

S s. usint all.

general 0UTLINE OF THE
 ORGANIZATION
 UN

THE ANIMAL KINGDOM.

general outcine

OF THE

ORGANIZATION

(1)

THE ANIMAL KINGDOM,

AND

MANUAL OF COMPARATIVE ANATOMY.

BY THOMAS RYMER JONES, F.R.S.,
PROFESSOR OF COMPARATLVE ANATOMY IN KING'S COLLEGE, LONDON; LATE FULLERIAN PROFESSOR OF PHYSIOLOGY TO THE ROYAL INSTITUTION OF GRJAT BRITAIN, ETC. ETC.

Faurth exitian,
ILLUSTRATED BY FIVE HUNDRED AND SEVENTY-ONE ENGRAVINGS.
LONDON:

JOUN VAN VOORST, PATETRNONTER ROW.

LONDON
PRINTED BY TAYLOR AND FRANCIS,
red lion court, fleet street.

RICHARD 0WEN, ESQ., F.R.S.,

ETC. ETC. ETC.,

THE FOLLOWING PAGES ARE INSCRIBED

BY HIS SINCERE FRIEND,

THE AUTHOR.

PREFACE TO THE THIRD AND FOURTH EDITIONS.

The short interval which has elapsed since the preceding preface was written affords additional evidence of the inereasing usefulness of this work. Encouraged by such success, the Author, in revising the present edition, has supplied sundry omissions, and added such new observations as the onward progress of anatomical science secmed to require. Important alterations in the arrangement of the Animal Series have likewise been introduced, among which may be pointed out the complete separation of the Protozoa from the Ciliated Infusoria, the introduction of the group Celenterata, and redistribution of the class Helminthozoa, the transferenec of the classes Rotifera and Cirripedia into close proximity with the Crustacea, to which they arc related in many partieulars of their economy, and the cstablishment of the Polyzoa as legitimate members of the Molluscous division of Creation. As a general rule, however, the Author has been careful to avoid unneeessary changes in zoologieal classification, from a convietion that they are rather calculated to cmbarrass than to facilitate the progress of the student of Comparative Anatomy.

As regards the present edition, it need only be remarked that such altcrations have been made in the text as the advanee of seience has rendered needful, and that its value has been enhaneed by the inscrtion of many additional illustrations.

PREFACE TO THE SECOND EDITION:

The object of the writer of the present work has been twofold: first, to lay before the Naturalist a complete view of the organization and physiological relations of every class of living beings; and secondly, to offcr to the Anatomical Student a suceinet aeeount of the strueture and development of the vital organs through all the modifieations they present in the long series of the animal ereation.
Sueh were the intentions of the Author, as announeed at the commeneement of his undertaking; and the reeeption the first edition received at the hands of the public has been sueh as to afford gratifying proof that his efforts to facilitatc the progress of the cultivators of a scienee the importance of which is becoming every day morc conspieuous have not been unsuecessful.

Since the publication of the prcceding edition, however, great and important advanees have been made in our knowledge : many and earncst have been the labourers in this entieing ficld, and proportionately eneouraging have been the results. The indcfatigable industry of Professor Owen, conspieuous in cvery department of our science, has, by his invaluable analysis of the vertchrate skeleton, not only remodelled the nomenelature of the ostcologist, but plaeed in the hands of the Geological Student a light wherewith to guide his steps amid the darkness of departed worlds. The improvements in our microscopes, and the zeal of our mieroseopists, have mueli advanced our knowledge of the Infusorial organisms. The researches of Van Bencden and Siebold relative to the embryogeny of parasitic worms open before us a new ficld of research; while the obscrvations of Stecnstrup,

Dalyell, and Agassiz, on the " alternation of generations" among the Hydriform Polyps and Acalcphæ, promise results of the utmost interest to the Naturalist.

The discoveries of Milne-Edwards have importantly increased our information concerning the organization of the Mollusca as well as of the Alcyonoid Polyps; and those of Müllcr, revealing the metamorphoses of the Echinodermata, add new lustre to a namc already so distinguished in science.

To particularizc our own countrymen and fellow-labourers whose names give value to the following pages would be an invidious task; suffice it to say that the Author has endcavoured, to the best of his ability, to keep pace with their diligence and onward progress, so as adequately to record and acknowledge their contributions to the general stock of scientific lore.

To Mr. Van Voorst, the liberal Publisher of the present volume, the Author cannot but offer his best thanks; the numerous and costly illustrations that adorn the work speak for themselves, while his endeavours to publish it at a price placing it within the reach of every student will, it is hoped, be extensively appreciated.

GENERAL INDEX.

CHAPTER I.ON OLASSIEICATION.

CHAPTER II.

PROTOZOA.

Rhizopoda 14
Structure of Gromia oviformis 14
Locomotion of Rhizopods
Locomotion of Rhizopods 15 15
Their mode of nutrition and reproduction 16 16
Some of them enclosed in shells 17
Foraminifera 18
Their organization 18 18
Pseudopodia 18
Structure and growth of their shells 21
Professor Max Sehulze's observations relative to the reproduction of the Foraminifera 24
Their multitudes and geological importance 26
Polycystina 27
Activophrys 28
Mode of taking and digesting food 29
Contractile vesicle 33
Reproduction by self-division 35
Noctiluces 36
Their mode of reproduction 38
Digestion of food 39
Phosphorescence of the sea 40
Amebse 41
Strueture of Amceba princeps 42
Ovular reproduction of Amooba verrucosa 43
Stonges 44
General structure of Sponges 45
Siliceous and calcareous spicula 4.7
Currents visible in the living Sponge 49
Proteiform structure of the living substance of Sponges 52
Mr. Carter's observations on the nature of Sponge-cells 53
Seed-like bodies of freshwater Sponge 58
Sexual gencration of Sponges 60
Structure and evolution of spermatozoa n.
Reproduction of Sponges from ciliated gemmules 61
Tratassicolla 62

CHAPTER III.

INFUSORIA.

Infusoria-Restriction of the term
Page Sec.
Boundary betwcen the Animal and Vegctable Kingdoms 63 63
Loeomotive apparatus of the Infusoria n.
Movements of Ciliated Infusoria 64
Cilia 67
Ciliary action 68
Mechanism of the stem of Vorticella 69
Trichocysts 70
Arrangement of the digestive apparatus, aecording to Ehrenberg 73
Organization of the Infusoria, aeeording to M. Dujardin 78
Observations of M. Meyen upon this subject 80
Acineta, observations of Dr. Laehmann 83
Internal struetures observablc in the Infusoria 84
"Round corpuscles". 84
"Gastric juice" 85
Contractile space 87
Nucleus 90
Nucleolus 90
Horny integument 91
Reprocluetion of Infusoria 92

- - by external gemmation 93
-_- spontaneous fissure 94
-- as exhibited in Vorticella 97
Wonderful produetiveness of the fissiparous mode of generation 99
Reproduction by eneystment 101
Eneapsulation of Kerona pustulata 103
Plosconia Charon 104
Sexual propagation by embryos or internal germs 105
Metamorphoses of Trichoda Lynceus 110
CHAPTER IV.
Subkingdom II.
Ccelenterata (Frey and Levciart).
Charaeteristies of the Cglenterata 111
Their principal varieties of form 114
CHAPTER V.
HYDROZOA.
Hydrozos-General description of the Hydrae or Freshwater Polyps 60 115
Their mode of catehing prey 117
Filiferous capsules of the Hydrea 118
Digestion of food 119
Coloured globules 120
Terminology 120
Reproduction of Hydra viridis 121
-_- by external gommation 122
mechanical division 12.1
125
Spermatie eapsules 126
Ovigcrous eapsule 127
Structure of ova 125
Hermaphroditism of Hydra viridis 129
Pagc Sec.
Corynide:-Structurc of Coryne 131
Sertularide--Structure of Sertularim zoophytes 132 132 136
Growth of polypary 137
Structure of polyps 138
Structure of tentacula
Proboscidiform mouth 139 139 140
Digestive system 141
Reproduction by cuttings - - the formation of new branches 143 146 146
Planule
Planule of Sertularian zoophytes, according to the observa147
tions of Lovén 158
Male branches of Sertularian zoophytes 159
Discophora 160
Meduse 162
Structure of Cyanea aurita 163
Umbrella-like disk 164
Nutritive apparatus
172
172
Nervous system 173
Oculiform organs 174
Otolithic vesicles 177
Reproduction by gemmation 179
Sexual generative organs 181
Ovigerous pouches 183
Development of ova 184
Conversion of ciliated embryo into a Hydra
185
185
Reproduction by stolons, gemmæ, and bulblets
Reproduction by stolons, gemmæ, and bulblets
186
186
Segmentation of Hydriform polyp
Segmentation of Hydriform polyp
Segmentation of Hydriform polyp 187 187
Conversion of segments into free Mellusce
Conversion of segments into free Mellusce 189 189 189
Morphological structure of Medusa
Morphological structure of Medusa
Structure of Rhizostoma 190
Structure of Cassiopea Borbonica 191 191
Nature of converging and diverging nutritive canals 193 193
Tubularide 194
Structure of Tubularia indivisa 195
Circulation in stem 196
Development from ova 197
Medusa-like zooids 198 199
Medusiparous reproduction in Campanularia gelatinosa
Medusiparous reproduction in Campanularia gelatinosa
Embryogeny of Campanularian zoophytc
Embryogeny of Campanularian zoophytc 202 202
Transitional forms of locomotive zooids 203
Relationship between Mcdusa-buds and a polypite 205 205
Résumé of the leading facts connccted with the reproduction of Hydroid zoophytcs 208
Siphonophora 211
Physophoride 212 212
Physalia, or Portuguese man-of-war
Physalia, or Portuguese man-of-war
Porpita 213
Velella and Rataria 214
Physophora, morphology of 215
ILalistemma rubrum 216
Physophoride constructed upon a common plan 217
Calycophoridn: 219
Structurc of Diphyes 221
Ctenophoride 224
Structure of Beroes 225
Cydippe 225
Beroë Forshalliii 232
Lessenria-Norvous syatem 235
Oculiform spot $2: 35$
Ctencrative gystem 237
Developinent of embrjo Page Sce.
Cestum Veneris 238 238
Digestive and circulatory canals 239
Secretion of glairy fluid 239
Phosphorescence of the Medusæ 240
110 241
CHAPTER VI.
ANTHOZOA.
Forms of the Anthozos
110
110 242 242
Structure of Fungia agariciformis
Structure of Fungia agariciformis
243
243
Gelatinous investment
Gelatinous investment 244
Reproduction of Fungia
245
245
Nature of its calcareous skelcton
247
247
Meandrince, or Brain-stones
248
248
Cortical compound Anthozoa
Cortical compound Anthozoa
249
249
Alcyonide
Alcyonide
251
251
Organization of Cydonium Miulleri
251
251
Inquiry concerning the compound nature of the Alcyonidæ
253
253
Milne-Edwards's researches relative to the structure of Alcyo- nidium elegans
255
255
Anatomy of the individual polyps
256
256
Organization of the common polypary 258
Gemmiparous mode of reproduction
263
263
Reproduction by gemmules or ovules
265
265
Alcyonium stellatum
Alcyonium stellatum
271
271
Vascular canals of the polypary
271
271
Modes of reproduction
272
272
Madreporide
274
274
Formation of coral-reefs
Formation of coral-reefs
275
275
Corallidew
277
277
Corallium rubrum
Corallium rubrum
278
278
Isis hippuris
Isis hippuris
279
279 281
Gorgonia verrucosa
Gorgonia verrucosa
Structure of individual polyps 282
Gencrative organs
283
283
Malc reproductive apparatus 284
Formation and structure of ova
285
285
Manner of fecundation
286
286
Gestation and escape of embryo
287
287
Larval condition
Larval condition
288
288
Pennatulidera
289
289
Tubiporides
290
290
Anatomy of Tubipora musica
291
291
Growth of polypary
295
295
Mcchanism of retraction and protrusion 296
Reproductive germs
298
298 299
Fleshy Polyps
Fleshy Polyps
Structure of Actinice 300
Mode of obtaining prey
301
301
Anatomy of Actinia
304
304
Reproduction of Actinix
305
305
Mode of impregnation 307
Hermaphroditism of Cerianthus membranaceus 308
Development of embryo 308
Filiform tubes 309
Power of reproducing mutilated parts
310
310
Mechanism of the oral tentacula 311
Filiferous capsules 312
CHAPTER VII.
HELMINTHOZOA. 314
Page Scc.
Page Scc.
Extozos 315
Ligula simplicissima 316
Distribution of the Entozoa 317
Gregarinide 318
Cystiform Heluinthozoa 318
Conurus cerebralis 319
Cysticerci 320
Cestoidea 320
Tenice, or Tape-worms 321
Anatomy of Tcria solium 322
Longitudinal canals 323
Structure of mature segment (proglottis)
Structure of mature segment (proglottis) 323
Male generative organs 324
Female generative system 325
Physiology of impregnation
326
326
Development of the Tænioid Entozoa 328
Scolex
330
330
Formation of the body (Strobile) of the Tape-worm
Segments of the Strobile enjoy a community of life 332 332 333
Growth of proglottis after its detachment from the Strobile
Growth of proglottis after its detachment from the Strobile
Enormous fecundity of the Tænioid Entozoa 334 335 335
Envelope of the ova
Envelope of the ova 336
Oviposition of proglottis
Oviposition of proglottis
M. Mieseher's observations relative to the metamorphoses of the Tænioid Entozoa 337
Van Beneden's account of the metamorphoses of Tetrarhynchus 338 338
Transformation of Cystiform Entozoa into Tæniæٍ 345 345

Cœenurus and Cysticercus are the Scoleces of ordinary Tapeworms

Cœenurus and Cysticercus are the Scoleces of ordinary Tapeworms 345
Echinococcus veterinorum 347 347 347
Trematoda 348 348
Distoma (Fasciola, Linn.) hepaticum 349
General history of Distoma 349 349
Alimentary apparatus 349
Nervous system 350
Generative system of Distoma 351
Structure of female generative system 353 353

- male generative organs 354
Development and metamorphoses of the Trematode Entozoa 355
Observations of Nitzsch, Bojanus, Steenstrup, Siebold, \&c. relative
to the "alternation of generations" of the Distomata 356
Steenstrup's account of the metamorphoses of Cercaria echinata. 157 358
Monostomum mutabile 367
Illustrations of the nature of these changes 368
Difficulties of the investigation 369 369
Acanthocephata (Echinorhynchi) 370
Anatomy of Echinorhynchus gigas 371 371 371 371
Structuro of retractile proboscis
Structuro of retractile proboscis
- digestive apparatus 372
Lemnisci 373
Generative organs of female 374
Floating ovaria, described by Sicbold as existing in some Acantho- cephalous Entozor 375 376
Gencrative organs of male Echinorhynchus
Gencrative organs of male Echinorhynchus
1ixternal Parasitical ITelminthozor 377
Gyrodactylus 378
Octobothrium 378
Turberdarif: 379
Planarie Page Sce.
General history of Planariæ 380
Muscular system of marine species 380
Nervous system of Planarix 381
Oculiform speeks 382
Their power of surviving mechanical division 384
Strueturo of their digestive apparatus 385
Visccral cavity 386
Vascular system 387
Hermaphrorlitism of Planarix 388
Structure of generative apparatus 389
Nemertean Helminthozoa 390
Ciliated integument 391
Structure of alimentary apparatus 392
Circulatory system 393
Reproductive organs of female 395
male 399
Celelmintha-Ascaris lumbricoides, general history of 400
Muscular parictes of the Cavitary Entozoa 401 401
Structure and arrangement of the muscular system 402
Nervous system of Ascaris 403
Digestive system 404 404
Cæeal appendages to alimentary eanal met with in some species 405
Nutritive appendages 406 4.07
Generative apparatus of female Ascaris
Generative apparatus of female Ascaris
Formation of ova in the ovarian tubes 408 409
Sexual organs of male Ascaris
Sexual organs of male Ascaris
Trichina spiralis 410 411
CHAPTER VIII.
ECHINODERMATA.
Eehinodermata-General view of the class 177 412
Crinoide
Crinoide
4.15
4.15
Strueture of Encrinus
415
415
Asteride 416
Comatula 418
Gorgonocephalus 418 418
Ophiurus
Ophiurus
Asterias 4.19
Locomotive apparatus of Starfishes 420
Ecuinide 184421
Scutella 422
Echinus 422 422
Holothuride 423
Fistularide 424
Fistularia 425
Anatomical structure of Asterias 4.25
External coriaeeous integument 428
Dermie secretions 428
Tegumentary spines 429
Pedicellarir 430 430
Calcarcous framework or skcleton 43
Dorsal rcticulations 432 432
"Vertebral" plates 433 433
Composition and arrangement of "Vertubree" 435
Ambulacral holes
435
435
Ambulacral grooves
Ambulacral grooves 135 135
Ambulatory suckers 436
. 194 439
Pcritoneal lining of visccral cavity 440
Alimentary system of Asterias 44.1
Crecal appendages to stomach 443
Functions of cæcal appendages 447
Food of Starfishes 4.48
Their power of destroying shell-fish
449
449
Absorption of nutriment from digestive cavitics 450
Intestinal veins 451
Vascular system of Asterias 458
Madreporic plate and sand-canal 459
Ciliary apparatus of Starfish 461
Reproductive system of female Starfish 462 462
Ova
Ova 463
Anatomical structure of ovum 464
Growth of young Starfishes 469 470
Müller's researches relative to the metamorphoses of Ophiurus
Müller's researches relative to the metamorphoses of Ophiurus
Pluteus paradoxus. 473 477
Phenomena accompanying its development into a Starfish
Phenomena accompanying its development into a Starfish
Development and growth of rays 478
Nervous system of Asteridæ 479
Oculiform specks 480
Echini
482
482
Shell of Echinus 487
Necessity for its elaborate construction
Necessity for its elaborate construction
488
488
Tubular suckers 489
Locomotive spines
489
489
Mode of their articulation with the shell
4.91
4.91
Growth of the spincs of Echinus
492
492
Internal structure of spines 493
Mouth of Echinus 493
"Lantern of Aristotle" 494
Mechanism and muscular apparatus of the jaws
500
500
Digestive system of Echinus 502
Vascular system of Echinus 503
Respiratory function, how performed
Respiratory function, how performed
505
505
Pinnated tentacula 506
Nervous system
507
507
Reproductive organs
507
507
Development of cmbryo
508
508
Müller's researches-Metamorphoses of Echini
Müller's researches-Metamorphoses of Echini
513
513
Holothurid
Holothurid
513
513
Structure of muscular integument 514
Locomotive suckers
515
515
Digestive system of Holothuria
518
518 519
Respiratory apparatus
Respiratory apparatus
Circulatory system 521
Generative system
Generative system
522
522 523
Metamorphoses of embryo
Metamorphoses of embryo
Nervous system
523
523
Muscular irritability
Muscular irritability
524
524
Fistularides
525
525
Anatomy of Sipunculus
527
527
Cuticle 528
Muscular system
Muscular system
529
529
Digestive apparatus
Digestive apparatus
532
532
Vascular system
533
533
Course of the circulation
Course of the circulation

53.
54.

Sacculi
Sacculi 355

CHAPTER IX.

homogangliata.

General type of structuro . . Page Scc.
Review of the classes composing the Homogangliate division of the Animal Kingdom 234 539
Arrangement of the nervous systcm 236 544
CHAPTER X.
ANNELIDA.
General characters of the class
Abranchiata 237 549
Anatomy of the Leech (Hirudo medicinatis) 551
238
238
Structure of muscular integument 552 552
Locomotive apparatus 552 552
Structure of mouth 553
Mechanism of dental saws 554
Internal digestive apparatus 555
Structure of alimentary canal 557
Circulating system 558
Respiratory system 561
Nervous system of the Leech 561
Splanchnic ganglionic nerves of Lcech 567
Senses of the Leech 568
Organs of vision 569
Hermaphrodite condition of generative system 570
Arrangement of male apparatus 571
Ovigerous or female generative organs 572
Mode of oviposition 573
Abranchila terricoma 574
Anatomy of the Earthworm (Inmbricus terrestris) 575
Locomotive apparatus 576
Alimentary canal 576 576
"Typhlosolen" 577
Arrangement of the circulation 577
Generative system 579
Eggs of the Earthworm 585 585
Alleged power of surviving mechanical section 594 594
Anatomy of Nais filiformis 595 595
Circulatory system of Nais 598 598
Generative system of Nais 598
Dorsibranchiata 599
Arrangement of respiratory apparatus 600
Locomotive lateral appendages 600
Structure of the mouth 602

- - in Goniada 604
-- -- in Amphinome 604
-_-_-_ in Phyllodoce laminosa 6,05
[_-_-_-_ in Laodicea 606 607
- --- in Phyllodoce maxillosa
- --- in Phyllodoce maxillosa
Alimentary canal of the Dorsibranchiate Annclidans 608
Mcelhanism of alimentation
611
611
Circulation of Amphinome capillata 612
-- Eunice sanguinea 614
Gemmiparous reproduction 619
Page Scc.
268 622 622
Respiratory tufts of Arenicola 624
Aeration of chylaqueous fluid 626
Blood-system of Arenicolc 627
Gencrative organs of the Dorsibranchiate Annelidans 633
Eseape of the ora 634
Development of embryo 635
Aphroditacee, or Sea-mice 635
Spines of Aphrodite aculeata 637
Elytral scales 638
Mode of respiration 639
Reproductive system of Aphrodite 641
Tubicola 641
Tubes of Terebella and Serpulce 642
Description of Terebella Medusa 643
Branchial apparatus 644
Cephalic tentacula 647
Circulatory system
653
653
Generative apparatus of Terebella 660
Embryology of the Annclidans 667
Nervous system 668
Structure of the cye of Torrea vitren 668 669
"Auditory capsule" of Arenicola
Luminosity
CHAPTER XI.
MYRIOPODA.
Gencral remarks on the Myriopoda 701
Julide 708 708
Anatomy of Julus terrestris 708 709
Alimentary organs
Alimentary organs
Sexual organs, male 710
____ female 711
Generative system of male Julus 712
713
713
Ova 714
Development and growth of Julus terrestris 716 716
Observations of Mr. Newport 717
SCOLOPENDRTDE 724 724
Anatomy oî Scolopendra 725
Concentration of nervous system 726 726
Structure of mouth 727
Alimentary eanal 728
Strueture of the heart 729 729
Cireulatory system 731 731
Gcnerative organs of male Scolopendra 732
Phosphorescent and elcetrieal phenomena exhibited by some species 733 733 734
CHAPTER XII.
INSECTA.
Dcfinition of the class 300 735
Mctamorphosis of insects 737
Larva 737
Pupa and Imago 738
Distribution of insects into orders 7.10

GENERAL INDEX

Page Sec
Hepatic vessels 338 825
826
Anal vessels 338 827
Absorption of mintriment 828
Respiratory system of inseets 829
Strieture of traehero 833
Meehanism of respiration 834
Cirenlatory system of inseets 835
Structure of the dorsal vessel or heart 838
Diffused eharacter of the cireulation 839
Structure of the seecrning vessels 84.0
Nervous system of inseets 841 842
Brain or eneephalie ganglia, and nerves derived thercfrom
Brain or eneephalie ganglia, and nerves derived thercfrom
Ventral ehain of ganglia 84.3
Motor and sensitive tracts 844
Nervus vagus or reeurrent nerve 845
Sympathetie or splanehnie nerves S46
Senses of inseets 847
Sonse of toneh 848
-_- taste 840
--_s smell 850 852
Eyes of insects of two kinds
Eyes of insects of two kinds 855
Strineture of simple eyes Strueture of eompound eyes 856
Inquiry coneerning vision with eompound eyes 859 860 860
Sexcs of inseets clistinct
Sexcs of inseets clistinct Strueture and arrangement of male organs of Cockehafer (Melo- lontha vulgaris) 861
Varieties observable in other inseets 86
Female apparatus of reprocluction 865 865
Generative organs of female Melolontha 866
Formation of eggs in the ovaria 868
Appendages to oviduct 869
Gluten-secretors 870 870 871
Spermathcea
Spermathcea
Physiologieal use of spermatheca 872
Generative apparatus of Meloë variegata 874
Ovipositor 875
Structure of ovipositor in Sirex gigas 876
876
Gall-flies (Cynips) 877 877
Fecundity of Aphides 878
Tmpregnation of several suecessive gencrations by a single coitus 879
this mode of reproduetion compared with that of Zoophytes aud Plants 880
Illustrations of the above phenomena 857 889
Parthenogencsis
Fertility of the Queen Bec 893

- Tcrmite Ants 894
Eggs of insects 895
ILetamorphosis of inscets 896 896
- -- Muscidce 897
——————ymenoptera 902 902
——————— Coleoptera 903 905 905
Gnat 907
Corelira 907
Stralyomys 908
Tiphemeron 909
Eristalis 910
Myrmeleo 911
Anatomy of Caterpillar Page See
Digestive apparatus 912
Respiratory system 912
Rete, epiploon, or fat-mass 913
Silk-seerctors 915
Moultings of Caterpillar 916
Change from larva to pupa 918
Conversion of pupa into imago or perfeet inseet 919
Healing of wounds in inseet 921
Internal changes during metamorphosis 922
Changes in the alimentary eanal 923
Absorption of fat-mass 923 923 924
Disappearance of silk-secreting apparatus
Disappearance of silk-secreting apparatus
Development of generative system 925
Progressive centralization of nervous system 926
Remodelling of the organs of the senses 927
Sounds produced by insects 927
Phosphoreseence of Elater and İampyris 928929
CHAPTER XIII.
ARACHNIDA.
Separation of Arachnidans from Insects
Arachnida Trachearia 931
Their external anatomy 932
Strueture of locomotive apparatus 933
Organization of mouth 934.
Remarkable arrangement of digestive system 935
Respiratory apparatus 936
Singular respiratory organs of Trombidium 938
Breathing-organs of Hydrachna and other aquatic Araehnidans 940
Ncrvous system 942
Eyes 943 943
Generative system 944
Development and exuviation of Hydrachne 945
Arachnida Pulmonaria 946 946
Pedipalpi, or Scorpions 947
Araneides, or Spiders 948
Tarantulide-Phrynus 949
Apparatus of the mouth in the Scorpions 950 951 951
Maxillary palpi of Spider
Maxillary palpi of Spider
Alimentary eanal 953
Anal vessels of Spider 954
Respiratory apparatus of Scorpion 956
Cireulatory system in Spiders 958 959
Her Seorpions
Her Seorpions Heart, or dorsal vessel of Scorpion 961
Arterial system 962 962
"Portal system" of vessels 965 965
Strueture of "Pulmonibranehix ; 966
Venous sinuses 967 968 968
Course of circulation in the Seorpionidæ
Course of circulation in the Seorpionidæ
Nervous system of the Amehnida 969
Ocelli, or cyes of Arachnidans 970
Gencrative apparatus 971 971
-_- of male 972 972
- - - female.973
Page Sec．
Spiming－apparatus of Arancide 974
Uses of tho thrend of the Spider
Uses of tho thrend of the Spider 975 975
Caveru of Mason Spider（Mygale） 977
Tent of Clotho Durandii 977
Feet of Spider 978
Combing－apparatus 979Web of Geometric Spiders
CHAPTER XIV．
CRUSTACEA． 980
General view of the class
General view of the class
Tegumentary system of the Crustacca 418 981
Progressive coalescence of the elements composing the exoskeleton 982and of the centres of the nervous system
External organization of the skeleton 987
三二口二口—— Calitrus ．．．．．． 420 989
Crab 990
the King－Crab（Limulus）．．．． 420 991
Parallelism between these gradations and the progress of insect－ metamorphosis 992
Structure of articulated appendages 993 993
 998 998
Casting of the shell in Crustacea 1001 1001 1004
Structure of alimentary canal 1009
Hepatic apparatus．
Hepatic apparatus．
Organs of respiration 1010
Branchial chambers 1011
Mechanism of the respiratory process 1013
Circulatory system in the lowest Cru 1014
Coursc of the circulation 1021
Lacunar system 1022
Nervous system of the Crus 1024
1025
$\overline{\text { Centralization of the nervous system during embryonic develop－}}$ ment 1027
Distribution of the nerves 1028
Sensitive and motor tracts 1031
Susceptibility of pain in the Articulata 1036
Structure of the shell in Dceapods
1037
1037 limbs limbs
1038
1038
Capability of reproducing them
Capability of reproducing them
1039
1039
Physiology of the proces
Sunses of the Crustacea 1040
Structure of the organs of vision 10.11
＿＿＿agglomerated cyes 1012 1012
Auditory apparatus？ 10 ． 10 ． 1045
"Organ of hearing "? diseovered by Dr. A. Farre 443 Sce.
1050Generative system in Decapod Crustaceans
Malc organs of Astacus fluviatilis 1051
Sexnal organs of male Brachyura 1052
Female generative system 1056
Spermatheea 1058
Gestation of ova 1059
Development of embryo 1060
Mctamorphosis of young Crab 1061
Stomapoda 1061
Squilla mantis 1065
Amphipoda 1065 1065
Lemodipoda 1066
Isopoda 1067
Limnoria terebrans 1068
Branchiopoda 1068
Division of Branchiopods (Entomostraca) into two groups 1069
Lophyropod Entonostracans 1070
External egg-bags of female Cyclops 1071 1071
Gestation of Daphnia 1072
Gencrative system of Cypris 1073
Remarkable feeundity of Entomostraca 1074
"Ephippium" and "ephippial eggs" 1076 1076
Exuviation
Exuviation 1078 1078
Development of Cyclops 1079
Phyllopod Entonostracans 1080 1080
Chirocephalus diaphanus 1082
Artemia salinus 1082
Siphonostonata 1083
Lerneans 1085
Chondrocanthus 1088
Ergasilus gibbus 1089
Achtheres percarum 1090 1091
Organization of female Achtheres
Organization of female Achtheres
-_-_ male 1093
Metamorphosis of young 1097
Lamproglena pulchella 1105
Nicothoë Astaci 1106
Pycrogonide 1111
Arrangement of digestive systom 1117
"Phlebenterism" 1118
Nervous system 1121
Rotifera 1122
Locomotive apparatins 1123 1124
Brachionus urceolaris
Brachionus urceolaris
Disposition of cilia 1125
Notommata clavulata 1127 1128
Dr. Arthur Farre's observations conceruing ciliary movement
Dr. Arthur Farre's observations conceruing ciliary movement
M. Dijardin's explanation of this phenomenon 11.29
1131
Muscular system 1133
Alimentary system
Alimentary system 1135
Notommata centrura
Notommata centrura
Dental apparatus 1137
Melicerta ringens 1135
Nervous system 1139 $114:$
Tentacular organs Respiratory system $114!$ 1151
"Calcar"
"Calcar" 1153
"Water-vascular system"
Generative system 1155 1157
Development of Melicerla ringens
Development of Melicerla ringens
"Asplanchnia" 11581161
CHAPTER XV.
CIRRIPEDIA.
Characters of the chass
Page Sec. 487 167
Strue ture of Cirripeds intermediate betwcen that of the Crustacea
Strue ture of Cirripeds intermediate betwcen that of the Crustacea and Mollusca 488 1169
Ncrrous system of Pentelasmis
Ncrrous system of Pentelasmis
1171
1171
1171
Muscular system of Pentelasmis
Muscular system of Pentelasmis
Muscular system of Pentelasmis 1173 1173
Apparatus for prehension of food
Apparatus for prehension of food
Apparatus for prehension of food 1173 1173
Digestive system
Digestive system 1174 1174
Senses of the Cirripedia
Senses of the Cirripedia 1175 1175
Visual organs
Visual organs 1176 1176 1177 1177

"Acoustic sacculus"

"Acoustic sacculus"

"Acoustic sacculus" 1178 1178

Gcucrative system

Gcucrative system

Gcucrative system
-___ Curicr.
-___ Curicr. 1179 1179
"Complemental male" 1181 1181
Structure of the "complemental male" of Ibla Cumingii
Structure of the "complemental male" of Ibla Cumingii 1181 1181
Hermaphrocitism of Larve of Ibla quadrivalvis
Hermaphrocitism of Larve of Ibla quadrivalvis 1184 1184
Development of ova
Development of ova 1186 1186
Balani
Balani 1188 1188 1190 1190
Conversion of larva into a fised and pedunculated Cirriped
Conversion of larva into a fised and pedunculated Cirriped 1191
Part performed by the antenuæ
Part performed by the antenuæ 1192 1192
Ccment-gland
Ccment-gland 1193 1193
Mode of fixation
Mode of fixation 1194
CHAPTER XVI.
HETEROGANGLTATA (MOLLUSCA).
Gencral survey of this extenisive order 499 1195
CHAPTER XVII.
POLYZOA.
Organization of the Polyzoa 501 1199
Anatomy of Bowerbankia 1201
Structure of ciliated tentacula 1202 1202
Alimentary canal 1204
Process of digestion 1206
Structurc of cell 1209
Muscular system 1212
Flustree and Escitare 1216
Structurc and growth of cells 1217 1217
A natomy of the Polyzoa that inhabit them 1224 1224
Various morles of propagation 1231
Genmiparous reproduction of Fhustree and Escharce 1232 1232
Pedicellina 1233
Laguncula 1235
Reproduction by ova 1238
Malo apparatus Page See.
Spermatozoa 1238
Extrusion of eggs 1239
Strueture of egg 124.1
Development of embryo 124.1
Reproduetion by eiliated gemmules 1243
Fluviatile Polyzoa 1246
Cristatella mucedo 1247
Tentaeular appendages 1249 1252
Digestive apparatus
Digestive apparatus 1253
Food
Food
Chylaqueous system 1256
Reproduetion by gemmation 1257
1259
ova "Statoblasta" 1260
Embryogeny 1261 1262

CHAPTER XVIII.

TUNICATA

General survey of the class 517 1263
Structure of Aseidians 1264
Phallusia nigra 1264
Mantle 1265
Respiratory system 1266
Cireulation 1267
Apparatus for obtaining food 1270
Alimentary eanal 1272
Reproduetive system 1273
Female generative organs 1274
Male apparatus of Cynthia ampulla 1275
Reproduetive organs of Ascidia grossularia 1276
Nervous system 1277
Compound Asctidians 1278
Botryllus 1279
Pyrosoma 1280
Polyclinum 1281
Generative system of Amaroucium Argus 1282
Strueture of ova 1283
Embryogeny 1284
Metamorphosis of larva 1285
Conversion of solitary into compound forms 1286
Illustrations of this mode of development 1288
Salpe 1289
Anatomy of Salpa maxima 1289
Alterrate gencrations of isolated and eoneatenated Salpæ 1291
"Stolon prolifer" 1293
CHAPTER XIX.
CONCHIFERA.
General view of the elass 129.1
Structure of Pecten Jacobaa 1295
Anatomy of the Oyster 1299
Alimentary canal 1299
Respiratory apparatus 1300
Cireulatory systcm 1301

CHAPTER XX.

BRACHIOPODA.

Gencral characters of the class 552 . 1345
Shell formed upon two plans 552 . 1347
Muscular system 552 . 1348
Mantle 553 . 1349
Arms . 553 . 1350
Testaceous intcrnal framework 553 . 1352
Prehension of food 555 . 1353
Digestive system 555 . 1353
Respiratory apparatus 556 . 1355
Circulatory system 556 . 1356
Nervous system 559 . 1364
Generative organs 559 1366

CHAPTER XXI.

GASTEROPODA.

GENERAL INDEX.
xxvii

CHAPTER XXII.

PTEROPODA.

General survey of the class 5961483
Anatomy of Clio borealis 1485
Locomotive apparatus 1486
Cephalic appendages 14.87 14.87
Hoods 1488 1489
Tentacles
Tentacles
Structure of mouth 1490
Jaws 1491
Tongue 1494
Alimentary canal 1495
Respiratory system 1496 1496
Circulatory organs 1498
Nervous system 1499
Eyes 1500
Generative apparatus 1501
Muscular integument 1503
Shell of Hyalca 150 G 150 G
Branchix of IIyalea 1500Pneumodermon 6021507

CHAPTER XXIIT.

CEPHALOPODA

General description 602 1508
Structure of Oclopus vulgaris 1510
Arms of Lotigo 1513
Structure of individual suckers Pagc Sec.
Suckers of Onychoteuthis 604, - 151.
argonaut, or Paper Nautilus. 1516
Supposed capability of sailing 1517
Observations of M. Sander Rang 1518
Fabricates its own shell 1520
Nautilus Pompilius 1521
Structure of its camerated shell 1522
Uses of chambered shell 1522 1522
Animal of Nautilus Pompilius J523
Anatomical structure of Cephalopoda 1524
Visceral sac 1525
Siphon, or funnel 1525
Fins 1525 1525
First rudiments of osseous skcleton 1526
Cartilaginous cranium 1528
"Gladius" of Loligo 1529 1529
"Cuttle-bone" of Sepia 1531 1531
Shell of Argonaut 1532
Structure of animal 1535
Uses of vela 1535 1535
Usual mode of progression 1536
Manner of constructing its shell 1536
Experiments of Madame Power 1538
Growth of the shell of Nautilus Pompilius 1539 1539
Mouth of Cephalopods. 1540
Beak of Nautitus 1541
Tongue of Onychoteuthis 1542 1542
Salivary glands 1544
Alimentary canal of Nautilus 1545
Crop 1546
Gizzard 1540
"Pancreas" 1547
Intestine 1548
Liver 1550
Secretion of bile 1551
Ink-gland 1552
Respiratory apparatus 1554
Branchix 1555
Mcchanism of respiration 1556
"Venous cavity," or " pericardium" 1557
Spongy appendages to vence cavce 1559 1559
Communications b 1560 1560 1562
Branchial hearts 1563
Supplementary hearts of Sepica 1563 1563 1564

Systemic circulation in Sepia

Systemic circulation in Sepia 1566
Venous system in Octopus vulgaris 1567
Loligo
1568
1568
Nervous system of the Cephalopoda 1569
1573Sense of to Dibranchiate Cephalopods
Sense of taste 1583
1585
Eyc of Nautilus 1588

- Cuttlefish (Sepia officinalis)
- Cuttlefish (Sepia officinalis)
Muscles of eyeball 1592
Anditory apparatus of Cuttlefish 1600 1603
Gencrative system
Gencrative system
"' Female generative organs of Cuttlefish 1605
Eggs of Cephalopods 1606 1603

CHAPTER XXV.

PISCES (FISHES).

Lowest forms of life inhabit water 1668
Senses of fishes 1670
Inferiority of intellectual powcrs 1671
Structure of internal skeleton 1672
Anatomy of Amphioxus 1673
Modifications in the structure of the vertebral column of fishes 1690
Composition of osscous skeleton 1692
the cranium 1704 1704
Boncs of the face 1718
Pterygo-palatine and temporal system of bones 1719
Opercular bones 1726 1726
Lower jaw 1727
Os hyoides and branchiostegous rays 1728
Branchial apparatus 1731
Pharyngcal bones 1733
Adaptation of the skeleton of fishes to an aquatic life 1735
Fins of fishes 1736
Muscular system of fishes 1738
Arrangement of the skelcton of the Flat-fishes (Pleuronectide) 1742 1745
Exo-skeleton of fishes 1753
Scales of osscous fishes Page Sce
Tegumentary skeleton of Cartilaginous fishes 1754
Interconvertibility of endo- and exo-skelctons C86 1756
Swimming-bladdcr 1757
Structure of the mouth 1763
Arraugement of the dental apparatus 1769
Tecth of Myxine 1769
-_ Lamprey 1771
-- Raidæ 1772 1772
Vari-Sharks 1774.
Various modes of attachment obscrvable in the teeth of fishes 1775 1775
Growth of the teeth in fishes 1777Oral valve1778
Digestive system 1781
Stomach 1782
Intestinal canal 1783
Pancreatic glands 1784
Liver 1785
System of the vena porte 1787
Splecn 1788
Lymphatie system 1789
Cireulatory system 1790
Heart 1791
Bulbus arteriosus 1792
Branehial eirculation 1794
Systemic eirculation 1795
Urinary apparatus 1798
Kidncys 1801
Mucus-glands of the skin 1802
Membranes of the brain 1804
Composition of the brain of fishes 1805
Olfaetory ganglia 1806
1807
Organs of smell 1808 1809
Optic ganglia
Optic ganglia
Organs of vision 1810
"Choroid gland" 1811
Ocular pedicle of Sharks and Rays 1816
Muscles of the cyeball 1818
Posterior cerebral ganglia and cerebral nerves 1819 1822
Auditory apparatus
Auditory apparatus
Otoliths 1825
Imperfection of the sense of hearing in fishes 1829
Distribution of the nerves of the eighth pair 1834 1836
Cercbral hemispheres
Cercbral hemispheres
Cerebellum 1838
Generative system
Generative system 1841 1841 1845
Structure ol the "roe" of osseous fishes
Structure ol the "roe" of osseous fishes 1846
Viviparous Blenny
Viviparous Blenny
Testis or "Milt" of osscous fishes 1847
Reproductive organs of the Eel and Lamprey 1848 1848
-_- Sharks and Rays 1851
Oviduet 1854
Ovaria of the Shark and Skato 1854 1855
Strueture of Shark's egg
Strueture of Shark's egg
Ovidueal gland 1856
Sexual organs of male Chondropterygii 1857 1858

CHAPTER XXVI.

Metamorphosis observable in the hyoid apparatus Page Sec.
Sec.
Circulation of the Lepidosiren 744 744
Brain of Reptiles 1977
Olfactory apparatus 1981
Organs of vision 1984
Eyelids 1988
Laerymal gland 1993
Third, fourth, and sixth pairs of nerves 1996
Nerves of the fifth pair 1997
Faeial nerve or portio dura of seventh pair 1998
Auditory apparatus 1999
Ear of the Tortoise 2000
—— Serpents 2002

- Amphibious Reptiles 2005 2005
Membranous labyrinth 2006 2006
Finst rudiment of eochled 2007 2007
Glosso-pharyngeal nerves 2008
Pneumogastrie nerves 2009 2009
The hypoglossal pair of nerves 2009
Spinal system of nerves 2010
Sympathetie system 2011
Sense of toueh 2012
Cutieular investments 2013
Exuviation 2014 2014 2014
Urinary exeretion
Urinary exeretion 2015
Kidneys
Kidneys
Allantoie bladder 2016
Generative system 2017
Feeundation of ova 2018 2018
Generative organs of male Frog 2019 2019 2020
female Frog 2021 2021
Newt (Triton) 2022
Male organs of Ophidian, Chelonian, and Saurian Reptiles 2023
2025
2025
Organization of female generative system 2030
CHAPTER XXVII.
AVES (BIRDS).
Comparison between Birds and Reptiles 2032
Relation between museular aetivity and the perfeetion of the respiratory apparatus 2033
Warmth of external eovering 2034
Strueture of the skeleton 2035
Museular system 2048
Alimentary system 2050
Modifieations in the strueture of the beak 2051
Sense of taste 2052
Various uses of the tongue 2052
Crop and cesophageal expansions 2053
Proventrieulus 2053
Gizzard 2054
Intestinal eanal 2056
Salivary apparatus 2058
Gastric glands in proventrieulus 2061
Liver and biliary duets 2062
Panereas 2063
Spleen 2064
Lymphatie and laeteal system 2065
Structure of lungs $\because 066$
Page Sec.
Meelanism of the respiratory proeess
Results from the peeuliar arrangement of thespiratory system 772 2068
in Birds 2069
Structur of vocal apparatus 2070
Traehea 2072
Upper laryns 2073 2075
Inferior larynx
Inferior larynx
Cireulatory system and eourse of the circulation 2077
Structure of the brain and eerebro-spinal axis 2078 2078
Sympathetie systcm 2080
Sense of touch 2081 2082
Olfaetory apparatus
Olfaetory apparatus
Structure of the eye and oeular muselcs 2083 20832087
Eyelids
Eyelids
Nictitating membrane 2090
Lacrymal apparatus 2092
Glandula Harderi 2094
Auditory apparatus 2096
Genito-urinary system 2096
Kidueys 2097
Cloaca 2098
Uropygium 2099
Male generative system - penis of the Ostrieh 2100
Male intromittent organ-penis of the Drake 2101
Female generative system 2103 2103
Ovarium 2103 2103
Oriduet 2104
History of the formation of an egg 2105
Ovisacs 2106
Structure of ovulum 2107 2107 2108
Phenomena attending coneeption
Phenomena attending coneeption
Formation of the albumen and Chalaza 2110
membrana putaminis 2111
Secretion of shell 2111
Anatomy of the new-laid egg 2113
Composition of the yelk 2114 2114
Blastoderm or germinal membrane 2114
Progressive results of ineubation 2117
Developinent of the embryo 2118
Formation of vaseular systom 2125
Strueture of orum at the close of the period of incubation 2140 2140
Omphalo-mesenterie system 2140
Ductus vitello-intestinalis 2141 2141
Corpora Wolfiana 2143
Allantois 2143
Varicties in the eomposition of the egg in the different elasses of oviparous Vertebrata 2143
CHAPTER XXVIII.

MAMMALIA.

Distinetive eharacters of the elass 2148
Gencral survey of the Mammifcrous races 2119
Composition of the skeleton 2150
Ostcology of the different Orders. 2186
Monotremata 2187
Skeleton of Ornithorhynchus paradoxus 2189
Marsupialia Page Sce.
Skeleton of Mypsiprymnus 2191
Placental Mammalia 2194
Cetacea 2195
Skelcton of Wialebone Whaie 2196
Pachidermata 2197
Skeleton of Hippopotanus 2202
Solidungula or Solipeds 2203
Skeleton of the Horse 2205
Ruminartia 2206
Skeleton of the Stag 2209
Edentata 2211 2211
Skeleton of Armadillo 2214
-- the Sloth (Bradypus) 2214
Rodentia 2215
Skeleton of the Jerboa 2217
Carnivorous Quadrupeds 2220
Amphibia 2222
Skeleton of the Seal 2225
Terrestrial Carnivora 2226 2227
Digitigrada-Skeleton of the Weasel
Digitigrada-Skeleton of the Weasel
Plantigrada 2227
Insectivora 2230
Skelcton of the Mole 2231
Cheiroptera 2231
Skeleton of the Bat 2232
Quadrumana 2233
Skeleton of the Orang-Outang 2234
Muscular system 2237
Diaphragm 2242
Panniculus carnosus 2243 2243
Represcntatives of pelvic muscles in the Cetacea 2244 2244
Rhomboid and serrate muscles of quadrupeds 2245 2245
Muscles of the arm and forearm 2245 2245

- - hand and foot 2247 2251
Articulations of the skcleton
Articulations of the skcleton
Teeth of Mammals-varieties of their structure and mode of growth 2254
Tceth of the Whalebone-Whale 2255
-—— Porpoisc (Monodon) 2263
Tusks of the Elephant 2264
Incisor tecth of Rodents 2265 2267
risor tecth of Roderi
risor tecth of Roderi Teeth of the Carnivora 2270
Mode of growth of carnivorous teeth
2271
2271
Complex molar tecth of the Elcphant 2273
Succession of the molar teeth in the Elcplaant 2279
Articulation of the lower jaw 2283
Muscles of the lower jaw 2285
-- - tongue in ordinary Mammals 2287
Tongue of the Ant-eater (Myrmecophaga) 2288
-_- Echidna 2285
Structure of the tongue, with refcrence to the sensc of taste 2290
Salivary apparatus 2292
Myoid apparatus 2299
Passage of the fauces 2305
Epiglottis 2305
Velum pendulum palati 2305
Pharynx 2306
(Tsophagus 2307
Stomacl 2308
Structure of simple stomach $\because 309$
 2310
Structure of complex stomach 838 2312
Proccss of rumination
Proccss of rumination
Stomachs of Camel, Dromedary, and Llama 2314 2314
Stomach of Cetaceans 2315 2315
Alimentary canal 2325
Liver and biliar'y passages 2326
Pancreas 2327
Spleen 2328
Portal system of veins
Portal system of veins 2329 2329
Peritoneun
Peritoneun 2330
Lacteal system
2330
2330
Absorbent vessels 2330
Mesenteric glands 2330
Receptaculum chyli
2330
2330
Thoracic duct
2331
2331 2332
Lymphatic system
Lymphatic system
Respiratory system
Respiratory system
2333
2333
Lings
2336
2336
Mechanism of respiration
Mechanism of respiration
2337
2337
Course of the pulmonary and systemic circulation
Course of the pulmonary and systemic circulation
2337
2337
Structure of the heart
Structure of the heart
2340
2340
2341
2341
Heart of Dugong
Heart of Dugong
Peculiarities observable in the circulatory system of Cetaceans
Peculiarities observable in the circulatory system of Cetaceans
2342
2342
Plexiform arrangement of intercostal arteries
Plexiform arrangement of intercostal arteries
2343
2343
2344
2344
Remarkable arrangement of venous systom
Remarkable arrangement of venous systom
Peculiar distribution of the aorta
Peculiar distribution of the aorta
2345
2345
Foramen ovale and ductus arteriosus of Scals
Foramen ovale and ductus arteriosus of Scals
2346
2346
Rete mirabile of Herbivorous quadrupeds
Rete mirabile of Herbivorous quadrupeds
2347
2347
2349
2349
Tegumentary systcm
Tegumentary systcm
Plexiform arrangement of the arteries in the limbs of the Sloths
Plexiform arrangement of the arteries in the limbs of the Sloths
2350
2350
Structure of the skin and growth of hair 2351
Horns of the Dcer-tribe 2352 2353
Shedding and renewal of the Dcer's horns 2354
Integument of the Cetacea 2355 2355
Cutancous secretions 2356
Castor-secreting organs of the Beaver 2357
Musk-secreting pouch of Moschus moschiferus 2358
"Temporal glands" of the Elephant 2359
Anal glands of the Skunk and Polecat 2359
Nervous system 2360
Composition of the cercbro-spinal axis 2361
"Olfactory nerves" 2364
Nerves of smell 2365
Structure of olfactory apparatus 2366
Nasal organs of the Cetacea 2368
"Blowing "-apparatus of the Porpoise 2372
Optic lobes, or tubercula quadrigemina 2376
- -nes 2377
Structure of the eye 2378
"Tapetum" . in Cctaceans 2379 2380
Shape of the pupil 2381Muscles of the cyeball
Eyclids 2382
Lacrymal apparatus 23852384"Mcdulla oblongata"
Distribution of the cerebral nerves 2387
2389
Auditory nerve 2392
Structure of the internal car 2393
Cavity of the tympanum Page Sec.
Ossicula auditus 858 . 2397
Transitional forms of the stapes 858 2398
External car 2399
Auditory apparatus of the Whale
2400
2400
Pcculiarities in tho structure of the brain in the Mammalia 2402
Brain of Marsupial quadrupeds
2403
2403
"Corpus callosum"
2404
2404
Brain of Carnivorous Mammalia 2405
Cerebellum 2406
"Pons Varolii"
"Pons Varolii" 2406
Spinal cord 2407 2408
Scnse of touch
Scnse of touch
Special tactile organs 2408
Wings of the Bat 2409 2410
Sympathetic system
Sympathetic system
Genito-urinary apparatus 24.11
Peculiarities of the male genito-urinary organs of the Mammalia
2413
2413
Kidners - fcunale genito-urinary organs 24.14
2416Lobulated form of kidney
Urinary bladder 24.18
Development of the reproductive apparatus 2419
Transition between Birds and Mammals 2421
Gencrative organs of Ornithorhynchus 2424
Male organs of Ornithorhynchus 2426
Female organs of Ornithorhynchus 2428
Ovoviviparous generation in the Monotremata 2429
Marstipial type of the generative system 2435
Oroviviparous generation in the Marsupialia 2437
Male generative organs of the Kangaroo 2439
Marsupial boncs 2440
Female generative organs of the Kangaroo 2442
Marsupial utero-gestation 2444
Anatomy of the intra-uterine ovum 2446
Mammary feetus of Kangaroo 2454
Placental type of the generative system 2457
Male organs of viviparous Mamınals 2458
the Heclgehog 2461
Modifications observable in other viviparous race 2462
Strincture of the testes 2462
Situation of the testcs 2463
Succenturiate glands 2464
Vesicule seminales 2465
Prostates 2468
"Cowper's glands" 2473
Canal of the urethra 2474
Structure of the penis 2477
Corpora cavernosa 2478
Corpus spongiosum 2479
Pcnis of the Agouti 2481
Generative systen of fomale placental Mammalia 2482
Femalc generative organs of the Rabbit 2484
Cornua uteri 2486
Ovaria 2488
Development of embryo 24.89
Super-addition of placenta 2491
Embryo of the Sheep 2492
Structure of placenta 2493
Foctal circulation 2495
Changes that occur after birth 2497
Maminary glands 2498

PHYSIOLOGICAL INDEX.

NERVOUS SYSTEM
Page Sec
Importance of the Ncrvous System as a basis of classification 12Nervous system of
172
Cyanea aurita 235
Lesueuri
350
350
Distoma
382
382
Planarie
Planarie 404
Ascaris
478
478
Asterias 506
Holothuria 523
Sipunculus 535
Homogangltata 544
Hirudo medicinalis 567
Anneima 667
Myriopoda 701
Scolopendra 724
Insecta 840
Arachnida 943
Crustacea 1.023
Tatilrus 1024
Oniscus asellus 1025
Crab 1026
Pycnogonide 1122
Romifera 1142
Cirripedta 1170
Heterogangliata 1195
Conchifera 1332
Brachiopoda 1364
Gasteropoda 1462
Buccinum 1463
Plerolrachea 1464
Pteropoda 1499
Cepiralopoda 1569
Naulilus Pompilius 1573
Dibranchiate Ccphalopods 1.583
Vertebrata 1658
Fisiles 1.806
Reptiless 1981
Birds 2077
Mammatia 2360

ORGANS OF THE SENSES.

Sense of Touch.

Sense of Vision.

"Pedunculated eyes" of Acalcphæ $80 .{ }^{173}$
Oculiform organz of
Lesueuria 107 . 235
Asterias
Asterias 479
Eyes of the Lecch
570
570
Structure of the eye of Torrea vitrea
668
668
Simple ocelli of Insects
Simple ocelli of Insects 855 855
Compound eyes of Inscets 856Arachnidans
971
Crustacea 1041
simple 1042
agglomerated 1013
compound 1044Visual organs ofCirripeds
1175
Seallop 1335
Snail
1406
1406
Marino Gastcropods
Marino Gastcropods 1.466
Pteropoda (Clio) 1500
Nuutilus P?ompilius
1588
1588
Cuttlefish (Scpia) 1592
Tishes
1811
1811
Reptiles
1988
1988
Birds
Birds
Birds 2083 2083
Mamnalia
Mamnalia 2378

PHYSIOLOGICAL INDEX.

Tegumentary skeleton of the Myriopoda									

Digestive apparatus of Page Sec
Arachnidans 936
Crustacea .
Achtheres percarum 1005
Lamproglena 1106
Nicothoc̈ Astaci 1111
Pycnogonidæ 1117
Rotifera 1135 1135
Pentelasmis 1173
Bonerbankia. 1204.
Flustre and Eschare 1216 1216
Fluviatile Polyzoa 1253
Tunicata 1272
Salpæ 1289
Conchifera 1295
Oyster. 1299
Brachiopoda 1353
Gastcropoda 1389
Mouth of
Snail 1387
Pleurobranctus 1440
Pterotrachea. 1440
Tritonia 14.41
Виссіпит 1445
Alimentary canal of
Bиссіпит 1452
Heteropoda 1454
Scyllaca 1455
Aplysia 1455
Ptcropoda. 1495
Cephalopoda 154.1
Amplioxus 1673
Fishes 1782
Dental apparatus of Fishes 1769
1920
Alimentary canal of Reptiles 1932
Birds 2050
Mammalia 2306
RESPIRATORY AND CIRCULATORY SYSTEMS.
Circulation in
Tubularia indivisa 195
Asterias 451
Echinus 502
Holothuria 518
Sipunculus 532
Leech 561
Earthworn 579
Amplinome 612
Eunicc sanguinea 614
Arenicola 622
Aphroditaceæ 638
Tercbella 647
Myriopoda 729
Insceta 833
Arachnida Trachcaria 938

- Pulmonaria 957
Crustaccan Decapoda 1018
Lacunar system of Crustaccans 1022
"Phlebenterism" in Pycrogonidre 1121
Circulatory and respiratory apparatus of Cirripeds 490 . 1174.
Trunicata .
Conchifera 619. 1266
Brachiopoda 1300
Snail 1355 1355
Gasteropoda 1393
Cephalopoda 1421
Fishes 1555
Reptiles 1791
Birds 1944
Mammalia 20662332
Reproduction of
REPRODUCTIVE SYSTEM.Sponges
Infusoria 27 58
Hydra viridis 92
Sertularian Zoophytes 121 121
Mcdusiform Acalephæ 141 141
"Mcdusiparous generation" 177 177
Fungiæ 199 199
Corallidx 243
Tubipora 283
Actinia 291
Tapeworm 305
Distoma 233
Echinorhynchus 351 374
Planaria
Planaria
Ascaris 389
Asterias 408
Echinus 461 507
Holothuria
Holothuria
Leech 521
Earthworm 271
Nais 585
Dorsibranchiate Annelida 599
Myriopoda 627
Inscets 710 710 860
Arachnida
Arachnida
Crustacea 972
Cirripedia 1051 1051
Polyzoa 1178
Tunicata 1231
Conchifera 1273 1273 1337
Brachiopoda
Brachiopoda
Snail 1366
Gasteropoda 1397
Pteropoda 1469
Cephalopoda 1501 1501
Fishes 1605
Reptiles 1845
Birds 2018
Mammalia 2099 2420
LACTEAL AND LYMPHATIC SYSTEMS.
A bsorbent system of

URINARY SYSTEM.
URINARY SYSTEM.
Ulinary organs in Page Sec.
Fishes 754 2015
Birds 782 2096
Mammals 861 2411
EMBRYOGENY
Embryogeny of Sertularian Zoophytes 146
Phenomena of Medusiparous reproduction 183
Development of Tubularia indivisa 197
Embryogeny of
Campanularian Zoophytes 202
Corallidæ 287
Actiniæ 308
Tapeworm 334
Distoma hepaticum 355
Asterias 464
Ophiurus 469
Echinus 507
Tubicolous Annelidans 660
Tulus terrestris 716
Embryogeny and metamorphosis of Insects 895
Hydrachne 946
Crab 1061
Lepades 1190
Marine Polyzoa 1243
Fluviatile Polyzoa 1262
Marine Conchifera 1344
Anodon 1344
Nudibranchiate Gasteropods 1480
Cephalopods 1615
Triton cristatus 1871
Development of chick in ovo 2113
Ovoviviparous development of Ornithorhynchus 2429
-_-_- Marsupialia 2437
Placental type of intra-uterine development 2491

A GENERAL OUTLINE

THE ANIMALKINGDOM.

CHAPTER I.

ON CLASSIFICATION.

(1.) Fron the earliest periods to the present time, the great desideratum in Zoology has been the establishment of some fundamental system of arrangement which, being universal in its application, shonld distribute the countless beings surrounding us into natural groups or divisions, such as might be subdivided into classes, orders, and genera, by obvious differences of structure in the tribes composing them, and thus enable the Zoologist at once to indicate the position which any unknown animal ought to occupy in the scale of existence, and its relations with other creatures.
(2.) Aristotle, the father of our science, was the first who attempted a scientific division of the animal world *. The ontlines of his system were rude in proportion to the neeessarily limited knowledge at his disposal, although his efforts were gigantie, and still excite our warmest admiration. This acnte observer admitted but two great sections, in one or other of which all known beings were included,--the highest comprehending ereatures possessed of blood (i. e. red blood), corresponding to the Vertebrata of modern anthors ; the lowest embracing. animals which in his view were exsangueous; or provided with a colonrless fluid instead of bloorl, and corresponding to the Inverterrata of more recent zoologists \dagger.

[^0](3.) Linnæus, like Aristotle, selected the eirculatory system as the foundation of his arrangement*, dividing the animal ereation into three great scetions, charaeterized as follows:--
I. Animals possessed of warm red blood, and provided with a heart eontaining four compartments, viz. two auricles and two ventricles. Sueh are the Mammafia and Birds.
II. Animals with cold red blood, their heart eonsisting of but one auriele and one ventriele, as he believed to be the easc in Reprrifes and Fishes.
III. Animals possessed of eold white sanies instead of blood, having a heart eonsisting of a single eavity, whieh he designates an auricle : under this head he inelndes insects and all other invertebrate animals, to whieh latter he gives the general name of Vermes, Worms.

We shall not in this place eomment upon the want of anatomieal knowledge eonspieuons in the above definitions, or the insufficient data afforded by them for the purposes of Zoology. The apparatus of eireulation, being a system of seeondary importance in the animal economy, was soon found to be too variable in its arrangement to warrant its being made the basis of zoologieal classification, and a more permanent criterion was eagerly sought after to supply its place.
(4.) Among the most earnest in this seareh was our distinguished countryman John Hunter, who, not satisfied with the results obtained from the adoption of any one system, seems to have tried all the more vital organs, tabulating the different groups of animals in accordanee with the structure of their apparatus of digestion, of their hearts, of their organs of respiration, of their generative organs, and of their nerrous system, balaneing the relative importanee of each, and sketching out with a master hand the outlines of that arrangement sinee adopted as the most natural and satisfactory \uparrow.

The result of the labours of this illustrious man cannot but be of deep interest to the zoological student, and aeeordingly an epitome of his ideas upon the present subjeet is here concisely given.

The apparatus of digestion appears to be among the least efficient for the purpose of a natural division, as the separation of animals into such as have a simple digestive eavity, rceeiving and expelling its contents by the same orifiee, and such as have an aperture for the expulsion of the contents of the alimentary eanal distinct from that by which food is taken into the stomaeh, is by no means of practical utility, although this cirermstance, as we shall afterwards see, has been mueh insisted upon.

Hunter's arrangement of the animal kingdom in conformity with the

[^1]structure of the heart was a great improvement upon that of Linnæus, founded upon tho samo basis. He arranges in this manner all animals in five groups :-
I. Creatures whose hearts are divided into four cavitics-Mammatia and Birds.
II. Those having a heart consisting of three cavities-Reptiles and Amphibiu*.
III. Auimals posscssing a heart with two cavities-Fishes and most Mollusca.
IV. Animals whose heart consists of a single cavity-Articulated Animals.
V. Creatures in which the functions both of stomach and heart are performed by the same organ, as in Medusce.

We shall pass over Hunter's sketches of arrangements founded on the respiratory and reproductive organs, as offering little that is satisfactory; but the researches of this profound physiologist upon the employment of the nervous system for the purpose of zoological distribution did much to inaugurate a more natural method of classification, afterwards carried out with important results.
(5.) The appearance of the "Animal Kingdom distributed in accordance with its organization," of Cuvier, formed a new and important era in Zoology. In this we find all creatures arranged in four great divisions, Verterrata, Mollusea, Artieulata, and Radiata. These divisions, with the exception of the first, are named from the external appearance of the creatures composing them; nevertheless the three first are defined by characters exclusively drawn from their internal organization, the arrangement of the nervous system being essentially the primary character of distinction, and have been found to be strictly natural; whilst the last division, charactcrized by the appellation of Radiata, in the formation of which the structure of the nervous system has been allowed to give place in importance to other characters of secondary weight, obviously embraces creatures of very dissimilar and incongruous formation.
(6.) The Vertebrata are distinguished by the possession of an internal nervous centre or axis, composed of the brain and spinal cord, which is enclosed in an osseous or cartilaginous case, and placed in the median plane of the body, giving off symmetrical nerves, which are distributed to all parts of the system. This general definition indicates a large division of the animal world, which, by secondary characters drawn from the structure of their organs of respiration and circulation, is separable into mammals, birds, reptiles, amphibia, and fishes.
(7.) The Mollusca have a nervous system constructed upon a very

[^2]different type, and do not possess any vertebral column or articulated skeleton. The nervous centres consist of several detached masses placed in different parts of the body, withont regularity of distribution or symmetrical arrangement; and the entire group is obvionsly natural, although Cuvier has ranged in it some creatures which, in the structnre of their nervous system, differ essentially from those comprised in his own definition.
(8.) The class of Articulated Animals is likewise well characterized by the nervous system, which, in all the members of it, is composed of a double scries of ganglia or masses of neurine, arranged in two parallel lines along the abdominal surface of the body, united by communicating cords, and from which nerves are given off to the different segments of which the body consists.
(9.) The fourth division of Cuvier, namely that of ZoopuYtes or Radiated Animals, is confessedly made up of the most heterogencous materials, comprising creatures differing in too many important points to admit of their being associated in the same group; and the efforts of subsequent zoologists have been mainly directed to the establishment of something like order in this chaotic assemblage. The most important step in this direction has been the separation of the Radiata of Cuvier into two grand divisions named respectively the Protozon and the Celenterata.
(10.) The body of the Prorozoon consists chiefly of the elementary substance known as sarcode or animal protoplasm-a soft often transparent clastic and extensilc tissuc, albuminous in its composition, and presenting but the faintest traces of organization ; it is nevertheless remarkable for its vital endowments, whereby it assumes manifold diversities of outward form and exercises the nutritive and reprodnctive functions.
(11.) The Coslenterata, on the contrary, present considerable complexity of structure. They are all furnished with an alimentary canal that communicates freely with the general or somatic eavity. The substance of their body is divisible into two layers-an outer or "ectoderm," and an inner or "endoderm ;" and they are gencrally prorided with peculiar urticating organs or " thread-cells."
(12.) There can be no doubt that the nervons matter must be regarded as the very essence or being of all creatures, with which their sensations, volition, and capability of action are inseparably comected; and such boing the case, it is a legitimate inference that the capacities and powers of the several tribes are in immediate relation with the development and perfection of this supreme part of their organization. and their entire structure must be in accordance with that of the nervous apparatus which they possess. The nature of the limbs and external members, the existence or non-oxistence of certain senses, the capability of locomotion, and the means of procming food must be in
strict corrcspondence with the powers centred in the nervous masses of the body, or in that arrangement of nervous particles which represents or replaces them.
(13.) Granting the accuracy of the above view, it is obvious that, if exactly acruainted with the structure and elaboration of the norvous apparatus of any animal, we might to a great extent predicate the most important points of its economy, and form a tolerably corrcet estimate of its powers and general conformation. But, unfortunately, such knowledge is not always at our disposal: in the lower forms of the animal world cspecially, we are far from bcing able to avail ourselves of such a guide ; and it will probably be long erc our improved means of research permit us to apply to practice the views which Physiology would lead us to adopt. It is, howcver, by no means our intention in the present work to enter the arena of discussion relative to the juxtaposition or precedence in the scale of animal existence which onght to be assigned to any particular group as defined by modern systematists. The classification employed in the following pages is simply adopted as being the most conveuient for our present olject; we shall therefore arrange our studies in accordance with the following sequence.

CHAPTER II.

SUBKINGDOM I. PROTOZOA*.

(14.) Rhizopodat.-On carcfully cxamining the contents of a marine aquarium, or a glass vessel casually filled with sea-water, the microscopic observer will not unfrequently perceive, adherent to the sides, numerous beings which, from their minute size and transparency, have until a very recent period entirely cscaped notice, although the part they are destined to play in the economy of this world is by no means unimportant. The body of one of these remarkable organisms (fig. 1, 1) consists of a minute spherical vesicle, somewhat resembling a globular flask provided with a short narrow ncek, filled with a fawn-coloured

[^3]glutinous substance containing numerous minute granules, and apparently unprovided with any external appendages. On placing one of these ereatures, however, in a glass of sea-water (its native element), it is found in tho course of a few hours to have attached itself to the sides of the ressel by means of numerous long ramificd filamonts of hyaline transparency, whieh soon begin to reveal thoir offiee to be that of a locomotive apparatus, by whose aid the animal can transport itself from place to plaee, but with such extreme slowness that its movements are hardly perceptible. The locomotive filaments thus displayed are perceptible by the naked eye, their length being, when fully extonded, four or five times

1. Gromia oviformis, with the root-like tentacles displayed.
2. Filaments fused together into a kind of network.
the transverse diameter of the body ; still they exhibit in their interior no appearanee of organization, but resemble so many threads of molten glass. When protruded, each of these filaments, at first simple and of equable dianeter through its entire length, soon begins to clongate itself' in a very mysterious manner, moving in different dircetions, as though seeking some basis of support. As the elongation of the filament continues, apparently owing to a constant influx of new material into its substance, it is seen to give off here and there seeondary bramehes, which, in turn dividing diehotomously, give to tho whole structure the root-like appearance represented in the figure. The retraction of these
singular organs is accomplished by a sort of inversion of the above process, each filament shrinking as it were into itself until it totally disappcars. The most remarkable circumstance, however, observable in the coonomy of these creatures is, that the protruded filaments are able to eoalesce and, as it were, to become fused together, forming a gelatinous network that spreads out in all directions (fig. 1, 2).
(15.) When a Rhizopod, having all its filaments thus extended, wishes to advance in any given direction, those threads which are directed in front become elougated, and those placed behind, on the contrary, are drawn forward, while the intermediate move so as to accommodate themselves to each chauge of position, thus evidently exhibiting a consentaneity of action.
(16.) Internally these creatures present no traces of any special nutritive apparatus; neither are there any organs appropriated to reproduction, their multiplication being apparently accomplished either by gemmation or by simple division, as any portion of the mass separated from the rest seems capable of living and of forming a new ceutre of orgauization.
(17.) The delicate body of Gromia, above described, is uuprovided with anything like a shell; but there are many races presenting an organization in every way analogous (such as the Miliolce, the Cristellarice, the Vorticiclce, and others) that possess the power of secreting shells of very exquisite texture, many of which form extremely beautiful objects when examined under the microscope.
(18.) The Foraminifera * constitute a very curious and remarkable group, important from the immense numbers in which they occur in a fossil state, and interesting from the peculiarities of structure whereby they are distinguished. The shells of these singular organisms

Fig. 2.

1. Nonionina, exhibiting pseudopodia protrnded through the foramina in the walls of the shell.
2. The same after the solution of the shell in weak acid. (fig. 2) are divided into distinct compartments \uparrow, so as almost exactly to resomble in their form the camerated shells of the Nantili, Ammonites, and other highly-organized mollusea. Examined, however, in a living

[^4]stato, they are found to belong to mimals of a very different type, ans remarkable for the simplicity of their organization as for their cicgance and delicacy. Tho shell, as represented in the figure, consists of nunerous chambers divided from each other by calcareous septa, and perfurated by innumerable minute orifices, or foramince, from which circumstance is derived the characteristic name. Intermally these chambers arc entirely filled with a homogeneous, transparent, glairy substance, which, being soft and diffluent like the arms of Gromice described above, can be protruded through the mumerous apertures in the poriphery of the shell in the shape of long contractile filaments (pseu(lopodia).
(19.) On removing the delieate caleareous shell by the assistance of a weak aeid, the body of the animal denuded of its covering (fig. 2, 2) is found to be entirely soft : that portion which is lodged in the first compartment of the shell is colourless and of a crystalline transparency; but in each of the succeeding segments there may be detected a grauular mass of a brownish colour, and not unfrequently the minute siliceous shells of Naviculce, Bacillarice, and other forms of Infusorial organisms, the remains of which may be traced nearly as far as the umbilicus of the spiral.
(20.) The pseudopodia of the Foraminifcra probably entangle and lay hold of the minute bodies which serve as their food, consisting of Diatomacex, Desmidiex, the smaller forms of Confervx, \&e., and draw these by their contraction into the sarcodic substance, within which they may be seen through the transparent shell. It is not by any means constantly that the indigestible residua are cast forth again, for they sometimes accumulate in such numbers as even to choke up a considerable part of the cavity. The living gelatinous substance is occasionally seen to extend itself around the exterior of the shell; and pseudopoctia may then be put forth from this extension as well as from the ordinary outlets.
(21.) The Foraminifera are evidently composite fabrics evolved by a process of continuous gemmation, each gemma remaining in connexion with the body by which it was put forth ; and according to the plan on which this gemmation takes place will be the configuration of the shell. Thus, if a bud should be put forth from one of these creatures in the direction of the axis of its body, and a second shell should be formed around this bud in continuity with the first, and this process should be successionally repeated, a straight rod-liko shell will be produced, having many chambers communicating with each other by the openings that originally constituted their months, the mouth of the lastformed chamber being the only aperture through which the gelatinous body, thus composed of a number of segments connected by perdieles or stolons of the same material, ean receive a suphly of food. The sucecssive segments maty be all of the same size, or nearly so, in which case
the entire rod will appronch the eylindrical form, or resemble a line of beads; but it often happens that cach segment is somewhat larger than the preceding, so that the composite shell has a conical form, the apex of the cone being the original segment, and its base the one last produced. If each of the successively formed segments, instead of being. developed exactly in the axis of its predecessor, should be directed a little to one side, it is obvious that a curved instead of a straight rod would be the result; and this curve may be increased until it become a spiral. The character of this spiral will depend in a great degree upon the enlargement or non-enlargement of the successively formed chambers; for sometimes it opens out very rapidly, every whorl being considerably broader than that which it surrounds, in consequence of the great excess of the size of each segment over that of its predecessor (fig. 2,1) ; but more commonly there is little difference between the successive segments after the spiral has made two or three turns. In many gencra the new segments are added in concentric rings, each surrounding its predecessors, so as to form flattened disks rarying in size from that of a pin's head to that of a penny-piece. When such disks are subjected to microscopic examination, they are seen to be composed of concentric circles of cells (fig. 3) that communicate with cach

Fig. 3.

Structure of the calcareous disk of an Orbitolite:-a, the central ecell; b, circummmbent cell : c, c, concentric zones; d, d, amular passares of the outermost zonc. The same parts are shown $b y$ is vertical section passing in a radial direction at e, e; and aif,f, following the course of one of the zones.
other by means of lateral passages, and which in the living state are each of them filled by the sarcode whereof the living portion of the animals consists. In this case there can be no reasonable doubt that the sarcodic extensions of the outermost zonc issue forth as peudopodia from the marginal pores, and that they search for and draw in
alimentary materials in the same manner as do those of other lioraminifera.
(22.) Where tho growth of the disk takes place with normal regularity, it is probable that a complete circular zone is added at once. When the sarcode body has increased beyond the capacity of its enveloping disk, it may be presumed that its pseudopodial extensions proceeding from the marginal pores coalesce, so as to form a complete annulus of sarcode round the margin of the outermost zone ; and probably it is by a deposit of calcareous matter in the surface portion of this annulus that the new zone of shelly substance is formed, which constitutes the walls of the cells and passages occupied by the soft sareode body. Thus we find this simple type of organization giving origin to fabries of by no means microscopic dimensions, in which, however, there is no other differentiation of parts than that concerned in the formation of the shell, every segment and every stolon (with the cxception of the two forming the nucleus or centre) being, so far as can be ascertained, a precise repetition of every other, and the segments of the nueleus differing from the rest in nothing but their form. The equality of the endowments of each segment is shown by the fact (of which accident has frequently furnished proof), that a small portion of a disk entirely separated from the remainder will not only continue to live, but will so increase as to form a now disk, the loss of the nucleus not appearing to be of the slightest consequence from the time that active life is established in the outer zones.
(23.) In Faujasina and the Nummulites, apparently the most highly organized of the Foraminifera, the shell is of more complicated structure, being permeated by a system of radiating interseptal canals communicating with the exterior.
(24.) For the following observations relative to the reproduction of the Foraminifera we are indebted to Professor Max Schultze*.

Remarking that an individual of the genus Triloculina (D'Orbigny) had become stationary for several days, and enveloped, as is not usual, in a thin layer of brownish slime, Professor Max Schultze paid particular attention to it. At the end of a few days after it had become quicscent, sharply defined minute spherical granules were detached from the brownish slimy envelope, and in the course of a few hours the animal was surrounded by about forty of these corpuseles, which gradually became more and more separated from it. Nicroscopic examination proved that these were young Foraminifera. When viewed by transmitted light, they presented a pale-yellowish-brown calcareons shell, consisting of a central globular portiou partly surrounded by a closely-applied tubular part, and having no septum in the interior. In a short time the young ammals protruded their contractile processes from the anterior opening of the shell and crawled about upon the glass.

[^5]
GEOLOGICAL IMPORTANCE OF ITHE FORAMINTFERA.

The parts of the body contained within the shell could be examined with great accuracy under the highest magnifying-powers, and were secn to consist of a transparent, very fincly granular, colourless material, of which the protruded filaments were an immediate continuation. From the circumstances under which the young Foraminifers made their appearance, they must necessarily quit their parent in a tolerably perfect condition.
(25.) When the calcarcous sholl of the parent animal was carefully broken up, it was found to contain only trifling remains of a finely granular organic substance, which, after careful and continued observation, exhibited no trace of motion such as is often, under other circumstances, presented in separated particles of the animal substance, nor could he perceive any vestige of progeny in process of development. The almost complete absence of any organic contents in the shell of an individual which from eight to fourteen days previously was creeping about, renders it probable that the whole (or, at any rate, part) of its body had been transformed into young ones.
(26.) It is astounding to reflect upon the multitudes of these microscopic shells which crowd almost every sea-beach. In some cases at least one-half of the bulk of the sand seems to consist of thesc elcgant organisms. Plancus (Ariminensis, De Conchis minus notis) counted 6000 in a single ounce of sand from the shores of the Adriatic ; and D.Orbigny estimated that an ounce of sand procured from the Antilles contained not fewer than $3,800,000$! The numbers, therefore, contained in a square yard are beyond all human calculation ; and yet what is that when compared with the extent of sea-coast in all parts of the globe? Probably, therefore, no race of animals is more numcrically important than that we are now considering. Their remains constitute a great proportion of the so-called sand-banks which often so materially intcrfere with navigation by obstructing the entrance to bays and straits, or, as is the case with the port of Alexandria, blocking up harbours. They enter largely into the formation of coral islands, and not unfrequently compose extensive geological deposits. One solitary spccies of the genus Fusulina has, in Russia, given rise to enormous beds of calcareous shells. The cretaceous formations both of France and England contain them in immense quantities. The tertiary strata abound with numerous species; and the very stones of which the largest of the Pyramids of Egypt is built are principally composed of shells (Nummulites) belonging to this important group. The tertiary basins of the Gironde, of Austria, and of Italy, and more especially the "calcuives grossiers" of the vast Parisian basin, are in some parts so filled with them that 58,000 have been counted in a cubic inch, or about $3,000,000,000$ in a cubic yard-figures that may well spare us further calculation. In fact, it might be stated without exaggeration that the city of Paris, as well as many of the towns and villages in the
surrounding Departments, are almost entirely built of stones that seem to be mere agglomerations of these microseopie shells*.
(27.) Polycystinat.-Nearly related to the Foraminifcra, or at least apparently belonging to the same general type of structure, are the Polycystina, an extensive group of very interesting mieroscopic bodies possessing great beauty and variety of form and structure. These are minute siliceous shells, which appear, from the recent observations of Professor Miiller \ddagger, to contain in the living. state an olive-brown sarcode extending itself into pseudopodial prolongations that pass through the apertures by which the shells are perforated. The sareode does not seem always to fill the shell, but only its upper part or vault, and to be very regularly divided into four lobes. It is a peculiar feature in these Polyeystina that their shells are often prolonged into spines or other projections, which are sometimes arranged in such a manner as to give them a very singular aspect (fig. 4). It scems probable that these creatures are at the present time as widely diffused as the Foraminifera, although, from their extreme minuteness, they have not been so often recognized. They were first discovered by Professor Ehrenherg at Cuxhaven, on the North Sea; they were afterwards found by him in collcetions made in the Antartic scas; and have been recently described by Professor Bailey as

1. Podocystis Schomburgkii.
2. Rhopalocanium ornatum. presenting themselves (with Foraminifera and Diatomacex) in the deposits brought up by the sounding-lead from the bottom of the Atlantic Ocean at depths of from 1000 to 2000 fathoms. They appear to have

[^6]been much more abundant, however, during the later geological periods, inasmuch as in a siugle doposit in Barbadoes Professor Ehrenberg detected no fewer than 282 forms which he considers to be specifically clistinct.
(23.) Actinopirtys*.-Among the most interesting contributions to our knowledge of these simple organisms are those of the distinguished German micrologist Kölliker, whose researches relative to the organization of Actinophrys Sol† are calculated to clear up many doubtful points comected with the physiological history of numerous allied genera of kindred structure. The Actinophrys (fig. 5, 1) is a minute animalcule

Fig. 5.

Actinophrys Sol.-1. a, the cortex; b, nucleus of the animalcule; c. homogeneous basal substanee; d, vacuoles; e, tentacular flaments. 2. The same, less magnifled, at the moment of feeding: $a-e$, as above; f, an infusoriun which has just entered the substance of the body, while the surronnding flaments enclose it on all sides. 3. Another specimen: a-e, as in fig. $1 ; f$, a Fuu-cherit-spore wholly imbedded in the cortieal substance, the opening through which it entered entirely closed, although its situation is indiated ly a slight depression; $; g$, another spore already enturing the nuclear substanee; h, an infusorium lying in a special eavity; i, a spore in the nuclear substance ; k, half-digested morsels; l, a swallowed Lynceus ; m, excrementitious matter beginuing its exit from the cortical substance. The other figures represent the sarcode highly magnilled.
nearly spherical in its shape, having the surface of its body covered with closely-set clelicate filaments, the length of which frequently exceeds the diameter of the ereatiure. It does not present a trace of mouth, stomach, intestine, or anus, but consists entircly of a perfectly homogencons substance of soft and delicate consistence. Examined under a very high power, the whole animalcule appears to be made up of a most regular and delicate tissue of round or polygonal cells, althongh on closer inspection such is found not to be really the true structure. When the animal is torn or crushed, it beoomes evirent that it is entirely composed of a semifluid material (sercorle) enclosing vacuoles; for it will be found that the supposed cells may at pleasure, under pressure,

[^7]be made cither to coalesce into larger or be divided into smaller cavities presenting in all respects the character of the normal ones.

The filamentary appendages to the periphery of this animalcule are essentially tentacular organs, composed of the same substance as the rest of the body, from which they differ only in never having vacuoles in their interior ; and if granules are to be detected in their structure, these are very few in number.
(29.) The mode in which the Actinophrys is nourished is a subject of the highest interest. Although, as has been stated, the creature has neither mouth nor stomaeh, yet it lives upon solid nutriment and rejects such parts as are indigestible. The Actinophrys, indced, feeds upon Infusoria of all kinds, on the lower Algæ, such as the Diatomaceæ, and even on minute Crustacea, as the young of Lynceus, Cyclops, \&e., which it accomplishes in the following manner :- When, in its progress through the water, it comes in contact with fitting food, the object, whether.of animal or vegetable nature, as soon as toucherl by one of the tentacular filaments, usually becomes adherent thereunto. The filament, with prey thus attached, then slowly shortens itself, dragging. the object seized towards its devourer-all the surrounding filaments bending their points together, so that the captive becomes at last enelosed on every side (fig. $5,2, f$).
(30.) That the tentacles, however, possess some other power than that of mere prehension appears evident, because nearly every creature of moderate and even immoderate size which strikes against them is at once for a time rendered immoveable. When a Rotifer, in crossing the field with velocity, strikes against any object, the rotatory organ is often seen at once to suspend its operation, more particularly should its cilia strike the cilia of another animalcule; and frequently no notice whatever is taken of the shock : not so, however, with the victim of the Actimophrys Sol; on the instant of contact with those tentacles it appears to be paralyzed.

In some cases the prisoner is held for some seconds on the exact spot where it struck, and then, without any visible means, becomes attracted towards the body of the Actinophrys, gliding slowly down the tentacle until it is jammed between its base and a neighbouring one. In other instances, instead of the prisoner being arrested on or near the extremity of the tentacle on which it strikes, it is shot down to the base with extreme rapidity, to occupy the same position as in the former case. Sometimes it would seem as if the appetite of the Actinophrys were sated, or that the captive was not approved of ; for after remaining stunned for a few seconds, ciliary action is feebly recommenced, not suffieient to produce motion, but as if a ruturn to vitality had been effected; shortly it is seen to glide off the tentacle (as if that organ possessed the power both of appropriation and rejection), and frequently with but little sign of recovered life it floats out of the field.
(31.) But should the Actinophrys be hungry, the spot upon which the captured animalculo is lying slowly retracts, and forms at first a shallow depression, in which the prey, apparently adherent to the surface and following it in its retraction, is finally lodged. The depression, by the continned retraction of the substance, becomes deeper; the imprisoned animalcule, which up to this time had projected from the surface of the Actinophrss, entirely disappears within it, and at the same time the tentacula, which had remained with their extremities applied to each other, again erect themselves and streteh out as before the eapture. Finally the depression assumes a flask-like shape by the drawing-in of its margin, the edges of which coalesce, and thms a cavity elosed on all sides is formed wherein the prey is lodged. In this situation it remains a longer or shorter time, gradnally, however, approaching the central portion of the body. In the meantime the periphery of the Actinophrys regains in all respects its pristine condition. The engulfed morsel is gradually digested and dissolved, as is readily seen by its change of appearance from time to time. If entirely soluble, as, for instance, an Infusorium, the space in whieh it is contained contracts as the dissolution of its contents goes on, and finally disappears altogether : shonld there, however, be an indigestible residue, a passage for its exit is formed, and it is expelled by renewed contractions of the homogeneous substance, and in the same direction, or nearly so, as that which the morsel followed in its introduction. The passage and the opening through which the expulsion was effected disappear again without leaving a trace.
(32.) The number as well as the size of the morsels taken at one time, in the manner above deseribed, by an Actinophrys, is very various. Sometimes there may be two, four, or six swallowed simultaneously, occasionally more than ten or twelve.
(33.) A remarkable contractile vesicle is always visible in these animaleules, whieh Mr. Weston* regards as a valvnlar orifice. It is best distinguished when about the edge of the seeming disk, and is never still night nor day, being slowly but without cessation protruded, occupying from ten to seventy or eighty seconds in its development, and then, like the bursting of a vesicle, rapidly and totally subsiding : for an instant it totally disappears, but only to be as gradually and as eertainly reproduced. Should that side of the creature where tho valve is plaeed be turned from the observer, the effects of the contraction are distinctly seen, although the valve itself is not; for at the instant of its bursting and closure, some half a dozen or more of the tentaeles situated on or about it, which have been gradually thrust from their normal position by the aet of its protrusion, now approach each other with a jerk-like motion caused by the sudden bringing together of their bases.
(34.) The valve seems to be formed of a double layer of the external

[^8]hyaloid membrane, the edges of which appear to adhere to each other tenacionsly, notwithstanding the growing distention from within, until the foree becomes so great that the lips, as they may be called, suddenly separate, apparently to give vent to some gascous product.
(35.) With regard to the reproduction of the species, Mr. Weston assures us that self-division is one mode. First may be noticed a deep depression above and below, not far from the centre of the body; this, as it increases, throws the tentacles across each other, as a nceessary consequence of the depressions in the surface and the position into which the outer membrane (in which the tentacles are inserted) is drawn. As the division proceeds, the two animals steadily, but rather quiekly, increase the distance between them, until there is only a long membranous neck, apparently composed first of four, then three, then two irregular lines of cells, which ultimately diminish into a single cord composed of threc simple cells, elongated like the links of a chain, and becoming more attenuated till the division is complete. All this latter part of the process is rather rapidly performed; that is, from the first formation of the rows of cells to the time of the final separation occupies only about a quarter of an hour.
(36.) Noctiluca*.- The Noctiluc.at may perhaps be elassed with the Rhizoporls. The general shape of the Noctiluca \dagger (fig. 6, 1) is that of a minute melon decply indented at one extremity, at which point is attached a sort of proboscidiform appendage or tail: externally its body seems to consist of two membranes of extreme delicacy, which are apparently filled with a clear fluid. At the bottom of the indentation above-mentioned, close to the insertion of the appendix, there, is always found a little mass of mud, or other detritus, which it is very difficult to wash away; but when this is accomplished, it becomes perceptible that this foreign matter is adherent to a semitransparent granular substanee, which here protrudes through a little aperture generally called the mouth, and which is continuous with a quantity of the same

Fig. 6.

1. Noc'ilucu, magnilled, and viewed as a transparent object. 2. A prortion of its internal tissue magnifferd 150 diameters, showing vanoles and rhizopodie extemsions material situated in the interior of the little ghobe. Nodigestive appara-

[^9]tus is risible ; but numerous vaeuoles of variable size (fig. 6,2) are discorcred in the granular substanco within, together with a eentral uncleus. No rhizopodie extensions aro in these organisms protruded externally ; but in the interior the mieroseopo reveals a delieate network of irregular filaments that ramify in every direction, and exaetly resemble in their eharacter the anastomosing threads of Gromia, represented in a precoding figure.
(37.) In the vaeuoles it is easy to perceive partielcs of green matter or other foreign substances, which scem to afford nourishment to the animal ; so that these cavities doubtless perform tho funetions of temporary stomachs, although they are eonstantly ehanging their shape and situation in a most remarkable manner.
(38.) No reproductive apparatus is apparent in these little beings; yet sometimes individuals are to be seen with double bodies, and, from the observations of Colonel Baddeley as recorded by Mr. Brightwell*, there secms to be little doubt that the Noetiluea multiplies by spontaneous fission. Colonel Baddeley's researches lead him to infer that this process "begins by the gradual formation of a second nucleus, which, after its commencement, rapidly arrives at the size and appearanee of the other. A second globular substanee also (termed by some previous writers on the subject the mouth) is formed, in addition and near to the nucleus; and a constriction, small at first, but gradually increasing, takes plaee, until the perfect Noctiluex are devcloped, united at last by a thin band which is speedily ruptured,--the whole process of division not occupying more than twelve hours." The observations of Dr. Busch \dagger, and more particularly those of Mr. Gosse \ddagger, elearly demonstrate that the Noctiluce increase also by germs or gemmæ.
(39.) It will surprise some of our readers to find that the Noctilucx, small as they are, feed upon Diatomacere, and that in these mierophagists we have tho means of supplying our cabinets with speeimens of some of the rarer forms. Coloncl Baddeley observes that he finds that, when newly eaptured, each Noctiluca has several Diatoms in its interior, lying in the various ehambers or pouehes distributed through the body of the animal. These Diatoms all disappear in a few days, leaving nothing visiblo but the vaeuoles or alimentary saes filled with granular partieles. A very eareful examination shows ann orifieo near the tail or pedunele, whieh may be eaused to open by earefully pressing the animal ; and from this is protruded, by eontinuous gentle pressure, a very thin hyaline sae, filling gradually with fluid and small granular particles, till it attains about one-third of tho size of tho animal, when it bursts and disappears.
(10).) The name Noctiluce is indicative of the oxtraordinary faenlty

[^10]that these littlo croatures possess of emitting a brilliant phosphorescent light. When a vase filled with sea-water containing them is placed in a dark chamber, the slightest agitation is sufficient to excite this phenomenon, and the smallest undulations upon the surface are indicated by luminous circles. On exanining one of the animalcules attentively with the microscope, it is further observable that the light given out is not universally diffused through the substance of its body, but is confined to minute luminous points scattered here and there, which make their appearance in rapid succession and as suddenly vanish; so that evidently there is no special organ to which the luminous appearance can be referred, as in the case of the glow-worm and other phosphorescent creatures. In size these stars of ocean are almost microscopic, the largest of them not much exceeding the dimensions of a pin's head: but the amazing numbers in which they crowd the billows amply makes up for their mimuteness ; at certain scasons, indeed, it may be literally said that every drop of every wave contains one or more individuals belonging to the brilliant host. On taking up at random a flask of seawater, and allowing the little creatures to accumulate, as they always do when at rest, at the top, it will be seen that their bodies will form a stratum equalling in thickness from one-seventh to one-third part of the entire contents of the vessel. After such demonstration as this, it is easy to comprehend how the entire sea, rendered luminous by the presence of Noctiluex, seems to burn with phosphorescent fire. When the surface is tranquil in some well-sheltered bay, these living gems form a kind of cream of liquid light; or if a wave disperses their myriads and at the same time calls forth by agitation all their brightness, it is easy to imagine how a flame is thns evoked that spreads for miles, giving at a distance the appearance of a uniform sheet of light, but when closely examined resolvable, like the nebula in the firmament into constituent stars.
(41.) $\Lambda_{\text {mabs. }}$ *.--Very nearly allied to the Rhizopods in their organiration are cortain minute gelatinous beings found in our fresh waters, which have long been puzzles to the microscopist, and a fruitful theme of discussion among naturalists (fig. 7). Those creatures appear under a good glass as minute patches of tramspa-

Fig. 7.

Amocba difluenes, whowing the vacuoles in its sarcodic substance: a, b, r, d, sonne of the various shapes which it assumes. rent jelly, having, under ordinary circumstances, a diameter of from

* ánorßin, change, so callod from thoir continual change of shape.
form-at one time shrinking into the appearance of a little globe, then expanding into a flattened radiating disk, and again shooting out processes of their substance in various directions, so as to assume all sorts of shapes with the greatest facility, deserving well the names of Protcus and Ameba bestowed upon them by zoologists.
(42.) Whon a drop of water containing these creatures is placed beneath the microscope, the observer at first discovers nothing but a fow semitransparent or cloudy-looking motionless globules, from which flows, as from a drop of oil, a kind of semifluid stream, which, fixing itself upon the object-glass, seems to draw the entire mass slowly after it. In this way numerous expansions make their appearance from different parts of the body, which after spreading to a little distance again shrink and become completely blended with the central portion. The young Amœbæ are perfectly diaphanous, and with difficulty perceptible except under favourable cireumstances; but as they become older they loso this transparency, in consequence of the accumulation of forcign particles in their interior, which seem to have been introduced from without by the simple pressure of the semifluid body of the animalcule as by the eontractions and expansions of its various portions it has crawled or, rather, flowed over them.

Fig. 8.

Amoba prineeps (Ehr.), magmiffed s00 diameters. The figures 1, 2,3 exhibit the same animal and its protern changes of form.
There are, however, other corpuseles or granules, besides those above indicated, found in the interior of these creatures. Some, extremely minute and irregular in their shape, appear to differ only in density from the surrounding glatinous substance; and these are considered by Dujardin to be rather products of secretion than ova. They move about, appearing to flow in accordance with the variablo expansions of the creature which contains then. But, bosides these, in lurge specimens of Amebse other gramules are met with (fig. $8,1,2,3$), which, on accomnt. of the uniformity of their appearance, might with more phasibility be
regarded as reproductive germs; but their nature is very doubtful. The Amœber are capable of multiplication by spontaneous fission, or by detaching a lobe from their bodies, which will continue to live upon its own account just as well as when forming a part of the original animalculc. On cutting one of these creatures in two, or tearing it to pieces, there is no escape of fluid perceptible ; but each portion contracts itself, and commences a separate individuality.
(43.) In onc species of Amoba (A. verrucosa, Ehr.) Mr. Carter* has witnessed ovular development, the Amœba perishing as the ovules are perfected, and ending in becoming a mere ovisac. When first formerl, the ovules, which are spherical, consist of a hyaline capsule enclosing a sphere of glairy, refractive fluid; but as they begin to increase, this glairy matter becomes transformed into a granuliferous mucus which is spread over the inner surface of the capsule; and finally the granules present motion-whether of themselves or by the aid of the mucus in which they are imbedded is uncertain. The history of their further development has not yet been made out; but Mr. Carter thinks that the next stage of their growth consists in the whole ovule becoming polymorphic.
(44.) Sponges.-However dissimilar apparently, both in form and structure, from the simple organisms described above, it is in their immediate vicinity that we must place the extensive group of Sponges, which has until recently held a very dubious position upon the confines of the animal and vegetable kingdoms.
(45.) The common sponge of commerce is, as every one knows, made up of horny, elastic fibres of great delicacy, mnited with each other in every possible direction, so as to form innumerable canals which traverse its substance (fig. 11, c). To this structure the sponge owes its useful properties, the resiliency of the fibres composing it making them, after compression, return to their former state, leaving the interstitial eanals open, to suck up surrounding fluids by capillary attraction.
(46.) The dried sponge, however, is only the skeleton of the fabric. In its original state before it was withdrawn from its native clement, every filament of its substance was coated over with a thin film of

Sponge growing upon a branch of Madrepore. glairy, semifluid matter that constitutes the living part of the sponge, secreting, as it extends itself, the horny fibres which are imbedded in it.

[^11](47.) Many species, although exhibiting the same porous structure, haro none of the clasticity of the officinal sponge-a circumstance to be attributed to the difference observablo in tho composition of their skeleton or ramified framework. In such, the living investment forms within its substance not ouly tenacious bands of auimal matter, but great quantities of crystallized spicula, sometimes of a calcareous, at others of a siliccous nature, united together by the tenacious fibres with which they are surrounded. On destroying the softer portions of these skeletons eithor by the aid of a blowpipe or by the caustic acids or alkalies, the spicula remain, and may readily be examined under a microscope: they are then scen to have determinate forms, generally in relation with the natural crystals of the carth of which they consist ; and as the shape of the spicula is found to same species, and not unfrequently peculiar to each, these minute particles become of use in the identification of these bodics.
(48.) Crystallized spicula of this description form a foature in the structure of the sponge which is common to that of many vegetables, resembling the formations called raphides by botanical writers. Some of the principal varieties* are depicted in fig. 11, a, b, d, e, f, g, which likowise will give the readers a gencral idea of tho appearance of the siliccous and calcareous sponges after the destruction of their soft parts has been effected by the means above indicated. The figures d, e, f, and g likewise represent detached spicula of different shapes highly magnified. 'The nost convenient method of see-

Fig. 10.

Sponge, showing the manner in which the triradiate spicules circumscrilse the emunetory apertures.
be similar in all sponges of tho
Fig. 11.

Spicula and homy skeleton of varions spouges.

[^12]ing them is, simply to scrape off a few particles from the incinerated spongo upon a piece of glass, which, when placed undor tho microscope, may be examined with ordinary powers.
(49.) On placing a living sponge of small size in a wateh-glass or small glass trough filled with sea-water, and watching it attentively, something like vital action becomes apparent*. The entire surface is scen to be perforated by innumerable pores and apertures,-some excecdingly minute, opening on every part of its periphery; others of larger dimensions, placed at intervals, and generally elevated upon prominent portions of the sponge. Through the smaller orifices the surrounding water is continually sucked as it were into the interior of the spongy mass, and it as constantly flows out in continuous streams through the larger openings. A glanec at figs. $13 \& 14$ (pp. 23, 24) will give the reader an idea of the most usual direction of the streams. The entering fluid rushes in at the countless pores distributed over the general surface of the sponge, but in its progress through the canals in the interior bccomes directed into more capacious channels, communicating with the prominent larger orificos, through which it is ultimately ejected in equable and ceaseless currents. Organized particles, such as necessarily abound in the water of the ocean, are thus introduced into the sponge on all sides, and are probably employed as nutriment, whilst superfluous or effete matter is continually cast out with the issuing streams as they rush through the fecal orifices. The growth of the sponge is thus provided for; the liviug gelatinous portion continually acoumulates and, as it spreads in every direction, seeretcs and deposits, in the form peculiar to its species, the fibrous material andearthy spicula constituting the skeleton.
(50.) It is by no means easy to explain the eause of the perpetual flow

[^13]of water through the substance of the sponge in currents so powerful and so constant. In the various species of Grantic, however (fig. 13), Mr. Bowerbank and Dr. Dobic have succeeded in detecting the presence of cilia. These sponges have a very simple structure, each being a sort of bag whose walls are so thin that no systom of camals is required, the water absorbed by the outward surface passing directly towards the inner, and being expelled from the mouth of the bag. The cilia may be plainly scen with a $\frac{1}{8}$-inch objective on the cells of the gelatinous substance seraped from the interior of the bag, or they may be obscrved in situ by making very thin sections of the substance of the sponge.
Mr. Bowerbank*, morcover, has satisfactorily proved that some sponges possess a power of opening and closing the oscula at pleasure. He found that in a specimen of Spongilla fluviatilis about half an inch in diameter, which had attached itself to a watch-glass, there was at the summit of a large oval inflation a single osculum, which opened or closed according to the necessitics of the animal, and from which, when in full action,

A hollow Sponge (Grantiit): b, a portion of the body-wall raised to show its internal cavity; d, direction of the issuing current. a constant stream of watcr was poured forth. The inhalation of the water by the porous system presented some remarkable peculiarities: when in a state of repose, the gelatinous film appeared to be completely imperforate ; but when about to commence vigorous inhalant action, a slight perforation appeared here and there over its surface, the orifices gradually increased in size until the full diameter of the pores was attained, and their margins then became thickened and rounded. On a little indigo being diffused in the water, it was secn to be absorbed with avidity ; and the iuhalant action continued for a considerable period, the interior of the sponge becoming strongly coloured with indigo.

After a time the rapid inhalant process ceased, either abruptly or gradually ; a very languid action only remained, and nearly the whole of the pores were closed. When this change was about to take place, the rounded margin of the orifice lost its form and became thin and sharp, while the circumference gradually melted inwards until the orifice entircly closed and not a vestige of the previously existing aperture remained : the operation of closing occupiod rather less than a minute. When once closed, these orifices do not appear to be reopened; but fresh pores are produced. The eolouring-matter absorbed during the period of active inhalation was apparent in the sponge from twolve to cighteen hours; and during this period the stream from the osculum was extremely languid. The structare and hathits of the freshwater Spongets are entirely in acendance with those of marine species.

[^14](51.) From this description of the structure of a sponge, it will be apparont that all parts of tho mass are similarly organized : a necessary consequence will be, that each part is able to carry on, independently . of the rest, those functions needful for existence. If, therefore, a sponge be mechanically divided into several pieces, every portion becomes a distinct animal.

Fig. 14.

A piece of living Sponge (Spongia coatitr): the arrows indicate the course of the intrant and issuing streams.

To have asserted that flints were mercly Spouges petrified would
Fig. 15.

Thin section of a Flint, contrining a variety of organisms. The smaller flgure indicates the real size of the fragment, which is represented as it appenss when much magnifted.
have appeared, before the revelations of the microseope diselosed the
real naturo of those very common stonos, the height of rashness and absurdity ; and yet few facts in natural history are more undeniably established. A thin section of flint highly magnified often reveals in its interior a varicty of organisms obviously introduced while it was in a soft and living state, such as Diatoms and the shells of Desmidicæ, among which the unchanged spicula of the original sponge are often plainly distinguishable (fig. 15).
(52.) In Cliono celata, one of the freshwater sponges, M. Dujardin* discovered, mixed up amongst the pin-like spicula that constitute their skeleton, irregularly shaped globules composed of a contractile glutinous substance, which, when examined under the microscope, were seen continually to change their shape, presenting a coustantly varying outlinc, exactly similar to what is witnessed in the protean animalcule, Amoeba diffluens, above described ; and to this coutractile substance, whereof the living substance

Fig. 16.

Pensile Sponge (Spongia oculata), showing the direction of the nutrient currents. of the sponge seems principally to consist, he proposed to givo provisiunally the name of Halisarca (sponge-flesh \uparrow). Subsequent obscrvations have shown that these proteiform particles are not only thus changeable in their shape, but are able to exercise a distinct power of locomotion by agitating long flagelliform filaments that are derived from their substance (fig. 17, 1); in fact, the whole of the living portion of the sponge seems to be made up of agglomerations of these amorphous Amobx, spread over the spicula or skeleton of the sponge, all individually capable of changing their form by emitting processes in different directions, so as to increase their means of contact with the surrounding fluid, fiom which they evidently derive materials for assimilation.
(53.) These sponge-cells, as they are called by Mr. Carter \ddagger, are about the $\frac{1}{1000}$ part of an inch in diameter. If one of them be selected for observation, it will be found to be composed of a gelatinous cell-wall, having a number of granules fixed to its upper and inner surface; and towards its centre one or more hyaline vesicles are generally perceptible.
(54.) The granules above mentioned are round or ovoid, translucent,

[^15]and of an emerald- or yellowish-green colour, varying in diameter below the $\frac{1}{13000}$ part of an inch, which is the averacre linear measure-

Fig. 17.

1. Remarkable forms assumed by amœbiform partieles developed from the matter of the seedlike bodies of Spongilla, magnifled. 2. General shape of large spieulum. 3. Denticulated spiculum. (After Mr. II. J. Carter.)
ment of the largest. In some cells they are so minute and colourless as to appear only under the form of a nebular mass, while in others they are of the largest kind, and fow in number.
(55.) The hyaline vesicles, on the other hand, are transparent, colourless, and globular, and, although variable in point of size, like the green granules, are seldom recognized before they much exceed the latter in diameter. They generally possess the remarkable property of slowly dilating and suddenly contracting themselves, and present, in their interior, molecules of extreme minuteness in rapid commotion.
(56.) The sponge-cell when in situ is constantly ehanging its form, both partially and wholly; its granules also are ever varying their position, in unison with, or independently of, the movements of the cell; and its pellucid vesicle or vesicles may be seen dilating or contracting themselves, or remaining passively distended, exhibiting in their interior the molecules above mentioned as being in rapid eommotion. When first separated from the common mass, an isolated coll for a short time assumes a globular form, and afterwards, in addition to its beconing polymorphic, evinces a power of locomotion; it emits expansions of its cell-wall in the form of obtuse or globular projections or digital and tentacular prolongations. If in progression it meets with another cell, both combino; and if more are in the immediate neighbourhood, they all unite together into ono globular mass. Should a spiculum chance to be placed in the path of a cell thus in motion, it will ascend it and traverso it from end to end, subsequently quitting it; or else, assuming its globular form, it will embrace some part of the spiculum and remain stationarily attachod to it. The changes in shape and prosition of the spongo-cell are for the most prart. cffected so imperepptihly that
they may be likenod to those which take place in a cloud. Its granules, however, are more active, but there appears to be no motion in any part of the cell (excepting among the molccules within the hyalino resicle) which in any way approaches to that characteristic of the presence of cilia.
(57.) The intcrecllular substance that forms the bond of union between the sponge-cells has a mucilaginous appoarance. When observed in the delicate pellicle which, with its imbedded cells, it forms over the surface and throughout the canals of the sponge, it is transparent; but when a portion of this pellicle is cut off from its attachments, it collapses and becomes semi-opakc. In this state the detached portion immediately evinces a tendency to assume a spheroidal form ; but whether the intercellular substance participates in this act or remains passive and the contraction is wholly performed by the habit of the cells imbedded in it to approximate themselves, is not evident.
(58). The freshwater sponges are reproduced from seed-like bodies found in the substance of the oldest or firstformed portions of the sponge, never in its periphery. They are round or ovoid according to the species, and each presents a single infundibular depression on its surface which communicates with the interior. At the earliest pcriod of development at which the reproductive germs are recognizable, they are composed of a number of cells united together by an intercellular substance similar to that described above. In this state, apparently without any capsule, and about half tho size of the fully developed seed-like body, they

Fig. 18.

Magnilled section of a sect-like body of Spongilla Meyeni, showing, f, spieular crust; g, coriaecous capsule; h, internal cells; i, infundibular opening. c, portion of eoriaceous membrane, magnifled, to show the hexagonal divisions with transparent centres; d, small spiculum, magnifled; e, one of its toothed disks with central aperture, magnifled. (After Mr. II. J. Carter.) seem to lie free in cavities formed by a condensation of the common structure of the sponge immediately surrounding them. The cells of which they are now composed appear to differ from those of the fully developed sponge-cell only in being smaller, in the colourless state of their contained granules, and in the absence of hyaline vesicles. The seed-like body gradually passes from the state just mentioned into a more circumscribed form, then becomes surrounded by a soft, white, compressible capsule, which finally thickens, turns yellow, developes upon its oxterior a firm ernst of siliceous spicula, and presents in some species an hexagonally tessellated appearance (fig. 18, c). The spicula are arranged perpendicularly to the surftee of the capsule, and the interval between them is filled up with a white, silicoons, amorphous
matter which keops them in position. Each spiculum oxtends a little beyond this matter, and surports on its free ond a toothed disk similar to a corresponding one on its fixed end, which rests on the capsule; so that the external surface of the sced-like body is studded with little stellato plates (fig. 18, d, e). In other species, where there appears to be no such regular arrangement of these spicula, a number of smooth spinifcrous points are presented.
(59.) If a sced-like body which has arrived at maturity bo placed in water, a whito substance will after a few days be observed to have issucd from its interior, through the infundibular depression on its surface (fig. 18, i), and to have glued it to the glass : if this be examined with the microscope, its oircumference will be found to consist of a semitransparent matcrial, the edge of which is notched or extended into digital or tentacular prolongations, preciscly similar to those of the protean cell, which in progression or in polymorphism throws out parts of its substance in the samo way. In the semitransparent substance may be obsorved hyaline vesicles of different sizes, contracting and dilating, as well as green granules, so grouped together as almost to cnable the practised eye to distinguish in situ the passing forms of the cells to which they belong. Subsequently to the development of this fleshy substance comes that of the horny skelcton and its spicula (fig. 17, 2), which are at first membranous, and at an early period of their development pliable; they afterwards become firm and brittle. They are hollow, and the form of their carity corresponds with their own shape; sometimes, moreover, they contain a green matter like the endochrome of the cells of Confcrve*.
(60.) In the genus Tethya, Professor Huxley has described a true sexual generation,-a portion of the spongy mass being found to consist of a granular substance in which ova and stellate crystalline bodies are imbedded. "The ova are of various sizes; they have a very distinet vitellary membrane, which contains an opake, coarsely granular yelk. A clear ciroular space, about $\frac{1}{1600}$ of an inch in diameter, marking the position of the germinal vesicle, is seen in each ovum ; and within this a vesicular germinal spot $\frac{1}{5000}$ of an inch in diameter is sometimes visiblc. The stellate bodics are about $\frac{1}{\mathbb{1} 00}$ of an inch in diameter. The granular uniting substance is composed entirely of small circular oclls about $\frac{1}{3300}$ of an inch in dianeter, and of spermatozoa in every stage of development from those cells. The cell throws out a long filament which becomes the tail of the spermatozoon, and, becoming

[^16]longer and more pointed, itself forms the head. It is remarkable that the ora are in no way separated from the spermatozoa, but lio imbedded in the spermatic mass like cgrs packed in sand "*.
 be regarded not merely as abounding in the seminal secretion of all animals, but in fact as constituting that important agent,-the presence of a fluid or liquor seminis appearing, when regarded in a physiological point of view, merely the vehicle in whieh the aetive Spermatozoa are suspended.

Until very recoutly these minute bodies were regarded as individual animated creatures; and many authors have fancied that several forms of them at least presented a somewhat complicated organization, suel as an intestine, gastrie saeculi, and even gene-

Fig. 19.

This figure represents the several stages of erolution of the Spermatozo in the common ereeper (Certhia familiaris), magniffed about a thousand diameters: l, an adult Spermatozoon, talsen from the oriflee of the vas deferens; a, b, c, seminal granules, which are probably nothing more than altered epithelial cells; d, e, f, eysts or vesieles enelosing one or more round granular globules; g, a similar cyst containing, besides the two globules, a finely-granular mass in which the Spermatozoa may be seen to form ; h, the eyst, still containing finely-granular matter, has assumed an oval form, and the bundle of spermatic animaleules, increased in size, lies bent up within it; i, a eyst still more developed; the involuerum, pear-shajed, eovers the bundle of animaleules where their spiral extremities lie; k, a eyst arrived at maturity, still covered by the involucrum. (After Wagner.) rative organs ${ }^{1}$. More recent researehes, however, have satisfactorily proved that they are in all cases composed of a uniform homogeneous substance of a yellowish colour, in which no traces of complexity of strueture are disecrnible. Nevertheless their movements nere in most eases exceedingly vivaeious; and wero it not for the now well-asecrtained faet that inany other eonstituent olementary tissues, both animal and vogetable, exhibit, equal activity even long after their separation from the organisms to whiel they belong, we might still be tempted to assign to thom a much higher position in the seale of vitality than that to whieh they are really entitled. The motions of the Spermatozoids are evidently only eomparable to the automatic movenonts of cilia, and the relationship which they hear to ciliated epitheliun-cells is rendered abundantly manifest ly the revelations of

1 Jirde Leuwenhoeek, vol. iv. p. 29, 68,284 ; Ehrenberg, Tufusionsthierehen, p. 465 ; Vilentin. Nov. Act. Aead. Lenjold. vol, xix. p, e2:39.
(61.) The multiplieation of marine sponges, however, is effeeted in another manner*. At certain seasons of the year, if a living sponge is eut to pieces, the ehannels in its interior are found to have their walls studded with yellowish gelatinous granules, developed in the parenchymatous tissuc ; these granules are the germs or gemmules from which a future raee will spring; they seem to be formed indifferently in all parts of the mass, sprouting, as it were, fiom the albuminous erust that coats the skeleton, withont the appearance of any organs specially appropriated to their development. As they increase in size, they are found to projeet more and more into the canals ramifying through the sponge, and to be provided with an apparatus of locomo-

Reproductive gemmules of a sponge. 1. Free gemmule. 3. The same beginning to attach itself. 2. The same spreading and commencing the deposition of spicules in its gelatinous sub-
tion of a description such as we shall frequently have oceasion to mention. The gemmule assumes an ovoid form (fig. 20, 1), and a large portion of its surface becomes covered with innumerable vibrating hairs,

[^17]or cilia, as they are denominated; these are of inconcoivablo minutoness, yet individually capable of exereising rapid movements, whoreby they produce currents in the surrounding fluid. As soon, therefore, as a gemmule is sufficiently mature, it becomes dotached from the nidus where it was formed, and, being whirled aloug by the issuing stroams, is oxpelled through the fecal orificos of the parent, and oscapes into the water around. Instead, however, of falling to the bottom, as so apparently holpless a particle of jolly might be expected to do, the ceaseless vibration of the cilia upon its surface propels it rapidly along, until, being removed to a considerable distance from its original, it attaches itself to a proper object, and, losing the now useless locomotive cilia, it becomes fixed and motionless, and developes within its substance the skelcton peculiar to its species, exhibiting by degrees the form of the individual from which it sprung (fig. 20, 2). It is curious to observe the remarkable execptiou which sponges exhibit to the usual phenomena witnessed in the reproduction of the highor animals, the object of which is evident, as the result is admirable. The parent sponge, deprived of all power of movement, would obviously be incapable of dispersing to a distance the numerous progeny that it furnishos; without some special provision they must inevitably have accumulated in the immodiate vicinity of their place of birth, without the possibility of their distribution to other localitios. The soeds of vegetables, sometimes winged and plumed for the purpose, are blown about by the winds, or transported by various agencies to distant places ; but in the prosent instance, the still waters in which sponges grow would not have served to transport thoir progeny clsewhere, and germs so soft and delicate could hardly be removed by other croatures. Instoad, therefore, of being helpless at their birth, the young sponges can, by means of their cilin, row thomselves about at pleasure, and enjoy for a period powers of locomotion denied to thoir adult state.
(62.) Very widely distributed through the ocoan, whether in tropical or extratropical climates, peculiar gelatinous bodies may be found floating upon the surface of the water; indeed they are occasionally among the most constant of all the various products of tho towing-net. The Tifalassicolla* (for so theso simple organisms are designated by Professor Huxley \dagger) is found in transparent, coloulless, gelatinous masses of very various forms-elliptically clongated, hourglass-shaped, contracted in several places, or spherical-varying in size from an inch in length downwards, showing no evidence of contractility nor any power of locomotion, but floating passively on the surface of the water. Of such bodies there appoar to be two very distinct kinds. In one, the mass consists of a thick gelatinous crust containing a large cavity. The crust is structureless ; but towards its imner surface minute spherical, spheroidal, or

[^18]oval bodies are imbedded (fig. 21, 2), each of which appears to be a cell with a thin but dense mombrane, and containing a clear fatty-looking nucleus surrounded by granules,- the whole substance, in fact, resembling an animal Palmella. Very commonly the contral part of each mass, instcad of containing a single large cavity, consists of an aggregation of clear, closely appressed spaces resombling vacuoles (fig. 21, 3) ; and frequently cach cell is surrounded by a zone of peculiar crystals, somewhat like tho stellate spicula of a sponge, consisting of short cylinders, from each end of which three or four conical spines radiate, cach of these again bearing small lateral processes (fig. 21, 4 \& 5). Frequently tho connecting substance in which the cells are imbedded appears to be quite structureless; but in some specimens delicate, branching, minutely granular fibrils may bo seen radiating from cach cell into the connecting substance (fig. 21, 4).

Fig. 21.

Structure of Thalassicolla (after Professor Huxley).
In the second form of Thalassicolle, the creature consists of a spherical mass of jelly, as largo as the middle-sized spocimens of the last variety, with an irregular blackish central mass. Enveloping this, and forming a zone about half the diameter of the sphere, are seen numerous clear spaces (vacmoles), and among these are scattered numerous yellow cells and a multitude of very dark gramules. Delicate, flattened,
branching fibrils radiate from the innermost laycr, passing between the racuoles; and in one specimen Professor Huxley observed these fibrils thickly beset with minute dark molecules which were in active motion, as if circulating along the fibrils, but withont any definite direction.

CHAPTER III.

INFUSORIA*.

(63.) If we examine a drop of water taken from any pond or ditch in which vegetable or animal substances have been permitted to undergo incipient decay, with a microscope even of very limited power, we must soon perceive that it swarms with innumerable organisms, which are evidently endowed with life and exhibit considerable activity. From the circumstance of their extreme minutcness, these microscopic bcings were designated by their first discoverers " Animalcules," to whieh appellation, from the fact of their generally making their appearance in vegetable infusions, the term "Infusorial" was very generally superadded by their earlier investi-

Fig. 22.

Vegetable Organisms. gators. Progressive improvements in the structure of the microscope, however, soon made it apparent that the so-called Infusorial or Microscopic Animalcules embraced a vast variety of different forms of living beings possessed of little in common except their invisibility to ordinary observation : the larvæ and even the adult states of innumerable Insects, Crustaceans, Worms, and Zoophytes were all comprehended under a term so general ; and even microscopic Algæ, Desmidicæ, and Diato-

[^19]macex, now universally acknowledged to be members of the vegetable domain of Naturo, wero included in this chaotic assemblage-organisms widely dissimilar to each othor both in their shape and structure.

It would be foreign to our present purpose to analyzo the suceessive steps whereby something like order has at length been established in a seene of such apparently incxtricable confusion, and how pari passu with the improvement of the microseope has been the rapid adrancement of knowledge in connexion with these until so late a period unknown existences; suffice it to say that, in accordance with the more refined characteristics now adopted in zoological classification, Crustaceans and Insects, as well as the larrex of Annclidans, Zoophytes, and Echinoderms, have been successively withdrawn from

Fig. 23.

Vegetable Organisms.
the group and located in their appropriate stations, while innumerable zoospores and embryonic plants, together with the Desmidiacer (fig. 24) and the Diatomaceæ (fig. 25) generally, are by common consent conceded to the botanical scries of Creation *. Still, as it would appear,

* It is by no means an casy task to indicate the boundary-line which separates the animal from the vegetablo kingdom. The most important difference, that the vegetrble cell-mombrane contains no azote, while tho animal coll-membranc does, cannot be applied in doubtful cases, tho tonnity of tho mombrane not nllowing of the investigation. That animals possess the power of locomotion, but plants not, is incorroet as applied genernlly, and is still less applicablo here, because many unicellnlar Alga exhbit motion, frequently very enorgetic motion (when swarming),
the zoologist is reluetant to dissever forms of life which habit has accustomed the mieroseopical observer to associate with each other; and

Fig. 24.

Desmidiaceæ.
even M. Dujardin, one of the latest and most unprejudiced writers upon the history of these living atoms, includes under the term Infu-
whilst the ova of multicellular Alga are quieseent. The unicellular Alga differ from the Infusorin in this, that their membrane and its appendages are not motile, and that consequently they have a rigid form, whilst the lattcr in some instances change their figure, and in others are furnished with motile cilia. The presence of starch, too, is not invariably decisive as to the vegetable nature of a cell. The ova of multicellular animals, the figure of which is rigid and unchangeablo, may be recognized as not belonging to the unicellular Algæ from their want of colour-ing-matter, which is present in the latter.

We can searcely expect Chemistry to decide what is animal and what plant. The non-nitrogenous cellulose, which at first sight appears to bo an exclusive attribute of the regetable, is also found pretty generally in the animal kingdom, as we learn from the researches of G. Schmidt on Cynthia mammillaris, and those of Kölliker and Löwig on a great number of the most various forms of the lower animals. Just as little does chlorophyll appear to be exelusively characteristic of the vegetable world, since the green granules and vesieles which occur imbedded in the parenchyma of IIydra viridis, of various Turbellarice (Hypostomum viride and Tryphoplana viridata, Schm.), and of Infusoria (Stentor polymorphus, Bursaria vernalis, Loxodes bursaria, \&e.), are probably closely allied to chlorophyll, if not idontical with it. Erythrophyll also might be said to oceur in the lower animals (for instance in Leucophrys sanguinea and Astasia hromatodes), in which lattor the red colour frequently passes into green, as does the crythrophyll of minicellular $\Lambda l \mathrm{ge}^{1}$.

[^20]soria, animalcules cssentially remote both in their gencral cliaracters and iutimate organization.

Fig. 25.

(64.) The Infusoria, as characterized by M. Dujardin, are creatures which, when examined under the microscope, appear to be composed of a homogeneous, glutinous, diaphanous substance, and are either naked or partially enveloped in a more or less resisting integument. Their usual shape is rounded or ovoid. Some (and these are the forms most commonly met with, which at once arrest the eye of the micrographer) are provided with vibratile cilia, which, either used occasionally or continually in motion, serve the purpose of innumerable oars for the movements of the animalcule, or in some cases merely act as agents in supplying provisions to the little creature's month; others (fig. 23) instead of vibratile cilia are furnished with only one or two or sometimes several extremely slender filaments, which they agitate with an undulatory movement, and are thus enabled to advance through
green colour, little or not at all affected by diluted acids and alkalics, and frequently turns brown upon the death of the plant. The Erythrophyll presents a red or purple colour, not changed by diluted acids, but becoming green on the addition of alkalics, and also most usually after dealh. The Phycochrom is verdigris-grecn or orange, changed into orange by the action of diluted acid, and into a brown-yellow by that of alkalies. The Diatomin is brownish yellow, not altered by diluted alkalies, but changed into verdigris-green by diluted hydrochloric acid, and usmally after dentlo. Vide Nügeli, Gattungen cinzelliger Alge, physiologiseh und systematisel bearbeitet: Zärich, 1849.
the fluid wherein they swim ; whilst others, provided with neither cilia nor flagelliform filaments, move about by simple contractions and extensions of the general substance of their bodics.

Fig. 26.

Euplotes Charon (Ehr.). 1. Animalcule seen from below, exhibiting the locomotive apparatus composed of uncini, styli, and sela: v. the anal aperture. 2. Dorsal aspect of the same, covered with a delicate shell. 3. A similar view showing the ciliary currents, the position of the mouth o, the nucleus t, and the contractile resicle 8. 4. Side view, representing the animalcule creeping upon the surface of a fragment. 5. Two animalcules conjoined by their mouths; in one, the ventral, in the other the dorsal aspect is uppermost. 6. A specimen exhibiting the process of reproduction by transverse fissure. 7. Destruction of the animaleule by dillience of the soft parts.
(35.) The forms last mentioned, as the reader will at once perceive, naturally arrange themselves among the Rhizopona, described in the last chaptor. Those provided with flagelliform filaments which they employ as instruments of locomotion, such as the Monadina, Cryptomonadina, Pandorina, Chlamidomonas, and Volvow of Ehrenberg (fig. 23), are now unhesitatingly admitted to belong to the regetable kingdom; so that the ciliated forms alone are left to the zoologist, and offer themselves for our study upon the present occasion.
(66.) The movements of the ciliated Infusoria, when seen under the microseope, are frequently exceedingly vivacious; they swim about with great activity, avoiding each other as they pass in their rapid dance, and evidently directing their evolutions with wonderful precision and accuracy. Our first inquiry therefore must be concerning the organs of locomotion which they possess. These are of various kinds, and are arranged differently in different species. Some are provided with styli, or articulated, stiff, bristle-like organs (fig. 26) which perform in some measure the office of foet, and with uncini, or little hooks
which are moveable and serve for attachment to foreign bodies ; these aro secn in Euplotes Charon (fig. 26, 4).
(67.) But tho most important locomotivo agonts are the cilia*, with which theso Infusoria are invariably furnished. On attentive examination, their body will bo found to be entirely covered with minute vibrating hairs, or at least furnished with such appendages on some part of its surfaco (fig. 26, 1, 2, 3). The existence of theso cilia is readily detected by a practised eye, even when using glasses of no very great magnifying power, by the peculiar tremulous movement which they excite in the surrounding fluid, somewhat resembling the oscillations of the atmosphere in the neighbourhood of a heated surface ; but on applying higher magnifiers, espccially if the animalcule is in a languid state, the motion is seen to be produced by the action of the delicate filaments of which wo are speaking. Although extremely difficult accurately to define tho motion of tho individual cilia, it is obvious that the combination of their movements gives rise to currents in the water, serving a variety of purposes in the economy of theso minute beings.
(68.) The cilia, as has been already observed, are sometimes dispersed over the whole body, either arranged in parallel rows or scattered irregularly; they are, howerer, most frequently only met with in the neighbourhood of the mouth, in which position they are always most evident: here they produce, by their vibration, currents in the surrounding fluid, which converge to the oral aperture, and bring to the mouth smaller animalcules, or particles of vegetable matter, such as may be floating in the neighbourhood, thus ensuring an abundant supply of food, which, without such assistance, it

Fig. 27.

Stentor. would be almost impossible for these little ereatures to obtain.
(69.) With the locomotive organs of these minute beings must likewise be classed the delicate and highly irritable stems of tho Vorticelle (fig. 28, 2), which on the slightest touch shrink into spiral folds, and again straighten themselves to their full extent. The agent by which this contraction is effected is a dolicato spiral thread contained in tho interior of the flexiblo stem, regarded by Ehrenberg as a muscular filament ; its muscular nature, however, is doubted by Dujardin, who regards this as being one of the most inscrutable poiuts connected with their economy. That a central canal exists in the retractilo stem is generally admitted, and likowise that it contains a fleshy substance less
tramsparent than the rest of the tube ; but, according to M. Dujardin's observations, it is the diaphanous substance around this central cord that contracts, and as it forms a band one border of which is much thicker than the other, the nore powerful action of the thicker portion gives that helical curvature to the stem which forms so remarkable a feature in its morements.
(70.) When certain specics of Infusoria (o.g. Bursaria leucas) are oxamince under a sufficiently high power, minute fusiform corpuscles may be detected thickly imbedded in the integument. These bodies are perfcctly colourless and transparent; they are about $\frac{1}{2500}$ of an inch long, and may easily, even without any manipulation, be wituessed at the margin, where they are seen to bo arranged perpendicular to the outline of the animalcule, whilo on the surface turned towards the obscrver their extrome transparency and want of colour render them invisible against tho opake background, and it becomes necessary to crush the animalcule bencath the covering-glass, so as to press out the green globules which it contains, in order to bring the fusiform bodies into view. To these bodies it has been proposed to give the name of trichocysts.

As long as the animalcule continues free from annoyance, the trichoeysts undergo no change ; but when subjected to external irritation, as occurs during the drying away of the surrounding water, or tho application of acetic acid or other chemical irritant, or the too forcible action of the compressor, they become suddenly transformed into long filaments, which are projected from all parts of the surface of the animalcule ; these filamects have been mistaken for cilia by Cohn and Stein. The rapidity with which their evolution is effected, joined with the great minuteness and transparency of the object, renders it extromely difficult to follow it.
(71.) It is not difficult, by rapidly crushing the animalcule, to force out some of theso organs in an unchanged state. If the eye be now fixed on one of the isolated trichocysts, it will most probably be seen, after the lapse of a fow seconds, to become all at once changed (with a peculiar jork, as if by a sudden relcase from some previous state of tension) into a little spherical body. In this condition it will probably remain for two or three scconds longer ; and then a spiral filament will become rapidly evolved from the sphere, apparently by the rupture of Ω membranc that had previously confined it, the filament umrolling itself so quickly that the oye can scarcely follow it, until it ultimately lics straight and rigid on the field of the microscope, looking like a very fine and long acicular crystal.
(72.) This remarkable filament, when completely evolved, consists of two portions-a rigid spiculum-like portion, acutely pointed at one cud, and continuous at the opposite end with the second portion, which is in the form of an excessively fine filiform appendago, less than
half tho length of the spiculum. This sccond portion is gencrally scen to bo bent at an angle on the first, and is frequently more or loss curved at tho free cnd. The form of the ovolved trichocysts is best observed in such as have floated away towards the margin of the drop of water and are there left dry by the evaporated fluid. In many of them the filiform appendage is not visible; and they then mercly present the appearance of a simple, long, fusiform spiculum.
(73.) Fcw subjects have afforded a more fertile ficld for discussion than the intcrnal organization of these almost invisible creatures; and even at the present moment many points of their economy are by no means satisfactorily elucidated. The remoteness of their structure from that of the higher animals, and a natural mistrust felt by the carlier observers in the capabilities of the instruments placed at their disposal, gave rise at first to doubts and hesitation, which no longer exist.

