, the number of vertebræ being more definitively indicated by -neurapophyses and parapophyses; but these remain cartilaginous. In fiked dog-fish (Acanthias) and the spotted dog-fish (Scyllium) the veral centres coincide in number with the neural arches, and are defined by on layer of bone, which forms the conical articular cavity at cach cnd: rhole exterior of the centrum is covered by soft cartilage, except at the ave ends; the two thin fumel-shaped plates of osscous matter coalcsce eir perforated apices, and form a basis of the vertebral body likc an -glass; the series of these centrums protecting a continuous moniliform rant of the gelatinous notochord. In the great basking-shark (Selache) sertebral bodies are chiefly established by the terminal bony cones, the : margins of which give attachment to the elastic capsules containing relatinous fluid, which now tensely fills the intervertebral biconical spaccs. sub-compressed conical cavities extend, two from the bases of the apophyses, and tro from those of the parapophyses, towards the centre se vertebral body, contracting as they penetrate it. These cavitics always tin filled by a clear cartilage : the central two-thirds of the rest of the ebral body contain concentric, progressivcly decreasing, and minutcly כrated rings or cylinders of bone, interrupted by the four depressions: دeripheral third of the vertebral body contains longitudinal bony laminæ, ch radiate, perpendicularly to the plane of the outermost cylinder, to the imference ; these outer laminæ lie, thercfore, parallcl with the axis of the sbra, and the intervening fissures, like those between the concentric cylin-- within, are filled by clear cartilage, which shrinks, and leaves them open :e dry vertebra §.
1 Cestracion the intermediate part of the centrum between the terminal is is strengthened by longiiudinal radiating plates only; in Squatina by entric cylinders only. In the tope (Galcus) all the space between the ninal bony cones is ossified, except the four conical cavities, the bases hich are closed by the neur- and par-apophyses; so that the whole rior of the centrum appears formed by smooth compact bonc.
1 the osseous fishes 1 find that the centrum is usually ossified from six ta, four of which commence, as Rathkc\| describes, in the bases of the

[^47]two neurapophyses and the two parapophyses ; but the terminal coneave of the eentrum are separately ossified. They eoalesee with the interm part of the eentrum, whieh is sometimes eompletely ossified, but eomm communieating aperture is left between the two terminal ennes; many eases, the plates by whieh ealeifieation attains the periphery body leave interspaees permanently oceupied by eartilage, forming e in the dried vertebra, especially at their under part, or giving a reti surface to the sides of the eentrum. The expanded bases of the neu par-apophyses usually soon beeome confluent with the bony eentrum; times first expanding so as wholly to inclose it, as, for example, in the 1 where the line of demareation may always be seen at the border of thi cular coneavity, though it is quite obliterated at the centre, as a s through that part demonstrates.

Müller correetly distinguishes a 'eentral' from a 'peripheral' (cortieal or seat of the ossifieation of the vertebral bodies of fishes. The perij ossifieation whiel takes its rise from the outer layer of the fibrous she the notoehord sometimes extends into broad plates bencath the anterio tebre of the trunk, and tends to fix or anehylose a eertain number of when they are eammonly represented by the partially distinet eentral of the bodies, together with the neur- and par- and pleur-apophyses.

The batraehia follow closely the stages above-eited in fishes; the cen being arrested at the biconical stage in the peremibranehiates, but cons into ball-and-soeket vertelrwe by the ossifieation of the interposed gelat ball* and its adhesion, either to the fore-part of the eentrum (Pipa, mandra), or the back part (Rana, Bufo). The mode of ossifieation centrun varies sontewhat in batrachia. Müller \dagger deseribes annular eations in the sheath of the notochord of the Rana temporaria and R. lenta, whieh support, at first, the neurapophyses. Dugés, apparentl fluenced by M. Serres' so-ealled 'law of eentripetal development,' dest two eartilaginous muelei. side by side; but the more obvious and bette termined development of the vertebre of fishes gives no countenanee tr bilateral beginning of ossification of the centrum as a general law. Thi distinet bony nucleus in the eentrum observed by Dugés was bilobed afterwards eubieal; but exeavated before and behind, as well as benc The ossifieation of the eentrum is completed by an extension of bone the bases of the neurapophyses, whieh effeet, also, the coaleseence of with the eentrum. In Pelobates fuscus, and Pelobates cultripes, Müller f the entire centrum ossified from this source, without any independent p of ossifieation.

The vertebre of the tail of the larvæ of the anourans are representer stinctly only in the aponeurotie stage. Even when the change to eart takes place, the tendeney to coaleseenee has begun to operate, and only long neurapophyses are established on eaeh side : the ossifieation of t plates extends into the fibrous sheath of the remnant of the coeergeal it chord, and they eoalesee when the perishable parts of the tadpole-tail been absorbed, and the fore- and lind-legs developed, constituting the 1 ofters hollow, and inferiorly grooved coceygeal bony style.

In saurians, birds and mammals, the notoehord is inelosed by earti before ossifieation begins; whieh eartilage is eontinuous with the eartil nous neurapophyses §. In birds, the two histologieal processes, elondrit

[^48]and ossification, do not preeisely follow the same route. In the centrums he dorsal and cervical vertebre of the elick chondrification is eentripetal: egins from two points at the sides and proeeeds inwards, the middle line he under surface of the primitive notochord resisting the ehange longest. , when the lateral eartilages have here eoaleseed, ossifieation begins at middle line and diverges laterally ; the primitive nuelci of the bony centres earing as bilobed ossicles, and its direction is centrifugal. "The lobes and to embrace the shrivelled remmant of the ehorda, like the hollow veral centres in fishes. Only in the saeral vertebre has ossifieation been 1 to begin from two distinet points at the middle line. The bases of separately ossifying neurapopliyses extend over mueh of the eentrum, soon eoalesce with it. In reptiles a greater proportion of the centrum ssified from an independent point, and the bases of the neurapophyses 'n remain permanently distinet and united to the centrum by suture. In nmals, as in fishes, the centrum is ossified from an anterior and posterior tre, establishing the articular surfaces, as well as from an intermediate '1t. This is eonsiderably overlapped by the bases of the neurapophyses, ore they coalesee with the centrum. The three primitive parts of the trum remain longest distinct in the eetacea. The body of the human $-s$ is sometimes ossified from two, rarely from three, distinct eentres placed : by side *. From these ascertained diversities in the mode of formation he eentral element of the vertebra, it will be seen how little developmental racters ean be relied on as affecting the determination of homologous parts. Feneral Characters of Vertebre of the Trunk.-The ossified parts of the lominal vertebræ of osseous fishes answer to c, centrum; n, neuraposes; $n s$, neural spine; p, parapophyses; $p l$, pleurapophyses; and a, ap1dages (fig. 17).
The neurapophyses comnly coalesce with their rective centrums; except in ease of the atlas, where the ral arch is sometimes quite farated from the eentrum, . 1 wedged between those of oeciput and seeond verte1. I have found also the urapophyses of the two last idal vertebræ unanchylosed their centrums in a large i-pereh (Centropristis gigas,) in whieh the five terminal emal arches and spines retinerl similarly distinet, and iculated with the eentrums low. In the carp and pike, z primitive independence of th neurapophyses and parophyses is more general and iger maintainerl. In the le-

Fig. 17.

Ossified parts of abdominal vertebra, Fish, losiren the vertebral bodies are not developed, the notochord being pertent; but the peripheral vertebral elcments are well-ossified : the neurophyses in this fish remain listinet from the neural spines; and the hamal mes are in like manner movrably articulated to the homal arches. These

[^49]are formed by the gradually bent-down ribs*, whieh are formed i abdomen either by unusally elongated 'parapophyses' (if they be preted by the condition of those elements in the cod-fish), or by plet physes articulated direetly to the fibrous sheath of the notochord; interpretation of the mode of formation of the hæmal arches is support Professor Müller's discovery of the nature of those arehes in the Lepidose Whether we adopt the analogy of the Anacanthini, or the Ganoidei the general affinity of the Protopteri to the ganoids would ineline the e to the latter), the constitution of the hæmal arches in the lcpidosir strictly piscinc; at least if we take the skeleton of the tailed batr (fig. 28) as our guide to the homology of the caudal inferior areh higher reptiles and mammals. The unusual size and length of the ε minal parapophyses in the eod-tribe (Gadida), the flat-fishes (Pleuronecti and the genus Ophidium, evinces the natural eharaeter of the order Anc thini, in which they have been grouped together by Professor Müller: pleurapophyses arc, conversely, very short and slender in this ordcr. I bony fishes the costal arch in the abdomen is eompleted by the aponeu septa between the ventral portions of the myocommata \ddagger, whieh there re sent the 'Iramapophyses' (cartilagines cosice, inscriptiones tendinece musc. abdominis of anthropotomy). Indeerl, when we refleet that the trun the fish, by reason of the advanced position of the heart and breathing org answers to the abdominal and eaudal regions of the trunk of higher ve brates, we eould hardly expect the typical vertebra to be there earried ot osseous tissue; but rather be prepared to find the hæmapophyses retait the same primitive histologieal state which they present in the abdome mammals and man (fig. 25, $h^{\prime \prime}$).

Immediately bchind the coraeoid areh, it is usual to find a long and sler rib-like bone, sometimes composed of two pieees, on each side; it giv firmer implantation to the portion of the myocommata immediately beh the pectoral fin ; and is obviously the ossified serial homologue of the hæs popliysial aponcuroses between the sueceeding myoeommati. It is usu? detaelied from its eentrum and articulated superiorly to the inner side of coracoid: when it rises higher, as in the Batrachus, it becomes attachec the atlas, and in the Argyreiosus vomer it mcets and joins its fellow bel forming a truc inverted or hiemal arch, parallel with, but more slender tl the eoraeoid arch. No other idea of the general homology of this areh p sents itself than as a hæmal one, eompleting the eostal areh as an ossif hæmapophysis, differing from the typieal vertebra (fig. 15) only by the nu development of a sternum or hæmal spinc : and there appcars to be as lit ground for hesitation as to the particular scgment of the endoskeleton to whi to refer this costal or in verted areh; its immediate suecession to the correspon ing areh attached to the oeciput, as well as the oeeasional direct attaehme indicating that segiment to be the atlas or first vertebra of the trunk.

The best-inarked general character of the vertebral column of the trunk the elass Pisces is that which Professor J. Müller first pointed out; viz. t formation of the liæmal arehes in the tail by the gradual bending down al coaleseence of the parapopliyses ; the exceptions being offered by the gano polypterus and lepidosteus and the protopterous lepidosiren. The pleurap physes are, sometimes, eontinued in ordinary osseous fishes from the parap physes after the transmutation of these into the hæmal arches. The dor

[^50]ty, and salmon yield this striking refutation of the idea of the formation iose arches in all fislies, by displaced, curtailed and approximated ribs. In e fishes, however (e.g. the cod), reduced pleurapophyses coalcscc with the pophyses to form the hemal arches of thic caudal vertebre. The menoe, amiongst the lowest or peremibranchiate reptiles, yields a clear disproof he formation of the hromal arch in the tail by the plcurapophyses (the s, viz. called by Geoffroy 'paraux,' and by Dr. Grant 'catavertebral elets' in the abdomen of fislies)*. The vertebral ribs or pleurapophyses in menopome (fig. 2S, $p l$) are short and simple and suspended to the extrees of the diapoplyses (d) at the begimning of the tail, where they coexist I hremal arches (h, h) : these must be formed, thereforc, by different eleats, which, since no trace of parapophyses exists in any part of the spine, onclude to be the 'hæmapophyscs.' The young crocodile and the adult iosaurs give the same evidence of the nature of the hrmal arches in the with which the corresponding arches or chevron-bones, in cetacea and 1y other mammalia, are homologous.
hus the contracted hromal arch in the caudal region of the body may be ned by different elements of the typical vertebra: $e . g$. by the parapophyses aes geuerally) ; by the pleurapophyses (lepidosiren) ; by both parapophyand pleurapophyses (Sudis, Lepidosteus), and by hæmapophyses, shortened directly articulated with the centrums (reptiles and mammals) \dagger. The dal vertebre of some flat-fishes (Pleuronectida, fig. 16), and the muw, would seem to disprove the parapophysial homology of the hæmal arches uch fishes, since transverse processes from the sides of the body coexist 1 them, as they do in the cetacea. But, if we trace the vertebral modifions throughout the entire column in any of these fishes, we shall find that hæmal arches are actually parts of the transverse processes, not independelements, as in the cetacea; but due to a progressive bifurcation : this, in trena Helena, for example, begins at the end of the transverse processes bout the twenty-fifth vertebra, the forks diverging as the fissure deepens, il, at about the seventy-third, the lower fork descends at a right angle to upper one (which remains to reprcsent the transverse process), and, eting its fellow, forms the hæmal arch, and supports the antero-posteriorly manded hæmal spine. In the plaice a small process is given off from the randed base of the descending parapophysis of the first caudal vertebra, ich increases in length in the second, rises upon the side of the body in third, becomes distinct from the parapophysis in the fourth, and gradually uinishes to the ninth or tenth caudal vertebra, when it disappears. These rious transverse processes never support ribs.
The neurapophyses are often directly perforated by the nerves in fishes, t are sometimes notched by them, or the nerves issue at their interspaccs.
The neurapophyses, which do not advance beyond the cartilaginous stage in \geq sturgeon, consist in that fish of two distinet pieces of cartilage; and the anior pleurapophyses also consist of two or more cartilages, set cnd on end: and 3 interesting compound condition is repeated in cases where the pleurapoysial element is ossified and required to perform unusual functions in the ny state in other fishes. Amongst the more special or exceptional modifitions of the vertebree of the trunk of fishes, which indicate the cxtent to nich their normal segmental character may be marked, I would cite those of a anterior vertebrss in the pipe-fishes, in the loaches, and in certain siluroids.
In the Fistuluria tubuccarin (PI. 1, fig. 6) the four anterior vertebre are ach elongaterl; the second one even to eight times the length of the or*Ontlines of Comparative Anatomy, p .58, fig. $28, \mathrm{~B}, \mathrm{~g}$.
† By a misconception of the sense in which I nse the term 'hucmapophyses,' M. Agnssiz 3 applied it to the lamines of the inferior or herenal arehes in fisles. "Recherches sur les iss. Foss." tom. i. p. 95.
dinary abdominal vertebræ: and their centrums (c) are firmly interle together, by very deeply indented sutures. The parapophyses (p) ar extcnded with the centrums, and overlap cach other, forming a contir outstanding horizontal ridge on each side; and the neural spines ($n s$) fo similar vertical continuous crest.

In the Cobitis fossilis and C. barbatnla the par- and pleur-apophyse: fig. $7, p$) of the second and third vertebre coalesce and swell out into a 'bulla ossea' on cach side, inclosing the small air-bladder of these fis thicy also lodge the little ossicles which bring this vertebral tympanum communication with the prolongations or atria of the labyriuth*.

In a large South American siluroid fish (ib. figs. 3 and 4), I found fore-part of the vertebral column of the trunk apparently formed by one 1 vertebra, the body of which sent a broad triangular plate outwards on side, giving it a rhomboidal figure, viewed from below: thesc plates in fish support and coalesce with five parapophyses $(p, 5,4,3, x, a)$, which ast and increase in breadth as they approach the skull, where they join the pa cipitals ($p o$), as they are, themsclves, joined together so as to form a tinuous broad oblique outstanding plate of bone. Above these, the continı bony neural arch is perforated for the exit of five pairs of nerves; the do and ventral roots cscaping separately, as in the sacrum of birds (fig. 3, $n x, n$, The coalesced neural spines send up, a lofty pointed plate to the overhang supraoccipital. On vertically bisecting this specimen, I found the central p of the bodies of five vertebræ $(c, a, x, 3,4,3)$ which had becn developec the notochord, distinctly marked out, and preserving in their anterior posterior deep concavities the persistent gelatinous remains of the notoche although the rest of the circumference of such centrums were anchylo to the cortical or peripheral parts developed from the capsule of the ne chord, viz. to the continuous expanded plate of bone (cee) below, to the pe pophyses laterally, and to the neurapophyses above. The bolly of the f vertebra, or atlas $(c a)$, presented the exception of bcing quite detached fr its elcvated parapophyses, as well as from its ncural arch; it was anchylo only to the bony plate below. The body of the second vertebra was six tin as long as that of the atlas: yet the apiccs of the two deep terminal jcl filled cones extended to and met in its centre. The bodies of the third ε fourth vertebree werc elongated, but less so than that of the axis : the body the fiftly vertebra (c5) was singularly modified; its anterior half presenting long and slender character of the antecedent vertebre; whilst the poster half was suddenly shortenell, but extended in depth and breadth so as adapt its shallow posterior concavity to that of the short and broad body the first free vertcbra of the trunk, which is followed by others of simi character. I have seen few more remarkable instances of adherence to tyl irrespective of obvious function, than the persistence of the biconcave ar cular cavities, with the elastic capsules and contained fluid, in the centrut of these five rigidly fixed anterior vertebre of the siluroid fish.

The continuous bony plate supporting those centrums was perforat lengthwise by the aorta, offering another mode of formation of a hæmal can (ch), viz. by exogenous ossification in and from the lower part of the outer lay of the capsule of the notochord : the carotid hæmal canal in the necks birds seems to be similarly formed; and the neek of the ichthyosaurus deriv additional strength and fixation from apparently detached developments bone in the lower part of the capsule of the notochord, at the inferior inte space between the occiput and atlas, and at those of two or three succeedin cervical vertcbræ \dagger.

* Weber, G. II., De Aure et Auditu Hominis et Animalium, 410.1820 .
+ Sir Philip de M. Grey Egerton, in Geol. Trans. 2nd ser. vol. v, p. 187 ,
\dagger Sir Philip de M. Grey Egerton, in Geol. Trans. 2nd ser. vol. v. p. 187, pl. 14.

The so-called 'body of the atlas' in reecnt saurians, birds, mammals and 1, is the homologue of the first of thesc subvertebral wedge-bones, and resents only the inferior cortical part of sueh-body. The odontoid pro: of the axis is the ecntral and main part of the body of the atlas. It not be the anterior artieular cpiphysis of the seeond vertebra, since this epresented by a distinct centre of ossifieation between the odontoid process the body of that vertebra, according to Professor Müller's observation -fœetal foal*, and the odontoid exists in birds and reptiles in which the lies of the vertebre have no terminal epiphyses as in young mammals.
The diverging appendages of the hemal arch in the abdominal vertebræ of es present the form of long and slcuder spines (fig. 17, a a), usually atbed to, or near the head of the ribs, and extending upwards, outwards backwards, between the dorsal and lateral portions of the muscular ments, to which they afford a firmer fulcrum or basis of attachment; ing, therefore, as so many pairs of rudimental and conccaled limbs. They Itermed the 'obere rippe' by Meckel, and at the fore-part of the abdomen the polypterus they are stronger than the pleurapophyses themselves. the vertebræ approach the tail these appendages are often transferred Idually, from the pleurapophysis to the parapophysis, or even to the cenm and neural arch.
in the air-breathing vertebrata, in which the heart and breathing organs transferred backwards to the trunk, the corresponding osseous segments the skeleton are in most instances developed to their typical completes, in order to encompass and protect thosc organs. The thoracic hæmaporses in the crocodiles are partially ossified, and in birds (fig. 15, h, h) comtely so; in which elass the hæmal spines of the thorax ($h s$) coalesce together, come much expanded laterally, and usnally develope a median crest downrds to increase the surface of attachment for the great muscles of flight. is speciality is indicated by the name 'sternum' applied to the confluent ments in question. The abdominal hæmapophyses and spines retain their mitive aponeurotic condition, though still preserving their characteristic vansion \dagger. In the crocodiles and enaliosaurs the abdominal hæmapophyses also ossified; and, in the latter, they manifest the same composite character ich has been noticed in the pleurapophyses of the sturgeon, consisting of ee or more pieces, which overlap each other \ddagger. The abdominal hæmal nes, in the Plesiosaurus Hawkinsii, are transversely extended, they are rked a, c in the figure quoted below: the compound hæmapophyses themves are marked $b b$ in the same figure.
The typical thoracic vertebræ of birds support diverging appendages (fig. , a, a), either anchylosed as in most, or articulated as in the penguin and Leryx, to the posterior border of the pleurapophysis $(p l)$. The function of : appendages in this form of typical vertebra is to connect one hæmal arch th the next in succession, so as to associate the two in action, and to give mness and strength to the whole thoracic cage. (A portion of the next - so overlapped is shown at $p l, a$, fig. 15.)

With regard to the connections of the plcurapophyses, we have seen that, fishes, they may be directly attaehed to the centrum, or to the ends of the raprophyses (fig. 17, p), or they may be quite detached from their proper scgent, and suspended to the hæmal areh of another vertebra, as in the ease the claviele (fig. $25,52^{\prime}$). In batrachians, ophidians, and laccrtians, the oximal end of the pleurapophysis is simple, as in fishes, but is articulated

[^51]to an exogenous tubercle or transverse process from the side of the cen or from the base of the neural arch, called 'diapophysis;' which is a dis part from the autogenous parapophyses in fishes. The anterior vert of crocodiles have an exogenous inferior transverse process from the si the centrum, answering to the 'parapophysis,' as well as a superior trans process or 'diapophysis' developed from the base of the neurapophysis : the proximal end of the pleurapophysis bifurcates and articulates with transverse proccsses, circumscribing with them a foramen at the side o centrum. A similar structure obtains in the cervical and anterior tho vertcbræ of birds and inammals: thus the rib $(p l)$ in fig. 15 articulates wits parapophysis p and the diapophysis d. Very few, however, of the tho: ribs in the cetaceans offer this structure; the first or second rib may reacl centrum, but the rest are appended to the ends of the long diapophyses, a character of affinity to the saurians is thus manifested. The cervica gion is distinguished by the shortness of the plcurapophyses and the abs of bony hæmapophyses, in saurians, birds, and mammals; but in the wi blooded classes the short floating vertebral ribs soon anchylose to the di physes and parapophyscs, and constitute thereby the 'anterior roots of perforated transverse proccss' of anthropotomy *. The cervical pleur physes are indicated diagrammatically at $p l$, in the neck of the cmbryo sk ton (fig. 25) : those of the scventh cervical vertebræ sometimes attain in human subject proportions which acquirc for them the name of 'ribs.' pleurapophyses retain their moveable articulation in the ninth, and someti the eighth, vertebre of the elongated neck of the threc-toed sloths \dagger.

The thoracic or dorsal vertebræ of mammalia are characterized by the fres ticulations of the pleurapophyses (fig. $25, p l$) : most of these are much el gated, and most, if not all, support hæmapophyses (ib, h) ; which, in a grei or less number of the anterior vertebræ, articulate with hamal spines (ib. completing the arch; these spincs commonly remain distinct, and are cal some 'stcrncbers,' others 'manubrium,' and 'xiphoid appendage,' and gether they constitute the 'sternum.' In most mammals the thoracic ha apophyses are cartilaginous : they become ossified in Dasypus, Myrmecopha the megatherioids and monotremes. The hinder plcurapophyses, which p gressively diminish in length, also, usually become simply suspended to diapophyses; all the ribs are so attached in Balcena longimana, accord to Rudolphi. The lumbar vertebræ, which in some manmals show, in fœetal state, distinct rudiments of pleurapophyses more minute than th. in the neck, have them soon anchylosed to the extremities of the diaj physes, which are thus elongated; and the vertebra is characterized in anth potomy as 'having no ribs, but simple imperforate transverse processes.' I hæmapophyses of these segments of the skeleton are represented by 1 'inscriptiones tendineæ' (fig. 25, $h^{\prime \prime}$); they do not advance even to the sti of cartilage, but retain the prinitive condition which they presented in t corresponding part of the trunk in fishes.

If a vertcbra succeeding the lumbar or abdominal ones have its hæn arch completed, as in the thorax, by pleurapophyses and hæmapophys with diverging appendages, forming the 'pelvic arch and hind or low limbs (fig. $28, \mathrm{D}^{\prime}, \mathrm{H}, \mathrm{A}$), 'it is called a 'sacrum'. If two or more vertebs anchylose together, without such completion of the typical character, th likewise are said to form a 'sacrum, of which an cxample may be found

[^52]wo or three anterior caudal vertebræ of certain flat-fishcs (Pleuro$l\left(e^{*}\right)$, characterized as usual by the simple parapophysial hæmal arch. sit air-breathing vertebrates the sacrum is characterized by both modificawhich are carried out to their extreme in birts: in no other class is so a proportion of the vertebral column converterl into a 'sacrum' by scence (e.g.seventeen vertebræ in Strathio) : in nonc is the diverging adage developed to such enormous proportions (e.g. Apteryx, Dinornis). centrums of the middle sacral vertcbre (fig. 27, c 1-4) are cxpanded versely, but depressed, and converted into horizontal plates: the neurhyses (ib. n 1-1) are lofty, expanded, and arch over the dilated part of reural canal, lodging the great sacral enlargement of the myelon, with entricle. In the young ostrich, before the general anchylosis is completed, ases of these neurapophyses are found to cross the interspaces of the ums, and to rest equally upon two of those elements. This modificawas retained throughout life, unobliterated by anchylosis, in the sacrum se extinct dinosaurs (Iguanodon, Megalosanrus, Hylcosaurus), and it ins in the dorsal vertebra of the chelonians. The adjoining portions se centrums and neurapophysis extend outwards into a short parapois, which affords an articular surface of three facets for the short pleurhysis. One of these elements is figured in situ at pl, fig. 27 ; it cxpands s distal end, and coalesces there with the contiguous pleurapophyses : ong diapophyses (d, d) abut against the inner side, and the ilium applies * to the outer side of these expanded and anchylosed ends of the short al ribs. The spinous processes of the sacral vertebræ (s, s) are developed ro-posteriorly, and soon coalesce into a lofty longitudinal crest of bone. ie chelonians, the dorsal spines develope horizontal plates from their exities, which unite by suture to the similarly united and expanded pleurshyses, forming with them the 'carapace.' The 'plastron' is formed of Hattened and expanded hæmal spines, which arc divided in the middle : and have an intercalated bonc (cntosternal) between the halves of the ral pieces. Professor Müller has noticed the sacral pleurapophyses in human and other mammalian cinbryost.
s the segments of the endo-skeleton approach the end of the tail, in the oreathing vertebrates, they are usually progressively simplified; first by diminution, coalescence and final loss of the pleurapophyses; next by the lar diminution and final removal of the hæmal and neural arches ; and etimes also by the coalescence of the remaining central elements, either a long osseous style, as in the anourous batrachia, or into a shorter ened dise "which has the shape of a ploughshare \ddagger," as in many birds. coalesced representative of the terminal vertebral centrums is developed cipally from the outer layer of the fibrous capsule of the primitive notord. In fishes, however, the seat of the terminal degradation of the vertecolumn is first and chiefly in the central elements, which, in the homouals §, are commonly blended together and shortened by absorption, whilst h neural and hremal arches remain, with increased vertical cxtent, and cate the number of the metamorphosed or obliterated centrums.

[^53]Summary of modifications of corporal vertebra.-To sum up the ki degree of modifieation to which the several elements of the primary se, of the endoskeleton of the trunk are subjeet, without masking their ξ homology, we may eommenee with the centrum; and fisst, as to its exi It is wanting, as an ossified part, in the atlas of the wombat and koa which it remains permaneutly eartilaginous: in the petaurists, kang and potoroos, ossification extends from the bases of the neurapophyst this eartilage, but the neural areh or ring long remains interrupted by dian fissure below. In man the rudimental body of the atlas is som ossified from two or even three distinct eentrest. The centrums at the site extremity of the vertebral column in homocereal fishes'are render centripetal shortening and bony confluence fewer in number than th sistent neural and hæmal arehes of that part. The centrums do no beyond the primitive stage of the notochord in the existing lepidosiren they retained the like rudimental state in every fish whose remains have found in strata earlier than the permian æra in Geology, though the nu of vertebræ is frequently indieated in Devonian and Silurian iehthyolit the fossilized ncur- and hæm-apophyses and their spines ${ }^{+}$. The individe of the centrums is sometimes lost by their mutual coaleseence withouts ening.

Although the normal form of the centrum is eylindrical, it may be eu conieal, hour-glass shaped, like a longitudinal bar, like a transverse bar a depressed or a eompressed plate, like a ploughshare, \&e. The eo-adi terminal surfaces of the centrum may be flat, slightly coneave, deeply eave, eupped or conical, coneave vertieally and convex transversely at end and the reverse at the other end §; or the fore-end may be eoneave the hind-end eonvex $\|$; or the reverse ; or both ends may be conve: or both ends produced into long pointed processes with intervening dee sures, so as to interlock together by a deeply dentated sutural surface f

The eentrum may be quite detached from its neural arch (atlas of sil and many fishes), and from its liæmal areh (atlas of most fishes).

The eentrum may develope not only parapophyses but inferior me exogenous processes, either single, like those of the eervieal vertebra samrians and ophidians (whieh in Deirodon scaber perforate the cesopha are capped by dentine, and serve as teeth ++) ; or double (atlas of Sudis gig, and the lower cervical vertebre of many birds) ; or the fibrous sheath of notoehord may develope a continuous plate of bone beneath two or more nt of centrums, formed by independent ossifieation in the body of the notoeh, these nuelei being partially colierent to the peripheral or cortical plate. vertebral centrum often shows the principle of vegetative repetition by partial ussifieation in the form of two or three bony rings, whieh answer single neural areh (Heptanchusilii) ; or by three osseous dises, one for e

[^54]lar surface, and a thicker intermediate piece, as in all foctal mammals, rroughout life in some cetaceans.
th respect to function, the centrum forms the axis of the vertebral and and comnonly the central bond of union of the peripheral elements vertebra: as a general rulc it supports, either inmediately or through cdium of the approximated or conjoined bases of the neurapophyscs, eural axis (iu the trunk called myelon, or spinal marrow, and its mem. 3) ; the terminal centrums bcing usually deprived of this function by ithdrawal of that axis from them iu the course of its centripetal or contive movement.
neurapophyses are more constant as osseous or cartilaginous elements vertebre than the centrums; but they are absent, under both histoloconditions, at the end of the tail in most air-breathing vertebrates, where gments are reluced to their central elements. The neurapophyses lose primitive individuality by various kinds and degrees of confluence; as irst, of the bases of each pair with their supporting centrum ; sccondly, apices of each pair with one another and with the neural spinc,-the siren affording a rare exception of the persistent individuality of this nt and of each neurapophysis throughout the trunk; thirdly, of two re neural arches with one another, as in the neck of some fishes, cetacea, rmadillus, and in the sacrum of birds and mammals; where they also coalesce with the pleurapophyses, as they do in the neck of most mamand birds. The neurapophyses rarely depart from the form of plates, broad or high, or both ; sometimes they are straight, sometimes arched, imes bent; sometimes by the inward extension of their bases, they form rer a bony ring above the centrum, excluding both that and the spine che ueural canal. The neurapophyses may develope, as exogenous proeither diapophyses or zygapuphyses, and the latter are sometimes e from both the anterior and posterior borders of the plates; as $e . g$. in 3rtebræ of Mugil, in some serpents, and in the lumbar vertebre of some nals. The observed extent of variation of position of the neurapophyses ri the upper surface of their own centrum to above the next intervertebral so as to rest equally on two centrums; or they may be uplifted bodily their centrum, and wedged or suspended between the two contiguous l arches, as $e . g$. in the atlas of ephippus and other deep-bodied fishes. cept in the cartilaginous neurapophyses of the sturgeon, I am not aware yinstance of the subdivision of this element into two pieces, placed cally upon each other. Some plagiostomes show the principle of vegetative ition in two or three star-like centres of ossification, side by side, in the tive basis of the neurapoplysis, but the secund of the two cartilaginous - on each side of the neural canal, coextensive with the single centrim, -st sharks, which second piece has the form of a wedge with the small lirected down over the intervertebral space, seems to answer, as Prof. ar has suggested, to the intercalary or interneural piece in bony fishes. e most constant functional relation of the neurapophysis is to protect oinal nerve in its exit from the spinal canal, either by a direct perforaof the neurapophysis (many fishes, and some mammals), by a notch in rargin, or by the interspace between two neurapophyses. This function is performed, in reference to the nervous system, at the posterior part a vertcbral cohmn in many animals, wherc the place of the shortencel on is occupied by the lengthened roots of the nerves: in the rest of the the neurapophyses protect also the neural axis. The original relation th ncurapophysis to the segments of that axis is determined by the place inection of the perforating nerve with the shortened myelon.

The neural spine commonly retains in the trunk the form indieater name ; but in the atlas of the erocodile, where it is distinet from th apophyses, it is a depressed plate. In the thorax and abdomen of che it becomes still more expanded and flattened, and its borders unite by d suture to contiguous spines and to the similarly expanded pleurapo The neural spine is absent in the thin annular eervieals of the mol, unusually developed and forms a thiek square columnar mass of bone eervicals of the opossum. It is double in the anterior vertebre o fishes: in the barbel one stands before the other; in the tetrodo stand side by side: and various other minor modifications of this per element might be cited.

The parapophyses of the trunk-vertebræ manifest their autogenol raeter in fishes alone; and in most speeies the eharacter is soon lost, $t 1$ apophyses beeoming conflnent with the eentrum; and, in the tail, eithe the pleurapophyses also, or with eaeh other and the liæmal spine, thus ei ting the hrmal canal (fig. 16). Amougst air-breathing vertebrates th apophyses of the trunk-segments are present only in those speeies in the septum of the heart's ventrieles is complete and imperforate, an they are exogenous and eonfined to the cervical and anterior thoracie ver or to the saerum (as in the ostrieh, figs. 15 and $27, p$). The parapophy: subjeet to a certain extent of variation as to form : they are either tubereles; or simple, shorter or longer, transverse proeesses ; or they ma the form of long pliented laminx (in the tails of some pleuroneetide) are longer and broader than the pleurapophyses in the cod-tribe; an sometimes muel expanded in the anterior vertebre of fishes, where ascend in position, and in the siluroid speeies above deseribed, coale form a broad outstanding ridge, direeted outwards and a little npwards rising as they approach the eranium, where they are joined by close sutt the paroceipitals.

The normal function of the parapophyses is to give attachment to mo and artieulation to ribs, and, occasionally, additional strength and fixati anehylosed portions of the vertebral column. As a rare and exeeption stanee, the expanded and exeavated parapophyses of the seeond and vertebree in the genus Cobitis perform an offiee elosely analogous to o those of the mastoid in man, sinee they inelose air-cells brought into munieation with the acoustie labyrinth by a elnain of small ossieles : and singularly modified rudiments of the swim-bladder seem to have no other tion in the groveling loaehes than that in eonncetion with the sense of hee

The pleurapophyses are less constant elements than the neurapoph they exist as free appendages or 'floating vertebral ribs' in the trunk sometimes at the fore-part of the tail, in fishes, serpents, and eertain h ehians (fig. 28, pl). The atlas has its pleurapophyses in most fishes, but are often detaelied from their eentrum, and sometimes joined to long hrmapophyses, as is well-seen in the Argyreiosus, and other deep-be seomberoids. Ossified hæmapophyses are not present in any other verti of the trunk in fishes. In batrachians the pleurapophyses of the single p vertebra are similarly conneeted with hæmapophyses, and the eostal ar there eompleted. In the menopome, the pleurapophysial element of the sac: ib. $p l^{\prime}$, is ossified from two eentres. Such typieal vertebre are more eom in the higher air-breathing elasses. Here the plemrapophyses have genes the long and slender form understood by the word 'rib;' but they expand broad plates in the thorax of the apteryx, in the anterior thoraeie vertebr whales, and more espeeially in the earapace of ehelonians, where they joined to each other by suture, and also to the expanded neural spines. ' \dot{I} !
d pleurapoplyses are oeensionally ossified from two centres in the great -tortoises of Ludia and the Galapagos isles. The free extremities ol the t cervical pleurapophyses of crocodiles and plesiosaurs are expanded and luced forwards and backwards, like axe-blades, whence the name of chet-bones,' applied to them prior to the recognition of their true homo-
he pleurapophyses are appended sometimes simply to the cuds of parshyses ; sometimes to the ends of diapophyses; sometimes by a head and rele to both kinds of transverse processes; sometimes directly to the of the eentrum; and sometimes they are shifted backwards over the inertebral space, and are artieulated equally to two eentrums (human ax), and sometimes to two eentrums, to a neurapophysis and to a long ophysis, as in the saerum of the ostrieh (fig. $27, p l$). In the atlas of a fishes the pleurapophysis is detached from its eentrum, and is suspended, its lıæmpophysis, from the anteeedent hænıal areh (scapulo-coracoid). ome sturgeons the abdominal pleurapophyses are composed of two or e cartilaginous pieees. I have observed some of the expanded pleuraposes in the great Testudo elephantopus ossified from two eentres, and the lting divisions contiuuing distinct but united by suturc. The pelvic rapophysis is in two pieces, as a general rule (fig. 28, pl attached to ; and the lower piece is the seat of that most common and sinıple kind rodification, viz. inerease of size with change of form from the eylindrieal flat bone (as indieated by the dotted line in fig. 27), whereby it comes connection with the pleurapophyses of other vertebræ besides the proxipieee of its own; sueh pleurapophyses having their development stunted s not to exeeed in size the proximal portion of the pelvic pleurapophysis, se expanded distal portion (62) receives the speeial name of 'ilium.' 'This 3 retains its rib-like shape however in the chelonians, as in the batraehians: rost species it unites below with two hæmapophyses, ealled, on aceount heir modifieations of form and proportions, 'isehium ' and 'pubis.' The 7rapophyses defend the hromal or viseeral cavity; they are the fulera of moving powers which expand and eontraet such eavity in respiration, n its walls admit of those movements; they frequently support ' diverging endages,' and give origin to museles moving such appendages, or aeting n the vertebral eolumn. In some exeeptional cases the pleurapophyses ome, themselves, loeomotive organs, as in serpents and the Draco volans.
'he hamapophyses, as osseous elements of a vertebra, are less eonstant than pleurapophyses; although they sometimes exist in segments, $e . g$. the bar vertebre of certain saurians, and in the ease of the ischium, or second -ic hæmapophysis, in whieh the corresponding pleurapophyses are absent, 3hort, or anchylosed to the transverse proeesses. The only true bony napophyses in the trunk of fishes appear to be those of the atlas, forming lower pieee of the epieoracoid ; and of the last (?) abdominal vertebra, ning the isehial or pubic inverted areh supporting the appendages ealled ntral fins.' It is at least to the last abdominal vertebra solely that the nologous arch and appendages are connccted, by the medium of the 1 rapophyses (iliae bones) in the batrachians, and it needs but the removal .he pleurapophysis, or of its seeond complementary portion (pl in fig. to reduee that vertebral segment to the condition whieh it presents in an orninal fish. 'The so liberaterl inferior (lıæmapophysial) portion of the ric (last abdorninal enstal) arch is subjeet, in fishes, to changes of position more extensive than have been observed in the neurapopliyses or pleurphyses of the trunk-vertebree, without however preventing the reeognition he segment to, which such shifted hamapophyses actually and essentially
belong. The homologous hæmal arch exists in the same free and det condition in cetaccans and enaliosaurs; but in all other air-breathing brates it is connected with the iliac boncs and completes the typical cha of the proper sacral vertebra. The bony hæmapophyses of the lumbar ver are found suspended in the fleshy abdominal walls of certain saurians: the region of the thorax in these and ligher vertebrates, the hæmapol (fig 15, l) articulates by one end to the pleurapophysis ($p l$) and 1 other to the hæmal spine (sternal bone, $h s$) ; or its lower end is attache contiguous hæmapophysis; or it is suspended freely from the pleurapop (as in the 'floating ribs' of man and mammals), or it may be joined I to the sternum, and have its upper end free, as in the seventh dorsal ver of the Ciconia Argala. When the upper end of the hæmapophysis artic, with the pleurapophysis in birds, it is usually by a distinct condyloid with smooth articular cartilage and a synovial capsule.

Where hæmapophyses exist in the tail, they articulate directly te under part of the centrum, or to two centrums at the intervertebral si and are either free at the opposite end, as in some caudal vertebreo 0 pents and in those of the enaliosaurs, or they are confluent with each at their distal ends; when each pair of hremapophyses forms the so-c V-shaped or chevron-bone. The changes of position of that detached 'r arch ' or 'chevron-bone' which supports the ventral fins in fishes affio, Linnæus the characters of the orders 'Abdominales,' 'Thoracici,' 'Jugulares' in the 'Systema Nature '; and its immortal author, in giving name 'Apodes' to those fishes in which the ventral fins were absent, cisely indieates his perception of their relation to the liind-logs of batra and the lower limbs of man. If, then, mere change of relative posi however extensive, failed to conceal the special homology of the detached tion of the pelvie arch and its appendages from the keen-sighted naturi still less ought such a character to blind the philosophie anatomist to general homology of such detached vertebral elements, or prevent his tra them, wherever he may find them, to the remainder of their proper segm especially when its place is so clearly and beautifully indicated, as it is by condition of the pelvic arch in the percnnibranchiate reptiles (fig. 28).

The function of the hæmapophyses is to complete, with or without a hax spine, the hemal arch of the vertebral segment; and, in so far to protect liæmal or visceral cavitics and support their contents. They give attachn to the lower or ventral portions of the primary muscular segments ' n commata' *, called 'intercostals' in the thorax, and 'recti abdominis' in abdomen of the higher vertebrata; and they thus serve as fulcra to muscles that expand and contract the abdominal or thoracic-abdominal cav and sometimes inore directly aid in these movements by the clasticity result from an arrest in their histological development at the cartilaginous stage, in the thorax of most mammals. Hæmapophyses may support or aid in s porting diverging appondages; and in giving attachment to the muscle: those appendages. The hænapophyses are usually slender, simple bol varying in length : they are broad, flat, and overlap each other in the tho of monotremes: they become broader and shorter in the expanded and fi: thoracic abdominal bony case of chelonians, and are still broader where th close the pelvic arch in the plesiosaurs. In the abdominal region of these tinct saurians and in crocodiles, the freely suspended hæmapoplyses are ec pounded of two or more overlapping bony pieces.

[^55]he hemal spine is much less constant as to its existence, and is subject much greater range of variety, when present, than is its vertical homoabove, which completes thic neural arch. Long, slender', and 'spinous' re tail, the hromal spine is reduced to a slort and thick bonc, often saed, in the thoras of mammals, a scries of thirteen such modified spincs ing the so-called 'sternum' in the two-tocd sloth: the thoracic hæmal sare few in number, and are expanded and perforated in the whalcs: orizontal extension of this vertebral element is sometimes accompanied median division, or in other words, it is ossificd from two lateral centres; s seen in the development of parts of the liuman sternum: the same vegce character is constant in the broader thoracic hæmal spines of birds; gh, sometimes, as e.g. in the struthionidæ, ossification extends from the : lateral centre lengthwise, i. e. forwards and backwards, calcifying the ate cartilaginous homologues of halves of four or five hæmal spines, re these finally coalesce with their fellows at the median line. In some r birds, however, there are two or more lateral centres, and usually, a median one, from which the ossification of the keel cxtends downls, prior to its confluence with the rest of the 'sternum.' In the thorax helonians four hæmal spines are established, each by two lateral centres sification, forming four pairs of sternal bones with a ninth 'entosternal' 3 between the first and second pairs. The 'plastron' is the result of extreme development of the hæmal spines :-the modified moieties of sh, remaining permanently distinct and united by suture, have received Geoffroy St. Hilaire* the convenient special names of 'episternals,' Isternals,' 'hyposternals' and 'xiphisternals,' respectively, as they suceach otlier from before backwards.
he diverging appendages are, as might be expected, of all the elcments ae vertebral segment, the least constant in regard to their existence, and subjects of the greatest amount and variety of modification. Simple ler spines or styles in fishes (fig. 17, aa), simple plates retaining long - cartilaginous condition in crocodiles, short flat slightly curved pieces in (fig. 15, a a), in some of the lowest species of which, c.g. Aptenodytes, become expanded, like their homologues in the crocodile; such, with exception, is the range of the variety of form to which these parts are ect in the segments of the trunk. Bat that exception is a remarkable : even under its normal ichtliyic condition, as a simple style or filament, liverging appendage of the insulated hæmapophysial portion of the pelvic in the protopterus + and lepidosiren \ddagger is composed of many cartilaginous aentz, and projects freely from the surface, carrying with it a smooth ring of integument. In other fishes similar filaments or jointed rays are ;ressively added to the sustaining arch, which cause a progressive expan.* of the common investing fold of skin, forming the organ called the itral fin, which is accordingly described by the iehthyologist as having rays (Blennius), three rays (Zoarces), up to more than twenty rays, (as nenser in the sturgeons).
Then we quit the piscinc class we find the diverging appendage of the pel-
Da Sternum considerée dans les Oiseaux et dans les Poissons. Anatomic Philoso1e, p. 69. pl. 2, fig. 21. Here Geoffroy contends that the parts of the hyoid areh (39, if 13) are the homologues of the modified hamal spines which he ealls episternals, lyoals and hyposternals in the plastron of the turtle: but these names may well be retained, of 'hyosternal' being used in an arbitrary sense, without reference to the hypothesis h first suggested it.
Jinn. Trans. vol. xviii. ph 23, fig. 1, z. Leetures on Vertebrata, p. 79, figs. 27,66 . Bisehoff, in. cit. pl. 2, fige $5, \%$
vie areh resuming its primitive unity, and with fewer joints than in lepid but manifesting the prineiple of vegetative repetition by a bifureation distal segments. Such is its form in the Proteus anguinus and in the uma didactyhum: in another speeies of amphimme, the radiated type strongly marked by the subdivision of the last segment into three ra homology of whieh with eertain of the five terminal rays, ealled t digits in the human foot, is signified by Cuvier's speeifie name 'tridae' applied to this speeies; the middle segment of the appendage is bif first one is undivided. In the menopome (fig. 28), the proximal st (65) is likewise single, the second segment $(66,67)$ double, and a mass of lage (68) separates this from the last segment whieh branehes into five j rays (69). In the frog two styliform bones are developed in the posil the eartilage (68 in fig. 27), forming a fourth segment of the division are replaeed by more numerous and shorter bones in higher vertebra whieh it will be unnecessary to pursue the metamorphoses of the appe as it is adapted for swimming, steering, balaneing and anehoring, for ex tion, for burrowing, ereeping, walking and running, for leaping, st elimbing, or sustaining ereet the entire frame of the animal. Its parts these endless and extreme modifieations have neeessarily reeeived names : the first segment (65) is the thigh, femur ; the seeond is the leq its two rays or bones are called tibia (66) and fibula (67) : the segmen is ealled ankle or tarsus, each of its eomponent ossieles having its I name ; and the last radiated segment (60) includes the metatarsus and langes: the segments 65 and 00 are termed colleetively, the foot, pes*.

The primitive funetion of the simple diverging appendages (fig. 17, of the abdominal vertebræ in fishes is elosely analogous to that of the developed appendage of the pelvie vertebra, viz. to aid in loeomotic fulera to the museles eoneerned in that aet. In eroeodiles and birds serve to eonneet one costal arelı with the next areh in sueecssion, assoei them in aetion or giving fixity and strength to the whole thoracie eage.

Any given appendage might, however, have been the seat of such dev ments as convert that of the pelvie areh into a locomotive limb : and the insight into the general homology of limbs leads us to reeognise many p tial pairs in the typieal endo-skeleton. The possible and eoneeivable r fieations of the vertebrate arehetype are far from having been exhausti the forms that have hitherto been reeognised, from the primeval fish the palxozoie oeean of this planet up to the present time.

The benefieent Author of all, who has created other revolving orbs, relations to the eentral souree of heat and light like our own, may have in that these also should be the seat of sentient beings, suited to all the er tions of animal enjoymeut existing in such planets; basking, perhaps, it solar beans by day, or disporting in the soft refleeted light of their ea satellites by night. The eyes of sueh ercatures, the laws of light being same, would doubtless be organized on the same dioptrie prineiples as o and, if the vertebral eolumn should there, as here, have been adopted as basis of the higher animal forms, it may be subject to modifieations iss in forms sueh as this planet has never witnessed, and whieh ean only be eeived by him who has penetrated the mystery of the vertebrate arehet and reeoguised the kind and mode and extent of its modifieations here. It is, for example, by no means essential to that organie type that it shi be 'tetrapodal': although it best aeeords with the foree of attraetion and o

[^56]itions of our globe, that not more than two pairs of the latent limbs or ndages of the vertebral segments should be developed to reaet, as locove instruments, upon its waters, its atmosphere and its dry land.
re views of the essential relations of such limbs to the vertebrate type in suggest these and similar reflections, may not be accepted by all anato;: some may be disposed to regard the parts 62 and 6.1 in fig. 28 as pecuuperadditions, rather than a reappearance of normal elements completing sostal or hæmal areh of a segment of the endo-skelcton and restoring it ; typieal eondition: and, in the same spirit, they may deny the special ology of the radiated appendage A, with the hinder filamentous fin of epidosiren, and the ventral fins of other fishes, and eonsequently, will reate its general homology as the diverging appendage of such hæmal , and its serial homology with the simple diverging appendages of the aeic-abdominal vertebree of fishes, erocodiles and birds.
m sensible how large a dentand is made on the most philosoplic faith in ral laws of organization, by seeking acquieseence in the view of the parts te hind-limb, so variously and definitely modificd for special functions, as :g the lomologues of segments and rays, which are the result in the first anee of the eommon course of vegetative repetition of a single vertebral ient-an element under all cireumstanees compounded teleologically, and, efore, essentially representing or equivalent to one bone.
ut here I must explain what I mean by 'teleological composition.' Indial parts of a skeleton,-what are commonly ealled 'bones,'-are frebtly 'compound' or composed of the coalescence of several primarily nct osseous pieces. In human anatomy every single and distinct mass iseous matter entering into the composition of the adult skeleton is called one'; and Soemmerring, who includes the thirty-two teeth in his enumera, reckons up from 259 to 264 such bones. He eounts the os sphenopitale as a single bone, and also regards, with previous anthropotomists, os temporis, the os sacrum, and the os innominatum, as individual bones; sternum, he says, may include two or three bones, $\mathbb{\& c}$ *. But in birds os oceipitale is not only anehylosed to the splenoid, but they both very 1 coalesee with the parietals and frontals; and, in short, the entire cranium ser consists, according to the above definition, of a single bone. Blubach, however, applying the human standard, describes it as eomposed he proper bones of the cranium eonsolidated, as it werc, into a single et. And in the same spirit most modern anthropotomists, influenced by eomparatively late period at whieh the sphenoid becomes anchylosed to oecipital in man, regard them as two essentially distinct bones. In dircetour survey downwards in the mammalian scale, we speedily mect with mples of persistent divisions of bones which arc single in man. Thus it are to find the basioccipital confluent with the basisphenoid in mammaquadrupeds; and before we quit that class we meet with adults in some he marsupial and monotrematous speeies, for example, in whieh the supraipital, 'pars occipitalis proprie sic dicta,' of Soemmerring, is distinct from condyloid parts, and these from the basilar or euneiform process of the sccipitis: in short, the single occipital bone in man is four boncs in the ssum or echidna; and just as the hunan cranial bones lose their indiviw lity in the bird, so do those of the marsupial lose their individuality in the inary mammalian and human skuli. In many mamnals we find the rygoid processes of anthropotomy permanently distinct bones; even in

[^57]birds, where the progress of ossific confluence is so gencral and rap pterygoids and tympanics, whieh are subordinate processes of other b man, are always indcpendent boncs.

In many mammals, the styloid, the auditory, the petrous, and the m processes remain distinct from the squamous plate of the temporal, th out life ; and some of these elaim the more to be regarded as distinct sinee they obviously belong to different natural groups of bones in the sk. as the styloid process, for cxample, to the series of bones forming the dean areh.

The artificial character of the anthropotomical view of the os sacr whieh that morc or less confluent congeries of modificd neural arc counted as a single component bone of the skelcton, is sufficiently ol The os innominatum is represented throughout life in most reptiles by distinct bones, answering to the iliac, ischial, and pubic portions in a potomy. The sternum in most quadrupeds consists of one more bon the number of pairs of ribs which join it ; thus it includes as many as $t \mathrm{t}$. distinct bones in the Bradypus didactylus.

The arbitrary eharacter of the definition of a bone, as 'any single pi ossenus mattcr entcring into the eomposition of the adult skcleton,' the plex nature of many of such single bones, and the essential individual some of the proccsses of bone in anthropotomy, are taught by anatomy perly so called, which reveals the true natural groups of bones, and the fications of these which peculiarly characterise the human subject.

It will occur to those who have studied human osteogeny, that the pa the single bones of anthropotomy which have been adduced as conti permanently distinet in lower animals, are originally distinct in the h foetus: the occipital bonc, for cxample, is ossified from four scparate ce the pterygoid processes have distinct centres of ossifieation ; the styloid the mastoid processes, and the tympanic ring, are scparate parts in the f The constituent vertebræ of the sacrum remain longer distinct ; and the i ischium, and pubcs are still later in anchylosing together, to form the ' n] less bone.'

Thesc and the like correspondences between the points of ossificati the human foetal skeleton, and the scparate bones of the adult skeleto inferior animals, are pregnant with interest, and rank among the most king illustrations of unity of plan in the vertebrate organization.

The multiplieation of eentres from which the ossifieation of an ultim: single bone often proceeds has cspecially attracted the attention of the p sophical anatomists of the prescnt eentury with refercnce to the rigl natural determination of the number of the constituent parts of the v. brate skeleton. Geoffroy St. Hilaire, in lis memoir on the skull of bird 1807, says, "Ayant imaginé de compter autant d'os qu'il y a de centres sification distincts, et ayant cssayé de suite, cette manière de faire, j 'a lieu d'apprécier la justcsse de cette idée*." Cuvicr adopted and reta the same idca to the last. Commenting in the posthumous edition of 'Leçons d'Anatomic Comparéct' on the eharacter of some of the dc tions of single bones in anthropotomy, he, also, eoneludes that, in orde asecrtain the true number of bones in each species, we must descend to primitive nsseous eentres as they are manifested in the foetus. But accort to this rule we should count the humerus as three bones and the femur as

[^58];, in the human skeleton; for the ossification of the thigh-bone begins at auter our for the distal condyles: such deference, however, to the nent of the great Comparative Anatomist has been withlelh by the most sed of his admirers; whose disinclination to regard these parts and prosas distinct boues is justified by the fact that in birds and reptiles the r is developed from a single centre.
te rule laid dlown by the French authorities above-cited fails in its applin to the difficult questiou of the nature and number of bones in a skeleton, use they did not distinguish betwceu those centres of ossification that homological relations, and those that have only telcological ones; i.e. een the separate points of ossification of a human bone which typify abral elements, often permanently distinct bones in the lower animals; and eparate points which, without such signification, facilitate the progress steogeny and have for their obvious final cause the well-being of the grownimal. The young lamb or foal, for example, can stand on its fonr legs as as it is born; it uplifts its body from the gronnd and soon begins to and bound along. The shock to the limbs themselves is broken and nished at this teuder age, by the divisions of the long bones, and by the position of the cushions of cartilage between the diaphyses and epiphy-
And the jar that might affect the pulpy and largely developed brain of mmature mammal, is further diffused and intercepted by the epiphysial sular extremities of the bodies of the vertebræ.
e thns readily discern a final purpose in the distinct centres of ossificaof the vertebral bodies and the long bones of the limbs of mammals sh would not apply to the condition of the crawling reptiles. The dimive brain in these low and slow cold-blooded animals does not demand 1 protection against concussion; neither does the mode of locomotion ae quadruped reptiles render such concussion likely : their limbs sprawl sards and push along the body which commonly sweeps the ground; efore we find no epiphyses at the ends of a distinct shaft in the long es of saurians and tortoises. But when the reptile moves by leaps, 1 the principle of ossifying the long bone by distinct centres again pres, and the extremities of the humeri and femora long remain epiphyses he frog.
1 final purpose is no doubt, also, snbserved in most of the separate centres -ossification which relate homologically to permanently distinct bones in general vertebrate series; it has long been recognised in relation to faciting birth in the human fœetus; but some facts will occur to the osteonist, of which the telcological explanation is by no means obvious.
Jnc sees not, for example, why the process of the scapnla which gives athment to the pectoralis minor, the coraco-brachialis, and the short head of biceps should not be developed by contimons ossification from the body the blade-bone, like that which forms the spinous process of the same 3e. It is a well-known fact, however, that not only in man, but in all manıls , the coracoid process is ossified from a separate centre. In the monoines it is not only autogenous, but is as large a bone as in birds and reptiles, which it continues a distinct bone throughout life. Here, then, we lave homological, without a teleological explanation of the separate centre for coracoid process in the ossification of the human blade-bone.
This distinction in the nature and relations of such centres is indispende in the right application of the facts of osteogeny to the determination the number of essentially distinct bones in any given skelcton.
All those bones which eonsist of a cualescence of parts answering to dinet elements of the typical vertebra are 'homologically compound.'

106

All those bones which represent single vertebral elements are 'tel cally compound,' when developed from more than one eentre, wheth eentres subsequently coalesee, or remain distinet, or even become the of individual adaptive modifieations, with special joints, museles, \&c. ticular offices.

In the human skeleton, the elavieles, the (thoraeie vertebral) ribs, stanees of simple and truly individual bones. The occiput, sphenoir moid, temporal, superior maxilla, mandible, hyoid, scapula, the so-calle vertebre, the sacrum and coceyx, the sternum, and ossa innomina 'homologieally' compound bones.

The two parietals are essentially like the frontal and vomer, one 'telc cally' compound bone: so, likewise, are the two nasals. And, if the v the homology of the jointed filamentary skeleton of the rudimental fin of the lepidosiren with the simple diverging appendages of the arches of the abdominal vertebre be correet, then is not merely the malian femur a teleologieally compound bone, but the whole skeleton hind-limb from the femur to the distal phalanges inclusive must be rep as representing the essentially single vertebral element, here ealled 'dive appendage,'subdivided according to the law of vegetative repetition of ce whieh law is progressively overruled and masked by the supervention higher law of special modification and adaptation of such vegetative su sions to the exigenees and habits and sphere of life of the speeies.

In many animals all the parts of the skeleton of the limbs, and in al mals some of the parts, are simple bones, in the sense of being deve. from a single centre; but in none ean they claim that essentially indiv charaeter which the elavicles and osseous parts of the ribs are entitled being primary vertebral elements.

To trace the mode and kind and extent of modification of the same mentary parts of the typical segment throughout a large natural seri lighly organized animals, like the vertebrata; and to be thus led to appre how, without eomplete departure from the fundamental type, the specie. adapted to their different offices in creation, brings us, as it were, ints secret eounsels that have direeted the organizing forces*, and is one of legitimate courses of inquiry by which we may be permitted to gain at sight into the law whieh has governed the successive introduction of spe forms of living beings into this planet.

Vertebre of the Skull.-Since it has been found that the bones of the t_{1} maintain throngh every kind and derree of adaptive modification, whethe 'thorax,' 'earapaee ' or 'sacrum,' an arrangement into segments in the , stitution and relative position of the parts of which the vertebral type has L universally reeognised - let us next examine, without bias, and, if possi withont reference to or reeollection of previous attempts, in the first instal whether such type be traceable through the remaining anterior part of axis of the endo-skeleton, which, like the thorax and pelvis, has reeeived. aeeount of its degree of eoaleseence and other modifications, the speeial, leetive term of 'skull;'-or, whether nature has, in this part of the endo-s leton, so far departed from the pattern on whieh all the rest is eonstruet that we eannot, without manifest violence to her arrangements, demonstr the segmental eomposition ; or refer, without admitting modifications distii in kind as well as degree from those that mark the vertebral character in 1 trunk, the constitution of sueh segments to the vertebral type.

Taking the conieal skull of an ordinary osseous fish-that of the cod (M thua vulgaris) for example, - if we detaeh the bones which form its hinc extremity, or base, and which immediately precede and join the atlas, fir * " - pracsens esse cum artifex operatur et opus sumn promovet."-BAcon.
next in advance, we have the circle, or the base bone (1) and arch 4), represeuted in figure 1 , and we also bring away, articulated therewith, ferior or inverted areh with its appendages, represented in profilc outline . $5,50-57$: the arrow indieating the course of convergence, and its head wint of uion, of the two flanks or crura, forming the closing point or u of such inverted arch.
e have thus removel a segment of the skull, and with as little or even iolenee or disturbance to the other bones, than must have been used in shing a similar segment from the thorax or pelvis of a land-animal. If ompare this erauial segment with the typical vertebra fig. 14, we recogin the single mediau bone (1 , fig. 1) the centrum, by its relative position its articular surface for the atlas, which retains, moreover, the concave characteristic of the vertebre in the piscine class: in the pair of bones), which articulate with the upper surface of the centrum, protect the : of the epeucephalon, and are perforated by the 'nervi vagi,' we have the apophyses: in the single symmetrical bone (3) which completes the , and terminates in a crest for the attachment of the uppermost or dorsal ions of the rertebral muscles continued from the trunk, we have the neural $\because:$ and in the pair of bones (4,4), wedged between this spine and the apophyses, which give attachment to the inferior arch of the segment $\overline{5}, \mathrm{H}$ i), and terminate in a free crest or spine for the attachment of the or and lateral portions of the vertebral muscles, we have the parapoies; for whose elevated position we have been prepared by their gradual nt iu the anterior vertebræ of the trunk. The rest of this natural segment undergone the same kind of modification as the thoracic vertebræ present igher animals (fig. 15), and which consists in the great expansion of the aal arch, the removal of the hacmapophyses (fig. 5, 52) from the centrum 1), and the interposition of elongated and deflected pleurapophyses (50,51): llf, the great inverted arch, so formed, enconıpasses, supports and protects heart, or centre of the hæmal axis. The elements of this arch are open wo interpretations according to the type of figure 15: either 50 may be it, h and $52 h s$; or 50 and 51 may be a divided (teleologically compound) rrapophysis, and 52 an unusually developed hrenapophysis: and this latter clusion is more agreeable with the character of the vertebral segments of trunk in fishes, in which the hæmal spines are absent, the hæmapophyses, en ossified, long and sometimes joined together at their lower ents, as e.g. he first trunk-vertebra of Argyreiosus vomer, and the pleurapophyses somees, as $e . g$. in the sturgeon, composed of two or more pieces, set end to 1. The condition of the pleurapophysis of the pelvic arch in the menone (fig. 28, $62, p l$), which sustains a radiated appendage (ib. A) of the mal arch of the occipital vertebra, indicates the true character of the -urapophysis: and the modifications of this arch in the higher classes will found to establish the accuracy of the gencral homology of the bone 52 , .h the hæmapophysial element, since the lower extremities of 52 are actuy drawn apart and articulated to a hæmal spine, which completes the arch low in reptiles and birds (fig. 22, H s).
Even should there be error in assuming the subdivision of the pleurapoyses and the absence of the hæmal spine, in the particular determination of 3 constituent elernents of the arch in question, yet the alternative is still thin the recognised limits of the vertebral modifications of the trunk; and a want of unquestionable proof of the precise clements forms no valid obstion to its general honology as a hemal vertcbral arch, expanded and morlidafter one or other of the types of those which, in the thorax of the air'eathing vertebrates, encompass and protect the more backwardly placed
centres of the vascular system (heart and lungs); aecording to whie. for example, it may be either closed below by the meeting of the ster (hremapophyses) or by the intervention of a single or divided sterni (liamal spine). And, further, since in fishes, as the lowest class of veri the vegetative character of repetition of forms, proportions and comp in the suceessive segments of the skeleton prevails in a greater degri in any of the higher elasses, so we may conclude that this limmal are sents, by its articulation with the epencephalic neural areh, its normal pi and that the whole occipital vertebra here manifests its veritable and charaeter.
As the liæmal arches in the trunk of fishes commonly support div appendages, which project freely outwards and backwards, but are hild buried in the muscular masses to which they give attachment, so the of arch, also, commonly supports its diverging appendages. They are in Gymnothorax and some other Murenida. The appendage is pres the form of a single multiarticulate filament in the eel-like protopterus lepidosirent; it is modified by that mode of vegetative repetition results in adding to the number of similar filaments direetly artieula the supporting areh; and is further complicated by the expansion or c enee of the proximal joints in different degrees as they recede from thr porting areh, so as to constitute definable segments of the appendage + .

Sueh is the condition of the part in most osseous fishes, and such is s in the diagram of the base of the appendage in figure 5 ; where the pro segment consists of two broad and flat bones (54 and 55), the next segme five narrower and shorter but thicker bones (58), and the last segme more numerous bones of the primitive filamentary form and multiartic strueture, which bifurcate and radiate as they recede from the centre, taeliment.

We may connect the tendency to extreme and variable development i, peripheral parts of a vertebral segment, with the freedom which is the n sary consequence of their position : they are attached by one end only,. have not, therefore, that physieal restraint to growth which may arise o the fettering by both extremities, which characterizes the more central tebral elements entering into the eomposition of the neural and liæmal are Even in these we find the disposition to luxuriant growth or vegetative division greatest in the peripheral elements, viz. the nemral and hæmal spi muel more, therefore, might it he expeeted in the less constant, diverg and commonly freely projeeting appendages of the vertebral arches. Altho here the polarizing forces whieh tend to shoot out partiele upon particle a the pattern of dendritic corals, plants or crystals, are so controlled by antagonizing prineiple of adaptation, that the radiating growth is alu elieeked at that stage and guided to that form whieh is suited to the wi and required by the mode of life of the species.

Since, however, we are able to retain firmly and with certitude our rec nition of the speeial homology of the diverging appendage of the oeeip liæmal arch, through all its modifications, from the single ray of the lepid ren to the hundred-fold repetition of the same elements with superadi diehotomous bifurcations sustaining the enormous peetoral fins of broad and flat plagiostomous fishes thence ealled 'rays' par excellence, we can retrace, with equal certitude, the serial homology of this appenda when it is so plainly manifested by its simple form as well as connections

[^59]sidosiren, the amphiuma or the apteryx, with the searecty more simple -developed appendage of the thoracie abdominal hemal arehes (ribs) Is and fishes (figs. 15 and $17, a, a)$; and thus we are led to determine reral homology, under its manitold forms of fin, fore-limb, wing, or arm, diverging appendage of the hamal areh of the oeeipital vertebra. : natural and typieal vertebral segment above-defined eannot bedetaehed, ry fish, by the mere disjunetion of sutures: in the lepidosiren, $e . g$. the d part of the centruu has coaleseed with that of the next segment in ce and would require to be divided by the saw : the same coaleseence sin the human skull, and has led to the definition of the eranial bone, "os spheno-oceipitale*.' In osseous fishes, either by connation of 5 6. 5 , or by excessive development of bone in the notoehordal eapsule ling forwards from the centrum 5 , and produeing 9 , there results the long ' $s, 9$) continuiug the series of vertebral centrums forwards, and eorreing in position with two segments or arehes above. On the hypothesis represents the central elements of both those arches, it must be divided ially, in order to separate that segment of the eranium which next suethe oceipital one. And, further, either by a similar eoaleseence of the nal elements of two hæmal arehes, or by the undue extension of sueh nt of one of the arehes, interposing itself between the next arch and st of the vertebra to whieh that areh belongs, it happens, that unless the nal element or elements in question be artificially divided, as at $28 a, 28 \pi$, two hæmal arehes ($\mathrm{H}_{\text {II }}$ and $\mathrm{H}_{\text {III }}$) would be brought away, with the l areh cletached by the separation of sutures and the division of the 5,9 . If neither that bone, nor $28 a$ were divided, but were, with the in superior conneetion with them, separated from the bones anteriorly lated to them by suture, then we should have the group of bones, in1 bs the curved lines marked $\mathrm{N}_{\text {II, }} \mathrm{N}_{\text {III, }} \mathrm{H}_{1 \mathrm{I}}, \mathrm{H}_{11}$ in fig. 5. Two oral segments are plainly indieated in this group by the distinet hæmal sand their appendages, H II and $\mathrm{H}_{\text {III }}$; but three pairs of bones, 16, 6 .), fig. 5, appear to be in neurapophysial relation with the single and etrical median bone 5, 0 . If, however, what has been urged in the er on 'Speeial Homology' (pp. 188-196) respeeting the petrosal ehaof 16 be a true interpretation of that bone, then we must eliminate it our present inquiry, inasmueh as being a partial ossification of a sensele (ad nature herself removes them, as such, in most fishes), it apperto a category of bones (splanehno-skeleton), forming no part of the pro-euro- or endo-skeleton, in which alone we seek for evidenee of a segmental sition of parts corresponding with the segments of the nervous system.
e bony petrosals (18) being removed, let us, then, with the view of exing the eomposition of the segment of the skull with whieh the ceeipisrtebra was articulated, saw aeross the bones 5,9 and $23 a$, and separate ones $a, 7,9$ from their sutural conncetions with those in front of them. us obtaining the segment in question, the opponents to the vertebral J of the skull are entitled to assert that violence is done to nature by ections of the single bones above-eited; the validity of which as an :tion to that theory will be afterwards inquired into.
is not, however, absolutely neecssary to divide the basal bone 5, 9 : in t ossenus fishes a symmetrieal bone (fig. $5,9^{\prime}$) supports the parial bones id stands in the relation of a centrum to them; the neural areh or cirele iat segment would not, therefore, be broken by the removal with the rior segment of the whole of the bone 5,9 . If the eorresponding

[^60]development from the under part of the centrum of the second cervi tcbra of the siluroid fish (p. 260) were removed, with that scgment, fi_{1} atlas, the atlantal neural areh would still be completed by the rudimente beneath which the ossifieation from the sueceeding vertebræ had es itself.

Whether, however, we divide or not the bone 5,9 , those which res its posterior or basisphenoidal part present, after the removal of the sals, when viewed from behind, and slightly disarticulated from each the arrangement exhibited in fig. 2. The bones 6, в support and the lobe of the third ventriele or the meseneephalic segment of the they give exit to the trigeminal nerves ((r), and thus, as well as by the nections with the other bones of the arch, repeat the neurapophysial eha of the bones 2,2 in the oceipital segment. The bones 8,8 , by their me ternal position, by affording an articular surface to the liæmal arel $\mathrm{H}_{\text {II }}$), and their development of a strong transversely and backwardl duced process for muscular attaehments, obviously repeat the parapop characters of the bones 4,4 in the occipital vertebra.

The areh is not completed above in the eod-fish; the bones $7, r$ bei parated at the mesial line by the interposition of the produced spine oecipital vertcbra 3 , which joins with 11. In some other fishes, ho e. g. carp and pike, the boncs 7, 7 do come in contaet and join eael oth a 'sagittal' suture, thus completing the nemral arch. It will afterwa seen, by tracing the homologues of these bones in other animals anc homotypes in other segments, what value may be assigned to the object their general homology as the crown or hæmal spine of the mesence] neural arel, founded upon the median division and oecasional divaricat the two halves of no. 7 in osseous fishes. I may so far anticipate the d sion as to remark that, even in the present group of vertebrates, the sp the oceipital vertebra (3) is divided by a median suture in the lepidosten that the condition of the epencephalic areh in that fish is precisely tl the mesencephatic arch in the carp: and essentially the same as that in 1 and in most other osseous fishes.
The remainder of the seennd or parietal segment of the skull, $\mathrm{H}_{\text {II }}$, repca expanded modifieation of the hæmal arch of the oeeipital vertebra, and approaches nearer to the eharacter of the thoraeic vertcbræ of the h animals, by the development of single symmetrieal bones at the crown o inverted arch. But the principle of vegetative repetition is still more r fested in this arch than in the nccipital ne. If we regard the posterior of the epitympanic, $2 s a$, as the proximal piece of the parieto-hæmal Which has coalesced with the eorresponding piece of the fronto-hæmal then the pleurapophiysis of the paricto-hæmal areh will consist, in bony fi of two pieces, 28α and 38 , like the pleurapophysis of the occipito-hæmal : 50 and 51 . The bones, 39 and 40 , represent the hicmapophysis of the parieto-ha arch. The two pairs of small bones (41) with the single median anterior and posterior (43) appendages, represent a still more subdivided spine or bone of this inverted arch.

Beneath this mask of multiplication of bony centres, the broad charac of the inverted areh suspended to the parapophyses of the parictal verte as the hæmal complement of that natural segment of the skull, stand bo out: it eneompasses, sustains and protects the branchial organs-the : logues of lungs- the next great development of the vascular system ante to the heart; and the subdivision of the piers of this expanded areh relate the necessity for a combination of strength, with flexibility and elastieity the execution of the movements produeing the respiratory currents.
e correspondence with the scapular, or occipito-hemal arch, is further 2d out by the presence of appendages (44) which frcely diverge from it, but evelopment of these appendages has not been observed to extend bcyond second phase, marked by vegctative multiplication of the simple ray, tly attached to the arch itself. The lepidosiren offers the simplest con1 of such 'diverging appendage' in the single slender bony piece conad with the element 40^{*}. Cuvier and other ichthyologists cite a series iges of this kind of developurent of the hyoidean appendage from a si-- simple beginning up to a 30 -fold repetition of the single ray (Elops) ; she 'branchiostegal' rays have been found in much greater numbers in in fossil fishes. Like the 'pectoral' rays, they support a duplicature of brane, which plays freely backwards and forwards, reacting upon the ent medium, and forming, in short, a cephalic fin, but with its powers stricted and adjusted, as to propel the water through the branchial cliamof the fish, instead of driving the fish through the water; in which latter on, indeed, the occipital appendages (pectoral fins) in most osseous fishes and do perform but a very small share.
we next proceed to compare the frontal segment, N iII and H iIf, disbered as above described from the parictal vertebra, and, by the separaof the sutures, from the bones terminating the skull anteriorly, we shall a neural arch (fig. 3) closely repeating the characters of that of the ocal vertebra. The centrum is sometimes represented simply by the forward asion of ossification of the basisphenoid (11), which I regard as the hospe of the ossification of the capsule of the notochord beneath the cenis of the anterior trunk-vertebræ in the silurus ; sometimes, also, of a di:t superincumbent symmetrical ossicle (9^{\prime}, fig. 5), answering to the rudital (central part of the) body of the atlas supported by the inferior bony \therefore, inthesilurus. This more complex condition of the centrum of the frontal ebra is well-seen in the sword-fish. The bones 10,10 , which directly rest 19', when it exists, which defend the sides of the prosencephalon, and th are either grooved by the optic nerves, or have those nerves perforating fibro-cartilaginous membrane close to the margin of the bone (10) from sh it is continued, are obviously the neurapophyses. They are, however, 11 ; inasmuch as the segment of the brain to which they relate is of inferior in bony fishes: and they are still smaller in comparison with the spine which is enormously expanded, in relation to its accessory functions as chief contributor to and protector of the orbits. The bones 12 , wedged reen the neurapophyses and spine, affording an articular surface to the simal piece of the hæmal arch, and developing a transverse process for cular attachments, are the parapophyses. The bones (17) have as little ntial connection with the typical neural arch above demonstrated, as the es $10,10^{\prime \prime}$ had with the corresponding arch of the parietal vertebra: and r more peculiar form in relation to the ball which they protect, and their able histological condition in the vertebrate series, have not only prevented r ever being mistaken for parts of cranial vertebræ, but have led to the osite extreme of excluding them altogether from the bones of the skull, h which they are as much entitled to rank as the petrosal (16) or the sinal (13) ; but always in the category of sense-capsules or 'splanchnoletal' pieces.
n regard to the inferior arch of the frontal segment, the subdivision of its stitnent elements, in subserviency to its special functions, is carried to as at an extent as in that of the parietal segment. I regard the four overoing and closely-connected pieces from the upper joint (28a) to the lower

[^61]joint (28d) inclusive, as the pleurapophysis: it is not so obvious w the bones $29-32$ form a subdivided hamapophysis, or whether the to bonc (32), forming by symphysis with its fellow the crown of the inverter may not be the moiety of a mesially divided homal spine. But the g character of the inverted arch (H III), as the hæmal complement of thi tal vertebra is unmistakeable, and its serial homology with the suce arehes ($\mathrm{II} \mathrm{H}_{11}$ and H_{I}) is fully illustrated in fishes by its supporting dive appendages (34-37). These, in the series of fishes, manifest, in as permanent arrests, the chief phases of development that the correspo appendages of the oecipito-hæmal areh have been deseribed to pass thr The diverging appendage of the fronto-hæmal arch is a single and bony style in the lepidosiren; it consists of three or four simple rays monk-fish and some other plagiostomes; it has one ray expanded into a proximal piece in the conger, which sustains a distal segment of the appen one member of which, the 'subopercular,' still retains the long and sle ray-like form, which is, also, clearly traceable in the broader but loms curved 'opercular '; in the cod, as in most osseous fishes, the parts o second segment of the appendage ($35,36,37$, fig. 5) are metamorphosed the proximal one (34), into broad and flat bones. The fin-like fold of gument, sustained and moved by means of this diverging appendage al museles, reacts upon the surrounding water; but, like the hyoid-fins, which the tympanic or opercular fins are closely connected, they are el subservient to the creation of the respiratory currents and their dire. through the gill-chambers. The weight of these appendages, and the stant movements in connection with respiration, as well as those whiel hemapophysial portions of the arch, modified in subserviency to nutr have to perform, as jaws, explain the necessity of the subdivision of the porting pedicle into overlapping pieces allowing of a certain clastic yiel with recoil, and thus diminishing the liability to freture without affec except by increasing, the strength of the areli. The trochlear joint bets the two clements of this areh (at $28 d$ and 20) with its cartilage and syut sae, repeats the complex structure of the articulation between the verte and sternal portions of the ribs in birds. To the fore-part of the lower p (28d) of the pleurapophysis is usually articulated a bone (24) connectil with another bone (20) in advance: the gromed for regarding 2.4 as appert ing to the arch (20,21 and $22, \mathrm{H}_{\text {Iv }}$) will be explained in the deseriptio that areh.

There remains, then, in the fish's skull, to be considered, the groul bones (N iv, $\mathrm{H}_{\text {Iv, fig. 5) forming its anterior extremity; and we have to }}$ quire, whether there can be traced in this easily separable group such a c cordance in its formation with the arrangement of the constituents of forcgoing segments as will justify its being regarded as a natural segmen the skull, and as still illustrating the type on which all the other segment: the endoskeleton have been constructed. Fig. 4 gives the same view of bones of this group in vertebral relation witl the rhinencephala as the vic in figs. 1, 2 and 3 do of the bones having a similar relation to the three lar, segments of the brain : we perceive the single and symmetrical bone (forming the basis of the arch, and sustaining the bones 14,14 , which m immediately support the olfactory ganglions and transmit their nerves, eitl by grooves or foramina, to the olfactory capsules: the key of the areh formed by the single and symmetrical bone 15 , which is articulated to a chiefly sustained by the bones 14, 14: but 15 is expanded and defleet anteriorly so as to rest directly upon 13 and completely obliterate the neu canal; the hæmal canal being in like manner closed by the approximation
æmal spine (22) to the nasal centrum (13), and by the upward developof the proeesses of 22 whieh join the neural spine (15). Muclı modifin was to be expeeted in the segment which terminates the skeletun iorly; and yet the typical eharaeters of the neural arch are more eomly preserved here than at the opposite end of the vertebral column. If bones $t, s, 12$, which I reeognise as 'parapophyses' in the cranial ents 1, II, 111, must be viewed as superadded interealations for the al and charaeteristic expansion of the neural arehes of those segmentsal elements, indeed, of the typical vertebra, but with modified connections ranial funetions-then the disappearancc of their homotypes in the nasal ent restores its neural areh (fig. 4) to the more eommon condition, and we ;nise in 13 the centrom, in 14,14 , the neurapophyses, and in 15 the neural of the nasal vertebra.
t the segment to be complete should exhibit a second arch, inverted; and nd such areh elosed or completed by the symphysis of the bones 22, and suspended to the sides of the centrum 13 and to the neurapophyses by the bones 20 , as the piers or erura of the arch; these bones being scted to the key-bones 22, by the intermediate bones 21. Now, the fieations which these elements of the inverted or hæmal arch of the vertebra have undergone, are, also, much less than might have been pated from the extent to which the segments are modified at the oppoaxtreme of the endoskeleton. All the normal elements of the hæmal for example, are retained: 20 is the pleurapophysis, 21 the hæmapos, and 22 the hemal spine, in most fishes divided at the middle line, but times eonfluent with its fellow e.g. Diodon. The essential (pleur7ysial) part of 20 extends in many fishes (e.g. percoids) like a short ht rib from its articulation with 13 and 14 to the condyle at its opposite o whieh the hæmapophysis 20 is articulated; but it usually, also, dees a process from its hinder margin downwards and baekwards, which attachment to the diverging appendage of the areh H rv. The dement of the other bones of the arch, 21 and 22, outwards, downwards Jaekwards, is still more marked in relation to the protractile and retracsovements of the areh in most osseous fishes; and some anatomists, enced by the form and proportions rather than the conneetions of those have deseribed them as independent parallel arches: but, as sueh, must be regarded as being suspended by their apiees or key-stones to sis of the skull, and as having their haunehes hanging freely downwards sutwards-a position the reverse of that of the foregoing inferior arches e skull and of every typical hæmal arch. The reduction of that dint development, eharacteristic of the bones 21 and 22 in fishes, is ef1 in a great degree within the limits of the piseine elass: already we ne of the spurious arches abrogated in the salmonoid fishes by the shortof 22 , and its more direet continuation from 21, whieh now forms the r part of the upper border of the mouth and supports tecth : the conmaxillaries and premaxillaries send down only a single divergent as from their point of suspension to the palatine conclyle in the plectoic fishes; and the eonsolidation of all the elements of the palato-maxillary into its normal unity is effected in the lepidosiren*. The palatines (20) ${ }^{1 s}$ form the true bases or suspensory piers of the inverted hæmal arch eir points of attachnient to the prefrontals (14) ; the premaxillaries, 22 , itute the true apcx or crown at their symphysis or point of eonfluence, ; the approximation of whieh to the anterior end of the axis of the skull adered possible, in fishes, by the absence of any air-passage or nasal
canal. The diverging appendage, sometimes single and anchylosed areh (lepidosiren); sometimes single and detached like a long, narrov (some murenoids) ; more commonly consists of two bones $(23,27)$, extend outwards, downwards, and baekwards from the pleurapophysi but the more constant and better ossified bone of the two, no. 21, artic postcriorly with the suceecding pleurapophysis (23) and combincs its ments with those of its own arch, just as the diverging appendages thoracic hæmal arch in the bird associate the movements of that are those of the next in succession (as in fig. 15, pl,a, pl). The hæmapo here, as at the opposite cud of the body, begin so far to disspciate them from the pleurapophyses as to articulate also dircetly with the centru as well as with the plcurapophyses. I regard this as a very interestir proximation to that condition of the typical vertebra which is illustrat the diagram (fig. 14), and which is seen in nature in the caudal vertel the crocodiles, enaliosaurs and menopome (fig. 28, H).

From the forcgoing analysis it appears, then, that in osscous fish endoskelctal bones of the head are arranged, like those of the trunk, i ments; that these are four in number, and that they closely conform character of the typical vertebra.
Thus we have four centrums and neural arches: viz. N I. Epencephalic arch (figs. 1 and $5,1,2,3,4$); N II. Mesencephalic arch (figs. 2 and $5,5,6,7,8$); N in. Prosencephalic arch (figs. 3 and 5, 9, 10, 11, 12) ; N 1v. Rhincncephalic areh (figs. 4 and 5, 13, 14, 15).
As a collective name for the sum of these immoveably articulated would be as convenient as the anatomist finds the names 'sacrum' and pace,' applicd to similarly consolidated portions of vertebral segments pelvic and abdominal regions of certain air-breathing vertebrates, t 'cranium' may well be retained for the neural arches of the skull: should be understood to signify, in all animals, the bones ito 15 inch whereas it has, hitherto, been applied variably in different species; times including sense-capsulcs and facial bones, intercalated to expan walls of the cavity for a large brain; and more frequently excluding cranial bones, those of the rhinencephalic arch, for example, which encul as essential a part of the enceplualic clamber, as the sacral vertebra do neural canal at the opposite cud of the vertebral axis; although in bot stances the extremities of the ncural axis may have been withdrawn, i course of its concentrative change and movement, from their original s.

The hæmal arches indicated by the arrows in fig. 5, the heads ma the point of junction or crown, arc, -

H I. Scapular arch ($50-52$);
H II. Hyoidcan arch (38-13);
H irr. Mandibular arch ($25-32$);
H iv. Maxillary arch (20-22).
The diverging appendages of the homal arches are,-

1. The Pectoral (54-57);
2. The Branchiostegal (44);
3. The Opercular (${ }^{34-37 \text {) ; }}$
4. The Pterygoid (23-24).

The bones or parts of the splanchno-skeleton which are intercalated or attached to the arehes of the true vertebral segments, are, -

The Petrosal (16) or ear-capsule, with the otolites, $10^{\prime \prime}$;
The Sclerotal (17) or eyc-capsule;
The Tirbinal (19) or nosc-capsule;

The Teeth.
he bones of the dermo-skeleton arc, -
The Supratemporals;
The Supraorbitals ;
The Suborbitals ;
The Labials.
rh appears to be the natural classification of the parts which constitute somplex skull of osseous fishes.
; the object of the present work relates chicfly to the cndoskeleton, I only added the osseous parts of the sensc-capsules to the cranial vertchræ . 5 ; omitting the branchial arches and dermal bones: the hæmal arches their appendages are given in diagrammatic outlinc.
sptiles.-In proceeding with the inquiry into the natural arrangement of wull-bones, I have selected from the Reptilia the crocodile, as a typical zple of that class, and one most likely to facilitate the inquiry on aceount te characteristic persistence of the primitive cranial sutures.
ursuing the same mode of investigation as in the case of the fish, let us ticulate the hindmost segment of kull and so detach the four bones, esented in fig. 18. The dotted e indicates the points at which a bones are joined together, in r to encompass the epencephalon, lindmost segment of the brain. 1 is the centrum; 2,2 are the neurohyses with the coalesced parohyses (4,4) ; and 3 is the neural e. This element differs but little ize and shape from the similarly ched and depressed neural spine he atlas of the crocodile. The le convex condyle at the back part

Fig. 18.

Disarticulated epencephalic areh, riewed from behind : Crocodile. 0.1 makes that centrum resemble posteriorly convex bodies of the k-vertebræ in as striking a manner as the repetition of the articular savity in the basioccipital of the cod (fig. 1, 1) marks its serial homowith the succeeding vertebral centrums of the same animal. In the :ending process from the under part of the occipital centrum of the :odile (fig. 18, 1), we see a second character of the cervical contrums in reptile repeated, viz. their inferior exogenous spine. The neurapo--ses $(2,2)$, like those of the atlas, meet above the neural canal: they give to the vagal and hypoglossal nerves, and protect the sides of the mea oblongata and cerebcllum. The neural spine (3) protects the upper ace of the cerebcllum: it is also traversed by tympanic cells, and assists, 1 the bones 2,2 , in the formation of the chamber for the intcrnal ear. special homology of the outstanding processes $(4,4)$ in the crocodile serpent (fig. 10), with the similarly situated but distinct 'paroccipital' es in the cod, is confirmed by their resuming their independency in the ler segment of the skull of the chelonian reptiles; and the occipital neural 1 of the crocodite is reduced by their conflucnce with the ncurapophyses he condition of those of the trunk-vertcbres, as composed, viz. of four ead of six elements.
The eponcephalic arch offers the same simple condition not only in the idians but in most saurians: the chameleons however retain, like the
chelonians, the ichthyic independenee of the parapoplyses $(4,4)$. In ba chians the epeneephatic arch is redueed to the two important elements, neurapophyses ; which meet and join each other below as well as above foramen magnum, and develope the exogenous zygapophyses, or two oeeil condyles, for artieulation with the eorresponding proeesses of the neural : of the atlas. The basioccipital, if it exists in batraehians, is rudimental confluent with the basisphenoid, and the supraoceipital is in like mar reeognisable only as the postcrior border of the baekwardly produced pari The parapophyses are short exogenous processes of the neurapophyses of muel simplified epencephalic arch in all batrachian reptiles.

The chief modification that distinguishes the above-described segmer the crocodile's skull from its homologuc in the fish, is the absenec of attached inverted or hæmal arch. We recognisc, indeed, the speeial ho logues of the piscine constituents of that arch in 50,51 and 52 , fig. 22. upper suprascapular piece (50) is however frce, diseonnected from any ment, and retains, in connection with the loss of its proximal or cra articulations, its cartilaginous statc : the scapula (51) is ossified, as is like the eoracoid (52), the lower end of whieh is separated from its fellow by interposition of a median, symmetrieal, partially ossified picee called 'cpis num ' (hs). The power of reengnising the special homologies of 50 , 51 , 52 in the erocodile, with the similarly numbered constituents of the areh in fishcs (fig. 5), though masked not only by modifications of form and portion but even of very substanec, as in the case of 50 , depends upon circumstance of thesc boncs constituting the same essential element of archetypal skelcton: for although in the present instanec there is superad to the adaptive modifications above-cited the rarer one of altered connecti Cuvier does not hesitate to give the same names (suprascapulaire) to and (seapulaire) to 51 , in both fish and crocodile : but he did not perceiv: admit that the narrower relations of special homology were a result of, necessarily included in, the wider law of general homology. According the view of this law here taken, we discern in 50 and 51 , fig. 22 , a teleologic compound pleurapophysis, in 52 a hemapophysis, and in his the hae spine, complcting the hæmal arch.

The general relations of the scapulo-eoracoid arch to a hæmal or co one have been long recogniscd, but the vertebral segment to whieh it apl tains scems not litherto to have been suspected, and has certainly not b satisfactorily determined. Oken, who had observed the free cervieal rib: a specimen of the Laceria apoda, Pallas (Pseudopus), dcemed them rel sentatives of the scapula, and this bone to bc , in other animals, the coales homologues of the cervical plcurapophyses*. In no animal are the conditi for testing this question so favourable and obvious as in the crocodile: only do cervical ribs coexist with the scapulo-coracoid arch, but they are unusual length and are developed from the atlas as well as from each s ceeding cervieal vertebra: we can also trace them beyond the thorax to sacrum, and throughout a great part of the eaudal region, as the sutures the apparently long transverse proccsses of the coceygcal vertebre dem strate in the young animal; the lumbar pleurapophyses being manifes at the same period as cartilaginous appendlages to the ends of the long c popliyses.

[^62]'he scapulo-coraeoill arch, both elements of whiel retain the form of ng and thick vertebral and sternal ribs in the eroeodile, is applicd in the eton of that animal over the anterior thoracic homal arehes. Viewed more robust himal arch, it is obviously out of place in reference to the of its rertebral segment. If we seek to determine that segment by the le in which we restore to their contrums the less displaced neural arches he sacrum of the bird (fig. 27, $n 1-n 4$), we proeed to examine the vertebefore and behind the displaced arch with the view to diseover the one ch needs it in order to be made typieally complete. Finding no centrum and ral arch without its pleurapophyses from the scapula to the pelvis, we give our search in that direction ; and in the opposite direction we find no vertewithout its ribs until we reach the occiput: there we have centrum and ral arch, with eoalesced parapophyses-the elements answering to those uded in the arch N_{I}, fig. 5-but without the areh H_{I}; which areh only be supplied, without destroying the typieal completeness of anteeet cranial segments, by a restoration of the bones $50-52$, to the place whieh naturally oceupy in the skeleton of the fish. And sinee anatomists generally agreed to regard the bones $50-52$ in the erocodile (fig. 22) specially homologous with those so numbered in the fish (fig. 5), we st conclude that they are likewise homologous in a higher sense; that in 5 the seapulo-eoracoid arch is in its natural or typical plaee, whereas in eroeodile it has been displaced for a special purpose. Thus, agreeably 1 a general principle, we perceive that as the lower vertebrate animal strates the closer adhesion to the arehetype by the natural artieulation of :seapulo-eoracoid arch to the oeciput, so the higher vertebrate manifests ssuperior influence of the antagonising power of adaptive modification by removal of that areh from its proper segment.
The scapula retains the more eommon eylindrical long and slender ribform of the pleurapophysis in the chelonian reptiles, where, from the ater length of the neek, it has retrograded further than in the eroeodile n its proper centrum, and is placed not upon, but within, an anterior -aeic hæmal arch, the pleurapophysis of whieh has, on the other hand, - expanded like a seapula.
f the arguments founded upon the relations of the seapulo-coraeoid areh he segments of the skeleton in osseous fishes and crocodilians be admitted ustain the conelusion here drawn from them, that areh must be held to in the hæmal complement of the oecipital vertebra in all animals. Bojanus, Hustrating his vertebral theory of the skull by the osteology of the Emys roprea, thus defines the
"Yertebra occipitalis, sive capitis prima.
Basis oecipitis, seu corpus hujus vertebræ,
Pars lateralis oeeipitis, sive arcus, Crista oceipitalis, processus spinosi loco, Cornu majus hyoidis, coste vertebre oeeipitalis eomparandum *." le adds a dotted outline of the hyoid arch to eomplete the vertebra ocitalis, in tab. xii. fig. 32, B. 1 of his beautiful Monograph.
jupprosing the speeial lomology of the middle cornua of the hyoid of the lonian, so representerl and eompared to ribs by Bojanus, with the stylo-, -and cerato-hyals of the fish (fig. 5, 38, 39, 40) to have been eorrect, which metamorphoses of the hyoid and branehial arehes in the batrachians disve, the singnlar and highly interesting ehange of position as well as slape the true ceratohyals, during the same metamorphosis, prepares us to expect etrogradation of the hyoid arel in respeet to its proper centrum, in the

* Anatome Testudinis Europrex, fol, 1819, p. 44.
skulls of the air-breathing vertebrates. In the young tadpole the thick tilaginous hyoidean arch * is suspended, as in fishes, from the tympanie pedi the slender hyoidean areh of the mature frog is suspended from the petr capsule \dagger. The mandibular arch has, also, receded; and the scapular a which, at its first appearance, was in elose eomection with the oeciput, furi retrogrades in the progress of the metamorpliosis to the place where we it in the skeleton of the adult frog.

The argument, therefore, may be summed up as follows. The position the neurapophyses in the dorsal vertebree of ehelonians and in the saeral tebræ of dinosaurians and birds, shows that a change of relative position respect of other elements of the same vertebra may be one of the teleolog modifications to which even the most eonstant and important elements subjeet. Instead of viewing such shifted arches as independent individual pa we trace their relation to the stationary elements of the vertebral segment the centrums. Thus, eommencing, for example, with the anterior of saeral vertebræ of the ostrieh, A in fig. 27 , we observe that, besides porting its own neural areh, it bears a small portion of that of the next tebra: the third neural areh (n_{1}) has encroached further upon the eentı of the vertebra in advance; and thus, in respect to the neural arch ($n 2$, it were viewed with the eentrums, $c 2$ and $c 1$, upon which it equally rc apart from the rest of the sacrum, it would appear to appertain equally. either, and be referable to the one in preference to the other quite ξ tuitously. Nevertheless n_{2} is proved, by the intermediate changes in ar cedent neural arches, to belong actually, and in no merely imaginary or tra cendental sense, to c a altogether, and not to the segment of whieh c, is centrum ; and in tracing the modifications of those sacral vertebræ wh follow c, we find $n 4$ to have regained nearly the whole of its eentrum, and the normal relations of the elements are quite restored in the succeed vertebra.

Now let us suppose the habits of the species to have required a m extensive displaeement of the $\operatorname{arch}\left(n_{2}\right)$ and its appendages: if its forl characters as a neural arch were still retained beneath the adaptive devel ment superadded to the adaptive dislocation, and if the segments before a behind the centrum $c 2_{2}$ were found complete, and that centrum alone want its neural areh; would the mere degree of modification in respect of relat position nullify the conclusion that the shifted arel appertained to such eomplete segment, and forbid that restoration to the typical condition, wh. no anatomist, it is presumed, will dispute in the casc of $n 2, c_{2}$, fig. 27 ? anthropotomist hesitates in pronouneing the exact vertebra to which sixth ribs belong in the human skeleton. But, separate that eostal an with the two borlies and neural arehes of the vertebre with which it artic lates, and to which of then it belonged would be as questionable as in t instanee of the displaced neural arch in the bird's sacrum. The head of ea rib is applied half to the upper eentrum, half to the lower one: the upt border of the neck of the rib articulates with the upper neural arch, the bercle with the diapophysis of the lower neural arch. If a naturalist, 1 eonversant with the definitions of human anatomy, were shown this detach part of the human skeleton and were pressed to determine the proper eentri and neural areh of the hypothetically displaced costal element, the atten? might seem to him gratuitons: and to the question, to which of su centrums the rib exclusively (as to the pre-existing patteru) belonged?