The digestive apparatus of the Infusoria was originally described by Ehrenberg as consisting of a number of internal sacculi, varying in different species from four to two hundred in number. These sacs were stated by that indefatigable microscopist to be readily distinguishable without any preparation, but capable of being rendered more conspicuous by feeding the animalcules with pure carmine or indigo, the coloured particles of which substances they eagerly swallow. In one large division, called Anfatera, the sacculi or stomachs were said to arise by separate tubular pedicles from the mouth itself (fig. 28, 1) ; whilst in others (Enterodela) there was supposed to be a complete intestinal canal, terminated by a mouth and anus, to which the sacculi or stomachs, as they wcre called, were appended: sometimes the intestinal canal is stated by the same authority to form a circle in the bedy (Anopistima, Ehrenb.), as in the Vorticella (fig. 28, 2); or else the mouth and anus are placed at opposite extremities of the body, through which the intestinal tube passes either in a straight course, or exhibiting several flexuous curves in its passage (Enantiotreta and Aulotreta, Ehren.) (fig. 28, 3 and 4). When ncither the mouth nor anus is terminal, such animalcules belong to the group denominated Katotreta by the same author.
(74.) However imposing, from their completcucss, the views of Ehrenberg concerning the digestive system of tho polygastria may be, and sanctioned as they have been by almost gencral consent, wo cannot pass over a subject of so much importance without expressing ourselves as boing far from admitting their accuracy, and we must say that our own observations upon the structure of the polygastria have led us to very different conclusions*.

[^21](75.) The positions of the mouth and anal aperture we are well assured, by frequent examination, to be such as are iudieated by the illustrious Profossor of Berlin; but with regard to the tube named by him intestine*, and the stomachs appended thereto, our most patient and long-continued efforts have failed to detect the arrangement depicted in his drawings. In the first place, as regards the function of the sacculi, which he looks upon as the organs in which digestion is accomplished: in carnivorous animalcules, which devour other species, we might expect, were these the stomachs, that the prey would at once be conveyed into one or other of these cavities ; yet, setting aside the difficulty which must manifestly occur in lodging large animalcules in these microscopic

Fig. 28.

Polygastric structure of the Infusoria according to Professor Ehrenberg. sacs, and having recourse to the result of actual experience, we have never in a single instance seen an animalcule, when swallowed, placed in such a position, but have repeatedly traced the prey into what seemed a cavity excavated in the general pareuchyma of the body.
(76.) In the second place, the sacculi have no appearance of being pedunculated and consequently in a certain degree fixed in definite positions: we have just been for two hours carefully examining some beautiful specimens of Paramecium aurelia (fig. 28, 4), an auimalcule which, from its size, is peculiarly adapted to the investigation of these vesicles; and so far from their having any appearance of connexion with a central canal, as represented in the figure copied from Ehrenberg, they are in continual circulation, moring slowly upwards along one side of

[^22]the body, and in the opposite direction down the other, continually chauging their positions relativo to each other.
(77.) With respect to tho central canal (fig. 28, 2, 3, 4), we have not in any instance been able to detect it, or even any portion of the tube seen in the figures, much less the branches represcnted as leading from it to tho vesicles or stomachs, as they aro called. Even tho circumstances attending the prohension of food would lead us to imagine a different structuro; witness, for example, the changes of form which Enchelys pupa undergoes when taking prey, as shown in Ehrenberg's figure, whero it is represented in the act of devouring a largo animalcule, almost equal to itself in bulk, and is seen to assumo a perfectly different shape as it dilates its mouth to receive tho victim, with which its whole body becomes gradually distended. Such a capability of taking in and digesting a prey so disproportionato would in itself go far to prove that the minute sacculi wero not stomachs, as it evidently cannot be in one of theso that digestion is accomplished.
(78.) Since the abovo was written, tho views of Professor Ehrenberg relative to the organization of the nutritive apparatus of the so-called PoIygastric Infusoria have been combated by many zealous observers both in this country and upon tho Continent, and appear now to be universally abandoned. Mons. F. Dujardin* attributes the formation of the internal cells observable in the interior of these animalculcs to tho properties of a peculiar glutinous animal substanco resembling living jelly, of which ho supposes tho lower organisms to bo principally composed, and which he calls sarcocle. This substance, according to tho views of M. Dujardin, spontaneously produces in tho interior of its mass vacuoles, or little spherical cavitics, into which tho surrounding water finds access, and conveys along with it the coloured particles, but having no regularity of arrangement.
(79.) According to tho views of M. Dujardin, the phenomena attending the passage of aliment into the bodies of tho so-called Polygastric Infusoria may be described as follows-as they occur in Amphiteptus. In the interior of the body thero are generally perceptible five or six vacuoles or cavities, distended with water, in which aro contained monads and other.substances swallowed as food. Theso vacuoles change their situation, advancing gradually towards the posterior extremity of tho animalculo, whero may bo observed a vacuolo or resiclo of larger sizo (and frequently irregular shape, its contour boing lobulated), evidently formod by the union of several smaller vacuoles, which, haring been successively brought into contact, havo become fused together like bubbles of gas. This largo posterior vesicle becoming moro and more distended, its walls becomo thimer, and at last it opens extermally by a wide latoral fissuro, discharging its contents and then contracting to a comparatively small sizo. If this process bo that which generally takes

[^23]place (as it is supposed to be by M. Dujardin), the excretory orifice will be constantly formod at that point where the internal vesicles (so-called stomachs) terminate their career after having passed through the glutinous interior of the animalcule; and in this case its position, although it is not the termination of an intestinal canal, may be sufficiently constant to afford a character of classification.
(S0.) The celebrated botanist, M. Meyen*, regards the true Infusoria as being vesicular beings, having their interior filled with a kind of mucous substanco. The thickness of the walls of the body, according to this observer, is in many species such as to be easily appreciated, and contains a spiral structure, which is readily perceptible, and which, as ho thinks, establishes a completo analogy between these creatures and regetable cells. In the larger kinds of Infusoria a cylindrical canal (the œsophagus) passes obliquely through the integument, and becomes dilated inferiorly, when distended with nutritive matter, to the size of the coloured globules met with in the interior of the body. The inner surfaco of this œesophageal tube is lined with cilia, by the action of which alimentary substanees are kept in movement until they acquire a spherical shape. When the pellet thus formed becomes as large as the size of the pharynx will allow, it is expelled therefrom, and pushed into the cavity of the animalcule ; a second pellet then accumulates, if any solid particles are contained in tho surrounding fluid, which being in like manner impelled into the general carity of the body, pushes the preceding one (which is now surrounded with mucosity) before it ; and so successive pellets are formed one after the other, with which the cavity of the body becomes filled, giving the appearance that induced Professor Ehrenberg to regard these little beings as furnished with numerous stomachs. If no solid particles exist in the fluid surrounding the animalcule, tho pellets are less consistent, exhibiting the appearance observable in specimens living in colourless water, in which case they are made up of a small number of particles, and seem to be principally composed of mucosity. Sometimes (obscrves M. Meyen) two of the pellets so formed are, when forcibly pressed together by the contraction of the body of the animalcule, observed to coalesce and bccome united into ono mass-a circumstance in itsclf sufficient to prove that they are not enclosed in stomachal walls.
(81.) In order to witnoss the formation of the pollets above described, it is necessary to begin the examination of the animalcule immediately on placing it in coloured fluid, as the deglutition of the coloured particles is vory rapid; frequently, in the courso of half a minute the pollets may be seen to issue one after the other from the cesophagus, and to be gradually propelled along the internal wall of tho cavity of the animalculc. In Paramecium, Kerona, and the Vorticella, each new pollet pushes the preceding one hefore it, so that they mount

[^24]up along the opposite wall and are returned down the other side, until, after having aceumulated to some extent, they are expelled one after the other from the anal outlet.
(82.) The number of pellots thus formed is frequently so considerable that they fill up the whole abdominal carity, and are so closely united together that they form a mass that revolves slowly upon itself, as may be seen in the Vorticellce. This last kind of movement is the effect of the forcible expulsion of the newly formed pellets from the gullet into the common cavity, of whieh fact M. Meyen assures us that he has had eonvineing proof. In other eases, when the number of pellets is small, they exhibit the kind of circulatory movement already spoken of, the eause of which is not so obvious.
(83.) The observations of Dr. Lachmann relative to the mode of feeding of the Acineta (fig. 29) throw considerable light upon this part of their eeonomy. When an Infusorium touches the button-like dilated apex of the ray of an Acineta, it usually remains adhering to it; the apex of the ray beeomes still more dilated, so as to form a sueking disk, and the ray becomes thieker and shorter; at the same time other rays make grasping movements, and endeavour to attaeh their extremities, which are dilated into sucking disks, to the eaptured prey. If the latter does not soon succeed in making its escape by great exertions, by whieh the rays of the Acinctæ are often mueh disarranged and injured, the Acineta begins to suek out its eontents. Each ray is a sucking proboseis ; and it may soon be seen that a current of ehyme-particles runs from the alimentary eavity of the eaptured Infusorium into the body of the Acineta, through the axis of the rays, which, after seizing the prey, have become shortened and thickened. In the body of the Aeineta, the ehyme-partieles still run at first in a single row, but afterwards they colleet in a drop, which soon becomes amalgamated with other drops derived from other suekers. When a eonsidcrable quantity of the ehymo of the eaptured animal has passed over into the Aeineta, a remarkable change gradually takes place in its appearance: if it was previously pale, nearly transparent, and only very finely granulated, larger, dark globules, resembling. fat-drops, now make their appearance here and there; and these soon increase, so that the body aequires a granular aspect and beeomes opake. The globules or drops which thus make their appearanee ean only be formed in the body of the Acineta, as they are far larger than the chyme-particles which are seen flowing through the sucker. The animal whose contents are thus sucked out gradually collapses and dies: many become liquefied when only a little of the chyme is extracted from them; others still live for a long time: in large animaleules, such as Stylonychia mytilus, Paramecium aurelia, de., tho sucking often eontinues for several hours.
(84.) A number of roundish eorpuseles, sometimes eoloured, sometimes colourless, are generally found to oeeur diffused through the
parenchyma of many Infusoria, which were considered by Ehrenberg ora or spawn. The actual production of young from theso corpuscles,

Acineta tuberosa (Ehr.), attached to a stalk of Ceramium diaphanum. The specimens marlked α and sare fully expanded; γ, side view of ditto; in δ the tentacula are seen in a partially, and in β in a fully eontracted state. The three figures upon the opposite side of the stem of Ceramium represent Acineta mysticina.
however, has never yet been observed; and they are now believed to be nothing more than chyme-globules, which make their appearance after the digestion of food, as in the instance of the Acincta above-mentioned.
(85.) A coloured gastric juice has been described by Ehrenberg as existing in the gastric cavities of some Infusoria. The colour, however, has been accounted for by Sicbold as produced by refraction and the presence of aggregations of pigment-granules. According to Professor Henfrey the reddish-violet colour is real, and arises from the presence of solution of the chlorophyll of certain Oscillatorice, deeply coloured with the same tint.
(86.) Two other organs remain to be mentioned which aro common to all the Ciliated Infusoria, namely the "contractite space" and the "nucleus."
(87.) The contractile spaco (seminal vesicle according to Ehrenberg) is regarded by many recent authors, in accordanco with Dujardin's example, as a cavity destituto of propor walls (vacuole), which is sometimes supposed to form tho analogue of tho hoart, and sometimes that of an exeretory or respiratory wator-vascular system. In order to bo able to judge of these views, it will be necessary to examine rather elosely
into the bohaviour of this "contractile space; " and for this purpose thoso Infusoria in which procosses or branches derived from it can be detceted appoar to bo particularly worthy of attention.

Fig. 30.

Paramecium aurelia (Ehr.), magnifled 300 diameters. 1. The animalcule at rest, under slight compression: a^{\prime}, the position of the mouth; s, contractile vesicles surrounded with radiating processes; t, nucleus. 2. Another specimen, plnced in water coloured with indigo, showing the ciliary currents, the oral aperture, o^{\prime}, and the coloured pellets in the intcrior of the body. 3. The same in process of longitudinal division, each segment containing a distinct nucleus. 4, A specimen swimming freely about after being fed with carmine; the mouth, nucleus, and star-like contractile resicles are seen more in proflc.
(88.) Radiating branches of the contractile spaces were first discovered by Ehrenberg in Paramecium and some other Infusoria. When the contractile space is fully expanded, the rays can only be observed as fine lines, or, when the light is not good, are entirely imperceptible. On the sudden contraction of the space, however, they instantly swell into pyriform cavities placed close to the position of the contractile organ which has disappeared. During the slow reappearance of the contractile space, the rays gradually decrease; and they in turn have almost disappeared or become reduced to finc lines when the vesicle has attained its full extension. These rays, as wcll as the contractile spaces, lie, as in all Infusoria, close under the skin ("cuticula" of Cohn), in the parenchyma of the body ("cortical layer" of Cohn).
(89.) The processes of the contractile spaco are scen with remarkable clearness in the largo Stentor polymorphus, in which a very considerable portion of a vascular system may bo recognized. The contractile space lics a little to the left of tho œesophagus, near the plane of the ciliary disk ; from it a longitudinal vessel runs to the posterior extremity of the animal, and an annular vessol round the ciliary disk, closo undor its series of cilia. Both these aro visible even during the oxpansion of the contractile vesicle, but swell up suddonly during its contraction, liko the rays of Paramecium above described; and thon the lougitudinal vessel usually exhihits considerable dilatations, which, when superficially ex-
amined, might easily be taken for independent disunited cavities (racuoles): the ammlar ressel cxhibits a more uniform aspect; only two rounded dilatations make their appearance in it. Both ressels gradually decrease during the reappearance of the contractile vesicle, apparently without any contraction of their own.

It is therefore probable that, in all the Infusoria possessed of a contractile space, it is the centre of a vascular system which does not merely consist of chasms formed in the parenchyma by its accidental separation. Another and more difficult question concerning its nature remains to be cleared up, namoly whether the vessels and the contractile space possess proper walls-in other words, whether the contractile space is

Fig. 31.

Stentor Miulleri (Ehr.), magnified. It is represented in a half-contracted state, and placed in indigo-water, so as to show the ciliary currents. or is not a vesicle. The mode of its contraction, which differs from the other contractile phenomena of the parenchymn of the body, appears to speak decidedly in favour of its vesicular character, as do some other facts, such as the phenomenon presented by Spirostomum ambiguum, an animalcule in which the anus is situated at the hinder end of the animal, and close in front of it is the very large contractile space. When fully expanded, this space appears to be surrounded only by a thin membrane ; but nevertheless pellets of excrement, often several at the same time on different sides of the vesicle, form projections which are nearly hemispherical both towards the vesicle and the outer surface of the body-a circumstance which could not happen if it were not a vesicle with proper walls.
(90.) When examined with a good microscope, the Infusoria are found to be possessed of another organ of very mysterious character, which, in accordance with the prevailing notion of their analogy with animal or vegctable cells, has been named the nucleus, and which, as we shall see hereafter, seems to play an important part in their economy, more especially in connexion with the propagation of these animalcules.

The nucleus is usually roundish, sometimes longish or even (as in many Vorticellince and Stentor) much clongated and band-like. It is enveloped in a pcculiar membranc, and gencrally presents a homogeneous or fincly granular appearance. It appears constantly to enclose a cavity surrounded with very thick walls, and sometimes contains a smaller body, designated nucleolus, which, however, in ccrtain species is situated extermal to the mucleus.

Tho nucleus, as a general rule, seems to be affixed to the walls of the animalcule, as it does not appear at all to participate in the rotatory movements obscrvable in the interior of the body.
(91.) In many Infusoria, the surface of the body is capable of exuding a horny substance, that forms a sheath or shell (lorica), into which the animalculc can contract itself more or less completely.

Another kind of exudation also occurs in a great many species, which leads to the formation of a case or cyst enclosing the animalcule that secretes it: the object of this appears to be the protection of the encysted animal from unfavourable circumstances in the surrounding water, and from death from desiccation. This process of encystment is sometimes connected with the reproductive function, as we shall sce hereafter.
(92.) The reproduction of these animalcules is effected in various ways ; and not unfrequently the same individual would appear to propagate by two or three different modes of increase.
(93.) The first is by external gemmulcs or buds, which sprout like minute gelatinous tubercles from the surface of the body, and, gradually attaining the shape of their parent, develope the cilia characteristic of their species, and soon become independent beings, although they do not attain to their full growth until some time aftcr their separation.
(94.) The most usual mode of propagation, however, is by spontaneous fission, or division of the body of an adult animalcule into two or more portions, each of which is perfect in all its parts. This singular kind of generation, by which the old animalcule literally becomes converted into two or more young ones, is accomplished in various ways, which will require separate notice.
(95.) In the oval forms of the Infusoria, the line of separation gencrally divides the body transversely into two equal portions, by a process the different stages of which are represented in fig. 33. The body of an animalcule about to divido in this manner bccomes at first slightly elongated, and a line more transparent than the rest of its substance is scen to cross its middle portion: a constriction becomes gradually apparent at each extremity of the line of division; this soon grows more decided, and at length the two parts arc only united by a narrow isthmus (fig. 33), which, getting thinner and thimer, allows a slight effort on the part of either of tho now nearly distinct portions to tear itself from the other half and complete the separation.
(96.) In some elongated speeies the fission is effected in a longitudinal direetion, the separation gradually proceeding from the posterior to the anterior extremity of the body; yet even in these the division is oceasionally transverse, the newly formed ereature appearing truncated at one end for some time after the eompletion of the process.
(97.) The above mode of generation, as exhibited in Vorticella (fig. 33), is very curious; and from the different forms assumed by the young during the progress of their development mueh eonfusion has oeeurred, eaeh stage of growth having been deseribed as the permanent appearance of a distinet speeies. This beautiful animaleule seems to be propagated in several ways-sometimes by external gemmules, which appear like minute points, seareely more than $\frac{1}{1000}$ of a line in diameter, upon the pedieles of the adult Convallariæ; these in time beeome peduneulated, and, although still very small, exhibit the eilia upon the margins of the delieate eups; in this state they were ealled by Sehrank Vorticellce monadica (fig. 33). The Vortieellæ generally, however, multiply by fission, the bell-shaped eup at the extremity of their highly irritable pedieles separating longitudinally into two ; but the progress of this division requires our partieular notice, as the unpraetised observer might be eonsiderably puzzled on witnessing some of the phenomena attending it.
(98.) The adult animaleule (seen with its pediele fully extended (fig. 33, d), when it is alarmed, shrinks by throwing its stem into spiral folds. When about to divide, the bell or body of the animaleule is seen to have extended eonsiderably in breadth, preparatory to its beeoming separated into two distinet ereatures. The separation gradually extends from the base, or eiliated extremity, to tho point whero the body is attaehed to its stem. When the division has extended thus far, tho newly formed portion is seen with surprise to have becomo furnished with eilia at both ends-and when finally detaehed, only at the opposite extremity to that on whieh they originally existed; it then beeomes freed from its pediele, and, thus losing the great eharaeteristie of its speeies, swims about at large, exhibiting forms whieh have been described as distinet species by different writers; at last it puts forth a new stem, and, assuming the adult form, beeomes fixed by its pediele to some foreign body.
(99.) This fissiparous modo of reproduetion is amazingly produetive, and indeed far surpasses in fertility any other with whieh we are aequainted, not exeepting the most prolifie inseets or even fishes. Thus a Paramecium, if well supplied with food, has been observed to divido every twenty-four hours, so that in a fortnight, allowing the produet of eaeh division to multiply at the same rate, 16,384 animaleules would be produeed from the same stoek; and in four weeks the astonishing number of $268,435,456$ now beings would result from a continued repetition
of the process: we therefore feel but little surprise that, with sueh powers of increase, these minute creatures soon become diffused in countless myriads through the waters adapted to their habits.

If the organization of these animalcules were as simple as it was supposed to be a few years ago, when they were thought to be mere speeks of living jelly, imbibing nourishment at every point of their surface, which beeame diffused throngh all parts of the homogeneous texture of their bodies, their spontaneous division would be perfectly intelligible, and every step of the process easily mnderstood; but, setting aside the conformation of their digestive apparatus, there are many eireumstanees attending the operation indicative of a power of developing new organs in the construction of every fresh individual, which must be looked upon as a very interesting feature in their

Chilodon Cucullus: a, dental apparatus; history. Thus a new oral orifice, sur- situ (after Ehrenberg). rounded with eilia, must be formed upon the posterior segment of each divided animaleule. In Nassula elegans the curious dental apparatus, complex as its strueture seems to be, must be developed upon the new part of the body preparatory to every separation; and aceordingly a new mouth or dental eylinder is aetually formed upon the hinder half of the ereature before its transverse fissure is complete.
(100.) Nearly all the Infusoria and Rhizopoda, as above stated (§86), have in their interior a kind of nucleus, whieh is quite different in its compact texture from the parenchyma by which it is surrounded. This nuclens seems to play an essential part in the fission ; for every time the animaleule divides, either longitudinally or transversely, this organ, whieh is usually situated in the middle, divides also, so that each of the two new individuals has a nueleus.
(101.) A remarkable mode of reproduction, by encystment, observed first by Stein in different species of Vorticella, appears to exist commonly among all the animalcules of this elass*. The individual about to become eneysted contracts slightly, and closes its peristome ; around it there then appears a cloud-like saeculus formed by a viseid liquid, whieh is probably the result of a eutaneous secretion. In this liquid are developed granules, which, augmenting more and more in number, and adhering together, finally form a membrane, which beeomes hard and resisting, although soft and flcxible when first produced. This eneystment appears to have a double purpose:-first, to withdraw these very delicate animals from the destructive effeets of drought and eold:

[^25]and, sccondly, to allow them to undergo certain metamorphoses protected from all external influences.

Fig. 33.

Forticella microstoma (Ehr.), showing different stages of the process of fissiparous reproduetion. The basis to which the group is attached consists of a finely granular mucons mnss.
The Vorticellian thus encased becomes attenuated and folded upon itself; the sarcodie substance appears to traverse its integument in all parts ; from time to time it still eontracts, but ultimately beeomes completely dissolved, so that we find in its place morely a homogencous sarcodic liquid, eontaining granules, together with the nueleus, which resists the general destruction. In the sarcode there takes plaee a proeess whieh may be in some measure eompared with what oceurs in the ritellus after the fecundation of an orum. The granules becoming united together form groups, whieh soon divide and subdivide ; at the same time an integument is formed upon the surfaee, which is contractile, covered with vibratile cilia, and closed at all points. The cyst now eontains a new Infusorium, which may be compared with the Opalince or Bursarice met with in the intestines of a frog.
(102.) The next part of the process is the transformation of the ciliated Infusorium thus obtained into an Acineta. While the metamorphosed Vorticellian revolves in the intcrior of the cyst, it undergoes development, increases in size, and its whole surfaee beeomes covered with folds: at length a moment arrives when the cyst, yielding to the pressure excrted in its intcrior, bursts; the eiliated Infusorium becomes free, swims about with a rotatory movement, and is gradually developed into an Acimeta. Fourthly, eiliated embryos make their ap-
pearance in the intcrior of the Acineta thus produced, apparently formed at the expense of the nucleus; tho nuclcus bccomes totally converted into an embryo, and, after tho expulsion of the latter, a new nucleus is formed, which in its turn becomes transformed into another embryo, and so on. Lastly, the embryos become fixed, and transformed into young Vorticellce.

According to Stcin, thereforc, the Vorticelloe by this process of encysting are transformed into Acinetæ, and these again, by mcans of internal motile embryos which are emitted from them, change into Vorticcllæ. But the reality of this metamorphosis has been disputed by several careful observers; nevertheless Professor Stcin still retains his original views upon this subject*.
(103.) The encapsulation of Kerona pustulata is thus described by Mr. Carter :-"The first change that occurred was the absence of all crude aliment in the abdominal cavity; then a division of the nucleus into four parts, preparatory to its disappearing altogether. At the same time certain dark angular grains, which had been floating round with the sarcode of the abdominal cavity, became congregated in the posterior extremity. The Kerona now became shortened, its cilia disappeared, and finally it passed into a rounded-oval ball. This, after a certain time, resolvcd itself into an obtuse-elliptical capsule cnclosing a spherical cell with a separate mass of dark angular grains. The capsule was laminated and ragged on the outside, and defined by a clear line internally, while the spherical cell contained all the vital remains of the Kcrona, together with the contracting vesicle, but exclusive of the ' dark angular grains,' which, adhering more or less together, were still enclosed within the capsulc. At this time the sphcrical cell was rotating, probably from the prescnce of cilia upon its surface, and the contracting vesicle active; but subsequently the granular mucus of which it was composed became transformed into a number of uniform, round, rcfractive, oil-looking bodies, and the contracting vesicle disappeared. After the lapse of nearly a month, the contents of the spherical cysts again bccamo active, and had assumed definitc forms, rotating rapidly in their cells, sometimes one way, sometimes the other, attended by intervals of rest; with many also a lifeless portion was present, which was forced round equally fast with the living one." Mr. Carter, however, was not fortunate enough to witness the actual escapo of the enclosed animalcules.
(104.) The encapsulation of Plosconica Charon, likewiso witnessed by Mr. Carter, presented analogous phenomena. "The Plœsconix had not appeared twenty-four hours when they began to assume a globular form by becoming shorter and shorter, and at the same time secreting

[^26]an albuminous substance around them, within which the legs and cilia were gradually withdrawn; and a spherical capsulo was thus formed, which adhcred to tho watch-glass. All trace of the Ploesconiæ now becamo lost, with the exception of tho refractive globules in the abdominal carity ; and the contracting vesicle, although active at first, soon disappeared. In this passivo state of existence the Ploesconix continued for two days, when the contracting vesicle again began to resume its functions, and the included animalcule, detaehing itself from its capsule, began to rotato gradually. Cilia next presented themselves, the rotatory motion became accelerated, the distention of the contracting vesiele increased, until at last the capsule burst, and a portion of the cilia of the Plosconia was at the same time protruded. A few minutes of rest now succeeded ; and tho cilia having been withdrawn, the rotatory motion was again resumed, while the distention of the contracting vesicle, also going on, at last became so great as to force a portion of the body of the encysted Plossconia through the rent, when an interval of rest followed. The portion of the body was then withdrawn, and the same process repeated several times, until at length the Plossonia obtained its exit. It was now almost spherical in shape, from the enormous distention of the contractile vesicle, behind which appeared numerous globules, and at the circumference the legs and cilia. In this state it continued stationary for some minutes, until the distentions of the contracting vesicle, evidently increased for the bursting of the capsule, were gradually reduced to their natural limits, when the different parts of the Plœsconia regained their respective positions, and the animalcule at last assumed its original form and bounded off in search of food."
(105.) The discovery of the propagation of the Infusoria by means of embryos or internal germs has opened a new field of research in the history of the development of these animalcules. From the researches of M. Balbiani*, it would appear that, besides the truly agamic modes of reproduction, namely, by spontaneous division and gemmiparity, there exists a process by which the young are formed in the interior of the parent, which gives them birth by the agency of distinct sexual apparatus. Stein was one of the first to call attention to the part played by the nucleus in the process of reproduction; but he thought that the germs were developed on the surface of this body by a species of gemmation which would assimilate them rather to bulbilli, or caducous buds, than to embryos originating from fertile ova. They would scem, however, to be really produced by an act of sexual genoration. Wo will describe the phenomena witnessed by M. Balliani in tho common green Paramecium (Paramecium Bursaria, Focke; Loxodes Bursaria, Ehrenb.), as an illustration of what occurs in a great variety of other forms.

* "On the existence of a Sexual Reproduction in Infusoria," Comptos Rendus, 29 th March, 1858, p. 628.

In this species, as probably in all Infusoria, there exists a nucleus, which is here accompanied by a small lenticular body, usually lodged in an excavation of the nucleus near one of its extremities, and generally described under the improper name of "nucleolus."

For several generations the Paramecia multiply by spontaneous seission, each of the two new individuals obtaining half of the primitive nucleus; but under the influence of conditions of which we are still ignorant, the animalcule is propagated in a very different manner. When the period arrives at whieh the Paramecia are to propagate with concourse of the sexes, they may be seen assembling upon certain parts of the ressel in which they are contained, either towards the bottom or on the walls. Soon they are found coupled in pairs, adherent laterally, and as it wero conjoined, with the similar extremities turned in the same direction, and their two mouths closely applied to each other. In this state the two conjugated individuals continue moving with agility in the liquid, and turning constantly round their axis. There is nothing before this copulation to indicate the considerable change in the nucleus and the nuclcolus which accompanies it; it is during the copulation itself (of which the duration is prolonged for five or six days or more) that their transformation into a sexual reproductive apparatus takes place.
(106.) At the end of this time the nucleolus has undergone a considerable increase in size, and has become converted into a sort of capsule of an oval form, the surface of which presents longitudinal parallel lines or streaks. Nearly always it soon divides, in the direction of its greater axis, into two, or more frequently into four parts, which continuc increasing, independently of each other, in a very irregular manner, and form so many secondary sacs or capsules. These latter appear to be composed of an extremely fine membrane enveloping a number of small eurved bacilla extending from one extremity of the sac to the other ; their thickness is inflated towards the middle, narrowed towards the extremities. It is these which, when seen through the enveloping membrane, give the capsule the striated appearance whereby it is charaeterized ; it also contains a perfectly colourless and homogeneous fluid.

Meantime the nucleus has also changed its form and aspect: it has become rounded and widened; its substance has become softer, lost its refractive power ; and towards the margins it presents notches, which, penetrating more and more deeply into its mass, isolate one or more fragments, in which a sufficient magnifying-power enables us to see a eertain number of small transparent spheres with an obscure central point. In other cases the nucleus while still almost entire presents this aspect, and then appears as if stuffod with these little rounded bodies, tho malogy of whieh to ovules cannot be doubted. The evolution of the nueleus and nucleolus being eontemporancous, and pro-
gressing at the same rate in the two coupled individuals, it follows, if we regard the formor as an ovary and the second as a testiclo or seminal capsule, not ouly that each of them possesses the attributes of both sexes, but that they fecundate each other.
As regards this fecundation itself, everything seems to prove that it takes place by means of an oxchange mado by the two coupled individuals of one or more of their seminal capsules, which pass through the apertures of their mouths, closely applied to each other, from the body of one Paramecium into that of the other; for very often, although we may not be able to pereeive this passage itself, we may detect the moment when one of the capsules already engaged in one of the mouths is on the point of clearing this aperture.
(107.) Each capsule after its transmission continues to increase in size in the body of the individual which has received it-frequently attaining a volume greater than that of the nuclens itsolf; but thore are never more than one that arrive at maturity at the same time. When, having attained this state, it is examined after being prossed out of the body of the animalcule to free it from the granulations which mask it more or less while there, it appears under the form of a large ovoid body, the surface of which presents a multitude of parallel strix directed longitudinally, due to the arrangement of the corpuscles contained in the interior. Compression, carried so far as to cause its rupture, shows it distinctly to be formed by a membrane of extreme tenuity containing an immense number of minute fusiform corpuscles, the extremities of which are imperceptible on account of their extreme fineness. As soon as they are frec, theso littlo bodies exhibit a vacillatory and translatory movement, which soon causes their dispersion in the circumambient fluid. These are the spermatozoids of Paramecium Bursaria.
(108.) It is usually from the fifth to the sixth day following the copulation that the first germs are seen to make their appearance, in the form of small rounded bodies formed by a membrane which is rendered very evident by acetic acid, and containing a greyish, pale, homogeneous or almost imperceptibly grauular matter, in which neither nucleus nor contractile vesicle is yet to be distinguished : these organs do not appear till afterwards. Stein and F. Cohn have shown that these embryos quit the body of their parent under the form of Acinete, furnished with knobbed tentacles (truo suckers, by moans of which they remain for some time still adherent to the mother, deriving their nourishment from her substance) ; but their investigations did not rereal to them tho ultimate fate of tho young progeny. MI. Balbiani was able to follow them for a considerablo time after they had detached themselves from the parent animalcule, and convinced himself that, after losing their suckers, becoming clothed with vibratile cilia, and obtaining a mouth, which first shows itself in the form of
a longitudinal furrow, they definitely acquired the form of the mother, becoming filled in the same way with the green granulations characteristic of this Paramecium, without undergoing any more important metamorphoses.
M. Balbiani * did not succeed in witnessing the deposition of the ova, but he thinks it very probable that they escapo by the anus or by some neighbouring aperture. In Stylonychia he observed them to collect in the posterior part of the body and diminish gradually in number from the first or second day after copulation, at which period a round pale body begins to make its appearance in the centre of the animalcule, which becomes constricted in the middle and reconstitutes the double nucleus.
(109.) The Infusoria would seem to be destitute of copulatory organs. In most cases sexual intercourse is effected by simple juxtaposition of the mouths of the two animalcules. In the Oxytrichina the union is more intimate, and goes so far as to constitute a true soldering of the two individuals for more than two-thirds of the anterior part of their length. Any one who had not witnessed all the phases of this remarkable copulation would necessarily regard this state as a case of longitudinal division proceeding from behind forwards; but the coneomitant changes of the internal organs cannot leave the least doubt as to the signification of this act.
(110.) The remarkable history of Trichoda Lynceus has been studied by M. Jules Haime \dagger. This animalcule would appear to commence its existence under the aspect of an Oxytricha (Ehrenberg) (fig. 34, 1, 2), in which condition it undergoes multiplication by transverse fission in the usual manner $(3,4)$. The halves resulting from this division then assume a globular form, lose the greater part of their locomotive apparatus, and become encysted $(5,6)$. The contents of the cyst next separate from their envelope, leaving a spaee on one side, in which ciliary movement can be distinguished (7). This space spreads all round ; granular matter is expelled from the cyst, whereby its form becomes altered (s); and the distinction between the newly formed animaleule to which the eilia belong and the remains of the original creature becomes more and more apparent ($9,10,11$), until at last the former escapes through the wall of the cyst $(12,13,14,15,16)$ and soon developes itself into anl Aspicliscus. How the Aspidiscus returns to the Oxytricha-form is still a matter for speculation.

* "On the Generative Organs of the Infusoria," Ann. Nat. Hist. ser. 3. rol. ii. p. 443.
\dagger Aun. des Se. Nat. súr. 3. t. xix. p. 109.

Fig. 34.

Metamorphoses of Trichoda Lynceus. 1. Larval condition (Oxytricha), seen from below. 2. The same, after swallowing another animalcule. 3. A very large specimen just about to undergo fission. 4. The same, showing the fissiparous process in a more advauced stage. 5. One of the products of such fission. 6. The same, having lost most of its cilia and assumed a spherical shape. 8. The same, now become completely motionless. 9. Appearance of the same after the lapse of fifteen days. 10. Later condition of the samc, showing the formation of a cyst. $7 \& 11$. After the expulsion of a considerable quantity of exuvial matter, a ciliated animalcule appears in the interior of the cyst. $12 \& 13$. The included animalcule escapes from its encystment and at length assumes the form of an Aspidiscus, represented at 14. 15. The complete animalcule walking by means of its setæ. 16. Inferior aspect of the same when at rest. All the flgures are magnifled 355 diametcrs, except the two last, which are shown under a magnifying-power of 760 diameters.

CHAPTER IV.
 SUBKINGDOM II.

CCELENTERATA* (Frey and Leuckart).

(111.) The sccond Subkingdom, established byscparating into two divisions the Padiata of Cuvicr, comprehends an immenso series of organisms constructed upon a pcculiar plan, which, in a physiological point of view, indicates a higher grade of development than that represented by tho soft homogencous sarcode forming tho flesh of tho spongo, or tho scmigelatinous matorial that constitutes the substance of an Infusorial Animalcule.

[^27](112.) The first important charactor whereby the Caidenterata are distinguishablo from the Protozoa described in preceding pages, is that the former have their bodies resolvable into two layers, one of which is tegumentary, while the other is more especially conccrned in the acts of nutrition and reproduction. These two layers have received respectively the names of Ectoderm*, or external integument, and Endoclermt, or lining membrane of the body. Even in the lowest members of the group these two layers are distinctly recognizable, although as yet but slightly different in their structuro; while in more highly organized races the differentiation of the tissues is often carried to such an extent that structures of considerable complexity result from their development; even muscular and ncrvous fibrillæ become doubtfully recognizable, together with thread-cells, pigment masses, and granular structures deroted to the elaboration of various secretions. In the more complicated genera, by the extension and conversion of these two membranes, ontgrowths are formed which serve for support, ornamezt, or protection, while by the deposition of calcareons materials the beautiful productions known as corals are constructed, presenting iunumerable varieties in their conformation, and rivalling each other in the elegance of their appearance.
(113.) A very distinctive character, which may be said to be peculiar to the Cœlentcrata, is the prosence of peculiarly constructed organs called "thread-cells" (nematocysts \ddagger), constantly met with in all the members of this extensive group. These thread-cells, for which the name of "Cnidce" \S has been proposed, usually occur as colourless, transparent, elastic, double-walled vesicles, rounded or oval in their shape, containing a fluid in their interior. The outer wall of the vesicle is entire and very delicate; the inner wall is much stronger, having one extremity open and prolonged into a stout rather fusiform sheath which terminates in a long lasso-like filament ("ecthorceum" \|). In the ordinary condition of the thread-cell, the ecthoræum lics arranged in many coils that wind around the walls of the vesicle, which, under pressure or irritation, suddenly bursts with a sort of explosion; its fluid escapes, and the filament within is projected much in the same way as the lasso-thong to which we have compared it ; its proximal extremity remains attached to the sheath, while the free end winds round or adheres to the object attacked. So quickly is this effected that the eye can by no means detect the nature of tho proceeding ; but in all probability the act is

[^28]accompanied by a eomplete eversion of the contents of the vesicle. Whon oxtended to its full length, the base of the ecthoreum is seen to be furnished with a number of barbs or hooks, sometimes giving it the appearance of being serratcd. The presence of so formidable an armature mill doubtless account for the disagreaable stinging sensation produced when some of these croatures are incautiously handled.
The faculty of stinging possessed by the Coolenterata generally was well known to Aristotle, who applied to many forms of these creatures the name of Acalephce, from $\dot{\alpha} \kappa \alpha \lambda \dot{\eta} \phi \eta$, a nettle.
(114.) With the exception of two genera, all the Celienterata are marine ; they crowd the seas with infinitely diversified forms of beauty, or pave the bed of ocean with their rock-like skeletons. The Hydræ or Freshwater Polyps are to be procured in every pond ; others, as the Cordylophora, are only to be met with in brackish water. The Scrtularian Zoophytes, wreathed together in a thousand elegant patterns, festoon the rocks upon the shore, or wave their arborescent stems, laden with living flowers, heneath the undulating waters of the sea. Some live in unbranched tubes of horn or stone; while others float in lazy apathy upon the tepid tide, apparently endowed with just sufficient sense to feel that light is pleasant and the sun is warm. Others, more active, dart from place to place like water-birds with wings of living flame; and many, buoyed on floats as delicate as are the bubbles among which they swim, hoist to the breeze their little sail and scud along like fairy ships with colours all displayed; while some there are that urge their rapid course by means of paddle-wheels, which far surpass in their efficiency the clumsy enginery contrived by man to speed his daring path over the very waves thus filled with wondrous multitudes of living things that vainly eourt his notice. The coral-reefs, so widely spread throughout tropical seas, and the floating banks of jelly-fishes amid which ships may sail for days together, equally testify to the abundance in which these exquisite structures exist, while the remarkable beauty of their forms, and the mystery which still overclouds some features in their history, render them objects of special interest to the observant naturalist.

Before concluding these few introductory remarks, it may perhaps be necessary to warn the student that the discrimination between many Coelconterate races and others closely resembling them in external appearance will be found by no means an casy task. The resemblances which exist between their dried polypidoms and those of the Polyzoa are often such as to misload the most practised observer, and it is onls by the microscopic examination of living specimens that the distinctive characters whoreby they are recognizable are rendered manifost.

CHAPTER Y.

HYDROZOA*.

(115.) The Hydret, or freshwater polyps, are common in the ponds and clear waters of our own country; they are gencrally found creeping upon confcrvæ or submerged twigs, and may readily be procured in summer for the purpose of investigating the remarkable circumstances connected with thcir history.
(116.) The body of one of these simple animals consists of a delicate gelatinous tube, contracted at one cxtremity, which is terminated by a minute sucker, and furnished at the opposite end with a variable number of delicate contractile filaments, placed around the opening that represents the mouth.
(117.) When the Hydra is watching for prey, it remains expanded (fig. 35, $1,2,5$), its tentacula widely spread and perfectly motionless, waiting patiently till some of the countless minute beings that populate the waters it frequents are brought by accident within its reach, when no sooncr does an

Fig. 35.
 animal touch one of the outstretched filaments than its course is arrested as if by magic; it appears instantly fixed to the almost invisible thread, and, in spitc of its utmost efforts, is unable to escape; the tentacle then slowly contracts, and others are brought into contact with the prey, which, thus seized, is gradually dragged towards the orifice of the mouth, that opens to receive it, and slowly forced into the interior of the stomach.
(118.) To the carlier observers of the habits of the Hydra nothing could be more mysterious than this faculty of seizing and retaining active proy, but which is now satisfactorily explained as depending

[^29]upon the prosenco of a prehensile apparatus of filiferous capsules, described in the last chapter. Theso wonderful stinging-organs are not only thickly dispersed over the whole surface of the tentacles, but are likewise met with, though less numerously distributed, over the general surface of the body. Thcy appear, under high powcrs of the microscope, to be composed of minute oval vesicles, from each of which can be protruded a long delicate filament, having its frce extremity slightly swollen, and apparently of a soft viscid texture, tho wholo being not inaptly compared by Agassiz to a lasso. The neck of each resicle is furnished with three recurved hooklets, which, when the skin of the animal is irritated, or when the arms are prepared to seize prey, remain erect and prominent. The modus operandi of theso structures is as simple as the result is efficacious: the " lasso-threads," with their viscid extremities, speedily involve in their tenacious folds the victim seized, and closely bind it against the hooklets wherewith the surface of the tentacula is thickly studded : these, probably, in their turn constitute prehensile organs, amd moreover form an apparatus of poison-fangs of a very deadly character; for it is observable that an animal once seized by the Hydra, even should it escape from its clutches, almost immediately perishes.
(119.) Arrived in the stomach of the polyp, the animal that has been swallowed is still distinctly visible through the transparent body of the Hydra, which seems like a delicate film spread over it (fig. 35, 4); gradually the outline of the included victim becomes indistinct, and the film that covers it turbid; the process of digestion has begun : the soft parts are soon dissolved and reduced to a fluid mass, and the shell or hard integumont is expelled through the same aporture by which it entered the stomach.
(120.) No traces of vessels of any kind havo been detected in the granular parenchyma of which the Hydra is principally composod ; coloured globules are seen floating in a transparent fluid, which, in the Hydra viridis, are green, although in othor species they assume different tints. Whon the food has bcen composed of coloured substance, as, for example, red larve, or black Planarice, the granules of the body acquire a similar hue, but the fluid wherein they float remains quite transparent; cach granule seems like a littlo vesicle into which the coloured mattor is

Fig. 36.

Hydra in process of gemmation: a first appearance of gemma; δ, gemmæ more advanced in growth. conveyed, and the dispersion of these globules through the body gives to the whole polyp the hue of tho prey it has devoured; sometimes the granules thus tinted are forcod into the tentacula, whence they are
driven again by a sort of reflux into the body, producing a kind of circulation, or rather mixing up, of the granular matter, and distributing it to all parts. If, after having digested eoloured prey, the polyp is made to fast for some time, the vesicles gradually lose their dcepence hue and beeome eomparatively transparent. The granules, therefore, would seem to be specially connected with the absorption and distribution of nutriment.

Examined more minutely, the body of the Hydra is seen to consist of two distinct membrancs, between which the coloured granular parenehyma is interposed. Of these, the external (Ectoderm) eonstitutes the outer skin or integument of the animal, while the internal lajer or Encloderm forms the lining of its internal or digestive eavity. Around the margin of the mouth these two membranes are eontinuous; and the line of junetion between them is sometimes clearly marked. For the purpose of facilitating deseription, it will be found eonvenient to distinguish by different names several regions into whieh the polyp may be theorctieally divided. Its entire body (hydrosoma) eonsists of an alimentary rcgion or "polypite," at one end of which is the adherent disk (hydrorhiza), whilst at the opposite extremity are situated the "tentacula" or instruments of prehension. Moreover those parts remote from the hydrorhiza are eonveniently termed " distal," whilst those in the vicinity of the terminal sueker may be designated as belonging to the "proximal" extremity.
(121.) When mature and well supplied with food, minute gemmules or buds are developed from the eommon substanee of the body (hydrosome); they spring from no partieular part, but scem to be formed upon any portion of the general surface. These gemmæ appear at first like delieate gelatinous tubereles upon the exterior of the parent polyp; but as they inereasc in size they gradually assume a definite form, beeome perforated at their unattached extremity, and develope around the oral aperture the tentacles eharacteristic of their speeies.
(122.) This mode of propagation, termed "gemmation," differs from the development of the Hydra $a b$ ovo, iniasmuch as the germ-eell, which sets on foot the proeess, is derivative and forms part of the body of the adult, instead of being primary and included in a free orum*.

[^30](123.) Sometimes six or seven gemme have bech obscrved to sprout at once from the same Hydra; and although the whole proeess is eoncluded in twenty-four hours, not unfrequently a third gencration may be obscrved springing from the newly formed polyps even before their scparation from their parent: cighteen hare in this manner been seen united into one group; so that, prorided each individual, when complete, exhibited equal fecundity, more than a million might in this manner be produced in the course of a month from a single polyp.
(124.) But perhaps the most remarkable feature in the history of the Hydra is its power of being multiplied by mechanical division. If a snip be made with a fine pair of scissors in the side of one of thesc creatures, not only docs the wound soon heal, but a young polyp sprouts from the wounded part; if the hydrosome be cut into two portions by a transverse incision, each speedily developes the wanting parts of its structure; if longitudinally divided, both portions soon become complete

Fig. 37.
 animals; even if it be cut into several parts, every onc of them will in time assume the form and functions of the original.
(125.) The Hydrce, at eertain seasons of the ycar, are moreover
quently developed therefrom, is said in zoological language to constitute the individual.
Should the resulting organism develope an ovum in its turn, that orum, if fertilized, forms the basis of a new individual, and so on for cvery additional ovum concorned in a generative act; so that each repetition of the reproductive process forms, as it were, the natural boundary between two snceessive individuals, or, in other words, between two eycles of development.

According to this viow fission and gemmation are not modifications of the reproductive process, but rather acts of development.

If all tho parts of an individual remain mutnally connocted, its development is said to be "continuous;" if any of them separate as independent beings, it is "discon.tinumus."
Continuous development may manifest itself under three principal modes, viz. "grousth," " metumorphosis," and "gemmation without fission." In metamorphosis growth alternates with cortain well-marked changes of form. In gemmation without fission a tendency to vegetative repetition is more or less distinetly marked. In
reproduced from real ova*, at which period various observers have proved them to be possessed of a male apparatus of a most remarkable character. This latter organism makes its appearanco under the form of two, three, or four minute conical tubercles, which become developed from the sides of the body, at a short distance below the tentacula; and in these, under the microscope, innumerable active particles are seen to be contained.
(126.) The conical eminences, which constitute the spermatic cap-

Fig. 38.

Oviparous reproduction of Hydra viridis. 1. Bodyof Hydra, magnified: a, the ovum contained in the ovigerous capsule (Gynophore) sprouting from the side of the polyp; b, b, spermatic capsules (Androphores). 2. Mature ovum of Hydra, crushed, its contents escaping. 3. Spermatic capsule, broken by pressure, showing the contained spermatozoa.
sules, sometimes occur in considerable numbers (as from eight to sixteen) on the brown polyp; but in the green species only two or three are generally seen, placed on opposite sides of the body, and invariably
discontinuous development the detaehed portions of the individual are termed "zooids," that which is first formed being distinguished as the "producing," that whieh separates from it boing the "produced " zooid. If there bo more than two successive series of zooids, the terms "protozooid," "deuterozooid," and tritozooid" may be respectively applied to them. The produeed zooid may resemble the produeing zooid, as in Hydra, or be dissimilar to it. The first ease affords an illustration of simple "gemmation with fission," the latter of the proeess known as "metagenesis" or gencagenesis. $\Lambda l l$ these varieties of discontinuous development aro colleetirely donominated "agamogenesis," as distinguished from "gamogencsis," in whiel the ovum to be developed must first be brought in contact with spermatozoa.-Profossor Greene, 'Manual of the Coclenterata.'

* "On a speeies of Hydra found in the Northumberland Lakes," by A. Mancoek, Dsq., Ann. and Mag. of Nat. Hist, for 1850.
situated somewhere in the vicinity of the oral extremity (fig. $38,1, b b$). The interior of the capsulcs has a slightly ribbed or striated appearance; and at the summit a small aperture is sometimes perceptible, through which, when the development is complete, the spermatic filaments are observed to issue. On breaking up the capsule (spermarium), under the microscope, large numbers of these filaments are seen united in bundles by their minute globular heads, the filamentous part being free, and vibrating with great rapidity in the manner which is known to be characteristic of these bodies in all animals (fig. 38, 3).

The ova are developed in the proximal portion of the body (hydrosome), which, at the time when the male apparatus makes its appearance, becomes considerably enlarged, presenting an opake swelling, in the interior of which an orum is discernible (fig. 38, 1, a) ; when mature, this orum becomes detached from the parent animal and fixes itself to some foreign body.
(127.) The ovigerous capsule (ovarium) is, when fully developed, of such a size as to be seen with the naked eye. It is attached to the side of the polyp, nearer to the foot than the spermatic capsules, and is distinguished from the rest by its spherical form and yellowish-brown colour. In the Hydra viridis only one orum appears to be developed on the body of the polyp at the same time; but a number varying from five to seven have been occasionally observed upon the Hydra fusca.
(128.) The ovum appears, at first, as a small granular mass in the thickness of the wall of the hydrosome. As the spherical yelk-mass enlarges, it projects from the side, seeming to carry along with it the outer or clearer layer of the body (ectoderm) ; then the cells of this layer grow thinner, and recede from the outer covering or capsule enveloping the egg-like mass, which at the same time becomes much thicker, and is left attached to the animal only by a narrow portion or pedicle. As the development proceeds, a similar atrophy of the cells of the pedicle is followed at last by separation of the spherical mass, which is thus detached from the parent polyp.
(129.) From various observations it would seem that some Hydrce are hermaphrodite; others produce the organs of one sex only; but generally both kinds are developed from the same Hydra.
(130.) The fertilization of the ova cannot take place until after the rupture of the spermatic cyst and that of the ovisae also ; so that the parent has no more participation in the act than has the Fucus in the analogous fertilization of its germ-cells after their discharge. Although the production of a new Hydra from the egg has not yet been witnessed, there seems no reason to doubt the fact of its origin from this source. It would seem that this alternation of reproduction between the gemmiparous and the sexual is greatly influenced by temperature, the eggs being produced at the approach of winter and serving to regenerate the species in the spring, while the budding process naturally takes
place only during the warmer seasons, but may be made to continne through tho whole year by a sufficiently high temperature. We may, however, observe, as a fact of the highest importance, that the bucls are always formed first; as soon as the Hydra produces eggs it perishes. Hence from an egg laid by a Hydra there is produced a being capable of budding forth several individuals resembling itself, all of which may in turn produce new buds, but which, in common with the original Hydra, ultimately acquire the attributes of sexuality.
(131.) Corynide*.-Nearly related to the Hydrce is the remarkable group constituting the genus Coryne. One of these little animals, seen with the naked eye, looks like a very slender branching plant. It is altogether about as thiek as fine sewing-cotton, creeping along a frond of sea-weed, or other substance upon which it grows, like an irregularly winding thread. This creeping root sends off frequent rootlets, which, crossing each other, appear to anastomose, making a sort of network (hydrorhiza) from which free stalks shont up here and there, sometimes to the length of three inches or more, sending forth polyp-branchlets irregularly on all sides. The creeping fibre, the stalk, and the branchlets are seen under the microscope to be tubular ; and the two latter are marked throughout their course with close-set rings, apparently produced by the annular infolding of a small portion of the integument. The tube is of a yellowish-brown colour, sufficiently translucent to reveal a core or pith of soft substance running along its eentre and sending off branches into the polyp-branchlets, from the end of each of whieh a polyp emerges in the form of a thickened oblong head, somewhat club-shaped, whence the name Coryne (from кпрivi η, a club). The club-shaped head of the polyp is studded with short tentacles, of curious and beautiful structure. These vary much in number ; but the full complement appears to be from twenty-five to thirty, arranged somewhat in a whorled manner, in four or five whorls, whieh, however, especially the lower ones, are often irregular and searcely distinct. The tentacles spring from the axis with a graceful curve ; they are rather thick and short when contraeted, but slender when elongated, and nearly equal in diameter, except at the termination, where each is furnished with a globose head studded all orer with tubercles, eaeh tipped with a minute bristle. The tentacles are endowed with the power of free motion, and they frequently throw themselves to and fro with considerable energy. The whole polyp likewise can be tossed from side to side at pleasure.
(132.) Sertularidet.-In the Sertularian Hydrozoa, the fleshy substance of the animal is enclosed in a ramose horny sheath, which it traverses like the pith of a tree, following all the ramifications of the branehed stem of the polypary. The latter is invariably attached by a

[^31]sort of root-like expansion (hydrorhiza) to some foreign object, such as the surface of a rock or shell, or to the fronds of floating sca-wced. Their most charactcristic feature consists in the prescnce of cups or cells (hydrothecce), sessile upon the branches of the polypary; in these the indiridual polypites are lodged. The numerous and often beautiful diversities in the form and mode of arrangement of these polyp-cells are exccedingly remarkable, and afford excellent charactors whercby the numerous species of Sertularians are distinguishable.

The cutire polypary is plant-like and frequently much branched, the main stem cither losing itself in its own ramifications, or remaining distinct throughout the cntire length of the arborescent colony. A good example of the latter mode of growth is afforded by the Sea-Fir (Sertularia cupressina) (fig. 39), the polypidom of which (hydrosoma) may attain a height of two or even three fcct, and bear on its branches as many as 100,000 distinct polypites. In contrast with this (tho largest of our native species) may be mentioned the delicate Sertularia

Fig. 39.

Sertularia cupressina growing on a shell. tenella, the length of whose slender crecping hydrosoma searcely reaches one inch.
(133.) Zoophytes of this description are readily found on our own coasts ; and the microscopic observer can scarcely enjoy a richer treat than the examination of them affords. In order to study them satisfactorily, it is necessary to be provided with several glass troughs, of diffcrent depths, in which the living animals immersed in their native element may be placed : in this situation, if the water be carefully renewed at short intervals, they will live for some time.
(134.) Besides the cells which contain the polyps, others, specially destined to the development of the ova, exist at certain periods of the year ; they are larger than the proceding, and of a very different shape ; hut of those we shall have oceasion to speak moro fully hereafter.
(135.) The stem and branches of the polypary aro ontircly filled with a fleshy substance (coenosarc) resembling in its naturo the soft tissue composing the indy of the polyp, wherchy all the individuals belonging to
the common stock are brought into eommunieation with eaeh other Internally the cœnosare seems to be hollow, and to contain a fluid, in which numerous globules may be observed in aetive motion. It is from this eentral fleshy substanee that the buds or lateral offsets derive their origin.

The eireulation of globules in the eœnosare is readily observable under the mieroscope. A stream bearing along with it a multitude of restless granules of various sizes issues from the stomaehs of the polypites and rushes through the eavity of the living pith, pervading every portion of the organism. After flowing downwards for some time, there is a pause, and then the eurrent rushes baek with great impetuosity, and onee more entering the stomaehs of the polypites mingles with the contents. A busy ferment takes place for some seconds in the digestive eavity, until at length the efflux again eommenees. The inner surface of the eœnosare is eovered with vibratile cilia, whieh scem to be the ehief agents in maintaining the flow of the currents. Within the buds which pullulate at certain points from the commun substance and are developed into new polypites, there is always a great aggregation of the nutrient particles, and a remarkable activity among them. They crowd the cavity of the nascent polypite, and supply the materials needed for its development.
(136.) It has been generally thought that, in Zoophytes of this description, the living pith excretes from its surfaee the horny matter which forms the tube or external polypary; the aceuracy of such a supposition, nevertheless, may well be questioned. On referring to the diagram (fig. 40), the soft part, or living axis of the polypary, is seen to be contained in two distinct layers: the inner one, a (endoderm), bcing continuous with the digestive sac of the polyp, and immediately embracing the granular matter, seems to be the special seat of tho nutritive process ; tho outer or tegumentary layer, b (ectoderm), after leaving the tentacula, may

Fig. 40.

Dingram representing a section of a Sortularian zoophyte. a, inner or nutritive layer (endoderm); b, outer or tegumentary layer (ectoderm) ; c, oral tentacles of the polyp; d, e, gemmules; f, polypiform (יxtermal capsule: g, polypiferous cell (hydrotheca); h, reproductive cell (gonophore).
be traced down the sides of each polyp to the bottom of the cell, where its course is arrested by a slight partition, at which point it turns outwards, lining the interior of the cell as far as its margin, where it is continuous with the horny matter itself. It is this tegumentary membraue which forms by its development the entire skeleton. As it expands, it gives origin to the cells and branches characteristic of the species; and, from being at first quite soft and flexible, it gradually acquires hardness and solidity by the deposition of corneous matter in its substance.
(137.) The cclls thus formed are inhabited by polypites resembling Hydræ in their general organization. Protruding themselves beyond the mouths of their cells, they inflect their bodics in all directions in quest of prey, waiting till some passing object impinges upon their tentacula, when it is at once seized and conveyed into the stomach with a rapidity and dexterity almost beyond bclief.
(138.) The tentacula in the Sertularian Hydrozoa are all arranged in a single row, and form a sort of funnel-like appendage to the oral orifice of the polypite. They are susceptible of considerable elongation and eontraction, like those of the Hydra, but in a lcss degree. Their number is constant throughout the different periods of growth in each species, but varies in different genera. Internally they are not hollow, but under the microscope are seen to be divided into compartments by delicate transparent diaphragms, giving them an appearance like that of some Confervæ; they are throughout of equal thickness ; and no movement of fluids is perceptible in their interior.
(139.) In the centre of the tentaeular circle may be observed a fleshy protuberance of variable shape, which might be compared to a proboscidiform elongation of the mouth: sometimes this appendage is elongated into the form of a tube; sometimes it shrinks into a globular mass, or occasionally bccomes so completely contracted as merely to form a broad lip-like ring around the oral opening.
(140.) The stomach, as in the Hydra, is a simple cavity excavated in the interior of the body, which inferiorly communicates immediatcly with the fleshy substance (ceenosarc) contained in the common polypary ; so that the contents of the gastric cavity may not unfrequently be seen to pass into the living pith, and in liko manner the globules there circulating to return into the stomach.
(141.) The multiplication of these beautiful zoophytes appears to take place in three different modes:-lst, by cuttings, as in plants ; 2ndly, by offshoots, or the formation of new branchos bearing polyps; Srdly, by Planulce capable of locomotion*.

[^32](142.) The first mode strikiugly resembles what is observed in the vegetable kingdom ; and as every branch of the plant-like body contains all the parts necessary to independent existence, it can hardly be a matter of surprise that any portion, separated from the rest, will continue to grow and perform the functions of the entire animal.
(143.) The second mode of increase namely by the formation of new branches and polyps, seems more like the growth of a plant than the development of an animal. We will consider it under two points of view :-first, as regards the elongation of the stem; secondiy, as relates to the formation of fresh cells containing the nutritive polyps. On examining any growing branch, it will be found to be soft and open at the extremity, and the soft tegumentary membrane (ectoderm) (above described as forming the tube by its couversion into hard substance) is seen to protrude from the terminal orifice; the skeleton is thercfore not merely secreted by the enclosed living matter, but it is the investing membrane itself, which continually shoots upwards, and dcposits hard material in its substance as it assumes the form and spreads into the ramifications peculiar to its species.
(144.) Having thus lengthencd the stem to a certain distance, the next step is the formation of a cell and a new polyp, which is accomplished in the following manner*. The newly-formed branch has at first precisely the appearance and structure of the rest of the stalk of the zoophyte (fig. 41, 1), being filled with granular matter, and exhibiting in its interior the circulation of globules (already described)-moving towards the extremity along the sides of the tube, and in an opposite eourse in the middle ; the end of the branch, however, before soft and rounded, soon becomes perceptibly dilated. After a few hours the branch is visibly longer, its extremity more swollen, and the living pith is seen to have partially separated itself from the sides of the tube, the boundaries of which become more defined and undulating (2). The growth still proceeding, the extremity is distinctly dilated into a cell, in which the soft substance seems to be swollen out, so as to give a rude outline of the bell-shaped polyp (3), but no tentacula are yet distinguishable; a rudimentary septum becomes visible, stretching across the bottom of
wise simply outgrowths from an original stock, and essentially rescmble what occurs during the renewal of the amputated tail of a newt or of the wanting parts of a hydra mechanically divided. Growth may either oceur by simple augmentation of the volume of existing parts, or by the multipliontion of similar parts ; and between the ordinary growth of a manmiferous animal and the budding of a polyp all intermediate shades of gradation may bo traced.

When eontemplated from this point of view, it is casy to comprehend why agamic reproduction eannot be carried on indefinitely. In every mimal, growth has eertain limits; simple growth therefore cannot suflice to perpetuate species, and the production of an eggas a new starting-point becomes a ncecssity. (Λ. de Quatrefages.)

* Lister, Phil. Trans. loc. cit.
the cell, through the eentre of which the granular matter, now colleeted into a mass oceupying only a portion of the stem, is scen to pass. The polyp and cell gradually grow more defined ($4,5,6$), and the tentacula beeome distinguishable ; the ecll, moreover, is seen to be continued inwards by a membranous infundibular prolongation of its margin (7). As the development proeeeds, the tentaeles become more perfeet $(3,9)$, and the polyp at length rises from its eell to exercise the functions to whieh it is destined.

Fig. 41.

Diagram illustrating the mode of growth of a Sertularian polypidom.
(145.) The main feature that distinguishes the Sertularian Zoophytes from the Hydrce seems to consist in the fact that, whereas in the latter each newly formed offset (zooid) becomes detached from the parent stoek and enjoys a separate existence, in the former every new sprout. remains permanently adherent, the successive generations being united into a ramified stem, whieh is eommon to tho entire group. The Hydra, having no polypary or outer eovering, when it dies, entirely perishes: but in the Sertularidæ, every zooid leaves its horny integument attached to the general eommunity; and thus, in time, there results an elaborately branehed stem, the complexity of which increases with the age of the eolony.
(146.) The third mode of multiplication, or that by Plamele, seems to be specially adapted to the diffusion of the species; and as it presents
many points of peculiar interest, we shall dwell upon it at some length. At certain pcriods of the year, besides the ordinary cells adapted to contain nutritive polyps, others are developed from different parts of the stem, termed the reproductive vesicles (gonophores). The cells of this kind are much larger than the polyp-cells (hydrothecce), and of very different form; they are moreover deciduons, falling off after the fulfilment of the office for which they are provided. They are produced in the same manner as the rest of the stem, by an extension of the tegumentary membrane (fig. $40, b$), which, as it expands into the form of the cell, becomes a horny texture ; it may be traced, however, over the opening of the cavity, where it sometimes forms a moveable operculum. The cell being thus constructed by the expansion and subsequent hardening of the tegumentary membrane, it remains to explain the origin of the reproductive germs which soon become developed in its interior.
(147.) According to the observations of Lovén, the first appearance of the reproductive germ is a slight elevation (derived from the central mass (gonoblastidium) contained in the reproductive vesicle), in the centre of which an active circulation of nutritious globules seems to be concentrated. This protuberance gradually enlarges and assumes a spherical form; the part whereby it is attached to the central mass becomes constricted; and at the same time its cavity becomes enlarged, and divided into several compartments.
(148.) Upon the outer aspect of the newly-formed germ a little spherical body may be detected, composed of coloured granular substance, in which a circular transparent spot speedily becomes perceptible.
(149.) A delicate translucent capsule envelopes the parts described

Fig. 42.

Portion of the branch of a Sertularian Zoophyte, represented diagrammatically. a a, internal or nutritive layer (endoderm); b b b, cxternal or tegumentary layer (ectoderm); c, c, c, Hydriform polyps (polypites); g, g, polyp-cells(hydrotheces); h, i, reproductive vesicles (gonophores); $d d$, reproductive mass (gonoblastidium), from which is derived the proligerous germ (plamila) e: this latter is cnclosed in a polyp-like capsule f, oalled by Lorén a "female polyp" (medusiform gonozooid: above, which, after a time, exhibits at its upper and outer surface a circle of minute elevations. This capsule Lovén regarded as the body of a female polyp, of which the little elevations were the rudimentary tentacula; and its contents manifestly constitute an ovum, enolosing a Purkinjean vesicle. Scveral of these ova are formed in the ovarian vosicle, presenting different degrecs of development, the upper ones being the most advanced in growth. In proportion as each orum in-
creases in size, the original sacculus, which is mercly a prolongation of the central living substance of the polypary, and which at first formed the larger part of the germ, becomes proportionally smaller, owing to the rapidly increasing dimensions of the ovum, and soon the vesicle of Purkinje is no longer discoverablo. Meanwhile the canal whereby its cavity communicates with the central mass becomes elongated; so that its union with the common substance of the polypary is not destroyed even when the "female polyp" has burst through the external membranc and the thin operculum of the ovarian capsule in which it was formed.
(150.) When the "female polyp" has thus escaped from the ovarian vesicle of the common polypary, it has the appcarance of a globular transparent capsule attached by a short pedicle to the operculum through which it has made its way, tho orifice whereby it escaped having closed around its stem. The tentacles are twelve in number ; and from the circle surrounding their base, four canals may be traced, descending in the substance of the globular body to terminate in thepedicle.
(151.) On the rupture of the external membrane of the ovum enclosed in the "female polyp," the young embryo escapes, under a form not at all resembling that of the parent.
(152.) It presents at this period the appearance of a little worm, of an elliptical shape, slightly flattened. Its entire surface is thickly covered with vibratile cilia, by the agency of which it moves abouteven while still imprisoned in the body of its mother, from which it subsequently makes its escape through the oral orifice. Generally each "female polyp" gives birth to two such embryos, occasionally to three.
(153.) No sooner has the young larva got free than it begins to swim about, by means of its cilia, with a uniform gliding motion: sometimes it turns round incessantly upon its axis, either horizontally or in a vertical direction, at the same time varying its shape from that of an egg to that of a pear. It is of a whitish colour, but still sufficiently transparent under the microscope to show that it contains a cavity filled with a coloured fluid, and that it is composed of two membranes, whereof one, the outer, is transparent as glass, the internal slightly opake.
(154.) Repcated observations render it improbable that in this condition the little embryo is nourished by means of a mouth.
(155.) After swimming about for some time in the abovo condition, the young creature fixes itself to some foreign body, such as a fucus, or other marinc production; its form then begins to be entirely changed, and it is converted into a flat, circular disk, around which the cilia, now quieseent, form a circular transparent fringe. In the centre of its internal cavity an opake round spot makes its appearance, the size of which is about a fifth part of that of the whole body, composed of a mass of granules placed concentrically, and occupying the situation
whence the stem of the nascent polypary is to be developed. At this point the external membrane becomes slightly thickened, and, as it were, furrowed with vessels proceeding from the intcrual cavity. From the opake central spot arises a hemispherical protuberance; and at the same time the central cavity loses its semicircular shape and becomes divided into four or five irregular lobes, which subsequently form the horizontal supports of the fixed polypary.
(156.) Already the whole expansion is covered with a loony layer; but this only becomes distinctly recognizable at a more advanced stage of growth.
(157.) The trunk continues to rise vertically upwards, and nltimately produces at its sunmit a solitary eell, in which a nutritive polyp is gradually developed ; and then, as growth advances, sccondary ramifications are developed, after the pattern peculiar to tho species. In this mode of reproduction, it will be observed, there issues from the egg a ciliated larva (zooid). The first-formed polyp derived from this, homever, is not the result of mctamorphosis, but is a truc budding forth by gemmation of a being very different from the original zooid. There is therefore here a second formation of a zooid, a deutozooid, which reproduces its own likeness by the budding process. The polypary resulting from this gemmation may be called a compound deutozooid, from which is derived the reproductive vesicle (gonophore) which encloses scveral reproductive germs (gonozooids). These last produce ova in their interior, and thus complcte the cycle of development.
(158.) In the Scrtularians there exist male branches as well as female branches upon the same polypary, the latter producing ovigerous vesicles, whilst in the former the ova are replaced by seminal capsules : these almost procisely resemble the "female polyps," and are, in like manner, surmounted by a circle of tentacula.
(159.) Discopirora.-The ocean, in every climate, swarms with infinite multitudes of animals which, from their minuteness and transparency, are almost as imperceptible to the casual obscrver as the Infusoria themselves; the existence, indeed, of some species is only indicated by their phosphorescence, which being rendcred evident on the slightest agitation, illuminates the entire surface of the sea. All, however, are not equally minute: some grow to a large size; and their forms are familiar to the inhabitants of every beach, upon which, when cast up by the waves, they lie like masses of jelly, melting, as it wore, in the sum, incapable of motion, and exhibiting few traces of organization, or indications of that claborate structure which more careful examination discovers them to possess. Their uncouth appearance has obtained for them various appellations, by which they are familiarly known, as Seajelly, Sca-hlubber, or Jelly-fishes; whilst, from disagrecable sensations produced by handling most of them, they have been enlled Sen-nettles, Stingers, or Stang-fishes. The faculty of stinging is indeed the most pro-
minent feature in their history ; so that their names in almost all languages are derived from this circumstanec. They were known to the older naturalists by the title of Urtica marince; and the name Acalephes given to them by Cuvier is of similar import (aкка入í $\phi \eta$, a nettle); they are, morcover, very gencrally called $\mathrm{Mmds}_{\text {mes }}$, from the long trailing appendages possessed by some of them, which have been, not inaptly, compared to the envenomed tresses of the fabled Gorgon.
(160.) The most ordinary examples of these beautiful organisms met with in our climate, when examined in their native element, have the appearance of mushroom-shaped gelatinous disks from the under surface of which variously shaped appendages hang freely floating in the water, some serving as tentacula, others for the prehension of food, while some seem simply given for ornament. The body of one of these A calephs or Medusæ is specifically heavier than the water of the ocean, and would consequently sink but for some effort on the part of the animal. The agent employed to sustain it at the surface, and in some measure to row it from place to place, is an umbrella-shaped expansion or disk, which is seen continually to perform movements of contraction and dilatation, repeated, at regular intervals. By these constant movements of the disk, the Medusa can strike with sufficient force to ensure its progression in a certain direction when swimming in smooth water; but of course such efforts are utterly inefficient in stemming the course of the waves. The tentacular appendages, situated around

Fig. 43.

Medusa. the margin of the disk in such species as are provided with these organs, are likewise capablc of contractile efforts, and may in somo slight degree assist as agents of impulsion, although they are destined to the exercise of other functions. The locomotive disk, when cut into, seems perfectly homogencous in its texture ; nor is any fibrous appcarance easily recognizable, to which its movements could be attributed; nevertheless in the larger species its inferior surface appcars corrugated, as it were, into minute radiating plicæ, whieh seem to eontract more energetically than the other portions. The substance of the body is generally entirely soft and gelatinous, emulating, in the delieacy of its texture and perfect translucency, the structure of the vitreous humour of the eyc, its entire organization apparently consisting of a transparent aqueous fluid contained in innumerable polyhedral hyaline cells.
(161.) In the Medusæ the stomach or digestive cavity is excarated in the centre of the disk, and is supplied with food by a mechanism that differs in different species.

Many are enabled, in spite of their apparent helplessness, to soize and devour animals that might seem to be far too strong and active to fall vietims to such assailants : crustacea, worms, mollusca, and even small fishes are not unfrequently destroyed by them. The long tentacula or filaments with which some are provided, form fishing-lines searcely less formidable in arresting and entangling prey than those of the Hydra; and, in all probability, the stinging secretion which exudes from the bodies of many species speedily paralyzes and kills the animals which fall in their way.
(162.) The umbrella-like disk of Cyanea aurita, whose anatomy has been most carefully studied by Ehrenberg, and which we shall therefore select for special description, is composed of a highly organized gelatinous substance invested by a membranous integument, the structure of which is by no means so simple as has been generally imagined. The tegumentary membrane, covering the convex surface of the disk, consists of a dense tissue made up of hexagonal cells containing a soft whitish substance mixed up with little granules, and presents upon its outer surface innumerable agglomerations of granular bodies, which are visible to the naked eye.
(163.) The concave or ventral surface of the disk is furnished with a

Fig. 44.

double investment, consisting of an outer and inner layer, the external ot whieh resembles in its structure the dorsal membrane deseribed above, and constitutes a sort of epidermic covering. The imner layer, which in its intimate texture likewise consists of hexagonal cells.
encloses nothing but a number of isolated granules, clear and translucent as water. The interspace between this inner layer and the dorsal integument is considerably greater than that which scparates it from the ventral surface ; both these spaces, however, are filled up with a clear gelatinous mass, wherein are distinguishable numerous isolated granular bodies, of a rounded shape and of unequal size, that seem to be all connected with each other by fibres or extremely delicate vessels,

$$
\text { Fig. } 45 .
$$

[^33]and not supported by expansions of cellular membrane. The rest of the gelatinous mass is too transparent to allow any organization to be detected; this, however, is in small proportion, and encloses the large vessels belonging to the nutritive apparatus, immediately to bo described.
(164.) The opening of the mouth is situatod in the contre of the lower surface of the disk, between the four arms suspended from that portion of the body. The mouth itself consists of a short quadrangular tube, from the angles of which the arms are dependent. Each arm is
somposed of a thick eentral eartilage, whereunto are attached two membranous laminæ, variously plaited and puckered throughout their entire longth, and moreover at certain seasons gathered into little pouches or pockets, to be hereafter mentioned in connexion with the generative apparatus.
(165.) Supcriorly the oral aperture terminates in four short tubes arising from its four angles; and these, diverging, mount upwards, supported by a cartilaginous prolongation derived from the central supports of the arms. These four tubes evidently represent the œesophag'us, and lead into four ample stomachs of a subglobular shape, which are smooth internally and lined by a special membrane, wherein may be seen numerous little granular bodies, but no vesscls.
(166.) From the above stomachal cavitics procced several large canals that diverge towards the circumference of the disk, and constitute a part of the digestice apparatus. One of these vesscls arises immediately from the dilated portion of each œesophageal tube; and these, dividing and subdividing dichotumously, ramify towards the margin of the disk. From each of the four stomachs three other large canals take their origin, and run in the same direction; of these, the two lateral ones are simple and unbranched, but that in the contre ramified dichotomously. These sixteen large vascular trunks, togethor with all their numorous ramifications, somctimes anastomotically united, ultimately torminate in a wide cireular vessel that surrounds the margin of the disk. The nutrient canals are situated beneath the inner membrane, described above, whercby they are partially enclosed and supported.
(167.) Eschseholtz* describes a serics of elongated granular bodics, placed in little depressions around the margin of the disk, which seem to be of a glandular nature, and apparently eommunicate by means of minute tubes with the nutrient eanals: these he regards as the rudiments of a biliary system. Other observers assign a similar office to a cluster of blind saceuli or eæea, which are connected in some species with the commencement of the radiating tubes; it is, however, scarcely necessary to observe that such surmises relative to the function of minute parts are but little satisfactory.
(168.) Prior to the publieation of Ehrenberg's important rescarches relative to the anatomy of the Cyanea auritat, it was generally belicved that in the Medusæ the alimentary eanals were unprovided with any exerementitious orifiees; these, however, were diseovered by the illustrious Prussian observer, occupying the situations indieated by eight dark-brown-coloured spots situatod at cqual distances around the margin of the disk, and whieh had previously been suspected to

[^34]be the analogues of a biliary organ. By kecping the living Medusæ for some time in sca-water deeply coloured with indigo, and thus causing all the ramifications of the alimentary apparatus to become filled with the coloured fluid, while the rest of the body remained transparent and colourless, it appeared that, opposite each of the abovementioned spots, the circular marginal canal into which the nutritive tubes, radiating from the stomach, empty themselres becomes dilated into a sort of cloacal cavity, in which the débris of digested materials, such as the shells of minute Conchifera, Rotifera, Bacillaria, \&c., were easily distinguishable; from each of these cloacal dilatations, canals can readily be traced communicating with the exterior; and on irritating the living animal, it is easy to witness the discharge of excrementitious matter through the eight marginal orifices of the disk.
(169.) A distinct movement is frequently perceptible in the interior of the ramifying alimentary tubes, which has been mistaken for a circulation, but which is mercly the effect of ciliary action, or of peristaltic movement in the walls of the intestine.
(170.) The canals formed by the ramifications of the alimentary apparatus were observed by Ehrenberg to be all bordered by two delicate lines of a pale red colour, which, under the microscope, are cvidently of a muscular character ; by the contractions of these, therefore, the most important movements of the animal are accomplished. Besides the above, moreover, other muscles are discernible. In Cyanea the disk is surrounded by a fringe of tentacula, each of which exhibits at its base a muscular structure; consequently the possession of muscular fibre may be considered a part of the economy of these animals.
(171.) It is very probable that the older writers, who speak of a circulation of blood in the Medusæ, only alluded to the movements observable in the contents of the intestinal ramifications; it appears, however, from Ehrenberg's observations, that in the Medusæ there exist globules, which are of a uniform round shape, enclosed in distinct vessels, wherein a kind of circulation is carried on : these globules he describes as being colourless, spherical, simple, and varying from $\frac{1}{288}$ to $\frac{1}{30} \pi$ of a line in diameter.
(172.) Although the Medusæ have always been admitted to possess considerable sensibility, no traces of a nervous system had been detected in their soft ard delicate tissues until Ehrenberg pointed out a structure apparently of a nervons character. On carefully examining the eight brown-coloured spots which are disposed at equal distances around the margin of the disk (fig. 45, , $1, a$. , he found them to present a very elaborate and remarkable organization. Each of these coloured spots is seen, when accurately observed, to be composed of a little button-like appendage, of an oval or cylindrical shape, attached to the extremity of a slender perlicle, which in turn takes its origin from a
kind of vesicle, wherein may be perceived, by means of the microscope, a glandular-looking substancc. On the dorsal aspect of each of the pedunculated brown-coloured appendages is situated a distinctly marked round spot of a bright red colour, supposed by Ehrenberg to be an ocular organ, while he considers the glandular-looking substance above mentioned to constitute a nervous ganglion. In addition to this arrangement, he considers that there exist, running all along the margin of the disk, in each of the interspaces betwecn the marginal tentacles, a series of ganglia of a similar character, giving off nerves to the tentacula, whilst other ganglia are to be detected in the tentacular appendages situated in the vicinity of the œsophagus, as wcll as in the oriferous cavities. In short, he states the general distribution of the nervous matter in the Medusiform Acalephæ to be as follows:-Four groups of nerrous ganglia are situated around the œosophagus in the oviferous cavities close to the ovaria, which are in communication with as many groups of tentacula. Upon the outer border of the disk, close to the base of the marginal tentacles, is another series of nervous nodules, interrupted at regular intervals by the eight brown-coloured corpuscles. Lastly, there exists a series of isolated ganglionic masses, eight in number, situated at the bases of the supposed ocular organs, to which they give off nervous filaments.
(173.) The so-called ocular organs, named by Ehrenberg unhesitatingly "pedunculated eyes," present a very remarkable structure. Each "pedunculated eye" is directed towards the dorsal aspect of the disk, and has, situated beneath its lower surfacc, a minute sacculus of a yellowish colour, but variable in its shape, wherein is contained a number of solid crystals, clear as water, and which the action of acids proves to be composed of carbonate of lime.
(174.) Not only eyes, however, but ears also are conceded by modern naturalists to these favoured occupants of the ocean.
(175.) At the base of the marginal tentacula, or cirri, says Professor Forbes*, there are present, in a great many of these animals, coloured spots or bulbs ; and in some species these points are so strongly coloured, that, from this circumstance and their magnitude, they indicate the course of the animal when in motion, appearing like a circle of gems in the water. When these bulbs are examined with the microscope, they are found to contain a small cavity, quite distinct from any colourcd matter that may be present; the former is regarded by modern naturalists as an otolithic vesicle, the latter as an ocellus, or cyc-spot.
(176.) The otolithic vesicle, which, from analogy and its peculiar structure, is considered an organ of hearing, is a small spherieal sac, developed in the midst of the granular substance of the bulb, and containing more or fewer minute vibrating bodies. Will has described

[^35]the otolithic vessel and its contents, as they are found in Geryonia, as follows :-"The auditory vesicles are seated in the course of the marginal circular ressel, in very uncortain number-usually, however, one at each side of the larger marginal cirri. They are round, measuring $\frac{1}{40}$ of a line in diameter, and consist of a tolerably thick membrane ; they contain from one to nine, and even more, round globules. If there is only one, it is situated exactly in the centre of the vesicle; but if there are several, they are found lying together, either in two groups, or joined to each other. I have never observed them move. Muriatic acid dissolves them, and causes the vesicle to burst." The existence of similarly constructed organs has been recognized in many other species by various observers.
(177.) It was discovered by Sars*, that certain forms of Medusæ multiply their species by gemmation, the buds being produced either from the walls of the peduncle or stomachal proboscis, or from the surface of the ovaries. In both cases the new individuals were similar in appearance to their parents; and, in one instance, provision seemed to be already made in the newly-formed offshoots for continuing to propagate by the same mode other individuals resembling themselves. From a certain part of the body roundish knobs grow forth, which gradually assume the shape of a bell, by oponing themselves at the free

Fig. 46.

Lizzia octopunctata. end, and soon present the form of young Acalephs, being merely attached to the mother by means of a short peduncle, derived from the back of the disk. These developo in themselves all essential organs whilst still attached to the mother like the buds of a plant, until at length, after a certain time, they soparate from the parent and swim about as independent individuals.
(178.) Professor Forbes not only confirms the above important observation of the Norwcgian naturalist, but describes four different modes of gemmiparous reproduction as occurring in that group:-1st, gemmation from the ovaries, as noticed by Sars in Thaumantias multicirrata; 2nd, a mode of gemmation from the pedunculated stomach, which he calls subsymmetrical, because in this case four gemmæ are symmetrically arranged round the peduncle, ono of which is constantly in a more advanced condition of development than the other three; 3rd, gemmation irregularly from the walls of a tubular pro-boscis-in which there is no order of development with respect to position, individuals springing indifferently from various parts of the

> * Fauna Norvegica.
pedunele (fig. 46) ; and a fourth mode, which is very remarkable, in a now British species named Sarsia prolifera, in whieh the buds are produced at the bases or tubereles of the four marginal tentacles, and hang from them in bunches like grapes. The degree of development is not equal in all four bunches ; and in each ease buds are seen in very various stages of advancement, from embryo wart-like sproutings to miniature Medusæ simulating, in their essential characters, the parent animal.
(179.) The Medusæ are now universally admitted to be bisexual; and the generative apparatus in both sexes is invariably found to be more or less intimately in relation with the alimentary canal : that is to say, the reproductive organs are appendages derived from the internal or nutritive system of the body. In both the males and females of the great majority of genera, the testes of the former and the ovaria of the latter are similarly disposed, and present externally precisely the same structure, consisting of duplicatures of a delicate membrane, between which, in the case of the female, ova are developed in great numbers, generally of a rich orange or purple colour, so as to be conspicuously visible. In the male, instead of ova, the generative membrane secretes a vivifying fluid, rich in spermatozoa, and consequently easily recognizable under the microseope.
(180.) In Cyanea aurita the generative apparatus of the female consists of four membranous ovaria, easily recognizable on account of their bright colour, which is usually violet, or deep yellow ; their form is generally scmicireular (fig. 47) ; and they are lodged in as many distinet eavities, situated in the immediate vicinity of the central stomachs. Each of these cavities eommunieates freely with the external element by means of a large round or oval orifice, furnished internally with tentacnla having suckers at their extremities (fig. 47, cl.) The four semicireular ovaries are each com-

Fig. 47.

1. Ovnrium of Cyanea aurita.
2. Cilinted embryo nfter its esaupe. posed of a simple contorted tube (fig. 47, (1, b): when full of eggs, its
colour is a beautiful violet; but when empty, or when the ova are only partially doveloped, a yellowish brown.
(181.) The ova are not retained in the ovaria during the whole time of their development, neither do they remain in the ovigerous cavity, but escape from the orifice of the latter into the surrounding water, whence they are again taken up by the tentacula and by the two lamine of the arms, andbecome lodged in little pouches formed by the laminated margin, in which they undergo further metamorphosis and development. These ovigerous pouches are only met with at certain seasons, disappearing when their functions are accomplished.
(182.) The eggs are of a rounded form and covered with a smooth, thin, membranous envelope whilst they remain in the ovary ; internally they are filled with a finely granular mass of a violet hue.
(183.) The ova contained in the arm-sacculi are destitute of any shell, and prosent themselves under three distinct forms, which are very remarkable. Some resemble blackberries, and are of a pale violet hue; others have the shape of minute thick disks, likewise violet, resembling little Medusæ deprived of arms and without any nutrient canals; lastly, others are met with (and thesc latter are the most numerous) which have a cylindrical shape, truncated at both ends, and of a brownishfellow colour. The two last-mentioned forms are densely covered with cilia, and swim about with facility; the largest among them measure about $\frac{1}{8}$ of a line in diameter.
(184.) Subsequently the ciliated embryos, escaping from their confinement, dctach themselves from the cradles whercin they have been nurscd up to this period, and swim freely about in the surrounding water until ripe for a further change in their economy; they then settle down upon some foreign object, such as a piece of sea-weed, to which they attach themselves by one extremity (fig. 48, 3), assuming the appearance of a contracted Hydra, but, as yet, unprovided either with mouth or tentacula ; gradually, however, an oral apcrture and stomachal cavity, surrounded by tentacular organs, become apparent; and as these progressively increase in number (fig. $48,4,5,6,11$), the little creature assumes completely the polyp form, and, what is still more wonderful, acquires in this early and, as it might be called, larvacondition of its existence the power of multiplying itself under the same shape, apparently ad infinitum.
(185.) This kind of reproduction is effected by the development of stolons, gemme, and bulblets from any portion of the surface of the hydra-like animal, which in turn give origin to similar offsets (fig. 48, 12, 13, 14).
(186.) The next phasis in the development of these Hydre (for such they scem to be) is one of the most remarkablo circumstances connected with their history, and, wero it not for tho accumulated testimony of numerous observers, might appear almost incredible. Tho
polyp, much in tho condition represented at fig 48 , 11 , is imnovably fixed by its basis to the surface of a Fucus, or some similar support, in which condition it has reccived the name of Hydra tuba; in length it is about $\frac{1}{8}$, and in diameter $\frac{1}{16}$ of an inch; its surface is smooth, and its texture altogother gelatinous; its tentacles are movable in all directions and exceedingly irritable, and its whole structure and appearance, in short, that of a gclatinous polyp or Hydra. But a great change is now in preparation : the body of the Hydriform polyp gradually increases in size ; and transverse folds begin to make their apppearance at equal distances, one below the other, partitioning off its body into numerous rings or segments (fig. 48, 15).

Fig. 48.

Development of Cyanea capilluta (after Sars, 'Annales des Scicnecs Naturelles' for 1841, plates 15 B, 16, \& 17, pp. 19, 50). 1. Embryos, newly hatched (natural sizc). 2. One magniffed, showing infusorial condition of development. $3,4,5,6$. The samc animal now become attached by a pedicle, and gradually assuming the polypcid form. 7. A still more adranced condition, showing the mouth surrounded by numerous retraeted tentacula: the mouth is dilated, exhibiting four longitudinal eminences, situated in the stomachal cavity. 8. The same individual cut open longitudinally, and spread out so as to show the longitudinal emincnces in the interior: the transversc lines are caused by the eontraction of the body. 9, 10. Two polypoid organisms, with stolons devcloped from the upper part of the body: in fig. 10 the stolon has become attached to the supporting surface. 11. Fully-developed polyp. 12. Another individual giving off a stolon, from which proceeds a second that in like manner gives off a third offset. 13. Stolons growing off from the base of the polypoid Mcdusa, which, creeping along the surface of the substance to which it is attached, give origin to new polyps, a, b. 14. Three young gemme sprouting frotu the body of a polypoid Acaleph. 15. A polypoid larva magnilled (the natural size is shown at 15 a), haring its body divided by numerous transverse wrinkles.
(187.) In the courso of a short time the segments thus formed becomo more distinctly separated from each other and surrounded by marginal rays dichotomously divided at their extremities. These rays or arms aro free, having their apices directed upwards, and disposed with such regularity that the polyp-shapod body secms to be furnished with eight longitudinal ribs (fig. 49, 16).

At longth the different segments into which the original polyp has

Fig. 49.

Transformation from the polypoid form to the Medusa condition (after Sars). 16. The polypoid larva ($16 a$, natural size) in a more advanced state, now divided into segments piled upon each other, each of which is a young Mcdusa, having its disk surrounded by radiating processes bifurcated at their extremities. These segments, becoming detached one by one from the summit of the pile successively, assume the medusiform condition. 17. Another example, during the progress of division, in which only four segments remain, and of these the three uppermost are at the point of separation. 17 a. A segment of the preceding, detached, now become a free Medusa: it is represented as seen from below, and already exhibits in its centre the square oral orifice, round which are perceptible rudimentary tentacula, together with the radiating nutritive canals, \&c. 18. The same in a still more advanced stage, exhibiting the rudiments of marginal tentacula. 19. The same, arrived at its perfect form, furnished with its four buccal arms, now completely dirided and pendent, and fully provided with the marginal tentacles of the adult.
become divided separate from each other, so as to form so many distinct disks (Planulce, Dalyell), cach of which on its separation becomes a complete Medusa furnished with all the complicated machinery above deseribed. This separation commences at the upper extremity of the series of newly-formed beings, and is repeated, segment after segment, towards the base, every successive segment as it becomes detached, assuming an independent existence, under the appearance represented in fig. 49, 17, a.

Fig. 50.

Young Mcdusn (after Sars). a, the mouth, surrounded by the as yet undeveloped buccal arms; b, b, ovaria, or testes; c, c, radiating nutritive canals; d, d, marginal circlo of nutrient vessels; e, e, oculiform organs; f, f, anal aportures situnted on the margin of the disk; g, g, rudimentary tentacula.
(188.) The little being thus liberated, the disk of which is not as yet
much more than $\frac{1}{8}$ of an inch in diameter, exhibits, when magnified, the characteristic organization of a true Medusa, - the oral orifice (fig. 50, u), the positions of tho ovaria (b), tho radiating nutritivo canals (c), the eircular marginal vessels (d), the oculiform points (c), the anal apertures (f), and the rudimentary tentaeula surrounding the disk ($y g$) all easily reeognizable. The Medusa being thus far complete, its further advance is rapid : the rays beeome gradually shorter in proportion to the disk, the marginal tentacles are moro and more developed; and at length the beautiful creature, eomplete in all its parts (fig. 49, 19), by the production of multitudinous ova gives birth to another generation, destined, during their development, to exhibit a similar series of changes and equally wonderful.
(189.) The rclationship which exists between the Medusæ in their fully formed adult condition, and the comparatively humble-looking hydriform polyp from which they are derived, at first sight is by no means obvious; nevertheless an attentive examination will show that there is a general resemblance betweeu them. Aecording to the now universally received interpretation of its morphological composition, a Medusa may be regarded as being nothing but a frecswimming polypite suspended from the centre of a gelatinous disk, which constitutes its natatory apparatus and has hence received the name of its "swimming-cup" (nectocalyx). What we have hitherto spoken of as the oral aperture of the Mcdusa must therefore, aceording to this view, be regarded as the mouth of the polypitc, the endodermal lining of which passes into the eentral cavity of the swimming-organ, whence canals radiate to join a circular vessel surrounding

Mcdusa-bud, or Gonozooid. the margin of the bell. From this margin depend the tentacles, which may be either hollow processes of both the cetodermal and endodermal layers in immediate connexion with the canal system (nectocalycine canals), or more rarely prolongations of the gelatinous cetoderm itself. Around the outer margin of the swimmingbell (nectocaly. x), between the endoderm of the circular vessel and its ectodermal investment, are imbedded the marginal bodies, resicles, or pigment-spots whose peeuliar strueture has been already described. The outward form of the polypito thus suspended varics greatly. It may be long and highly contractile, or so short and broad as to be with difficulty discernible on the under surface of the swimming-bell. Very often it is curiously constrieted. The oral margin may be cither simple, everted, or produced into lobes, which most frequently are four in number, but in some forms beeome mueh dividerl (figs. 49, 19, and 51).

The shape and size of the swimming-boll. (nectocalya), in relation to

the polypite with which it is connected, may also vary considerably. Very generally the neetoealyx forms a cup or bellshaped body, the open earity of which has reeeived the name of "nectosac." Around the margin of the neetosac the wall of the nectocalyx is produced inwards, forming a shelf-like membrane ealled the "veil ;" and by means of this mombrane, whieh is highly contraetile, the aperture of the bell may be more or less narrowed.
(190.) In Thhizostoma (fig. 53) the eentral pedicle forms a complex

Fig. 53.

Rhizostoma Cuvieri. root-like mass, whose radicles (stomatodendra) end in and are covered with minnte polypites interspersed with clavate tentaenla. This re-
markable organ is suspended from the middle of the umbrella in a very singular way. The main trunks of the dependent polypiferous root or stem unite above into a thick quadrate disk (symdendrium), which is suspended by four stout pillars (dendrostyles), one springing from each angle, to four corrosponding points on the under surface of the umbrclla, equidistant from its centre. Under the middle of the umbrclla, thercfore, there is a chamber whose floor is formed by the quadrate disk, while its roof is constituted by the under wall of the central cavity of the umbrclla, and its sides are open. The reproductive elements are developed within radiated folding diverticula of the roof of this genital cavity.
(191.) In Cassiopea Borbonica the principal agents in procuring nourishment are numerous retractile suckers (fig. 54, a), terminating in small violet-coloured disks, which are dispersed over the fleshy appendages to the under surface of the body; the stem of each of these suckers is tubular, and conveys into the sto-

Fig. 54.

Cassiopea Borbonica, opened from below: a, a, a, a, the pedicle divided and turned outwards, showing the arrangement of the suckers $; b, b, b, b$, orifices leading into the generatise chambers; c, c, c, c, ovaria. mach nutritive materials absorbed from animal substances to which they are attached during the process of imbibing food.
(192.) The stomach (fig. $55, b$) is a large cavity placed in the centre of the infcrior surface of the disk. Into this reccptacle all the matcrials collected by the absorbing suckers are conveyed through cight large canals, and by the process of digestion become reduced to a yellowish semifluid pulpy mattcr constituting the pabulum destined to nourish the whole body. From the central stomach sixtcen large vessels arise (fig. 55, c), which

Cansiopea Borbonica. a, nutritiro suckers or polypites; b, common digestive cavity laid ofren; c, openinge leading to the radinting canals, $d, d ; e$, marginal vascular network. radiate towards the eircumforence of the disk, diriding and subdividing
into numerous small branches that anastomose freely with cach other, and ultimately form a perfcet plexus of vessels as they reach the margin of the mushroom-shaped body of the creature. The radiating vessels are morcover made to communicate together by means of a circular canal (fig. 55, e) which runs round the entire animal, so that every provision is made for an equable diffusion of the nutritive fluid derived from the stomach through the entirc system.
193. If we come to investigate physiologically the nature of this simple apparatus of converging and diverging canals, we cannot but perceive that it unites in itself the functions of the digestive, the circulatory, and the respiratory systems of higher animals : the radiating canals, conveying the nutritive juices from the stomach through the body, correspond in office to the arteries of more perfectly organized classes; and the minute vascular ramifications in which these terminate, situated near the thin margins of the locomotive disk, as obviously perform the part of respiratory organs, inasmuch as the fluids permeating them are continually exposed to the influence of the air contained in the surrounding water, the constant renewal of which is accomplished by the perpetual contractions of the disk itself.
(194.) Tubolartides.*.-A very beautiful family of Hy drozoic polyps, which from their generalappearancemight casily be mistaken for gaily tinted flowers, are met with abundantly on our own coasts, growing on shells or stones obtained from decp water ; or sometimes they may be found in rich profusion covering the sides of rocks and the under surface of ledges a little above low water-mark, hanging from them in unsightly tufts whon the tide is out, but rising into sudden beauty with the return of the water, and clothing them with all the gaiety of a garden. Their polyparics consist of simple horny stems, somewhat

Tubularia indivisa. resembling straws fixed at one end by a thread-like cxpansion resembling a root (hydrorhiza), while from the free extremity of each a flask-shaped polypite displays its brilliant tints and exquisite structure.

* From tubulus, a little pipe; но called from the structure of thoir polyparies.
(195.) When the Tubularia is expanded, its protruded portion is seen to bo furnished with two cireles of tentacula, one plaeed immediately around the opening of the mouth, the other at a eonsiderable distanee bencath it (fig. 56,1), while nearly on a level with the inferior circle a sccond aperture (fig. $56,1, a$) is observable, cormmunicating with that portion of the body which is lodged within the tube, and resembling a second mouth, whieh represents the pyloric opening of the stomach. A remarkable aetion has been observed to take place in these parts of the polyp, producing a continual variation in their shape : a fluid appears, at intervals, to be foreed from the lower eompartment into the space intervening between the two rows of tentaeula, whieh beeomes gradually dilated into a globular form* (fig. 56, 2, 3). This distention eontinucs for about a minute, when the upper part, coutraeting in turn, squeezes back the fluid whieh fills it into the lower eompartment through the opening a, whieh then eloses preparatory to a repetition of the operation. The intervals between these aetions were, in the speeimen ohserved by Mr. Lister, very evenly eighty seeonds.
(196.) In Tubularia indivisa the sheath or wall whieh encloses the polyp is perfectly diaphanous, allowing its contents to be readily investigated with the mieroseope. When thus examined a continual cireula-

Fig. 57.

tion of particles is visible, moving in even, steady eurrents in the direetion of the arrows (fig. 56, 1), along slightly spiral lines represented in the drawing. The particles are of varions sizes, some very minute, others

* Lister, "On the Structure and Functions of I'ubular and Cellular Iolypi," Phil. Trams. IR:i.
apparently aggregations of smaller ones ; some are globular ; but they have generally no regular form.
(197.) At certain seasous of the yoar the reproductive organs mako their appearancc. These consist of numerous vesicles (gonophores) grouped in clusters between the two scrics of tentacles, and borne on pedicles springing from the body of the polypite. The embryo of this genus is not ciliated, but first makes its appearance as a discoid body, from the circumference of which short thick processes (the rudiments of tentacula) are produced. The little disk thus produced soon swells ont upon one side, while upon the centre of the opposite side a mouth is developed, leading into a nemly formed digestive cavity. Gradually the mouth becomes elcrated on a conical promineuce, around which the second circlet of tentacles arises. In this state the embryo issues from the gonophore and walks about by means of its arms like a cuttlefish, with its head downwards, until after a time it attaches itself by its base, and

Fig. 58.

Tubularia coronata. b, the polypary, or horny sheath; c, living substance of the animal (cocnoarare); d, boundary between the polyp and the common stoek; g, tentacular arms; k, tentreular zone; h, mouth; n, reproduction by continuous gemmation; o, ovigerous capsules or gonophores. (After Van Beneden.)
the stem is gradually developed. The power of repairing injuries in this zoophyte is quite as remarkable as that possessed by the Hydra. When living specimens have been kept for some days in ressels of water, it often happens that the polypites drop from their stalks. Soon, how-
ever, new polypites are budded forth, each having usually a smaller number of tentacles than its predecessor. Similar results are produced by artificial decapitation ; by perseveringly cutting off tho newly formed flower-like heads, from the same stalk Sir J. G. Dalyell obtained in the courso of 550 days twenty-two successive polypites.
(198.) In Tubularia coronata (fig. 59) the reproductive capsules (gonophores) consist at first of simple protuberances derived from the bodywall, and, like it, present two layers, the ectoderm and the endoderm; gradually, as these protuberances increase in size, they becomo supported each upon a separate peduncle or stalk. The distal wall of the gonophore next becomes thickened, so as to form a hemispherical projection infringing upon the cavity, which in consequence becomes cup-shaped (fig. 59, д, в).

As this protuberance still enlarges, the upper part of the cup-shaped cavity extends between the rounded central boss and the outer wall under the form of four canals (fig. 59, c), which run up parallel with the axis of the protuberance but stop short of its extremity. Their cæcal ends then send out lateral processes, thus becoming T-shaped, and the lateral processes unite together so as to give rise to a circular canal uniting the

Fig, 59.

Development of Tubularia coronala. A. First appearance of a reproductive capsule (gonophore): a, reproductive body (spermarium or ovarium); b, body-wall; c, diverticulum derired from the somatic cavity. B. The same, more prominent and beginning to become pedunenlatcd. C. Commeneing indigitation between the reproductive body a and the process c. D. The same, further advanced. E. Formation of the longitudinal canals. F,G,H,I. Progressive stages in the devclopment of the Medusa-bud (gonozooid).
ends of the four longitudinal canals (fig. 59, D). Ultimately the whole structuro expands into the beautiful Medusa-like zooids ropresented in the figure ($\mathrm{n}, \mathrm{F}, \mathrm{a}, \mathrm{I}, \mathrm{I}$), furnished with a completo umbrella (nectocaly. x), in whieh the radiating and cireular cannls are present, and an orifiee
surrounded by four tubercles representing the marginal tentacles. The central pediele, however, the representative of the polypite, is in this ease destitute of a mouth; and although there is apparently every preparation for a separate existence up to a cortain point, the bud remains enclosed in the outer envelope, while the swimming-bell is converted into a chamber or nursery in which the embryo passes through its early stages of development, until it escapes at last under the form previously described (§ 197).
(199.) In Campanularia gelatinosa the reproductive zooids attain to a still more adranced state of development. This beautiful zoophyte, one of the commonest met with upon our shores, may sometimes be found in amazing profusion spreading over a considerable portion of the littoral zonesometimes half buried in the mud beneath loose stones, and sometimes eovering with its delieate forests the sides of tidal pools filled with the most pellucid water. We cease, however, to be surprised at its abundaneo when we examine the reproduetive capsules from which its progeny eseape, which often

Campanularia gelatinosa. a α, a, togumentary skeleton, or horny polypary; b, b, buds (gemme) in process of development into polyps (polypites); c, c, c, terminal polyp-cells (hydrotheca); $d, d^{\prime}, d^{\prime \prime}, d^{\prime \prime \prime}$, polyps (polypites) in different stages of growth; e, reproductive capsule (gonophore) containing a medusa-bud (gonozooid) ready to escape; c^{\prime}, another reproductive capsule (gonophore), containing several medusa-buds (gonozooids) iu various states of development; f, living substance (canosare) flling the iuterior of the homy polypary; g, annular constrictions of the horny skeleton. crowd the shoots, each one containing a large number of cmbryos (fig. 60, c, e^{\prime}).
(200.) The reproduetivo capsules (gonophores) are of different sexes, the
mate eapsules being much smaller than the female. Owing to the transparency of the lattor, it is by no means difficult to watch the proccedings within and to trace the development of the included young through the different stages of their growth, represented in the appended woodeut (fig. 61). In the deseription of the figures it will be seen that mention is made of cells which give origin to organs of sensation. These present the same appearance as the eyes and the cars of the lower mollusea

Fig. 61.

Embryology of Campamularia gelatinosa. A. An ovarian vesiele (gonophore) from whieh an embryo is in the aet of escaping; others, in a less advaneed state, are seen in the interior. B. A detaehed embryo in a very early stage, showing the vitellus and blastoderm. C. Another embryo, more highly magnifed: b, eells formed aromd the vitellus. D. The same, more adraneed: a, eavity enelosing the remains of the vitellins; b, elongated cells subsequently developed into tentaeula; c, other cells, eight in number, which are the rudiments of the organs of the senses. D. The sume in a more advaneed condition. F. An embryo at the moment of its escape frou the orarian vesiele, muagniffed: a, fleshy pedicle; b, mouth; d, museular faseieulus; e, nervous ganglion ; f, f. organs of sense ; g, tentacles. G. The same as it swims in the water, presenting all the eharacters of a Medusa.
and other inferior animals, and moreover present a similar organization, loeing composed of two spherieal vesicles cnelosed one within the other. 'lhat the young polyp possesses these organs of relation to the external world is undeniable, although no traces of them remain when the animal has aequired its full development; but what is still more surprising, coexistent with these instruments of sense there are pereeptible a museular system and an apparatus of nerves and nervous ganglia
which, liko the preceding, aro only of a temporary character. While the young polyp is still cuclosed in its cell, two bands, apparently composed of muscular fibre (fig. 61, F, d), make their appearance; these run from one margin of the disk to the opposite cdge, crossing each other at right angles, in the centre, so as to present a cruciform arrangoment. These bands are quite isolated, and their muscular fibres distinct and transparent. By their action the margins of the disk are approximated, enabling these little animals to imitate the movements so characteristic of the Medusx.
(201.) Situated upon the course of the bands above described, close to the edge of the vitelline sac, are little rounded bodics (fig. 61, F, e), presenting an irregular and slightly tuberculated surface, considered by Van Beneden to be nervous ganglia. These little bodies are four in number. No filaments of intercommunication or nervous cords have as yet been detected even proceeding to the organs of sensation; but the ganglia are adherent to the muscular bands, apparently by the intermedium of nerves.
(202.) It may appear a little rash, says the eminent observer to whom science is so much indebted for these researches, to speak of muscles, nerves, and organs of sensation in the embryo of a polyp, which at a later period presents no traces of the existence of such apparatus; neverthelcss the polyp, during its free state, must necessarily require such instruments of sense, to enable it to select a situation adapted to the reception of the new colony to which it gives birth : when once it has made choice of a fit locality, such organs become as useless as they were formerly needful, seeing that all the functions of life are restricted to those of alimentation and reproduction. Subsequently the central pedicle (manubrium) acquires a mouth at its distal extremity, thus becoming transformed into a polypite, while the natatorial organ, or " gonocalyx," enlarging, loosens its attachment and swims freely in the sea, flapping itself vigorously about as a veritable Medusid; indeed there is reason to believe that a great majority of the organisms described as Medusidæ are in reality the detached reproductive bodies of other Hydrozoa. Such bodies, however, are more than mere organs. Many of them when first liberated present no distinet trace of gencrative elements, pending the formation of which essential products their independent existence is of necessity prolonged. All this period they lead a very active life, increase rapidly in size, and eagerly devour such minute marine animals as they are able to procurc. During the calmer seasons of the year they abound in our seas, but before the approach of rough weather usually disappear, their funetions having been in all probability previously diselarged.
"It would be difficult," says the Rev. Mr. Hineks*, "to exaggerate in spoaking of the beauty of these floating flower-buds, as they may well

[^36]be callod. The vivid tints whieh they often display, the gracefulness of their form, the oxquisite delicacy of their tissues, and the vivaeity of their movements eombine to render them singularly attraetive. Frequently they are so porfectly translueent that their bubble-like forms only beeomo visible in a strong light. In other cases the umbrella is delicately tinted, while the manubrium displays the gayest eolours, and brilliant ocelli glitter on the bulbous bases of the tontaeles (fig. 62). To their other charms, that of phosphorescence is often added: they are not only painted like a flower, but at night they are jewelled with vivid points of light set round the margin of the bell, or one central lamp illumines the little crystal globe and marks out its eourse through the water. Though individually minute, their numbers are so immense that they play an important part in the production of the luminosity of the ocean. The surface of the sea, for miles together, is often thiekly eovered with them, and on still sunny days in autumn, certain species swarm in immense shoals. Like miniaturo balloons, they remain suspended in the water for a while ; then they suddenly start into motion, propelling themselves by a series of

Fig. 62.

Gonozooid: a, magnifled; b, natural size. vigorous jerks or casts, and at the same time contraeting their tentaeles into the smallest possible eompass; thell they beeome quieseent again, and sink slowly and gracefully like parachutes to the bottom of the vessel, some of the arms being extended laterally, and the rost dependent."
(203.) In these free sexual zooids, with their contractile disks and roving habits, which not only mature but also diffuse the seed of new generations, the hydroid strueture reaehes, as it were, its culminating point. In a large proportion of eases, however, the gonozooid remains permanently attaehed to the nidus whenee it originated, and developes and liberates its produets in situ; still, amongst theso non-locomotive zooids, a gradation of structure is visible. A series of transitional forms conneets the simplest of them, whieh is a mere sac, with the more complex, whieh make a near approaeh to tho Medusa in strueture, though not destined to become free. Thus in the $H y d r a$ wo have seen the gonophore to be a simple bulging of the body-wall, between the two layers of which the generative elements originate ; and this, it must be remembered, is the earliest stage of all the moro complex forms. In Coryme the gonophore is a distinet protuberanee eontaining a prolongation of the gencral eavity of the body enclosed by tho two membranes (ectoderm and endoderm). In other eases a membranous envelope, whieh is the equivalent of the swimming-boll, and rudimentary radiating eanals aro smperadded. In

Tubularia a still further advance is made : the gonozooid, though permanently attached, is furnished with a swimming-bell in which the canals are present, and the orifice, round which aro set four tubercles representing the marginal tentacles ; tho manubrium likewise exists, but is destitute of a mouth. In this form there is evory preparation for freo existence up to a certain point; but the gonozooid remains enveloped in tho sac (ectotheca) in which it originated, and tho swimming-bell is couverted into a uursery whereiu the embryo passes through the later stages of its development.
(204.) Occasionally the development of the gonozooid is arrested at a certain stage, and, instead of becoming free as in normal cases, it continues in conuexion with the parent stock. Thus in Syncoryne the sexual zooid is usually locomotive; but towards the close of the breeding-season it is sometimes met with in a depauperated condition, without tentacles and with a merely rudimentary mouth. Though the swimming-bell exhibits contractility, it is ineffcieut as a locomotive organ, so that the zooid continues attached and does not attain a much higher development than Tubularia.

In such cases we have the fixed and free condition in the same species -the former being abnormal, the result of imperfect development, but representing a perfect and permaneut form in another portion of the series.
(205.) At first sight there seems to be a total dissimilarity between the so-called medusa-buds and a polypite; nevertheless the structural affinities between them are only veiled by the modifications that adapt the sexual zooid to a free and wandering existence. The swimming-bell is as a mask, behind which the polypite is effectually concealed. We cannot wonder that the escape of the medusa-like creature was at first regarded as a marvel and excited so lively an interest: but the medusiform structure is a only variation on that which we find in the polypite ; the free gonozooid is only a polypite suspended in a contractile bell which bears it through the water. An ordinary polypite detached and with its tentacles united by a web for a portion of their length, would present a structure closely resembling that of the (so-callcd) Medusa. In fact the tubular appendages, which in the nutritive zooid are mere prehensile organs, bccome in the sexual zooid connected, for the greater portion of their length, by a highly contractile membrane, and form a bell or disk which serves as a float and a propeller. Their extremities remain frec and discharge the office of tentacles, while an outgrowth from the margin of the membranous bell forms the veil which partially closes it below.
(206.) The body of the polypite is suspended, as it were, from the centre of the dome-shaped roof of the swimming-bell, and hangs free in its cavity, while the teutacular tubes, which form in the free zooid, as it were, the ribs on which tho umbrclla is supported, also sorve as the canals through which the nutritive fluid circulates. They communicate,
like the arms of tho polypite, with the cavity of the stomach, and are further united at tho margin of the swim-ming-bell by a circular canal. This additional structure is the only clement which has not its homologue and equiralent in the polypite.
(207.) Towards the end of its course the gonozooid sometimes loses its locomotive organs and passes into a state of quiescence, and in this condition closely resembles in all essential particulars an ordinary polypite. The locomotire energy fails; the umbrella is first reversed, and then shrinks into a shapeless mass, which hangs about tho base of the body and bears the tentacles streaming behind it. The adaptive dress which had fitted the zooid for a free existence, and which disguised its real affinities, is cast aside, and that which remains is at once recognized as a polypite. It is during this period of quiescence that the ora are liberated, and the mambrium then dissolres away*。
(208.) In conclusion, it may be trell

Fig. 63.

Cutieria carisochroma, 1. Disk seen from abore. 2. Side riew. briefly to sum up the leading facts comected with the reproduction of the hydroid polyps.

In each colony the alimentary and reproductive functions are respectively intrusted to two distinct kinds of zooids, which may be distinguished as the nutritive and the sexual polypites.
(209.) The sexual zooids, like the flower-buds of plants, are only dereloped at certain seasons, and are rariously situated in the different species. In a large number of cases they acquire a modification of structure adapting them for independent existence, and, when mature, detach themselyes from the colony and become free and locomotive.
(210.) The frec sexual zooid may be regarded as essentially a polypite with its arms united by a contractile web so as to form a swimming-bell or natatory organ. Disguised by this adaptire addition to its structure, it has been separated from its kindred under the name of a Medusa, whilst it is in reality a swimming polypitc. When liberated, it matures and disperses the gencrative elements, and. having thus fulfilled its function. perishes. In other cases the gonozooids nerer become free, but, like the mentritive polypites, remain in permanent comexion with the colony.

[^37]In this condition they exhibit many diversities, and constitute a series of transition forms leading up to the highest, in which the provision for a fice locomotive existence is complete.
(211.) Sirnowoprora.-In other forms of the Hydrozoa, denominated by Cuvicr "Acalèphes Hydrostatiques," and by modern systematists Siphonophora, the body is supported in the water by a very peculiar organ, or set of organs, provided for the purpose.
(212.)In the Physophorid. ${ }^{*}$ * this consists of one or more bladders, capable of being filled with air at the will of the animal; these are appended to the body in various positions, so as to form floats of sufficient buoyancy to sustain the creature upon the surface of the sea when in a state of distention, but when partially empty allowing it to sink and thus escape the approach of danger. In Physalia (fig. 64), known to sailors by the name of the " Portuguese man-of-war," the swimming-bladder is single, and of great proportionate size, so that when full of air itis exceedingly buoyant and floats conspicuously upon the waves. The top of this bladder bears a erest, c, of a beautiful purple colour, that, presenting a broad surface to the wind, acts as a sail, by the assistance of which the creature scuds along with some rapidity ; while from the lower part depend multitudinous appendages, the representatives of the polypites, ten-

Physalia. a b, vesicular float; c, crest ; d, orifice; e, nuclcus ; f, f, inferior appendages. tacles, and other organs, with the names of which the reader has now become familiar.
(213.) In Porpita (fig. 65), the float consists of a flat plate of semicartilaginous texture (fig. 65, 2), evidently deposited in thin secondary lamin $æ$, which gradually

Fig. 65.

 increase in size as the animal advances in growth, the inferior being tho largest and last formed. When examined after its removal from the body, this fragile skeleton is

[^38]secn to be extremely porous or cellular ; and the pores being filled with air, it is specifically lighter than water, a circumstance that may contribute to the buoyancy of the creature, even when alive.
(214.) In Velella and Retaria, besides the horizontal lamella that forms the whole skeleton of Porpita, there is a sccond subcartilaginous plate, rising at right angles from its upper surface, and supporting a delicate membranous expansion, that rises above the water and exposes a considcrable surface to the wind, so as to form a very exccllent sail. To perfect so beautiful a contrivance, in Rataria the crest is

Fig. 66.

Velella. found to contain fibrons bands, apparently of a muscular nature, by the contractions of which the sail can be depressed or elcvated at pleasure.

Fig. 67.

Physophora Philippii.

Athorybia rosacen.
(215.) In other forms of these beatiful zoophytes the floats are very
variously disposed. In Physophora the common body (cennosare) is slender, almost filiform, and comparatively short, terminated at its upper extremity by a swimming-bladder (pneumatophore) of moderate size, below which the greater portion of its length is occupied by a double serics of swimming-bells (nectocalyces), each alternating with its suceessor on the opposite side, and decply grooved on its iuner face for attachment to the central stem (coenosarc). The distal extremity of the cœnosare forms an expanded bulb, above which are disposed, in a spiral or cireular manner, the various appendages, consisting of polypites, tentacles, hydrocysts, and organs of reproduction.
(216.) In Halistemma rubrum the appendages are attached to a threadlike stem nearly forty inches in length, having a float only three or four lines in its longest diameter, close bencath which the swimming-bells, about sixty in number, extend in two parallel rows for a distance of six or seten inches. The remainder of the stem (ccenosarc) is occupied by polypites, tentacles, hydrocysts, and reproductive buds, all associated in one continuous scries-giving to this most elegant product of the ocean the appearance of a delicate transparent garland of flowers endowed in a marvellous manner with life and activity.
(217.) Thus it appears that the Physophoridæ, notwithstanding the diversity of their forms, are constructed in accordance with a common plan, the differences between them being principally dependent on the relative size and shape of the coenosarc, pneumatophore, and polyp-like appendages. In Physalia the pneumatophore is a somewhat pear-shaped bladder of inordinate dimensions, sometimes attaining a long diameter of eight or nine inches, and having tentacles several feet in length attached along its under surface, while in Physophora the float is a mere rudiment, almost lost amid the exuberance of the accessory organs.
(218.) In these organisms the entire somatic eavity may be said to perform the functions of a nutritive apparatus; but the true digestive process is chiefly effected within the bodies of the appended polypites.
(219.) Calycophoride*.-The beautiful organisms grouped together under the title of Calycophoridæ are met with in tropical climates floating. freely in the wide ocean, frail, bright, and almost as evanescent as the sparkling bubbles that dance around them. Their body (hydrosoma) consists of a long, flexible unbranched stem, to which are appended numerous delicate fibrils, now generally regarded as tho representatives of polypites. To the upper extremity of the central stem are attached a couple of swimming-bells (nectocalyces), but they are unprovided with a float containing air. The bodies of these elegant productions are sometimes so extremely transparent that their presence is diseovered with great difficulty, even in small quantities of their native element. They gencrally oceur at grent distanees from land, nestling, as it were,

[^39]in tho bosom of tho sunlit sea, their whole texture being fur too delicate to oncounter the angry turmoil of waves in the vicinity of the shore.
(220.) They swim with great facility, by forcibly ejecting the water from tho cavities of their swim-ming-bells by rhythmical contractions of those romarkablo organs, aud thus they are enablod to propel themselves through tho liquid clement. Whilst exercising this mode of progression, their long, flexible filamentary appendages stream behind thom like the tail of a comet; and such species as are lumiuous in the dark might, by a fanciful mind, well be compared to those celestial wandercrs, as they urge on their brilliant eareer among the sea-stars of the ocean.
(221.) Thcse exquisite produetions doubtless appear, at first sight, very dissimilar in aspect to the Sertularian Zoophytes, which nevertheless they closely resemble in their essential composition, as will be rendered evideut by close examination. In Diphyes, for example (fig. 68), the type of the group, the common body (hydrosoma) consists of the delicate stcm, resembling in its crystalline transparency a filament of spun glass, to the proximal extremity of which aro attached two comparatively large mitrelike swimming-bells (nectocalyces), to which, as they differ slightly in shape and positiou, the distinctive epithets of "proximal" and "distal" have been assigned. Tho former, which is terminal, is provided with a conical excavation runuing parallel with but distinct from its proper cavity (nectosac). Into this exeavation is fitted the apex of the distal nectocalyx (fig. 68), in such a manner as to leave a tubular

Diphyes appendiculata, after Huxley. groove with its sides arched over so as to form a canal, in which the delieate polyp-stem (conosarc) freely glides up aud down, and into which, upon occasion, it can be completely retracted. The cocnosare itsclf dilates slightly, towards its proximal extremity, into a small ciliated chamber, which, narrowing above, becomes continuous with a sae of larger size, termed the "somatocyst," likewisc furnished with cilia in its interior. From the smaller ciliated chamber two ducts are given off, ono to the distal, the other to the proximal nectocalyx, where each communicates with the nectocalycine canals. Along the sides of the cœnosare are placed the several appendages, consisting of polypites, teutacles, and organs of reproduction arranged in regular series.
(222.) In large specimens, the conosarc or common stem attains, when fully extended, a length of soveral inches, giving support to at least fifty distinct polypites. So transparent, howerer, is this deliente filament
that its presence, cren upon close inspection, is revoalod only by the bright tints of its tendril-like appendages. A touch is ofton sufficient to separate it from the nectocalyces, which, from their size and firm consistence, constituto the most conspicuous part of the organism. Hence the origin of the gencric name "Diphyes" ($\delta i \phi u)$), of double form) devisod by Cuvier, who regarded the two swimming-organs as distinct animals imperfectly united to each other-a very pardonable crror, secing that the appended drawing (fig. 69), the only authority at

Fig. 69.

his disposal, has much more the appearance of two animals conjoined than of the elaborate complexity which it really offers.
(223.) The reproduction of these remarkable structures appears to be effected by the development of medusiform zooids formed in gonophores derived from the individual polypites.
(224.) Ctenophoridew.-In the Ctenophora, the locomotive appa-

Fig. 70.

1. Cydippe pileus: a, tentacula unfolded. 2. Supposed nervous system. 3, 4. Isolated cilia.
ratus consists of narrow bands of vibratile cilia, variously disposed upon the surface of the animal.

[^40](225.) In the globular forms of the Beroës (fig. 70), these cilia are mranged in eight longitudinal rows, and appear to be attacher to sui)jacent arches of a firmer consistence than the rest of the body. They are generally quite exposed, but in Pandora are lodged between folds of the skin, which, when they are not in use, close over and completcly conceal them. The motion of the cilia is extremely rapid, and sometimes only recognizable by the currents they produce, or by the iridescent hues that play along the arches; hence these organisms were called by the earlier voyagers "Fountain fishes," from the supposition that the eight bands of iridescence gleaming along their sidcs were rivulets of lustrous watcr.
(226.) The arrangement of the locomotive apparatus appended to the eight longitudinal costal bands is extremely bcautiful. The series of vibratile fringes is attached to a row of minute transverse ridges, disposed almost like the steps of a ladder, and, moreover, in their essential structure they differ very materially from vibratile cilia of the ordinary character. In shape they are not filiform, but resemble membranous laminæ deeply fringed around their free margin, having the shape of so many little semioval palletts. The movements of these flabelliform appendages are very rapid, and are scldom interrupted while the animal is in vigorous health ; the slightest contact, however, is sufficient to stop them. The different laminæ, moreover, belonging to the same row are quite independent of each other, and interference with one docs not produce the slightest effect upon the action of the rest. The animal, neverthcless, seems to possess the power of arresting or controlling their motions at pleasure. It is likewise romarkable that the vibratory movement is kept up for a very long time in fragments separated from the rest of the body, without at all changing its character ; but it may be observed that, in portions thus detached, the sensibility appears to be destroyed before the contractile power, inasmuch as, after a certain timc, the vibration is kept up unintermittingly in spite of such contact as would previously have causcd a suspension of vibratory action.
(227.) The cilia, which are placed on the longitudiual ridges, are linear-lanceolate in form, flat, and not hollow. They are not webbed together, and have no communication with the vessels that run bencath the ciliary ridges. Each row of cilia is mounted on a transverse base, of a more solid texture and less transparent than the rest of the body. The substance of this base consists of globules irregularly imbedded in a homogeneous substance. When one of the cilia of a Cydippe is cut, off, it has of itself no power of motion ; but if the smallest portion of the substance of its base remains attached, it moves with great viracity. Hence it is concluded that the ciliary motion is effected by undulatory movements of this peculiar tissuc.
(228.) In the Beroeform Acaleplix, it would scem that the vital
principle is equally diffused througheut every part of their fragile substance, which the slightest vielcuce is sufficient te break up into pieces ; indced it is net uncommen te find the surface of the sea covered with fragments of their bedies, on which the lecometive cilia may still be seen in rapid actien, preducing, by their prismatic decompesitien of the light, a splendid iridescent appearance.
(229.) The capacieus cavity that eccupies almest the entire length of the bedy ef the Bereë, and cemmunicates freely with the extcrior through the superior orifice, is perfectly smeeth internally, and constitutes a kind ef wide pharyngeal sac, at the bettom of which is situated a transverse aperture guarded by tive thickened lips, the texture of which is firmer than that of the rest ef the body. These lips enly come into centact with each other near the centre of their free margins, and consequently leave on each side a gaping erifice. The cavity that they thus partially clese is very small, and evidently corresponds to the central stemach of the discepherous Medusæ, and in like manner constitutes a central reserveir, whence the vascular system is derived.
(230.) The digestive receptacle is filled with a fluid that is centinually in movement, and which may be seen to pass into twe lateral tubes that seon each divide into feur branches, and, arriving at the surface of the body, terminate in eight longitudinal canals that run beneath the cilia, which latter ergans, as they are in constant vibration, appear to perform the functions of a respiratory apparatus. From the lateral parietes of each of the eight longitudinal costal canals there arise an infinite number of small vessels or transverse sinuses; theso, after intercemmunicating with each ether, are lest in the surrounding parenchyma*. Arrived at the margin of the wide opening situated at the extremity of the bedy, the eight longitudinal trunks terminate in a transverse annular canal that cemmunicates in its turn with two vertical trunks much mere deeply seated than the preceding vessels: these lateral vessels, meunting upwards, terminate in the stomachal cavity.
(231.) The vascular apparatus abeve described is filled with a fluid in constant circulation, in which may be perceived innumerable reund coleurless globulcs. The ceurse of the current is directed from the inferior vascular ring threugh the eight superficial canals situated beneath the ciliated ribs tewards the summit of the body, whence it subsequently descends in a centrary direction through the two deepseated trunks above described into the annular vessel, thus cempleting the circulatery round. The movement of the circulating fluid is telerably rapid ; nevertheless ne traces appear of any central organ of impulsion, neither de the vessels exlibit the slightest contractility ; in seme of the larger trunks, however, the presence ef cilia is distinctly perceptible, by the agency of which the circulatory current is produced.

[^41](232.) From the rescarches of Milne-Edwards, it appears that the vascular system of the Beroefform Acalephs communicates with the exterior by means of emunctory eanals analogous to the anal tubes situated on the margin of the disk in Cyanea aurita, described above.

In Beroë Forskahlii, Milne-Edwards was enablod to assure himself of the existence of two such outlets. When the animal is fully extended, it frequently occurs that a little ampulla suddenly makes its appearanee on one side or the other of the terminal fossa, whieh, quiekly inereasing

Fig. 71.