[^63]at reply, to neither. And such, doubtless, would be the matter-of-fact rer most congenial to the character of mind which wonld limit its vicws te specialities of the ribs as parts indepcudent of any ideal archetype, or nable or unwilling to push the consideration of their conncetions beyond purposes apparently subserved thereby. A sccond anatomist might sce te more constant articulation of the costal tubercle with the transverse :ess, a charaeter which would incline the balance in favour of the vertebra hich the transverse process belonged. A third anatomist might cxtend comparisons to other ribs and centrums, and finding the lower centrum ining by degrees a greater proportion of the head of the rib, until the and last ribs respectively wholly articulated to the centrum answering to lower one in the case of the hypothetically detached sixth pair, he would slude that such pair of ribs belonged essentially to the lower and not be upper supporting centrum, and he would count accordingly such or centrum with its neural arch, as the sixth of those vertebre which are acterized as supporting ribs. The anthropotomist, in fact, in so counting defining the dorsal vertebree and ribs, admits unconsciously perlaps, an ortant principle in general homology, which pursued to its legitimatc :equences and further applied, demonstrates that the scapula is the modirib of that centrum and neural arch which he calls the 'occipital bone,' that the change of place which chiefly masks that relation (for a very sentary acquaintance with comparative anatomy shows how little mere .1 and proportion affect the homological characters of bones) differs only ustent and not in kind from the modification which makes a minor amount omparative observation requisite in order to determine the relation of the sed sisth tib to its proper centrum.
Vith reference, therefore, to the occipital vertcbra of the crocodile, if the paratively wcll-developed and permanently distinct ribs of all the cervical rebre prove the scapular arch to belong to none of those segments, and, be wanting to complete the occipital scgment, which it actually does uplete in fishes, then the same conclusion must apply to the same arch in or animals, and we must regard the occipital vertebra of the tortoise as ipleted below by its scapulo-coracoid arch, and, not as Bojanus supposed, its hyoidean arch*.
Tith these views of the general homology of the scapulo-coracoid arch, embryologist will observe with less surprise its constant appcarance in first instance close to the occiput, and its equally constant primitive ver1 position; however far back it may be subsequently removed, or to atever extent it may be rotated, in the same progress to maturity, out of original parallel direction with the more normal plcurapophyses.
Returning to the study of the crocodile's skull in reference to the vertete archetype, if we procced to dislocate the next segment in advance of occipital, we bring away in connection with the long base-bone, 5 and 9 , 22, the bones connected by the double lines $\mathrm{N}_{\mathrm{II}}, \mathrm{N}$ inf, and by the

[^64]curved arrows $\mathrm{H}_{\text {II }}$ and $\mathrm{H}_{\text {III }}$. The relations of the superior series of b as neural arches to the optic lobes and cercbrum are even less doubtful in many fishes, by reason of the much smaller degree of independent o cation of the proper capsule of the acoustic labyrinth. Taking, then bones forming the arch N II, we find them, vicwed from behind, to pre the general arrangement shown in fig. 19. The hinder (basisphenoidal) portion of the bone 5 and - forms the centrum, and immediately supports the floor of the meseneephalon, or lobe of the third ventricle, being excavated for the pituitary prolongation of that cavity: it also sends a process downwards, repeating, like the basioccipital, the inferior exogenous spine of the centrums of the cervical vertebre. The bones 6,0 protecting the sides of the mesencephalon, and notched for the transmission of the trigeminal nerve, manifest the neurapophysial characters of the segment. As accessory func-
 tion of the ear-chamber. They have, however, a little retrograded in F tion (see fig. 9), resting below, in part, upon the oecipital centrum, and porting more of the spine of that centrum (3) than of their own (7) ; wl is, however, formed of a single bone, and in so far manifests more of normal character of the element completing the neural arch, as its crowr key-bouc, than does the homologous divided and often divaricated bons fishes. This and other analogous facts slow that although the lowest tebrate class adheres most, as a whole, to the archetype, yet that it can rccognised clearly and unequivocally only by patient study of its modif tions in all classes : for even the lowest have special exigencies arising of their sphere of existence calling for modifications of the type which not present in other and higher classes. We shall find, indeed, that the 1 nation of the basi- and pre-sphenoids ceases in mammals, and that they coalesee in that class, being primitively distinct; so that the second cra centrum (5) may be removed with its neural arch, in the foetal quadru (fig. 24) or human subject (25), without doing violence to nature by the of the saw. The bones 8,8 , fig. 19 , wedged between 6 and 7 , here, also, nifest more of their parapophysial character than in fishes, inasmuch as t are excluded from the inner walls of the cranium, whilst they retain manifest broadly their characters as outstanding processes for museular tachment. But, besides affording ligamentous attachment to the hyoid a (39,40), they articulate largely with the proximal element (18) of the m dibular areh, whose backward displacenient, in comparison with its m normal position in the fish's skull (fig. 5), is as clearly illustrated in the me morphosis of the anourous batrachia, as is that of the hyoidean or seapt arclies.

Referring, then, to the side view of the cranial vertebre of the croco (fig. 22), we see the hæmal arch of the second or parictal vertebra in hyoid $(30,40,41)$ retaining so much of its embryonic dimensions as is requil
ts restricted functions, and having no call for progressive growth in subicncy to a branchial respiration. It consists of a ligamentous stylohyal, deurapophysis, retaining the same primitive listological condition which rructs the ordinary recognition of the same clements of the lumbar hæmal 1es. The hamopophyses and hrmal spine are, however, here as there, e advanced in respect of their tissue. The hremopophysis is ossified like so-called 'abdomimal ribs,' and usually, like them, consists of two portions, ing the special names of epihyal (39) and ceratohyal (40): the homal le (+1) retains its cartilaginous state like its homotypes in the abdomen: e they get the special name of ' linea alba' or abdominal sternum, here basihyal.' With respect to formal molification, this element is chiefly arkable in the crocodile for its broad expanse: it sustains the ascending rular ridge at the base of the tongue, which, applying itself against the zending 'palatum molle,' constitutes an effectual barrier against the entry vater into the glottis from the mouth, whilst the crocodile is engaged in rcoming the struggles of a submerged and drowning prey.
There being no need of diverging appendages from the hyoidean arch in crocodile, branchiostegal rays are not developed. The scapular arch is ilarly simplified in Anguis and other serpentiform lizards; but, to those , recognise its true homology, its presence without a trace of its appenee, the fore-limbs, will create no more surprisc, than the presence of the idean arch without the branchiostegal fins or of the mandibular arch without opercular fins.
On removing the neural arch of the parietal vertebra, with or without the dion of the connate centrum (5), the boncs completing, with the part (9), corresponding arch of the frontal vertebra present the general arrangent shown in fig. 20.
The compressed produced 1e, 9 , shown in natural contion with the bone 10 in 9, noiwithstanding its moed form, presents all the ential characters of the cenm of the arch: although it y have been developed exsively from the capsule of notochord, like the coaced inferior parts of the ceral centrums in the silurus: re is no distinct ossicle anering to the central part of \rightarrow centrum of the frontal verra, like o', fig. 5, in certain ny fishes. On the other hand, find the neurapoplyysial chaters of the orbito-sphenoids

Disarticulated prosencephalic arch, viewed from behind: Crocodilc. , 10) more largely and typilly manifested in the crocoe: they are smoothly excavated within by the sides of the prosencephalon : 3 dismiss the great special-sense nerves of the eyc by the noteh (fig. 9, op), d the mrotor nerves by the notel s : they show, however, the same tenney to change of position as the succeeding neurapophyses; for though ey support a greater proportion of their proper spine (11), they also suprt part of the succeeding spinc (7), and rest below in part upon the pa-
rietal eentrum (5). The neural spine of the frontal vertebra (11) retains normal eharaeter as a single symmetrieal bone, like the parietal spine, wh it partly overlaps. It is muel developed longitudinally, but more in anterior, and less in the lateral direction than in most fishes.

One eannot contemplate the relative position of the frontal to the pari, and of the parietal to the supraoecipital, whieh is overlapped by the pari, and itself overlaps the flattened spine of the atlas, without a eonvietion of serial homology of these single, median, imbrieated bones, all complet arehes above the neural axis, and each permanently distinet from the pi or haunches of the areh of whieh it forms the key-stone. In like man the serial homology of those piers or neurapophyses, viz. the lamine the atlas, the exoeeipitals, the alisphenoids and the orbitosphenoids, is equi unmistakeable. Nor ean we elose our eyes to the same serial relations of the postfrontals (fig. 20, 12, 12) as parapophyses of their vertebra, in the mastoids (8) and the eoaleseed paroceipitals (4). The frontal paraj physis, 12, is wedged between the baek part of the spime, 11 , and the ne apophysis, 10: its outward proeess extends backwards and joins the 11 parapophysis (s); but, notwithstanding the retrogradation of the nam bular areh, it still receives a small part of its own pleurapoplysial elem (28). This element now manifests its typieal unity: vegetative subdivisi mueh redueed in the batrachian reptiles, no more prevails in the develd ment of the frontal pleurapophysis in any higher vertebrate. The serpe exhibit this element under the eommon form of a rib; longer, indeed, t t are any of the pleurapophyses in the batraehian order; but it has so retreated in serpents as to be exelusively attached to the parietal paral physis, whieh is remarkably elongated and produced baekwards, and s pends the long, slender, straight and simple frontal pleurapophysis (tympaı pediele) vertically from its posterior extremity. In lacertians no. 28 is \mathbf{v}. tieally suspended from no. 8, and, commonly also, from no. 27 , whieh is er tinued from the baekwardly produced parapophysis of the frontal vertel (12) to that of the parietal vertebra (8) in most of this division of the C vierian order Sauria. In ehelonians and erocodilians the diverging appe dage of the maxillary areh (27) deseends and applies itself to a large propi tion of no. 2s, down to its lower articular end, and eontributes to fix a strengthen that bone, as well as the modified costal areh from whieh it verges.

The condition of the shortening, expansion and fixation of the from pleurapophysis in erocodiles and ehelonians is exemplified in the uses Whieh the modified hronapophyses, eompleting that eostal areh, are p Tortoises erop the grass by the applieation of the treneluant horny plates the under to those of the upper jaw: turtles equally need a fixed suspenso joint of the under jaw in the aet of biting and dividing the tough sea-weet Croeodiles lave the frontal hæmapophyses (mandibular rami) unusual long; supporting numerous large laniary teeth, and requiring a fixed as firm point of suspension in the violent aetions to whieh they are put in r taining, and overeoming the struggles of their prey.

The teleologieal complieation of the lower or distal elements of the art in question ($29-32$, fig. 22) is earried further than in fishes: there was mo need, in faet, for a combination of the greatest elasticity and strength withe least weight of bone* in the frontal hæmapopliysis of the erocodile the in the frontal pleurapophysis of the fish $(2 s a-28 d$, fig. 5$)$.

There, lastly, remain then in the skull of the erocodile the bones inte

[^65] p. 176. This author well illustrates the final purpose of the subdivision of the mandibul
ad by the lines N iv and the arrow H tv, with those numbered 26, 27, 73, and we have to inquire whether through all the modifications which - extreme position subjects them to, we can still trace any cvidence of their ugentent according to the vertebrate typc.
long and slender symmetrieal grooved bone, like the ossified inferior of the capsule of a notochord, is continued forwards from the centrum te foregoing vertebra, and stands in the relation of a centrum (13) to the ical plates of the bones $1-1$, which expand as they rise into the broad and . L triangular plates with an exd horizontal superior surface. arch of whieh these form the s, and to the anterior rhinenalic prolongations traversing sh arch they stand in the reon of neurapophyses, is comed by the two bones (15): which aerefore, regard as a divided ral spine. In fishes we have 1 that the corresponding cleit of the parietal vertebra was larly divided, whilst the neural te of the nasal vertebra was le: in the crocodile the re. se conditions prevail. In a speof alligator I have observed bone 13 continued further for--d, expanded, and divided at the dle line, the two divisions forma small dise on the bony palate. \geq centrum of the nasal vertcbra ivided longitudinally at the mea line in batrachians, ophidians,

Disarticulated rhinenccphalic arch, with the anchylosed pterygoids (2t) viewed from behind: Crocodile. 1 most lacertians; it is single in lonians, but retains its cartiinous state in some species (Emys expansa, e.g.). The neurapophyses 14) transmit the olfactory nerves in all reptiles; but the ganglions are ally withdrawn backwards into the prosencephalic neural arch, leaving
as in the recent and extinct saurians hy pointing out the similarity of the structure to adopted in binding together several parallel plates of elastic wood, or steel, to make a 3-how; and also in setting together thin plates of steel in the springs of earriages. Dr. ikland adrls, "Those who have witnessed the shock given to the head of a crocodile by act of snapping together its thin long jaws, must have seen how liable to fracture the er jaw would be, were it composed of one bone only on each side."-1b. p. 177. The e reasoning applies to the composite condition of the long tympanic pediele in fishes. each ease the splieing and braeing together of thin flat bones of unequal leugth and of ring thiekness affords compensation for the weakness and risk of fracture that would othera have attender the elongation of the snout. In the abdomen of the erocodile and plesiar the analogous composition of the hernapophyses (abdominal ribs) allows of a slight nge of length in the expansion and contraction of the walls of that eavity : and since ohibinas reptiles, when on land, rest the whole weight of the abdomen direetly upon the und, the necessity of the modifieation for diminishing liability to fracture further appears. 5 what we are here chicfly concerned in is the evidence that the general homology of nentary parts of a natural segment is not affected by the modification of telcological aposition of such parts. What happens to the heemapophysial or inferior elements of inverted areh in the ahdominal segments of the eroeodite also afleets the same elements a cranial hemal areh; and the subdivision of the pleurapophyses of the trunk in the rgenn is repeated in the same elements of the eranial vertebre in osseous fishes.
only the nerve-trunks to be proteeted by the nasal neurapophyses. Tl are, therefore, more approximated, and the anterior termination of the ne canal is muel contraeted; and, in the tailless batrachia, the nasal n, apophyses coalesce together.

We reeognise in that element (20) of the fourth or foremost inverted of the croeodile's skull, which is in conncetion with the body (vomer, 13) descending plates of the neurapophyses (prefrontals, 14) of the nasal verte the proximal or pleurapophysial element of such areh; and the same re tition of the eharacteristic eonneetions of the bone, 20 , which enabled Cu and Geoffroy to recognise its speeial homology with the palatine bone in fish, establishes its elaim to be equally regarded in the croeodile as the ple apophysis of its vertebral segment; although it now affords but a partial tachment to the bone 21 , whieh forms the next element of the inverted a: This bone, the hcomapophysis, has undergone a striking change in its prol tions by development both in length and breadth: it is eonneeted not only v' no. 20 behind and with no. 22 before, but with the elongated spine, no. 15, of own vertebra, and with the lacrymals, 73 , above; with its fellow of the oppo side below, and with a well-developed proximal element, no. 26, of a strit diverging appendage behind. The homal spine, no. 22, is divided, and areh is completed by the symphysial junetion of the two halves at H iv. nasal aperture or entry to the air-passages forms the span or area of mueh-modified inverted arch eonstituting the upper jaw of the erococ The two proximal elements of the areh, nos. 20 and 21 , continue to st outwards and backwards exogenous diverging proeesses; but they eon tute a smaller proportion of the bones than in fishes, and both processes, rectly support distinet bones representing the diverging appendage of areh, and serving to fix and attach it to the succeeding arch. The pleura physial appendage (pterygoid, 24) soon coalesces, however, with its fell and with the eentrum of its own vertebra (vomer, 13), and then expands unite by a broad sutural surfaee with the coaleseed eentrums of the fror and parietal vertebræ (9 and 5). A seeond osseous piece (eetopteryge ${ }^{24} 4^{\prime}$) diverges from the pleurapoplysis external to the preeeding and attae. it to the hæmapophysis, to the hæmapophysial appendage, and to the p apophysis of the frontal vertebra. The strong diverging ray from the hæ apophysis is teleologieally subdivided into nos. 26 (malar) and 27 (squamose and firmly attaehes the maxillary areh to the pleurapophysis (28) of the m_{i} dibular one.

In the chelonian reptiles the modifieations of the nasal segment of skull adhere pretty closely to the type of those in the crocodile; the centri is more independent and better developed, but the divisions of the neu spine have coalesced with their neurapophyses: the diverging appendag 26 and 27 , are usually developed into broad and flat bones. In many lizan we find the nasal centrum divided but the neural spine single: the hæn spine is, also, single, as a general rule, and sends upwards and baekward: process to join the neural spine, divide the area of the hæmal eanal, a terminate the vertebral series anteriorly. The hæmapophysial diverging ε pendage eommonly resumes its long and slender ray-like proportions, and joi the parapophyses of both frontal and parietal vertebræ as well as the pre imal end of the pleurapophysis of the mandibular arch. In serpents bo divisions of this appendage are absent (indicating the inferior charaeter the bones 20 and 27 in general homology), but the two parts of the pleural physial appendage, 24 and 24^{\prime}, are retained and serve as levers in the mor ments of the maxillary areh. The spine of that hæmal areh is single, at commonly united only by lax and elastic ligaments with the læmapophysi

sh may be divaricated like the halves of the mandibular arch, so as to en the mouth laterally; and this free suspension and incompletc closure re principal costal arehes of the cranium in serpents repeats in an interig mamer the chametcristic frec and open condition of all the costal arelics heir trunk. In the genus Tythlops the diverging appendage of the to-maxillary arch is reduced to the primitive condition of a long and der ray. In anourous batrachians a long and slcuder backwardly proed exogenous process of the hæmapophysis (masillary) joins a shorter ancing exogenous process of the distal division of the next pleuraposis (tympanic) : but in the tailed species the maxiflary arch is fixed only broad (pterygoid) appendage; and both maxillary and premaxillary retain their essential comections as forming the inferior arch of their segment. he proteus and siren the pleurapophysis (maxillary) is almost obsolete.
'he bones nos. 24,24 ', 26 and 27 , being shown to be the least constant abers of the group forming the nasal segment, and to form by their posiand direction, the diverging appendages of the hæmal arch H iv, there ains in the skull of the crocodile only the bone 73 , which by its position ront of the orbit and its relation to the lacrymal duct, is to be referred the great anterior suborbital mucous bone in fishes to the dermal skele-

In like manner the palpebral or supra-orbital scale-bones are to be exled from the category of the pieces of the endoskeleton. The small and onstant ossifications in the capsule of the organ of smell, together with the scely ossified sclerotals (17), the small petrosal, 16, and the columelliform oes, 16°, are intercalated portions of sense-capsules and appendages re. ble to the system of the splanchnoskeleton.
Thus the endoskeletalsystem of bones of the head of the crocodile arc natuy arranged in four segments, each composed of a ccntrum with a nenral a hæmal arch. The hæmal arches have bcen subjected, as in the trunk, nost modification; that of the occipital vertebra having been displaced; : of the parietal vertebra detached from its segment and arrested in its elopment ; whilst that of the frontal vertebra is articulated in a very small portion to the parapophysis of its own segment, but chiefly to that of the ietal segment, with paroccipital connections also; it is immensely deoped, the hæmapophysial portion being the chief seat of cxtension. The mal arch of the nasal segment is also very large, but shows as much ess of development in breadth as that of the frontal vertebra in length. e diverging appendage is more complex than in fishes: one piece indeed, 25 , fig. 5 , is absent, but three others, $24^{\prime}, 20$ and 27 , have been superadded. e diverging appendages of the frontal and parietal vertebræ cease to be 'eloped in every class above that of fishes ; but that of the occipital hæmal h, though it no longer shows the luxuriant profusion of rays that distinshes it in fishes, begins to assume a more fixed and definite character with re special powers and indcpendent movements of its constituent parts. ध īrst segment (53), doubtfully and obscurely recognizable in any fish, is iceforth a constant and important bone, and is always single: the next ment consists as exclusivcly of two bones, connatc, indecd, in batraans: the distal segment presents two jointed rays (digits) in the Amphiadidnctylum; three rays in Amph. triductylum and the proteus and four s in the Siren lacertina; it branched into as many as ninc rays in the cxct ichthyosaurs; but they never excecd five in the existing saurians, which mber is presented by this appendage in the crocodile (57, fig. 22.)
Birds- The craninm of the bird offers the extremest instance of a homoically compound bone, and its developinent the clearest evidence of that nciple of unity of composition which lies at the bottom of all the modifica-
tions of the cephalie division of the vertebrate endoskeleton. Although, a general rule, the separate eranial bones ean be diseerned only at a very ea period, yet in those birds in whieh the power of flight is abrogated the in eations of the primitive eentres of ossifieation endure longer, and in speeies here seleeted for the illustration of the eranial segments (fig. 23) constituent bones of the skull, though figured of their natural size, have, w the exeeption of the basioeeipital, 1 , and basisphenoid, 3 , and the two bor 6 and 8, whieh eoalesee with the petrosal, 10, been separated by maeerat merely. I may remark, however, that in all birds, eertain bones, wh coalesee with others in the cranium of most mammals, always retain th primitive individuality; the tympanic (24) and the pterygoid (24) for ample.

The hindmost segment of the cranium (N_{1}, fig. 23) so elosely repeats charaeters of the epeneephalic neural areh of the eroeodile (fig. 18), as render a separate and full view of it unneeessary for the illustration of vertebral charaeter. The basioecipital (1) still developes the major port the single artieular eondyle, and sends down a proeess, more marked in i struthious genera, and espeeially the dinornis, than in most other birds: all respeets this primitively distinet bone retains the charaeter of the centri of its vertebra.

The exoeeipitals, 12 , contributing somewhat more to the oeeipital eond: than in the eroeodile, develope, as in that reptile, the paroeeipital (24) as outstanding exogenous ridge or process: but it is lower in position than the croeodile: the proper neurapophysial eharaeters of no. 2 are fully ma tained. The supraoeeipital (3) now begins to manifest more strongly t flattening and development in breadth, by whieh the spinous elements l d the formal eharaeter from whieh their name originated, and are eonvert from long into flat bones. We saw the first step in this most common of t ehanges to whieh one and the same endoskeletal element is subjeet, in t detached neural spine of the atlas of the croeodile: that of the oeeipi vertebra of the same animal presented another stage in the metamorphos we have a third degree in the bird, and the extreme of expansion is attain in the human subjeet (fig. 25, 3), where the spine is sometimes developr like that of the parietal vertebra, from two eentres. But the arrested ste in this strange change of form and proportion demonstrate the essent nature of the part, as the neural areh, whilst the eonstaney of the eharaet of connexion is slown by this crown of the arch of the oeeipital vertet having the exoeeipitals as its piers or haunehes from the fish to the hum subjeet. It always proteets the eerebellum; is absent in the frog where ti. organ is a mere rudiment; and is present in the erocodile in the ratio the superior size of the eerebellum. The further development of the eet bellum is the eondition of the superior breadth of the spine or erown the epeneeplatie areh in the bird.

The arguments that deternined the nature and displacement of the hæm areh of the oeeipital vertcbra in the croeodile apply with equal foree to th in the bird. The extent of the displaeement, it is true, has been greate not seven, but seven-and-twenty vertebræ may intervene between the pla of the seapulo-eoracoid areh and the remainder of its proper segment eo stituting the oeeipital region of the simple eranial box in the bird. But tl difference of extent ought no more to mask the real relationship of sucostal areh to its eentrum, than the degree of development of the spine the oeeipital vertebra affeets the general homology of that element.

In the ostrieh, and other struthious birds, the hrmal areh of the oeeipit vertebra has retained mueh of its embryonie proportions. The pleuray;

siahpart (51) has, also, retained its sleuder rib-like form*; it las coaresced 1 the heemupophysis (52), and the inverted arel is eompleted, as in the odile, by a hremal spine, as much modified in form by flattening and exion as is the neural spine represented by the supraoeeipital (3). The rging appendage of the occipito-hremal arch also retains mueln of its ditive simple eharacter: a long and slender bone (53) supports two rays 55). aud there is an attempt at three at 57 , of which one is short, atrophied auchylosed to the rest. In the two small bones $(56,56)$ interposed bean this and the preceding segment, we recognise the special homologues he carpat series in the crocodile and fish: in 54 we have the ulna, in 55 radius, in 53 the humerus, in 57 the metacarpus; in $d 3$ and d_{4} the rudiats of the digits so numbered in the croeodile (fig. 22) and the mammal 24). The evidences of the uuity of plan in the eonstruetion of the sular limb, whether it be an arm with the prehensile hand, a hoofed forea wing, or a fin, are admitted by all; the same seapula, humerus, antishial, earpal, metaearpal and phalangial bones are readily reeognised by the in comparative osteology in the apc, the horse, the whale, the bird, the oise and the erocodile. The beautiful simplieity of the fundamental basis all these adaptations of structure is descanted upon in all our popular ologieal treatises. But the higher law governing the existenee of these cial homologies has attracted little attention in this eountry. Yet the siry into that more general principle of eonformity to type aeeording to ch it has pleased the Creator of organie forms to restrict the manifesta-- ss of the variety of proportion and shape and substance and even relative ition of the limbs requisite for the various tasks assigued to the vertebrate cies, is one that by no means transeends the scope of the comparative tomist. And the conclusion to which my eomparisons have conducted is, that one and the same element, viz. the diverging appendage of the ipital vertebra, forms in every case-to whatever adaptive modifications دas be subjeeted-the part reeognized by the general term, 'anterior' or perior extremity.'
The seeond segment of the skull has for its central element a bone (fig. 5), whieh in the bird, as in other ovipara, is eonnate with that (9) which ads in the same relation to the third eranial segment; the proof of the ural distinetion of these segments is given by the neural, N_{II}, $\mathrm{N}_{\mathrm{III}}$, 1 hæmal, $\mathrm{H}_{\text {II, }} \mathrm{H}_{\text {III }}$, arehes. Probably the cireumstanee of the bodies :hose vertebre being formed by ossifieations of the fibrous eapsule of the ochord, representing the external or eortical parts only of such eentrums, y be the eondition, or a favourable physieal cause of such eonnation. e neural arch of the parietal vertebra retains the same charaeters whieh irst manifested in fishes. Besides the neurapophyses (6) impressed by the sencephalic ganglia and transmitting the trigeminal nerves, besides the itly expanded and again, as in fishes, divided ncural spine (7), the parapoysis (x) is independently developed. It is of large proportional size ; and, ing to the raised dome of the neural areh, is rclatively lower in position in in the crocodite; it sends downwards and outwards an unusually long rastoid' process, and forms a large proportion of the outer wall of the amter of the internal ear with the bony eapsule of whieh it speedily coalesees. The hremat areh of the parietal vertcbra ($\mathrm{H}_{\text {II }}$) is more reduced than in : erocodite, and owes much of its apparently typical eharaeter to the reition of the thyroligals (15,17) borrowed from the branchial arches of the

[^66]viseeral system, whiel are feebly and transitorily manifested in the embr bird. These spurious cornua projeet freely or are freely suspended, and a the subjeets of singular and exeessive development, as has been exerrplifi in the chapter on Speeial Homology.

The bones (10) of the third neural areh proteet a smaller proportion of t prosenecphalon than in the eroeodile, but maintain their neurapophysial rel tion to it and to the optie nerves: the neural spines (11) eover a larger proportic of the hemispheres, and, with their homotypes (7), exhibit a marked inerea of developnent in conformity with that of the ecrebral eentres protected their respeetive areles. The parapophysis of the frontal vertebra (12) relatively smaller in the bird than in the eold-blooded vertebrates, and rarely ossified from an independent centre; but I have seen this in the eme and it appears to have been eonstantly an autogenous element in the dinorn The hæmal areh of the froutal vertebra has been transferred baekwards the parietal one; its pleurapopluysis (28), whieh is simple, as in the erocodi artieulating exelusively with the parietal parapophysis (8), though this some birds unites with that of the frontal vertebra. In the young ostrir and many other birds traees of the eomposite eharaeter of the hemapophys are long extant; and bear obviously a homologieal relation to the teleolog eally compound eharaeter of the element in the erocodile: for the pieer nos. 29, $29^{\prime}, 30^{\prime}$ and 31 ultimately, and in most birds early, coales with eaeh other and with the hemal spine (32), the halves of whieh are eo fluent at the symphysis.

The centrum (13) of the nasal vertebra is always single, and, when it do not remain distinet, eoalesees with the neurapophyses, 14, and pleurapophyse 20, of its own segment, and sometimes, also, with the rostral production of tl frontal eentrum (9) : it is elongated and pointed at its free termination, al deeply grooved above where it reeeives the above-named rostrum ; indieatir by both its form and position that it owes its existenee, as bone, to the oss fieation of the outer eapsile of the anterior end of the notoehord. In tl ostrich the long presphenoidal rostrum intervenes between the vomer (1 and prefrontals (14). These latter bones manifest, however, as has bee shown in the paragraph on their speeial homology (p. 214), all the essenti neurapophysial relations to the rhineneephaton and olfaetory nerves: h1 they early eoalesee together, or are comate, as in the tailless batraehian The noural spine (15) is divided along the middle line; but in most birds tl suture beeomes obliterated and the spine eoalesees with its neurapophyse with the frontal spine and with those parts of the hæmal arch of the nas. vertebra with whieh it eomes in eontaet.

The pleurapophyses (fig. 23, 20) of this inverted arch retain their typie connections with the masal centrum and neurapophyses at one end, and wit the hemapophysis (21) at the other end, and they also support the constan element of the diverging appendage of the areh, no. 24. The hamap physis (21) resumes in birds more of its normal proportions and elongate slender form: but the hemal spine (22) is largely developed though und vided, and sends upwards and baekwards from the part eorresponding to th symphysis of the spine, when this element is divided, a long pointed proees $\left(2^{\prime}\right)$, whieh joins and usually coalesees with the neural spine (15) and divide the anterior outlet of the hæmal eanal into two apertures ealled the nostril The modifieation of the inferior areh of the nasal vertebra in the lizard trib is here repeated. The pleurapophysial appendage, 24 , eonneets the palatc maxillary areh with $2 s$, and in the ostrich and a few other birds, also with 5 the second or hrmapophysial ray of the diverging appendage is deve loped in all birds, as in the squamate saurians; eombining the movement

e hremal arch of the nasal vertebra with that of the frontal vertebra， consisting of the two styliform ossicles（ 26 and 27 ）which extend from the apophysis， 21,21 ＂，to the pleurapophysis， 28 ：the essential relationship of ompound ray， 26 and 27 ，with the nasal vertcbra，is indicated by their ning confluent with its hæmapophysis（at $22^{\prime \prime}$ ），whilst they always main－ an arthrodial articulation with the pleurapophysis（zs）of the succecding bra．
re bones of the splanchmo－skelcton intercalated with the segments of the skeletou iu the bird＇s skull are the petrosal（iv），between the ncural es of the occipital and parietal vertebre，early coalescing with the cle－ s of those rertebre with which it comes in contact：the sclerotals（18）， posed between the frontal and nasal neural arches ：and the thyro－hyals ），retained in connection with the debris of the hæmal arch of the parictal bra，Hir．The olfactory capsule remains cartilaginous．The dermal （ 73 ）is well－developed and constant：a sccond supraorbital dermal bone casionally present．All the endoskeletal bones manifest，under every ive modification，the segmental arrangement，and it is difficult to con－ late the disposition of the cranial bones in fig．23，as in figs． 22 and 5， ad the primary segments of the cncephalon in the series of arches closed ctively by the bones $\mathrm{N}_{1,} \mathrm{~N}_{\text {ir }}, \mathrm{N}_{\text {iII，}} \mathrm{N}_{\text {iv，together with that of the }}$ sponding number of arches closed below，at $\mathrm{H}_{\text {iv }}, \mathrm{H}_{\text {iII }}, \mathrm{H}_{\text {II }}$ and H_{I} ， ut a conviction that the type illustrated in fig． 15 is that upon which segments of the skull have been constructed．＇This conclusion might forced，in respect to the occipital vertebra，were its displaced hæmal arch ppendages to be viewed without reference to their relative position and ections in the lower vertebrate classes；but it will be confirmed and a to be agreeable to nature and to the recognised kinds and grades of fication to which the elements of one and the same vertebra are subject， serving in the young bird the distinct pleurapophysial elements of those cal vertebræ，beyond which the corresponding elements of the occiput retrograded，in obedience to the functions which the hæmal arch of rertebra and its appendages are destincd to perform in the feathered
tmmuls．－If the foregoing views of the general homology of the bones e skull be agreeable to their essential nature，we should expcet that the and additional modifications，in the mammalian class，which tend to －re those relations would be seated in the appendages and peripheral ents of the endoskeletal segments，or in the capsules and appendages of recial organs of sense．
ave selected with the view to test such anticipation the skull of a young derm＊，and，after successively disarticulating the segments in the order ich they have been previously describcl，I have given a side vicw of （fig．24）arranged in correspondence with the figures 23,22 ，and 5. e neural arch of the occipital vertcbra， N_{1} ，agrecs with that of the bird and dile in the coalescence of the parapophysis， 4 ，with the neurapophysis， the process， 4 ，now descends from the lower part of the arch，and， many other mannals，is of great length．An articular condyle is also oped from each neurapophysis which articulates with the concave an－ zygapophysis of the atlas，and is the homotype of the posterior zyga－ sis in the trunk－vertebre．The centrum（1）is reduced，like that of ：las，to a compressed plate，and its hinder articular surface is not more
ae skull of the ruminant is perhaps still better adapted to demonstrate the vertelral ns of the cranial bones：that of the sheep is the subject of the diagram for this pur－ the concluding volume of my＂IImaterian Lectures．＇
developed than is the front one of the centrum of the atlas, with which, deed, it is looscly connceted by ligament. The expanse of the occipi spine, 3 , has been governed, agreeably with a foregoing remark, by the perior development of the ecrebellum.

The hæmal arch of the occipital vertebra is represented, like those of cervical vertebræ, by the pleurapophysial elcments only (51); but these, most mammals, are developed into broad triangular plates with outstand processes: that ealled 'spinc' and 'acromion' is exogenous; but that cal 'coracoid' is always developed from an independent osscous centre (a ru mental representative of the hemapophysis, 52), which coalesces with pleurapophysis in mammalia, and only attains its normal proportions, ec pleting the arch with the hæmal spine (episternum) in the monotremes.

In many mammals the areh is completed by bones (fig. 25, 52^{\prime}), apparel the lıæmapophyses of the atlas, which have followed the occipital hæmal a in its backward displacement, but not quite to the same extent.

The diverging appendage, though retaining the gencral features of primitive radiated form, has been the seat of great development and mmodification and adjustment of its different subdivisions (53-57) in relat to the locomotive office it is now ealled upon to perform.

With the exception of this excess of development of the appendage, defective development and displacement of the hæmal arch, and the coa cenec of the parapophyses in the neural arch, there are fow points of res blance which are not sufficiently salient between the segment $\mathrm{N}_{\mathrm{I}}, \mathrm{H}_{\mathrm{I}}$ in mammal, and that so marked in the fish (fig. 5). And, if the interpreta of the more normal condition of this segment in the lower vertebrate, cording to the archetypal vertebra, fig. 15 , be aceepted, then the expla tion here offered of the nature of the modifications of the special homolog of the constituents of the occipital segment by which that archetyp masked in the mammal, may be confidently left to be confirmed by judgement of the unbiassed student of homological aunatomy.

In commencing his comparisons of the second segment of the skull with typical vertebra, he will be unexpectedly gratified by fiuling, in the imuna mammal, the centrum, 5 , naturally distinct, and the hæmal arch, H1 in, retain its comnections with the rest of the segment, and by means of a more c plete development of the pleurapophyses (38) than in any of the inferior breathing vertebrates. He may now separate, without artificial divisiol any compound bonc, the entire parietal segment, but he brings away wi the petrificd capsule of the acoustic organ, and the anchylosed distal piece of the maxillary appendage, which more or less encumbers and conceals typical character of the neural arch of the parietal vertebra in every mamr least so, however, in the monotremes and ruminants. The neurapophyses of the parictal vertebra, like the mesencephalic scgment of the brain, are little more developed in mammals than in the cold-blooded classes: they notched in the hog and perforated in the sheep by the larger division the trigeminal, and they scnd down an exogenous process, which articul and sometimes coalesecs with the appendage (2.4) of the palato-maxil arch. The neural spine (7), always developed from two centres, often ri expanded, and sometimes complicated with a third intercalary or in: parictal osscous piece, is occasionally uplifted and removed from its n apophyses by the interposed squamous expansion of the bone 27 ; but which reminds one of the oceasional scparation of the neural arch from centrum of the atlas in fishes, is a rare modification in the mammalian c A still rarer one is the separation of the lalves of the paricto-ncural s from each other by the extension and mutual junction at the median

She oeeipital and frontal spines. A speeimen of this, in a speeies of u, which repents the common modifieation of the parts in fishes, is preed in the museum of the Royal College of Surgeons. The parapophysis always eommences as an autogenous clement by a distinet centre of ossicion, as shown in the human fretus, fig. I1, 8 ; it speedily coalesees with petrosal, but otherwise retains its individuality in some of the lower mams, as $e . g$. in the eehidna (fig. 12, s) : or it eoalesces with the curtailed tal pleurapophysis $2 s$, or with the maxillary appendage 27 , or with both e and the pleurapophysis of its own vertebra (38), when the complex iporal bone' of anthropotomy is the result. In most mammals the pleurohysis (3s) retains its primitive independeney and rib-like form, with Illy the 'head' and 'tuberele'; but by reason of its arrested growth it been called 'styloid' bone or process. Sometimes it is separated from short hemapophysis, 40 , by a long ligamentous traet, sometimes it is immeely articulated with it, or by an intervening piece. The hremal spine, 41, sually small, bnt thiek and always single. The rudiments of hypobranchial nents (46) are retained as diverging appendages of the paricto-lıæmal arch Il mammals, and have reeeived the special names of 'postcrior eornua,' thyrohyals,' from their subservient relationship to the larynx.
1 the frontal segment the centrum, 9 , and neurapophyses, 10 , very early esee. Two separate osseous eentres mark out the body (fig. 26, $\mathrm{C}, 0$), each neurapophysis has two distinet eentres (ib. 10, 10), the optic foramina l being first surrounded by the course of the ossifieation from these 2ts. The superior development of the neurapophysial plates (fig. 24, 10), ompared with those of the parietal vertebra (6), in most mammals, harizes with the greater development of the proseneephalon; but the ehief : of this segment of the brain is protected by the expanded spines of the tal (11) and parietal (τ) vertebre, and by the interealated squamosals (27). many ruminants the bifid element 11 developes two spinous proeesses ed side by side as in the anterior trunk-vertebræ of the Tetrodon; but project beyond the integument and are called 'horns.' The appendicular e (27) not only usurps some of the funetions of the proper cranial neuraposes, but, likewise, the normal office of the frontal pleurapophysis (2s), in support, viz. of the distal elements of the hæmal areh $(20,32)$, whieh now sulate directly with 27 , in place of 28 as in all oviparous vertebrates. The plenrapophysis of the frontal vertebra (28) is almost restricted in the amalian elass to funetions in subservieney to the organ of liearing, is etimes swollen into a large bulla ossea, like the parapophyses and pleurapo3es of the eervieal vertebræ of Cobitis, Pl. I, fig. 7, $p l, x$; it is sometimes luced into a long auditory tube, and sometimes reduced to the ring supportthe tympanic membrane. Yet, under all these ehanges, since its special ology is demonstrable with 28 in the bird (fig. 23) and croeodile (fig. 22) as as with the teleologically compound bone, $23 a, b, c, d$, in the fish (fig. s), ikewise must its general homology, which is so plainly manifested in fish, be equally reeognised. The frontal hemapophysis (fig. 24, 29, 30), the corresponrling half of the hamal spine (ib. 32) are eonnate on caeh in all mammals, and beeome eonfluent at H HII, in most. 'The hæmal of the frontal segrnent of the skull, as in other air-breathing vertebrates, no diverging appendage, unless the tympanic otosteals be so regarded, dea which is not borne ont by their development.
'he nasal segment (NIV, IIIV) is chiefly eomplicated by the eonfluence of s of the enormonsly developed olfaetory capsules (18) in the mammalian 3 , and its typical claracter is masked by the eompression and mutual coaence of the neuriporphyses, it. 'The cemirum is usually much elomgated, It 13, and soon coalesces, with both neurrijophenges (14) and nasal eapsules
in the hog. The neural spine (15) is usually divided, but is sometimes singl e. g. in Simia. In the rhinoceros it supports a dermal spinc or horn. T pleurapophysis (20) or proximal element of the hæmal areh of the nasal ve tebra has its real elaracter and import almost concealed by the excessi development of the second clement of the areh (21), which resumes in mat mals all those extensive collateral connections which it presented in the cr codile; and to whieh are somctimes added attachments to the expanded spi of the frontal vertebra, as well as to that of its own segment. The pleurap physis however, besides its normal attachment to its centrum, 13 , sends uy proeess to the orbit, in order to effect a junetion with its neurapophysis whi sometimes appears there, as the 'os planum' of anthropotomy. The hom. spine (22) is developed in two moieties, which never coalesee together, though, in the higher apes, and at a very early period in man, each h eoalesees with the hæmapophysis, and repeats the simple character of t corresponding elements (rami) of the suceeeding (mandibular) areh.

The appendicular element (24) which diverges from the pleurapopiny (20), eontributes to fix and strengthen the palato-maxillary arch by attaelii it to the deseending process of the parietal centrum (5) ; with whieh, in mu mammals, it ultimately eoalcsees. The other elements of the diverging ne ber of the areh eorrespond in number and in the point of their diverger with those in birds, ehelonians and crocodiles. They are two in number, st eceding each other, and both bceome the seat of that expansive developmi whieh is followed by the multiplieation of their points of eonnection; tl the proximal pieee ('malar' 26) articulates in the hog not only with 1 hiemapoplysis (21) from which it diverges, but likewise with the mueo-derr bonc, 73. The distal picee of the appendage (squamosal, 27) expands as diverges, and fixes the naso-hæmal arch not only to the frontal pleural physis (2s), but also to the frontal, parietal and oceipital neurapophyses a spines: it also affords, in the hog, as in other mammals, an articular surfi to the frontal liæmapophysis (29).

The developinent of an osscous centre in the cartilage of the snout the hog, and the homologous 'prenasal' ossiele in certain fishes, the ea e. g., might be regarded as rudiments of terminal abortive segments me anterior than the nasal vertebra. The multiplicd points of ossifieation in vomer lave been, also, deemed indieations of that bone being, like the rom ine eoecygeal bone in birds, a coalescenec of several vertebral bodies. eourse, a priori, the segments in the eranial region of the endoskele might as reasonably be cxpected to vary in number in different species, the scgments in the thoraeie or sacral regions. I have not, however, br able to determine elear and satisfactory representatives of more than f vertcbre in the skull of any animal; and the special ossifieations in the ne eartilages appear to me to belong to the samc eategory of osseous parts; the palpebral bones in certain crocodiles and the otostcals.

Man.-Arriving, finally, in the aseensive survey and comparison of arehetypal relations of the bones of the vertebrate skull, at Man, the highest : most modified of all organic forms, in which the dominion of the controll and specially adapting force over the lower tendency to type and vegetat repetition is manifested in the strongest eharaeters, we, nevertheless, find vertebrate pattern so obviously retained, and the mammalian modification o: as illustrated in the preceding paragraph and diagran, so closcly adhered as to call for a brief notice only of those developments of the comn elements which impress upon the human skull its eharacteristic form : proportions.

The neural arch of the oecipital vertebra differs from that of the hog a much greater development of the neural spine (fig. 25, 3) and a mueh

elopment of the parapoplysis. This, as in other mammals, is not only an -genous process of the neurapophysis, 2 , but is commonly reduced to a e" scabrous ridge extended from the middle of the condyle towards the of the mastoid process" (Momro, l.c. p. 72)-the "cminentia aspera sculum rectum lateralcm excipiens" of Socumerring: the knowledge of general homology, however, makes quite intelligible and gives its true rest to the occasional derelopment of this ridge into a 'paramastoid' aroccipital process, which now, however, projects, like the true ' mastoid,' nwards from the basal aspect of the cranium (ante, p. 30).
'he occipital pleurapophysis, pl, 51 , shows the same displacement as in or mammals, but is still more expanded in the direction of the trunk's and its exogenous (acromial) process is still more developed. The homohysis (52), originally distinct, has its development checked and speedily esces with the pleurapophysis.
the bone 52^{\prime} be the special homologue of the bonc, 58, Pl. I. fig. 2, in the -and considering the backward displacement of 51 and 52 , its anterior tion to them in man is no valid argument against the determination, we may adopt the same general homology, and regard the clavicle, in elations to the vertebratc archetype, as the displaced hæmapophysial sent of the atlas, to which segment its true relative position is shown in same low organized class in which the typical position of the scapular is likewise retained.
the adaptive developments of the radiated appendage of the occipital sal arch reach their maximum in man, and the distal segment of the apdage constitutes in him an organ which the greatest of ancient philosos has defined as the "fit instrument of the rational soul ;" and which lustrious modern physiologist has described "as belonging exclusivcly to -as the part to which the whole frame must conform"*. And these exsions give no exaggerated idea of the exquisite mechanism and adjustt of its parts.
is no mere transcendental dream, but true knowledge and legitimate of inductive research, that clear insight into the essential nature of the m , which is acquired by tracing it step by step from the unbranched oral ray of the protopterus to the equally small and slender but bifid oral ray of the amphiume, thence to the similar but trifid ray of the eus, and through the progressively superadded structurcs and perfecs in higher reptiles and in mammals. If the special homology of each of the diverging appendage and its supporting arch arc rccognisable 1 Man to the fish, shall we close the mind's eye to the evidences of that ter law of archetypal conformity on which the very power of tracing the ar and more special correspondences depend?
irtil the alleged facts (p. 117) are disproved, demonstrating change of tion to be one of the modifications by which parts of a natural and reaisable endoskeletal segment are adapted in special offices, and until conclusions (p. 118) deduced from those facts are slown to be fallacious, I t retain the conviction that, in their rclation to the vertebrate archetype, human hands and arms are parts of the head-diverging appendages of costal or hermal arch of the occipital segment of the skull \dagger.

[^67]The centrum, $s c$, of the parietal vertebra gives, in the human foetus, th same cvidence of its essential individuality, by the same absence of the mas of connation which somewhat concealed it in the oviparous classes, a we have already noticed in the lower mammal (fig. 24). The neurape physes (0) rise higher to reach their proper spine (7) in the lofty cranial dom of man, of which that divided and enormously expanded element forms th greatest part of the roof: but the base of the neurapophysis continues to b perforated by the homologous divisions of the nerve ($t r$) that notches it i the cod-fisll (fig. 5, в tr). The parapophysis (s) retains its autogenous (independent charaeter in relation to its proper neural areh, the ' additamenta suture by which it manifests its normal relations to the neural spine (7) bein persistent; but it speedily coalesces with the acoustie capsulc, 16 (fror which it is artificially separated in fig. 25), and with the modified pleurap, physis, 28 , as has been already explained in the chapter on 'Speeial Home logy' (Mastoid, pp. 29-42).

The proper pleurapophysis (3s) of the parietal vertebra ordinarily beeomı confluent with contiguous and coalesced portions of the parapophysis, 8 , an acoustic capsule, 16 ; and the ossified portion of the hemapophysis, $40 h$, separated from it by a long ligamentous tract, and becomes confluent wil the hamal spine, $41 / \mathrm{hs}$. The entire inverted arch exhibits the usual arreste growth characteristic of the air-breathing vertebrates, and its appendag are represented by the still retained 'hypobranchial' elcments, 46, of th splanchnie arches, which are so voluminously developed in the fish.

The centrum and neurapophyses $(9,10)$ of the frontal vertebra manifest $t 1$ same speedy coalescence as in other inammals. The spine, 11 , though develope from two lateral moieties, regains its normal unity, as a general rule, in ma by the obliteration of the median suture: its transverse and vertical expan here attain their maximum. The parapophysis (12) is developed, as in tl occipital segment, as an cxogenous process, called 'external angular or o bital' in anthropotomy, but from the neural spine instead of the neurap physis. This element is perforated by its characteristic nerve (op). The plen apophysis, 28 , is now separated from its parapophysis, 12 , by both parts, 27 at 26, of the diverging appendage of the maxillary arch; but yet it is interestio to note that it is still eomnected through the medium of these with the san element to which, agreeably with the greater retention of the vertebra archetype, it directly articulates in the fish (fig. $5,12,28 a-d$). The intc calated piece (27) further interposes itself, as in other manmals, betwel the pleurapophysis, 28, and hæmapophysis, 2n, of the frontal segment, direct articulating with the latter and leaving the proximal element of the arch (2 reduced in man to its subordinate function of sustaining the ear-drun. T hamapophysis, 29 , and hcemal spine, 32 , are eonnate, and soon coalesee with the
in the Anguis, Pseudopus, and some other limbless and snake-like lizards. The usual p dominating development of the seapular appendage has bred so prevalent an idea of the st ordinate charaeter of the supporting areh, that the existence of the arel minus the alper age, is adverted to not without a note of surprise in the above-cited and other excellent wor General homology, howevcr, teaches that a vertebral arel is a more constant and importi part than its appendages ; and, that, bcing anterior in the order of development, it many expected, in eases where development is arrested, whether normally in accordanee with t nature of the species or abuormally as an individual defeet, to be present when the divergi appendages are alsent. Sir Charles Bell, well reeognising the primary function of the 100 fied oceipital rib in relation to breathing, observes, in reference to the above-eited case, "" would do well to remember this double offiee of the seapula and its museles, that, whilst i the very foundation of the bones of the upper extremity, and never wanting in any anin that has the most remote resemblance to an arm, it is the centre and point d'appui of i museles of respiration, and acts in that capacity where there are no extremities at all p. 52.
rosites at the symphysis menti ; and the whole distal portion of the inverted h of the frontal segment is then formed by a continuous bar of bonc, modiI in its form and articulation, and by its dental appendages, in subscrviency mastication and other functions in relation to the luman mouth.
We recognise the centrum of the nasal vertebra in the human skull by the ition and connections of the bonc, 13, notwithstanding it las undergone xtreme a divergence from the ordinary cylindrical shape of such clenients, ts homotype at the opposite extreme of the vertebral column in birds, ch Cuvier compares to a 'soc-de-charrue': it is, in fact, more compressed vertically developed than in the hog (fig. 24, 13); but it is shortcr, and umonly retains its original individuality. It directly supports the similarly lified compressed and, also, coalesced neurapophyses, 14, which, termiing in libe manner the series of their vertcbral homotypes anteriorly, have lergone the extremest modification. But the arguments proving the lesced prefiontals of the frog, the bird and the manmal to be the special nologues of the bones so called in the fish, establish, as a corollary, their eral homology with those bones, which retain in so much greater a degree, unmistakeably, their neurapophysial characters in that lowest class of l-blooded vertebrates. The nature of the additional complication by ch those vertebral or archetypal characters are further masked in mams, has been already explained in relation to the nasal neurapophyses of hog. The olfactory nerves are transmitted in man, as in that and most er inferior mammals, by numerous foramina, 14, ol. The nasal spine, 15, is ded, but much-restricted in its growth, and presents a singular contrast hat respect to its homotypes, $11,7,3$, in the succeeding cranial vertebre. development of the neural arch of the nasal vertebra is so modificd in 1 , so contracted as well as retracted, that the orbits, instead of being hed apart and directed laterally, have approximated by a kind of reciaal rotation towards the median plane, and have thus gained a directly srior aspect.
ieneral homology perhaps best explains the import of the continuation he small and seemingly insignificant bones ($20, p l$) from the roof of the ath "up the back part of the nostrils to the orbit," where they are nected " to the ossa plana and cellule ethmoidere by the ethmoid suture." it the connection is the best possible for the functions of the bone we feel assured, without the sentiment being damped by discerning in it, re same time, the attempt to retain the type, and repeat those constant contions of the pleurapophysis in question, not only with its centrum (vomer), 3 also with the modified ncurapophyses of its proper segment (prefronwith coalesced olfactory capsules constituting the compound 'ethmoid e' of anthropotomy). The connections of the pleurapophysis, 20 , with its napophysis, 21, in front, and its diverging appendage, 24, behind, are also ined in man ; and in short, all those characters that, depending on the ntial nature of the palatine bone as the pleurapophysis of its vertebral ment, have served to indicate its special homology from man to the fish, out doubt or difficulty, to all anatomists (see Table I.).
The hamapophysis (2申) has the usual mammalian expansion, but is unully short in man, and coalesces unusually carly with the corresponding ety of the hamal spine (22). Besides thic normal and constant connec13 with 20 and 22, the hrmapoplysis, 21 , articulates with its fellow, with centrum (13), ncurapophysis (14, os planum), and spinc (15), of its 1 vertebra, with the spinc of the frontal vertcbra (11), with the detached tion of the olfactory capzulc (19), and with the muco-dermal bone (7:s). also affords a large surface of attachment to the proximal piece of
its diverging appendage (20), whieh, in addition to the more constant con nections with 21 and 27, artieulates in man with the neurapophysis (10 and parapophysis (12) of the frontal vertebra. The distal extremity of thi seeond bone (27) of the diverging appendage attains its maximum of expan sion in man, and besides its comection with 26, and the glenoid articulation for the hæmapophysis, 20 , it joins the parietal neurapophysis, 0 , and spine, ; and sometimes also (in the inclanian race) the spine (i1) of the frontal ver tebra: and it speedily eoalesecs with the reduced pleurapophysis, 28 , of th frontal vertebra, and with the parapophysis (8) of the parietal vertebra, to gether with a portion of the capsule of the acoustic organ.

In reviewing the general charaeters of the human skull in reference to th vertebrate arehetype, we find the oceipital segment simplified by the atroph and connation of its parapophyses and hæmapoplyses; and modified chief by the excessive growth of its neural spine and pleurapophyses, and by th backward displaeement of the latter element, as in all other air-breathin, vertebrates. The parietal segment, retaining, like the oceipital one, the mor normal proportions of its centrum and neurapophyses, is still more remark able for the vast expanse of its permanently bifid spine. As in most cold blooded vertebrates, the parapophysis preserves its independenee in respect (the neural arch of its own segment. The hæmal areh retains its almost fotti proportions, but is less displaced than in some of the inferior air-breathin vertebrates. The primitive individuality of the centrum of the parietal vertebr is a feature by whieh the human subject, together with all other mammak: manifests a eloser adhesion to type than is observable in this part of the sku in any of the oviparous vertebrates, and it shows the necessity of extendin comparisons over the entire series, and not declucing the vertebratc archa type exclusively from those inferior forms: for although it may be upon th whole best retained in them, yet the modifications superinduced in subsen vieney to their cxigenees, and by which they diverge to that extent from th eommon plan, and, as a series of speeies, from the common vertebrate sten may affeet a part which the conditions of existence of higher forms do ne require to be so masked. The early ossification and large proportional siz of the hyoidean arel in the human embryo is very signifieant of its tru nature and iniportance, in relation to the archetypal vertebrate structur i. e. as being the hæmal eomplement of a primary segment of the skull.

Exogenous processes descend, like the pair from beneath the lower ce vical vertebre of some birds, from the body of the parietal vertebra; bt the true transverse processes of this vertebra are the mastoids, which alway artieulate with a corner of the parietals.

The centrum and neurapophyses of the frontal scgment retain their ord nary proportions, and the spine is again the element whieh, by its extren expansion and its modifieation in subservieney to the formation of the orbit chicfly masks the typieal features of the neural arch. The parapophysis eonnate and reduced in size, and its vertebral relations with the pleurape physis of its segment interrupted by the interposition of the diverging appel dage from the antecedent hæmal areh : the unusually expanded distal en of the same appendage also intervenes between the frontal pleur- and han apophyses; the pleurapophysis (23) being more atrophied in man than it most inferior mammals. The liæmapophysis and spine are on the othr hand much developed and modified as above deseribed, for the business , mastieation, though relatively shorter than in other mammals.

The compression and extension, both vertically and longitudinally, of th eentrum (13), the compression and coaleseenee of the neurapophyses (14), hint with eaeh other and the nasal capsules (1s), and the corresponding proportion
f the divided spine (15), mainly elaaratorize the ncural arch (N iv) of the erminal or nasal segment of the human skull. 'Tlic early coalescence of each ænapophysis(21) with the corresponding half of the divided hæmal spinc (22), nd the unusual expansion of the bones, especially the second (27), which iverge from the hæmapophysis, form the chief characteristies of the hæmal rch (H Iv') of the nasal segment. 'The hæmapophysial portions of both the asal and frontal rertebre are much less elongated than in most other nimals.
It may serve to test the accuracy of the gencral homologies here assigned the bones of the human skull, if we notice the degree to which they have een subject to modification in connection with such determinations.
According to the general character of the vertcbral elements in the rest of ae frame, we should be prepared to expect that the hæmal arches would be abject to a greater variety in respect of development and relative position , their segments than the neural arches; and that in the latter the parts eterinined as centrums and neurapophyses would retain more of the orinary proportions of such parts in other segments or in other animals, than ne peripherally sitnated spines. If new bones are added, we should expect , find them in the relative position of appendages to the normal vertebral rches: or should these be homologous with similar superadditions in the sulls of lower animals, they will probably be the seat of more extensive aanges of form, proportion and connections, than the elements of the vertcral arches themselves.
Now if the reader will glance at fig. 25 and compare the bones forming ae segments of the skull with those in figs. 24, 23, 22 and 5 , he cannot but be :ruck with the remarkable degree of uniformity in the dimensions of the sones 2,6 and 10 : no. 14 being the terminal neurapophysis, has becn the seat if more variety; but the general steadiness of this series of bones in regard their dimensions and eonnections accords with the characters assigned to aem, as neurapophyses, which are always the most constant and important the ossified vertebral elements.
The bones 1, 5, 9 and 13 equally conform in the kind and dcgree of their odifications with their determination as the bodies of the vertebræ.
The increasing capacity of the neural canal of the head, demanded for the dgment of the progressively expanded encephalon as the vertebral scale rises, chiefly acquired by the expansion of the bones, $3,7,11$, which, being deterined as 'neural spines' in the fish, might be expected to be subject to greater eviations from their typical form and proportions than the more central ad essential parts of the neural archcs. The terminal neural spine, 15 , is bject to still greater varieties in the range of species, as might also be excted from its position. In one mammal, e.g. the porcupine, it is more :panded than any of its succeeding homotypes in the cranium; in man its oportions are so much reduced as greatly to mask the homotypal relation. one mammal, e.g. the orang, the nasal spine is not only diminutive but ngle : in another mammal, e.g. the manatec, it is also diminutive but dided, and the halves completely scparated by the intervention of part of the sceeding spine.
The abnormal courlitions of the human skull give further illustration of the uth of these gencral homologies of the cranial bones, and reciprocally reive light from such determinations. In the casc of idiots from defective owth or development of the brain, where the cavity of the cranium is reseed to half or less than lalf its normal capacity, as e. g. in the skull described id figured in my 'Memoir on the Ostcology of the Chimpanzee", it might

[^68]have been expected from the anthropotomical ideas of the eranial bones, aecording to which no one bone is deemed either more or less important than another in its essential nature, and where the squamosal is as little regarded in the light of a superadded or interealary piece as the alisphenoid, that all would be reduced in the same proportion in forming the parietes of the contracted brain-chamber. But this is by no means the ease. In the instanee above-cited the basioceipital and basisphenoid have been developed to their usual size, and the distanee from the posterior boundary of the bony palate to the anterior border of the foramen magnum is as great as in any normal skull. The exoccipitals (condyloid portions of the oceiput), the alisphenoids and the orbitosphenoids retain in like manner their full dimensions. The distanee between the frontal and temporal bones is as great as in the average of fully developed Caueasian skulls, and is greater than in most of those from the Melanian race, in which the direet junction of the frontal with the temporal, as in the elimpanzee, is by no means rare. The contraction of the eapaeity of the brain-chamber is due ehichly to arrested development of the frontals, parictals, supraoceipital and squamosals. By the reduction of the supraoecipital and the retention of the centrums of the eranial vertebree of their normal proportions, the foramen magnum beeomes situated nearer the baek part of the basis eranii than in the normal skull.

In a still smaller eraniun of a female idiot, who reached the age of twentyone years, whieh is preserved with the male idiot's skull above-mentioned in the anatomical museum of St. Bartholomew's Hospital, the contrast between the normal proportions of the basioccipital, basisphenoid, exoceipitals, alisphenoids and orbitosphenoids, on the one hand, and the reduced dimensions of the supraoceipital, parietals, frontals and squamosals on the other, is still more striking and signifieant of the true nature of those bones. The normal growth of the eentrums, indeed, might be explained by the coneomitant nearly normal size of the medulla oblongata, base of third ventriele and optic ehiasma, in the brain of the same idiot: but it is not so obvious from the condition of the brain itself why the alisphenoid should not have slirunk in the same proportion as the parietals, frontals and squamosals. To the homologist, however, the recoguised difference of subjectivity to modifieation presented by the neurapophyses, spines and diverging appendages of the typical segmente, renders very intelligible the partial seats of arrested growth in the bones of these idiots' crania.

In reference to discase, also, one sees not why the alisphenoid should have a minor attraetion for the morbid products deposited, or be less subjeet to the destruetive aetions exeited, during syphilitie or mercurial disease, than the parietals, or the orbitosphenoids than the frontals, or the exoceipitals than the supraoecipital: yet it needs but to examine any series of such morbid skulls in our museums of pathology to be convineed that the variable and peripheral elements of the neural arehes, viz. their expanded spines, are almost exelusively so affeeted: the frontal and parietal being the most common seats of the disease; the supraoceipital a less frequent one, concomitantly with its minor deviation from the typieal standard of the element. I have yet seen no example in which either a eranio-vertebral eentrum or neurapoplysis was so affected; but the nasal bones are notoriously attacked.

It would be easy to multiply such instances of the new light-new eyes. so to speak,-with whieh human anatony, normal and abnormal, is viewed, after the essential nature or general homology of the parts have been appreciated.

If the bones $4,8,12$, fig. 5 , have been correetly determined as the parapo. physes of the cranial vertebre, they might be expeeted to be subject in the
ourse of adaptive modification to the loss of their individuality, and from utogenous clements to be reduced to the condition of cxogenous processes. Sow this is exactly what we trace in the series of vertebrate skulls; and we re further prepared to expect that the simplification of the segment forming ie anterior extremity of the vertcbral series will be in part effected by the stal disappearance of its least important elements, the parapophyses. These re, in fact, absent in the nasal vertebra in all animals; they become conuent with the occipital vertebra in most reptiles and all warm-blooded anirals; and in the latter, we find, with the exception of a few birds, that the arapophyses of the froutal vertebre have likewise lost their individuality.
The first endoskeletal bones which plainly disappear from the skull in acing its modifications upwards from fishes are those which, in the present ertebral theory, have been referred to the category of diverging appendages; iz. the entopterygoid (fig. 5,23), the operculars (ib. 34-37), and the branchioegals (ib. 44). The first bones that we discover to be plainly superadded 1) those that remain after the above subtraction, in the skull of the reptiles, or example, are, also, referable, in the present vertebral theory, to the same ariable and inconstant class of elements : they are the cctopterygoids (fig. $2,24^{\prime}$), the malars (figs. 22 to 25,26) and the squamosals ($i b .27$); and are, 1 general homology, diverging appendages of the palato-maxillary arch. Whey are subject to more inconstancy as to their existence than the more egular and normal elements of the skull : some reptiles, for example, have ae malar and squamosal, whilst others want them; most reptiles have the ctopterygoid, but this, which is not present in fishes, is again taken away in se warm-blooded vertebrates. With reference to inconstancy of form and onnections no bone of the cranium exceeds the squamosal, and it is precisely 1is distal element of the diverging appendage, which, through its inordinate evelopment, most masks the archetypal character of the human cranium sompare 27 , fig. 25, with 27 , fig. 23).
Classification of Skull-bones.-A knowledge of the special homologies of se bones of the skull is essential to that of theirgeneral liomology, and a knowdge of their general homology is indispensable to their natural classification.
Cuvier divides the bones of the head in all animals into bones of the craiurn and bones of the fuce.
The bones of the cranium are those of the cavity containing the brain : I the rest are bones of the face and contribute to form the cavities for the gans of sight, smell and taste*. But these primary divisions do not inude the same bones in all animals : the nasal (fig. .5, 15) and vomer (ib. 13) e cranial bones in fishes, but not in manmals : the squamosal (fig. 25, 27) is cranial bonc in mammals and not in birds or reptiles, \&c. And this disepancy in the Cuvierian classification of cranial bones is due, not only to a on-appreciation of their essential nature, but partly to mistakes of special omologics: thus the nasal is called ethmoid in the fish, and the squamosal called jugal in the bird.
In all anthropotomical elassifications the bones of the cratium are reckoned ght in number : four single, vi\%.-

The frontal (fig. 25, 11);
The ethmoidal (ib. 14 and 15);
The sphenoidal ($5,6,5,10$ and 21) ;
The occipital (1,2 and 3) : and
four in pairs, viz. -
The two parietal (7), and
The two temporal ($4,10,27,23$ and 39).

[^69]The bones of the face arc reekoned as fourteen in number, viz.-
The two malar (26);
The two maxillary (21,22);
The two palatal (20);
The two nasal (15);
The two turbinal (19);
The vomer (13), and
The mandible ($29-37$).
The detached portion of the hyoid arch (40,41) and its appendages (47), together with the whole of the seapular arch and its appendages, are excluded from the category of the bones of the head.

The natural classifieation of the bones of the human skull appears to me to bc , first into those of

The Endo-skeleton,
The Splancino-skeleton, and
The Exo-skeleton.
The primary division of the boncs of the endo-skeleton is into the four segments, called

Oceipital vertebra, $\mathrm{N}_{\mathrm{I}}, \mathrm{H}_{\mathrm{I}}$;
Parietal vertebra, N II, $\mathrm{H}_{\text {II }}$;
Frontal vertebra, N in, H in ;
Nasal vertebra, N iv, Hiv.
These are subdivided into the neural arches, called
Epencephalic areh ($1,2,3$);
Mesencephalic arch ($5,9,7,8$);
Prosenecphatie arch $(0,10,11$ and 12$)$;
Rhinencephalie areh ($13,14,15$):
and into the hæmal arehes and their appendages, called
Maxillary areh (20,21 and 22) and appendages ($24,26,27$);
Mandibular arelı ($28,20-32$) (no appendage) ;
Hyoidean arelı ($35,40,41$) and appendages (46);
Seapular areh (51 and 52) and appendages ($53-55$).
The bones of the splanchno-skeletor, are
The petrosal (16) and otosteals ($\left.10^{\prime}\right)^{*}$;
The turbinals (18 and 19) and teeth. (The selerotals retain their primitive listologieal eondition as fibrous membrane.)

The bones of the exo-skeleton, are
The laerymals (73). \dagger

* These ossieles are deseribed by most antliropotomists as parts of the 'temporal bonc.'
" O s temporum infantis nagnopere al) osse temporum adulti differt ; labyrinthi et ossiculorum auditûs fabriea absoluta est," says Soemmerring in the elassieal work before eited (t. i. p. 132). The signifieation of the differenees between the foctal and adult hmman temporal bone, whieh the great anthropotomist truly regarded as so remarkable, is made plain by anatomy ; whiel shows the bone to be au assemblage of several essentially distinet ones, and at the same time exposes the elaraeter of that singularly heterogeneous assemblage and eoaleseenee of osseous elements to meet the exigences of the peenliarly developed frame of man. What the 'ossienla auditûs' are, is a problem whiel still awaits eareful additional researeh in the embryonie development of the hæmal arelies of the eranium, for its satisfaetory solution. The question is not, of eourse, whether they are dismemberments of the 'temporal bone,' sinee this has no real claim in any aumal to an individual elharaeter; but whether the ossieles of the ear-drum in mammals are to be regarded, like the pediele of the eye-ball in the plagiostomous fishes, as appendages to a sense-organ, and thereby as developments of the splanehno-skeletou; or whether they are, like the tympanie ring, modifieations of the tympano-mandibular arel. The reasons are addueed in the Chapter on 'Special Homology' (p. 235) whieh have led me to view them as peeuliar manmalian produetions in relation to the exalted funetions of a speeial organ of scuse.
+ The numerals refer to the bones so marked in the figures.

The coursc of coalescence reduces the epencephalic arch (fig. $25, \mathrm{~N}$ 1) to one bone, the scapular arch (H_{1}) to one bone (the arch is apparently comsleted by the connexion of an element (52^{\prime}) not appertaining to the skull). The centrums $(5,9)$ and neurapophyses $(0,10)$ of the parietal and frontal verebre coalesce with each other and with the diverging appendagcs (24) of the naxillary arch to form one bone, the 'sphenoid' of anthropotomy, and this iltimately coalesces with the epencephalic arch and constitutes the 'os sphenosccipitale' of Soemmerring. The expanded halves of the parietal spine (7) emaining nsually distinct are reckoned as two bones. The cxpanded halves f the frontal spine (11) usually coalescing together form a single bone. The alves of the nasal spine (13) rarcly coalescing are counted as two bones. The mastoid (s) coalescing with the petrosal (16) and this witlo the tympanic :33), squamosal (27) and stylohyal (33), the whole is reckoned a single bonc, rhich thus combines a parapophysis and pleurapophysis of one vertebra with pleurapophysis of another and a diverging appendage of a third vertebra, nd all these parts of the endo-skeleton with a sense-capsule belonging to the planchno-skeleton: such is the heterogeneous compound character of the temporal bone' of anthropotomy. The neurapopliyses of the nasal vertebra 14) coalesce with each other and with a considerable part of another ossified ense-capsule (1 s), to form the single bone called 'ethmoid.' The maxillary one includes the superior maxillary (21) and premaxillary (22) of the lower nimals. The hyoid bone includes the basihyal (41), with the ceratohyals (40) and the thyrohyals (46). The scapula includes both the pleurapophysis (51) and the hæmapophysis (52) of the occipito-hæmal arch. The signification of be separate points of ossification of the human foetal skull is made plain by he foregoing applications of the ascertained general homologies of the bones if that part of the skeleton.

Objections to the Cranial vertebrce considered.-The latest and most formal bjection to the fundamental idea in accordance with which I have attempted J work out the general homologies of the bones of the head, is also the lost formidable in respect of the great and deserved eminence of the obsctor. In a manuscript left by Baron Cuvier, entitled, "Le crâne est-il sne vertèbre ou un composé de trois ou quatre vertèbres?" appended to be posthumous edition of the 'Leçons d'Anatomie Comparée *,' he admits at "the analogy of the basilar and two condyloid parts of the occiput with ae body and two halves of the annular part of the atlas is very appreciable. The basioccipital and the body of the atlas serve equally to support the yyelon ; the exoccipitals and the two halves of the ring of the atlas to cover it. The condyles are represented by the articular processes by which the atlas is sined to the dentata. The condyloid foramen, which gives passage to the erve of the ninth pair, has some relation with the hole in the atlas which ives passage to the first cervical nerve and to the first bend of the vertebral rtery: Some have also found a certain relation between the mastoid process, hich in most animals appertains to the occipital bone, and the transverse rocess of the atlas and the other vertcbræ ; upon which it must be remarked at these relations are less in man, in some respects, than in the quadrupeds, ince the atlas has commonly only a notch for the passage of the artery, and re mastoid belongs in man entirely to the petrosal" + . "We may cven com-

[^70] itheir anthor to be conclusive. The criticism in the 'Histoire des I'oissons,' t. i. p. 230, ears only upon the ì pritri cranio-verteloral theory of Geoffroy, and does not concern us ere.

+ "L'analogic de ces trois pièecs, le lasilaire et les deux condyloïdicns, avec les trois èces de l'atlas, son corps et les deux inoitiés de sa jartic amulaire est très sensible. Le ${ }_{\text {asilaire et le corps de l'atlas servent également à supporter la moélle épinière ; les condy- }}^{\text {lot }}$
pare," Cuvier says, "the supraoceipital to the spinous processes which in ecrtain animals originate by special points of ossification and remain for some time distinct from the rest of the vertebra : nevertheless, there is already here a great difference of structure and function*." With regard to the points in whieh Cuvier is willing to admit an 'analogy' between the oceiput and the atlas, he subjoins, agreeably with his idea of the law whieh governed such correspondenees,_" These rescmblanees miglit naturally be expected in the part of the head placed at the extremity of the vertebral column, and the functions of which are, in fact, analogous to those of vertebræ, since it gives passage, like them, to the great neural axis \dagger."

With regard to the feature of resemblance (quelque rapport) whieh some had seen between the mastoid process and a transversc process, Cuvier founds his objection to its application to the vertebral character of the occipital bone on a false homology. Coneluding that the mastoid in man (fig. 25, 8) was homologous with the paroceipital in the hog (fig. 24, 4) \ddagger and some other quadrupeds, he deems the determination of the paroccipital as the transverse process of the oecipital vertebra to be invalidated by the fact that the ' mastoid' belongs, in man, not to the occipital but to the petrosal. There were cases, however, not unknown to the able Editors of the posthumous edition of the 'Leçons d'Anatomic Comparée,' where the true transverse proeesses of the occipital vertebra, though exogenous like those of the suceceding trunk-vertebræ in man, had become developed to an equal extent with such transverse processes; the abnormality of the human oceipital thus repeating its normal condition in the quadruped. They however do not eite these instanees, or notiee the confusion by their author of the true mastoid with the paroceipital in reference to this his first objection to the vertebral homology of the oecipital segment. But it might further lave been remarked, in respeet of the segment of the skull to which the mastoid really stands in parapophysial relation, that although the mastoid belongs in man to the petrosal in the sense of being aneliylosed with it, it articulates with the parietal ; and the persistence or obliteration of a primitive suture is too variable a phænomenon to determine to which of two bones a third connected with both essentially belongs. The constant existence of the paroceipital either as an autogenous element or an exogenous transverse process in all the oviparous vertebrate elasses, its eommon existence in mammals, and oceasional, though rare, development in man, establish that additional, though by no means essential vertebral eharacter in the occipital segment, which
loïdiens et les deux moitićs de l'anueau de l'atlas à la couvrir. Les condyles sont représentés par les facettes articulaires au moyen desquelles l'atlas s'unit à l'axis. Le tron condylien qui laisse passer le nerf de la neuvième pair, a quelque rapport avee le trou de l'atlas qui laisse passer le premier nerf cervical, et la premic̀re courbure de l'artère vertébrale. Oñ a aussi trouvé quelque rapport entre l'apophyse mastoïle qui, dans la plupart des aniulaux appartient à l'oceipital, et l'apophyse transverse de l'atlas et des autres vertèbres; sur quo: il faut remarquer que ces rapports sont moindres dans l'homme à eertains égards que dans les quadrupèdes, puisque l'atlas n'y a ordiuairement qu'une échancrure pour le passage dr l'artère et que l'apophyse mastoïde y'appartient eutièrement au rocher."-l. c. p. 710.

* "On pourrait mềne comparer l'oceipital supéricur aux apoplyyses épineuses qui, dans ecrtains animaux, naissent par des points d'ossifieation partieuliers, et restent quelque temp: distinets du reste de la vertêbre; cependant il y aurait déjà iei une grande différence de strueture et de fonction."-l. c. p. 711.
+ "Ces resemblances étaient naturelles à attendre dans la partie de la tête placée à l'extré. mité de la coloune vertébrale, et dout les fonetions sont en effet analognes à celles des vertèbres puisqu'elle laisse passer comme elles le grand troue mednllaire."-l. c. p. 711.
\ddagger Cuvier, c. g. describes this element as "L'apoplıyse mastoide, qui est très-lougne, très. pointue et toute de l'oceipital," in his claborate Ossemens des Cochons, Oss. Fossiles, t. ii pt. i. p. 117.

Cuvier secks to obscure by the normal abscucc of its proper transverse processes in man, and the assumed transference of them to another part of the skull.

Cuvier in the next place objects to the comparison of the supraccipital with the neural spinc of a trunk-vertcbra, " because of its vast difference of structure and function." He does not specify the nature of the difference : he admits that the neural spines have distinct centres of ossification in certain aniuals ; and all will allow that, in most of the trunk-vertebræ of such, the neural canal is closed by the coadapted ends of the neurapophyses to which the spine articulates or becomes anchylosed: that therefore such spine docs not directly cover the neural axis, but, retaining the shape signified by its name, perforus exclusively the function in relation to muscular attachmeuts. At first view the contrast seems conclusive against all homology between such mere intermuscular spine and the broad thin convex plate applied over the cerebellum and posterior cerebral lobes in man. And it must be confessed that the determination of their general homological relations could not have been satisfactorily demonstrated by the mere relations of the parts to the aminæ supporting them, in so limited a range of comparison. But, if we Hescend to fishes, we shall find the supraoccipital often equally excluded from the neural canal by the meeting of the exoccipitals beneath its base; we shall, also, see it still retaining the spinous figure, indicating its function in celation to muscular attachments to predominate over that in subserviency oo the protection of the epencephalon. If we then ascend to the crocodile, *e shall find the neural spine of the atlas to be one of those cxamples alluded :o by Cuvier, where the ossification proceeds from an independent centre: and it not only thus manifests its essential character as an autogenous vereebral eleunent, but maintains its permanent separation from the neurapo= ohyses: and it further indicates the modifications of form to which the coresponding elements will be subject in the more expanded neural arches of he antecedent cranial segments by having already exchanged its compressed sinous for a depressed lamellar form. Here indeed Cuvier might not only ave objected to recognise it as a vertebral spiue by reason of its change of orm and function, but also by its continuing a distinct bone, which is not the case with the expanded 'spine' of the mammalian occipital vertcbra. But returning to the crocodile, we observe in the segment anterior to the atlas hat both the form and connections of the supraoccipital (fig. 22, 3) are ;o closely similar to those of the neural spine of the atlas that the recogzition of their serial homology is unavoidable; and we have a repetition of the same characters of the vertebral element in question in the small and individed parietal (ib.7). Now Cuvier makes no difficulty in almitting the occipital supérieur' in the crocodile to be the homologous bone with its nore expanded namesake in the bird; or this with the still more expanded partie grande et mince de l'occipital' in mammals and man: he is also lisposed to admit the special homology of the supraoccipital under all ts variations of form and function in the above-cited air-breathing animals rith the bone 3 in fishcs, which he sometimes calls 'occipital superieur,' ometimes 'interparietal.' If then the special homology be admitted on the ;round of the constancy of the connections of the part, with what slow of 'eason can its gencral homology be rejceterl which forms the very basis or ondition of the characters detcrininative of such admitted special homology? 3ut Cuvier is not consistent with himself in his grounds of objection to the ssential nature of the human supraccipital as the ncural spine of its segnent; for lie does not hesitate to call the atlas of the crocodile a vertebra,
although its ' annular part' is elosed above by a transverse plate* instead of by a vertieal spine, of whieh, indeed, there remains hardly more vestige than is presented by the tuberele or rudiment of the spinous proeess in the supraveeipital of nıan. It must also be remembered, that the human supraoecipital does retain to a eertain extent the same funetion in relation to the attachment of the proper vertebral museles (splenii capitis, complexi, and the modified interspinales ealled 'recti capitis postici maj. et min.) as the sueeceding vertebral spines; and eombines this with the same place of completing, as the key-stone, the neural areh; although by reason of the more voluminously developed segment of the neural axis protected by that areh the peripheral element is ehiefly modified for the aequisition of the required inerease of spaee.

Cuvier next proceeds to eomment on Oken's endeavour to represent the basisphenoid and the two alisphenoids with the two parietals as forming a vertebra: and he admits that there is some analogy, though this is mueh more feeble than the differenees. "The basisphenoid, having another funetion, takes on a different form from the basioeeipital, especially above, by virtue of the posterior elinoid processes : and in the embryo it is eomposed not of a single nueleus, but of two $\dagger . "$ With respeet to the objection from the modifieation of form alluded to, it may be remarked that the same element in other vertebral segments of the body undergoes mueh greater ehange of shape; the eentrums of the lower eervieal vertebræ in many birds send down two proeesses as well-marked as the aseending ones ealled 'elinoid' in that of the parietal vertebra, not to speak of the 'soe de charrue' of the eoeeygeal vertebre of the bird, for example, without any diffieulty having been felt or expressed by Cuvier in their reeugnition as modified vertebral bodies, the more essential eharaeters of their general homology being as plainly retained as in the ease of the basisphenoid; in its relation, e. g. to the neurapophyses and the support of the meseneephalon. With regard to the objeetion from the two centres of development, if this be valid against the general homology of the basisphenoid (b, fig. 25) as a vertebral eentrum, it equally tells against the body of the atlas (c), whieh, as Cuvier well knew, was ossified sometimes from two, and sometimes from three eentres \ddagger. And I may further observe that, although Cuvier affirms the two ossifie eentres of the basisphenoid to retain for a long time between them simple eartilages, my observations bear out the aceuraey of the remark of Kerkringius, (whose figures Cuvier cites,) touehing the "dua ossieula distineta" (tab. xxxiv. fig. iii. c, c), viz. "quæ eelerrime in formam figuræ appositæ K eoaleseunt": and the figure of the eoaleseed rudiments of the basisphenoid given by Kerkringius elosely resembles the bilobed rudiment of the vertebral eentrums in the saerum of the ehiek.

Cuvier next objects to the neurapophysial eharaeter of the alisphenoids, that the 'foramen ovale' is rarely a noteh, more often a eomplete hole.

* "Les vertebres. L'atlas est composé de six pièces, \&e.-La première, a, est une lame transverse qui fait le dos de la partie annulaire. Elle n'a qu'une crêtc à peine sensible pour toute apophyse épincuse."-Ossemens Fossiles, t. v. pt. ii. p. 95.
\dagger En avant du basilaire sc trouve le corps du sphénoïdc postérieur, anx eôtés duquel adhèrent les deux ailes temporales ou grandes ailes. On a aussi cherehé à représenter ces trois pièees corme formant une vertèl)re avee les deux pariétaux. Il restc en effect eneore quelque analogie, mais beaueoup plus faible, tandis que les différcnees deviemuent plus fortes. Le corps du sphéuoïde a hien l'air d'une répétition du basilaire, mais ayant une aútre fonetion il prende aussi une antreforme, surtont en dessus, au moyen des apophyses elinoïdes postérienres ; et daus les premiers temps du foetus il n'est pas composé d'un seul noyau, mais de deux, qui out long-temps entre cux de simples cartilages."-l. c. p. 712.
\ddagger Leçons d'Anat. Comparée, t. i. (1836) p. 174. Meckel has figured the variety of three ossifie centres in this clement of the human atlas in the lst vol. of his Arehiv fuir dic Physiologic, taf. vi. fig. 1.

Now," he urges, "vertebra properly so called give passage to the nerves only y the intervals that exist between them and the other vertebra, and not by articular foramina*." Therefore the young anatomist must conclude that re dorsal vertebre of the ox, the abdominal vertcbre of the lophius, and very; other segment of the trunk whose neural arches are dircetly perforated y the spinal uerves, are to be rejected from the vertebral category!
It has been shown in the generalities on the corporal vertebre ($p .95$), that te neurapophyses in relation to the passage of their governing nerves may e either untouched, notched or perforated by them, without prcjudice to seir neurapophysial character. Viewed in the entire scries of vertcbrata ie cranial memapophyses are more frequently perforated than notched, those the trunk more frequently untouched or notched by the nerves in passing rough their interspaces.
The penetration and sagacity of Cuvier nowhere shine forth more brightly aan in his bold and true determination of the bone 6 , fig. 5 , in the cod-fish \dagger : the homologue of the temporal wing of the sphenoid in the human skull. o any less-gifted comparative anatomist the relation would have been masked ; the coalescence of the homologous part in man, by its connections with the juamosal and frontal, and its comparatively small proportions under the lise of a subordinate process ; none of which characters exist in the aliShenoid of fishes : it still retains, however, in that class, as in man, its most sential connections in relation to the bones of its own segment and to the rain and nerves; and Cuvier availing himself of these in the determination its special homology, was little likely to be swayed by so unimportant a ariety as the transmission of the characteristic nerve by a foramen instead by a notch. No sooner, however, has the time arrived and the call been sunded for an advance to a higher generalization, which includes and exains the minor proposition, than Cuvier interposes the least important fference of the alisphenoid to check the progress. It will be obvious to e anatomist that the foregoing explanation of the value of the nerveotch or hole in the homological character of a neurapophysis has been lled forth by the weight of the name of the cbjector rather than by the ree of the objection.
Cuvier directs his next argument against the vertebral character of the eural arch of the) parietal segment generally. "Its composition," he avers,
s different from that of other vertebræ, since the ring (he had just before nied its annular form) would be composed of five pieces or even of six, inclung the interparietal." Yet Cuvier does not hesitate, in his Article V., 'Les Verres' (Ostéolugie des Crocodiles) \ddagger, to reckon as the first vertebra, the atlas twithstanding its composition of six pieces.
If, indeed, Cuvier had subscribed to Geoffroy's assertion, that "Nature reproces the same number of elements, in the same relations, in each vertebra, ly she varies indefinitely their form,"-his objection to the vertebral charac-- of any given segment that might deviate from the assumed normal number pieces would have been intelligible. But even, then, he would not have en guided consistently by his own principle; for the objection founded on the supposed abnormal number of pieces in a cranial segment weighs

[^71]not at all against the recognition of a corresponding segment of the trunk, though similarly composed.
In fact, throughout this attack upon the vertebral theory of the skull, it will be seen that it is based upon thic a priori assumption that all the endoskelctal segments of the trunk, however modified, are vertcbres, and all those situated in the head, are not vertcbræ. The essential character of a vertcbra is thus deduced from its position, not its composition. It needs only to compare any of Cuvicr's objections to the vertebral character of the cranial segments, with the modifications of the corporal segments admitted by him to be vertebræ, previously enumerated in this Work (pp. 96-101), to sce that the characters of the cranial vertebræ objected to by Cuvier differ in degree not in kind, and become valid arguments against the admittance of natural segments into the vertebral category, only when they happen to be situated at or near the commencement of the series.

It has been abundantly proved, I trust, that the idea of a natural segment (vertcbra) of the endoskeleton, does not nccessarily involve the presence of a particular number of pieces, or even a determinate and unchangeable arrangement of them. The great object of my present labour has been to deduce, by careful and sufficient observation of Nature, the relative valuc and constancy of the different vertebral elements, and to trace the kind ane extent of their variations within the limits of a plain and obvious naintenancef of a typical character.
In reference to the ncural arch, the variation in the number and dispositior of its parts, illustrated in the figures $1,2,3,4,18,19,20,21$, do not seem te me, nor will they I apprehend to any unbiassed anatomist, to obliterate the common typical character of that part of a vertebra. Those elements whicl are furthest from the centrim arc the chief seat of the ehanges. If the reade will compare figure 2 with figure 19, he will see for example that the crown n the arch is formed by a single bone (7) in the crocodile, but by two bones $(\tau, 7$ in fish; nay, in most fishes the halves are even pushed apart by the interposi tion of a third bone. Yet the sagacity of Cuvicr led him to determine the di varicated moieties of the divided parietal in such fishes to be the same (homo logous) bone with the single parietal of the crocodile. With what consistency then, can the gencral homology of the segments be rejected, which suffern other change in their composition than that resulting from the single or bific character of the same bonc in cach? Is the single frontal of the humal adult regarded as a distinct bone from the bifid frontal of the foctus? It therefore, the neural arch of the parictal vertebra (mosencephalic arch) o the crocodile be frec from the objection, raised by Cuvicr to the vertcbra character of the homologous arch in man, on the score of the number of it elcments; neither can that objection be allowed to have any force when i rests upon the mere division in the human mesencephalic arch of the recog nised homologue of the single spinous element in the crocodile.

In the sheep, the arch which cncompasses the epencephaton is formed b only three elements, the neural spine resting upon the conjoined upper end of the neurapophyses. In the dog these elcments are divaricated and th epencephalic arch is closed above by the neural spine. Now Cuvier doe not allow this difference of arrangement of the latter elcment (3) to affect lii recognition of the 'suroccipital' in both mammals; and, therefore, one is a a loss to discover the consistency of the ideas which wonld repudiate th general homology of the bones or of the entirc arches which they surmoun because, as Cuvicr would say, "the composition of the arch is differcnt, bein of thrce pieces in the sheep and of four picces in the dog." Yet this is pre cisely the kind of objection which he has directed against the mesenceplati arch, viz. because it may be composed of five or ceen six pieces, in certai
mimals. In the fish, in fact,-by reason of the parietal parapophyses $(8,8)$ oeing subject to the same variation in their relative position to the other elennents, which has been illustrated in respect of the neural spine in the epencephatic arch of the dog and shecp,-the mescnecphalic arch is comjosed of seven pieces, or, including the inter posed supraoccipital, of not less than eight bones. Yet even here we clearly and easily trace the kind and legree of modification to which the fundamental plan of the neural areh 1as been subject. The archetype is nowise obliterated : the gencral homoogies of the modified elements are not less recognisable than their special comologies. The centrum aud neurapophyses are the steadicst elcments: he spine is not only subject to great diversity of size and shape, but to some ariety of position, and, moreover, to be either single or bitid: the paraposhyses have less range of variety in point of dimensions, but may be more or less interposed between spine and neurapophyses, or may become conluent with either element. Thus the epencephalic arch of the crocodile :fig.18) differs essentially, in a Cuvierian sense, from that of the tortoise or the ish (fig. 1), because it is composed of four pieces in the first and of six ieces in the latter; the difference of composition merely depending, howver, on the more exterior position and connation of the parapophyses, 4,4 , in the crocodile.

The independency of the parietal and frontal bones is next urged by Uurier as militating against the idea that they complete a vertebral arch ormed respectively by the alisphenoids and orbitosphenoids as the piers or aunches: and the more so, inasmuch as they are separated from those bones 1 some animals by the intercalation of the squamosals*. By parity of reason ie must reject the general homology of the neural arch and spine of the tlas in the Silurus (Pl. I., fig. 3, n a), Ephippus and some other fishes, beanse that part of the vertebra is not only distinct, but uplifted and removed :om the piers or base of the arch by the intercalation of the articular proesses of the neural arches of the occiput and axis. According to Cuvier such oparated atlantal arch must be regarded as a new bone, and the centrum ught therefore equally to be viewed as ' une pièce particulière qui a une destiation particulière ': but the general homology of vertebral elements may be etermined not only by the irrelations to their own segment, but by those which ney maintain with their less modified homotypes in contiguous segments.
The centrum of the atlas in the Ephippus directly sustains other neurpophyses than its own, and so far has a new or particular function; but, once it continues to unite the centrum of the axis with that of the occiput, ee still regard it as their homotype, and as standing in the relation of the entrum to its uplifted and shifted neurapophyses. So, likewise, although zese elements now aid in strengthening the joint between the zygapophyses f the neural arches of the occiput and axis, and thus perform a ncw and ery peculiar function, their relation to these and other neural arches in the ries of vertebræ renders it impossible to overlook the serial homology of ie separated 'laminre' of the atlas and that of its spine with the other and rger vertebral laminæ and spines.

[^72]The new functions which the uplifted and independent spines of the parietal and frontal vertebre perform in man and many mammals are, with respect to the parietal bones, to shield the upper surface of the middle and posterior parts of the eerebral hemispheres, whilst the frontal is confined to covering the anterior lobes of the same hemispheres.

Hereupon it may be asked whether sueh relations and offices are the rule or only the exeeption ; and, if the latter, whether it oceurs in the lowest or the highest of the vertebrate series; whether in that elass where the archetypal arrangement of parts is most, or in that in which it is least departed from? All these considerations are felt to be indispensable by the homologist in quest of the true signification of the parts of the animal frame, before drawing his conelusions from the first modification that may present itself. They are negleeted by Cuvier in the objcction to the vertebral character of Oken's 'kiefer-wirbel,' founded upon the relations which the parietal bones present to the encephalon in the mammalian class. Yet the more normal relations of those bones, both to the encephalon and to the alisphenoids, seem to have been present to the mind of Cuvier, and to have been duly appreciated by him when he defined, in 1817 , the seeond cranial eincture as eonstituted by the parietals and sphenoid*.

With regard then to the first of Cnvier's arguments for viewing the human and mammalian parietals as 'des pièces particulières qui ont une destination partieulière,' viz. that they are separated from the alisphenoids by the temporal bones. If we commence our consideration of it by the question, whether this separation be the rule or the exception, the reply which Nature sanctions will be that they are not so separated in any of the three great classes of oviparous vertebrata, nor in the majority of mammalia, nor even, as a general rule, in man himself. With regard to the second objeetion founded on the interposition of the enormously and backwardly developed prosencephaton between the meseneephalic spines (fig. 25,7) and the mesencephalic segment of the brain, to which the parietal vertebra essentially relates,--its value will depend on the elroice made by the homologist between the funetion of the parietals as immediate shields to the optic lobes (mesencephalon) in the coldblooded classes, and their function as mediate ones through the interposed mass of the hemispheres (prosencephalon) in the warm-blooded elasses, as that which best manifests adhesion to the ideal archetype. What to me has ever appeared one of the most beautiful and marvellous instanees of the harmons and simplieity of means by whieh the One great Cause of all organization has effeeted every requisite arrangement under every variety of development, is the fact, that the protection of the enormons cerebrum peculiar to the higher mammals has not been provided for by new bones-by bones, e.g. developei from centres so numerous or so sitnated as to render any determination of their homologies as vague and unsatisfactory as would result from the attempi to determine those of the dermal ossifications npon the head of the sturgeon in reference to the endoskeletal epicranial bones in fishes and reptiles. We might well have expected, had conformity to type not been a reeognizable principle in the scheme of organized beings, to have had so many 'partieula! bony picees' and so situated in the expanded human cranium as would have baffled all our endeavours to reducc them to the type of the epieranial bone: of the reptile or fish. Yet the researehes of the great comparative anatomist: of the present eentury, and more especially those of Cuvier himself, havi provel that there is no sueh difficulty: and a glance at the Table of Specia Homologies, No. 1, will show that the bones (3, 7, 11) most modified in rela tion to the expanded cerebrum and cerebellum of man and mammals an

* Règne Animal, i. p. 73.
precisely those of which the determination has been easicst, and respecting the names and nature of which there has been the least discrepancy of opinion. It is with pain and a reluctance, which only the causc of truth has overcome, that I an compelled to notice the inconsistencics into which the great Cuvier fell, whon his judgement became warped by prejudices against a theory, extravagantly and, perhaps, irritatingly, contended for by a contemporary and rival anatomist. After having cstablished by the clcarest svidence and soundest reasoning in his great and immortal works that the oones (7) in the fish (figs. 2 and 5) and reptilcs (figs. 9, 10, 13, 19, 22) werc 10mologous with thuse in birds (r, figs. 8 and 23), mammals (7 , figs. 12 and ?4), and even in man (7 , figs. 11 and 25) ; and, after contending that they sught to bear the same name-under which, indeed, we find him describing hem in the 'Leçous d'Anatomic Comparée' from man down to the fish?nvier comes at last to declare that, in those animals in which they are eparated from the alisphenoids and mesencephalon, they are "particular ieces which have a particular destination !"

The relation of the mastoids ($8, s$), as parapophyses, to the parietal or phenoidal rertebra not having been detected in Cuvier's time, he supposes hat the pterygoids, in the system which makes a vertebra of the sphenoid, an be compared to nothing else than the transverse processes of such. As, ccording to my views, they are recognizable in General Homology as quite istinct elements of another cranial vertebra, the arguments which Cuvier dvances in disproof of what he thought they must be called, do not concern te subject of the present Report. The infcrior exogenous processes, ineed, of the basisphenoid in mammals are not unlike those dcyeloped from ne under surface of the centrum of the atlas in Sudis gigas, or from some f the cervical centrums in birds. The argument founded by Cuvicr on the utogenous developnient of the trne pterygoid (figs. 24 and 25, 24) would eigh little against its parapophysial nature, if other characters concurred ' prove it a 'parapoplysis ;' but its connections and position show it to be 'direrging appendage.'
With respect to the anterior sphenoid, Cuvier affirms that its composition totally different from that of the posterior sphenoid and occipital, and from sat of any vertebra. By the term 'sphénoïde antérieure' is meant the salesced presphenoid and orbitosphenoids (figs. 24 and 25, 9 and 10); and the so bones referred to in the comparison signify, the one, the basi- and alishenoids (il. 5 and 6), and the other the basi- and ex-occipitals (ib. 1 and 2). 7 ith respect to the bone 9 and 10 , Cuvier remarks that it is never, in mamals, formed of thrce pieces, but only of two; and that these are properly e rings for the optic nerves, which in conrse of time approximate and coasce with each other: bnt so long as the median suture divides them, no stinct or third bony nueleus is developed in the intervening cartilage*.
Since, however, we sce that the homologues (rccognised as such by Cuvicr) the orbitosphenoids are something more than rings surrounding the optic rves in the bird (figs. 8 and 23, 10) and crocodile (figs. 9 and 22, 8) - that ey are merely notched by the optic nerves, and are chicfly developed in

[^73]neurapophysial relation to the sides of the prosenecphalon,-we are led to earry our inquiries into an carlier period of their development than that addueed by Cuvier, as contravening their vertebral charaeters. Cuvier eites the figure 2, in pl. xxxv. of the 'Osteogenia Fœtuum' of Kerkringius, as evidence of his statement of the developmental eharaeters of the "sphénoide antéricur." That figure, however, exhibits the condition of the bone, when, although the median suture remains, each orbital ala has become anehylosed with the posterior sphenoid, and is likewise direetly perforated by the optic nerve. The gelatinous cells of the anterior extremity of the notoehord very early retrograde to the basioceipital region of the basis eranii, and the notoehordal eapsule alone is continued to the anterior extremity of the basis. This is converted into eartilage, and the osseous particles which ultimately constitute the anterior sphenoid are deposited as follows: first a centre or nueleus appears, in each orbital ala, external to the hole by which the optic nerve passes through the primitive cartilage (fig. 26, A, 10); soon after a second nucleus (ib. B, 10) is established at the inner or mesial side of each optie foramen: these centres form the foundation of the neurapophyses or orbitosphenoids, and ultimately coalesce around the optie nerve, as Kerkringius has depieted. But a third pair of ossificeentres (ib. C, 9) is established behind the optic foramina between these and the baispshenoid (5). This third pair unite together into a single transverse bar (ib. D, 9) before coaleseing with the orbitosplienoids in front, or with the basisphenoi behind, and that bar transitorily represents the centruns of the frontal vertebra To the objection that such supposed centrum is developed from two point instead of one, the same reply may be made that was made before to a simila objection raised by Cuvier against the general homology of the basisphenoic which objection, as was then shown, would be equally valid against the uni versally admitted homology of the body or centrum of the atlas.

The frontal neurapophyses manifest in their development, eaeh from tw centres (fig. 26, B, C, 10), a transitory mark of vegetative repetition analogou to that which permanently eharacterizes the neurapophyses of the trunk-verts bræ in the sturgeon and, perhaps, the frontal neurapophyses themselves i the fishes with the bone 9^{\prime}, fig. 5 , PI. I.

Thus the evidence of development, when eomplete, tells for, rather tha against the serial homology of the 'sphénoide antérieur' of Cuvier with th eentrum and the neurapophyses of other vertebræ; and the more obvious an important eharacters of relative position to the other bones of their own seध ment, and to their homotypes in the contiguous segments, as well as to proser eephalie segment and eharacteristic nerves,-which characters have serve to determine the special homologies of the eoalesced bones in question (9,10 from man down to the fish,--eoneur with the developmental eharacters : establishing the general homology of the presphenoid as centrum and of th orbitosphenoids as neurapophyses of the frontal vertebra.