Beroë Forskahlii.
in size, exhibits in its interior movements of rapid rotation; then, suddenly opening at its summit, it diseharges its contents and immediately disappears, leaving no traces of its exeretory function exeept a minute pore, whieh is easily distinguishable. These excretory ampullæ communieate with the gastric cavity that forms the eentral rescrvoir of the vascular apparatus, and are evidently emunctories through whieh feculent matters are expelled.
(233.) The body of the Beroës has generally been deseribed as having the form of a bag open at both ends-a mistako which is explicable from tho eireumstance that, when the animal is not eomplotely unfolded, its superior extremity is retraeted and puekered up in such a mamer as to give the appoarance of a wide orifiee plaeod opposite to that whieh
occupics the inferior extremity: this appearance, however, is deceptire; for if one of these Acalephs is carefully examined while swimming freely in its native element, it becomos crident that the supposed uppor orifice is only a decp cavity the bottom of which is furnished with a delicate contractile arborescent fringe, in the centre of which is situated a little pyriform papilla, regarded as constituting an ocular apparatus.
(234.) This oculiform speck, which is situated immediately in the axis of the body, presents, at its base, a globular spot of a red colour and granular appearance, in which are contained numcrous minute crystalline corpuscles. The whole apparatus is immediately connected with a minute rounded mass, apparently of a ganglionic character, from which, in some genera, filaments are distinctly seen to issuc.
(235.) In Lesueuria, for example, on carefully examining the bottom of the wide excavation that exists at the anterior cxtremity of the eggshaped animal, four mammillated processos are apparent, each occupying the median line of one of the four principal lobes; and in the midst of these is seen an oculiform tubcrelc, situated precisely in the axis of the body, which is remarkable for its bright red colour. It is of a spherical shape, and presents a granular surface similar to that of the brilliant red spots distributed around the margin of the disk in the Medusæ, which Ehrenborg designates the eyes. Immediately beneath the oculiform spot is situated a subpyriform body, which is apparently of a ganglionic nature : its substance is more opaque than that of the neighbouring tissues; and from it procced a great number of filaments, apparently of a nervous character. These form four fasciculi, which run obliquely downwards towards the inferior and external margin of the principal lobes of the body : some very delicate filaments appear to terminate near the basc of the accessory lobes ; but the greater number are continued as far as the row of filiform appendages situated near the margins of the principal lobes, many of them apparently giving off ramifications in thcir coursc. Moreover, besides the above, a small longitudinal filament may be traced along the middle of each of the ciliatec zones, which gives origin to a multitude of little filamonts that are distributed in a very regular manner, in fasciculi, benoath cach of the little transverse ridges whereupon the vibratile fringes are attached, as well as to the mid spaces intervening between them : it would even seem that there is a little ganglion at the origin of each of these ciliary branchos; but whether this be the ease or not is doubtful. At the upper extremity of the body, the vertical or ciliary filaments are prolongod beyond the ciliated ridges, and, becoming united in pairs, run towards the central ganglion situated beneath the oculiform spot, with which, in all probability, they communicate.
(236.) From the above description it will be cvident that the nervous system of Lesueuria differs widely in its arrangemont from that supposed
by Dr. Grant to oxist in Cydippe*, resembling more the arrangement of tho norves in the Tunicated Mollusca, with which the Beroïdx present many natural affinitics.
(237.) The arrangement of the generative system in the Beroëform Acalephr is very imperfcctly understood. N. Delle Chiaje \dagger states that, upon the inner surface of each of tho eight ciliated ribs, there is discoverable a longitudinal oviduct, to both sides of which "are appended bunches of ovulcs, -an observation tho accuracy of which is doubted by Milne-Edwards, who finds, indeed, on each side of the ciliated bands a multitude of little racemose bunches, of a rose colour, having the appearanco of ovaria, but to whom it seemed that these bunches were contained in the substanco of the walls of the body, and were simply dilatations of the lining membranes of the subciliary vascular canals, which, instead of communicating with a common oviduct, opened into the vessels themselves.
(238.) From the rosearches of Will \ddagger, it would appear that these Acalephs are hormaphroditc, the generative apparatus consisting of elongated utricles, the testes bcing situated on onc side and the ovaria on the other. Both sets of organs are described as having a nodulated appearance ; and from the nodulated part of each passes off an excretory duct, which runs towards the mouth ; but the terminal openings of these canals have not been madc out. The ombryo, however, is ascertained to be developed from an ovum, and, after the usual segmentation of the yolk, appears rudcly cylindrical in its shape, with a belt of cilia

Fig. 72.

passing round the middle of its body. This soon breaks up into two lateral groups, which eventually disappear altogether, giving place to the

[^42]cight ctenophoral ciliated bands. The tentacles are at first destitute of lateral fringes.
(239.) The Ccstum Veneris (fig. 72) is nearly allied to tho Beroë in the arrangement of its nutritive apparatus, notwithstanding the difference of form. In Cestum, the digestive eavity, which is exceedingly short in comparison with the length of the animal, passes transversely across the body in a straight line from one side to the other, as represonted in the engraving; but the details of its structure, and the nature of the vessels arising from it, will be best understood by a reference to the enlarged diagram of these parts given in the next figure (fig. 73). The mouth, i, is a rhomboidal depression, seen near the centre of the body, between the two lateral rows of locomotive cilia, which extend from one end of the animal to the other. From the mouth procced two tubes, $j j$, which terminate in a globular carity common to both (these would seem to constitute the digestive apparatus) ; and a straight narrow tube, 0 , prolonged to the opposite margin of the body to that which the mouth occupies, may be regarded as an intestine through which the residue of digestion is discharged. From around the oral extremity of the stomach, and from the globular cavity in which the two prineipal canals terminate, arise vessels, $t t$, which diverge so as to form a cone, at the base of whioh they all empty themselves into two circular canals, one surrounding the mouth, and the other encircling the anal aperture, which precisely correspond to the vascular rings already described in the Beroë; and, from these, four long vessels, or branchial arteries as they might be termed, $p p, q q$, are prolonged bencath the four ciliated margins all around the body. But besides these four nutritive ressels, two others, $x x$, arise from the anal ring, which run inwards towards the centre of the animal, and, afterwards assuming a longitudinal dircetion, serve to distribute nourishment to the median portions of the animal. The eæea, or blind tubes, $n n$, appended to the intestine, may possibly furnish some sceretion uscful in digestion, although perhaps we are scarcely warranted in saying decidedly that they are biliary organs*.
(240.) If a living Medusa be placed in a large vessel of fresh seawater, it will be found to secrete an abundant quantity of glairy matter, which, exuding from the surface of its body, becomes diffused through

[^43]tho olement around it so copiously that it is difficult to conceivo whence materials can be derived from which it ean be claborated. Of the origin of this fluid wo aro ignorant, although eertain glandular-looking: granules, contained in tho folds of the pedicle, have been looked upon as conneeted with its production.
(241.) Perhaps tho most remarkable property of the Medusæ is their phosphorescence, to which the luminosity of tho occan (an appearance especially beautiful in warm climates) is principally due. We have more than once witnessed this phenomenon in the Mediterranean; and the contemplation of it is well ealeulated to impress the mind with a eonsciousness of the profusion of living boings existing around us. The light is not constant, but only emitted when agitation of any kind disturbs the microseopie Medusæ which crowd the surface of the occan : a passing breeze, as it sweeps over the tranquil bosom of the sea, will call from the waves a flash of brillianey which may be traced for miles; the wake of a ship is marked by a long track of splendour; the oars of your boat are raised dripping with living diamonds; and if a little of the water be taken up in the palm of the hand and slightly agitated, luminous points are perceptibly diffused through it, whieh emanate from innumerable little Acalcphæ, scarcely perceptible without the assistance of a microscope. All, however, are not equally minute : the Beroës, in which the eilia would seem to be most vividly phosphorescent, are of considerable size ; the Cestum Veneris, as it glides rapidly along, has the appearanee of an undulating riband of flame several feet in length; and many of the larger Pulmonigrade forms shine with such dazzling brightness that they have been described by navigators as resembling "whitehot shot," visiblo at some depth beneath the surface. This luminousness is probably dependent upon some phosphorescent secretion ; but its nature and origin are quite unknown.

CHAPTER VI.

ANTHOZOA.

Actinozon (Huxley).
(242.) Ir is not surprising that many members of the extensive elass upon a consideration of whieh we are now entering should have been regarded by the earlier naturalists as belonging to the vegetable kingdom, with which, in their outward appearanee at least, numerous speeies have many characters in common.

Fixed in large arborescent masses to the roeks of tropical seas, or, in our climate, attaehod to shells or other submarine substanees, they throw out their ramifications in a thousand plant-like forms. Inerusting the bottom of the oeean with caleareous earth soparated from the water
which bathes them, they silently build up reefs and shoals, justly dreaded by the navigator, and sometimes giving origin, as they rise to the surface of tho sea, to islands which the lapse of ages clothes with luxuriant verdure and peoples with appropriate inhabitants.
(243.) Among their varied skeletons, usually known by the general tcrms Madrepores, Corallines, \&c., and which, from the beauty of their structure, form the ornaments of our cabinets, few are moro common than those denominated Fungice and Meandrince-animals belonging to the group Madrephyllcea of systematic zoologists.

These masses present upon their upper surfaco thin plates or laminx of calcareous matter (fig. 74), variously disposed in different specics, but in the Fungia agariciformis, which we have selected as an example, radiating from a common centre and forming a circular mass (corallum) resembling a mushroom. When living in its native element, every part of the surface of this stony skeleton was incrusted with a layer of animal jelly, dipping down into the interstices of the plates, and covering the whole framework. In the figure, the darker portion indicates the living crust ; while from the lighter parts it has been removed, to show the stony skeleton itself. There are no arms or moving parts adapted to the prehension of food, and no separation of organs for the performanco

Fungia agariciformis. The lighter parts show the de-
Fungia agariciformis. The lighter parts show the de-
nuded lamellæ of the corallum; the darker portion is intended to represent them as they appear when invested with the living gelatinous flesh. of the vital functions; the thin membranous film apparently absorbs the materials of its support from the water of the ocean, and deposits within its substance the calcareous particles it secretes, moulding them into the form peculiar to its skeloton, which it gradually cnlarges as its own extent increases.
(244.) The gelatinous investment, however, gives certain dubious indications of vitality, and possesses a power of contraction so as to retire between the laminæ of its skeleton when roughly handled, and thus concoal itself from injury. Upon the surface of the soft crust are scen n number of vesicles (indicated in the figure) which have beon regarded as rudimentary tentacula, from the circumstance of their being able to contract and vary their dimensions; recent observatious, however, lead to the belief that they are cavitics filled with air, sorving an important purpose in the conomy of the creature-namely, that of
preventing it from boing turned upside down by tho occasional agitation of tho ocoan. Theso air-vessels may thereforo bo looked upon as floats, which, rendering the upper surfaco more buoyant than the inferior, materially assist in preventing such an accident.
(245.) The reproduction of Fungia is effected by the development of sprouts or gemmæ which pullulate from the animal substance as buds issue from tho plant, and remain for some time fixed to the parent by a species of foot-stalk, which sustains them until they have attained to a considerable sizc-the young Fungiæ being upwards of an inch in diameter before they become detached. When mature, they separate from the top of the stony peduncle which hitherto supported them; and at this time the skeleton of the young Fungia, when divested of its fleshy part, shows a circular opening bencath, through which the radiating plates of the upper surface are visible. In a short time a deposit of calcareous matter takes place, which cicatrizes the opening, the marks of which, however, can be traced for a considerable period.
(246.) In the earliest period of its development, the foot-stalk by which the young is united to the parent, as well as its radiating disk, is entirely enveloped with the soft parts of the animal ; but as the upper portion spreads, and assumes its characteristic form, the pedicle is left naked and the gelatinous coating extends only to the line wherc the separation afterwards takes place.
(247.) It is generally supposed that the calcareous matter forming the skeleton of these madrepores is perfectly external to the living crust that sccretes it, and accordingly is absolutely extra-vital and removed from the future influence of the animal. Such a supposition, however, is at variance with the facts abovo stated, and incompatible with many circumstances connected with the history of the lithophytous polyps. On trying to detach the soft envelope from the surface of the skeleton, the firmness of their adherenco would render such a want of connexion improbable-they appear to be, as it were, incorporated with each other ; and, moreover, the separation of the Fungia from the peduncle whereby it was joined to the parent Fungia during its earlier growth necessarily supposes a power of removing the calcareous particles after their deposition. It is therefore demonstrable that the carthy matter secreted by the polyp is deposited in the tissue of its substanco, and still romains, in a greator or less degree, subject to absorption and removal ; of this, howover, we shall have fuller evidence hereafter.
(248.) Nearly allied to the Fungix are the beautiful struotures known as Meandrince, or "brain-stones" (fig. 75), beautiful domo-like structures which, in the full huxuriance of their growth, may attain a diameter of ten or even twenty feet. Tho skeleton of Meandrina is a ponderous homisphorical stony mass, tho periphery of which is decply grooved with large and flexuous sinuosities containing innumerable rertical
plates, and somewhat resembling in their eurvatures the eonvolutions of the human brain.

While in a living state, the entire convex aspect of the mass is covered with a living semigelatinous crust, resembling in its texture that which invests the laminæ of a reeent Fungia, and endowed with similar powers. On making a scetion of the stony skeleton (Corallum) as represented in the figure, the manner

Fig. 75.

Meandrina cerebriformis. in which it has been constructed is at onee manifest. Originally the young Meandrina eovered only the minute nueleus forming the centre of the base ; but as the living crust went on extending and developing itself by depositing in its own substanee aceumulating concentrie layers of stony material, gradually the admirable fabrie expanded, presenting. throughout the same structure as that which marks its periphery.
(249.) Cortical compound Anthozon.-The compound polyps consist of a mass of gelatinous matter which indieates, by its power of eontraetion upon the applieation of stimuli, a degree of sensation, and of a great number of polyps, or flower-like mouths, which spring from the surface of the common body, and are individually eapable of seizing and digesting prey, the nutriment thus gained being appropriated to the nourishment of the general mass.
(250.) Although essentially similar in their habits, the eompound polyps present various modifications of strueture, which naturally causes them to be grouped in distinct families. Sometimes the central common mass is entirely soft and gelatinous, its surfaee being eovered with minute cells in which the polyps are lodged: such are the Alcyonidce. Sometimes the common body secretes large quantities of ealearcous matter in the same manner as the Fungia, which, being deposited in its interior, forms arboreseent masses, presenting upon their surface multitudes of cells, generally distinguishable after the removal of the outer crust, in each of which when alive a polyp was lodged: these form the family of Madreporide. The eentral axis is not unfrequently quite solid and smooth upon the surface, offering no eclls for the lodgment of the polyps-being either composed of hard and dense ealeareous substance, or else flexible and horny in its texture: such are the Corallicte, or family of corals, properly so called. The internal eentral axis is morcover, in another family, composed of sereral pieces united together by
the living crust that sccretes thom; and being frec and unattached, such forms are probably able to change their position at pleasure : tleese constitute tho family of Pennatulida, or swimming polyps. They are, however, all mercly modifications of the same general type of structure, although differing in certain minor points of their organization, so as to ronder an examination of cach form needful for our purposc.
(251.) Aucyonid.x.-This family includes several genera, known by the names of Alcyonium, Lobularia, Cydonium, \&c., bcing charactcrized, by having no solid axis developed in the interior of the common body. The Cydonium Mülleri (fig. 76) will give the reader a good idea of the general appearance of one of thesc compound animals. The central mass, or polypary, is entirely soft, being of a gclatinous or, rather, subcartilaginous texture. Upon cutting into it, it is found to be intersected by tough fibrous bands, and not unfrequently contains calcarcous spicula dispersed through its substance: no muscular fibre or nervous matter has evcr been detected in its composition, and its interior is permeated by numerous wide canals variously disposed.
(252.) Few objects exhibit to the naturalist a more beautiful spectacle than the compound animals of which we are speaking. When found upon the shore contracted and deformed, it would be difficult to imagine that they were really organized beings, much lcss possessed of any elaborate conformation ; yet on placing one of them in a tumbler of sea-water and watching it attentively, its true nature is gradually revealed: the central mass expands in all directions, exhibiting the cells upon its surface, from which in time the countless flower-like polyps are protruded, which, stretching out their arms in all directions, wait for the approach of prey. A scene like this naturally lcads us to inquire concerning some points of physiology conneoted with their economy; and several questions obtrude thomselves upon us, which, as they are applicable

Fig. 76.

Cydonium Mïlleri, fully expanded. to the whole group of compound polyps, may be well discussod in this place.
(253.) That thero is a community of nutrition-or, in other words, that food taken and digestod by tho individual polyps is appropriated to tho support of tho gonoral body-is gonerally ndmitted ; but is there a
community of sensation, so as to rendor the entire mass one animal, capable of consentaucous movements? or is each polyp independent of the rest in its sensations and actions? Upon this there are different opinions,-some regarding the wholo as a single animal, each part being in communication with the rest, and thus participating in the feelings and movements of the others, whilst some consider every polyp a distinct creature, independent of the rest. The solution of this problem is a matter of some difficulty ; but there are several facts which may in a measure enlighten us upon the subject. From the absolute want of nervous filaments which might bring into communication distant portions of the body, we might, theoretically, deny the possibility of any combination of actions ; and experiment teaches us that the assumption is correct.
(254.) If, when one of these animals is fully expanded, transparent, and soft, any point of its surface be rudely touched, the whole animal does not immediately shrink, but only the point where the irritation was applied appears to feel the impression ; this part shortly becomes more dense, opaque, and a depression is seen gradually to appear. If the shock be severe, and extensively diffused, the contraction slowly extends to the whole mass : the most violent local injury, indeed, seems to be totally unperceived at remote parts of the body; whilst a general shock, such as striking the vessel which contains the expanded polyp, produces a simultaneous contraction of the whole*. The polyps, however, exhibit much greater irritability than, and their movements, from their rapidity, form a striking contrast to the languid contractions of, the central portion: but that they have a community of life appears improbable; they seem to act quite independenly of each other : when one is touched, and suddenly retracts itself within its
 cell, it is true that those in the vicinity will likewise not unfrequently retire ; but this circumstance may be accounted for by the sudden movement of their neighbour ; for as the polyps are closely contiguous to each other, there is no cause for urging a community of substance to explain it \dagger.
(255.) It has been observed by Milne-Edwards + , in Alcyonidium

[^44]+ Quoy et Gaimard, Zoologio du Voyage de l'Uranie. Paris, 1834.
\& Mémoire sur un nouveau genro de la famille des Alcyoniens (genve Alcyonide). Ann. des Se. Nat. 1835.
(fig. TS) - a genus of Alcyonian zoophytes remarkable from the circumstance that its polypary, or common body, consists of two portions of very different consistence, the uppor part or trunk (c) being quite soft and flexible, while the lower portion or foot (b), by whichit is attached, is of a hard and solid texture,- that although under ordinary circumstances tho movements of the individual polyps are quite independent of the rest, a simultancous contraction of the whole may be excited by irritating the common trunk, and that to such an extent that, if the stimulation be excessive, the whole of the soft portion of the polypary is retracted into a coriaccous sheath afforded by the foot.
(256.) On making a longitudinal scction of one of the expanded polyps (fig. 79,1), the main features of this anatomy become at once recognizable. The alimentary canal (c) is seen to be a cylindriform carity with membranous walls, occupying the axis of tho upper portion of the body, and extending from the mouth (b) to about the middle of the free

Fig. 78.

Alcyonidium elegans (after Milne-Edwards, Ann. des Sc. Nat. 1835, pl. 12. fig. 1). a, foreign body to which the polyp is attached; b, the hard portion, or coriaceous foot; c, the trunk, or mennbranous portion of the polypary; d, polypiferous ramifleations of ditto; c, the soft parts of the trunk completely retracted into the coriaceous stem ; f, yellow specks indicating the ora contained in the lower portion of the polypary.
portion of the protruded polyp, where it terminates by a distinct orifice (d). Internally, tho digestivo sacculus presents eight longitudinal lines, and a multitude of minute transverse folds. Its inforior termination becomes suddenly contracted, as though the terminal orifice were clused by a sphincter muscle, and communicates with the wide abdominal cavity (e) that occupies tho entire diameter of the lower portion of the
polyp, and is prolonged inferiorly into the common body of the polypary. The calibre of tho digestive tube is much smaller than that of the animal in the centre of which it is suspended; nevertheless it is firmly connected with the parictes of the polyp by the intervention of eight delicate membranous lamellæ derived from its outer surface (fig. 79, $1 \& 2, f^{\prime}$) and cxtcuding along its whole length. The position of these septa corresponds with the intertentacular spaces; and as by their upper extremities they are united to the peristomal disk, they form the walls of cight longitudinal canals which are uninterruptedly continuous with the caritics of the corresponding tentacula (fig. 79, 1,9). These last-mentioned appendages are completely hollow, and moreover present on each side of their internal cavity a series of ten or twelve minute apertures (fig. $79, g^{\prime}$) leading into the marginal pinnules, that are of similar structure.
(257.) Inferiorly, the cight longitudinal intersoptal canals communi-

Fig. 79.

Abstract

Anatomy of Alcyonidiun elegans (ufter Milme-Edwards), 1. A polyp opened longitudimully to Ghow its internal organization : α, the tentacula; b, mouth ; c, alimentury caual; d, inferior opening of ditto; e, nupper portion of the abdominal cavity; f, longitudinal septa passing between the parietes of the body and the walls of the digestive cavity; $f^{\prime \prime}$, continuution of the same into the abdominal cavity; g, canals formed between the septa, which are continuons with the interior of the tentaculn ; g^{\prime}, one of the tentacles opened, showing the holes by which its onvity communicates with those of tire marginal pinnules; h, minute spicula situated at the base of the tertacles; k, fliform appendages to the alimentary tulue. 2. Transserse section, showing the manner in which the fongitudimal pticee are connected with the alimentary tube. 3. Section through the basilar portion of the polypary.

cate freely with the great abdominal eavity (e), and the vertical partitions whereby they are separated become continnous with the longitudinal folds $\left(f^{\prime}\right)$ visible in its interior. The longitudinal plico are
apparently of the same structure as the vertical septa of which they are the continuations, only they aro narrower, and, their inner margin being free, they hang looscly in the abdomen of the polyp. On closer inspection they seem to be made up of two extremely thin membranous layers folded upon each other and continuous with the internal tunic that lines the parietes of the body. At the point of continuity the two laminæ become slightly separated, so as to leave a little canal at the base of each fold; while superiorly, close to the termination of the stomach, there is a remarkable filiform and very flexuous organ (fig. 79, 1, 7c), apparently an appendage to the alimentary cavity.
(258.) As has been stated above, the common polypary in Alcyonidium consists of two portions differing widely from each other in texture, forming the trunk and the foot. By dissection it becomes immediately apparent that the softer portion, named the trunk, is made up of membranous tubes disposed longitudinally parallel to each other, and so closely connected together that it is difficult to separate them. The foot of the polypary is essentially nothing more than a continuation of these same tubes modified in structure : those situated near the centre of the stem have their walls only slightly thickened; but those placed near the periphery acquire a more solid consistence, from having their parietes incrusted with innumerable fusiform spicula composed of carbonate of lime imbedded in a cartilaginous substance; these are arranged longitudinally (fig. 79, 3), and give to the stem its solidity and peculiar aspect. Near the circumferenee of this portion of the polypary longitudinal fibres are perceptible, which appear to be the remains of tubes atrophied by compression (fig. 80, $3, a$).
(259.) The tubes thus united in fasciculi are evidently analogous to the cavities into which the polyps of Alcyons, Corals, \&c., are retracted: these have generally received the name of "polypiferous cells;" and some authors consider them as being quite distinct from the animals inhabiting them : in the zoophyte under consideration, however, a very superficial examination is sufficient to prove that they are really merely continuations of the bodies of the polyps themselves, no line of demarcation being distinguishable between them. It is not, therefore, into polypiferous cells that these little flower-like creatures retire, but become retracted into their own bodies by a species of invagination; and the entire polypary which scems to afford them lodging is nothing but a mass formed by the aggregated tubes of all the polyps belonging to it.
(260.) It appears to be protty generally admitted that among the aggregated polyps nutritivo material swallowed by one individual gocs to the sustenance of tho general community-an opiniou seemingly based upon observations made upon certain Sertularian species: but that a similar community of nutrition exists in tho Alcyonider remained, prior to tho researches of Milne-Edwards, an unsolved question ; neither was any thing known precisely as to the relationship existing between these
aggregated boings ; or even admitting, from analogy, the most intimate union, it was difficult to conceive how nutritive matters were conveyed from one polyp to another, whether by simple imbibition or in any other manncr.
(261.) In order to solve these questions so far as relates to the Aleyonidium under consideration, Milne-Edwards, by means of a small glass tube having its cnd drawn out fine in the flame of a lamp, injected a coloured fluid into the abdominal cavity of one of the polyps, and found that the injcction immediatcly passed into the abdominal cavities of the polyps around; consequently the nutritive substances swallowed by any individual can be distributed among the different members of these remarkable colonies, so that food taken by one may nourish the neighbouring animals.
(262.) On cutting one of these polyps open under a magnifying

Fig. 80.

Anatomy of Alcyonidium elegans (after Milne-Edwards). 1. One of the branches of the polypary opened to show the communicution which exists between the abdominal eavity of the principal polyp and the interior of the young ones sprouting therefrom: the apertures, it will be observed, are always in the traek of the longitudinal ovarian folds. 2. Lower portion of an ovarian fold detached from the walls of the abdominal cavity to show the manner in which the orules or gemma are developed. 3. A portion of the foot, or basilar portion of the polypary: a, membranous tubes; b, spicula incrusting this portion of the polypary. 4. A spiculum mngnifled.
glass, it is easy to explain how this intercommunication is effected : it then becomes apparent that some of the animals, as described above,
torminato in tubular prolungations, whercof the general substance of the polypary seems to be made up; others, howerer, sprouting innmediately from the parieties of the former, have their internal cavity continwous with that of the larger contral polyp, so that a frec communication is kept up between them (fig. 80, 1), the whole forming a sort of ramified tubc, or an animal laving one body and one central stomach, but furnished with many heads and as many mouths.
(263.) The development of these sccondary polyps is cffected by a simple process of gemmation. A tubercle makes its appearance upon tho surface of the primary animal, which looks at first like a little cæcum appended to the integument, having no oral aperture, but communicating freely, by means of its central canal, with the abdominal eavity of its parent. When arrived at a more advanced stage of development, the tentacula makc their appearance and the alimentary canal bccomes distinguishable, so that the young animal soon bccomes an exact representative of the original from which it sprung.
(264.) But herc it is necessary to observe that this kind of regctation does not take place indiscriminatcly from any portion of the tegumentary surface of the polyp. The reproductive gemmæ are only formod immediately over the track of one of the eight longitudinal membranous lamellæ above noticed (fig. 80, 1), so that the apertures of communication between the newly formed polyps and the original are always so placed as to interrupt the course of onc of these folds.
(265.) It is not, howerer, only by the derclopment of buds that the reproduction of the Alcyonidium is effected. These animals likewise produce ovules or gemmulcs adapted to spread to a distance their sedentary race ; and it is worthy of remark that the same organs from which the gemmæ above described dcrive their origin, perform the functions of the ovaria of higher animals.
(266.) It is in the longitudinal membranous folds above described that the reproductive gemmules are developed (fig. S0, 2), which, as they increase in size, become pedunculated, and ultimately fall off into the abdominal cavity, whence they easily cscape through the mouth of the polyp.
(267.) The intestiniform convoluted organs (fig. 79, , 7,) situated bencath the alimentary eavity are, from what has been stated abore, evidently not the ovaria, secing that the ova are formed clscwhere; ncither, from the simplicity of the structure of the reproductive apparatus, can they be regarded as male organs destined to fertilize the ova; so that, upon the whole, it scems most probablo that they represent hepatic vessels.
(268.) When the polyps are expanded, their mouths are frequently scen to dilate and take in the surrounding water, which, tngether with such alimentary substances as may be suspended in it, penetrates into the digestive cansul, and through this passes into the general carity of
tho abdomen, whence again it mounts up into the tentacula through the cight canals that surround the alimentary tubc. It results from this arrangement, that the thin and variously folded membrane composing the bodies of these animals is bathed throughout with the water required for respiration, and that all its internal surface is placed in contact with the uutritive matters more or less elaborated in the stomach.
(269.) On seeing the same animal producing sometimes buds or gemmre, and sometimes ova, Milne-Edwards was led to inquire into the cause of this difference, which he believes to be of a mechanical nature. In those parts of the polyp which are not yet imprisoned in the growing mass of the polypary, reproduction is generally effected by the development of external buds, while towards the base of the polypary, where the constituent zoophytes are intimately united together by their outer surface, and are surrounded by a sort of sheath, no external buds are formed, but the ovules make their escape into the internal cavity of their parent. Hence the distinguished zoologist whose memoir we quote is led to infer that, on the one hand, the mechanical obstacles to be encountered, and on the other the excitement occasioned by the contact of the surrounding element, determine this difference of procedure, and that the membrane which performs the functions of an ovary produces indifferently either ova or gemmæ, according as it finds less resistance or is more stimulated upon the inside or the outside of the abdominal walls.
(270.) From the above details it becomes easy to explain how a single polyp by its reproductive powers can form the complicated mass of the compound polypary of the Alcyonidæ, as well as the means whereby an organic continuity is established between all the individuals of the community, also how the abdominal cavity of the primitive zoophyte becomes common to all the young ones that sprout from itin short, how the little beings thus united together rather resemble a multiple animal than an assemblage of clistinct individuals. But with the advance of age this intimate union gradually ceases. The communication between the abdominal caritics of the different polyps, whose basal portions reach as far as the foot of the polypary, is first of all interrupted by the ova with which the lower part of these cavities becomes filled (fig. 79, 3) ; and subsequently, by the pressure of the surrounding parts, the wall becomes confused, and all communication between the polyp whose abdominal tube is thus obliterated and the polyp from which it sprung is intcrecpted. The polypary, instead of resembling a tree, all the flowers of which hold together and communicate by common parts, may now be compared to a bouquet made by cutting off the more or less branched twigs of a plant and collecting them in a bundle. The different groups of polyps united in the same polypary become thus independent of the neighbouring groups, and, as may readily be conceived, in time cach polyp can become individualized.
(271.) In the Alcyons properly so called; a vascular system is very distinctly developod; and in Alcyonium stellatum, more especially, M. Milne-Edwards was able to study it with facility. In this species (fig. 81, 1) he was enabled to detect, upon the parietes of the abdominal cavity of the polyp, a variable number of minute apertures irregularly dispersed, which are in immediatc communication with a system of capillary canals that traverse in all directions the spongy portion of the polypary, formed by the extcrnal tunic of its component animals; for in Alcyonium it is very easily seen that while the internal tunic lines the abdominal cavity of the polyp, the external layer, instead of

Fig. 81.

being confounded with the former, as in the protractile portion of the animal, becomes perfectly distinct from it where it begins to enter into the composition of the polypary, at which point its thickness is considerably augmented, its texture spongoid, and in its substance are deposited a number of irregular crystals, composed of carbonate of lime mixed with a little colouring-matter. In the tegumentary mass thus formed the vascular canals ramify, anastomosing freely among themselves, so as to constitute a vascular uctwork. These vessels are formed of very attenuated membrane of a yellowish colour, which is continuous with the internal tunic of the polyps, and is perfectly distinguishable from the dense tissue with which it is surrounded. The distribution of these canals is best displayed by cutting a thin slice of the mass of the Alcyon, and removing the crystals with which it is filled by im-
mersion in some dilute acid; it is then seen that the canals are most numerous and of the largest size towards the extremities of the branches of the polypary, and that they establish frequent communications between the abdominal cavitics of the different polyps of the Alcyon. The fluids with which their bodies are filled must thus necessarily circulate in the entire mass of the polypary; and if each of the polyps has, on the one hand, an individual sensibility and a distinet digestive cavity, on the other there is a vascular system common to them all.
(272.) The Aleyons, like the Alcyonides, are reproduced by ova, which are formed in membranous ovaria of precisely similar construc-tion-and also by gemmæ, which are developed around the preexistent polyps, aud thus augment indefinitely the number of individuals united upon one stalk. There is, however, a very important difference observable between these two genera of zoophytes, in other respects so similar. In the Alcyons the abdominal eavity of the young polyps is not direetly continuous with the abdominal cavity of their parent, and it is only by the intermedium of the vascular system, described above, that they are placed in communieation with each other-a modification which depends upon a difference in the mode of formation of the reproduetive gemmæ. When an Alcyon stock is about to put forth a new branch, the spongy part of the polypary (that portion which is formed by the external tunic of the polyps, and permeated by the vascular network) begins to increase in size at some determinate point of its periphery, and soon produces a tubercle of greater or smaller size, into which the vessels spoken of above are continued, and form numerous anastomoses with each other. At this early period of development the new branch presents no traee of polyps; but its vascular tissue is nevertheless already studded with calcareous crystals, and exactly resembles that situated in other parts of the common mass, between the abdominal cavities of the adult polyps; it must therefore necessarily be traversed by the currents which circulate in the general vascular system. On disseeting one of these newly formed branches, the vestiges of young polyps may be distinguished; and if the sprouts examined are still further adranced, it is easy to distinguish the young animals within, already possessing the form they will afterwards exhibit, but having not yet established a communication with the exterior (fig. 81, 1). At length, however, this communication is effected; the newly formed polyp only differs from the preexisting ones in its small size ; and as it grows, its increase causes the enlargement of the polypary. In this case it is very evident that the part whieh gives birth to the reproductive gemmre is no portion of the individual polyps of the Aleyon, but is common to them all. The gencrative tissuc surrounds these little beings with a sort of living sheath, and produecs in the interior of its own substance new polyps, quite independently of those previously in existence. These polyparics might thercfore be compared to a sort of common ovary, the
produets of which are never eompletely individualized, but remain permanently lodged in its substanee, and minister to the support of its existeneo and the aggrandizement of its tissuc.
(273.) This singular mode of reproduction, M. Milne-Edwards observes, seems at first sight to be very different from that observed in tho Aleyonidium ; but on refleetion a considerable analogy may be traced between them. In Alcyonidium the internal tunie of the abdominal cavity fulfils the funetions of an ovary, and produees at determinate points both gemmæ and ova; in Alcyon, on the contrary, while the internal membranous layer gives birth to ova, the gemmæ are developed elsewhere, from the canals whieh permeate the common mass. But the membrane whieh forms these eanals, and which is the seat of this kind of vegetative reproduetion, is merely a continuation of the internal tunie; and henee it is easy to understand how it may fulfil analogous funetions.
(274.) Madreporids.-Were we to imagine one of the Aleyonidx capable of seereting not merely the ealeareous spieula that are mixed

Fig. 82.

Stony corallum of Madrepore.
up with the softer portions of its body, but abundant quantities of carbonate of lime, whieh, being stored up in the eentre of its substance, should form a dense ealeareous axis incrnsted with the unealeified part of the living animal, and perforated at its surface so as to form innmmerable eells or lodges adapted to contain the polyps that proride nourishment for the eommon mass, wo should have a good general idea
of the structure of the tribe of polyps that next comes beneath our notice (fig. 82).
(275.) The shallower parts of the tropical scas contain countless forms of madrepores, known to us, unfortunately but too often, only by detached fragments of the earthy skcletons which the bcauty of their appearance induces the mariner to bring to our shores. These calcareous masses generally assume more or less an arborescent appcarance, spreading to a considerable extent, so as to cover the bottom of large tracts of the ocean ; and not unfrequently they play an important part in producing geological changes, which are continually witnessed in the regions where they are abundant.
(276.) In the hot climates in which the saxigenous corals abound, they are found to frequent shallow bays and sheltered spots, where they can enjoy the full influenecs of light and air, uncxposed to the agitation of the ocean, which, were it to beat continually upon them, would infallibly destroy their delicate substance: in such situations, the submarine rocks be-

Fig. 83.

One of the Polyp-cells magnified. come gradually incrusted with the calcareous skeletons which they produce ; and if undisturbed, in the lapse of ycars successive generations will of course deposit such large quantitics of calcareous matter as to form beds of considerable thickness. That there are at the bottom of the ocean bold and precipitous cliffs, rising' from a depth of 1000 or 1200 feet, their broad tops approximating to the surface of the ocean, every one will admit, without having recourse to the labours of madrepores to account for their formation, although the sheltered portions of the summits of such moun-tain-ridges afford an eligible position for their increase. In such situations,

Fig. 84.

Living madrepore, representing some of the polyps protruded from their cells. therefore, they accumulate, and slowly deposit continually increasing masses of earth upon the brow of these submarine mountains, until at last the pile approaches the surface of the sea, and even, at low water, remains uncovered by the waves. The further clevation of the rock, as far as the polyps are concerned in its
coustruction, here ccases ; but a variety of causes tend gradually to heap matcrials upon the newly appearing island : storms, which tear up the bottom of the sea, perpetually throw to the surface sand and mud, which becoming entangled among the madrepores, and matted together with sea-weed, form a solid bed over which the waves have no longer any power. The circumforence of the islet is perpetually augmented by the same agency : sea-weeds and vegetable substances, cast upon it, by their decay cover its top with vegetable mould ; and if its proximity to other land permit the united action of winds and currents to bring the germs of vegctation from neighbouring coasts, they take root in the fresh soil, and soon clothe with verdure a domain thus rescued from the ocean.
(277.) Corallide.-The Corallidæ are compound polyps of apparently more perfect organization than those forming the last family. The polypary or central axis, which supports the external or living crust, is solid, without cells, and variously branched-the larger specics resembling shrubs of great beauty, frequently coloured with lovely hues, and studded over their whole surface with living flowers; for such the polyps which nourish them were long considered even by scientific observers. The central stem of these zoophytes differs mueh in its composition in different families, sometimes being of stony hardness ; in other cases it is soft and flexible, resembling horn; and not unfrequently it is formed of both kinds of matcrial ; it is, however, always produced by the living cortex, which secretes it in concentric layers, the external being the last deposited.
(278.) The example which we shall solect for special description is the coral of commerce, Corallium rubrum (fig. 85), from which we derive the material so much prized in the manu-

Fig. 85.

A portion of Red Coral (Corallium rubrum) showing the living cortex and expanded polyps. facture of ornaments.
(279.) The red coral is prineipally obtained in the Mediterranean. When growing at the bottom of the sea, it consists of small branched stems, incrusted with a soft living investment of a brilliant red colour, by whieh the central axis is secreted, and studded at intervals with snowwhite polyps possessing eight fringed arms, and capable of being contraeted into eells contained in the fleshy covering, but not penetrating the
stem itself. The skeleton or polypary of the eoral is of extreme lardness, and suseeptible of a high polish-a eireumstanee to whieh the estimation in whieh it is held is prineipally owing. But in other genera of this family, the eentral axis, instead of being construeted of ealeareous matter, is formed of eonerete albumen, and resembles horn both in appearance and flexibility; sueh are the Gorgoniæ of the Indian Ocean. In the Isis hippuris (fig. 86, в) the central axis is alternately eomposed of both these substances, exhibiting ealeareous masses united at intervals by a flexible material, allowing the stem to bend freely in every direetion. The objeet of such diversity in the texture of the polypary of the Corallidæ will be at onee apparent when we consider the habits of the different speeies. The short and stunted trunks of Corallium, eomposed of hard and brittle substance, are strong enough to resist the injuries to whieh they are exposed; but in the tall and slender stems of Gorgonia and Isis, sueh brittleness would render them quite inadequate to oceupy the situations in which they are found, and the weight of the waves falling upon their branehes would eontinually break in pieees and destroy them; this simple modifieation, therefore, of the nature of the

A, transverse section of Gorgonia verrucosa. B, longitudinal section of Isis hippuris, exhibiting the skeleton and fleshy crust. seeretions with whieh they build up the skeleton that supports them allows them to bend undor the passing waves, and seeures them from otherwise inevitable destruetion.
(280.) Upon making a transverse seetion of one of these polyparies (fig. $86, \mathrm{~A}$), the solid axis is distinetly seen to bo made up of layers arranged in a somewhat undulating manner around the eentre, and suecessively deposited by the living eortex : the growth of the stem, in the harder speeies at least, is very slow, and several years aro neeessary to its maturity,-a cireumstanee whieh has rendered it needful to impose striet laws forbidding the Mediterranean eoral-fishers to disturb too frequently the same localities, whieh are only visited at stated periods.
(281.) The deposition of solid matter in the soft bodies of these polyps is not confined to the produetion of the central stem, but in many oren
of the Keratophyta* cretaceous partieles are extensively diffinsed through the cortex, which not unfrequently is likewise gorgeously coloured. In

Fig. 87.

Portion of Isis hippuris from a dried specimen, a few of the branches partially corered with the coloured cortex.
the Gorgonir, a section of one of which (Gorgonia verrucosa) is represented in fig. 86,4 , the carthy matter in the crust is so abundant, that cven when dried it will retain in some measure its natural form and exhibit the tints peculiar to the species.
(282.) The structure of the individual polyps of the Corallidæ resembles that of one of the polyps of the Aleyonidæ already described; and the prey obtained by each goes to the support of the general mass. The living cortex is traversed throughout by vascular tubes: some very regularly disposed and relativcly of large size, form a dcep layer of parallel tubes situated close to the axis or eontral stem ; the others, of smallor size and very irregularly disposed, form an irregular uctwork in the substance of the cortex: these sets of vessels are connected by numorous anastomoses. The mutritive fluids, after claboration by the polyps, pass through the irregular nctwork and are convejed into the larger deep-seated parallel tubes : the nutrientfluid contained in these tubes rescmbles milk so much that it is known by the name of corcelmill. There is no aquifcrous system. Sometimes a given colony con-

[^45]sists of males only, or females only; sometimes individuals of the same colony aro some of them males and somo females; and in the latter case one branch may bear male, and another female polyps. Sometimes the same polyp may bo of both sexes, presenting a true hermaphroditism.
(2S3.) The generative organs are situated in the general cavity of the body, and more especirlly in the vicinity of the intestiniform folds, towards the lower part of which are packets of more or less prominent corpuscles, which are pedunculated, and soon reveal themselves either to be ora or testes. Reproduction takes place in spring and summer, but not in winter.
(2S4.) On cutting a polyp longitudinally, it is easy to see floating in its general cavity little bodies, which are the testes, suspended by slender filaments derived from the lamellar septa; these testicular masses are ovoid or spherical, reniform or triangular, of a white colour, and somewhat transparent. Thcir number varies with the season, being large and numerous during the breeding-time, sometimes filling up the somatic cavity; they appear to be developed in succession, and do not all arrive at maturity simultaneously. Each testicle is a capsulc, consisting of a distinct wall containing a cloudy fluid of a bluish tint, resembling mucilage, in which are suspended spermatogenous cells and free spermatozoa, which appear very active under the microscope.
(285.) The ova are very numerous: they arise near the intestiniform organs contained in the margin of tho septa, to which they are attached by short peduncles. The ova present the usual structure, consisting of an outer envelope (the vitelline membrane), a plastic fluid containing numerous granules, a yelk (vitellus), and a transparent vesicle, in which is seen the germinal spot.
(286.) At the moment of focundation the male polyps pour from their mouths a whitish fluid, which sinks gradually in the surrounding water, forming a whitish cloud that becomes more and more inconspicuous as it extends : if a little is collected and examined under the microscope, it is found to swarm with spermatozooids; nothing therefore is more easy than for this impregnating cloud to deseend among the female polyps, which in this manner become impregnated.

The impregnation of the ova takes place not only in the somatic cavity of the female polyps, but in the ovary itself, as eggs may be found still suspended by their pediclos that have become fertilized.
(287.) It is impossible to determine exactly the duration of gestation in the coral polyps, as it is unknown at what period the ova break loose and commence their cvolution ; there is, however, reason to suppose that it is about a month. Even when well developed, the larver are retained for some time in the somatic eavity of the female parent.
(288.) It is through the mouth of tho mother that the larver are discharged, not, as Cavolini supposed, through any special orifice. The larva at the period of their escape resemble minute maggots covered all over with
cilia, with which they swim freoly through the water in scareh of a rest-ing-plaee where to settle down and begin the foundation of a nerr colony.
(289.) Pennatulide.-This family belongs likewise to the division of cortical polyps, and agrees with the last two in most points, the principal distinction consisting in the character of the internal axis whieh supports the body. In some species this part is reduced to a ligamentous mass, interspersed with caleareous granules; but in the most typieal forms the skeleton consists of several pieces, eapable of moving upon eaeh other. The whole animal in such cases resembles a feather, the stem supporting lateral branehes, upon whieh the polyps are arranged. From the eircumstanee of these compound animals being unattaehed to any foreign support, they have been supposed to be capable of swimming at large in the sea by the voluntary movements of their articulated branehes-a fact strongly eontested by many modern zoologists ; but as we can say nothing from our own observation upon this subject, we must leave

Fig. 88.

Pennatula. the question open for future investigation. Many speeics are eminently phosphorie.
(290.) Tubiporida.- We have now to speak of a group of polyps very different in their construetion from those whieh have been deseribed. Instead of incrusting an internal solid skeleton, the Tubiporidæ are enelosed in a caleareous sheath or tube, from the orifice of whieh the polyp is protruded when in seareh of prey.
(291.) The Tubipora musica (fig. 89) is the spccies whieh has been most carefully studied ; and the dctails conneeted with its organization will bo found of importance, as affording a elue to the investigation of other forms. The Tubiporæ live in society, but do not appear to be organieally united as the eompound polyps are. A colony of those animals presents several stages of tubes, placed ono abovo another (fig. 89): the tubes are generally straight, and nearly parallel to cach other, but appear slightly to divorge as if radiating from a eommon centre ; they
are separated by considerable intervals, and reciprocally support cach other by horizontal laminæ of tho samo substanco as the tubes themselves, which unite them. From each tubo a polyp is protruded, of a brilliant grassgreen colour, sometimes of a lilac or rose tint, the mouth being surrounded by eight tentacles, which arc furnished along their edges with two or three rows of minute fleshy papillæ.
(292.) The visceral cavity is long, tubular, and contains eight fleshy lamellæ (fig. $90,1, e$). These lamellæ aid, by their muscles, both in the contraction and expansion of the polyp. The stomach is very short compared with the whole length of the visceral cavity, and, as in the Alcyonium figured above, is comnected with the sides of the cavity by the visccral lamellæ.

Six of these lamellæ, in a specimen

Fig. 89.
 examined by Dana, were spermatic, being bordered bclow by a white convoluted cord, while the other two gave origin to large clusters of milkwhite orules, which occupied nearly the whole diameter of the cavity. These ovules were of various sizes, and spherical in shape, or nearly so. Some observers have found all the lamellæ bordercd with white filaments ; and others describe them as all bearing clusters of ovules. In these instances it would seem that the sexes are distinct, in one case the animal being male, in the other femalc. The ovules have been seen to escape by the mouth ; and this therefore appcars to be the general mode of parturition in all the Actinoid polyps.
(293.) At the point where the ovigerous lamellæ reach the tentacles a membrane is observable (fig. $90,2, d$), which assumes the shape of a funnel when the animal retires into its shell; and at the open end of the funnel the membrane is scen to fold outwards and become continuous with the calcareous tube (fig. $90,1, b$); its inner surface, indeed, is prolonged under the form of a thin pellicle over all that part of the interior of the tube which is inhabited by the polyp, terminating at a kind of diaphragm composed of the same hard substance as the tube itself. The remains of these diaphragms are found in the interior of old tubes at various distances from each other (fig. 91, 3, e, e).
(294.) The funnel-shaped membrane does not terminate suddenly at its point of junction with tho caleareous tube; the latter, indeod, is a continuation and product of the first, the calcareous substance being evidently deposited in this gelatinous membrane in the same manner as phosphate of lime is deposited in the bones of very young
animals, changing its soft texture into hard, solid substance. The manner thereforo in whieh the tube is formed eannot be compared to the mode of formation of the shells of mollusca: in the latter case it is a secretion from the skin, an epidermic produet; but in these polyparies there is a real ehange of soft into solid substance, which is effeeted gradually, not being deposited in layers.
(295.) When the tube has acquired a certain height, the animal forms the caleareous horizontal plate whieh unites it to those around: the still membranous upper part of the tube extends itself horizontally outwards around the aperture (fig. 90, 2, b), doubling itself so as to form a circular fold. This part of the membrane is no longer irritable; its contiguous surfaces unite, so as not to interrupt the continuity of the tube; earbonate of lime is gradually deposited within it; and soon a prominent partition, composed of two

Fig. 90.

Anatomy of Tubipora. 1. a, Polyp partially expanded; b, flexible extremity of the tube; e, ovigerous lamellæ; f, calcarcous portion of the tube. 2. b, Expanded extremity of the tube still uncalcified; c, polyp retracted; d, inflected membrane embracing the neek of the polyp. 3. Orarian lamina detached. 4. Development of young: a, horizontal stage; b, c, growing offspring. lamellæ, soldcred together through almost their entire extent, surrounds the tubular ccll. Generally many polyps of the same polypary form these partitions at the same time and upon the same planc. In this case the gelatinous margins of the folded mombrane unite, no space is left ; and they ultimatcly become most intimately soldered together, so as to form the suecessive planes or stages (fig. 89). If the animal is quite insulated, tho horizontal eollar is still formed, and it then assumes somewhat of an octagonal spape. The tube-forming membrane exhibits no appearance of vessels or other traces of organization.
(296.) When the polyp is withdrawn within its eell, its tentacles form a cylindrical fascieulus (fig. 91, $1, d$), the papille whiel partially cover them being laid upon each other (like the leaflets of some Mimoses) when asleep.
(297.) The protrusion of the ereature from its tube is aecomplished by the contraction of the membrano, b, inscried into its neek.
(298.) The germs, during the first period of their devclopment, have no organs distinguishable, not even the rudiment of a tube ; each appears to consist of a simple gelatinous membrane folded upon itself (fig. $90,4, c$), and forming upon the stage upon which it is fixed a little tubercle resembling a small Zounthus or other naked zoophyte. This tubercle gradually elongates, and assumes the form of a polyp, provided with all its organs; but the sac which encloses it is still gelatinous at its upper part and membranous near the base (fig. $90,4, \mathrm{~b}$), where it gradnally diminishes in thickness, and, becoming calcareous, gives to the amimal the general appearance of its original.
(299.) An extensive and important group of the Anthozod, from the fibrous character which the substance of their bodies assumes, have

Fig. 91.

Tubipora musica (after Quoy and Gaimard). 1. a b, inversion of the tube, whereby the protrusion of the polyp is effected; d, polyp; c, communiention between the stomach of the polyp and the general cavity of the body; f, horizontal plate which, by uniting with those of the neighbouring polyps, forms the horizontal stage. 2. Polyp protruded from its cell, slowing the structure of the tentacula. 3. Dissection of an isolated polyp: a, membrane refleeted from around the mouth of the tube; b, closed polyp; c, d, ovigerous filaments; c, c, scpta in the interior of the tube.
been named by zoologists "Fleshy Polyps;" nevertheless, although the genera composing this division are exceedingly numerous, and vary much in their external characters, they will be found to conform, in the essential points of their organization, to the corals above dcscribed. The subject we have selected as the type of these beautiful zoophytes is a well-known Actinia, which being common upon our own coasts, the reader will have little difficulty in procuring specimens
for oxamination, or for preservation in a marine aquarium, of which they will form conspicuous ormaments.
(300.) The body of an Actinia, when moderately cxpanded (fig. 92), is a flesliy cylinder, generally found attached by one extremity to a rock, or somo other submarine support, whilst the opposite end is surmounted by numerous tentacula arranged in several rows around the oral aperture (fig. 93). When these tentacula are expanded, they give the animal the appearance of a flower, tho deception being rendered more striking by the beautiful colours they not unfrequently assume ; and hence, in all countrics, thesc organisms have been looked upon by the vulgar as seaflowers, and distinguished by names indicative of the fancied resemblance. Their animal nature, however, is soon rendered evident by a little attention to their habits. When expanded at the bottom of the shallow pools of salt water left by the retreating tide, they are seen to manifest a degree of sensibility, and power of spontancous movement, such as we should little anticipate from their general aspect. A cloud veiling the sun will

Fig. 92.

Actinia in a state of expansion, side view.
Fig. 93.

Actinia in a state of expansion, scen from above, showing the mouth. cause their tentacles to fold, as though apprehensivo of danger from the passing shadows; contact, however slight, will make them shrink from the touch; and if rudely assailed, they completely contract their bodies, so as to take the appearance of a hard coriaceous mass, scarcoly distinguishable from the substanco to which they are attached (fig. 94).
(301.) It is in seizing and devouring their prey, however, that the habits of the Aetiniæ aro best exemplified. Thoy will remain for hours
with their arms fully expanded and motionless, waiting for any passing animal that chance may place at their disposal, and when the opportunity arrives are not a little remarkable for their voracity and for their capability of destroying their victims. Their food generally consists of crabs or shell-fish, animals apparently far superior to themselves in strength and activity ; but even these are easily overpowered by the sluggish yet persevering grasp of their assailant. No sooner are the tentacles touched by a passing animal than it is seized, and held with unfailing pertinacity; the arms gradnally close around it; the mouth, placed in the centre of the disk, expands to an extraordinary size; and the creature is soon engulfed in the digestive bag of the Actinia, where the solution of all its soft parts is rapidly effected, the hard indigestible remuants being subsequently cast out at the same orifice.
(302.) The Actinix possess the power of changing their position: they often elongate their bodies, and, remaining fixed by the base,
stretch from side to side, as if seeking food at a distance : they can even change their place by gliding upon the disk that supports them; or, detaching themselves ontirely, and swelling themselves with water, they become nearly of the same specific gravity as the element they inhabit, and the least agitation is sufficient to drive them elsewhere. When they wish to fix themselves, they expel the water from their distended body, and,

Two small Actinice, one in a state of sinking to the bottom, attach themselves expansion, the other closed up.
(303.) From the above sketch of the outward form and general habits of these polyps, the reader will be prepared to investigate their internal economy and the more minute details of their structure. On examining attentively the external surface of the body, it is seen to lee covered with a thick mucous layer resembling a soft epidermis, which, cxtending over the tentacula, and the fold around the aperture of the mouth, is found to coat the surface of the stomach itself: this epidermic secretion forms, in fact, a deciduous tunic, that the croature can throw off at intervals. On removing this, the substance of the animal is found to be made up of fasciculi of muscular fibres, some running perpendieularly upwards towards the tentacula, while others, which cross the formor at right angles, pass transversly round the body; the meshes formod by this interlacemont are occupied by a multitude of granules, apparently of a glandular nature, giving the integument a tuberculated aspect: these granules aro not scen upon the sucking-disk at the base. The tentacula arc hollow tubes, composed of fibres of the same description. 'I'he stomach is a delicate folded membrane, forming a capacious
bag within the body, and communieating freely by means of a pyloric aperture with the gencral somatic eavity.
(304.) On making a seetion of the animal, as reprosented in fig. $9 \overline{5}$, the arrangement of these parts is distinctly seen, a being the muscular intcgument; b, the tentacula, formed by the same fibrous membrane; and c, the stomach. Bctween the digestive sac, c, and the fibrous exterior of the body, a, is a considerable space, c, divided, by a great number of perpendicular fibrous partitions, l, into numerous compartments, which, however, communicate freely with each other and likewise with the interior of the tentacula, as seen at e. Every tentacle is perforatedatits cxtremity by a minute aperture, b, whereby the sea-water is freely admitted into these compartments so as to bathe the interior of the body; and when, from alarm, the animal contracts itself, the water so admitted is forcibly expelled in fine jets through the holes by which it entered. There can be no doubt that the surrounding fluid, thus copiously taken into the body, is the medium by which respiration is effected; and every one who has been in the habit of keeping Actinix in glassvessels for the purpose of watching their proceed-

Fig. 95.

Scetion of Actinia, showing its internal structure: a, bodywall; b, tentacles; c, membranous stomach; d, onc of the septa connecting the stomach with the body-wall; e, communication between the interior of the tentacle and the perigastric eavity ; f, a portion of the membrane of the stomach dissected back; g, convolutions of the generative membranc; h, the same unfolded; k, position of the opening which eommunicates between the stomaeh and the general carity of the body; l, interseptal spaces. ings must have noticed that, as the fluid in which they are confined becomes less respirable, from defieieney of air, the quantity imbibed is enormous, stretching the auimal until it rather resembles an inflated bladder than its original shapc.
(305.) It is in the compartments thus (at the will of the ereature) distended with water that we find the organs of reproduction, which here assume a devclopment far exceeding what we have noticed in other zoophytes. On raising a portion of the membrane forming the
stomach, as at f, we see lodged in each partition an immense number of granular corpuscles attached to a delicato transparent mombrano, and arranged in large clusters, g. The ovigerous membranc that sccretes theso corpuscles is represented unravelled at 7 ; it is through its whole extent bathed with water admitted into the compartment wherein it is lodged-a circumstance which provides for the respiration of tho embryos during their development.
(306.) We learn from the researches of MM. Kölliker and Erdl that the Actiniæ aro bisexual, and that the male and female organs are allotted to different individuals, the testes of the malo and the ovaria of the female being so similar in their structure and appearance that the difference between them is only appreciable with the microscope. In both sexes the reproductive apparatus consists of riband-like convolutions attached by delicate membranous folds to the free margins of the septa, and filled with multitudes of the granular-looking bodies abore mentioned, which in the females are the ova, in the males the spermatic capsules. In neither sex is there any oxcretory duct; so that the eggs, when mature, must oscape immediately into the general cavity of the body by bursting through the delicate mombranous envelope in which they arc enclosed. The whole exterior of the organ is densely ciliated.

When examined under the microscope, the granules extracted from their investment are found, in the male, to contain immense numbers of caudate and very active spermatozoids, -whilo those of the fcmalo are real ova, of spherical shape, and furnished with a distinct yelk and germinal vesicle.
(307.) It is during tho months of August and September that the generative system of our native species is in full activity and development. The ovum, it would seom, when arrived at maturity, breaks loose from the ovarian nidus; and as the number of males in a given locality is pretty nearly the samo as that of the females, and they are always more or less found in company, notwithstanding their sedentary habits, the eggs of the female would seem to be impregnated by the seminal fluid of the other sex, diffused through tho surrounding water.
(308.) In Cerianthus membranaceus, however, a completo hermaphroditism exists, all tho convolutions of the reproductive ribands being equally supplicd with both tho malo and femalo elements of generation, in the shapo of minuto capsules, somo of which encloso an ovule, whilst the others arc filled with spermatozoa. Theso two kinds of capsules are scattcred promiscuously, without any regular order, but always so that the ovigerous and spermatogenous organs aro closely in contact. The ovulcs, on quitting their ovarian nidus, fall into tho general perivisceral cavity, where they may be found, of a spherical or oblong shapo, and each presenting a distinct Purkinjean vesicle. Tho act of fccundation in this case appears to take place in the ovarian laminx, and
probably by the rupture of the delieate walls which cireumseribe the contonts of the male and female capsulcs. The eggs found in the ovaria are round and of a yellow colour, resembling minute grains of sand, and densely ciliated. There exists a considerable opening in the baso of the stomach, whereby a free communication is established between the interseptal spaces and the genoral abdominal resorvoir, through which the young Actinix are expelled in a very advanced state of development into the stomach, and thence pass through Fig. 96.
 the mouth into the surrounding water. The smallest germs are semiopaque spherical bodies, while the more advanced present every gradation of form from the simple sphere up to the complete tentaculate polyp. The largest are about the size of peas. On section they present appearances similar to those exhibited in the annexed diagrams (fig. 96), intended to illustrate the manner in which the morphological changes are brought about and the several

Fig. 97.

Generative organs of Actinia. 1. Convoluted filiform organ unfolded: b, ovary or testes, necording to the sex of the individual; c, mesenteric membranc. 2. Segment of the body, showing:- a, the convoluted tube folded up; b, generative orgau; c, portion of the membrauous stomnch.
special organs of the Actinia unfolded. The figures may bo thus explained :-1. Outline of the mature embryonic corpuscle after the disappearance of the cilia with which, at an earlier stage, it is furnished. 2, 3, 4. Primary involution of the integumentary membrane. 5, 6. Reinduplication of the external membrane and formation of a stomachal
carity. In the two latter figures may likewise be scen the commencemont of the tentacula (a) and ovarian septa (b), which are all formed by the same process of involution*.
(309.) The perigastric spaces of the Actiniæ encloso, in addition to the reproductive apparatus, abundant convolutions of very remarkable filiform organs of great length and tenuity (fig. 97), concerning the nature of which much diversity of opinion still exists. These convoluted threads have, in fact, no communication whatever with the genorative organs: they seem to consist of long, semicapillary cæcal tubes, attached by a short mesentery to the lower margin of the perigastric septa; and from each of them a cord, slightly larger than the filament from which it is derived, may be traced upwards along the corresponding septum as far as a little above the inferior termination of the alimentary cavity, and then running along the external wall of the stomach as far as the pyloric opening. The structure of the terminal portion, as well as that of the convoluted filament, is tubular, and their office apparently important in the economy of the animal : M. de Blainville regards them, with some probability, as representing the biliary system.
(310.) The Abbé Dicquemare relates several curious experiments on the multiplication of these animals by mechanical division. When transversely divided, the upper portion still stretched out its tentacles in search of food, which, on being swallowed, sometimes passed through its mutilated body, but was occasionally retained and digested. In about two months, tentacles grew from the cut extremity of the other portion, and this soon afterwards began to seize prey. By similar sections he even succeeded in making an animal with a mouth at each end.
(311.) After the account above given of the general structure of the Actinia, the mechanism whereby the tentacula are expanded and withdrawn will be easily understood: these do not, like the horns of a snail, become inverted and rolled up within the body, but owe their different states of extension entirely to the forcible injection of water into their interior. We have seen already that the cavity of each tubular arm communicates freely with the space intervening between the stomach and the external integument-a space which, at the will of the animal, is filled with sea-water drawn through the orifices placed at the extemity of each arm : when these minute orifices are closed, and the body of the creature contracted, the water, being violently forced into the tentacula, distends and erects them, as when watching for prey ; and, on the other hand, when emptied of the fluid thus injected, they shrink and collapse. This circumstance, so easily seen in the Actinix, will likewise enablo us to account for similar phenomena obscrvable in other polyps, the internal cconomy of which is by no means so conspicuous.

[^46](312.) On cutting off a portion of one of the arms of an Actinia and subjecting it to pressure, it is seen to have, imbedded in the substance of its gelatinous parietes, an immense number of filiferous capsules (nematocysts). These remarkable structures, which are found to exist very extensively thronghout the entire group, consist of minute sacculi, whercin may be perceived a slender and highly clastic filament coiled up spirally, but which, on compression, suddenly shoots forth from one extremity of the capsule to a length that is perfectly surprising. It is upon the presence of these filiferous capsules that the adhesive power of the tentacula is supposed to dcpend; and from the rapidity wherewith prey, when seized, is destroyed by their grasp, it is probable that a poisonous fluid is emitted along with the thread, to the virulence of which its paralyzing effects are to be attributed. The presence of these wonderful organs, however, is by no means restricted to the tentacula; on the contrary, they are dispersed over various parts of the body, and exist even in the folds of the ovarian membrane. In the latter situation, indeed, they are frequently cxtremely numerous, and comparatively of large size.

CHAPTER VII.

HELMINTHOZOA*.

(Scolecids, Huxler.)

(313.) The Helmlnthozoa, embracing the vast class of parasitic worms, may be conveniently divided into two groups:-first, those which live as parasites-the Entozoa; and, sccondly, those which are free and have an independent existencc, as is the case with many of the Trematode Worns and the Turbellaria.
(314.) The Entozoat, as the name implies, are nourished within the bodics of other animals, from the juices of which they derive their sustenance. It may naturally be supposed that, living under such cir-cumstances-deprived of all power of locomotion, debarred from the influcnces of light, and absolutely dependent upon the fluids whercin they are immersed for nutriment- the Entozoa have little occasion for that elaborate organization needful to animals living in immediate communication with external objects.
(315.) We find, therefore, among these crcatures, certain races whose structure is of the simplest character possible, in adaptation to the circumscribed powers of which they are capable. Yet, howerer apparently insignificant some of them may appear, they not unfrequently

[^47]become seriously prejudicial to the animals wherein they are found, by the prodigious numbers in which they exist, or from their growth in those organs more especially essential to life; and not a few of them, from their dimensious alone, sometimes prove fatal, as may be supposed from a mere inspection of the annexed figure (fig. 98), representing an Entozoon developed in the abdominal cavity of a fish.
(316.) There are probably no races of animals which are not infested with one or more species of these parasites, from the microscopic infusoria up to man himself*; and sometimes several different forms are met with in the same species, to which they would appear to be peculiar; nay, in some cases the Entozoa would seem themselves to enclose other species parasitically dwelling in their own bodies. Neither is their existence confined to any particular parts; they are met with in the alimentary canal, in the liver, the kidneys, the brain, the arteries, the bronchial passages, the muscles, the cellular tissue, and, in fact, in almost all the organs of the body.

Fig. 98.

Ligula simplicissima in the abdominal cavity of a Minnow.
(317.) Gregarinide.-In the alimentary canal of the common cockroach, in the earthworm, and probably in many other animals, minute organisms occur, frequently in considerable numbers (indeed, to this latter circumstance they owe their name), called Gregarinæ \dagger. The body of one of these creatures consists of a simple sac or vesicle composed of an apparently structureless membrane containing a glairy fluid, in the interior of which there is sometimes discovered a small cell containing a nucleus. The Gregarinidæ are devoid of mouth and of any digestive apparatus, living apparently by imbibition of the animalized juices with which they are surrounded. They are said, under certain circumstances, to undergo a process of encystment, shrinking up into a spherical shape, and becoming coated by a structureless case or cyst. In this condition their contents break up into rounded particles, which, becoming elongated and pointed at each extremity, present very much the appearance of Naviculæ, and, from this resemblance, have been called "Pseudo-naviculce." The contents of these microscopic boat-like structures, when set free, are stated to rescmble minute Amœbæ, thrusting out pseudopodia in various directions, and again withdrawing them, until, as they increase in size, they show themselves to be young Gregarinæ.

[^48](318.) The Cystrform Helmintiozoa, generally known by the name of Hyclaticls, are of larger dimensions. The Coenurus cerebralis (fig. 99),

Fig. 99.

1. Conurus cerebralis (nat. size). 2. One head magnifed: a, oral circlet of hooks; b, suckers.
one of the most common, oceurs in the brain of shecp, and is the cause of a mortal disease but too well known to the farmer ; it is likewise occasionally developed in other ruminating quadrupeds, and, by partially destroying the ecrebral substance, soon proves fatal. This Entozoon, represented in the figure of its ordinary size, consists of a delicate transparent bladder, the walls of which, during the life of the creature, are visibly eapable of spontaneous contraetions on the applieation of stimuli. To this bladder, or common body, are appended numerous heads, which are individually furnished with an apparatus of hooks and snekers (fig. 99, $2, a$, l), ealenlated to fix them to the surrounding tissues.
(319.) The Cysticerci* agree in the main features of their structure with tho Commrus, but are provided with only one head or oral orifice (fig. 100, 2). These animals are found in almost all the viscora of the body, and not unfroquontly, espocially in pigs, oxist in great numbers, not only in the liver, which is their most usual soat, but in the cellular texture of the muscles, and oven in the eyes thomsolves. The human frame is not free from their intrusion; and when they abound, serious consequonces frequently rosult from their presonce.
(320.) Cestordeat.-The Tcenice, or tape-worms, aro among the most intercsting of these parasites, whether we consider the great size to which they sometimes attain, or their singular construction. Several species of these worms infest the human body; and many other forms of them are met with in a variety of animals. They are usually found in the

Fig. 101.

intestinal passages, where, being amply provided with nutritious aliment, they frequently grow to enormous dimensions, being not unusually twenty or thirty fect in length ; and some have been met with mueh longer : it is therofore manifest how prejudicial their presence must prove to the hoalth of the animals in which they reside; and we are little surprised at the emaciation and weakness to which they generally give rise.

[^49](321.) The Tania solium, the species most asually met with in the human subject (at least in our own country), is that selected for special description. The body of this creature consists of a great number of segments united together in a linear series (fig. 105): the segments which immediately sueceed to the head (a) are vory small, and so fragile that it is rarely that this part of the animal is obtained in a perfect state ; they gradually, however, increase in size towards the middle of the body (d). The first joint of the Tænia, generally ealled the head, diffcrs materially in structure from all the rest. This segment in the Tcenia solium, when highly magnified, is found to be somewhat of a square shape; in the centre is seen a pore that has been considered to be the mouth, surrounded by a circle of minute spincs, so disposed as to sccure its retention in a position favourablo for imbibing the chyle wherein it is immorsed. Around this apparatus are placed four suckers, which are no doubt additional provisions for the firm attachment of the head of the worm. In other Tæniæ the structurc of the first segment is variously modified: thus, in Tcenia lata the central pore has no spines in its vicinity ; in Bothriocephalus there are only two longitudinal sucking disks; in Floriceps these are replaced by four proboscidiform prolongations, covered with sharp recurved spincs, which, being plunged into the coats of the intestine, form effectual and formidable anchors : yet the intention of all these modifications is the same, namely, to retain the head in a position adapted to ensure an adequate supply of nutritious juices.
(322.) The alimentary canal secms to be represented by a double tube, which may be traced through the whole length of the body, without any

Fig. 103.
 other perceptible communieation with the exterior than the minute pore in the eentre of the head: at the commencement of evcry segment, howevcr, there is a cross-branch, which communicates with the corresponding tube of the opposite side (fig. 102, a), so as to
facilitate a frce distribution of the nutrient fluids*. In some species a delicato vascular network is perceptible in the parenchyma of the body, which may likewise be connected with the nutritive function.
(323.) The reproductive organs aro fully developed only in the mature segments or Proglottides of a tape worm, each of which may be considered an adult animal, provided with both a male and a female apparatusthese two sets of organs being completely distinct from each other.

The male apparatus consists of a testis, a vas deferens, and an intromittent organ, the last of which is lodged in a special sac or pouch.

The testis (fig. 104, a a , b) occupies the middle of the anterior portion of the body, and is of a whitish colour, owing to the spermatozoa contained in its interior. It is composed essentially of a long cæcal tube, folded upon itself in close convolutions, and terminating in the vas deferens (c), which reaehes to the base of the intromittent organ.

The penis (fig. 104, d), called also by authors cirrus and lemniscus, is very variable in its form in different genera; in its real structure, hotrever, it is merely a prolongation of the vas deferens, just as the latter tube is a continuation of the testis.

In its size it varies considerably ; it consists of two muscular coats invaginated one within the other, and unrolls itself like the finger of a glove, until it acquires its full length. The external surface, which is internal when in a state of repose, is covered with minute asperities or rough points ; when fully retracted, it is lodged in the pouch, e.
(324.) The female generative system is composed of an ovary, which produces the germ (germigène), of an organ which secretes the vitelline globules (vitelligène), of ducts from these two organs, and of a matrix, a copulative vesicle, vagina, and vulva.
(325.) It seems to have been by no means a rash supposition on the part of Siebold, that in some Entozoa there might exist a double set of glands for the production of the ova, one appropriated to the formation of the germ, the other to the secretion of the vitcllus. In the Cestoid forms, according to Van Benedon, the proper ovary or germigène (fig. $104, i$) is situated at the posterior part of the body, occupying about onethird or one-quarter of its width. This organ is double, being exactly repeated on the right and left of the median line, the two being united by a central commissural eanal \uparrow : when empty, the presence of this organ is discoverable with difficulty, on account of its extreme delicacy. Its appearanco varies mueh: sometimes it is a bag surrounded by slight depressions (culs-de-sac) ; sometimes the whole viseus is divided

[^50]into lobes, and has the appearance of an ordinary gland; whilst oceasionally it is entirely made up of long ceccal tubes united together, and opening at the same point.

On the sides of the body, extending nearly its whole length, are two slender and slightly flexuous tubes (fig. 104, $n n$), whoso presence it is difficult to detect when in an empty condition, but which generally contain in their interior vitelline globules closely aggregated together, which by the peristaltic movements of the tube, aided by ciliary action, are forced onward from before to behind. The two vitelligenous tubes ultimately unite to form a common canal (n), situated near the median line, through which the vitelline globules enter the germiduct at the point marked m. On passing the opening of this canal, the germ becomes suddenly invested with a layer of vitelline globules, and, being thus transformed into an orum, is carried onwards through the flexuous canal, or proper oviduct (p), into the matrix (q), bocoming invested in its passage through the oviduct with an outer covering that represents the eggshell.

The matrix (q), thus recciving a continual supply of ova, becomes gradually distended, until it occupies almost all the intcrior of the body, and branches out in different dircetions into cæcal pouches at points where the least resistance is offered, until finally, the skin of the proglottis becoming as tightly dis-

Diagram representing the fully-developed generative system of the Proglottis of a Cestoid Entozoon (after Van Beneden): α, testis; b, commencement of ditto; c, vas deferens; d, penis: e, sac of the penis; f, oriflee of ragina; g, vagina: h, copulative resicle; i, germigenous organ, or ovary (represented on one side only); l, germiduct: m, point at which the vitelline globules cnter the germiduct; n, vitelligenous organ, or vitclliduct: oo, transparent resieles, developed ata rery early period; p, oviduct: q, matrix; \imath, longitudinal canals; ε, the skin ; t, eutaneous glands.
tended as the matrix, both are ruptured, and the ora cscape in this artificial manner. The valina (fig. 104, $g g$) is a largo canal, haring, like all the organs belonging to this apparatus, distinct parietes. It commences externally (f) in the immediate vicinity of the male organ, penctrates to tho centro of tho body, and, bending at an angle, makes its way backwards to the space that separntes the two oraria (germi-
genous organs, i). Its length is invariably in correspondence with that of the penis of the male apparatus. At tho extremity of the vagina is situated the copulative sac ($/$), a small vesiele with very dclicate parietcs, the eontents of which abound in spermatozoa.

Sueh being the anatomieal arrangement of the different parts of this somewhat eomplex apparatus, it now remains to take a brief survey of their physiologieal import in the performance of the generative function. In the living Entozoa it is sometimes not diffieult to see the germigenous and the vitelligenous organs opening into a common eanal, and each of them pouring their produet into its eavity; and if a speeimen is seleeted in which the parts are in full activity, and the eompression used be such as to render the organs transparent without putting a stop to their action, the germs may be seen to arrive, one by one, at regular intervals, before the opening of the vitelligenous organ, whieh, contracting foreibly, expels a certain quantity of the vitelline substance, in which the germ becomes enveloped, having previously, on passing the orifice of the eopulative sae, beeome impregnated by contact with the spermatozoa therein contained. As the vivified ovum advanees onwards it reeeives its outward envelope, arrives in the matrix, and is there retained until birth is aceomplished by the bursting of the parent.

A question has often arisen in relation to the manner in whieh the act of eopulation is effeeted in animals presenting this remarkable hermaphrodite condition of the generative system-a question to whieh Professor Van Beneden has been ablc to give a satisfactory solution. In a speeimen of Phyllobothrium luca, he had oeular demonstration that each segment was self-feeundating. Its penis became unrolled, and passed immediately through the vulva into its own vagina, into whieh it was deeply inserted. Active peristaltic movements of the vaginal tube were very manifest, and spermatozoa were seen abundantly in its interior, these being subsequently conveyed by peristaltic aetion into the eopulatory pouch. The penis, after some eonsiderable time, is withdrawn, returns into its pouch, and all the organs assume their previous eondition.
(326.) In studying the progressive development of the egg in the Tæniæ and other Cestoid worms, it is only neeessary to remember that all the ova contained in the same segment are of the same age, and that the age of the segments increases progressively, from the head to the opposite extremity of the elongatcd body, to enable the observer to select ova in any stage of their development in order to submit them to examination under the mieroseope.
(327.) In their general strueture, the eggs of the Trenioid Entozoa are similar to those of the other classes of Invertobrate animals; and the segmentation and breaking-up of the yelk procecd exaetly in the same manner.
(328.) On arriving at maturity, however, a serics of phenomena of
tho highest possible interest begin to develope themselves, which we will proceed to describe with as much conciseness as the subjecte will allow *. The worm, when it emerges from the egg, instead of being composed of a series of segments, consists simply of the first segment, or head, as it is called, variously armed with hooks, suckers, or bothria, according to the genus, to which is appended a short caudal extremity, wherein but slight traces of any internal organ are apparent. In this condition it has received the name of Scolex, and may be regarded as a sort of root from which all the rest of the animal is developed, much in the same way as the Plemula of the Medusæ are segmented off from

Fig. 105.

Tcenia solium: a, head; b, c, d, segments of the body. their Hydra-like parent ($\$ 187$).
(329.) The Scolex, therefore, in this stage of development is synonymous with tho " head," or, as it might as well be called, the "root" of the tape worm ; and as long as this root, head, or Seolex remains unexpelled from the body, it will continue to give origin to fresh segments or joints, ad libitum.
(330.) Gradually the tail of the Scolex, or the body of the worm, is developed; and as soon as this has attained a certain length, transverse markings bogin to make their appearance, segments are formed, separated from each other by slight indentations, and the internal organs appropriato to each segment are progressively evolved. As these segments attain to maturity, the indentation separating each from the one preceding it increases in depth, until, being reduced to a mere pediele, the completed segments are successively thrown off as so many distinet animals. From the abovo aceount, therefore, it is evident that the last, or posterior, segment is always the oldest, the newly-formod joints continually pushing the others from before backwnids.
(331.) Most frequently tho maturo segment or Proglottis is detached,

[^51]as above stated, and becomes an iudependent organism, in shape very much resembling the seed of a gourd: nerertheless this probably does not invariably happen; some may remain permanently couuected together, and lay their eggs without having enjoyed a separate existence.
(332.) While the segments of the Strobile remain conjoined, they seem to enjoy a eomplete community of life aud of movement. Some species especially may be observed to become suddenly dilated in one region and contracted in another -these alternate morements, passing along the entire length of the animal, giving precisely the same appearance as is witnessed in many Annelidans when they make riolent efforts for progression,-a circumstance which will readily explain how Tæuiæ are frequently met with having their bodies tied in compli-

Fig. 106.

Paradorical Trenia. 1. Entozoon of which the anterior portion is trenioid, the posterior eystiform: u, armature of the "head" or "seolex." 2. Armature of the same magnilled : a, eirelet of hooks; b, suekers. cated knots-a very puzzling phenomenon to the older helminthologists.
(333.) The Proglottis, or mature segmeut, on becoming detached from the general community, is provided with all its organs; uevertheless its development becomes still further advanced : it even completely changes its shape; the angles become effaced, the whole body rounded, and its movements, moreover, more extensive: uay, as Vau Beneden assures us, not only does the Proglottis continue to grow, but sometimes it beeomes as large as the entire Strobile-a circumstance which frequently causes a Cestoid at this age to be mistakeu for a Trematode Entozoon.
(334.) Many thousands of eggs must be produced from such unultiplied sources of reproduction; and yet how are they preserved and replaced in circumstances favourable to their development? Fortunately it is rare to meet with more than one of these creatures taking up a residence in the same individual ; indeed the species which has specially been the subject of our description is often called, par excellence, "the solitary worm," from this circumstance. Yet what beeomes of the reproductive germs furnished in such abundance? Do they, as was the opinion of linncus, live in a humbler form in stagnant waters and marshes, until they are casually introduced into the body of some animal, where, being supplied profuscly with food and placed in a higher temperature, they attain to an exuberant development? Or are the germs thus numcrous in proportion to the little likelihood of even a few of them
finding admission to a proper nidus? To these questions we can only reply by eonjectures; and, interesting as the subjeet is, few are more entirely involved in mystery.
(335.) In some Tæniæ, as for example in T. serrata, which is found in the intestines of dogs, M. Dujardin has pointed out that the ova, instead of being, as Rudolphi supposed, more delicate and frail in their substanee than the Entozoa themselves, are defended by envelopes so strong that, thus proteeted, they may be dispersed in prodigious numbers in various situations, and eseape destruetion until eonveyed into a nidus proper for their development.
(336.) To form some idea of the number of ova furnished by a single Tænia of this species, it must be eonsidered that it is furnished successively with at least two hundred segments, which, when they become proglottides, in the aggregate will produee for each Tænia $25,000,000$ of eggs. The mature segments are found loose in the intestine of the dog, and are ablo to move about with considerable quiekness, ereeping sometimes at the rato of three inches in a minute, by the contractions of whieh they are capable. If one of these be plaeed in a flask, or under a moist glass bell, they will soon begin

Diagrammatie sketeh illustrative of the mode of growth of a Tape worm (Tetrarhynchus): a, the Scolex, head or root; b, transverse markings indicating an incipient division of the hinder part of the scolex into segments; c, segments gradually becoming more complete until, at d, they begin todetach themselves as separate joints (proglottides); e, a mature proglottis detaehed presenting the form of a gourd-seed. The body of the worm from b to d, consisting of iramature segments, is named the Strobile. to erawl about upon its surfaee, leaving a sort of milky traek wherever they pass, in which, by the aid of a lens, innmmerable eggs may be detected. Under these eireumstances they will exist for several days, until they are entirely emptied of their ova and redueed to half their original bulk, when, their destiny being aecomplished, they perish. Therefore it cannot be doubted that, when expelled naturally from the intestines of tho animal in which they live, they are able to deposit their ova in a similar manner.
(337.) Many interesting facts relative to the development of the intestinal worms havo been recently brought to light, and promise to lead to still more important diseoveries. In 1840 M . Niescher annomecd, to a meeting of naturalists at Bate, the discovery that several gencra of Entozoa undergo most extraordinary metamorphoses, whereby their form and charaeter are eompletcly ehanged.
(338.) Carrying out these observations, M. Van Bencden* has not ouly confirmed the doctrine, but added very materially to our knowledge on this subject. The Tetrarlynchus, for example, a tape-worm found in fishes, undergoes no fewer than four distinct phases of development.
(339.) In the first phasc of its existence, the worm is more or less vesicular in structure, being armed with four suckers, and a sort of proboscis in the centre. It is possessed of extraordinary contractility, and more or less resembles a Cysticercus.
(340 .) The second phase is, perhaps, the most curious. In the interior of the Scolex there is formed a Tetrarlynchus, by a process of gemmiparous reproduction; and from the surface of the latter a kind of riscid secretion exudes, which becomes solid, and forms a sort of sheath made up of eoncentric layers.
(341.) In this state of development there is found a sheath formed of several layers, in the interior of which is a Trematode worm (Amphistoma rhopaloides, Ch. Le Blond); and in the interior of the latter may be perceived a Tetrarhynchus, which moves about vivaciously as soon as its prison is opened. This Tetrarhynchus has been regarded by naturalists as a parasite inhabiting the Trematode worm ; M. Van Beneden believes it to be a new animal formed by a process of internal gemnation. It is constantly, if not always, found in cysts formed at the expense of the peritoneum, in a great number of sea-fish-cod, trigla, conger, \&c.
(342.) In the third state of its existence, the Tetrarhynchus is free, but in all respects resembling that which was enclosed in the Trematode worm ; in a short time, however, transverse lines beeome developed upon the posterior part of its body, segments are formed, and it becomes Tcenioid. In this condition it has been named Bothriocephalus, or more recently Rhynchobothrius. It is found in the intestinal eanal of the skate, among the first turns of the spiral valve.
(343.) In the fourth and last phase of its growth, it presents a more simple structure, the perfect animal performing the part of a seed-vessel destined to disseminate ova-in other words, is the last segment of the Trenioid form detached, in fact a Proglottis. In this condition it is found in the intestine of the skate, in company with other Bothriocephali : this is the mature or adult aumal, provided with complete male and fcmale sexual organs.
(344.) The adult Entozoon (the Proglotis loaded with eggs) is evacuated together with the faces of the skate, and with its ova serves as food to fishes of small dimensions. The ora are developed cither in the intestines or the intestinal cxas of the devourer; and if the fish which contains them happens to be swallowed by another fish, the development still procecds in its alimentary camal, or the caca thereunto appended. When arrived at the condition of a complete Scolex, after

[^52]having perhaps passed through the stomachs of several fishes that have successively devoured each other, it perforates the intestinal walls and lodges itself in the peritoneum, in which situation it forms its sheath, and produces in its interior the " moveable gemma," from which is produced a Tetrarhynchus. The fishes containing the latter form are swallowed in turn by the voracious Rays and Sharks ; and their flesh having been dissolved in the stomachs of their devourers, the Tetrarhynchus becomes free, and continues its growth in the intestines until its hinder segments (Proglottides) are complete, which alone are furnished with a sexual apparatus. Thus, from the production of the egg to the completion of the mature animal, these parasites are continually passing into the alimentary eanals of new fishes; and it is only under such cireumstances that they seem to attain their full development.
(345.) A more interesting fact is the discovery that the cystiform Entozoa, Conurrus and Cysticercus above described, are merely the Scoleces of ordinary Tape worms, a discovery for which science is doeply indebted to the patient researches of Professor Siebold. That eminent naturalist had long suspected, from the resemblance between the circlet of horny spines forming the armature of Cysticercus fasciolaris met with in the liver of the mouse, and that of Tcenia crassicollis found in the intestines of the eat, that the one might be identical with the other, although so different in their general appearance, and at length ascertained, beyoud the possibility of doubt, that such was actually the casc.

The gradual transformation of Cysticercus pisiformis into the Tcmia serrata has likewise beon established by feeding young dogs with the cystic parasites still enclosed in the nidus in which they are found in the omentum of rabbits*. The first effect produced upon the Entozoa thus enclosed, after they have been swallowed, is the solution of their envelope by the gastric juice in the dog's stomach, after which the caudal vesicle of tho Cysticercus pisiformis is attacked and destroyed by the same digestive agent, leaving nothing of it remaining but the whitish and rounded Scolex, which, passing through the pylorus, becomes attached to tho walls of the duodenum, to await its subsequent growth. At the posterior end of the now tailless cyst worm, the point at which the caudal vesicle was previously attached is distinetly indicated by a sort of cicatrix. Subsequently the growth of the tape worm commences; its transverse wrinkles are multiplied, and in the course of a few days the body becomes divided into segmonts, which, at first very short, elongate and soon present the marginal generative pores. After a residence of twenty-five days in the intestines of the dog, tho Tænia has attained the length of from 10 to 12 inches, and in three months 20 or 30 inches or more, at which timo the posterior joints appear to be sexually matured, and the last segments (Proglottides) become detached. The ova enelosed

* Vide De Cystieercorum in Trenias Metamorphosi pascendo, experimenta in Instituto Physiologico Vratislaviensi administrata. Auctore G. Lewald. Berolini, 1852.
in the ripe joints are seen to be completely developed, and contain in their interior the mobile embryo armed with six hooklets.

These six hooklets, or rather six very sharp spicula, are disposed in three groups. The two central spieula, whieh by their union form a sort of lancet, perforate the tissues placed immediately before them, while the two lateral pairs, taking as a fixed point the opening thus made and pressing backwards, push forward the embryo, acting much in the same manner as the arms of a man who tries to force his body through a narrow trap-door. The young Cestoids, after eseaping from the egg, push themselves onwards in this manner, as though direeted by an instinetive impulse. Numbers of them perish; but a few arrive at some organ adapted to their habits, and there become transformed into a vesicle, upon which bud forth the heads of Tæniæ*.
(346.) When the animal in which the parasite has passed through these first phases of its growth is swallowed by another, the vesiele disappears, the troia-heads remain isolated, and behind every one of them there is developed a true Cestoid or tape worm. This latter is at first smooth, but it soon divides into segments, each segment being in reality an animal, a distinet individual, uniting in itself the reproduetive organs belonging to both sexes. When this segment is suffieiently developed, i.e. when its reproductive apparatus is filled with fertilized ova, it becomes detached, and, when east forth, speedily dies. The myriads of eggs enelosed in it, converted into dust and driven about by the winds, are everywhere distributed. The immense majority of them perish. A very small proportion may be swallowed by some animal whose organization is suitable for their development, and each of these then beeomes in turn the starting-point of a new eyele of transformations and migrations.

Kiiehenmeister, by feeding a dog with flesh in which were concealed portions of a Conurus, found after some time a Tcenia in its intestine which until then had been met with only in the wolf; and by giving segments of this Tænia to sheep they beeame in due time vietims to Conurus, numbers of which were found in their brains, presenting different degrees of development. In the above experiment Kuichenmeister had sowed the seeds of tape worm in the dog by giving to the poor beast Ccenuri, and the germs of Cœnurus in the sheep by giving them the ripe segments of a tape worm \dagger.

[^53](347.) The Echinococcus* veterinorum, long considered a distinct Entozoon, is in reality merely a hydatid cyst filled with tho larve (Scoleces) of Tænioid worms. It occurs in the liver, the cavity of the abdomen, the heart, the voluntary muscles, and the ventricles of the brain of man,-in the liver, lungs, \&c. of the ox, sheep, goat, ape, pig, \&c. The walls of the true cysts consist of numerous concentric layers or plates, resembling those of colloid cells. The liquid existing within them is yollowish or reddish, and albuminous. The larvæ appear to the naked eye as minute white opaque specks, varying in size from about $\frac{1}{300^{\prime \prime}}$ to $\frac{1}{100}{ }^{\prime \prime}$ in length; they also vary greatly in form : when the head is retracted, they appear more rounded than when it is protruded. The

Fig. 108.

Echinococcus veterinorum. In this figure some of the Scoleces are seen alive and aetive; some in a eontraeted state ; many dead and partially disintegrated, surrounded by the dental hooklets of others that have perished.
hooks surrounding the anterior end of the body consist of a basal portion, an internal transverse blunt tooth, and a curved terminal portion or claw ; they are about $\frac{1}{1500}{ }^{\prime \prime}$ to $\frac{1}{1000} 0^{\prime \prime}$ in length. In some of the larvæ a kind of pedicle exists, by which they are attached to the walls of the cyst. In a quite recent state the Echinococci have been seen swimming actively in the liquid of the cyst by means of cilia upon the surface of the body. They appear usually to bo developed from the interior of the cyst; but, as Kuhn long since showed, they are some-
the 'Mémoircs de l'Académic de Breslau,' 185t; that of M. Baillet, 'Expériences sur lo Cysticercus tenuicollis et sur le Tenia qui on résulte,' 1861 ; also the works of M. Konberle, 'Des cysticerques de ténia chez l'homme,' 1861 ; and of Dr. Spencer Cobbold.

* $\dot{e x i ̃} \nu o s$, spiny ; кóккоs, a berry: in allusion to their shape and spinous armature.
times produced by exterual gemmation. Henee it appears that these scoleees cannot be regarded as the parasites of the eyst, but must be viewod as arising from a partial segmentation of the contents of the parent. The Echinococci do not aequire their full development into Tcenice unless they reaeh the alimentary canal. The eysts and their eontents, including the Echinococci, sometimes undergo a kind of degeneration, beeoming partially converted into fatty or calcareous matter ; or the entire eontents beeome amorphous and granular, the hooks remaining longest unaltered, but finally disappearing also*.
(348.) Trematoda †.-In the fluke, Distoma (Fasciola, Linn.) hepaticum, we have an Entozoon of more complex and perfect strueture-one of those forms, eontinually met with, which make the transition from one elass of animals to another so insensible that the naturalist hesitates with which to associate it.
(349.) The Distoma is commonly found in the liver and biliary ducts of sheep and other ruminants, deriving nourishment from the fluids in which it is immersed. The body of the creature, whieh is not quite an ineh in length, is flattened, and resembles in some degree a minute sole or flat-fish. At its anterior extremity is a circular sucker or disk of attachment, by whieh it fastens itself to the walls of the cavity in which it dwells, as well as by means of a second sucker of similar form, plaeed upon the ventral surface of the body. In the annexed diagram (fig. 109) the posterior sucker has been removed in order more distinctly to exhibit the internal structure. The name which this Entozoon bears seems to have been given to it from a supposition that it possessed two

Fig. 109.

Anatomy of Distoma: a, anterior sucker and oral orifice; b, alimentary canal ; c, nervous system; d, external opening of female gencrative apparatus; e, uterine rcceptacle ; f, accessory appendage to ditto; g, oviduct; h, ovary; i, common camal, recciving k, convolutions of testis; l, vas deferens; m, capsulc of the penis; n, intromittent organ. mouths, one in caeh sueker, whereas the anterior or terminal disk (a) only is perforated, the other being merely an instrument of adhesion. The alimentary canal (b) takes its origin from the mouth as a single tube, but soon divides into two large branehes, from which ramifieations arise that are dispersed through tho body, each terminating in a blind clavate extremity. These tubes, from being generally filled with dark

* Kuhn, Ann. Sc. Nat. I ${ }^{\text {c }}$ sér. xxix. p. 273 ; Siebold, Wiegmann's Archiv, 1845, and Siebold und Kölliker's Zeitsehr. iv. ; Gluge, Ann. Sc. Nat. $2^{\text {e }}$ sér. viii. p. 314; Owen, ILunterian Leutures, i. p. 46 ; Dujardin, Holminthes, p. 635 ; Huxley, Ann. Nat. Hist. 2 ser. xiv. p. 379.
 supposed to have more than one mouth.
bilious matter, are readily traced, even without preparation, or they may be injected with mercury introduced through the mouth.
(350.) Through the walls of the ventral surfaee of the body two nervous filaments (c) are discoverable, which, crossing over the root of the anterior sucker or acctabulum, and gradually diverging, may be observed to run in a serpentine course towards the caudal extromity, where they are lost: it would even seem that on either side of the cesophagus there is a very slight ganglion, from which other nervous filaments arise to supply the suckers and the anterior part of the body.
(351.) The organs of generation in the fluke are very voluninous, occupying, with the ramifications of the alimentary tubes, the whole of the interior of the animal: in the diagram they are not represented on the right side, in order that the distribution of the intestine may be better seen; and on the left side the alimentary vessels are omitted, to allow the general arraugement of the sexual system to be more clearly intelligible.
(352.) These auimals are completcly hermaphrodite, not only posscssing distinct ovigerous and seminiferous cauals, which open separately at the surface of the body, but even provided with external organs of impregnation, so that most probably the cooperation of two individuals is requite for mutual fecundity.
(353.) To commence with the female generative system, we find the ovaria (h) occupying the whole circumference of the body. When distended with ova, the ovigerous organ is of a yellow colour; and when attentively examined under the microscope, it is seen to be made up of delicate branches of vesieles united by minute filaments, so as to have a racemose appearance. From these clusters of ova arise the ovigerous canals, which, uniting on each side of the body into two prineipal trunks, discharge their contonts into the large oviducts (g). The oviducts terminate in a capacious recoptacle (e), usually called the uterus; and from this a slender and convoluted tube leads to the exterual orifice, into whieh a hair (d) has been inserted. On each side of the uterus we find a large ramified organ, made up of creal tubes (f), which opens into the uterine cavity, and no doubt furnishos some accessory secretion needful for the completion of the ova.
(354.) The male apparatus occupies the centre of the body. The testes (l), in which the spermatie fluid is secreted, consist of convoluted vessels of small calibre, arranged in close circular folds, and so inextricably involved, that it is difficult to get a clear idea of their arrangement; but towards the middle of the median line they become more parallel, and terminate in two larger trunks (i) (one of which has been removed in the figure), which are enclosed and hidden in the seminal vessels. These wide canals, which run side by side in a longitudinal direction, become gradually much attenuated (l), and terminate in the root or capsule of tho penis (m). The external male organ (11) is placed
a little anterior to the orifico which leads to the female parts: it is a short spiral filament, distinctly traversed by a canal, and perforate at the extremity, so as indubitably to perform the office of an instrument of intromission.
(355.) Among the most interesting discoveries of modern times is the establishment of the long-suspected fact that the Trematode Entozoa undergo certain metamorphoses during their development, and those of a most extraordinary and unheard-of character. It is to the Danish naturalist, Steenstrup*, that science is indebted for the following acconnt of his researches.
(356.) Although the best-known species of the numerous family of the Trematoda is the fluke, or liver-worm, of which the anatomical details are given above, similar forms are met with in almost all animals of the four higher classes; and among the lower, the Mollusca are equally infested by them.
(357.) It might almost be said that in these classes every species is infested by its own fluke; in various animals, morcover, several different species of these parasites have been found, which inhabit either all the organs of the body indiscriminately, or are exclusively confined to one (liver, kidney, bladder), or to a definite part of an organ. Several of these Trematoda, as will be evident hereafter, when young, aro not connected with any viscus, but enjoy the power of free locomotion in water, externally to the animal which in their future state as Entozoa they infest. In their free condition they are provided with a locomotive apparatus, usually a tail of moderate length, by the waving movement of which the creature propels itself through the water, like a tadpole, to which, in its external form, it is not dissimilar, though almost of microscopic dimensions. In this larval state the Trematode worms have long been known to naturalists under the generic name of Cercaria; but although it was well established that this form was not a permanent one, it was not until the researches of Nitzsch, Siebold, and Steenstrup revealed the true nature of the changes through which they pass, that we arrived at any satisfactory knowledge of their remarkable history.
(358.) A Cercaria, supposed by Steenstrup to be the Cercaria echinata of Siebold (fig. 110, 1), is found by thousands in the water wherein specimens of the large freshwater snails, Planorbis cornea and Limnaus stargatis, have been kept. The body of this species of Cercaria is usually of a more or less elongated oval form, which, however, it is constantly changing, assuming, during its movements, every outline, from the circular figure which it has in the fully contracted state, to the lincar form that it presents when its body is fully extended; it is furnished, moreover, with a triangular head, at the apex of which is situ-

[^54]ated the oral orifice, surrounded by an apparatus of spinous teeth ; and it ventral sucker is visible, situated upon the inferior surface of its body ; while internally traces of viscera are disccrnible.
(359.) The swimming movement of these Cercaris is very characteristic: in performing it, the animal curves its body together into a ball, by which the head is brought near to the caudal extremity, and at the same time the clongated tail strikes out right and left into various sigmoid flexures. In this way they may be seen swarming about the water-snails in great numbers. After swimming about the snails for some time, they affix themselves, by means of their suckers, to the slimy integument of those animals, and all their movements upon it are readily perceived with a good glass. On examining, with a sufficient magnifying-power, a portion of the skin of the snail with several of the Cercariæ adhering to it, it will be seen that all the efforts of these

Fig. 110.

1. Cercaria echinata? of Sicbold. 2. Distoma-pupa, or Cercaria in the pupa state after it has cast off its tail and enclosed itself in a mucoid casc. 3. The animal proceeding frons the pupa, a truc Distoma, which has penetrated for a short distance into the body of the snail. 4. A "murse" containing fullydeveloped Cercariæ: v, the stomach. 5. A "parent nurse" flled with partially-devcloped "nurses:" v, the stomach. (After Steenstrup.) creatures are directed to the inserting of themselves deeper into the mucous integument, while their tail, which is no longer of any use to them as an organ of locomotion, disappears ; and the now tailless animal assumes the appearance of a Distoma or flukc. However, it undergoes a further remarkable transformation before it becomes a true Entozoon in the common acceptation of the word.
(360.) In various Cercariæ, a copious mucous secretion is obscrvable on the surface of the body even before the loss of the tail; and this secretion apparently increases during the efforts of the animal to cast off this appendagc. As soon as the tail has been got rid of, the Cerearia begins, by extending and contracting its body, to turn itself round and round in the same spot. By this sort of movement it makes for itsclf a circular cavity within the mucus, which gradually hardens, and forms a tough, ncarly transparent case around it. This is the noted pupa-state of the Cercarix, obscrved first by Nitzsch*, and afterwards by Siebold. The taillcss Cercariæ remain concealed under their transparent case, which is arched over them like a small closely shut watch-glass (fig. 110, 2).
[^55]In this condition they remain somo months in a quiescent and inactive state, when they present themselves with all tho characters of real Flukes (fig. 110, 3), and may be found under this form lodged in the liver or appropriate viscus in the interior of the snail.
(361.) Having thus seen that the Cercaria becomes an actual Flutie, it noxt remains to inquire what is the origin of the Cerearia. The Fluke deposits ova, from which, either within the body of the paront, or external to it, oval-shaped young proceed, which move about briskly in the fluid contained in the interior of the snail or in the surrounding water, and bear no resomblance to their parent.
(362.) The free-swimming Cercariæ, afterwards converted into pupx, as above described, have been proved, by the observations of Bojanus, to be produced from little worms of a bright yollow colour (fig. 110, 4) ("königsgelbe Würmer"), described by him, and which occur in great numbers in the interior of snails, especially of Limnceus stagnalis and Paludina vivipara. It is consequently in these yellow worms, which are about 2 lines long, that the Cercarix, which are the larvæ of the actual Flukes, are developed; and since we now know that the Flukes are perfect animals, which themselves undergo no transformation and are propagated by ova, we are reduced to the conclusion that the progeny is indebted for its origin and development to creatures which, in external form, and partly in internal organization, differ from the animals into which that progeny is afterwards developed; in other words, it may be said that we here meet with a generation of nurses, and that the yellow cylindrical worms of Bojanus, which inhabit the snail, are the nurses (sporocysts) of the Cercarix and Distomata*.
(363.) The " nurses" usually present the appearance of the figure given above (fig. 110, 4). The body is cylindrical, and is furnished in most instances with a spherical contracted head, which includes an oral cavity with very muscular walls and a small circular mouth. At some distance posterior to the middle of the body are situated the two characteristic oblique processes, which, as well as the part of the trunk posterior to them, are simply local dilatations of the cavity of the body. Of internal organs, there is only to be seen an undivided sacculated stomach (v), very small in proportion to the size of the animal.

The whole remainder of the very large body is filled with the brood of Cercarice. In the instance figured above (fig. 110, 4), all the embryos have simultaneously reached their full development, which is but seldom

[^56]the case, since, in the same individual, Cercarice are found in all stages of growth.
(364.) Some doubt exists as to the mode in which the Cercaries quit their "nurses," since it has been observed, under the microscope, that there are two places where they come away, viz. from each side of the body, at a depression under the collar, and from the abdominal surface, between the two oblique processes: but they escape from the latter situation only when the animal has been slightly compressed between the glasses, and from the former when no pressure at all has been employed.
(365.) It next remains to trace the origin of the " nurses" themselves. Siebold (who did not regard these as independent animals, but only as living organs of generation, " germ-sacs") expresses his surprise at seeing them developed from germs which are always contained in other creatures having the same outward appearance as themselves; and Steenstrup saw, with like astonishment, that it constantly occurred, in some of the snails taken from the same places as the others, that they harboured only Entozoa which had the outward form of the " nurses," but which, instead of Cercariæ, contained a progeny consisting of actual " nurses" in all stages of development. This was the case only in some, and those rather young snails, whilst all the others were inhabited by "nurses" whose progeny were true Cercarice; it cannot, therefore, be doubted that it is normal for the "nurses" to originate in creatures of similar appearance to themselves, and which are thus the "nurses" of " nurses.". These "parent nurses," however (fig. 110, s), notwithstanding their great resemblance, are easily distinguished from the others; the stomach, for instance, in the full-grown "parent nurses " is longer and wider than in any even of the youngest " nurses." (Compare fig. 110, 4 , with fig. 110, 5.)
(366.) We have thus followed the Distoma to its third stage of ascent, and, as no more stages in the generations of these animals have been detected, are not in a condition to trace the origin of the Distoma further back. Steenstrup, however, entertains the not unfounded supposition that the "parent nurses" are not produced from other similar creatures, but that they proceed originally from ova derived from the full-grown Fluke,-a supposition which derives additional importance from observatious made upon the development of other Entozoa belonging to the Trematode group.
(367.) In Monostomum mutabile*, for example, which inhabits the cranial cavities lined with mucous membrane in certain water-birds, the young embryo is frequently hatched before or just as the orum is expelled. The newly hatched young (fig. 111, 1) are of elongate-oval shape, and furmished at their anterior extremity with some short lobes, whieh the animal is able to protrude and retract; and its whole surface

[^57]is covered with vibratile cilia, by tho aid of which it moves readily in the water. In the antcrior part of the body aro two quadrangular spots, which can scarcely be regarded as any thing but eyes. The postcrior two-thirds of tho trunk are occupicd by a slightly transparent whitish body (g), which it might be supposed was one of the riscera, as Sicbold thought it to be, if it were not that after a time, and some rather vigorous motions, it becomes detached, ruptures the body of its parent, and presents itself under an entircly different appearance from that in which it lay concealcd and was developed (fig. 111, 2, 3). Briefly to recapitulate the above somewhat intricate but most intercsting series of phenomena, we find that only the mature Distoma (Fluke) lays eggs, that from each egg issues a ciliated larva, which, by internal gemmation, produces a "nurse" or sporocyst; this latter, by the same process, produces at the same time both new sporocysts and cercarice, that is to say, g'cnerations whose development is sometimes less and sometimes more advanced.
(368.) Besides this, each cercaria passes

Fig. 111.

1. First stage in the development of Monostomum mutabile, after it has quitted the egg and is swimming about at liberty: g, internal embryo of "parent nurse." 2,3 . The same after its metamorphosis from an active form into an inactive sluggish ereature, which is not itself a mother, but which nourishes within it a progeny from which, in the third generation, a parent animal proceeds. (After Siebold.) through phases of growth comparable to those which occur during the metamorphosis of an inscct. First, it is free and moveable like the larva of a fly: like the latter it becomes cncysted, and by a very analogous process becomes motionless, thus passing into the chrysalis- or pupastate. It next undergoes a complete organic regeneration, comparable in all respects to what occurs during the metamorphosis of the chrysalis of a Dipterous insect into its imago. Lastly, in both cases the termination of this series of changes announces itself by the devclopment of sexual organs, which inaugurate oviparous reproduction.

If we now apply to these trematode worms the nomenclature applied to the Tænia abovo described, we might say :--tho ciliated larva is the scolex of tho Distoma; the sporocyst is ite strobila. Each cercaria is a proglottis; but in this case tho proglottis, before arriving at the condition of a perfect Distoma, undergocs a scrics of real metamorphoses resembling that which occurs in insects, more particularly among those of the Dipterous order.
(369.) Another circumstanco still further complicates tho already complex history of these parasites; they are continually passing from one animal to anothor,- as, for instance, the egg of a Distoma, having fallen on the
leaf of some aquatic plant, is swallowed by a Limneus or othor freshwater snail; in tho interior of the snail it engenders at scolex (ciliated larva), which in turn produces in the same locality a strobila (sporocyst). From this last aro born several proglottides (cercaria), which for some time swim about around the animal in which they were born. When the time for theirmetamorphosis arrives, those that have attached themselves to stones or other foreign objects speedily perish; nevertheless there are always some which, having met with mollusks adapted to their wants, have succeeded in piercing their skin, and thus managed to place themselves in conditions favourable for development. There they remain till their temporary host is in turn swallowed by some other animal, in which the Distoma acquires its distinctive characters and becomes completely orgamized*.
(370.) The Acanthocephala \dagger, called likewise Eminormyncmi \ddagger, constitute a distinct gromp of Helminthozoa, distinguished by the remarkable armature of their oral apparatus, as well as by the peculiarities of their internal organization.
(371.) The Echinorhynchi inhabit the intestinal canal of various animals, to the walls of which they fasten themselves by a singular contrivance. In the Echino-
Anatomy of Echinorhynchus gigas, female (ufter Cloquet). 1. a, proboscis; b, c, ovarian apparatis; d, d, lemnisci ; e, e, retractor muscles of the proboseis; f, f, alimentary tubes; h, external opening of the Cemale generative system. 2. Anatomy of male Echinorhynehus: a, proboscis; d, lemnisci; f, g, trstes; h, vasa deferentia, uniting together at $i ; k$, vesiculr seminales; l, l, retractor, and n, n, protruding muscles of the penis; n, their point of insertion into o, the penis; p, gene-

rative aperture. 3. Mrehanism of the proboseis: a, its extremity covered with curved spines $b c$, its protractile sheath; d, c, retractor museles; f, lemnisens; g, ovary.

* M. de Quatrofages, op cit.

 rerpeaì, the head: =having the head armed with spines.
\dagger éxivos, rough, spiny ; $\dot{\rho} \dot{y} \gamma \chi o s, a$ beak or proboscis: $==$ haring a spiny probuscis.

Thymehus yiyces, which is found in tho intestinos of the hog, the head (11 , fig. 112, $1,2,3$) is represonted by a retractile proboscis, armed oxternally with four circlets of sharp recurved hooks, which, when plunged into the coats of the intestine, serve as securo anchors whereby the creature retains itself' in a position farourablo to the absorption of food. In fig. 112, 1, 2, this neulented proboscis is represented of its natural size, relative to tho body of the Entozoon, as it appears when fully protruded; but when not in use, the spinous part is retracted, and concealed by the mechanism of which an enlarged riew is given at fig. 112, 3. When extended, the position of the organ is indicated by the dotted lines; but in the drawing the thole organ is represented as drawn inwards and lodged in a depression formed by the inversion of the integument, so as completely to hide it within the body. This inversion is produced by the contraction of tiro muscular bands, $c l$, e, which arise from the inner walls of the borly, and are inserted in to the root of the proboscis around the œsophagus*; two other muscles, b, b, autagonistic to the former, arise near the spines themselves; and these, aided by the contractions of the walls of the body, are the agents by which the protrusion of the head is effected. Although the tecth or spines which render this organ so formidable are merely epidermic appendages, they are raised or depressed at the will of tho creature ; and it is therefore probable that, minute as they are, they have muscular fibres connceted with them, serving for their independent motions. These spines, moreover, are not always confined to the head, but in many acanthocephalic worms are found on various parts of the body, wherever their office as instruments of attachment is by circumstances rendered needful (figs. 114, 115).
(372.) The digestive system of the Eehinorhynchus is extremely simple. The mouth is a minute pore, placed at the extremity of the proboscis, which communicates with two slender canals, $f f$, at first of great tenuity, but near the middle of the borly assuming something of a sacculated appearance. Towards the tail these vessels gradually

Fig. 113.

A portion of intestinc, showing numerousEchinorhynchi with their heads imbedded in the mucous membrane.

Fig. 114.

Echinorhynchus, showing the spinity proboscis.

[^58]diminish in size, until they are no longer distinguishable; but they have not been seen to give off any branches, or to communicate with each other.
(373.) Near the origin of these nutrient tubes are two large cseca, nearly an inch in length, called lemnisci (fig. $112,1 \& 2, d, d$), which are probably connected with the digestive function.
(374.) The female Echinorhynchus, as is usually the casc in Diœcious Entozoa, is considerably larger than the male, as may be seen in the figurc. In the former (fig. 112, 1), the ovary, c, is a capacious organ, occupying the centre of the body, and extending along its cntire legnth. When minutely examined, it is found to consist of two compartments, or distinct sacs, one occupying the dorsal, the other the ventral aspect-the two tubes being separated by a septum. The dorsal ovary commences near the tail, at g, by a cul-cle-sac, and, enlarging as it runs forwards, terminates near the point c, by uniting with the ventral portion. The anterior part of the canal, b, is common to both divisions of the ovary ; and

Echinorhynchus with spines exten-
ively distributed orer the surface of
Echinorhynchus with spines exten-
sively distributed orer the surface of its body.

Fig. 115. from this the ventral tube runs backwards to the posterior end of the body, where it terminates in a narrow duct, which opens externally at h. It would seem, therefore, that the last-mentioned opening is the only excretory passage from the ovariam,- the connexion apparent in the figurc, between the common sac, b, and the root of the proboscis, being merely of a ligamentous character.
(375.) In the female of some of the Acanthocephali, according to Siebold*, there are neither proper ovaries nor a uterus, but in their place are found numerous oval or round flattened bodies of considerable size, which float freely in the anterior of the cavity of the body; they have regularly defined borders, and are composed of a vesicular, granular substance : in thesc tho eggs seem to be formed; so that they may be regarded as so many loose ovaries. When the eggs have reached a certain size, they fall from the ovaries into the cavity of the body, where they continue to increase in size, and become enclosed in additional envclopes. When maturo, the ova escape through a muscular canal, which terminates immediately at the vulva, the latter being a simple aperture, situated at the postcrior extremity of the worm. The muscular canal, through which the eggs escape, is of a campanulate or infundibuliform shape, opening internally by an aperture whose borders float freely in the cavity of the body; and thus the whole apparatus might be compared to a Fallopian tube.
(376.) The generative system of the male Eelinorhynchus is repre* Siebold and Sinmine, Comp. Anat. p. 124.
sented in fig. 11:2, 2. The organs which scerete the fecundating fluid are two cylindrical resieles (f, g), attached at one extremity by minute filaments to the walls of the body: from each of these arises a duct (h); and the two, uniting at i, form a common cxcretory canal. This canal speedily dilates into a number of sacculated receptacles, in which the sceretion of the testes accumulates; and from them a duct leads to the root of the penis (m). The penis or organ of copulation, when extended, protrudes through the aperture (p) placed at the anal extremity of the body; but when retracted, it is folded up and lodged in a conical sheath (0). The protrusion and retraction of this part of the male apparatus is effected by a very simple mechanism : two muscles ($l l$), arising from the inner walls of the body, are inserted into the base of the sheath (m), and serve to draw it inwards; and two others ($n n$), inserted at the same point, but arising from the posterior extremity of the animal, by their contraction force outwards the copulatory organ-an arrangement precisely corresponding with that by which the movements of the proboscis are provided for.
(377.) An extensive race of parasitical Helminthozoa, even more formi-

Fig. 116.

Giyrodactylua. 1. Ventral aspect, exhibiting the formidnble armature of the disk and the hooklets upon the body. 2. Dorsal aspect, showing the disk in profle and four eye-spots.
dably armed than any we have as yet encountered, has been appointed to reside upon the exterior of living animals, and thus to oceupy a pasturage far too fertile to be left without appropriate inhabitants. The gills of fishes and of many other water-breathing animals, covered with copions supplies of mucus and permeated by streams of highly vitalized blood,
aro able to afford an abundance of nutriment and an aggregate extent of surfaco by no means neglected by the ceonomy of nature; the skin of fishes lubrieated with unctuous material offers a supply of food two valuable to be thrown away; nay, even their eyes are infested by countless forms of parasites, happily minute in their dimensions, as they are formidable from the perfection of their armature.
(378.) A glance at the accompanying figure of a Gyrodactylus will convince us that it has the general structure of a fluke (Distoma) ; but it is a fluke presenting a more elaborate organization than the intestinal speeies. Living upon the external surface of fishes, it is furnished with eyes simple in their structure, yet, doubtless, sufficiently perfect to appreciate and perhaps to render useful the presence of light; while, instead of the simple suctorial disks, it is provided with an apparatus of hooks and fangs, indicating at onee the tenacity of its grasp and the security of its anchorage. Parasites of this description are found under innumerable specific forms upon the gills or on the fins of freshwater fishes: cach fish seems to have its appropriate parasite ; indeed sometimes two or three different kinds are to be met with on the same fish.

The tremendous holding-apparatus of the Gyrodactylus is in many genera replaced by numerous suckers, variable in their number and in their disposition, whereby the creature maintains an efficient grasp upon any smooth surfaco. In Oetobothrium, for example (fig. 117), eight prehensile instruments of this description are appended to the hinder part of the fluke-like body, while at the opposite extremity a suctorial mouth enables tho creature to fill its arborescent alimentary eanal with the liquid nutriment upon whieh it lives.
(379.) The Turbelyarle *, constituting another important group of the Helminthozoa, are mainly characterized by having the exterior of their bodies densely covered with vibratile cilia, by the agency of which they sivim frcely about. They are not parasitieal in their habits, and are met with under various forms, both in the sea and in fresh water.

Octobothrium. a, natural size. They may be divided into tivo families, the Planarise and the Nemertian Worms.
(380.) The Planarie, although they do not inhabit the interior of other animals, are nearly allied in every part of their organization with the Flukes (Distoma) ; so that their history cannot be more appropriately given than in this place. The Planarix are eommon in ponds and other stagnant waters ; they are generally found ereeping upon the stems of plants, or amongst the healthy eonferve which abound in such sitna-

[^59]tions, and wage perpetual war with a variety of animals inhabiting the same loealitics. The body of one of these minute creatures appears to be entirely gelatinons, without any trace of museular fibre*; yet its motions are exceedingly active, and it glides along the plane upon which it moves with a rapid and equable paec-of whieh the observer would searecly expect so simple a being to be eapable, -or, by means of two terminal suckers, progresses in the manuer of a leceh.
(381.) Many of the larger marine species are able to swim frecly in the sea by the aid of violent flappings of the broad margins of their bodies, whereby they beat the water much in the same way as the broad fins of a skate-movements which it would be difficult to explain, exeept by admitting the existence of a subeutancous plane of museular fibres, such as is deseribed by M. de Quatrefages as being reeognizable in some species.
(382.) Although the existence of a nervous system in the Planarix has been donbted by some observers, the rescarches of M. de Quatrefages assure us of its presenee in many species. It consists of two ganglions, more or less intimately united, whieh are situated in the mesial line near the anterior part of the body. This double ganglion, whieh may be ealled the brain, and whieh is sometimes visible to the naked cye, is lodged in a special lacuna or eavity, reeognizable from its transparent outhine, and is scen to give off nervous filaments in various directions to different parts of the body.
(383.) M. Blanehard \uparrow, in dissecting a large individual belonging to this group, not only found the two eerebroid nervous eentres, above alluded to, closely approximated, but observed that they gave origin to two long eords, which exhibited at regular intervals a series of minute ganglia, thus elearly approximating to the type of structure that charaeterizes the lower forms of the annulose worms.
(384.) Many speeies of Planarix possess two red specks uporl the antcrior part of the body, which, as in other cases, have been unhesitatingly pronounced to be eyes, although their elaim to such an appellation is not only unsubstantiated by any proofs derivable from their strueture, but completely negatived by experiments, which go to prove that, in the pursuit of prey, no power of deteeting the proximity of their food, by the excreise of sight, is possessed by any of them.
(385.) The phenomena whieh have been observed, eonnected with the multiplication of the Planarix by division, are analogous to those which we have witnessed in other acrite animals ; for it has been proved that, if an individual be ent to pieces, every portion eontinues to live and feel, from whatever part of the body it may be taken; and, what is not a little remarkable, each piece, even it be the end of the tail, as soon as the first moment of pain and irritation lias passed, begins to move in

[^60]the same direction as that in which the cntire animal was advancing, as if the body was actuated throughout by the same impulse ; and, moreover, every division, even if it is not more than the eighth or tenth part of the creature, will become complete and perfect in all its organs.
(386.) The mouth, in a few species of Planarix, is placed at the antcrior extremity of the body, but generally it is found to occupy the middle part of the ventral surface. Its structure is quite peculiar, and admirably adapted to the exigences of the creature ; it consists of a wide, trumpet-shaped proboscis (fig. 118, 3 \& 4), which can be protruded at pleasure, and applied to the surface of such larvæ or red-blooded worms as may come within reach, so as to suck from them the juices which they contain ; or if the prey be small, such as animalcules and minute crustacea, they are seized by it and conreyed into the digestive canals. The internal organs appropriated to nutrition resemblc in all essential points those of the Distoma; they consist of a multitude of blind tubes, ramifying in the parenchyma of the body, which, when distended with coloured substances, are sufficiently distinct. The

Fig. 118.

Structure of Planaria (after Dugès). 1. Ramifications of alimentary canal. 2. Vascular system. 3. Proboscis unfolded. 4 represents a Planaria devouring a Nais, showing the action of the proboscis. 5. Generative system: a, male apparatus; b, female ditto. 6. Two Planarix in the act of copulation. principal trunk (fig. 118, 1), which communicates with the proboscidiform mouth, soon divides into three primary branches, onc of which runs along the median line towards the anterior extremity, whilst the other two are directed backwards towards the tail. From these central canals secondary ones are given off, which permeate all parts of the creature. There is no anal aperture ; so that, of course, the residue of digestion is expelled throngh the mouth; but the nature of the process by which defceation is thus effected is curious : the Planaria, slightly bending itself, is scen to pump up through its proboscis a quantity of wator, with which all the branches of the alimentary ramifications are filled; the creature then contracts,
and, foreibly ejecting tho contained fluid, oxpels with it all effeto or useless matter.
(387.) Tn the larger marino species, M. do Quatrefages* recognizes the cxistenec of an internal general or visceral cavity, whieh he invariably found filled with a transparent fluid kept in contimal agitation by the rarious movements of the animal. The flux and reflux of this fluid are rendered eonspieuous by the movements hithor and thither of numerous round diaphanous eorpuscles whieh enter as morphotie elements into its composition and render indisputable its identity of eharaeter with the ehylaqueous fluid of the more highly organized worms, in whieh the internal riseera are freely suspended, their parietes being merely kept in situ by delieate membranous frena.
(388.) Besides the arborescent tubes in whieh digestion is accomplished, a rudimentary vaseular system is distinctly visible, whereby the nutritive juices are dispersed through the system. This consists of a delieate network of vessels, arising from three large trunks, one plaeed in the eentre of the dorsal aspeet, and the other two running along the sides of the animal (fig. 118, 2).
(389.) The Planariæ are perfectly androgynous, as eaeh individual possesses a distinet male and female generative system ; but they are not, apparently, self-impregnating, seeing that the cooperation of two individuals has been found needful for the mutual fertilization of their ova. In every one of these animals two distinet apertures exist upon the ventral surfaee, at a little distanee behind the root of the proboscis, the anterior of which gives issue to the male organ, while the posterior leads to the ovigerous or female parts.
(390.) In Planaria tremellaris, the penis, which during eopulation is protruded from the anterior orifice (fig. 118,6), is a white contraetile body, cnelosed, when in a retraetcd state, in a small oval poueh; it is perforated with a minute eanal, and receives near its root two flexuous tubes, whieh gradually decrease in size as they diverge from cach other, until they can no longer be traeed. These are the seminiferous vessels (fig. 118, 5, a). The posterior genital orifiee, whieh leads to the female organs, communicates with a small poueh, or uterus, as it might be termed (fig. 118, 5,6); into this open two lateral oviducts, whieh run on each side of the male apparatus and of the proboscis; these are very transparent, and only recognizable under eertain cireumstances by the ova whieh they contain. In Planaria lactea tho oviduet opens into the uterine eavity by a single tube, which, passing baekwards, divides into two equal branches; and both of these, again subdividing, ramify extensively among the cæca derived from the stomaeh. We likewise find in this species two aeeessory vesielos, which pour their secretions into the terminal sac.
(391.) The Nemertian Helimetiozod are marino animals, frequeutly

[^61]found lurking beneath stones, or in clefts of rock, on shores left by the retreating tide. In their external appearance they have some resemblance to Tronir, and, like them, are oceasionally met with of prodigious length. In their anatomical structure, however, they differ widely from the Tapo worms, as will be immediately cvident from the following details.
(392.) The body is covered with a sort of semifluid varnish, the whole surface of which is densely clothed with extremely delicate and closely set vibratile cilia, so minute as to be perceived with difficulty, except in the vicinity of the head, where, at certain points, they present more conspicuous dimensions (fig. 119, 6 b).
(393.) The alimentary apparatus presents a remarkable uniformity

Anterior portion of Borlasia camillea. a, buecal orifice, $b b$, cephalic fossa, provided with vibratile eilia; c, c, lobes of the brain, brought into communication with each other by means of a broad subcesophageal commissure, and apparently composed of several ganglia conjoined; d, d, longitudinal nervous trunks, whence branches are derived which supply the muscles and internal viscera: e, e, e, e, cephalic nerves; f, f, groups of eyc-like specks; $g g$, cephalic loop of the vascular system; $l l$, mediodorsal vessel, which, on entering the cephalic cavity, bifurcates to form the trunks, $k k$, that encircle the brain, and aftcrwards, at $h h$, bccome continuons with the lateral vessels, $i, i ; m m m m$, horizontal diaphragm, forming a sheath, in whieh is lodged the anterior portion of the proboscis, $00 ; n, n$, the ovaria (testes in the male), furnished with cæca that float freely in the lateral chambers of the body. The space comprised between the scpta, to which the generative organs are attached, forms the eentral longitudinal cavity wherein is lodged the digestive apparatus.

Fig. 119.

of arrangement, and, for the purpose of description, may be divided into the mouth, the proboseis, the cosophagus, and the intestinc. There do not appear to be cither salivary or hepatie glands; neither is the intestinal canal provided with an anal outlet. The mouth is a minute orifice, situate at the anterior extremity of the body (fig. 119, a), and
gencrally surrounded with cilia of large dimensions, from which a muscular canal is prolonged for some distanco backwards, at the posterior extremity of which may be seen, folded up in the interior of the body, a powerful proboscis, which is protrusible at the will of the animal, and, like that of the Planaria described above, is a most efficient instrument for seizing prey. Immediately behind the proboscis is situated a very remarkable apparatus in the shapo of an extremcly museular œesophagus, wherein is lodged a weapon of most extraordinary character, consisting of a solid transparent spiculum, lodged in a cavity, formed in the thickness of the œsophageal parietes, wherein is contained a glandular mass, by which the calcareous spiculum is apparently secreted (fig. 120, g). Other glandular structures ($/ \hbar h$), probably destined for the elimination of some venomous secretion, are in communication with the styliferous cavity ; so that the dagger-like spiculum, being constantly bathed with the scerction thus furnished, becomes an instrument of a very deadly character. The dagger-like weapon, together with its immediate appendages, is capable of being protruded by the aid of muscular bands in connexion with the styliferous eavity, which at the same time, by compressing the glands, readily cause the emission of their sccretion. On each side of the formidable apparatus above described, there are, moreover, two other cavities, apparently of an auxiliary character (fig. $120, i i$), in which a secretion of supernumerary spicula is perpetually in progress, apparently destined to replaco the original one if lost or broken.
(394.) The intestine (fig. 120, 6), properly so called, succeeds immediately to this strangely organized œesophagus, and is continued backwards, floating in the central compartment of the body, to which it is loosely attaehed by membranous bridles for about three-fourths of

Fig. 120.

Styliferons apparatus ef Polia mandilla: a, portion of proboseis; b, portion of the intestine; c, flrst œsophageal dilatation; d, second cesophageal dilatatiou; e e, œsophageal canal, presenting sundry dilatations and contractions; f, cavity in which is lodged the spienlum, g; h, h, poison (?)-glands in conncxion with the spiculum, $g ; i, i$, cavities enclosing incompletely formed spicula. the length of the worm, at which point its calibre rapidly diminishes; and its cavity soon beeomes obliterated, so that it terminates under the aspeet of a simple cord.
(395.) The Nemertean Helminthozoa are possessed of a very complete circulatory system of vesscls enclosed in proper walls. These consist of three principal trunks, two of which run along the sides of the ventral aspect of tho body (fig. 119, i i), whilo the third occupies the middle of
tho dorsal surface (fig. 119, ll) : these three vesscls become considerably increased in size as they approach tho posterior extremity of the worm, and ultimatcly are eonjoined.
(396.) The median vascular trunk, throughout the greater part of its course, is situate immediatcly bencath the subcutaneous muscular layers; but when it arrives at the sheath of the proboscis it becomes enclosed in a special canal, and thus penetrates into the cephalic region, where it bifurcates to form the two latcral trunks, $k k$, which, after forming almost a complete circlo around the corebral ganglia, anastomose with the lateral vessels, i, i.
(397.) The vessels of the body thus becoming conjoined at the points $h h$, form a loop, $g g$, which surrounds the cephalic region, and is of considerably greater calibre than the trunks from which it is derived.
(398.) The fluid contained in the vascular system above described is generally colourless, but sometimes of a reddish or yellowish tinge ; it is, however, completcly devoid of blood-corpuscles, resembling, in this respect, the blood of the Annelidans, which will be described on a future occasion.
(399.) In these worms, the central or abdominal space is separated from the two lateral cavities by vertical septa, to which the reproductive organs are attached. The latter consist of a serics of eæca (fig. 119, $n n$), which are so exactly alike in the two sexes, that it is impossible to distinguish the male from the fcmale, except by their contents. These cæca are apparently formed of several layers of cells, and are covered externally with vibratilc cilia. Except during the period of reproduction, they contain, in both sexes, nothing but an opaline fluid; but when called into action, the ovaria in the female arc found to be filled with a liquid wherein corpuscles of various sbapes are seen to be suspended. Some of these have the appearance of perfeetly diaphanous spheres, which are sometimes isolated, at others surrounded by granulations; and likewise oil-drops of a beautiful golden colour may be detected: but the ovaria never seem to contain perfectly developed ova; these are only met with in the lateral cavities of the body, where they may frequently be seen, in different stages of devclopment, floating about between the crea. The vitellus and Purkinjean vesicle are always more or less apparent. When these cggs have acquired their full growth, they stuff, so to speak, the whole body of tho worm, pressing upon the alimentary canal to such a degree that it seoms in danger of becoming atrophied, and almost completely effacing tho median abdominal cavity; 1ay, so closely are they squeezed against each other, that they loso their spherical form and become polygonal. The number of these oggs is prodigious : and M. de Quatrefages estimates seven or eight thousand to be a moderate complemont for a middle-sized worm of this description.
(400.) The male Nomerteans present phenomena very similar to those just described as occurring in the female. At the period of reproduc-
tion, the testicular cæea bccome filled with granulations of various sizes, sometimes isolated, sometimes grouped together in round masses; but these do not contain spermatozoids. The latter seem only to occur in the lateral carities of the body; and even there they are found in various stages of development, from granular masses, such as are met with in the oraria, to aggregations of spermatozoids provided with tails and subsequently isolated. At length the body of the male Nemertean appears to be as completcly stuffed with spermatozoids as that of the female is with cogs, and they are ultimately expelled, in prodigious numbers, into the surrounding water.
(401.) The Celelmintha*, or cavitary intestinal worms of Cuvier, evidently present a much higher type of structure than any of the preceding. The Ascaris lumbricoides, as its name imports, so strongly resembles some of the Annelida in its external configuration, that the zoologist who should confine his attention to outward form alone, might be tempted to imagine the affinities connecting them much stronger than a comparison of their anatomical relations would sanction. This Entozoon is found in the intestines of many animals, and is endowed with some considerable capability of locomotion, adapted to the circumstances under which it lives; for in this case the worm, instead of being closely imprisoned in a circumscribed space, may traverse the entire length of the intestines in search of a convenient locality and suitable food.
(402.) In accordance with such an enlarged sphere of existence, we observe muscular fibre distinctly recognizable in the tissues that compose the walls of the body-not as yet, indecd, exhibiting the complete characteristics of muscle as it is found in higher animals, but arranged in bundles of contractile filaments, running in determined directions, and thus capable of acting with greater energy and effect in producing a variety of movements.
(403.) In this rudimentary state, the muscular fibre does not possess the density and firmness which it acquires when completely developed; it has, when seen under the microscope, a soft, gelatinous appearance, apparently resulting from a deficiency of fibrin in its composition; the transverse striæ, usually regarded as characteristic of the muscular tissue of the more perfect animals, are not yet distinguishable ; and the individual threads are short, passing over a very small space before they terminatc. On examining the arrangement of these fasciculi, they are seen to be disposed in two layers, in each of which they assume a different course ; thus, in the outer layer they are principally arranged in a longitudinal direction, while the inner stratum of fibres is placed transversely, affecting a spiral course, so as to encircle the viscera. From this simple structure various movements result: by the action of tho longitudinal fasciculi the whole body is shortencd; by the contractions

* koî̀os, hollow ; "̈̀ $\mu \iota \nu$ s, è $\lambda \mu \iota \theta$ os, an intestinal worm: having a risceral cavity, $=$ vers intestinaux cavitaires of Cuvier.
of the spiral layer an opposite offect is produced ; or by the exertion of circumscribed portions of tho muscular integument, lateral flexions of the body are effected in any given direction. These motions in the living worm are vigorous, and easily excited by stimuli; they are therefore abundantly sufficient for the purpose of progression in such situations as those in which the creature lives, and enable it to change its place in the intestines with facility.
(404.) Around the mouth or anterior part of the cesophagus there appears to be a delicate nervous ring, probably specially connected with the association of such movements of the oral extremity as are essential to the imbibition of nourishment. From this oral ring proceed two long nervous filaments (fig. 121, e, e), one of which runs backwards along the dorsal aspect of the body, while the other occupies a similar position upon the ventral surface. The lastnamed filament is described by Cloquet as dividing, in the female Ascaris, at the point where the termination of the organs of generation issues from the body (fig. 121, $1, m)$, so as to enclose the termination of the vagina in a nervous circle.
(405.) The digestive apparatus in this order of intestinal worms is very simple. In Ascaris lumbricoides the aperture of the mouth (fig. 121, a) is surrounded by three minute rounded tubercles ; into each of these, fasciculi, derived from the longitudinal muscles of the body, are inserted in such a manner as to cause the separation of the tubercles and consequent opening of the mouth, which is again closed by a sphincter musele provided for the purpose. To the mouth succeeds a short œesophagus (fig. $121,1 \& 2, b$), which is separated by a constriction from the rest of the alimentary canal, and would seem, from the muscularity

Fig. 121.