Cuvier affirms, however, in support of his argument, that, atthough the orbitosphenoids are never separated from the frontals, as the alisphenoids are rom the parietals, in the mammalia, they are almost always scparated from he frontals in the other classes, so that the vertcbral ring is again interupted *. But, were even the frontals commonly uplifted above the orbitophenoids in birds, reptilcs and fishes, which does not accord with my exrerience, the objection, on that score, to regarding them as 'ncural spines,' rould as little apply, as it does to the universally r'ceognised general honology f the separated and uplifted neural arch of the first vertebra of the trunk f the Silurus (Pl. I, fig. 3), Ephippues and some other fishes.
Cuvier finally regards the connection of the frontals with the prefrontals, 'hich he calls 'ethmoid' in mammals, 'l'enchâssement de l'ethmoïde,' as a netion quite remote from any of a vertebral character, "relative à toute utre chose." This objection only shows the necessity of a right appreciaon of special homologies, in order to form a true judgement respecting eneral homology; and, with respect to the 'ethmoilde,' I must refer to thic ection on the prefrontals in the chapter on 'Special Homology (p.46). If te arguments there adduced be held to prove the crista galli and cribriform late in the human skull to be the homologucs of portions of the coalcsced refrontals and olfactory capsules, we may next remark that these portions e not merely wedged between the orbital plates of the frontal, but articute behind by a persistent suture with the orbitosphenoids. As neurapousses, the coaleseed prefrontals of the terminal vertcbra of the skull thus ticulate with their next succeeding homotypes; and, by virtue of the exsssive development of the spine of the frontal vertebra, as well as from their sing contracted and drawn backward in the human skull, they articulate ith such spine (the frontal) as well as with that of their own proper segent (the nasals). But, in the crocodile (fig. 9), we have seen a similar Jation manifested not only by the more normal neurapophyses (14) of the asal vertebra, but likewise by those (10) of the frontal, those (6) of the arietal, and those (2) of the occipital vertebra.
All the objections raised by Cuvier to the general homology of the cranial ones as modified vertebral elements, equally apply to elcments of vertcbræ the trunk, which Cuvier himself has admitted to be vertebræ, notwithnding such modifications. The repetition of the perforated character of e human alisphenoid and orbitosphenoid in the neurapophyses of the trunkrtebre of many inferior animals, requircs only a passing notiec. The ttening, expansion and sutural union of the human supraoccipital, parietal d frontal bones, are matched by the neural spines in the carapace of the toise. If the basioccipital, basisphenoid and presphenoid are broad and flat, stead of cylindrical, so likewise are the bodies of the sacral vertebræ in the oad-bodied megatherioids and in many birds. If the basioccipital and sisphenoid are lengthened out and firmly united together by deeply innted sutural surfaces in most fishes, so likewise are the bodies of the four terior vertebre of the trunk in the pipe-fish (Fistularia, Pl. I., fig. 6). If 3 basisphenoid and presphenoid be developed cach from two ossifie centres, in man, so likewise may the body of the human atlas be ossified; and even ould the moieties of that centrum not coalcscc at the median plane, they

[^74]would nevertheless still retain their cssential characters as divisions of a single vertcbral elcment: just as does the vomer in the salamanders, salamandroid fishes and serpents, which begins to be developed from two lateral points, like the body of the human atlas occasionally, without the development ending, as it always docs in such atlas, by confluence of the resulting halves. It would be more reasonable to repudiate the general homology of the body of a whale's dorsal vertebra with the centrum of the typical vertebra, because it consists of three pieces set end to end, than to deny the general homology of the vomer because it may consist of two picces set side by side, or that of the anterior trunk-vertebre of the silurus because they consist of two picces set one upon the other (Pl.I., fig. 3, ca, ca, ex, \&c.). These are cxamples of a principle of variation which Cuvier never permitted to blind his perception of the special homology of eertain bones, the mandibular ramus, for example; though vegetative or teleological suldivision is carried out to a much greater extreme there than in any vertcbral centrum; unless, indced, the number of points from which the whale's vomer be ossified may equal those in the crocodile's lower jaw. But if the differenecs in this developmental character, viz. of ossification from a single ossific point as in the vomet of the cod, or from two points as in that of the lepidosteus, or from threc or more points as in the human vomer, interpose no obstaele to the determinatior of the special homology of the bone 13 from man to fish, it ean as little avai as an argument against its general homology, which is determined not by the development of the vomer but by its relations to the other constituents of the segment of the skeleton to which it naturally belongs.
The great difficulty which the anthropotomist may naturally experience it forming an idea of the vomer as the bolly of a vertebra, will arise from it: extremely modificd form in the hmman subject: but he must bear in mim that it is an extremc part, the last of its series counted forwards; and if he should desire some higher and better cstablished authority than the presen Work before yiclding assent to the vertebral eharacter of the bone, undes its characteristic ' ploughshare' mask in man, I know no name more influen tial than that of Cuvier himself, in regard to the equally and similarly modi fied centrum at the opposite cnd of the vertebral series in the bird. Fo althongh the mask of coalescence is superadded to that of strangeness o shape in the bone which Cuvier there compares to a ploughshare [vomer, o 'soc de charrue'], the great anatomist and cautious generalizer does not hesi tate to affirm that it is "eomposed of many vertebræ" (see ante, p. 95).

It may, perhaps, be said that the coceygeal vomer must be vertebral in it nature because it is situated in the tail; but the 'petitio principii' in thi argument will be transparent, if we transpose the locality, and say that 'th eranial vomer must be vertebral in its nature because it is placed in th head.' For what arc 'head,' 'tail,' ' thorax,' or 'pelvis,' but so many di versely modified portions of a great segmental whole? These localities do no determine the nature of the segments composing them ; such knowledge ca: only be acquired by a study of the composition of the segments; and it is th modifications of the segments that determine the nature of the localities o divisions of the cndoskeleton, to which such special names as 'head,' 'tho rax,' \&c. are applicd.

Yet Cuvier himself, perhaps, little suspected how much his ideas of th essential nature of a segment of the endoskcleton were governed by the pas of the body in whieh it happened to be placecl. Whencver the young ana tomist finds a difficulty from the peculiar form or development, divisio or eoalescence, of a cranial bone, in recognising or admitting its vertebre
tharacter, let him compare the results of his own observations with those summed up in pp. 96-101, and see whether the same kind of modification nay not be repeated in the homologous clement of a vertebra of the trunk u one or other of the species of vertebrate animals.

The latest direet objection to the cranio-vertebral system is from the pen of the celebrated ichthyotomist of Neuchatel. M. Agassiz represents the surrent ideas respecting this system at the period when he published his objections to it, in the following graphic passage of his invaluable and splendid work:-"It was M. Oken who had printed the first programme on he signifieation of the bones of the skull. The new doetrine which he set forth ras reeeived with extreme enthusiasm in Germany by the school of Naturalists called 'Natur-philosopher.'. The author at that time required three sranial vertebre, and the basivecipital, the sphenoid and the ethmoid were yiewed as the central parts of these cranial vertebræ. Upou these pretended rodies of vertebre were raised the arches enveloping the central parts of the nervous system (our 'protective plates') ; whilst to the opposite side were atsached the inferior pieces which should form the vegetative arch destined to smbrace the intestinal eanal and the great vessel (the 'facial arehes' of which re shall presently speak). It would be tedious to enumerate here the changes which each author has rung upor this theme in modifying it agreeably with iis notions. These contented themselves with the number admitted by Oken; hose raised the number of cranial vertebræ to four, six, seven, or even more : ome saw nothing but ribs in the branchial arches and jaws; others took the atter for liumbs of the head, analogous to arms and legs. If they could not cgree about the number of the vertebræ, still less were they at one in regard 0 the part assigned to each bonc. The most bizarre nomenclatures have seen proposed by different authors who thus sought to generalize their deas. Some have gone so far as to pretend that the vertebre of the head rere as complete as the vertebræ of the trunk, and by means of dismemberaents, with divers separations and combinations they have reduced all the orms of skull to vertebræ, assuming that the number of pieces was inariable for every form of skull, and that all vertebrate animals, whatever beir definitive organization, bore, in their respective crania, the same number if points of ossification *."

And thus it is that a great truth in nature las been endcavoured, and

* "C'est M. Oken qui fit imprimer le premier programme sur la signifieation des os du trâne. La nouvelle doctrine qu'il exposait fut accueillie en Allemagne avec un enthousiasme xtrême par l'école des philosophes de la nature. L'auteur postulait alors trois vertèbres a crảne, et l'occipital basilaire, le sphénoide et l'ethmoide étaient envisaqés comme les arties centrales de ceз vertèbres craniennes. Sur ces prétendus corps de vertèbres s'éle vaient es ares enveloppant les parties centrales du système nerveux (nos plaques protectrices); andis que dn cóté opposé étaient attachées des pièees inféricures qui devaient former l'are Égétatif destinéà embrasser le canal intestinal et les gros vaisseanx (les ares de la face dont ous traiterons plus tard). II serait trop long d'énumerer iei les changements que chaque ateur apporta à ce travail en le modifiant à sa manière. Les uns se contentèrent du nombre drais par Oken, les autres ćlevèrent le nombre des vertèbres craniennes jusqu'à quatre, six, zpt et méme plus ; les uns voulurent voir des côtes dans les ares branchiaux et les inâchoires; 3 antres prirent ecs dernières pour des meinbres de la tête, analogues aux bras et aux amhes. Si l'on n"était pas d'accord sur le nombre des vertêbres on l'était eneore nooins sur rôlle qu’on assignait à ehaque os. Les nomenelatures les plus bizarres ont été proposées ar les différens autcurs, qui eherchaient ainsi à généraliser leurs idées. On alla jusqu'à rétendre que les vertèbres de la tête étaient aussi complètes que les vertèbres du trone, et 1 moyen de démembremens, de séparalions et de combinaisons diverses, on ramena toutes s formes du crâne à des vertêhres, en admettant que le nounbre des pièees etait invariablerent fixé ponr tontes les têtes; et que tous les vertébrés, quelle que soit d’ailcurs leur ganisation définitive, portaient dans leur tête le même nombre de points d'ossifications." -Recherches sur les Poissons Fossiles, t. i. (1813), p. 125.
too suceessfully in regard to the rising generation of anatomists, to be obseured. Ideas and statements are misquoted, unintentionally, doubtless, and through negleet of reference to the original work (as in the citation of the bones representing the bodies of the cranial vertebre in the Okenian theory) ; or they are misunderstood (as where the arches, neurapophyses or 'bogentheile,' eomposed as Oken truly said by the alisphenoids and orbitosphenoids are held to be synonymous with the 'plaques proteetrices' of M. $\operatorname{Vog} t)$: the most extreme and least defensible views are seleeted out of eaeh tentative step in the inquiry, and are elubbed together to represent the gencral result, whieh is of course dismissed with as sweeping a condemnation. The speeifie objeetions raised by Cuvier are decmed well-founded and unassailable; and to these M. Agassiz adds the following. Assuming that, "the formation of vertebræ presupposes as a first condition the existence of a notochord*;" and, arguing upon this basis, and with a belief that the cephalie extension of the 'ehorda dorsalis' as it is permanently manifested in the Branchiostoma is not so great in the embryos of other and higher fishes, but is arrested at the region of the alisphenoid from the commeneement of its development, M. Agassiz coneludes:-" Now, the applieation of this prineiple to the eomposition of the skull demonstrates at once that there exists but one cranial vertebra, the occipital vertebra, and that the rest of the skull is foreign to the vertebral system \dagger."

At the period of development deseribed and figured by M. Vogt in the embryo of the Coregonus, whieh period M. Agassiz coneeives to represent the very carliest endition of the anterior extremity of the notochord, the pointed extremity of the gelatinous eentral eells of this part terminates at the posterior boundary of the hypophysial spaee: but the peripheral eapsule of the notochord extends over that space and forwards to the obtuse anterior extremity of the embryonal ' basis eranii ': and it is in the expanded aponeurosis, direetly continued from the ehorda along the basis eranii, that the thin stratum of enrtilage eells are developed, arching along the sides of the hypophysial spaee, from which the ossifieation of the basisphenoid, presphenoid and vomer proceeds \ddagger.

The superaddition or the later continuation of the eylindrieal gelatinous 'elorda' in the aponeurotie basis of the eartilaginous and osseous growths of the vertebral eentres in the truik, seems to relate ehiefly to their more or less eylindrical form in that region : the notoehord regulates, as a mould, the course of ossifieation, disappearing by absorption as the bony lamellæ of the vertebral bodies eneroaeh upon it in their eentripetal progress: the notoehord plays an important part also in the establishment of the elastie jelly-filled capsular joints in the baek-bone of fishes; and therefore it might well be dispensed with, or be early and rapidly removed, in the development of the flattened, expanded and anehylosed or immoveably artieulated bodies of the eranial vertebræ. And, besides, the notoehord is immediately coneerned in the development of only one of the elements of the typical segment of the endoskeleton. It is obviously, therefore, an unwarrantable and erroneous application of a devclopmental character, to eonclude, from a modification of this one charaeter in respeet of a single clement, the 'centrum,' that every other eharaeter establishing the general homology of such clement, as

* "La formation des vertèbres suppose, comme première condition, l'existence d'une 'corde dorsale.'"-op. cit. tom. i. p. 127, livr. xviii. (1843.)
† "Or, l'application de ce principe à la composition de la tête uons montre d'entrée qu'il n'cxiste gu'une seule vertèbre crânienne, la vertèbre occipitale, et quc le reste de la tête est étranger an système vertébrale."-Ib. p. 127.
\ddagger Hunterian Lectures on Vertebrata, 1846, p. 71.
ell as every character determining that of the surrounding vertebral elements, re to be uullitied aud set aside! M. Agassiz, moreover, seems not to have ispectel that the uotochord may have other and more immediate and importut functions than even those relating to the vertebral column. The peculiar lective attraction of its component cells for the gelatinous principle may be esential to the due operation of those neighbouring cells which form the basis of te neural axis, and which as exclusively assimilate the albuminous principle: nd this reciprocal antagonism in the selection of particular proximate priniples from the common primitive blastema may explain the contemporaneous rigin of notochord and myelon in the embryonic trace, when all development as yet the work of cell-assimilation and metamorphosis, without any supply om a vascular system, this being a later formation in the building up of the rganic machinery. By coufining, however, his views of the notochord to one fits functions in relation to a single vertebral element, and by extending his onclusions from this to the entire vertebra, M. Agassiz, though recognising ore absolutely than Cuvier, the vertebral character of the neural arch of re occipital segment, concludes that Nature discards that type in the conormation of the bony cinctures that precede it and which successively girt re mesencephalon, prosencephalon and rhinencephalon.
Premising a gratuitous explanation of the hypothetical absence of the bodies if the cranial vertebræ (Poissons Fossiles, t. i. p. 128), M. Agassiz asks, Ainsi, que seraient dans cette hy pothèse, le sphénoide principal, les grandes les du sphénoide, et l'éthmoide, qui forment pourtant le plancher de la arité cérébrale? -Des apophyses ?-Mais, les apophyses ne protègent les entres nerveux que du côté et d'en haut?-Des corps des vertèbres?Lais ils se sont formés sans le concours de la corde dorsale; ils ne peuvent onc pas être des corps des vertèbrcs." (Ib. p. 129.) To this it may be splied, first that the bodies of the cranial vertebræ are not absent; they te represented, as above explained, by their cortical portions in the vomer ig. 5,13), presphenoid (ib.9) and basisphenoid (ib.5), and by both cortical ad central portions in the basioccipital ($i b .1$) : nay, the central part of the ady of the frontal vertebra is represented in some fishes by the entosphenoid b. 0^{\prime}), which remains distinct from the cortical part below, as does the central art of the body of the atlas in the siluroid fish. If it were true, indeed, at the entosphenoid was pierced by the canals transmitting the olfacrry nerves*, Bojanus' idea of its general homology as the centrum of the 'ertebra optica' must be abandoned. But the parts called 'olfactory zrves' by M. Agassiz, pass from the prosencephalic to the rhinencephalic ompartments of the cranium not merely above the bone called 'cranial Thmoid ' by the same author, but, also, through the upper part of the interace between the bones (orbitosphenoids) which the entosphenoid (9^{\prime}) stains: and the true olfactory nerves perforate the neurapophyses (14) hich Bojanus called 'ethmoid' and which Cuvier and M. Agassiz have rmed 'frontaux antérieurs' (sec ante, pp. 46-58). The alisphenoids, being itched or perforated by their proper intervertebral nerves, are 'apophyses' eurapophyses), and accordingly do protect the sides of their proper nervous ntre, the mesencephalon. The central jelly-cells of the notochord appear to withdrawn into the occipital region before ossification of the basisphenoid mmences, and that modified vertebral body is therefore developed at the pense of the fibrous sheath of the notochord, and is represented by its :ortical' part only. But its gencral homology is detcrmined by its con-

[^75]nections with the basioccipital (admitted by Agassiz to be a vertebral body) behind, and with the alisphenoids above.

In many fishes the basisphenoid unites with the basioccipital by a deeply indented sutural surface, like that which unites together the elongated bodies of the antcrior trunk-vertebre in the Fistularia. In manmals the basioccipital and basisphenoid join each other by flat surfaces, also like the bodies of the trunk-vertebra, until the period when, in most of the class, the joint is obliterated by anchylosis. These and similar repetitions of classcharacters of vertebral elcments in the regions of the head and trunk are not so wholly devoid of signification, as they must seem to be to the opponents of the cranio-vertebral theory.

In his new and elaborate classification of the boncs of the skull of fishes, M. Agassiz divides them primarily, like Cuvier, into bones of the cranium, or 'box which envelopes the brain and the organs of sensc': and into bones of the face, 'which is composed of the moveable picces subservient to nutrition and respiration' (l.c. p. 110).

This division is open to the objection that the bony or cartilaginous capsulcs which immediately envelope the organs of sense arc always originally, and most of them permanently, separate from the box or capsule that envelopes the brain. The independent character of the ear-capsules, for example, is manifest on their first appearance in the ammocete; and, although they subsequently lose their distinctive features by the accumnlation of cartilagecells around them in which the foundations of the neurapophyses and parapoplyses, contributing to the otocranc, are laid, one centre of ossification is commonly established, even in fishes, in special relation to the immediate protection of the vascular and nervous parts of the labyrinth.

As to the proper bony cnvelope of the eye, M. Agassiz docs notenumerate it amongst the cranial bones of fishes: but admits into that series only the accessory protecting pieces which form the orbit; or rather only those that at the same time form the brain-case: for, the suborbitals, the entopterygoids and palatines are placed amongst the 'facial' bones: whilst the supraorbitals are transferred to another category of osseous pieces, the natural system here prevailing over the artificial one.

Subjoined* is an outline of the arrangement of the two primary classes of 'cranial ' and 'facial' bones, founded upon the embryological researches of

* CRANIAL boNES. (OS CRANIENS.)

A. EMBRYONIC BASIS (' BASE EMBRYONALE,' Vogt).
a. Nuchal plate ('Plaque muchalc' V.). Basioccipital, Exoccipitals, Paroccipitals. Supraoccipital, Petrosals.
乙. Lateral loops ('Anses latérales,' V.). Alisphenoids, Orbitosphenoids.
c. Facial plate ('Ptaque facialc,' V.). Entosphenoid (l'cthmoïdc crûnien, Ag.).
B. PROTECTIIE PLATES (PLAQUES PROTECTRICES' V.).
a. Superior platcs. Parietals, Frontals, Nasals.
b. Lateral ${ }_{\hat{p}}$ latcs. Prefrontals, Postfrontals, Mastoids (temporaux, Ag.).
c. Inferior plates ('Plaque buccale,' V.). Basi- prc- sphenoid, Vomer.

FACIAL BONES. (OS DE LA FACE.)

1. Maxillary arch. Suborbitals (jugaux, Ag.), Maxillary, Premaxillary.

Ir. Palatine arch. Palatines, Entopterygoids, Pterygoids (transverses, Ag.).
iII. Mandibular arch. Pretympanics (' caisses,' Ag.), Mcsotympanics ('tympano-mallcaux,' Ag.), Hypotympanics (' os carrés,' Ag.), Mandible.
1v. Hyoidean arch. Epitympanics ('mastoidicns,' Ag.), Prcoperculars, Stylohyals, Epihyals, Ceratohyals, Basiliyals (' 1 'os lingual,' Ag.).
v. vi. vii. vili, Branchiat arches. 'Composés claacun de deux ou trois pièces et remnis sous le gorge par le corps de l'hyoïdc.'
1x. Pharyngcal arch. 'Composé d'une ou de plusieurs pic̀ees,' \&c.-Op, cit. t. is pp. 124, 130.

1I. Vogt. With regard to the series of nine arches into which the facial -ones are distributed, it maty be remarked that the independence of the maxitary from the palatine, which is more apparent than real in the osscous fishes, eases to be manifested in any degrec in the plagiostomes and lepidosiren: hat the first and second arches are suspended by their crowns with their aunches projecting freely outwards, whilst the third and fourth arches are uspended, in the reverse position, viz. invertcd, with the crowns or key-stones ownwards: the four next arches are rather complete cinctures, their sumhits meeting and being loosely suspended to the basis cranii, or, in plaiostomes and cyclostomes, to the under part of the vertcbral column of the cunk. Although professing to base his classification upon developmental haracters, M. Agassiz owns with regard to the posterior branches of the daxillary arch, e.g. the suborbitals, "that they appear to be rather formed y the dermal system." And this is unquestionably true: whilst the palaunes, which are the true piers of the arch, are developed from the blastema if the same visceral arch as the maxillaries and premaxillaries.
The error in regard to the special homology of the suborbital bones, deterined by M. Agassiz as the malars, and which is so clearly exposed by the ructure of the skull of the Psittacide (ante, p. 41), has misled him in rcvect to the natural and typical constitution of the maxillary arch.
The mistake in reference to the special homology of the cpitympanic ($28 a$), etermined by M. Agassiz as the 'mastoid,' has, in like manner, influenced m in dissociating it from the other dismemberments of the tympanic pedicle, ad referring it to a different arch.
With regard to the hyoid and branchial arches, it will be observed that 1. Agassiz makes no distinction between the systems of the neuro- and ulanchno-skeleton. An arch constant and ossified in all vertebrates where ce rest of the endoskeleton is ossified, and which, even admitting M. Agassiz' ecial homology of the preopercular as the styloid process of the temporal, ould still be suspended in the inverted position, like a true hæmal arch, is aced in the same category as the branchial girdles, which are often cartilanous when the hyoid is osseous, in bony fishes; and which disappear, in the etamorphosis of the tadpole, with the cvanescent respiratory viscera for ee support of which they are exclusively developed.
The constitution of a distinct 9 th facial arch for the posterior pair of branial girdles, which retain their gills in lepidosiren, though modified in subrrvience to mastication in most osseous fishes, appears to be giving undue sportance to an artificial or adaptive character. Finally, the natural conctions of the scapulo-coracoid arch in osseous fishes are totally disregarded, d it is left out of the enumeration of the bones of the head.
The unbiassed anatomist may find an elcment for judging of the natural aracter of the cranio-vertebral system propounded in the present Report, contrasting the classification of the bones of the fish's skull to which it dz, with that proposed by M. Agassiz, and with nature*.
Having thus responded to the objections advanced by Cuvier and M. jassiz to the intcrpretations of the scgmental constitution of the bones of head which were open to the criticism of thosc great authoritics in atomy, I proceed bricfly to explain the segmental constitution of the bones
I arn bound here to say that in the discussion of the subject of this Report with M. sasiz, which, amongst other advantages of the meetings of the British Assoeiation, I enerl at Southampton, he admitted, with his charateristic frankness, that some points of classification of the brones of the lead in fishes would require reconsideration. One of eminent physiologists who was present at the debate which followed the reading of the mort, has recorded the inpression it produced unon him in a review of my "llunterian :tares on Vertebrata' in 'The Pritish and Foreign Medical Review;' No. xlyi. p. 490.
of the trunk of the human subject aceording to the archetypal vertebra witl which the segments in the head have been illustrated.

The first seven segments of the trunk consist each of centrum (fig. 25, c) neurapophyses (n), neuralspine (s), and rudimental pleurapophyses $(p l)$, whiel coalesce, in each segment, into one bonc, called 'cervical vertcbra' in anthro potomy. If the hæmapophyses (52^{\prime}) have the same relation to their centrun which those of the seventh dorsal vertebra, in the Ciconia Argala, more ob viously bear to theirs,-that is, being attached below and dismnited at their uppe ends from their pleurapophyses, which are short, stunted and anchylosed to th. centrum,-and if, as the apparent homologues of 52^{\prime} in fishes would indicate the atlas be actually the centrum to which such detaehed and shifted hæma pophyses belong, then the first will be the sole segment of the cervical region 0 the trunk in which those elements are ossified.

In the seven vertebræ which succeed the cervicals the pleurapophyscs ($p l$ are progressively elongated; they are shifted from their proper centrum to th interspace between it and the next segment above, or in advance, and retai their moveable joints. The hæmapophyses (h) are cartilaginous and articulat with the ends of the pleurapophyses and with the hæmal spines ($h s$), whieh ar flattened, slightly expanded, and ultimately blended into one bone called 'ster num.' The hæmal spine of the first typieal segment remains longest distinet it receives, also, the extremities of the displaced hæmapophyses (52') and ha been called 'manubrium sterni.' The hromal spine of the seventh segmen commonly continues longer distinct, and is later in becoming ossified, whene it is called 'ensiform cartilage' : it probably includes the rudiments of som succeding hæmal spincs. In the four succecding segments the pleurapophyse become progressively shorter, and the hæmapophyses, still cartilaginous, ar severally attached by their lower attenuated ends to the pair in advance leaving the hæmal arch incomplete below. In the next vertebra (19th froi the skull) the still shorter pleurapophyses resume the exclusive articulatio with thcir proper ccntrum ; and the correspondingly short and pointed hæm apophyses terminate frecly.

Those pleurapophyses and hæmapophyses which directly articulate wit hæual spines (sternum) are called collectively 'truc ribs ' (costæ veræ), th proximal element being 'the bony part of the rib' (pars ossea costæ), the dista one the 'cartilage of the rib.' The rest of the hæmal arehes which are is complete throngh the absence of the hæmal spine, are called 'false ribs (costæ spurix); and the last, which terminates freely in the origin of th diaphragm, is a 'floating rib.' The centrum, neurapophyses and neural spin of eaeh segment with freely articulated pleurapophyses coalesce into one bon called 'dorsal vertebra' in anthropotomy : thesc vertebre are twelve i number. Eaeh of the five succeeding segments is represented by the sann elements (centrum and ncural areh) coaleseed that constitute the so-calle dorsal vertebre : they are called 'lumbar vertebre " (fig. 25,L.): they haven ossified pleurapophyses ; and the hæmapophyses of these segments are repri scnted only by the aponeurotic 'inseriptiones tendineæ museuli recti' ($h^{\prime \prime}$).

Certain clements of the five succeeding segments (ib.S.) coalescing togethe in the progress of growth form the bone called 'sacrum': and are described ii dividually as sacral vertebre. The first four of thesc each combine the sain elements, coalesced, as in the neck; viz. centrunl, neurapophyses, neural spint and short but thick pleurapophyses*: in the fifth sacral vertebra there are n

* J. Müller notices the rudimental ribs in the first and second saeral vertebre of $t]$ human foetus in his Anatomie der Myxinoiden, heft i. 1834, p. 240. Mr. Carlile h described (Report of British Association, 1837, p. 112), and Dr. Knox has figured (Lance $1839, \mathrm{p} .191$) these ribs and their homotypes in the third and fourth sacral vertebre.
sseous rudiments of pleurapophyses; and the neural spine is commonly unleveloped. One or more typical segments are obviously completed by the neetiug of the broad sides of the inverted arch $(02,03,01)$ at the 'ischioubic symphysis' forming the 'pelvis' of' anthropotomy. Before, however, -ntering upon the difficult inquiry into the gencral homology of the pelvis,
would beg to refer the reader to the analysis of the sacrum of the ostrich fiven at p. 95 : and I here subjoin a figure of seven of those vertebræ, rom an immature specimen, the pleurapophyses being removed from all ave the last $(p l)$, in order to show the change of place of the neurapophyses $: 1-4$, in relation to their centrums, $c 1$ to $4: d d$ are the long diapophyses; the short parapophyses. The sacrat spines, $s s$, are enormously developed.
In the bird the modification of the vertebral segments at the posterior egion of the trunk in relation oo the transference of the whole reight of the body and forembs (wings) upon the hindtmbs, is greater and morc exensive than in the 'bipes im'lume,' and the essential nature if the pelvic arch is still more asked in the bird than in man. 1 order to obtain an insight to the model according to thich it is constructed, we must escend still lower, even to the amblest of the vertebrated
 ceatures that crawl upon the 7 sacral vertebree of a young ostrich (Struthio camelus). arth. The example which is here selected for that purpose is the perenni--anchiate amphibian called Menopome Alleghamiensis.
The three anterior verbræ which answer in poion to the 'lumbar' in 3. 25, differ chiefly in haog rudimental pleurapoayses ($P l$) articulated to e ends of the diapophyses D). In the next vertebra ediapophysis $\left(D^{\prime}\right)$ and the dimental pleurapophysis ' l ') are thickened and larged: a second pleurophysial rib-like piece(62) joined by one end to the
 eurapophysis, and by the Sacral vertebra and appendage with contiguous vertebre. Menopome. ler to a broad partially ossified cartilage (64) which meets and joins its low, completing a hæmal arch and raising the vertebra in question to 3 typical character. A radiatcd appendagc, morcover, diverges on each e from the articulation between 62 and 6.1, and forms the hind-limb. Now : special homology of this limb with the undivided filamentary appendage vilarly situated in the lepidosiren, and with the ventral fins of fishes, in : descending scries; and with the hind-limb of other reptiles, of birds and mammals in the ascending scries, is unmistakeable, and, I believe, is gencly admitted: so that comparative anatomists have not hesitated to cah : rib-like bonc, ez, 'ilium,' and the part, fi, 'pulis 'in the menopome.

The special homologies of these elements of the pelvis being thus determined, it follows, that their gencral homology, as it may be revealed by the simple condition of the pelvic arch in the species in which the pelvis, as complete and fixed to a sacrum, makes its first appearance in the animal kingdom, will be equally applicable to the parts under all their netamorphoses in the higher air-breathing vertebrates.

The correspondence of the segment of the endoskeleton in the menopome $\mathrm{D}^{\prime}, \mathrm{Pl}^{\prime}, \mathrm{H}, \mathrm{A}$, with the typical vertebra, as illustrated by fig. 15, is such, that any other explanation of its essential nature than as a representative or repetition of such fully developed segment or vertebra seems contrary to nature. The chief modification has its seat in the most peripherral part or appendage A. as compared with its simple homologue in the thoracic segment of the bird (fig. 15). If 62 and 64 are to be regarded as strangers to the vertebral system, new parts introduced for special purposes, and not as normal elenients modified for such purposes, I am at a loss to know on what principles, or by what series of comparisons we can ever hope to attain to the higher generalizations of anatomy, or discover the pattern according, to which the vertebratc forms have been constructed. It may be said that the arch which they constitute performs a new function, inasmucl as it sustains a loeomotive limb which reacts upon the ground. But this new function arises in the menopome, rather out of the modifications of the appendage than of the areh itself. In so far as the mere support of the appendage is concerned, the inverted or hæmal arch $\mathrm{Pr}^{\prime}, \mathrm{H}$, performs no new function, but one which is common to such arches in the thorax of birds, and to the less completely ossified homologous arches in the abdomen of fishes, where morcovel the simple diverging appendages do give attachment to the muscles of locomo tion. Comparing, then, the liæmal arch in question with that of the typica vertebra (fig. 15), we find that, like the scapulo-coracoid arch in fishes (fig. 5, H 1), its parts are open to two interpretations. The upper piece of $P^{\prime} l^{\prime}$ may be the whole pleurapophysis, the lower, 62 , the hæmapopliysis, and the part, 64 , the half of an expanded and bifid hæmal spine: or ' $P l^{\prime}$ 'with 62 , may be two portions of a teleologically compound pleurapophysis, and at the henn apophysis, which would join with its fellow without, or with a mere rudimen of, a hæmal spine intervening. From the aualogy of the scapulo-coracoit arch in fishes, which is proved by its modifications in higher animals want the homal spine, it is most probable that such is the condition ant true interpretation of the correspondingly simple pelvic arch under considera tion. But the gencral relation of this arch to the hæmal one of the typica segment is not affected by the alternative.
I regard, therefore, $P l^{\prime}, 62$, as two portions of a fully developed pleurapophy sis; and the pleurapophyses, $P l, P l$ of the contiguous vertebre as answering only to the upper portion of the pelvic one. In ascending from the meno pome to the crocodile, we find the homologue of 62 broader than it is long and articulated to the thickened proximal portions of the pleurapophyses o two segments; and we observe, likewise, the pelvic arch completed belor by two pairs of hæmapophyses: for the anterior pair the name of 'ossi pubis' is retained; to the posterior pair that of 'ischia' is given. In genera homology these bones complete, as hæmapophyses, the two vertebral seg ments modified to form the sacrum of the crocodile; and the intermediat connceting piece (ilium) may be interpreted, as either the confluent disto portions of the pleurapophyses of both vertebræ, or as an expansion of on such portion, answering to 62 in the menopome, and intruding itself betwee the stunted pleurapophysis and distant hæmapophysis of the second saere vertebre in the crocodile.

In the bird the expansion of the element 02 procecds to a further extent, and besides the proximal pieee of the pleurapophysis of its own segment, the hone 82 is brouglit into conncetion with the homologous stunted or proximal nds of pleurapophyses of several eontiguous segnents, in the mamer iudi'ated by the dotted line in fig. 2S, and in PI. II. fig. 4, 62. Now, if the ilium, o expanded, were interpreted as the coalesced complementary portions of all he short pleurapophyses with whieh it artieulates, its eondition would be very imilar to that whieh Oken las attributed to the scapula. But its ossifieation uadiates, as in the simple rib-like ilium of the menopome, from a common entre : there are no corresponding multiplieations of hæmapophyses below; these are restrieted in the pelvis of all animals to the number whieh they resent in the erocodile. And since the seapula has been proved to be, under is most expanded form, the homologue of a single pleurapophysis, so also I m disposed to regard its homotype, the ilium, as maintaining under every ariety of form and proportion, the same fundamental singleness of character,
; it presents on its first appearance in the perennibranchiate batrachian.
The first saeral vertebra, then, in man is complete; but its plcurapothysis is dividel, and the lower portion expanded to form the so-called ilium ' (62). The hæmapophysis (64) coalesces with that of the suceeeding eartebra (63), and with its own pleurapophysis (62, fig. 25, and Pl. II. fig. 6).
The secoud sacral vertebra has its hæmapophysis (63, called 'ischium') ssified, but separated from its proper pleurapophysis by the expanded (iliac) -rtion of that of the preceding vertebra, with whieh it coalesces, as well as ith the preceding hæmapophysis (pubis). The short and thick pleurapouyses of the third saeral vertebra also articulate in the adult with the exinded distal portions of those of the first sacral vertebra: but these (iliac ones) are restricted in infancy and early ehildhood to their connections ith the first and seeond sacral vertebre, which connections are permanent most reptiles (Pl. II. fig. 3).
The fourth sacral vertebra consists, in man, of centrum, neurapophyses, id rudimental pleurapophyses; the fifth sacral vertebra of eentrum and dimental neurapoplyses, which rarely meet above the neural eanal.
In each sacral vertebra the elements of the neural areh and rudimental os first coalesce together; and afterwards the vertebræ unite with each her and form the anthropotomical bone called 'saerum.'
The first coecygeal vertebra in man consists of a centrum and of stunted urapophyses* wide apart above, but developing zygapophyses, which join ose of the last sacral vertebra, and diapophyses which extend outwards r ther than those of the same vertebra. The neurapophyses are represented exogenous tubereles of bone in the second coccygeal vertebra; and the ird and fourth vertebræ are reduced to the centrums only.
The cartilaginous deposits in the primitive blastema of this extremity of trunk indicate a greater number of eaudal vertebræ, and the rudimental l is proportionally longer in the embryo than in the adult. It is shortened, wever, by absorption prior to the conmencement of ossification, and but ir segnients are indicated by dppositions of the earthy salts in the situations oper to the above-specified elements of a typical vertcbra: these finally alesce into a single bone " of a erooked pyranidal figure," which got its me of 'os eoceygis' from its supposed resemblance to a cuekoo's beak \dagger.
The early recognition of these and other spectialities arising ont of the vaus arlaptive modifieations of the typical segments of the liuman skeleton and its expression, necessarily, in special terms, the eonvenience of which Il ensure their permanence; but the progress of anatomieal scienee having

[^76]unfolded the primary form which is the basis of those modifications, there ariscs the same neeessity for giving utterance to ideas of the generic eharacter of the parts by gencral terms.

Inasmuch, however, as the different segments of the human skeleton deviate in various degrees from the eommon arehetype, and as the different elements of such segments differ in their modifiability, anthropotomy has al no period wanted also its 'general terms' expressive of the reeognised extent of such conformity : sueh terms also, indieating, obscurely indeed, sc much pereeption of the pre-existing model as could bc obtained from the study of one form, at a period when that form-the human frame-wa: viewed as something not only above, but distinet from, if not 'antithetiea to the struetures of the brute creation, and when it was little suspecter that all the parts and organs of man had been sketehed out, in antiopation so to speak, in the inferior animals. Thus the word 'vertebra' shows by the number of the segments or parts of segments to whieh it is applie in anthropotomy, a reeognition of the degree in whieh the prineiple c repetition of similar parts more obviously prevails in the construction of th human endoskeleton. And, inasnuch as in some regions (the eervieal, e.g. the 'vertebra' includes all the elements of the typical segment, there developec it has been retained in homologieal anatomy, but, with a more consistent an definite meaning, as the teehnical term of the primary segment of th endoskeleton in all vertebrate animals.

The 'true vertebre' of anthropotomy are those segments whieh retain th power of moving upon each other ; and the term is applied in a peeuliar an empirical sense very different from the meaning which the anatomist at taches to a true or typical vertebra. The 'false vertebre' of anthropotom are those segments or parts of segments forming the lower or hinder extrem of the endoskeleton, and which do not admit of reeiproeal motion at the joints. And Monro, admitting that the condition of even the human (eoceygis sometimes militates against the definition, mects the ohjection 1 arguing for the speciality of that bone, and with as good or better rease than those who have subsequently contended against admitting the erani segments into the category of vertebræ. "From the deseription of this bone (os coeeygis), "we see how little it resembles vertcbrce; since it seldom h: proeesses, never has any cavity for the spinal marrow, nor holes for the pa sage of nerves*."

Embryology has since demonstrated that the parts of the os coceygis a originally in vertebral relation with the neural axis; and that this is subs quently withdrawn by a concentrative movement, which in like mann withdraws it from the teminal segment at the opposite extreme of the end skeleton. The homology of the divisions of the saerum with the true rf tebræ is admitted by Monro, beeause of the perforations for the nerves: al this charaeter is still retained in the nasal vertebra in the form of the erib form foramina, although its neurapophyses, like those of the saerum, ha lost their primitive relation to the neural axis.

Homological anatomy, therefore, teaches, that the term 'vertebra' shoul not only be applied to the segments of the human skeleton in the teehmid and definite sense illustrated by figs. 14 and 15 , but be extended to thi modified and reeiproeally immoveable segments whieh terminate the enc skeleton superiorly, and are ealled colleetively 'skull.' (Pl. II. figs. 1 to 6, C

The term 'head,' then, indicates a region of specially modified vertebræ, li the terms 'neck,' 'ehest,' 'loins,' \&e.; and amongst the species of the prims segments characterized by speeifie modifieations, the 'cranial' vertebræm

[^77]be adrled to the 'cervical,' ' thoracic or dorsal,' 'lumbar,' 'sacral,' and ' coccygeal or caudal.'

Such, with reference to the 'general' term' vertcbra,' seems to be the advance of which anthropotomical science is susceptible, in order to keep progress and be in harmony with anatomy.

As to the elements of the typical vertcbra, anthropotomy has alsoits geneiral plirases (see Table II. column vi. 'Soemmerring.'), some of which are equivalent to the clearly defined technical terms of such elements in anatomy properly so called.

The serial homology of the centrum (corpus vertebre) has been recognised in all the so-called 'true vertebree,' and in some of the 'false vertebræ:' thus MIonro says," The fore-part of the os sacrum, analogous to the bodies of the true vertebre, is smooth and flat *." But their smooth and flat homotypes in the skull have only the special nanes of 'basilar' and 'cuneiform' processes; of 'processus azygos' and 'vonter.' The 'neurapophyses' are recognised as repetitions of the same part under the definitions of 'a bony bridge produced backwards from each side of the body of the vertebra,' of 'arcus posterior. vertebre,' of 'vertebral laminæ ' or 'pedicles.' Monro describes these rudimental elements in the last sacral vertebra as 'knobs,' and in the first coccygeal vertebra as its 'shoulders.' In the skull they receive the special definitions of "the pieces of the occipital bone situated on each side of the great ioramen from which nearly the whole condyles are produced \dagger " (partes latecales seu condyloidere, Soem.); 'great' or 'temporal wings of the sphenoidal oone \ddagger;' ' orbitar wings' or 'processes of the sphenoidal bone;' 'nasal' or vertical plate' and 'crista galli' of the ethmoid ('pars media ossis athmoidei,' S30em.).

The neural spines are called generally 'spinal processes' in every segment of the trunk: in the head they are known only by the special names of 'ocipital plate,' ' parietal boncs,' ' frontal bone,' ' nasal bones.'
The pleurapophyses, when free, long, and slender, arc called 'ribs,' 'verteoral ribs,' or 'bony parts of the ribs'; when short and anchylosed, they are salled, in the neck, "the second transverse processes that come out from the ides of the body of each vertebra§;" (radix prior processus transversi verbbrce, Soem.;) in the sacrum 'transverse processes' and 'ilium'; in the skull, iscapula', 'styloid process of the temporal bone,' 'external auditory or tymcanic process of the same bone '; 'palatine bone.'
In like manner the serial homology of the hæmapophyses is recognised in te thoracic region by the general term 'cartilages of the ribs' or 'cartilages f the sternum'\| there applied to the same elements of twelve successive segnents. When ossified in other vertebræ they have received the special names f ' ischium,' 'pubis,' 'coracoid process of the scapula,' 'clavicle,' 'appendix - lesser cornua of the hyoid bone,' ('crura superiora,' 'os linguale superius,' oem.), 'lower jaw' or mandibula, ' upper jaw' or maxilla.
The exigences of descriptive anthropotomy and its highly important apications to Medicine and Surgery necessitate such spccial nomenclaturc, and e reform which that nomenclature chiefly requires is the substitution of imes in the place of phrases for the parts of the human body.

[^78]But the retention and use of speeific names for specially modified elements in the different segments by no means preclude the entertainment of general ideas and the necessity of expressing them by generic names for the liomologous elements in the entire series of vertebre.

If anthropotomy is to make corresponding progress with anatomy, and to derive the same light from the generalizations of zootomical seience which medical botany has done from general botanical seienee, its nomenelature must expand to receive those generic ternis which express the essential nature of the parts, heretofore named and known only acenrding to the results of particular and insulated observation. A term which truly expresses the general homology of a part enunciates the most important and constant characters of such part throughnut the whole animal series, and implies therefore a knowledge of such charaeters in that part of the human body, when used and understood by the human anatomist. Before the cuneiform process of the oceipital bone could be defined as the 'nceipital centrum, 'the modifications and relations of the homologous part in all classes of vertebrate animals had to be accurately determined. The generic homological term expresses the sum or result of such eomparisons, and the use of such terms by the anthropotomist implies his knowledge of the plan or pattern of the luman frame which lies at the bottom of all the modifications that raise it to an eminence so far above those of all other vertebrate animals.

In no species, however, is each individual segment of the endoskeleton so plainly impressed with its own individual characters, as in Man ; the praetised anthropotomist, for example, will at onee select and name any given vertebra from either the cervical, the dorsal, or the lumbar series. During, that brilliant period of human anatomy which was illuminated by a Fabricius, an Eustachius, a Fallopius, and a Laurentins, the terms expressive of the recognition of such specific eharacters were more numerous and often more precise than in our modern compilations. Pleurapophyses were individualized in the thorax as well as in the head: the 'antistrophoi,' 'stereai' and 'sternitides,' for exanıple, were distinguished from the other 'pleurai gnesiai'*.

General anatomical science reveals the unity whieh pervarles the diversity, and demonstrates the whole skeleton of man to be the harmonized sum of a series of essentially similar segments, although each segment differs from the other, and all vary from their arehetype.

Cifapter III.-Serial Homology.

Since, then, we are led by the observations, comparisons and reasonings re corded in the preceding parts of this Work, to recognise, as the fundamenta type of the vertebrate endoskeleton, a series of segments repeating eacl other in their essential characters, it follows that, not only the power of de termining the honiologons bones throughout the vertebrate series, but alst throughout the vertebral segments of the same individual, is ineluded it such generalization.

The recognition of the samc elements throughout the series of segment of the same skeleton I call 'the determination of serial homologies.' Thi kind of study appears to have been commenced by the gifted Vieq d'Azyı in his ' Mémoire' entitled "Parallèle des os qui composent les extrémités, printed in the Mémoires de l'Aeadémie des Sciences for the year 1774, an'

[^79]Condorcet, in his Report on this ingenious Essay, speaks of it as "un cssai d'une autre espèce d'Auatonie comparée, qui jusqu’ici a été pcu cultivée."

Vieq d'Azyr compares, or points out the serial homology of, the scapula with the ilium, the lumerus with the femur, the two bones of the fore-arm with the tro bones of the leg, the small bones of the carpus with those of the tarsus, the metacarpus with the metatarsus, and the fingers with the toes. He is not so happy in lis particular as in his general determinations: his choice iu the leg, for example, of the homotypes of the rathus and ulna in the fore-arm, is erroneous; but the whole memoir is an admirable example ol the appreciation of correspondences which later researches in the same direction have proved to fow from a higher and more general law of uniformity of type. It is, indeed, a striking instance of the secret but all-prevailing harmony of the vertebrate structure that serial homologies should be determinable to such an extent in the parts of the diverging appendages, which are the seat of the greatest amount and variety of deviations from the Ifundamental type.

It will, of coursc, be obvious that the humerus is not 'the same bone' as ithe femur of the sane individual in the same sense in which the humerus cof one individual or species is said to be 'the same bone' as the humerus of another individual or species. In the instance of serial homology above-cited, the femur, though repeating in its segnent the humerus in the more advanced isegment, is not its namesake, not properly, therefore, its 'homologue'. I propose, therefore, to call the bones so related serially in the same skeleton '6homotypes,' and to restrict the term 'homologue' to the corresponding bones in different species, which bones bear, or ought to bear, the same names.

In the skull those bones are homotypes, or repetitions of the same essential part in the series of vertebral segments, which succeed each other lengthwise, as in the last four columns of the subjoined Table:-

Vertebrie.	Occipital.	Parietal.	Frostal.	Nasal.
Centrums	Basioccipital . . .	Basisphenoid.	Presphenoid	Vomer.
Nieurapophyse	Exoccipital	Alisphenoid	Orbitosphenoid. .	Prefrontal.
Nasal spines.	Supraoccipital ..	Parictal	Frontal	Nasal.
Parapophyses	Paroccipital	Mastoid	Postfrontal.	Nonc.
Pleuropophyses	Scapula . .	Stylohyal	'rympanic	Palatal.
Hamapophyses	Coracoid........	Ceratohyal	Articular	Maxillary.
Homal spines.	Episternum	Basihyal.	Dentary	Premaxillary.
Diverging appendages	Fore-limb or fin	Branchiostegals	Operculum	Pterygoid and Zygorua.

Thus the basioccipital, basisphenoid, presphenoid and vomer are homoypes with the centruins of all the succceding vertebræ. The exoccipitals, lisphenoids, orbitosphenoids, and prefrontals, are homotypes with the neur:pophyses of all the succecding vertcbræ. The paroccipitals, mastoids and rostfrontals are homotypes with the transverse processes of all the succeeding ertebre. The, supraoceipital, parietal, frontal and nasal are homotypes rith the vertebral neural spines.
The petrosals, sclerotals, and turbinals are homotypes of each other, as aeing respectively sense-capsulcs of the splanchno-skeleton.
The suprascapula and scapula are together the homotypes of the stylohyal and epihyal ; of the tympanic, whether single or divided ; and of the palatal: nd all these are the homotypes of the plemrapopliyses collectively, whether rodified as ribs, hatchet-bones, or iliac bones, in the rest of the vertebral ogments.
The coracoid is the homotype of the ceratohyal, this of the articular diision of the mandible (with its subdivisions called angular, sur-angular and rronoid, in cold-blooded animals), and this, again, of the maxillary bone : all
four being homotypes of the hæmapophyses of the remaining vertebral segments, whether modified to form clavieles, pubie bones or isehia, ehevron-bones, sternal ribs, abdominal ribs, eartilages of ribs, abdominal eartilages or tendinous intersections of the modified intereostal museles ealled 'recti abdominis.'

The entosternal, when present, is the homotype of the basihyal, of the dentary or premandibular, and of the premaxillary bones; and these colleetively are homotypes of the liæmal spines of the rest of the vertebral seg. ments, whether retaining their spinal shape as in the eaudal hæmapophyses, or flattened as ordinary 'sternal bones,' or expanded and subdivided, like the neural spines in the eranium, in order to eomplete below the thorax of the bird or to form the plastron of the turtle*.