Anatomy of Ascaris lumbricoiles. 1. Female Asearis: a, oral orifice; b, muscular asophagus: c, alimentary canal; d, termination of ditto at the posterior extremity of the body; c, nerrous filaments; l, convolutions of the two ovigorous canals; 1 , uterine receptacle. 2. Male Ascuris: u, b, c, d, C, at above; f, convolutions of the teates; g, their termimal dilatation, culing in i, the penis.
of its walls, to be an agent employed in sucking-in the liquid food upon which the creature lives. The true digestive cavity (fig. 121, $1 \mathbb{N} 2, c$ e) is a simple and extremely delicate tube, which arises from the cesophagus, and, without presenting any appearance indicative of separation into stomach and intestine, gradually enlarges as it proceeds backwards, until it terminates at the hinder extremity of the body by a narrow aperture (fig. 121, $1 \& 2, c l$).
(406). It would seem that the food of these Entozoa, being already animalized by having undergone a previous digestion, requires little further preparation ; and we are not surprised at finding, in the generality of the Colelminthce, no accessory glandular apparatus appended to the digestive canal for the purpose of furnishing auxiliary secretions. In two species only hare tributary secreting organs been detected. In one example, Gnathostoma aculeatum (Owen), found in the stomach of the tiger, and which is remarkable as possessing a pair of rudimentary jaws, four elongated cæca are appended to the mouth, into which they pour a fluid, analogous, no doubt, to that of the salivary glands*; in a species of Ascaris, found in the stomach of the dugong, Professor Owen likewise discovered a ceecal appendage opening into the alimentary tube, at some distance from the mouth, and which, without much stretch of imagination, might be regarded as the first and simplest rudiment of a biliary system \dagger.
(407.) In further prosecuting our inquiries concerning the process of nutrition in these Entozoa, we must now speak of a peculiar structure, first noticed by Cloquet \ddagger, and apparently intimately connected with the assimilation of nutriment. Projecting from the inner surface of the abdominal cavity, especially in the dorsal and ventral regions, there are a great number of gelatinous, spongy processes (appendices nourriciers), which, although they have no apparent central carity, would seem to be appended to vascular canals seen upon the lateral aspects of the body : it is probable, therefore, that their office is to absorb the nutritive juices that exude through the delicate walls of the intestine and convey them into the circulatory apparatus; or they may be reservoirs for nourishment, analogous to the adipose tissue of higher animals.
(408.) In the Cetelmintha the sexes are separate; and the generative organs, both of the male and female, exhibit great simplicity of structure. In the female Ascaris, the aperture communicating with the ovigerous apparatus is placed upon the ventral aspect of tho body, a little anterior to the middle of the worm (fig. 121, $1, m$). This opening. leads to a wide canal (7), usually called the uterus ; and from the lastinentioned organ arise two long and undulating tubes, which, dimi-

[^62]nishing in size, run towards the posterior uxtremity, whero they become completely filiform, and, turning back upon themselves, are wound in innumerable tortuous convolutions around the posterior portion of the alimentary canal, until the termination of each becomes nearly imperceptible, from its extreme tenuity. In these tubes, which, when unravelled, aro upwards of 4 feet in length, the ova are formed in great numbers, and are found to advance in maturity as they approach the dilated terminal receptacle common to both oviducts (l), from which they are ultimately expelled.
(409.) Tho attenuated commencements of the genital tubes in the female Ascaris may be regarded as representing the ovary, wherein may be discovercd numerous small round cells, which, as they advance forward, begin to be surrounded by a granular vitelline substance, wherein the primitive nucleated cells are still visible: these cells, therefore, ought perhaps to be regarded as germinal vesicles. Still further onward the eggs are of a discoidal shape, and arc arranged in a xow, or are grouped closely around a rachis that traverses the axis of the ovary. In that portion of the genital canal which may be considered to represent the Fallopian tube the ova become more mature, and subsequently, surrounded by a double colourless envelope, pass into the base of the uterus. This last is the widest portion of the genital tubes, and is distinguished in the living animal by its well-marked peristaltic action. The vagina, distinguishable from the uterus by its narrowness and its muscular walls, opens into the vulva-a narrow transverse fissure, sometimes surrounded by a very remarkable fleshy swelling, generally situated either in front of or near the middle of the body, but in some cases in the vicinity of the anus. The sperm is usually accumulated in the bottom of the uterus to such an extent as to render it probable that this is the locality where the fecundation of the ova takes place*.
(410). The male Ascaris lumbricoides is considerably smaller than the female, and the structure of its generative system remarkably similar to what hasbeen just described in the other sex. The testis or gland, which secretes the impregnating fluid, is a single, delicate, tubular filament (fig. $121,2, f$), which, when unravelled, is found to be nearly 3 feet in length, and is seen winding, in close and almost

Fig. 122.

Trichina spiralis. inextricable folds, around the middle and hinder parts of the intestine.

* Siebold, loc. cit.

The termination of this tubc, g, may be traced to the tail or anal extremity of tho worm, whero it ends in a filamentary retraetile penis, i, in which tho microseopo cxhibits a minuto receptacle, wherein tho seminal fluid aeeumulates preparatory to its expulsion. During copulation tho penis of the male is introduced into the vulva of the female, by whieh it is firmly embraecd, and the different positions which the cxternal parts oceupy in the two sexes is evidently an arrangement favourable to their intercourse.
(411.) Tho Trichina spiralis (fig. 122) is an Entozoon found in immense numbers imbedded in the cellular intervals between the muscular fibres; and in some instanees all the voluntary museles seem full of these creaturcs, cxhibiting, when vicwed with the naked eye, an appearance imitated in figure 122, c. On examining the white speeks attentively under the mieroseope, every one of them is seen to be a flask-shaped vesiele, apparently formed of eondensed eellular mombrane, in whieh the minute animal is lodged; and when this outer eovering is ruptured, as at a, the worm eseapes. A magnified view of the Entozoon is given at b, coiled up in the position in whieh it is seen prior to the destruetion of the sao that enelosed it. The body seems to be filled with granular matter, whioh eseapes when the worm is torn asunder (d); but whether it posscsscs a true alimentary tube is not as yet satisfactorily detcrmined.

CHAPTER VIII.

ECHINODERMATA * (Cuv.).

(412.) The next elass of beings whieh presents itself for our eonsideration scems, upon a partial survey, to be completely insulated and distinet from all other forms of living creatures; so peeuliar is the external appearanee and even the internal organization of the families eomposing it. The casual obscrver who should, for the first time, examine a starfish or a sea-urehin, two of the most familiar examples of the Ectinoderamata met with upon our shores, would, indced, find it a diffieult task to assoeiato them, cither to the simpler animals we have already deseribed, or to more perfeet forms of existenee hereafter to be mentioned ; they seem to stand alone in ereation, without appearing to form any portion of that series of rolationships whieh we have hitherto been able to traee so continuously.
(413.) But this apparent want of eonformity to tho gencral laws of affinity vanishes on more attentive examination; so that we may

[^63]not only follow the steps by whieh every family of this extensive class merges insensibly into another, but perceive that, at the two opposite points of the series, the Eciminodermata are intimately in relation with the Polyps on one hand, while on the other they as obviously approximate the Annulose animals, to which the most perfectly organized amongst them bear a striking resemblance.
(414.) It would be impossible within our present limits to do more than lay before the reader the most important types of structure

Fig. 123.

Series of forms illustrative of the transition effected by the Echinoderms from the radiate to the annulose type.
exhibited by the Echinodermata; it must nevertheless be understood that innumerable intermediate genera connect the different families; so that, however dissimilar the examples we have selected for the purpose of elucidating their general habits and economy may appear, the gradations leading from one to another are casily discoverable.
(415.) Crinorde.-We have already found that many tribes of Polyps secrete calcareous matter in large quantities, constructing for themselves solid skeletons or polyparies, which generally seem to be placed external to their soft and irritable bodies, but occasionally, as in Pennatula, within the living substance. Let us for a moment suppose a polyp supported upon a prolonged stem, and that, instead of depositing: the earthy particles externally, they should be lodged in the substance of the polyp itself, so as to fill the pedicle, the body, the tentacula around the mouth, and all the appendages belonging to the animal with solid pieces, of definite form ; such pieces, being connected together by the soft parts, and surrounded on all sides with irritable matter, would thus form a complete internal skeleton, giving strength and support to the entire animal, and at the same time allowing flexure in every
direction. A polyp so constituted would obviously, when dried, present an appearance similar to what is depicted in the annexed engraving (fig. 124), represcnting an Encrinoid Echinoderm in its perfect condition. That animals thus allicd to polyps in their outward form have, in former times, cxisted in great numbers upon the surface of our planet is abundantly testified by the immense quantitics of thcir remains met with in various calcareous strata; but their occurrence in a living state is at present extremely rare: one minute species only has been detected in our own seas*; while specimens of larger growth, such as that represented in the engraving, derived from tropical climates, are so seldom met with, that it is fortunate one or two examples have been found, to reveal to us the real structure of a race of animals once so common, but now almost completely extinct. The body of the

Fig. 124.

Encrinus. Encrinus (fig. 124, a) (or pclris, as the central portion of the animal is termed by geological writers) is composed of numerous calcareous pieces, varying in shape and arrangement, so as to become important guides to the identification of fossil species. From this central part arise the large rays (b, b), each furnished with a double row of articulated appendages, which, as well as the arms, are no doubt instruments for seizing prey and convoying it to the mouth, situated in the centre of the body, near the point a. This part of the animal, when found in a fossil state, from its resemblance to a flower, has received the common name of a " lily stone."
(416.) The body above described, with the rays procecding from it, is supported upon a long pedicle (e), divided into countless segments; and upon the sides of the stem, similarly constructed filamentary branches (d, d) are fixed at cqual intervals. The skeleton of an Encrinite consists, thercfore, of thousands of regularly shaped masses of calcareous earth, kept together by the living and irritable flesh in which they arc imbedded; and it is to the contractions of this living investment that tho

[^64]movements of the animal are due; but after the death of the creature,
Fig. 125.

Fossil Encrinite-showing on a larger scale fragments of the stem, named "Trorhi" and "St. Cuthbert's beads."
and the consequent destruction of its soft parts, the pieces of the earthy framework become separated and fall asunder, forming the fossil remains

Fig. 126.

Encrinus curopaus: a, magnifled; b, natural size.
called "Irochi," and known in the northern districts of our own island, where they aro very abundaut, as "St. Cuthbert's beads."
(417.) Of the internal structure of the Encrinites nothing is satisfac-
torily known. That they possessed a distinct mouth and anal aperture is erident from the structure of the plates of the body; but this is the extent of our information concerning thom *.
(418.) Asteride.-In order to convert an Encrinus into an animal capable of locomotion and able to crawl about at the bottom of the sca, little further would be requisite than to separate the body and arms from the fixed pedicle upon which they are supported; we should then have a creature resembling in every particular the Starfishes. The Comatula, for example (fig. 127), one of the lowest of the asteroid Echinodermata, might be looked upon as an animal thus detached. The central part, or body, which contains the viscera, is made up of numerous ealcareous plates, having in its centre a stelliform mouth; and near this is a tubular orifice, probably to be regarded as an anus. Around the margin of the central disk arise five stunted arms ; but these immediately divide into a variable number of long radiating branches, composed, like those of the Encrinus, of innumerable articulated earthy pieces enveloped in a living and irritablc integument. We find, more-

Fig. 127.

Comatula.
over, issuing from the sides of every one of the prolonged rays, a double row of sccondary filaments, each containing an internal jointed skeleton, and capable of independent motion. The complicated arms of the Comatulu, therefore, are not, like those of the Polyp, merely adapted to

[^65]seizo prey, but, from their superior firmness, may be used as so many legs, cnabling the animal to travel from place to place.

Sctting out from this point to trace the gradual development of organization in the Echinodermata, we shall obscrve a progressive coneentration of their entire structurc. The centrul part, or visceral cavity, so small in the Comatula when compared with the complicated rays derivod from it, eularges in its proportional dimensions as the visecra contained within it bceome more perfect in their arrangement, whilst, on the other hand, the radiating or polyp form, so visible in Encrinus and Comatula, bccomes obliterated by degrecs, until, at length, almost all vestiges of it are lost, or but obscurely rccognizablc.

In the Gorgonocephalus (fig. 128), the proportionate size of the rays, when compared with that of the central disk, still preponderates very considerably, although even here some concentration is manifest. The

Fig. 128.

secondary articulated filaments appended to the rays of Comatula are no longer recognizable, their place being supplied by the continual division and subdivision of the rays themselves: the same end, howerer, is obtained in both cases; for the numerous jointed and flexible rays of Gorgonocephalus still form so many legs, cuabling the creature to drag itself along the bottom of the sea, or to cutwine itself among submariuo plants, as well as supplying the office of tentacula in securing food.
(419.) Continuing our progress towards more perfect forms of these
remarkable animals, we at length arrive at genera in which the rays become divested of all elongated appendages, either in the shape of articulated lateral filaments or dichotomous ramifications. In Ophiurus, for instance (fig. 129), the rays are long and simple, resembling the tails of so many serpents-a circumstance from which the name of the family is derived; nevertheless on each side of every ray we still trace moreable lateral spincs, which, although but mere rudiments of what we have secn in Comatula, may yet assist in locomotion, or perhaps may contribute to retain prey more firmly when scized by the arms. The

Fig. 129.

rays themselves are composed of many picces curiously imbricated and joined together by ligaments, so that they are, from their length and tenuity, extremely flexible in all directions, and serve not only for logs, adapted to crawl upon the ground, but aro occasionally serviceable as fins-able to support the animal in the water for a short distanec by a kind of undulatory movement. The body, or central disk, is beautifully constructed, being made up of innumerable pieces accurately fitted together. The mouth occupies the centre of the ventral surface, and is surrounded by radiating furrows, in which are scen minute apertures that give passage to a set of remarkable prehensile organs, to be described hereafter : these are calculated to act as suckers, and so disposed
as cither to fix the body of the animal, or to retain food during the process of deglutition.
(420.) Leaving the Ophiuri, we are led through a long series of almost imperceptible gradations to the Starfishes (Asterias) (fig. 130); in these, from the inereased size of the body, the rays are united at their origin, and beeome so much dilated as to contain prolongations of the viscera lodged in their interior-an arrangement not met with in Ophiuri and other slender-rayed Asteridæ. The dilatation of the central part proeeeds, and in the same proportion the rays become obliterated; so that by degrees the asteroid shape becomes totally lost by the progressive filling up of the interspaces between the rays, and we arrive ultimately at completely pentagonal forms, the sides of the pentagon being perfeetly straight lines.
(421.) It is extremely interesting to observe the changes which oecur

Fig. 130.

in the nature of the locomotive organs during these diversifieations of external figure. We have seen that, in the lower Eehinodermata, possessing long and flexible rays, such organs were fully adequate to perform all movements needful for progression; but as the mobility of these parts is diminished by their gradual eurtailment and the filling up of the spaees between them, some compensating eontrivanee beeomes indispensably necessary; and aceordingly we find an apparatus gradually developed, well ealculated to meet the exigenees of the case. In Ophiurus we have already mentioned the existence of protrusible suekers around the opening of tho mouth, well adapted, from their position, to take firm hold of food seized by the animal ; and it is by inereasing the
number of such organs that ample compensation is made for the loss of motion in the rays themselves. On examining the lower surface of an Asterias, even in those forms which most approximate to a right-lined pentagon in their marginal contour, the number of rays will still be found to be distinctly indicated by as many furrows radiating from the mouth, and indicating the centre of each division of the body. These " ambulcucral furrous," as they are termed, exhibit, when examined in a dried specimen, innumerable orifices arranged in parallel rows, through each of which, when alive, the animal could protrude a prehensile sucker, capable of being securely attached to any smooth surface (fig. 135).

No verbal description can at all do justice to this wonderful mechanism, even leaving out of the question the means by which each individual sucker is wielded (of this we shall speak hereafter); but let any of our readers, when opportunity offers, pick up from the beach one of these animals, the common Starfish of our coast, which, as it lies upon the sand, left by the retiring waves, appears so incapable of movement, so utterly helpless and inanimate; let him place it in a large glass jar filled with its native element, and watch the admirable spectacle which it then presents. Slowly its tapering rays expand to their full stretch ; hundreds of feet are gradually protruded through the ambulacral apertures; and each, apparently possessed of independent action, fixes itself to the sides of the vesscl as the animal begins its march. The numerous suckers are soon all employed, fixing and detaching themselves alternately, some remaining firmly adherent, while others change their position ; and thus, by an equable gliding movement, the Starfish climbs the sides of the glass in which it is confined, or seales the perpendicular surface of the submarine rock.
It is not only as agents in locomotion that the ambulacral suckers are used; for, helpless as these creatures appear to be, they are among the most voracious inmates of the deep, as will be readily admitted by any one who watches them in the act of devouring prey. When seizing its food, the rays of the Asterias are bent towards the ventral aspect, so as to form a kind of cup, in the centre of which is the opening of the mouth. The cup thus formed will, to a certain extent, lay hold of a passing victim; but, without other means of securing it, the grasp would scarcely be very formidable to animals possessed of any strength : armed, however, as the rays have been found to be, with hundreds of tenacious suckers, escape is almost impossible ; for prey, once scized, is secured by every part of its surface, and, in spite of its utmost efforts, is speedily dragged into the mouth, and engulfed in the capacious stomach, where its soft parts are soon dissolved.

But to continue our survey of the class beforc us. Having arrived at the point at which, by the diminution of the rays and consequent extension of the central part, the body has assumed a pentagonal out-
line, we may now advance in an equally gradual manner to those globular species of which the Echinus or Sect-Urchin is the type or most perfect example.
(422.) Echinidx.-In the Scutellee (fig. 131), we have a flat and shield-like body, in which even the angles of the margin are lost, and the whole cireumference acquires a circular form ; but still the five radiating ambulacra are visible upon the centre of the disk, although evidently imperfectly developed when compared with those of the Asteridæ above-mentioned. The nature of the integument has, in faet, become so changed, that another modification of the locomotive organs is now imperatively called for; and the means of progression are therefore proportionately altered. In the Asteridæ, the integuments, especially upon the dorsal aspect, are always more or less composed of a coriaceous material, or, at least, of solid pieces so articulated together as to permit

Fig. 131

Scutella.
of considerable flexibility : but in the Eehinidæ the nature of the external covering is very different; for these creatures scem completely encased in a dense calcareous shell, composed of numerous angular pieces accurately fitted together and incapable of movement. The Scutellue, moreover, bury themselves beneath the surface of the sand - a situation in which suekers would be of little use, but for which these animals are admirably adapted by a contrivance not less calculated to excite the admiration of the observer. The exterior of the shell is entirely covered with minute appendages resembling, when seen with the naked eje, delicate hairs ; but these, when examined under a mieroscope, are found to be spines of most elaborate structure, as is evident from the magnified view of one represented in the annexed figure (fig. 131). Innu-
merable as these spines are, every one of them is artieulated to the shell by a kind of ball-and-socket joint, and suseeptible of being moved in all direetions; so that by their eombined efforts the Scutella ean speedily bury itself, cither for the purpose of proeuring food, or of elnding obscrvation.
(423.) From the flat Scutella, the passage to the globose Eehinidæ is uninterrupted; and a beautiful series of eonnceting forms (many still existing as living speeies, but a still greater number found only in a fossil state) demonstrate the progressive expansion of the shell, and its eonversion into the spherical figure scen in the Echinus esculentus (fig. 132). The Echinus in shape rescmbles an orange, its dense caleareous crust enclosing the viscera within its cavity, while the locomotive apparatus is placed upon the external surface. The mouth is a simple orifice in the shell, placed at one extremity of its axis ; and through it, as delineated in the figure, the points of five singular teeth projeet externally; while the anal aperture is situated at the opposite pole of the spherc. The instruments of locomotion occupy the entire superficios of the shell, and represent two distinct sets of organs adapted to different uscs. The first represent of a multitude of sharp purple spines, every one of whieh is artieulated to a distinct and prominent tubcrele, whereon it

Fig. 132.

Echinus csculentus.
moves. These numerous spines, therefore, which are essentially similar in their office to those we have already described in Scutella, differing only in proportionate size, are so many inflexible logs, upon whieh the Echinus rolls itself from plaee to place ; or by their assistance it ean bury itself in the sand with the groatest faeility. But these wonder-
fully constructed animals are by no means confined to this mode of progression ; for, impossible as it might appear from their outward appearance, they are able to climb rocks in search of food, and thus destroy the corallines and shell-fish upon which they principally feed. In order to effect this, we find the shell porforated with ten rows of small orifices, so disposed as to form five pairs of ambulacia extending from one pole to the other : through theso apertures a system of long suckers is made to issue, which, protruding (as shown in fig. 132) beyond the points of ${ }^{\text {b }}$ tho spines, can bo firmly fixed to any smooth surface, and, like the suckers of Asterias, become locomotive agents.
(424.) Holotif rid.a.-Having traced the development of the Echinodermata from the polypiform Encrinite to the globular Echinus, we now shall find them perceptibly approximate an annulose or worm-like form. In the Holothuria (fig. 123), the commencement of this change is perceptible: instead of being composed of hard, calcareous picces, the integuments of the body now become soft and irritable, a few thin larninæ of earthy matter around the mouth being the only vestiges u_{f}^{f} tho shell, and the spines, of course, are no longer met with ; the suckers, however, remain, and, when protruded through innumerable apertures distributed over the surface of the body, they still form the principal instruments of progression.
(425.) Fistularider.-At length, in the last division of the class, even the locomotive suckers are lost, and the only external resemblance left between the now worm-like body and the forms above enumerated, is met with in the radiating tentacula that surround the mouth. The apodous Echinodermata ("Echinodermes sans picds" of Cuvier) have indeed been expunged from the list of radiated animals by some modern writers; but in overy point of their internal structure we shall find them offer too many points of similarity to permit of their expulsion from the class under consideration, although they evidently form the connceting link between the Radiata and the lowest families of the Annulose division of the animal kingdom. The genus Fistularia (fig. 133) strikingly exhibits an approximation to the outward form of the Annelida; and the anatomy of these creatures, which we shall prescutly consider, equally indicates the affinities that unite them.
(426.) We have already, when speaking of the general division of the Echinoderarata, put the reader in possession of all that is satisfactorily known concerning the structure of the Crinoid* genera,-our knowledge of those singular animals being entirely derived from the exterior conformation of a few recent species, and from the mutilated skeletons of fossil Encrinites, which exist in such abundance in tho limestone strata of our own country.
(427.) Commencing, thereforo, with the Λ stimidxt, we shall now

[^66]enter at onco upon tho consideration of the anatomy of such species as hare been most carefully examined, and merely notice incidentally the modifications which occur in the disposition of various organs in kindred genera.
(428.) On examining a living Asterias, the outer covering of its body is found to be composed of a dense coriaceous substance, in which numerous calcareous pieces are apparently imbedded. The coriaceous integument is generally coloured extornally with lively tints, and is evidently possessed of considerable irritability, as it readily shrinks under the knife, or upon the application of various stimuli. When cut into, it has a semicartilaginous hardness; and fibrous bands, almost resembling tendon in their aspect, may be seen to radiate from the centre of the body towards the extremities of the rays. There is no doubt that the movements of the rays are effocted by the contractions of this fibrous membrane, and that, especially in the most polyp-like forms, as in Comatula and Gorgonocephalus, the irritable skin is the principal agent in effecting locomotion.
(429.) Besides the calcarcous mattor deposited in its intorior, this outer covering of the Starfish appcars to furnish several secretions of different descriptions. The colouring-matter upon its surface is no doubt one of these-as is a reddish fluid which exudes from the integument of A. rubens, and is of so caustic a quality as occasionally to produce great irritation of the skin in persons by whom individuals of this spccies are incautiously handled: moreover in A. aurantiaca the whole animal is coated with a thick mucus, so dense and filamentous that it may be raisod in thin films resombling a cobweb, and might oasily be taken for a cuticular covering.

Fistularia.
(430.) The exterior of the body is generally rendered rough and unoven by various structures, either imbedded in the substance of the coriaccous skin or projecting from its external surface. Wo hare already described the articulated pieces attached to the rays of Coma-
tula and others, which seem to bo the most perfectly developed forms of these cutancons appendages. In tho common Starfishes of our const, similar spinous processes, but composed of only one calcareous picce, are attached to the inferior margins of each ray, sometimes in sereral rows; and, being still moveable, they may be useful in seizing prey, or oven as assisting in progression. Upon the dorsal aspect of tho body are other calcarcous projections, exhibiting a great rariety of forms, so as to render the entire surface of the animal uneren and tuberculated.
(431.) But the most remarkable appendages to the integument of the Asterias are minute bodies which have been named by authors Pedicellarice, and have been looked upon by many naturalists as distinct animals, allied to Polyps in structure, and living parasitically upon Starfishes and other Echinodermata. Each of these curious processes consists of a short stem, fixed by one extremity to the skin of the Asterias, and terminating at the opposite end in two or three points resembling, in some respects, the prongs of a fork: the stem itself does not seem to be perforated by any canal; nevertheless the terminating points are found to be highly irritable, and quickly seize hold of any minute body placed between them. Some writers regard these bodies as organs of prehension, used under certain circumstances for fixing the animals that posscss them; but, from their small size and general appearance, they seem but ill adapted to such an office.
(432.) Tho skeleton or calcareous framework imbedded in the skin of the Asteridx is by no means the least remarkable part of their structure. This consists of several hundred pieces, variously disposed, and for the most part fitted together with great accuracy, being cither firmly soldered to each other, as we have seen them to be in the formation of the calcarcous box that constitutes the central portion of Ophiurus, or united by ligaments, so as to allow a considerable degree of motion to take place betwcen them, as in the rays of Ophiurus, Gorgonocephalus, and other Astcroid forms.
(433.) In the generality of Starfishes the arrangement, and indeed the entire character, of the calcarcous plates differs matcrially in different parts of the body; and even in the same species considerable modifications are observable. In the coriaceous integument forming tho dorsal parietes of the animal, the pieces in many cases seem rather to be represented by calcarcous granules disseminated through tho interior of the skin; in other cases they are arranged in lines anastomosing with each other in all directions, so as to represent, when the skin is dried, a rude network of solid particles, upon the exterior of which the various cutancous appendages already noticed are sustained.
(434.) It is, howover, upon tho ventral aspect of the Asterias that the skeleton assumes its most porfect dovelopment. The floor of every ray is made up of a continuons series of detached picces, or vertelorec,
as they are gencrally called, fitted to each other and united by a strong liganentous substance, so as to form a succession of joints, upon which the flexibility of the ray depends. The picces around the mouth constitute a strong circular framework enclosing the oral aperture, from which, as from the centre, the rest of the skeleton radiates. The joints forming the floor of the ray succeed to this; these are represented in fig. 134, where, the soft parts having been removed from the ray, their general arrangement is displayed.
(435.) The vertobræ, as they are called, when thus exposed are found to be individually composed of several pieces, and each is articulated by ohlique facets to those which precede and follow it,-a kind of union

Fig. 134.

Floor of one of the rays of the common Starfish (Asterias rubens) : a, vertebral plates; b, ambulacral orifices.
that admits of considerable motion, and provides for the flexibility of the ray, so as to rendor it capable of executing the movements requisite for the purpose of progression, or of seizing prey. The connexion of the vertobræ is effeeted in such a manner, that between each pair of calcareous plates minute orifices are left, whioh in the entire state of the ray are seen to be arranged in a quadruple series; these holes give passage to the locomotive suckers, and from this circumstance have been named the ambulacral holes, while the furrows seen upon the ventral surface, into which they open, are designated the ambulacral grooves.
(436.) The suckers, which at the will of the animal are protruded through the ambulacral apcrtures, forming the principal agents whereby locomotion is effceted, next require our notice. In the annexed figure (fig. 135) they aro scen fully extended, projecting for some distance beyond the margins of the ambulacral grooves that occupy the middle of each ray, every one of them being furnished at its extremity with a sucking-disk, adapted to take firm hold upon any smooth surface. The mechanism whereby these suckers (or feet, as they are usually callced) are extended from the body and again retracted is very simple. That portion of each foot which is external to the shell is a muscular tube,
elosed at one extremity, namely that whereunto the sueker is appended; whilst by the opposite it communicates, through the corresponding umbulacral hole, with a globular contractile vesicle situated withi: the

Fig. 135.

Under surface of Asterias (Goniaster reticulatus), showing the ambulacral grooves and protruded suckers.
body of the animal. Both the tubular foot and the vesicle appended to it are endowed with a power of independent action ; so that, if the vesicle contracts, the fluid within it is forced into the external tubular portion of the organ, which thus becomes distended and rendered erect; but if, on the other hand, the muscular tube shrinks in turn, the contained fluid is foreed back again into the internal vesicle, and the whole foot collapses. The arrangement referred to will be easily intelligible on reference to the annexed rough diagram, which represents a longitudinal section of one of the rays of the Asterias depicted above. The internal vesicles (fig. 136, 1, h) occupy tho floor of each segment of the body; and when viewed from above (fig. 138), the entire series resembles a neeklace of transparent bearls placed above the rows of ambulacral apertures, through which they communicate with the tubular
feet (fig. 136, $1, g$). In fig. 136, 2 , threo of these organs are represented in different states of extension, and their whole structure is displayed. The foot d is shown protruded to its full extent; the vesicle, much contracted, has forcod the fluid which it contained into the external tube (i), whereby it is rendered tense and prominent. Tho muscular coats that invest the exterior of the protruded portion are likewise dopicted; tho internal layer (\%), immodiatoly in contact with the membranous canal continued from the vesicle, is made up of longitudinal bands passing from the root of the organ towards tho sucker at its ex-

Fig. 136.

1. Diagrammatic section of a Starfish: a, mouth; b, stomach; c, intestiniform cæoum; d, dorsnl surface; e, ambulacral plates; f, orarium; g, tubular fect; h, internal vesicles. 2. Diagram representing the suckers in different states of extension: a, ambulacral plates; b, c, d, internal vesicles; e, f, g, vascular system; i, tubular foot, laid open to exhibit k, l, its muscular coats.
tromity, while the outer layer (l) consists of circular fibres,-an arrangement cridently adequate to the performance of all required movoments.
(437.) The other portions of this diagram represent the feet in different stages of protrusion : in fig. 136, 2, c, the vesicle boing partially contracted, the tubular portion is seen in a modium state of distention; and at b, the sucker is shown in a still more retracted state, the containod fluid having boen completoly expelled from the muscular tube and driven back into tho vesicle, which is distended to the utmost.
(438.) The fluid that thus fills the suckers, and performs so important a part in causing all their movements, is not secreted by the vesicles in which it is contained, but is conveyod into thom by a special vascular apparatus (fig. $136,2, g, f$), from which branches are givon off to each tube. The nature of the fluid, however, and the arrangement of the vessels through which it flows will be moro properly discussod hereafter.
(439.) The whole inner surface of the claborately constructed box that forms the skeleton as well as the integuments of the Starfish is lined by a thin membrane, aptly enough called the peritoneum ; for, like the serous tunic so named in higher animals, it not only spreads over the walls of the body, but is reflected therefrom upon the contained viscera, so that they are completely invested b_{y} it, each viscus haring a distinct mesenteric fold whereby it is supported and retained in situ.
(440.) The mouth of the Asterias occupies the centre of the lower surface of tho body (fig. 136, $1, a$). It is usually described as being a simple orifice, entircly destitute of tecth, although it is not improbable that the osseous ring around it, and the articulated spines thereunto attached, may, to a certain extent, perform the office of a dental apparatus.
(441.) The œesophagus is very muscular, and susceptible of great dilatation, its parietes being gathered into deep longitudinal folds. The stomach (fig. $136,1, b$) is a wide, sacculated bag, occupjing the central portion of the body, and, like the œsophagus, is evidently calculated to undergo considerable distention. There is no anal orifice ; and consequently, as in the Polyps, the indigestible parts of the food are again expelled through the mouth. The walls of tho stomach, as well as those of the œsophagus, contain muscular fibres, and are further strengthened by fibrous bands, apparently of a ligamentous character, derived from the peritoneal covering that spreads over its outer surface. Ten narrow canals open by as many distinct orifices into the sides of the stomach, each of which, after a short course, expands into a voluminous cæcum (fig. 136, $1, c$).
(442.) The whole of tho digestive apparatus is displayed in fig. 137: every one of the five rays contains two of the cæcal prolongations derived from the stomach or central bag (a) ; and in the rays marked c, d, e these organs are represented in situ; but at f they are seen raised from their natural position and carefully unravelled, so as to display more distinctly their complicated structure. When thus unfolded, the cæca present an arborescent appearance, the central canal being dilated into numerous lateral sacculi, from which, in turn, secondary pouches are given off; and in this manner innumerable ramifications aro formed, so that the extent of internal surface is cnormously increased, as may be seen in the ray g, wherein, the upper walls of the cæca having been removed, their sacculated internal structure is rondered visible.
(443.) With respect to the exact office of these capacious appendages to the stomach, there oxists some diversity of opinion. It is scarcely possible that they can bo at all instrumental in tho digestion of food, the passages wheroby they communicate with tho central cavity being too narrow to admit any solid substanco into their interior ; the digestive process would therefore seem to be entirely accomplished by the recoptaclo into which the foorl is first introduced.
(444.) But thero is cvery evidence to provo that, although they can have little part in digestion, the cæca aro intimately connected with the absorption of nutriment; and thus, although possessing no exeretory orifice, they must be looked upon as strietly analogous in function to the intestinal canal of other animals; the greatextent of surface whieh they present internally would alone lead to this supposition, even did not the nature of the material usually found in them, namely a pultaceous creamy fluid, evidently a product of digestion, abundantly confirm this view of their nature. The matter seems, however, to be put beyond a doubt by the arrangement of the vascular systom connected with these organs, as the

Fig. 137.

Digestive apparatus of Asterias: a, stomach; b, hepatic (?) glands; c, d, e, cæcal appendages in situ; f, the same unravelled; g, the same laid open, showing their sacculated interior. veins that ramify so extensively through their walls are here, as in other Echinodermata, the only agents by whieh the absorption of chyle can be effected: this will be evident when we examine the organs subservient to the eirculation of the nutritious fluids.
(445.) Those physiologists who have adopted a different view of the nature of the eæeal appendages to the stomach, eonsider them to be adapted to the seeretion of some fluid, and probably representing a biliary apparatus. Their enormous extent, however, would alone lead us to dissent from sueh a conelusion, more especially as another organ has been pointed out to which the functions of a liver have boen assigned. This is situated upon the base of the stomach (fig. 137, b), and is a yellow or greenish-yellow racemoso saceulus, which opens into the bottom of the digostive sae by a free aperture; tho contents of this organ, moreover, resemble bile both in taste and colour*.
(446.) In the slender-rayed gencra, such as Ophiura, the cæcal appendages aro not met with ; but their deficiency appears to bo supplied by the plicated walls of the stomach itsolf, the numerous folds of whieh resemble lateral leaflets attached to the contral cavity. We are unacquainted with the procise organization of tho alimontary eanal in Comatula; but, from the orifices visible in the shell, it would appear

[^67]that in this genus, as well as in some Crinoid species, the digestive tube was furnished with an anal aperturo.
(447.) Tho Starfishes, grossly considered, might bo regarded as mere walking stomachs, and tho office assigned to them in the economy of nature that of devouring all sorts of garbage and offal that would otherwise accumulato upon our shores. But, as wo have already seen, their diet is by no means exclusively limited to such materials, since crustaceans, shell-fish of varions kinds, and even small fishes, easily fall victims to their voracity. Dcllo Chiajo found a human molar tooth in the stomach of an individual which ho examined. Neither is the size of the prey whereon they feed so diminutivo as wo might suppose from a merc inspection of the orifice representing the mouth; for not only is this extremely dilatable, but, as we have found to be tho casc in the Actinix, the stomach is occasionally partially inverted, in order more completely to embrace substances about to be devoured. Shellfishes are frequently swallowed wholo; and a living specimen of Chama antiquata, Linn., has been taken entire from tho digestive cavity of an Astcrias. It appears, moreover, that it is not necessary for testaceous mollusca to bo absolutely swallowed, shells and all, to enablo the Asteridæ to obtain possession of tho cnclosed animal, as they would seem to have tho power of attacking large oysters, to which they are generally believed to be peculiarly destructive, and of eating them out of their shells. The ancients belioved that, in order to accomplish this, the starfish, on finding an oyster partially open, cunningly inserted one of its rays between the valves, and thus, gradually insinuating itself, destroyed its victim *. Modern observations do not, as far as we are aware, fully bear out the above opinion of our ancestors as to the mode in which starfishes attack oysters, although the destruction that they canso is pretty generally acknowledged. The observations recorded by M. Eudes Deslongchamps upon this subject are exccedingly curious \dagger. As tho waves had receded from the shore, so as to leave only one or two inches of water upon the sand, he saw numbers of Asterias mbens rolling in bunches, five or six being fastenod together into a sort of ball by the interlacement of their rays. He examined a great number of such balls, and constantly found in the centro a bivalve

[^68]mollusk (Mactra stultorum, Linn.) of an inch and a half in length. The valres wore invariably opened to tho extent of 2 or 3 lines; and the starfishes were always ranged with their mouths in contact with tho edges of the valves.
(448.) On detaching them from the shell which they thus imprisoned, he found that they had introduced between the valves large rounded resicles with very thin walls, and filled with a transparent fluid. Each Asterias had five of these vesicles ranged around its mouth: but they were of rery unequal size ; generally there wero two larger than the rest, equal in size to large filberts, while tho other three were not bigger than small peas. These vesicles appeared to be attached to the Asterias by short pedicles; and at the opposite end of each was a round open aperture, through which tho fluid contained in the vesicle flowed out, drop by drop. No sooner was the animal detached from the shell that it was thus sucking, than the vesicles collapsed and became no longer distinguishable. The Mactrce wero all found to be more or less devoured, some having only their adductor museles left; but, however little they had been injured, all had lost the power of closing their valves, and were apparently doad: nevertheless there was nothing to lead to the supposition that only dead shell-fishes wero attacked; so that it is difficult to imagine how the delicate vesicles above described escaped injury from the closing of the valves. M. Deslongchamps thinks that probably tho Asterias pours into the shell a torpifying secretion, and thus ensures the death of its victim.
(449.) The absorption of tho mutritious portions of the food in the Echinodermata is entirely accomplished by the veins distributed upon the coats of the digestive cavities, so that the chyle resulting from digestion is at onco introduced into the vessels appropriated to circulation.
(450.) In Asterias tho intestinal veins form a fine vascular nctwork, covering tho stomach and the ten digestive cæca. Tho venous trunks derived from all these sources unito to form a circular vessel (fig. 138, e), which likewise receives branches derived from the ovaria and other sources.
(451.) The circular vein thus formed, which secms to bo the common trunk of the venous system, communicates with another vascular circle placed around the mouth (s), by means of a dilated vertical tube of communication (f), which, from its muscular appearanco and groat irritability, Tiedemann regards as being equivalent in function to a heart. The circle around the mouth (s) would seen to be arterial in its character ; and branches are derived from it which supply the various viscera of the body.
(452). But, besides the vessels above described, apparently so disposed as to collect and distribute the mutrient fluids, thero is another set of canals appropriated to the supply of the numerous vesicles comnected
with the locomotive suckers ($§ 438$); these Tiedemann regards as being totally unconnected with the vaseular system properly so called, and considers tho fluid contained in them to be of a quite different nature. Dolle Chiaje, on the contrary, asserts that the two sets of vessels are derived from each other, and describes a peculiar apparatus connected with them as performing an important part in effecting the protrusion of the suckers.
(453.) The circular vessel around the mouth, whicle forms the central receptacle of the vascular system, resembles a sinus analogous to those of the dura mater in man, and is lodged in a groove between the oral circle of vertebræ and the piecos of the skeleton articulated therewith. Connected with the sinus above mentioned, and placed regularly in the interspaces between the rays, are several oval vesicles (fig. 138, k k), fillod with a reddishcoloured transparent fluid. These vesicles: which in Asterias aurantiaca are seventeen in number, communi-

Fig. 138.

Asterias aurantiaca opened, from above: a, dorsal parietes reflected ; b, c, d, floor of the rays, exhibiting the ambulacral vesicles; e, dorsal circular vessel; f, heart; s, circular ressol surrounding the mouth; k, k, ampulle Polianæ. cate by distinct ducts with the central sinus, and are regarded by Delle Chiajo as reservoirs wherein the nutritive fluids accumulate until expelled by the contraction of the vesicles. Besides the arteries above described as arising from the vascular circle around the mouth, according to the author last mentioned, vessels are given off that communicate with the ampullæ connceted with the ambulacral suckers, apparently for the purpose of supplying to them the fluid which they contain. These vessels are seen to run along the floor of each ray, and to give off lateral branches communicating with every vesiole, as represented in the enlarged sketch (fig. 136, $2, g$). By this arrangement it would seem that the contractilo organs (fig. 136, 2, e) appended to tho vascular sinus (f) are in reality antagonistic to the tubular structure of the fect, and serve as recoptacles for fluid, which, by thoir contraction,
they ean foree into the whole system of locomotive suckers whenever the fect are brought into action.
(454.) The aboro view of the arrangment of tho vascular system of Asterias, however, is by no means universally adnuitted to be correct. Professor Sharpoy agrees with Tiedemann in the opinion that the vessels of the feet form a system perfeetly distinet from that of the blood-ressels, and even supposes that the fluid by which the ambulacral tubes become distended is neither moro nor less than pure sen-water.
(455.) In the Echinodermata therefore there are : -1 st, the cavity of the body (i.e. the spaeious interval which separates the digestive from the tegumentary system), filled with a fluid designated chylaqueous; 2nd, the protrusile suctorial feet, occupied by another class of fluid (this system constitutes the water-vaseular system of Tiedemann and Mïller) ; 3rd, the blood-vaseular system of Tiedemann, Delle Chiaje, Valentin, Agassiz, Dr. Sharpey, and Müller. These three systems are generally regarded as distinet and independent.
(456.) The mass of fluid oecupying the visecral cavity of the Eehinoderms (bounded on one side by tho digestive system, on tho other by the integuments) has been generally described as consisting purely of seawater admitted directly from without, through the skin, for the exclusive purpose of aërating the blood proper, said to circulate in a capillary system of vessels wrought in the solid parietes circumseribing the eavity. In the Asteridæ, Eehinidæ, Ophiuridæ, and Ophiocomidæ it cannot be denied that the cavity itself is the anatomical homologue of a real perigastrie eavity; while in the Holothuridan and Sipunculidan genera it presents itself as a chamber filled with a chylaqueous compound, under the form of a thiekly corpuseulated milky fluid organized in a high degree; and in Sipunculus it would seem that the cephalic appendages, as well as the whole tegumentary system, are organized with especial reference to the aëration of this fluid.
(457.) The skin is fenestrated; that is, at regular intervals the muscular layer disappears, and an interval results, of elliptical figure, covered by only a single layer of epidermis. It is a simple mnsenlo-membranous partition intervening between the chylaqueous fluid within and the surrounding element without; and through this veil the two divided fluids interehange their gases. The tentaeles are merely hollow museulomembranous appendages, lined within and without by a ciliated epithelium. A few proper blood-vessels roaeh their bases from the cirenlar vessel; but no trace whatever of a vascular plexus in the strueture of these parts can bo detected. The inference is that the tentacles are designed for tho oxygenization of the ehylaqueous fluid. To tho genns Holothuria the same observations are strictly applicable ; but althongh attenuated at regular points, with a view to approximate as elosely as possiblo the chylaqueous fluid to the external medium, no open perforiation anywhore exists in the tentacular or tegumentary processes. The
surrounding fluid, thereforo, cannot penetrato directly from without into the peritoncal cavity; it is introduced through the mouth and digestive system.
(458.) Before quitting this part of our subject, we must briofly mention a singular organ, apparently intimately connected with the circular vessel around the mouth, and called by Tiedemann the sand-canal. This organ is represented in fig. 138, cnclosed in the same sheath as the dilated vessel, f, upon the right side of which it is placed; it communicates by one extremity with an isolated calcareous mass, of a rounded figure, called the madreporic plate, seen upon the exterior of the dorsal surface of the Starfish, whilc by its opposite extremity it opens into the circular sinus that surrounds the mouth. The tube itself Dr. Sharpey describes* as being about the thickness of a surgeon's probe, and composed of rings of calcareous substance connected by a membrane; so that, viewed externally, it is not unlike the windpipe of a small animal. On cutting it across, it is found to contain two convoluted laminæ, of the same nature as its calcareous parietes, which are rolled upon themselves in a longitudinal direction, in the same manner as the inferior turbinated bones of an ox. The convoluted arrangement becomes more complete towards the upper end of the tube, where the internal laminæ, as well as the external articulated portion, join the dorsal disk, appearing gradually to become continuous with its substance. The use of this curious organ is quite unknown, although a variety of conjectures have been hazarded upon the subject. The most probable appears to be that of Dr. Sharpey, who suggests that, should the fluid which distends the feet, and the vessels connected with them, be indeed sea-water, it may be introduced, and perhaps again discharged, through the pores of the disk, by means of the calcareous tube, which will thus serve as a sort of filter to exclude impurities.
(459.) Apparently with a view to ensure a continual circulation of aërated fluids through all parts of the system, the entire surface of the membrane that lines the shell, as well as that which forms the external tunic of the digestive organs, has been found to be covered with multitudes of minute cilia, destined by their eeaseless action to produce currents passing over the vascular membranes, and thus to keep up a perpetual supply of oxygenated water to every part \dagger. But it is not only on the peritoneal surfaces that the existence of cilia has been detected; they are found to be extensively distributed over the external surface of the body, within tho cavities of the tubular feet, and even over the wholo internal lining of the stomach and cæca.
(460.) "In Asterias rubens," says Dr. Williams, " it can be distinetly demonstrated that no open perforations exist in any part of the integu-

[^69]mentary parietes. Tho mombranous processes communicating with the visceral cavity can bo proved, by injection, to bo cæcal at their distal extremitics. It is easy to repcat and confirm tho observation of Dr. Sharpey, that tho corpuscles of the visceral fluid advance to the distal end of these processes, and then return, under the impulse of ciliary agency. Neverthcless, although an injection so thick as size will not escape through these membranous processes, a thinner fluid, such as coloured water, will slowly ooze through; it is therefore not improbable that an interchange of the fluids may to some extent occur through endosmose. The microscope renders it certain that the hollow membranous processes filled by the fluid of the visceral cavity, in Asterias, bear in their parietes no trace of true blood-vessels : they are lined within and without by vibratile epithelium, and composed only of interlacing elastic fibres; and consequently their only offico seems to be that of exposing the chylaqueous fluid to the renovating influence of the surrounding medium. In Asterias this fluid approaches simple scawater closely in its physical properties. It is, however, in reality a dilute, albuminous, opalcscent solution. It is charged scantily with imperfectly formed corpuscles, always the same in the same species; and the proposition may now be confidently affirmod, that in the Echinodermata the chylaqucous fluid (i.e. the contents of the visceral cavity) is itself first ac̈rated, and that by means of a machinery of soft parts it then aërates the blood proper."
(461.) The organs belonging to the reproductive system in the Asteridce exhibit the greatest possible simplicity of structure. The ovaria (fig. 136, $1, f$) are slender cæca, arranged in bunches around the œesophagus, two distinct groups being lodged at the origin of each ray. In Asterias aurantiaca (fig. 138) tho excretory ducts are not easily seen; but in the Twelve-rayed Starfish, especially if examined when these organs are in a gravid state, each ovary may be observed to communicate externally by a wide aperturo that perforates the osseous circle encompassing the mouth.
(462.) The generative organs of tho male individuals exactly resemble those of the female, and are only distinguishable by the presence of spermatozoa in their interior. The process of reproduction* usually occurs during the spring months, at which period the ovaria of the femalos are found distended with eggs, wherein the resicles of Purkinje and of Wagner are distinctly recognizable. These ova are found in the ovaria in different stages of development, and are laid in successive batches at different intervals.
(463.) The newly-laid ora consist of a chorion cnclosing tho vitellus and a small quantity of albumen; but the yitellus soon undergocs the usual process of segmentation, whereby it is broken up into a granular mass (fig. 139, 1, 5, 6, 7, 8). When first deposited, tho ova of the Star-

[^70]fishes aro not at oneo abandonod by the parent animals, but are retained in a kind of cavity formed by incurving tho body and rays of the mother until they form a sort of chamber, beneath which the eggs are protected during the earlier part of their development (fig. 139, 2). The vitellus of the ovum is entircly cmployed in the eonstruction of the foetus, which latter, at tho moment of its escapo from the egg, is of an ovoid or subspherieal shapo (fig. 139, 9), eompletcly unprovided with external members, but enabled to swin vivaciously about in the surrounding water by means of the eilia with whieh its body is profusely covered, giving

Fig. 139.

Development of Starfish. 1. Echinaster sanguinolentus, seen from below. 2. The same in profle: a, madreporie plate. 3. Ovarian reeeptaele eontaining ova in different states of advancement. $4,5,6,7,8$. Ova exhibiting the progressive segmentation of the yelk. 9. Embryo on its first eseape from the egg. 10,11,12. Further progress of embryo: a, a, club-shaped proeesses; b, eentral protuberanee. $13,14,15,16$, show the gradual development of the ambulatory suekers and the assumption of the radiate form.
it exactly the appearance of an infusorial animalcule ; indeed this may be ealled the first, or infusorial condition of the young Asterias.
(464.) After the lapse of a fow days ecrtain appendages begin to make their appearance, sprouting, as it werc, from tho anterior part of the body, and ultimately appearing as four elub-shaped processes (fig. 139, 10, 11, 12, 13, a a) surrounding a fifth prominent protuberance, b, whereby the little creature fixes itself to the sides of the incubatory cavity. The body of the little Starfish now bocomes gradually flattenod into a minuto circular disk, upon one surface of which (henee at onco distinguishable as tho ventral) tho rudiments of tentacula begin to be apparent, under the form of minute globular protuberances, disposed in ton concentric rows (fig. 139, 14, 15, c c).
(465.) If in this condition the little being is detached from the spot
where it has fixed itself, it is still able to swim about in the surrounding water by means of its ciliated surface, always keeping the organs of attachment directed forwards; but if left undisturbed, it remains perfectly still and motionloss, presenting what M. Sars denominates the crinoid state of development. At this stage, the body of the young Starfish may still be said to be bilateral; for in all its movements the organs of attachment are directed forwards, and both sides of the body correspond exactly to each other (fig. 139, 12). But by degrecs this bilateral condition is converted into the radiated form that characterizes the third or porfect condition of the Asterias: the body gradually assumes a pentagonal outline, from the angles of which short blunt rays begin to project (fig. 139, 16) ; and the tentacula, now presenting the form of retractile cylinders, and completely furnished with their terminal suckers, become efficient instruments of locomotion. The red spots, regarded by Ehrenberg as the eyes, are visiblo at the extremities of the nascent rays; the mouth shows itself in the centro of tho ventral aspect of the body; and numerous spines make their appearance. Lastly, the apparatus for attachment begins to diminish in size, and soon completely disappears, so that the young Asterias, having attained its perfect form, is ready to enter upon the duties of its station.
(466.) According to the observations of Agassiz, the eggs of the Starfish, after they are laid, are taken up by the parent animal and kept between its tubes below the mouth. The Starfish bends itself around them, surrounds the eggs with its suckers, and moves about with them. When the eggs have been removed to some distance from the animal, it has been observed to go towards them, take them up again, and move off with them, -showing that these creatures, so low in structure and apparently deprived of all instinct, really watch over their young. As the growth of the embryo commences, the external crust of the germ becomes more transparent, consisting of somewhat looser and larger granules, and the internal mass assumes a darker colour, so that two layers become distinct, between which a third is devcloped. On one side of tho germ a protuberance now becomes visible, and the prominent portion separates more and more from the spherical mass, assuming by degrees the form of a peduncle. At this period there is not any organ formed-only changes of substanco have taken place; but now little swellings appear in five points on the sides, and the spherical portion of the germ becomes flattencd by lateral dilatation.
(467.) The minute animal has grown to a more hemispherical shape; and from this timo there is an upper and a lower surface to its um-brella-liko disk, and a tubular part and a swollen portion to the peduncle. As soon as tho periphoric part of the disk begins to spread, five small tubcrcles may bo obscrved forming underneath; and into these tubercles the peculiar aspect of tho middle one extends. Soon other prominent swellings appear, two to cach of the former ones,
and subsoquently two more. While this is going on, calcareous nets are formed by the accumulation of erystals in the eells of the germ. At first there are simply isolated crystals, formed as nuclei in the cells; then several eloso together will unito and form a little irregular mass; and they will at last combine, so as to constituto a network of solid substance, arranged very regularly, and gradually becoming more and more numerous, marking out more and more distinctly the rays of the embryo Starfish. The tubercles of tho lower surface, growing more prominent and elongated, are finally transformed into tho suckers, or ambulacral tubes. With the addition of new calcareous nets, these latter beeome more numerous, and form, finally, rows of tentacles. Other ehanges have also taken placc. The cells within the peduncle have undergone alteration : some have become moveable, and a kind of eirculation is going on in them. The internal space along each ray has become more transparent ; the ambulacral tubes have becomo hollow ; and from that time there seems to be a communication between the exterual water and the internal structure. What remains of the yelk is more distinctly eircumscribed in the centre of the animal, extending as a star-shaped disk into the rays. The radial portion becomes, finally, distinct from the central one; and we have at last an internal cavity, which is the stomach, from which the cæcal appendages of the rays, with their liver-like organ, will be developed.
(468.) The pedunclo is reduced to a mere vesicle; a hole is formed in the centre of the lower surface, constituting the mouth; around this a circular thread becomes visible, answering to the nervous system, from which other threads extend towards the extremity of the rays; and by the time the young Starfish has attaincd the sizo of about a line in diameter, it has thus assumed the form and structuro of a perfect animal.
(469.) Among the most interesting contributions to our knowledge of this group aro the researches of Professor Mïller* relative to the embryonic condition of the Ophiurida, from which it has been ascertained that, during the progress from the egg to the mature condition, the individuals belonging to that family undergo a series of changes that are truly surprising in their character.
(470.) The young Ophiurus on leaving the egg presents itself under a most grotesque form, in which eondition it has long been known to naturalists, and described under the name of Pluteus, or Easel Animalcule, from its resemblance to a painter's easel.
(471.) The Pluteus paradoxus (fig. 140) is exceedingly minute, being not more than $\frac{2}{5}$ of a line in length. When highly magnified, its body is seen to be somewhat of a conical shape, torminating above in a point, but dividing inferiorly into eight long processes or appendages of various

[^71]dimensions, to which it owes its peculiar figuro (fig. 140, 1, A, B, C, D). Each of theso processes is supported by an internal caleareous framework derived from the interior of tho body (fig. 140, $1, f$), which, branching out in different directions, forms a basis whorcon tho soft parts aro spread out. The whole animal is porfectly transparent, its

Fig. 140.

1. Pluteus paradoxus. A, A, lateral arms; B, B, inferior ditto; C, C, anterior ditto; D, D, posterior ditto; a, mouth; a^{\prime}, œsophagus ; b, stomach; c, grannlar bodies, the nature of which is uncertain ; d, cæciform appendages, which make their appearance around the œsophagus and stomach, and which are the first indications of the development of the Starfish; e, ciliated bands; f, calcareous framework of the skelcton; g, zone of cilia surrounding the apex of the body; x, ncrvous system. 2. Further development of the cæciform appendages, d; they begin to exhibit the appearanco of the body or central disk of an Ophiurus. (After Miuller.)
substance resembling dull glass, tho apex of the body and the extremities of the arms or processes being slightly tinged with orange.
(472.) These singularly formed larve-for such they are-are found abundantly during the month of August and September, crowding the surface of the sea in rich profusion, swimming freely about by the aid of rows of cilia (e), with which their arms and the apex of their.bodies (g) aro plentifully furnished. They possess, moreover, a distinct nervous systom, consisting of two little ganglia (x) situated just beneath the oral aperture, from which delicate nervous threads may be traced in different directions.
(473.) The first appearance that presents itself, indicating the commencoment of metamorphosis, is tho development of a number of cæeal appendages around the stomach and œesophagus of the Pluteus (fig. 140, $1, d$), which soon increase so much in number that they form a series of rows surrounding the stomachal cavity. At first theso rows of coca do not extend beyond tho body of the Pluteus, remaining, as it were, concealod bencath its disk ; but soon, aequiring greater development, they make their appoaranco oxternally, gradually assume some regularity of arrangement (fig. 140, 2), in which tho rudimentary form of the starfish begins to be pereeptible, and tho points whence the arms are to proceed become apparent.
(474.) In carrying out this part of the procecding, it will be observed that the original arms or proccsscs of the Pluteus (fig. 140, 1, A, B, c, n) have had no share. The Pluteus, in fact, stands just in the same relation to the young Ophiurus as the frame docs to a picce of embroidery; neither has the structure of its arms any thing in common with that of the rays of the future starfish which lies, as it were, protected beneath their shelter. As soon as the cæcal appendages have arrived at this state of development and assumed so much regularity of arrangement, calcareous earth begins to be deposited in an arborescent form, which accumulates rapidly until a kind of trellis-work is formed, spreading over the entire surface of the young Echinoderm. As the cæciform appendages thus become arranged into a regular figure, the place where the mouth of the Pluteus was becomes distorted and, as it were, forcibly pushed upwards, until it remains no longer visible, its place being occupied by the contral mouth of the newly-formed starfish (fig. 141, 2).
(475.) In the condition which it has now attaincd, the young starfish is still much smaller than the rest of tho Pluteus; but from this point, as its growth continues, the body and processes of the latter assume more and more the appcarance of bcing only appendages to the newly-developed animal, until by degrecs they cntirely disappear, the only part of the Pluteus remaining as a part of the young Ophiurus being the stomach.
(476.) Before, howevcr, the arms of the Pluteus have entirely disappeared, the feet, or retractilo suckers, have begun to show themselves, arranged in a circle around the circumference of tho shield (fig. 141, 1, 2), so that it is able to creep freely about the sea.
(477.) Shortly before the disappearance of the last remnants of the Pluteus, the arms or rays of the Ophiurus are already visible, projecting prominently from the margin of the shield (fig, 141, 1, 2), but consisting as yet only of the outer or terminal joint of the futurc ray; the moveable spines likewise begin to show themselves, and the characters of the future Echinoderm begin to be recognizable (fig. 141, 1). Ultimatcly new segments begin to be added to the rays, making their appearance between the primitive segment and the margin of the disk, the original segment retaining its size and figuro unaltered, whilc the suceecding ones differ in their shape, assuming a polygonal form, which varies in diffcrent species. The places where all new segments are formed are in the shield itsclf, at points situated upon the ventral aspect, betwcen the interradial spaces; and each successive segment produccd, bcing at the base of the ray, is of course larger than all that preccded it (fig. 141, 3, 4).
(478.) In order to complete the history of the Asteridce, we hare ret to mention tho ncrvous apparatus wherewith they aro furnished. This consists of a simple eircular cord that runs around tho mouth of the animal ; from this ring, three delicate filaments are giron off opposite to
each ray, ono of whieh, aceording to Tiedemann, runs along tho eontro of the ambulaeral groove upon the under surfaeo of tho body, and gives off minute twigs to the locomotive suckers placed on eaeh side of its eourse; the other two filaments pass into the viseeral cavity, and are probably

Fig. 141.

1. Ophiurus ina still more advanced stage of development, showing the larva portion (Pluteus) in great part obliterated: first appearance of the mouth and tentaeles. 2. The larva has entirely disappeared, and the feet and spines of the Ophiurus begin to develope themselves. 3 shows the mode of growth of one of the rays: the terminal or primitive segment is casily reeognizable, to whioh the following segments sueceed in the order of their formation. (After Müller.)
distributed to the internal organs. There are no ganglia developed on any part of this nervous apparatus; or if, as some writers assert, ganglionic enlargements aro visible at the points whence tho radiating nerves aro given off, they aro so extromely minute as not in any degree to merit the appellation of nervous centres.
(479.) Such an arrangement ean only bo looked upou as serving to associate the movoments performed by tho various parts of the animal;
for no portion of these simplo nervous threads can be regarded as being peculiarly tho seat of sensation or perception. Nor is this inferenco merely deduciblo from an inspection of tho anatomieal character of the nerves ; it is based upon actual experiment. Wo have frequently, when examining theso animals in a living state (that is when, with their feet fully doveloped, they wero crawling upon tho sides of the vessels in which they wero confined), cut off with scissors successive portions of tho dorsal covering of tho body, so as to exposo tho visceral eavity; but, so far from the rest of tho animal appearing to bo conscious of the mutilation, not the slightest ovideneo of suffering was visible: the suckers placed immediately beneath the injured part were invariably retracted; but all tho rest, even in the samo ray, still continued their action, as though perfectly devoid of partieipation in any suffering eaused by tho injury inflicted. Sueh apathy would indeed seem to be a necessary consequence resulting from tho defieieney of any central seat of perception whereunto sensations could bo communicated. Novertheless Ehrenberg insists upon the existence of eyes in some speeies of Starfish, attributing the function of visual organs to eertain minute red spots, visible at the extremity of each ray, behind each of which he describes the end of the long nerve that runs along the ambulacral groove as expanding into a minute bulb. We must eonfess that the proofs adduced in support of such a view of tho nature of tho spots appear to us to be any thing but satisfactory. The general senso of touch in the Asteridæ is extremely delicate, serving not only to enable them to seizo and secure prey, but oven to recognize its presence at some little distance, and thus direet these animals to their food. Any person who has been in the habit of fishing with a line in the shallow bays frequented by starfishes, and observed how frequently a bait is taken and devoured by thom, will be disposed to admit this; yet, to what are we to attribute this power of perceiving external objects? It would seem most probably due to somo modification of tho general sensibility of the body, allowing of the perception of impressions, in some degree allied to the sense of smell in higher animals, and related in charactor to the kind of sensation whereby we have already seen tho Actinix and other polyps are able to appreciato the presence of light, although absolutely deprived of visual organs.
(480.) Tho Ecunc, however they may appoar to differ in outward form from the Asteridce, will be found to present so many points of resemblance in thoir general structure, that tho dotailed aceount we have given above of the organization of the last-mentioned family will throw considerablo light upon the still more olaboratoly constructed auinals that now present themsclves to our notico.
(481.) The Echinida, as wo havo alroady observed, differ from tho star-shaped Echinodormata in the nature of tho integument that encloses their visceral cavity, as well as in the more or less eircular or spheri-
cal form of their bodies; so that the locomotive apparatus with which they are furnished is necessarily modified in its character and arrangement.
(482.) The shell of an Echinus (fig. 142, 1) is composed of innumorable pieces accurately joinod together, so as to form a globular box enclosing the internal parts of the animal, but perforated at each extremity of its axis by two large openings, one of which represents the mouth, and the other the anus.
(483.) The calcareous plates entering into the composition of this extraordinary shell may be divided into two distinct sets, differing materially in shape, as well as in the uses to whieh they are subscrvient. The

Fig. 142.

1. Shell of Cidaris denuded of its spines. 2. A spine articulated with its corresponding tubcrcle: a, section of tubercle; $b b$, capsular ligameut; c, base of spine. larger pieces are recognizable in the figure by hemispherical tubereles of considerable size attached to their exterual surface, adapted, as we shall afterwards see, to articulate with the moveable locomotive spincs. Each of theso larger plates has somewhat of a pentagoual form-those that are situated in the neighbourhood of the mouth and anal aperture being considerably the smallest, and every succecding plate beeoming progressively larger as they approximate the central portion of the shell : the entire series of pieces in each row resembles in figure the shape of the space included between two of the lines marking the degrees of longitude on a terrestrial globe-broad at the equator, but gradually narrowing as it approaches the poles,-an arrangement, of course, rendered nccessary by the spherical form of the creature. There are ten rows of these tuberculated plates; but as they are disposed in pairs, each row of large pieees bcing united by a zigzag suture with another of a similar description, there are in reality only five large segments of the shell, each supporting a double row of tubercles.
(484.) The reader must not, however, con clude that the great central tubereles above mentioned are the only parts of the sholl to which spines are affixed; hundreds of smaller elevations are disseminated over the
surface, whereunto smaller spicula are appended-although, from their diminutive size, theso are of scoondary importance in locomotion.
(485.) The five large double segments that thus form the greates'

Fig. 143.

Oral half of the shell of Echinus esculentus, showing the different kinds of plates that enter into the eomposition of its shell : a, large plates; b, perforated plates. In the centre the "lantern of Aristotle" is represented in situ.
portion of the calcareous shell aro separated from eaeh othor by the interposition of ten rows of perforated plates, likewise disposed in pairs, and composed of much smaller pieces than those which support the tubercles; innumerable foramina, piercing these ambulacral bands, givo passage to as many tubular feet or protrusible suckers, in every rospect resembling thoso of Asterias, and distended by a similar apparatus.
(486.) It is impossible, by any verbal description at all commensurate with the limits of our present undcrtaking, adequatcly to explain the moro minute contrivances visiblo in the disposition of every portion of these wonderfully con-

Fossil Echinus, showing the plates of the shell similarly arranged, but presenting a considerable variation as regards the size of the diflerent picees. structed coverings : it is sufficient for our present purpose to observe that the globular crust of an Echinus is made up of sereral hundred polygonal picces, of difforent sizes, and, although presenting every variety of
outline, generally approximating more or less to a pentagonal formthat these pieces are so accurately and completely fitted to eaeh other, that the lines uniting them are scarcely to be distinguished, even upon the most minute examination-and that from the union of so many distinct and dissimilar plates results a firm, compaet, and beautiful box, similar to that represented in the figure. The first question that naturally suggests itself, on examining a shell of this description, is concerning the object to be attained by such remarkable complexity ; it would appear, indeed, at first sight, that a simple calcareous crust, had it been allowed to exude from the entire surface of the Echinus, would gradually have moulded itself upon the body of the creature, and thus have formed a globular shell without suture, answering every purpose connected either with support or defence.
(487.) A very little investigation, however, will suffice to show the necessity for the elaborate arrangement to which we have alluded. In the first place, as we shall immediately see, the earthy matter is not deposited upon the surface of the body, but within the soft external integument whereby it is secreted-the interior of the shell being filled with sea-water, in which the viscera are loosely suspended. But a second and more important reason for the employment of so many picces in the construction of the shell of an Echinus is to be derived from examining the modo in which the animal grows. Were it to retain the same dimensions throughout the whole period of its life, or could it, at stated intervals, cast off its old investment and secrete a new and more capacious covering as growth rendered the change necessary, a simple earthy crust would have been sufficient, without the presence of such an immense number of suturcs and joinings. The calcareous plates of the Echinus, it must be remembered, are merely secreted from the soft parts, having no vital action going on within them whereby, as in the bones forming the skeletons of vertebrate animals, a continual deposition of fresh particles could be cffected, allowing of extension by interstitial deposit. How, therefore, could the growth of the Echinus be prorided for? How is the gradual cxpansion of the entire shell, thus composed of a dense and cxtravascular crust, to be effected-and that without ever deranging the proportions of the whole fabric, or necessitating a loosening of its parts? No other contrivance could apparently have been adequate to the purpose : nevertheless we see how admirably, by the structure adopted, the growth of these creatures proeecds in all directions; for the living and vascular membrane that covers the whole external surface of the body dips down between the edges of the various calcarcous pieces, and continually deposits, around the margin of each, successive layers of earthy particles, which, assuming a semicrystalline arrangement, progressively increase the dimensions of each individual plate. But the continual angmentation in size which is thus going on is attended with no change in the mathematical figure of any
given pieco of the skeleton; so that, as they still increase in diameter by the unceasing deposition of earthy matter around the circumference of overy plate, the spherical shell gradually expands, without in any degree altering its form or relativo proportions, until it has acquired the mature dimensions belonging to its species.
(488.) Tho tubular suckers or retractilo fect, that are protruded at the pleasuro of tho animal from the countless minute apertures seen in the ten rows of ambulacral plates, are so similar in all essential points to those of Asterias alroady described, that littlo further need be said concerning their structure, or the mechanism whereby their motions are effected. The tubular part of each foot communicates with the interior of tho shell by two branches passing through two apertures; and these branches, in some species (as Echinus saxatilis), receivo offsets from tho vessels that run along the centro of each ambulacral groore, and convey to the feet the fluid by which their distention is effected. In Echinus esculentus the feet open into a plexus of vessels, formed in leaf-like membranes disposed in double rows upon the inner surface of the ambulacral pieces*, by the intervention of which they are connected with the canals above mentioned.
(489.) The tubercles upon the external surface of the shell of the Echini support a corresponding number of long spines, which, as well as tho apparatus of suckers, are employed as locomotive agents. These spines vary materially in their form and proportionate size, and even in their internal structure and mode of growth, as may be readily seen by a comparison of different species. Thus, in the flattened forms of Scutellos and allied genera, they are so minute as to require the employment of a microscope for their investigation ; in Echinus esculentus (fig. 147) they are sharp, and almost of equal length over the entire surface of the animal ; while in the specimen represented in the annexed

Fig. 145.

Cidaris. figure (fig. 145), the shell of which we have already examined when divested of these appendages, the length of the spines that are articulated upon the large tubercular plates fully equals the transverse dia-

[^72]meter of the body of the ereature, and in some cases they are even found much more largely developed. Every spine, examined separately, is seen to be united with the tuberele upon which it is placed by an apparatus of muscular and ligamentous bands, forming a kind of ball-and-socket joint, allowing of a considerable extent of motion. The structure of this articulation is exhibited in fig. 142, 2. The large tuberele (a) supports upon its apex a smaller rounded and polished eminence, perforated in the centre by a deep depression ; and the bottom of the moveable spine (c) is terminated by a smooth hemispherical cavity aecurately fitted to the projecting tuberelc, so that the two form complete articular surfaces. The bonds of union connecting the spine with the shell are of two kinds : in the first place, there is a stout ligament (a c), extending from the little pit seen upon the centre of the tuberele, to a corresponding depression visible upon the articular surface of the spine, resembling very accurately the round ligament found in the hipjoint, and obviously a provision for the prevention of dislocation.
(490.) Morcover the whole joint is enclosed in a muscular capsule, composed of longitudinal fibres ($b b$) arising from the circumference of the tubercle, and inserted all around the root of the spinc: these fibres, therefore, which must, in fact, be regarded as merely derived from the general irritable skin that clothes the shell externally, are the agents which, acting immediately on the spine, produce all the movements whereof it is eapable.
(491.) The next thing to be accounted for in the history of these

Fig. 146.

Diagram illustrative of the growth and attachment of the ambulacral spines. 1. Longitudinal section of a spine: a a a, tegumentary layer covering the spine, from which it passes on to the exterior of the shell, enclosing the ball-and-socket joint, $t ; s$, internal ligament; p, p, pedicellarim. 2 and 3. Transverse sections of spinc.
elaborately constructed animals is the growth of the spines themselves: these, as we have already secn, are completely detached from the rest of
the shell, to which they are sccured only by the central ligament and by tho muscular capsulo enclosing their basc. To account, therefore, for the production of organs so completely insulated as the spines appear to be, ospecially when we consider that there is no vascular communication between them and the body of Echinus, would appear to be a matter of some difficulty; and in fact, had we not already scen in the Polyps the amazing facility with which calcareous matter was sccreted by the living texturcs of those animals, it would be almost impossible to conccive by what process their growth is cffected. On examining ouc of these appendages, taken from a species whercin they are largely dercloped, whon fresh, beforc its parts have bccome dry, cvery portion of its surface is scen to be invested with a thin coat of soft membrane, derived from that which covers and secretes the whole shell, whereof indeed the muscular capsule enclosing its articulation with the tubercle is only a thickened portion.
(492.) The living substance of the spine, therefore, like the crust that invests the cortical Polyps, is the secreting organ provided for its growth, depositing the earthy particles scparated from the waters of the ocean, layer after laycr, upon its outer surface, so as to form a succession of concentric laminæ, of which the outer onc is always the last formed. The calcareous mattcr thus dcposited has, more or less completely, a crystallized appearance ; and on a transverse scction of the organ being made, and the surface polished by grinding, the trhole process of its formation is at once rendered evident. Such sections, indced, form oxtremcly beautiful and interesting subjects for microscopical cxamination, as nothing can exceed the minute accuracy and mathematical precision with which each partiele of every layer eomposing them appears to have been deposited in its proper place : in fact, if the zootomist would fully appreciate the minuter details connected with their organization, it is only by the employment of the microscope that he will arrive at adequate ideas concerning them ; for it is not in the number and variety of the pieces entering into the composition of the skeleton of one of these animals, the extraordinary apparatus of prehensile suckers with which they are furnished, or the singular locomotive spines upon the exterior of the shell that he will find the most remarkable features of the history of the Echini ; it is only by a minute examination of the intimate structure of cach of these parts that the perfection of the mechanism conspicuous throughout can be properly understood.
(493.) The calcareous pieces surrounding the mouth of the Echinus are not so immoveably consolidated as those composing the rest of the shell, but, on the contrary, admit of considerable morement, whereby the prehension of food is matcrially facilitated. The mouth itself (fig. 142,1) is a simple orifice, through which the points of five sharp tecth are seen to protrude. These teeth obriously perform the offico of
inecisors, and from their sharpness and extremo density are well calculated to break tho hard substances usually cmployed as food. The points of such incisor teoth, although of cuamel-like hardness, would neverthcless be specdily worn away by the constant attrition to which they are uecessarily subjected, were there not some provision made to ensure their perpetual renewal ; like the incisor teeth of rodent quadrupeds, they are therefore continually growing, and are thus always preserved sharp and fit for usc. In order to allow of such an arrangement, as well as to provide for the morements of the tceth, jaws aro provided that are situated in the interior of the shell; and these jaws, from their great complexity and unique structure, form perhaps the most admirable masticating apparatus met with in the whole animal kingdom; we must therefore cntreat the patience of the student while we describe at some length the parts connected therewith. The entire apparatus removed

Echinus esculentus. from the shell is represented in fig. 150 , and consists of the following parts :-There are five long teeth (c, c), each of which is cnclosed in a triangular osseous piece (a a), that for the sale of brevity we will call the jaws. The five jaws are united to each other by various muscles ($7 . k, i i$), so as to form a pentagonal pyramid, having its apex in contact with the oral orifice of the shell, while its base is connected with several bony levers by means of numerous muscles provided for the movements of the wholc. These parts we must now pro-

Fig. 148.

"Lantern of Aristotle" complete, and one of the pyramidal segments detached: a, a, the projecting teeth; $b b$, body of the jaw ; $\grave{a}, \dot{e}, \dot{d}, \dot{c}$, roots of tho teeth, which are fibrous, somewhat resembling asbestos. ceed to deseribe seriatim. The teeth (fig. 140, 1, a) resemble, at the part protruded from the mouth, long three-sided prisms, and at this point they are extremely hard and brittle : each tooth is fixed in a soeket
passing through the jaw (fig. 149, 2, c), from which it projects by its oppesite extremity (fig., $1492, a^{\prime}$), that may be callod the root of the tooth, where, instead of being of glassy hardness like the point (") which issues from tho mouth, it is flexible and soft, resembling fibres of asbestos, and is covered by a membrane apparently connected with its socretion. Thojaws, which thus support and partially enclose these teoth, are five in number : when examined separately, each is found to resemblo in figure a triangular pyramid, the external surface (fig. 149, 2, e) being smooth and prosenting eminences provided for the attachment of muscles; while the other two sides (fig. 149, 1, b, b) are flat, and marked with transverse grooves so as to havo the appearance of a fine filc. When the five jaws arc fixed together in their natural positions, they form a five-sided conical mass, aptly cnough compared by Aristotle to a lantern, and frequently described by medern writers under the name of " the lantorn of Aristotle." When thus fitted to each other, the two flat and striated sides of each jaw are in apposition with the cor-

Fig. 149.

Dental system of Echinus. 1. Represents three of the psramidal pieces forming the "lantern of Aristotle" in situ: a, a, cutting extremities of the incisor teeth, which are of enamellike hardness; $a^{\prime}, a^{\prime}, a^{\prime}$, fibrous roots of the samc, resembling asbestos in their texture; b, b, opposed flat surfaces of the jaws; d, d, arched processes. 2. An isolated pyramid: e, its external surface. Other letters as in fig. 1. responding surfaces of two others, so that there are ten grinding-surfaces formed, between which the food must pass preparatory to its introduction into the digestive canal. This arrangemont will be easily understood by referring to fig. 149,1 , in which three of these jaws, oach containing its incisor tooth, are reprosented in situ.
(494.) The five curious jaws described above are fixed together by a set of muscles (fig. 150, l_{c} / k_{c}), consisting of short fibres passing between the external edges of the contiguous segments of the lantern, and cvidently capable of powerfully approximating the grinding-surfaces and rubbing them upon each other. The jaws, moroover, are provided with five other ossoous picces (d, d), arranged in a radiating manner between the bases of the differont segments, with which they are connected by ligaments, and likewise by the pentagonal muscle $(i$ i that runs from one to the othor.
(495.) The above-described parts complote the apparatns required for connecting the different portions of this romarkable mouth; but the
movements of the whole are effected by a very complicated set of levers and muscles which must noxt be noticed.
(496.) The levers attached to the jaws are five long and slender processes (fig. 149, $, d, d$), each arising from the central extremity of one of tho radiating osscous piccos (c, c), and arching outwards considerably beyond the base of the lantern, to terminate by a forked extremity. But there are likewise other processes projecting from the inner surface of the shell; these, two of which are seen in fig. $150, b, b$, are also five in number, and are placed around the orifice of the mouth : they are gencrally hollowed out in the centre, so as to rosemble so many bony arches; and from them, as well as from the spaces which separate them, numerous muscles dcrive their origin. Of these muscles, ten (f, f) arise from the spaces between the arches, two being inserted into the outer edge of the base of each jaw ; so that the effect produced by their con-

Fig. 150.

Oral apparatus of Echinus: a, a, a, a, a, pyramidal pieces forming the "lantern of Aristotle;" b, b, internal projections from the shell; c, c, e, c, c, teeth enelosed in their sockets; d, d, interposed osseous pieces; c, c, curved processes; $f f, g g, h h, i i, k k$, muscular fasciculi for the movements of the jaws.
traction, when they all act in concert, will be to approximate the whole mass of the mouth to the oral aperture of the shell, and of course cause the points of the incisor tecth to protrude externally; or, if they act separately, they can draw the base of the lantern in any direction, or cause the grinding-surfaces of the jaws to work against each other.
(497.) The antagonists to the muscles last mentioned are ten others (g, g), arising from the extremitics of the arches themselves, and running in a radiated manner towards the apex of the lantern, so that the point of each piece or jnw reccives a muscle from two of those processes. These fasciculi, from the manner in which the arches project
into the cavity of tho sholl, will draw inwards the entire mass; or, if they act separatoly upon the jaws whereunto they are individually fixed, they will produce movements precisely opposite to those caused by the contractions of the muscles derived from the spaces between the bony processes; or, if both sets should act in concert, they become the antagonists of the muscles (i, k, k) that connect the jaws to each other, and by causing the separation of the different pieces they necessarily enlarge not only the opening of the mouth, but all the passage leading to the œesophagus through the axis of the lantern.
(498.) Yet even these are not all the muscles that act upon the masticating apparatus: ten others (h, h), arising in pairs from the middle of the interspaces between the arches, are connected with the bifurcated extremities of the slender eurved processes (e, e), each of these receiving a muscle from two contiguous spaces; and from the length of the levers upon which these muscles act wo may well conceive the force wherewith they will influence the motions of the whole mass of the jaws. (499.) Such is the complex structure of the mouth of Echinus esculentus -a picce of mechanism not less remarkable on account of the singularity of its construction than as exhibiting: an cxample of the sudden development of a dental system whereof not a vestige is visible in any of the preceding Echinoderm familios. In others of the Echinidæ, having the shell much depressed, the dental lantern is modified in form and proportionately flattened, but the different parts are essentially similar to those we have described.
(500.) The œsophagus (fig. 151, d) is continued from the termination of the central canal that traverses the axis of the lantern, and, after a short course, terminates in a much wider portion of the digestive tube, into which it opens on the lateral part of its excal origin, in a manner precisely

Alimentary canal of Echinus esculentus: a, interior of the shell ; δ, ambulacral foramina; c c, intestinal canal; d, commencement of cesophagus from the base of the "lantern of Aristotle ;" e, heart; f, g, rascular trunks following the course of the intestinc. resembling the communication between the large and small intestines of man.
(501.) The dilated alimentary tube (c) presents no separation into stomach and intestine, but is continued in a winding course around the
interior of the shell, whieh it twico encircles, and, becoming slightly constrieted, terminates at tho anal orifiee (i). The walls of the intestine are extremely delieate, although thoy may bo distinctly seen to contain museular fibres and are eovered with innumerable vascular ramifications. The external tunic of the whole camal is derived from the peritoneum, that lines the entire shell, invests the dental lantern, and forms sundry mesenterie folds as it is refleeted upon the other viscera.
(502.) The system of vessels provided for the circulation of the blood has been differently deseribed by different authors-a eircumstance by no means surprising when we consider the great diffieulty of tracing such delieate and extensively distributed canals. According to Delle Chinje, the course of the nutritious fluid is as follows :-A large vein runs along the whole length of the iutestine, from the anus to the œsophagus, where it terminates in a vascular ring surrounding the mouth, into whieh, as in Asterias, the contractile vesiele, which he eonsiders to be a receptaele for the nutrient fluid, and the antagonist to the tubular feet, likevise opens. The intestinal vein he regards as the great agent in absorbing nourishment from the intestine and conveying it to the vaseular eirele around the cesophagus, from which the arteries are given off to supply the whole body. These arteries are:-1st, a long vessel to the intestine, which runs along its whole length and anastomoses frecly with the branches of the intestinal vein; 2 ndly , five arteries to the parts connected with the mouth; 3rdly, five dorsal arteries that run along the interior of the shell between the ambulaeral rows as far as the anal orifice, at which point each dorsal artery leaves the osseous box through an aperture specially provided for its exit, and, arriving upon the outer surface of the shell, supplies the soft external membrane, and in some species may be traced back again between the rows of ambulacral suckers as far as the mouth. These dorsal arteries, like the corresponding vessels in Asterias, supply the vascular origins of the innumerable protractile feet.
(503.) The chylaqueous system of the Echinidæ, eomprehending a considerable mass of fluid filling the cavity of the spherical shell, has been generally regarded as sea-water poured into the visceral cavity through perforations in eertain membranous processes of the shell, whieh have reeeived the name of branchice and are distributed in groups around the eireumference of the oral membranous disk. The latter, however, aceording to Dr. Williams, are not eonneeted with the suetorial or water-vascular system, but aro distended by injections thrown into the open chamber of the shell, being only protruded by the force of the fluid driven into their interior ; they are eonsequently not perforated.
(504.) In addition to the meridional rows of suctorial feet, the shell of Echinus is perforated by numerous hollow membranous processes lined within and without by ribratile cilia, and penetrated exclusively by the fluid of the visceral cavity; they show no traces of blood-vessels, and
can only subserve a respiratory purpose on the supposition that the subject of that process is the chylaqueous fluid. There is, therefore, no direct ovidence to show that the external element enters through openings in tho integuments into tho peritoneal cavity of the Echinus.
(505.) Nevertheless, besides this diffused respiration, Delle Chiaje regards a series of pinnated tentacula in the neighbourhood of the mouth as being in some degreo capable of performing the office of branchiæ. These organs, which are protruded through a row of distinct orifices placed around the oral aperture of the shell, are eminently vascular; and as they prescnt a largo surface to tho action of the water and receive numerous vessels from the circular trunk that surrounds the mouth, doubtless they may very well contributc to the complete exposure of the blood to the influence of the surrounding medium.
(506.) Little is known concerning the nervous system of the Echini : a few delicate filaments have been observed in the neighbourhood of the œsophagus, apparently of a nervous character, communicating with a nervous ring placed in that vicinity, resembling that already described in Asterias.
(507.) The Echini, like the Starfishes, are bisexual, and in the structuro of their reproductive organs display, if possible, greater simplieity than even the Asteridæ above described. The ovaria are five delicate membranous bags, quite distinct from each other, that open externally by as many delicate tubes, or oviducts, as we may term them. The apertures through which the eggs escape are easily seen upon the outer surface of the shell, placed around the anus, and are recognizable not merely by their size, but from the circumstance of each perforation being placed in the middle of a distinct oval plate of the shell, distinguished by zoological writers as the ovarian pieces. The membranous sacs in which the ova are secreted vary in size in proportion to the maturity of the eggs contained within them, and at certain times of the year are enormously distended : it is in this state that the "roe of the Sea-egg," as the ovaria are commonly callod, is used as' an article of food; and in some countries, especially upon the shores of the Mediterranean, they are eagerly sought after, when in season, by divers employed to procure them. The corresponding organs in the male sex are only distinguishable by the spermatozoa contained in their interior instead of ova. The metamorphoses which accompany the development of the embryo of these Echinoderms are as remarkable as those of the young Ophiuri already described (§§ 473-477).
(508.) At the earliest period observed by Muiller, the larval Echinus (fig. 152, 1) had the appearance of a transparent dome-like disk, hollowed out inferiorly, and having its margin prolonged into long, slender, diverging processes supported on calcareous pieces doposited in their substanco and giving the whole animal somowhat the appearance
of a timepicce standing on many legs (A, B, F, L), four of which (F, E) constitnte a sort of framework surromnding the oral apparatus.
(509.) The arrangement of the locomotive apparatus of these larve is very peculiar, consisting of four epaulot-like wreaths of long cilia

Fig. 152.

Metamorphosis of Echinus. 1. A Plutens with thistern arms: A, A, anterior inferior lateral processes; $1, B$, posterior inferior processes ; C, C, lateral processes of the vaulted disk; D, terminal process from the apex of the valted disk; $\mathrm{E} E$, anterior, and $\mathrm{F} F$, posterior processes of thi framework of the mouth; G, G, posterior processes of the body: a, month; a', brsin-like lower lip; l, cesophagus; d, stomach; e, calcarcons framework of the skelcton. 2. The same in a more irlvanced stage of developnent-the spines of the young Echinus beginning to make their appenrance, covered with a transparent skin: a, remmant of the calcareous skeleton of the larva or Pluteus, which has now noarly disappeared; b, branched ealcarcons spicula belonging to the lara skeleton; c, spines, and d, tentaches of the young Eehinus. 3. The erhiniform condition alnost completed, only a few calcarcous spicula of the larva remianing. (After Nifler.)
situated upon the dome-shaped body of the animal, and of numerous ciliated fringes spread over the arms and in the vieninty of the oral organs.
(510.) The mouth is a triangular orifice (fig. 152, 1, a) furnished with broad lips, and loads immediately into the stomach (d), which is a cul-de-sac, situated in the interior of the body.
(511.) In this condition the larve are not more than half a line in length, and move froely about in the water, rowed along by the aetion of their cilia, while tho marginal processes and other appendages to the body remain quite passive and motionless. The first appearance of metamorphosis is indicated by the development of a shiold-like plate (fig. 152, 2, b), which, during the months of August and Scptember, becomes visible bencath the skin covering the dome of the body, sloping as if inclined towards its apox, and not inaptly representing the fingerplate of the timepiece to which, as to its shape, the creature has been alroady compared. The round shield-like plate thus formed is divided by a cinqucfoil-shaped figure into five compartments, and constitutes the first rudiment of the future Echinus; as its size increases, new divisions make their appearance upon its periphery, indicating the situations of the future tentacles or feet; and soon afterwards little round tubercles begin to develope themselves, which gradually rise up into eylindrical clevations and ultimately assume the appearance and texture of the locomotive spines.
(512.) The shield itself, forming the basis upon which the apparatus of suckers and spines is supported, is now scen to enclose in its substance its own proper calcareous skeleton: this consists at first of minute detached triradiate spicula, which, as they increase in uumber, arrange themselves so as to constitute a sort of network in the texture of the skin, wherein ultimately the polygonal calcareous plates of the shell make their appearance.
(513.) Holothuride.-The name applied by naturalists to the animals composing the next family of Echinodermata is derived from a Greek word of uncertain application (idoOouporv). In common language they are generally known by the appellation of "Sca-cucumbers;" and in fact, to a casual observer, the resemblance which they bear to those productions of the vegetablo kingdom, both in shape and general appearance, is sufficiently striking. The surface of these animals is kept moist by a mucus that continually exudes through innumerable pores and appears to be secreted by minute follicles imbedded in the substance of the skin. The integument which covers, or, rather, forms the body, is entircly destitute of those calcareous piecos that encase the Echini and Starfishes; it appears to consist of a dense fibrous cutis of considerable thickness, covered externally with a thin epidermic layer. Beneath the cutis is another tunic, composed of strata of tendinous fibres crossing each other in the midst of a tissue of a scmicartilaginous nature, which is capable of very great distention and contraction, and serves by its clasticity to retain the shape of the body. Within this dense covering are seon muscular bands rumning in different directions,
which by their contraction give rise to the various movements of the creature : of these muscles five strong fasciculi assume a longitudinal course, passing along the entire length of the animal from the mouth to the cloaea; and in the interspaces between these, circular and oblique muscles are readily distinguishable. The whole of this muscular case is lined with a delicate membrane or peritoncum, from which processos pass inwards to support tho various viscera.
(514.) But althongh the calcareous shell of the Echinus is thus totally

$$
\text { Fig. } 153 .
$$

lost, the locomotive suckers or feet already deseribed are still the principal agents employed in progression. In many species, as in that represented in the amexed figure (fig. 153), these organs are distributed over the whole surface of the animal, and are protruded through count-
less minute orifices that perforate the intogument. In other cases, as in H. frondosa, thoy are arranged in fivo sories, resembling the ambulacra of an Echinus; and in some instances they are only found upon tho middle of the ventral surface of the body, that forms a flattened disk upon which the animal creeps, somewhat in the manner of a snail. The ambulacral feet thomselves, represented on an enlarged scale at c, precisely resemble in all the details of their structure those of the Asterias; and their protrusion and retraction are effected in the same manner. But, in addition to thoso organs, we find in some genera moveable hooks or spines (fig. $153, d$), which are likewise retractile, and most probably assist in locomotion.
(515.) The mouth is a round aperture, as wide as the bore of a goosequill, placed in the centre of a raised ring at the anterior extremity of the body (fig. 153, a). Around the oral orifice is placed a circle of tentacula, which are apparently extremely sensitive, and serve perhaps not only as instruments of touch, but as prehensile organs, used for the capture of prey, or for assisting in deglutition. When the sphincter muscle that closes the mouth contracts, the tentacles are withdrawn, and become no longer visible extcrnally; in this state, on opening the animal (fig. 154,6), they are found to resemble long eæca appended to the commencement of the esophagns, and have been described by some authors as forming a salivary apparatus.
(516.) The total deficiency of an external skeleton or calcareous framework precludes, of course, the possibility of the existence of any complex dental apparatus resembling the "lantern of Aristotle; " the only vestige of the complex teeth of the Echinidæ which here remains is a small circle of calcareons pieces, surrounding the opening of the mouth. These plates, from their extreme friability, have been aptly enough likened to laminæ of dried paste : they may indeed, in somo slight degree, be efficient in bruising food taken into the mouth; but it is more probable that they merely form points of insertion for the longitudinal muscles of tho body, which, thus fixed around the circumference of the oral orifice, will by their contraction powerfully dilate that aperture for the purposo of taking in nourishment.
(517.) Tho alimentary canal is of great length, but, like that of the Echinus, presents no stomachal dilatation ; from tho mouth (fig. 154, a), in which a bristlo is placed, it descends to tho anal extremity of the body, where, turning upon itself, it again mounts up towards its commencement, whence turning back again, and forming numerous convolutions ($d d d$), it once more passes backwards, and, becoming constricted near its termination, opens into a largo membranous cavity (e) that may be called the cloaca. Throughout the whole of this long course, the alimentary tube is surrounded with a membrano derived from the peritoneal huing of tho visceral cavity, which forms delicato mesenterie folds conneeting it to the walls of the body and supporting it through its cntire length. The
whole intestine is genorally found distended with sand, wherein may be detected the débris of corals, algæ, fuci, and other marine substances.
(518.) In the structure of the respiratory apparatus, the Holothuridæ differ materially from the rest of the Eehinodermata, and, in fact, from

Fig. 154.

Anatomy of Holothuria: a, bristle inserted into the mouth; b, inverted tentacula; c, ampulla Poliana; $d d d$, intestinal canal ; e, cloacal chamber, opening externally by a wide orifice, into which the bristle f has been passed; $g g$, "respiratory tree;" $h h$, ovarium (testis in the male); $i i$, central vascular trunk; k, intestinal ressels ; $l m$, vessels in relation with the "respiratory
tree."
all other animals. In the Holothuria the acration of the circulating fluid is provided for by allowing the surrounding element freely to enter into the internal parts of the creature ; but instead of bathing the surfaces of the viscera, the water is confined in a peculiar system of ramifying canals, forming a structure of great beauty and, from its singularity, extremely interesting in a physiological point of view. We have seen that the intestinal canal terminates in a membranous receptacle or cloaer (fig. 154, e) contained within the cavity of the abdomen, to the walls whereof it is attached by delicate fleshy bands: this cloacal cavity communicates with the exterior of the body by a wide orifice, twice as
largo as the aperture of the mouth, through which, in the figure, a bristle (f) has been passed; and it is by this orifice that the water required for the purpose of respiration is taken in, and then forced, by the muscular walls of the cloaca itself, through the whole system of respiratory canals whereby its distribution is effected. The organs of respiration commence at the upper part of the cloaca, near the termination of the intestinc, by a large opening leading to a wide membranous tube, which immediately divides into two vessels (g, g) forming the main trunks of the beautifnl arborescent branchiæ ; these extend to the opposite extremity of the body, giving off in their course numorous lateral branches that divide and subdivide, so as to form what has been not inaptly termed the " respiratory trec," until they ultimately terminate in minute vesicular cæea, into which the water derived from the cloaca of course penetrates. One division of this clegant apparatus is maintained in close contact with the walls of the body by a series of delicate tendinous bands, while the other becomes applied to the convolutions of the intestines, wherewith it is likewise united. It is this last-mentioned division that would appear to be specially provided for the oxygenization of the nutritive fluids.
(519.) The circulation of the blood in the Holothuria, as in the Echinus, is still but imperfectly understood; and considerable difference of opinion upon this subject will be found in the writings of anatomists. According to Tiedemann*, innumerable small veins collect the blood and nutritive products of digestion from the intestine and convey them into a large central vessel (fig. 154, i i), from which the circulating fluid passes by other trunks (l, l), to the respiratory tree; hence it is returned by vessels (partly represented at

Fig. 155.

Plan of the circulation in Holothuria, according to Delle Chiaje. by which it is again distributed over the intestinal parietes.
(520.) Delle Chiaje gives a different account of the arrangement of the vascular system in these creatures, which he seems to have iures* Anat. der Röhren-Holothuric. Fol., 1816.
tigated with his usual untiring perseverance. According to the lastmentioned anatomist, the blood is taken up from the intestines by a eomplicated system of veins, the main trunks of whieh are indieated in the amexed diagram (fig. 155) by the letters $c, e, p p, q q$; these communiente with each other not only by the intorvention of numerous anastomosing branehes (d, d), but likewise by means of delieate vaseular plexuses (a) passing between them. All these veins terminate in two large venous eanals (0) that convey the blood and nutriment absorbed from the intestine to a vaseular eirele (g) plaeed around the eommeneement of the cosophagus, whieh eorresponds with the eireular vessel around the mouth of the Eehinns. This cirele Delle Chiaje regards as the eentre

Fig. 156.

Embryology of Holothuria.
of the arterial system, in communieation with which is the eontractile vesiele (f); and this he looks upon as a reservoir for the nutritive fluid. From the eireular vessel various arteries are given off: large branehes pass into the tentaeula around the mouth (i); so that, besides being instruments of touch, these organs, from the oxtent of surface that they present and their great vaseularity, are most probably important auxiliaries in respiration. Five other largo arteries, derived from the same souree ($k k, l$), pass backwards to supply the integuments of the body, and also to eommuniento by small eross branches with the little vesieular organs eonneeted with the loeomotive suckers, which, in the opinion of Delle Chiaje, are distended with the same blood as that which eirenlates through the rest of the body. The descending arteries, thus
destined to supply the integument and distend the prehensile suckers, run in the contre of each of the five longitudinal fasciculi of the muscular tunic of the skin as far as the cloaca, and cxhibit in their distribution a remarkable exception to the usual arrangement of the arterial system, which is generally found to divide and subdivide continually into smaller and still smaller canals : in the case before us there would seem to be no diminution in the size of the main trunks as they approach their termination; and the cross branches given off in their course, instead of ramifying, all end in the minute ambulacral vesicles, to the injection of which they would appear to be subscrvient.
(521.) The generative system of the Holothuria is essentially similar to that found in the Asteridæ, consisting of long ovigerous cæca. The germs are secreted in slender ramified tubes (fig. $154, h, h$); these are eollected into one great bundle, and open extcrnally by a common canal in the neighbourhood of the mouth-not into the œosophagus, as Cuvier supposed, but upon the back of the animal. The generative cæca at certain times of the year become enormously distended, being at least thirty times as large as when not in a gravid state : if examined at this period, they are found to contain a whitish, yellowish, or reddish fluid, in which, in the female, the ova are suspended. In the male a precisely similar structure exists ; but instead of ova, the cæca contain a fluid crowded with spermatozoa during the breeding-season.
(522.) After their escape from the egg, the young Holothuriæ have been ascertained to undergo a kind of metamorphosis scarcely less wonderful than that observed in Ophiurus and Echinus. In its first or Pluteus condition, the little embryo bears no resemblance whatever to the future animal, but swims vigorously about by the agency of broad membranous looking expansions that surround the margins of its flattened body, wherein the stomach and other viscera are distinguishable (fig. $156,1,2$). In its second stage of existence it has somewhat the appearance of a polype (fig. 156, 3); and this ultimately becomes converted into a larva-like being (fig. 156,4), surrounded with several

Fig. 157.

Young Holothuria. rows of vibratile cilia, by means of which its progression is accomplished. In the interior of this larva a set of rudimentary oral tentacula, surrounded at their bases by a circle of calcarcous spicula, is developed, an
alimentary canal makes its appearance, and even the ampullæ Polianæ are distinctly recognizable, surrounding the position of the future mouth. In its fourth stage of advancement (fig. 157), the Holothurian structure is no longer doubtful, although the apparatus of vibratile cilia still exists upon the exterior of the body. The alimentary canal (a) may be seen to terminate in a cloacal chamber, the Polian vesicle (b) is largely inereased in size, the calcareous circle (c) around tho mouth is much strengthened, the tentacles (d) have assumed larger proportions, and even the appearance of the suctorial fect (e) is no longer doubtful; the longitudinal muscular fasciculi in the integument progressively acquire strength, and the little creature is transformed iato the shape and attains the proportions of its parent*.
(523.) The special instruments of touch, the only sense allotted to these animals, are the branched tentacula around the mouth, which seem by far the most irritable parts of the body. The mervous system is so obscurely developed, that even Delle Chiaje was unable to detect any traces of its existence; nevertheless there is little doubt of the presence of nervous threads in the muscular envelope of the animal, although, from the dense tissues wherein they are imbedded, it is next to impossible to display their course ; most probably, as in the Echinus and Asterias, these communicate with a circular cord that embraces the cesophagus. No ganglia have as yet been discovered even in the Holothuridce; and consequently, although tho muscular actions of the body are no doubt associated by nervous filaments, the movements of these ereatures appear rather to be due to the inherent irritability of the muscular tissues themselves than to be under the guidance and control of the animal. In many specics, the slightest mechanical irritation causes such powerful and uncontrollable contractions of the integument, that the thin membranes of the cloaca, unable to withstand the pressure, become lacerated, and large portions of the intestine and other viseera are forced from the anal aperture. So common, indeed, is the oecurrence of this accident, that the older anatomists were induced to suppose that, by a natural instinct, the animals, when scized, vomited their own bowels. It is, in fact, extremely difficult to obtain perfect

[^73]specimons of the Holothuridx, from the constant accurrence of this accidont: but, although annoying to the naturalist, such a phenomenon affords the physiologist an important lesson, teaching that here, as in the lower Zoophytes, the muscular system possesses an innate contractile power, which would seem only to be destroyod by incipient putrefaction; but so little is this contractility under command, that, once excited to an inordinate extent, it becomes totally unmanageable, even though its continuance inevitably causes the evisceration of the creature.
(524.) Fistularide.-In order to complete our account of the organization of the Echinodermata, we have still to investigate the structure of the Fistularidce-a group that, from the external appearance of the individuals composing it, and the total absence of the tubular feet met with in other families, has been improperly separated by some modern writers from the class under consideration. Nevertheless we shall find the position assigned to these animals by Cuvier to be in strict accordance with the character both of their outward form and internal structure ; only, instead of placing them with the lowest of the Echinoderms, they would have been more properly situated at the head of the class, as most nearly approximating the Annelida in all the details of their economy. We have already given a description of the outward form of a Fistularia (§ 425), and seen the completely annulose condition of its body, although the radiating tentacula around the mouth are evidently analogous to those of the Holothuria, already described.
(525.) The Sipunculus (fig. 158), another form which we shall select to exemplify the anatomy of these creatures, inhabits shallow seas, concealing itself at the bottom in holes that it excavates in the sand. Having once located itself, it is seldom found to quit its concealment, but, retaining its hold upon the sides of the retreat which it inhabits, by dilating the posterior part of its body, it occasionally protrudes its head from the orifice, either for tho purpose of procuring food, or of respiring more freely the water of the ocean.
(526.) These animals are much sought after by fishermen, who omploy them as baits for their hooks; and one spccies, Sipunculus eclutis, is used in China as an article of food.
(527.) The body is covered externally with a delicate cuticle, easily separablo by maceration or

Fig. 158.

Sipunculus. simple immersion in spirit; and when thus detached it forms so loose a covering, that Linnæus, deccived by the appearance of an animal thus preserved, applied to it the name of Sipunculus saccatus.
(528.) The muscular investment, placed boneath the skin, is com-
posed of strong fasciculi arranged in three distinct layers. The external stratum is disposed in circular rings, beneath which spiral fibres may be obsorved crossing each other at various angles; and, lastly, the inuer coat is made up of about thirty powerful longitudinal bands, cxtending from one extremity of the body to the other. Such an arrangement is evidently sufficient for tho general movements of progression; but, in order to facilitate the retraction of the tentacular apparatus around the mouth, eight additional muscles surround the œesophagus; and by their action the whole of the oral apparatus is completely inverted and drawn inwards.
(529.) The tentacula around the oral orifice are the principal agents employed in seizing and swallowing food, an office to which they are peculiarly adapted by their great sensitiveness and power of contraction; but, as we have found to be generally the case among the Echinodermata, sand and fragments of shell form the great bulk of the contents of the intestine, so that it is by no means easy to state precisely the nature of the food upon which the Sipunculi are nourished.
(530.) The structure of the alimentary canal and of the nutrient apparatus conforms too accurately to what we have already seen in Holothuria to permit of a moment's hesitation concerning the relationship that exists between the apodous Echinodermata and the Holothuridx. The œsophagus (fig. $159, b$) is narrow, and soon dilates into a kind of stomachal reccptacle (c); but although the diameter of the intestinal tube is at this point perceptibly larger than in any other part of its course, there is no other peculiarity to distinguish it from the rest of the intestine. In the Annelida, the digestive apparatus is invariably straight, traversing the body from one extremity to the other, -a circumstance that distinguishes them remarkably from the Echinoderms we are now considering; for in Sipunculus we find a digestive canal six or seven times the length of the animal, within which it is folded upon itself in various distinct convolutions. Leaving the stomach, if we may so call the dilatation above alludcd to, it passes down ($d d d$) nearly to the tail, where it is reflected upon itself, and mounts up again as far as the point where it commenced ; here it again turns back, and, once more reaching the bottom of the tegumentary sac, becomes a second time directed upwards, and reascends as far as the point e, where the anus is situated.
(531.) It is easy to account for this extreme length of the intestine when we consider the nature of the materials used as food, and the small proportion of mutriment contained among the sand and broken shells found in the digestive canal : but the remarkable position of the anal aperture is only explicable by a reference to the peculiar habits of the creature ; for (living, as it does, in a narrow excavation bored in the sand, from which it seldom issucs), had the excrements been discharged, as in Holothuric, through a terminal orifice, their constant ac-
cumulation at the bottom would soon expel the animal from its retreat; but, by the arrangoment adopted, it is only necessary that the anterior part of the body should be protruded from its concealment, and the excrementitious matter may be cast out without inconvenience. The intestine is retained in situ and supported at all points by innumerable tendinous bands, that arise from the intcrior of the muscular walls of the body, and form a kind of mesentery.
(532.) In Sipunculus, the character of the circulating system is in all esscntial points strictly analogous to that of the other Echinodermata; and moreover, from the superior concentration visible in every part, we havo the multiplied organs of the other families exhibiting so much simplicity of arrangement, that whatever may have appeared obscure or complicated in our description of Echinus and Holothuria will receive elucidation from the diagrammatic form in which all the vessels connected with the circulation of the blood are represented in fig. 159. The intestinal vein (m) may be readily traced along the entire length of the alimentary eanal: commencing near the anal extremity of the bowel, it follows all its convolutions, and receives from every part the minute vessels which ramify over the intestinal walls. These venous ramifications undoubtedly perform the offiee assigned to the lacteals of higher animals, and imbibe the nutritive particles furnished by digestion, which of course

Fig. 159.

Anatomy of Sipunculus: a, oral tentacles; b, cesophagus; c, stomach ; d d d, intestinal canal; e, position of anal oriffce; f, p, ovaria; g, external oriffee of ovary; h, ampulla Poliana; i, cerebral ganglia; l, heart; m, intestinal vein; n, branchial ressel; o, aortic trunk. are convoyed into the great venous trunk (m). Arrived opposite to the termination of the ossophagus, the intestinal rein divides into two vessels :-one performing the offico of a branchial artery, by eonreying a part of the blood to the respiratory organs in tho neighbourhood of the mouth; the other, which we may call the aorta, distributing tho remainder to all parts of the tegumentary system. The branchial
ressel (n) runs from the bifurcation of the intestinal vein to the base of the oral tentacles, whero it forms a vascular circle around the eommencement of tho œesophagus, analogous to that which wo have seen in Holothuria; and in connexion with this cireular vessel we find the "ampulla Poliana" (h), which Dello Chiaje conceives to be here, as in other cases, a receptacle for the circulating fluid. From tho vascular circle around the mouth, vessels are given off to ramify minutely through the substance of the tentacula (a); so that these appendages may be regarded as respiratory organs like those of Holothuria. The other ressels derived from the oral circle have not been traced ; but we may conclude from analogy that arteries supplying the mouth and alimentary canal are furnished from this source.
(533.) The aorta (o) is the other large vessel derived from the intestinal vein, and is seen to pass in a flexuous course from its origin to the posterior extremity of the body, following the median line, and giving off transverse branches on both sides opposite to every ring of the muscular integument. At the commencement of the aorta is a dilated vesicle (l), which may be looked upon as a heart (auricle, Delle Chiaje). The vesicle alluded to is of a conical form, the apex of the cone being directed towards the tail of the animal; and, from the impossibility of making mercury pass from the aorta through this organ in the direction of the intestinal vein, it is probable that it contains an apparatus of valves so disposed as to prevent any retrograde motion of the blood. At the termination of the aorta there appears to be a second enlargement, to which the name of ventricle has been given, and which is perhaps also capable of contraction, so as to assist in the propulsion of the circulating fluid. The blood of these animals is of a purple colour in the veins, but red in the arterial vessels.
(534.) We have seen that the tentacula are, from their vascularity, well adapted to fulfil the office of a respiratory apparatus ; but it may be presumed that they are not the only agents by which respiration is accomplished. Upon tho outer surfaco of tho body, in the neighbourhood of the anal opening, two apertures are visible, which lead into two long sacculi (f, p), the entrance being guarded by muscular fibres (g) : their texture presents transverse and longitudinal striæ; and they contract spontaneously, even after the animal is dead; internally they are lined with a mucous membrane. The use of these organs is not precisely known; Cuvier regarded them as belonging to the generativo system, while Delle Chiajo looks upon them as respiratory organs.
(535.) In this elevated form of tho Echinodermata, so nearly allied to the Homogangliate type, we may naturally expect a more complete development of nervous ganglia than we have yet met with in the class; and accordingly we find, upon the anterior part of the cesophagus, two little nervous tubercles (i) from which nervous filamonts issue to be distributed to different parts of tho borly ; one of these, in particular,
may be traced along the whole longth of the intestine, from the mouth to tho anus.
(536.) We are ontirely ignorant concerning the mode of reproduction in these croaturos. Nevortheless, at certain seasons of the year, on opening the visceral cavity it is found to be filled with a fluid of a reddish tint, in which thousands of minute white bodies resembling millet-seeds are soen to float: If these are ova, they are probably expelled through an orifice that exists in the vicinity of the tail.

CHAPTER IX.
 HOMOGANGLIATA* (Owen).

Articulata (Cuv.). Annulosa (MacLeay).
(537.) The next great divisiou of the animal kingdom includes an immense number of living beings, adapted by their conformation to exist under a far greater variety of circumstances than any which we have hitherto had an opportunity of examining, all of whieh are obviously ouly adapted to an aquatic life, and accordingly are invariably found either to inhabit the waters around us, or to be immersed in the juices of living animals upon which they subsist. Even the Echinodermata are too imperfect in their construction to admit of their enjoying a terrestrial existence, inasmuch as, possessing no nervous centres adequate to give force and precision to their movements, they are incapable of possessing external limbs endowed with sufficient power and activity for progression upon land; neither are any of them furnished with the organs of senso that must be indispensable for the security of creatures exposed to those innumerable accidents to which the inhabitants of a rarer olement are perpetually liable.
(538.) The type of structure met with in the Homogangliata admits of far higher attributes and allows the enjoyment of a more extended sphere of existencc: senses become developed proportionate to the incroased perfection of the animal; limbs are provided endowed with strength and energy commensurate with the devclopment of the nervous ganglia that direct and control their movements ; and instincts are manifestod in relation with the increased capabilities and more exalted powers of the varions classes as they gradually rise above each other in the scale of animal development.
(539.) The most obvious though not the most constant charaeter that distinguishes the creatures we are now about to deseribe is met with in their external conformation : they are all of them composed of

[^74]a suecession of rings or segments (somites) formed by the skin, or outward integument, whieh from its hardness constitutes a kind of external skeleton, supporting the body and giving insertion to tho muscles provided for the movements of the animal. In the lowest forms of the Articulata, the body is extremely elongated, and the rings proportionally numorous ; tho integument, moreover, is soft and yielding, and, as a neeessary consequenee, the limbs appended to the different segments are feeble and imperfect : such is the structure met with in the Worms, or Annelidans, properly so called.
(540.) As we advanee, we perceive the tegumentary rings to become less numerous, and the skin of a denser and firmer texture, adapted to sustain the action of stronger and more powerful museles; the limbs likervise become more elaborately formed, their movements more free and energetic, and the instruments of sight and touch begin to assume eonsiderable perfeetion of structure. This state of development we find in the Mrriopoda, or Centipecles.

Fig. 160.

Sketch of an insect, showing the characteristic divisions of the body. A, head; b, thorax ; c, abdomen: α, antennæ.
(541.) In the Insects, the concentration of the external skeleton is still more remarkable. The integument assumes a hardness and solidity proportioned to the vigorous movements of which the limbs are now eapable; the rings or segments of the body, hitherto distinet, become more or less firmly soldered together in those parts where great strength and firmness are necessary, and seareely any traces are left to indicate their existence as separato pieces ; so that, instead of exhibiting that succession of similar segments seen in tho Centipedo, tho body is apparently divided into three distinct portions, viz. :- tho head, that contains the organs of the senses and tho parts of the mouth ; the thorax, sustaining the limbs, or instruments of progression ; and the abdomen, enelosing the viscera subservient to nutrition and reproduction.
(542.) In a fourth division of articulated animals, namely the

Arichnidans or Spiders, still further consolidation of the external skeleton is visible; for, in them, even tho separation between the head and tho thorax is obliterated, and it is in the abdomen only that the segments of the body are recognizable.
(543.) Lastly, among the Crustaceans we have various modifications of the outward skeleton, adapted to the habits of the different tribes. In the least-perfect species, which are all aquatic, the segments of the skeleton are perfectly distinct and separato, resembling those of the Myriopoda; but in the stronger and more predacious tribes, the pieces of the head and thorax become solidly fixed together ; and in those forms most adapted to a terrestrial life, namely the Crabs, almost all traces of distinction between the thoracic segments are lost in the construction of tho calcareous shield that covers and protects their whole body.
(544.) We see, therefore, from the abovo rapid sketch of the different classes composing the articulated division of the animal kingdom, that, as their organization assumes greater perfection, the different segments of the external skeleton coalesce, and become united together, so as to give greater strength to those parts more immediately connected with locomotion or the destruction of prey; let us next examine the nature of the nervous apparatus that characterizes the Homogavgliata, and observe the relation which the outward form of the body bears to the arrangement of this primary system of the animal economy. In the humblest forms of the Annulosa, it would seem that every ring of the body contains a complete nervous apparatus, consisting of a pair of ganglia and a set of nerves destined to supply the particular segment in which they are lodged. All these different brains, belonging to the individual segments, communicate with each other by nervous filaments, so that a continuous chain is formed, passing along the whole length of the body. With tho exception of the anterior pair of ganglia, or those contained in the first ring, which we may call the head, the nerrous centres are arranged along the ventral region of the body-that is, beneath the alimentary canal; but the anterior pair aro invariably situated upon the dorsal aspect of the animal, and communicate with tho rest by a nervous collar that embraces the commencement of the œesophagus. The nervous masses placed along the belly preside specially over the movements of the segments to whieh they belong, and have little to do with sensation, or the perception of external objects; whilst the anterior or cephalic pair, from tho constancy of their commmnication with tho organs of the senses, appear to be pecularly in relation with the perceptive faculties of the creature.
(545.) It may be taken as a general law, that tho perfection of the nervous system of any animal may bo estimated by the proportionate size of the contral ganglia, upon the development of which both the energy of tho actions of tho body and the completenoss of perception
depend; and by following out this great principle, we shall be easily able to aceount for tho progressive steps whereby the Artieulata beeome more and moro perfeetly organized, as wo traeo them in the series above indieated. In proportion as wo have found the segments of the body to becomo less numerous, tho appended limbs strongor, the outward skeleton more dense, and the musenlar powers more energetie, wo shall find the abdominal ganglia to diminish in number by beeoming eonsolidated into larger masses, increasing in size and energy in aecordance with the development of the limbs over whieh they presido; and, in the samo manner, we shall observe the senses assume greater perfection of strueture, and the instinets beeome more developed, as we find the cephalic or anterior pair of brains increasing in proportionate bulk.
(546.) Among the Homogangliata are likewise to be deteeted the first traees of the sympathetic or splanchnic nervous system. This consists of delieate filaments whieh are distributed upon the alimentary eanal, presenting, in their eourse, ganglionie enlargements, and anastomosing, some with the œesophageal ring, and others with the eerebral or eneephalic ganglia*.
(547.) These observations will suffiee to introduce the student to the Homogangliate division of the animal world, and to direet his attention to those physiological points connected with the nature of their nervous system which will be more fully laid before him in the following pages.

CHAPTER X.

ANNELIDA.

(548.) The lowest elass of artieulated animals comprehends an extensive series of creatures generally grouped together under the eommon name of Worms. In the outward form of their bodies many of them resemble some of the more perfeet Entozoa, and we need not therefore be surprised that, in ordinary language, they are frequently confounded together. But whatever may be the similarity in outward appearanee between the more perfeet intestinal worms and tho animals bolonging to the elass upon the eonsideration of which we are now entering, the examination of their anatomieal strueture will at oneo show that they differ widely from eaeh other, and have thus been properly separated by a considerable interval in all the more modern systems of zoological arrangement.
(549.) The prineipal characters whieh serve to distinguish the Annelida from other forms of tho animal world aro readily appreciated,

[^75]and, when once pointed out, will be found sufficient for the guidance of the most superficial obscrver. The body is always considerably elongated, and composed of a succession of rings or segments that, with the exception of the first and last, scarcely differ from cach other excopt in size. Each ring is generally found to be furnished with a set of short spines or setæ, calculated to assist in locomotion ; but in no instance are thesc animals provided with articulated legs. The first segment of the body, which may be called the head, contains the mouth, sometimes provided with a formidable apparatus of jaws; it is also generally furnished with eyes, and variously shaped tentacula, apparently instruments of touch. The last segment also not unfrequently presents setiform appendages, and occasionally a prehensile sucker, used as an organ of progression.
(550.) Their blood is sometimes remarkable for its red colour, and circulates in a double system of arteries and reins; and respiration is effected either in the general cavity of the body, or by means of arborescent tufts appended to varions parts of their external surface.
(551.) Abranchiata. - This order comprises two distinct tribes, that differ widely in their habits and external appearance: the first comprehends the Leeches (Annelida suctoria), distinguished by the existence of a prehensile sucker situated at each extremity; while instruments of attachment are totally wanting in the second, the only external appendages to the body being a number of minute and almost imperceptible bristles, which project from the different segments and assist in progression : such are the Earthiforms \&c. (Annelida terricola).
(552.) The common Leech (Hirudo medicinalis) affords the most interesting example of a suctorial Annelid. The outward form of one of these animals is familiar to every one, and their gencral habits too well known to require more than a brief notice. The body is very extensible, and divided by a great number of transverse lines into numerous rings, apparent in the contracted state of the animal, but nearly imperceptible when the body is elongated. The skin is soft, being mercly a thin cuticular pellicle separable by maceration; and the surface is lubricated by a copious secretion of mucus. Beneath the cuticle is a layer of coloured pigment, upon which the colours of the animal depend; but the cutis, or true skin, is so intimately connected with the muscnlar integument of the body, that its existence as a distinct tunic is scarcely demonstrable. The muscular coverings or walls of the body, which form a kind of contractile bag enclosing the viscera, are found, upon accurate dissection, to consist of three strata of fibres running in different directions. The onter layer is composed of circular bands, passing transversely ; in the second the fibres assume a spiral arrangemont, decussating each other ; while the internal layer is made up of longitudinal muscles, extending from one end of the creature towards the opposite. Such an arrangement is evidently adequate to
the production of all ncedful movements, and capable of giving rise to all the motions connceted with the elongation, contraction, or lateral inflexions of the body used in progression.
(553.) At each extremity of the animal, the muscular coat expands into a flattened fleshy disk, composed of circular and radiating fasciculi, which, when applied to a smooth surface, perform the office of suckers, and thus become important instruments of prehension. There are no restiges of extornal limbs ; nevertheless, with the simple mechanism above described, the Leech is able to crawl with considerable rapidity along the surface of subaquatic plants, or even to swim with much facility through the water. The first method of locomotion is accomplished by means of the terminal suckers. Supposing the posterior disk to be attached, the animal elongates its body to the utmost, and then fixes the sucker placed at the opposite extremity; this done, the hinder parts are drawn forward and again fixed, preparatory to a repetition of the process. In swimming, the whole body is elongated, and by some partial contractions of the muscular integument, not precisely understood, assumes the appearance of a flattened band; in this condition the Leech makes its way through the element it inhabits by successive undulatory movements of the body, performed with much grace and elegance.
(554.) The mouth of the Leech is an exceedingly complete apparatus, adapted not only to the destruction of the minute aquatic animals that constitute its usual food, but, as is umiversally known, admirably fitted to extract blood from the higher animals-combining, in its operation, the offices both of the cupping-glass and the scarificator.
(555.) The mouth is situated near the centre of the anterior sucker, so that the oral aperture is firmly applied to any surface upon which this part of the animal is fixed. Around the entrance of the œesophagus are disposed three minute cartilaginous teeth, imbedded in a strong circle of muscular fibres (fig. 161, a). Each tooth has somewhat of a semicircular form, and, when accurately examined with a microscope, is found to have its free margin surmounted with minute denticulations (fig. 161, s), so as to resemble a small semicircular saw. On watching a leech attentively during the process of biting, the action of these teeth is at onco evident; for, as the skin to which the sucker is adherent is rendered quite tense, tho sharp serrated edges of the teeth are prossed firmly against it, and, a sawing movement being given to each cartilaginous piece by the strong contractions of the museular fibres around the neck, these instruments soon pierce the cutis to a considerable depth and lay open the cutaneous vessels, whence the croature sucks the fluid which its instinct prompts it to seek after with so much voracity. The position of the teeth around the opening of tho mouth, as represented in the subjoined figure (fig. 161, ^), will at once explain the cause of the triradiate form of the incision that a leech-bite invariably exhibits.
(556.) On contemplating this singular dental apparatus found in the medicinal Lecch, and considering the nature of the food upon which it usually lives, it is difficult to avoid arriving at the conclusion that such a structure is rather a provision intended to render these creatures subservient to the alleviation of human suffering than necessary to supply the wants of the animals themselves. In the streams and ponds where they usually inhabit, any opportunity of mceting with a supply of the blood of warm-blooded vertebrata must be of rare occurrence;

Fig. 161.

A
Dental apparatus of the Leech. A, triradiate arrangement of the teeth or saws; B, a tooth magnifled. so that comparatively few are cever enabled to indulge the instinct that prompts them to gorge themselves so voraciously when allowed to obtain it: ncither does it appear that the blood which they smallow with so much avidity is a material properly suited to afford them nourishment; for, as is well known, most frequently the death of the Leech is caused by such inordinate repletion, provided the greater portion of what is taken into the body is not speedily regurgitated through the mouth.
(557.) The internal digestive apparatus is evidently adapted, from the construction of all its parts, to form a capacious reservoir for the rcception of fluids taken in by suction : the stomach, indeed, with the numerous lateral appendages opening from it on each side, would secm to fill the whole body; and, being extremely dilatable, allows tho animal to distend itself to a wonderful extent, so that it is not unusual to sce a leech, when filled with blood, expanded to five or six times the dimensions natural to it in an empty state.
(558.) The stomach itself (fig. 162, $h i$) occupies about two-thirds of the visceral cavity; on opening it, as represented in the figure, it is seen to be divided by delicate septa into nine or ten compartments that communicate frecly with each other. In each compartment we observe two lateral orifices leading into as many wide membranous pouches (k), which, although shrunk and flaccid when in an undistonded condition, as they are scen in the figure, are casily filled with fluid introduced into the stomach, and are then swelled out into very capacious bags. Perhaps the simplest way of obtaining a correct idea of the relative sizes and gencral arrangement of these organs is to make a cast of their internal cavities when in a state of distention; this is readily effected by placing a dead leech in warm water until it is slightly heated: in this state, the
pipe of a small injeeting syringe can be introduced into the œesophagus, so as to fill the stomach and cæca with eommon wax injection; and if the body be immediately removed into a vessel of diluted muriatic aeid, the soft parts will be speedily destroyed, leaving an exact model of the interior. It will then be seen that the lateral eæca increase gradually in size as they approximate the posterior extremity of the body, until the last pair (d) become so large as nearly to fill up the space intervening between the end of the stomach and the anal boundary of the riseeral cavity.
(559.) A stratum of round, whitish, glandular corpuscles exists, imbedded in the coats of the pharynx and œsophagus, which is looked upon as representing a salivary apparatus. A peculiar brown tissue has likewise been detected in connexion with the alimentary canal, composed of a congeries of elongated, convoluted, and irregularly eonstricted follicles, which are united in groups by the eonfluence of their ducts into a single excretory tube. These excretory tubes unite with those of other groups of follicles, and pour a secretion, supposed to represent bile, into the intestine.
(560.) The small size of the intestine (e) when eompared with the capacious stomach, described above, is remarkable. It commences by a minute orifice at the termination of the digestive cavity, and, becoming slightly enlarged, passes in a straight line, lodged between the two posterior cxea, to the anus, which is an almost impereeptible aperture plaeed at the root of the posterior sucker : four small and apparently glandular masses

Fig. 162.

Digestive organs of the Lech (Hirudo medicinalis): b, mouth; $h i$, interior of the stomachal cavity, exhibiting the openings of the lateral cæca (k); g, flust pair of stomachal cera; d, last pair, extending backwards on each side of the intestine e. are appended to this short eanal ; but their nature is unknown.
(561.) In the Leech the eireulating system is more highly developed than in any other Annelid*. The presence or absenee of a heart-like centre to this system in this class of auimals is by no means the true criterion of the degree of its evolution; the amount of blood relatively to the size of the body, the degree of capillary subdivision which oceurs at the periphery of the blood-system, and the proportion of the latter to the peritoneal fluid form far more eorreet indications. In the Leech

[^76]there exists no free space between the intestine and the integument. Here the ehylous fluid, which in nearly all other Annelids occupies the genoral cavity of the body (like a cylindrical fluid stratum separating the intestine from the integument), is transferred into the interior of the lateral diverticula of the stomach. The peritoncal chamber, being no longer required, is obliterated by the adhesion of the intestine to the integument: the union of these parts is effected through the medium of a dense spongy layer of capillary blood-vessels, the contents of which are exposed internally to the influence of the fluid contained in the digestive cæen, and externally to that of the surrounding element: hence the mechanism of the respiratory process, and the power enjoyed by this and other abranchiate Annelids of dispersing with all oxtcrnal breathing appendages.
(562.) While, however, the vascular system in the Leceh exhibits great complexity, the main currents of the blood obey two leading directions. If the body of the worm be longitudinally bisceted by an imaginary horizontal plane into a dorsal and ventral semicylinder, then the blood in the primary trunks of the dorsal half will more from the tail towards tho head, and in the ventral half from the head towards the tail. The transverse or circular movement of the blood is performed by means of branches which run between the main longitudinal vessels; so that each segment of the body, under this arrangement, has its own independent circulation, transverse and longitudinal, and, while the segmental divisions of the general system communicate with each other at every part, the longitudinal trunks are common to all the segments. From this description it is manifostly impossible that a distinction of venous and arterial blood can exist in the circulating fluid of this Annelid; in every part of the circumference of each ring the blood is being arterialized as it is being rendered venous; the two opposite processes proceed simultaneously in the same capillary system. The blood must be, therefore, as arterial and as venous at one and the same time in the dorsal as in the ventral trunks; notwithstanding, the dorsal main is recipient, the ventral distributive of the blood: all the scoondary curronts converge upon the former, and emanate from the latter ; the blood in both is nevertheless identical in physiological propertios.
(563.) In addition to the main dorsal and ventral trunks, there exist in the Leech two strong and obvious lateral trunks, one on each side (fig. 163, e, e).
(564.) It has been gencrally considered that, in the abranchiate Annelidans, the organs provided for respiration are a series of mcmbranous pouches, communicating externally by narrow ducts (or spiracles, as they hare been termed), into which aërated water is freely admitted. These sacouli, in the Leceh, aro about thirty-four in number, seventeen being visible on each side of the body: they are extremely vascular ; and in
connexion with evory ouc of them there is a long glandular-looking appendage, represented in fig. 165, m.
(565.) According to the views of M. Dugès, the two lateral vessels in the Leech are appropriated to the supply of this respiratory system, and in them the blood moves in a circle quite independent of that formod by the dorsal artery and ventral vein, although they all communicate freely by means of cross branches, those passing from the lateral

Fig. 163. ressels to the dorsal being called by M. Dugès* dorsolatercal, while those which join the lateral trunks to the rentral canal are the lateroabdominal branches of that observer. The movement of the blood in the lateral or respiratory system of vessels is quite distinct from that which is accomplished in the dorsal and ventral or systemic trunks : sometimes it passes down one of these vessels from the head towards the tail, and in an opposite direction on the other side of the body; but in a short time the movement of the currents will be seen to become completely reversed, so that anundulatory motion, rather than a complete circulation, is kept up. By this action

Diagram illustrative of the circulatory apparatus in the Leech (Hirudo medicinalis. (After Dr. Williams.) a, great dorsal ressel ; c, ventral vessel; d, d, intercommunicating vessels between dorsal and ventral trunks; e, e, lateral abdominal trunks ; g, vessels distributed over the ceral appendages to the stomach. of the lateral canals the blood is made perpetually to pass and repass the respiratory sacculi ; and, opposite to each of these, branches are given off which form so many independent vascular circles representing very closely the minor or pulmonary circulation of higher animals.
(566.) On examining attentivcly one of tho "respiratory pouches," according to the same authority, its membranous walls are seen to be covered with very fine vascular ramifications (fig. 164, f), derived from two sources : the latero-abdominal vessel (d) gives off a branch (e), which is distributed upon the respiratory saceulus ; and there is another very flexuous vascular loop (b), derived from the lateral vessel itsolf (a), which terminates by ramifying upon tho vesicle (f) in a similar manner. The walls of the loop (b) are extremely thick and highly irritable;

[^77]but on tearing it across, the internal cavity or canal by which it is perforated is seen to be of comparatively small diameter ; so that we are not surprised that, although such appendages to the respiratory sacs were detected and well delineated by former anatomists*, their nature. was unknown, and they were supposed to be glandular bodies appropriated to some undiscovered use. From the arrangement above described, M. Dugès was led to believe that small circular currents of blood exist, which are independent, to a certain extent, of the general circulation, and that opposite to each membranous bag a portion of the fluid contained in the lateral vessel (α) is given off through the muscular tube (b) (which thus resembles a pulmonary heart) and, after being distributed over the walls of the supposed respiratory vesicle, and in this manner exposed to the influence of oxygen, returns into the gencral circulation.

These views of M. Dugès, however, have been very properly contested; the respiratory pouches are now considered to be merely sacculi formed by an inward folding of the integument, representing

Fig. 164.

Respiratory organs of the Leech, according to M. Duges: a, lateral vessel; b, pulmonary heart ; c, dorso-lateral branch; d, latero-ahdominal vessel; e, afferent pulmonary branch; f, respiratory sacculus. the tracher of Insects, but in their actual form so rudimentary that they serve chicfly as mere reservoirs of mucus (secreted by the looplike glands), with which the skin of the Leech is abundantly lubricated \dagger.
(567.) The nervous system of the Leech (fig. 165, k) consists of a

[^78]long series of minute ganglia joined by connecting filaments : of those, about twenty-four are situated along the ventral surface of the body. The anterior pair, or that immediately bencath the œesophagus, is larger than the rest, forming a minuto heart-shaped mass, which is united, by a delicate nervous collar embracing the gullet, with two small nodules of neurine situated upon the dorsal aspect of the mouth. The two minute ganglia last mentioned form that portion of the nervous system most intimately connected with sensation; for, while the nervous filaments given off from the abdominal ganglia are distributed to the muscular integuments of the body, the nerves which issue from the supraoesophageal pair supply the oral sucker, where the organs of the senses are situated. In all the Homogangliata, indeed, it is exclusively from this cephalic pair of ganglia that the nerves appropriated to the instruments of the senses are derived; and we shall therefore not hesitate in the following pages to apply to this part of the nervous system of the Articulata the name of brain, considering it to be strictly analogous, in function at least, to the cerebral masses of more highly organized beings.
(568.) The splanchnic system in the Leech consists of three small ganglia, situated in front of the brain, with which they are connected by delieate nervous filaments. All three send branches to the parts around the mouth and to the inferior surface of the alimentary apparatus*.
(569.) When, however, we regard the minute size of these as yet rudimentary nervous centres, we caunot expect to find them associated with any very perfect apparatus of sensation. The oral sucker, indeed, secms to possess a more delicate sense of touch than the rest of the body, adapting it to examine the surface to which it is about to be fixed; and probably the Leceh may enjoy, in some measure, pereeptions corresponding with those of taste and smell. These senses have beeu found to exist in many of the animals we have already deseribed; but in the Hirudinidee we have, in addition, distinetly-formed organs of vision, exhibiting, it is true, the utmost simplicity of structure, but nevertheless corresponding, in the perfection of their development, to the condition of the cercbral masses in relation with them.
(570.) The eyes of the Leech are cight or ten in number, and are easily detected, by the assistauce of a lens, under the form of a semicircular row of black points, situated above the mouth, upon the sucking surface of the oral disk-a position evidently calculated to render them efficient agents in detecting the presence of food. The strueture of these simple eyes, acoording to Professor Miiller \dagger, does not as yet present any apparatus of transpareut lenses adapted to collect or concentrate the rays of light; but each ocellus, or visual spece, would scem to be merely an expansion of the terminal extremity of a nerve derived immediately from the brain, spread out bencath a kind of comea formed

[^79]by the dolicate and transparent cuticle : behind this is a layer of black pigmont, to which the dark colour of each ocular point is due.
(571.) Lecches, like tho gonerality of the Aunelida, aro hermaphrodite, overy ono possessing two complete systems of generative organs, one subscrviont to impregnation, the other to the production of the ova; nevertheless theso animals are not self-impregnating, but the congress of two individuals is essential to fecundity.
(572.) Commencing with the male organs, we are not surprised to find the testes divided into numerous distinet masses, or, rather, repeated again and again, in conformity with a law to which we have already alluded. The glands that apparently secrete the seminal fluid are about oightcen in number (fig. 165, e, f), arranged in pairs upon the floor of tho visceral cavity. Along the external edge of cach series there runs a common canal, or vas deferens, which receives the secretion furnished by all the testicular masses placed upon the samo side of the mesial line, and conroys it to a receptacle (d), where it accumulates. The two reservoirs, or vesiculce seminciles (d, d), if we may so call them, communicate with a muscular bulb (c) situated at the root of the penis. The penis itself (a) is frequently found protruded from the body after death; it is a slender tubular filament, which communicates by its origin with the contractile bulb (c), and, when retracted, is lodged in a muscular sheath (b). The male apparatus is thus complete in all its parts: the fecundating secretion derived from the double row of testes is collected by the two vasa deferentia and lodged in tho receptacles (d, d); it is theuce conveyed into the muscular cavity (c) situated at tho root of the male organ of excitement, through which it is ultimately ejected.
(573.) The ovigerous or femalo sexual organs of the Leech are moro simplo in their structure than those that constituto the male system. They open externally

Fig. 165.

Generative urpuratus of the Lecel. by a small orifice situated immediately behind tho aperture from which the penis is protruded, tho two openings being separated by the intervention of aboul five of the ventral rings of the body. The rulva, or external canal, leads into a pear-shaped membranous bag (fig. 165, , 7),
which is usually, but improperly, named the uterus. Appended to the bottom of this organ is a convoluted canal (h), that communicates with two round whitish bodies; these are the ovaria. The germs which are formed in tho ovarian corpuscles, therefore, escape through the tortuous duct (h) into the uterus (g), where they are detaincd for some time, prior to their ultimate expulsion from the body. The exact nature of the uterine sacculus, as it is called, is imperfectly understood: some regard it as a mere receptacle wherein tho seminal fluid of the male is reccived and retained until the ova come into contact with it as they pass out of the body, and thus are subjected to its vivifying influence; other physiologists believe that the germs escape from the ovaria in a very immature condition, and suppose that during their sojourn in this cavity they attain to more complete development before they are ripe for exclusion; while some writers go so far as to assert that leceches are strictly viviparous, inasmuch as living young have been detected in the interior of this viscus : but all these suppositions are easily reconcilable with each other. Thero is no doubt that the seminal liquor is deposited in this reservoir during the copulation of two individuals; neither would any one disputo that the ova are collected in the same cavity before they are expelled from the body. As to the discussion whether the young are born alive or not, or, as it is generally expressed, whether leeches are oviparous or viviparous, it is in this case merely a question of words; for, in a physiological point of view, it cannot make the slightest difference whether the ova are expelled as such, or whether, owing to their being retained by accidental circumstances until they are hatched internally, the young leeches make their appearance in a living state.
(574.) Leeches are oviparous. The ova remain in the uterus for some time, where they become invested with a glutinous fluid which remains attached to them after their expulsion, forming a kind of cocoon, and serving as a protecting covering after they are deposited in the clay and holes of tho sides of ponds. These cocoons are generally deposited from May to the end of September.
(575.) Abranchia terricola.-The species belonging to the second division of those Annelidans which possess no extermal organs of respiration are casily distinguishable from the suctorial worms by the different construction of their instruments of locomotion. They live in general beneath the surface of the ground, either perforating tho soil in all directions, as the Larthworms (Lumbrici), or burying themselves in the mud of the sca-shoro or of freshwater streams, where many of them, called Naicles (Nais, Linn.), live a semiaquatic life. In conformity with such habits, their entire structure is adapted to a subterranean existence, and their bodies are so organized as to enable them to burrow with facility through tho dense and unyielding materials wherein they are usually found. Whocver has attentively watched the operations of au Earthworm when busied in burying itself in the carth, must
have bcon struck by the seeming disproportion between the laborious employment in which it is perpetually engaged, and the means provided for enabling it to overcome difficulties apparently insurmountablo by any animal unless provided with limbs of extraordinary construction and possessed of enormous muscular power. In tho Mole and the burrowing Cricket we at once recognize, in the immense development of the anterior legs, a provision for digging, admirably adapted to their subterranean habits, and calculated to throw asido with facility the earth through which they work their way; but in tho worms before us, deprived as they appear to be of all external members, feeble and sluggish even to a proverb, where are we to look for that mechanism whereby they are enabled to perforate the surface of the ground, and to make for themselves, in the hard and trodden mould, the pathways that they traverse with such astonishing facility and quickness?
(576.) The structure of the outer fleshy integument of the Earthworm resembles in every respect that of the Leech, already described, both in the annular arrangement apparent externally, and the disposition of the muscular strata. The suctorial disks, however, that in the Leech formed such important instruments of progression, are here totally wanting; and the annular segments of the body, as they approach the anterior extremity, become gradually diminished in size, so as to terminate, when the worm is fully stretched out, in a fine point, near the apex of which is the opening of the mouth. But there is another circumstance wherein the external anatomy of the terricolous Annelidans differs materially from what we have seen in the suctorial Abranchia: in the latter, the tegumentary segments were quite naked upon their outer surface; but in the Lumbrici, of which we are now speaking, every ring, when examined attentively, is found to support a series of sharp retractile spines or prickles; these, indeed, are so minute in the Earthworm, that on passing the hand along the body from the head backwards their presence is scarcely to be detected by the touch ; but they are easily felt by rubbing the animal in the opposite direction-a circumstance arising from their hooked form, and from their points being all turned towards the tail. These differences between the exterual structure of the suctorial and setigerous Abranchia, minute and trivial as they might seem to a superficial observer, are, however, all that are required to eonvert an aquatic animal into one adapted to a subterranean residence, as will be evident to any one who observes earefully the mauner in which the Earthworm bores its way through tho soil. The attenuated rings in the neighbourhood of the mouth are first insinuated between the particles of the earth, which, from their conical shapo, they penetrate like a slarp wedge ; in this position they are firmly retained by tho numerous reeurved spines appended to the differont segmonts: tho hinder parts of the body are then drawn forwards by a longitudinal contraction of the whole animal-a movement that not only propares the ereature for
advancing further into the soil, but, by swelling out the anterior segments, forcibly dilates the passage into which the head had been already thrust ; the spines upon the hinder rings then take a firm hold upon the sides of the hole thus formed, preventing any retrograde movement, and the head is again forecd forward through the yielding mould ; so that, by a repetition of the process, the animal is able to advance with the greatest apparent ease through substances which it would at first seem utterly impossible for so helpless a being to penetrate.
(577.) The alimentary canal of the Earthworm is straight and very capacious. Its great size, indeed, is in accordance with the nature of the materials employed as food; for it is generally found distended with earth ; and by the older physiologists these creatures were regarded as affording proof that the nourishment of animals was not exclusively derived from animal and regetable substances, since in this ease they supposed nutriment to be obtained from matter belonging to the mineral kingdom. This supposition, however, has long since been exploded; for it is not from the earth that nourishment is afforded, but from the decaying animal and vegetable particles mixed up with the soil taken into the stomach; so that the exception to the general law of nature supposed to exist in the Earthworm has no foundation in truth. The whole intestinal tract of one of these animals is represented in fig. 166. It consists of a wide cosophagus which terminates in a crop-like dilatation; to this succeeds a muscular gizzard (k) and a long sacculated intestine (l) that passes in a dircet line to the anus, its walls appearing constricted by the attachments of the transverse membranous septa whereby it is fixed at intervals to the muscular walls of the body. Attached to the inner surface of the intestine is a very remarkable structure. This consists of a long and slender tube, called the "typhlosolen," the walls of which are elosed towards the cavity of the intestine ; it is supposed to act as a sort of

Fig. 166.

Viserra of the Earthworm.
strainer, whereby the chyle is separated from the coarse contents of tho wider intestine.
(578.) In the Earthworm, says Dr. Williams, the chylaqueous fluid is almost entirely suppressed, and the visceral cavity obliterated. This vulgar worm, however, does not breathe on the atmospheric, but on the aquatic principle. It dies rapidly in perfectly dry places. Its cutancous surface is the scene of a dense plexus of blood-proper vessels. It is always envoloped in a stratum of viscid fluid, which is remarkable for the property of absorbing and dissolving atmospherie air. This air, brought thus into immediate and intimate contact with the surface of tho body, operates directly upon the blood proper circulating in the eutancous plexus. The alimentary eanal, moreover, is profusely supplicd with a vascular tissuc whose office may be regarded as a species of intestinal respiration.
(579.) The circulation of the blood in the terricolous Annelidans has been the subject of much discussion, and until recently was but very imperfectly understood. In the Earthworm there aro threo principal trunks connected with the vascular system *, the arrangement of which is represented in the annexed diagram (fig. 167). First, a dorsal vessel (a) runs along the whole length of the back, in close contact with the intestinc (fig. 166, 0 0), upon which it lies; this vessel is tortuous, and exhibits constant movements of contraction and dilatation, whereby the blood is propelled in continuous undulations from the tail towards the head. Two other large vessels occupy the ventral region of the body: of these, ono (fig. $167, b$), which we shall call the ventral vessel, runs immediatcly beneath the alimentary tube; while the other (c), that is situated eloso under the skin, and consequently beneath tho ventral chain of ganglia composing the nervous systom, by which it is scparated from the last, may bo distinguished as the subgangtionic vessel. These threc great trunks are united by important branches, and form two distinet systems

Fig. 167.

Circulation in the Earthworn. -ono of which is decply seated, being distributed to internal riscera; the other is superficial, giving off innumerable vessels to the integuments of the body ; and these, by ramifying through the skin, form an extensive vascular surface adapted to respiration.

* Mr. Dugc̀s, Ann. dles Sci. Nat. vol. xr.
(580.) The ventral vessel (b), like the dorsal (a), may be traced quite to the antorior extremity of tho worm, whero numerous small anastomosing branches unito the two trunks; but these inosculations are of little conscquence in describing the circular movement of the blood-a more important communication being established, through which the blood passes frecly from onc to the other, by the intervention of seven or eight pairs of large canals, situated in the immediate neighbourhood of the generative apparatus, with which indeed they are interwoveu. Each of these voluminous vessels (d) is composed of a series of swellings, or rounded bead-like vesicles, endowed with considorable contractile power ; and they form together a kind of heart, of remarkable construction, which propels the blood received from the dorsal trunk into the ventral tubo (b)*.
(581.) Along the rest of the body, the communication between the dorsal and ventral trunks is repeated at each ring by canals which are much smaller than the bead-liko or moniliform vessels and have no vesicular arrangement ; they (fig. 167, g and e) run perpendicularly upwards, embracing the alimentary canal and giving off branches at right angles, which divide into innumerable ramifications so as to cover the whole intestino with a delicate vascular network ; these may be called the deep-seated abdomino-dorsal branches.
(582.) The subganglionic vessel (c) may be looked upon as arising from the termination of the dorsal vessel, with which it is evidently continuous at the anterior extremity of the body. At the posterior edge of every segment a delicate branch is given off from this subganglionic tube (f), which, running upwards in the same manner as those derived from the ventral trunk, joins the dorsal, and receives in its course a large anastomosing branch from the deep abdomino-dorsal canal that corresponds to it. From this system of superficial vessels arises a cutaneous nctwork, which traverses tho skin in all directions.
(583.) Let us now trace the blood in its circulation through this elaborate system. In tho dorsal vessel (a) the sanguineous fluid passes from the tail towards the head; at tho anterior extremity of the body it passes partly into tho subganglionic vessel (c), through the anasto-

[^80]mosing branchos, and partly into the ventral vessel (b), into which it is forcibly driven by the contractions of the moniliform canals. In both the ventral and smbganglionic trunks, thereforo, the course of the blood is necessarily from the head towards the tail; and the circulating fluid is continually returned to the dorsal canal by the deep and superficial abdomino-dorsal vessels (e, f, g), completing the vascular circle.
(584.) On reviewing the above arrangement, we immediately perceive that, notwithstanding the similarity observablo in the distribution of the ventral and subganglionic systems of vesscls, in a physiological point of view they are subservient to very different functions-the former representing the systemic, tho latter the pulmonary circulation. The blood derived from the dorsal trunk by the moniliform hearts (d) is supplied by the ventral vessel (which may be compared to an aorta) to the surface of the viscera; and the remnant of this blood, after furnishing matcrials for nutrition, is returned to the dorsal canal by the deep vessels (e, g); but that portion of the circulating fuid which passes from the termination of the dorsal tube into the subganglionic trunk not only serves for the nourishment of the skin and muscular integument, but at the same time is brought into contact with the air as it passes through the cutaneous network, and is thus more or less replenished with oxygen bcfore it is again returned to the general circulation. The subganglionic canal is therefore a kind of pulmonary artery, and the dorsal drives to the moniliform vessels a mixed fluid, composed partly of venous blood derived from the viscera, and partly of arterial derived from the superficial or subcutaneous system.
(585.) Few points connected with the history of the Earthworms have given rise to so much speculation as the manner of their reproduction. The gencrative organs have long been known to be lodged in the anterior part of the body, their position being indicated externally by a considerable enlargement or swelling that extends from the seventh to about the fourteenth segment, counting from that in which the mouth is situated. On opening this portion of the animal, a variable number of white masses are found, attached to tho sides of the crop and gizzard (fig. 166, h, h, h); these have long, by general consent, been looked upon as forming the reproductive system-somo having been regarded as representing the testes, others the ovaria: yet so dclicate are the connexions which unite these glandular masses, and such the difficulty of tracing tho ducts whereby they communicato with the exterior of the body, that the functions to which they are individually appropriated have given rise to mucl discussion. The Lambrici have been generally acknowledged to be hermaphrodite-that is, possessed of organs adapted both to the formation and fertilization of ova; and it is likewise well understood that the congress of two individuals is essential to the fecundity of both, as, in tho earlier summer months, the mode in which they copulato is a matter of constant observation. At such
times two of these animals are found to come partially out of the ground from contiguous holes, and applying together those segments of their bodies in which the generative glands are situated, are observed to remain for a considerable time in contaet, joined to each other by a quantity of frothy spume which is poured out in tho neighbourhood of the sexual swellings. No organs of intromission, however, have ever been distinguished; nor, until recently, had the canals eommunicating between the sexual orifices and the testicular or ovarian masses been satisfactorily traced; so that Sir Everard Home* was induced to believe that, in the kind of intercourse above alluded to, there was no transmission of impregnating fluid from one animal to the other, but that the excitement produced by mutual contact caused both the ovaria and testes to burst, so that the ova escaping into the cells of tho body became there mingled with the spermatic secretion, and, being thus fertilized, were hatched internally, and the young, having been retained for some time in the cells between the intestine and the skin, wero ultimately ejected through apertures supposed to exist in the vicinity of the tail.

Fig. 168.

Plan of the circulation in an Earthworm. (After Dr. Williams.)
(586.) According to M. Dugès \dagger, the arrangement of the sexual parts is represented in tho diagram fig. 169. The testicles (b) are placed in successive segments of tho body from the seventh backwards; they vary in number in different individuals, from two to scven; but whether this variety depends upon a difference of species, or is only caused by the posterior pairs becoming atrophied when not in use, is undetermincd. Each testis is fixed to the bottom of the ring in which it is placed by a short tubular pedicle that opens externally by a very minute pore, through which a milky fluid can be squeezed. The testicular vesicles of the same sido of the body all communicate by a common canal ; and the contained fluid, which, like the seminal secretion of other animals, contains spermatozoids, can readily be mado to pass from one to another.
(587.) The ovaria (c) aro eight largo white masses, of a granular texture, from which arise two delicate tubes or oviducts; these have no connexion with the testes, but, running backwards, they become dilated into two small vesicles at their termination (d), and opers by two

[^81]apertures or vulvo seen externally upon the sixteenth segment of the body : in these duets, eggs have been dotected as largo as pins' heads.

The following is Dr. Williams's account of this mysterious apparatus*.
(588.) The gencrative system of the Earthworm is situated in the immodiate vicinity of a thickoned ring or band, bounded by abrupt limits, which implicates six or eight of the annuli of the body. This thickening, when closely examincd, is found to depend upon an oxtraordinary development of the cutancous follicles. On the abdominal aspect of this thickenod portion suctorial cups aro formed, by aid of which, during the congress of two individuals, mutual contact is maintained ; but the gonorative segments internally have no relation with this suctorial ring of

Fig. 169.

Arrangement of the sexual organs in an Earthworm. (After Duges.) integument, nor has this latter part any thing to do with the true genitalia. It is, like the thumb of the Frog, a mere provision for the mutual apposition of two individuals. The cnlarged follicles of this cutaneous ring, moreover, discharge another function ; they supply the peculiar glutinous secretion which affords a protecting capsule to the ova as they escape from the body.
(589.) In studying the visceral contents of each ring within the limits of tho generative region, it will be bost to proceed from behind formards. The dissector thus comos first upon the largest and most prominent of all tho generative masses. They are testes, as may be proved by a microscopic examination of their contents. They have a white, glittering, oily colour. In figure they are intestiniform, the coils, of which there are two or three, being tied together by a kind of mesentery and enclosed in a mombranous capsulc.
(590.) The sccond generative annulus in tho order mentionod is exclusivoly ovarian; and it is not difficult to seo that the mass and the base of the ciliated tube run together, and become blended into ono structuro. The most minute disscection fails to isolate the duct which, it may bo supposed, loads from the ovary. Tho ovary is considerably smaller than tho testos, its capsulo is more dense and rascular, and its interior structuro is much more copionsly supplicd with blood.
(591.) In the common Earthworm the second, third, and fourth gencrative sogments are ovarian, oach boing anatomically only a repetition of the other; all are constructed upon the same plan.
(592.) The fifth segment, from behind, is again testicnlar, exactly resembling tho first, so that the first and the last segments in this region are testicular, the three intermediato ones being ovarian.
(593.) Tho ovaria of Lumbricus are mueh more transiont in their duration than the testes; the latter, in a certain condition, are always present at every season of the year, the former only in the summer months. The ora, while yet in the ovaria, are bcautifully clear transparent cells. In August and September they seem to consist of nothing but germinal vesicles; afterwards appear the germinal spots, and then the rudimentary vitcllus. At a subsequent stage, just before their extrusion from the body, they become covered with a cocoon or characteristic eapsule, each capsule containing many ova. This capsule is a compound of chalk and mucus. In the median line between the ovaria there are situated two or more glandular bodies, the contents of whiob, undor the microseope, are found to consist of nothing but earbonate of limedoubtless the source of the chalk.
(594.) The eggs, when laid, are said by Dugès to be two or three lines in length. In fig. $170, \Delta$, one of them enclosing a mature $\mathrm{cm}-$ bryo, is delineated; its top is seen to be closed by a peeuliar valve-like structure adapted to facilitate tho escape of the worm, and opening (fig. 170, в) to permit its egress. Another remarkable circumstance observable in these eggs is that they very gencrally contain double yelks, and consequently two germs, so that a couple of young ones are produced from each.
(595.) It is believed by many that the Earthworm may be multiplied by mechanical section, the separated portions reproducing such parts as are removed in the experiment, and again becoming perfect. Carcful experiments, mado to ascertain how far tho statements of former authors upon this subject might be substantiated, prove that the assertion is not entirely without foundation, although by no means to the extent indieated in their writings. It would, indeed, bo easily credited that the removal of the hinder part of the body of an Earthworm would not neeessarily destroy the anterior portion, since no organs absolutely essential to existence are removed by the operation, and even the course of the circulating fluids would not be materially interrupted by the mutilation; but that the hinder moiety should be able to reproduce the mouth, gizzard, and stomach, the complicated apparatus of moniliform vessels, and the sexual organs, contained in the anterior segmonts, could seareely bo deemed possible ; and tho assertion has been satisfactorily disproved by actual obscrvation. On cutting an Earthworm in two, tho anterior portion is found gencrally to survive; and the wound eaused by the operation, becoming gradually constricted, is soon converterl into an anal orifice, rendoring the animal again complete in all parts necessary for its existonce. This, however, is by no means the ease with the posterior portion ; for, althongh it will exhibit for a very
long period indications of vitality, no signs of reproduction have been witnessed, and it invariably perishes.
(596.) Nevertheless, although it is thus proved that the Earthworm cannot be multiplied by mechanical division, it is stated to be able to reproduce small portions of its body, the removal of which does not implicate organs essential to life. In the experiments of M. Dugès, for example, it was found that four, or cren eight of the antcrior rings might be cut off with impunity, although the cephalic pair of ganglia, the mouth, and a part of the œesophagus were necessarily taken away. In worms thus mutilated, after the lapse of from ten to thirty days a conical vascular protuberance was observed to sprout from the bottom of the wound; and in eight or ten days later this new part had become so far developed, that not only all the lost rings were apparent, but even the upper lip and mouth had assumed their normal form, and the animal again began to eat and bury itself in the earth.

Fig. 170.

Eggs of the Earthworm.

Lggs of the Larthworm.
(597.) The little lively Naides, although in their terricolous habits like the Earthworm, are very dissimilar in organization.
(598.) In Nais filiformis, so abundant in the freshwater pools of this country, the anatomist is presented with a favourablo opportunity of resolving the problem of the circulation. A living specimen placed between two slips of glass, from the perfect transparency of the integuments, will exhibit to the eye in a perfect manner all the circulating movements both of the vessels and of the blood. The large dorsal vessel (fig. 171, a) is first seen travelling wavingly along the dorsum of the intestine as far as the heart, which corresponds in situation with the intestinal end of the œesophagus. This vessel is cnveloped by the glandular peritoneal layer of the intestine, while the coats of the rentral vessel are clear and transparent: the dorsal vessel is endowed with parietes of greater strength and density than the ventral. Each of these vessels dilatcs into a fusiform heart (fig. 171, a^{\prime}, b^{\prime}), situated on cither side of tho œesophagus. These hearts, which are joincd together by transverso vessels, pulsate alternately and with exact regularity. In the dorsal vessel the blood moves forwards from the tail as far as the dorsal heart ; thence it desecuds into the ventral heart, by which it is now propelled, chicfly in a backward direction, partly through the main
rentral trunk, aud partly through the inferior intestinal. The other portion of the blood convejed by the great dorsal vessel into the ventral heart (b^{\prime}) passes forwards as far as the head. At the œesophageal end of the body, the two primary trunks, dorsal and ventral, are connected together by means of a remarkable class of vessels (g, g, g), which in this region proceed at successive points from the dorsal oœsophageal, and which may be traced in long coils, without division of the vessel, floating in the fluid of the peritoneal cavity. Posteriorly to the heart-centre these ressels emanate from the dorsal intestinal, and correspond precisely with those branches from the same vessel which in Arenicola piscatorum proceed to supply the branchial arbuscules (§626). In Nais, therefore, partly from this analogy, but chiefly from their anatomical relations, bathed by and floating in the chylaqueous contents of the peritoneal cavity, the physiologist can expericnce no difficulty in assigning very definite uses to these coiled vessels. First, it cannot be doubted that they absorb from this fluid the elements by which the blood proper is formed and replenished ; and, secondly, it is in the strongest degree probable that the true blood is in great part aërated through the agency of these vesscls. They constitute the special branchial system (internal branchir), while they discharge incidentally an absorbent function.
(599.) The generative system of the Nais, as delineated by Dugès, presents a very different arrangement from that which exists in the Earthivorm. The swollen part of the body, in which the sexual organs are placed, occupies a space of five or six rings, beginning at the eleventh. On each side of the eleventh segment is a minute transverse slit (fig. 172, b) communicating with a slightly-flcxuous canal which terminates in a transparent pyriform pouch or vesicle. The latter contains a clear fluid wherein minute vermiform bodics are seen to float, and most probably represents the testis. The twelfth segment likewise exhibits two openings, each placed upon the centre of a little nipple (c) : thesc are the orifices leading to the female portion of the sexual system. The

Fig. 171.

Plan of the circulation in Nais. (After Dr. Williams.) cral smaller masses of ovaria (d, e) are composed of four large and several smailcr masses of
a granular character ; and from them proceed long and tortuous a granular character; and from them proceed long and tortuous
oviducts, which, just before their termination at the lateral openings (c), become thick and glandular. These animals most likely eopulate
like the Earthworm, and lay their eggs in a similar manner. We have already secn, in the Lumbricus terrestris, ova containing two yelks, and consequently giving birth to two animals; but in the Nais every egg produces ten or a dozen young ones*; or perhaps we ought rather to say that what appears to be a simple egg is in fact merely a capsule enclosing several distinct ova, from which a numerous progeny ariscs. The manner in which these compound eggs are formed is easily understood when we consider the structure of the oviduct described above. The granular germs escape, no doubt, separately from the ovaria, and remain distinct from each other as they pass along the tortuous canal that leads to the exterual opening; but at length, arriving at the thick and glandular portion (c) of the ovigcrous tubc, several of them bccome enclosed in a common investment secreted by the walls of the oviduct, and are expelled from the body with the outward appearance of a simple egg.
(600.) Dorstbranemiata.-In the second order of the Annelidans the respiratory apparatus consists of numerous vascular tufts, a pair of which are appended to the outer surface of every ring of the body, or, in some cases, only to a few of them. The

Fig. 172.

Generative organs of Nais. (After Dugès.) organs of locomotion, which are attached to each segment, assume various forms, but are generally eomposed of short moveable spines, or packets of retractile bristles, usually destined to perform the office of oars. In the annexed figure (fig. 173, 1), which represents Laodicea antennata, the general form of these animals is well seen, as is the most usual arrangement of the branchial tufts and locomotive setr. In fig. 173, 2, showing an imaginary transverse section of one of the segments, the relative positions of the oars (c, d, e) and of the branchial appendages (b) are likewise indicated.
(601.) But the organs of respiration in the Dorsibranchiate Annelidans are not always arborescent; on the contrary, they are not unfrequently spread out into thin membranous lamellæ, or resemble fleshy crests or vascular tubercles. Still, whatever their form, their office is the same ; and, the vesscls spread over them presenting an extensive surface * Dugès, Ann. des Sci. Nnt. vol. xp.
with which the water is brought into contact, the blood is oxygenated as it passes through them. (602.) The second class of organs to be enumerated as entcring into the composition of the lateral appendages arc soft, fleshy, and subarticulated processes called cirri (fig. $173,2, c, e)$; these are generally two in number, and belong one to the ventral and the other to the dorsal oar: their precise office is not well understood; but as in some of the segments, especially in theneighbourhood of the head, they assume a tentacular form, they have, with much probability, been regarded as instruments of touch.
(603.) The setce (fig. 173, 2, d) are, perhaps, the most efficient agents in progression. These are long and stiff hairs disposed in bundles and implanted into strong muscular sheaths. Each packet of setæ can be retracted within the body to a certain extent, and again protruded by the action of the tubular supports from which they arise; and being capable of independent action, these organs must be looked upon as so many powerful fins, well calculated to propel the creature through the element it inhabits.
(604.) The structure of the mouth in the Dorsibranchiate Annelidans is very peculiar. The first portion of the alimentary canal (or stomach, as it is crroncously called by some writers) is muscular ;

Fig. 173.

Laodicer anternmata.
and certainly, when scen in a dead Annelid, it might easily be taken for a digostive eavity. Nevertheless, during life, this part of the alimentary apparatus is destined to a widely different office; for it is so eonstructed that, at the will of the animal, it can be completcly everted, turned inside out; and when thus protruded externally, it forms a very singular proboscis, used in seizing food, and frequently armed with powerful teeth of singular construetion. The following figure (174, A), representing the head of one of these worms (Goniada à chevrons, Milne-Edwards), will give a good idea of this curious organ when fully displayed; and in fig. 174, в, the mechanism is exhibited by which its protrusion and retraetion are accomplished. The whole apparatus is there seen to consist of two museular cylinders, placed one within the other, but eontinuous at their

Fig. 174.

Mouth of Goniada clavigera. upper margin (B) ; or, to use a familiar illustration, the proboscis may be comparod to the finger of a glove partially inverted. It is obvious that, in this ease, if the inner cylinder be drawn inwards (that is, into the mouth), the whole strueture becomes shortened, until at last it is entirely retraeted into the oral eavity; whereas, on the contrary, if the outer tube is made to protrude, it expands at the expense of the inner one, which is gradually drawn forwards. The internal surfaee of this remarkable proboscis, moreover, is variously modified in its structure, so as to adapt it to the prehension of different kinds of prey. In Amphinome, for instance, the orifice of the mouth is a thiek, fleshy, and callous eirclo (fig. 179, b, $c, d)$; and the surface of the exserted

Fig. 175.

Mouth of Phyllodoce laminosa. proboseis (c, c) is covered with delieate transverse rugg, evidently so
arranged as to give tenacity to its gripc. In Goniada it supports two distinet sets of horny teeth, provided for very diffcrent uses : one set, which is exposed when the proboscis is unrolled to a very small extent, eonsists of a series of linear horny plates (fig. $174, ~ \Lambda, d$), and probably forms a kind of file, or rather a scraper, wherewith the animal excavates the subterranean galleries in whieh it lives. The other set does not make its appearance till the proboscis is more eompletely expanded, and is evidently an instrument of prehension, formed by two horny hooks (fig. $174, \mathrm{~B}, a, b$) placed upon an elevated ridge near the entranee of the œsophagus, so as to take a secure hold of any vietim seized by this curious mouth.
(605.) In Phyllodoce laminosa the teeth form a eirele of semicartilaginous beads encompassing the extremity of the proboseis when that organ is pushed out to its full length (fig. $175, b$), 一an arrangement well adapted to hold and, perhaps, to crush their prey.
(606.) But the most formidable jaws

Fig. 176.

Mouth of Nereis. are met with in some of the Nereidiform species, as in Laodicea antennata, of which a figure is given above (fig. 173). When the proboseis of one of these ereatures is slightly everted, the extremities of three pairs of strong horny plates emerge from the mouth: of these, one pair tcrminates by forming a powerful hooked forceps, while the

Fig. 177.

Juws of Laodicea antematu.
other's present strong dentieulated margins (fig. $177, a, a, b, c)$. Tho nature of these toeth will be better secn by a glance at B in the same
figure, where they are represented, upon an enlarged scale, as they appear when detached from their connexions.
(607.) In Nereis (fig. 176) the proboscidian armature emulates in strength and sharpness the jaws of the ant-liou, or of some of the more formidably armed coleoptera, to which indeed it bears a striking resemblance both in position and structure ; while in Phyllodoce maxillosa (fig. 178) the fangs of the tiger would seem to be conjoined with the cutting teeth of the shark, presenting such a model of carnivorous dentition as is perhaps unrivalled in the animal creation.
(608.) The alimentary canal of the Dorsibranchiate Annelidans offers little which requires special notice. It invariably passes in a direct line from the termination of the proboscis to the anal extremity of the body. In the Nereidce it is provided with numerous lateral pouches, somewhat resembling those of the Leech. In Aphrodite these lateral cæca are very long, slender, and branched at their extremities, so that they have been thought by some to be secreting organs, representing the liver. In Avenicola we find, at the termination

Fig. 178.
 of the øesophagus (fig. 186, f), two large cæcal appendages (e), of unknown office, while the rest of the tube (c) is entirely covered with minute sacculi, the walls of which are decidedly glandular and secrete a fluid of a greenish-yellow colour.
(609.) "In the majority of the Annelids," observes Dr. Williams, "the alimentary system constitutes a cylindrical tube, which bears a general resemblance of outline to the integumentary-this latter forming, with respect to the former, an exterior concentric or embracing cylinder. These two cylinders are in no instance in agglutinated contact: a space intervenes, varying in capacity in different species, to designate which the term 'peritoneal,' or splanchnic, may be used with perfect propriety. This space is occupied by a vital or organized fluid charged with corpuscles, which exhibit, under the microscope, characters distinctive of species. Independently of its physiological uses, this chylaqueous fluid enacts mechanical functions indispensable to the well-being of the animal : on it, as upon a pivot, the vermicular motions of the intestinal cylinder are performed."
(610.) Although, as a whole, forming a cylinder, in no instance does the alimentary canal of the Annelida present the figure of a smoothwalled tube. The parietes are invariably sacculated, and often superficially multiplied in the most elaborate manner. In tho Lumbriciform species, each scgment of the body has its own independent stomach. Those of contiguous segments communicate through an opening con-
siderably more contracted in diameter than that portion of the intestine from which it leads. Thus the intestiue of the Errant Annelids, especially, may be compared to a line of pears, the apex of each successive pear being applied to the base of its predecessor in the series: if these bases were prolonged on each side, the form of stomach met with in the Leech would be the result.
(611.) By watching small transparent Annelidans under the microscope, the whole digestive process may be readily witnessed. Alimentary substances are frequently conveyed into their mouth by the action of vibratile cilia situated in the vicinity of the oral orifice. When a sufficient quantity has thus accumulated, it rapidly passes into the intestine, always accompanied by, relatively speaking, a considerable quantity of water. In this act of deglutition the cilia lining the œsophagus play an important part. Having arrived in the intestine, the aliment passes from pouch to pouch of its different compartments, remaining for a short time in each of them, forming little masses that are kept in constant movement by the cilia lining the intestinal walls, and which gradually become quite disintegrated. Arrived in the antepenultimate segment, the alimentary particles are detained there for some time, always being kept in movement by ciliary action until their final expulsion. Notraces are visible either of chyliferous or lymphatic vessels; these two systems are evidently represented by the general perivisceral cavity, which is the recipient of whatever products of digestion are not taken up by the veins ramifying upon the intestine. The nutrition of the animal, indeed, frequently devolves entirely upon the chylaqueous fluid; and it always performs a very considerable part in the development of the generative products, whether ova or spermatozoa.
(612.) The course of the principal trunks of the circulating system in the Dorsibranchiata bears a general resemblance to what we have already seen in the Abranchiate order, modified, of course, by the variable position of the branchial tufts. The annexed figure (179) of an elaborate dissection of an Amphinome (A. capillata), copied from one of the beautiful drawings contained in the Hunterian Collection*, affords an example of a circulating system in which the propulsion of the blood is effected entirely by vessels, without the intervention of any muscular cavities or heart. In this animal the respiratory organs are penniform appendages placed along tho back; and these external vascular tufts communicate with delicate plexuses of vessels, situated in the interior of tho body, called the branchial plexuses. In the figure the branchial plexuses of the left side only are represented (q, q, q); and of thesc, one, marked q^{\prime}, has been turned aside. The blood and nutritious fluids derived from the wholo alimentary track are col-

[^82]lected by the large ventral intestinal $\operatorname{vein}(n n n)$ and eonveyed to the branehial plexuses through the numerous vessels $(0,0,0)$, some of which (0^{\prime}, o^{\prime}, o^{\prime}) aro displaeed in the drawing in order that their eonnexions may be better seen. Besides the blood and nutriment thus derived from the intestine, the branchial plexuses receive the cireulating flnid from all the segments of the museular envelope by separate veins (p, p) ; and thus the blood from all parts is brought to the respiratory apparatus and exposed to the influenee of oxygen.
(613.) After undergoing respiration, the blood is eolleeted from the branehial plexuses by the lateral veius (r, r, r),from whieh, through eommunieating vessels (s, s, s), it passes into the aorta or great dorsal vessel (ℓ, ℓ) to be distributed through the body. From the norta large trunks (2, ") are
given off to form the intestinal artery ($w w$), which, ramifying over the intestine, communieates with the intestinal vein ($n n$) and thus completes the rascular circle*.
(614.) In Ernice sanguinea the circulatory apparatus consists of a short but eapacious dorsal vessel (fig. 180, l^{\prime}), which rests upon the pharyngeal portion of the digestive tube, without, however, being adherent thereunto, and communicates posteriorly with a vascular circle that surrounds the stomach and receives the blood from the intestinal parietes through two longitudinal trunks (fig. $180, l$) situated upon the dorsal aspect of the alimentary tube.
(615.) In its course towards the head, the single dorsal vessel (l^{\prime}), which is a continuation of the intestinal veins (l), receives several branehes, some derived from the digestive canal, others proceeding from the muscles and integuments of the neighbouring part of the back. These last-named branches communicate with a slender cutancous mc-dio-dorsal vessel that runs along the entire length of the body and receives from each segment numerous cutaneous ramusculi (x). Lastly, the dorsal vessel gives off from its anterior extremity various branches to the cephalic segments, as well as others which are directed outwards.
(616.) The ventral vessel (fig. $180, q^{\prime}$) gives origin, opposite each segment, to a pair of lateral branches ; but the conformation of these branches, as well as the functions to which they are destined, are very different. Immediately after its

Fig. 180.

Circulatory and respiratory apparatus of Eunice sanguinea: a, b, c, the antennæ; e, the first segment of the body; f, lateral appendages, or rudimentary feet; g, pharynx ; g^{\prime}, mandibular muscles; i, intestine; l^{\prime}, vessel performing the functions of an aortic or systemic heart ; l, superior intestinal vessels; s, their lateral branches (or branchial veins) ; q^{\prime}, ventral vessel; t, its latcral branches; t^{\prime}, contraetile ampullw, performing the functions of branchial hearts; u, branchire; x, subcutaneous vessels of the back. (Aftcr Milne-Edwards.) origin, cach lateral branch becomes considerably dilated and bends back

[^83]suddenly upon itself, so as to resemble, when superficially examined, an ovoid vesicle, or ampulla ; it then runs outwards, furnishing an ascending branch to the alimentary canal, and on arriving at the base of the feet, or locomotive appendages, gives off several small anastomosing branches, forming a sort of vascular network, whence vessels are supplied to the corresponding branchial filaments.
(617.) The blood, after being subjected to the influence of oxygen in the branchial appendages, is returned by other transverse vessels which run along the interannular septa to the alimentary canal, where they ultimately discharge themselves into the large median trunks (l) situated upon the dorsal aspect of the intestine*.
(618.) A general survey of the circulation in Ennice will suffice to satisfy the physiologist that no part of the system contains pure arterial, and no part pure venous blood. Into the double dorsal trunk arterial blood is poured from the branchiæ ; but to the same trunk the intestinal branches contribute venous blood: the mingling of these two classes of currents in the same trunk must result in blood of an intermediate quality. It is, then, manifest that the great subneural trunk, which in this worm is both systemic and branchial, must distribute blood of composition intermediate between venous and arterial. No part of the eirculatory apparatus, therefore, contains pure arterial blood, except the efferent branches of the branchiæ.
(619.) In some of these Annelidans we still find that gemmation performs a very important part in the reproductive process. The multiplication of the individual segments of the body depends entirely upon this mode of increase ; but this is not all: it not unfrequently happens that when these animals have attained their full growth, a constriction becomes apparent near the posterior extremity, immediately behind which a proboscis and eyes are developed, forming the head of a new animal subsequently to become separated by spontaneous fission (figs. 181 \& 182) ; and even as many as six of these strangely formed offsets have been counted by Milne-Edwards in continuity with

[^84]each other*. The process of division as it occurs in Cirrhatula is represented in fig. 181 : tho hinder part of the worm, ineluding about serenteen segments, is seen to be gradually separated from the anterior or larger portion ; and moreover, at the point of separation, a new head, with eyes and tentaeular eirri, is distinctly formed. "In one case," says Müller, "I found a mother to which three foetuses of differont ages adhered in one length. The mother had thirty pedate segments: the youngest daughter, or that nearest the mother, had eleven ; but the head was not yet developed. The most remote had seventcen rings, with both head and eyes, and, moreover, the tail of the mother ; the middle one had seventeen segments and a head."
(620.) Similar phenomena present themselves during the development of other Annelidans. In the Nais, for example, as represented in the subjoined figure (fig. 182), four individuals have been observed organically connected with each other, the posterior three of whieh (b, c, d) have evidently been derived from the hinder part of the original worm (a). The posterior of these is fully formed,

Fig. 181.

Gemmiparous reproduction of Cirrhatula. and even the proboseis and eyes are as perfect as those of the parent animal ; but the two intermediate offsprouts (c and $c l$) are as yet in a

Fig. 182.

very incomplete eondition, that nearest the parent being ovidently the youngest and last formed.
(621.) This mode of reproduction has long been known under tho name of fissiparous generation, or simply fissiparity. In most cases the fission

[^85]takes place without any apparent preparation, and caeli portion reproduees the parts abstracted by a process resembling the budding of a plant. During a succession of several generations, the individuals produced in this manner may be ealled neuters, inasmuch as they have no sexual apparatus; but in the last-formed offsprout sexuality again shows itself, and the speeies is onee more propagated by eggs. Thus, in the case represented in fig. 181, the original animal buds forth a new animal from between the last and the penultimate segments of its body; it is, however, only the animal last formed that is provided with sexual organs; that from which it originated remains asexual,-as though the egg of a butterfly gave birth to a single caterpillar whieh, by spontaneous division, produced other caterpillars as unfertile as itself, until the individual last budded forth, instead of being a barren larva, beeame dereloped into a sexual and fruitful butterfly.
(622.) In the Lug-worm, Arenicola piscatorum, (fig. 183), met with abundantly upon our own coasts, and eargerly sought after as a bait by fishermen, who dig it from the holes that it exearates in the sand, the branchiæ (b) are confined to the central portion of the body, where they form on eaeh side a series of bunches, remarkable during the life of the creature for their beautiful red eolour, derived from the crimson blood that eirculates copiously through them.
(623.) Respiration is performed in Arenicola by means of tufts of blood-vessels, projecting, in the adult worm (fig. 183, b), one-fourth of an inch from the surfaee of the body. When fully injeeted with blood, the vessels of eaeh branehia form a single flattened plane, whieh rises obliquely immediately behind each brush of setæ. In the adult animal each gill is eomposed of from twelve to sixteen zigzag branches arising from a single trunk that proceeds from the great dorsal ressel, the sceodary branehes projeeting from the salient point or the outside of each angle of

Arenicola piscalorum.
the zigzags, and the tertiary from similar points on the secondary branches. This modo of division, occurring in the primary and in all the smaller branches, results in a plexus of ressels of great beauty of pattern or design. Each branchial tuft and each individual vessel possesses an independent power of contraction : in the contracted state the tuft almost disappears, so completely is the emptying of the vessels effected. This contraction or systole in any given tuft occurs at frequent but irregular intervals: it does not take place simultaneously in all the branchiæ, but at different periods in different tufts. The vessels have the appearance of being quite naked; and if examined in the living state, each ramuscule seems to consist of only a single trunklet: if this were really the case, it would of course resolve itsclf into a tube ending in a cul-de-sac, and the blood-movement would be a flux and reflux; but by injection it is easy to show that the finest division of the branchial arbuscule contains a double vessel enveloped in a common muscular (although extremely diaphanous) sheath. That these vascular sheaths, which are only fine productions of the integuments, are furnished with voluntary muscular fibres, is proved by the rapid and simultaneous retraction of all the branchir into the interior of the body which follows when the animal is touched. In Arenicola, as in all Annelida in which the ressels of these organs are naked, the branchiæ are destitute of vibratile cilia.
(624.) In all the dorsibranchiate worms furnished with branchix such as those described above, the true blood, circulating in its proper vessels, is found to be exclusively the seat and subject of the respiratory process; the fluid in the peritoncal cavity, abundant in quantity and highly organized though it be, does not in the least dcgree participate in this great function. The Dorsibranchiate Annelids, however, maybe divided into two great groups, of which one will comprehend those genera in which the function of breathing devolves exclusively on the true blood, while tho other will be

Fig. 184.
 characterized by the fact that the branchix are constructed so as to permit more or less completcly the exposure, in conjunction with tho blood propor, of the chylaqueous fluid of the visceral cavity to the influence of the surrounding aërating element. Thus, when the branchial apparatus is penetrated by these two
soparate and distinct fluids (coordinate probably in organie properties), the vascular systom of the body gencrally will be found the less developed, in proportion as the peritoneal fluid supplants the blood in the branchix. In those races of Dorsibranchiate worms possessing both these kinds of circulation, naked unciliated blood-vessels no longer form exclusively the branchial organs; loose and large-celled tissue (fig. 184, a a) is supcradded to the proper blood-vessels, which are far less in relative size than those in the former variety of branchix; into the cells of this tissue the fluid of the visceral cavity insinuates itself, its course being marked by a slow motion. There exists, however, another point of structural difference between the branchial organs of this group and those of the former, viz, that wherever the fluid of the peritoneal cavity is admitted into the interior of the branchial organs, the latter are invariably supplied more or less profusely with vibratile cilia.
(625.) In the branchial structure of worms thus constituted, the branchial appendages are found, instead of being composed of naked vessels, to present the appearance of round or laminated organs, into which the fluid of the visceral cavity freely penetrates.
(626.) The blood-system is more concentrated in Arenicola than in any known Annelid. A large dorsal trunk (fig. 185, a; fig. 186, i), at the anterior three-fourths of the body receiving exclusively the efferent vessels of the branchiæ, proceeds forwards from the tail and empties itself into the cardiae cavities, of which one is situated on either side of the œsophagus (fig. 185, b b' ; fig. 186, b b). Another vessel, proceeding from the

Fig. 185.

Plan of the circulation in Arenicola. (After Dr. Williams.) head towards the heart, empties itself into the same cavity with the former. The blood then enters a second cavity (fig. 185, $c^{\prime} c^{\prime}$), more ventrally situated, by which it is partly propelled forwards into the subœesophageal trunk, but principally backwards into the great longitudinal trunks of the alimentary canal. The blood returning from the intestinal system of ressels reaches
the dorsal intestinal (g) (lying in the median line underneath the dorsal trunk), from which the current diverges laterally at right angles into the branchiæ (f, f^{\prime}). This conformation differs from that prevalent in all other Dorsibranchiate Annelidans, in which the great ventral trunk is the source of the branchial arteries. But the typical plan of the cireulation is observed in the system of Arenicola at the posterior half of the branchial division of the body, where the afferent vessels of the branchiæ emanate from the ventral trunk.
(627.) Rathke and Grube have argued that Arenicola is androgynous. De Quatrefages, however, from his knowledge of the development of the spermatic particles, has long recognized the existence of separate sexes*; and, long before this, Stannius had concluded that the sexes were separate, from the fact that in different individuals the contents of the general cavity of the body were different \dagger. Stannius also observes that the sperm-cells leave the testes before the formation of the spermatozoa, which are found only in the perivisceral fluid. Krohn, Frey, and Leuckart assert that the ova and spermatozoa are developed free in the general cavity of the body.
(628.) According to the researches of M. Quatrefages, in Nereis and Eunice the ova and the spermatozoids are produced in a glandular organ which extends beneath the ventral chain of ganglia. In Nereis M. Quatrefages has seen in this organ ova in process of development while the general cavity of the body of the same animal contained ova ripe for exclusion.
(629.) In Terebella and Arenicola the reproductive organs areglandular pouches

Fig. 186.

Circulation in Arenicola. disposed in pairs in the anterior part of the worm. In Terebella these pairs are as numerous as the thoracic segments; but in Arenicola their

[^86]number only amounts to six ; in both these worms ova and spermatozoa existod in thoir earliest stage of development.
(630.) In Clymene the reproductive apparatus is thought by M. Quatrefages to be represented by pouches of a blaekish eolour, which he found to the number of six pairs placed between the seventh and twelfth segments of the body.
(631.) In Dujardinia the generative organs consist or two pairs of elongated pouehes situated on the sides of the intestine and opening into the rectum by a common orifice. A similar disposition is deseribed and figured by Claparede; but in the species observed there were but two pouches, communicating with the reetum by as many distinct orifices. Lastly, there are some Annelidans in whieh no distinct gencrative organs are diseoverable. In a speeimen of Grubea M. Quatrefages was uuable to find them, although it contained eggs, whieh he studied in detail.
(632.) In Hermella M. Quatrefages believes the ovary to be represented by a very delieate areolar tissue in which ova are found in a very young state ; indeed, when observed in this situation, they are mere homogeueous spherules. Dr. Williams repeatedly affirms that, exeept in Terebella and Arenicola, the cggs are never free in the general carity of the body, but that they are always imprisoned in the areolar network above deseribed. M. Quatrefages, however, assures us that in Hermella, Nereis, and Eunice the eggs on approaehing maturity beeome disengaged from its meshes ; in the speeimens examined by him immense numbers, either of eggs or of spermatozoids, always escaped with the perivisceral fluid as soon as it was let out.
(633.) The next question is how the ova thus matured are diseharged from the parent worm. The observations of M. Quatrefages assure us that in Hermella the ova and the zoosperms are expolled through very small pores arranged in pairs on the posterior part of eaeh ring between the bases of the branehiæ and the median line of the back. They are often expelled with so much foree as to form very distinet traeks, the direetion of which is from behind forwards, and which by blending together sometimes cnvelope the head of the worm in a whitish or violct-eoloured cloud, according as the animal is male or female. In a vigorous male specimen, M. Quatrefages saw this kind of cjaculation kept up for about half an hour, at the end of whieh time its body had beeome quite flaccid and the brilliancy of its colours mueh diminished. In Aphrodite hispicla the seminal fluid was seen to issue in the form of a white filament from the base of the inferior oar, on one side of the nineteenth segment; and a similar mode of escape probably oeeurs in the Sigalions, the Nercids, and the Eunices.
(634.) Tho young of the Dorsibrauehiate Aunelidans undergo a remarkable metanorphosis previously to assuming their adult appearanec. On leaving the egg they resemble disk-shaped Infusoria, whieh swim rapidly through the water by means of rows of vibratile cilia, the prin-
cipal row being situated upon a projecting ring encircling the margin of the disk. This ciliated body soon reveals itself as possessing a mouth and an excretory orifice; and the courso of the alimentary canal, which extends from ono to tho other of theso apertures, may be traced by making tho little animal swallow indigo introduced into the water wherein it swims. A conical prominenco soon makes its appearanco, arising from one side of the disk, which soon becomes divided into segments. Coincident with this elongation and segmentation of the body, the head becomes developed from the discoid surface, upon which minute black ocelli and the rudiments of antonniform organs mako their appearance. The length of the body and the number of segments continue to increase, the disk with its vibrating cilia still existing, until at length the disk is reduced to a mere appendage to each sido of the head, and ultimately disappears as the tubular and setigerous fect begin to show themselves.
(635.) The Armrodrtacese, or Sea-mice, are remarkable for the long hairy tufts with which their pedal appendages are gencrally furnished (fig. 187). Nothing can excecd the splendour of the colours that ornament some of these fasciculi of hairs ; they yield, indeed, in no respect to the most gorgeous tints of tropical birds, or to the brilliant decorations of insects: green, yellow, and orangeblue, purple, and scarlet-all the hues of Iris play upon them with the changing light, and shinc with a metallic effulgence only comparable to that which adorns the breast of the humming-bird. But it is not for their dazzling beauty morely that these setæ are remarkable; they are not unfrequently important weapons of defence, and exhibit a complexity of structure far beyond any thing to be met. with in the hair of higher animals. In the Aphrodite aculeata, for example (fig. 187, 1), they are perfect harpoons, the point of each being provided with a double scrics of strong barbs

Fig. 187.

Aphrodite aculeata. (fig. 187, s) ; so that when the creature crects its bristles-much more formidable than those of the Porerpine- the most determined enemy would searcely venture to attack it.
(636.) But here we cannot hclp observing an additional provision, rendered necessary by the construetion of these lance-like spines. The bundles of sctæ are all retraetile, and ean be drawn into the body by the museular tube from which they spring. It would be superfluous to point out to the reader the danger whieh would aecrue to the animal itself by the presenee of such instruments imbedded in its own flesh, as by every movement of the body they would be inextrieably forced into the surrounding tissues. The contrivance to obviate such an aecident is as beautiful as it is simple. Every barbed spine is furnished with a smonth horny sheath (fig. 187, c, a, b), composed of two blades, between which it is lodged ; and these, elosing upon the barbs when they are drawn inwards, effectually protect the neighbouring soft parts from laeeration.
(637.) In the Aphrodite we have an additional appendage developed from the upper part of each lateral oar, in the shape of a broad membranous scale, which, arching inwards over the back (fig. 188, c), forms with its fellows a series of imbricated plates, or elytra, as they are techninically named (fig. 187, a). Each of the elytral scales is formed by a double membrane, between the laminæ of which at eertain seasons the eggs are found deposited,-a situation evi-

Fig. 188.

Segment of Aphrodite. dently adapted to ensure the exposure of the ova to the influence of the surrounding elcment, and thus to provide for the respiration of the embryo.
(638.) The Aphroditaceæ constitute a group of Annelids to which the term "dorsibranchiate" by no means correctly applies, inasmuch as in the majority of species embraced in this order no branchial appendages exist, either on the dorsum or any other part of the body. Respiration is performed on a novel principle, of which no illustration occurs in any other family of worms. In all the Aphroditacer the bloodsystem is in abeyance, while that of the chylaqueous fluid is exaggerated. Although less eharged with organie elements than that of other orders, the fluid of the peritoneal earity in this family appears to be the exelusive medium through which oxygen is absorbed. In Aphrodite aculeata (fig. 187, a) the tale of the real uses of the elytra or scales is plainly told. Supplied with a complex apparatus of museles, they exhibit periodical movements of elevation and depression. Orerspread by a coating of felt, readily permeable to the water, the space beneath the seales during their elevation becomes filled with a large volume of filtered water, which during the descent of the scales is forcibly emitted at the posterior end of the hody. It is important to
remark that the current thus established laves only the exterior of the dorsal region of the body. It nowhere enters the intornal eavities; the latter are everywhere shut out by a membranous partition from that spacious exterior enclosure bounded above by the felt and olytra. The complex and labyrinthic appendages of the appendiculated stomach lie floating in this fluid and in the chambers which divide the roots of the feet. From this relation of contact between the peritoneal fluid aud the digestive cæc, which are always filled by a dark-green chyle, it is impossible to resist the conclusion that the contained fluid is really a reservoir wherein the oxygen of the external respiratory current becomes accumulated. From the peritoneal fluid the aërating element extends in the direction of the cæca, and imparts to their contents a higher degreo of organization. These contents, thus prepared by a sojourn in the cæca of the stomach, become the direct pabulum for replenishing the true blood, which is distributed in vessels over the parietes of these chylous repositorics by an arrangement strikingly analogous to what wo have already seen in the Asteridæ amongst Echinoderms.
(639.) In order to arrive at a correct knowledge of the reproductive system of this Annelid, specimens of both sexcs should be examined in the spring, and again in the autımn. A good example of a female Aphrodite being obtained, the dissection should be thus proceeded with: -Pin the animal down to the trough with its back upwards. Open it by a longitudinal incision extending from the tail to the head. The incision should cut through the scales, felt, and integuments, in order to lay open the spacious perigastric chamber. The integuments should now be carefully stretched, and pinned down to the sides, so as to expose the interior. Let the dissection be then gently floated in salt water, and the parts will present the appearance here described. A network of minute tubes or threads will be seen to twine round and embrace the diverticula of the alimentary canal.
(640.) The entire alimentary system must next be taken away, and with it necessarily a considerable portion of the reproductive network. A view will thus be obtained of the attached ends or roots of the branched segmental organs. Theso roots will be found to equal the alimentary cæea in number, and therefore that of the feet which are situated posteriorly to the proboscidiform osophagus. They appear under the character of pyriform tubuli, commencing or ending in a single external orifice. Internally they are lined with ciliated epithelium, tho cilia being large, dense, and acting with great forco and vigour. The current raised by these cilia sets up on ono side and down on the other. The ciliated epithelium coases at the point whero the primary branches divide. All the rest of the organ is unciliated, and filled with the reproductive products. This portion is elaborately branched, the branches twining round the diverticula of the stomach. No microscopic object
can bo more beautiful than a portion of this tubular network. The individual tubes are bridled on one side and glandular on the othor.

A similar strueture is exhibited by the male tubes *.
(641.) Tubicola.-The two preceding orders of Annelidans are crratic; but in the third we find creatures inlabiting a fixed and permanent residence that encloses and defends them. This is generally an clongated tube, varying in texture in different species. Sometimes it is formed by agglutinating foreign substances, such as grains of sand, small shells, or fragments of various materials, by means of a secretion that exudes from the surface of the body and hardens into a tough membranous substance; such is the case of Terebella Medusa (fig. 190). In other cases, as in the Serpula contortuplicata (fig. 189), the tube is homogeneous in its texture, formed of calcareous matter resembling the shells of certain bivalve mollusca, and apparently secreted in a similar manner. These tubes are generally found incrusting the surface of stones or other bodies that have been immersed for

Fig. 189.

Serpula contortuplicata. any length of time at the bottom of the sea: they are closed at one end; and from the opposite extremity the head of the worm is occasionally protruded in search of nourishment. It must be evident that, in animals thus encased, the character of the respiratory apparatus must be considerably modified \dagger; instead, therefore, of the numerous branchiz appended to

* Dr. Williams, Phil. Trans. 1858, p. 134.
+ M. do Quatrcfages gives tho following résume of tho various modifientions met with in the respiratory apparatus of the Annclidans:-
"1. Respiration general and ontirely cutaneous (Lumbriconereis).
" 2. Respiration eutancous, but confined to ecrtain segments (Chetopterus).
"3. Respiration cutancous, but confined to certain points of eneh segment (Nercis).
"4. Respiratory organs taking the form of a simple crecum or bladder (Glycera).
" 5 . The branchix characterized nore and more by the formation of a eanal in connexion with larger or smaller lacunec.
" (6. These bronchise may be disiributed all nlong the borly (Eunice sanguinca).
the segments of the body which we have found in the Dorsibranchiate order, tho respiratory tufts aro all attached to the anterior extremity of the creature, where they form most clegant arborescent appendages, gencrally tinted with brilliant colours, and exhibiting, when expanded, a spectaclo of great beauty. In somo species, as in that represented in fig. 189 , there is a remarkable provision made for closing the entrance of the tube when the animal retires within its cavity. On each side of the mouth is a fleshy filament resembling a tentacle; but one of these (sometimes the right and sometimes the left) is found to be considorably prolonged, and expanded into a funnel-shaped operculum that accurately fits the orifice of tho shell, and thus forms a kind of door, well adapted to prevent intrusion or annoyance from external enemies.
(642.) The curious habitation of the Terebella Medusa is constructed by cementing together minute sholls and other small bodies (fig. 190). In neither case is there any muscular connexion between the worm and its abode; so that the creaturo can be readily drawn out from its rosidence in order to examinc the external appondages belonging to tho individual segments of its body. When thus displayed (fig. 191), the modifications conspicuous in tho structure of the lateral oars are at once seen to be in relation with their circumscribed movements, and offer a wide contrast to the largely developed spines, setæ, and tentacular cirri met with in the Dorsibranchiata. In the upper part of the body, rudimentary protractilc bunches of hairs are still disccrnible, but so fecbly developed that their use must ovidently be restricted to the porformance of those motions by which the protrusion of the head is effected; while upon the posterior segments even these arc obliterated, tho only organs attached to the rings being minute foot-liko processes adapted to the same office.

[^87]The tentacular cirri, which were likewise distributed along the entire length of the Dorsibranchiate order, are here transferred to the head, where they form long and delicate instruments of touch, and, most probably, assist matcrially in distinguishing and seizing prey. The branchix, likewise, are no longer met with upon the segments enolosed within the tegumentary tube, but are placed only in the immediate vicinity of the neek, where they form fanlike expansions, or ramificd tufts, so arranged as to be most frecly exposed to the surrounding medium. The mouth, placed at the origin of the tentacular cirri, is a simple orifice closed with a valve-like flap or upper lip, but is unprovided with any dental structure. The alimentary canal is gencrally a simple and somewhat capacious tube that traverses the axis of the body ; in some species, as in Sabella pavonina, it seems to assume a spiral course, in consequence of the obliquity of the constrictions: the anal orifice is always terminal.
(643.) The branchial organs, in the genus Terebella*, appear under the form of blood-red tufts, proceeding from three separate root-vessols on cither side of the occiput. These divide for the most part dichototomously, forming an arborescent bunch of florid blood-vessels; cach ramusculus is enclosed in a delicate cuticular envelope perfectly destitute of cilia, and, moreover, is double-that is, composed of an afficent and an efferent vessel. Although extremely transparent and attenuated, the euticular structure embracing these branchial blood-vessels must include some contractile fibres, since each separate ramusculus may be emptied and rendered bloodless by the compression of the parietes, a provision which frequently exists in many parts of the circulating system of the Annelida.
(644.) The cephalic tentacles of the Terebellæ present a problem interesting alike to the physiologist and the mechanician. From their extreme length and vast number, they expose an extensive aggregate surface to the action of the surrounding medium. They consist, in Terebella nebulosa, of hollow, flattened, tubular filaments, furnished with strong muscular parietes. Each of these hollow band-like tentacula may be rolled longitudinally into a cylindrical form, so as to enclose a hollow semicircular space if the two edges of the band meet, or a semicylindrical space if they only imperfectly meet. This inimitable mechanism enables each filament to take up and firmly grasp, at any point of its length, a molecule of sand, or, if placed in a lincar scrics, a row of molecules. But so perfect is the disposition of the muscular fibres at the extreme end of each filament, that it is gifted with the twofold power of acting on the succing and on the muscular principle. When the tentacle is about to seize an object, the extremity is drawn in, in consequence of the sudden reflux of fluid in the hollow interior: by this movement a cup-shapod cavity is formed, in which the object is sccurely

[^88]Fig. 190.

Fig. 191.

Terebella Meduata.
hold by atmospheric pressure : this power, however, is immediately aided by the contraction of tho circular muscular fibres. Such are the marvellous instruments by which these peaceful worms construct their habitations, and probably sweep their vicinity for food.
(645.) Tho inferior aspect of each of these tentacles is profusely clothed with cilia; and this side is thinner than the dorsal. The peritonal fluid, which is so richly corpusculated and which freely enters the hollow axes of all these tentacles, is thus brought into contact with the surrounding water.
(646.) In addition to the two important uses already assigned to the tentacles in the Terobcllæ, they constitute also tho real agents of locomotion. They are first outstretched by the forcible ejection into them of the peritoneal fluid, a process which is accomplished by tho undulatory contraction of the body from behind forwards ; they are then fixed like so many slender cables to a distant surface ; and then, shortening in their lengths, they haul forwards the otherwise helpless worm.
(647.) In the Terebellæ, in consequence of tho concentration of the tentacles and branchia around the head, the blood-system at this extremity of tho body discovers a great increase of development. The peritonal fluid in this genus is very voluminous and densely corpusculated; the system of tho blood

Vascular system of Terebella. proper is, notwithstanding, elaborate and full-formed. The chamber of the peritoneum is one undivided spaco,-tho segmental partitions of the Earthworm and the Leech being here replaced by limited bands proceeding from the intestine to the integument, tying together those two cylinders -so, however, as to permit ono to move within the other with remarkable freedom.
(648.) The great dorsal vessel in Terebella nebulose is limited to the anterior of the body (fig. 193, a). It emanates chiefly from a large circular vessel (b) embracing the esophagus, and which receives all the blood from tho intestinal system. In this species, therefore, the primary and intestinal dorsal trunks over the whole intestinal region are united, or the former vessel is superseded by the latter.
(649.) On the dorsal view of tho oesophagus, a large, pulsatile, fussform vessel (a) is displayed on the first laying open of the integument in
a longitudinal direction. Slightly attached to the structure on which it rests, it appears as if suspended in tho fluid of the peritoneal cavity. Adrancing to the occipital ring, it breaks out into six branches (d), of which three procecd to the branchir of each side, while tho reduced continuation of the original trunk furnishes minute ramuscules to the tentacles, in the hollow axes of each of which an affcrent and efferent vessel is containcd, surrounded by the peritoncal fluid, which penetrates to the remotest ends of these exquisitc organs. Both from tho tentacles and branchir tho blood now returns into the great ventral trunk (c), which to the posterior extremity of the body is distinct from, and independent of, the intestinal system (f). From this trunk branches are dctached on either side of the median line for the supply of tho feet and integument.
(650.) At the point corresponding with the circular vessel (fig. 193, b), the primary ventral sends off a considcrable division for the supply of the intcstinal system. The current, thereforc, entering the glandular parictes of the intestine is purely arterial in this genus; for it is unmixedly composed of blood returning from the tentacles and branchix, by both of which the function of respiration is performed. Herc, again, thero exist but two principal directions in which the blood circulates, viz. longitudinally and transversely, or circularly, the formor currents being connected with the latter. Tho circular vessel (fig. 193, b) acts like an auriclo; it reccives the blood from the

Fig. 193.

Plan of the circulation in Terebella. (After Dr. Williams.) intestinal system and delivers it into the great dorsal (a). The alimentary canal is embraced in this genus, as in all Annelids, by a framework of longitudinal and transverse vessels (f), in which the blood moves backwards below, and forwards above.
(651.) After having passed through the branchial organs, the renovated blood is received by vessels which unite to form a median trunk (fig. 194, o) that runs beneath tho alimentary tube and immediately above the ventral chain of nervous ganglia. This ventral trunk is continued along the whole length of the body, and gives off oppositc to each ring a pair of transverse vessels, which, after having supplicd branches to the integument and locomotive organs, bend upwards, to be distributed over tho walls of the intestine, whero thoir ramifications contribute to form the vascular network above alluded to.
(652.) The rentral vessel and its ramifications fulfil, therefore, the
functions of an arterial system ; and consequently the branchiæ themselves must be regarded as the agents employed in propelling the blood through the systemic circulation. These organs, indeed, may be observed, at intervals, to contract with considerable energy, and thus materially to assist in urging the blood through the artcrial ramifications.
(653.) M. de Quatrefages observes* that both in the Erratic and Tubicolous Annelidans the sexes are scparate, and states that the generative apparatus, both in the males and females, is restricted to the abdominal portion of the body. According to this distinguished anatomist, the testicle consists of a kind of areolar web of extreme delicacy, which, arising from a median aponeurosis, adheres to the internal and inforior surface of the general cavity, rising as high as the middle of the digestive canal. The tenuity of this tissue is such that it is impossible to procure more than small fragments for microscopic examination.
(654.) The ovary is in every respect similar to the testicle: perhaps its texture may be rather firmer, but not sufficiently so to be adapted for satisfactory histological distinction.
(655.) In the males as well as in the females, but more especially in the latter, during the period of

Fig. 194.

Arrangement of the rascular system in Terebella. (After Milne-Edwards.) reproduction a pigment is secreted in great abundance, which lines the generative organs; but in proportion as the ova or zoosperms become developed, the amount of this pigment diminishes. Both the ovary and testicle are evidently temporary organs, no traces of them being distinguishable in the generality of specimens; and moreorer, in proportion as their products become developed in the general visceral eavity, they become gradually atrophied. When the male secretion is at maturity, a jet of water washes away the spermatozoids, and no trace of the testicle is left; on the contrary, when the sperm is imma-

[^89]ture, washing still leaves behind a delicate web almost resembling a light cloud.
(656.) In these Annelidans, according to M. de Quatrefages *, the eggs, as well as the spermatozoids, which exist in a very rudimentary eondition in the ovary or the testicle, break loose into the abdominal carity, where, insulated from all the solid parts, and without any connexion with the vascular system, they undergo all the principal phases of their development. "It appears," says M. de Quatrefages, "that the liquid which thus bathes them on all sides must be vitalized, and that it is from it that they receive the materials necessary to enable them to grow to ten times their original size ; in fact, this fluid acts the part of an ovary and of a testis to them. The liquid enclosed in the general cavity of the body of the Annelidans is therefore in some respects a fluid organ."
(657.) The spermatogenous masses floating in the fluid contained in the general cavity are irregularly ovoid, and present thenselves in different stages of devclopment. At first they are perfectly diaphanous, smooth, and manifestly homogeneous, without any trace of an enveloping membrane. The dimensions attained by them in this condition reach to as much as $\frac{1}{16}$ of a millimetre in length, and $\frac{1}{2.3}$ of a millimetre in breadth.
(658.) At this epoch they may be seen to exhibit two grooves, crossing each other at a right angle, and whose direction does not appear to present any constant relation to the form of the mass itself. The number of grooves soon increases, and they become more marked and deeper; and the mass, after having presented a surface subdivided into large irregular lobes, assumes a mulberry-like aspect, and ultimately becomes completcly granular. During the time that these phenomena are being manifested, the mass continues to increase in volume, and in its ultimate condition it is sometimes $\frac{1}{12}$ of a millimetre long by nearly $\frac{1}{16}$ of a millimetre broad.
(659.) The masses, when a little further advanced, split up, and the tail of the spermatozoids is then apparent. The spermatozoids continue to adhere together for some time longer by their bodies, as well as to the granulations not yet transformed: ultimately they are gradually separated.
(660.) At the moment when the spermatozoids separate themselves from the minute masses of which they constitute a part, their body is almost fusiform, and perhaps not more than $\frac{1}{100}$ of a millim. long and $\frac{1}{300}$ of a millim. thick; but they grow during the time they remain in the fluid that bathes them : the body and the tail clongate; and, besides this, the former increases considerably in its transverse diameter. Among spermatozoids quite mature, some will have attained to a length of $\frac{1}{60}$ of a millim., and a breadth of $\frac{1}{1 \frac{1}{50}}$ of a millim.

The following observations of M. Sars \uparrow, relative to the embryogenesis of these worms, are extremely interesting and important:-

[^90](661.) In Polynoe cirrata the months of Fobruary and March are the period of propagation, when the body assumes a pale rose-colour, arising from a numberless quantity of eggs, which fill the abdominal cavity, with the exception of about the first anterior fourth, and appear everywhere through the skin. When the animal is opened, the cggs appear to hang together in masses by means of a connecting tenaeious mucus. In other individuals the eggs occur on the top of the back of the mother, beneath the dorsal scales, in immense numbers, surrounded by a tenacious mucus. The heaps of eggs cover the whole hinder half of the back, but more anteriorly only the sides above the bases of the feet. It would seem that the eggs pass out through a very small aperture just above the feet, as Rathke found in the case of Nereis pulsatoria. Here, protected beneath the dorsal plates, the eggs remain until the young escape. In the meantime the yelk undergoes the usual process of mulberry fission, until it becomes finely granular. The ova become slightly oval ; and the fæetus (into which the entire yell is converted, without any part whatever separating) is smooth, greyish white, and more or less narrowly cnclosed in chorion. A peculiar kind of motion was now observable on placing the separated ova under the microscope, the ova turning round and round: this was cffected by a very short fringe, which is seen now and then to move slowly and curve in a worm-like form, drawing the egg with it backwards and forwards. The foetus itself, which gradually acquires a white greyish-green colour, is still without motion in most of the ova: only, in a few a circle of extremely minute projecting and vibrating cilia was perceptible, which surrounds horizontally the centre of the body of the foetus, at an equal distance from the two poles of the ovum. At last the foetus arrives at maturity; and tho mother now carries on her back many thousands of young ones, which gradually come forth from the mucus surrounding the eggs, leave their mother, and swim freely about in the water, visible to the naked eye as very minute greenish-grey points ($\frac{1}{20}$ of a millimetre in size) endowed with lively motion. They are extremely unlike their parent both in form and structure, being short, oval, cylindrical, and devoid of segmentation, furnished with a circle of long cilia around the centre of the body, but otherwise without external organs. The portion of the body situated anterior to the ciliary eircle is somewhat narrower than the hinder one, and bears two eyes : this is the head; and the young one always swims with this extremity in front. Frequently these young animals revolve, during swimming, around their longitudinal axis. Their sight is distinctly developed; for they avoid each other with adroitness, and always swim towards the light. The time from the laying of the eggs to the extrusion of the young may probably amount to a couple of wceks.
(662.) Many interesting particulars relative to the development of the Annclida and the metamorphoses which some of them un-
dergo have been ascertained by Milnc-Edwards*. In the Terebellce (fig. 195), tho young, on leaving the egg, present no traces of the aumulose typo of structuro (fig. 195, 1) : in a short time, however, the body of the joung Terebella becomes distinguishable, divided into four rudimentary segments, the postorior of which is provided with a ciliary apparatus (fig. 195, 2). Shortly after this, a fifth ring (fig. 195, 3, d) begins to make its appearanco in tho space situated between the pemultimate and terminal; and rudiments of a mouth and alimentary canal becomo distinguishablo. New segments are progressively added to its length, theso all successively making their appearance in the space between the last-formed ring and the anal or terminal joint of the body; so that the relative position of the newly devcloped segments is precisely in accordance with their respectivo ages, except in the caso of the last scgment, which is persistently terminal. Meantime simplo subulate setæ, supported upon minute fleshy tubercles, begin to show themselves.
(663.) The digestivo apparatus is now distinctly perceptible : anteriorly it presents a kind of fleshy bulb (fig. 195, 4, p); then a short cylindrical œesophagus, followed by a capacious ovoid stomach (r), the contents of which appear to be still saturated with the coloured substance of the vitellus, and an intestine (s), which commences at about the posterior third of the body. The glandular structures near the anterior part of the animal now become apparent, and the subentancous muscles clearly distinguishable ; still it is remarkable that, even in the most transparent portions of the creature, no traces of a vascular system can be detected.
(66t.) In the course of three or four days more, the cilia have completely disappeared from the surface of the body, which now presents all the characters of one of the crratic Annelids, but in no respect resembles the tubicolous genera to which the creature really belongs. The young larva, in short, is furnished with a distinct head, an antonnary organ, cyes, and feet armed with subulate sctre ; while the adult Tcrebellx are acephalous, being destitutc both of antenne and eyes, and having fect provided with hook-like appendages.
(665.) After tho larva has been furnished with ono or two additional pairs of feet, tho head begins to bo changed in its shape (fig. 195, 5), a transverse constriction makes its appearance at a little distance in front of the eyes, and its anterior lobe, which thus becomes distinetly defined, is seen to be studded near its freo margin with a series of stinging vesicles, some of which aro armed with little spino-like filaments. The postcephalic ciliated collar becomes at the same time much narrower, and forms a prominent ridgo underneath the head, that constitutes a kind of upper lip. In the course of two or three days more, the anterior ecphalic lobe $(195,5, a)$ becomes perfectly distinet from the oculiferous

[^91]segment, and is much clongated, taking a cylindrical form, and constituting a very flexible median appendage, having all the characters of an antenniform organ. Its axis is ocempied by a canal that communicates with the general cavity of the body; and a fluid may be seen to eircu-

Fig. 195.

late in its interior. The natatory eilia have almost entirely disappeared; and the young Terebella in this condition exhibits all the eharacters of an Annelid belonging to the erratie group-not, as yet, at all resembling any of the tubicolous genera, of which it is a member.
(666.) Having become deprived of the locomotive cilia with which they were previously furnished, the larvæ now cease swimming and begin to enelose themselves in a kind of mueous substanee, which gradually solidifics, so as to form a eylindrical tube open at both extremities. The first period of their existeneo, during which they lead an crratic life, then eloses, and they begin to assume the habits of their parents. The ventral oars, with their armature of terminal hooklets, are suecessively developed in a regular series from before backwards, as additional segments are added to the length

Fig. 196.

Plan of the nervous system in the Dorsibranchinte Annelidnns. (After Quatrefages.)
of the body. The tentacular appendages next begin to be developed from the sides of the head. But it is not before the body has acquired thirty-eight or forty pairs of feet that the branchial apparatus makes its appearance, under the form of two simple tubercles developed from the lateral regions of the neek; these, however, rapidly enlarge, and soon assume the functions which, in the adult animal, they are destined to perform.
(667.) The structure of the nervous system in the Annclida conforms, in its arrangement, to the general type common to the articulated elasses. A considerable supraœsophageal mass (fig. 196, a a) represents the encephalon, in front of which are situated minute ganglia (b, c, d, e), whence nerves are derived to supply the principal instruments of sensation connected with the cephalic portion of the animal. The circumœesophageal ring ($n n$) is strongly marked, communicating on each side with the ventral series of ganglia ($0, p$) that extends throughout the entire length of the body, giving off nerves to supply the different segments. Communicating with the posterior aspect of the encephalic ganglia are scveral small ganglionic masses (i, k, l, m), which are joined together by delicate filaments, and apparently represent the sympathetic system, inasmuch as from them are derived filaments supplying the alimentary canal

Fig. 197.

Structure of the eyc in Torrea vitrea, and of the supposed auditory apparatus in Arenicola (after Quatrefages). 1. $a a$, integument passing in front of the eye, and forming a transparent cornea; b, c, granular cellular tissue enclosing the globe of the eye; d, extcrnal surface of retienlar pigmental membrane; f, internal surface of the same, scen through the pupillary aperture; e, the iris; g, the crystalline lens: g^{\prime}, optic nerve; h, sheath of ditto, derived from the dura mater; i, k, vascular trunks forming a cirele around the base of the eyeball. 2. Anditory apparatus of an Arenicola: a, acoustic nerve; b, c, cellular tissues investing the auditory capsule ; d, otolithic masses. 3. Auditory npparatus of Amphicoryne: a, cellular tissuc; b, auditory
eapsule; c, otolith. and the principalviscera.
(668.) In Torrea vitrea (an Annelid the transparency of which is such that, when plunged into sea-water, its presence is only distinguishable from the bright-red colour of its eyes and a double lino of violet-coloured spots that extend along its back) M. de Quatrefages* was enabled to examine the structure of the organs of vision in a very

[^92]satisfactory manner. The eyes in this species are only two in number; and, indeed, thoy constitute by far the larger part of the creature's head, forming two very considerable prominenees that are almost conjoined in the mesial line of tho body. Tho integument, which is here extremely thin and perfectly diaphanous, passes over tho ocular globe, and evidently in this case performs the funetions of a transparent cornea (fig. 197, l, a). A thick fibrous stratum, representing the sclerotie (d), eneloses the eyo, and beeomes continuous with the sheath, likewise fibrous (h), of the optie nerve $\left(g^{\prime}\right)$. The eolourless sclerotic presents upon one sido a large irregularly rounded aperturo that is partly closed by a sort of ehoroid of a brownish eolour (b), in the centre of which is an almost eireular pupil surrounded by a border of a deep blue eolour. Through the pupillary opening it may be perceived that the interior of the eye is lined by the ehoroid, and that the whole interior of the ocular eapsule is filled up with a vitreous humour so absolutely transparent that the erystalline lens situated in its centre seems to be in connexion with nothing. On the outside of the eye the optic nerve can be plainly seen arriving at the eyeball and expanding to form the retina. The eyes of other Annelidans, however, when present, are by no means so easily examined; but, from the researches of Müller*, Wagner \dagger, Rathke \ddagger, and Siebold§, they may be briefly stated to consist of a round transparont medium or lens enclosed in a layer of pigment, and provided posteriorly with a retinal expansion.
(669.) An apparatus to which the functions of an organ of hearing have been attributed by several eminent anatomists is met with in some Annelidans. Grube and Stannius|| first announced a very remarkable strueture in Arenicola, the existence of which has been confirmed by subsequent observers, that certainly rescmbles very closely in its conformation an organ common among the Mollusca, to which a similar function has been generally eonceded: this consists of a transparent membranous capsule (fig. 197, $2 \& 3, a, b, c$) enclosing a fluid, wherein one, or sometimes several minuto bodies, having every appearance of otoliths, are suspended. M. de Quatrefages describes these auditory capsules as being situated in the first or second segment of the body, one on each side of the opening of the esophagus, and observes that a nerve of eonsiderable sizo is distinctly traccablo in them.
(700.) Many of the smaller marine Anuelids are luminous; their luminosity, however, is not a steady glow like that of the glowworm or firefly, but a series of vivid scintillations (strougly resembling those produced by an electrical discharge through a tube spotted with tin-foil) that pass along a considerablo number of segments, lasting for an instant

[^93]only, but capable of being repeatedly excited by any irritation applied to the body of the animal. These scintillations may be observed even in separated segments if they be subjected to the irritation of a ncedlepoint or of gentle pressure; and it has been ascertained by M. de Quatrefages that they are given out by the muscular fibres in the act of contraction*。

CHAPTER XI.

MYRIOPOD ${ }^{*}$ *.

(701.) Tre Annclidans examincd in the preceding chapter, with the singular exception of the Earthworm, arc only adapted to an aquatic life : the soft integument which forms their external skeleton, and the setiform and tentacular organs appended to the numerous scgments of their elongated bodics are far too feeble to support them in a less dense and buoyant element; so that when removed from their native waters they are utterly helpless and impotent. Supposing, however, that, as a mere matter of speculation, it was inquired by what means auimals of similar form could be rendered capable of assuming a terrestrial existence, so as to seek and obtain prey upon the surface of the carth, and thus represent upon land the Annelidans of the ocean, a little reflection would at once indicate the grosser changes required for the attainment of such an object. To convert the water-breathing organs of the aquatic worms into an apparatus adapted to aërial respiration would be the first requisite. The sccond would be to give greater density and firmness to the tegumentary skclcton, to allow of more powerful and accu-ratcly-applied muscular force by diminishing the number of segments composing the annulose covering, and also, by converting the lateral oars into jointed levers of support sufficiently strong to sustain the weight of the whole body, to provide instruments of locomotion fitted for progression upon the ground. Yet all these changes would be inefficient without corresponding modifications in the eharacter of the nervous system : the lengthened chain of small ganglia found in the aquatic worms would be quite inadequate to wield museles of strength adapted to such altered eircumstances ; the small oneèphalie brain would be incompotent to correspond with more exalted sonses; so that, as a necessary consequence of suporior organization, the nervous centres must be all increased in their proportionate development to adapt them to higher functions.

[^94](702.) The changes which our supposition infers would be requisite for the conversion of an aquatic Annelidan into a land animal are precisely those which we encounter when we turn our altention from the creatures deseribed in the last ehapter to the Myriopoda, upon the eonsideration of which we are now entering : they form the transition from the red-blooded worms to the class of Insects, and are intermediate between the two in every point of their structure.
(703.) The body of a Myriopod consists of a consecutive scrics of segments of equal dimensions, but, unlike those of the generality of the Annelida, composed of a dense semicalcareous or clse of a firm coriaceous substanee ; and to every segment is appended one or two pairs of articulated legs, gencrally terminated by simple points.
(704.) The anterior scgment or head, besides the organs belonging to the mouth, eontains the instruments of sensation, eonsisting of simple or eompound cyes, and of two long and articulated organs called antennce, gencrally regarded as appropriated to the sense of touch, but which probably are conneeted with other perceptions less intelligible to us.
(705.) The air required for respiration is taken into the body through a series of minute pores or spiracles placed on eaeh side along the entire length of the animal, and is distributed by innumerable ramifying tubes or tracheæ to all parts of the system.
(706.) The number of segments, and consequently of feet, increases progressively with age,-a cireum-

Fig. 198.

Julus tervestris. A, in the act of progression; B, the same rolled up in a spiral form; C, segments of the body, magniffed, showing the mode of attachment of the fet (i, p) on each side of the mesial line (r) of the abdomen. stance which remarkably distinguishes the Myriopoda from the entire class of Insects, properly so called.
(707.) The Myriopoda may be divided into two families, originally indieated by Linnæus: the Julida, or millepedes, and the Scolopendridce, or centipedes, cach of which will requirc our notice.
(708.) Julide.-The lowest division, which derives its name from the Julus, or common millepede, is most ncarly allied to the Annclidans, both in external form and also in the general arrangement of its different organs ; this, therefore, we shall first examine, and selcet the Julus terrestris, one of the species most frequently met with, as an example of the rest. These animals (fig. 198, ^) are generally found concealed under stones, or beneath the bark of decayed timber, where they find subsistence by derouring decomposing animal and regetable
substances. The body is long and cylindrical, composed of between forty and fifty hard and brittle rings, which, with the exception of those forming the head and tail, differ but slightly from each other. Every segment supports two pairs of minute feet, arising close to the mesial line upon the under or ventral surface ; but these feet, although distinctly articulated (fig. 198, c, p), are as yet extremely small in comparison with the bulk of the animal, and are evidently but mere rudiments of the jointed legs developed in more highly organized forms of homogangliate beings; consequently the movements of the Julus are rery slow, and the creature seems rather to glide along the ground, supported on its numerous but almost invisible legs, than to walk. When at rest, the body is rolled up in a sqiral form (fig. 198, в), the feet being concealed in the concavity of the spire, and thus protected from injury.
(709.) The mouth rescmbles in structure that of the larvæ of some insects, and is furnished with a pair of stout horny jaws, moving horizontally, and provided at their cutting edges with sharp denti-

Fig. 199.
 culations, so as to render them effective instruments in dividing the fibres of rotten wood, or the roots and leaves of vegetable substances, usually employed as food; and the alimentary canal, which is straight and very capacious, is generally found filled with materials of this description.
(710.) In most points of their internal organization, the Myriopoda rescmble insects; and we should only anticipate the observations that will be more conveniently made hercafter did we enter into any minute description of their anatomy : we shall therefore, in this place, simply confine ourselves to the notice of those peculiarities observable in the animals under consideration whereby they are distinguished from insects and entitled to rank as a distinet class. We have seen that, in such of the Annelida as have been most carefully investigated, the orifices of the scxual organs are situated near the anterior part of the body, not, as is invariably the case among insects, at the caudal extremity : in this particular the Juliclee still present analogies with the red-blooded worms ; for in them the external openings of the male parts are situated immediately behind the base of the seventh pair of legs, and are found to be placed upon minute mammillary protuberances, which are each furnished with a sort of hooked scale, adapted to hold the female during the process of impregnation.
(711.) In the female also the sexual orifices are advanced very far forward, being situated in the vicinity of the head, between the first and second segments ; the sexes, however, as in insects, are perfectly distinct, and the conformation of the internal organs coincides with that type of structure which is common to the insect orders.
(712.) The male generative organs of Julus are two elongated and partially convoluted tubes, placed side by side beneath the alimentary canal. The excretory ducts, or terminations of these tubes, run towards the anterior part of the body, where they terminate in two minute intromittent organs, situated at the under surface of the seventh segment, immediately behind the seventh pair of legs. As they pass backwards, the secerning tubes, or testes, gradually separate from each other, and have developed from their sides, at short distances from each other, numerous small glandular cæca, which doubtless constitute the secreting portions of the apparatus, or proper testes. The two efferent ducts, whereby the secretion of these cæca is conveyed out of the body, intercommunicate freely by means of short transverse canals, and, from the sacculated appearance that they present towards their termination, appear likewise to perform the office of reservoirs for the seminal fluid.
(713.) In the female Jutus, the organs of reproduction are as simple in their structure as those of the male. They consist of a single clongated bag or oviduct, covered on its exterior surface with a very great number of ovisacs or cæca of various sizes, each of which secretes but a single ovum. This oviduct extends backwards beneath the alimentary canal from the vaginal outlet, which is double and situated in the fourth segment of the body, behind the second pair of legs. In the pregnant female the oviduct appears smooth externally, being distended with the ova that have passed into it from the ovisacs where they were formed, and which are retained in readiness to be deposited immediately after intercourse with the male.
(714.) The ova, when fully developed, are found to present all the structures belonging to a perfectly formed egg,-the yelk, the germinal vesicle with its macula, the membrana vitelli, the allumen, and likewise the shell, lined by the membrana externa, or chorion, being all distinctly recognizable.
(715.) Another important distinction between these animals and insects properly so called, is met with in the mode of their growth and development. Insects (as we shall more fully explain hereafter) undergo a more or less complete change in their outward form as they adrance through several preparatory stages to their mature state: during the progress of these changes, that constitute what is usually called the metamorphosis of insects, they are invariably unable to perpetuate their species; and it is only in their last or perfect condition, which is ordinarily of very short duration, that the sexual organs attain their perfect development and are fit for reproduction. In this state all true
insects have six legs, which is one of the most important characters of tho class. The Myriopoda likewise undergo several changes of form as they advance to maturity; but these ehanges principally consist in the repeated aequisition of additional legs ; so that in their perfect condition, instead of the limited number of six legs met with in inseets, these organs have become extremely numerous. The progress of these transitions fiom their immature to their fully developed state has been well observed by De Geer* and Savi†; and the result of their observations is here given, in order that tho reader may compare the different steps of the process with what we shall afterwards meet with in tho more highly organized Articulata.
(716.) The eggs (fig. 200, s), which are very minute, are deposited in the earth or vegetable mould, in which the Julus is usually met with. When first hatehed, the young Myriopod is of course exceedingly diminutive ; at that period it resembles a microscopic kidney bean, and is completely destitute of legs or other external organs. After a fow days the embryo Julus changes its skin, and, throwing off its first investment, appears divided into distinct segments, and furnished with a head, a pair of simple eyes, a pair of antennæ, and six jointed legs attached to the anterior rings of the body (fig. 200, b, c). Some days subsequent to its first moult, tho skin is again cast, and the millepede, acquiring larger dimensions, is seen to possess seven pairs of ambulatory extremities, which, however, are still plaecd only upon the anterior segments (fig. 200, D). When twenty-cight days old, they again throw off their outward covering, and assume, for the first time,

Fig. 200.

Growth of young Julus terrestris. (After De Geer.) their adult form: they then consist of twenty-two rings, and have twenty-six pairs of feet; but, of these, only the eightcen anterior pairs are used in progression. At the fourth moult the number of legs is inereased to thirty-six pairs; and at the fifth, at which time the body becomes composed of thirty segmonts, thero are forty-three pairs of locomotive organs. At last, in

[^95]the adult state, tho malo has thirty-nine and the female sixty-four rings doveloped; but it is not until two years after this period that the sexual organs appear and the animals becomo capablo of roproduction.
(717.) The development of tho young Julus has been traced more recently by Mr . Newport with great care; and the result of that gentleman's observations relative to this part of the history of the Mryriopods is of extreme interest, both to the physiologist and in an entomological point of view.
(718.) The embryo, when it first becomes distinguishable in the interior of the ovum, is entirely destitute of limbs, or of any appearance of segmental division ; and even at the moment of its escape from the egg, which is effected by the laceration of the egg-shell, but very faint traces of segmentation are discernible. After its extrusion, however, its growth advances with considerable rapidity; and it soon becomes visibly divided into eight distinct segments, including the head (fig. 201, A) -the ninth

Fig. 201.

or anal segment (d) being still indistinct. The four thoracic segments, moreover, now exhibit on their ventral surface little nipple-shaped protuberances, three of which on each side are the rudiments of future legs. No intornal viscera are as yet distinguishable, the whole embryo being still a congeries of vesicles, or cells, in the midst of which some faint traces of a future alimentary canal seem to be indicated. In this state the body of the embryo is completely onclosed in a smooth and perfectly transparent membrane (fig. 201, $1, e$), which seems to contain a clear flind. This membrane Mr. Newport regards as the analogue of the amnion (the vitelline or investing membrane of the embryo in the higher animals), and identical with the membrana vitel7i, or proper membrane of the yolk. It is a shut sac that completely invests the embryo, except at
its fumel-shaped termination at the extremity of the body (fig. 201, A, d), where it is constricted, and, together with another membrane (which in the unburst egg is external to this and lines the interior of the shell), assists to form the cord or proper funis ($c l$) that enters the body of the embryo at the postcrior part of the dorsal surface of the future antepenultimate segment, where the mucro or spine exists in the adult animal.
(719.) A new process is now about to commence-the development of new segments. Up to the present period the posterior part of the body remains less distinctly divided into segments than the anterior, the first five segments being the most distinctly marked; the sixth and seventh now become more defined. It is in the membrane (fig. 201, c, f) that connects the seventh with the eighth segment (at the posterior margin of which last the funis (d) enters, and which is permanent as the penultimate segment throughout the life of the animal) that the formation of new segments is taking place. At this period it is only a little, illdefined space, that unites the seventh and eighth segments into one mass; but in proportion as the anterior parts of the body become developed, this part is also enlarged, not as a single structure, but as a multiplieation or repetition of similar structures.
(720.) About the seventh day the little embryo is ready to leave the amnion in which it has been hitherto enveloped. Its body is found to have become considerably elongated, the increase of length being mainly occasioned by the growth of the posterior segments, but more especially by the development of new ones, which now begin to make their appearance in the antepenultimate space (fig. 201, c, f), which is, in fact, the proper germinal space or germinal membrane, whereby the production of all the future segments is effected. The seven anterior segments, including the head, are now greatly enlarged; and the hitherto minute penultimate and anal segments $(8,9)$ become much enlarged, and rapidly acquire the form they afterwards retain through the life of the animal. This latter fact shows that it is not merely by an elongation and division of the terminal segment that the body of the Julus is developed, but that it arrives at its perfect state by an actual production of entirely new segments, the formation of which is in progress long before they are apparent to the eye, and that the original segments of the ovum into which the animal is first moulded are permanent.
(721.) The manner in which new legs are produced is equally curious. Up to the present period the animal is furnished with only three pairs (fig. 201, c, b c) ; but four additional pairs aro nevertheless in progress of formation. These, at present, exist only as eight minute nippleshaped prominences on the under surface of the sixth and seventh segments (fig. 201, c, 6, 7), four on each, covered by the common integument, which, as in the larval condition of insects, is a deciduons membrane. The newly formed legs, however, go on rapidly increasing in size until about the twenty-sixth day, when, throwing off the skin in
which it has hitherto been encased, the young Julus presents itself with seven pairs of legs and a body consisting of fifteen segments (fig. 201, Е).
(722.) In this condition the body of the animal still continues to elongate, not by the division of tho already formed segments into others, but always by the formation of new ones in the germinal membrane that extends from the posterior margin of the antepenultimate segment to the penultimate, which last segment, as well as the anal, undergoes no ehange; and it may likewise be observed that that segment of tho newly formed portion of the body is always furthest advanced in growth which is immediately posterior to the last segment which possesses legs,and then the next in suecession-until we arrive at the terminal ones (the penultimate and the anal), that never have logg appended to them.
(723.) On again easting its skin, the new segments of the body produced at the former change, from the eighth to the twelfth inclusive (fig. 201, $\mathrm{E}, \mathrm{s}-12$), are becomo of the same size as the original ones, and each has developed from it two additional pairs of legs, so that the whole number beeomes inereased to thirty-four ; and thus at each ehango of skin the number of new segments and of additional legs is increased, by development from the germinal membrane, until the full complement is acquired.
(724.) Scolopendride.-In the second family of Myriopoda we have a very striking illustration of the manner in whieh the development of the nervous centres proeeeds step by step with that of the exterual limbs. The slow-moving Julidæ possess, in their rudimentary feet, organs adapted to their condition ; and their feeble powers of locomotion are in relation with their vegetable diet and retiring habits. But in the predaceous and carnivorous Scolopendra (fig. 202), which, although it lurks in tho same hiding-places as the Julus, obtains its food by pursuing and devouring insects,

Fig. 202.
 far greater aetivity is indispensable ; and aceordingly we find the segments of the body, and the extremities appended to them, exhibiting a perfection of structure adapted to greater vivacity and more energetie movements.
(725.) This is at onee evidont upon a mere inspeetion of their outward form: the individual segments composing the animal are mueh inereased in their proportionato dimonsions, and, instead of being cy-
liudrical, each division of the body is flattened and presents a quadrangular outline. In order to give greater flexibility to the animal, instead of the semicrustaccous hard substance which forms the rings of the Julus, the integnment is here composed of a tongh and horny substance, forming two firm plates, one covering the back, the other the ventral aspect of the segment, while all the lateral part is only incased in a flexible coriaceons membrane, with which the individual rings are likewise joined together. Such an external skelcton is obviously calculated to give the greatest possible frecdom of motion, and thus to cnable the Scolopendira to wind its way with serpent-like pliancy through the tortuous passages wherein it seeks its prey.
(726.) The ventral chain of ganglia belonging to the nervous system presents a series of nervous centres of dimensions proportioned to the increased bulk of the scgments in which they are lodgcd, and becomes thus fitted to direct the movements of more perfect limbs. The legs, therefore, as a necessary consequence, are now proportionately powerful, divided into distinct joints, and provided with muscles calculated to bestow on them that activity essential to the pursuit and capture of active prey. Thus, then, by a simple concentration of the nervous masses composing the abdominal chain of ganglia, we have the slowmoving and worm-like Julus (which we have seen to be, in consequence of its feebleness, restricted to live upon roots and dead substances) eonverted into the carnivorous and powerfnl Scolopendra, well able to wage successful war with the strongest of the insect tribes, and not unfrequently formidable, from its size, even to man himself.
(727.) The mouth of the Scolopendra is a terrible instrument of destruction, being provided not only with horny jaws resembling those of insects, hercafter to be described, but armed with a tremendous pair of massive and curved fangs ending in sharp points, and perforated near their termination by a minute apcrture, through
 which a poisonous fluid is most probably instilled into the wound inflicted by them. It is to this structure that the scrions consequences which in hot climates not unfrequently result from the bite of one of these animals must no donbt be attributed.
(728.) In their internal anatomy the Scolopendritce resemble insects even more nearly than the Julus. The alimentary canal is straight and
intestiniform, but of much smaller diameter than that of the vegetableeating Myriopoda. It presents an œesophagus and a small muscular gizzard ; but there is no perceptible division into stomach and intestine. The respiratory and circulating systems, so far as they are understood, seem to correspond with what we shall afterwards find to exist in the larve of inscets.
(729.) In tho Scolopendridce, as we learn from the researches of Mr. Newport*, the heart is enclosed in a distinct membranous covering, which may be regarded as a true pericardium, consisting of a loose delicate membrane, between which and the sides of each chamber of the heart there is a slight interspace. The heart itself is a long pulsating organ, corresponding in its general structure and position with the dorsal vessel of insects; it is situated immediately beneath the integuments, and runs along the mesial line of the dorsal region of the body, consisting of a series of chambers, twenty-one in number, that communicate with each other and extend through the entire length of the animal from the tail to the cephalic segment.
(730.) The minute structure of the heart is exceedingly interesting. This organ is composed of two distinct contractile tunics, one external and the other internal, each being covered by its proper serous membrane. The external tunic is a very thick muscular layer, the fibres of which are loosely interwoven with each other. The internal tunic is composed of two sets of muscular fibres, of which the inner stratum is disposed longitudinally, while the external one is formed of numerous short, broad, transverse muscular bands, very much resembling in appearance the cartilaginous rings of the trachea in vertebrated animals. They do not completely encircle the longitudinal ones, but pass only halfway round on each side, leaving a space between those of the two sides, both upon the upper and under surface.
(731.) From each compartment of the heart proceed the systemic arteries, which supply nearly the whole of the blood to the viscera and lateral portions of each segment. The anterior pair of these systemic arteries, however, instead of being distributed like the rest, form a vascular collar, which, after surrounding the œesophageal tube (to which, and to the different parts belonging to the cephalic segment, it gives off numerous branches), unites beneath the œesophagus to form the great supraganglionic vessel or aortic trunk, extending backwards along the middle line of the body, immediately above the centres of the nervous system (which it supplies plentifully with blood), as far as the terminal ganglion in the last segment, giving off in its course numerous arterial canals, which ramify extensively in the surrounding structures. Tho return of the blood from the various viscera to the dorsal ressel is effeeted, as in insects, by lacunar or interstitial channels, as will be explained in tho noxt chaptor.
(732.) In the position and arrangement of the sexual organs, the Scolopendridæ complete the transition between the Annelidans and Insects properly so ealled; for while in Julus we have found them still occupying the anterior part of the body as in the former elass, in Scolopendra they are removed to the tail. The strueture of the male organs (fig. 204, 2) is remarkable. The testes are seven in number; and on opening the posterior segments of the animal, they are found elosely paeked in parallel lines. Each testis is composed of two fusiform parts preeisely similar to each other ; and from eaeh end of every one of these, which are hollow, arises a narrow duet; so that there are fourteen pairs of duets arising from the fourteen secreting organs. The ducts all end in a common canal, which gradually beeomes enlarged and tortuous, and terminates by a distinct aperture in the vicinity of the anus. Just prior to its termination, the common ejaeulatory duet eommunieates with five accessory glands (fig. 204, 2, c, cl cl, e e), four of which are intimately united until unravelled, while the fifth is a simple eæcum of considerable length.
(733.) The ovarian system of the female Seolopendra is a single tube (fig. 204, 1), without secondary ramifications, but re-

Fig. 204
1 2

1 , female, and 2 , male generative system of Scolopendra: a, testes; b, vas deferens; c, receptacula seminis; $d d, e e$, accessory glands; f, penis. eeiving near its termination the ducts of aceessory glands, as represented in the figure.
(734.) Some Scolopendræ (S. phosphorea) emit, in the dark, a strong phosphorescent light; and one speeics (S. electrica) is able to give a powerful electrical shock to the hand of the person who inadvertently seizes it.

CHAPTER XII.

INSECTA.

(735.) The word Insect has at different times been made uso of in a very vague and indeterminate manner, and applied indiseriminately to various articulated animals*. In the restrieted sense in whieh we now use it, wo include under this titlo only sueh of the Номоgangliata as in their perfect or maturo stato are recognizable by the following characters, by which they aro distinguished from all other creatures.
(736.) Tho body, owing to the coalescence of several of the segments

Fig. 205.

Dermal skelcton of an insect. A, the head; B, C, D, segments of the thoracic region, called respectively the Prothorax, the Mesothorax, and the Metathorax; E, the abdomen; F, ovipositor ; K, L, the wings; G, H, I, the three pairs of legs attached to the thoracic segments. The principal divisions of the limbs are likewisc indieated: 1, coxa; 2, trochanter; 3, femur ; 4, tibia. The succoeding pieces form collectively the tarsus (5), the last segment of which (6) is the foot.
whieh compose their external skeleton, is divided into three priucipal portions-the Head, the Thorax, and the Abdomen. The Head contains tho oral apparatus and tho instruments of the senses, ineluding the antenux or feelers, which are artieulated organs presenting great variety of shape, but invariably only two in number. Tho Thorax, formed by the union of three segments of tho skeloton, supports six artieulated

[^96]legs, and sometimes four or two wings; these last, however, are frequently wanting. The Abclomen is destitute of legs, and contains the viscera connected with nutrition and reproduction.
(737.) But insects, before arriving at that perfect condition in which they exhibit the above-mentioned characters, undergo a series of changes,

Fig. 206.

Pyralis pomana. b, the larva, which lires upon the pips of the apple; a, chrysalis; c, imngo.
both in their outward form and internal structure, which constitute what is generally termed their metamorphosis. When this is complete, as for example in the Butterfly, the insect, after leaving the egg, passes through two distinct states of existence beforo it arrives at maturity and assumes its perfect form. The female butterfly lays eggs which, when hatched, produce, not butterflies, but caterpillars-animals with elongated wormlike bodies divided into numerous segments, and covered with a soft coriaceous integument (fig. 206, b). The head of the caterpillar is provided with horny jaws and several minute eyes : the legs are very short, -six of them, which are attached to the anterior rings, being horny and pointed, whilo the rest, of variable number, appended to the posterior part of the body, are soft and membranons. The caterpillars, or larvec*, live for some time in this condition, and frequently change their skin as they increaso in size, until at length, the last skin of tho larva boing thrown off, the animal presents itself in quite a different form, enveloped in an oblong case, without any external limbs, and almost incapable of the slightest motion-resembling rather a dead substance than a living ereature ; it is then ealled a chrysulis, nymph, or pupa \dagger (fig. 206, a).
(738.) On cxamining attentively the external surface of this pupa,

[^97]we may discern, in relief, indieations of the parts of the Butterfly coneenled beneath it, but in a rudimentary condition. After some time tho skin of the pupa bursts, and the imago, or perfcet inscot, issues forth, moist and soft, with its wings wet and erumpled; but in a few minutes tho body drics, the wings expand and become stiff, and from being a crawler upon the ground, the crature is eonverted into a gay and aetive denizen of the air (fig. 206, c).
(739.) Such is the progress of the metamorphosis when eomplete ; but all insects do not exhibit the samc phenomena. Those genera which, in their mature condition, have no wings, eseape from the egg under nearly the same form as they will keep through life; these form the Insecta Ametabola* of authors: and even among those tribes which, when perfeet, possess instruments of flight, the larva frequently differs from the complete inseet only from its wanting wings, and the pupa is recognizable by being possessed of these organs in an undeveloped or rudimentary state : an example of this is seen in the Locust (fig. 226).
(740.) The extensive elass of Insecrs has bcen variously arranged by different entomologists, and distributed into numerous orders. Among the different systems which have been given, we select the following as

Fig. 207.

Metamorphosis of a Petalocerous Bectle.
best calculated to render the reader aequainted with the transformations, as well as the prineipal forms, to whieh allusion will be made in subsequent pages.

$$
\text { * } \dot{d} \text {, without ; } \mu \epsilon \tau \alpha \beta o \lambda \eta \text {, change. }
$$

(741.) Coleoptera*.-These insects are characterized by having four wings, of which the interior pair, always hard or leathery in their texture, form two strong shields, beneath which the hinder pair are protected. The front wings or elytra, when in repose, are always united by a straight edge extending along their whole length. The hinder wings, which alone are adapted for flight, are much larger than the elytra, and when not in use are folded transversely; in a few specios they are wanting, and then the elytra are soldered together. Their mouth is constructed for the mastication of food; and their abdomen is sessile-that is, broadest at

Fig. 208.

Metamorphosis of a Lady-bird (Coccinella.) the place where it joins the thorax. The larva is worm-like and

Fig. 209.

Metamorphosis of a Grashopper (Gryllus.)
soft, with the exception of the head and the first segments of the

* ko入ès, a sheath or casc ; $\pi \tau \in \rho o ̀ v, ~ a ~ w i n g:=h a v i n g ~ t h e i r ~ h i n d e r ~ w i n g a ~ p r o-~$ teeted by those in front as by a sheath.
body, which are horny. They aro generally furnished with three pairs of horny legs attached to the threo front segments. The pupa is motionless and takes no food, its limbs being encased in the cxternal integument. It is generally enclosed in a silken eocoon, composed of different substances, joined together by a silk-like material; sometimes it is naked (figs. 208, 209). This is by far the most numorous of all the insect orders; the number of species already known is probably not less than fifty thousand.
(742.) Orthopterd*.-In this order the front wings or elytra are semimembranous, and are supported by a framework of nervures; moreover, instead of meeting in a straight line along the back, they overlap each other. The hind wings are folded longitudinally like a fan. The larvæ and pupæ are equally active with the perfect insect: the formor possess no wings; and in the latter these organs only begin to show themselves enclosed in wing-cases; otherwise, in both conditions, they live upon the same food. Their mouth is furnished with cutting mandibles, with which most of them devour vegetable substances. They are all terrestrial in their habits, and generally feed upon plants. Tho Cockroaches (Blatta) and the Earwigs (Forficula) are sometimes described as forming orders apart, under the designations of Dictyotoptera \dagger and EuplexOPTERA \ddagger-the former being distinguished by the reticulated texture of their elytra, the latter by the beautiful manner in which their wings are folded up when at rest.
(743.) Neuroptera§.-The Insects belonging to the Neuropterous order possess four transparent wings, for the most part of equal

Fig. 210.

Cockroach (Blatta).
 connected so as to form a magnificent network. Tho mouth is armed with jaws, but the body is never furnished with a sting. The larve are active, very dissimilar to the winged insect, and always provided with six jointed legs, each terminated by a pair of hooks. To this order belong the Dragonflies (Libellula) (fig. 211), the Lace-winged flies (Hemerobius), the Stone-flies (Scmblis), and the White Ants (Termes), the Ant-lions (Myrmeleo), tho Scorpionflies (Panorpa), and the May-flics (Ephemera). A distinct order is recognized by some entomologists, named Tricioptera $\|$, in which are included the Phryganeee or Caddis-flies, which are

[^98]Fig. 211.

Dragonfly.

Fig. 212.

[^99]remarkable for the hairiness of their wings, and the peculiar habitations eonstructed by the larve.
(744.) Hymenoptera *.-The Hymenoptera, like the Neuroptera, are furnished with four transparent wings; but instead of the nervures forming a elose network, they are much more sparingly distributed. Another difference is, that in the Hymenoptera the hind pair of wings seem as if cut out of the front rair, with which they interlock by means of small hooks during flight, so that the two wings almost resemble a

Fig. 213.

The Hive Bee (Apis mellifica). A, Working Bee. B, fertile female, or Queen Bee. C, the male, or Drone.
single one. The abdomen, moreover, is terminated by an apparatus which, in some species, serves for the deposition of eggs, but in others is connected with a poison-bag and forms a venomous sting. To this

Fig. 214.

Metamorphosis of Stylops : a, b, f, female ; c, d, e, pupz of male; g, larræ, of natural size ; h, larva magnifled; i, imago of male insect.
order belong the Saw-flies (Tenthredo) (fig. 204), the Cuckoo-flies (Ichncumon) (fig. 259), the Gall-flies (Cynips) (fig. 265), the Ants (Formica), the Wasps (Vespa), the Bees (Apis) (fig. 213), and the Humble Bees (Bombus).

* $\dot{v} \mu \dot{\eta} \nu, ~ \Omega$ membrane ; $\pi \tau \epsilon \rho \dot{\nu} \nu, ~ \Omega$ wing $:=$ having membranous wings.
(7t5.) Strepsipterd *.-The inscets belonging to this very small group have their anterior wings rudimentary, while the posterior pair are folded up lengthways like a fan (fig. 214). The male inseet only is provided with wings; the female lives parasitically in the bodies of various kinds of hymenopterous insects. The female is a soft maggot-like creature, residing in the interior of bees until it has attained its full size, when the anterior part of its body acquires a horny eonsistency, and is pushed out from between the segments of the bee's abdomen. This is the only change to which the females are subject; but the males become converted into pupre within the skin of the larva, and thus lie coneealed within the body of the bee until their final change, when they issne forth as winged inseets. In their earliest form, just after quitting the egg, the larver are minute active creatures, furnished with six legs, by means of which they run about upon the body of the bee, of which their mother is an inmate.
(746.) Lepidoptera \uparrow. -The Lepidoptera are at once recognizable by their four ample wings, generally thickly clothed on both surfaces with minute feather-like scales that overlap each other and, being often of different eolours arranged in beautiful pat-

Fig. 215.

Metamorphoses of Butterify. A, larva; B, chrysalis ; C, imago. terns, form a kind of mosaie-work of exquisite beauty. The mouth of all the insects included in this order is adapted to pump up the nectareous juices from the cups of flowers, and is generally composed of tubes of considerable length in order to enable the insect to reach the recesses of the flower-bell, wherein the honeyed stores are lodged. When unfolded, this curious apparatns resembles a long double whip-lash. When not in use, it is coiled up into a very small space beneath the head. The larvæ, commonly known as caterpillars, have a soft cylindrical body, furnished in front with three pairs of horny legs, and posteriorly provided with from four to ten pairs of false feet or " elingers."

[^100] folded.
$+\lambda \in \pi i s$, a seale; $\pi \tau \in \rho \dot{1} v$, a wing: $=$ having the wing covered with minute senles.

The pupa, ealled a chriysalis, is motionless, and its limbs are folded down and eovered with a transparent varnish. Their position, however, ean be distinetly traeed by external markings (fig. 216).
(747.) Hemptera*.-In inseets belonging to this order, the elytra or wing-eovers present two distinet portions of very different texture, their front part being stiff and leathery, while their hinder margins are thin and membranous (fig. 217). The membranous portion of one wing, moreover, when in a state of rest, overlaps that of its

Fig. 216.

Chrysalids of Butterlly : the right-hand Rgure shows the chrysalis in its natural state, having the limbs fixed in their positions by a natural varnish; in the other figure the varnish has been dissolved, and the limbs unfolded. fellow. Their mouth eonsists of a long beak or rostrum, along the upper surface of whieh runs a groove wherein are lodged four long sharp-pointed filaments that constitute a kind of sting. The Hemiptera retain, in all stages of their growth, the same form and the same habits; the only ehange they undergo eonsists in the development of their wings, the rudiments of whieh first make their appearance when they enter their pupa-condition. They usually lurk about plants and prey upon hapless inseets, iuto whose body they plunge their piereing suetorial oral apparatus, and thus obtain their food. Some, however, inhabit the water, uporn the surface of whieh many of

Fig. 217.

Metamorphosis of Nepa. them walk with facility; as, for example, the Water-measurers (Hydrometridce), (fig. 224).
(748.) Hoмортеra \uparrow.-The Homopterous insects, or "Plant-suckers," are furnished with four large wings, all of which are transparent, loosely veined, and of the same texture throughout. With these they fly from plant to plant, imbibing their juices by means of a mouth similar in strueture to that of Hemipterous inseets. The only ehange of form that they present during their metamorphosis is the aequirement of wings, whieh in the pupa are encased in temporary wing-eovers (fig. 218).
(749.) Diptera \ddagger.-The Dipterous inseets possess buta a single pair

* $\dot{\eta} \mu t-$, half ; $\pi \tau \epsilon \rho o \dot{\nu}$, a wing: = having half of the elytra membranous.
\dagger ó $\mu \grave{s}$, similar ; $\pi r \epsilon \rho \alpha \dot{\alpha}$, wings.
\ddagger oím $\tau \in p o s$, having two wings.
of wings, which are always transparent, veined, and without folds. The place of the hinder wings is ocenpied by a pair of slender filaments, dilated at their extremities, called "poisers" (halteres): their mouth

Fig. 218.

Fore leg, pupa, case and under surface of Cicada.
is adapted for suction, and in many species is supplied with piercing instruments of very formidable character. All Dipterous insects undergo a complete metamorphosis; but two distinct modifications are

Fig. 219.

Metamorphosis of Chironomus: e, larve ; c, pupa ; a, b, imngo, male and female; d, larva in a fuctitious tube.
observable in the mode of their transformation. The larve of many genera denude themselves of their outer skin, and in their pupa-state preserve a considerable degrec of activity (fig. 219); whilst in others
the external integument is not east off, but hardens into a sort of case or shell, giving the limbless pupa very much the appearance of an egg (fig. 220, b, c, f).
(750.) Thysanura*.-These insects are without wings, and undorgo no metamorphosis; they are distinguished by the possession of

Fig. 220.

Metamorphosis of Bot-fly (Estrucs): a, e, larve; b, c, pupæ; f, pupa-case; g, its lid; d, h, winged inseets.
peculiar instruments of locomotion, in the shape of fringed setx, appended to the hinder extremity of their abdomen. The order includes but two genera, the Sugar-lice (Lepisma), and the Spring-tails (Podura).
(751.) Aphantptera \dagger.-The Aphaniptera are generally thought to be wingless; nevertheless in their perfect state they possess the rudiments of these organs, very small and inconspicuous, and they undergo a complete metamorphosis. In the imago condition (fig. 221) their body is compressed at the sides, and the legs are adapted for leaping. Their mouth is provided with lancets, and performs the funetions of a sucking-apparatus. The larvæ resemble little worms, and are quite destitute of feet. In the pupr the outlines of the limbs are visible externally.

Fig. 221.

Metamorphosis of Flea (Pulex): a, eggs: l, c, larre; d, pupa ; e, imago.
(752.) Parasita \ddagger.-The Parasita are wingless insects that do not * $\theta \dot{v} \sigma a \nu 0$, fringes; oủ $\rho \dot{a}$, tail : ==fringe-tails. $\dagger \dot{\alpha} \phi$ avíl $)$, to hide ; $\pi \tau \epsilon \rho o ̀ v$, wing: = having their wings hidden. \ddagger тарáoitos, one who lives at another's expense.
undergo any metamorphosis, and whose abdomen is unprovided with any terminal appendage. Their mouth is adapted for suction, their body is flattened, and they live, as the name of the order indicates, as parasites upon other animals; they are found, however, only upon mammals and birds, and are generally known by the names of lice and ticks (fig. 222).
(753.) Having thus introduced the reader to the chief orders composing the rast elasses of Insects, our next object must be to examine more in detail the principles upon which these animals are constructed, both as regards their external organization and the nature and arrangement of their internal parts. We shall speak of them in the first place only in their perfect condition, leaving all observations relative to the metamorphoses they undergo for subsequent consideration.

Fig. 222.

Bird-louse of the Eagle.
(754.) Inscets, examined generally, differ from all other articulated beings in one remarkable circumstance: they are capable of flight, and can maintain themselves in the air by means of wings. It is true, indeed, that some species are met with, in all the orders described above, which are apterous, being destitute of such organs; but these form exceptions, to be noticed hereafter. Such a mode of progression, through so rare a medium as that of the atmosphere, necessarily demands an excreise of muscular power of the most vigorous and active description, and a correspondent strength and firmuess in the skelcton upon which the muscles act. It is sufficient to cast a glauce at the external construction of any of the Annclidans or Myriopods which have come under our notice, to be convinced that in such animals flight would be impossible under any circumstances. Their long and flexible bodics present no point to which efficient wings could be appended; neither is any part of their divided skeleton possessed of sufficient strength to support the action of muscles so forcible and encrgetic as would be indispensable to wield the instrmments used in flying, or raise the body above the surface of the ground.
(755.) Similar changes, therefore, to those which we found requisite in order to eonvert the aquatic Annclid into the terrestrial Myriopod, must be still further carricd out before the animals last mentioned could be adapted to become inhabitants of the air. The number of segments composing their elongated bodics must be materially reduced; certain parts of the skcleton must be strengthened in order to sustain the efforts
of muscles suffieiently strong to raise the weight of the animal ; and, in tho last place, tho nervous ganglia, by a like concentration of hitherto separated parts, must be gathered into masses of inereased power, sufficient to animate the moro vigorous muscles with which they are iu relation.
(756.) Such changos aro precisely those which are most remarkable when wo compare the external appearance of a centipede with that of a winged insect. The entire number of segments, and consequently the proportionate length, of the latter is obviously reduced. The head is seen to be more distinct from the rest of the body, to which it is conneeted by a moveable joint. The three anterior segments of the trunk become largely developed, and, from the density of their substance, form by far the strongest part of the skeleton, constituting what is called the thorax of the insect; they are, moreover, generally united together, especially the two posterior, so as to be consolidated, as it were, into one piece; and the organs of locomotion are appended to these rings only. The remaining segments of the body are much less firm in their texture, especially in insects with hard or horny wing-corers, in which indeed they are almost of a membranous consistence, so as to increase, as far as possible, the lightness of the animal in parts where strength is not required. Here, then, is an annulose skeleton adapted to flight; dense and unyielding where support is required for the attachment of the locomotive organs, but thin and flexible elsewhere.
(757.) The above conditions being required in the arrangement of the picces which compose the outward framework of the body in insects, we may easily conceivo that the mode of union between the various segments above described is by no means a matter of indifference, inasmuch as very different degrees of motion are required between the individual rings. In the Annelida and Myriopoda a very simple kind of junction was sufficient; for in them the segments were all united by the mere interposition of a thinner coriaceous membrane extending between their contiguous margins ; but in insects several kinds of articulation are met with in the construction of the trunk, adapted to the mobility of different regions.
(758.) The first mode of connexion is effected by suture, or rather by a species of " harmony," as it is technically termed by anatomiststwo plates of the skeleton being accirately and immoveably fitted to each other, but without being decidedly fastened together by serrated edges. This kind of junction is met with in the thorax, and serves an important purpose ; for at the point of union both plates are bent inwards, and prolonged internally, so as to form numerous partitions and processes, from which the inuscles moving the wings and legs derive extensive origins.
(759.) A second means whereby the pieces of the thorax are fastened together is by symphysis, in which a somewhat soft membrane is interposed between two plates, so as to admit of a slight degree of motion.
(760.) Moro extensive movement is required between the pieces
which compose the abdomen ; for in this region that rigidity and firmness which are essential in the construction of the thorax would be highly disadrantageous, inasmuch as tho abdominal visccra must bo subject to constant variations in bulk, caused cither by food taken into tho intestines, or, in the case of the fomale, by tho devclopment of the eggs after impregnation. The rings of the abdomen are thercfore united by a membrane passing from one to another-but so loosely that the edges of the individual plates wrap over each other to some extent, and thus may be scparated by the slightest pressure from within.
(761.) But in other regions there is an absolute necessity for a mode of communication intermediate in character between the two kinds mentioned above, having neither the firmness of the one nor the mobility of the other. This is more especially the case in the junction between the head and the anterior segment of the thorax, and also between the last-named segment and the middle piece of the thorax, in those cases where these two parts are not joined by suture. The joint employed in this case is of vcry beautiful construction, resembling in some respects that formed by a ball and socket: a conical prolongation of one scgment is admitted into a smooth cavity cxcavated in the corresponding margin of the other, and secured in this position by muscles and an extermal ligament. Such an articulation is of course capable of being fiumly fixed by muscular action, but at the same time admits of sufficient freedom of motion to allow rotation in all directions.
(762.) The legs of insects, as we have already stated, are invariably six in number, one pair bcing attached to each of the three thoracic scgments. Considercd separately, cvery leg may be seen to consist of screral pieces, connected together by articulations of different kinds, whieh require our noticc. The first division of the leg, or that in inmediate conncxion with the thorax, to which it is united by a kind of ball-and-socket joint enclosed in a strong membranous capsule and possessing very various degrecs of motion in different insects, is called the hip (coxa) ; and upon this, as upon a centre, the movements of the limb are performed. To the extremity of the coxa a small moveable piece is attached, called the trochanter; to which succeeds the thigh (femur), which is the thickest and most robust of all the divisions of the limb. The next piece, called the shank (tibia), is occasionally of considerable length, and is connected to the last by a hinge; to its cxtremity is appended the foot (tarsus), composed of a consecutive scries of small segments, varying in number from five to one, the last of which is armed with claws or other appendages, adapted to different kinds of progression. These divisions of the leg the reader will easily recognize ; they are for the most part united together by articulations so constructed as to allow simply of flexion and extension, which will be best understood by inspecting, in some large insect, the junction between the femur and the tibia, or the knee-joint, as we might term it. Upon the upper
extremity of the tibia the observer will find on cach side a precisely semicircular furrow, behind which is a concentrical but smaller ridge, and still further back a circular depression or fossulet. On examining the corresponding surfaces of the femur, lie will detect a ridge accurately corresponding to the above-mentioned furrow, behind this a furrow

Fig. 223.

Stick-insect (Phasma), in which the points of attachment and divisions of the legs are easily recognizable.
corresponding to the preceding ridge, and still further back a minute elcvation adapted to the fossulet of the tibia, wherein it is fastened by a minute but very strong ligament. Such ridges and grooves, when fitted into each other, form a joint cridently admitting of a frec and hingelike motion, while, from its strueture, dislocation is almost impossible.
(763.) The above general description of the leg of an insect will prepare us to examine various modifieations in outward form and mechanical arrangements by which these simple organs arc adapted to progression under a great diversity of circumstanees. When, indeed, we reflect how extensively this class of animals is distributed, and the variety of situations in which inscets live, we are led to expect eorresponding adaptations in the construction of their instruments of locomotion ; and in this our expectations will not be disappointed.
(764.) In the generality of tcrrestrial species, the last segment of the tarsus or foot is provided with a pair of strong horny hooks, which are available for many purposes, being used either for creeping upon a moderatcly rough surface, for climbing, or for clinging to various substances.
(765.) Such simple hooks, however, would not always serve. In the ease of the louse (Pediculus) for example, that is destined to climb slender and polished hairs, sueh prehensile organs could be of little use. The structure of the foot is thercfore modified: the tarsus in this inseet terminates in a single moveable claw, which bends back upon a toothlike process derived from the tibia, and thins forms a pair of forceps, fitted to grasp the stem of the hair and secure a firm hold. 'The Water-
measurers (Hyclrometrides) are, many of them, able to walk with facility npon the surface of water. This faculty seems to depend ontirely upon the presence of minute hairs distributed over the tarsus, and imbued

Fig. 224.