There reigns a beautiful parallelism in the kind and degree of modification of the parts of the nenral with the corresponding parts of the hæmal areh of the same vertebral segment: and as the serial homologics which have just been cnunciated succeed each other longitudinally (horizontally in beasts, vertically in man) in the axis of the vertebral column, so these manifest themselves in a direetion perpendicular to that axis.

The mambrium sterni of the bat developes a spine downwards, as the supraoceipital of the fish sends a spine upwards: the expanded manubrium sterni of the whalc repeats the eondition of the supraoecipital in birds and mammals. The form of the ordinary sternal bones in mammals is repeated by the parietal and supranecipital bones of the eroeodile. The divided sternum of the young ostrieh, before the two lateral ossifieations have coalesced at the median suture, repeats the condition of the divided parietal in most mammals. The development of the erista from the obliterated suture of the lateral halves of the expanded hæmal spine in the thorax of birds is paralleled by the development of the erista from the obliterated suture of the expanded neural spine in the cranium of earnivores. The interposition of the entosternal pieee in the elielonian earapace parallels below the interposition of the interparietal bone in the rodent eranium above.

Thus modifications and developments of the same kind and degree manifest themsclves in the upper (neural) as in the lower (hæmal) periplicral elements of the vertebre; and though not always in the same vertebra, nor in the same animal, yet they are suffieiently excmplified in the myelenecphatous series generally, to cstablish the eonelusion that the hæmal spines under all their morlifications are vertical homotypes, not of the centrums, as Oken, Meekel and Dc Blainville have supposed, but of the ncural spines of the same vertebre. In the composition of the neural arch of the oeeipital, parietal and frontal vertebre, wc find the neurapophyses repeating the pleurapophyses of the hæmal arch, and the parapophyses repcating the hæmapophyses in their relative positions to the eentrum and the spinc or key-bone of such arches.

Symmetry, polarity, or serial homology of parts of the same vertebral segment is usually still more strietly prescrved in the transverse direction, and is so obvious, as to lave immediately led to the detection of the homologous parts, whieh arc aecordingly distinguished as 'right' and 'left.'

Returning to the consideration of those serial homologies with whiels Vieq d'Azyr commeneed the study of thesc relations, I nay remark that the bones of the fore- and hind-limbs of some of the marsupial quadrupeds best illustrate the true relations whieh my revercd Preceptor in A natomy, Dr. Barclayt,

* These homotypical relations will be readily traced by the markings characteristic of the vertebral elements in Plate II.
+ In his explanations of Mitelel's Plates of the Bones, 4 to, $1824, \mathrm{pl} .24$, figs. 3 and 4, Dr. Barelay, without referring to Vieq d'Azyr's Memoir, simply enunciates the correct view of the serial liomology of the bones of the fore-arm and leg, as follows:-"On com-
was, I beliere, the first to enunciate in respect of the bones of the fore-arin and leg.

The skeleton of the Phalangiste or Phascolomys plainly demonstrates that the tibia (PI. II. fig. 16, 66) is the homotype of the radius (ib. fig. 15, 55 , and that the fibula ($i b$. fig. 16, 67) is the lomotype of the ulna ($i b$. fig. 15, 54). In the wombat the part of the fibula (67^{\prime}) representing the olecranon (0) is a detached sesamoid, as the olecranon itself is in the penguin and the bat: in the ornithorlynchus the fibula assumes those proportions and developes that process from its proximal cnd, the want of which in man and most nammals deceived Vieq d'Azyr, as it has misled, more recently, M. Cruvelhier. The complex explanation of the serial homologies of the bones of the upper and lower extremities proposed by the last named pains-taking anthropotonist*, involves more unnatural transpositions and combinations of the parts than those of the D'Azyrian hypothesis, which its ingenious author could not but admit seemed paradoxical; viz. that the anterior member of one side of the body repeated or corresponded with the posterior member of tthe opposite side. Cuvier, however, seems to sanction this idea by repeating the statement of Vieq d'Azyr, "C'est la droite d'une paire, qu'il faut compparer à la gauche de l'autret."
M. Flourens has exposed in detail the fallacies of this view in an excellent tmemoir in the 'Annales des Sciences' for 1838 (t. x. p. 35) ; in which he arrives at the same conclusions as Dr. Barclay, and from similar considera:tions from Comparative Anatomy, as to the serial homologies of the bones of :the fore-arm and leg ; and he confirms those of the carpal and tarsal bones, which had been so truly and acutely discerned by Vicq d'Azyr.

In mammalian quadrupeds generally the fore-limb takes the greater share in the support, the hind-limb in the propulsion of the body. The manus is aaccordingly commonly shorter and broader than the pes; this may be seen in the terminal segment of even the monodactyle hand and foot of the horse. Consequently the transverse direction prevails in the arrangement of the carpal bones and the longitudinal in that of the tarsal bones. The difFerence is least in the carpus and tarsus of the long and slender foreand hind-hands of the quadrumana. If the carpus of the chimpanzee, for axample, be compared with that of man, the first difference which presents :tself is the comparatively small proportion of the scaphoid which articulates *ith the radius, as compared with that in man, in whom the distal articuvation of the radius is equally divided between the scaphoides and lunare which are on the same parallel transverse series. In the orang (PI. II. ig. 13), the divided scaphoid $\left(s, s^{\prime}\right)$ extends, almost as much from the os lunare as from the radius, along the radial side of the carpus, to each the trapezium (t) and trapezoides (z); it is in great part intcrposed vetween the lunare (l) of the proximal row and the trapezium and trapezoid f the distal row of the carpal bones. The similarity of its connections, thereore, in the carpus with those of the scaphoid in the tarsus (Pl. II. fig. 14, s) ;so close that the serial homology of the two bones is unmistakeablc. The

[^80]+ Jeçnns d'Anat. Comp. t. i. 1836, p. 312.
astragalus (ib. a), then, in the foot, repeats the os lunare (l) in the hand, but usurps the whole of the artienlar surface of the tibia, and presents a larger proportional size, espeeially in man, whose ereet position required sueh exaggerated development of the astragalus, or homotype of the linare. The prominent part of the ealcaneum (Pl. II. figs. 6 and $24, c l^{\prime}$) obviously repeats the prominent pisiforme (fig. 6 and $13, p$), and the borly of the calcancum (fig. 6 and 14, cl) articulates with the fibula, as the euneiforme (fig. 6 and 13 , $c u)$ artienlates with the ulna. The strain upon the homotype of the pisiforme ($c l^{\prime}$) to produee the required effeet in raising the back-part of the foot with its superineumbent weight upon the resisting ends of the toes, required its firm eoaleseence with the homotype of the cuneiforme; in other words, the cuneiforme and pisiforme of the carpus represent together the os ealcis of the tarsus. With regard to the other boncs there is no diffienty; the cuboid (fig. $14, b$) supports the two uhar digits, $i v, v$, of the foot, as the uneiform bone (u) does those, Iv, v, of the hand: the eeto-euneiform (fig. $14, c e$) supports the digitus medius, $i i i$, of the foot as the os magnum (m) does that of the hand: the meso-euneiform (fig. $14, \mathrm{~cm}$) supporting the toe, $i i$, is the homotype of the trapezoid supporting the finger, 11 , and the entocuneiform (fig. 14, ci) is the homotype of the trapezium (fig. 13, t).

It is no unusual exeeption that of two essentially distinet bones in one segment being represented by their eoaleseed homotypes-a single bone-in another segment, as in the explanation above given of the serial homology of the ealeaneum. The seaphoides and astragalus in the tarsus of the eat and wombat (fig. 16, sc, a) are represented by the single scapho-lunar bone in the carpus (fig. $1.5, s c, l$). The seaphoid and a euneiform bone in the tarsus of the sloth and megatherium are represented by the single seapho-trapezium in the earpus. 'The seaphoid and uneiform bones in the earpus of the ox are represented by the single 'seapho-euboid' bone in the tarsus (fig. 18, s, b).

I have long entertained the opiuion that an appreeiation, vague and indistinct, perhaps, of eertain serial homologies, may have been assoeiated with, if it did not suggest, the epithets "scapula of the head," "femur of the head," \&e. applied to eertain eranial bones by Oken and Spix.

To Cuvier this language seemed little better than mintelligible and mystieal jargon, and he alludes to it with ill-disguised contempt*. It has been eommonly eited by those who have followed the great palæontologist in depreeiating the eranio-vertebral theory, as a suffieient instance, needing no comment, of the extravaganees essentially inherent in such attempts to reeognise and explain the fundamental pattern to which the modifieations of the cranial bones are subordinated. And it must be confessed that the expres. sions by whieh the philosophieal anatomists of the sehool of Sehelling have endeavoured to illustrate in the animal struetures the transeendental idea of 'the repetition of the whole in every part,' have operated most disadvantageously and diseouragingly to the progress of ealm and dispassionate induetive inquiry into that higher law or eondition upon which the power of determining the special homologies of the bones of the skeleton depends. Nevertheless the utteranees of gifted spirits to whom the common intelleetual storehouse is indebted for sueh original and suggestive generalizations as those eontained in the "Program über die Bedeutung der Sehäldelknoehen" are

* " Quant à M. Oken-il déclare les pic̀ees en question les partics ćeailleuses des temporaux, ou, selon son langage mystique, ' la fourchetle du membre supérieur de la telf.' "-Ossem. Foss. v. pt. ii. p. 75.-"Cet humérus de la tête de M. Oken dericut pour M. Spix le pubis de ectic même tête; ou, pour parler un langage intelligible, un des osselets de l'oniic, savoir, le marteau."-"M. Spix croit aussi qu'il répond à la partie ćeaillense du temperal, qu'il décore du titre d'iléon de la tête."- Ke. Ib. pp. $85,86$.
entitled to respectful consideration, even when they happen to be least intelligible or most counter to the eonventional expressions of the eurrent anatomieal knowledge of the day; and, for my own part, I must aeknowledge that reiterated attempts to detect their latent meaning have not been wholly unproductive.

Witll regard, for cxample, to the term 'scapula capitis' applied by Oken to the tympanic bone in birds (fig. 23 and Pl. I1. fig. 4,28), it is quite possible that some appreeiation of its serial homology with ribs and other modifieations of the pleurapophysial element, besides that exhibited by the blade-bone, may have lain at the bottom of the expression. And, we may ask, whether the error here be not rather in the mode of stating the relationship than in the relationslip itself? Had Oken, for example, said that the tympanie bone of the bird was a modified 'pleurapophysis,' or expressed by any other equivalent general term his idea of its standing in such general relation to its proper cranio-vertebral segment, his language would not only have been accurate, but might have been intelligible to Cuvier. When Oken ealled the 'tympanie' a 'cranial seapula' he unduly extended the meaning of the term 'seapula,' and eouverted it from a specific to a generie one. The tympanic is the homotype of the seapula, both being modified pleurapophyses, but each has an equal elaim to its proper or specific name indicative of their respective modifieations.

I am a ware that Oken meant more than mere serial homology when he called the tympanic the 'blade-bone of the head': it is part of the phraseology of the hypothesis of the head being a repetition of the whole body, \&c. But at the time when that anatomist wrote it was not known or suspected that the head already possessed the seapula, and that the modified pleurapophysis so ealled, aetually appertained to a segment of the skull (fig. 5, p. 17, and Pl. II. figs. 2 and 7, 50, 51). In the terms 'femur capitis,' 'tibia capitis,' 'fibula capitis,' 'pes capitis,' applied by Oken to the parts of the teleologically eompound mandibular ramus, and in those of 'ulna capitis' and 'manus capitis,' applied to the distal segments $(21,22)$ of the maxillary areh, we have not only instances of the attempt to express general relations of repetition or homology by speeial terms, but these modes of expressing the serial homologies of nos. $29,30,32$, and of 21 and 22, betrays the misappreciation of the general homologies of the locomotive extremities, and their relations to the vertebral arches supporting them.

To gain an insight into whatever proportion of truth may be involved in the ideas signified by the phrases above eited, it is neeessary to determine the essential nature of the parts ealled 'femur,' 'tibia,' 'humerus,' ' ulna,' 'manus,' ' pes, \&e., or the general homology, in short, of loeomotive members, and the attempt to master this problem has been not the least diffieult part of the present inquiry. Cuvier has offered no opinion, nor does he appear to have ever troubled himself with the attempt to deeipher the signifieation of the locomotive members of the vertebrate animals; i. e. of what parts of the common vertebrate model they are the modifieations.

Oken's irlea of the essential nature of the arms and legs is, that they are no other than "liberated ribs': "Freye Bewegungsorgane können michts anderes als frey gewnrilene Rippen seyn *."

Carus, in his ingenious endeavours to gain a view of the primary homologies of the locomotive members, sees in their several joints repetitions of vertebral bodies (tertiur-virbel)-vertebræ of the third degrect-a result of an ultimate analysis of a skeleton pushed to the extent of the term' vertebra' being made to signify little more than what an ordinary anatomist would call a 'bone.'

[^81]But these transeendental analyses sublime all differenees, and definite knowledge of a part evaporates in such unwarrantable extension of the meaning of terms.

It has been, however, I trust, satisfaetorily demonstrated that a vertebra is a natural group of bones, that it may be reeognised as a primary division or segment of the eudoskeleton, and that the parts of that group are definable and recognizable under all their teleologieal modifieations, their essential relations and eharaeters appearing through every adaptive mask.

A eeording to the definition of whieh a vertebra has seemed to me to be suseeptible, we recognise the centrum, the nenral areh, the hæmal arch, and the appendages diverging or radiating from the hæmal areh. The eentrum, though the basis, is not less a part of a vertebra than are the neurapophyses, hæmapophyses, pleurapophyses, \&e.; and eaeh of these parts is a different part from the other: to eall all these parts 'vertebre' is in effeet to deny their differential and subordinate charaeters, and to voluntarily abdieate the power of appreeiating and expressing them. The terms 'sceondary' or 'tertiary vertebre' eannot, therefore, be correetly applied to the parts or appendages of that natural segment of the endoskeleton to the whole of whieh segment the term 'vertebra' ought to be restricted.

So likewise the term 'rib ' may be given to each moiety of the hæmal areh of a vertebra; although I would confine it to the pleurapophyses when they present that long and slender form eharaeteristie of the thoraeie abdominal region, viz. that part of sueh modified hæmal or costal areh to whieh the term 'vertebral rib' is applicd in eomparative anatomy and the term 'pars ossea costax 'in anthropotomy: but, admitting the wider applieation of the term 'rib' to the whole hæmal areh under every modifieation, yet the bony diverging and baekward projeeting appendage of suel rib or arch is something different from the part supperting it.

Arms and legs, therefore, are developments of eostal appendages*, but are not ribs themselves liberated: although liberated ribs may perform aualogous functions, as in the serpents and the Draco voluns.

If then the arms or peetoral members be modified developments of the diverging appendage of the seapulo-coracoid areh \dagger, and if this be the hæmal arch of the oeeipital vertebra, it follows that the peetoral members are parts of the head, and that the seapula, coraeoid, humerus, radius and ulna, earpals, metaearpals and phalanges, are essentially bones of the skull.
The transeendentalism, therefore, which requires for its illustration that the maxillary arehes be the arms and hands of the head, meets its most direet refutation in the faet of the diverging appendages, properly ealled arms and hands, belonging aetually to one of the modified segments of whieh the head itself eonsists.
The head is, therefore, in no sense a summary or repctition of all the rest of the body: the skull is a provinee of the whole skeleton, eonsisting of a series of segments or 'vertebre' essentially similar to those of which the rest of the skeleton is constituted.

Most of the phrases by whieh Spix \ddagger attempted to systematize and earry out the repetition-hypotheses of Sehelling and Oken, as applied to the osteology of the vertebrate skull, may be similarly explained, and when well-wimnowed some grains of truth may be recovered.

In denominating the palatine bone the 'hyoid bone of the faee,' Spix endeavours to express a relation of general homology by a term whieh should be confined to the enuneiation of a special homology: but he adds "eornui ossis hyoidei anteriori analogum," which shows an almost correet appreei-
\ddagger Cephalogenesis, fol. 1815.
ation of the serial homology of the palatine bone. It answers, however (see no. 20 in figs. 1-6, Pl. 1I.), in the maxillary arch to the stylo-hyal or proxinal element (no. 3s) of the hyoidean arch, not to the cerato-lyal or hemapophysial element (40); and it nceds only to recognise the palatine as the 'plcurapophysis ' of its vertebral segment, to appreciate all its true scrial homologics. It might as well have been called the 'tympanic pedicle of the facc,' the 'styloid process of the face,' the 'scapula of the face,' or the 'ilium of the facc', according ito Oken's and Spix's faulty method of expressing serial homological relations, since it holds in its vertebral segment the same place which each of the abovenamed bones respectively does in its segment.

So also, with regard to the term 'os facici iliacum' applicd by Spix to the mastoid (s), the error lies not only in the application of a special term to exipress a general homological relation, but in the supposed serial homology so expressed. Had Spix detected, in a cranial vertebra, the precise element sanswering to that called 'iliac bone' in a post-abdominal vertebra, yet it would hare been more proper to have signified such serial homology by giving the general term applicable to such parts, as abstract vertebral elements.

The fact is, however, that the mastoid (s) is the parapophysis of its vertebra, whilst the ilium is a portion of the pleurapophysis of its vertebra; and :the mastoid is serially homologous with the transverse process of a sacral Wertebra (fig. $27, p$), not with its expanded rib or 'ilium'; it is not, therefore, a repetition of the ilium in the skull. The true expression of the ideas which suggested the terms 'ilium of the head,' 'scapula of the head,' \&c., will be found in the true enunciation of the serial homologies of the vertetbrate skeleton.

Conclusion.

It finally remains for future inquiry, admitting the explanation of the endo--skeletal archetype given in the present Essay to be the true one, whether such is the ultimate attainable generalization, or whether we may not gain an insight into the nature of the force by which all the modifications of the vertebrate :ikeleton, even those subservient to the majesty of man himself, are still subordinated to a cominon type.

We perceive in the fact of the endoskeleton consisting of a succession of seginents similarly composed,-in the very power, in short, of enunciating pecial, general and serial homologies, -an illustration of that law of vegetative or irrelative repetition which is so much more conspicuously manifested by the segments of the exoskeleton of the invertebrata; as, for example, in the rings of the centipede and worm, and in the more multiplied parts of the tkeletons of the echinoderms.

The repetition of similar segments in a vertebral column, and of similar elements in a vertebral seginent, is analogous to the repetition of similar crystals as the result of polarizing force in the growth of an inorganic body.

Not only does the principle of vegetative repctition prevail morc and more is we descend in the scale of animal life, but the forms of the rcpeated parts of the skeleton approach more and more to geometrical figures; as we sec, or example, in the external skeletons of the cehini and star-fishes: nay, the calcifying salt actually assuncs in such low-organized skeletons the very arystalline figures which characterize it when deposited, and subject to the ;encral polarizing force, out of the organized body. Herc, therefore, we rave direct proof of the concurrence of such gencral and all-pervading polarzing force with the adaptive or special organizing force in the development of an animal borly.

The marvellous pliænomena of this development have, hitherto, been explained by two hypotheses or forms of expression-the one, as the result of 'vital properties' cither peeuliar to living matter or common to all, but latent in dead, matter; the other, as clue to the operation of one or more 'vital prineiples,' vital forces, dynamies or faeulties, answering to the idéa of I'lato, deemed by that plitosopher to be superadded to matter and mind, and which he defined as a sort of models, or moulds in whieh matter is east, and which regularly produee the same number and diversity of speeies.

Now besides the iféa, organizing prineiple, vital property, or force, which produees the diversity of form belonging to living bodies of the same materials, whieh diversity cannot be explained by any known properties of matter, there appears also to be in eounter-operation during the building up of such bodies the polarizing foree pervarling all space, and to the operation of which force, or mode of foree, the similarity of forms, the repetition of parts, the signs of the unity of organization may be mainly ascribed.

The platonic iééa or speeific organizing prineiple or foree would seem to be in antagonism with the general polarizing foree, and to subdue and mould it in subservieney to the exigences of the resulting specifie form.

The extent to which the operation of the polarizing or vegetative-repeti-tion-force is so subdued in the organization of a specific animal form becomes the index of the grade of such species, and is direetly as its aseent in the seale of being. The lineaments of the eommon archetype are obseurcd in the same degree : but even in Man, where the speeifie organizing force has exerted its highest power in eontrolling the tendency to type and in modifying each part in adaptive subserviency to, or eombination of power with, another part, the extent to which the vegetative repetition of segments and the arehetypal features are traceable indieates the degree in which the gencral polarizing foree may have operated in the arragement of the parts of the developing frame: and it is not without interest or devoid of significanee that such evidenee should be mainly manifested in the system of organs in whose tissue the inorganie earthy salts most predominate.

With regard to the 'adaptive force,' whatever may be the expressions by which its nature and relations, when better understood, may be attempted to be explained, its effeets must ever impress the rightly eonstituted mind with the conviction, that in every species "ends are obtained and the interests of the animal promoted, in a way that indieates superior design, intelligenee and foresight; but a design, intelligenee and foresight in whieh the judgement and reflection of the animal never were concerned; and which, therefore, with Virgil, and with other studinus observers of nature, we must aseribe to the Sovercign of the universe, in whom we live, and move, and have our being*."

* Sce Barclay, Life and Organization, 8vo, 1822.

IHEAD [Insert at the end of the Report.

been appl IUid. p. 516) : but he also ascribes a distinct petrosal in birds, deil der Schläfbein) to chelonians, ophidians and sauid. p. 507), which must be either part of the exoccipital" of the sphenoid.
aistes ont huppentheil des Schläfenbeins" (in fishes, reptiles and er gives fintere ththeilung des Schläfenflugels (in monotreines), one in fish "Fclsentheil desselben (os petrosum)," Bojanus.
by Geoffreine Flügel des Kcilbcins," Bojanus ; "Vordere Schla-
" Köstlin.
le qui repthein, Köstlin.
193. Futoideum, Bojanus and Köstlin.
hyal of ths transversum," Köstlin.
itue de la :lenktheil des Schlafensbcin," Köstlin; "Paukenring19. 38, 39 :" Brjauns.
nals by Cumenfligel des Keilbein, Bojanus.
thich the "fort:at\%, KÖnilin; Fingelisein, Bojanus.
ces."-Ossherches sur les Poissons Fossilcs, 4to, t. i. 1843.
Corporis humani Pabricîi, 8vo, 1751.

SOEMMERRING ${ }^{8}$.

Corpus vertebræ.
Arcus posterior rertebræ, seu radices arcus posterioris.
Radix prior seu antica processus transversi vertebre.
Processus transversus vertebræ cervicalis. Costa, sen pars rertebralis, seu ossea, costæ.
Cartilago costæ seu pars sternalis costre; (in the abdomen) inscriptiones tendiner musculi recti.
Processus spinosus rertebræ.
Ossa sterni et processus ensiformis; (in the abdomen) linea alba.

Radix posticus processus transversi vertebre, (and) processus transversus.
Processus obliquus vertebræ.
der Wissenschaften zu Berlin, 1834. The terms adopted in most of the recent works of the German zootomists correspond with those of John Müller.

I Leçons d'Anatomie Comparée, t. i. edit. 1835.
${ }^{8}$ De Corporis Humani Fabricâ.

DESCRIPTION OF PLATES.

PLATE I.

In each of the figures the nos. upon the bones answer to those in the first column of Table I. and Pl. II., except where othernise expressed.
ig. 1. Skull of a Maccaw (Culyptorhynchus), see pp. 41, 42, 61.
ig. 2. Skull of a Scienoid fish, (Pristipoma).
ol. Foramen in nasal neurapophysis (prefrontal) for olfactory nerve.
ig. 3. Section of a skull of a Siluroid fish, (Bagrus).
c. Centrum of ordinary abdominal vertebra.
n. Neural arch of ditto. c5. Centrum of 5th corporal vertebra. ch'. Portion of peripheral or cortical part of the samc centrum, forming the posterior aperture of the aortic canal.
n_{5}. Neurapophysis of the same vertebra, separately perforated by the motor and sensitive roots of the spinal ncrve.
c4. Centrum of 4 th vertebra.
$c_{4}, e x$. External or cortical development of same centrum.
n_{4}. Neurapophysis, and p_{4} parapophysis, of same vertebra.
c3. Centrum of 3 rd vertebra.
c 3, ex. External or cortical development of same centrum.
n_{3}. Neurapophysis, and p^{3} parapophysis, of 3 rd vertebra.
$c x$. Centrum of 2 nd or axis vertebra.
$c x, e x$. External or cortical development of same centrum.
$n x$. Neurapophysis of axis. $n s, x$. Neural spine of axis.
$p x$. Parapophysis of axis.
$c a$. Centrum of 1 st corporal vertebra or 'atlas.'
ca, ex. External or cortical development of same centrum.
$n a$. Neurapophysis of atlas separated from its centrum.
$p a$. Parapophysis of atlas.
$c h$. Anterior aperture of aortic canal, formed by the development and coalescence of the inferior cortical portions of the bodies of the five anterior vertebræ of the trunk.
co. Centrum of occipital vertcbra.
in. Internal part, and ex external or cortical part of the anterior prolongation of the same centrum.
no. Neurapophysis of occipital vertebra; 2 is a continuation of the same bone, forming its otocranial plate.
rs, o. Neural spine of occipital vertebra.
cp. Centrum of parictal vertebra: it appears to consist of th denser cortical part only.
n p. Neurapophysis of parietal vertebra: the hinder figure 6 mark the otoeranial plate which eombines with 2, 8 (oecipital par apophysis), and 12 (parietal parapophysis), in forming the chambe for the cartilaginous petrosal or aeoustic capsule.
$c f$. Centrum of frontal vertebra, connate with $c p$.
$n f$ 10. Neurapophysis of frontal vertebra.
$n s, f \ldots$. Neural spine of ditto.
cn. Centrum (represented by its eortieal part) of nasal vertebra.
$n n$. Neurapophysis of ditto: it coalesees with its fellow at th median line.
$n s, n$. Neural spine of nasal vertebra: it coalesces anteriorly wit the centrum; elosing there the neural canal.
tr. Intervertebral foramen between parictal and frontal neur apophysis, for the exit of the trigeminal nerve.
op. Foramen in frontal neurapophysis, for the exit of the opti nerve.
ol. Foramen in nasal neurapophysis, for the exit of the olfactor nerve.
The two foramina for the nerves of the epencephalie segmen are below the letters $n o$: beneath the foramina is the 'sinu auditorius.'
Fig. 4. Upper view of part of the preceding cranium : chiefly to show th modifications of the corporal parapophyses, $p 6$ to $p a$, as they ap proach the region of the eranial vertebræ: here $p o$ is the oceipita parapophysis; $p p$ the parictal parapophysis, and $p f$ the frontal par apophysis. $n s, f$ the permanent fontanclle in the bifid frontal spint $p l$ the oecipital pleurapophysis; the letters indieatc the part answerims to the tubercle of the human thoracic rib, which here bifureates ani articulates with both the parapophysis of its own segment (4) an with that of the preceding segntent (8). The numbers give th special homologies of the bones, aceording to Table I.
Fig. 5. Seetion of the skull, atlas and axis of a sword-fish (Xiphias Gla dius).
$c x$. Centrum of the axis vertebra.
$n x$. Neurapophysis of ditto. $s x$. Neural spine of ditto.
$c a$. Centrum of the atlas. $n a$. Neurapophysis of ditto.
$s a$. Neural spine of ditto.
co 1. Centrum of the occipital vertebra.
no. Neurapophysis of ditto. nso. Neural spine of ditto.
$p o$. Parapophysis of ditto. cps. Centrunn of parietal vertebra.
$n p$. Neurapophysis of ditto. $c f_{9}$. Centrum of frontal vertebra
$n f$. Neurapophysis of frontal f. Medullary part of ditto. vertebra.
c n. Centrum of nasal vertebra. $n s, f$. Neural spine of fronta vertebra.
$n n$. Neurapophysis of nasal vertebra, which, by its cellular struc
ture, resembles that, ealled ethmoid, in mammals.
$n s, n$. Spine of nasal vertebra.
Fig. 6. Oecipital and five following vertebræ of Fistularia tabaccaria.
c s. Centrum of fifth corporal vertebra.
p5. Parapophysis of ditto.
p. Diapoplysis of ditto.
$n f$. Neural spine of ditto.
$c 4, c 3, c x, c a$. Elongated and immoveably articulated centrunis of four anterior eorporal vertebres.
p_{4}, p, $p x, p a$. Similarly modified parapophyses of ditto.
$n_{4}, n 3, n x, n a$. Similarly modified neurapophyses and spines of ditto.
co. Oeeipital eentrum; by a rare exeeption in the elass of fishes this presents a convex artieular surfaee to the atlas.
$n o$. Oceipital neurapophysis. $n s, o$. Oceipital neural spine.
po. Oeeipital parapophysis.
Fig. 7. Skull and anterior trunk-vertebræ of the loach (Cobitis).
$p^{\prime} l_{5}$. Pleurapophysis of fifth vertebra of the trunk.
s 5. Neural spine of ditto.
$p l$ 4. Pleurapophysis of fourth vertebra.
s_{4}. Neural spiue of ditto.
$p x, p l x$ and 3. Pleurapophyses and parapoplyses of third and second vertebre of the trunk, anehylosed and expanded to eontain and protect the air-bladder; being modified, like the parapophyses of the occipital and parietal vertebræ, in relation to the organ of hearing.
n 3. Neurapophysis of third trunk-vertebra.
s з. Spine of ditto.
$s x$. Spine of axis or second trunk-vertebra.
$c a$. Centrum of atlas.
$n a$. Neural areh of ditto.
m, n. Ossicles diseovered by Yrof. Weber, which bring the tympaniform air-bladder into conmunication with the acoustie labyrinth.
The great fontanelle or foramen between the bifid spine ($7, \tau$) of the parietal vertebra is the homologue of the small hole in the parietal bone of tmany saurians, ealled 'foranien homianum.'

PLATE II.

This Plate includes diagrams of the ideal pattern or archetype of the verstebrate endoskeleton, and of the modifications of it characteristic of the four great divisions of the vertebrate subkingdom, viz. fishes, reptiles, birds, mam: mals, and of man.

In each figure the parts or 'elements' of the four anterior segments-the seat of the chief modifications in relation to the lodgment of the brain, the action of the jaws and tongue, and the interposition of the sense-organsare numbered as in the columu of Nomina in the Plate, and as in the first column of the Table of Synonyms, No. 1.

As the four anterior segments of the neural axis are called collcetively 'brain' (encephalon), so the four corresponding segments of the vertebral axis are ealled eollectively 'skull' (cranium). The head thercfore is not otherwise a repetition of the rest of the body, than insofar as eaeh segment of the skull is a repetition or 'homotype' of cvery other segment of the body; eaeh being subject to modifications which give it its individual eliaracter, without obliterating its typical featurcs. So neither are the 'arms' and 'legs' repeated in the head in any other sense than as the eranial segments may retain their diverging appendages. The 'fore-limbs' arc actually
such appendages of the occipital vertebra, which undergo modifications elosely analogous to those of the appendages of the pelvic segment or 'hind limbs.' And inasmuch as in one class the pelvie appendages, with their supporting hæmal areh, are detached from the rest of their segments, and sul)jeet to changes of position (fig. $2, \mathrm{~V}, \mathrm{~V}^{\prime}, \mathrm{V}^{\prime \prime}$), so also in other classes the appendages of the occipital segment are liable to be detached with their sustaining hæmal areh, and to be transported to various distances from their proper ecntrum and neural arch.

The head therefore is not a virtual equivalent of the trunk, but is only a portion, i.e. certain modified segments, of the whole body.

The jaws are the modificd hæmal arches of the first two segments; they are not 'limbs' of the head.

The different elements of the primary segments are distinguished by peeuliar markings :-
the neurapophyses by diagonal lines, thus :-/IINIIIII
the diapophyses by vertical lines :-\|||||||
the parapophyscs by horizontal lines:-
 the pleurapophyses by diagonal lines :-
the hæmapophyses by dots :-..........
the appendages by interrupted lines:- -
the neural spines and hæmal spines are left blank.
In certain segments the clements are also specified by the initials of their names, as in the third segment in fig. 1, and the fourth in fig. 2, for example :-
$n s$ is the neural spine.
n is the neurapophysis.
$p l$ is the pleurapophysis.
c is the ecntrum.
h is the hæmapophysis.
$h s$ is the hæmal spine.
a is the appendage.
Fig. 1. Ideal pattern or archetype of the vertebrate endoskeleton, as shown in a side view of the scrics of typical segments or 'vertcbre' of which it is composed, with the commencement indicated at the two ends of those modifications, which, according to their kind and extent, impress class-characters upon the type.

The four anterior ncurapophyses, $14,10,0,2$, give issue to the nerves, the terminal modifieations of which constitute the organs of special sense.

The first or foremost of these is the organ of smell (18,10), always situated immediately in advance of its proper segment, which becomes variously and extensively modified to inclose and protect it.

The second is the organ of sight (17), lodged in a cavity or 'orbit' between its own and the nasal segment, but here drawn above that interspace.
The third is the organ of taste, the nerve of which (gustatory portion of the trigeminal) perforates the neurapophysis (6) of its proper segment (vertelra, parietalis seu gustatoria), or passes by a noteh between this and the frontal vertebra, to expand in the organ which is always lodged below in the cavity called 'mouth,' and is supported by the hæmal spinc (41,42) of its own vertebra.

The fourth is the organ of hearing (16), indicated above the interspace
etween the neurapophysis of its own (oceipital) and that of the antceedent arietal) vertebra, in which it is always lodged; the surronnding vertebral ements being modified to form the eavity for its reeeption, which I have Illed ' otoerane.'
The wouth opens at the interspace between the hemal arches of the anrior aud seeond segment; the position of the vent varies (in fishes), but ways opens behind the pelvic areh (P^{\prime}) when this is ossified.
Outlines of the ehief developments of the dermoskeleton, in different ver:brates, which are usually more or less ossified, are added to the endoskeleth arehetype*; as, e.g. the median horn supported by the nasal spine (is) in te rhinoeeros; the pair of lateral horns developed from the frontal spine (1) in uost ruminants; the median folds (Di, DII) above the neural jines, one or more in number, coustituting the 'dorsal' fin or fins in fishes ud cetaceans, and the dorsal hump or humps in the buffaloes and eainels ; milar folds are sometimes developed at the end of the tail, forming a 'caual' fin, C, and beneath the hemal spines, eonstituting the 'anal' fin or fins, of fishes, or the subeandal dermo-adipose tumour of the Cape-sheep.
Fig. 2. Typical skeleton of a fish (elass Pisces). The plane of the nterior hremal areh ($20,21,22$) is here raised to parallel with the axis of the unk, and its apex or spine (22) is modified and developed so as to articuate with the neural spine (15) of the same segment, whieh thus beenmes losed anteriorly; both 22 and the hæmapophysis 21 are developed downards and backwards in relation to the protractile and retraetile motions of le areh; and for the purpose of associating these motions with eorrespond$1 g$ ones of the suceeeding hremal areh, the diverging appendage is subdiided (23 and 24) and developed so as to artieulate with the pleurapophysis 25) of the next arch; a rudiment of an appendage (26) is attached in some shes to the hæmapophysis (21) of the nasal segment, but it will be observed at no new element is added to the hæmal arch; and, although the Lepiostens offers an exceptional instanee of subdivision of the pleurapophysis 21), that kind of modification is usually restricted to the diverging apendage.
In the next segment the hæmal areh has been the seat of unusual growth, ut retains more of its normal position and attachments. Its weight and bat of the appendages it supports have required an extension of the proxialal articulation of its pleurapophysis (2s a) from its proper parapophysis (12) ackwards to the next parapophysis (8) ; and the pleurapophysis itself is ubdivided into two, three, or four overlapping pieces for the final purpose splained in p. 112; but it is evident that no new element has been intro-

[^82]duced, beeause the extremitics of the subdivided pleurapophysis ($28 a$ and 28 d) retain their normal connections, the one with the parapophysis (12), the other with the hæmapoplysis (29,30). This element is also subdivided, for the same final purpose as the pleurapophysis; and its squamous union with the hæmal spine (32) is retained. Yet the connections of 20 with the condyle of the pleurapophysis and of 32 with its fellow, forming the free apex of the inverted areh of the second segment, show that the complexity is the result of mere (teleological) subdivision, and that no new part has been added to the typieal clements as exhibited in the arehetype* (fig. 1, 29${ }^{32}$) ; every anatomist has rècognised the bones so numbered in the fish as the homologue of the single (undivided or anchylosed) bone forming the lower jaw (29-32) of the mammal (fig. 5) and of man (fig. 6). In addition, therefore, to change of shape and proportion, the parts of the arehetype may be modified by division and subdivision. And in this respect the pleurapophyses (25) and hæmapophyses ($29,30,31$) of the fish deviate further from the archetype than the same parts do in the warm-blooded vertebrates. Herein is manifested the early divergence to a special form for the lowest class, whieh the higher elasses do not assume in passing towards their own types. The diverging appendages are the seat of such excess of subdivision with special development of the divided parts, as best to countenance the idea of a superaddition of new parts to the typical element; yet the most cssential charaeter of the diverging appendage is retained under its extremest modification, as where it forms the wing of the bird or the arm of man; viz. its comnection by one extremity to a hæmal arch, and the free projection of the opposite subdivided extremity, carrying out with it a fold of integument. With regard to the diverging appendage of the hæmal arch of the second segment, its modifieations are arrested at different stages of departure from the simple archetypal form (31-37, fig. 1), as explained at pp. 66 and 112. The most common modification in bony fishes is that shown in fig. 2, where it is divided into two segments, and the second segment into three pieees ($35,36,37$), usually broad and flat, for the office explained at p. 112.

The parietal segment, or third counting baekwards, has the hæmal arch ($38-41$) detached from its proper supporting parapophysis (8) by the backward development of $23 a$ of the preceding segment. This is the first example of another modification, viz. that of disloeation, sometimes accompanied by great change of place, whieh has tended most to obseure the essential nature of parts, and their true relations to the areletype. The principle of subdivision still manifests itself in the elements of the lremal areh, especially in its spine, $41-43$; and in a greater degree by a vegetative repetition of the 'appendage' (41), without departure from its primitive ray-like form.

The pleurapophysis of the oecipital segment $(50,51)$ is divided into two, and its proximal end is usually bifurcate in fishes, articulating like the normal ribs of higher animals, by a 'head' and a 'tubercle' to two points of the neural areh of its segment.
Almost every stage of development and departure from the primitive type is manifested by the diverging appendage ($51-57$) up to the extent of modification attained by the typical osseous fish. The proximal segment is divided into two pieces ($\overline{d 4}$ and ${ }^{55}$), the next serment into four or more (56), and the last segnient into a greater but variable number of pieces, retaining the elementary form of rays.

The Lepidosiren (fig. 7) is eminently instructive by the retention in the occipital vertebra of the primitive condition of the appendage, as shown in the archetype (fig. 1, 53-57), modified only by segmentation of the ray. The
oleurapophysis of the arch (51) likewise retains its simple eylimdrical form, and s arriculated to its centrum, like the other ribs of the Lepidosiren, by an unlivided head.
'The hæmal arch of the filth segment (first of the trunk) is commonly deached from its centrum and neural arch in fishes, without being displaced sackwards. The pleurapoplysis $(p l)$ is short and simple, sometimes exoanded; the hæmapoplysis (58, h) is simple, long and slender. When this rell supports an appendage it is a simple diverging ray.

All the succeeding abdominal segments of the fish have their hæmal arches acomplete by bone; the hæmapophyses and spines retaining the prinitive ibrous condition. The pleurapophyses of most support diverging appenlages in the form of simple undivided bony rays.
A part of the hromal arch of a post-abdominal (pelvic) segment is ossified ${ }^{63}$), and supports a more complex appendage (69) in the form of one, two or nore jointed rays, which project beyond the surface and are enveloped by a old of skin forming the 'ventral' fin, V, making a pair with the one on the ppposite side. This partially ossified hæmapophysis articulates with its felow by its anterior apex, forming a 'symphysis ischii' seu 'pubis'; and, in ome fishes called 'abdominal,' it is comected to its proper pleurapophysis (62) If an aponeurosis representing its unossified continuation.

The remarkable degree to which one and the same part may be subject to he modification of change of position, is strikingly exemplified in this lower ortion of the pelvic arch with its appendages in fishes. It may be moved orwards, so that the symphysis of the pelvic arch is brouglit into comection rith that of the scapular arch; when, according to the length of the ossified oarts of the pelvic hæmapophyses, the species is either ' thoracic,' as when the entral fins are at V^{\prime}, or 'jugular,' when they are advanced to $\mathrm{V}^{\prime \prime}$. The eniversally acknowledged and long recognised special homology of the hæmal rch and appendages of the pelvic vertebra, as the 'ventral fins' of fishes, nder these changes of position, prepare us for the recognition of an analogous rodification of the hæmal arch and appendages of the occipital vertebra in be higher classes of vertebrata.
Beyond the abdomen the osseous and aponcurotic parts of the hæmal rches rapidly contract; the progressively elongated parapophyses usually end down and complete the inverted arch by their apical coalescence; ometimes distinct pleurapophyses continue to form these arches; sometimes hese elements may be traced, anchylosed with their fellows of the opposite ide, and with the coalesced extremities of the parapophyses. The bodies f a certain number of the terminal segments coalesce together in the typical sseous fishes, and support several neuial and hæmal arches and spines, usually ore or less expanded, and forming the basis of the caudal fin, C .
The ossified parts of the dermal median and symmetrical folds, constiating the dorsal (Dr, Dir), the anal (A), and caudal (C) fins, are added to he endoskeleton in fig. 2 ; in are the interneural spines ; $d n$ the dermoneural pines; ih the interhæmal spines; d / h the dermohæmal spines; these form o part of the true vertebral skeleton, and are peculiar to fishes. The diaram of the modified cranial segments is not complicated by the outlines of he sensc-capsules or mucodernal bones; the latter are shown in fig. 2, 72, 73, late I.
Thus, compared with the archetypal figure, the endoskelcton of the sh deviatcs by excess of development, manifested chicfly in the diverging ppendages of the four anterior or cranial segments, and by arrest of deelopment in most of the other segments; but the principle of polaric or
vegetative repetition greatly prevails, and more of the segments resemble one another than in any of the higher classes.

Fig. 3. The Crocodile is here taken as the type of the elass Repeiliu.
The hemal arch of the anterior segment is now firmly fixet by exessive development, chefly of its hiemapophyses (21), which have extended their attachments to all the elongated elements $(1,3,14$ and 15$)$ of their own neural areh. The diverging appendage (9.1) from the pleurapophysis (20) lixes the arch extensively to the centrums of the second and thind segments: the appendage from the hamapophysis (21) bifucates; one branch. divided inte two pieces (20 and 5). comeets the areh with the pleurapophesis (2s) of the next segment; the other branch (25) extends the attachment to the parapo. physis (12) of the same segment, and also to the appendage (24) of its enr areh.

The pleurapophysis (2s) of the frontal segment is molivided; it is repre sented as displaced and depressed: but in nature it still retains a small par of its eomection with its proper phempophysis (1:), although it is developer backwards so as chictty to articulate with that (s) of the following serg ment: it supports no diverging appendage. The hamapophysis (20-31 is more subdivided than in fishes, in retation to functions explained in pl 129. 123.

The excess of development of the homal arch of the fromtat rerteha i compensated by the defeet of development of that of the parietal one (as 41) ; and this constitntes the next great additional step in the deviation from the arehetype. Only the hamapophyse (10) are ossified: the hemal spine though much expanded and thatened, remains eartaginous, and the pheur apophysis is represented by a foble ligament. 'The whole areh is detached an displaced backwards, and its diverging appendages eense to be developed.

The tendeney to retrogradation manifested by the preeding hamal arehe is carried out to a striking extent in that (51,52) of the oecipital sogment (th fourth eounting backwards) : it overlaps the homotypal arehes of the Sth t the 11 th segments of the tronk: the ossified portions of hoth its constituen choment, 51 and 52 , are simple: the hamal spine 52^{\prime} is prolonged backward. The diverging appendage manifests, in comparison with that in the fish, a additional segment (53), which is single: the segment of two pieces (51 an 35) is now the seeond. The rays of the distal seegment are reduced to fir in number, which is never afterwards excended in the vertebrate subking dom. The dislocation and retrogradation of the posterior hemal segmet of the skull form the second chef additional feathre of departure from th archetype, as compared with the skeleton of tishes. The thid well-marke modification is the development of an inferion (eortical) portion of the bot of the atlas (ca, x), distanct from the main part of that centrum (ca), whic coalesees with that of the axis, and is commonly called its 'odontoid' pre cess (sce p. 93).

The nime segments that suceed the head resemble those of fishes in th non-ossitication of the hamapophyses and themal spines, but deviate furthe from the arehetype the minor development of the pleurapophyses. The: progressively elongate to the 12 th vertebra, where the hamal areh is con pleted by a hemapophysis and hemal spines.

The himapophyses are not so completely ossified as the pleurapophyse and they are divided from these by the interposition of eartilaginons piece a a; these pieces may be regarded cither as dismemberments of the them apophyses, or as mossified parts of the pleurapophyses. The divergin nppendages (a, a) are usually cartilaginons.

Beyond the 2 st stement of the trunk ${ }^{*}$ the pleurapophyses usnally ease to be represented either by bonc or cartilage: but the partially ssified hemapophyses are continued to those of the pelvic segments, ou nd $63, h$. In these segments the pleurapophyses reappear, and are diided into two parts, like those in the thorax: the proximal portions (pl , l) are short and thick; the distal portions have either conleseed into one road and thick plate ($62 p l$), or the distal portion of one plenrapophysis istill more remarkably developed and takes the place ol two: this question d discussed at pp. 160, 161. The two hæmapoplyses (63, 61) arc distinct nd well-ossified. The diverging appendage (65-69) has becn subject to he same kind and amount of development as that of the scapular arch 53-57). The first steps in the progression ol this metamorphosis from the rimitive type is shown in the Lepidosiren (fig. 9), and the Proteus (fig. 10). The modification of the pelvic segments and their appendages in the reptile orms another prominent feature of deviation from the archetypc. The leurapophyses are continued, progressively shortening, attached to the iapophyses of a certain number of the vertebræ that succeed the sacrum: he hæmapophyses are no longer attached to their extremities but are directly rticulated to the central elements, with a slight degrec of displacement, rhereby they articulate to another segment as well as to their own. The rode and degree of departure from the archetype are now such that difarent series of vertebral segments may be classed into groups, with ditinctive characters and names:-
The first four segments, by the fixcd union of their neural arches, as cranial Cr), under the collective name of 'skull.'
The next nine segments, moveably articulated, and with frec or 'floating' leurapophyses, as cervical, C, forming collectively the region called 'neck'.
The succeeding nine segments with ossified and moveable pleurapophyses nd hæmapophyses, as dorsal, D, forming the 'back,' 'thorax' or 'chest.'
The three following moveable vertebræ, without free bony pleurapophyses, s lumbar, L, furming the 'loins.'
The next two vertebræ, immoveably united, and with modified and nucheveloped hæmal arches and appendages, are called sucral, and collectively pelvis and hind limbs.'
All the other segments are 'caudul' and constitute the 'tail.'
The hæmal arch $(51,52)$ with the developed appendages (53-57 a) detached rom the occipital vertebra, may require to be specially noticed in this sumnary of the parts of the endoskeleton, as from the circumstance of its com-

* According to Curier, the pleurapophyses cease to appear after the 20th trunk-rertebra 3 the Crocodilis biporcalus, and after the 19th in Alligalor lucius. I allude to these diferences for the purpose of remarking that the conformity of organization is greater than rould appear at first sirht from the formule of the vertcbre of the different specics of rocodile cited in the Table at p. 220, tome i. Leçons d'Anatomie Comparéc, 1835. The umber of vertebre from the atlas inclusive to the sacrum is the same in each species, as rill be seen by the following extract :-

| | Cervical. | Dorsal. | Lumbar. | |
| :--- | :---: | :---: | :---: | :---: | :--- |
| Crocodile à rleux arêtes | 7 | 13 | 4 | $=24$ |
| Crocorlile du Gange | 7 | 14 | 3 | $=24$ |
| Caiman ì mus. de brochet | 7 | 12 | 5 | $=24$ |

The difference in the dorsal and lumbar series depends merely on the ossification or therwise of the pleurapophysial tendons or fibrous basis attached to the diapophyses of the frh, 21 st and 22nd vertcbre.

A slight change in the form and size of the plenrapophysis is all that distinguishes the irst dorsal from the last cervical vertebra in the Cuvierian Table.
monly remote position from its proper segment, it may not have becn thought of as a part included in the first class of vertebrec constituting the skull.