Water-measurer (Gerris.)
with some oily secretion; by wetting them with spirit of wine their faculty of repelling the water is immediately destroyed.
(766.) Many insects, especially those of the Dipterous order, arc able

Fig. 225.

Feet of insects :-A, F, Dyticus. B, Bibio febrilis. C, Musca domestica. D, Cimbex lutea.
E, Abyssinian Grasshopper.
to aseend the smoothest perpendicular planes, or even to run with facility, suspended by their feet, in an inverted position, along substances which, from their polished surfaces, could afford no hold to any appa-
ratus of foreeps or hooklets. In the common flies (Misccide), the exercise of this faculty is of such overyday oceurrener that, wonderful as it is, it scarcely attraets the attontion of ordinary observers. The foot of tho House-fly, nevertheless, is a very curious piece of mechanism ; for, in addition to the recurved hooks possessed by other climbing species, it is furnished with a pair of minute membranous flaps (fig 225, c), which, under a good microseope, are secn to be covered with innumerable hairs of tho utmost delieaey : these flaps (or suckers, as they might be termed) adhere to any plane surface with suffieient tenacity to support the whole weight of the fly, and thus coufer upon it a power of progression denied to insects of ordinary construction.
(767.) In Bibio febrilis (fig. 225, B), the sucking-disks appended to the foot are three in number ; and a similar arrangement occurs in other Dipterous insects.
(768.) In Cimbex lutea (fig. 225, D) the arrangement of the suckers is different, one large and spoon-shaped disk being attached to the extremity of eaeh tarsal joint. Moreover in this case there is another singular structure : two spur-like organs project from cach side of the extremity of the tibia, each being provided with a sucking-disk, while the two together form a strong prehensile foreeps.
(769.) In some Watcr-beetles (Dyticictce) the feet are armed with a still more elaborately constructed apparatus of suckers; but in this case, as they are only met with in the male insect, they perhaps ought

Fig. 226.

Locust (Locusta).
rather to be looked upon as a provision inade for the purpose of securely holding the female during sexual union, than as being specially connected with locomotion.
(770.) In the anterior legs of the male Dyticus the first three joints of the tarsus are excessively dilated, so as to form a broad circular palette: on examining the inferior surface of this expanded portion under a microscope, it is seen to be covered with an immense number of sucking-cups (fig. 225, r), two or three being much larger than the rest; but they form colleetively a wonderful instrument of adhesion.
(771.) The middle pair of legs of the sime beetle (fig. 225, 1) exlibit
a somewhat similar structure ; but in this case the disk upon which the sucking-apparatus is placed is much clongated, and the suckers are all of small dimensions.
(772.) In the female Dyticus this configuration of the tarsus is wanting ; and moreover the surface of the back is marked with decp longitudinal groores that do not exist in the male insect, but seem to be an additional provision for facilitating the intercourse of the sexes in theso powerful aquatic bectles.
(773.) Another mode of progression common among insects is by leaping, to which, from their extraordinary muscular power, thesc little beings arc admirably adapted. The common Flea, for example (Pulex irritans) (fig. 221), will leap two hundred times its own length ; and many Orthoptera possess a power of vaulting through the air scarcely less wonderful, of which the Cricket affords a familiar instancc. In such insects ($227, \mathrm{~A}, \mathrm{~B}$) the thighs of the posterior legs are enormously

Fig. 227.

Metamorphosis of Honse-cricket (Gryllus domesticus). A, imago; B, pupa; C, D, larræ; E, egga.
dilated, and the length of these limbs is much greater than that of the anterior pair. When disposed to leap, such insects bend each hind leg, so as to bring the tibia into close contact with the thigh, which has often a longitudinal furrow, armed on each side with a row of spines, to receive it. The leg being thus bent, they suddenly unbend it with a jerk, when, pushing against the plane of position, they spring into the air*. In many of these saltatorial tribes the tarsus is furnished with very curious appendages, cither provided for the purpose of obviating

[^101]any jar when the animal alights fromits lofty leaps*, or clse they may act like firm cushions, adapted, by their clasticity, to give greater effect to tho spring which raises the insect from the ground. In the magnified view of tho tarsus of an Abyssinian Grasshopper (fig. 225, e) the arrangement of these organs is well exhibited.
(774.) The next modification in the structure of the legs is met with in such species as burrow bencath the surface of the ground, of which mode of progression the most remarkable example is seen in the Molccricket (Gryllotalpa vulgaris) (fig. 228). In this creature, the anterior

Fig. 228.

Molc-cricket (Gryllotalpa vulgaris).
segment of the thorax, whercunto the fore legs are appended, is wonderfully enlarged and of great strength, while the legs themselves are equally remarkable for their enormons bulk and muscularity. The tibia is excessively dilated, and terminatcs obliquely in four sharp and strong spines. The whole of the tarsus would, at a first glance, appear to be wanting; but on inspection it is found to consist of thrce joints placed upon the inner side of the tibia, the first two being broad and toothshaped, while the last piecc is very small and armed with two hooks. The direction and motion of these hands is outwards, thus cnabling the animal most effectually to remove the carth when it burrows ; and, by the help of such powerful instruments, it is astonishing how rapidly it buies itsclf \uparrow.

* Sir E. Home, Phil. Trans. 1816.
+ Kirby and Spence, Introd. to Ent. vol. ii. p. p. 362.
(775.) Similar examples of adaptation in the mechanical structure of the legs of insects might be multiplicd indefinitely ; we shall, however, select but one other illustration before leaving this part of our subject, namely the conversion of these organs into instruments for swimming, whereby, in aquatic insects, they become adapted to act as oars. Nothing is, perhaps, better calculated to excite the admiration of the student of animated nature than the amazing results obtained by the slightest deviations from a common type of organization ; and in oxamining the changes required in order to metamorphose an organ which we have already seen performing such a variety of offices into a fin adapted to an aquatic life, this circumstance must strike the mind of the most heedless observer. The limbs used in swimming exhibit the same parts, the same number of joints, and almost the same shape, as those employed for creeping, climbing, leaping, and numerous other purposes; yet how different is the function assigned to them! In a common Water-beetle already roferred to, the Dyticus marginalis (fig. 229), the two anterior pairs of legs, that could be of small scrvice

Fig. 229.

Metamorphosis of Dyticus marginclis.
as instruments of propulsion, are so small as to appear quite disproportionate to the size of the insect, while the hinder pair are of great size and strength ; the last-mentioned limbs are, moreover, removed as far backwards as possible, by the development, of the hinder segment of the thorax, in ordor to approximate their origins to the centre of the body;
and the individual segmonts composing them are broad and eompressed, so as to present to the water an extensive surface, which is still further enlarged by the presence of flat spines appended to the end of the tibia, as well as of a broad fringe of stiff hairs inserted all around the tarsus. The powerful oars thus formed can open until they form right angles with the axis of the body, and from the strength of their stroke are well adapted to the piratical habits of their possessors, who wage successful

Fig. 230.

Metamorphosis of Water-boatman (Notonecta).
war, not only with other aquatic inseets and worms, but even with small fishes, the co-inhabitants of the ponds wherein they live.
(776.) The same principles are carricd out even more perfectly in the construction of the swimming-legs of the Water-boatman (Notonecta), a kind of water-bug. The resemblanee of this creature (fig. 230) to a boat with its oars cannot cscape the most inattentive examiner; and the similarity is still further increased by its manner of swimming; for, as it preys upon insects that have been accidentally drowned by falling into the water, it usually rows itself about upon its back, because in such a position it can best watch for its victims.
(777.) The wings of insects, when present, are invariably attached to the two posterior segments of the thorax, which, as we have already seen, are strengthened in every possible manner, so as to afford a support of sufficient density and firmness to sustain the violent exertions of the museles inserted into the organs of flight.
(778.) In the most perfectly organized families the wings are four in number, as in the Neuroptera (fig. 211), the Hymenoptera (fig. 213), the Orthoptera (fig. 227), the Dictyoptera, the Hemiptera (fig. 230), the Lepidoptera (fig. 215), and the Colcoptera (fig. 229).
(779.) In the Dipterous insects there are only two wings, which are fixed upon the central segment of the thorax ; while, in the position
ustally occupied by the posterior pair, we fund a pair of pedunculated globular bodies, generally named the hulteres or poisers, as in the Gnat (Culex) (fig. 279).
(i80.) But, in ercry one of the orders above enumerated, there are certain families which, throughout the whole period of their existence, are nerer provided with wings: and these by many entomologists have been formed into an order by themselves, under the name of Apterous insects. Such an arrangement is purcly artificial,inasmuch as it must embrace insects of most dissimilar kinds. In proof of this, in the same family we not unfrequently meet with both winged and apterous spe-

Metamorphosis of Telephorus fuscus. cies, nearly related to each other ; and in many cases the males possess wings, while the females of the same insect are entirely destitute of such appendages. In such cases, the metamorphosis is necessarily what is called incomplete, inasmuch as the organs which characterize the perfect state are not developed. Thus, in the Flea (Pulex irritans) (fig. 232) the wings never become apparent, and in consequence the thorax, even in the imago state, does not exhibit that development and consolidation of its parts invariably met with in winged genera. The Flea, however, cannot on this account be looked upon as any other than the imago or complcte insect; for it will be found to have undergone all the preparatory changes. The Flea, when it issues from the egg, is in fact a wormlike and footless larva, in which condition it lives about twelve days. When about to become a pupa, it spins for itself a little silky cocoon, whercin it conceals itself until, having thrown off its last skin, it appears in its mature form, deprived apparently of wings, that, under the circumstances in which it lives, would be useless appendages, but still, with this exception, corresponding in every particular with other insects in their imago state (fig. 232).
(781.) The mings of insects differ much in texture: In the Neuropterca, by far the most powerful fliers met with in the insect world, all four wings are of equal size, and consist of a thin mombranous expansion of great delicacy and of a glassy appearance, supported at all points by
a horny network (fig. 211). Few things are met with in nature more admirable than these structures; they present, indeed, a combination of strength and lightness absolutely unequalled by any thing of human invention ; and as instruments of flight they far surpass the wings of birds, both in the power and precision of their movements, inasmuch as these

Fig. 232.

insects can fly in all directions-backwards, or to the right or left, as well as forwards. Leeuwenhoek* narrates a remarkable instance in which he was an eye-witness of the comparative capabilities of the Dragonfly and the Swallow, as regards the perfection of their flight. The bird and the insect were both confined in a menagerie about a hundred fect long, and apparently their powers were fairly tested. The swallow was in full pursuit; but the little ereature flew with such astonishing velocity, that this bird of rapid flight and ready evolution was unable to overtake and entrap it-the insect cluding every attempt, and being generally six feet before it. "Indeed," say the authors from whom we quote the above anecdotet, "such is the power of the long wings by which the Dragonflies are distinguished, and such the force of the muscles which move them, that they seem never to be wearied with flying. I have observed one of them (Ancax imperator, Leach) sailing for hours over a piece of water-sometimes to and fro, and sometimes wheeling from side to side, and all the while chasing, eapturing, and devouring the various insects that came athwart its course, or driving away its competitors-without ever seeming tired or inclined to alight."
(782.) In Hymenopterous inscets (figs. 213 and 260) the wings are much more feebly organized, but their structure is similar. The nervures, or horny ribs supporting the membranous expansion, are comparatively few ; and in the Diptera they are still less numerous.
(783.) In several orders the anterior pair of wings are converted into shields for the protection of the posterior ; such is the case in the Orthoptera, many of the Hemiptera, and more especially in the Coleopterous genera. In the latter, indced, they are very dense and hard; and,

[^102]being nearly unserviceable in flight, the hinder pair are nccessarily developed to such a size as to present a very cxtensive surface (fig. 233),

Fig. 233.

and when in repose are closely folded up beneath the elytra, and thus earefully preserved from injuries, to which they would be constantly exposed without such provision for their security.
(784.) The above observations relate only to the general disposition and connexion of the diffcrent parts of the skcleton, and the locomotive appendages connected with it ; it remains for us now to speak more fully of the texture of the cxternal integument and the modifications which it presents, adapting it to various purposes.
(785.) The hard covering of an insect, like the skin of vertebrate animals, consists of three distinct layers. The outer stratum, or epidermis, is smooth, horny, and generally colourless, so that it forms a dense inorganic film spread over the whole surface of the body. Immediately bencath the epidermis is a soft and delicate film, the rete mucosum, which is frequently painted with the most lively hues, and gives the characteristic colouring to the species. The third and prineipal layer is the true skin, or cutis, which is generally of a leathcry texture, and, especially in the elytra of Boetles, of considerable thickness: this layer is abundantly supplied with nutritive juiees; and in its substance the bulbs of hairs, scales, and similar appendages, to be described hereafter, are imbedded and nourished.
(786.) The wings are mere derivations from this common covering, and are composed of two delicate films of the epidermis, stretched upon a strong and netlike framework. Every membranous wing is, in fact, a delieate bag formed by the epidermic layer of the integument, and in
the recently developed insect can be distinctly proved to he such by simply immersing the newly escaped imago in spirit of wine, which gradually insinuates itself between the still fresh and soft membranes, and, filling the cavity enelosed between them, distends the organ until it represents a transparent sacculus, in which the ribs or nervures of

Fig. 234.

Chrysalids showing the progressive stages of the escape of a Butterfly from its pupa-case.
the wing are enclosed ${ }^{*}$. This structure, however, is only to be displayed while the wings, after being withdrawn from the pupa-case, are still soft and moist; for they soon become so intimately united with the horny framewrork upon which they are extended, that they seem to form a single membranous expansion.
(787.) The ribs, or nervures, whereby the two plates of the wing are thus supported, are slender hollow tubes, filled with a soft parenchyma: in the interior of some there may be detected an air-vessel (recognizable by the texture of its walls) and a minute nervous filament.
(788.) We have still, in order to complete our deseription of the external anatomy of an insect, to describe certain appendages which not unfrequently clothe the exterior of the body, and exhibit great diversity of appearance in different tribes. These may be divided into spines, huirs, and scales.
(789.) The spines are horny processes developed from the epidermis, and sometimes, especially in the Coleopterous order, as in some lamellicorn Beetles, are of considerable dimensions. These spines are sometines bifurcated or branched ; but, whatever their shape or size, they never grow from bulbs implanted in the cutis, but are mere prolongations of the integument.
(790.) The huirs appear to resemble those of quadrupeds in their mode of growth, inasmuch as they are secreted from roots imbedded in

* Heusinger, System der Histologie, 2. Heft. Burmeister, op.cit. p. 224.
the substance of the cutis or true skin : they are fine horny cylinders, and frequently are found to be branched and divided like the fcathers of birds ; but the manner of their formation will be more conveniently discussed hereafter.
(791.) The wings of the Lepiclopter a are covered with minute flat scalcs of various shapes, and not unfrequently tinted with the most beautiful colours; such scales, nevertheless, are in reality only flattened hairs, into which, indced, they frequently degenerate by insensible transitions ; and, moreover, they grow from bulbs of precisely similar construction. The variety of colours exhibited by the scales of a Butterfly depends upon a film of pigment interposed between the two plates of transparent cpidermic matter forming each ; but the gorgeous hues derived from this source must not be confounded with the iridescent tints for which they are not unfrequently remarkable, as these have a very different origin : the surface of every scale, that with the changing light reflects evanescent prismatic colours, is seen, when examined under a microscope, to be marked with regular parallel striæ of exquisite minuteness ; and such a surface, even when grossly imitated by human art, has been found to give rise to the brilliant appearances exhibited by polarized light.
(792.) In some remarkable instances the wings of insects seem given merely for the purpose of disguise-as, for example, in the case of the

Fig. 235.

Mantis religiosa.
Leaf-insccts (Mantidce). No manufacturer of artificial flowers could more successfully imitate the twigs and sprays of plants than these insects aro made to counterfeit the branches and the foliage of the shrubs they fre-
quent, so that, while in their natural haunts, it is next to impossible for the most practised oyo to distinguish them from tho leaves in their vicinity.
(793.) The muscular system of insects has always excited the wonder and astonishment of the naturalist, in whatever point of view he examined this part of their economy-whether he considered the perfection of their movements, the inconceivable minuteness of the parts moved, or the strength, persistence, or velocity of their contractions. Insects are proverbially of small comparative dimensions-" minims of nature"

> For wings, and smallest lineaments exaet, In all the liveries deek'd of summer's pride."

Their presence, indeed, around us is only remarked as conferring additional life and gaiety to the landscape ; and except when, by some inordinate increase in their numbers, they make up by their multitude for their diminutive size, the ravages committed by them are trifling and insignificant. Far otherwise, however, would it be if they attained to larger growth, and still possessed the extraordinary power with which they are now so conspicuously gifted; they would then, indeed, become truly the tyrants of the creation-monsters such "as fables never feigned or fear conceived"-fully adequate to destroy and exterminate from the surface of the earth all that it contains of vegetable or of animal life.
(794.) We have already seen that the Flea or the Grasshopper will spring two hundred times the length of its own body-that the Dragonfly possesses such indomitable strength of wing that for a day together it will sustain itself in the air, and fly with equal facility and swiftness backwards or forwards, to the right or to the left, without turning-that the Beetles are encased in a dense and hard integument, impervious to ordinary violence; and we might add that the Wasp and the Termite Ant will penetrate with their jaws the hardest wood. Neither is the velocity of the movements of insects inferior to their prodigious muscular power. "An anonymous writer in Nicholson's Journal calculates that in its ordinary flight the common House-fly (Musca domestica) makes with its wings about six hundred strokes, which carry it 5 feet, every second; but if alarmed, their velocity can be increased six- or sevenfold, or to 30 or 35 feet in the same period. In this space of time a race-horse could clear only 90 feet, which is at the rate of more than a mile a minute. Our little Fly, in her swiftest flight, will in the same space of time go more than the third of a mile. Now, compare the infinite difforence of the size of the two animals (ten millions of the Fly would hardly counterpoise one racer), and how wonderful will the velocity of this minute creature appear! Did the Fly equal the race-horse in size, and retain its present powers in the ratio of its magnitude, it would traverse the globe with the rapidity of lightning ${ }^{\prime \prime}$.

[^103](795.) Let the reader, therefore, imagine for an instant that great law of nature, which restricts the dimensions of an insect within certain bounds, dispensed with even in a single species. Suppose the Wasp or the Stag beetle dilated to the bulk of a tiger or of an clephant-cascd in impenetrable armonr-furnished with jaws that would crush the solid trunk of an oak-winged, and capable of flight so rapid as to render escape hopeless; what could resist such destroyers? or how would the world support their ravages?
(796.) Such is the comparative strength of insects. Let us now proceed to examine the muscles to which it is owing, their strncture and general arrangement.
(797.) The muscles consist of bundles of delicate fibres, that arise cither from the inner surface of the segments composing the skeleton, or

Fig. 236.

Metamorphosis of the Elder-moth (Phalana sambucaria), showing the attitudes of the Caterpillars called "Loopers."
else from the internal horny septa which project into the thorax. The fibres themselves are of a white or yellow colour ; and so loosely are they connected by collular tissue, that they may be separated by the slightest touch.
(798.) All the muscles of an insect may be arranged in two great divisions-the first including those that unite the different segments of the body, the second those appropriated to the movements of the limbs, jaws, and other appendages. The former are entirely composed of fleshy fibres; the latter are provided with tendinous insertions, by which their force is concentrated and made to act with precision upon a given point of the skcleton.
(799.) The connecting muscles are generally arranged in broad parallel bands, arising from the inner surface of a given segment, and passing
on to be inserted in a similar manner into another segment, so that by their contraction the cavity in which they are lodged is diminished by the approximation of the different rings : these have no tendons.
(800.) The locomotive muscles, of course, take their character from the joints of the limb upon which they act; and as we have already seen that these movements are gencrally confined to those of a hinge, the muscular fasciculi may be conveniently grouped into two great classes-the fexor muscles, that bend the joint, and the extensors, by which it is again straightencd, and brought back to its former position. This simple arrangement will be best understood by an inspection of fig. 237, representing the muscles of the leg of a Cockchafer (Melolontha vulgaris), as they are depicted by Straus-Dürckhcim*. In the thigh, for example, there are two muscles, one of which bends, the other straightens, the tibia. The flexor (fig. 237, a) arises from the lining membrane of the fcmur, and is inserted by a tendon into a process of the tibia in such a manner as to flex the leg upon the thigh ; while its antagonist (b), attached to a process derived from the other side of the joint, has an opposite effect, and by its contraction extends the leg. In the tibia there are likewise two muscles, so disposed as to move the entire tarsus and foot. The extensor (f) of the tarsus is the smallest; it arises from the lower half of the interior of the tibia, and is inserted into the margin of the first joint of the tarsus: but the flexor of the foot (c), arising from the upper half of the cavity of the tibia, ends in a delicate tendon, which passes through all the tarsal scgments, to be fixed to the flexor tendon of the claw-joint, upon which it acts; and as it traverses the penultimate joint it receives the fibres of an accessory muscle (d). The extensor of the claw (e) is likewise placed in the penultimate tarsal segment, and strikingly exhibits, by its small comparative size, the feebleness of its action when compared with that of the flexors of the same joint.
(801.) It would be superfluous to describe

Fig. 237.

Museles of the leg of a Cockchafer (Melolontha vulgaris): a, flexor, and b, extensor of the tibia; c, flexor of the foot; d, its aceessory musele : e, extensor of the claw; f, cxtensor of the tarsus. more in detail the disposition of individual muscles, as the above example will abundantly suffice to give the reader an idea of the

[^104] quelles on a joint l'Anatomic deseriptive du Hanneton. 1 vol. 4to. Paris, 1828.
general arrangement of the muscular system, not in insects only, but in all the Articolata provided with jointed extremities.
(S02.) The substances employed as food by insects are various, in proportion to tho extensive distribution of the class. Some devour the leares of vegetables, or feed upon grasses and succulent plants; others destroy timber, and the bark or roots of trees; while some, more dclicately organized, are content to extract the juices of the expanding buds, or sip the honeyed fluids from the flowers. Many tribes are carnivorous in their habits, armed with various weapons of destruction, and carry on a perpetual warfare with their own or other species; and again, there are countless swarms appointed in their various spheres to attack all dead and putrefying materials, and thus to assist in the removal of substances which, by their accumulation, might prove a constant source of annoyance and mischief. Such differences in the nature of their food demand, of course, corresponding diversity in the construction of the instruments employed for procuring nourishment; and aecordingly we find, in the structure of the mouths of these little beings, innumerable modifications adapting them to different offices. The mouths of all creatures are constructed upon purely mechanical principles; and in few classes of the animal world have we more beautiful illustrations of design and coutrivance than in that before us: jaws armed with strong and penetrating hooks for seizing and securing active and struggling prey-sharp and powerful shears for clipping and dividing the softer parts of vegetablessaws, files, and augers for excavating and boring the harder parts of plants -lancets for piercing the skin of living animals - siphons and suckingtubes for imbibing fluid nutrimentall these, in a thousand forms, are met with in the insect world, and thus provide them with the means of obtaining food adapted to their habits, and even of constructing for themselves edifices of inimitable workmanship.
(803.) Parts of the mouth.-The mouths of insects may be divided into two great classes :- those which are

Fig. 238.

Head of Cochroach (Blatta), showing the parts of the mouth: a, upper lip (labrum); b, lower lip (lubium); d, labial palpi ; e, mandibles; f, maxillæ; g, maxillary palpi. adapted for biting, forming what is called a perfect or mandibulate mouth; and those which are so constructed as only to be employed in sucking, constituting the suctorial, haustellate mouth. It is in the former of these divisions that all the parts composing the oral apparatus are most completely developed; we shall therefore commence by describing the different picces of which a perfect mouth consists, viz. an upper and an under lip, and four horny jaws. We select the mouth of the Dragon-
fly (fig 239,1) as an example. The upper lip (labrum, B) is a somewhat convex corneous plate, placed transversely across the upper margin of the cavity wherein tho jaws are lodged, so that, when the mouth is

Fig. 239.

Mouth of the Dragonfly. A, head entire; B, labrum ; C, mandibles; D, lingua; E , labium ; F , maxilla.
shut, it folds down to meet the under lip (labium); and these two pieces more or less completely eonceal the proper jaws, which are lodged between them.
(804.) The upper pair of jaws (mandibulce) are two hard and powerful hooks (fig. 239, c), placed immediately beneath the upper lip, and so articulated with the chceks that they move horizontally, opening and shutting like the blades of a pair of scissors. Their concave edge is armed with strong denticulations of various kinds, sometimes furnished with cutting edges that, like sharp shears, will clip and divide the hardest animal and vegetable substances; sometimes they form sharp and pointed fangs, adapted to seize and pierce their victims; and not unfrequently they constitute a series of grinding-surfaces, so disposed (like the molar teeth of quadrupeds) as to triturate and bruise the materials used as food. The variety of uses to which these mandibles can be turned is indced amazing. In the carnivorous Beetles, their hooked points, more formidable than the teeth of the tiger, penetrate with ease the mailed covering of their stoutest congeners; and in the Dragonfly they are scarcely less formidable weapons of destruction. In the Locust tribes these organs are equally efficient agents in cutting and masticating leaves and vegetable matters adapted to their appetites ; while in the Wasps and Bees they form the instruments with which these insects build their admirable edifices, and, to use the words of a popular author, supply the place of trowels, spades, pickaxes, saws, scissors, and knives, as the necessity of the case may require.
(805.) Beneath tho mandibles is situated another pair of jaws, of similar construction, but generally smaller and less powcrful ; these are called the maxilla (fig. 239, F).
(806.) The lower lip, or labium (fig. 239, E), which closes the mouth infcriorly, consists of two distinct portions, usually described as scparate organs :-the chin (mentum), that really forms the inferior border of the mouth ; and a membranous or somewhat fleshy organ, reposing upon the chin internally, and called the tongue (lingua) of the insect (D).
(807.) All these parts enter into the composition of the perfect mouth of an insect, and, from the numerous varietics that occur in their shape and proportions, they becomc important guides to the entomologist in the detcrmination and distribution of species. For more minutc details concerning them, the rcader is necessarily referred to authors who have devoted their attention specially to this subject; we must not, however, omit to mention certain appendages or auxiliary instruments inserted upon the maxillce and the labium, usually named the palpi, or feelers, and most probably constituting special organs of touch, adapted to facilitate the apprehension and to examine the nature of the food. The maxillary feelers (palpi maxillares) are attached to the external margin of the maxillæ by the intervention of a small scale and very pliant hinge, and consist of several (sometimes six) distinct but extremely minute pieces articulated with each other. The labial feelers (palpi labiales) arc inserted into the labium close to the tongue, or occasionally upon the chin (mentum) itself. The joints in the labial palpi are generally fewer than in the maxillary; but in other respects their structure and office appear to be the same.
(808.) In the suctorial orders of insects we have the mouth adapted to the imbibition of fluid nutriment, and consequently constructed upon very opposite principles ; yet, notwithstanding the apparent want of rescmblance, it has been satisfactorily demonstrated by Sarigny* that the parts composing a suctorial mouth are fundamentally the same as those met with in the mouths of mandibulate insects, but transformed in such a manner as to form a totally different apparatus.

Fig. 240.

Proboscis of the Hire-bee (Apis mellifica).
(809.) According to the distinguished authors of the 'Introduction to Entomology' \dagger, there are five kinds of imperfect mouth, adapted to suction, each of which will require a separate notice.
(810.) The first is met with among the Hemiptera, and is formed to perforate the stalks and buds of vegetables, in order to procure the juices

[^105]which they contain ; or, in some bugs, it is employed to puncture the intcgument of living animals for a similar purpose. This kind of mouth is exhibited in fig. 241. First, there is a long jointed sheath ((l), which is in fact the lower lip (lubium) considerably elongated, and composed of three or: four parts articulated together ; sccondly, there is a small conical scale covering the basc of the sheath last mentioned, and represcuting the upper lip ; and between these are four slender and rigid bristles or lancets (scalpella) (c), that, when not in use, are lodged in a groove upon the upper surface of the shcath, so as to be concealed from view. These lancets are, in reality, only the mandiblcs and maxillæ strangely altered in their form and excessively lengthened, so as not merely to become efficient tonecta): a, eyes; b, b, anterne; ; piercing instruments, but so disposed as to form

Fig. 241.

Head of Water-boatman (Noc, scalpclla ; d, elongated labium. by their union a suctorial tube, through which animal or vegctable fluids may be imbibed. This kind of mouth, when not employed, is usually laid under the thorax, between tho legs, in which position it is easily seen in most Hemiptera and Homoptera (fig. 218). In some familics, as, for example, in the Plant-lice (Aphicles), it is of extraordinary length : thus, in the aphis of the oak it is three times as long as the whole body of the insect, projecting posteriorly like a tail ; and in the fir-aphis it is still longer.
(811.) The sccond kind of mouth is that met with among the Diptera; and from its construction in some tribes we may well understand how they are enabled to become so seriously annoying. The Gnat and the Mosquito furnish sufficiently well-known examples of the formidable apparatus in qucstion, which in the Horsc-fly (Tabanus) seems to attain its maximum of dcvelopment. The oral organs of the Diptera are composed of:-a sheáth

Mouth of Gad-(ly (Tabanus): a, a, palpi; $b c$, glossarium ; d, d, cultelli ; e, e, scalpelli; f, labium or proboscis, that represents the lower lip of the mandibulate insects : it is sometimes coriaceous or horny in its texture, in other cases (as in the common Flesh-fly) soft and muscular and folds up when at rest in such a manner as to form two angles, representing the letter Z. At the base of this sheath or proboscis there is a small upper lip, between which and the sheath are lodged the setr, knives, or lancets, which form such terrible instruments for cutting or piercing the skin of their victims. These cutting
parts vary in number from one to five; when they are all present, the upper pair (cultelli, or knives) represent the mandibles of a perfect mouth, the two lower ones (scalpella, the lancets) are the maxilla, the fifth or middle piece (glossarium) is the tongue ; and between them all is the oral opening. The strength of the above piercing instruments varies greatly: in the Guat they are finer than a hair, very sharp, and

Fig. 243.

Head of Flea (Pule irrituns), showing the parts of the mouth : a, a, palp; b, b, triangular plates; c, c, mandibles; d, d, maxillæ; e, lingua.
barbed occasionally on one side; while in the Gad-fly they are flat, like the blades of a lancet or penknife (fig. 242); occasionally they are so constructed as to form a tube by their ion, through which the liquid aliment is sucked up and conveyed into the stomach.
(812.) The mouth of the Flea, although described by Kirby and Spence as forming a distinct type of structure, differs very little from

[^106]that of the Diptera described above, as will be at once evident on inspecting the figure in the preceding page, reduced from a beautiful drawing by Mr. W. Lens Aldous.
(813.) In this insect the piercing organs are two sharp and razorlike instruments (fig. 243, d, cl), placed on each side of the elongated tongue (e), and enclosed in a sheath (c, c), probably formed by picces representing the mandibles of mandibulate insects. Two palpi or feelers (a, a) and a pair of triangulate plates (b, b) complete this remarkable apparatus.
(814.) Another kind of mouth adapted to suction, and which seems to differ more widely from the perfect form than any we have as yet examined, is that which we mect with in Moths and Butterflies. This singular organ is adapted to pump $u p$ the nectarcous juices from the cups of flowers, and is necessarily of considerable length, in order to enable the inseet to reach the recesses wherein the honeyed stores are lodged. When unfolded, the apparatus in question represents a long double whip-lash (fig. 244, $a b c d$); and if earcfully examined under the microscope, each division is found to be made up of innumerable rings connected together, and moved by a double layer of spiral muscular fibres, that wind in opposite directions around its walls. When notin use, the proboscis is coiled up and lodged bencath the head; but when uncurlod, its structure is readily examined. Each of the two long filaments composing this trunk (which, in fact, are the representatives of the maxillae excessively lengthencd) is then seen to be tubular ; and, when

> Mouth of a Butterly partially unfolded. a, its point of attachment; b, spiral muscular walls; $c d$, its attenuated extremity, showing its division into two lateral halves. they are placed in contact, it
such an arrangement, however, which would be quite anomalous, may reasonably be doubted. In this mouth, thercfore, all the parts, except the maxillæ, would seem at first sight to be wanting; they may nevertheless be detected upon a very careful cxamination, and rudiments of the upper lip, of the mandibles, of the lower lip, as well as of the labial and maxillary palpi, be distinctly demonstrated.
(815.) The last kind of mouth to which we shall advert is that met with in the Louse-tribe (Pediculi); but, from the extreme minuteness of the parts composing it, the details of its structure are only imperfectly known. It seems to consist of a slender external tube, wherein a sharp sucker, armed with barbs adapted to fix it securely during the act of sucking, is lodged; when feeding, the barbed piercer is denuded and plunged into the skin, where it is retained until a sufficient supply of nourishment has been obtained.
(816.) Inviting as the subject is, we are compelled, by the strictly general character of our investigations, to abstain from entering upon further details concerning the mouths of perfeet insects, and consequently to omit notieing innumerable secondary modifications in the meehanical structure of the oral organs of these little animals. When we turn our attention to the consideration of their internal viscera, connected with the preparation and digestion of so many different materials, we may well expect to find equal variety of conformation ; and, in fact, the course, dimensions, and relative proportions of the alimentary canal will be seen to be different, to a greater or less extent, in almost every species. Considered as a whole, the internal digestive apparatus of insects must be regarded as a delicate membranous tube, in which the digestion of the substances used as food is accomplished partly by mechanical and partly by chemical agency. For the former purpose, gizzard-like muscular cavities are not unfrequently provided; and to fulfil the second, various fluids are poured into the canal in different parts of its course. The arrangement of the cavities and the nature of the secreting vessels, however, will be modified in conformity with the necessities of the case, and certain parts will be found to exist, or to be deficient, as circumstances may require ; it would be absurd, therefore, to attempt to describe particular examples; our observations must be of general application, and such as will enable the reader to assign its proper function to any organ which may present itself to his notice. The first part of the digestive apparatus is disposed in the same manner in all insects, and is a slender canal arising from the mouth and passing straight through the thorax into the cavity of the abdomen ; this portion represents the œesophagus (fig. 245, a a; fig. 246, 0). The stomach and intestine succecd to this ; and if the body of the insect is very thin, their course also passes nearly in a direct line to the tail. But in those familics which have the abdomen thick and largely developed, especially if herbivorous, the intestine becomes much clongated and winds
upon itself in various convolutions; nevertheless, however tortuous the canal may be, its windings are never sustained by any mesentery or peritoneal investment: the air-tubes (which, as we shall afterwards see, pormeate the body in all directions) form a sufficient bond of connexion, and one which is better adapted to the wants of these animals.
(817.) We must now examine more minutely the different portions of which the alimentary eanal may eonsist, premising at the same time that the structures mentioned do not invariably exist together, as sometimes one part and sometimes another may be entirely wanting, or only found in a very rudimentary condition. They are the crop, the gizzaird, the stomach, the small intestine, and the large intestine.
(818.) The crop, or sucking-stomach, as it is called by some writers, is only met with in Hymenoptera, Lepidoptera, and Diptera-insects which have no gizzard*. In Bees, Wasps, and other Hymenoptera, it is a simple bladder-like distention of the ocsophagus (fig. 245, b) ; in Butterflies and Moths it forms a distinct bag, that opens into the side of the gullet (fig. $246, v v$); while in the Diptera it is a detached vesicle, appended to the œsophagus by the intervention of a long thin duct. This organ, which in Bees is usually called the honeybladder, is regarded by Burmeister (who founds his opinion upon the result of experiments made by Treviranus upon living insects) as béing not merely a receptacle for food, resembling the craw of birds, as Ramdohr \dagger and Meckel consider it, but as being a sucking instrument for imbibing liquids, by becoming distended, as he expresses it, and thus, by the rarefaction of

Alimentary canal of the Honey Bee, Apis mellifica: a, cesophagus; b, the crop or suck-ing-stomach; $c d d$, the stomach proper; $e e$, small intestine; f, large intestine; g, anal orifice; h, h, biliary vessels; i, i, auxiliary glands. the air contained within it, facilitating the rise of the fluids in the proboscis and cesophagus. It must, however, be confessed that there is something very anomalous in the idea of a delicate bag having the power of distending itself: its muscular walls might indeed contract; but that a thin saceulus should forcibly expand itself would be a fact new to physiology.
(819.) The gizzurl is found in insects which possess mandibles and live upon solid animal or vegetable substances. It is a small round carity with very strong muscular parietes, situated just abore the

* Burmeister, op. cit. p. 125. Treviranus, Vormischte Schriften.
+ Randohr, Ueber die Verdaungsworlkzouge dor Jnsekten. 1Ialle, 1811.
stomach properly so called, and, like the gizzard of granivorous birds, is employed for the comminution of the food preparatory to its introduction into the digestive stomach. In order to effeet this, it is lined intermally with a dense eutieular membrane, and oceasionally studded with hard plates of horn, or strong hooked teeth, adapted to erush or tear in pieees whatever is submitted to their action.
(S20.) When bruised in the gizzard, the food passes on in the proper stomaeh, whieh is gencrally a long intestiniform organ (fig. 245, d d), extending from the crop or gizzard to the point where the biliary vessels diseharge themselves into the intestine. The size and shape of this organ varies, of eourse, with the nature of the food. Thus, in the Butterfly, which scareely eats at all, or sparingly sips the honey from the flowers, it is very minute (fig. 246, b); but in insects that live upon eoarse and indigestible materials, it is proportionately elongated and eapacious.
(821.) The stomaeh generally ends in the small intestine (fig. 245, e; fig. 246, i) ; but this is occasionally entirely wanting, so that the stomach seems to terminate immediately in the colon or large intestine, which is the terminal portion of the alimentary eanal : when much developed, the small intestine is sometimes divided by

Alimentary canal of a Butterfly: a a, proboscis ; p, mouth; $m m$, pharynx ; s $p, s p$, salivary glands; o, œsophagus; $v v$, crop, communicating by a canal ($c f$) with the stomach proper (δz); i, small intestine; k, large intestinc ; g, g, g, hepatic ressels ; h, n, their terminations in the vicinity of the pylorus. a eonstrietion into two parts, to which the names of duodenum and ilium have been applied by entomological writers. Tho eolon (fig. 245, f; fig. 246,7) is separated from the small intestine by a distinct valve ; and in eonnexion with its commeneement a wide blind saeculus or cæeum is often met with.
(822.) We may now notiee the secerning organs that pour fluids into diffurent parts of the digestive apparatus, beginning with those which open into the osophagus in the vicinity of the mouth, and examining them in the order of their oeeurrenee as wo proceed backwards.
(823.) The first are tho salivary vessels, terminating in the neighbourhood of the mouth itself, into which they seem to pour a secretion
analogous to saliva. These glands aro principally met with in suctorial insects, but not unfrequently among the mandibulate orders. Their form varies; but they aro generally simple slender tubes, that float loosely among the juices of tho body, from which they separate the salivary fluid. There are, for the most part, only two of these organs (fig. 246, s s) ; but in fleas (Pulex) and bugs (Cimex) there are four; and in a water-bug (Nepa) there are six such vessels, all of which open into the cavity of the mouth. The fluid supplied by the salivary glands is usually mercly intended to facilitate deglutition; but there are cases in which the saliva is excessively acrid and irritating, acting as a kind of poison when infused into a puncturo made by the mouth: this is especially remarkable in many bugs and gnats, and is the chief cause of the pain and inflammation frequently occasioned by their bite.
(824.) Besides the proper salivary vessels, there are other glands, or rather cæca, opening into the stomach itself, and occasionally covering the entire surface of that organ, as is the casc in somo water-beetles (Hydrophilus) : these, no doubt, secrete a fluid subservient to digestion; but whether of a peculiar description, or allied to saliva in its properties, is unknown.
(825.) The third kind of auxiliary vessels connected with the intestinal canal of insects are supposed to furnish a secretion analogous to the bile of other animals, and consequently to represent the liver. These bile-vessels (fig. 245, $h \mathrm{~h}$; fig. 246, $g \mathrm{~g}$) are generally four, six, or eight in number, but occasionally much more numerous ; they are usually of great length, but exceedingly slender, and wind around the intestine in all directions. When unravelled, they are found to terminate in the ncighbourhood of the pylorus (fig. 246, h, n), close to the commencement of the intestine, at which point the secretion produced by them is mixed with the food after it has undergone the process of digestion.
(826.) Appended to the termination of the alimentary tube, close to its anal extremity, other vessels are met with in some insects, that are looked upon by authors as being allied in function to the kidueys of higher animals; but apparently this opinion rests upon very doubtful grounds. They indubitably furnish some secretion, the use of which is perhaps connected with defecation; but that it is of the same character as the fluid separated by the renal crgans of Vertebrata may well be called in question, as no such parts are distinctly rccognizable until we arrive at much more elevated forms of life than the insects we are now considering. There is, however, another reason for rejecting the opinion that these accessory vesscls secrete urine; and that is, that they are only met with in a few beetles and some species of Orthoptera-a circumstance that alone would be sufficient to disprove such a supposition.
(827.) In the vertebrate animals, as the reader is well aware, the nutritious products of digestion are taken up by a system of absorbing vessels that ramify extensively over the coats of the intestine; and the
nutriment is thus conveyed into the mass of the circulating fluid by ducts appropriated specially to this office: in aninials of less perfect structure than these, such as the Mollusca, the veins themsclves absorb the mutritive matcrials. But in insects, in which we find neither absorbents nor veins, a different arrangement is necessary, and, in the little creatures before us, nutrition appears to be earried on by the simple transudation of the chylo through the coats of the intestine ; so that it escapes into the general cavity of the abdomen, where, as we shall see when we examine the arrangement of their circulating organs, it is immediately mixed up with the blood. This transudation has indeed been actually witnessed by Ramdohr and Rengger*, and even analyzed by the last-mentioned physiologist, who found it to consist almost entirely of albumen.
(828.) The respiratory organs of the Insecta, as well as their circulatory apparatus, are arranged upon peeuliar principles, and are evidently in relation with the capability of flyiug which distinguishes these minute yet exquisitely eonstructed animals. Any localized instruments for breathing, whether assuming the shape of branchiæ or lungs, would materially have added to the weight of the body, and moreover have rendered necessary an elaborate apparatus of arteries and veins for conreying the blood to and fro for the purpose of purifying it by securing its exposure to the influence of air. By the plan adopted, however, all these organs are dispensed with ; and the organs of respiration, so far from inereasing the weight of the animal, actually diminish its specific gravity to the greatest possible extent. The blood in insects is not brought to any given spot to be exposed to oxygen ; but the air is conveyed through every part of the system by innumerable tubes provided for that purpose ; and thus all the complicated parts usually required to form a vascular system are rendered unnecessary. These observations, however, only apply to the insect in its perfect state; for in the larra- and pupa-conditions, where flight is not possible, various additional organs, frequently of. eonsiderable bulk, are provided, that we shall speak of in another place. If we examine the external skeleton of any large insect (a beetle, for cxample), we shall find, between the individual segments of the body, minute apertures or pores (spiracles) through which the air is freely admitted: these openings, normally ten in number on each side of the body, are situated in the soft membrane interposed between the different rings, and not in the rings themselves,a provision for the purpose of allowing their orifiees to be opened or closed at pleasure, instead of being rigid and motionless. The margin of the spiracle is frequently encompassed by thick horny lips, moved by muscles provided for the purpose, so that tho opening can be shut at pleasure, in order to exclude any extraneous substances that might

[^107]otherwise obtain admission. In many iusects, indeed, especially in bectlos which erawl upon the dusty grouud, an additional provision is neeessary to prevent the entrance of foreign matter; in sueh easos the spiraeles are furnished with a valvular apparatus, so disposed as to form a sieve of exquisite finencss, - a bcautiful contrivance by which the air is filtered, as it were, before it is allowed to pass into the breathingtubes, and thus freed from all prejudicial partieles. From every spiracle is derived a set of extremely delicate tubes (trachece), that pass internally, and become divided andsubdivided to anindefinitc extent, penetrating to every part of the body, and ramifying through all the viscera; so that air is thus supplied to the entire system. Upon more minutely inspecting these air-tubes, they are found to assume various forms in diffcrent parts of tho body, - being sometimes simple tubes of exquisite delicacy ; in other eases they present a beaded or vesicular structure ; and in many

Fig. 247.

Respiratory apparatus of Melolontha vulgaris. inscets they are dilated at intervals into capacious cells or receptacles, wherein air is retained in great abundance. The beantiful figure above given (fig. 247), taken from Straus-Dürekheim's elaborate work upon the anatomy of the Cookchafer, will illustrato this arrangement. The spiracles, situated at tho points respectively marked by the letters $a, b, c, d, c, f, g, h, i$, open into two wido air-trunks, disposed longitudinally along the whole length of the body: from these, innumerable
secondary branches aro given off, many of them being seen to dilate into oval vesicles, from which smaller trachex procced; while others, without any vesicular enlargement, plunge at once into different textures, and supply the viscera and internal organs. The muscular system, the legs, the wings, the alimentary canal, and even the brain itsclf are permeated in all directions by these air-conducting tubes; and thus the oxygen penetrates to every corner of tho body.
(829.) There is one circumstance connected with tho trachore which is specially deserving of admiration, whether wo cousider the obvious design of the contrivance, or the remarkable beauty of the structure employed. It is crident that the sides of canals so slender and delicate as the tracher of inscets would ineritably collapse and fall together, so as to obstruct the passage of the air they are destined to convey; and the only plan calculated to obviate this would appear to be, to make their walls stiff and inflexible. Inflexibility and stiffness, however, would never do in this case, where the vessels in question have to bo distributed in countless ramifications through so many soft and distensible viscora; and the problem therefore is, how to maintain them permanently open, in spite of external pressure, and still preserve the per-

Fig. 248.

Trachcal tube of an insect, highly magnifed, showing, at a, the elastic spiral thread. fect pliancy and softness of their walls. The mode in which this is effected is as follows:-Between the two thin layers of which each air-ressel consists, an elastic spiral thread is interposed (fig. 248, a), so as to form by its revolutions a firm cylinder of sufficient strength to ensure the calibre of the vessel from being diminished, but not at all interforing with its flexibility, or obstructing its movements ; and this fibre, delicato as it is, may be traced, with the microscope, even through the utmost ramifications of the tracheæ,-a character whereby these tubes may be readily distinguished.
(830.) There is a limit, observes Dr. Williams *, different in different structures, at which the spiral thread ceases; and at this point tho membranous trachea begins. It is not the external covering, which ceases, but the spiral, which, growing less and less visible, graduates insensibly

[^108]into a continuous tube. The diametcr of the "spiral" trachea constantly decreases as it divides; that of the mombranous observes, throughout its entire coursc, whether it multiply into a network, or wavy brushes, or into the muriform plexus which exists in the substance of muscles, a uniformity which can compare only with that of the true bloodcapillaries of the vertcbrate animal. The tracheæ terminate differently, and form different plexuses, in different organs, according to the varying mechanical arrangements of the ultimate parts of the latter. They are evidently air-tubes throughout, even to their final extremes.
(831.) The primary, secondary, and tertiary air-tubes divide and subdivide arborescently, the branches never uniting, but the ultimate ramifications dividing and subdividing in the same profuse retiform manner as the blood-capillaries of the vertebrate animal, supplying the museles, the glands, the mucous membranes, the brain, and every other viscus. The large air-tubes which travel along the axes of the spacious bloodchannels detach from their sides here and therc minute wavy branches which float in the blood, and appear to be expressly intended to aërate the fluids.
(832.) In all the transparent structures of insects, sueh as the wings, antennæ, branchix, \&c., the blood-currents travel in the same passages as the tracheæ. On closer scrutiny it will be secn that a clannel (such as that of the nervure of the wings) bearing in its centre a large tracheal tube exhibits on one side a current going in one direction, on the other another bearing in an opposite course. These are afferent and efferent, arterial and venous blood-streams. They are bounded by separate walls. The afferent current is circumseribed by its own proper coats, the efferent by its own ; and the trachea is placed intermediately, having parietes quite distinct from, although eontiguous with, those of the blood-channels. This coincidenee between the trachere and the bloodcurrents can be traced in the wings nowhere beyond the limits of the nervures into the scaly spaces that they eircumscribe. The returning of the corpuscles at a certain point renders this fact quite unquestionable. Beyond this limit, only the fluid elements, not the corpuscles of the blood, penetrate. In this extravaseular region it is cyclosis, not circulation, which governs the movements of the nutritive fluid. If, says Dr. Williams, everywhere the blood and the air travelled together, the inference would be that the sole design of the tracheal apparatus of the insect consisted in aërating the fluids. Sinee, however, the blood returns mueh beforc the trachew reach their remote penctralia, it is evident that the tracheal system in the insect fulfils some other function. What ean be the meaning of those incomparable pneumatic plexuses (veritable retia mirabilia) which embrace immediately the very ultimate clements of the solid organs of the body-those microscopic air-tubes which carry oxygen in its gaseous form, unfluidificd by any intervening liquid, to the very seats of the fixed solids which con-
stitute the fabric of the organism? The intense electrical and chemical effects dereloped by tho immediate presence of oxygen at the actual secne of all the mutritive operations of the body, fluid and solid, give to the insect its vivid and brilliant life, its matchless nervous activity, its oxtreme muscularity, its voluntary powor to augment the animal heat. Such contrivance, subtle and unexampled, reconciles the paradox of a being, microscopic in corporeal dimensions and remarkable for the rclative minuteness of the bulk of its blood, sustaining a frame graceful in its littleness, yet capable of prodigious mechanical results.
(833.) We must now consider the mechanism by which air is perpetually drawn into the body of the insect, and again expelled. If the abdomen of a living insect be carcfully watched, it will be found continually performing movements of expansion and contraction that succeed each other at regular intervals, varying in frequency, in different species, from twenty to fifty or sixty in a minute, but occurring more rapidly when the insect is in a state of activity than when at rest. At each expansion of the abdomen, therefore, air is sucked in through all the spiracles, and rushes to every part of the body; but when the abdomen contracts, it is forcibly expelled through the same openings. Burmeister even supposes that the humming noises produced by many insects during their flight must be referred to the vibration caused by the air streaming rapidly in and out of the spiracular orifices. Insects which live in water are obliged, at short intervals, to come to the surface to breathe, at which time they take in a sufficient quantity of air to last them during the period of their immersion ; but if the spiracles are closed by any accident, or by the simple application of any greasy fluid to the exterior of their body, speedy death, produced by suffocation, is the inevitable result.
(834.) A moment's reflection upon the facts above stated concerning the respiration of insects will suggest other interesting views connected with the physiology of thesc little creatures. It is evident, in the first place, that their blood is all arterial ; they can have no occasion for reins, as they have no venous blood, the whole of the circulating fluid being continually oxygenized as its principles become detcriorated. The perfection of their muscular power, their great strength and indomitable activity, are likewise intimately related to the completeness of their respiration; so that the vital energies of the muscular system are developed to the utmost, endowing them with that vigorous flight and strength of limb which we have already scen them to possess. It must likewise become apparent that, as the blood is freely exposed to the influence of oxygen in every portion of the insect to which the air-tubes reach, one great nccossity for the existence of a circulatory apparatus is entirely done away with, and, as we have observed before, all those parts of the vascular system required in other animals for the propulsion of the vitiated blood through pulmonary or branchial organs are no longer
requisite ; so that, by dispensing with the complicated structures usually providod for this purposo, the body is considerably lightened. The circulation of tho nutritive fluids is, in fact, limited to their free diffusion amongst all tho internal viscera, and is effected in the following manner. If wo oxamine the back of a siljkworm, or of any transparent larva, a long pulsating tubo is seen running beneath the skin of tho back, from one end of the body to the other. Its contractions may readily be watched: they are found to begin at the posterior extremity, and are gradually continued forwards; so that the vessel presents a continual undulatory movement, by which the fluid contained in its interior is pushed from the tail towards the head. This dorsal vessel, which may be so well observed in the thin-skinned larva, oxists likewise in the perfect insect, although, from the opacity of the integument, its movement is no longer apparent except by the vivisection of the animal.
(835.) This dorsal vessel (or heart, as we shall call it for the sake of brevity) is organized in a very singular manner; for, instead of being a closed viscus, it communicates most freely, through several wide lateral apertures, with the cavity of the abdomen, and thenee derives the blood with which it is filled. The dorsal vessel is widest in the abdominal region, but is continued, nevertheless, through the thorax into the head, where it terminates as a simple or furcate tube-that is, not closed, but open at the extremity.
(836.) The structure of this remarkable heart has been fully investigated by Straus-Dürekheim*, and is extremely curious : it eonsists, in the Cockchafer, of eight distinct compartments, separated from each other by as many valves formed by productions from the lining membrane, and so disposed that the blood passes freely from the hinder chambers into those which aro placed more anteriorly, but is prevented from returning in the opposite direction.
(837.) Each compartment of the dorsal vessel communicates by two wide slits, likewise guarded by valves, with the cavity of the belly ; so that fluids derived thence will readily pass into the different chambers, but cannot again escape through the same channel. The arrangement, however, of these valves will be best understood by reference to the accompanying figure (fig. 249), representing a magnified view of the interior of a portion of the heart of tho Cockchafer, as depicted by the celebrated entomotomist before alluded to. The organ has been divided longitudinally, so that one-half only is represented upon a very large scale. The compartments ($a \alpha a$) are distinctly composed of cireular museular fibres; tho large valves ($d d$ d separate the individual chambers, allowing the blood to pass in one direction only, viz. towards the head; while the openings (c), likewise closed by scmilunar membranous valves, admit blood from the cavity of the abdomen, but effectually prevent its return.
(838.) Let us now consider the movements of the circulating fluids produced by the contractions of this apparatus. The chyle or nutritive material extracted by tho food exudes, as we lave already scen, by a species of percolation, through the walls of tho intestinc, and escapes into the carity of tho abdomen, where it is mixed up with the mass of the blood, which is not contained in auy system of ressels, but bathes the surface of the riscera immersed in it. When any compartneent of the heart relaxes, the blood rushes into it from the abdomen through the lateral valvular apertures ; and as it cannot return through that opening on account of the valves (c) that guard the entrance, nor escape into the posterior divisions of the heart by reason of the valves d, the contraction of the dorsal vessel necessarily forces it on towards the head. When it arrives there, it of course issues from the perforated termination of the heart, but does not appear to be received by any vessels, and therefore becomes again diffused through the body. The diffused character of the circulation met with in insects may easily be made a matter of observation in many of the transparent aquatic larvæ that are readily to be met with. When any of the limbs of theso larve are examined under a powerful microscopo, continual currents of minute oat-shaped globules are everywhere distinguishable, moving slowly in little streams-some passing in one direction, others in the opposito: but that these streams

Fig. 249.

Internal view of a portion of the dorsal vessel of a Cockchafer: $a a a, b b$, muscular walls of the compartments; d, d, in tercompartmental valves; c, valve defending one of the orifices communicating with the general cavity of the abdomen. are not contained in vascular canals is quite obvious from the continual changes which occur in the course of the globules; their movements, indeed, rather resemble those of the sap in Chara and other transparent regetables, in which the circulation of that fluid is visible under a microscopc.
(839.) The organs appropriated to furnish the different secretions met with in the economy of insects are modified in their structure to correspond with the character of the circulation, and are invariably simple tubes or vesicles of various forms immersedi in the fluids of the body, from whieh they separate their peculiar products. The poisonous saliva of bugs, and the innoxious salivary fluid of other inseets, the bile and auxiliary secretions subservient to digestion, the venom which arms the sting of the wasp, and the silky envelope of the caterpillar are all derived from the same source, and in some mystorious manner elaborated from the blood by variously shaped vessels: but of this we have
alroady given many examples, and others will present thenselves in the following pages.
(840.) In the nervous system of the Insecta, we have many interesting illustrations of that gradual concentration of the parts composing it, and eonsequently of increased proportional development of the nervous centres, corresponding with the more active movements and higher faculties by which the class bcfore us is so remarkably distinguished from those forms of articulated animals that we have hitherto had an opportunity of examining. The supracsophageal ganglion, or brain, assumes a preponderance of size, in relation to more perfect organs of scuse and to instincts of a more exalted eharacter ; the chain of ganglia placed along the floor of the abdomen is composed of a few large masses of sufficient power to animate the strong and cnergetic muscles of the limbs; and, moreover, anatomists have detected the existence of an additional nervous apparatus, apparently representing the sympathetie system of vertebrate animals, which is distributed to the viscera appropriated to digestion. Each of these divisions will therefore require a separate notice.
(841.) The brain, or encephalic ganglion (fig. 250,1) is a verrous mass of considerable size, placed above the gullet: it eonsists essentially of two ganglia united into one mass ; and from it all the nerves appropriated to the special instruments of the senses are derived; so that it may naturally be regarded as the chief seat of sensation and intelligence. The nerves originating from this common sensorium are seen upon an enlarged scale in fig. 251: they are the optic (fig. 251, a), supplying the eyes, and the antennal (fig. 251, e), which run to the special instruments of touch, or antennce-organs of a very singular character, that we shall examine more minutely hercafter. Two other cords of variable length (fig. 251, g, g) are given off from the inferior aspect of the brain, and serve to connect it with the anterior ganglion of the ventral chain (fig. 251, h), to which some writers have thought proper to give the name of cerebellum, though upon what grounds it is difficult to conjecture: the mass last mentioned gives off various nerves to supply the parts connected with the mandibles, maxillo, and other organs of the mouth.
(842.) The rest of the ventral chain of ganglia forms a continuous series (fig. $250,2,3,4,5,6,7,8$) of nervous centres arranged in pairs and united to each other by double cords of communication; but they vary much in number and relative magnitude in different families. Those situated in the thorax are usually of the greatest proportional size, inasmuch as they furnish the nerves that supply the muscles of the wings and legs; the succeeding ganglia give branches to the abdominal segments ; and the last, which is commonly of eonsiderable bulk, supplies the sexual organs and the extremity of the colon.
(843.) It is the general opinion of modern physiologists, that the intimate composition of the nervous apparatus described above is by no
means so simple as it appears to ordinary obsorvation ; and, since the experiments of Sir Charles Bell and Magendio demonstrated the existence of distinct columns or traets in the spinal axis of vertebrate animals, rarious anatomists have endearoured to show that corresponding parts

Anatomy of Meloc: a, the stomach ; b, hepatic vesscls; c, intestinc; d, d, ovaria; e, section of ovary, showing the internal cavity; f, vagina; g, spermotheca; h, i, gluten-secretors: 1 , supraresophageal ganglion of the nervous system ; $2,3,4,5,6,7,8$, ventral ganglia; 99 , nervus vagus; 10, cephalic nerves; 11, optic ganglion.
may be pointed out in the vontral ehain of articulated animals. There ean, indeed, be no doubt that this portion of the nervous system of an inseet eorresponds in function with the medulla spinalis; and if, in the one case, the nerves which preside over the general museular move-
ments arise from a difforent column from that whence the nerves that correspond with the periphery of the body originate, while those which regulate tho motions of respiration emanate from a distinct tract, we may reasonably suppose a similar arrangement to exist in the structure of the nervous systom we are now examining. It has, in fact, been well ascertained that the nerves given off to the muscular system of the Homogangliata are not derived from the ganglionic masses themselves, but from the cords which connect them together, while the nerves distributed to the integument and external parts of the body communicate immediately with tho ganglia. These different modes of origin give presumptivo evidenco that at least two distinct tracts exist in tho central axis of insects ; but, from the extreme minuteness of the different parts, it is not easy satisfactorily to demonstrate them separately. In the larger Articulata, however (as, for example, in the Crustaceans), two distinct columns of nervous matter aro readily detected; it will therefore be more convenient to defer tho investigation of this interesting subject until wo have an opportunity of describing these parts upon an enlarged scale; enough has been said at present to enable the reader to compare the nervous axis of an insect with that of a lobster, and draw correct conclusions from the comparison.
(844.) The last division of the nervous apparatus, which we have already mentioned as being the representative of the sympathetic system, consists of two portions,-one corresponding, in distribution at least, with the nervus vagus of Vertebrata, while the other represents, apparently, the sympathetic ganglia. The nervus vagus, as we shall eall it, and which has been named by

Fig. 251.

Nerrus vagus and sympathetic system of an Insect: a, a, optic nerves; $d d$, supracesophageal ganglion; l, œsophagus; $b b$, origins of the recurrent nerve $i f k$; g, g, nerves surrounding the œesophagus, and communicating between the supra-
 of ventral ganglia, $h ; c c, l l$, sympathetic ganglia. Swammerdam* and Cuvicr the recurrent nerve, arises (fig. $251, b b$) by two roots from the opposite extremities of the brain, close to the origins of the antennal nerves. The nervous cords thus derived soon unite to form a minute central ganglion (fig. $251, i$), from which procceds a single nerve (fig. 251, f 7) that runs with the gullet beneath the brain, and spreads in delicate ramifications upon the œsophagus as far as the muscular stomach (fig. 250, 99), or to the gizzard when that organ exists.
(845.) The sympathetic system properly so called consists of four small ganglia (fig. 251, cc,ll), the two anterior of which communicate

[^109]with the brain and with each other by means of connecting filaments. These ganglia are closely applied to the commencement of the œesophagus, and supply it with minute nerves.
(846.) Various are the conjectures entertained by different authors concerning the senses possessed by the members of the insect world, and the organs subservient thereunto. The possession of certain sources of perception has been alternately granted and denied; the nature of their sensations has been a fruitful subject of inquiry ; and some physiologists have even gone so far as to deny the correspondence of the impressions derived by insects through the medium of their senses with those which we ourselves receive. It would lead us far out of our course did we even advert to the multiplicity of opinions and conjectures promulgated from various sources relative to these inquiries, and, perhaps, with little addition to our real knowledge. It is true that we eannot deny the possibility of the existence of other modes of sensation than those familiar to us; but it is likewise evident that, as we can never have the most remote conceptions concerning their nature, speculations respecting them are not at all calculated to lead to satisfactory conclusions. We must from necessity take our own senses as the standard of comparison, limiting our inquiries to examining how far insects possess means of intercourse with the external world similar to those which we enjoy, and, when we find certain faculties to exist, investigating the structure of the organs by which they are exercised.
(847.) The sense of touch is indubitably bestowed upon all insects; and, to judge from the perfection of the edifices which they build, and the precision of their usual operations, this must be extremely delicate. It is sufficient, however, to look at the external construction of the skeletons of Articulata to perceive that the hard and insensible integument spread over the entire surface of their bodies is but little calculated to receive tactile impressions. The antennæ, or feelers as they are popularly called, have been very generally regarded as being peculiarly instruments of touch; and whoever watches the proceedings of an insect in which these appendages are largely developed will, we apprehend, easily convince himself that they are employed to investigate surrounding objects by contact. Straus-Dürckheim regards the feet as being specially appropriated to tho sense of feeling; but this opinion seems quite inadmissible. Burmeister places tho exercise of touch exelusively in the palpi attached to the maxillæ and labium, and observes that, in the larger inseets, sueh as the predatory Beetles, the Grasshoppers, Humble-bees, and many others, the apex of the palpus is dilated into a white transparent and distended bladder, which, after the death of the insect, dries up and is no longer visible. This bladder he looks upon as the true seat of the sense in question, and remarks that the main nerve of the maxillæ and of the tongue spreads to it, and distributes itself upon its superior surface in minute ramifications.
(848.) Whother taste exists in insects as a distinct sense may admit of dispute : the tonguo, already described, seems but little adapted to appreciate savours; and, secing this, it is obvious that all opinions assiguing tho function of tasting to other parts are purely conjectural. In some moths, however, certain curious appendages exist at the extremity of tho proboscis, which may possibly represent an apparatus either of gustation or of tactile sense (fig. 252).
(849.) Many insects are certainly capable of perceiving odours; of this we have continual proof in the Fleshfly and other specics, that are evidently guided to their food, or sclect the position in which to deposit their eggs, by smell ; but where the olfactory apparatus is lodged is still a matter of doubt. The antennce and the palpi have each had the power of smclling assigned to them, but without much plausibility. The respiratory stigmata have been pointcd out as performing the office of examining the air admitted for the purpose of breathing; yet other authors, with equal probability, look upon the ultimate ramifications of tho trachcæ as forming one extensive nose. The in-

Fig. 252.

Proboseis of Butterfly, in outline; showing its internal structure in the right-hand figure, and in the left its presumed sensitive appendages. terior of the mouth has been indieated by Treviranus * ; while Kirby and Spence find, in the Nccrophori and other insects remarkable for aeuteness of smell, an organ in close connexion with the mouth, to which they attribute the perception of odoriferous particles : this is a cavity situated in the upper lip, containing a pair of circular pulpy cushions covered by a membrane transversely striated or gathered into delicate folds.
(850.) We are searcely better informed concerning the organs of hearing ; but that insects are capable of perceiving sounds is proved by the fact of many tribes being capable of producing audible noises, by which they communicate. There seems, indeed, to be little doubt that the auditory apparatus is in some way or other connected with the antennæ. Some have supposed that theso slender and jointed organs, supplied, as they are, with large nerves, are themselves capable of appreciating sonorous vibrations. Burmeister \dagger thinks that, as in crabs and lobstors, it is at the base of the antenna that the ear is situated, and observes that if wo examine the insertions of theso appendages, we shall deteet there a soft articulating membrane, whieh lies exposed,
and is rendered tense by the movements of the antenna: this he looks upon as represcuting the drum of tho ear, and conceives that it is so placed as to receive impressions of somnd, increased by the vibratory movements communicated to the antenno by the sonorons undulations of the atmosphere.
(S51). In some moths, Treviranus* has discovered structures which would scem to be indubitably real auditory organs. He found in front of the base of each antenna a thin membranous drum, behind whieh, large nerves, derived from thoso supplied to the antennæ, spread themselres out; but this apparatus has not been detected in othor insects.
(S52.) The eyes of insects are of two kinds, simplo and compound, the former being insulated visual specks; whilo the latter consist of agglomerations of numerous distinct eyes, united so as to form most elaborate and complex instruments of sight.
(853.) Some insects, as the Dictyotoptera and Thysanura, only possess simple eyes ; others, as for example the Coleoptera, have only compound eyes; but in general both kinds exist together. In the Sirex gigas (fig. 260), for instance, besides the large hemispherical organs of sight,

Fig. 253.

Structure of the compound eyc of an insect: a, vertical section of the organ; b, optic nerves, retinæ, vitreous humours, and crystalline lenses of an isolated segment: c, shape of the entire apparatus; d, crystalline lenses; e, corneæ with the lenses in situ; f, cornex with the lenses removed, showing their inner surface; g, the same, showing their outer surface. (After Lyonnet.) situated at the sides of the head, three simple spots aro seen upon the vertex, which are likewise appropriated to vision. .
(854.) The strueture of the eyes has bcen most minutely investigated by several distinguished entomotomists ; and the labours of Marcel de Serres \dagger, Joh. Müller \ddagger, Straus-Dürekheim §, and Dugès || have done

* Annalen der Wettcrau. Gesol. f. d. ges. Naturk. vol. i. 1809.
+ Mém. sur les Youx composés et les Yeux lissos des Insectes. Montpellier, 8vo, 1813.
\ddagger Zur vergleichenden Physiologio dos Gesiehtssimnes. 8vo. 1826.
§ Ann. des Sei. Nat. tom. xviii.
$\|$ Ibicl. tom. $x x$.
mueh to dispel tho mistaken notions entertained by preceding anatomists.
(855.) The simple eyes consist of a minute, smooth, convex, transparent cornea, in close contact with which is a small globular lens; behind this lens is placed the representative of the vitreous humour, upon which a nervous filament spreads out, so as to form a retina : the whole is enclosed in a layer of brown, red, or black pigment, which, bending round the anterior surface of the eye, forms a distinct coloured iris and pupillary aperture. Such an arrangement cevidently resembles what is met with in higher animals, and is remarkable for its simplicity. But it is far otherwisc with the compound eyes of insects; for these are constructed upon principles so elaborate and complex that we feel little surprise at the amazement expressed by early writers who examined them, although their ideas concerning their real structure came far short of the truth.
(856.) The compound eyes of insects are two in number, situated on the lateral aspects of the head, the form of each being more or less hemispherical. When examined with a microscope, their surface is scen to be divided into a multitude of hexagonal facets, between which minute hairs are generally conspicuous. The number of facets or cornex (for such, in fact, they are) varies in different genera: thus, in the Ant (Formica) there aro 50 ; in the common House-fly (Musca domestica), 4000 ; in somo Dragonflies (Libcllula), upwards of 12,000 . In Butterflics (Papilio) 17,355 have been counted ; and some Coleoptera (Mordella) possess the astonishing number of 25,088 distinct corner.
(857.) But in order to appreciate the wonderful organization of these remarkable organs of sight, it is necessary to examine their internal structuro : every cornea is then found to belong to a distinct eye, provided with a perfect nervous apparatus, and exhibiting its peculiar lens, iris, and pupil, thus being completely entitled to be considered a distinct instrument of vision.
(858.) By attentively examining the annexed figure, representing a section of the eye of the Cockchafer (Melolontha), as displayed by Lyonnet and Straus-Dürckheim, the whole structure of the organ will be readily understood. The optic nerve (fig. 254, a), derived immediately from the supracesophageal mass of nervous matter, swells soon after its origin into a rounded ganglion nearly half as large as the brain itself. From the periphery of the ganglion so formed arise a considerablo number of secondary nerves (b), which are very short, and soon come into contact with a layer of pigment (d), that in the Coekchafer is of a brilliant red colour, and is placed concentrically with the convex outer surface of the eye. Behind this membrane (ealled by Straus-Dürckheim tho common choroid) the secondary optic nerves (b) unite to form a membranous expansion of nervous matter (c), which may be denominated the general retina. From the nervous expransion
so formed arise the proper optic nerves (e), appropriated to the individual eyes, or ocelli, as we shall torm them. These nervous filaments are as numerous as the facets of the cornea, and traverse the common choroid to radiate towards the individual eyes whereunto they are respectively destined, and the structure of which we must now procced to examine. In fig. 254 , в, a portion of the circumference of the compound eye is represented upon a very large scale, in order to show the construction of the hexagonal ocelli that enter into its composition. Each cornea (i) is, or is furnished with, a double convex lens, adapted by its shape to bring to a focus the rays passing through it. Behind every lens so constituted is placed a hexahedral transparent prism (h), which from its offiee may be compared to the vitreous humour of the human eye ; and it is upon the posterior extremity of these prisms that the proper optic nerves (fig. 254, A, e) spread themselves out, so as to form so many distinct retinæ. When we reflect upon the extreme minuteness of the parts above alluded to, wo

Fig. 254.

Structure of the eye of a Cockchafer. A, sectional view: a, optic gauglion; b, secondary nerves; c, general retina, in front of which is a layer of pigment, d : e, proper optic nerves, supplying the individual facets of the compound eye. B, a group of ocelli, much magniffed: f, bulb of optic nerve; g, layer of pigment; h, vitreons humour; i, cornea. (After Straus-Dirckheim.) may well expect slight discrepaneies to occur between the accounts given of them by different anatomists. Straus-Dürckheim represents cvery optie nerve as terminating in a minute pyriform bulb (fig. 254, B, f), and points out a dark layer of pigment (g), which forms a choroid tunie proper to each ocellus; while, according to Miiller and Dugès, the vitreous humours (h) are conical, and terminate postoriorly in a sharp point, upon which the terminal expansion of the optie nerve spreads out, without any pyriform enlargement ; they likewise deny the existence of the proper ehoroid (g) in the situation indicated by Straus-Dürekheim, but find a blaek pigment situated immediately behind the cornea, that at first sight would appear to be continuous over the whole surface of the eyc. Even Cuvier seems at one time to have adopted this opinion. Mullor, however, found that, upon carefully removing the internal structures of the organ, leaving the pigment untouched, the dark varnish in question, although very thick at the lines of union of the
different facots, whore it is continuous with a choroid that separates the individual ocelli, yet towards tho eentre of each facet beeomes exceedingly thin, and at the vory centre is quite wanting, so that a minute perforation or pupil is thus left, through which the rays of light enter. The existence of the secondary optie nerves (l) and eommon retina (c) is likewise disputed by Müller and Dugès, who consider tho proper optic nerves to arise immediately from the surface of the brain.
(859.) With regard to the wonderfully eomplex structure of these organs, Straus-Dürckheim suggests that, the eyes of inseets being fixed, nature has made up for their want of mobility by their number, and by pointing their axes in all direetions; so that it might be said that these little animals have a distinct eye for every object. But here we are naturally tempted to inquire whether inseets see at the same time distinetly with every one of these eyes, or if they distinguish with one eye only. Upon this point Straus-Dürekheim observes that, if they saw clearly with all, the great number of images would neeessarily produce eonfusion, and would prevent creatures so organized from paying special attention to any determinate point. It is probable, therefore, that one ocellus only is at any given time plaeed in circumstanees preeisely adapted to the complete examination of an objeet, the animal seeing things imperfectly with the rest, in the same manner as we see objects situated ncarer to us or further off than that upon which we fix our attention; so that, aceording to this supposition, insects would see very distinetly with one eye only, exaetly as we see eonfusedly an extensive landseape, although we only distinguish a small part of it.
(860.) In all insects the sexes are quite distinet; and the gencrative apparatus, both of the male and female, eonsists of various seereting organs with their exeretory duets : in the male, such glands furnish the impregnating seeretions; and in the female they give origin to the ora, and provide the eovering wherein the eggs are enveloped.
(861.) Commencing with a deseription of the male organs, we find in the Coekehafer the various parts represented in tho aceompanying figure, taken from the admirable work of Straus-Dürekheim already so often quoted. The testicles of Melolontha (fig. 255, a a) are six in number on eaeh side of the body; but in the engraving those of one side only are delineated. Every testis eonsists of a vesieular organ, hollow interually, whieh, being immersed in the juices of the inseet, separates therefrom the seminal fluid. Six ducts (b, b, b) may be called vasa deferentia, and eonvey the spermatie liquor into a eommon eanal ($c c$), of very considerable length and mueh eonvoluted. Although slender at its eommeneement, this tube ultimately expands into a wider portion (d), wherein, no doubt, the semen accumulates, and which has been ealled by authors the vesica seminalis.
(862.) The eanal (d) torminates by joining the eorresponding duct from the opposite side $\left(d^{\prime}\right)$ to form a eommon tube (g) ; but justi at the point
of junction they aro joined by two long auxiliary vessels $\left(f, f^{\prime}\right)$, that haro been named sperm-vessels, gluten-vessels, and gum-vessels by difforent authors, but which appear to be appropriated to the production of some fluid, perhaps analogons to the prostatic fluid of mammalia,

Fig. 255.

Male generative organs of Melolontha vulgaris: a, a, a, testicular glands; b, b, b, vasa deferentia ; $c c$, common canal; d, its dilated portion; d ', termination of the corresponding canal from the opposite side ; e eff, auxiliary glands; $g g$, common duct enclosed in a sheath, $h ; i i$, ejaculatory apparatus; $l l, n n$, scection of penis.
whereby the bulk of the sominal liquor is increased in order to facilitate its expulsion. Each of those auxiliary vessels consists of two partsa long and much-convoluted portion ($e e \ell$), forming the scereting organ; and a dilatation (f), that must be looked upon as a resorvoir for the fluid elaborated. The common canal (g) roceives all these secretions: it is at first enclosed in a kind of sheath (h); but soon becoming mnscular, it dilates into a strong contractile canal (g, i), called the ructus ejaculatorius, which is continued to the oxtremity of the penis.
(863.) The intromittont organ itself is composed of two parts-a protrusible corncous tube ($l l$), and an external horny shoath ($n n$), in which the former is usually concealed and protected.
(864.) Great variety, of course, is found in the number, form, and gencral arrangement of all the parts alluded to in the above description, when examined in difforent inseets. In tho Hive-beo, for example, the testes (fig. $256, a$) are only two in number, and are simple oval vesicles; the vasa deferentia $(7,7)$ are short, and the seminal receptacles (c) form membranous sacculi. The auxiliary socroting organs (d), although
placed in the same position as in Melolontha, are represented by eapaeious creca; while the eommon exeretory duct (e) swells into a strong and museular bag (f), whieh eonstitutos the ejaeulatory apparatus. Still, however, it is easy to see that, although diversified in appearance, the parts here found are essontially similar to those met with in the Coekchafer, and reprosent respectively the same organs.
(865.) The female apparatus of reproduction presents a general eorrespondenec, both in form and arraugement, with the sexual parts of the male insect. The ovaria are simple seereting saeeuli, or elongated tubos, in whieh the germs or ova aro produeed instead of the seminal liquor ; and the excretory eanals, or egg-passages, with the organs appended to them, although appropriated to different funetions, strikingly rescmble the organs met with in the other sex.
(866.) In the female of Mclolontha the ovaria are long tubes, forming two distinet faseieuli symmetrieally situated on the two sides of the body. At their commeneement (fig. 257, $u u$) the ovigerous tubes are slonder, and the ova whiel they eontain at this point are in a very rudimentary state of development ; they generally dilate, however, ($t t t$); and as they expand, the ova are seen to attain larger dimensions. Near its termination, eaeh ovarian tube assumes a granulated tex-

Fig. 256.

Male generative organs of the Hire-bee (Apis mellifica): a, testes; b, b, vasa deferentia; c, c, seminal receptacles; d, auxiliary glands; e, common excretory duct; $f g$, ejaculatory sacculus. ture ($s s$) ; and they all ultimately open into the corresponding exeretory eanal ($r r$).
(867.) All the ovarian tubes of one side are united into a bundle by a ligament (y, x) whieh Joh. Miiller ${ }^{*}$ traced to the dorsal vessel, and believed to be a vaseular eanal adapted to bring blood immediately into the tubes wherein the ova are formed; but no satisfaetory evidenee has been addueed in proof of the existenee of sueh an extraordinary eommunieation, and the thread in question is most probably a mere ligamentous eonnexion.
(868.) Taking the higher animals as a standard of eomparison, we may suppose the formation of the eggs in these tubes to be aceomplished in the following manner:-In the upper part of the tube (u) is formed the yelk, enclosed in its peeuliar mombrane, and provided with that wonderful germ from which, after impregnation, the future being is to be developed; as the yelk slowly desconds to the more dilated parts of * Nova Acta Phys.-Med. Nat. Cur. vol. xii. pt. 2.
the canal ($t t$), it becomes clothed with the albumen which constitutes the white of the egg, and ultimatcly, before quitting the nidus of its formation, reccives from the granular termination of the ovary its last integument or shell. Thus completed, it passes into the excretory canal ($r \cdot r$) ; and this, meeting the corresponding tube derived from the ovaries of the oppositc side, joins it to form the common oviduct (l), through which the egg is conducted out of the body.
(869.) But we must now advert to certain appendages connected with the common oviduct. These are of two knds, the gluten secretors and the spermatheca.
(870.) The gluten-secretors (fig. 257, p, p) arc glandular cæca opening into the common eggeanal, and are apparently destined to furnish a glutinous fluid with which the eggs become invested before they are expelled from the body ; and thus they are frequently united into long chains and variously shaped masses, or else the adhesive varnish thus secreted serves to glue the ova to situations favourable to the development of the embryo.
(871.) The other organ, or spermatheca (fig. $257, n 0$), has a widely different office, being a receptacle provided to receive the seminal secretion of the male during copulation: it is always situated upon the upper aspect of the oviduct, into which it opens by a small orifice surrounded by a thick-

Female generative organs of the Cockchafer (Melolontha vulgaris): $s s, t, u u$, ovigerous tubes; $y x$, their ligamentous origin; r, r, excretory canals; l, common oviduct; p, p, gluten-secretors; $n o$, spermatheca.
 ened margin or sphincter embracing the neek of the bag, and so disposed as cither to retan the enclosed fluid, or to allow it to escape into the oviduct. That this organ really docs receive and retain the seminal liquor is proved by the presence of seminal animalcules in its contents; but the matter
has beon placed beyond a doubt by the experiments of John Inunter*, who actually succeeded in fecundating the eggs of an unimpregnated female by applying to them a little of the fluid contained in its cavity : but that the reader may comprehend fully the reason of such an arrangement, it is necessary to consider the circumstances under which insects propagate.
(872.) In most animals, sexual union may be repeated several times during the life of individuals; but in insects intercourse between the sexes is permitted to take place once only; and this solitary congress must suffice for the impregnation of all the ova, however mumerous, and howover imperfect may be the development of some of them at the time when the embrace occurs.
(873.) Let us take the Hive-bee as an example. In the females of this insect the ovigerous tubes (fig. 258, $a, a)$ are excessively numerous, and the eggs produced in them may amount to between 20,000 and 30,000 . These eggs, of course, arrive at maturity in succession, and not all at once; so that, at the moment when the queen bee meets her selected mate, perhaps the majority of the ova are not in a sufficiently mature condition to be rendered fertile. Nevertheless the meeting of the sexes cannot be repeated; for no sooner has copulation taken place than the favoured male

Fig. 258.

Female generative organs of the Queen Bee: a, a, ovigerous tubes; b, oviduets; c, spermatheoa; e, vagina, or common excretory duct. dies, and, by a simultaneous butchery, all the other males, or drones as they are commonly designated, are destroyed by the working inhabitants of the hive. The quantity of the fecundating liquor, therefore, supplied by one connexion must serve to fertilize all the eggs produced during the lifetime of the queen bee; and for this purpose it is stored up in the spermatheca (fig. 258, c) ; so that, how numerous soever may bo the eggs formed, they are all vivified as they pass out through the oviducts (b, e) and thus come into contact with the orifice of the reservoir of semen \dagger.
(874.) In Meloë variegata (fig. 250) the ovaria (d) consist of wide and capacious sacs, covered externally with innumerable glandiform vesicles, opening into the cavity of the ovary (e). The gluten-secretor (h) and

[^110]the spermatheca (y) aro soen, as in Melolontha, appended to the common oviduct (f); but the spermatheca has a small accessory vesicle (i) connocted with it, not found in the former examples.
(875.) In many insects, especially of the Hymenopterous order, tho generative apparatus is terminated externally by peculiar instruments provided for the purpose of introducing the cges into a proper situation. This is particularly remarkable in the Ichneumons, which deposit their ova in living caterpillars; and in the Saw-flies (Tenthredo), whose eggs are insinnated into the substance of the leaves, or even of the branches of trees. To describe all the contrirances employed for this purpose would lead us far beyond our prescribed limits: two or three examples of organs of this deseription must suffice.
(876.) In Sirex gigas (fig. 260) the ovipositor consists apparently of three piecos of considerable length, seen in the figure to project from the inferior margin of the abdomen. Of these pieces, two form a sheath enclosing a third, called

Fig. 259.

Ichneumon Fly piercing the eocoon of a Caterpillar, in order to lay its eggs in the chrysalis within. the terebra, or borer, which in the Tenthreclo contains two saws of extremely beautiful construction, as we

Fig, 260.

learn from an account of them given by Professor Puck. The original description, which it would be unpardonable to abbreviate, is as follows.
"This instrument," says Professor Peck, "is a very curious object; and, in order to describe it, it will be proper to compare it with the tenon-saw used by cabinet-makers, which being made of a very thin plato of stcol, is fitted with a back to prevent its bending: the back is a piece of iron, in which a narrow and deep groove is cut to receive the plate, which is fixed. The saw of the 'Tenthredo is also furnished with a back; but the groove is in the plate, and reccives a prominent ridge of the back, which is not fixed (to the saw), but permits the saw to slide forward and backward as it is thrown out and retracted. The saw of artificers is single ; but that of the Tenthredo is double, and consists of two distinct saws with their backs: the insect, in using them, first throws out one, and, while it is returning, pushes forward

Fig. 261.

Double saw of a Tenthredo, representing the back of the two blades fitted into each other.
the other : this alternate motion is continued till the incision is effected, when the two sairs, receding from each other, conduct the egg between them into its place." We must not, however, allow our admiration of a piece of mechanism so admirable to be confined to a mere inspection of the gencral plan on which it is constructed; the more minutely its details are examined the greater will be our astonishment. The saws of human contrivance, furnished with teeth, all cut after the same pattern, present little variety either in their shapo or efficiency; whereas the saws of the various species of Tenthredo are as diversified as the habits of the insects to which they belong. The perfection of their structure defies criticism, inasmuch as the reason of their diversity is beyond our comprehension. By means of these wonderful instruments the female Tenthredo saws a series of consecutive slits in the tender branches of trees, in cach of which she deposits an egg, and then instils into the wound a frothy fluid, the use of which is, probably, to prevent the edges of tho slit from growing together, and thus becoming closed up. The eggs deposited subsequently increase in size, while the bark around them swells into a kind of gall, sometimes resembling a small fruit. These tumours then become the domi-

Fig. 262.

Saw of Tenthredo. The edge A B is armed with about a dozen teeth, each of whieh, when magnifled, is seen to be a semicireular saw. eiles of the larvx born in them, who there reside cither singly or in little familics, and there undergo their metamorphosis, which being
completed, tho mature insects make their eseape, cutting for themselves a way out by means of their mandibles.
(S77.) The Gall-flies (Cynips) aro likewise furnished with an ovipositor, but of a different character. With its assistance these little insects bore the leares and tender shoots of trees, in which they lay their egg, when, strange to say, the wounded part of tho plant, responsive to the stimulus, swells out into an excresconce that is called a gall, the shape and texture of which varies according to the part of the plant which produces it, and the species of Cynips that inflicts the puncture. From the eggs thus deposited minute larvæ are liberated, which are destitute of legs; but as they find both board and lodging in the excreseence they inhabit, the possession of such encumbrances would be useless. In this condition they live for about

Fig. 263.

Saw of another specics of Tenthredo, showing the teeth and cutting edges to be constructed upon a plan quite different from that represented in fig. 262. six months, at the end of which time they eat their way out of the gall and bury themselves in the ground to undergo their last transformation.
(878.) The Aphides, or plant-lice, furnish a remarkable instance of fecundity. In these insects it has been satisfactorily ascertained, by Bonnet, Lyonnet, and Réaumur, that a single sexual intercourse is sufficient to render fertile, not ouly the female parent, but all her progeny down to the ninth generation! The original inscet still continues to lay when the ninth family of her descendants is capable of reproduction; and Réaumur estimated that, even at the fifth generation, a single Aphis might be the great-great-grandmother of $5,904,900,000$ young ones.
(879.) The impregnated ova of the Aphis* are deposited at the close of summer, in the axils of the leaves either of the plant infested

Fig. 264.

Branchlet of a tree wounded by the saw of a Tenthredo, and containing eggs in a forward state of development. The lower tumour is open, indicating that the insect reared in it has escaped. by the species, or of some neighbouring plant; and the ova, retaining their latent life through the winter, are hatched by the returning warmth of spring, giving birth to a wingless hexapod larva. This lurva, if circumstances, such as warmth and food, be favourable, will produce a brood (or, indeed, a succession of broods) of eight larvee like itself, without any connexion with the male. In fact, no winged females

[^111]have, at this season, appeared. If the virgin progeny be also kept from any access to the male, cach will again produce a brood of the same

Fig. 265.

Nut-galls of the oak, formed by the puncture of a Cynips (Cynips quercus): one of the galls has been opened to show the larval Cynips in its interior.
number of aphides; and careful experiments have shown that this procreation from a virgin mother will continue to the seventh, the ninth,

Fig. 266.

Branch of a Rose-tree covered with Aphides (Aphis ro8a) : on the right-hand leaf is a winged Aphis laying eggs, and a wingless specimen in the act of producing a living young onc.
or the eleventh generation before the spermatic virtue of the ancestral coitus be exhausted. In the last larval brood, individual growith and
development proceed further than in the parent, and some individuals become metamorphoscd into winged males, others into oviparous females. By these the ova are developed, impregnated, and oviposited; and thus provision is made for disseminating the individuals, and for continuing the existence of the species over the severe famine-months of winter*.
(SSO.) This mode of reproduction is evidently allied to the propagation and vital cycle of plants. Of plants it is, as it were, the special characteristic that the germ, or seed, is competent to produce individuals which are again capable of producing seeds or individuals of the primary form, or that to which the plant owed its origin, only by the intervention of a whole series of generations. It is a great triumph of morphology that it is able to show how the plant or tree (that colony of individuals arranged in accordance with a simple vegetative principle or fundamental law) unfolds itself through a frequently long succession of generations into individuals becoming constantly more and more perfect, until, after the immediately precedent generation, it appears as calyx and corolla, with perfect male and female individuals, stamens (Staubblütter) and pistils (Fruchtblätter), and, after the fructification, brings forth seed which again goes through the same course.
(881.) To facilitate the comparison thus instituted by Stecnstrup, Professor Owen has devised the diagrams copied in figure 267, which place bcfore the eye the whole of this interesting relationship \uparrow.
(882.) The pollen-tube or filament (fig. 267, 1, a) discharged from the pollen-cell (a^{\prime}) in the plant, represents the spermatozoon ($a, 2$ \& 3) in the animal; its contents (whether by endosmose or perforation is immaterial) are received by the ovule ($b, 1$), which is afterwards discharged and becomes free. Under favourable circumstances the formation of the embryo takes place with manifold modifications, but essentially by the multiplication of cells, according to a process which is as much entitled to be called continnous growth as that process in the formation of the Conferva. The embryo (c) proceeds to develope the radicle and the plumula (d) by the metamorphosis and coalescence of certain of the impregnated cells, retaining the major part, however, as cells; and thus the first individual plant (or pair of individuals, as in Dicotyledons) is established.
(883.) The ovum of the zoophyte (fig. 267, 2, b) proceeds to de-

* "The multiplication of these little crcatures is infinite and almost incrcdible. Providence has endued them with privileges promoting fecundity which no other insects possess: at one time of the year they are oviparous, at another, viviparous; and, what is most remarkable and unparalleled, the sexual intercourse of one original pair serves for all the generations which procced from the female for a whole succecding year. Réaumur has proved that in five generations onc Aphis may be the progenitor of $5,904,900,000$ descendants ; and it is supposed that in one year there may be twenty generations." - Kirby and Spence, Introd. to Entom. vol. i. p. 175.
+ Vide Owen, Parthenogenesis, p. 58 et scq.
velope its froe locomotive embryo (c) by an analogous multiplication of eells, certain of which are metamorphosed into an external skin with vibratilo cilia; the embryo settles, subsides, shoots out rays analogous to the radicle of the plant, but for attachment only, and grows afterwards as a stem, from which a polyp (d) is speedily developed, answering to the first cotyledonal loaf or leaves in the plant (fig. 267,,d). Both plant and zoophyto proceed to developo by gemmation, the one a succession of leaves (e e), the other of polyps (e e) associated by the continuous growth of the connecting parts; and finally tho plant, by a metamorphosis of part of the stem and certain leaves, produces the

Comparative view of the reproductive process in a Plant, a Campanularian zoophyte, and a female Aphis, the corresponding parts being indicated by similar lettere, as explained in the text.
flower or fructification (f, g, h, i) ; and the zoophyte, by a modification also of its stem and certain polyps, produces an "ovarian vesicle" (f), or a modified polyp (g), or a medusiform individual (l), Which is set free : in both eases tho end to bo attained is the diffusion of the species by means of impregnated seeds or ova.
(884.) Now, if wo compare fig. 267,3 , in which are represented the corresponding stages intervening between the orrm and the perfect
male and female individuals of the Aphis, with fig. $267,1 \& 2$, the analogy between thesc stages in the plant, the polyp, and the inscet will be seen to be both true and close. The spermatozoon (a) of the male Aplis (h) answers to the pollen-filament (fig. $267,1, a$) of the male leaf or stamen (h). The ovim (b) of tho female Aphis (i) answers to the orule (b) of the female leaf or pistil (i) ; by their combination the impregnated ovum results. The same processes of cell-formation ensue, and the cmbryo Aphis (d) is formed by the combination and metamorphosis of certain of these secondary germ-cells; but it retains the rest as a germ-mass in its interior, which may be compared to the cells of the pith in the plant, and to the cells or nuclear granules in the corresponding more fluid part of the pith of the polyp. Under favourable circumstances of nutriment and warmth, certain portions of the retained germ-mass repeat the process of embryonic formation, and a larval individual (fig. $267,3, e$) like that from the ovum is thus produced, which is only not retained in connexion with its parent because the abdominal integument is not co-extended with it.
(885.) The generation of a wingless Aphis may be repcated from seven to eleven times without any more accession to the primary spermatic virtue of the retained germ-masses than in the case of the zoophyte or plant: one might call the generation an "internal gemmation ;" but this phrase would not explain the conditions esseutial to the process, unless we previously knew those conditions in regard to ordinary or external gemmation. At length, however, the last apterous or larval Aphis so developed proceeds to be metamorphosed, as it is termed, into a winged individual, in which, alone, the fertilizing filaments are formed, as in the case of the stamens of the plant (h); another Aphis acquiring wings (fig. 267, 3, i) perfects the female generative organs, and devclopes the orules, as in the case of the pistil (fig. 267, $1, i$). We have, in fact, at length male (h) and female (i) individuals, preceded by reproductive individuals (e e) of a lower or arrested grade of organization, analogous to the gemmiparous polyps of the zoophytes (fig. 267, 2, e e) and the leaves (fig. 267, $1, e$ e) of the plant.
(886.) The process of development in the Aphides is, for its better intelligibility, described abore as one of a simple succession of single individuals ; but it is much more marvellous in nature. The first-formed wingless Aphis of early spring procreates not one but eight Aphides like itself, in successive broods; and each of these repeat the process; and it may be again repeated in the same geometrical ratio, until a number which figures only can indicate, and which language almost fails to express, is the result. The Aphides, generated from virgin parents by this process of internal gemmation, are as countless as the leaves of a tree, to which they are so closely analogous. The wingless Aphides are not very locomotive; they might have been attached to one another by continuity of integument, and each have been fixed to
suek the juices from the part of the plant where it was brought forth. The stem of the rose might have been incrusted with a ehain of sueh ennneeted insects, as we seo the stem of a fuens inerusted with a ehain of connceted polyps, and only the last developed winged males and oviparous females might have been set frec. The conneeting medium might even have permitted a common current of nutriment, contributed to by each individual, to circulate through the whole compound body. But how little of any thing essential to the animal would be affected by cutting through this hypothetieal connecting integument, and setting each individual free! ${ }^{*}$
(887.) The sequence of phenomena above detailed is thus explained by M. de Quatrefages. In the Aphides, tho egg laid in autumn gives birth to a scolex having all the eharacters of a pupa. During all the summer this pupa does not produee eggs, but true buds, whieh sprout from and become organized in the interior of the parent organism, instead of budding from its external surfaee, as in the ease of the Hydra. As cold weather comes on, a normal sexual apparatus becomes developed in distinct individuals, and we then find males and females, or, in other words, true proglottids.
(888.) Such would be the history of the egg of a Butterlly, were it to give birth to a ehrysalis capable of producing, by means of internal buds, several generations of ehrysalids like itself, and then a eertain number of perfect Butterflies. We have here, therefore, several generations of scoleces; but the strobila is missing, while the proglottids, in most eases, resemble the scolex during the whole period of their existence, but ultimately differ from it in becoming provided with sexual organst.
(889.) It has already been abundantly proved that the ultimate derivation of every animal is from an egg. Mediately, or immediately, there is always not merely a parent but a mother. The remarkable faets above narrated lead us to inquire, is the existence of a father equally constant? From the observations of Siebold upon Bees and Butterflies \ddagger, of Bernouilli, Tréviranus, Suekow, and Burmeister upon several noeturnal Moths, and of Malpighi, Herold, Curtis, and Filippi upon the Silk-worm Moth, it seems proved that eertain females, having had no communication with any male, can lay fertile eggs, from which are produced larvæ as vivaeious and robust as if their eggs had been truly impregnated.

[^112](890.) The observations of Huber and modern anatomical rescarches havo shown that in Bees, owing to the conformation of the generative organs, sexual intercourse between the queen bee and a male can only take place during flight; still, it has been satisfactorily proved that the quecn bee, when deprived of her wings before any communication with the male has taken place, will nevertheless lay fruitful eggs ; but these eggs produce only malcs. A similar phenomenon has been proved to occur in other insccts-by Leuckart* in the Coccidce, by Hartig in twenty-eight differont species of Cynips; indeed, as regards the insects last mentioned, according to Lubbock the males are as yet unknown to the entomologist. M. Carlier obtained three virgin generations in succession from Liparis dispar, the last generation thus obtained being composed cxclusively of males, putting a natural termination to the experiment.
(891.) A phenomenon so remarkable and so incontestably proved naturally suggests the question, Are the reproductive bodies which thus resemble eggs and develope progeny without a father, real eggs or only buds, resembling those whence the organic aphides derive their origin? Professor Huxley \dagger and Mr. Lubbock regard them as being truly eggs; M. de Quatrefages, on the contrary, supposes them to be only gemmæ ; and if so, their development without the intervention of a male is referable, not to parthenogenesis, but to geneagenesis, of the diverse forms of which we have already had so many examples.
(892.) Innumerable are the means employed by nature to keep the balance between the increase and destruction of the insect tribes ; and countless enemies are provided for the purpose of checking their inordinate accumulation.
(893.) Among the most remarkable provisions for preventing superabundant fertility is that law which compels the most prolific insects to live in large societies, and permits but one female out of a multitude to lay cggs. As an example of this, we may take the Hive-bees \ddagger, so remarkable for their elevated instincts and industrious habits. A swarm of bees consists, first, of females whose scxual organs remain permanently in an undeveloped condition, usually called the workers (fig. 213, 1) ; secondly, of perfect males or drones (e) ; and, thirdly, of a solitary fcrtile female, called the queen (B), which gives birth to all the progeny of the hive ; and thus, instcad of 20,000 or 30,000 eggs bcing furnished by every one of as many females, one female only is permitted to be instrumental in perpetuating the species.

[^113](894.) The Termite Ants likewise, were it not for a similar restriction, would soon, by their overwhelming increase, depopulate whole regions of the earth, and rendor the countries in which they are met with absolutely uninhabitable by their extreme voracity. A community of Termites is said to consist of five different classes, namely :-winged males and females (fig. 268, 1); apterous neuters, or soldiers, which have large heads furnished with strong projecting mandibles (B); unwinged pupæ, having a smaller head and only the rudiments of wings (c); and, lastly, of similarly formed larvec or workers (D), differing from the pupe only in wanting the rudiments of wings. The following is a brief history of the establishment and growth of a colony of these insects,

Fig. 268.

Colony of Termite Ants. A. Winged male. B. Soldier. C. Wingless pupa. D. Workers. E. Queen Termite enormously distended with eggs.
as narrated by Burmeister*. At the termination of the hot season, the young males and females disclosed in a nest quit it, and appear upon the surface of the earth, whero they swarm in innumerable hosts, and pair.

* Manual of Entomology, p. 535.

The busy workers then convoy a chosen male and a female back into tho dwelling, and imprison them in tho central royal cell, tho entrances to which they decrease and guard : through theso apertures the imprisoned pair then receive the nutriment they requirc. The male now, as amongst all other inscets, speedily dies after the impregnation of the fomalo has been effected; but the female from this period begins to swell enormously, from the development of her countless eggs ; and by the time she is ready to commence laying, her abdomen is about 1500 or 2000 times as large as all the rest of her body (fig. 268, e). During the period of this swelling, the workcrs remove the walls of the royal apartment, uniting the nearest cells to it; so that in proportion to the increase of the body of the queen, the size of the abode she inhabits is also increased. She now commences laying eggs ; and during the process the abdomen exhibits a continual undulatory motion, produced by the peristaltic movement of the egg-ducts; while the workers convey away the eggs as they are laid, and deposit them in the distant rearingcells of their wonderful habitation. The reader will be able to form some idea of the relative proportions and ontward appearance of the edifices erected by these comparatively minute beings by the group of their citadels represented in the background of the figure; but to describe them more minutely would lead us into details unconnected with our subject*.
(895.) The eggs of insects vary much in shape and external configuration ; and, from the beauty of their forms and exquisite sculpture, some of them are interesting objects for the microscope.
(896.) Wo have already spoken concerning the metamorphoses which insects undergo during the progress of their development from the form undor which thoy first leave the egg to their mature condition, when they become fertile, and, in most instances, acquire those instruments of flight so gencrally characteristic of thoir perfoct state. Before entering upon a more minute inquiry concerning the physiological principles upon which the important changes in question depend, and the phenomena attending the process,

Fig. 269.

Eggs of a Butterfy: a, an egg, exhibiting its external sculpture; b, manner in which the young Caterpillar is folded up in the egg; c, cscape of a Caterpillar from the egg-shell. it will be advisable to cito a few more examples illustrative of the most interesting varietics of motamorphosis signalized by authors. Fabricius distinguishes five different kinds of metamorphosis, and has appliod a different name to oach.
(897.) The first class comprises all insects of which the larva is a maggot entircly deprived of logs, that, after having changed its skin, or moulted, a certain number of times, becomes, previously to its last change,

[^114]eneased in an oval horny sheath, or pupa-case, whereon not the least trace of the limbs of the mature inseet is to be detected. Sueh pupx are absolutely without the power of motion, and are distinguished by the name of coaretate. Examples of this sort of inetamorphosis are met with in the eommon Flies (Muscidce) ; and the forms of their larvæ and pupæ are familiar to every one. When the maggots of the Blow-fly (Musca vomitoria) have arrived at their full growth, they quit the putrescent flesh upon whieh they have so long enjoyed themselves, and bury themselves in the earth, where they remain for two or three days without undergoing any apparent ehange ; but at the end of this period a wonderful transformation takes plaee. The worm-like grub, whieh was previously white, transparent, and soft, and whieh in shape resembled an elongated tapering eone, assumes the form of an egg eneased in an opaque brittle shell, the eolour of which is a deep reddish brown. This extraordinary ehange, when once commeneed, is speedily effeeted ; the creature which five or six minutes previously was eapable of lengthening and shortening its body, becomes permanently rigid, and ineapable of motion. On opening one of these chrysalis eases some twenty-four hours after this remarkable transformation, the included mass presents not the slightest appearanee of an inseet; it has neither legs, wings, nor head; it seems to eonsist altogether of a creamy fluid, the eonsistence of which is just suffieient to make its partieles eohere, so as to form an elongated oval mass. The first part of the proeess, therefore, consists in melting down, as it were, all the tissues of the original maggot, and converting them into a creamy pulp, mueh in the same manner as the jelk of an egg during the early stages of development beeomes redueed by repeated fission to a state of homogeneous pultaceous semifuidity. Moreover, in losing its skin, the larva has

Fig. 270.

Metamorphosis of the Flesh-fly (Musca): a, the eggs; b, young maggots just hatched : c, d, full-grown maggots; e, pupa; f, imago.
likewise parted with its respiratory stigmata, whieh have been east off with the integument that is no longer its own, as also the apparatus of horny hooks whieh formerly served it both for teeth and locomotive organs.
(898.) On opening one of these ehrysalids five or six days after its first transformation, instead of a shapeless pulp it will be found to enelose a pupa, whieh, although still white and eolourless, is provided with a complete set of limbs, as yet insheathed in delicate transparent
cuses, as also with a proboscis folded up beneath the thoracic region of the body. The head is now large and well-formed, and the network of its compound cyes distinctly perceptible.
(899.) The growth of so many parts while the body of the insect undergoes no enlargement (for it always exactly fills tho chrysalis-casc) is a circumstance not easily intelligible ; neverthelcss, by a little care, and by examining a sufficient number of chrysalids of different ages, the whole process will be satisfactorily explained.
(900.) The young pupa at an early stage will be found to present, at the antcrior extremity of its body, a cavity from which the hook-like jaws become detached; and it is from the walls of the cavity so formed that the parts of the head are subsequently developed. It is, to use Réaumur's illustration, as though a child should be born having its head, neck, shoulders, and arms squeezed into the cavity of its chest, so that none of those parts are at first visible externally, but, as they slowly emerge from their concealment, successively assume their proper places.
(901.) The sequence of these remarkable evolutions may be described as follows :-The chrysalid (a, fig. 271) presents very much the appearance of a small barrel, the upper cnd of which still exhibits the two principal stigmata or breathing-holes, that in the maggot afforded entrance to the air required for respiration. In the second drawing (b) a portion of the chrysalis-case has been removed, showing the external condition of the as yet limbless pupa, which, having cast off cren the horny hooks constituting the extraordinary dental apparatus of the larva, leaves it attached to the walls of its prison, and, becoming converted into a soft pultaceous mass, loses even the appearance of having been alive. While concealed from observation in the interior of the pupacase, rudimentary limbs begin gradually to develope themselves (c, d); but there is as yet no appearance of a head, which, being formed from the walls of the cavity where the horny jaws were originally lodged, is concealcd in the thoracic region of the body, from which, however, it slowly

Fig. 271.
a

d
b

e

f
Development of Flesh-fiy (Musca): a barrel-shaped pupa-case, formed from the hardened skin of the larva; b, enclosed pupa divested of its hooked jaws; c, d, e, f, progressive stages in the development of the
pupa. emcrges by a process of evolution (e), and ultimately, unfolding all its complicated machinery, converts the previously headless monstrosity into the scmblance of the perfect insect.
(902.) Of the second kind, technically named obtected, the Lepidoptera
furnish well-known instances. The changes which occur in the development of the Silkworm, represented in the amexed figure (fig. 272),

Fig. 272.

Metamorphosis of the Silkworm: Δ, Chrysalis.
may rcadily be witnessed. In such iusects the full-grown caterpillar, having enclosed itself in a silken ball, throws off its last skin, and becomes a quiescent pupa; but while in this state, the position of the rudiments of the wings and other appendages of the perfect insect is strongly indicated upon the extcrior of the chrysalis (A), though these parts are still closely wrapped up in the external covering.
(903.) The third form of metamorphosis, called incomplete, is seen in the Hymenoptera, and in many Coleopterous insects. The maggot, in such tribes as exhibit this kind of change, is in sume species a simple worm deprived of feet or other external organs; in others these parts exist in a very imperfect condition: in the pupa, however, the form of the legs and antenne is perfeetly distinct, and even the

Fig. 273

Metamorphos:s of the Hive-bee: a, fullgrown harva; $b, 1^{1 m p a} ; c, l, c_{1} f$, eggs and young. u'wly hatched.
wings may be seen as rudiments projecting from the thorax. This kind of chrysalis is exhibited in the Cockehafer (fig. 274, s), in which the

Fig. 274.

Metamorphosis of Melolonthe.
grub (c) possesses feebly developed legs; and in the Hive-bee, although the larva (fig. $273, a, c, d, e, f$) has no logs or exterior appendages, in

$$
\text { Fig. } 275 .
$$

Larva of the Stag Beetle (Lucanus).
the pupa $(1$,$) atl the limbs of the perfect bee are recognized with the$ utmost facility. Yet all these organs are still enclosed in distinct
(akses (thece), to each of which uames have been applied by entomological writers; and it is only on throwing off the integument whieh thus imprisons the muture insect that the Bee makes its appearance in a capacity to begin its active and industrious existence in the winged state.
(904.) Those insects whuse lurvat only differs from the imago in not being pussessed of winge (fig. 2.27 , c), Fabricius regurded as undergoing a semicumplete metamonphosis; and when the perfect inseet did not aequire wings at all, but precisely resembled the pupa, he ealled the laterer complet.
(90.).) Bint there are innumerable examples of metamorphosis whieh will not confurm to any of the above definitions; and in some of them the phenomema exhibited are not al little remarkable. We have already mentioned the changes which the Dragonfly undergoes (fig. 277), mad have seen that in this ease there is no very striking resemblance letween the pupa and the adult creature, but, on the contrary, that bery wonderfnl changes oceur during the last stage of the metamorthowis. The pupa lives in water : and, besides six jointed legs adapted th climb the stems of subalquatio plants in search of prey, is possessed if a very penliar lonomotive apparatus whereby it ean propel itself thronght the dement wheh it inhabits. Appended to the posterior exfremity of the alxhomen we find three or five leaf-like uppendages, which the crature comtinually opens and closes, and at the same time takes

I'upa of the St : Bertle (Lucunus).
111 a qुuntity of water, sufficient to fill the nuscular termination of the 2 rectum. which is expmuded for the purpose ; this water is, at intervals, forcibly expelled, mingled with bubbles of air, and thus effects the propmbsion of the anmal by a meehanism which human ingenuity has imperfectly attempted to imitate.
(9016.) Inother remarkable peeuliarity is met with in the structure of the mouth of these aquatic larve; for the oral apparatus here forms an instrument of prehension adapted to seize prey at a distance, and constitutos, in fact, a kind of projectile foreops of a very curious cunstruction. Jet the reader eontrast the following deseription with
that already given of the oral organs of the Dragonfly ($\$ 803-807$), and obscrve the remarkable differcnce :-"Conceive," says Kirby and Spence*, "your under lip to be horny instead of fleshy, and to be elongated perpendicularly downwards, so as to wrap over your chin and extend to its bottom-that this clongation is then expanded into a triangular convex plate attached to it by a joint, so as to bend upwards again, and fold over the face as high as the mose, concealing not only the chin and the first-mentioned elongation, but the mouth and part of the cheeks ; conceive, moreover, that to the end of this last-mentioned plate are fixed two other convex ones, so broad as to cover the whale nose and temples, that these can open at pleasure, transversely, like a pair of jaws, so as to expose the nose and mouth, and that their inner edges, where they meet, are cut into numerous sharp teeth or spines, or armed with one or more long and sharp claws; you will then have as accurate an idea as my powers of description can give of the strange conformation of the lip in the larve in question, which conceals the mouth and face precisely as I have supposed a similar construction of your lip would do yours. You will probably admit that your own visage would present an appearance not very en-

Metamorphosis of the Dragonfly. gaging while concealed by such a mask : but it would strike still more awe into the spectators were they to see you first open the two upper jaw-like plates (which would project from each temple like the blinders of a horse), and next, having, by means of the joint at your chin, let down the whole apparatus and uncovered your face, employ them in seizing any food that presented itself and conveying it to your mouth. Yet this procedure is that adopted by the larve provided with this strange organ. While it is at rest, it applics elose to and covers the face. When the insects would make use of it, they unfold it like an arm, catch the prey at which they aim by means of

[^115]the mandibuliform plates (fig. 277, A), and then partly refold it, so as to hold the prey to the mouth in a eonvenient position for the operation of the two pairs of jaws with which they are provided."
(907.) The metamorphosis of the Ginat (Culex) is not less inter-

Fig. 278.

Metamorphoses of the Gnat (Culex pipiens): A, female laying eggs; B, larva; C, pupa; D , imago escaping from the pupa-case.
esting. The female deposits her eggs upon the surface of the water, in which her offspring are destined to pass the earlier periods of their

Fig. 279.

Metamorphosis of the Gnat (Culex pipiens). A, Boat of eggs. B, a, b, c, some of the eggs magnifled ; d, another, showing the lid open for the eseape of the larra. C, Larra. D, Pupa. \mathbf{E}, Larva magnified, showing:- e, the respiratory tube; f, the amal fins; g, g, the antemme. F , the perfeet insect, magnifled : a, a, antenne; b, rostrum.
existence, gluing the ova together at the moment of their extrusion, so as to unite them into a boat-like mass (fig. 279,1) of such beautiful
construetion that the little bark swims secure from injury even during the ronghest weather. The individual eggs are of a eonical form (fig. 279, $, a, b, c$), and are closed at their inferior extremity by a kind of lid (d), provided to give egress to the mature embryo. The larva (c), represented upon a magnified scalo at e , bears not the slightest resemblanco to the perfect insect, and is provided with a singular modifieation of the respiratory apparatus, adapted to its habits. The head is large, and earries two eiliated organs (g, g), which by their movements bring food towards the mouth; the thorax is even larger than the head, and is furnished with fin-like bunehes of minute hairs, as likewise are the segments of the abdomen. To the extremity of the tail is appended a group of moveable leaflets or fins, so disposed that by their action they sustain the larva at the top of the water, where it generally remains suspended with its head downwards. Such a position would obviously render respiration impossible were there not a corresponding arrangement of the breathing-organs to allow of free communication with the air. For this purpose, the respiratory tracheæ are found to be eonnected with a tube appended to the antepenultimate segment of the abdomen, the perforated extremity of which, being raised above the water, procures from the atmosphere the oxygen required for respiration. After several moults, the larva, having attained its full growth, enters the pupa-state, and in this condition still remains an inhabitant of the water, and occupies a position near the surface. A remarkable change, however, is visible in all parts of its structure. The head and thorax (fig. 279, D) are consolidated into one large mass, under which the lineaments of the mature insect may be detected ; while the tail still eontinues to be the agent employed in natation. The condition of the respiratory organs, morcover, is completely altered : the tube fixed upon the antepenultimate segment of the larva has totally disappeared, and instead of it we find two tubes appended to the back of the thorax; these, although they perform the same office as the anal pipe of the larva, are thus displaced in order to correspond with the altered position in which the animal now swims, - the baek of the thorax, and not the tail, being nearest to the surfaec, as represented in the drawing (D). The neeessity for this change of posture, and consequent removal of the apparatus for talking in air from one part of the body to another, will be at once obvious when we consider the circumstances under which the perfect insect, having completcd its development, emerges from its pupainvestments and enters upon an aërial existence. The problem to be solved is, how shall the mature gnat escape from the water without: being wetted? and when we consider that neither the larva nor the pupa possesses instruments of locomotion eapable of enabling it to leave its native element by crawling on shore, the difficulties attending the change appear almost insurmountable. It is evident that, while swimming in the position in whieh the larva floats (fig. 279 , c), the last change
could not by auy possibility be accomplished, as the burstiug of the integument would at once admit the water to the submerged gnat, and drown it at the moment of its birth ; but by the new arrangement the metamorphosis is easily effected, and that in a manner so beautiful that it is hard to say which is most admirable, the simplicity of the contrivance, or the perfection with which the object is accomplished. No sooner has the encased imago become fitted for its escape than the pupa, rendered more buoyant, raises its back above the surface; the protruded portion of the pupa-case soon dries, and gradually begius to split in a longitudiual direction, so as to form by its expansion a boat wherein the gnat swims upon the top of its native pond ; and sustained in this frail bark, formed by its late skin, it gradually extricates its legs and wings from their coverings, and is kept perfectly dry until the expausion of its instruments of flight enables it to soar into the air and quit fur ever the raft so singularly provided for its use. Corethra plumicornis (another species of gnat scarcely distinguishable from that whose history we have given above) is derived from a larva of totally dissimilar appearance, usually called the "glass-larva." The transparency of its body is such as to allow its internal structure to be plainly

Fig. 280.

Larva of Corethra plumicornis.
visible ; while the symmetry of its shape, the vivacity of its movements, the fan-shaped plume beneath its armed tail (which, as a fin, propels it through the water), its pike-like voracity, and the ruthlessness with which it seizes prey render this creature a favourite subject of microscopic study. Its mouth presents a terrible apparatus; but the most characteristic feature in its economy is the existence of two remarkable pairs of reniform organs filled with air, situated, two of them in the thoracic, and two near the centre of the posterior half of its body. The walls of these air-sacs, when highly magnified, are found to be composed of numcrous coils of a delicate fibre, similar to that which maintains the permeability of the tracheæ in ordinary insects. The change from the larva- to the pupa-condition involves scveral remarkable phenomena: the contained air-sacs at this period of the creature's life suddenly burst and unfold themselves into an

Fig. 281.

Pupæ of Corethra plumicornis. elaborate tracheal system, of which previously no traces were perceptible ; and a pair of tubular organs make thicir appearance upou
the dorsal aspect of the thorax, which, as in the case of the guat, facilitate the escape of the winged insect when entering upon its aërial state of existence.
(908.) The metamorphosis of the Chameleon Fly (Stratyomys) is equally peculiar. The larrx of this insect have their body elongated and flat, furnished at one extremity with a sealy head armed with a remarkably constructed mouth, and at the other provided with a circlet of plumed hairs surrounding the respiratory aperture, which is situated at the end of the tail. When the time arrives for their entering upon the pupa-state of their existence, they do not change their shape, but their outcr skin, becoming stiff and motionless, is transformed into a pupa-case, within which the insect remains enclosed. In this condition they float upon the top of the water, while the pupa, shrunk up towards one end of its strangely formed cradle, awaits the completion of its naseent limbs (fig. 282). As soon, however, as its legs and wings become fit for use the pupa-case splits in the riciuity of the second segment, and allows the new-born insect to come forth, furnishing at the same time a raft upon which it is supported during the bricf period requisite for drying its wings and fitting them for flight in a new element.
(909.) In the Ephemeron, so brief is the life of the insect in its winged condition, that special provision has to be made for the fertilization and preservation of its eggs. No sooner have the insects emerged from the water than the femalcs are impregnated, the act of impregnation occupying but a fow moments; and shortly afterwards their eggs, which are packed up in little bundles, are cast all at once into the water; their whole life would be too short to allow them to be deposited one by one. The propagation of their race is indeed the only occupation of these insects after they have assumed the winged state; they do not even eat or take the slightest nourishment during the few hours assigned to their existence in this condition. If, however, we trace their life from its commencoment, their carcer is of much longer duration. In their larva- and pupa-state they have been, for a period extending over two or

Fig. 28 ?

Metamorphosis of Chameleon Fly (Strafyomys): a, winged imago eseaping from the exuvium formed of the skin of the larva (b). three years, iuhabitants of the water, under forms represented in the accompanying drawing (fig. 283).
(910.) The Wasp Flies (Eristalis), everywhere to be seen on a hot day, hovering before the flowers in our gardens, and darting here
and there with sudden jerking movements, commence their life under a very different aspect. Their larve are provided with a breathingapparatus which in its shape somewhat resmmbles the tail of a rat, and which they are able to elongate or shorten, so as always to kecj,

Fig. 283.

Metamorphosis of the May-fly (Ephemeron).
its tubular extremity above the surface of the filthy water of reservoirs, drains, and cesspools, in which these creatures live. So remarkable are these telescope-tailed larva for their tenacity of life, that they are said to be able to bear almost any amount of pressure without being killed. When about to become transformed into pupæ, the outer skin hardens into a pupa-case, wherein the last changes are accomplished.
(911.) The metamorphosis of the Ant-lion (Myrmeleo) is equally worthy of our notice. The larva of this insect (which is not uncommon in the south of Europe) has acquired the name applied to it by the destruction it causes among ants. Its abdomen is remarkably bulky in proportion to the rest of its body; and its mouth is furnished with two long mandibles, resembling horns, which, being hollow, not only serve as instruments for seizing prey, but as sucking-tubes, through which its juices

Metamorphosis of Wasp Fly (Jivistulis): a, rat-tailed larva; b, c, d, pupa in their pupa-cnses, formed by the skin of the larva, in different stages of growth; e, the winged insect. are extracted. Although provided with six legs, it walks slowly, and almost always backwards. In order to
entrap its prey it constructs an ingenious pir-fall in the loose sand, at the bottom of which it conceals itself, leaving nothing visible but its formidable jaws. In this position it patiently awaits the arrival of some incantious insect, which, by tumbling over the edge of its den,

Fig. 285.

Metamorphosis of the Ant-lion (Myrmeleo).
falls to the bottom, and thus becomes an easy prey. In order to adapt the larval Ant-lion to this spider-like mode of life, it is gifted with the power of fasting for a long period; and, as the animal juices upon which it feeds afford no excrementitious matter, its alimentary canal is unprovided with any outlet. When the time for its transformation arrives, the larva spins for itself a cocoon of silky material, which it eovers externally with grains of sand, so as effectually to mask it from observation; and after the lapse of from fifteen to twenty days the perfect inscct issues forth, after depositing its worn-out pupa-case at the door of the silken domicile wherein it has been conccaled. In the Ant-lion (by a remarkable exception to the usual arrangement) the silk-spinning apparatus is situated (as in spiders) at the posterior extremity of the abdomen.
(912.) Having thus become acquainted with the various conditions under which insects arrive at maturity, and the principal forms that they exhibit during the different stages of the metamorphosis, the reader will be prepared to investigate more minutely the changes in progress
during the process, and the gradual development of the organs which successively make their appearanc. On examining the viscora of a Caterpillar, they are found scarcely at all to resemble those of the Butterfly or Moth, into which a larva of this description is ultimately matured. The jaws (fig. 289, 6 b), widely different, both in structure and office from the proboscis which represents them in the perfect insect (fig. 246), are strong and horny shears adapted to cut the leaves of vegetables and other coarse materials used as food; the œesophagus (fig. 286, $g h$) is strong, muscular, and capacious; and the stomach ($h i$), in capacity corresponding with the extraordinary voracity exhibited by the larva, passes insensibly into a wide intestine ($l \mathrm{~m}$), the line of scparation being only indicated by the entrance of the biliary vessels (k) that wind in numerous convolutions around the posterior half of the alimentary canal. It is sufficient to contrast this arrangement of the digestive organs with what we have already describcd in the Butterfly (fig. 246), to appreciate the amazing dissimilarity: it would be difficult, indeed, to imagine, did not anatomy convince us of the fact, that the digestive apparatus of the imago, with its slender œsophagus, dilated crop, short sacculated stomach, long and convoluted small intestine, and capacious colon, was derived from a gradual modification of such viscera as those we have just been considering. The salivary glands of the Caterpillar (fig. 286, q, r) are large cylindrical cæca; and their ducts (p) pour into the mouth an abundance of saliva proportioned to the coarse nature of the materials used as food.
(913.) The sides of the body are traversed by the wide longitudinal tracheæ ($a b c$), that communicate on the one hand with the lateral spiracles, and on the other give off at regular intervals the air-tubes (d, e, e, e, e), which ramify most minutely over all the viscera, and convey the atmospheric air throughout the entire system.
(914.) Besides the above organs, there are other riscera, which, although of considerable importance to the Caterpillar, would be utterly useless to the imago, and consequently are more or less completely wanting in the mature state.
(915.) The whole body of the larva is filled with a peculiar fatty tissue (fig. $286, f f f$), called by entomologists the rete, epiploon, or fat-mass. This material, found in great abundance in mature and well-fed larvæ, consists of an oily or greasy substance enveloped in a most delicate cellulosity, and seems to correspond to the fat of higher animals, like which it is indubitably a product of digestion, and a repository of superabundant nourishment, stored up, no doubt, for the sustenance of the animal during its helpless condition in the dormant or pupa statescrving, like the fat of hibernating quadrupeds, for food during the confincment of the imago.
(916.) One of the most remarkable features in the larre under consideration is the presence of an apparatus employed for producing a
tenacions thread of extreme delicacy, appropriated by different species
Fig. 286.

Viscere of a Caterpillar: $g h$, esophagus ; $h i$, stomach; k, hepatic vessels; $l \boldsymbol{H}$, intestine: q, r, salivary glands ; p, salivary duct; a b c, longitudinal tracheal trunks: d, e, e, c, e, air-tubes distributed to the viscra; $f f f$, the epiploon or fat-mnss; $v x y$, sill-secretors; z, their excretory duets, terminating in t, the spinneret or fusulus.
to various purposes. In many cases (fig. 287) it is made subserrient to locomotion ; and by its assistanco, as by a rope, the larva can suspend itself from any object, or let itself down from one branch to another in search of food. Most of the uses, however, to which this thread is applied are connected with the concealment and protection of the quiescent and defenceless pupaeither furnishing tho means of suspending the chrysalis in a place of safety* (fig. 288), or, as is the case with the Silkworm (fig. 272), supplying the material with which the caterpillar encases itself preparatory to throwing off the last skin of the larva. The thread of the last-named insect, the Silk-

Fig. 287.

Metamorphosis of the leaf-rolling Caterpillar of a Moth (Tortriz) : b, larva; a, pupa; c, imago. worm, is of great tenacity, and, notwithstanding its fineness, may be wound off from the cocoon in a continuous thread, forming the important article of commerce, sill.
(917.) Nothing can be more simple than the apparatus provided in caterpillars for the production of this valuable commodity. Placed on each side of the intestine are two long and tortuous secreting cæca (fig. 286, v, x, y), that separate from the surrounding juices of the body a tenacious viscid fluid, which is liquid silk. The viscid secretion thus formed is in the Silkworm of a golden-yellow colour, and is conveyed by the excretory ducts of the secerning organs (z) to the labium or under-lip, where the ducts terminate at the baso of a

Fig. 288.

Process whereby a chrysalis becomes suspended by the tail. (Sec note *.) tubular instrument, the fusulus or spinneret, through which the silk

* For a most amusing account of the manner in which some chrysalides manage, without any external limbs, to suspend themselves by the tail in a position of security.
is drawn (fig. 289, c). The fusulus of the Silkworm, represented in the annexed figuro upon an enlarged seale, is a simple nippleshaped prominenee, perforated at its extremity, and surrounded by four rudimentary palpi. When about to spin, the larva, placing the extremity of its spinncret in contact with some neighbouring objeet, allows a minute drop of the glutinous seeretion to exudo from its extremity, which, of course, adheres to the surface upon whieh it is plaeed : the head of the Silkworm being then slowly withdrawn, the fluid silk is drawn out in a delieate thread through the aperture of the spinneret, its thiekness being regulated by the size of the orifiee, and, immediately hardening by the evaporation of its fluid parts, forms a filament of silk, whieh can be prolonged at the

Fig. 289.

Head of a Caterpillar, from beneath: a, a, antennæ; b, b, horny jaws ; c, thread of silk emitted from the conical fusulus, which is scen surrounded by four rudimentary palpi. pleasure of the animal until the contents of its silk-reservoirs are eompletely exhausted.
(918.) Sueh is the strueture of the larva of a Lepidoptcrous insect; and the arrangement of its internal visccra, when arrived at maturity, has been already deseribed. We have yet, however, to mention the series of phenomena observable during the progress of its growth, and the mode of its expansion from the minute size that it exhibits on leaving the egg to the full dimensions which it ultimately acquires. In order fully to understand the circumstanees conneeted with this part of our subject, it is neeessary to premise that the outer integument of most larvæ is of a dense corneous texture, coriaceous in some parts, but quite hard and horny in others. In the second place, it is but very slightly extensible; and, moreover, as is always the case with epidermic structures, it is not permeated by any vaseular apparatus, and consequently is absolutely incapable of growth when onee formed. This epidermis eneases every portion of the larva: the body, the legs, the reader is referred to Kirby and Spenee, vol. iii. p. 207. Fig. 288 illustrates the different steps attending the proeess. The larva (A), having spun some loose silk, and fixed it upon the underside of a leaf or other suitable objeet, suspends itself therefrom by its hind legs. The skin of the eaterpillar then gradually splits down the baek (B, C), and is slowly pushed upwards towards the tail of the chrysalis. The pupa now lays hold of the old skin, nipping it between the rings of the abdomen, and hanging in this posture inserts the apex of the tail, which is eovered with hooks for the purpose, into the silk previously deposited, and thus remains fixed in safety (D).
tho antonnx, tho jaws, and all external organs are closely invested by a eutieular envelopo sueh as, from its want of extensibility, would form an insuperable obstacle to develupment, were there not somo extraordinary provision mado to meet the neecssity of the ease. The plan adopted is, to east off at intervals tho old euticle by a process termed moulting-an operation whieh is repeated several times during the life of the inseet in its larva-condition, and is aeeomplished in the following manner:-The eaterpillar beeomes for a few days sluggish and inaetive, leaves off cating, and endeavours to coneeal itself from observation. The skin, or, more properly, the cuticle, beeomes loosened from the subjacent tissues; and soon a rent appears upon tho baek of the animal, which gradually enlarges in a longitudinal direetion ; and the imprisoned inseet, after a long scries of efforts, at length sueceeds in extrieating itself from its old eovering, and appears in a new skin of larger dimensions than the one it replaees, whieh, however, in all other partieulars it elosely resembles. With the old epidermis the larva throws off all external appendages to the eutiele : the horny eoverings of the jaws, the corneæ of the eyes, the eases of the elaws, are all removed ; and many

Silk-forming apparatus of the silkworm (Bomby, \mathbf{x} Mori): a, fusulus: b, silk-glands ; c, mandibles. writers have even found attaehed to the exuvix an epidermie pelliele that had formed a lining to the reetum, and delieate prolongations of the eutiele derived from the interior of the larger ramifieations of the air-tubes. Absurd, indeed, have been the explanations given by various writers of the nature of the proeess under consideration. Swammerdam and Bonnet, nay, even our own illustrious entomologists Kirby and Spenee, believed that even at the birth of the eaterpillar all these skins existed ready-formed one beneath the other, and that the most external being removed at intervals displayed in succession the skins placed underneath. Surely the advocates of this extraordinary theory could seareely have refleeted upon the real object of the moults in question (namely, to provide a suecession of larger eoverings proportioned to the continually inereasing bulk of the larva) when they advoeated this strange doctrine, alike at variance with observation and sound physiologieal prineiples. The epidermis and all eutieular structures are mere seeretions from the subjaeent eutis or
true skin; and it can bo no moro necessary to suppose the preexistence of so many skins in order to explain the moults of a larva, than to imagine that becauso, when in our own persons the cuticle is removed by the application of a blister, a new layer of epidermis is again and again produced, man should possess as many skins, onc beneath the othcr. Nothing, in fact, can be more simple and free from the miraculous than the whole process: at certain periods, when the old cuticle has grown too small for the rapidly enlarging dimensions of the insect, it becomes gradually loosened and separated from the vascular and living skin or cutis by which it was originally secreted ; and, a new secretion of corneous matter taking place, a fresh and more extensive layer of cuticle is slowly formed, and then the old, dry and dead epidermis, being quite detached, is split by the exertions of the larva, and the newly-secreted layer placed beneath it appears.