Many striking and extreme deviations from the archetype are manifested in the skeleton of the more abcrrant forms of the reptilia. The number of moveable trunk-scgments is reduced to the minimum in the Batrachia (e.g. $\overline{1}$ in Pipa), and increased to the maximum in the Ophidia (4.22 in Python). At first view the principle of vegetative repetition seems to have exhausted itself in the long succession of ineomplete vertebræ which support the trunk of the great constrictors: but by the endless eombinations and adjustments of the inflections of their long spine the absence of locomotive extremities is so eompensated that the degraded and mutilated serpent ean overreaeh and overeome animals of far higher organization than itself: it can outswim the fish, outrun the rat, outelimb the monkey, and outwrestle the tiger ; erushing the carcase of the great carnivore in the embrace of its redoubled coils, and proving the simple vertebral column to be more cffectual in the struggle than the most strongly developed fore-limbs with all their exquisite rotatory mechanism for the effective and varied application of the heary and formidably armed paws. And whilst the vertebral column of the ophidian order exhibits the extreme of Hexibility, that of the chelonia manifests the oppositc extreme of rigidlity : back, loins and pelvis constitute one vast sacrum, or rather abdominal skull, but a skull subordinated chiefly to the lodgment and defence of a mueh-developed hæmal system, and in which the pleurapophyses, hæmapophyses and their spines repeat the same modification of great expansion and fixed union by marginal sntures, whieh the nemapoplyses and spines undergo in the cranium of the higher vertebrates. The well-known determination of the ordinary clements of the typical vertchra in the thoracie-abdominal segments of the tortoise need not here be discnssed (see pp. 100, 101): but it is, perhaps, worthy of repetition that the neurapophyses exhibit the modification of ehange of position, like that which has been deseribed in the sacrim of the bird; being shifted from their own centrum over one halt of the next eentrum, thus adding to the strength and elasticity of the whole osseous vault (sec p. 95). The confluence of the neurapophysis (14) with its own moiety of the noural spine (15) has already been noticed (p.124) in the anterior segment of the cephalie skull of most chelonia. I may here add that the typical condition of the hemal (maxillary) areh of the same segment is well shown in the Limys expense. The pleurapophyses (palatines) meet at the base of the cartilaginous vomer, above and behind the poster:or nares; sweep outwards and downwards, give attachment to the hemapophyses (maxillaries) which advance and converge, and the areln is elosed below the nasal passage by the laxmal spine (premaxillary). Cut through the junetion of the hæmapophyses with the neurapophyses (prefrontals), and with the diverging appendages (malars), and the inverted arch is then suspended by its proper piers, the pleurapophyses or palatines.

In the connation or eoalescence of the neurapophyses and spines forming the parietal and frontal neural arehes in the ophidian and some chelonian reptiles, we pereeive a return to the eommon constitution of those arelies in the vertebræ of the trunk, in whieh the permanent separation of the neural spine from the neurapophyses occurs as a rare exception.

In the elass-skeleton (Aves) represented in fig. 4 the archetype is further departed from than in the typical reptilia; and when the general form of this diagram is contrasted with that of the first figure, the power of demonstrating the fundamental agrcement which reigns throughout, and which is equally manifested in the comparison of figure 4 with those of the piscinc and rep-
tilian skeletons, afforls a most striking proof of the unity of plan which pervades the whole series.

As compared with the crocolite (fig. 3) the proportions of the hamapophysis (21) and spine (22) of the anterior segment are reversed; there is a return towards the condition of the parts in fishes (fig. 2) ; the strenerth of the arch being chitfly due to the great developmont and extensive comections of wh, which usually sends a process upwards and hackwards between the divited neural spine (15) of its own to that (11) of the next -segment. The pleurapophysis (20) has often a slender rib-like lorm, and the appendages retain the form of bony rays. That (24) from the pleurapophysis is simple; that $(26,27)$ lirom the hamapophysis is divided in the embryobird: both concur in attaching the hrmal arch of the anterior segment to the pleurapophysis of the second segment. The meurapophyses of the anterior segment coalesce and form a single vertical bonc, slightly expanded above and sometimes appearing anterior to the lrontal.

The lixmal arch of the second segment is detached from its neural arch; sand, although its proper parapophysis (12) sometimes joins the next one (8), wet this exclusively supports, in birds, the pleurapophysis (25) of the frontal segment. The hamapophysis is developed, as in the reptile, from several ccentres ($29,29^{\prime}, 30^{\prime}, 31$), but these coalesce with each other and with the hromal spine, 32 , to form the single bone called lower jaw in most birds.

The hæmal areh ($40-46$) properly appertaining to 8 --the parapophysis of the parietal scgment-is detached from it, and freely suspended, somewhat retrograded in position beneath the next segment: its development has suffered as marked an arrest as in the crocodile.

The hæmal arch, with its appendages of the hindmost segment of the skull, is displaced backwards to a greater extent than in the reptile.

The pleurapophysis, 51, retains the form of a long, flat, slightly-arched rib: :the hæmapophysis (5z) is straighter and stronger. There are birds (Apteryx, e. g.) in which this arch is arrested at almost as early a stage of growth as is the antecedent (hyoid) arch of the skull. The clements of the neural arches of the skult, $1-15$, early anchylose together in most birds, with the exception of the centrum (13) of the foremost segnent, which more commonly coalesces with the pleurapophyses (20) of its hæmal arch.

The size of the brain now demands a modification of the neural arches superadled to those which they present in the cold-blooded vertebrates, and occasions a marked difference in the form of the skull: it is important to note how this is obtained. The nature of the modification is well shown in the young of those large birds which are devoid of the powers of flight. No new bone is introduced to increase the cranial walls and give the cavity its due capacity ; this is gained by excess of growth of common and constant elements; and, as las been shown in pp. 126-12S, those furthest from the centrum $(3,7,11)$ are the chief seat of such exeess. With regard to the neural spines of the frontal and parietal vertebræ, it is aecompanied by a temporary bipartition, the ossification commencing from two lateral centres in eacls; but the halves sonn coalesce with each other and with their sustaining neurapophyses ($2,6,10$).

In those scgments which, from the brevity and frec termination of the plenrapophyses, may be called 'cervical,' the elenents of the neural arch and also the pleurapophyses carly anchylose together in each segment, converting it into the single bonc, callerl in comparative osteology a 'vertebra,' and these vertebree are remarkable for their great number in most birds; and consequently the neek is as remarkable lor its great length and flexibility. The detached hamapophyses (53) of one of these vertebre, (which rertebra,
by the analogy of the fish ($\mathrm{fig} .2,55$), should be the atlas,) commonly coalesced together at their distal ends forming a bony areh, like a slender edentulous lower jaw, have followed the hæmal areh of the oceipital vertebra $(51,55)$ in its retrograde course, though not quite to the same extent. These mintually anchylosed hæmapophyses (53) forming the bone, called 'furculum' in ornithotomy, are generally the only pair of ossificd cervical hamapophyses. If, however, we define the cervical vertebro, as in the erocodile, by their mobility and the free termination of their plcurapoplyses, we may then reengnise in some birds the detached hæmapophyses of the last cervical vertebra attached, as at h, to those of the succeeding segment: this structure may be observed in the common goose (Anser palustris). The pleurapophyses of the postcrior cervical vertebræ are fice, and rapidly clongate. The hæmapophyses of the segments with complete hæmal arches are bony, and are commonly defined as 'sternal ribs', their pleurapophyses being called 'vertebral ribs,' agreeably with the restricted anthropotomical meaning of the term 'vertcbra.' These pleurapophyses support bony appendages (a a), which serve, like those of the foremost hæmal arch of the skull, to connect their own arch to the next and associate them together in movement*. After six or seven segments with these typical hæmal arches come others with shorter pleurapophyses terminating freely, not reaching their hæmapophyses, one of which, ossified, is shown in the diagram at h^{i}, adhering by its clistal end to the preceding lææmpophysis and terminating freely above. These 'floating sternal ribs' are more numerous in the crocodile (fig. 3,7). The hæmal spines of the dorsal segments with complete hæmal arches, become the seat of the most extensive and characteristic modifications of the avian type of skeleton. They are greatly extended in breadth, and, like the correspondingly expanded ncural spines of the eranial vertebre, are developed from two lateral moieties; but the individual spines, indieated by dotted lines in the diagram (60), are not ossified from separate centres, but contimously, so that the hæmal spines of six or cight vertebræ are at first represented by a pair of osscous plates. A cartilage is usually extended vertically from their median junetion, which, when ossified, forms a strong crest or ' kccl ' (60°). The hemal spinc of the seapular arch (52^{\prime}) is sometimes ossified from a proper centre; as is also a piece prolonging the series posteriorly: bnt all soon coalesce into one bone ealled 'sternum.' The antcrior portion, 52 '. has received the name of 'cpisternum', the median kecl, 60 ', that of ' entosternmm,' the posterior piece, which sometimes remains cartilaginous, that of 'xiphisternum.' In the terrestrial birds incapable of flight the kecl or 'entosternum' is not developed: in the rest of the class the extent of this part and of the ossified portion of the body of the sternum bears a direct ratio to their power of flight; the peculiar modification of these extreme clements of the dorsal segments being governed by the size of the muscles moving the wings.

The next great deviation from the typical standard, peculiar to birds, is the great extent of the vertebral axis whieh is cmbraced by the enormously developed pelvic pleurapophyses, 62 , and the unusual number of segments which, being thus deprived of reciprocal motion, grow together and form, according to this character, the bone or region called 'sacrum.' In investigating the structure of this part of the endoskeleton in the embryo-bird, the neural arches are found to manifest a change of position analogous to,

[^83]though less extensive than, that of certain of the hamml arches of more auterior segments (51-5:, e.g.) : the results of this analysis arc fully detailed at ph. 95 and 159 . Mlost of the pleurapophyses of the sacral vertebree are stunted in their growth, which may literally be said to be stopped by the pressure upon their extremities of the overgrown distal portion of one of their homotypes, forming the bone called 'ilimn' (is, $p l$). But one or two of the pleurnpophyses at the anterior part of the series ($\beta l)$ escape from bencath the 'ilime' to terminate fiecly at some distance below it : these are usually bifurcate at their proximal ends, and moveably articulated to their anchylosed centrums and diapophyscs: the shorter anclyylosed sacral pleurapopheses lave simple proximal ends and articulate in the cmbryo to the interspace between their own and the adjoining contrum, as shown in the cut $27, p l$. , to which they soon bccome anchylosed.

The contemplation of the modifications of the different natural segments in the trunk of the bird, particularly the frecdom of some elements and the fixation of others, strongly impresses on the mind the purely artificial character of the regions of the spine which have been transferred from anthropotomy into the anatomy of the vertebrate animals. Thus Cuvier declares, "Il ňg a point de vertèbres lombaires proproment dites*." And a later author:-"Die Wirbel zerfallen in Hals- Rücken- Krcuzbein- und Stusswirbel ; eigentliche Lendenwirbel sind gewöhnlich nicht zu unterscheiden."

Cuvier's negation of proper lumbar vertebræ in birds of 1799 is reproduced in succeeding systems and handbooks of comparative anatomy down to the latest by Siebold and Stannius, e. g. of 1846 . But the student of matomy in its wider acceptation will understand that the scgments homologous with those included under L in fig. 3, are by no means wanting in fig 4, but only otherwise modified.

It may be regarded as highly probable at least, from the striking points of agreement which are observable in the organization of the crocodile and of the bird, that, counting backwards from the first 'dorsal' in figs. 3 and 4, the next twenty segments are homologous in both. But, in the bird, those that answer to the three or four last dorsal vertebre in the crocodile are anchylosed together, and the last of thesc had its pleurapophyses modified to form abutments against the elongated ilia. The next thrce scyments, answering to the lumbar in the crocodile, are modified as in the last 'dorsal.' The two following seginents similarly modified will answer then to the two sacral vertebræ of the crocodile, and anchylosis extends backwards so as to include two or three vertebræ homologous with the anterior caudals in the crocodile. This appears to be the true interpretation of the cnormous 'sacrum' of the bird; it is not merely 'lumbo-sacral' but 'dorso-lumbo-sacro-caudal', including as it does representatives of each of those classes of vertebre in the crocodile, but which have lost the artificial characters that distinguished them in that nearest allied existing vertebrate. The special homologies are indicated by the letters D, L and S .

The characters of the regions of the vertebrate skelcton are, as already remarked in refercnce to the crocodile, artificial, and are used for the sakc of convenience in describing and comparing the vertebre of diffcrent species. Those, thercfore, are the best which are the most constant and most readily applicable in any given class. Procceding to assign such to the bird, as in the crocodile, unbiassed by anthropotomical characters of the vertebral regions, all those may be called 'cervical' in the bird that extend from the skull to the first vertebra with the hremal arch complete, and those dorsal

[^84]that extend from that vertebra inclusive, to the first vertebra embraced by, and anchylosed to, the iliac bones. One usually finds in the falcons, the gallinaceous birds and in some waders, five or six of the centrums and neural arches of the dorsal vertcbræ anchylosed into one mass, a single free centrum usnally intervening between this mass and the true sacrum. Some eomparative anatomists call that cervical vertebrat the 'first dorsal' in which the pleurapophyses retain, or begin to regain, their moveable articulations: but this character varies in different individuals of the same species. I have cven fomen the pleurapophysis of the last cervical vertchra anchylosed on one side and not on the other.

The retention by the pleurapophyses of moveable articulations with the eentrum, might also seem a good character of dorsal vertebræ at the hinder end of the series; but it is inconstant: I have found those elements anchylosed in one individual and free in another of the same species, in the anterior vertebræ, which are sacral by coalescencc. All those vertebræ may be called for convenience 'sacral' in the bird, which are confluent by both centrims and neural arches with each other and with the iliac benes; and this confluenee is so complete that it usually requires a vertical section and reference to the nerve-outlets in order to determine their number. The free vertebre that succeed these are the caudal, of which the last, as in most osseous fishes, is a coalesced congerics of several, though for convenience, counted as one, and called in ornithotomy the plough-share bone (c, n, h). Although so many segments of the bird's skeleton are modified to transfer the weight of the horizontal trunk upon the ilia (62), the 'pelvis,' as in the crocodile, has but two hemapophyses, 03,64 , below : it is eharacteristic of birds, however, that these are not united at their distal ends to their fellows of the opposite side, either with or without the intervention of a lææmal spine. The exception which the ostrieh offers in regard to the anterior pair (pubic bone, 64) and that which the thea presents in respect to the posterior pair (isehia, 63), serve to prove the rule of the inferiorly open pelvis in birds.

In regard to the diverging appendages of the two hæmal arches (scapular and pelvic) which have been sclected for development into locomotive organs in all classes of vertebrata, the eorresponding segments (earpal, 56 , and tarsal, 6.) agree in the paucity of their divisions, two bones in cach, in all birds; and the succecding segments (metacarpal and metatarsal) in consisting of three eoalesced bones in both wing and leg, supporting digits answering to those marked II, III and Iv, ii, iii, ir, in the crocodilc. Such at least is their general elaracter, the minor differenees being the following:-In the handsegment of the wing the anchylosed metacarpal of digit 11 is very short, represented as it seems only by its proximal end; those of the digits numbered in and Iv attain their mormal length, and are anchylosed together at the extremities only, with an interspace betseen their shafts.

In the metatarsins the three homotypal bones eoalcsce throughout their length, except in the penguin, where interspaces are left between their shafts or middle parts. But they also coalesce prosimally with the two primitively distinct tarsal bones (69), whilst the metacarpals coalesce proximally with only part of the carpal scrics, if at all. And to the metatarsus there is usually superadded a rudimental, but unanchylosed, metatarsal bone of the digit answering to no 1 in the crocodile; but dirceted backwards, exeept in the swift. The numbers of the phalanges of the toes, $i i i$ and $i i i$ in birds, correspond with those of their homologues in the crocodile: the toe $i v$ has an additional phalanx, and the regular progression of the increase from 2 to ${ }_{5}$, with one or two exceptions, is constant in the class, and serves to determine the toes in those birds in which they are reduced to three or two: thus,
in the ostrich (fig. 1f), the shorter of the two tocs is detcrmined by its greater number of phalanges, s, to be the homologue of the fourth in tetradactyle birds; and it is interesting to observe that the toe $i i i$, , motwithstanding its nuelh greater length, has the usual smaller number of phalanges. But whilst unity of design is thus manifested, the wistom of the Designer is displayed by the greater strength which results from the minor degrec of subdivision of the part which takes the largest share in the support and propulsion of the body. The toe v is never present in birds, there is not even the rudiment of its metatarsal bone. The toe i is cqually abscut. (Scc paragraph at p. 193, on the spurs of the Gallinacea.)

Fir. 4 is the diagram of the skeleton of a typical mammalian quadruped; e.g. the dog (genus Cunis). The modifications of the hemal arch of the anterior segment resume the characters of those in the crocodile; the hæmapophysis (21) being the chief seat of development, and for the same purpose of extending its attachments, and adding to the firmmess and strength of the henceforth inmoveable maxillary arch. The diverging appendage from the pleurapophysis (20) is a single bone on each side (24), and in most mammals becomes confluent with the part of the posterior segment (5) against which it abuts.

The neurapophyses (14) of the anterior segment have coalesecd together, as in birds, but are complicated, and their nature further obscured by anchylosis with ossified portions of the olfactory capsulcs, often extremely complex and extensive in the class Mammalia, in which the organ of smell attains its maxinum of development. The neural spine (15), sometimes singlc, more frequently bifid, enjoys, agrccably with its extreme position in the scries, a vast range of variety in its forms and proportions. In the rhinoceros it supports a dermal spine or 'horn.'

The second (frontal) segment presents unexpectedly a return to the archetypal character in a particular, in the absence of which all the lower classes of vertebrata depart from it, viz. the primitive independence of its centrum (9) from that (5) of the succeeding segment. The spine (11) of this, as well as those (7,3) of the two following segments, continue, as in birds, to be the chief seat of the expansion requisite for the protection of the progressively developing brain. But in most mammals an additional element in the cranial walls is gained by the expansion of the distal end of the diverging appendage from the hæmapophysis (21) of the antcrior segment. This appendage consists, as in birds and reptiles, of two pieces, and it is the seeond or most remote piece (27) which is the seat of the principal varieties, and especially of that squamous development which enables it not only to extend the points of fixation of the maxillary arch, but at the same time, to subserve the requirements of cranial space consequent on the large size of the cercbrum. The dismemberment called 'interparietale,' x, of the spine 3 , has a less constant relation to the increased capacity of the cranium.
The pleurapophysis (28) of the second segment becomes, in the present class, still further displaced from its typical conncctions, and is even superseded in its typical functions by the intervention and development of ${ }_{27}$. It is consequently much reduced in size, and strangely distorted in form in subserviency to the almost sole office that now remains to it, viz. the support of the tympanic membrane.

The frontal hæmapophyses and spinc (20-32) have coalesced into a single bony arch, articulated by its extrenitics to the under part of the appendage 27.

The pleurapophysis (88) of the hyoid or third hæmal arch resumes in many
mammals its typical connections with the parapophysis (s) of its proper segment; but its development is usually more or less restricted.

The articulation of the fourth (oecipital) segment with the succeeding one called 'atlas,' is chiefly by means of zygapophyses (condyles) developed from the neurapophyses (z); the parapuphyses (4) are likewise exogenous processes of the same elements.

The hæmal areh of the occiput (51,52), though in close proximity with its proper neural arch in some mammats, and in all mammals at the earlier period of development, is not directly articulated thereto, and sometimes recedes far from the rest of the skull.

The hæmapophysis (52) of the areh is ossified thronghout its entire extent and the hæmal spine 52 ', below, in only one sinall exceptional order of the class (Monotremata). It becomes anchylosed with the pleurapophysis in all, and appears in the majority therefore as a mere process of 51.

The single pair of cervical hæmapophyses (5s) are more variable, both as to their extent of ossification and even existence.

The borly of the atlas continues subject to the same modifieation of development from two centres with coalescence of one portion with the next centrum, which characterises it in all the other vertebrates above Batrachians*.

The confluence of the centrum with the neural arch takes place in every vertebra of the trunk; and the pleurapophyses, which are very short in the seven segments that succeed the skull, here also commonly coalesee with the other elements, circumscribing the lateral foramina for the 'vertebral' arteries. With the exception of the detached bones $5 s$, they are the only ossified parts of the hæmal arehes of those segments.

The constancy of the number, seven, of the segments so modified, is truly remarkable and characteristic of the class Mammalia. It is true that the number is established at a very early stage of development, when the neck is alike short in all; and its law must be sought for in the eireumstances, such as the existence of a complete diaphragiu in the mammalia, which determined the number and distribution of the pairs of cervical nerves, upon which the development of the eervieal vertebrx more immediately depends. The exceptions to the number seven, viz. six in the manatee, and eight or nine in the three-toed sloths, serve to establish the rule.
'The eighth segment of the trunk in mammalia, like the tenth in the crocodile, has a complete hemal arch, and here therefore the 'dorsal' series begins; but the hxmapophysial elements are rarely ossified in the present warm-blooded elass.

The pleurapophyses ($p l$) of these arches are not only moveable, but are subject to a slight displacement, and their articulations, like those of the neurapophyses in the bird's sacrum, extend over the interspace of their own and a contiguous centrum.

The hæmal spines ($00,01, h s$) conmonly remain distinet, and form a chain of ossicles corresponding in number with the complete hæmal arehes, but they coalesce with each other in some of the higher mammalia, and are called collectively 'sternum.' (See p. 158.)

As the segments recede the pleurapophyses become shorter, return to their proper vertebra, and usually become appended to its diapophyses; the hremapophyses also become shorter, and terminate at first by abutting against their antecedents, and finally by projecting freely.

[^85]These segments are followed by others (L.) in which only the plenrapophysial parts (μl) ol the limmal arch are ossified, ant these parts eoalcsce with the diapophyses ($l l$).

Then eome the segments (S) whieh, like those of the skull, are the seat of the modification by anchylosis, and of great and peeuliar development of two ol the herual arehes in eonmeetion with them ; the nature of the deviations from the typieal standard whieh charaeterise the province of the endoskeleton ealled 'sacrum' and 'pelvis,' has been explained at pp. 158-161. In most mammals a greater number of serments is involved in this metamorphosis than in reptiles, in none are so many the seat of it as in birds. In the cetacea the modifieation by anehylosis is transferred to segments at the fore-part of the trunk, their 'saerum' may be said to be in the neek; none of the post-abdominal vertebre are subjeet to it any more than in serpents, fishes, or the extinct marine reptiles (Enaliosauria).

Great diversity of form, number and degree of development prevails in the vertebre that sueeeed the saerum in mammalia. Short pleurapophyses are developed at the extremities of the diapophyses of the anterior ones and eoalesee with them. The hremapophyses, when present or ossified, are artieulated, as in reptiles, to the eentrum direetly, and alone form the hæmal areh. The terminal vertebre are redueed to the eentral element, and rarely anehylose together.

The anterior anehylosed and expanded vertebræ are the cranial, Cr.
Those nsually free vertebræ with short pleurapophyses, anehylosed to both their centrum and neural areh, are ealled 'eervieal,' C. In some whales and armadilloes all or sorue of these vertebre eoalesee into one mass.

The series with moveable and usually longer pleurapophyses is ealled ' dorsal,' D.

Those with pleurapophyses confluent or eonnate with the extremities of the diapophsses are ealled 'lumbar,' L.

The sueceeding vertebræ which anchylose together are ealled 'saeral,' S.
The rest are 'eaudal,' Cd.
The modifieations of the diverging appendages of the seapular and pelvie arehes are numerous in kind and extreme in degree: with the exeeption of the eetacea, in whieh the hinder pair is absent-the eheiroptera, in whieh the fore-pair is speeially developed for the aetions of flight-and some burowers, as the mole-a elose analogy is eommonly kept up between the two pairs: both, for example, are redueed to the same degree of simplieity in the solidungulous horse; both arrive at almost the highest stage of development, in the speeial adaptation of one of the digits to reaet upon the rest as an opposable thumb in both the fore- and lind-feet of the quadrumana.

Fig. 15, bones of the fore-limb, and fig. 16, bones of the hind-limb, of the wombat, illustrate the serial homology* of those bones, explained at pp. 166-168.

[^86]83, 'humerus,' is the homotype of 05 , 'femur.'
©r, ' uha,' is the homotype of or, 'fibula.'
o, 'its oleeranon,' is the homotype of $6 \tau^{\prime}$ ', 'fabella,' or the sesamoid bone artieulated to the produced and expanded head of the fibula.
55 , 'radius,' is the homotype of 60, 'tibia' *.
$s c$, seaphoid portion of 'os seapholunare,' is the homotype of sc, 'seaphoides.'
l, lunar portion of 'os seapholunare,' do. of a, 'astragalus.'
$c u$, cuneiform portion of 'os seapholunare,' do. of $c l$, artieular part of 'ealeaneum.'
p, 'pisiforme', is the homotype of $c l$ ', fuleral part of 'calcancum.'
t, 'trapezium' do. of $c i$, inner eunciform.
z, 'trapezoides' do. of cm , middle eunciform.
m, 'magnum' do. of $c e$, outer euneiform.
u, 'uneiforme' do. of b, euboides; both of these representing two distinet carpals eoaleseed, as the seapholunar in the earpus represents the astragalus and seaphoid in the tarsus, and the ealeaneum reciprocally the euneiform and pisiform bones.
The serial homologies of the earpals and tarsals are better illustrated in the hand (Pl. Il. fig. 13) and foot (fig. 14) of the orang, as will be presently explained.

With regard to the cligits, they never exeeed five in number in mammalia, and with the exception of the eetacea, the number of phalanges is limited to two in the first, I and i, and to three in eaeh of the other digits, in both foreand hind-feet. The first or innemost digit, as a general rule, is the first to disappear; in the hind-foot of the orang (fig. 14) eommonly, and in that of the wombat, fig. 16 , constantly, its short metatarsal supports but one phalanx; in the dog, taken as the type of the class (fig. 4), the inner digit is usually wanting in the hind-foot, and is always very diminutive in the forefoot. The first digit of the hand is redueed to a short metaearpal in the spider-monkeys (Ateles).

The outer digit v and v is the next to disappear. In the tapir it is wanting in the hind-foot; and in the rhmoeeros (fig. 17) in both hind- and fore-feet.

In the bisuleate quadrupeds the development of the seeond digit (II and $i i$) is arrested in addition to the two extreme ones (I and v), and the funetions of support and progression are eommitted to the equally and symmetrieally developed 3rd and 4 th digits $i i i$ and $i v$. In most of the ruminants rudiments of the 2 nd and 5 th digits are retained (as at $i i$ and v, fig. 18) ; but in the camel-tribe they have entirely disappeared together with the first digit, 1 and i.
'neural spine,' or the totality of the distinet parts of which such arch is composed. And I am of opinion that the parts of the neural areh which I have ealled 'neural spine' (spinous process), neurapophysis (', neural areh,' Maelise), together with the basis on which the areh rests, called ' centrum ' or 'vertebral body, "are not 'structural varieties,' but the most constant and important elements of the typieal segment or vertebra. I have been also led to conelurle, with other physiologists, that other laws besides those of 'serial homology ' preside over the formation of the animal body. The text of the body of my present work was struck off, with an alteration of the paging and a few corrections immediately after the printing of the "Volume of the Reports" in which it originally appeared, and several months before I received the valuable presentation copy of the work with which Mr. Maelise has favoured me. This must be my excuse to him for not notieing his work in an earlier part of the present one.

* The tendon of the trieeps femoris is not ossified in this species, where it passes over the knee-joint at 66^{\prime}; it resembles in this respect its homotype, the tendon of the biecps brachii, in the fore-limb.

In the lorse (fig. 19) the formth digit is the additional subject of arrested development, and the median one in both fore- and hind-feet, in and $i i i$, is the last and sole digit which retains its full and functional development, thus manifesting its character as the most constant and essential of the terminal ramifications of the primitive ray. Rudiments of the metacarpals and metatarsals of the second and fourth digits (ii and iv, fig. 19) are retained, eoncealed beneath the skin; these 'splint-bones' of the veterinarian are duly adjusted to serwe important uses, and their anchylosis and other abnormal conditions are a common cause of lameness; but the appreciation of their final purpose does not prevent the philosophic anatomist from recognising their real mature and archetypal relations, and thereby the essentially tridactyle character and true affinities of the genus Equus.

The carpal and tarsal ossicles undergo corresponding modifications, by confuence or arrested development, concomitant with this progressive simplification of the mammatian hand and foot. And here I am induced to offer a lew observations on thesc bones in addition to the remarks contained in the text (pp. 167, 168).

Much rlifficulty las been experienced in detcrmining the special homology of the carpal and tarsal bones in the lower vertebrates, more particularly the Reptilia, according to the names arbitrarily, in the first instance, applied to them, as they exist in the human skeleton. To gain a clem insight into their nature and relations, it becomes necessary to reverse the usual order of comparison, and to proceed fiom the lower vertebrates upwards. We first recognise a carpal segment of the fore limb in fishes, where it is represented by a series of short ossicles (fig. 2, 56) intervening between the antibrachial bones (54 and 55) and the elongated rays or fingers (57) of the fin, and usually corresponding in number with the proximal or metacarpal serics of those longer rays. When, in the air-breathing vertebrates, the typical number five is established, and governs, as a general rule, that of the terminal series of rays or digits, the number of ossicles or short rays at the base of these ought, theoretically, to accord in number with them; and when there are two series of sueh ossicles, there should be five in each. As regards the second or distal row, this number is actually maintained as a general rule in the order Chelonia. The metacarpal bones of the two outer digits are commonly each supported by a distinct carpal ossicle (fig. 12, u and u^{\prime}), and these two carpal bones obviously answer to that single one in Mammalia (u) which supports the metacarpal bones of the fourth and fifth, or two outer digits (iv and v). In large and old turtles (Chelone) the same confluence sometimes takes place which converts the two outer bones of the second carpal series into the 'os uncilorme' of anthropotomy; and I have seen an instance in Chelone Mydas in whieh the 'os magnum' had also partially coalesced with the 'unciforme.' With regard to the homology of the distal carpal bones, supporting respectively the pollex and index, there can be no difficulty; one is the 'trapezium' (fig. 12, t), the other the 'trapezoides' (ib. z), and the bone supporting the middle digit, HI, is obviously the 'os magnurn.' The determinations of the bones of the proximal row is at first sight less easy; we have said that they are theorctically five in number, and we find so many actually in most Quadrumana, even in the anthropoid orang ${ }^{*}$. In this species two of the series (fig. 13, s, s^{\prime}) answer to one in the human carpus, namely, the bonc called 'scaphoides' (fig. 6, sc) ; that name is accordingly applied to the two inner or radial ossicles of the proximal carpal series in the orang, and they are considered as subdivisions of the 'os

[^87]seaphoides'*. 'The 'lunare' (fig. $12, l$) is situated on a plane above or proximal of these, and is wedged into the distal interspace between the radius and ulna. The pisiforme ($i b . p$) descends, or is plaeed more distal, and artieulates with both the 'eunciforme' (ib. c) and the outer 'uneiforme' (ib. u).

In many Chelonia, as in Testudo Elephantopus, Testudo grece, in large individuals of Chelone mydas, the two immer or radial ossieles of the proximal carpal series are distinct as in the orang; they obviously, therefore, represent the human 'seaphoid,' and the scaphoid only. Ossification commences in that portion whieh is nearest the middle of the wrist, or whieh relates to the 'trapezoides' and index digit in younger Chelones: in some Emydes, as Chelodina longicollis, this is the only portion of the seaphoid whieh is ossified; in other speeies again, as Testudo indica (at least in old inclividuals), in Cistudo clausa and in Emys curopea (fig. 12, s), these two portions eoalesce, and so form a single scaphoid bone, as in man.

In all Chelonia the next bone of the proximal row of the earpus (fig. 12, l) holds a higher or more proximal position than the rest, and is more or less wedged into the distal interspace between the radius and ulna; this, therefore, is plainly the homologue of the 'lunare' in the orang (fig. 13, l); it is theoretieally, and in most Chelonia aetually, the third bone of the proximal row of the carpus. The next bone towards the outer side whiel artieulates exelusively with the ulna is the 'euneiforme' (ib.c): usually it terminates the proximal series, but sometimes, as in Cistudo clausa and Emys europea (fig. $12, p$), it supports a small 'pisiforme;' and this bone, whieh is more developed, elongated and eompressed in the turtles, artieulates, as in the orang, in greater proportion with the 'uneiforme' than with the 'cunciforme.'

In the proximal row of the tarsus in Chelonia, one never finds more than two bones; and sometimes, as in the old Testudo graca, these have eoaleseed into one. The larger of the two, in most Chelonia (when they are distinet), artieulates proximally with both tibia and fibula, erossing their interspace, and distally with all the bones of the seeond row except the outermost. It therefore answers to both the 'astragalus' and the ' navieulare' in the hmman tarsus, and sometimes also, as in the Testudo greca above cited, to the 'caleaneum.' 'The distal series of tarsal bones, like their homotypes in the earpus, are five in number in all Chelonia ; the imnermost, whieh supports the metaearpus of the hallux, answers to the 'os euneiforme internum ;' the seeond to 'o.e. medium;' the third to the 'o.e. exteruum ;' the fourth, whieh supports the fourth metatarsal, answers to the inner or tibial half of the 'os euboides; the filth, whiel sustains the fiftlo digit, to the outer half of the 'os euboides.'

Thus, in the human earpus, the seaphoid (fig. 6, sc) and the unciforme (u) are eaeh two commate earpal bones, and they aetually manifest this theoretieal division in most Chelonia. In the human tarsus the os naviculare ($69, s$), the caleaneum ($c l, c l^{\prime}$), and the euboides (b), are eaeh theoretically a compound of two bones; but in the Chelonia the principle of eoaleseenee extends further: there are but two bones in the proximal row; three bones being represented by the larger, and two by the smaller of the proximal tarsals; on the other hand, the five bones of the distal series maintain their normal or typical distinetness.

In the eroeodile a single bone of the earpus (fig. 3, slt) represents the two divisions of the scaphoid, as well as the hanare, the trapezium and trapezoicles; a second bone (c) answers to the 'euneiforme,' and there is a small

[^88]'pisiforme (p);'the bonc urepresents a small ' magnum' and 'unciforme.' In the tarsus, ossification extends from the astragalo-navicular bone ase, and takes the place also of the interual and middle cmeiform bones. There is an external cuneiform bone, and a single bone b supports the two outer toes, and represcnts both divisions of the 'cuboides' in the Chelonia. In some Saurians the calcaueum retains its true or theoretical character, the articular portion (fig. $3, \mathrm{cl}$) being distinct from the fulcral or sesamoid portion (cl).

In the dog and other carnivora, and in the wombat, the scaphoid is connate with the lumare; threc carpal bones in the wrist of the orang are here therefore represented by one. In the hind-loot of the rhinoceros (fig. 17) the internal cuneiforme is gone, together with the digit it would have supported. In the ruminant the cuboid has coalesced with the navicular (fig. $18, b s$). In the horse the external cuneiform (fig. 19, ce) is the largest of the distal row corresponding with the enormous toe which it supports; and the navicular, s, remains distinct from the cuneiform, b, which we may suppose to be represented by that portion which in the Emys supports the fourth toe.

In the ruminant the fibula is reduced to a small ossiele (fig. 18, 67), representing its distal end, wedged between the tibia and the ealcaneum : the ulna is almost as much reduced in the fore-limb, and is commonly anchylosed to the radius. The two metacarpals of the principal digits, in and iv, coalesce to form the single cannon-bone, and the two corresponding metatarsals are subject to a like coalescence (fig. 18), a single bone supporting the fully developed toes, as iu the bird: the rudimental back-toes, $i i$ and v, have small detached metatarsals when they exist. Whilst the number of toes is thus seen to fall short, progressively, of five, the typical character of that number is still indicated by the power ol determining the particular toe or toes of the five in man, which are retained in the tetradactyle, tridactyle, didactyle and monodactyle feet respectively of the lower mammals. But although the number 'five' thus governs the development of digits, properly so called, in all existing air-breathing vertebrata, the tendency to multiplication of terminal rays in the diverging appendages developed for locomotion may be seen to manifest itself' in the sexual 'spurs' of the Giallinucea and Monotremes; in the hereditary supernumerary toes in certain varieties of the common fowl, and even in some individuals of the human race. But the single spur of the tetradactyle cock is not more a homologue of a normal digit in a pentadactyle reptile or mammal, than is the spur of the Platypus, or the second spur in the Paro bicalcaratus.

Having thus noticed some of the chief varieties of the mammalian modification of the vertebrate archetype, there remains to add only a few words in explanation of fig. 6 ,-the diagram of the human skeleton.

As this is that which the anatomist las been accustomed to hear described most trequently and exclusively by the special terms, and according to the special views and ends of anthropotomy, the language in which its deviations from the eommon archetype have now to be noticed will probably appear strange and bizarre. The comprehension of the explanation will be facilitated by reference to the special name of the bone through its numeral in the column of names whenever such bone is alluded to under its general or archetypal uane.

In the first and, notwithstanding the upright posture, the most anterior of the cranial scginents, by reason of their forward curvature, the hemapophysis (21) coalcsecs carly with its own moicty of the divided spine (22), and the same thing happens to the next hrmal areli (20) with subsequent obliteration of the symplysis between the halves of its spine (32).

The pleurapophysis (20) of the first areh remains a distinet bone: its diverging appendage (2.1) coalcsces with and becomes a 'proeess' of the centrum (5) of the parietal vertebra.

The neurapophyses (14) of the anterior segment are modified as in other inammalia, i. e. beeome confluent together and with the olfactory eapsules; but appear externally below the orbital process of the frontal.

The spine (15) is small, but bifid.
That of the seeond segment (11) attains its maximum of development, as do also the spines of the two following vertebre (τ and 3). The bifid spine of the parietal segment is truly enormous as eompared with that of the fish (fig. 2, 7) or the reptile (fig. 3, 7), in whieh latter animal the spine, being undivided, adheres eloser to the arehetype.

The diverging appendage (26,27) from the hæmapophysis (21) is divided into two pieees, as in most mammals and reptiles; both are broad and flat: the first (26) serves to fix the areh to the parapophysis (12) of the seeond segment, from whieh it is here disloeated; the portion (27), whieh becomes enormously expanded, eovers a large vaeuity between the third and fourth neural arehes, and overlaps by a squamous suture part of the expanded spines of both those vertebræ. It also anehyloses below with the pleurapophysis (2s) of the seeond segment, with the parapophysis (8) and the pleurapophysis (38) of the third segment, as well as with the bony capsule of the organ of hearing (16), forming with those parts the most singularly eomplex 'eranial bone ' of anthropotomy.

The eentrums $(5,9)$ and neurapophyses $(0,10)$ of the second and third segments eoalesee with eaeh other, and with the first pair of diverging appendages (24) of the anterior hemal areh ($20,21,22$), forming the complex 'sphenoid' bonc of anthropotomy.

The centrum (1), neurapophyses (2), and neural spine (3) of the fourth segment speedily anehylose together, and their centrum afterwards eoalesees with that (s) of the parietal vertebra, forming the still more complex cranial bone ealled 'os spheno-oecipitale' by Soemmering.

The hæmapophyses of the third mneh-reduced hæmal areh (40) are ossified only at the extremity which joins the spine (41): the remainder of the hæmapophysis is eontinued in a ligamentous state to their anehylosed pleurapoplyses (3s), forming the 'styloid processes of the temporal bone.'

The detaehed and displaced pleurapophyses (51) of the oceipital vertebra attain considerable breadtl! : their hemapophyses (52) are ossified only at the extremity which joins the pleurapophysis, and with whieh it eoalesees. The diverging appendage ($5,-57$) here attains its maximum of adaptive development; as in the skate-fish (Raia) it exhibits the extreme of vegetative or polarie grow th. But the progressive steps by whieh it departs from the primitive or arehetypal simplicity, shown in figures 7 and 8 , are so gradual that the speeial homology of the arm and hand of man with the bifid-jointed appendage of the seapular arch in the ampliuma, and with the simple jointed ray of that of the seapular arely of the lepiclosiren, has never been doubted or ealled in question. In aseending, therefore, to the higher generalization of the signifieation, or relation to the archetype, of such simple, or bifid, jointed or more complieated appendage of such scapular areh, we are eompelled by the truth, as it exists in nature, to admit that the seapular areh in the lepidosircn and other fishes forms the inferior costal or hrmal areh of the occipital segment or vertebra; and, by referenee to the arehetype, to see in the diverging appendage of such areh, a repetition of similarly simple diverging appendages of sueceeding segments. These, indeerl, retain their primitive simplieity, as shown in the trunk-vertebre of the fish (fig. 2, a a) and of the bird (fig. is,
a a ）；and that simplicity is very gradually departed from in the case of the appendages of the occipital vertebra，by the staycs recognisable in figs． 7 and S．If，then，it be adhitted that the upper limb（arm and hand）of man is the homologue of the fore limb of the amphiume，of the pectoral fin of the fish and of the pectoral ray of the lepidosiren；it follows，that，like the latter，it must also be the＇diverging appendage＇of the arel called＇scapu－ lar，＇which is the hemal arch of the occipital vertebra；and，thercfore，how－ ever strange or paradoxical the proposition may somnd，that the scapular arch and its appentages，down to the last phalanx of the little finger，are truly and essentially bones of the skull．

The centrum of the first segment of the neck is subject to the same modi－ fication as in the ordinary mammalia，the major part（ca）remaining anchy－ losed to the centrum of the succeeding scgment（cd），of which it forms the ＇odontoid process＇in human anatomy．＇llhe cortical part（ $c a, x$ ）is that which is usually called the＇body＇of the atlas：it is connected by aponeurosis to the corresponding part of the centrum of the occipital vertebra：the arti－ culation of the head with the neck is chiefly by means of zygapophyses deve－ loped in the form of convex condyles from the neurapophyses（2）；and received by the concave zygapophyses of the neural arch of the atlas．In the other cerrical segments，the autogenous elements of which they are composed are represented diagrammatically in fig． 6 as distinct，viz．the centrum， neurapophysis，neural spine，and plcurapophysis；the latter element in the seventh vertebra sometimes attains a length nearly equal to that of the first dorsal．In the eleventh dorsal vertebra the elements arc additionally indicated by the initial letters．The cervical hæmapophyses（58）are wholly ossified and well－developed．The hæmal arches in the abdominal region retain their aponeurotic texture：the anchylosed and stunted pleurapophyses are con－ tinued by the tendinous origins of the＇transversus abdominis；＇＊the hæm－ apophyses are the＇inscriptiones tendiner recti abdominis；and the basis of the hæmal spines is the＇linea alba．＇But these and other modifications of the bones of the trunk have been described at pp．158－161．

On reviewing the figures in Plate．II．it will be seen that the disposition of the whole vertebral column has changed with the progressive modifications of its segments ：it soon departs from the geometric simplicity of the arche－ type，and exchanges the straight line for the curve or a succession of curves．

In the fish the deviation is least：the whole column is straight in some； or it describes but one slight curve，convex dorsal，from the nasal to the caudal vertebræ：some fishes show a slight upward curve of the latter．

In the lower reptiles the whole spine is straight，or simply curved as in fishes：in crocodiles the general curve，extending from the segments of the head along the back of the tail，is interrupted by a slight bend of the neck in the opposite direction．

In the bird，the longer and more slender neck is the seat of an elegant double or sigmoid curve；the segments of the head are directed at right angles to the chord of the cervical curves；and the tail bends upwards in a direction contrary to that of the fixed part of the trunk．

The degrec and variety of the curves of the vertebral column vary much in mammalia，according to the medium and mode of their locomotion．In the subject of the diagram（fig． 5 ），the cranial segments form a slight angle with the cervical ones；and these form another with the dorsal segments： the curve of the back is slightly reversed in the loins，and again resumed in the sacrum and base of the tail；which latter is the seat of extensive and variable degrees of flexuosity，its cxtremity being spiral and prehensilc in

[^89]some quadrupeds. Another mark of adaptive modification may now be sewn in the convergence of the spines of the cervical vertebre towards that of the fourth of this series, and by a more marked ennvergenee of the spines of the dorsal and lumbar vertebre towards that of the eleventh of the dorsal series: both these points of convergence indieate centres of speeial motion in these regions of the spine. That in the back commonly relates to the bounding mode of progression of the animal, in whieh the spine is alternately bent and extended, upon the vertebra with the vertieal spine. When the quadruped moves along witl a rigid spine by rapid walking or a kind of stiff' trot, as in the heavy paeliyderms, the spinous processes of the dorsal, lumbarand saeral vertebræ all beud in one direction-slightly backwards-and no centre of motion is indieated by a point of eonvergence. The elephant and rhinoeeros resemble in this respeet the stiff-backed crocodile.

In the human frame the suecession of slight but graeeful eurves, and their relation to diffising shoeks and balancing the body in the ereet position, have been explained in various estimable physiologieal works.

In no species do the cranial vertebre bend at so strong an angle from the chord of the opposite curve of the neck : and in none is the curve of the sacrum and coecyx so strong in proportion to the small number of the vertebræ.

But the most striking eharaeteristie of the human modifieation of the endoskeleton is the enornous development, both in bulk and special adaptive inorlifieation, of the two pairs of diverging appendages retained for the purposes of support, loecomotion and prehension. In no inammal does the length of the pelvic appendages, as compared with that of the vertebral column, equal that in man.

Perhaps the greatest obstaele to the contemplation of these members as homo'ngites of the simple diverging rays (a, a) of the hæmal areh of the typical vertebra, as they are shown in the arehetype, and in many segments of the bird and fish, will arise from the early and habitual contemplation of them by the anatomist under their maximum condition of growth and development in its completest sense in man.

In the skate (Ruia) the pectoral members surpass in relative bulk their homologues in man : but the development of these appendages is of a lower kind: it consists of a vegetative repetition,-division, bifurcation and segmentation -of mere rays, of a multiplieation of essentially similar parts, without power of reciproeal aetion and reaction on one another; all being bound up in one common fold of integument for one simple action-the only one required for an animal so low in the seale, but perfectly provided for by the form of fin in question. At first sight the peetoral fin of the skate with its hundred digits seems a more eomplex deviation from the primordial single ray, as shown in the lepidosiren (fig. 7), than the pentadactyle upper extremity (53-57) of man; but the eomplexity is more apparent than real. The high eharacteristics of the human arm and hand are manifested by the subordination of eaeh part to a harmonious combination of function with another, by the departure of every element of the appendage from the form of the simple ray, and each by a speeial modifieation of its own ; so that every single bone is distinguishable from another : each digit has its own peeuliar eharacter and name, and the 'thumb,' whieh is the least constant and important of the five divisions of the appendage in the rest of the class, becomes in man the most important element of the terminal segment, and that which makes it a 'hand 'properly so called.

In the pelvie, as in the seapular extremity, the same digit (i), whieh is the first to be rejected in the mammalian series, beeomes, as it were, 'the chief
stonc of the comer,' and is termed 'par excellence,' the 'great toe:' and this is more peculiarly characteristic of the genus Homo than cven its homotype the thumb; for the monkey has a kind of pollex on the hand, but no nammal presents that development of the hallux, on which the creet posture and gait ol man mainly depend.

We perceive, however, that although the first toc (fig. 6, i) is the longest as well as the hargest, it retains its characteristic inferior number of phalanges; its bulk depending, like the larger toe in the didactyle ostrich, on the superior size instead of an increased number of bones; whilst the filth or little toe (c) still retains with diminished proportions its full complement of phalanges. The teleologist will discern that the requisite strength of the toe, which is the chief fulcrum when the whole body is raised by the power acting on the heel, as in stepping forward, has been regarded in the diminished number of its joints; but the same final cause would not appear to have governed the different number of the equally-sized first and fifth of the fire toes inclosed in the massive hoof of the elephant or the wcbbed hindpaddle of the seal: and whether the hallux be the shortest of the five or the longest, it has ahways the same number of phalanges whenever it is present, provided it supports a nail, a hoof or a claw, in the mammalian series.

The satisfaction felt by the rightly constituted mind must ever be great in recognising the fitness of parts for their appropriate functions; but when this fitness is gained, as in the great toe of the foot of man and the ostrich, by a structure which at the same time manifests a harmonious concord with a common type, the power of the One Great Cause of all organization is appreciated as fully, perhaps, as it is possible to be by our limitcd intelligence.

It is interesting to perceive both in the human hand and foot that the digits that have been most modified either by excess or clefect of dcvelopment are precisely those that are the least constant in the mammalian series, the two, for example, that form the extremes of the series; whilst the three intermediate digits are more conformably and equably developed. In the hand, the 'digitus medius'-the most constant of all in the vertebrate series, and most entitled to be viewed as the persistent representative of the terminal segments of the primitive elementary ray,-still shows a slight superiority of size; though few, perhaps, are aware that the boncs forning the three joints of this finger answer to those called 'great pastern bone,' 'little pastern bone,' and 'coffin bone' in the horse, and that the nail of this finger represents the hoof in the horse.

In the human foot the three more constant toes, $i i, i i i, i v$, maintain more equality of size than their homotypes in the hand: the middlc toe here also is the representative of the chief part of the hind-foot of the horse: but the fourth toe answers to that which, by excess of growth, becomes the chief member of the long and strong hind-foot of the kangaroo. These and the like relations to the vertebrate archetype, which, together with the principle of the fitness of things, govern the forms and proportions of parts of the human frame, cannot but be both interesting and useful to the artist, as being calculated to call his attention to differential characters, which, though constant, may be so slight as to escape attention until their true significance is made known.

The few examples of unmutilated feet from the works of the ancient Greek sculptors show, indeed, how truly their just obscrvation of nature supplied the insight into the archetypal law, and guided them to an exact and beantiful indication of the affinitics of the three middle tocs as contrasted with the first and fifth, the distinctive characters of the last being as truly given as those of the great toe.

In 'Il Giorno'-the chef-d'œuvre of Correggio at Parma, in some respects the noblest production of modern painting-these characters have been overlooked in the foot of the knceling Magdalen, in which the tocs progressivcly decreasc in cquable proportion from the seeond to the fifth. The same fanlt may be seen in the right foot of the Mercury in the painting, No. 10, in our National Gallery, attributed to the same great artist, and with which the bcautiful right foot of the dcad Saviour in the adjoining painting by the more truthful and severe Francia favourably contrasts. Both the Venus and Cupid in the Guido of the same Gallcry afford cxamples of the conventionai foot, whilst that (the left one) of the Christ in the 'Raising of Lazarus' by Sebastian del Piombo is an example of the beautiful and the truc.

To return from this digression to the immediate subject (fig. 6) of the 'present explanation, besides the 'bones' indicated by the figures and named in the adjoining column, the following are referred to by letters: -in the carpus (50), $s c$ is the 'scaphoidcs,' l the 'lunare,' $c u$ the 'cuneiforme,' p the 'pisiforme,' t the 'trapezimm,' z the 'trapezoides,' m the 'magnum,' u the 'unciforme :' in the tarsus (68) s is the 'scaphoides' or 'naviculare,' a the 'astragalus,' $c l$ the articular part of the 'calcaneum,' $c l$ ' 'its fulcral part,' $c i$ is the 'cunciforme intcrnum,' $c m$ the 'cunciforme medium,' $c e$ the 'cuneiforme externum.'

In the hand, the boncs or segments of the rays immediately supported by the carpus are called 'metacarpals,' the corresponding series in the foot 'metatarsals :' the remaining segments are called 'phalanges;' those ncarest the trunk are 'proximal ;' those furthest from it and supporting the nail 'distal' or ' ungual ;' the intermediate ones are the 'niddle phalanges;' the middle phalanx is absent in the thumb and great toe. It is only in the horse that the phalanges, from their great and peculiar development and frequent diseasc, have received special names: the hippotomist, in this respect, having done exactly what the anthropotomist had done before in regard to other bones, and for the same good rcason. Both, however, will appreciate the neccssity of knowing something more of a bone, besides its specialitics of form and structure in relation to its uses and diseases, in order fully and truly to understand it. Some knowledge of the archetype, indeed, would secm to be required to cnable the anthropotomist to appreciatc cven the differences of conformation and proportion which must strike his eje in contemplating the immediate object of his descriptions. In the elaborate article on the 'Bones of the Foot,' for cxample, in the 'Cyclopredia of Anatomy and Physiology' by its aceomplished editor, it is stated:-"The tocs arc numbered from the inner or great toe; they gradually diminish in length from the first to the fifth :"-"All the metatar'sal phalanges possess these general characters : that of the great toc is very considerably thicker than the others, and is slightly longer : the remaining ones differ but little in size," vol. ii. p. 342. Now, besides the difference in degree of diminution observable in the skeleton of well-formed feet, and especially in the races where no artificial compression has been applied to the foot during growth, the proximal phatanx of the little toe is broader and more depressed in proportion to its length; thosc of the three middle toes being narrower or more compressed at the middle of their shafts*.

[^90]In fig. 5. the typical dentition of the placental manmal is shown, viz. that expressed by the formula : $-i \frac{3-3}{3-3} ; c \frac{1-1}{1-1} ; p \frac{4-4}{4-4} ; m \frac{3-3}{3-3}=44:$ which siguities that there arc on each side of both jaws three incisors ($i, 1,2,3$), one caniue (c), four premolars ($p, 1,2,3,4$), and thrce molars ($m, 1,2,3$). The fourth premolar in the upper jaw and the first molar in the lower jaw are called 'sectorial' or 'carnassial' teeth in the carnivoria. In the human subject the dentition is $:-i \frac{2-2}{2-2} ; c \frac{1-1}{1-1} ; p \frac{2-2}{2-2} ; m \frac{3-3}{3-3}=32$; and the abseut premolars are the first and second of the typical formula*.

Fig. 7. Hind view of the occipital vertebra of the Lepidosiren (Protopterus) annectens (from naturc). The letters indicate the bones in their general relation as elements of the primary segment, the nombers their special names.

All the bones of the fore-limb, from the humerus 53 to the manus 57 , are potentially included in the segmented ray a.

Fig. S. Hind view of the occipital vertebra of the Amphiuma didactylum (frou nature). The general and special names and homologies of the parts are similarly indicated. The articulation of the head to the trunk is alrcady here (in batrachians) transferred, as afterwards again in mammals, from the centrum to the neurapophyses ($n 2$), and the parts of the neural arch have coalesced together. The liæmal arch is detached from the neural arch, and slightly displaced backwards; but the plcurapophysis ($p l, 51$) retains its simple rib-like form and position, slightly inclining ontwards below from the vertical line. The hrmapophyses ($l, 52$) do not pass beyond the state of gristle, but are much expanded : they resemble in their histological condition their homotypes, called 'cartilages of the ribs,' in the thorax of man. If the study of the essential nature of the detached inverted arch so formed had been begun at this point and compared with that of the vertebrates lower in the scale, no doubt, I apprehend, would have been entertained as to the detachment of such hæmal arch in the amphiuma bcing a deviation from type, and its attachment to the rest of its segment in the osseous fishes as being a retention of the typical structure : this condition would have been in point of fact the rule, and the other the exception. In extending the comparison to the higher classes, the instances of the detachment and distancc of the scapular arch from the occiput predominate, and its attachment to that neural arch of the skull, in fishes, becomes numerically the exception.

The question then arises, whether the number of instances, or the circumstances under which the instances occur, are to be our guides in judging of arlherence to. or departure from the archetype. Fishes are the lowest of the classes of vertebrata, and if it be true that to understand the fundamental type of the vertebrate skeleton its study must be commenced, not in the highest species, -not in that skeleton where irrelative repetition is least and adaptive modification most displayed, but in the lowest class, where the reverse conditions prevail, - then the position and connections of the scapular arch in fishes must be regarded as more conformable to the typical structure than the altcrel position which that arch presents in all the higher classes: and in this conclusion we are supported by observing that the position and relations of the scapular arch in fishes render the cranial scgment, of which it there fornis part, more conformable with the other segments of the skeleton; whilst in the crocodile, for example, as explained at pp. 117-119, the occipital segment is unconformable by reason of the absence of its homal areh, and can only be made conformable by the restoration of the scapular arch to

[^91]the place it holds in fishes. For, in fig. 3, with regard to the three segments that precede the oceipital one, there are three hremal arches-maxillary, mandibular and hyoidean; and with regard to the segments whiel sueeeed the oecipital one as far as the saerum inelusive, every one has its pleurapophyses if not its entire hæmal areh. The seapulæ, therefore, being what fig. 7 shows then to be, pleurapophyses, the oceipital segment in the eroeodile is the only one in which those elements are wanting, and the seapule are the only pleurapophyses by which the want ean be supplied in order to restore the type as it is displayed in nature by the elass of fishes.

With respeet also to the diverging appendages, $a a$, of the oecipito-hæmal arch of the amphiuma, if the anatomist had observed them with a previous knowledge only of the lower class of vertebrata, the bones 54,55 and 87 would doubtless have been regarded and deseribed only as bifid segments of the primitive simple ray. But the parts having been originally studied from a higher point in the animal series, where the homologues of those segments by virtue of their speeial developments in adaptation to speeial functions had obtained speeial names, those names are naturally and properly transferred to their simplified homologues in the appendage recognized as the anterior limb or extremity of the amphiume : the proximal single segment 53 as 'humerus,' the ossified divisions of the next segment as 5_{4} 'radius' and 55 'ulna,' the terminal bifureation as the 'digits.' This extreme instanee of the unity of the plan upon which the limbs of the vertebrate animals have been construeted is a perfeetly true one.

Cuvier has most aceurately assigned their special names to each of the parts of the fore-limb in the amphiume in his celebrated memoir*. All that I would ask of his most devoted diseiple is to reeiprocate; to grant the inference as to the signifieation of the parts arrived at by their study in the aseending route of inquiry, which the homologist is ready to give to the determinations of the speeial eharacter of the parts whieh have been obtained by comparisons pursued deseensively from man: in other words, to admit that the whole (53-57) in the amphime (fig. 7) may be the homologue of the ray (53-57) in the lepidosiren (fig. 6) ; that this may answer to the ray ($53-57$ a) in the fourth segment of the arehetype (fig. 1) ; and that such ray is repeated in the diverging appendages, $a a$, of the suceeeding segments of the skeleton: whereby we are led to the recognition of the essential nature of the lim'ss as developed diverging appendages of the hemal arehes of vertebræ, and the fore-limbs as being such appendages of the oceipital vertebrat.

In fig. 9 the elementary condition of the hind-limbs in the vertebrata is shown in nature in a baek view of the pelvie vertebra of the Protopterus or lepidosiren. The letters signify the general and the figures the speeial homologies of the parts. The apical elements (03) of the hremal arch are detaehed from the basal ones ($6: 2$) and the rest of the segment, and earry with them the diverging appendages ($0.5-69$), as in all other fishes.
Fig. 10 is the eorresponding arch and appendages of the Protens anguinus.

[^92]Here the hæmal arch retains its natural comections with the rest of its rertebra, and henceforth preserves them, with a few exceptions (Enaliosanria and Cetacea), in all the air-breathing classes, up to and including Man. In respect of the modification by displacement, the numerical exanples of adhesion to or departure from type are reversed in the pelvie segnent, as compared with the oceipital one. Mammals, birds and reptiles show the rule, and fishes the exception, typically as well as numerically. There has been, therefore, no difficulty or discrepancy of opinion in regard to the homology of the detached hæmal arell and its appondages in fishes. Cuvier saw in o.3, fig. 2 , the representative of the 'os immominatum' or' 'os du bassin;' and, notwithstanding the degree of displacement to which such rudiment of a pelris, with its pelric mombers, were subject in fishes, Linnæus had as little hesitation in recognizing in the ventral fins the homologues of hind-limbs wherever they werc placed. When in their normal position, as at v, fig. 2, they characterized the 'abdominal' fishes; when advanced to beneath the pectoral fins, as at v ', they characterized the 'thoracic' fishes; when still more advanced, as at $v^{\prime \prime}$, they characterized the 'jugular' fishes. The species in which the ventral fins were absent were 'apodal,' in the philosophic language of the immortal Swede.

Now all that is here required, in regard to the determination of the locomotive members, is, that no more value be given to the character of detachment and change of place in regard to the scapular arch and its appendages than Linnæus allowed in the case of the pelvic arch and its appendages.

The arms are shifted to and fro in the bodies of the air brealhing vertebrates, the legs in those of the water-breathing vertebrates: the arch supporting the arms is fixed in its true place in fishes, and the arch supporting the legs retains its true place in the higher classes; only it is often necessary that it should be so developed as to be appliel to many segments besides the one to which it properly belongs. In the proteus (fig. 10), however, the ilium (62) retains its simple primitive rib-like form, just as the scapula does in fig. 8 ; and it is comnected, as we saw likewise in the menopome (p. 159, fig. 2S), to its proper vertebra exclusively. The segments of the bifurcated ray in the proteus have been determined by descensive comparison from the higher classes to be, 67 , the femur; 68,67 , tibia and fibula ; 68, tarsus; 69 , metatarsus and phalanges.

Fig. 11. Distal half of anchylosed metatarsus, with the two toes, of the ostrich (Struthio camelus), answering to the third and fourth in tetradactyle birds.

Fig. 12. Bones of the fore foot of a freshwater tortoise (Emys europaa): s outer division of 'scaphoides,' s ' inner division of 'scaphoides,' l 'lunare,' c 'cuneiforme,' p ' pisiforme,' t 'trapezium,' z 'trapezoides,' m 'os magnum,' u, u the two divisions of the 'unciforme:' in this reptile the number of carpal bones is ten, five in each row, corresponding with the number of the digits.

Fig. 13. Pones of the hand of the orang-utan (Simia satyrus). The letters indicate the same parts as in the preceding figure. The two unciform bones have coalesced into one, and the number of carpal bones is nine. In the human liand, by the coalescence of the two radial bones of the proximal row to from the 'scaphoid,' it is reduced to eight.

Figure 14. Bones of the hind-foot of the oraug-ntan: s, 'scaphoides,' answering to $s s^{\prime}$ in the carpus; a 'astragalus,' answering to l in the carpus; $c l$ articular part of 'calcancum,' answering to c in the carpus; $c l$ ' fulcral part of calcaneum, answering to p in the carpus; $c i$ 'cuneiforme internum,' answering to t in the carpus; $c m$ 'cunciforme medium,' answering to z is
the earpus; $c e$ 'euneiforme cxternum,' answering to m in the earpus; b ' euboides,' answering to u in the earpus, and like it eonsisting essentially of two connate bones: by a similar connation of two bones in s, and also in cl , the number of tarsal ossieles is redueed, as in man, to seven.

Fig. 15. Bones of the fore-limb of the wombat (Phascolomys vombatus). The letters indieate the same bones as in fig. 12, but the lunare having coaleseed with the two eonnate bones forming the seaphoid, the number of earpals is seven.

Fig. 16. Bones of the hind-limb of the wombat, showing the resemblanee to the ulna in its lomotype, the fibula 67 , by its proximal enlargement, and the superaddition of the sesamoid ossiele 67 ', whieh answers to the oleeranon, and beeomes anehylosed to the fibula in the monotremes. The olecranon itself is a detached sesamoid in some bats. The hallux is reduced to arsmall metatarsal (i) and one rudimental phalanx, i. The letters signify the same bones as in the tarsus of fig. 14. The foot can be rotated like the hand.

Fig. 17. Bones of the hind-foot of the rhinoeeros. The tarsus is reduced by the continued eonnate condition of s and of $c l, c l^{\prime}$, and by the absenee of $c i$ and of the outer division of b, to six bones. The inner toe i and the outer toe v have disappeared.

Fig. 18. Bones of the hind-foot of the ox. By the comnation of b with s, forming a scapho-cuboid bone, the number of tarsal bones is further redueed to five, and of these the euneiforme medinm is a mere rudiment attaehed to the baek part of $c e$. The functional toes are redueed to two by the rudimental condition of the second $i i$ and fifth v : the first being wholly absent.

Fig. 19. Bones of the hind-foot of the horse. Here the number of the tarsal bones is the sante as in the rhinoeeros, but the toes $i i$ and $i v$ are redueed to mere rudiments of their metatarsal segments, forming the 'splintbones' of veterinary surgeons. Only the third toe is retained for the functions of the foot, whieh it ahmost exelusively represents.

With regard to the order of the-deseriptions of the eranial vertebræ, pp. 106-139, and of the numbers of the bones in the several figures, it may be asked why I have not begun to enumerate the segments of the head from the most anterior one in the arehetypal figure, and the elements of the eranial vertebræ from the centrum of such anterior segment (vomer, 13), and why I did not count all the elements of that segment before going to the next? 'This order seems so matural, that it may one day be proposed, and perhaps supersede the order of enumeration here adopted. By those, however, who may view the prenasal and other supplementary ossicles in eertain fishes and mammals that are anterior to the nasal vertebra, as rudiments of still more anterior vertebræ analogous to those abortive ones at the opposite extreme of the body, the commeneement with the vomer as no. 1 , would appear equally artifieial and arbitrary, as being then regarded the centrum of the 2nd vertebra, or perhaps the 3rd vertebra of the head. It is therefore in order to seeure a constant element to commence with, in all vertebrates, that I lave begun with the basioceipital. It will be seen by a glanee at the typical skeletons in Plate II., that the vertebre in the middle of the body retain most of their typieal character, whilst those at the extremities are subject to most modifieation: the direction in which the segments are counted must in any case be arbitrary, and in enumerating those of the skull the advantage of commencing with the one that eertainly and invariably begins the eranial series determined my ehoiee in counting from the trunk forwards; when if rudiments of segments should be determined anterior to the nasal one, in any animal, they may be reekoned as representing a 5 th or 6 th eranial vertebra. The order of enumeration of the fonstituent elements or bones
being likewise to a certain extent arbitrary, I have chosen that whieh appears to me to guide to the most natural comse of description of the skull in different animals.

1 would entreat the imovator, therefore, to be well assured that he has better grounds than these for clanging the order of enumerating the cramal vertebre and their elements, before he does away with the advantage of having a number as a fixed and determinate symbol of a bonc; which advantage would be gained to Anatomy if its cultivators should agrce upon a given order of enmmeration.

KINGS CCollege LONDON
 TOMHB QL821 OW2
 Owis, R Library 1848

2011123776

KING'S COLLEGE LONDON

Tight gutters
throughout

[^0]: * Thuse illustrated by the skeleton of fishes are given in the ' Lectures on the Comparative Anatomy and Physiology of the Vertebrate Animale,' Part 1. 1845.

[^1]: 'Observations Anatomigues suples monvemens du bee des Oiscaux, Mémoires de l'Acad.
 Sciences, 1748 , p. 31.).
 Mém. de l'Acad. res Siciencea, 1,74, p. 1:17.

[^2]: * Dc Corporis Mumani Fabrica, 1794, t. i. p. $162 . \quad$ Kirly's cdition, 8ro, 1820, p. 76.
 \ddagger Elements of Descriptive and Practical Anatomy, 8vo, 1828, p. 50.
 § De Corporis IIumani Fabrica, 1794, t. i. pp. 235, 236.
 ॥. Elements of Descriptive and Practical Anatomy, 8vo, 1828, p. 12 I .
 ๆ Huntcrian Lectures, vol. ii. 'Vertebrata,' part i. p. $1 \overline{7} 2$.

[^3]: The happy facility of combination which the German language enjoys has long cnabled very eminent anatomists of that intellectual part of Europe to condense the definitions of dropstomy into single words; but these cannot become cosinopolitan; such terms as interhauptheink̈̈rper,' 'Schläfbeinschüppen,' and 'Zwisehenkiemendeckelssück,' are likely be restricterl tr, the anatomists of the country where the voeal powers have been trained m infancy to their ntterance.
 r This is the sense in which the term is defined in the French Dictionary aud in our inson's bictionary.
 : Annales des Sciences Naturelles, tom. vi. 1825, p. 341.

[^4]: * Vergleichende Entwiekelungsgesehiehte des Kopfes der naekten Reptilien, 4to, 183 pp. 212, 218.
 \dagger Recherehes sur les Poissons Fossiles, 4to, 1843, i. p. 127.

[^5]: * Lectures on Vertelrata, 1816, p. 279.
 + Lectures on Invertehrate Animals, 8yo, 1843. Glossary, pp. 374, 379. My ingenions ad learned friend Mr. Hugh Strickland has made a strong and able appeal to the good nse of comparative anatomists in fayour of the restriction of these terms to the senses in hich they are here defined.-Phil. Mag. 1846, pp. 358, 362.

[^6]: * Annalcs du Muséum, x. p. 363, pl. 27.
 † Pl. 16. fig. $5 z+$ R. "Plur-occipital formé du sur-occipital et de l'ex-occipital."
 \ddagger Mémoires de l'Acad. Royale des Sciences, t. xii. Atlas, p. 43.

[^7]: * Geol. Trans., vol. v. p. 565.

[^8]: * Sin one hetter appreciated the characteristic persistence of the sutures in the crocodile an Curjer, when his attention was not diverterl from it lya favourite hypothesis. "Le orodile a cela d'avantageux à l'étude de son ostéologie, que ses sutures ne s'effacent point, : moins n'en a-t-il disparn ancune dans nos plus vieilles tetes," is the renark with which :commences his article on the iletermination of the lones of the lead of that reptile B3emens Possilog, 4tr. v. pt. ii. p. 6.9): but at p. 76 , a suture is assumed to be effaced, zich is present in mrist inammals and all coll-blonded vertelbrates, where a wider spmee Pes not intervene between the alisphenoill and orbitosplicuoil.

[^9]: * Ossemens Fossiles, 4to, t. v. pt. i. p. 81.
 | Der vergleichende Osteologic des Schlafenbeins, p. 64.

[^10]: * Suture à trois branches, Cuvier, l. c. p. 185.5.
 \dagger Thn cité de la caisso la paroi est prereée de deux fenĉtres transrersalement uhlongues et éparées par un filct mince." l. c. p. 82.

[^11]: * Ossemens Fossiles, 4to. 1824, v. ii. pp. 81, 180, 258.

[^12]: * This condition answers to that in the human embryo of about the fourth month, in which a light promos bony rpust begins to be formerl uponi the coclalea and semicircular camals commencing with the onter and upper oncs, the rest of the petrosal being cartilaginons.
 + Recherches sur les Poissons Fossiles, tom. \&. p. Gff.

[^13]: * Annales des Seiences Naturelles, tom, iii. 1824, p. 271 , pl. 16.
 \dagger Spicilegium Anatomicum, 4to, 1670, Ostcogenia Fotuum, 1. 269.

[^14]: * The continuators of Cuvier make mention of an example of this kind and propose the nane of 'parmastoid' for the proeess (Leçons d'Anat. Comp, ii. (1837) p. 312). I have observed it in the skull of a New Zealander and in that of an Trishman, preserved in the Musenm of Anatomy in Riehmond Street, Dublin. Believing it to be the homologue of the 'paroceipital' (4), whieh is developed independently in ehelonia and most fishes, I retain that name for it : it must not be confounded with that angle of the oecipital whieh projeets into the 'foramen jugulare' in the human skull, and which has received the mame of 'proeessus jugularis,' in some systems of anthropotomy.
 + How essential a correct view of special homology becomes to the appreeiation of the

[^15]: ther law of general homology may le learnt from the application by Cuvier of his idea of mammalian mastoid to the refutation of the rertebral theory of the skull. "On a aussi и⿰é quelque rapport entre l'apnphyse mastoïde qui, dans la plupart des animanx, apparnt à l'secipital, et l'apophyse transverse de l'atlas et des autres vertèmes; sur quoi il faut narfuer que ces rapports sont moindres dans l'homme à certains égards que dans les quauperles, puisque l'atlas n'y a ordinairement qu'me echanerure pour le passage de l'artere, que l'apophyse mastrijle y appartient entiere au rocher."- lesumé sur le question-- Le ne est-il une vertéhre ou un eomposé de trois on quatre vertèbres?' Leçons d'Auatomic mparéc, t. ii. (1837) p. 711.
 "In the artiele 'Monotremata,' Cyelnpedia of Anatomy and Physiology, 1841, I described : potromastoid as the petrous bnne, misled by the alosence of the external character of the icess.

[^16]: - Leegons d'Anat. Comp. ii. (1837), p. 580.

 1 Th. p. 581.

[^17]: * The same formation of the upper boundary of the meatus externus is shown by Geoff in the young fowl-Amales du Musém, x. pil. 27. fig. 2. V. Q.

[^18]: * op, cit. tah. iii. figs. 9 and 13, p, q.

[^19]: tany fishes of different grades of organization, and by some, as the sturgeons and siluroids, g. under a scattered arrangement, more like that in the crocodiles than is seen in the scale rmour of the typical ganoids, it might have some weight in proving the affiuity of such anoids to the highest order of reptilia; but, viewing this character under all its relations, am not disposed to regard it as establishing that affinity more directly, than it wouk the finity of the crocodile to the mammalian genus Dasypus. It is for the reasons above assigned aat I hare been accustomed to treat, in iny Lectures, of the anatomical characters of the rrop represented by the Polypterus and Lepidostous, as those of a Salamandroid, rather than f a Sauroid family of fishes; the characters being earried out in the dircetion of the batrahian order by the remarkable genera Prolopterus aud Lepidosiren.

 * More properly" 'rotocranial,' in lepidosteus at least.
 + In my notes on the ostcology of Mammalia, I find that the stylohyal sometines articuates with the petrosal, sometimes with the mastoid, exelusively, as in most manuals, ometimes with the tympanic, sometimes with the paroccipital process: but no instance is ecorded of its articulation with the segnamons protion of the temporal.

[^20]: * Geoffroy in his memoir on the skull of birds (Ann. du Mus. x.), indicates the orbitospherill at P, fig. 2, pl. 27, as the 'rocher': and Cuvier describes it as part of his 'os en cein are' in anoursins batrachia.
 \dagger Agassiz, Recherches sur les Poismons Fossilcs, ii. p. 38.

[^21]: * Oken's Isis, 1818, p. 508.
 \dagger Recherches sur les Poissons Fossiles, t. i. p. 120.

[^22]: * Histoire des Poissons, pl. ii. figg. i. vii. 14.

[^23]: -* Isis, heft iii. p. 503.

[^24]: * Agassiz, op. cit. i. p. 123.

[^25]: Reherches sur l'Ostéologie, \&e. des Batraciens, 4to, 1835.
 ssemens Possiles, ftn, t. v. pt. ii. p. 387. He had before applied the name of 'eeinture e' to the seapnlar arch in fishes.-Lecons d'Anat. Comp. i. (1800) p. 332.
 ase these terms in the same definity sense as the botanists; those essentially distinet are comnate which are not physically distinct at any stage of development, those united are amfluent which were originally distinet.

[^26]: Objecting to Oken's idea, that the prefrontal in the crocodile was homologous with the of the ethmoid called 'os planum' in anthropotomy, Cuvier says, "Or l'os plamum ue rit jamais sur la joue; il ne se montre plus dans l'orbite à compter des makis si ee n'est retit point dans les galcopitheques et dans quelques chats. Dans tous les autres mam3́res l'ethmoïde est entic̀rement enveloppé et caché par le palatin " (note that significaut nection) "et par le frontal et spécialernent par cette partic du frontal dont il est mainunt question et qui gé détache dans les ovipares. Lec véritable ctlmö̈de est euveloppé a méme manière dans le erocodile, quoique presque toutes ecs parties restent cartilagises."—Ossem. Foss., y. pt. i. p. 73.

[^27]: ＊Hist．des Poissons，t．viii．p． 194.

[^28]: * In my ' Report' I was misied by the confluence of the true prefrontals with the lachrrIs in view the turhinals ("rorneta inférieures' of Cuvier) as the lionologues of the prentals in the prithon.-Roport of British Association, 1816, p. 220.

[^29]: * Report on Britisl Fossil Reptiles, Trans. Brit. Assoc. 1841, pp. 169, 172.
 \dagger The urinary bladder and intromittent organ, e. g.: the modifieation of the fenthers the Struthionide is a degeneration of a peculiarly ornithie charaeter ; but not, therefore, approximation to the hairy covering of inammals.
 $: \ddagger$ In the emeu (Dromaius ater) at 14 , fig. 1. pl. 39. Zool. Trans, t . iii. : nurd in the cas wary at h, fig. 3, taf. i. in llallmann's ' Vergleichende Osteologie des Selläfenbeins.'

[^30]: * Leçons d'Anat. Comp. 1837, t. ii. p. 580.
 \dagger Cuvier takes this ground in objeeting to Oken's ethmoidal homology of the prefronta in the erocodile, and says, "the ethmoid eoexists in a eartilaginons state with, and is enre loped by, the prefrontal, "comme la partie antérieure du frontal enveloppe l'ethmoïde de: ruminans." "-Hist. des Poissons, v. p. 235. The correspondence is exaggerated, but i matters not. There are other eharacters of the mammalian ethmoid, as the elosing of the eranium anteriorly, the transmitting the olfaetory nerves, $\& c$., whieh are nowise manifester by Cuvier's eartilaginous 'ethmoide' in the crocodile, and are very satisfactorily so by the prefrontals in that animal.
 \pm Ossem. Foss. v. pt. i. p. 351.

[^31]: *Ossem. Poss. v. pt. i. pl. xxvii, fig. 3, h.
 \dagger Der Bara des Knöchernen Kopfes, p. 11.

 * See the passage ahowe quoted from the 'Leçons d'Anat. Comp.' ii. p. 580 .
 \$ Op. cit. p. 32 .
 If Description of the Mylodon rohustus, 110, p. 19.

[^32]: * The inconstant ossicle suspended to the back part of the frec extremity of the maxilk in the percoid fishes would have the best chaim to homology with the malar, if the furtl subdivision of the maxillary in the herring and lepidosteus did not indicate it to be a res tative dismemberment of that bone.

[^33]: Recherches sur les Poissons Fossiles, livraison 6me, 1836, tom. iv. p. 69.
 1\%. p. 7.3 .
 ' L'embryologie noms prouve, en effet, que la formation de l'appareil operculaire n'est i simple produit de la pean, qui peu-à-peu s'étend par dessus les banchics, d'abord rement dégagées dans l'embryon."-Ib. p. 61.

[^34]: * Annales des Sciences, 1845, p. 56.

[^35]: * Annalea des Sciences, 1815, p. 5.\%.

[^36]: * Reeherehes sur les Poissons Fossiles, v. pt. ii. p. 68.

[^37]: * Wagntr, 'Lehrbueh der Zontomie,' 8ro, 1843, 1844. Sieboid and Stannius, 'Le buelt der Vergleiehende Auatomie,' 8 Vo , 1845, 1846. Milne-Edwards, 'Elemens Zoologie,' 8ro, 1834. Prof. Rymer Jones, 'Outline of the Animal Kingdom and Man of Comparative Anatomy', 8vo. 1841. The sentiments whieh this pleasing and instruct writer express 3s, are probably alin to those whieh have influenced the above-cited auth

[^38]: * "In August 1806 machte ich eine Reise über den Hartz,"-"ich rutschte an der Sü seite durch den Wald herunter-und siche da; cs lag der schönste gchleichte Schädel cin Hirselıkuh vor mcinen Fiissen. Aufgehoben, numgekehrt, angeschen, und es war geschehe Es ist cine Wirbelsäule! fuhr es mir wie cin Blitz dureh Mark und Bein-und seit diest Zeit ist der Schädel cine Wirbelsäulc."-Isis, 1818, p. 511.
 + Uber die Bedeutung der Schädelknochen, 4to, 1807. I am indebted to my frien Mr. Tulk, the able translator of 'Wagner's Comparative Anatomy,' for the opporiunity' perusing this most suggestive and original cssay, which does not exist in cither the Librat of the British Muscum, that of the College of Surgeons, or that of the Medico-Chirurgici Society. Mr. Tulk is at present engaged in the arduons task of translating the " Lehrbuc der Natur-philosophie " of Oken for the 'Ray Sucicty.'

[^39]: * Annales des Sciences Naturellcs, t. iii. 1824, p. 177.

[^40]: * Règne Animal, 8vo, 1817, t. í. p. 62.
 † "La tête est formée du erâne, qui renferme le cerveau, et de la faee, qui se compos des deux mâehoires et des reeeptaeles des organes des sens." - Règne Animal, i. ed. 181" p. 62 ; ed. 1829, p. 52.
 \ddagger l. c. ii. (1817), p. 107 ; (1829), p. 125.

[^41]: * Cuviet, Histo're des Poissons, fito, t. i. p. 230.

[^42]: * Ostéographic, Prospectus, April, 1839, p. 5.
 \ddagger Thirle, in Müllcr's Archir fur Plyssiologie, 1839, p. 106.
 \ddagger Geological Transactions, 4to, 1838, p. 518.

[^43]: *Srommerring, Ve Corporis Inmani l'abrici, Jith, i. p. 23.9

[^44]: * Mémoires du Muséum, t. ix. (1822), pl. 5, fig. 1.
 + "L'une de ces pièces monte sur l'autre "-" l'une se mainticut en declans, qua l'autre s'élance en dehors," ib. p. 97.

[^45]: * Outlines of Comparative Anatomy, 183., pp. 57-59.

[^46]: * Nëtos lack, xopìj, string. We have hitherto had no English equivalent for this bryonie keel or Lasis of every vertebrate aninal: 'dorsal chord' or 'chorda' is liable be misunderstood for the 'spinal chord.'
 \dagger Hunterian Leetures on Vertebrata, 1846, pp. 45, 46.
 \ddagger Cuvier, Ménoires du Muséum d'Histoire Naturelle, t. i. 1815, p. 130.

[^47]: Brandt \& Pat\%ehurg, Medizinische Zoologie, 4to, 183.3, t. ii. pl. iv. fig. 1.
 Hinterian Jectures on Vertebrata, 1816, p. 53, fig. 12.
 See Agassiz, Recherches sur les Poiss. Foss. 亡. iii. pp. 361, 369.
 Hunterian Lectures on Vertebrata, 1836, 11. 55, fig. 13.
 Abhandlungen zur Bildungs und Entwickclungsgeschichte, Zwoiter Thcil, 1833, p \& 1 .

[^48]: * Dutrochet, Mémoires pour servir à l’Histoire Nat. et Physiol. des Animaux, \&.c, p. 302. 1837.
 \dagger Neurologic der Myxinoiden, 1840 , p. 69.
 \ddagger Recherches sur les Batraciens, 1835, 4to, p. 106.
 § Müller, Verglechende Auatomic der Myxinoiden, Neurologic, 18.10, p. 74.

[^49]: * Meckel, Archir fur dfo Phussiolorio, Bd. i. (1815) t. vi. fir. I.

[^50]: * Linn. Trans. vol. xriii. pl. 23, fig. 4, $x x$.
 \dagger Remarks on the Structure of the Ganoidei, in Taylor's Scientific Memoirs, vol. i p. 551.
 \ddagger Lectures on Vertebrata, 1846, p. 163, fig. 44, h p.

[^51]: * Vergleichende Anatomie der Myxiroiden. Abland. Akad. der Wissensch. Berlim, 34, p. 105.
 \dagger Myology of Apteryx, Zool. Trans., vol. iii. pt. iv. pl. 35, y^{*}, g^{*}. * Buckland, Bridgewater Treatise, vol. ii. jul. 18, fig. 3.

[^52]: * Meekel, Arehiv für Physiologic, B. i. (1815) p. 594, pl. vi, fig. 12, e; and System der V, gleichend. Anatomic, B. ii. p. 294.
 \dagger Prof. Th, Bell. Trans. Zool. Society, i. p. 115. pl. 116. a, b.

[^53]: Hanterian Lectures on Vertebrata, 1846, p. 65, fig. 22.
 "Selbst am Kreuzheine mehrere Thicre gieht es noch abgesonderte Querfortsätze oder Jenrodimente."-Anatomic der Myxinoiden, heft i. 3834, p. 239.
 "Ia dernière de toutes (des vertêbres de la queue), à laquelle les pennes sont attachées, olus grande et a la forme d'un soc de clarrue, ou d'un disque comprimé:- dans le jeune elle, est évidemment composée de plusicurs vertèbres."-Cuvier, Leçons d'Anat. Comp. :d. i. p. 209, and "Lawrence's Blumenbach's Comparative Anatomy," cd. 1827, p. 62.
 M. Agassiz.' expressive name for the fish with a symmetrical hilobed tail.

[^54]: * Art. Marsupialia, Cyelopædia of Anatomy and Physiology, vol. iii. p. 277, fig. 99.
 + Meckel, Archiv für Physiol. i. taf. vi. fig. 1.
 \ddagger See the admirable Monngraph by Agassiz, Sur les Poissons Fossiles du Système vonien, 4 to, 1846.

 I| Existing saurians and ophidians.
 I Extinct saurian called 'Streptospondylus ;' existing Salamandra, Lepidosteus.
 ** 4th cervical of Emys, Bojanus, Anat. Test. Europ., tab. xiv. fig. 51, 4. 1st cauda crocodile.
 $+\dagger$ Cervicals or anterior trunk-vertclre of Fistularia.
 $\ddagger \ddagger$ Jourdan, cited in Cuvier's Leçons d'Anat. Comparée, ed. 1835, p. 340, and 'Odoı graphy,' p. 179.
 §§ Agassiz in Spix, Pisces Brasilienses, 4to, 1829, p. 6, tab. B, fig. 8.
 IIII Müller and Agassiz, in Recherches sur les Poissons I'ossiles, t. iii. tal). $40^{\text {b }}$, fig. 1.

[^55]: * See the description of these segments, usually confounded under the name of the ' g 1 lateral muscle' or 'longitudinal museles' in fishes.-IIunterian Leetures on Vertebrata, ε

[^56]: * A remarkable example of the extent to which an carly or low form of such segı may be regained ly abnormal development in a higher species is given by Kerkrin, Opera Omnia, 4to. 1717, p. 55 , tab. viii.

[^57]: * De Corporis Ilumani Pabricí, t. i. p. 6.
 + Wannal of Comparative Anatomy, by Lawrence, ed. 1827, p. ion

[^58]: * Annales du Muséum, t. x. p. 344 .
 \dagger Tom. i. 1835, p. 120. "Mais ces distinctions sont arbitraires, et pour avoir le vérit nombre des os de chaque espèec, il faut remonter jusqu'aux premiers noyaur ossenx
 quils se montrent dans le feetus."

[^59]: * Linnean Transactions, vol. sviii. pl. 23, fig. 4, u.
 \ddagger Bischoff, Lepidosiven paralora, 4to, pl. 2, tig. 4, c.
 \ddagger IIunterian Lectures on Vertebrata, figs. $27,40,41,42,43$, क.

[^60]: * See Table I., Soemmerring.

[^61]: * Ifunterian Lectures on Vertelirata, p. 79, fig. 27, 37.

[^62]: * "Auch die Scapula nicht ein Kinochen, sondern wenigstens eine aus fünf Halsrip zusammengeflossene Platte ist." - Programm, \&c., 4to, 1807, p. 16. He reprorluces same idea of the general homology of the scapula in the 'Lehrbuch der Natur-philosopt 1843, p. 331, T 2381. Carus also regards the scapulo-coracoid arch as the reunion of st ral (at least three) protovertebral arches of the trunk-segments. 'Urtheilen des linoc und Schalen gerustes, fol. Dxuur.

[^63]: * Cuvier, Ossem. Foss. v. pt. ii. pl. 24, fig. 23, a.
 † Ib. fig. 27, a:-an intermediate stage is shown at fig. 25. Dugés and Reichert confil and further illustrate this change of position of the hyoidean arch.

[^64]: Genffroy St. Hilaire selected the opercular and subopercular bones to form the inserted of his seventh (occipital) cranial vertebra (Table 1II. and note 11), and took no accouut he instructive natural connections and relative position of the hyoidean and scapular les in fishes. With regard to the scapular arch, lie alludes to its artieulation with the 11 in the lowest of the vertcl)rate classes as an 'amalgame inattenduc' (Auatomic Philonique, p. 481); and clsewhere describes it as a " disposition véritablement très singulière, ue le manque alsolu de ero et une combinaison des pièces du sternum avee cetles de la pouvcient seules rendre possible."-Annales du Musćum, ix.p.361. A due apprcinn of the law of vegetative uniformity or repetition, and of the ratio of its prevalcuee prwer to the grate of orgarization of the species, might have cuabled lim to discern true signification of the connection of the scapular arch in fisles.

[^65]: * Conybeare, Geol. Trans. 1821, p. 565. Buckland, Bridgewater Treatise, 1836, vol.

[^66]: The very common modification of form which this element undergoes in loceoming exded into the broall scapula of man and other mammalia, appears to have influcneed Oken his idea of that hone being the homologue of a congeries of ribs.

[^67]: Pell (Sir Charles), "The Hand." Bridgewater Trentise, 1833, pp. 16, 18.

 As ancther example of the new light and interest which a knowledge of general homogives to the facts of abnormal anatomy in the human species, I may eite the remarkcase described by Sir C. Bell (op. cit p. 52), of the hoy 'born without arms,' -' but who lavicles and scapules.' Hererlevelopuent was arrested at the point at which it is normal

[^68]: * Zoological Transactions, vol. i. 1.313, pl. 57 and 58.

[^69]: * J.eçons I'Anat. Comp. t. ii. (14:37) p. 159.

[^70]: * Tome ii. p. 710. (1837) par MM. F. G. Cuvier aud Laurillard, who hold the arguments

[^71]: *"Ses ailes diffèrent beaucoup plus encorc et des deux condylicns, et des dcux pièccs qui ment la partie annulaire des vertèbrcs. A' la vérité, lc trou ovale n'est quelquefois qu'une lancrure ; mais le plus sonvert il cst entouré d'os, et par conséquent un vrai trou. Il en rle méme du trou rond troutes les fois gn'il est distinct du splténo-orbitaire; or les vertè3 proprement dites ne laissent passer les nerfs que par les intervalles qui existent entre 3 et les antres vertèbres, et non par des trous particuliers."-l. c. p. 712 .
 Regne Animal, 1817. pl. viii. fig. 2, o, p. 184.
 :"Latlas est composé de six piéces qui, ì ce qu'il paroît, demeurent pendent tonte la vie tinctes."-Ossemens Possiles, t. v. pt. ii. p. 95.

[^72]: * "Dans tous les cas, on ne pourrait regarder cette vertèbre comme annulaire, ni supposer le les pariétaux en forment le complément; d'une part, ce serait une composition différente : celle des autres vertêhres, puisque l'anncau serait formé de cinq̧ue pièecs et même de s, en comptant l'inter-parićtal; de l'antre, il arrive dans plusicurs animaux que les ailes mporales du sphénoïde n'atteignent pas au parićtal, parecque le temporal va toucher an asus d'elles, soit au frontal soit au sphénoide antéricur. Ainsi les pariétaux sont des èces indépendantes du sphénoidle postéricur, des pièces particulic̀res qui out une destition particulière, celle de servir de bouclier à la partie moyenne et postéricure des hémihères, tout comme les grandes ailes ont celle de servir de support aux lobes moyens dans ${ }^{3}$ quels ces hérnisphères se terminent vers le bas."-l. c. p. 713.

[^73]: * "J'on a voulu anssi consillérer le sphénoïde antéricur eomme une vertèbre dont les ntanx complćteraient la partie annulaire, et oì la position du trou sphéno-orbitaire entre deux sphénoïdes reponlrait assez aux trous inter-vertébraux ordinaires. Mais la compoon du sphénoinle antérieur lui-même est toute différente de eclle des deux os, dont nous ons parlć avant lui, et de celle d'aucunc vertèlore. Il u'est jamais, dans les mammifères, mé de troiz piěees, mais seulement de deux; ee sont proprenent des anncaux osseux pour nerfis optipues, qui par suite du temps se rapprochent et se soudent entre enx; ln shture tonjours an milicu, et tant que l'ossification n'est pas eomplete, il n'y a entre les deux meanx fuedu cartilage, flans lequel il ne se forme pas de troisicme noyau."-l. c. p. ild.

[^74]: - "Ce que j'ai dit des pariétaux s'applique aux frontaux, considérés comme compléments du ıénoide antéricur ; leur fonetion est relative à toute autre chose, à la protection des lobes érieurs da cerveau et à l'enchûssement de l'ethmoïde; et quoique le sphénoïde antéricur n soit jamais séparé dlans les mammifures comme le postérieur l'est souvent des parićtaux, est presfue toujours dang les autres elasses, en sorte 'uu'alors l'ameau vertélral serait 3 i interrompu."-l.с. p. 714.

[^75]: * M. Agassiz has described this bone under the name of 'éthmoide crânien' as " un os pair, court, de forme prescue carré dans lerguel sont peré́s les canaux servaut nux nerfs actifs." - Recherches sur les Yoissons Possiles, t. i. p. 120.

[^76]: * "Shoulders of the os occcygis."-Monro, l.c. p. 142. †J.p.141.

[^77]: * Monro, l.c. p. 143.

[^78]: Monro, l.c.p.138. $\quad \dagger$ L.c. p. $76 . \quad \ddagger$ L.c. p. 86. § L. c. p. 126.
 II Iaurentins, in describing the human thoracic plcurapophyses, says, " Harum duplex articulatio, altera cum spondylis dorsi, altera cum sterni cartilaginibus" (Anatomica 1 mani Corporis, Pol. 1600, p. 94). The perception of the essential distinctness of the :tehral ribs had not then heen blunted hy the constant repetition of the conventional idea their forming an ossified part of a whole, completed by the hamapophysis under the name the 'cartilago costre.' In birds it is not uncommon to find the hemapoplyses not only afied, bat some of them attached to the sternum, and detached from the pleurapophyses.

[^79]: * Anatomica IInmani Corporis, \&c., multis controversiis ct observationibus noris illnstrat: Andr. Laurentio, fol. 1600, p. 95.

[^80]: aring the atlantal (pectoral) and sacral (pelvic) extremitics, the fibula is found to be the bone uresponding to the ulna; and accordingly, upon extending our researehes to Comparative natomy, we perceive it exlibiting the like variety and unsteadiness of character, sometimes roge, sometimes small, and sometimes merely a process of the tilia," \&e. Ile does not push s comparison to the bones of the distal segment of the limbs.

 * "L'extrémité supéricure du tibia est représentée par la moitić supéricure du eubitus, la moitié inféricure du tihia par la moitić inféricure du radius; tandis que le péroné est présenté par la moitié supéricure du radius et par la moitié inféricure du cubitus."-Anafoie Descriptive, t. i. p. 315.

[^81]: * Lehrbuch Jer Natur Philosophic, p. 330, 8vo, 1843.
 + Urtheilen des Knochen und Schalengeriustes, fol. 1828.

[^82]: * I have used this word here, and in the ' Report of the British Association for 1846,' p. 169, 211, in the sense which it bears in such classical works of our own language as flanville's Scepsis and Watts's Logic, and agrecahly with its definition in Johnson's aud other ictionaries, as the original or pattern of which any rescmblance is made : and as equivalent the terms 'general type' and 'fundamental type' as they occur in my " Lecturcs on the ertebrate Animals," 8 ro. 1846, p. 41, ard passim.
 In the 'Comparative Ostcology' of Joseph Maclise, Esq., in which the anthor's vicws of he homologies of the looncs of the trunk are illustrated by fifty-four beautiful plates, many f which are peculiarly well adapted to convey elcar ideas of those relations in the human keleton, the word 'archctype' is used as synonymous with • mity.' " Unity undcr metainorhosis is an archetype plus quantily, being subjected to the law of proportion. Unily and he archetype rnay hence be regaricil as onc and the same thing, consequently the inctaoorphoses and proportionals arc also understood as the products of unity or the arclictypc." -Remarks on plate 1.5. And araain the anthor says, "Unity, or the archetype, is a naine shich may lee applied to characterise that whole structure which is capable of mudergoing netamorphosis or subtraction througl all degrees of quantity severally equal to all those rroportional forms which stand in scries witl itself."-Remarks on plate 16.

[^83]: * These appendages are not the result, as has been supposed, of a bifurcation of the vertebral rib: they are independent pieees originally in all birds, and retain their indiriduality in some, e.g. apteryx, penguin, with proper inuseles for their elevation and depres-sion-putential homotypes of the flexors and extensors of more developed limbs.

[^84]: * Cuvier, Leçons d'Anatomic Comparéc, i. (Ed. 1799, p. 170 ; Ed. 1836, p. 205).

[^85]: * See p. 93, and Anmals of Natural History, vol. xx. p. 217.

[^86]: * It is with pleasure that I see any of the new terms proposed in my "Lectures on the Vertebrata" (1846) and "Report on the Arehetype and Homologies of the Vertebrate Skeleton" (Report of the sixteenth meeting of 'the British Association held at Southampton in 184f'), and in carlier publieations, as the " Geologieal Transactions for 1838," sanctioned by an original author like that of the 'Comparative Osteology,' folio, 1847, before eited. Thus Mr. Naclise says, "The laws of symmetry or Serial Momology preside over the genesis of formation."-Rernarks on plate 49. And again :-"But in each of these three series of distinet parts, in that of spinous processes, of neural arches, and of bodies of vertebres." "The spinous proees, the noural arch and the vertebral body are structural varieties."Explanation of plate 3. Whether the adoption of suelı terms as 'neural areh,' 'serial homology,' \&ec. be implied or aeknowledged, the gratification is the same, provided they we not torned from their original sense. By 'neural arch' I mean both 'neurapophyses' and

[^87]: * Zool. Trans. i. 1835, p. 365.

[^88]: * Vrolik, Anatomie Comparée du Chimpansé, fol. 1841.

[^89]: ＊See Albinus，＇Historia Musculorum，＇Tal，XIV．fig． 3.

[^90]: * How little the truc nature of the science of comparative anatomy, or anatomy rightly so called, is comprehended, and its indispensable aid to a truc understanding of anthropotomy recognised, may be inferred by the definitions of the science of 'Anatomy ' in the latest summaries of human knowlerlge published in this conntry. Thus in the excellent 'Penny Cyclopadia' we read that "Comparative anatomy includes an acconnt of the structure of all classes of animals excepting that of man; Human anatomy is restricted to an acconnt of the strueture of man only," vol. i. p. 198. Art. Anatomy.

[^91]: * For the determination of the tecth in mammalia, sec my ' Odontography,' Mr. 511-52\%.

[^92]: * Dans ees deux figures a est l'omoplate, b les plaques sternales eartilagineuses formées probulblement des os coracoïdiens; c l'humerus, suivi du cubitus et du radius qui portent un carpe eartilagineux et deux os metacarpiens et phalangiens osseux. Mémoire lu à l'Aeadémie des Sciences, le 13 Novembre 1826, p. 15.
 + The want of connection of a peripheral piece, at its peripheral horder, appears to be one condition of its greater extent of variety of form and proportion than in the more eentral pieces of a natural segment. There is nothing to restrain its luxuriant development from a simple spine to a plate, to a divided plate with interealatious, \&c., or to a lengthened segmented ray bifureating and shooting out into additional eeginents with indefinite modifieations of these.