Metamorphosis of Telescope-tailed larva: A, larva; B, pupa; C, imago. and the reclothed caterpillar assumes again its former activity and habits.
(919.) Neither is the change from the larva to the pupa or chrysalis less easily explained, althongh regarded by our forefathcrs as being so mysterious and astonishing a phenomenon. According to the hypothesis above alluded to, after removing three or four skins in the embryo larva, the anatomist ought to have arrived at the totally different pupa-case ready-formed and only waiting for the removal of the coats above it to exhibit its characteristic form. Leaving, however, such visionary notions, let us examine the real nature of this portion of the metamorphosis. The reader will bear in mind that, whatever the form of the exterior or epidermic crust, it is merely a dead and extravascular secretion, unchangeable when once deposited. But the living skin or cutis beneath it is, during the whole process of the metamorphosis, undergoing great and important changes-increasing only in size during the larva-condition, but when perfectly organized developing itself at different points, and expanding into variously shaped organs which did not previonsls
exist. In tho Dragonfly, for example (fig. 277), when the cutis had become expanded to its mature larva-condition, it secreterl from its surfaco the external epidermic crust which gives form to the larva (B) ; this outward integument remains, of course, unchanged when once formed, and retains the same appearance during the whole period of the existence of the insect in its larva-state ; but underncath this cuticle, and conscquently conccaled from observation, the growth of the living dermis still goes on, and important organs begin to appcar, which had no existence when tho last larva-investment was secreted. The wings have sprouted as it were from the shoulders, and already have attained to a certain growth ; the whole integument of the larva becomes useless, and a now one is wanted: the process already described is repeated; the old cuticle becomes detached from the surface of the borly, and the cutis begins to sccrcte for itself a new covering moulded upon its own shape. The newly formed wings, therefore, and other newly-developed proccsses of the dermis, secrete horny coverings for themselves in the same manner as other parts of the surface of the body; and thus, when the insect leaves its old skin, and once more escapes from confinement, it presents to view the wing-cases which distinguish the pupa.
(920.) Whatever may be the form of the pupa, its eovering is secreted in a similar way ; it is the living and vascular skin which, though concealed, continually grows more perfect in its parts ; and the cases secreted by it at distant intervals correspond in shape with the different phases of its development.
(921.) After having attained the pupa-state, the last steps of the process are completed, and the dermic system becomes fully developed in all its parts. The oral apparatus attains its perfect condition ; the wonderfully elaborate structure of the eyes is completed; the antennæ assume their full development; the legs, enclosed in those of the pupa, attain their mature form; and the wings, which have been continually growing, although concealed in the wing-cascs of the pupa, acquire their ultimate size: the perfect inscct is ready for liberation, and, enclosed in its last covering, creeps out of the water in which it has so long resided, to enter upon a new state of existence. Fixing itself upon some plant in the neighbourhood of its birthplace, the imprisoned Dragonfly splits its pupa-case along the back (fig. 292, 1), and slowly extricates its head and body; it then draws its wings from their coverings, and its legs from those of the pupa as from cast-off boots;' and at length (fig. 292, в), getting its body from its now useless covering, it becomes entirely free. The wings, before soft and crumpled, slowly expand (fig. 292, c); the nervures harden; the extended membranes dry; and in a short time the winged tyrant of the insect world (fig. 211) commences his aërial career.
(922 .) A strong argument in favour of the above views conceming the production of successive skins from the dermis is derived from the
phenomena attending the cure of wounds in insects. If a perfect insect be wounded, the wound is never healed at all; and if a larva or pupa is similarly injured, the wound remains uncicatrized until the next moult, when the newly-formod integument is found to exhibit no traces of the injury. The secreted and extravascular cuticle camnot cicatrize ; but the living and vascular dermis is not only able to repair injuries inflicted upon itself, but, in secreting the next investment, to obliterate all indications of their occurrence.
(923.) The changes above described are produced by the progressive development of the dermic or tegumentary system, the parts of which, as we have already secn, becoming strengthened and consolidated by degrees, ultimately acquire that density of structure which the external skelcton of the insect exhibits in its perfect or imago state. But while this oxtraordinary metamorphosis is going on externally, other changes not less important are in progress in the interior of the body. The size of the alimentary canal, and the shape, proportionate dimensions, and general arrangement of the different parts composing it, are secretly and

Fig. 292.

Metamorphosis of the Dragonfly: A, B, escape of the imago from its pupa-case; C, expansion of the, as yct, undeveloped wings. imperecptibly undergoing variations in accordance with the altered necessities of the animal. We have already seen a conspicuous example of this in Lepictopterous inseets, $\$ 912$; and in other orders equally striking instances might easily be selected. One of the most remarkable is met with in many Ilymenoplerc, as, for example, in Bees (Apis)
(fig. 293), Wasps (Vespa), and Ant-lions (Formica leo), as woll as in most of the Icheumonide. In all these genera, the larva being conconled in a close cell dnring its development, under circumstances which would rendor the evaeuation of excrementitious matter all obvious inconvenionce, both the larva and pupa (fig. 293) are ontircly without either intestinal canal or anal orifice,-what little excrement is produced by the digestion of the highly nutritive substances wherewith these larvæ are fed being collected in a blind cavity or cæcum placed behind the stomach, until the accomplishment of the last change-at which period, the insect, liberated from its confinement, becomes provided with a per-

Fig. 293.

Metamorphoses of the Hire-bee, showing larve in different stages of growth in their cells, over which is a royal cell containing a queen-pupa; a worker is feeding the young brood. vious intestine, and able to get rid of feculent matter.
(924.) The fat-mass (§ 915), which at the close of the larva-stato has reached its maximum of development, is gradually absorbed during tho concealment of the insect in its pupa-case, its nutritive portions being no doubt appropriated to the nourishment of the pupa; so that in the mature insect the fatty material has almost entirely disappeared, nothing being left in its place but the dense cellular web in which the fat had been deposited.
(925.) The silk-secreting apparatus of such genera as possess the means of spinning a silken thread is pcculiar to the larvæ; and aftcr the commencement of the pupa-state, no traces of its previous existence are to be detected.
(926.) But while the above-mentioned organs disappear, others become developed ; and the perfect insect is found to possess viscera for which a skilful anatomist might seek in vain in the earlier stages of its existence. The generative system appears, at first, to be absolutely wanting in the larva; but Herold *, after much patient investigation, sueceeded in detecting the undeveloped rudiments of the future sexual organs, both of the male and female. It is during the maturation of the pupa that these important parts expand ; and before the disclosure of the imago they are found to have attained their complete proportions, so as to be ready to perform thcir functions as soon as the expansion of the wings endows the insect with means of locomotion sufficiently perfect to ensure the due dispersion of the species.
(927.) It is in the nervous system, however, that the most interesting

[^116]phenomena aro observable; and in the lessons afforded by watehing the correspondonce betweon the state of the animal during the several phases of its existence and the development of the nervous ganglia, the physiologist cannot fail to recognizo thoso great and general principles upon which our arrangement of the animal ereation is based. In the wormlike larva the ganglia are numerons, but of small dimensions-too fecble to be capable of animating powerful limbs, or of appreciating impressions from the organs of the higher senses; the animal is, in fact, precisely in the condition of an Annelidan, which it would seem to represent. External limbs are therefore absolutely wanting in many larve; in others they are represented by short and stunted appendages; and ceven in the most perfect, or hexapod larvæ, they are fecble instruments in comparison with those of the mature imago. The seuses exhibit equal imperfection ; and eyes are either entirely wanting, or are mere ocelli-simple specks, exhibiting the lowest possible organization of a visual apparatus. But as the growth of the larva gocs on, a change in the arrangement of the nervous system is perpetually in progress. The series of nervous cords connecting the different pairs of ventral ganglia in the larva (fig. 295, 1) become flexuous as the inscet attains the pupa-state; the whole chain becomes shorter; the brain,

Fig. 294.

Viscera of a Butterfly represcuted in situ: a a, dorsal vessel ; b, abdominal cavity; c, œesophagus; d, crop; f, stomach; e, biliary vessels twining around the small intestine; g, large intestine. The generative glands oceupy a position between the small intestine and the dorsal vessel. or encephalic ganglion, increases in its proportionate dimensions ; and, morcover, several ganglia, originally distinct, coalesec, and form larger and more powerful masses (fig. 295, is). This coalescence of tho ganglia, which takes placo more especially in the thoracie region, is cvidently a preparation for tho concentration of greater power and activity in this part of the body; and although in inactive chrysalids this change is not as yet visiblo by its effects, in the active forms oven the pupa is distinguished from tho larva by a considerable increase of vigour and enorgy in its movements. In the imajo the concentration of the nervous centres is carried to that extent which is adapted to the necessities of the mature state: their number
is still further reduced (fig. 295, c) ; their size, in the thorax especially, considerably increased ; and tho brain, now arrived at its maximum of developmont, is furnished with the wonderful apparatus of eyes, and other instruments of the senses, whieh heretofore would have been absolutely useless, but now, with the expansion of the brain, have becomo suited to the moro exalted faculties of the insect.
(928.) Many insects are capable of producing audible sounds; and

Fig. 295.

Changes which the nervous system undergoes during the progress of Insect-metamorphosis: A, nervous system of the Larva; B, that of the Pupa; C, that of the Imago or perfeet inseet.
sometimes the noises they make are exceedingly shrill, and may be heard at some distance. Such sounds originate from various causes in different tribes; and it is not always easy to detect tho mode of their production. In many Beetles they are caused by rubbing different parts of their dense integument against each other ; and the chirping of several Orthoptera seems to have a similar origin : the acute note that these insects utter is apparently produced by friction, the edges of their hard pergamentaccous wings being either seraped against cach other,
or against the long and sorrated edges of their thighs. The buzzing and humming noises heard during the flight of many genera result from

Fig. 296.

Metamorphosis of Nut-weevil (Rhynchinus nucum, Fabr.).
the forcible expulsion of the air as it streams through the respiratory spiracles, whose orifices Burmeister imagines are furnished with vibratory laminæ, to the rapid movements of which the noise may be duc. In the gencra Gryllus and Cicada among the Orthoptcra, however, there is a peculiar apparatus specially provided for the production of the loud chirping to which such insects give uttcrance. Upon the first segment of the abdomen, covered by a broad moveable plate (fig. 297, a), there is a large aperture, wherein a tense plicated membrane is obscrvable. This membrane is acted upon iuternally by certain muscles able to throw it into rapid vibration, and thus give rise to the sound in quostion.
(929.) Onc other point connected with this interesting class of animals requires brief noticc. Many insects are endowed with the faculty of emitting phosphorescent light, which is in some species exccedingly brilliant. The Elateride

Fig. 297.

Musical apparatus of Ci cada: a, moveable horny plate, drawn aside to display the plieated membrane; b, rings of the abdomen. among Beetlos are precminently luminous; and in then the light scems to bo principally given out by two oval spaces upon the thorax, which in the dead inscet are of a greenish hue : during life, some species (Elater noctilueus) are so strongly phosplorescent as to cnable a person to read a book by passing the sunimal over the lines. The Lampyirides emit
a light of great brilliancy ; and in Italy, during the summer nights, the groves, illuminated by their incessant scintillations, exhibit a scenc equally strange and beautiful. The femalos of Lampyris noctiluca have two large yellowish-white luminous plates upon the ventral surface of tho sixth and seventh abdominal rings, and, besides these, two minute organs of a similar description on tho eighth or caudal segment. The lattor only (and those of a smaller size and greyish transparent hue) are present in the males.
(930.) All the luminous organs, both ventral and lateral, present

Fig. 298.

essentially the same structure, consisting of an investing membrane enclosing a parcnchyma composed of tracheæ and nerves surrounding groups of cells so densely filled with white, spherical, minute granules, having an oily aspect when viewed by transmitted light, that no other constituent can be seen in them ; and from experiments, as well as the anatomical facts, Kölliker concludes that the luminous organs are a nervous apparatus, whoso nearest analogues are to be sought for in the clectrical organs of certain fishes*.

* Verhandl. d. Würzb. phys.-med. Ges. viii. 1857.

CHAPIER XIII.

ARACHNIDA*.

(931.) The Arachnidans, long confounded with Insects, and described as such even by recent entomelogists, are distinguished by characters of so much importance from the animals described in the last chapter, that the necessity of considering them a distinct class is now ne longer a mattcr of speculation. In Insects, the external skeleten presents three principal divisions-the head, the thorax, and the abclomen: but in the Spider tribos, the bleodthirsty destroyers of the insect-world, the separation of the head from the therax, which, by increasing the flexibility, necessarily diminishes the strength of the skeleton, is ne longer admissible; and, the process of concentration being carried a step further, the head and therax coalesce, leaving only two divisions of the body recegnizable externally, viz. the cephalothorax and the abdomen. Insects, in their mature forms, were found to be invariably furnished with only six legs, but in the adult Arachnidans eight of these limbs are developed. These characters in themselves weuld be suffieient to discriminate between the two orders; but when to these we add that in the Arachnidans the eyes are invariably smooth, that the antennæ of Insccts are represented by organs of a totally different description, that the sexual apertures are either situated beneath the thorax, or at the base of tho abdomen, and, moreover, that in the greater number of Arachnidans respiration is carried on in lecalized lungs (pulmonibranchice), instead of by trachce as in Insects, we need not enlarge further in the present place upon the prepriety of ranking the Arachnida as a scparato class. These animals may be grouped under threc principal divisions, - the first of which is evidently an intermediate type of organization, combining many of the characters of the Insecta with the external limbs and palpi of proper Arachnida.
(932.) Tho Aracminida Traciearia, in fact, breathe by means of tracheæ resembling thesc of Insects, which are se arranged as to cenvey air te every part of tho system ; and wo may therefore suppose that their circulatory apparatus, as well as their secerning organs, conform more or less to the type er structure met with in the class last described. The Mites (Acaridce) belong to this divisien, and form a very numerous family, which is extensively distributed. Seme are parasitic in their habits, infesting tho bedies of insects ; and one, the itch-insect (Acarus scabiei), is found occasionally upon the human skin. Many live in checse and ether provisieus, whero they multiply prodigionsly ; and not

[^117]a few inhabit leaves, or are found under stones or beneath the bark of trees. Some (ITydruchne) are aquatie; but, unfortunately, in all, from their extremely minute size, the investigation of their internal viscera presents so many difficulties, that but little is satisfactorily known concorning their anatomy: even the Pseucto-Scorpionidce, which are of larger growth and, although still breathing by trachex, approximate inost elosely to the outward form of the next group, have been very imperfectly examined.
(933.) In the Acaridans, the most remarkable feature of their structure is the eomplete consolidation or coalescence of the principal divisions of the body, which are always more or less distinct in the other Artieulata ; for not only do we find in them the head consolidated with the thoracic portion, but the abdomen likewise is swallowed up, as it were, in the general eovering of the body. The legs, as in other Arachnidans, are eight in number, and are gencrally composed of seven articulations, of which the first, which is sometimes adherent and sometimes free, eorresponds to the coxa of Insects, the second to the trochanter; the third, representing the femur, is often more developed than the rest, whilst the remaining constitute the tibia and the tarsal joints. The last segment of the tarsus, or foot as it might be ealled, is furnished

A, Acarus; B, its mouth. with two moveable hooks, that can be folded baek and lodged in a slight excavation provided for the purpose.
(934.) In accordance with their strueture, which is adapted to the habits of the various races, the feet of the Acaridans may be divided into:-such as are adapted for feeling (palpatorii), in which the ultimate joint is dilated; for walking (gressorii) ; for swimming (remiyantes), having the last joint expanded and ciliated, as in some, but not all, of the aquatie tribes; for running (cursorii), where it is long and slender: for weaving (textorii), in which ease the ultimate segment is provided with very short and much-curved hooks, and the antepenultimate with four elongated stiff bristles longer than the foot; and lastly, such as are formed for a parasitic life, or earunculated (carunculati), in which, superadded to the hooks, is a earunele or broad membrane wherewith the ereature fixes itself to a smooth surface, something in the same way as the sucker of a Leeeh.
(935.) The mouth is composed of two moveable pieces called the mandibles, beneath which is a broad plate (labium), which is cither flat or folded laterally so as to form a kind of gutter, and, moreorer, is furnished on eaeh side with a rudimentary palpus. The mandibles are
generally free, but in some cases are united together and conjoined with tho labial piece, so as to form a short tube or proboscis, near the end of which may be perceived a pair of moveable tooth-like structures, adapted to pierce the substances whence these suctorial races obtain their liquid food. When the mandibles remain entirely free and moveable, they exhibit, as was pointed out by M. Dugès *, three principal modifications in their structure: 1st, they are forcipated, like those of Scorpions; (fig. 301); secondly, they may be terminated by a single moveable fing (fig. $305, c$), as is the case in Spiders; and lastly, they may be composed of two long styles which are capable of alternate movements backwards and forwards, whereby they can perforate foreign substances, much in the same manner as the saw of the Tentlwedo among insects. The first of these forms are never provided with any poison-apparatus, and are only adapted to tear and pull to pieces alimentary substances; but in the second form poison-glands are superadded to the curved fangs, which, as in the proper Arachnidans, thus become formidable weapons.
(936.) The arrangement of the digestive apparatus in the Acaridans is one of the most interesting points in the economy of these creatures. Behind the mouth, M. Dujardin \uparrow was able to detect, in Trombiclium and Limnochares, a cylindrical pharynx, with distinct parietes, in which are implanted numerous muscular fibres calculated to assist the to operation of suction by dilating the pharyngeal cavity; but posterior this notraces are perceptible of either œsophagus, stomach, or intestine ; so that, apparently, the juices of organized bodies, which constitute the sole food of these creatures, must be lodged in lacunary spaces, destitute of any proper walls, in the middle of a brown parenchymatous mass, which probably performs the functions of the liver. The lacunæ, into which nourishment is thus received, must necessarily be prolonged amongst the tissmes and in the interspaces between the muscular fasciculi throughout the entire body, thus replacing altogether the circulating fluid; and even when living specimens of such genera (Dermamyssus, Gamasus, Bdella) as are sufficiently transparent are submitted to examination under the microscope, although it is easy to see that the blood or other nutritive juices upon which the creatures live, and with which their bodies are filled, occupies a lobed or symmetrically multifid space, there is no appearance of any canal possessing distinct walls, but the whole seems diffuscd through lacunæ that extend even into the bases of the legs.
(937.) The Acari, however, possess an anal orifice, through which excrementitious matter undoubtedly issues; nevertheless, on examining this excrementitious substance, it appears rather to present the characters of a secretion, as, for example, in the case of the genus Uropoda, where it bccomes consolidated on exposure to the air into a little horny stem, upon which the creature is attached as upon a pedicle. It might

+ Ibid. 1845, t. iii. p. 14.
thorefore, as M. Dujardin observes, be possible to conceive this kind of digestion in a mass acting much in tho same way as the glands upon tho nutritive juices submitted to their action.
(938.) In the most simply organized Acaridans, such as Acarus and Sarcoptes, no traces of any respiratory apparatus are discoverable, and respiration seems to bo entirely effected by the gencral surface of the body. In Ixodes, Gamasus, and other Acaridans furnished with forcipated mandibles, on the contrary, numerous elegantly ramificd trachex, of which the larger trunks are distinguishable by a spiral filament resembling that exhibited by the trachex of Insects, are dispersed through the body. These respiratory trachex communicate extcrnally through the medium of minute stigmata, which in Oribates are situated between the first two pairs of logs.
(939.) Between these two extremes in tho development of the respiratory system of the Acaridans, numerous intermediate grades cxist in different genera; and, in some, M. Dujardin* has pointed out a mixed kind of respiratory process very different from any thing as yet observed among articnlated animals; this consists in a system of tracheæ terminating at a respiratory mouth situated at the base of the mandibles, and serving only for expiration, while inspiration is effected by the general integument and its appendages.
(940.) To render intelligible this phenomenon, it will be neccssary to lay before the reader the description given by M. Dujardin of the respiratory (or, rather expiratory) apparatus as it exists in Trombidium. It is as follows :-At the base of the mandibles superiorly is seen an oblong orifice, bounded by two lips, the structure of which is altogether remarkable: it is a perforated eminence (bourrelet réticulé à jour), the internal cavity of which communicates with two large traeheal vessels which run parallcl to each other from behind forwards to this orifice. Each of the tracheal trunks, at a littlo distance from the orifice, suddenly divides itself into a tuft of tubular tracheæ, which are without any internal spiral filament, and whieh are distributed without any ramifications throughout all parts of the body. On observing a living Trombidium, it is seen frequently to agitate its mandibles as though to produce some movement of the air contained in the respiratory apparatus, and if at the same time a little water be placed upon the respiratory orifice, it is sometimes seen to become inflated with little bubbles of air.
(941.) On dissecting a Trombidium, there is seen bencath the integument, which is covered with plumose hairs, an clegant network, made of a diaphanous substance of homogeneous appearance, which appears to be in relation with the plumose appendages of the integument, and in concert with thom serves to absorb tho gaseous elements that are subsequently emitted externally through the tracheal orifices.
(942.) In IIydrachne and the aquatic Acaridans, the expiratory

[^118]system is similar to that whieh exists in Trombidium, except that, instead of plumose hairs upon the surface of the body, there aro stomata something resembling those of plants-that is to say, apertures eovered over with a very delieate membrane, bencath which is a subcutancous network, sueh as exists in the terrestrial speeies.
(943.) The nervous system in Trombidium, and probably of the other Acari, presents a very remarkable arrangement, eonsisting entirely of a single large globular ganglion, from whieh nervous filaments are given off, both before and behind. The researches both of Treviranus and M. Dujardin deny the existence of any thing like a supraosophagenl ganglion or nervous collar around the œsophagus.
(944.) The eyes of the Acaridans are generally four in number, sessile, and approximated together in pairs upon the dorsal surface of the cephalothorax. In some cases, however, the eye is solitary, and composed of eight or ten minute faects.
(945.) Trombidium is the only Acaridan in which either M. Dujardin or Treviranus could discover the presence of a tubular two-branehed ovarium ; generally speaking, throughout this order of Arachnidans, the ova are produced in the substance of the general tissue of the body, without the presence of any ovarian apparatus with distinct parietes being apparent. The genus Oribates produces living embryos covered with a soft and wrinkled integument, which, as its development advances, becomes hard and crustaccous; in these Acari, therefore, in order to enable them to bring forth their young, it is necessary that the orifiee of the vulva shall be of extraordinary dimensions; and aecordingly it is found to be, in species thus eonstituted, a large oval orifice, oceupying one-third or one-fourth of the entire length of the body, the opening being closed by two valves. In front of this large orifice, whieh is plaeed posteriorly, is another round opening, likewise terminated by valves, whieh gives issue to a long membranous tube, folded longitudinally and furnished with retraetor muscles. It would appear possible, therefore, that this is a penis, and that Oribates is hermaphrodite; for, seeing that the young are born alive, it eannot be looked upon as an ovipositor, or as furnishing any seereted defence for the ova.
(946.) The development and mode of exuviation of some of the Aearidans offer sereral very curious and interesting phenomena. The Watcr-mites, Hydrachne for example, at their birth present themselves under the form represented in fig. 300,3 , being at that time provided with only six loeomotive limbs and a very remarkable proboseis *. These larvæ at first swim at large in the water, but at length contrive to fix themselves to the body of some aquatic inseet, in which position they pass into the state of nymphs (fig. 300, 4); the hinder part of their bodies becomes remarkably elongated, and at length assumes the form of a pear, in whieh all resemblance to its former state is lost. * Dugès, Ann. des Sci. Nat. sér. 2. tom. i. p. 165.

Nevertheless, during this remarkable increase in size, the proboscis and the logs undergo but little alteration ; for as soon as the body begins to elongate, the legs and the palpi are withdrawn from their original

Fig. 300.

1. Female of Hydrachne globuhus, represented of the natural size, just previously to oviposition. 2. The same, maguified, and seen from below, showing the mouth or beak furnished with two palpi, and the eight legs appended to four separate pairs of eoxæ; between the hinder pair may be seen the heart-shaped genital scale, and a little posterior to this a round orifiee, whieh is the anus. 3. Newly-hatched larva of Hydrachne globulus. 4. Hinder part of an aquatic inseet (Nepa cinerea), to whieh numerous nymphe of Hydrachne in different stages of growth are attaehed. 5. One of these nymphs magnifled, exhibiting the head-like sueker provided with a pair of palpi, immediately behind whieh are seen the epidermie cases of two of the old legs of the larva (the four others have fallen off)-and posterior to these, fire pairs of little sprouts, whieh are the rudiments of antenno and legs : the median cirele indicates the position of the genital organs. 6. Represents the same nymph in its last stage of development, secn in proflle: the integuments are supposed to be transparent, so as to show the young Hydrachne within, ready to esenpe. 7. Ventral surface of young Hydrachne, showing the arrangement of the coræ. 8. Secondary nymph, making the transition from the seeond to the third phasis of the ereature's existence : the perfeet animal, ready for its eseape, is represented encased in the integuments of the preceding, the epidermic shenths of the limbs still remaining adhcrent to the exuvium.
integument, and, retiring with the body into the pear-shaped sae formed by the distended skin, nothing is left behind but the exuviated sheaths of the old legs, which are then easily broken off by the slightest violence.

A nymph, formed in the interior of its own skin, has replaced the larra; but it is a nymph which continues to nourish itsclf, and to incrense in size, until it assumes the appearance shown at fig. 300, 5, in which the rudiments of a new sct of legs are clcarly perceptible through the transparent onvelope : the cyes of the contained amimal are distinctly traceable, and may even be seen to abandon their former eorner, and to recede in the same proportion as the limbs from the old case, which at last, rending transversely into two portions, allows the new animal to escape, which immediately begins to swim vivaciously about, under a form closely resembling that of the parent. It has, however, still another moult to go through before it can be pronounced adult; for, after having lived some weeks in this third condition, and visibly increased in size, these immature individuals fix themselves to some water-plant, to which they hold firmly by means of their beak and claws, and, becoming motionless, again exuviate (fig. 300, 8), and are ready to reproduce their kind.
(947.) The rest of the Arachnidans breathe by means of lungs, or, as they are more properly designated, pulmonary branchice, and consequently, in contradistinction to the last-mentioned, are called by zoologists Arachnida Pulmonaria : such are the Scorpions and Spiders.

Fig. 301.

Scorpion (ventral aspect).
(948.) The Pedipalpi, forming the second division of the class, are at once recognized by the peculiarity of their external configuration. Their palpi (the representatives apparently of the maxillary palpi of Inscets) arc cxceedingly strong, and furnished at their cxtremity with a prchensile forceps; the hinder part of the body, corresponding to the abdomen of Insects, is much prolonged, and composed of numerous
artieulated segments, terminated in the Scorpion tribe by a sharp unciform sting (fig. 301) armed with a venomous secretion.
(949.) The third scetion embraces the Aranerdse, or Spiders, distinguished by having the abdomen short and globular, and furnished, moreover, near its postcrior tcrmination with spinnerets, by means of whieh these animals manufacture silken filaments applicable to a great number of purposes, and especially employed in eonstrueting what is usually named the spider's web. The maxillary palpi in the females are simple, and more or less resemble fcet; but in the males they often form a remarkable apparatus, to be deseribed in another plaee. The jaws are also armed with sharp and hooked fangs, and perforated near their points for the emission of a poisonous secretion provided for the destruction of their prey, the venomous properties of whieh emulate that of the most formidable Serpents, and in like manner speedily terminate the sufferings of the vietim.
(950). Nearly allied to the Seorpions in their gencral strueture, but differing from them in the shape of the abdominal portion of their bodies, which is broad and flat, are the Arachnidans composing the genus Tarantula, many speeies of which are remarkable on aeeount of the extraordinary modifieations observable in the eonstruetion of their limbs, rendering them objects of deep interest to the scientifie zoologist. In Phrynus, for instanee (fig. 302), the pedipalps, in their size and strength, almost emulate those of the Scorpion, only, instead of didactyle pineers, they are provided with sharp spines and hooks, the gripe of whieh is truly formidable. Imme-

Fig. 302.

Phrynus. diately behind these terrible weapons is a pair of limbs whieh, aeeording to all analogy, ought to constitute the first pair of ambulatory legs, but which have mueh more the appearance of enormous antennx, the tarsi being represented by a numerous series of attenuated segments so nearly resembling the setiform antennx of some inscets, that it is impossible not to assign to them a similar offiee.
(951.) The Pulmonary Araehnidans, both of the pedipalp and spinning divisions, are strietly earnivorous in their habits, living upon the juiees of the insects they destroy ; and we may consequently expeet, in the eonstruetion of their alimentary apparatus, a simplieity proportioned to
the facility with which highly nutritive food composed of already animalized matcrials is capable of being assimilated. The mouth varies somerrhat in its conformation ; and if we compare the pieces composing it with those we have found mandibulate insects to possess, we shall have good reasons for surprise in noticing the strange uses to which some parts of the oral apparatus are converted. In Scorpions (fig. 301), the apparent representatives of the mandibles of an inscet are transformed into a pair of small forceps, each being provided with a moveable claw ; these, therefore, of themselves form prchensile organs adapted to seize prey and hold it in contact with the mouth. But it is in the maxillce that wc find the most cxtraordinary metamorphosis ; for the maxillary palpi, so small in insects, are found to be dereloped to such prodigious dimensions, that they far surpass in size and strength any of the ambulatory extremities, and, from their resemblance to the claws of Crustaceans, have given the character from which the name of the division is derived*. Each of these formidable organs is terminated by a strong pair of pincers; and thus the maxillary palpi become converted into potent instruments either for attack or defence. The representative of the labium of an insect, in the Arachnidans, has no palpi connected with it.
(952.) In Spiders, the organization of the mouth is altogether different. The mandibles (fig. 305,

Fig. 303.

Under surface of male Spider: a c, poisonfang; e, mandible; b, teeth upon its anterior margin; f, labium ; g, thorax; h, h, h; four pairs of ambulatory limbs; i, abdomen; l, spinnerets; m, maxillary palpus; d, its dilated terminal joint; i, supposed sexual organ. $o, 0)$ are each terminated with a moveable fang (c), which ends in a sharp point, and is perforated near its extremity by a minute orifice, from which, when the Spider bites, a venomous fluid of great potency is instilled into the wound inflicted; such, indced, is the malignity of this poisonous secretion that its effects in destroying the life of a wounded inscet are almostinstantaneous, and in some of the large American species even small birds fall victims to its virulence. The organ in which the poison is elaborated is repre-

[^119]sented in the figure above referred to ; it is a long and sleuder bag, from whieh an attenuated duet may bo trueed through the body of the mandible as far as the perforated extremity of the fang.
(953.) The palpi conneeted with the maxill of the Spider are terminated in the female by a simple hook; but in the males of many speeies they exhibit a eonformation slightly resembling the foreeps of the Seorpion, although provided for a very different purpose. When elosed (fig. 304, s), tho terminal part of the palpus presents a elub-like dilatation, whieh, however, on elose inspection will be found to eousist of several picees (fig. 304, Λ, c, b, c, d, e), eonneeted with each other by artieulations, and eapable of being opened out in the manner represented in the figure. This strange instrument was formerly imagined to be the penis of the male Spider, and was thought to contain the terminations of the seminal duets: this supposition, however, has been proved to be crroneous; for the palpus is im-

Fig. 304.

Palpus of male Spider. perforate, and the sexual apertures of the male are situated elsewhere; but the organ in question is nevertheless apparently used in the process of impregnation, in a manner to be explained hereafter.
(954.) Both in Seorpions and Spiders the alimentary canal is exeeedingly narrow, presenting seareely any of those dilatations met with in the digestive organs of inseets. This is a natural eonsequence of the nature of their food; for as they live entirely upon animal juiees sueked from the bodies of their vietims, there eould be little necessity for the presenee of eapacious reeeptaeles for nutritious matter, or for any reservoirs for the aecumulation of effete material.
(955.) In the Seorpionidæ there is no stomaehal dilatation whatever: a straight intestine passes direetly from the mouth to the anus, situated at the extremity of the abdomen; and the insertion of the biliary vessels forms the only distinetion between its ventrieular and intestinal divisions. Five delieate eæea are derived from caeh side of the ventrieular portion, and plunge into the eentre of a fatty substanee in which the alimentary eanal is imbedded. In Spiders, likewise, eæea are appended to the commeneement of the digestivo apparatus; and a slight cnlargement (fig. $305, b$) may bo said to represent the stomaeh, from whieh a slender intestine (g) is eontinued to the anus. As in the Seorpion, a large quantity of fat (h) surrounds the nutrient organs and fills up a great proportion of the eavity of the abdomen. Like the fat-mass of the larvæ of inseets, this substanee must, no doubt, be regarded as a reservoir of nutriment; and when the hnbits of these animals are eonsidered, the precarious supply of food, and the frequent
neeessity for long protracted fasts when a scareity of inseets deprives them of their accustomed prey, such a provision is evidently essential to their preservation.
(956.) Ono peculiarity eonneeted with the arrangement of the chylopoictic viscera of the Spider is the manner in which the biliary organs terminato in the intestine ; for, instead of entering in the usual position (namely, elose to the termination of the stomach), they seem to pour their secretion into the reetum, immediately in the vicinity of the anus. At this point, a kind of saceulus (figs. $305 \& 307, f$) joins the intestine, into which the branehed tubes (fig. $307,0,0$, \& fig. $305, s$) ompty themselves. This cireumstance has long been a subject of interesting inquiry to the comparative physiologist. If the fluid seereted by these tubes be really bile, in what manner does it accomplish those purposes usually supposed to be effected by the biliary secretion? It would seem to be, in this case, merely an excrementitious production. Are the cæea appended to the stomach biliary organs? If so, the apparatus in question may be of a totally distinct eharacter, and its produet only furnished to be expelled from tho system. In conformity with the last supposition, many anatomists have been induced to regard these vessels as being. analogous to the urinary secerners of more highly organized animals, and have not serupled to apply to them the appellation of renal vessels : but this hasty applieation of names we have already animadverted upon as being highly prejudicial to the

Fig. 305.

Digestive system of the Common Spider : c, poison-fang; $o, 0$, the jaws, with their appended poison-glands; a, a, a, cæeal appendages to d, the commencement of the alimentary canal, with which the muscle (e) is connected; b, stomachal dilatation; g, intestine; $h h$, accumulation of fat; f, sacculus receiring the terminations of the secreting-tubes (s). interests of seience ; and in this instance, as in many others, to wait the results of future investigations is far more advisable than rashly to assign a definite function to a part the real nature of which is a matter of speeulation.
(957.) The rospiratory system of the Pulmonary Arachnidans is constructed upon very peculiar prineiples, being neither eomposed of gills adapted to breathe water, nor of lungs liko thoso of other air-breathing animals, but prescnting a combination of the charaetors of both. The pulmonibranchice are, in faet, hollow viscera resembling bags, tho walls
of which are so folded and arranged in lamine that a considerable surface is presented to the influence of oxygen. It is, indced, highly probable that these organs are intermediate in function as well as in structure betwecn an aquatic and air-breathing respiratory apparatus; for, as both the pedipalp and spinning Arachnidans frequent moist situations, the dampuess of the atmosphere may be favourable to the due action of the air upon the circulatory fluids of these creatures. Each pulmonibranchia opens oxternally by a distinct orifice resembling the spiracle of aninsect, and is closed in a similar manner by moveable horny lips. In the Scorpion (fig. 301) the spiracles are eight in number, placed upon the ventral aspect of the body ; and just in front of the first pair of breathing-holes are two remarkable organs (represented in

Digestive and circulatory apparatus of the Harvest Spider: a, the stomach, with its lateral cæca, on which is situated the dorsal vessel ; b, b, vascular sinuses. the figure), resembling a pair of combs, which are apparently adapted to keep the spiracular orifices free from dirt, and thus prevent any obstruction to the free ingress and egress of the air.
(958.) In the Arancidæ, the form and arrangement of the spiracles are somewhat different. According to Treviranus, there are four pairs on each side of the cephalothorax, situated immediately above the insertions of the legs ; and in addition to these, there is one pair constantly found on the under surface of the abdomen, and four pairs of smaller apertures of less importance on its upper part.
(959.) In order to understand the manner in which respiration takes place in pulmonibranchice of the strueture above described, it is necessary to suppose the existence of a vascular apparatus, by means of which the

Fig. 307.

Termination of the alimentary canal of a Spider: (a, stomachal dilatation of the intestine ; f, terminal saceulus receiving the terminations of the secerning ressels (0,0). circulatory fluid is continually spread over the lamine of the respiratory sacculi, and afterwards returned to the circulation in a purificd eondi-
tion. It is true that, owing to the extremo difficulty of tracing vessels of such small dimensions, the continuity of tho entire system is rather an inference deducible from a geueral review of the facts ascertained, than absolutely a matter of demonstration. We will therofore briefly lay before the reader the data upon which physiologists found the opinions entertained at the present day relativo to the meaus whereby the circulation of Arachnidans is accomplished.
(960.) According to Treviranus, spiders are provided with a loug contractile ressel (fig. 308, a), which runs along the mesial line of the

Fig. 308.

Plan illustrating the circulatory system in a Spider: a, dorsal vessel; b, suspensory muscle; c, the ocelli; d, poison-gland; e, palpus; f, pulmonibranchial organ; g, poison-fang; h, cephalothorax; i, cæcal appendices to the stomach; l, vascular trunks derived from the dorsal heart, running to the pulmonibranchiæ; m, abdomen; n, spinnerets.
back, and resembles in form the dorsal vessel of insects, although in structure it is widely different. In insects, it will be remembered, the dorsal vessel communicated frecly with the abdominal cavity by numerous valvular apertures, and neither arteries nor veins were necessary for diffusing the blood through the system; but in the Pulmonibranchiate Arachnidans numerous vascular trunks (l, l) are given off from both sides of the dorsal heart and are dispersed in all directions. All the branches proceeding from the sides of the dorsal vessel are presumed to be of an arterial character, with the exception of a few large canals situated near the junction of the anterior and middle thirds of its length, and theso are supposed to be veins* (branchio-cardiac vessels) destined to return the aërated blood from the pulmonibranchice (f) into the general circulation. Whoever watches tho movements of the blood in one of the limbs of these creatures will perceive that, under the microscope, its motion bears little resemblanco to that observable in the foot of a frog, or in animals possessed of an artcrial and venous system completely developed. So irregular, indeed, is the courso of the globules, that it would be difficult to conecive them to be confined in vessels at all; the whole appearance resembles rather the diffused circulation seen in the larva of an insect than that of a creature possessing vascular canals arranged in definite directions. The only probable way of accounting.

[^120]for such a phenomenon is by supposing that, in this first sketch of a vascular system, if we may bo pardoned the expression, the veins are mere sinuses or wide eavities formed in the interstices of the muscles, through which the blood slowly finds a passage. From a review of the above-mentioned faets we are at liberty to deduee the following eonelusions relative to the eirculation of Arachnidans:-The pulmonibranchice being apparently the only organs of respiration, the blood must be perpetually brought to these structures from all parts of the system, to receive the influences of oxygen, and again distributed through the body. Such a circulation eould only be aecomplished in cireumscribed channels-some destincd to propel it through all parts, others to collect it after its distribution and bring it to the respiratory organs, and a third set to return it in a renovated condition to the heart. The cireuit of the blood may thercfore be presumed to be completed in one or other of the following modes:-The dorsal vessel, or heart, by its eontraetion drives the blood through numerous arterial canals to the periphery of the system ; the blood so distributed gradually finds its way intro capaeious sinuses, through which it flows to tho branehial organs, and thence it reenters the heart by the branchio-cardiac vessels above referred to: or clse the action of the heart drives a portion of the circulating fluid into the pulmonibranchice by the same effort which supplies the rest of the system, and the blood so impelled to the respiratory organs beeomes, after being purified, again mixed up with the contents of the veins which return it to the heart.
(961.) In the Scorpions, the circulatory system resembles that of the Myriopoda, but it is more completely organized; the heart, which, as in the Scolopendra, is divided into compartments, is elongated at its posterior extremity into a long eaudal artery, and gives off from cach chamber a pair of systemie artcries, which are distributed among the viscera, and also send their prineipal divisions to supply the muscles of the inferior and lateral regions of the body, as well as the pulmonary sacs. At the anterior part of the abdomen, the heart assumes the eharaeter of an aorta, desecnding suddenly into the thorax, and dividing immediately behind the brain into a number of large vessels, that supply the head and the locomotive organs. The posterior of these form a vascular eollar around the œesophagus, which gires origin, to the great arterial trunk, or supraganglionie vessel, whereby the blood is conveyed to the posterior part of the body, as in the Myriopoda (vide §731). This vessel passes beneath the transverse arch of tho thorax, with which it is slightly connected by fibrous tissue, and then runs backwards, gradually diminishing in size, until it reaches the terminal ganglia of the tail, where it divides into branches that aceompany the nerres. In addition to the above arrangement, Mr. Newport has diseovered a fibrous strueture, from which are given off two pairs of vessels, to be distributed to the first pair of branehial organs, as also a little ressel which, passing
backwards, anastomoses with the spinal artery, to form the subspinal vesscl. This latter takos its course beneath the chain of nervous ganglia, communicates directly by means of short branches with tho supraganglionic artery, and, at intervals, gives off from its under surface large ressels, which, uniting together, convey the blood which has circulated in the abdominal segments directly to the branchire, whence it is returned to the heart by a great number of slender canals, which, cmanating from tho posterior aspect of each branchial organ, unite to form larger trunks, that run along the walls of the scoments, to pour their contents into the valvular orifices situated upon the dorsal aspect of the heart.
(962.) The heart of the Scorpion* is a strong muscular organ extending along the middle of the back, from its continuation with the great caudal artery in the last segment of the abdomen to the commencement of the aorta. In the dorsal part of its coursc the heart is divided into eight separate chambers, which are wider and stronger in proportion to their length than in the highest of the Myriopoda. They are more muscular and compact in proportion to the greater quantity of blood to be transmittcd through them, and the force with which it is necossarily propelled. The form of each chamber is somewhat heartshaped, being slightly contracted in its middle portion and enlarged at its posterior. Each chamber has two auricular openings for the passage of the blood, placed very close to the median line of the heart on its dorsal surface ; and it gives off at its inferior lateral angles a pair of large arterial vessels (the systemic arteries), which distribute the blood downwards to the viscera and to the dorsal and lateral surfaces of the body.
(963.) Each chamber is provided at its sides, as in the Myriopoda and Insects, with two sets of muscles, the alce cordis. The anterior and larger pair of muscles are attached to the anterior part of each segment, and pass diagonally forwards, and the posterior (the proper retractor museles of the chamber) to its posterior angle, and pass backwards, leaving between the two scts of muscles a passage for the vessels.
(964.) The structure of the chambers internally differs considerably from that of the chambers in the Melolontha, as described by StrausDürckheim ($\$ 836$). Each valve, or division between them, is formed by a reduplication of the whole muscular structure of the dorsal surface of the organ. This reduplication, which is chiefly on the upper and lateral surfaces, is very imperfect on the under, and in some of the chambers is entirely absent on the under surface. The reason for this imperfect structure of the valves may perhaps be explained by the fact that the blood is distributed from the heart, in the Scorpion, in opposite directions-partly backwards towards the tail, but chiefly forwards towards tho head and sides; and hence it may be nocessary that a reflux

[^121]of the blood should not be entirely prevented, as may be required in those instances in which the whole current is in one direction. The structure of the heart is exceedingly thick, opaque, and museular; it is formed of two layers of fibres, longitudinal and circular in eacl layer, the most powerful of which are the latter. On its internal surface it is smooth, and lined by an exceedingly delicate membrane, through which the strong cireular fibres are distinctly marked. It is by means of these that its most powerful contractions are effeeted,--the auricular aetion being chiefly the result of the relaxation of these fibres, assisted by the reactions of the lateral muscles.
(965.) The aorta arises from the anterior extremity of the heart or dorsal vessel. It is short, thiek, and smooth on its external surface, without lateral muscles or internal divisions into chambers. It descends obliquely forwards and downwards; and after passing beyond the great median arch of the thorax, to which many of the museles of this region of the body are attached, it gives off the vessels to the head, to the organs of locomotion, and to form the great supraspinal artery, which, as in the Myriopoda, represents the aortic trunk, or rather the corta descendens, and which, running above the chain of nervous ganglia, supplies the neighbouring parts in this region of the body, as well as branches to the alimentary canal and to the liver.
(966.) The portal system of vessels is situated chiefly below the nervous cord, on the ventral surface of the body, and is the means by which the blood is collected and conveyed to the branchiæ, from which it seems to bo returned to the system, after eireulating through those organs, by means of a large sinus or vessel at their posterior superior angles.
(967.) Professor Müller* has aceurately deseribed the pulmonibranchiæ as formed of a multitude of elosely approximated, thin, double lamellæ, whieh communicate, by a small orifiee in each, with the external air admitted into a common eavity through the spiracles on the surface of the body. The blood, distributed through these lamellx, is brought into contact with the air in their interior through their membranous structure. The minute anatomy of these lamellæ, and the manner in which they are permeated by the blood, afford some points of interest. Each side of these double lamellæ is formed of an execedingly delieate and apparently structurcless double membrane, which includes within it a parenchymatous tissue formed of singlo vesicles or cells. The convex margin of each lamella is bounded by a delieate but distinet vessel, which seems to form the means of intercommunieation with tho anastomosing network of vessels distributed over the branehio.
(968.) At the posterior part of tho inner side of the branehia, whero the lamellæ are covered by the thiek membrane and peritoneun that lines the common cavity of the branchix, there are several small

* Mockel's Arehiv, 1828.
orifices, the commencement of vessels which afterwards, when collected together, forn the larger channels that convey back the blood to the heart. Thesc vessels form delicate trunks or sinuses, which pass around the sides of the body in the posterior part of each segment, and, bocoming gradually enlarged by communicating with other vessels in their progress, pour their contents into the heart at the auricular orifices upon its dorsal aspect.
(969.) The following, then, will be the course of the circulation in the Macrmrous Arachnidans. The blood received by the veins from the branehir is conveyed to the heart round the sides of the segments, receiving accessions from other vessels in the segments in its course, and enters the heart at the posterior part of each chamber through the orifices of Strans-Dürckheim. The auriculo-ventricular cavity, dilated by the influx of blood, begins first to contract by the action of the circular fibres at the posterior part of each chamber. By this contraction, part of the blood is at once propelled laterally, through the systemic arteries, to the interior and sides of the body, while the remaining and chief portion is forced onwards, through the valves and body of the chamber, by the successive contraction of the circular fibres, into the next chamber. A fresh accession of blood enters the heart at tho auricular orifices in the short interval of time that elapses between the contractile actions of the two chambers, which interval is probably occasioned by the reaction of the lateral muscular appendages of the organ. Theso contractions are carried gradually onwards through the whole of the succeeding segments; so that before a third chamber has contracted, the first is again filled and ready to be emptied-thus occasioning, by their alternate movements, those pulsatory motions which aro so well known in the dorsal vessel of Insects. The blood, propelled by these successive contractions through the aorta, is distributed to the organs in the head and thorax and the organs of locomotion. Part of it is also sent round the aortic arches through the supra-spinal artery backwards into the abdomen, giving off its minute currents for the nourishment of the nervous ganglionic cord, while another portion, intermingled with that collected in the portal vessels, is sent to the branehir. But its principal current still flows in the supraspinal artery, along the upper surface of the cord to the terminal ganglion of the tail, where it divides into four streams, two of which go out at the sides of the ganglion to nourish the segment, while the other two, now greatly rednced in size, proceed backwards along the terminal nerves of the cord, and, beeoming more and moro subdivided in the last segment of tho tail, are diffused through the surrounding structures. These form minute anastomoses with numerous small vessels, which, gradually collecting in separate trunks on the under surface of the last segment, form the origin of the caudal portion of the subspinal vessel which conveys the returning blood forwards from the tail to the abdomen, to
bo ac̈ratod in tho branchire before it is again transmitted to the heart. In liko manuer, the blood that has already eirculated through the organs of loeomotion, the eephalothorax, and abdomen appears to be collected in tho veins which transmit it to the branchio before it is again employed in the eireulation. Throughout the whole of its course along the artery in the tail, the blood is passed in small currents into the subspinal vessel-thus intermingling tho venous and arterial blood, preeisely as occurs in the abdomen. But the cireulation in tho caudal prolongation of the heart yet remains to be explained. We have already seen that tho great dorsal artery in the tail, above the eolon, forms direet vaseular eommunieations around its sides with the subspinal vessel upon the ventral surface, in whieh the blood is propclled forwards to the abdomen. It is eertain, therefore, that the action of the great chamber of the heart must impel the blood at onee in every direction, chicfly forwards and laterally, but also in part backwards through the caudal artcry; otherwise it would bo impossible for this structure to form its anastomoses with the subspinal rein without oceasioning two opposing eurrents in the same vessel.
(970.) In the nervous system of Spiders we observe that progressivo eoncentration of the nervous centres which we have traced through tho lower forms of the Homogangliata, earried to the utmost extent. Spiders are appointed destroyers of inseets, with whieh they maintain crucl and unremitting warfare. That the destroyer should be more powerful than the vietim is essential to its position; that it should exeel its prey in cunning and sagaeity is likewise a neeessary consequence ; and by following

Fig. 309.

Nervous system of the Spider : a, a, encephalicganglia, from which are derived the optic nerves; e, e, thoracic ganglia, forming by their coalescence the ceutral mass (c) ; n, n, nerves supplying the abdomen. out tho same principles whieh have already been so often insisted upon, eoneerning the inseparable connexion that exists between the perfection of an animal and the centralization of its nervous ganglia, we find in the elass before us an additional confirmation of this law. In Seorpions, indeed, tho nervous masses eomposing the ventral chain of ganglia aro still widcly scparated, especially those situated in the segments of the tail: in the cephalothorax they are of proportionately larger dimensions, and moreover exhibit this remarkable peculiarity, that, instead of being united by two cords of communication, there are three interganglionic nerves connceting each division. It is
in Spidors that the concentration of the nervous system reaches its climax ; for in them wo find the wholo series of ganglia (encephalic, thoracic, and abdominal) aggregated together, and fused, as it were, into one great central brain, whence nerves radiate to all parts of the body. The extent to which centralization is here carried will be at once appreciated by reference to figure 309: the encephalic masses (a, a), whence the optic nerves distributed to the ocelli are derived, are in close contact with the anterior part of a large ganglion (c), that represents all the abdominal ganglia collected into one mass ; and from the posterior part of this, nerves (n, n) destined to supply the parts contained in the abdomen derive their origin. The thoracic ganglia (e,e) are fusiform, and plaeed on each side of the mass (c), with which they are apparently amalgamated at one extremity, while from the opposite they give off the nerves appropriated to the legs.
(971.) The ocelli or eyes of Arachnidans have been minutely investigated

Fig. 310.

Eyes of the Spider. A, lenses of one of the eyes. B, relative position of the individual ocelli on the head of the Spider. by Miuller*, and seem to present a type of structure very far superior to that of insects. In the Scorpion, this distinguished anatomist succeeded in detecting most of the parts which enter into the construction of the eye of a vertcbrate animal, and, moreover, a great similarity in their arrangement. The cornca, a globular lens, the aqueous and vitreous humours, the retina and choroid, were all found nearly in their usual relative positions; so that the sense of vision in these animals must be extremely perfect.
(972.) The sexual organs of the male and female Arachnidans exhibit a very great simplicity in their structure. The testes, or secreting vessels of the male Spider are two long cæca (fig. 311, b) lodged in the abdomen, and terminating by simple orifices at the ventral surface. No external intromittent organ is perceptible; and it was on this account that the peculiar apparatus above referred to, situated at the extremity of the maxillary palpus, was so long considered as giving passage to tho im-

Fig. 311.

Generative organs of male S_{p} ider : a, a. pulmonibranchir; b, testes; c, cephalothorax. pregnating secretion. The singular instrument already described (§953) would seem, indeed, to be in some manner really subservient to tho fecundating process, being used most probably as an exciting agent preparatory to the intercourso between the sexes.

[^122](973.) The ovigerous system of the female is equally devoid of complication, and, like the malo testes, consists of two elongated membranous sacculi, in which the eggs aro formed and brought to maturity. The impregnation of tho ova is evidently effected by the simple juxtaposition of the external orifices of the two sexes : yet such is the ferocity of the female spider, that the accomplishment of this is by no means without risk to hor paramour ; for the former, being far superior to the male both in size and strength (fig. 313, $1, \mathrm{~B}$), would infallibly devour him, eithor before or after the consummation of his purpose, did he not exercise the most guarded caution and circumspection in making his advances.
(974.) One peculiar characteristic of the Araneidæ is the possession of a spin-ning-apparatus, whereby the threads composing their web are manufactured. The instruments employed for this purpose are situated near the posterior extremity of the abdomen (fig. 312, h), and consist externally of four spinnerets and two palpiform organs (fig. 315, 1,2,3). Each spinneret, when bighly magnified, is found to be perforated at its extremity by innumerable orifices of extreme minuteness (figs. 314, c, 315,3), through which the filaments are drawn ; so that, unlike the silk of the Caterpillar, the thread of the Spider, delicate as it is, is composed of hundreds of

Fig. 312.

Anatomy of Mygale: a, centralized ganglia of the nervous system; b, termination of the ganglionic cord; c, respiratory stigmata; d, anterior pulmonibranchial organ of the left side, displayed; e, posterior pulmonibranchial organ, partially corered by a large abdominal muscle (i): f, ovary; g, section of integument; h, spinnercts and anal aperture. smaller cords, sometimes woven together in zigzag lines, and thus exhibiting a structure of exquisite and most elaborate composition. The fluid silk, which, when it is drawn through the microscopic apertures of the spinneret, affords the material whereof the wob is constructed, is secreted in a set of glands represented in figure 316 ($p .416$). The secerning extremities of the glandular tubes are composed of branched cæca (s), whence arise long and tortuous ducts (π, π, π), that
become dilated in their course into reservoirs for the secreted fluid, and terminato by several canals at the base of the external spinningtubuli. Various are the purposes to which the different species of the Arancide convert the delicate threads thus produced. Some construct

Fig. 313.

A. Female Spider. B. Male of the same species. C. Arrangement of the eyes.
silken tubes or cells in which to conceal themselves from pursuit, and from this retreat they issue to hunt for prey in the vicinity of their abode; others strew their filaments about at random, apparently to entangle passing insects ; many make nets composed of regular meshes, and spread

Fig. 314.

Spinning-apparatus of the Spider.
them out in favourable situations to entrap their victims (fig. 313): while a few species, enveloping their eggs in bags of curious construction, earry them about attached to their bodies, and defend thom with the utmost courage and pertinacity. Even in water these webs are
tirned to many singular uses ; and ropes, nets, and even diving-loells are at the disposal of aquatic species furnished with this extraordinary spimming-machinery.
(975.) A few only of the most remarkable applications of this delicate material can be notiecd in this plaec. The Mason-spiders (Mygale) exeavate for themselves subterranean eaverns, in whieh these marauders lurk secure from detection even by the most watchful foe; nor could any robber's den which ever cxisted in the wild regions of romanec boast more sure coneealment from pursuit, or immunity from observation. The construetion of these singular abodes has long excited the admiration of the naturalist : a deep pit is first dug by the Spider, often to the depth of 1 or 2 fcet, which, bcing

Fig. 315.

Structure of spinnerets. carefully lined throughout with silken tapestry, affords a warm and ample lodging; the entrance to this excaration is carefully guarded by a lid or door, which moves upon a binge, and aecurately eloses the mouth of the pit. In order to form the door in question, the Mygale first spins a web which exactly covers the mouth of the hole, but which is

Fig. 316.

Silk-secreting glands of the Spider.
attached to the margin of the aperture by one point only of its cireumference, this point, of course, forming the hinge. The Spider then procceds to lay upon the web a thin layer of the soil collceted in the neighbourhood of her dwelling, whieh she fastens with another layer of silk; layer after layer is thus laid on, until at length the door aequires
sufficient strength and thickness: when perfected, the concealment afforded is complete; for as the outer layer of the lid is formed of earth precisely similar to that which surrounds the hole, the strictest search will scarcely reveal to the most practised cye the retreat so singularly defended.
(976.) Another Spider (Clotho Durandii) constructs a dwelling equally artificial and ingenious-a kind of tent, in which it lives and rears its young. This tent is composed of several superposed sheets of the finest taffeta; and its contour presents seven or eight prominent angles, which are fixed to the surface of the ground by silken cords. The young Clotho at first lays down only two sheets thus sccured, between which she hides herself; but as she grows older, she continually lays down additional coverings, until the period when she begins to lay her eggs, at which time she constructs an apartment, soft, downy, and warm, specially devoted to their reception. The exterior sheet of the tent is purposely. dirtied for the purpose of concealment; but within, every thing is beautifully clean and white. The most admirable part of the contrivance, however, is the perfect safety afforded to the young when the parent leaves her tent in search of food: some of the superposed shects are fastened together at their edges; others are simply laid upon each other ; and as the parent herself alone possesses the secret which enables her to raise those layers by which cutrance is to be obtained, no other animal can find its way into her impenetrable abode.
(977.) The fect of Spiders are constructed upon a very curious plan, evidently in relation with their rope-drawing capabilities. Each foot, when magnificd, is scen to be armed with strong horny claws, furnished with about a dozen processes arranged like the teeth of a comb and gradually diminishing in size as they approximate to the extremity of the claw. By means of this apparatus the Spider is enabled to regulate the issue of its rope from the spinnerets, to suspend itself from its almost invisible line, or to coil it up or let it out at pleasure with a facility and neatness that must excite the admiration of every one who attentively watches these operations.
(978.) In addition to the above remarkable

Fig. 317.

Foot of Spider. mechanism, there exists, in some genera of web-spiming Spiders, a peeuliar combing-apparatus of another description. In Clubiona atrox, a species everywhere to be met with building its snares upon the branches of trees or in the corners of windows, this consists of two parallel rows of spines, moveable at the pleasure of the animal, situated on the upper joint of the tarsus of each
of the posterior legs, upon a prominent ridge commencing just below its
articulation with the tibia. With this singular organ tho Clubionce diligently employs itself in combing out eertain fibrous bands that enter into the composition of its web; for, delieate as it is, the spider's web is not construeted of the same material throughout.
(979.) Acoording to Mr. Blackwall, the Ceometrie Spiders employ three distinet kinds of material in the construction of their nets. The boundary lines, radii, and first-formed spirals being unadhesive, and possessing only a moderate share of elastieity, are evidently eomposed of a different material from that used in making the spiral line which eompletes the web-whieh is execedingly viscid, and elastic in a remarkable degree. The viseidity of the spiral thread may be shown to depend entirely upon the presenee of a

Fig. 318.
 series of globules, resembling tiny beads; for if Comis of Clubiona atrox. these be removed, a fine glossy line is left which is highly clastie, but perfectly unadhesive.

CHAPTER XIV.

CRUSTACEA.

(980.) Insects and Araehnidans are air-breathing animals; even in such speeies of these two extensive classes as inhabit fresh water, respiration is strietly aërial. No insects or spiders are marine ; and eonsequently the waters of the ocean would be utterly untenanted by eorresponding forms of Articulata, were there not a elass of beings belonging to this great division of the animal world so organized as to be eapable of respiring a watery medium, and thus adapted to a residence in the recesses of the deep. Examined on a large seale, the Crustaeeans, upoll the eonsideration of whieh we are now entering, are marine creatures: many species, it is true, are found abundantly in the lakes and ponds around us; but these form rather exceptions to the general rule ; and we may fairly regard this extensive group of beings as the aquatie representatives of Inseets and Spiders, with whieh they form a collateral series.
(981.) The tegumentary system of the Crustacea corresponds in its essential strueture with that of inseets, and consists of a vascular dermis,
a coloured pigment, and a centicular secreted layer which forms the external shell or skeleton: the latter, or epidermic covering, however, differs materially in texture from that of other Articulata, inasmuch as it contains calcareous matter in considerable abundance, and thus acquires in the larger species great density and hardness.
(982.) As regards the mechanical arrangement of the skeleton, we shall find the same gencral laws in operation as we have observed throughout all the Annulose orders-a continual centralization and progressive coalescence of the different rings or elements composing the extcrnal integument, and a strict correspondence between the degree to which this consolidation is carried and the state of the nervous system within.
(983.) In the lowest forms of the Crustacea we have, in fact, a repetition of the coudition of the skeleton met with in the Myriopoda, or in the larva-state of many insccts,- the whole body being composed of a series of similar segments, to which are appended external articulated members of the simplest construction (fig. 319).
(984.) The number of rings or segments

Fig. 319.

Oniscus. (somites) composing the body varies in different species; but such variation would seem, from the interesting researches of Milne-Edwards and Audouin concerning the organization of articulated tegumentary skeletons, to be rathor apparent than real, inasmuch as the discoveries of these distinguished naturalists go far to show that, whatever the state of consolidation in which the integument is found, the same number of elements or rings may be proved to have originally existed before, by their union, they became no longer distingnishable as separate segments.
(985.) The normal number of these somites Milne-Edwards considers to be twenty-one, seven of which enter into the composition of the head, seven belong to the thorax, and as many appertain to the abdominal region of the body.
(986.) To illustrate this important doctrine let us select a fow examples, in order to show the manner in which the progressive coalescence of the segments is effected.
(987.) In Ta7itrus (fig. 320) the cephalic somites are completely united, their existence being only indicated by the several pairs of ap-pendages-one pair, of course, belonging to cach ring. The first ring of the cephalic region, in this instance, has no extemal articulated member; but in higher orders the eyes are supported upon long peduncles connected with this element of the skelcton. The second and
third rings support jointed organs, called anternac; while the several pairs of jaws appertaining to the mouth indicate the existence of so many elements united togothor in the composition of the head.
(988.) The soven segments of the thorax are still distinct; and each supports a pair of jointed organs, which, being used in locomotion, are called legs; the abdominal somites, likewise, are equally free, and have natatory limbs developed from the five posterior rings.
(989.) In the Lobster (Astacus marinus) we find not only the eephalic segments anchylosed together, but those of the thorax

Fig. 320.

Talitrus. also; and although the lines of demareation between them are still recognizablo upon the ventral aspect of the body, superiorly the entire thorax and head are consolidated into one great shield (cephulothorax), the abdominal segments only remaining distinct and mureable.
(990.) In the Crabs the centralization of the external skeleton is carried still further, so as to enable this tribe of Crustaceans to become more or less capable of leaving their native element and walking upon the shores of the sea, or even, in some instances, of leading a terrostrial existence, as in the case of tho Land-Crab of the WestIndia Islands. The abdominal segments, however, still remain free, though proportionately of very small dimensions ; and, being no longer useful in swimming, the abdomen is folded beneath the enormously developed thoracic portion of the body.
(991.) In the King-Crab (Limulus Polyphemus, fig. 321) even the divisions of the abdomen are obliterated, the whole body being covered by two enormous shields, and the tail prolonged into a formidablo serrated spine, of such density and sharpuess that in the hands
 of savages it bocomes a dreadful weapon, and is used to point their spears cither for the chase or war.
(992.) The reader will at onco perecivo the strict parallelism that may be traced between the changes which oceur during the metamorphoses
of Iuscets, and those observable as we thus advanee from the lowest to the most highly organized Crustaecan genera; and even the steps whereby we pass from the Annelidan to the Myriopod, and thenee to the Iusect, the Seorpion, and the Spider, seem to be repeated, as we thus review the progressive development of the elass before us.
(993.) Having thus found that the annuli, or rings, whieh compose the annulose skeleton may be deteeted even in the most eompactly formed Crustaeca, it remains for us to inquire, in the next place, what are the prineipal modifieations observable in the articulated appondages

Fig. 322.

Under surface of Limulus: c, foreeps-like antennæ; d, f, g, h, legs, terminated by didactyle claws, and haring their basal joint dentieulated, so as to perform the function of jaws; k, hind pair of legs, having foliated appendages to the feet; l, m, abdominal segments.
developed from the individual segments. This inquiry is one of considerable interest, inasmueh as it gocs to prove that, however dissimilar in outward form, or even in function, the limbs of Crustaeeans may be, they are more developments of the same olemonts, which, as they remain in a rudimentary condition or assumo larger dimensions, become converted into instruments of sensation, logs, jaws, or fins, as the eircumstances of the ease may render necdful. In the lower, or more eomplotely annulose forms (fig. 319 and 323), those members are pretty equally developed from all the segments of the body, and are subservient to loeomotion, being gonerally terminated by prehensile hooks, or pro-

Fig. 323.

Caprella. vided with fin-like expansions ; but as we advanee to the more perfeet genera, the limbs assume such various appearanees, and beeome eon-
vertible to so many distinct uses, that they are scarcely to be recognized as consisting of the samo parts modified unly in their forms and relative proportions. To notice all the varieties that occur in the extensive class before us, would be to weary the reader with tedions and unnecessary details; we shall therefore select the Decapod* division of these animals, as abundantly sufficient for the illustration of this part of our subject. This division, which includes the most highly organized forms, has been divided by writers into three extensive families: the Macrura \dagger, or Swimming Decapods, such as Lobsters, Shrimps, and Prawns; the Anomura, or Hermit crabs, which inhabit the empty shells of Mollusca; and the Brachyura, or short-tailed species, of which the Crab is a familiar specimen. If we take the common Lobster (fig. 324) as an

Fig. 32 4.

example of the first of these groups, we shall find that there are five pairs of articulated limbs placed upon each side of the mouth, which are evidently adapted to assist in seizing and conveying into the stomach substances used as food. These singular organs, although entitled to bo regarded as jaws so far as their use would indicate the name belonging to them, are no less obviously merely modifications of articulated feet; and the term jaw-feet has now, by common consent, become the appellation by which they are distinguished.
(994.) The pair of legs which succecds to the remarkable mombers last referred to is appropriated to widely different offices. The organs in question aro developed to a size far surpassing that attained by any of the other limbs, and are endowed with proportionate strength. Each

[^123]of these robust appendages is terminated by a pair of strong pincers (chelce) ; but the two aro found to differ in their structure, and are appropriated to distinct uses. That of one side of tho body has the opposed edges of its terminal forceps provided with large blunt tubercles, while the opposite claw is armed with small sharp teeth. One, in fact, is used as an anchor, by which the Lobster holds fast by some submarine fixed object, and thus prevents itself from being tossed about in an agitated sea; the other is apparently a cutting instrument for tearing. or dividing prey.
(995.) To tho chelce succeed four pairs of slender legs, scarcely at all serviceable for the purposes of locomotion; but the two anterior being terminated by feeble forceps, they become auxiliary instruments of prehension.
(996.) The articulated appendages belonging to all the abdominal segments are so rudimentary that they are no longer recognizable as assistants in progression ; and it is at once evident, when we examine the manner in which the Macrurce use their tails in swimming, that the derclopment of large organs in this position would matcrially impode the progress of animals presenting such a construction : the false feet, as these organs are ealled, are therefore mertly available as a means of fixing the ova, which the female Lobster carries about with her, attached beneath her abdomen.
(997.) The tail is the great agent of locomotion in all the Macrura or large-tailcd Dccapods ; and for this purpose it is terminated by a fin, formed of broad caleareous lamellæ, so arranged that, while they will close together during the cxtension of the tail, and thus present the least possible surfaee to the water, they are brought out to their full expansion by the down-stroke of the abdomen; and such is the impulse thus given, that, as we are eredibly informed, a Lobster will dart itself backwards to a distance of eighteen or twenty fcet by one sweep of this remarkablc locomotive instrument.
(998.) If we now pass on to the considcration of the Anomurous * Decapods, we find that the external organs above cnumerated, although existing in precisely similar situations, are so far modified in their construction and relative proportions as to become suited to a mode of lifc widely different from that led by the members of the last division. The Anomura, as their name imports, have tails of very unusual conformation. Instead of being encased in a hard coat of mail, as in the Macrura, the hinder part of the body is soft and coriaccous, possessing only a fow detached calcarcous pieces-analogous, it is truc, to those found in the Lobster, but strangely altered in structure.
(999.) These animals (fig. 325), usually known by the name of Soldier Crabs, or Hermit Crabs, frequent level and sandy shores, and, from their defenceless condition, are obliged to resort to artificial pro-

[^124]Fig. 325.

Hermit Crab.

Fig. 326.

Eermit Crab inhabiting the shell of a Whelk (Buccinum).
tection. This they do by selecting an empty turbinated sholl of proportionate size, doserted by some gasteropod mollusk, into whioh they insinuate their tail, and, retreating within the recessos of their selected abodo, obtain a sccure retreat, which they drag after them wherever they go, until, by growing larger, they aro compelled to leave it in search of a moro capacious lodging. The wondorful adaptation of all the limbs to a residence in such n dwelling cannot fail to strike the most incurious obscrver. The chele, or large claws, differ remarkably in size ; so that, when the animal retires into its conccalment, the smaller one may bo entircly withdrawn, while the larger closes and guards the orificc. The two succeeding pairs of legs, unlike those of the

Fig. 327.

Lobster, are of great size and strength, and, instead of being termiuated by pincers, end in strong pointed levers, whereby the animal can not only crawl, but drag after it its heavy habitation. Behind theso locomotive legs are two fecble pairs, barely strong enough to enable the Soldier-Crab to shift its position in the shell it has chosen ; and the false feet attached to the abdomen are even still more rudimentary. But the most singularly altered portion of the skelcton is the fin of the tail, which here becomes tranformed into a kind of holding apparatus, by which the creature retains a firm grasp upon the bottom of its residence.
(1000.) In the Brachyura*, or Crabs, wo liave at once, in the concen-

[^125]tration observable in all parts of the skeleton, an indication of its being formed for progression on land, or at least for crecping at the bottom of the sea. The tail, the great instrument of locomotion in the Lobster, is here reduced to a rudiment, and the fin at its extremity entirely obliterated; the cheloe still continue to be the most powerfully developed of the extremities; while the legs, the principal locomotive agents, are either terminated by simple points, as in those species which are most decidedly terrestrial in their habits, or else, in the Swimming Crabs, the posterior pair become expanded into flattened oars useful in natation (fig. 327).
(1001.) From the extreme hardness and unyiclding character of the tegumentary skeletons in Crustaccans, a person unacquainted with the history of these animals would be at a loss to conccive the manner in

Fig. 328.

which their growth could be cffected. In insects we have seen that all increase of size occurs prior to the attainment of the perfect condition, and expansion is provided for by the moults or changes of skin which take place during the development of the larva; but the Crustaccan, having acquired its mature form, still continucs to grow, and that until it acquires in many instances a size far larger than that which any insect is permitted to arrive at.
(1002.) The plan adopted in the case before us, whereby growth is permitted, is attended with many extraordinary phenomena. At certain intervals the entire shell is cast off, leaving the body for the time unfettered indeed as regards the capability of expansion, but comparatively helpless and impotent until a new shell is secreted by the dermis, and by hardening assumes the form and efficieney of its predecessor.
(1003). We are indebted to Réaumur*, who watelied the process in the Cray-fish (Astacus fluviatitis), for the first aceount of the mode in which this change of shell is effected. In the animal above mentioned, towards the comnencement of autumn, the approaching moult is indicated by the retirement of the Cray-fish into some secluded position, where it remains for some time without eating. While in this condition, the old shell beeomes gradually detached from the surfaee of the body, and a new and soft cuticle is formed underneath it, aecurately representing, of eourse, all the parts of the old covering which is to be removed ; but as yet little caleareous matter is deposited in the newlyformed integument. The ereature now beeomes violently agitated, and, by various contortions of its body, seems to bc employed iu loosening thoroughly every part of its worn-out eovering from all connexion with the recently secreted investment. This being accomplished, it remains to extricate itself from its imprisonment; and this, when the nature of the armour to be removed is considered, we may well conceive to be a difficult operation. As soon as the old ease of the cephalothorax has become quite detached from the cutis by the interposition of the newly formed epidermic layer, it is thrown off in one piece; the legs are then withdrawn from their cases ; and, to complete the process, the tail is ultimately cxtrieated from its ealcareous covering, and the entire coat of mail which previously defended the body is disearded and left upon the sand. The first question which presents itself is, how are the limbs liberated from their confinement? for, wonderful as it may appear, the joints even of the massive chelce of the Lobster do not separate from each other, but, notwithstanding the great size of some of the segments of the claw, and the slender dimensions of the joints that connect the different picces, the cast-off skeleton of the limb presents exactly the same appearance as if it still encased the living member. But this is not the only part of the process which is calculated to excite our astonishment: the internal calcareous scpta from which the muscles derive their origins, and the tendons whereby they are inserted into the moveable portions of the outer shell, are likewise stated to be found attached to the exuviæ; cven the singular dental apparatus situated in the stomach, of which we shall speak hereafter, is cast off and re-formed! And yet how is all this accomplished? how do such parts become detached? how are they renewed? We apprehend that more puzzling questions than these can scarcely be propounded to the physiologist; nor could more intcresting subjects of inquiry be pointed out to those whose opportunities enable them to prosecute researches eonnected with their elueidation.
(1004.) The structure of the articulations which unite the different segments of the skeletons of the Articulata, and the general arrangement of their muscular system, have already been deseribed ($\$ \S 797-801$) ;

[^126]and in the class before us, these parts of their economy offer no peculiaritios worthy of special notico.
(1005.) Throughout all the Crustaccan familics the alimentary canal exhibits great simplicity of arrangement, and consists of :-a short but capacious cosophagus; a stomachal dilatation or cavity, in which is contained a singular masticatory apparatus; and a straight and simple intestinal tube, which passes in a direct lino from the stomach to the last segment of the abdomen, where it terminates.
(1006.) The description of theso parts as they exist in the Lobster, will give the reader a sufficiently correct idea of their general disposition and structure ; nor are we acquainted with any class of animals in which so little variety in tho conformation of this portion of the system is to be met with.
(1007.) The œesophagus is covered at its origin by the several pairs of jaw-fect already alluded to, the most internal of which forms a powerful cutting apparatus, resembling a pair of strong shears, while the rest are only instruments of prehension, or, perhaps, of sensation also. From the mouth, the oesophagus runs directly upwards to the stomach, which is a considerable viscus (fig. 329, a), a large portion of it being situated in that region of the cephalothorax which we should be tempted to consider the head of the animal. The pyloric extremity of the stomach is streugthencd with a curious framework of calcareous picces imbedded in its walls and so disposed as to support threc large teeth placed near the orifice of the pylorus; and being moved by strong muscles, tceth so disposed no doubt form an efficient apparatus for bruising the food bcfore it is admitted into the intestine.
(1008.) The intestinc itsclf $(b b b)$ runs in a direct course to the tail, imbedded between the two great lateral muscular masses that move the abdominal segments, and terminates upon the ventral surface of the central lamclla of tho terminal fin, in a rounded orifice closed by a sphincter muscle.
(1009.) The liver ($c c c$), one half of which has been removed in the engraving, consists of two large symmetrical masses, enclosing between them the pyloric portion of the stomach and a third part of the length of the intestinc. When uuravelled, the minute structure of the liver exhibits an immense asscmblage of secerning cæca agglomerated into clusters, from each of which a duct cmanates; and the continucd union of the ducts so formed ultimately gives origin to the common hepatic canal (d), which pours the bile derived from that division of the liver to which it belongs into the intestinc, at a very short distance from its commencement at the pylorus. A little below the insertion of the two bile-ducts, a solitary long and slender caccum enters tho intestine; but the nature of the secretion furnished by this organ is inknown.
(1010.) In the highest Crustacea, as the Decapoda, in which legs of an ambulatory character cxist, it is principally to the origins of these legs that

Fig. 329.

A side view of the arterial system in the Lobster. Nearly one half of the body is removed to show the deeperseated vessels: a, the stomach, which has one half removed, so as to show the cavity of that viscus; $b b b$, the intestine, which is one straight tube; c, c, c, the lobes of the liver of the right side, the left being remored; d, hepatic duct, entering the intestine; e, the heart; f, f, f, three orifices, guarded by valves, whereby the venous system communicates with the heart; g, the anterior or antennal arteries; h, the postcrior or superior caudal artery; i, the hepatic artery; k, a large artery going down from the posterior end of the heart, principally supplying the feet and gills (sternal artery) ; l is a small artery passing back along the under surface of the tail, and lost in the muscles of that part (inferior caudal artery); m, the trunk of the artery k bent forwards along the fore part of the thorax, giving off branches on each side to the feet and gills; n, n, n, the branches going to the feet; o, o, o, the branchial arteries.

We find the breathing apparatus appended; and their active motion will eonsequently powerfully contribute to the complete aëration of the blood.
(1011.) In the Lobster, and many other Macrura, the branchix (fig. $332, m \mathrm{~m}$) are pyramidal tufts, consisting of a eentral stem covered over with vaseular filaments disposed perpendicularly to its axis, 111 such a manner that each of these organs, when detuched, resembles a small brush : on cutting the stem across, it is found to enclose an artery and a vein, from whieh innumerable branches are given off to the horizontal filaments; so that the latter constitute a respiratory surfuce of great extent, which is most freely exposed to the surrounding medium.
(1012.) In the Crabs and Anomura the structure of the branehise is somewhat different ; for in these divisions the eylindrical filaments are replaced by broad lamelle laid one above the other; but in every other respeet the arrangement is the same.
(1013.) The respiratory organs above mentioned are lodged in two extensive eavities, or branchial chambers, plaeed upon the sides of the body, eovered by the broad shield of the eephalothorax (fig. 329)-and lined by a membrane which is refleeted upon the root of eilch branehia, so as to become continuous with the delicate layer that invests every filament or vascular lamella that enters into its composition.
(1014.) The branchial chambers are in free communication with the external medium by means of two large apertures, through one of which the water enters, while it as constantly flows out through the other. The afferent canal is generally a wide slit that allows the water freely to penctrate to the interior of the branchial cavity; but the passage whereby the respired fluid eseapes after passing over the branchiæ is provided with a beautiful apparatus so disposed as to produce a continual eurrent in the water contained in the chamber, and thus, by ensuring its perpetual agitation, effectually to provide for its constant renewal. The mechanism is as follows :-The aperture by whieh the water issues is in the neighbourhood of the mouth, and is closed by a broad semimembranous plate (flabellum) (fig. 332, n) derived from the root of the second pair of jaw-feet, and constructed after the plan of the Archimedean serew ; so that every motion of these jaw-feet impresses a corresponding movement upon the valve-like flabellum, and in this manmer urges on the passage of the water both into and out of the eavity in which the branchire are lodged.
(1015.) But there are other means whereby the action of the limbs is made to assist in perfecting the respiratory proeess. Thus, in the Lobster, the third pair of jaw-feet, and each pair of ambulatory legs, exeept the last, support a flabelliform plate, the movements of which must likewise keep the fluid respired in a state of agitution, and moreover, by gently squeezing and compressing the respiratory lufts, powerfully contribute to the eomplete renovation of the water in contact with the surfaces of the branchic.
(1016.) In the Crab genera the arrangement is slightly modified; for here there are three flubellu, derived from the roots of the jaw-feet (fig. $330, b, c, d$) : of these, two are inbedded amoug the branchix; while the third, as represented in the figure, extends in a crescentic form over the whole series of respiratory organs. The end answered in this case is obviously the same as that attained in the Lobster, in a different and perhaps more cfficient manner.
(1017.) In the lowest Crustacea the heart is a long dorsal ressel, not very dissimilar in form and disposition from that of insects, but, of eourse, giving off arterics for the distribution of the blood, and reeeiving veins through which the blood, having accomplished its circuit, is returned.

Fig. 330.

Respiratory organs of the Crab: b, c, d, jaw-feet, from the bases of which the flabella are derived; f, g, h, k, l, ambulatory legs.
(1018.) In the Decapoda the organ becomes more ceutralized; and in the Lobster (fig. 329, e) the heart is found to be an oval viscus, situated in the mesial line of the body, at the posterior part of the cephalothorax; it is composed of strong muscular bands, and contains a single cavity of considerable size. The contractions of this heart may readily be witnessed by raising the superjacent shell in the living animal.
(1019.) Several large arterics are derived from the above-mentioned simple heart. A considerable trunk (fig. 329, g) goes from its anterior extremity to supply the cycs, antennæ, stomach, and neighbouring organs; another, the hepatic (i), which is sometimes double, supplies the two lobes of the liver; a third large vessel (h) supplies the abdominal or caudal region; and a fourth, the sternal, derived from the posterior apex of the heart, bends down to the ventral aspect of the body, where it divides-the posterior division ($l l$) supplying the lower parts of the abdomen, while the anterior and larger division (m) gives off branches to the legs and jaw-feet (n, n, n, n) ; it likewise furnishes other vessels $(0,0,0,0)$, which are distributed through the branchir.
(1020.) The venous system is made up of large and delicate sinuses that communicate frcely with each other, and receive the blood from all parts of the body. Those of the dorsal region are represented in fig. 331: a large venous sinus (a) occupies the cephatic region and covers the stomach; another eavity (h) lies immediately above the
heart; and a series of smaller ehambors (c, c, c, c) are situated above the musclos of the caudal region. These cavities, notwithstanding their apparent extent, are very shallow, so that, upon a transverse scetion, their dimensions are by no means so great as a superfieial view would indicate. The sinus (b), or that placed immediately over the heart communieates with that viscus by short trunks, the terminations of which in the heart are guarded by valves (fig. $329, f, f, f$), so disposed as to allow the blood to pass from the sinus into the heart, but prevent its return in an opposite direetion.

Such is the apparatus provided in the Lobster for the eirculation of the blood. Our next inquiry must be concerning the course that it pursues during its eircuit through the body.
(1021.) MM. Audouin and Milne-Edwards*, after very minutely examining this subject, eame to tho eonclusion that the heart is purely of a systemic character, being only instrumentalin propelling

[^127]

Venous system of the Lohster: u, side view of the venons simes covering the stomach; b, side view of the simes surrounding the henrt (the letter is phosed neme one of the valvular oriffees by which the venons blood is admithed into the ventriele) ; c, c, c, c, superfleial iorsal sinuses.
the blood through the body, but having nothing to do with the branchial circulation; they conceived that the circulating fluid, having been collected in the renous sinuses, was brought to the roots of the branchix, orer which it was distributed by venous tubes, and then returned to the heart by vessels which they call branchio-cardiac, to recommence the same course. The appended figures, however, which are accurately copied from engravings of the Hunterian drawings in the collection of the Royal Colloge of Surgeons of England *, would seom to give great reason to doubt the accuracy of the conclusions arrived at by

Fig. 332.

Transrerse section of the body of Ω Lobster, just bchind the heart: a, cut edge of the shell of the back; b, the under surface or sternal aspeet; c, the posterior end of the heart; d, d, two oriflees of veins entering the heart; e, cut end of the superior caudal artery; f, the trunk of the large artery (sternal) going to the legs and gills (k in flg. 329); g, trunk of an artery going to supply one tier of gills; h, h, h, the branches going to each gill; i, artery of the leg; k, k, k, k, the internal vessels or reins from cach gill; l, the common trunk or branchial vein; m, m, the gills; n, n, the flubella or laminæ subservient to the movement and renewal of the respired medium; o, o, basal joints of the legs.
the eminent naturalists referred to, and to show that the hoart, instead of boing purely systemic, is partly branchial, and impels the blood, not through the body only, but also to the respiratory organs. This view of the subject, which we are disposed to consider the most eorrect, is exhibited in the diagram, p. 429. Setting out from the heart, we find that the blood goes to all parts of the body through the different arterial trunks, and by the great sternal artory (fig. 329, 1) is conveyed to the logs, jaw-feet, and false feet. But from this same artory (m) vessels

[^128]$(0,0,0,0)$ are furnished to the branchiæ. The branchial arteries so derived (fig. $332, g$) subdivide into secondary trunks (h, h, h), which ramify through the individual branchiæ and supply all their appended filaments. Having undergone exposure to the respired medium, the blood is again collected from the branchiæ by branchial veins (k_{c}, k_{c}, k_{c}), represented on the opposite side of the body, and conveyed by the large vessel (l) to the dorsal sinus (fig. 331, b), where, being mixed up with the gencral mass of blood contained in the sinus, the circulating fluid is admitted into the heart through the valvular orifices (fig. 332, $d d$), to recommence the same track.
(1022.) In the Crustacea, as in the class of Insects, the blood* occupies all the interspaces left between the various viscera, as well as the still smaller lacunæ situated among the muscular fibres or underneath the skin: but the heart, instead of communicating immediately with this system of intercommunicating cavities, as among the true insects, is continuous with a special system of tubes, the walls whereof are well defined, and of which the peripheral branches ramify in the substance of all the organs of the body, thus constituting a very comple'e arterial system, although, by their ultimate ramifications, the centrifugal vessels thus formed become continuous with and lost amongst the interstitial lacunæ of the body, which in their turn communicate with more considerable cavities situated between the viscera; so that the blood ejected by the heart and arteries, arriving in the last ramifications of those tubes, escapes into the general interstitial lacunary system, and hence into the large sinuses, by the intermedium of which it returns towards the heart.
(1023.) As might be anticipated from an examination of the external configuration of the different families comprised in the extensive class we are now considering, the nervous system is found to pass through all those gradations of development which we have found gradually to present themselves as we have traced the Homogangliata from the lowest to the most highly organized types of structure. In the most imperfect Crustacea, indeed, we find a simplicity of arrangement greater than any hitherto pointed out even in the humblest Annelida-a disposition of parts which, theoretically, might have been expected to exist, but has only been distinctly recognized in the class before us.
(1024.) We have all along spoken of the nervous centres of the Articulata as arranged in symmetrical pairs, although in no example which has yet occurred to our notice have we been able strictly to point out the accuracy of such a view of the subject. The two latcral masses of the supraœsophageal ganglion are found united into one brain in the humblest forms of annulose animals ; and even in the ganglia forming the ventral series, although we might presume each to be composed of two symmetrical halves, the divisions are most frequently so intimately blended, that their distinctness is not susceptible of anntomical

[^129]demonstration. In some of the Crustacea, however, among those species which have the segments of their external skeleton most decidedly separate and distinct, the nervous system is found to present itself in such a condition that the division into lateral halves is perfectly evident; and from this condition their progressive coalescence may be traced, step by step, until we arrive at a state of concentration as remarkable as that already noticed in the most elevated of the Arachnidans. In Talitrus, every pair of ganglia consists of two separate nuclei of nervous substance, united by a transverse baud so disposed as to bring them into communication with each other, while an anterior and posterior nervous filament derived from each unites it with the preeeding and following ganglia of the same side of the body: even the encephalie mass is eomposed of two lateral portions united by a cord passing beiween them. All these pairs of ganglia (thirteen in number, corresponding with the number of the segments of the body) are exact eounterparts of each other both in size and figure, so that none seems to preponderate in energy over the rest; but the anterior or encephalic pair alone communicates with the eyes and antennæ, the only organs of the senses as yet discernible.
(1025.) In Oniscus Asellus, a concentration of the elements composing the nervous system above described is discernible; and this is found to be indicated by incipient approximation, which takes place in two directions, one longitudinal, the other transrerse. In the first place the entire number of pairs of ganglia is reduced to ten, three pairs having become obliterated by eoalescence ; and moreover, while the central portions still eonsist of two lateral masses eaeh, the first and last pairs are united into single ganglia. As we rise to higher forms

Fig. 333.

Nerrous system of the Crab: from the rentral aspect. the coalescence still procceds ; all the pairs of ganglia soon become united in a transrerse direction, and gradually the whole chain beeomes shorter by the fusion of several pairs into larger and more powerful masses.
(1026.) In the Crab (which, from its terrestrial habits, holds a position among the Crustacea equivalent to that which the Spiders occupy among other Articulata), this centralization is earried to the
utmost extent, and all tho abdominal and thoraeic ganglia become agglomerated into one great centre, from which nerves radiate to the parts of the mouth and instruments of locomotion (fig. 333).
(1027.) But this change in the condition of the nervous system is not only observable as we proceed from species to species as they rise higher in the scale of development; similar phenomena are met with in watehing the progress of any individual belonging to the more perfeet familics as it advances from the embryo to its mature eondition. Thus, in the Crayfish (Astacus fluviatilis), Rathke* observed that, when first pereeptible, the nervous system consisted of eleven pairs of ganglia, perfeetly distinet from eaeh other, and situated on eaeh side of the mesial line of the body. The first six pairs then unite transversely, so as to form as many single masses, from which the nerves of the mandibles and jaw-feet emanate ; while the five posterior, from which the nerves of the ambulatory extremities are given off, remain separate. Such is the state at birth, or on leaving the egg; but further ehanges oeeur before the Crayfish arrives at maturity. The four anterior ganglia, whieh supply nerves to the mandibles and jaw-feet, are, by degrees, all eonsolidated into one mass, and the fifth and sixth likewise eoalcsee, while the other pairs eontinue permanently distinet. The reader will at onee reeognize the resemblanee between these ehanges and those already deseribed as taking place during the progress of evolution in the Caterpillar (\$927): the same great law is, in faet, in operation in both eases, and the same results are obtained from the eompletion of the proeess \dagger.
(1028.) In the Crab, the distribution of the nerves is briefly as follows :-The encephalie mass, or brain, whieh still oceupies its position above the œesophagus, and joins the abdominal eentre by two long eords of eomnexion (fig. 334), gives off nerves to the eyes, and to the museles eonnected with them, as well as to the antennr and neighbouring parts.
(1029.) Near the eentre of each division of the nervous eollar that surrounds the œsophagus is a ganglionie enlargement, from whieh arises a nerve that runs to the mandibles, and also a very important braneh, apparently the representative of the nervus vagus of inseets. This, after ramifying largely upon the eoats of the stomaeh, joins that of the opposite side, and, assuming a ganglionic structure, is ultimately lost upon the intestine.
(1030.) The nerves of the extremities, derived from the eentral abdominal ganglion are represented in the annexed figure (fig. 334), whieh requires no explanation \ddagger.

* Untersuchungen über die Bildung des Flusskrebses," Ann. dos Sei. Nat. t. xx.

F For a minute reeount of the arrangement of the nervous system in these animals, the reader is referred t the Cyelopredia of Anatomy and Phrsiology, art. "Cieustacea," by Dr. Milne-Edwards.
\ddagger Vide Swnn, Illustrations of the Comparative Anatomy of the Nervous System. London, 4to.
(1031.) We have already (\$ $\$ 43$), when describing the nervous system of inscets, hinted at the probable existence in the Honogangliata of distinet tracts of nervous matter in the composition of the central chain of ganglia, and in the filaments whereby they are connected with each other: reasoning therefore from analogy, it secms fair to presume that, if this be the case, such tracts correspond with the sensitire and motor columns which have been distinctly proved to exist

Fig. 334.

Nervous system of the Crab: from the dorsal aspect.
in the spinal axis of vertebrate animals. It is to Mr. Newport that we are indebted for the first indication of this interesting fact*; and the accuracy of his obscrvations is readily demonstrable by a careful examination of the ganglionic chain of the Lobster and other large Crustacean species. Each ganglionic enlargement is, upon close inspection elearly seen to consist of two portions :-first, of a mass of cincritions nervons substance forming the infcrior aspect of the ganglion ; and of a cord of medullary or fibrous matter which passes over the dorsal or superior aspect, and appears to be distinct from the grey substance over which it passes: supposing therefore the longitudinal chain to consist of anterior and postcrior fasciculi, as in the medulle spinatis, we have the anterior columus communicating with grey substance, while the posterior are unconnected therewith, but are continued over the ganglion instead of becoming amalgamated with its substance. Another fact which farours Mr. Newport's view of the subject is derived from an examination of the manner in which the nerves given off from the

[^130]central axis take their origin; for some of them undoubtedly proceed from tho cinoritious portion of the ganglionic swelling, while others, derived from the upper column, not only have no connexion with the grey matter, but ariso at somo distance from the ganglionic mass: judging therefore by the laws at present established in physiology, there seems reason to suppose that the anterior, or, rather, inferior fasciculi are connccted with sensation, while the superior constituto the motor tract.
(1032.) The reader who is conversant with human physiology will at once perceive that this arrangement is the reverse of that met with in Man and other Vertcbrata; and this consideration, apparently of little importance, has given rise to a variety of curious speculations-some anatomists having even gone so far as to assert that all the organs of articulated animals are in reality placed in a similarly inverted position.
(1033.) A more interesting inquiry connccted with this part of our subject is, concerning the extent to which the Articulata are susceptible of pain. Is it really true in philosophy, as it has become a standing axiom in poetry, that

> "The poor beetle, that we tread upon, In corporal sufferance feels a pang as great. As when a giant dies"?
(1034.) This is a question upon which modern discoveries in science entitle us to offer an opinion; and the result of the investigation would seem to afford more enlarged views relative to the bencficence displayed in the construction of animals than the assertion of the poet would lead us to anticipate. Pain, "Nature's kind harbinger of mischief," is only inflicted for wise and important purposes-either to give warning of the existence of disease, or as a powerful stimulus prompting to escape from danger. Acute perceptions of pain could scarcely, therefore, be supposed to exist in animals deprived of all power of remedying the one or of avoiding the other. In Man, the power of feeling pain indubitably is placed exclusively in the brain; and if communication be cut off between this organ and any part of the body, pain is no longer felt, whatever mutilations may be inflicted.
(1035.) The medulla spinalis, which, as we shall see hereafter, corresponds to the ventral chain of ganglia in articulated animals, can perceive external impressions and originate motions, but not feel pain; hence we may justly conclude that, in the Homogangliata likewise, the supracesophagcal ganglia (the representatives of the brain, and the sole correspondents with the instruments of the higher senses) are alone capable of appreciating sensations of a painful character. Thus, then, we arrive at a very important conclusion, namely, that the perception of pain depends upon the development of the encephalic masses, and consequently that as this part of tho nervous system becomes more perfect, the power of feeling painful impressions increases in the same ratio-or, in other words, that inasmuch as the strength, activity,
and intelligence of an animal, by which it can escape from pain, depend upon the perfection of the brain, so does the perception of torture depend upon the condition of the same organ. How far the feeling of pain is acutely developed in the animals we are now considering is deducible from every-day obscrvation. The Fly seized by the lcg will leave its limb behind, and alight with apparent unconcern to regale upon the nearest sweets within its reach; the Caterpillar enjoys, to all appearance, a tranquil existence while the larvæ of the Ichneumon, hatched in its body, devour its very viscera; and in the Crustacea before us, of so little importance is the loss of a leg, that the Lobster will throw off its claws if alarmed by the report of a cannon.
(1036.) We learn from Dr. Williamson* that the shell of the Dccapods, in its most complete form, consists of three strata, namely :-1. a horny structureless layer, covering the exterior ; 2. a cellular stratum ; and 3. a laminated tubular substance. The innermost, and even the middle layer, however, may be altogether wanting. Thus, in Phyllosoma (Glass-crab) the envelope is formed of the transparent horny layer alone ; and in many of the small Crabs belonging to the genus Portuna, the whole substance of the carapace beneath the horny investment is made up of hexagonal thick-walled cells. It is in the large thickshelled Crabs that we find the three layers most differentiated. Thus, in the common Cancer pagurus we may easily separate the structureless horny covering after a short maceration in dilute acid; the cellular layer, in which the pigmentary matter of the coloured parts of the shell is contained, may then be brought into view by grinding away as flat a piece as can be selected from the inner side (having first cemented the outer surface to the glass slide), and by examining this with a magnifying power of 250 diameters, driving a strong light through it; whilst the tubular structure of the thick inner layer may be readily demonstrated by means of sections parallel and perpendicular to its surface. This structure, which very strongly resembles dentine, save that the tubuli do not branch, but remain of the same size through their whole course, may be particularly well seen in the black extremity of the claw, which is much denser than the rest of the shell, the former having almost the semitransparency of ivory, whilst the latter has a chalky opacity. In a transverse section of the claw, the tubuli may be seen to radiate from the central cavity towards the surface, so as very strongly to rescmble their radiation in a tooth; and the resemblance is still further increased by the presence, at tolerably regular intervals, of minute sinuosities corresponding with the laminations of the shell, which scem, like the secondary curvatures of the dentinal tubuli, to indicate successive stages in the calcification of the animal basis. This inner layer rises up, through the pigmentary layer of the Crab's shell, in little papillary elevations; and it is from the deficiency of the pigmentary

[^131]layer at these parts that the eoloured portion of the shell derives its minutely speckled appearanee. Many departures from this type are presented by the different speeies of Crustaeea. Thus, in the Prawns there are large stellate pigment-cells, the eolours of whiel are often in remarkable conformity with those of the roek-pools frequented by these ereatures; whilst in the Shrimps there is seldom any very distinct trace of the cellular layer, and the ealeareous portion of the skeleton is disposed in the form of eoneentrie rings, an approaeh to whieh arrangement is seen in the papillæ of the surfaee of the deepest layer in the Crab's shell.
(1037.) The singular power of breaking off their own limbs, alluded to in paragraph 1035, is possessed by many Crustaeea, and is a very indispensable provision in their eeonomy. We havo already found the blood-vessels of these animals to be of a delieate strueture; and the veins being wide sinuses whose walls possess little eontractility, the fraeture of a limb would ineritably produee an abundant and speedily fatal hæmorrhage were there not some eontrivance to remedy the otherwise unavoidable results of sueh a eatastrophe. Should the elaw of a Lobster, for example, be aecidentally damaged by aecidents to whieh ereatures eneased in sueh brittle armour must be perpetually exposed, the animal at once breaks off the injured member at a partieular part, namely, at a point in the seeond piece from the body; and by this operation, whieh seems to produee no pain, the bleeding is effeetually stanehed*.
(1038.) But the most remarkable part of the phenomenon remains to be notieed:-After this extraordinary amputation has been effeeted, another leg begins to sprout from the stump, whieh soon grows to be an effieient substitute for the lost extremity, and gradually, though slowly, aequires the pristine form and dimensions of its predeeessor. A beautiful example of this eurious mode of reprodueing a lost organ is preserved in the Museum of Comparative Anatomy in King's College, London, in whieh the new limb (one of the eheliferous elaws) has

[^132]already attained the form of the old chelu, but still remains soft and uncovered by calcareous integument. The proecss of reproduction is as follows :-The broken extremity of the second joint skins over, and prescuts a smooth vascular membrane, at first flat, but soon becoming eorical as the limb begins to grow. As the growth advances, the shape of the new member becomes apparent, and eonstrictions appear, indicating the position of the articulation; but the whole remains unprotected by any hard covering until the next change of shell, after which it appears in a proper case,-being, however, still considerably smaller than the corresponding clav on the opposite side of the body, although equally perfect in all its parts.
(1039.) Mr. H. D. S. Goodsir has shown* that in the Lobster this regenerative faculty does not reside at any part of the claw indifferently, but in a speeial locality, situated at the basal end of the first joint of each of the legs. This joint is almost filled by a mass of nucleated cells surrounded by a fibrous and vascular band; and other nucleated cells intervene between this vascular band and the outer crust. The vessels of the band pass onwards for about half an inch, and return upon themselves, forming loops. When a claw is broken, or otherwise injured or disabled, the Lobster, or Crab, by a violent muscular effort casts it off at the transverse chink or groove which indents the reproductive segment. The new claw is developed by the multiplication of cells, which soon become divided into five groups, answering to the five joints of the future limb; these nascent joints are folded upon each other in the Crab, but extended in the Lobster ; in both they are at first euveloped in a sac formed by the distended cicatrix; the budding limb ultimately bursts this eicatrix, and its growth is rapidly completed. A great proportion of the reproductive cells contained in the basal extremity of the injured limb is made use of in the production of the new limb; but. a mass of them is retained unchanged at the basal joint, and is ready to renew the reproductive process when needed. In the lower Crustaceans sueh groups of eells are found at more numerous joints.
(1040.) The observations made in a former chapter relative to the organs by which the senses of touch, taste, and smell are exercised in inscets, are equally applicable to the animals composing the class before us; for in the Crustacea, although we are compelled to admit the possession of the above faculties, we are utterly ignorant of the mode in whieh they aro excrcised; therefore it would be only an unprofitable waste of time to enter at any length into a discussion from which no satisfactory conclusions are, in the present state of our knowledgc, to be deduced.
(1.041.) The cyes of Crustaccans are of three kinds-simple, agglomerurated, and compound.
(1042.) The simple cyes (ocelli, stomata) resemble those of Spiders,

[^133]and, like thom, are said to consist of a cornea, a spherical lens, a gelatinous vitreous humour, a retina, and deeply-coloured choroid, all occupying their usual rolative positions. These eyes never exceed two or three in number.
(10+3.) In the agglomerated eyos, such as those of Daphnia (fig. 343), the organ seems to be composed of a number of simple eyes placed bchind one common cornca; such eyes are moveable; and in the animal depicted in the figure, tho muscles acting upon the visual apparatus, which in this case is single, aro arranged so as to form a cone, the base of which is formed by the eye.
(1044.) The compound cyes appear to be constructed upon the same principles as those of insects. The corneæ are extremcly numerous, and in gencral hexagonal ; but sometimes, as in the Lobster, they are square. The vitreous humours equal the corneæ in number; and behind each of these a distinct retina would seem to be expanded. The compound eyes of Crustaceans have not, however, as yet been examincd with the same patient diligence as those of the Cockchafer ; so that, as relates

Fig. 335.

Podophthalmus.
to their minute anatomy, much is still left to conjecture and uncertainty. One peculiarity connected with these organs is, that in the two highest orders of Crustacea, hence called Podophthalmia, the eyes are placed at the extremity of moveable pedicles articulated with the first ceplialic ring of the external skeleton, and thus they may be turned in rarious directions without moving the whole body at the same time. This provision was not required in insects, owing to the mobility of the head in those animals, but is absolutely indispensable in the case before us, where, the head and thorax being consolidated into one mass, the extent; of vision commanded by sessile cyes would havo been exceedingly limited, and inadequate to the security of creatures exposed to such innumerable encmies.
(1045.) It is in the higher Crustacea that we, for the first time, indubitably find a distinct auditory apparatus ; and, from the simplicity which the organ of hearing presents in this its carlicst appearance, an inquiry concerning its structure becomes of great physiological interest. In the Lobster the ears are situated upon the under surface of the basal joints of the larger pair of antennæ. On looking carefully, in this situation the student will find a prominent tubercle formed by the shell, the top of which is perforated by a small circular opening covered with a tense membrane. Behind this orifice is placed a minute vesicle filled with fluid, upon which a delicate branch of the antennary nerve is distributed. This constitutes the whole apparatus : the vibration of the water strikes upon the external membrane, the water in the sacculus participates in the tremor, and the expanded nerve conveys to the brain the sensation thus produced.
(1046.) The function of this organ in the Lobster is contested by Dr. Arthur Farre, who observes that it is situated not far from the mouth, and is directed downwards; it is by far the most sensitive part of the body, since, while the mechanical irritation of any other parts excites only slight movements in the limbs of the animal, the touching of this part is immediately followed by violent and almost spasmodic flappings of the tail. These circumstances, together with the situation of the organ, appear to Dr. Farre to point it out as intended possibly for the purpose of testing the quality of the food-as, in fact, an organ of smell*. This, however, is evidently merely a matter of conjecture, more especially as in the generality of the Crustaceans such an apparatus is altogether wanting.
(1047.) The true organ of hearing, according to Dr. Farre, is situated in the base or first joint of the lesser pair of antennæ-its precise seat being indicated externally by a tough membrane, which covers an oval aperture in the upper surface of this joint. Towards the inner and anterior margin of this membrane there exists a small round orifice, into which a bristle can be easily passed. On removing the membrane, together with a portion of the surrounding shell, the internal organ is brought into view, completely imbedded in the muscular structure of the antennæ.
(1048.) This organ, which nearly fills the cavity of the joint, is somewhat sacciform in its shape ; and its walls present a delicate horny structure of the consistence of a thin quill, being so transparent as to admit of its contents being seen through the parictes. These are found to consist of numerous minute particles of siliceous sand, which are loosely contained in the interior of the sacculus. The walls of the sac are furnished with several rows of minute ciliated processes which, when highly magnificd, are seen to be hollow and to be covered with

[^134] 1843, p. 234.
a fine down composed of hairs of exquisite delicacy, having in their intorior mumerous minute granules, which are apparently nervegranules. These procosses are dilated at thoir base so as to form a globular swelling, where they are artieulated to eorresponding eircular apertures in the walls of the sac, from whieh they spring in immediate apposition with a nervous plexus, whieh has a separate and distinct origin from tho supraœsophageal ganglion.
(1049.) The existence of this singularly construeted apparatus is by no means universal even among the Macrurous Decapods; and in the Brachyura it scems to be altogether wanting. We recognize, however, in its structure all the essential parts of an organ of hearing, viz. a distinct acoustic nerve, terminating in a plexus, whieh is expanded upon a vestibular sae. The remarkable arrangement of ciliated processes immediately overlying this plexus, with each proccss filled with nervegranules, exhibits an apparatus for extending the extremities of the nerves in sueh a manner as to render them sensitive to the most delieate vibration of the fluid with which the sae is filled. But to heighten the effeet of this the grains of sand are added, forming adventitious otoliths, moving freely in the fluid eontents of the sae.
(1050.) In the Brachyura, or Crabs, the membrane covering the external orifice of the ear is converted into a moveable ealeareous lamella, from which, in some genera, a fureate proeess is eontinued internally; so that the whole, when removed by maceration, has no very distant resemblance to the stcpes of the human ear, and, like it, seems to be aeted upon by museular fascieuli, so disposed as to regulate tho tension of the vibratile membrane, and thus adapt it to receive impressions of variable intensity.
(1051.) One of the first eireumstanees ealeulated to attraet the notiee of the anatomist who turns his attention to the structure of the generative system, both in male and female Decapod Crustaeea, is

Male gencrative apparatus of Astacus flemiatilis a a b, testicular mass; c, c, vasa deferentia, forming by their convolutions a kind of epididymus, d; f, their external oriflees. tho separation whieln exists between the organs belonging to the two sides of the body; for not only are the internal secreting visceral for
the most part more or less distinct from each other, but even the extcrnal sexual orifices aro equally separate and unconnected.
(1052.) Beginning with the parts obscrvable in the male, we will take the Cray-fish (Astacus fluviatilis) as a standard of comparison, and briefly notice the principal variations from the type of structure observable in that species met with in other genera.
(1053.) In the malc Cray-fish, and also in the Lobster, the secerning organs or testes, when examined in situ, are found to occupy the dorsal region of the thorax, lying upon the posterior part of the stomach.
(1054.) Examined superficially, the testes would scem to form but onc mass, consisting of three lobes (fig. 336, a, a, b); but on investigating the minute structure of the organ, it is found to be made up of very delicate secreting-tubes that give origin to two excretory ducts (c c). After numerous convolutions, which form a kind of epididymus (d), each duct, becoming slightly dilated, terminates by a distinct orifice (f), scen upon the basal articulations of the last pair of ambulatory legs. There is no intromittent apparatus visible; but, according to Milne-Edwards *, the extremity of the excretory duct, by undergoing a kind of tumefaction, may be protruded externally, so as to become effieient in directing the eourse of the fecundating fluid.
(1055.) In Crabs, the mass of the testis is exceedingly large, but in its essential structure similar to that of the Cray-fish, and the external opening of its excretory duct is found to occupy the same situation; in some genera, however, instead of being placed upon the first joint of the last pair of legs, the orifices of the male organs are found upon the abdominal surface of the last thoracic segment.
(1056.) In the malc Brachyura \dagger the so-called false feet constitute the external sexual organs ; and Mr. Bate has several times taken Carcinus moenas in the act of copulation, under which circumstances he distinctly saw these styliform processes inserted within the vulvæ of the female. These false feet consist of two pairs, the larger being anterior, and attached to the first abdominal ring,-the less, or posterior, to the second ring. In all, except the edible Crab, the sccond pair is very small, apparently rudimentary, and lie with their extremities inserted posteriorly into the larger pair. But in Cancer pagurus, though slight, they are cqually long with the first pair, and have a joint, peculiar to this Crab, situated near their centre, in addition to one, common to others, attached to the basal joint. The orifice of this pair is slightly frilled: it lies posteriorly against the first pair, whieh are the most important. Theso latter are styliform, and attached by a hinge to a calcareous continuation of the dermal membrane of the abdomen. From the first joint of the fifth pair of legs a membranous tube (the vas cleferens) passes out and enters at the sccond joint of the so-called false

[^135]feot, eontinuing through, and terminating at the apex in an oval slit. Internally tho tube is derived immediately from the testicle.
(1057.) Mr. C. Spence Bate believes that Crabs have more than one brood to a single impreguation by the male, and that the male ean only impregnate the female immediately after she has cast off her shell. "For days previously the male may be seen running about and hiding himself under stones, holding the female by one or more of his legs, the earapace being pressed against the sternum of the male. In this relative position they continue until the female throws off her ealeareous clothing, when ennnexion immediately follows, and continues perhaps for a day or two."
(1058.) The female generative organs very aceurately resemble those of the male ; and in the unimpregnated eondition it is not always easy, from a superficial survey of the internal viseera, to determine the sex. In Astacus fluviatilis, the ovaria (fig. 337, a) oceupy a position analogous to that of the male testis, and a simple eanal derived from each side (b, c) eonducts the eggs to the external apertures found upon the first joint of the third pair of legs.
(1059.) In Crabs, an important addition is made to the female generative system: prior to the termination of each oviduct it is found to communieate with a wide saceulus, the function of whieh is apparently analogous to that of the spermatheca of inseets (§ 871),

Fig. 337.

Female gencrative organs of Astacus fuviatilis; $a b b$, oraria; c, oviduct; d, external termination of the right oridnct; e, escaped ovum. inasmueh as it seems to form a receptacle for the feeundating seeretion of the male, in which the seminal fluid remains, ready to impregnate the ova as they suecessively pass its orifice during their expulsion from the body.
(1060.) The eggs are almost invariably earried about by the female until they are hatched; and in order to effeet this, various means are provided. In the Deeapoda they are fastened by a stringy seeretion to the false feet under the abdomen; and a female Crab may generally be readily distinguished from a male of the same speeies by the greater proportionate size of this part of their body.
(1061.) Some of the Deeapod Crustaceans, as, for example, the Crayfish (Astacus fluviatilis), do not seem to undergo mnterial alterations of form, but simply monlt at eertain intervals, throwing off their old
integument and acquiring a new covering. Nevertheless in many genera it is certain that great metamorphoses take place in the external appearance of the young auimals. Cavolini long since announced that the embryo of Cancer. depressus exhibited at birth a singular and uncouth appearance, of which he gave a very tolerable representation* ; and Mr. Thompson has rendered it certain that, even in the development of the common Crab, so different is the outward form of the newly hatched embryo from that of the adult, that the former has been described as a distinct species, and even grouped among the Entoyustraca, under the name of Zoea pelagica. On leaving the egg, the young Crab presents a curious and grotesque figure (fig. 338): its body is hemispherical, and its back prolonged upwards into a horn-like appendage; the feet are scarcely visible, with the exception of the last two pairs, which are ciliated like those of a Branchiopod, and formed for swimming. The tail is longer than the body, possesses no false feet, and the terminal joint is crescent-shaped and covered with long spines. The eyes are very large; and a long beak projects from the lower surface of the head.
(1062). In a more advanced stage of growth the creature assumes a

[^136]totally difforent shape (fig. 339), under which form it has been known to naturalists by the name of Megulopa. The eyes become perlunculated, the eephalothorax rounded, the tail Hat and provided with false fect, and the chele and ambulatory extromities well developed.
(1063.) Λ subsequent moult gives it the appearance of a perfect Crab ; and then only does the abdomen become folded under the thorax, and the normal form of the species recognizable (fig. 340).

Fig. $3 \not 40$.

Metamorphosis of Crab, showing the animal in its third or mature form.
(1064.) Notwithstanding the diversity of form under which the young Crab presents itself at different phases of its growth, examples of which we have here figured, it would seem, from the obscrvations of Mr. C. Spence Bate*, that the progress made towards the mature condition is not by any sudden metamorphosis, but by a series of moultings similar to those which take place in the adult, and that with each successive moult there is a corresponding degree of progress in its development. But the amount of change at each moult is so little that it gives to the animal but a very small degrec of difference in its general appearance; and it is only by a comparison of the earliest form with the last, and that without any consideration of the intermediate stages in its growth, that the idea of a true metamorphosis in Decapod Crustacea has arisen. There are, in fact, six or seven well-marked stages or forms that the growing animal passes through in its progress to maturity ; and each of these is linked to the preceding as well as to that which follows by a succession of changes that are but just appreciable.
(1065.) The Sromapodat (Mouth-footed Crustaceans) are so called on account of the size and preponderant development of the jaw-feet, which, armed with formidable hooks, constitute very efficient instruments

[^137]for seizing prey. Among these the Squilla mantis or Mantis-Shrimp is remarkable on account of the remarkable resemblance between its auterior limbs and those of the insect Mantis (compare figs. 341 and 235). These legs are the representatives of the claws of the Lobster, but strangely modified in their construction, while the three hinder pairs are attached to the annulated portion of the thorax. In these

Fig. 341.

Squilla mantis.
Crustaceans, which swim by means of their broadly expanded tails, the false feet beneath the abdomen assume the office of branchial organs, and, being expanded into broad and vascular lamellæ, present a considerable surface to the influence of the surrounding element.
(1066.) In the Amphipods* (fig. 320) the limbs are arranged in two groups opposed to each other. Their body is generally compressed and curved towards the breast; they swim and leap with facility, but always lying on one side. Some of them inhabit fresh water; but by far the greater number are marine.
(1067.) The Lemodirodat, or Neclc-footed Crustaceans (fig. 323), are remarkable on account of the slenderness of their elongated bodies, which are generally composed of eight or nine segments. The four front legs, situated beneath the two anterior segments, are terminated by strong prehensile hooks. These strange-looking creatures live among seawceds, upon which they crawl much after the manner of the eater-

[^138]pillars called "loopors;" but they aro likewiso able to swim. In this group the respiratory organs seem to consist of blardder-like appendages, disposed in pairs near the bases of the legs.
(1068.) Λ fifth order of Crustaceans has received the name of Isopoda*, on account of their limbs being all constructed nearly after the same pattern. Of these, some species, eommonly known by the name of Wood-lice, aro terrestrial in their habits, but requiro a certain degree of dampness to enable them to respire. The majority, however, aro marine; and of these, some, from their habit of boring into wood submerged beneath the surface of the sea, are very destructive in our sea-ports and dockyards. Such, for example, is the redoubtable

Fig. 342.

Limnoria terebrans. Limnoric terebrans, represented in the annexed figure.
(1069.) In the Branchiopoda (Gill-footed Crustacea) the legs used in swimming are convertcd into broad-fringed lamellæ, so thin that they perform the office of branchiæ, and render needless the existence of other instruments of respiration. In Daphnia, for examplo (fig. 343),

Fig. 343.

a creature common in every stagnant pool, the body is contained, as it were, between two corneous plates, open along their inferior edge. Through this transparent envelope the legs may be perceived in constant.
movement ; and from the extreme delieacy of the covering that invests them, they evidently present to the surrounding medium a surface of sufficient extent for the purpose of exposing the blood to its aetion, thus rendering them effieient substitutes for branchix; while, at the same time, their movements ensure a perpetual renovation of the water in contaet with them, so that, as a necessary eonsequenee, the respiratory proeess will be aceomplished with greater completeness in proportion as the exertions of the animal beeome more vigorous. In the Crustaeea, indeed, we have many interesting and beautiful examples of the connexion between the respiratory and locomotive organs. The amount of respiration must neeessarily be equivalent to the expenditure of museular energy; and a more elegant manner of ensuring an exaet correspondence between the one and the other than that adopted could seareely be imagined; for, by conjoining the branehix with the locomotive agents themselves, the more aetively the latter are employed, the more freely will the former receive the influenees of the aërated water in whieh they are immersed.
(1070.) The Branehiopods, or ENTOMOSTRACA*, as they are ealled by zoologists, offer, in their mode of reproduetion, several remarkable variations from what has been deseribed above; and a brief aeeount of their most interesting peeuliarities is therefore still wanting to complete this part of our subjeet. They may be divided into two groups:the first ineluding sueh forms as have their feet terminated by bunehes or tufts of setæ (Lopryropons) ; and the seeond embraeing those furnished with laminated feet obviously subservient to respiration ; these latter have reeeived the name of Phyllopods.
(1071.) The Lophyropons \dagger, or Tufted-feet Entomostraeans, are further distinguishable by the number of their feet never exeeeding ten ; their legs, moreover, are cylindrieal, and never flattened out into leaflike expansions. They were formerly confounded under the general name of Monoculi, from the eireumstance that when eursorily examined under the mieroseope they appear to have but one eye.
(1072.) The females generally earry their ova in two transparent saeculi attaehed to the hinder part of the body; and it is in these eggbags that the oviduets terminate ; so that the ova, as they are formed, are expelled into the singular reeeptaeles thus provided. Without sueh a provision, indeed, it would be diffieult to coneeive how the ora could possibly remain attached to the parent, as they far surpass in their aggregate bulk the size of her entire body, and therefore could not by any contrivance be developed internally without bursting the erustaceous eovering that invests the mother. Jurine \ddagger, Ramdohr§, and other

[^139]authors havo earefully watched the generative process in several genera, and bronght to light many important and curious facts connected therewith. In Cyclops (fig. 344, 1), a species to be met with in every ditch, the impregnation of the ova is undombtedly effected in the body of the parent; and the eggs, when formed, are expelled into two oval sacs placed on each side of the tail, which Jurine calls externat ovaries (fig. 344, 4). The number of eggs contained in these sacs gradually increases; and they exhibit a brown or deep-red colour until a short

Fig. 344.

1. Cyclops quadricornis (male). 2. Young, in an early stage. 3. The same, further advanced. 4. External orisacs of female Cyclops flled with eggs.
period before the growth of the embryo is completed, when they become more transparent. In about ten days the eggs are hatched and the young escape; and such is the prodigious fcrtility of these little beings that a single female will, in the course of three months, produce ten suecessive families, each consisting of from thirty to forty young ones.
(1073.) In Daphnia (fig. 343) the ovaria are easily distinguished through the exquisitely transparent shell, especinlly when in a gravid state; and the eggs, after extrusion, are lodged in a cavity situated
between the shell and the exterior of the body, where they remain until the embryo attains its full growth.
(1074.) The generative system of Cypris (fig. 345) has been described by Messrs. Zenker* and Platent. In the femalc the ovaria are two

Fig. 345.

Cypris.
wide tubes situated in the dorsal region, each tube being twisted upon itself like a ram's horn : these ovaries are closed at one extremity, while by the other they terminate through the intervention of an oviduct between the tail and the first pair of legs. Superadded to the ovaria are two pyriform pouches (receptacula seminis), each of which terminates by a long spiral canal in the vicinity of the posterior opening of one of the ovaria. From the arrangement of these parts it would seem that the spermatophores of the male are introduced during the act of copulation into the receptacula seminis, and, there bursting, allow the Spermatozoa escaped from their investments to fecundate the eggs containcd in the oviduct.
(1075.) In the male Cypris the dorsal cavity is filled by two pairs of voluminous organs, one of which represents the testes, while the other consists of mucous glands. The testes, which are two in number, consist of long cæca that open into a common vas deferens that terminates in the intromittent organ, in company with the excretory duct of the corresponding mucous gland. By means of the mucous glands a material is secreted which, by enclosing the spermatozoids, encases them in little capsules, called "Spermatophores," by means of which they are securely transmitted to the ova of the female during the act of copulation.

* "Anatomisch-systematischo uibor dio Krebsthiere," Archiv für Naturgeschichte, Jahrg. xx.
† "Recherchos sur les Cruastacés d'eau douce do Belgique," Mém. de l'Aend. de Belgique, 1868.
(1076.) Ono fact connected with the reproduction of the Entomostraca is so remarkable that, had we not already had an instance of the occurrence of a similar phenomenon in the insect world (Aphides), the enunciation of it would causo no little surprise to the reader; and had its reality been less firmly substantiated by the concurrent testimony of numerous observers who have witnessed it in many different genera (Oyclops, Daplinia, \&c.), it might still be admitted with suspicion. In the genera above mentioned, it has been ascertained, by careful experiments, that a single intercourse between the sexes is sufficient to render fortile the eggs of several (at least six, according to Jurine) distinct and successive gencrations.
(1077.) In other words, there is a double mode of reproduction, the sexual and the non-sexual. The former takes place at certain scasons only, the males disappearing entirely at other times; while the latter continues at all periods of the year, so long as warmth and food are supplied, and is repeated many times, so as to give origin to many successive broods. Further, a single act of impregnation serves to fertilize not merely the ova which are then mature, or nearly so, but all those subsequently deposited by the same female, even at considerable intervals. In these two modes the multiplication of these little creatures is carried on with great rapidity, the young animal speedily coming to maturity and beginning to propagate, so that, according to the computation of Jurine, founded upon data ascertained by actual observation, a single fertilized female of the common Cyclops might be the progenitor of $4,442,189,120$ young.
(1078.) The eggs of some Entomostraca are deposited free in the water, or are carefully affixed in clusters to aquatic plants; but they are more frequently carried for some time in special receptacles developed from the posterior part of the body, and in many instances they are retained there until the young are ready to come forth. In Daplnia (fig. 343) the eggs arc received into a large cavity between the back of the animal and the shell, and there the young undergo almost their whole development. Soon after their birth a moult or cxuviation takes place, and the egg-coverings are got rid of with the cast shell. In a very short time afterwards another brood of eggs is scen in the cavity, and the same process is repeated. As winter approaches, howerer, the Daphnia may be seen with a dark opaque substance within the baek of the shell, which has been called the ephippium, from its resemblance to a saddle. This, when carefully examined, is found to be of dense texture ; it generally contains two oval bodies, each consisting of an ovum covered with a horny casing, envcloped in a capsulc, which opens like a bivalve shell. From the observations of Mr. Lubbock*, it appears that the ephippium is really only an altered part of the carapace, its outer walls being a part of the outer layer of the epidermis, and its
inucr valve the corresponding part of the inner layer. The development of the ephippial eggs takes place at the posterior part of the ovaries, and is accompanied by the formation of a greenish-brown mass of granules; from this situation the eggs pass into the reeeptacle formed by the carapace, where they become ineluded between the two layers of the ephippium. This is cast, in process of time, with the rest of the skin, from which, however, it soon becomes detached, and continues to envelope the eggs, generally floating on the surface of the water until they are hatched with the returning warmth of spring. This curious provision is obviously destined to afford protection to those eggs which are to endure the severity of the winter's cold. There secms a strong probahility, from the observations of Mr. Lubbock, that the ephippial eggs are true sexual products, since males are to be found at the time when the ephippia are developed, whilst it is certain that the ordinary eggs can be produeed non-sexually, and that the young that spring from them ean reproduce their race in like manner. It has been ascertained by Dr. Baird that the young produced from the ephippial eggs have the same power of continuing the race by non-sexual reproduction as the young developed under ordinary eircumstances.
(1079.) The Entomostraca repeatedly ehange their skins. The cast shell earries with it the sheaths not only of the limbs and plumes, but of the most delicate hairs and setr conneeted with them. If the animal has previously sustained the loss of a member, it is gradually renewed at the next moult, as in the higher Crustacea.
(1080.) The last point which we bave to notice, in connexion with these little ereatures, is the progress of their development from the cmbryo condition to the mature state.
(1081.) In Cyclops, the newly hatched embryo possesses only four legs; and its body is round, having as yet no appearance of caudal appendages; of young animals in this condition Nuiller had formed a distinct genus, Anymene*; in about a fortnight they get another pair of legs, and form the genus Ncuplius of the same author. They then change their skin for the first time, and present the form of the adult, but with antennæ and feet smaller and more slender than in the perfectly mature state. After two other changes of skin they become capable of reproduction (fig. 344, 2, 3).
(1082.) Prfyllorons \dagger. -The sccond division of Branchiopods, or those with laminated feet, includes those genera of Entomostracans whose legs, at least twenty in number, are composed of flattened and leaf-like laminx, constituting in the aggregate a most extensive respiratory surface. It includes the Fairy Shrimps (Chirocephalus dicphanus) occasionally met with in the pouds of our owu country. These beautiful creatures, which are as transparent as the purest crystal, swim, or

[^140]rather glide, through the water with their backs downwards; whilst the undulating play of their numerous legs causes currents that bring nutritive particles towards their mouth in a continuous strcam.
(1083.) Equally admirable in their structure, and very remarkable

Fig. 346.

Metamorphosis of Artemia, showing the egg, the foetus in ovo, and the newly hatched larva. on account of the quality of the element they inhabit, are the BrineShrimps (Artemia salinus) (figs. 349 \& 350) met with in the saltpans at Lymington, where they live in a brine sufficiently strong to pickle a round of beef.

Fig. 347.
Fig. 348.

Metamorphosis of Artemia, showing the progressive development of the limbs after successive moultings of the cuticular integument.
(1084.) These animals are especially intercsting as being, perhaps, the nearest approach in existing nature to the extinct forms of Trilobites
so abundantly met with in certain geological strata; and we have accordingly given, upon an enlarged scale, an accurate drawing of their external organization, both in the male and fcmale (figs. $349 \& 350$). Who, however, would recognize, in the embryo of this Crustacean on its quitting the egg (fig. 346), any resemblance to the adult creature, or even in its second condition (figs. $347 \& 348$) be able to identify it as belonging to the same species? so completely aro all its parts remodelled in their structure before arriving at the mature state.

Fig. 349.

Fig. 350.

Fig. 349. Lateral view of the Male Brine-Shrimp (Artemia salinus). Fig. 350. Female BrineShrimp, showing the swimming-legs and ventral laminæ, and the eggs contained in the pouch after their extrusion from the oviduct.
(1085.) Siphonostomata* (Sucking-mouthed Crustaceans).-An extensive series of animals closely allied to the Entomostraca have been so constructed as to be capable of attaching themselves to the external parts of other creatures, from which they suck the nourishment suited to their nature.

[^141](1086.) These parasites are commonly fomid to infest fishes and other inhabitants of fresh and salt water, gencrally fixing themselves in positions where an abundant supply of animal juices can be readily obtained, and where, at the same time, the water in which they are immersed is perpetually renewed for the purpose of respiration. The gills of fishes, therefore, offer an eligible situation for their development, as do tho branchix of other animals; or they are sometimes found attached in great numbors to the interior of the mouth in various fishes, deriving from its vascular lining, or from the abundant secretions met with in such a locality, a plentiful supply of food, while they are frecly exposed to tho currents of water which the mode of respiration in the fish brings into contact with them.
(1087.) Some of these animals exhibit excecdingly grotesque and singular shapes, resembling imperfect cmbryos rather than mature beings,-the first buddings of external limbs, in the carlier period of fœetal development, imitating not very remotcly the appearance of the rudimentary appendages represcnted in the annexed figure* (fig. 351).
(1088.) A great number of species of these parasites, gencrally described under the name of Lerneans, have been observed by authors; and it would seem, morcover, that each is peculiar to a particular kind of fish. The variety

Fig. 351.
 exhibited in their outward forms is, of course, excecdingly great; but the examples depicted in the figure given above, namely the Lermea gobinu (found on tho branchiæ of Cottus gobio) and Lerncea radiata (which infests the mouth of Corypheena rupestris), will make the reader sufficiently acquainted with their general appearance and extcrnal structure. In the former parasite, of which a postcrior and an anterior view are given in fig. $351(a, b)$, the appendages seen upon the head and sides of tho body answer the purpose of hooks or grappling-organs, whereby the creaturo retains its position ; and so firm is its hold upon the delicato covering of tho gills, that, even after tho death of the fish, it is not easily detached. In tho second example (c, l), besides the * Müller (O. F.), Zoologin Danica, 1788.
rudimentary limbs, the lower surface of the head and ventral aspect of the body (d) are eovered with sharp spines, ealculated to increase very materially the tenacity of its hold upon the surfaee from whieh it imbibes food. The sacculi appended to the posterior part of the animal are reecptaeles for the eggs, as will be explained hereafter.
(1089.) Notwithstanding the anomalous appearance of the adult, the young Lernean just eseaped from the egg is a true Crustaeean, and very much resembles the larva of Artemia (fig. 346); it is furnished with two cyes, swims freely about by means of two natatorial feet, and after some time undergoes exuviation. During the seeond period of its life

Fig. 352.

Fig. 353.

Chondrocanthus. 1. The dot in the eentre of the scroll represents the natural size of the animal. 2. Male, magnifled ; a, b, c, d, e, f, g, rudimentary limbs, of prehensile character. 3. The female.
it has, attached to the fore part of its body, three pairs of legs terminated by hooked elaws, adapted either for erawling or for fixing itself to a smooth soft surfaee-and, moreover, has two pairs of swimmingfeet, by the aid of whieh it can wander about in the water. Up to this point its growth has tended to improve its organization and complete a very efficient set of limbs, whieh, nevertheless, are soon to be totally demolished. When about to assumo the adult condition the female Lernean enlarges enormously, its limbs grow altogether deformed, its
organs of sense disappear, and it becomes reduced to a sort of bag ellclosing a stomach, and supporting receptacles for its eggs. The male, although less distorted in appearance, frequently remains two or threc hundred times as small as the female to which he fixes himself, living parasitically upon her, just as sho does upon the fish that affords her nourishment. Such, for example, is the case with the male of Chondrocanthus (fig. 352), a specics found living parasitically upon the gills of the Solc and of the Plaice.
(1090.) The Ergasilus gibbus (fig. 354), which likewise takes up its quarters upon the gills of fishes, is sometimes met with in such numbers that six hundred of them have been taken from a single fish (Pagrus). Scgments and articulated limbs are in this genus plainly visible : the hooked claws, whereby the creature fixes itself to the branchial fringes, are jointed and moveable, while those appended to the hinder scgments are fringed with setæ and perform the office of natatory organs ; jointed antennæ are furnished to each side of the head; and, near the base of these sensitive organs, a solitary eye, in the shape of a red spot, occupying the centre of the head, is distinctly apparent, obviously presenting the Crustacean type of organization.
(1091.) The Achtheres percarum (fig. 355) is one of the most remarkable of these parasites; and the details of its anatomy having been fully investigated by Nordmann *, it will serve as a good example of the type of structure which prevails throughout the group.
(1092.) The Achtheres is found to infest the Perch (Perca fluviatilis), adhering firmly to the roof of the mouth, to the tongue, or some-

Fig. 354.

Ergasilus gibbus. 1. Natatory form, under which the young animal leares the egg. 2. Aduit female. times even to the cyes of that fish, in which situations it is concealed by a brownish slimy secretion, so that its presence might easily escape the notice of a casual observer.
(1093.) The female, represented in the figure, is about 2 lines in length ; the male differs materially from the other sex in many points, and is considerably smaller.
(1094.) The outer covering of the body of these little creatures is of a horny texture, approximating to the density of the coverings of the Entomostraca; and indications are perceptible of a division into segments : the distinction, moreover, betwcen the trunk (cephuluthorar:),

[^142]to whieh the limbs are appended, and the abdomen, wherein the viscare are lodged, is obvious.
(1095.) Instead of the rude and imperfeet limbs we have scen in the adult Lerncans, the legs are visibly more perfeet in their entire construetion; and in the female the posterior pair of these appendages are eonrerted into a most singular instrument of attaehment, whercby the Achtheres fixes itsclf to the gums of the fish. The hinder pair of extromities alluded to (fig. $355, b b$) are, in faet, enormously developed; they eurve forward after their origin from the posterior part of the trunk, and are so mueh extended that they projeet eonsiderably beyond the head, and, beeoming considerably attenuated, the two are joined together by a kind of suture, and support at the point of union a eup-shaped organ whereby the ereature fixes itself. This singular instrument (represented upon an enlarged scale at fig. 356,1) is of a eartilaginous hardness, resembles a little bowl, the inside of which is studded with sharp teeth, and is not only ealeulated to act as a powerful sueker, but, from the hooks within its eavity, is capable of taking a most tenacious hold upon the

Fig. 355.

Ach!heres percamum: a, adhesive disk; b, b, posterior pair of limbs: c, stomach; d, d, ovaria; e, anal oriflee; f, f, ovisacs; o, antennæ. lining membrane of the mouth.
(1096.) The other members (fig. 355, o) are mueh less developod, but

Fig. 356.

Details of the structure of Achtheres. 1. Adhesive disk, on an enlarged scale: e,e, conjoined extremities of the hinder pair of legs. 2. Structure of the mouth and parts adjacent: a, a, anterior limbs; b, b, antennec; c, mouth, furnished with rudimentary jaws.
aro nevertheless so constructed as to assist materially in fixing the Epizoon ; they are represented upon a very large scale in fig. 356, 2 , where the outer pair (a, a) are seen to exhibit, in the trausverse linos indented upon their surface, the first indication of articulated limbs; and their extremities, armed with minute hooks, evidently form powerful agents for prehension. Internal to these are two other jointed organs, still more feeble in their construction, the ends of which (b, b), being armed with three spines, will assist in effecting the same object.
(1097.) The mouth itself (fig. 356,2, c) is formed for imbibing fluid material ; the external orifice is surrounded with a cirele of minute recurved spines, well calculated to ensure its firm application to the surface from which nourishment is obtained; and within this, rudimentary jaws furnished with strong teeth are visible, adapted, no doubt, to scarify the part upon which the mouth is placed, in order to ensure an adequate supply of food. In the male Achtheres, the sucking-bowl possessed by the female does not exist, the prehensile organs being merely four stout articulated extremities, armed at the end with strong prehensile hooks.
(1098.) As we might suppose, from the nature of the food upon which this creature lives, the alimentary system is extremely simple. The œesophagus (the course of which is represented by dotted lines in fig. 356) terminates in a straight digestive canal (fig. 357, a), whieh passes through the centre of the abdomen; but no separation between stomach and intestine is visible. The entire tube, from the transverse constrictions visible upon its surface, has a sacculated appearance, and is perceptibly dilated towards the centre of the abdominal eavity ; after which it again diminishes in size as it approaches the anal orifice (b), situated at the posterior extremity of the body.
(1099.) Near the termination of its course, the alimentary canal

Fig. 35 .

Viscera of Achtheres percarum: a, alimentary canal; b, anal orifice; c, nervous flaments?; d, muscular bands; e, unimpregnated, and f, impregnated ovary; g, g, cxternal openings of the ovaria. passes through a loop formed by transverse bands (n, n), and, moreover, seems to be retained in its position by radiating fibres, apparently of a ligamentous character, but whieh have been described as representing a biliary apparatus.
(1100.) The muscular system of this animal is far more perfect in its arrangement than in the preceding classes; and the delicate fasciculi
which move the rudimentary limbs are visible through the transparent integument (fig. 355). In the abdomen the muscles form longitudinal and transverse bands that intersect eaeh other at right angles (fig. 357, d) -an arrangement not very different from what we shall soon meet with in the rotiferous animalcules.
(1101.) The nervous system appears to consist principally of two long filaments (fig. $357, c$) that run bencath the alimentary canal: but it is extremely probable that these communicate with some minute ganglia in the neighbourhood of the head; at least the perfect structure of the oral apparatus and the development of the limbs would seem to indicate such a type of structure.
(1102.) The generative organs in the female Achtheres consist of two parts:- the ovaria, wherein the eggs are formed, contained in the abdominal cavity (fig. 355, d, d) ; and two external appendages, or cgg-sacs (fig. $355, f, f$), which are attached to the posterior extremity of the body, for the purpose of containing the eggs until their complete development is accomplished: this arrangement we have already had an opportunity of examining in the Entomostracous Crustaceans.
(1103.) The internal ovaria (fig. 357, f), when distended with ova, occupy a great part of the cavity of the abdomen, and present a racemose appearance ; but when empty, as represented upon the opposite side of the same figure (e), each is found to be a simple blind canal with sacculated walls, opening externally by an orifice (g, g) through which the ova are expelled into the egg-sacs, where their development is completed.
(1104.) It would seem that, even when the eggs are hatched, the excluded young are far from having attained their perfeet or adult form, but undergo at least two preparatory changes or metamorphoses, during which they become possessed of external organs so totally different from those they were furnished with on leaving the egg, that it would be difficult to imagine them to be merely different states of existence through which the same animal passes.
(1105.) On first quitting the egg, the young Achtheres is, in fact, by no means adapted to the parasitical life to which it is subsequently destined-possessing no organs of prehension like those of the adult, but merely two pairs of swimming-feet, each armed with a brush of minute hairs, and calculated to propel it through the water. Before, however, the first change is effected, another set of feet may be perceived through the transparent external covering, encased, as it were, in the first; when these arc completely formed, the original skin falls off, displaying, in addition to the two new pairs of swimming-foct, three pairs adapted to prehension ; and it is only when the second set of feet are thrown off in a similar manner that the animal assumes its perfect or mature form.
(1106.) In Lamproglena pulchella we have a still more decided exemplification of the Crustacean type of structure, and the rudimentary fect, arranged in symmetrical pairs, are as numerous as the segments of
the body. The limbs, however, are as yet only adapted to secure a firm hold upon the structures whereunto this parasite attaches itself, namely tho gills of the Chub (Cyprinus jeses), in which situation it is most usually found. The two anterior pairs (fig. 358, b, c) are far more largely developed than thoso which are placed upon the posterior parts of the animal, and are apparently strengthencd by a cruciform cartilaginous framework, seen thaough the transparent integument. The first pair of these holding-feet consist of two robust and powerful hooks, terminated by simple horny points; whilst the second, which are likewise unciform, terminate in trifid prongs, and are evidently equally adapted to prehension. The four pairs of members that succeed to these are mere rudiments, and can be of little service as organs of attachment; but, to make up for their imperfection, we find at the posterior extremity of the body, between the orifices of the ovaria (g), a pair of cartilaginous suckers, well calculated to fix this part of the animal.
(1107.) The muscular system is readily seen through the transparent skin : four lougitudinal bands are visible (d), running from one end to the other; and, besides these, broad transverse fasciculi are discernible in the fifth and sixth segments of the body. From the nature of the feet, however, and general structure of the creature, we must imagine the existence of

Lamproglena pulchella: δ, jawfeet; c, c, c, c, rudimentary limbs; d, alimentary canal; g, terminations of the internal oraria. muscles provided for the movements of each articulated member, although, from their extreme minuteness, they escape detection.
(1108.) The opening of the mouth is placed in the centre of the space bounded by the four anterior prehensile hooks; and the alimentary canal is a simple tube passing straight through the body to the tail, where the anal orifice is distinguishable. The walls of the intestine have a reticulated appearance, being covered with a kind of glandular network which probably constitutes a biliary apparatus.
(1109.) In a creature thus highly organized we may well expect to find senses of proportionate perfection ; and in, Lamproglena their existence is no longer doubtful. The eyes are distinctly apparent, of a reddish colour; but, as yet, as in the lowest Crustaceans, united in one mass. The antennæ likewise, which may be regarded as special instruments of touch, are well developed, and, both in number and position, resemble those that characterize the Crustacean orders, to which we are thus conducted by almost imperceptible gradations.
(1110.) The reproductive organs are entirely similar to those of Achtheres, already deseribed. Those of the female, represented in the figure, consist of saeciform ovaria, wherein the ova are seereted; and from these, when mature, the eggs are expelled through two simple triangular orifices (g) situated on caeh side of the anus.
(1111.) One of the most singular and anomalous forms of the suetorial Crustaceans is found in Nicothoë Astaci, a creature met with in great abundance at cortain seasons, attached to the gills of the Lobster, from whieh it derives its supply of nourishment. This remarkable animal (fig. 359) during the earliest periods of its existence is free, and gifted with energetie powers of locomotion ; construeted, at its first appearance from the egg, in perfect aceordanee with the normal type belonging to its elass, it ultimately selects for its domicile the branchial

Fig. 359.

Nicothoë Astaci. 1. Adult female: a, cephalothorax ; b, abdomen; c, postabdomen; d, antennæ; e, eyes; f, ovisacs; g, lateral appendages; h, h, ovaria; i, oviduct. 2. Adult male. 3. Larva of female Nicothoë.
chamber of a Lobster, where, fixing itsolf permanently to the branchial tufts of that Crustacean, it undergoes a wonderful metamorphosis: its external form is entircly ehanged ; its senses, and means of relation with the external world, become atrophied ; singularly formed excrescences sprout from its sides; and, thus transformed, it is content to live beneath the shell of the Lobster, without further intereonrse with the external world than is neecssary to supply it with the blood which it sucks for food.
(1112.) The mouth of the Nicothoë is a sort of membranous proboseis, armed near its extremity with stiliform points, with which it is enabled to pieree the branchial membrane. Instead of the ordinary more or less simple tube which constitutes the alimontary canal in other forms of

Entomostraca, the digestive apparatus of Nicothoë consists of two wide sacculi, united together in the median linc, in the shape of a horseshoe, from the centre of which a narrow canal procecds towards the mouth, constituting the cesophagus (fig. 359, 6), whilst, derived from the opposite side, another tube of similar calibre runs backwards to the termination of the tail, forming the intestine (c). The stomach, therefore, is constituted by the two great lateral ceca (g), in the interior of which alimentary substances undergo the process of digestion. The thickness of the walls of these stomachal ceca is uniform throughout ; they are exceedingly delicate, only cxhibiting in their texture some small reddish cells, and arc apparently connected to the parietes of the body, in which they are loosely suspended, by delicate muscular frena.
(1113.) Oue very remarkable circumstance presented by the alimentary apparatus of Nicothoë is the peristaltic action of its parictes, which is continued even after its removal from the body, and which here is evidently in relation with the "phlebenterism" (see § 1121) exhibited in the arrangement of the digestive system. No proper respiratory organs exist in these simply organized beings : the diffusion of the blood through the interior of the body, subservient alike to respiration and nutrition, seems to be entirely effccted by the contractions of the intestinal walls; and the proper chylific viscera themselves perform the duties of the lacteal, circulatory, and respiratory apparatus of the higher animals.
(1114.) As with the generality of the Lerncans, the male of Nicothoö was, until recently, unknown to naturalists-a circumstance attributable to two causes: in the first place, the individuals of the male sex are very diminutive in all the genera belonging to this group, insomuch that from their size they seem to be parasites on the female; and sccondly, because in some of them, which have been more partieularly studied, a phenomenon is observable analogous to what occurs in the Aphides among insects : there occur whole generations of fertile females, and most probably, also, gemmiparous races, during a certain portion of the year, as is the casc with Daphnia* (§ 1076).
(1115.) The male of Nicothoë is represented in fig. 359, 2, magnified in the same proportion as the female. The generative apparatus of the female is largely developed: it is situated principally in the lateral appendages of the body, of which it occupies a considerable part, being lodged by the side of the digestive cæca. The ovarium (fig. 359, $1, h$) is very irregular in its shape: anteriorly it is bifurcate; and its whole surface has a sacculated appearance. The oviducts (i) become conjoined near the mesial line, and then bend downwards to terminate at the vulva. These canals are frequently filled with ova throughout their whole length. From the oviducts the eggs pass directly into the enormous ovisacs (f), suspended from each side of the caudal portion of the body, between the lateral appendages, in which they are contained until

[^143]sufficiently mature for exclusion, when the ovisac bursting gives issue to hundreds of minute Nicothoës hatched in its interior.
(1116.) On emerging, the newly hatched Nicothoë is exceedingly active, and presents nearly the form of a young Cyclops (fig. 359, 3); neither would any one ever suspect it to be the same creature which vegetates upon the branchir of the Lobster. However, no sooner has it fixed itself in that situation than its body begins to swell out laterally, in the shape of two tubercles that sprout from the sides just behind the third thoracic segment, into which the viscera are seen to penetrate; and as these tubercles enlarge, the animal becomes gradually provided with those enormous aliform appendages that are so characteristic of the adult female.
(111.7.) Pycnogonid.w.-In the Pyenogons* (fig. 360) the aperture

Fig. 360.

1. Pycnogonum gracile, of natural size. 2. The same, enlarged. 3. Anterior part of its body, showing the mouth and oral appendages, including a pair of jointed ovigerous flameuts, to which bunches of eggs are attached.
of the mouth is found at the extremity of the tubular proboscis which projects from the anterior part of the body of these remarkably construeted animals. The esophagus is an extremely delicate and slender canal that passes directly backwards into the cephalothorax, where it at once expands into a digestive cavity or stomach which occupies the centre of the body, and terminates posteriorly in a very narrow and rudimentary intestine.
(1118.) From the circumference of the stomach are given off ten long eæca, the disposition of which is remarkable : of these, the two anterior are prolonged forwards to the pincer-like rudimentary jaw-feet or

[^144]palpi, into the interior of which they penctrate for some distance; while the remaining four pairs, which are of great length, are continued in a similar manner into the loeomotive or thoraeie legs, extending almost to the end of the antepenultimate joint. The anal orifice of the intestine is situated, as usual, at the extremity of the very rudimentary abdomen.
(1119.) When distended with fluid, these eæea may be observed to become constrieted opposite to each articulation of the limb. Their strueture is exceedingly simple : they consist of a very thin diaphanous membrane, in which no trace of fibre is distinguishable, but which cxternally seems to be erusted over with a granular opaque substance, sometimes presenting a riolet or yellowish tint. Thesc granulations are more thinly seattered over the stomach than over the cæea, and upon the intestine they are wanting altogether. The whole of this digestive apparatus, notwithstanding that its walls contain no perceptible fibres, is contraetile, and floats freely in the general eavity of the body, being only retained in situ by a ferw delieate fræna; its different parts may be observed to have alternato movements of contraction and dilatation, driving, in undulations, first in one direction and then in another, the liquid they contain, hurrying along with it the materials in process of digestion. These generally present themselves under the appearance of roundish or ovoid masses, about $\frac{1}{40}$ of a millimetre in diameter, smooth and entirely without granulations during the earlier period of the digestive proecss ; but as digestion advances, they may be seen to become deeomposed into roundish grauules that powerfully refract the light, and which are searcely $\frac{1}{300}$ of a millimetre in size. The fæees scen in the intcstine are entirely made up of these granules irregularly agglomerated together; and it is rare to find among them any traces of alimentary substances which are not entirely deeomposed *.
(1120.) It has been stated above that all that portion of the alimentary canal whieh intervencs between the œesophagus and the intestine is free, and floats loosely in the general thoracic cavity, which cavity is prolonged into the limbs, extranding beyond the terminations of the cæea : in this eavity it is easy to distinguish the muscles subservient to locomotion; so that the digestive apparatus is evidently lodged in a great lacuna or cavity whieh occupies the entire thorax, and is prolonged into the claws. This lacuna is filled up with a transparent fluid, in whieh may be distinguished a great number of irregular transparent eorpuscles, that appear to consist of agglomeratious of smaller globulcs. The fluid is constantly agitated with irregular movements backwards and forwards, caused by the general movements of the animal, or by the altcrnate contraetions and dilatations of the stomach and cxea, and whieh eonstitute all the cireulation diseernible in these creatures. No organ is detcetible specially appropriated to this function ; heart and

[^145]blood-vessels are alike wanting, the great lacma above described taking the place of both, since the fluid contained in it is evidently the representative of the blood, or, rather, it is the blood itself. Neither are there any special organs appropriated to respiration, whieh is here carried on by the general surface of the body, as we have found it to be in many of the Entomostraeous Crustaccans.
(1121.) The remarkable disposition of the alimentary canal so eonspicuous in the Pyenogonidæ, and which exists, to a greater or less extent, among the inferior tribes of various elasses of animals, has been named by M. de Quatrefages "phlebenterism" *, from the cireumstance that in the instance above given, and in many similarly organized creatures, the intestinal ramifications supersede, to a greater or less extent, the functions of the eireulatory, respiratory, and chyliferons systems of the higher animals.
(1122.) The ncrvous system of the Pycnogonidæ consists of a thoracie ehain of ganglia, from whieh are derived the nerves supplying the limbs, and of a supraœesophagcal mass, giving off the optic nerves to the minute ocelli that constitute the visual organs of these extraordinary ereatures.
(1123.) Rotifera t.The minute animals that next present themselves for our consideration were, until very recently, confounded with the chaotic assemblage of minute ereatures to whieh the name of Infusorial Animalcules was indiscriminately applicd; but the information at present in our possession concerning their internal struc-

Stephanoceros Eichhornii (after Ehrenberg): a, pharynx; b, stomachal oavity ; c, ova contained in the ovary ; d, retractile muscle; e, gizzard, containing the masticatory apparatus; f, rotatory organs, resembling those of a Polyzoon. ture and general ceonomy, while it exhibits in a striking manner the assiduity of modern observers and the perfection of our means of exploring microscopie subjects, enables us satisfactorily to define the limits of this in* $\phi \lambda i \psi$, a vein ; $̈ \nu \nu \tau \in \rho 0 \nu$, an intestine.

+ Rota, a whoel ; fero, I bear.
teresting group, and assign to them the clevated rank in the scale of zoological classification to which, from their superior organization, they are entitled.
(1124.) The character whence tho class obtains its name is derived from the peculiar organs placed upon the anterior part of the body, which are subservient to locomotion, and assist in the prehension of food. These consist of circlets of cilia variously disposed in the neighbourhood of the mouth, and having, when in action, the appearance of wheels spinning round with great rapidity, so as to produce strong currents in the surrounding water.
(1125.) The body of the Wheel-Animalculcs is enclosed in a dolicate transparent envelope of considerable consistency, often terminating at the upper extremity in wavy indentations and tooth-like processes, as in Brachionus urceolaris (fig. 362, c, c). This harder integument is so constructed as to allow the animals to move at large in the element they inhabit. Continuous with the free margin of the shell is a delicate membranc connecting it with the bases of the ciliabearing lobes around the mouth, so as to allow those organs, when not in use, to be retracted within the cell.
(1126.) To the posterior extremity of the body is gencrally appended a pair of forccps, composed of two moreable picces (figs. 362 \& 370), used as auchors, or instruments of prehension; and by means of thesc the little creatures fix themselves to the Confervæ or aquatic plants amongst

Brachionus urceolaris (after Ehrenberg); a, b, c, rotatory apparatus and marginal teeth of the shell; d, "calcar," or tubular prolongation of the shell, communicating with the visceral cavity; e, oculiform spot; f, gizzard with its enclosed masticatory apparatus; g, stomachal cavity; h, h, cæcal appendages to the stomach; k, common outlet; l, lateral canals, to which the vibratory organs are attached; m, contractile vesicle; n, ovaries; o, flexible tail, in which the muscular bands are distinguishable; p, terminal forceps. which they are usually found.
In Brachionus urceolaris the prehensile forceps (fig. 362, p) is attached to the extremity of a long flexible tail (o), wherein the muscular fibres destined for its motions are distinctly visible.
(1]27.) The cilia whose action produces the appearance of wheels turning upon the anterior part of the body are variously disposed ; and
from their arrangement Ehrenberg * has derived the characters whereon ho bases the division of the class into orders. The peculiar movements excited by tho vibration of these organs was long a puzzle to the earlier microscopic observers, who, imagining them to be really wheels turning round with great velocity, were utterly unable to conceive what could be the nature of the connexion between such appendages and the body of the animal. The apparent rotation, however, has long been proved to be an optical delusion, and to be produced by the progressive undulations of the cilia placed in the neighbourhood of the mouth.
(1128.) With respect to the agents employed in producing the ciliary movement in the Rotifera, we aro as much in ignorance as we are concerning the cause of the same phenomenon in the Infusoria. Ehrenberg describes the cilia as arising from a series of lobes, as represented in Notommata clavulata (fig. 370, a); these he regards as being muscular, and capable of producing by their contractions the rapid vibrations of the fibrillæ attached to them. We confess, however, that such lobes, even were their existence constant, seem very clumsy instruments for effecting the purpose assigned to them ; and it is not easy to conceive how the rapid and consecutive undulations, to which the appearance of rotation is due, can be produced by organs of this description.
(1129.) The observations of Dr. Arthur Farre \dagger concerning the ciliary movements appear best calculated to throw light upon the nature of the action of these wonderful appendages, and to explain the cause of the apparent rotatory motion of the so-called wheels of the Rotifera. The very accurate observer alluded to remarks that, under

Fig. 363.
 high powers, the cilia have the appearance of moring in waves, in the production of each of which from a dozen to twenty cilia are concerned, the highest point of each wave being formed by a cilium extended to its full length, and the lowest point between evcry two waves by one folded down completely upon itself, the interrening space being completed by others in every degree of extension, so as to present something of the outline of a cone. As the persistence of each cilium in any one of these positions is of tho shortest possible duration, and each takes up in regular succession the action of the adjoining one, that cilium which, by being complotely folded up, formed the lowest point between any two waves, in its turn, by its complete

[^146]oxtension, forms the highest point of a wave; and thus, while the cilia are alternately bending and unbending themselves, each in regular succession after the other, tho waves only travel onward, whilst the cilia never change their position in this direction, having, in fact, no lateral motion.
(1130.) The whole of the ciliary movements are so evidently under the control of the animal as to leave not the slightest doubt in the mind of the observer upon this point. The whole fringe of cilia may be instantly set in motion and as instantaneously stopped, or their action regulated to every degree of rapidity. Sometimes onc or two only of the waves are seen continuing their action, whilst the remainder are at rest ; or isolated cilia may be observed slowly bending and unbending themselves, while the others are quiescent. It is by the constant succession of these movements that the eye is scduced to follow the waves which they seem to produce; and thus the apparent rotation of the wheels is easily understood.
(1131.) M. Dujardin's explanation of this phenomenon is based uporn the fact that, if equal and parallel lines placed at equal distances from each other become bent at regular intervals, so as to overlap the neighbouring lines, they produce dark intersections somewhat resembling the teeth of a saw, instead of a uniform surface (fig. 364). In this manner

Fig. 364.

the vibratile cilia, being arranged parallel to each other and scparated by similar interspaces, would equally intercept the light, so that none would appear more conspicuous than others; but if, in consequence of a general movement propagated along such a row of cilia, some of them, by being momentarily bent down, are placed in justaposition with the neighbouring cilia, the light being more intereepted, a darker or more obscure line will be the consequence. It is easy, then, to conccive that, when all the eilia thus bend themselves in regular succession, numerous interscetions of this kind will occur, apparently progressively adrancing in the dircetion of the propagation of the movement; consequently, if each of these intersections whilst in motion preserves tho same form, as being formed by the same number of equal lines tho inclination of
which is similar as respects each other, it will give to the eye the appearance of a solid body of a definite shapo, such as the tecth of a saw, or of a whecl, in uniform movement. In this way it is easy to understand how the circular rows of cilia in the Rotifera produce the appearance of a dentated whecl in motion*.
(1132.) A rery slight examination of onc of these creatures under the microscope will show that the cilia answer a double purpose : if the Rotifer fixes itself to some stationary object by means of the anal forceps, the ciliary action, by producing currents in the water all directed towards the oral orifice, ensures a copious supply of food, by hurrying to the mouth whatever minute aliment may be brought within the range of the vortex thus caused; or, on the other hand, if the animal disengages itsclf from the substance to which it held by its curious anchor, the wheels, acting upon the principle of the paddles of a steamboat, carry it rapidly along with an equable and gliding movement.
(1133.) The whole ciliary apparatus, when not in use, is retracted within the orifice of the shell, and lodged in a kind of sheath formed for it by the inversion of the tegumentary membrane. The muscular fasciculi by which this is effected are very conspicuous; they arise from the lining membrane of the shell, and run in distinct fasciculi in a longitudinal direction, to be inserted into the lobules whereon the cilia are arranged (fig. 370, $m, m)$.

Fig. 365.

Hydatina.
(1134.) But, besides these retractor muscles, other fasciculi of muscular fibres are distinctly seen to run trausversely, crossing the former at right anglcs : these are, most probably, the agents provided for the extrusion of the wheel-like apparatus; for, arising, as they do, from the inner membrane of the hard integument, they will, by their contraction, compress the fluid in which the viscera

[^147]float, and, forcing it outward towirds the orifice of the shcll, it will, of course, push before it tho whecls, so as to evert the tegumentary membrane connceting them with the shell, by unrolling it like the finger of a glove, and thus causing the rotatory organs to protrude at the pleasure of the animal.
(1135.) We have already described the means whereby the Rotifera procure a supply of food, namcly by exciting currents in the surrounding water ; the materials so obtained pass at once into a pharynx, the relative capacity of which varies considerably in differcnt spccies; from the pharyngcal reccptacle it is conveyed into a singularly constructed gizzard, to be bruised and broken down by an apparatus provided for that purpose; thus prepared, it is allowed to entcr a third cavity, whercin digestion is accomplished, which may be called the stomach; and this, after becoming gradually constricted in its diameter, terminates at the caudal extremity of the body.
(1136.) The usual arrangement of the digestive apparatus will be readily understood on refercnce to the annexed figures : thus, in Stephanoceros Eichhomii (fig. 361), the pharynx (a) is vcry capacious, recciving readily the materials brought into it by the ciliated arms; the gizzard (e) is a small globular viscus, containing the instruments of mastication, hereafter to be noticed; while the digestive cavity properly so called (b), which presents no perceptiblc division into stomach and intestine, extends from the gizzard to the anal apcrturc.
(1137.) In Brachionus urceolaris (fig. 362) the pharynx or œsophagus (c) is lcss capacious; the gizzard (f) exhibits through its transparent coats the peculiar dental organs placed within it; and the stomach (g) is seen partially folded upon itself by the retraction of the body. We observe, moreover, in this animal, appended to the commencement of the stomach, two large cæcal appendages (h, h), which were scarcely per-

[^148]ceptible in the last figure, and which, no doubt, are of a glandular nature, furnishing some fluid to be mixed up with the bruised aliment contained in the stomach, to assist in the digestive process. To these secreting creca, Ehrenberg has chosen to give the name of pancreas; but for what reason it is difficult to conjecture, since the first rudiments of a pancreas are only met with in animals far higher in the scale of animal existence. Every analogy, indeed, would lead us to denominate these cæea the first rudiments of a liver-by far the most important and universal of the glaudular organs subscrvient to digestion; and in a variety of creatures we shall afterwards find it presenting equal simplicity of structure. In Notommata centrura the cæca are merely two

Fig. 366.

1. Notommata centrura: a, rotatory cilia; b, calcar ; c, ocular speck; d, masticatory apparatus; e, cesophagus; f, stomach; g, g, cecal appendages to the stomach; h, h, longitudinal muscles; i, i, transverse muscular bands; k, k, ovaria; l, cæcal tubes, to which are attached peculiar vibratile organs; m, cloaca; $n n$, caudal forceps.
pouches opening into the top of the stomach, whereas in Notommata clavulata there are six of these appendages (fig. 370, e e) communicating with that enlarged portion of the digestive canal (c) which may be looked upon as the proper stomach.
(1138.) We must now revert to the consideration of the dental apparatus contained in the gizzard, represented in situ in fig. $362, f$, aud exhibited on a still larger scale in fig. 368. This curious masticating instrument consists of three distinct pieces, or teeth, which are made to work upon each other by the contractions of tho gizzard, so as to tear
in pieces or bruise all matters made to pass through the cavity contaiuing them. The central piece (fig. $362, f$) may be compared to an anvil, presenting on its upper surface two flattened facets; and upon these the other two teeth (that might, without much stretch of faney, be compared to two hammers) act. Each of the superior tecth may be described as consisting of two portions united at an angle: the larger portion, or handle as it might bo called, sorves for the attachment of museles; whilst the other part is free in the eavity of the gizzard, and works upon the facets of the anvil, the edge being apparently divided into teeth rescmbling those of a comb, and cvidently adapted to bruise or tear substances submitted to their action. Such is the transpareney of the whole animal, that the effect of these remarkable organs upon the animalcules used as food is distinctly visible under a good microscope ; and if the Rotifer be compressed between two picces of glass, so as to break down the soft textures of its body, the teeth may, from their hardness, be procured in a detached state for minute examination. The whole apparatus described above evidently resembles very closoly the kind of stomach met with in the Crustacea, to which the Rotifera will bo found gradually to approximate.
(1139.) In Melicerta ringens the alimentary canal commences with a small oval orifice situated near the sinuated disk formed by the rotatory organs. It opens into an œesophagus that conducts the food down to the gastric teeth (fig. 367,

Fig. 367.

Melicerta ringens (after Prof. Williamson): a, a, ciliated lobes, constituting the rotatory apparatus; b, hooks, called by Schäffer "the lips;" c, rotatory flap, or "pellet-cup" (Gosse); d, d, tentacular organs; e, gizzard, containing the gastrie teeth; f, upper stomachal cavity; g, inferior stomachal eavity; h, anal outlct; i, protuberance occasioned by the act of defecation; k, ovary ; l, dilated oviduct; m, filamentary spermatic tube ($?$); n, n, muscles of caudal appendage; 0 , prehensile organ; p, p, corpuscles floating in the peririsceral tuid; q, ova nearly ready for expulsion. $1, e)$. This dental apparatus consists primarily of two slightly areuate jaws, broad at their upper extremities, narrow and pointed inferiorly. Elastic ligaments bind these together at each end. The front or convex margin of each jaw is crenulated, the projeetions corresponding with the transverse parallel ridges usually regarded as the tecth of the animal. These jaws form the two lips of a sac, the latcral parts of whieh consist of a separate tissne which overlaps cach jaw at its anterior margin, hooked on, as it were, to the erenulations, and thrown by them into permanent parallel corrugations. Each of these corrugated organs passes first outwards, and then downwards and backwards, where they
are bound together by another broad membrane, which eompletes the sae posteriorly. The food enters this sae by a passage from the œesophagris at its superior extremity, is erushed between the two jaws, and then passes out again by a similar orifiee at its opposite or lower end to enter the stomach *.
(1140.) After passing the dental organs, the food enters an elongated stomaeh (fig. $367,1, f$) with very thiek pulpy parietes. In young examples these walls are colourless and transparent, but in more matured speeimens they exhibit a bright olive hue. The whole earity, as well as the œsophagus leading to it, is lined with eilia that are constantly playing. On rupturing this organ, it is seen to be eomposed of a thin pellueid external membrane, exhibiting no distinet structure, but within which is a thiek layer of large, tinged epithelial cells. These are easily detached

Fig. 368.

Gastric dental apparatus of Melicertaringens: a, a, crushingplates; $b c, b c$, lateral framework; d, handle-like processes; e, central fixed point. (After Prof. Williamson.), from the membrane, when each one is seen to be spherieal, containing numerous yellow granules, and very often a nucleus with its nueleolus. The cilia are attached to one side of these cells, the great length of the former constituting the most marked feature of this arrangement; it often indeed, equals the entire diameter of the cell. Some of the eells exhibit no cilia; others are only furnished with them on one side, while a few appear to be fringed with them throughout their entire cireumference. Professor Williamson supposes that in the latter ease the cells have projected eonsiderably into the eavity of the stomaeh. The jellow granules are absent from those of young animals, showing elearly that it is these contained granules that give the colour to the parietes of the stomaeh.
(1141.) This stomach appears to be ehiefly a receptacle for the food. From time to time, especially when the viseus is distended, portions of its eontents pass down into a lower stomach (fig. 367, $1, g$), whieh is separated from the upper one by a marked but varying eonstrietion. The second stomach is also lined with cilia even larger than those of the upper viseus ; but the parietes are very much thinner and more transparent, the cells being less easily traced. The diameter of the organ is nearly the same in cach direction, so that it is almost spherieal. The mass of food with which it is usually distended is eonstantly revolving, the motion being due to eiliary aetion. This process goes on for some minutes, after which the creature eontraets its body and forees the entire contents out of this viseus into a long narrow eloaea that torminates

[^149]oxtornally by an anal outlet (fig. $367,1, h$). As it does this, it everts a considerablo portion of the cloaca, thus almost bringing the cloacal. outlet of the stomach to the extcrior, and causing at the same time a large transparent proinberance (fig. $367,1, i$) to be developed on the corresponding side of its body. At other times the creature can draw in these appondages, so that scarcely any trace of a cloacal canal is visible.
(1142.) Notwithstanding the microscopic size of the Rotifera, and the consequent difficulty of detecting the more minute details of their structure, Ehrenberg thinks ho has succeeded in discovering filamentary nerves, and nervous masses, distributed in different parts of their body,an arrangement which not only would account for the complete association of their voluntary movements, but, from the presence of ganglia, would render these animals capable of possessing some of the local senses; indeed Ehrenberg imagines he has discovered such to exist in the shape of red specks, to which he gives the name of eyes. The organ alluded to is a minute red spot, indicated in the figures (figs. 362 and 370) ; mevertheless no organization has becn described of such a nature as to entitle us unhesitatingly to designate it an organ of vision, even if it should, as he intimates, invariably be in conncxion with a nervous mass, which, from examining his drawing of the arrangement of the nerves, we should have little expected to be the case.
(1143.) The nervous system of Notommata clavulata, as described by this indefatigable observer, is represented in fig. 370. It would seem to consist of several minute nodules (fig. 370, i, i), exhibiting a somewhat symmetrical arrangement, and disposed apparently in pairs ; some of these nodules, which are about ten in number, communicate with each other by delicate filaments, whilst others seem to be quite insulated from the rest.
(1144.) Every one who is acquainted with the difficulty of conducting microscopical observations, especially with the high powers needful in detecting structures so minute as the nerves of the Rotifera, will bc exceedingly cautious in admitting the complete establishment of facts involving important physiological principles; and we cannot help thinking that Ehrenberg has been misled by some appearances which it is impossible for the most correct observer always to guard against, in assigning to the Rotifera an arrangement of the nervous system so totally diffcrent from what is met with in any other class of animals as that represented in his figure from which our engraving has been accurately copied.
(1145.) All our ideas of the physiology of the nerves would lead us to suspect some error. The uses of ganglia, as far as we know at present, are either to associate nerves derived from different sources, or to serve as centres for perception, or else they arc for the concentration of nervous energy. The position of the ganglia depicted in the figure as being
in relation with the nervous threads would scarcely scem to be consistent with either of the above offices; and therefore we cannot but regard the observations that have been hitherto recorded concerning the nervous system of the Rotifera as far from being complete.
(1146.) Professor Williamson observes that these small organs, which are so common amongst tho Rotifera, and which Ehrenberg regards as nervous ganglia, are abundant in the Melicerta, but they afford no countenance to the hypothesis of the great Prussian Professor. They appear to be nothing more than small cells or vesieles, formed of granular viscid protoplasm, very similar to those into which the yellk of the egg becomes divided. Sometimes they float freely in the fluid whieh distends the integument and bathes the viscera; at others, thin duetile threads pass from one vesiele to another, as represented in fig. 369, h, where these objeets are delineated as they appeared in one individual, in the elear space immediately below the viscera. They differ as widely as possible in their size, number, and proportion. So far from being nervous vesieles, they appear rather to be cells modified into a rudimentary form of areolar tissue. That they are hollow vesieles or cells, very viscous, readily cohering, and, owing to this eoherence, easily drawn out by the movements of the various organs to whieh they are attaehed, are facts eapable of easy demonstration.
(1147.) Leydig eonecives the nervous system of Lacinularia to eonsist of, first, a ganglion situated behind the pharynx, eomposed of four bipolar eells with their processes; seeondly, of a ganglion at the beginning of the eandal prolongation, eomposed of four larger

Fig. 369.

Lower half of the body of Melicerta ringens, highly magnifed: a, lower stomach; b, c, lower portion of ovary and oviduct; d, intestine; e, flamentary spermatic tube (P); f, g, g, retraetor muscles; h, corpuscles swimming in the periintestinal fluid, regarded by Ehrenberg as nervous ganglia. ganglionie cells and their proeesses.
The last-mentioned cells are deseribed by Professor Huxley as vacuolar thiekenings-finding no differenee whatever between them and the thiekenings in the disk, which Leydig himself allows to be mere thiekenings.
(1148.) Professor Huxley's own view upon the subjeet is as follows*: -On the oral side of the neek of the animal, or, rather, upon the under surface of the trochal disk, just where it joins the neek, and therefore behind and below the mouth, there is a small hemispherieal eavity, which seems to have a thiekened wall and is riehly ciliated within. Below this sac, but in contact with its upper edge, is a bilobed homogeneous mass, which Professor Huxley believes to be the true nervous contre.

[^150](1149.) On tho nuchal region of many species of Rotifers are two remarkable organs (fig. $367,1, d, d$), which, from their structure, appear to perform tho office of tentacula, although various uses have been assigned to them by different observers. Ehrenberg supposed them to be connected with the respiratory function, while Dujardin compares them, with much greater probability, to the antenno and palpi of the Entomostracous Crustaccans. In Melicerta ringens *, these organs, when fully protruded, are seen to be terminated by a brush of fine divergent setr (fig. 367, 2, a), implanted on the eonvex side of a small deltoid body (b) ; from the flat side of this latter appendage there proceeds along the interior of the tube, towards the body of the animal, a delicate muscular band (c), which by its contractions draws the deltoid body backwards, thus inverting the extremity of the tube, and forming a double sheath protecting the setæ. The whole apparatus, obscrves Professor Williamson, is very similar to that seen in the tentacles of the Snail, and appears to constitute rather a tactile than a respiratory organ. This is rendered the more probable by the fact that, when the animal first emerges from its tessellated case, the extremities of these two tentacles are the first parts to make their appearance, the two curved hooks, named by Schäffer the lips (fig. 367, 1, 2), being the next. The setæ are usually half drawn into the inverted tentacle, but they project sufficiently forward to constitute delicate organs of

Fig. 370.

Notommata clavulata (after Ehrenberg): a, rotatory organs; b, gizzard; c, stomach; $d d$, intestine; e, ceeal appendages to stomach; f, ovary ; g, contraetile vesielc; h, h, lateral tubes, to which are appended the vibratory organs; n, n, transverse bands, supposed by Ehrenberg to belong to a rascular system. touch, supposing the deltoid body, into which they are implanted, to be endowed with sensibility. The animal cautiously protrudes these tentacles before it ventures to unfold its rotatory organs; but it does not direct them from side to side, as an insect does its antennr.
(1150.) In addition to the elaborate organization described above, the Prussian naturalist conceived that he had diseovered a vascular apparatus, consisting of transverse vessels (fig. $370, n, n$), in which he sup-

[^151]posed a circulation of tho nutritive fluids occurred. But the vascular character of the transserse strixe visible in this position is more than doubtful, as there seems evcry reason to supposo that tho appearance depicted in the figure is duo to the existeneo of tho transverse muscular bands whereby the extrusion of tho rotatory apparatus is effected, analogous to thoso occupying a similar situation in the Polyzoa.
(1151.) The mode in which respiration is effected, in the class of animals under consideration, has been a subject of much disputo. Some haro supposod the contact of water, applied to the general surface of the body, sufficient for the aëration of the nutritious juices, especially as its constant renewal would be ensured by the ciliary movements. Bory de St. Vincent*, on the contrary, regarded the rotatory cilia as real gills, resembling those of fishes; and, mistaking the movements of the gizzard for the contractions of a heart, conceived these animalcules to bo even superior to insects in the organization of their vascular system. Ehrenberg, moreover, thinks that he has discovered an internal respiratory apparatus of a most extraordinary description. In Notommata centrura he remarked seven vibrating points on one side, and six on the other, attached to two long and undulating viscera, which he elsewhere describes as being the testes of the animal (fig. 366, l); the above-mentioned points were never at rest, and appeared to be placed in determinate positions opposite to each other. Accurate observations, he says, have shown each to be a peculiar little organ, provided with a tail resembling that of a note in music, and to be thrown into vibration by three little vesicles, or folds of thoir inflated extremity; these organs float freely in the abdominal cavity by their enlarged portion, while by their tail they are attached to the long tubular organ above roferred to.
(1152.) Ehrenberg's first idea on secing these organs was that they formed a vascular system, executing movements of pulsation ; but he now considers them internal branchiæ, or organs of respiration, to which the external water is freely admitted in the following manner:-
(1153.) In many species of the Rotifera, we find, projecting from the nock of the animal, a horny tubular organ, called by Ehrenberg the calcar or spur (fig. 362, d) : this he at first considered to be the male organ of sexual excitement; but he now regards it as a siphon, or a tube of respiration, through which the circumambient water passes freely into the cavity of the body. He thinks, moreover, that the periodical transparency, and the alternate distention and collapse of tho animal, seen to occur regularly in almost all the Rotifera, are produced by the introduction of water into the visceral cavity and its subsequent expulsion therefrom, upon which action tho fluctuations observed in the interior of the body would therefore depend. The supposition that water is injected in this manner into the body seems to bo favoured by other appearances: for when the internal cavity is thus filled, all the viscera

[^152]appear isolated, so that the boundarics of each can be distinctly scen; but when tho water is discharged, they approximato each other, their limits become confounded, and the cxternal membrane of the body assumes a crumpled appearance.
(1154.) Upon reviowing the above account of tho mode of respiration in the Rotifora, we must say that we consider that the office assigned to tho littlo organs called branchiæ is extremely problematical, especially as wo have but the most vaguo intimations concerning the existence of a circulating system at all, much less of such a double circulation carried on in arteries and veins as the presence of such organs would infer. "I presume," says Ehrenberg, "that the branchiæ possess a vascular system ; for when the local contractions occur in the body of the animal, we see distinctly a certain number of filaments (vessels?) loose and delicate." The opinions of the Professor himself concerning the nature of the organs which he describes being so indefinite, we must pause before adopting the physiological views to which their admission would lead-more especially as, from the very fact of the whole visceral cavity being perpetually filled with aërated fluid, the existence of any localized organs of respiration could hardly be esteemed necessary.
(1155.) The two latcral bands above mentioned (fig. 366, ℓ), with which are comnected the " trembling gill-like organs" of Ehrenberg, are regarded by some observers as constituting a peculiar apparatus, distinguished as the "water-vascular system," of which, as they exist in Lacinularia socialis, the following description is given by Professor Huxley*. In this species there is no contractile sac as in other genera; but two very delicate vessels, about $\frac{1}{40 \sigma 0}$ of an inch in diameter, clear and colourless, arise by a common origin upon the dorsal side of the intestine. The vessels separate, and one runs up on each side of the body in the direction of the mouth. Arrived at the level of the pharyngeal bulb, each vessel divides into threc branches: one passes over the pharynx and in front of the pharyngeal bulb, and unites with its fellow of the opposite side; while the other two pass, ono inwards and the other outwards, in the space between the two layers of the trochal disk, and there terminate as cæeca. Besides these, there seemed sometimes to be another branch just below the pancreatic sacs.
(1156.) A vibratile body is contained in each of the cæcal branches, and there is likewise one on each side in the transverse connecting branch. Two more are contained in each latcral main trunk, one opposite the pancreatic sacs, and one lower down, making in all five on each sidc. Each of these vibrating bodies is a long cilium ($\frac{1}{1000}$ of an inch), attached by one extremity to the side of the vessel, and by the other vibrating with a quick undulatory motion in its cavity, giving rise, as Siebold remarks, to an appearance singularly like that of a flickering flame.

[^153](1157.) The last subject that we have to consider relative to the internal economy of tho Rotifera is the conformation of their generative apparatus, which attains a considcrable perfection of development. The reproductive systom is composed apparently of two distinct partsthe one subservient to the formation of the ova, the other destined cither to furnish some secrotion essential to the completion of the egg, or, as has been surmised, secreting a fcrtilizing fluid by which the impregnation of the ova is effected prior to their cscape from the body.
(115S.) In Melicerta ringens, as we larn from Professor Williamson's admirable memoir, the orary is a hollow sac, consisting of a very thin pellucid membrane, filled with a viscid granular protoplasm of a light-grey colour, in which may be pcrceived some twenty or thirty nuclei, cach containing a nucleolus in its interior; these seem to be successively selected for development after the following manner :-One of the nuelei situated near the surface of the ovary attracts around it a small portion of the granular protoplasm, which becomes detached from the remaining contents of the ovary. The portion thus specially isolated gradually enlarges, assuming at the same time a darker hue; and the nucleus slightly enlarges, while its central nucleolus appears to become absorbed. When the ovum, thus separated from the ovarian protoplasm, has attaincd its full size, it becomes invested by a thin shell, which is apparently a secretion from its own surface. The ovum being thus ready for expulsion (fig. 367 , $1, q$), is slowly forced down to the lower part of the ovary, and, sweeping round the inferior border of the lower stomach, passes through the dilated oviduct (fig. $367,1, l$) and enters the cloaca, whence, by a sudden contraction, it is expelled.

Fig. 371.

2
Young Melicerta: 1. a, c, rotatory organ; b, gizzard; d, alimentary canal. 2. An individual employed in the construction of its tube, $a b$.
(1159.) At this point of devclopment the yelk consists of a single segment; but very soon the central nucleus bccomes drawn out and divides into two, this division being followed by a corresponding segmentation of the yelk. The same process is repeated over and over again, until at length the yelk becomes converted into a mass of minute cells. The first trace of further organization which prescnts itself appears in the form of a fow freely moving cilia; theso are developed at two points-one at $c a$, fig. 371, 1 , which corresponds with the future head, and the other near the centre of the ovum (b), which is destined to becomo the cavity of the stomach; shortly after this appearance of cilia, traces of the dental apparatus becomo recognizable-this, again, being soon succecded by the union of the entiro mass of yelk-cells, and
the formation from them of tho various organs of the animal. The cilia now play vory freely, especially at tho head (a); tho ereature twists itself about in its shell; and two rod spots (e c), regarded by Ehrenberg as organs of vision, appear. The young animal now bursts its shell, and presents the appearance represented in fig. 371 , -its wholo organization, though obseurely seen, being that of the perfect animal, and not of a larval state.
(1160.) The young Meliecrta, when first hatched, is free, and swims about actively in the water for a short period, when, attaching itself by its caudal extremity to some foreign object, it proeeeds to manufacturo for itself a tube for its future residence by means of a most remarkable apparatus appointed for the purpose. This is the appendage called by Professor Williamson the fifth rotatory flap (fig. 371, 1, c), and named by Mr. Gosse * the "chin" or "pellet-cup," in which the minute masses whereof the tube is formed are preparcd. Into this cup-like organ foreign particles are continually brought, at the will of the animal, by ciliary action, and collected into little pellets, which are deposited as quickly as they are completed in successive rows around the foot, until a tube is formed of sufficient size for the lodgment of the little Rotifer (fig. 371, $2, a b$).
(1161.) In the remarkable genus Asplanchnia, it has been ascertained by Mr. Dalrymple \dagger that the Rotifers are bisexual, and, moreover, that the male individual is one of the strangest organisms as yet diseovered. In the female the sexual apparatus is very completely developed, eonsisting of an ovary, an ovisac, vaginal canal, and vulva, the whole being so transparent that the development of the embryo throughout all its stages is readily observable, and its progress traced from the time of the formation of the egg to its birth. The eggs are of three kinds: the first is of ordinary structure, wherein the formation of the fcmale embryo is casily witnessed while contained in the body of the parent; but towards the latter end of tho season, ova are furnished of a totally different charaeter, which are apparently destined to remain through the winter undeveloped until the following year. In a third description of ovum an embryo may be observed to become gradually developed from a germinal vesicle until it begins to assume a definite shape and independent movement, when we are at once struck with the remarkable peculiarities observable in its form, size, and organization; this is the male, which will require special description.
(1162.) This male is about two-thirds the sizo of the female, generally resembling it in shape, but more flattened at the lower part, or fundus, and more prolonged at the side corresponding to the raginal opening in the female, which in the male presents a similar valvular opening, though comparatively smaller in extent. Within this valve is observed a short

[^154]canal, leading to a large spherical bag, filled with molecular bodies in a state of constant tremulous movement. From this sac, which Mr_{1}. Dalrymple denominates tho " sperm-bag," a short but thick rounded body projects into the canal before mentioned as leading to the latcral opening; and aromnd the oxtremity of this projecting process, and even within it to a short distanco, is a visible ciliary motion, indicating a canal. On the ncek of the sperm-bag is a fasciculus of delicate muscular fibres, which are inserted along the commencement of what is evidently the penis. Muscular bands, arising from the tegumentary parietes of the animal, in the vicinity of the valvular opening, go to be inserted into the root of the penis, and may be frequently observed drawing it up to tho oponing, and even extending it beyond the body of the animal. Muscles also for the purpose of opening the valve, very similar to those employed for the same purpose in the female, and the bands which bring the penis forward, clearly show it to be an extrusory organ, and to form a complete male apparatus. The sperm-bag, when mature, evidently contains active spermatozoa.
(1163.) Although Mr. Dalrymple never had an opportunity of observing any aetion beyond the extrusion of the penis, Mr. Brightwell, of Norwich *, has observed in seven different instanees the dircet copulation of the two sexes-clearly establishing the diœcious character of this remarkable family.
(1164.) But there is another circumstance connected with these Rotifers, almost without parallel in the animal creation. The male, as has bcen said, possesses the same general figure as the female; it has also the contractile eloacal cavity, named by Mr. Dalrymple " the respiratory sae," as well as the "water-system," furnished with the vibratory or ciliated tags. It has also the ordinary rotiferous apparatus at the head, through the agency of which its various movements of locomotion are performed ; the red "cye-spot" likewise is distinct. It has, however, no mandibles, no pharynx, œesophayus, pancreatic glands, or stomach; there appear to be no organs of deglutition, digestion, or assimilation; only, at the lower part of the animal, on the other side of and opposite to the valvular opening, there are three small oval bodies massed together, having no communication by tube or otherwise, but fixed in their places by short ligaments : thesc may be rudiments of a stomach.
(1165.) The difference of sex in these two forms, proceeding from the egrs of the same individual, is plainly evidenced by the faet, not only of the difference of structure, and the presenco of activo spermatozoa in the male, but by the observed fact of the intromission of the malc organ into the raginal canal of the fcmale. That the male animal is produced by the female, and developed within the ovisac in tho same manner as the female embryo, is also proved by many observations. The absence of all organs for the sustentation of life by food leads to the belief that

[^155]it is created for a single purpose, and that its term of existence is very short. In this respect it somowhat rescmbles the drone, or male bee, whose utility scems to be confincd to the impregnation of the perfect female or quecn.
(1166.) That a single impregnation is sufficient for the production of many young is proved by the female continuing to brecd in water in which no male can be discovcred; but young females so produced will not go on to develope others unless a male be born amongst them.

CHAPTER XV.

CIRRIPEDIA.

(1167.) Every visitor to the seashorc has doubtless obscrved the rocks and stones, the timbers of the jetties, or any objects that have been long immersed in the sea, thickly incrusted with shells of remarkable construction, usually known by the name of "Acorn-shells" or "Barnacles." On placing a stone or shell thus incrusted (taken fresh from the sea, so that the animals may be in full life and vigour) in a glass of clear sea-water, and watching them attentively, the acorn-shells upon its surface will be seen to open ; and presently a beautiful featherlike apparatus will be protruded and again withdrawn. After a few scconds this movement will be repeated, and again and again the feathery structures will be put forth and retracted, with so much grace, regularity, and precision that they present an appearance exquisitely beatiful. These are the arms or Cirri of the contained animal. When fully expanded, it will be seen that their plumose and flexible stems form a most wonderful prehensile apparatus, admirably adapted to entanglo any nutritious particles or minute living creatures that may happen to be present in the circumscribed space over which this singular casting-net is thrown, and drag them down into the vicinity of the mouth, where, being seized by the jaws, they arc crushed and appropriated as food. It is from these remarkably constructed limbs or Cirmi that the order derives its name.
(1168.) The Cirripedia present a strange combination of articulated limbs with many of the external characters of a Mollusk. We select a common form, Pentelasmis vitrea, as an example. Tho animal in question (fig. 372) is enclosed in a shell resembling in some respects that. of the common Mussel, but composed of five distinct picces united together by a dense intervening membrane: of these, four pieces are lateral, and disposed in pairs ; while a fifth, which is singlo, is interposed between the posterior edges of the two ralves, so as to unite them along
the whole length of the back. Along the anterior margin the valves aro orly partially connectod by mombrane ; so that a long fissure is left, through which the articulated oxtremities may be protruded. In place of the hinge that joins tho two shells of tho Mussel, we find the tough coriaceous membrane that unites the difforont sholly picces of the integument of Pentelasmis prolonged into a cylindrioal podicle (fig. 375, l), whioh is in some species many inches in length, and, being attachod by its extremity to any submarino body, fixes the animal permanently to the same locality. The external layer of this pediele is coriaccous, or almost corneous, in its appearance, being evidently an epidermic structure ; but internally the tube is lined with a layer of strong muscular fibres arranged longitudinally (fig. 375, m, n), whielı by their contraction are no doubt able to bend the flexible stem in any given direotion, and thus confor upon the animal a limited power of changing its position when nocessary. On remoring one-half of the sholly covoring (as in fig. 372, a a), we expose the body of the Cirriped, and discern the following particulars. The lower portion of the body, which eneloses the prineipal visocra ($b b$), is soft and much dilated, especially towards the dorsal region ; this part of the animal is covered with a delicate membrane, beneath which is a layer of whitish granular substanco. The mouth (g) is seen upon the ventral aspoct, situated immediately at the inferior extremity of that longitu-

Fig. 372.

Pentelasmis vilrea: a, the shelly valves; $b b$, body contained within the shells; c, c, the cirri; $d d d$, presumed branchial apparatus; e,f, muscular expansions; g, the mouth. (After Hunter.) dinal fissure in the mantle through which the arms are protruded : the oral aperture appears to be raised upon a prominent tubercle, and, when attentively examined, is found to bo provided with a rudimentary apparatus of jaws, presenting a distinct lip, furnished with minute palpi and throe pairs of mandibles, of which the two external are horny and serratol, while the third remains pormanently soft and membranous.

Immediately bohind the mouth, we find on each side eertain pyramidal fleshy appondages $(d \quad d d)$, resembling, as Hunter expressed it, a minute Starfish, whieh no doubt eonstitute tho branehial or respiratory organs. Commencing above the mouth, we further notiee on each side six pairs of artieulated and flexible arms or eirri (fig. 372, c c), cach being eomposed of a series of somicorneous picees, and exhibiting at each joint long and stiff hairs. Every pair of cirri arises from a single prominent stem; and those most distant from the mouth being the longest and most extensile, the whole apparatus, consisting of twenty-four cirri, forms, when protruded from the body, a kind of net of exquisito eontrivanee, in whieh passing particles of nourishment are easily entangled, and thus conveyed to tho mouth. Lastly, on separating the cirriferous pedicles, we find, terminating the body, and forming, as it were, a kind of tail, a long, soft, and flexible organ (fig. 375,7), the extremity of which is perforated by a minute aperture ; but the real nature of this instrument we shall examine by and by.
(1169.) On reviewing this general deseription of the external construction of Pentelasmis, the reader eannot but be struek with the singular combination of characters which it exhibits. Judging from its shell alone, its right to be considered a Mollusk would seem to be at onee demonstrable; for, in faet, most eonchologists agree in elaiming these animals as belonging to their own department; and yet if, after removing the shell, we compare the animal with a Crustacean, its allianee with that elass is equally evident. Suppose the body (fig. 372, $b b$) to represent the thoracie portion of a Crustacean slightly bent upon itself*; the valves of the shell would represent the thorax, which would be divided into five pieces; the first pair of eirri arising from the body would then represent the true feet of a Crustaeean; the branchiæ would oecupy the same position in both; the rest of the body of the Barnacle, namely that whieh supports the five other pairs of feet, would represent the tail of the Crustacean, and the natatory feet, generally connected with that part of the external skeleton. Even the mouth, with its triple series of jaws, is more nearly allied in strueture to that of the Crustaceans than to any thing we shall meet with in the strueture of the oral organs of true Mollusea.
(1170.) But the affinity whieh unites the Cirripedia to the Homogangliata is not merely exemplified in the analogies that can be pointed out between the external configuration of Pentelasmis and some Crustaeean forms; the nervous system even, as we might be led to anticipate from the symmetrical arrangement of the artieulated cirri, still exhibits the Homogangliate coudition, and, besides the supraœesophageal masses, forms a longitudinal ehain of double gauglia arranged along tho ventral surfaee of the body, from whieh the nerves supplying

[^156]the cirriferous arms take their origins. Four small tubereles (fig. 373)*, placed transrorsely above tho œsophagus, represent the brain, and givo origin to four principal nerves (f, f, f, f), which are distributed to the muscles and riscera; for in such a situation, organs of sense would cridently be uscless. Two latcral cords, derived from the above, surround the cesophagus, from each of which a ncrve (0) is given off. Below the eesophagus the nervous collar terminates in a pair of ganglia (h), that give origin to the nerves supplicd to the first pair of arms ; and thon succeeds a parallel series of double ganglia (i, k, l, m), exactly resembling those of articulated animals, from which emanate nerves that are destined to the cirri and surrounding parts.
(1171.) The muscular system of Pentelasmis is partly appropriated to the movements of the shell, and partly to the general motions of the body. The shcll is closed by a single transverse fasciculus of muscular fibres, whereof a section is scen at e, fig. 372 , placed immediately beneath that fissurein the mantle through which the arms are protruded; it passes directly across from one valve to the other, and approximates them by its

Fig. 373.

Pentelasmis vitrea, exhibiting the nervous system: $a a$, the pedicle; $b b$, the body; c, the mouth; d, d, glandular masses; f, f, visceral nerves; oo, nervous collar surrounding the œesophagus; h, i, k, l, m, series of double ganglia supplying the articulated cirri. (After Cuvier.) contraction.
(1172.) A large muscle, whose origin is seen in fig. 372, f, arises from the interior of the mantle, and, as its fibres diverge, spreads over the cntirc mass of the viscera; this will evidently draw the body forward and cause the protrusion of the tentacula ; while various muscular slips derived from it are destined to move the numerous arms, with their jointed cirri and the fleshy tubular prolongation (fig. 375, k) alroady noticed.
(1173.) Tho food devoured by the Cirripedia would scem to consist of various minute animals, and microscopic organisms, caught in the water around them by a mechanism at once simple and elcgant. Any one who watches the movements of a living Cirriped will perccive that its arms, with their appended cirri, are in perpetual movement, being alternately thrown out and retracted with great rapidity, and that, when fully expanded, the plumose and flexible stems form an exquisitely beautiful apparatus, admirably adapted to entangle any nutritious molecules, or minute living ercaturos, that may happen to be present in

[^157]tho circumscribed space over which this singular casting-net is thrown, and drag them down into the vicinity of the mouth, where, being seized by the jaws, they are crushed and prepared for digestion. No sense but that of touch is required for the success of this singular mode of fishing ; and the delicacy with which the tentacula perceive the slightest contact of a foreign body shows that they are eminently sensible to tactile impressions. As regards the digestive organs, we have already described the prominent mouth (fig. 375, b), with its horny palpiferous lip and threc pairs of lateral jaws. The cesophagus (c) is short, and firm in its texture; it receives the excretory ducts of two salivary glands of considerable sizc (fig. $373, d d$), and soon terminates in a capacious stomachal receptacle, the walls of which are deeply saeculated and surrounded by a mass of glandular cæca (fig. $375, d$) that represent the liver, and pour their secretion through numerous wide apertures into the cavity of the stomach itself. The intestinc ($e f$) is a simple tube, and runs along the dorsal aspect of the animal, wide at its commencement, but gradually tapering towards its anal extremity; it terminates at the root of the tubular prolongation (k) by a narrow orifice, into which a small bristle (g) has been inserted.
(1174.) Little is satisfactorily known relative to the arrangement of the blood-vessels and the course of the circulation in these animals. Poli imagined that he had diseovered a contractile dorsal vessel, and intimated that he had perceived its pulsations in the vicinity of the anal extremity of the body; and although his observations upon this subject have not been eonfirmed by subsequent investigations, analogy would lead us to anticipate the existence of the heart in the position indicated by the indefatigable Neapolitan zootomist. Thelateral appendages (fig. 372, dd d) are most probably proper branchial organs, but, perhaps, not exclusively the instruments of respiration, since the numerous cirri no doubt cooperate in exposing the blood to the action of the surrounding medium, a function to which they are well adapted by their structure and incessant movements ; especially as each cirrus is seen under the microscope to be traversed throughout its whole length by two large vascular trunks, one apparently arterial, and the other of a venous character.
(1175.) Judging from the pcculiar conditions under which the Cirrhopods exist, it would only be natural to suppose that to creatures so circumstanced the possession of the organs of the higher senses would be a useless encumbrance, seeing that they are apparently quite incapable of holding communication with the external world; neverthcless, from the recent discoveries of Professor:Leidy* and of Mr. Darwint, they are found to be by no means destitute in this respect. In Lepas fascicularis Mr. Darwin detected two ncrvous filaments, derived immediately from the front of the two supraœsophageal ganglia, which were found to

[^158]terminate in two small, perfectly distinet, oval masses. From the opposito ends of these two ganglia, smaller norves are derived, whieh, beuding inwards at right angles, communieate with an ocular apparatus, which, although apparently eonsisting of a singlo mass, is, in reality, composed of two oyes united together; or, in other words, although in outline the eye appears single, two lenses can be distinetly seen at the end, as well as two pigment-capsules, which are deep and crp-shaped, and of a dark reddish-purple hue. This double eye, in all the genera examincd, is seated deep within the body: it is attaehed by fibrous tissue to the radiating museles of the lowest part of the œesophagus, and lies actually on the upper part of the stomaeh; consequently a ray of light to reach the eye has to pass through the exterior membrane and underlying eorium and to penetrate deeply into the body. In living sessile Cirripeds, Mr. Darwin observes, vision seems to be eonfined to the porception of the shadow of an object passing between them and the light; they instantly pereeive a hand passed quickly at tho distanee of several fcet between a candle and the vessel in which they may be placed.
(1176.) In the outer maxillæ, at their bases, where they are mited together, but above the basal fold separating the mouth from the body, there are, in all the Lepadidæ, a pair of orifices, sometimes seated on a slight prominence, or else on the summit of flattened tubes projecting upwards and towards each other. Eaeh of these orifices leads into a deep sac lined by pulpy corium, and closed at the bottom,

Fig. 374.

Structure of Conchoderma: a, external layer of integument; $a a$, internal layer; $b b$, ova, forming a layer around the body; c, ovipositor; d, month; e, presumed organ of hearing; f, aperture communicating with the interior of tho pedicle; $g h$, pedicle. (After Darwin.) over which a nervo of considerable sizo is distributed. That this closed sac is an organ of sense, of some kind or other, there can be little doubt; and, judging from its position, Mr. Darwin is indueed to consider that tho two constitute an olfactory apparatus.
(1177.) At a little distance beneath the basal artieulation of the first cirrus, on eaeh side, there may bo scen a slight swelling, and on the underside of this a transverse slit-like orifiee (fig. 374, e), ono-twentieth of an ineh in length, in Conchoderma, but often only half that size :
this is rogarded by Mr. Darwin as the organ of bearing. The external orifice loads into a deep and rather wido meatus, which, enlarging upwards, is lined by a thick pulpy corium, and is closed at the upper end; from its summit is suspended a flattened sac, variously shaped in different genera. In all cases the sac is empty, or contains only a little pulpy matter; it consists of brownish, thick, and remarkably elastic tissue, formed apparently of transverse little pillars, becoming fibrous on the outside, and with their inner ends appearing like hyaline points. The mouth of the acoustic sac is closed by a tender diaphragm, through which Mr. Darwin thinks he saw a moderate-sized nerve enter ; and as the first pair of cirri seem, to a certain extent, to perform the office of antennæ, therefore the position of an acoustic organ at their bases is analogous to what exists in Crustacea; but there are not here any otoliths, or the siliceous particles and hairs, as described by Dr. Farre in that class (§ 1048). Nevertheless the sac is so highly elastic, and its suspension in a meatus freely open to the water seems so well adapted for an acoustic organ, that Mr. Darwin considers such to be its function. (1178.) With respect to the organization of the reproductive system in thesc creatures, the most discordant opinions are expressed by different writers, no two authors agreeing either concerning the names or offices which ought to be assigned to different parts of the generative apparatus. It must therefore be our endeavour; in considering this part of their economy, to separate as far as practicable all conjecture and hypothetical reasoning from the simple facts which anatomy has placed at our disposal, and leave disputed questions to be solved by careful experiment and research. According to the dissection of John Hunter, the internal generative apparatus is double, occupying both sides of the alimentary canal. Covering the

Fig. 375.

Anatomy of Pentelasmis vitrea: a, external envelope of the body; ι, the mouth; c, the cesophagus; d, the stomach; e f, traet of the intestine; g, bristle inserted into the anal orifice: h, the oviduet. (After IIunter.) stomach (fig. 375, d), there is found a vascular substance, which the
above-named illustrious anatomist regarded as probably constituting the tubular parts of the testiclo, from which a tortuous canal with very thick walls (vas deferens) runs upwards along the side of the intestine to the root of the fleshy prolongation (k), at which point it is joined by the corresponding tube from the opposite side of tho body. The common canal thus formed is extremely slender, and passes in a flexuous manner through the whole length of the tubular organ (k), named by Hunter, apparently for the sake of brevity, the penis, to terminate by a minute orifice at its extremity. Yet, notwithstanding the name applied to the termination of the sexual canals, Hunter was well convinced that the Cirripeds were hermaphrodites,-as he expressly says*, "It is most probable that all Barnacles are of both sexes and self-impregnators ; for I could nerer find two kinds of parts, so as to be able to say, or even suppose, the one was a femalc, the other male."
(1179.) Cuvier found the vascular mass, considered by Hunter to be the tubular portion of the testis, to be composed of granules, which he deemed to be ova; and conceived the delicate white vessel seen to ramify through the ovarian mass, as represented in the figure, to be the oviduct, whereby the eggs were taken up aud conveyed into the thick and glandular canal (h), from the walls of which he imagined that a fecundating liquor might be secreted for the impregnation of the ova in transitu. He therefore regarded the proboscidiform tube (k) as an ovipositor, whereby the ova derived from both sides of the body are expelled. Before scattering them abroad, as Cuvier noticed, the animal retains them for a considerable length of time concealed between the body and the mantle, where they form two or three irregularly shaped layers. When the eggs are found in this situation, he observed that the ovaria were empty and the testicles much less tumid-circumstances which indicate the season of oviposition to be at an end.
(1180.) In opposition to the views entertained by Cuvier concerning the generative process in the class before us, various Continental writers consider the true ovary to be contained in the cavity of the tubular fleshy pedicle which, in Pentelasmis, serves to fix the body to the substance whereunto it is attached. This, indeed, at certain periods, is found to be filled with oval granular bodies of regular shape, which aro apparently real ova, diffused through the loose cellulosity enclosed within it; and thesc ova, being found in different states of maturity, are apparently secreted in the pedicle itself,-although some authors contend that, having been formed and impregnated in the manner indicated by Cuvier, they aro conveyed into this situation by the ovipositor, as upon this assumption the prolonged organ (fig. 375,7) would be named. Other anatomists, again, regard the instrument last mentioned as being a real penis, and suggest that from its length it might

[^159]evon bo introduced into the peduncular cavity itself, and thus effoct the imprognation of the ova containod therein.
(1181.) It is to Mr. Darwin that science is indebted for a knowledge of the fact that in at least two genera of tho Lepadidæ distinct male and female individuals exist-and for tho far more wonderful discovery that in the same genera thero exist hermaphrodite species, whose masculine efficiency is aided by ono or two complemental males. In the genus Ibla for example, in one species, I. Cumingii, the egg-bearing individual is simply femalc, presenting no trace either of the external proboscidiform penis, or of the vesiculæ seminalcs, or of the testos; while, on the other hand, the ovarian tubes within the pedicle are developed in the usual manner, as are likewise the true ovaria at the upper edge of the stomach. But although there thus was a total deficiency of the usual malo portion of the sexual apparatus, Mr. Darwin found attached within the sac, in a nearly central position (fig. $376, h$), a flattened, purplish, worm-like little animal, which, notwithstanding its different appearance, turned out upon dissection to be, in reality, tho male Cirriped belonging to this species, although totally dissimilar in its external configuration.
(1182.) The dimensions and proportions of the male animal vary much; but it is always excecdingly minute, the longest specimen measuring not more than $\frac{8}{100}$ of an inch in length. The main part of the body consists of the peduncle, which tapers more or less suddenly towards its extremity, which latter is imbedded deeply in the integuments of the female, passing obliquely through the chitine-membrane and corium, and, running along amidst the underlying muscles and inosculating fibrous tissue, is attached to them by cement at the extremity.
(1183.) Within the muscular layer all round the upper part of the peduncle, and surrounding the stomach, the body of this minute creature contains numerous little, rather irregular, globular balls with brown granular centres, so closely resembling the testes in other Cirripeds as to leave little doubt that they are of the same nature. The vasa deferentia are plainly visible, occupying their normal situation; and the presence of spermatozoa is indisputable. The vasa deferentia unite and terminate under the two extremely minute caudal appendages: but there is no projecting proboscidiform penis ; and in this case apparently the whole body, furnished like the penis with longitudinal and transverse muscles, serves the same purpose!
(1184.) Another species belonging to the same genus, Ibla quadrivalvis, furnishes an example of an hermaphrodite Cirriped, which might be supposod to be in itself sufficient for reproduction, provided with a complemental male,-an arrangement still more wonderful than that just described as existing in I. Cumingii. In the androgynous individual there is a penis, singularly constructed of several distinct segmonts, as well as tho vasa deferentia and testes, which latter are unusually large and egg-shaped, while the ovigerous system is likewise completely
developed; nevertheless in five out of six specimens dissected by Mr. Darwin males wero present, in evory respeet similar in their structuro to those of I. Cumingii described above, and of some of which he was enabled to trace the preparatory metamorphoses, common to the class, from their larval condition to the adult state.
(1185.) In this same hermaphrodite specimen of Ibla quadrivalvis, the two ovigerous lamelle contained some hundreds of larve in tho first stage of development, which wore liberated from their enveloping membranes by a touch of a needle. They were about $\frac{16}{1000}$ of an inch in length, and presented all the usual characters of larvæ at this period. What a truly wonderful assemblage of beings of the same spceics, exclaims the distinguished naturalist to whom we are indebted for these researehes, did this individual hermaphrodite present! We have the numerous, almost globular larvæ, with lateral horns to their carapaces, with their three pairs of legs, single eye, proboscidiform mouth, and long tail: we have the somewhat larger larvæ, in the last

Fig. 376.

Tola Cumingii, showing the supplemental male: a o c defgi, body of the female Ibla; h, supplemental male. (After Darwin.) stage of their development, much compressed, boat-formed, with their two great compound eyes, curious prehensile antennæ, closed rudimentary mouth, and six natatory legs, so different from those of the first stage: we have the attached males, with their bodies reduced almost to a mouth, placed on the summit of a peduncle, with a minute, apparently single eye shining through the integuments, without any carapace or capitulum, and with the thorax, as well as the legs or cirri, rudimentary and functionless: lastly, we have the hermaphrodite with all its complicated organization, its thorax supporting six pairs of multiarticulated two-armed cirri, and its welldeveloped capitulum, furnished with horny valves, surrounding this wonderful assemblage of beings. Unquestionably, without a rigid examination, these four forms would have been ranked in different families, if not orders, of the Articulated kingdom.
(1186.) The obscrvations of Mr. Thompson* relative to the progress of the ova after their escape from the pediele throw much additional light upon this portion of our subject. "In the whole tribe of Cirripeds," says this industrious naturalist, " the ova, after their expulsion from the ovarium, appear to be conveyed by the ovipositor into the cellular texture of the pedicle, just beneath the body of the animal, which they

[^160]fill to the distance of about an inch. When first placed in this position, they seom to be amorphous, and inseparable from the pulpy substance in which they aro imbedded; but as thoy approach to maturity they becomo of an oval shape, pointed at both ends, and are casily detached. Sir Everard Home has given a very good representation of them at tbis stage of their progress in his 'Lectures on Comparative Anatomy, from the clegant pencil of Mr. Baucr.
(1187.) "During the stay of the ova in the pedicle, they render this part more opaque and of a bluish tint-the ova themselves, and the cellular texture in which they are surrounded, being of a pale or azureblue colour. It is difficult to conceive in what manner the ova are extricated from the situation above indicated; but it is ccrtainly not by the means suggested by Sir E. Home in the above-mentioned lecture, viz. by piercing outwards through the membrancs of the pedicle; for the ova are subsequently found forming a pair of leaf-like expansions, placed betwcen either side of the body of the animal and the lining membrane of the shells (fig. 374, b, b). These leaves have each a separate attachment at the sides to the septum which divides the carity occupied by the animal from that of the pedicle : they are at first comparatively small, having a rounded outline, and possess the samc bluish colour which the ova had in the pedicle; but as the ova advance in progress, these leaves extend in cvery dimension, and lap over each other on the back, passing through various lighter shades of colour into pale pink, and finally, when ready to hatch, become nearly white. Thesc leaves appear to be composed of a layer of ova, irregularly placed, and imbedded in a kind of parenchymatous texture, out of which they readily fall, when about to hatch, on its substance being torn asunder; indeed it appears at length to become so tender as to fall entirely away, so that, after the period of gestation is passed, no vestige of thesc leafy conceptacles is to be found."
(1188.) In the second form of Cirripedia (Balani), the animals, instcad of being appended to foreign substances by elastic and flexible pedicles, are sessile-the shelly investment of the body being in immediate contact with the rock or other submarine body to which the Barnacle adheres. The soft tube of Pentelasmis is, in this case, represented by a strong testaceous conc composed of various pieces accurately joined together, and gencrally closcd inferiorly by a calcarcous plate; while the representatives of the valves of the pedunculated specics form a singular operculum, which is moved by special muscles, and accurately shuts the entrance of the shell when the animal retires into its abode. In their general structure, however, the Balaniform Cirripeds accord with the description above given; and, from the similarity of their habits and cconomy, a more elaborato account of the peculiarities which they exhibit would be superfluous in this place.
(1189.) One of tho most remarkable circumstances connected with
the history of the Crrripedia is the reeently discovered fact of their undergoing a distinet metamorphosis; so that, in the earliest periods of their existenee, instead of being rooted by means of a pediele or otherwise, the newly hatehed young are endowed with loeomotive organs ealeulated to enable thom to swim freely about, and giving them rather the appearance of Entomostracous Crustacea than of animals of their own elass. This singular faet was first announeed by Mr. J. V. Thompson, of Cork*; and its correetness has sinee been admitted by various anatomists who have devoted their attention to the subjeet. Mr. Thompson's first observations were made upon specimens in the seeond stage of development, whieh turned out to be the young fry of Balanus pusillus; and the following is that gentleman's aceount of their appearanee and subsequent ehange. The joung Cirriped is a small translucent ereature, $\frac{1}{10}$ of an ineh long, of a somewhat elliptie form, but very slightly eompressed laterally, and of a brownish tint. When in a state of repose, it resembles a very minute mussel, and lies upon one of its sides at the bottom of the vessel of sea-water in whieh it is placed; at this time all the members are withdrawn within the shell, whieh appears to be composed of two valves, united by a hinge along the upper part of the baek, and eapable of opening from one end to the other along the front, to give oceasional exit to the limbs. The limbs are of two deseriptions, viz. :-anteriorly a large and very strong pair provided with a eup-like sueker and hooks, serving solely to attaeh the animal to roeks, stones, \&e.; and posteriorly six pairs of natatory members, so artieulated as to aet in eoneert, and to give a very foreible stroke to the water, eausing the animal, when swimming, to advance by a suecession of bounds, after the same manner as the Waterflea (Daphnia) and other Monoenli, but partieularly Cyclops, whose swimming-feet are extremely analogous. The tail, whieh is usually bent up under the belly, is short, composed of two joints, and terminates in four setr, forming an instrument of progression. The animal, moreover, is furnished with large peduneulated eyes. After keeping several of the above for some days in sea-water, they threw off their exuvix, and, beeoming firmly adherent to the bottom of the vessel, were changed into young Barnaeles; and the peeuliarly eonstrueted shells, with their opereula, were soon distinetly formed, while the movements of the cirri, although as yet imperfect, were visible. As the shell beeomes more eomplete, the eyes gradually disappear, the arms beeome perfeetly eiliated, and an animal originally natatory and loeomotive, and provided with a distinet organ of sight, beeomes permanently and immoveably fixed, and its optie apparatus obliterated.
(1190.) Similar results were obtained by watehing the development of the pedunculated type of Cirripeds \dagger (Lepades), many of whieh were

[^161]proved in their earliest form to resemble different kinds of Monoculi, and to be possessed of the eapability of loeomotion.
(1191.) The manner in whieh erentures thus constituted are converted into tho fixed and peduneulated Cirriped is one of the most remarkable features connected with the history of the class. The larva in its last stage has mueh the appearanee of one of the Entomostracous Crustaeeans; and, as is the ease in several genera belonging to that order, the part of the head bearing the antennæ and organs of sense in front of the mouth equals or even exeeeds in size the posterior part of the body, eonsisting of the enelosed thorax and abdomen. On the borders of the earapax at the anterior end, on the sternal surfaee, there are two minute orifices, sometimes having a distinct border round them, within which are contained minute sacculi, regarded as acoustic organs; and, moreover, large compound eyes, each consisting of eight or ten lenses, are situated near the bases of the antennæ.
(1192.) But the antennæ themselves principally elaim our notice, inasmuch as it is by means of these strange organs that the creature ultimately attaches itself when about to assume its complete or fixed eondition. They consist of three segments. The first. or basal one, is much larger than the others *, and apparently always has a single spine on its outer distal margin. The second scgment eonsists either of a large, thin, circular sucking-disk, or is hoof-like ; in all cases it is furnished with spines on the exterior hinder margin. The third and ultimate segment is small ; it is articulated on the upper surface of the disk, and is directed rectangularly outward; it is sometimes notched, and even shows traces of being bifid, and bears about seven spines at the end, some of which are hooked, others simple. The antennæ, at first, are well furnished with museles, and serve for the purpose of walking, one limb being stretched out before the other; but their main function is to attach the larva, for its final metamorphosis into a Cirriped, by means of the appended disk, which can adhere even to so smooth a surface as a glass tumbler \dagger. The attachment is at first manifestly voluntary, but soon beeomes involuntary and permanent, being effected by speeial and most remarkable means.
(1193.) In each of the antenne there is situated a duet, derived from a large glandular body (the cement-gland) : the termination of this duct is situated in the immediate vicinity of the adhesive disk, by the assistanee of which the little animal is about to fix itself permanently to some foreign body and assume the Cirriped condition.
(1194.) Several times Mr. Darwin succeeded in dissecting off the integnments of the lately attached larva, and in displaying the enclosed Lepas entire, of whieh, in this condition, he gives the following ac-count:-Whilst the young Lepas is closely packed within the larra, the

[^162]capitulum (or shell-clad portion of tho body), as known by the fivo valres, about equals in length the peduncle. Tho peduncle occupies the anterior half of the larva; and even at this early period the muscles of its inner tunic are quite distinct. The compound eyes, as we have already seen, are attached to the sternal surfaco of the larval carapax, and are consequently cast off with it; but the antennæ, which are not moulted with the carapax, are left cemented to the surface of attachment, their muscles are converted into sinewy fibres, the corium after a short time is absorbed, and they are then preserved in a functionless condition. If, indeed, the peduncle even of an adult Cirriped be very carefully removed from the surface of attachment, quite close to the end, but not at the actual apex, the larval prehensile antennæ can always be found, and the cement-ducts traced, running in a slightly sinuous course on each side within the peduncle, until they arrive at the glandular organs whence the cement is furnished. Each gland contains a strongly coherent, pulpy, opaque cellular mass, like that in the cement-ducts; and it is this peculiar substance that constitutes the bond of union between the Cirriped and the surface

Fig. 377.

Cement-ducts of Scalpellum, magnified. whereupon it becomes fixed. Having thus attached itself to some foreign object by means of its remarkable cementing apparatus, what was the anterior part of the body is converted into the flexible pedicle in the pedunculated species, or in the sessile forms becomes immoveably fixed to the supporting surface.

CHAPTER XVI.

> HETEROGANGLIATA* (Owen). MOLLUSCA (Cuvier).
(1195.) The term Molldsca, employed by Cuvier to designate the fifth grand division of the animal world, is obviously derived from a very unimportant circumstance of their organization, which the tribes included in it posscss in common with innumerable forms of very dissimilar beings, whose soft bodies are unsupported by any internal or tegumentary framework of sufficient density to merit the name of

[^163]a skeloton. Subsequent anatomists have therofore, however unwillingly, beon compelled to substituto another name for that given by the illustrious French zoologist to this extensive elass, the boundaries and relations of which, as at present admitted, remain pretty much as they were first established by his patient and unwearied investigations relative to tho anatomical structuro of the animals comprised within its limits.
(1196.) It is to tho arrangement of tho nervous system that we must again havo recourse in order to diseover a distinetivo appellation ; nor in this shall we be disappointed; for here we at once find a character peculiar to this great section of animated nature, and generally applieable to the various elasses composing it. All the Mollusea present nervous ganglia, which, in the more highly organized forms, attain considerable development and consequent perfection; but these nervous centres, instead of being arranged in a longitudinal series of symmetrical pairs, are variously distributed in different parts of the bodyan arrangement exactly correspondent to the want of symmetry observable both in the external configuration of these ereatures and in the anatomieal disposition of their internal viscera. Still, however, one large ganglionic mass occupies a position above the cesophagus; and it is with this that the nerves of the existing senses invariably communieato ; so that we are naturally induced to regard this as the sentient brain, corresponding to the supracsophageal ganglion of the Articulata both in position and office. The other ganglia vary considerably both in number and in situation ; but, wherever placed, they all communieate with the supracesophageal mass, while the branches derived from them are distributed to the viscera, or to the locomotive organs.
(1197.) Various are the forms and widely different the relative perfection of the Mollusea, as regards their endowments and capabilities. Some, as the Polyzos, fixed to the surface of foreign bodies, either immoveably or by the intervention of a flexible pedicle, entirely deprived of organs connected with the higher senses, and unable to change their position, are content to east out at intervals their ciliated arnis, which form a net of Nature's own contrivance, and thus entrap such passing prey as suits their appetite. Others, equally incapable of locomotion, but furnished with arms of different construction (Bracmiopoda), eatch their food by similar efforts. The Tunicata, enelosed in coriaccous bags, are firmly rooted to the rocks; or, aggregated into singnlar compound masses, float at the merey of the waves. The Conchifera inhabit bivalve shells; while the Gasteropod orders, likewise defended in most eases by a shelly covering, creep upon a broad and fleshy ventral disk, and, thus endowed with a locomotivo apparatus, exhibit senses of proportionate perfection. The Preropods swim in myriads through the sea, supported on two fleshy fins; while the Cerinalofod Mollusca, the most aetive and highly organized of this large and important division of
animatcd nature, furnished with both eyes and ears, and armed with formidable means of destroying prey, bceome tyrants of the deep, and gradually conduct us to the most exalted type of animal existence.
(1198.) These different sections, which eonstitute, in faet, so many distinct classes into which the Heterogangliata have been divided by zoologists, we shall now proceed to examine seriatim-beginning, as heretofore, with the most imperfectly organized, and gradually tracing the developmont of superior attributes and more exalted faculties as the nervous centres attain greater magnitude and eoncentration.

CHAPTER XVII.

POLYZOA * (Thompson).
Bryozoa \dagger (Ehtenberg). Ciliobrachiate Polypi (Farre).
(1199.) IT is only within the last few years that microseopical researches have revealed to naturalists the real structure of a series of animals originally confounded with the simpler polyps, with which, as far as external form is coneerned, they are indeed intimately related. The observations of Milne-Edwards \ddagger, Audouin, Ehrenberg§, and Thompson || gradually led the way to more correct and precise ideas concerning the morc highly organized genera; while Dr. Arthur Farre \quad I and Van Beneden, by a series of investigations followed up with exemplary industry and perseverance, seem to have completed our knowledge of the anatomical details of these creatures in a manner which leaves few points of their ceonomy unknown.
(1200.) We shall select an individual, named by Dr. Farre Bowerbankia densa, as an illustration of the general structure of the Polyzoa, partly from the eomplete manner in which its organization has been developed in the memoir alluded to, and partly because we have had frequent opportunities of verifying the aecuracy of the observations recorded.
(1201.) The tentacula of Bowerbanlia (fig. 378) during the expanded state of the animal are kept quite straight and motionless, as represented in the drawing. Each tentacle is provided upon its outer aspect with a series of stiff and immoveable spines, probably serving to keep

[^164]POLYZOA.
off any foreign bodies that by their proximity might interfere with the movements immediately to be deseribed.
(1202.) Besides the stiff spines, the tentacula are covered with an immense number of vibrating eilia, whieh, at the will of the animal, are thrown into most rapid movement, so as to produce strong and eontinuous eurrents in the surrounding fluid, whereby partielcs floating in the neighbourhood are hurried along with great veloeity. From the direction of the streams produced by the eilia, namely towards the mouth, we at onee pereeive the utility and beauty of the contrivanee, eompensating to a great extent for the fixed condition of the Polyzoon: animaleules floating in the vieinity no sooner eome within the influence of the currents so produecd than they are forced towards the mouth, situated in the centre of the tentaeular zone, and, being at onee seized, are imme-

Fig. 378.

Anatomy of Bowerbankia densa (after Farre). a. The animal with its tentacula expanded:-1, pharynx; 2 , œsophagus; 3 , the gizzard; 4 , the stomach; 5 , the pylorus; 6 , the intestine; 7 , the anal aperture. 6 represents the Bryozoon retracted into its cell:-1,2,3, muscular fasciculi. c. An imperfect gemma before the opening of the cell:-1, stomachal cavity. d. A yemma spronting from the common stem. diately swallowed.
(1203.) The tentaeula themselves, notwithstanding their immobility during the process of watehing for prey, are highly irritable, and sensible of the slightest eontaet. No sooner does an animaleule impinge upon any part of their surfaee than the tentaele touehed bends with extraordinary quiekness, as if endeavouring to strike it towards the mouth; and if the objeet be suffieiently large to toueh several at the same moment, all the tentaeula simultaneously eooperate in seizing and retaining it.
(1204.) The existcnee of these eilia upon the tentaeula would secm to be eharacteristie of the Polyzoa, and is invariably accompanied, as far as our information extends at present, with a digestive apparatus of far more complex strueture than what we have seen in the uneiliated polyps ; for in the class before us, besides the stomach, there is a distimet
intestinal tube and anal outlet. In the specimen undor consideration the organization of the alimentary organs is rendered even more claborate than is usual in the class, by the addition of a gizzard or cavity wherein the food is mechanically bruised beforo its introduction into the proper stomach. The mouth is placed in the centre of the spacc enclosed by the tentacula: it appears to be a simple orifice, incapable of much distention, through which the particles of food brought by the ciliary action pass into il capacious oesophagus (fig. 378, a, 1, 2) ; this, gradually contracting its dimensions, ends in a globular muscular organ, to which the name of gizzard has been applied (3). The walls of this viscus are composed of fibres that radiate from two dark points, scen in the figure : and its lining membrane is covered with a great number of hard horny tecth, so disposed as to represent, under the mieroscope, a tessellated pavement. The contractions of the gizzard are vigorous; and, from the structure of its interior, its office cannot be doubtful.
(1205.) To the gizzard succeeds a stomach (fig. 378, a, 4), which is studded with brown specks, apparently of a glandular nature, and probably representing a biliary apparatus. The intestine leaves the stomach at its upper portion, close to tho gizzard (5), and, running

Fig. 379.

Polyzoonite of Halodactylus completely protruded, showing the course of the ciliary currents, the arrangement of the alimentary canal, and the contractile membrane connceting the neek of the polype-like animal with the margin of its cell. parallel with the œsophagus towards the tentacula (6), terminates at the side of the mouth (7), in such a position that excrementitious matter is at once whirled away by the ciliary currents. The whole intestinal apparatus floats freely in a visccral cavity that contains a transparent fluid and encloses distinct muscular faseiculi, to be described in another place.

The process of digestion in this minute yet highly organized being is well described by Dr. Farre in the memoir above-mentioned.
(1206.) The little animal, when in vigour, is seen projecting from its cell, with the arms extended and the cilia in full operation,- the upper part of the body being frequently turned from side to side over the edge of the cell, the extremity of whieh, from its peculiar flexibility, moves along with it. The particles carried to the mouth in the vortex produced by the action of the cilia, after remaining a little while in the pharynx, are swallowed by a vigorous contraction of its parictes, and carricd rapidly down the œesophagus and through the cardia to the giz\%ard, that expands to reccive them. Here they are submitted to a sort of crushing operation, the parietes of the organ contracting firmly upon
them, and the two dark bodies being brought into opposition. Their residonce, however, in this cavity is only momentary, and they are immediately propelled into the true stomach below, where they become mixed up with its contents, which, during digestion, are always of a dark, rich brown colour, being tinged with the secretion of its parietal follicles.
(1207.) The food appears to be retained for a considerable time in the stomach, and may be frequently seen to be regurgitated into the, gizzard, whence, after having been again submitted to its operations, it is returned to the stomach. Hero it is rolled about by the contraction of its parietes, and at its upper part is frequently submitted to a rotating motion. This rotation of particles is chiefly near the pyloric orifice; and a mass may be occasionally seen projecting through the pylorns into the intestine, and rotating rapidly in the direction of the axis of the orifice. In an animal having a similar form of pylorus to this, but in which the parts were more transparent, the cilia, by which this rotation is effected, were distinctly perceptible, smrrounding the orifice.
(1208.) The granular matter, after rotating for some time at the pylorus (a provision for preventing its too rapid escape from the stomaeh), passes into the intestine, where it accumulatos in little pellets, that are rapidly pushed, by the contraction of the intestine, towards the anal orifice, through which they are expelled from the body.
(1209.) The tube or cell inhabited by this Polyzoon is of exquisite strueture, and the mechanism concerned in the protrusion and retraction of the animal of great simplicity and beauty.
(1210.) The inferior two-thirds of the cell in the species under consideration is hard and corneous, but perfectly transparent; the upper third, on the contrary, is flexible, and so constructed as to form a very complete operculum whereby the entrance is guarded. The flexible part consists of two portions, the lower half being a simple continuation of the rest of the cell, while the upper is composed of a circle of delicate bristle-shaped processes or setæ, which are arranged parallel to each other around the mouth of the cell, and are prevented from separating beyoud a certain distance by a membrane of excessive tenuity that connects them ; this membrane is evidently analogous to the infundibular termination of the cells of polyps, already described.
(1211.) When the Polyzoonite retires into its abode, the setæ and soft termination of the cell are gradually folded inwards, in the manner exhibited in the annexed fignres (fig. 380) representing the various stages of the process. The œesophagus, surmounted by its tentacula, descends first, whilst the integument of the upper part of the body begins to be inverted at the point where it has its insertion around the base of the tentacles (c). As the descent of the tentacnla proceeds, the inversion of this membrane continues; and when the oxtremities of the arms have reaehed the level of the extremitics of tho setw, it is seen to
form a complete sheath around them. The animal being thus retracted, the next part of the process is to draw-in the upper portion of the cell after it. The seto are now brought together in a bundle (fig. 380, a, a) and are gradually drawn inwards, inverting around them the rest of the flcxible portion of the cell, until they form a close fasciculus (fig. 380,

Bowerbankia, showing the opercular apparatus and the different positions of the setæ during the retirement of the Polyzoonite: a, setæ surrounding the mouth of the cell; b, marginal membrane connecting the edge of the cell with the base of the tentacula, $c ; d$, retractor muscles.

3 \& $4, a)$ occupying the axis of the opening of the tube, constituting a complete protection against intrusion from without.
(1212.) The muscular system exhibits the earliest appearance of muscular fibre. The filaments are unconnected by ccllular tissue, and have a watery transparency and smooth surface; neither do they exhibit cross markings, or a linear arrangement of globulcs, even when examined under the highest powers of the microscope.
(1213.) The muscles may be divided into two sets:-one for the retraction of the alimentary apparatus; the other acting upon the sctæ around the mouth of the ccll, and serving for the inversion of its flexible portion. The bundles of muscular fibre which act upon the alimentary canal are two in number, and arise from near the bottom of the cell: one of these is inserted into the stomach (fig. 378, $a, 8$); the other passes upwards along the side of the œsophagus (fig. 378, a, 9), to be attached in the vicinity of the tentacula: the latter fasciculus is evidently the great agent in drawing tbe animal into its retreat, and in doing so it throws the alimentary eanal into close sigmoid folds.
(1214.) The muscles that close the operculum are arranged in six distinct fasciculi; they arise from the inner surface of the upper hard part of the ccll, and act upon the upper flexible portion of the tube and upon the setæ (fig. 380, d).
(1215.) The mode in which the protrusion of the tentacula is cffected is not so easily explained ; it would seem that the lining membrane of
tho sholl is furnished with circular muscular fibres, so disposed as by their action to compress the fluid contained in the viscorul cavity, and thus tending to elongate the body. Dr. Farre, however, believes the alimentary canal itself to be the great agent in effecting this object; and he conceives it to possess a power of straightening itself from the flexures into which it is thrown during the retracted state of the animal.
(1216.) The Flustree and Esciarse are intimately allied to Bowerbankia in all the details of their structure, as we are assured by the researches of Dr. Milne-Edwards concerning these singularly aggregated forms of marine Polyzoa*.
(1217.) The cells of the Flustrce and Escharce are disposed side by side upon the same plane, so as to form a common skeleton of a coriaccous or horny texture. The individual cells, which are extremely minute, vary in shape in different species; and the orifice of each is generally defended by projecting spines, or sometimes by a moveable operculum, or lid, that closes the orifice in the contracted state of the auimal. The extension of one of these skeletons is effected by the regular addition of new colls around the circumference of the Flustra, those of the margin being, of course, the most recent ; and the latter are not unfrequently found inhabited by healthy animals, whilst in the older or central ones the original occupants have perished.
(1218.) The facts observed by Milne-Edwards relative to the formation of these cells possess a high degree of intercst, and materially support the views already given concerning the formation of the tubes of zoophytes in general, proving that the calcareous matter to which their hardness is owing is not a mere exudation from the surface of the animal, but is deposited in an organized tegumentary membrane, whence it can be removed with facility by means of extremely dilute muriatic acid. When so treated, a brisk effervescence is produced; the cells become flexible, and are easily separated from each other; but they are not altered in form, and evidently consist of a soft and thick membrane, forming a sac containing the digestive organs of the creature. In this state the opening of the cell is no longer defined as it was before, but tho membranous cell appears continuous with the tentacular sheath. We see, thereforo, that in these creatures the cell is an intcgral part of the animal itself-not a merc calcareous crust moulded upou the surface of the body-being a portion of the tegumentary membrane, which, by the molecular deposit of carthy matter in its tissue, ossifies, like the cartilage of higher animals, without ceasing to be the seat of nutritivo movement. It is evident, likewise, that what is called the body of the Polyzoon constitutes, in fact, but a small portion of it, principally consisting of the digestive apparatus.
(1219.) As to the operculum, destined to close the cntrance of the

* "Recherches Anatomiques, Physiologiqres, et Zoologiques sur les Eschares" (Ann. des Sci. Nat. for 1836).
tegumentary cell, it is merely a lip-like fold of tho skin, the marginal portion of which acquires a horny consistence, while at the point where it is continuous with the general envelope it remains sufficiently soft and flexible to obey the action of the muscles inserted into it.
(1220.) The tegumentary sac, deprived of its carbonate of lime, seems to be formed of a tomentose membrane, covered, especially upon its outsidc, with a multitude of cylindrical filaments disposed perpendicularly to its surface and very closely crowded together. It is in the interstices left by these fibres that the calcareous matter appcars to be deposited ; for when a transverse section is examined with a microscope,

Fig. 381.

Eschara cervicomis. 1. Natural size. 2. A branch, magnifled, showing the arrangement of the calcareous cells. 3. An individual Polyzoonite removed from its cell: a, its tentacula; b, pharynx; c, fliform appendages; d, stomachal dilatation; e, intestine; f, position of anal aperture; g, retractor muscles.
the external wall is seen not to be made up of superposed layers, but of cylinders or irregular prisms arranged perpendicularly to the axis of the body.
(1221.) But the above are not the only arguments adduced by MilneEdwards in confirmation of this view of the mode in which these skeletons are held in vital connexion with the animal. On examining the cells at different ages, it is found that they undergo material changes of form.
(1222.) This examination is easily made, since in many species the young spring from the sides of those first formed, and do not separate from their parents; each skeleton therefore presents a long series of generations linked to each other, and in each portion of the series the relative ages of the individuals composing it are indicated by the position which they occupy. It is sufficient therefore to compare the cells situated at the base, those of the middle portion, thoso of the young branches, and those placed at the very extremities of the latter. When examined in this manner, not only is it seen that the general configuration of the cells changes with age, but also that these changes are
principally produced upon the external surface. For instance, in the young cells of Eschara cervicornis (tho subjeet of these observations), the walls of which are of a stony hardnoss, the external surface is much inflated, so that the cells aro very distinet, and the borders of their aportures prominent: but with the progress of age their appearance changes ; their fiee surface rises, so as to extend beyond the level of the borders of the cell, and defaces the deep impressions which marked their respective limits. It results that the cclls cease to be distinct, and the skeleton presents the appearance of a stony mass in which the apcrtures of the cells only are visible.
(1223.) It appears evident therefore that there is vitality in the substance composing the stony walls; and the facts above narrated appear only explicable by supposing a movement of nutrition like that which is continually going on in bone.
(1224.) The anatomy of these Polyzoa (fig. 381, 3) differs slightly from that of Bowerbankia. The erown of ciliated tentacula is inserted into the extremity of a kind of proboseis, which is itself enclosed in a cylindrical retractile sheath. From the margin of the opening of the cell ariscs a membrane equalling in length the contracted tentacles, and serving to encloso them when the animal retires into its abode. These appendages, thus retraeted, are not bent upon themsclies, but perfectly straight and united into a faseiculus, the length of which is nevertheless mueh shorter than that of the samo organs when expanded.
(1225.) By the opposite extremity to that fixed to the margin of the opening of the cell, the tentacular sheath unites with a tolerably capacious tube, the walls of which are exeeedingly soft and delieate; and near the point of their union we may pereeive a fascieulus of fibres running downwards to be inserted upon the lateral walls of the cell: these fibres appear to be striated transversely, and are evidently muscular ; their use cannot be doubted. When the animal wishes to expand itself, the membranous sheath above alluded to becomes rolled outwards, everting itself like the finger of a glove as the tentacles advanee. The muscular fasciculi are thus placed between the everted sheath and the alimentary canal, and by their contraction they must neecssarily retract the whole within the cell.
(1226.) Tho first portion of the alimentary tube is inflated, and mueh wider than the rest; it forms a kind of chamber, in which the water sct in motion by the vibration of the cilia upon the tentacles appears to circulato freely. The walls of this ehamber are extremely delicate: the soft membrane forming them is puckercd, and appears traversed by many longitudinal canals united by minute transverse vessels ; this appearance, howcver, may be deceptive.
(1227.) Beneath tho first enlargement, the digestive apparatus becomes narrower, but immediately expands again, and offers at this point a certain number of filiform appendages, whieh appear to be free and
floating in tho intcrior of the cell. To tho second cavity succecds a narrow canal, opening into a third dilatation, gencrally of a spherical form. From the last-named viscus issues a kind of intestine, which soon bends upon itself and becomes attached to an organ of a soft and membranous texture, having the appearance of a cæcum, and which seems to be continuous superiorly with the digestive tube; the latter continues its progress towards the upper part of the cell, and ultimatcly terminates by a distinct anal aperture upon the upper aspect of tho tentacular sheath.
(1228.) The operculum which closes the cell in Flustrce and Escharce is mored by two muscular fasciculi inserted into the internal face of this valve by the intermedium of two filaments analogous to tendons; by their inferior extremity these muscles are attached to the walls of the cell ; and when, by its own elasticity, the operculum is turned back, and the mouth of the cell thus opened, they, by their contraction, can close it like a door.
(1229.) The existence of a nervous system has been satisfactorily detected in many genera of the Polyzoa: it consists of a nervous ganglion, situated immediately above the cesophagus, from each side of which proceeds a ncrvous cord forming a collar around that tube, as well as other filaments distributcd to the muscular system.
(1230.) No organ of special sensation has bcen discovered in any animals of this class, either in their adult state, or during the earlier periods of their development.
(1231.) From what is known concerning the propagation of the Polyzoa, it would appear that their reproduction is effected in several different ways.
(1232.) The most ordinary is by the development of gemmæ, or buds, that sprout from the parent stem in the branched species, or, as in the Flustrce and Escharce, are derived from the sides of contiguous cells.
(1233.) In Peclicellina belgica the phenomena attending the gemmiparous mode of reproduction are the following*:-First, there sprouts from the common stcm of the Polyzoon, without any determinate situation, a minute tubcrcle, which is simply a prolongation from the stem itself ; this tubercle gradually extends outwards, becomes more prominent, and soon swells, into a vesicle, which is the first appearance of the ncw individual. Up to this period the interior of the vesicle is organized precisely in the same manner as the stem itself, of which it is only an extension ; but now a cellule becomes visible in its centre, which forms the point of departure whence the development of the embryo procecds.
(1234.) Around this primitive cell a scries of other very small cellules

[^165]soon group themselves, whieh seem to eonstitute the parictes of the primitive vesiele, or blastoderm, the original cell representing the vitcllinc cavity. Tho bud now enlarges; and as its growth proceeds, the internal tissue bceomos thiekcned, so as to fill it eompletely; subsequeutly an indentation beeomes apparent on each side of the little eavity, scparating the embryo into two halves, the inferior of whieh will form the stomaeh, the superior the intertentacular ehamber.
(1235.) In Laguncula repens the reproductive gemmæ sprout from the ereeping stems which connect the individual animals, appearing at first as a slight prominence, that soon expands into a rounded tubercle, which is the eommenecment of a new eell. On close inspeetion, each gemma is found to eonsist of a transparent envelope whieh is, in fact, a continuation of the general investment of the animal, lincd throughout with a soft membranc, having its inner surface studded with minute globules, by the aecumulation of which the polyp is ultimatcly formed. The bud itself is hollow, and communicates with the parent stem: it therefore has in its eomposition nothing resembling that of an egg; neither distinct vesicle nor vitellus. The newly formed eell soon grows taller ; and its lining membrane becomes thicker, indicating the first appearance of the intestinal eanal, which is at first a simple eavity bounded by the thickened lining of the eell. This cavity onee formed, the development of the different organs proceeds rapidly. First there appears a longitudinal fold, resembling two lips, that, as they approach each other, divide the cavity of the body into an anterior and posterior eompartment. The two lips, which have a valvular appearance, become very regularly indented along their margins, and are soon reeognizable as the rudiments of the tentacular eircle.
(1236.) At this epoch, it must be remarked, the polyp presents two cavities distinct from each other : there is a space between the walls of the body and the parietes of the future alimentary eanal, the interspace being in eommunication with the stem of the parent polyp, and filled with a fluid that is analogous to the blood of higher animals; superiorly this cavity likewise passes into the tentacles, and the fluid whieh bathes the exterior of the alimentary eanal thus finds admission even to the extremities of those organs. The second cavity, which is the intestinal eanal, has as yet no communication with the exterior. As the formation of the tentaeles proceeds, the portion which is situated in front of them will beeome the sheath, and the other part the intestine. As the tentacula are formed by the prolongation of the tubereles which were their first rudiments, the cavity of the stomach and the rest of the intestinal tube gradually become apparent; and at the same time some globules are visibly disposed around the cul de sac of the former viscus, which gradually become arranged into fibrillæ, and constitute the retractor muscles.
(1237.) When the cell has nearly reached its full development, its
parietes becomo softened, and an opening is formed, which brings the young polyp into communication with tho surrounding element. The Polyzoonite has now attained its complete form, and can expand its tentacula; but there are as yet no traces of a generativo apparatus, which scems to be developed at a subsequent period.
(1238.) Reproduction is likewise effected, in the Polyzoa, by moans of true ova. The ovary in which these are developed is situated immediately above the stomach, and is generally found containing eggs in different stages of growth. In the samo vicinity is situated another viscus, regarded by Van Beneden as the testes, his opiniou being founded on the fact that, when a mature spocimen of the animal is placed between two plates of glass and gently compressed, so as to rupture its parietes and cause the escape of the viscera, spermatozoa are discoverable in its interior.
(1239.) The spermatozoa exhibit considerable vivacity in their movements, have a disk-like body and a caudal filament, and are proportionally of large size. Around them may be seen multitudes of free cellules without caudal appendages, which are apparently young spermatozoa. In some individuals the spermatozoa are so numerous that the intestinal canal appears completely enveloped by thom, and the whole periintestinal cavity seems alive with their movements.
(1240.) In the mature ovary may be seen ova in different states of development, in each of which the vesicles of Wagner and Purkinje are distinctly visible. In ova approaching their complete maturity, an external vitelline membrane, or chorion, and a vitellus are perceptible, but the two vesicles above-mentioned have disappeared.
(1241.) When arrived at the proper term, the ova break from their envelope, or ovisac, and escape into the general cavity of the body, where they move freely about, surrounded on all sides by spermatozoa. At length the eggs accumulate in the interior of the parent, near the base of the tentacula; and their expulsion is ultimately accomplished through a special orifice in the immediate vicinity of the anus. When an ovum is thus about to escape, its external membrane is first seen to protrude partially through the aperture, constituting a sort of hernia; the vitcllus then gradually flows from the still enclosed portion of the egg into that which is external ; and when the vitellus has thus entirely passed out, the egg is found separated from the parent animal, and falls into the surrounding water. Thesc eggs are entirely destitute of external cilia, and are carried off by any casual current to attach themselves where chance may bring them; they are also remarkable for the irregularity of their shape, their form secming to depend upon the pressure to which they have been subjected in the interior of their parent.
(1242.) In Pedicellina, Professor Van Bencden has witnessed the escape of upwards of twenty eggs from a single individual. They are of a pyriform shape, and are enclosed in a pellucid membrane, by the
intervention of which they adhere to each other, so that, in the interior of the body of the parent Polyzoon, they have a racemoso appearance, and when oxtruded spontaneously are generally united together in pairs. Between tho vitellus and the envelope of the egg there is always a small quantity of a transparent whitish fluid, which doubtless represents the albumen, while the pellucid external membrane itself is the chorion.
(1243.) The vitellus breaks up into granules, at first of large size, and afterwards, by subdivision, of smaller and smaller dimensions, giving a tubcrculated appearance, like that of a raspberry, to the mass. This division scems to be accomplished exactly as in the ora of the higher animals, the yelk first separating into two, then into four, after which its breaking up procceds rapidly.
(1244.) The embryo enclosed within the egg at first presents a rounded form, but soon becomes divided by an indentation into an anterior and postcrior moiety, and vibratile cilia become apparent upon the anterior extremity. That portion upon which the cilia have made their appearance next insensibly enlarges, and assumes the shape of a funnel, while the long cilia with which it is fringed begin te keep the particles suspended in the water around in rapid motion. The margins of the funncl rapidly extend themselves; the body cxhibits frequent contractions, and at the end of about two hours little tubercles are apparent upon its anterior extremity, which subsequently become devcloped into the tentacula. Professor Van Beneden thinks that when the tentacula havo becomo developed and furnished with their proper vibratile apparatus, the original cilia disappear. The formation of the tentacula at once indicates which are the two extremities of the body, and the point by which the embryo will subsequently attach itself.
(1245.) The embryo, when mature, is quite frec, and strikingly resembles some forms of Infusoria; but after a while a pedicle is formed, whereby it procecds to fix itself to some foreign body, and thus permanently assumes the aspect of its race. The pedicle seems to be formed from a cell, developed below the stomach, which grows directly outwards, and thus completes the organization of the young Polyzoon.
(1246.) A third form of reproduction is that by citiated gemmules, common in Halodactylus diaphanus and other similar species having soft and fleshy or gelatinous polyparies. These are readily seen in spring, when they appear as minute whitish points imbedded in the substance of the mass ; sometimes, however, they are of a dark brown colour, and exceedingly numerous, appearing to occupy almost the entire substance of the polypary (fig. 382). If one of these points be carefully turned out with a needle and examined, it is found to consist of a transparent sac, in which are contained gencrally from four to six of the gemmules, which, as soon as tho sac is torn, escape, and swim about with the greatest vivacity*. Sometimes they simply rotate mpon their axis, or * Dr. A. Farre, Phil. Trans. 1837, p. 140.
they tumble over and over ; or, selecting a fixed point, they whirl round it in rapid eireles, earrying overy loose partiele with them; others ereep along the bottom of the watel-glass upon one end, with a waddling gait; but generally, after a few hours, all motion ceases, and they are found to have attached themselves to the bottom of the glass. At the expiration of forty-eight hours the rudiments of a eell are observable extending beyond the margin of the body; but any account of their further development is still a desideratum.
(1247.) Fluviatile Poly-zoa.- We have hitherto only spoken of those Polyzoa whose habitat is the sea; besides the marine genera, however, there are many forms belonging to this elass

Thin transverse section of Halodactylus diaphanus. The centre occupied by cellular tissue and water; the circumference formed by cells in close approximation ; the brown bodies scattered through the substance. a a, Position of the gemmules enclosed in their sac; b, one of the gemmules escaped during the section of the central tissue. that abound in fresh water. The polyparies of the Fluviatile Polyzoa are met with in ponds and streams, adherent to any foreign bodies whieh may be casually submerged*. Thus they aro found attached to stones at the bottom of the water-upon the shells of Anodon, Unio, and other freshwater molluscaupon leaves, more espeeially those of the Water-lily (Nymphaca) and of the Bistort (Polygonum amphibium) -upon floating wood-upon the stems of Arundo phragmites and of various other plants. Some genera (Alcyonella and Fredericella) frequently agglomerate into masses of considerable size, sueh as might be mistaken for spongillæ. The Paludicellce often form an inextricable interlacement of filaments, spread out over shells and stones. Cristatella and Lophopus are generally met with upon the stem of some aquatie plant, sueh as the Brook-lime (Veronica beccubunga), resembling, when examined by the naked eye, a layer of fluid albumen, which might easily be mistaken for the eggs of timnceus stagnalis. In order to examine these animals in a living state, it is necessary to leave the leaf to which they are attached for some time undisturbed in a glass of elear water, when they will soon be seen spreading forth their beautiful tentacula as they protrude from their delicate eells. By frequently ehanging the water, more especially if it is rich in Naviculce and Bacillarice, they may be kept alive for months, affording ohjects of continual interest for the mieroscope.

[^166](1248.) In tho freshwater Polyzoa the strueture of the external envelope is similar to that of tho marine species, except that in no instance are the fluviatile genera known to possoss a calcarcous polypary.
(1249.) In Cristatellce muceclo* (fig. 383, 3) the polypary or external envelope (d) is membranous and slightly cordiform, its surface is tubereulated, and it is ineapable of contraction. In this outer covering several individuals are eontained; but although produeed from one another, they are only aggregated, being lodged in distinet tubular colls. The body of each animal appears to consist of a digestive canal constricted onec or twiee in its eourse, and terminated by an anal orifice. When these ereaturess are extended, the upper part of the body protrudes from the eell, the tentaeular apparatus being supported on a kind of neck, whereon the mouth (a) is easily seen, and near it the anus.
(1250.) On each side of the mouth the body divides into two arms, which, when spread out, resemble a horse-

Fig. 383.

Cristatella mucedo. 1. Egg, natural size. 2. Egg. magnifled. 3. Animal after its cscape from the egg: a, the mouth; b, openings of cell ; c, the stomach; d, shcll ; e, f, ciliated tentacula. shoe, being flattened and blunt ; and upon the arms are arranged about a hundred slender, transparent, retraetile tentacles, disposed on each side and upon the summit like the barbs of a feather, and all eovered with an infinite number of eilia, whose action produces eurrents directed towards the mouth, hurrying in that direction organized particles contained in the water.
(1251.) The three individuals that thus inhabit the same general covering are produced at two distinct generations- the two lateral being the offspring of the central one, derived from it by a process of gemmation; but, when complete, they are evidently quite separate from and independent of their parent.

- (1252.) The number of the tentacular appendages varies very considerably in different genera: in Paludicella and Fredericella, which have the fewest, there are about twenty, while in Alcyonella, Plumatella, and Cristatella (fig. 383) there are as many as sixty, or erelu more. In Puludicella the arrangement of the tentacula is infundibular ; but in Lophopus, Alcyonella, Plumutella, and Cristatella (fig. 383) they assume * M. Turpin, "Etude microscopique de la Cristatella mucedo, espèce de polype d'eau douce" (Aun. des Sci. Nat. for 1837) ; nlso another memoir upou the same suhject by M. P. Gervais (ilid.).
the shape of a horseshoe. In Prectericella (fig. 384) they are united together for one half of their length by means of a delicate membrane.
(1253.) The digestive apparatus invariably consists of an œesophagus, of a stomach, which forms a cul cle sac, and intestinal tube. The intestine is always straight, and without convolutions. Its eavity is separated from that of the stomach by a pylorie valve that eompletely closes the aperture ; whilst the ocsophagus is in like manner provided with a fold, situated sometimes near its middle, sometimes at its lower part, that perform the office of a cardiac valve.
(1254.) The aliments, before admission into the stomach, aceumulate in a cavity formed at the commencement of the digestive tube (fig. 384, f), which in most genera is defended by a largely developed lip (d) that opens and shuts like a valve; this lip is densely covered with cilia, the action of thich is very energetic.
(1255.) The anus (j) is always situated at the base of the tentacular zone.
(1256.) The food of the fluviatile Polyzoa consists of Infusorial animalcules and the microscopic Desmidieæ which abound in the waters they frequent, and whose remains are distinguishable both in their stomachs and in the contents of the intestine. They are likewise easily made to swallow carmine, sepia, and other colouring substances.
(1257.) There seems to be no doubt relative to the nature of the circulation in these animals. The place of blood seems to be altogether supplied by the chylaqueous fluid. This fluid is not contained in vessels,

Fredevicella sultana: d, mouth ; f, pharynx; j, anal orifice.
 unless the cavities of the tubular tentacula may be considered such, but moves frecly in all directions around the parietes of the digestive canal. There is consequently neither heart nor any vascular system, - the chylaqueous fluid, whieh thus represents the blood, being kept in continual movement in the periintestinal eavity by the action of the cilia that cover the exterior of the intestinal apparatus. It is therefore ciliary action that determines the course of the aliment in the interior of tlie alimentary apparatus, and of the fluid external to its walls- the cilia thus answering the purpose of a heart as well as of the muscular cont of the intestines.
(1258.) All the viscera of the body being thus bathed by the ehylaqueous fluid that surrounds tho intestinal eanal, they receive directly, through the intermedium of that fluid, both the matcrials for nourishment and the means of respiration.
(1259.) Reproduction among the freshwater Polyzoa is aceomplished in two ways-by gemmation and by true ova. The first of thesc modes resembles exaetly what has been deseribed as existing among the marine genera; but as regards the proeess of oviparous reproduction, there are some remarkable points of difference that require notice.
(1260.) It is now generally understood that, wherever oviparous reproduetion oecurs, there is a formation of spermatozoa; and modern observations have proved the existenee of these distinguishing products of the malc sex in most genera of the ciliobraehiate polyps. Frequently both the sexes are eonjoined, so that there is a eomplete hermaphroditism ; but in some eases the sexes are separate ; and the number of female individuals is greater than that of the males. Secing that among theso compound animals the blood, or its representative fluid, is common to an entire group, and that the ova as well as the spermatrizoa are diffused through this liquid before they are evaeuated, a single male individual may, strictly speaking, suffice for the fceundation of the eggs of a whole eolony.
(1261.) But with regard to the ova themsclves, a remarkablo difference is observable between thoso of the fluviatile and of the marine Polyzoa. Among the Alcyonellce and other gonera there exist two sorts of eggs-the one covered with vibratile cilia, capable of swimming freely about exactly like Iufusorial animaleules, and the other enclosed in a hard shell, having somewhat the appearanee of the seeds of some plants. These latter have received the name of "Statoblasts." The first sort, without a shell, is also met with among marine species ; but the second seems peculiar to the freshwater Polyzoa. In Cristatella mucedo, for example, the ova aro of this latter description, being euelosed in a deuse horny shell, the exterior of whieh is eovered over with sharp hooklets, giving them an appearance strikingly like some of the Desmidiex (fig. 383, 2). This shell is probably intended to preserre the ova during the winter scason from being destroyed by the freczing of the ponds in whieh they oceur, while the marinc polyps, being subjected to no such changes of tomperature, ean dispense with such a covering. It is on this account apparently that these ova are met with sometimes naked, and sometimes provided with a shell; and in the same way, in the genus Paludicella (in which ova have not been detected), the gemmæ beeome invested on the approach of winter with a horny covering.
(1262.) As there are thus two modes of reproduction, so are there two kinds of embryogenic development observable among the fluriatile Polyzou; that is to say, the polyp which is produced from an egg is
formed in a different manucr from that whieh is produced by the process of gemmation. In tho mature ovum, both the gorminal spot and the germinal vesiele are distinctly perceptible; butin tho nascent gemmu the existenee of neither of these elements is to be detceted. According to the gemmiparous mode of propagation, the young individual is formed by direct extension from the tissues of the paront. In the formation of the embryo from an egg, there is, from the first, a complete isolation of the newly formed progeny : a vesiele or cell is formed, whieh, previous to its conversion into a new individual, requires the cooperation of another cell, or, in other words, the ovum remains unproductive unless brought into eontaet with the male fluid containing spermatozoa, whereas in gemmiparous reproduetion such a coneurrence is by no means uecessary; neither germinal vesicle nor any male apparatus is required.

CHAPTER XVIII.

TUNICATA*. Ascidioida \dagger (Huxley).

(1263.) The extensive elass of Mollusca to whieh the name at the head of this ehapter has been applied is at once distinguished by the remarkable charaeter afforded by the texture of their external investmont. In their general organization the Tunicata are very nearly allied to the ordinary inhabitants of bivalve shells, with which, both in the structure and arrangement of their viseera, they correspond in many particulars ; but instead of being enclosed in any ealcareous eovering, a strong, flexible, cartilaginous or eoriaeeous integument forms a kind of bag eneasing their entire body, and only presenting two comparatively narrow orifices, through which a communieation with the exterior is maintained.
(1264.) Various are the forms under which these animals present themselves to the eye of the naturalist; but the enumeration of them will be more conveniently entercd upon hereafter. We shall therefore at once lay before the reader the principal points connected with the strueture and habits of an Ascidian belonging to one of the most perfeetly organized familics; and after examining this attentively, our deseriptions of allied genera will be rendered more simplo and intelligible. The Ascidians are abundantly met with upon the shores of the ocean, especially at eortain scasons of the year. In their natural condition they are found fixed to the surfaees of rocks, seaweed, or other submarine bodies: frequently, indeed, they are glued together in

[^167]bunehes; but in this case individuals are simply agglomerated, without organic union. Lncapable of locomotion, and deprived of any external organs of senso, few animals seem more helpless or apathetic than these apparently shapeless beings, and the matomist is surprised to find how remarkably the beauty and delicacy of their interior contrasts with their rude external appearance. In the spceies selected for special deseription (Phallusia nigro(t), the external envelope (fig. 385, a a a) is soft and gelatinous in its texture, fixed at its base to a piece of coral (l), and exhibiting at its opposite extremity two orifices (h, f), placed upon prominent portions of the body. Through the most elevated of these orifices (h) the water required for respiration and the materials used as food are taken in, while the other (f) gives egress to the issuing streams of water as well as to the ova and exerementitious matter. The soft outer corering is permeated by blood-vessels, which ramify extensively in it; it is moreover covered externally with an epidermic layer, and lined within by a serous vaseular membrane, which, in the neighbourhood of the two orifiees, is reflected from it on to the body of the animal lodged inside. The creature thus hangs loosely in its outer covering, to which it is only connected at the two apertures by means of the reflexion of the membrane above mentioned.
(1265.) On remoring a portion of the exterior tumic, that in reality represents the shells of a bivalve Mollusk, the soft parts of the Ascidian

Fig. 38:

Structure of Phallusia nigra: a a a, external envelope; $b b$, the mantle; c, mantle reflected so as to display $d d$. the membrane lining the respiratory bac; $e e$, alimentary cunal ; f, excretory orifice: g, oriffee of oriduet; h, oral aperture: $7, a$ piece of coral to which the animal isfixed; m, position of the ovarium; n, the amus. (After Hunter.) are displayed. The body is seen to be covered with a muscular investment (the mantle) (fig. 385, bbc), composed of longitudinal, cireular, and oblique fibres, which cross each other in varions directions, so as to compress by their contraction the viscera contained within, and this so forcibly that, when alarmed, the
animal can expel the water from its branchial sac, immediately to be described, in a thin continuous stroam, sometimes projected to a distance of many inchos.
(1266.) Respiration is effected in an apparatus of very peculiar contrivance, to the examination of which we must next request the attention of the student. Λ considerable portion of the interior of tho body is occupied by a circumscribed cavity, that opens externally by the orifice h; into this bag a bristle has been introduced in the dissection, represented in the figure (fig. 385); its walls are seen to be composed of a thin but very vascular membrane ($d d d$), that has been partially turned back, so as to display the interior of the respiratory sac. This membrane (fig. 385, $d d d$; fig. 386, e), when examined with a microscope, is found to be covered with a magnificent network of blood-ressels, formed by innumerable canals uniting with each other at right angles; and moreover, when secn in a living state, its surface is discovered to be denscly studded with vibratile cilia, whose rapid action constantly diffuses fresh supplies of water over the whole vascular membrane. The respiratory cavity has but one orifice for the admission of water (fig. 386, a); and this is guarded by a fringe of delicate and highly sensitive tentacula (fig. 386, b), so that, the water, as it is drawn into the body, having necessarily to pass these tactile organs, any foreign substances which it might contain of a prejudicial character are at once detected and denied admission. All the vascular ramifications spread over the lining membrane of the branchial chamber are connected with two sets of large vessels; one of which (fig. 386, f), receiving the blood from the body, disperses it over the spacious respiratory surface ; while the other, collecting it after it has undergone exposure to the respired medium, conveys it in a pure state to the heart.
(1267.) The heart itself (fig. 386, l) presents the simplest possible form, being generally a delicate elongated contractile tube, receiving at one extremity the blood derived from the numerous vessels that ramify over the interior of the branchial sac, whilst at the opposite end it becomes gradually attenuated into the aorta (m), through which it impels the circulating fluid and disperses it through the system.
(1268.) The heart, above described, is extremely thin and transparent, and is lodged in a distinct pericardium, which separates it from the other viscera.
(1269.) Notwithstanding this apparently simple arrangement of the vascular system in the Ascidians, the nature of the circulation of the blood, throughout the class, is extremely curious, the action of the heart being completely reversed at brief intcrvals, and tho course of the blood entirely changed-a phenomenon which is easily witnessed in any of the smaller and more transparent species when placed under the microscope. The contractions of the heart succeed each other with regularity ; hut they are sluggish, not cxtending at once through the whole
organ. Tho systole commences at one extremity, and is propagated by an undulatory movement towards the opposite end by a sort of peristaltic action. For some time the contractions succeed each other with rapidity, passing on in the same course, when they suddenly cease, and, after a pause, recommence from tho other end of the viscus. The blood thus impelled alternately from behind forwards, and then in the contrary direction, ascends towards the branchial apparatus; nevertheless it does not appear to be conducted there by closed vessels, but seems to be diffused betweeu the inner tunic of the abdomen and the viscera, where it flows in currents that vary iu their direction as the movements of the animal, or any other mechanical causes, affect their passage. The chief portion of the blood, however, ascends by the dorsal or the ventral surface of the abdomen, and, after having bathed the surface of the viscer'a, gains the base of the branchial sac. When the contractions of the heart are directed forwards, the ascending current of blood passes along tho anterior wall of the abdominal cavity, and enters a capacious sinus, situated in front of the respiratory chamber, which gives origin on each side to a series of large transverse vessels; and these intercommunicating with each other by means of iunumerable branches disposed vertically, a rich vascular network is formed, that, after spreading all over the walls of the branchial cavity, pours its blood into another vertical sinus situated at the opposite side of the thoracic cavity, into which is likewise poured the vitiated blood derived immediately from the system. Lastly, the circulating fluid, again diffusing itself between the viscera, descends along the dorsal region of the abdomen and again reaches the heart. Were the circulation constant in the above direction, as Milne-Edwards observes, it would somewhat resemble that of other Acephalous Mollusca. The heart might then be compared to an aortic ventricle, and the anterior thoracic sinus to a branchial vein. But, owing to the contrary directions of the currents of blood, due to the changing action of the heart, the vessels that during one minute perform the functious of veins, are in the next converted into arteries.
(1270.) When we consider the fixed and immoveable condition of an Ascidian, and its absolute deprivation of all prehensile instruments adapted to seize prey, it is by $n o$ means evident, at first sight, how it is able to subsist, or secure a supply of nomrishment adequate to its support; neither is the structure of the mouth itself, or tho strango position which it occupies, at all calculated to lessen the surprise of tho naturalist who enters upon the consideration of this part of its economy. The mouth, in fact, is a simple orifice, quite destitute of lips or other extensible parts, and situated, not at the exterior of the body, but at the very bottom of tho respiratory sac (fig. $386, g$). It is obrious, then, that, whatever materials are used as aliment, they must be brought into the borly with the water required for respiration: but even when
thus introduced into the branchial cavity, the process by which they are conveyed to the mouth and swallowed still requires explanation. Wo have before noticed that the interior of the branchial chamber is covered with multitudes of vibratile and closely sct cilia, well described by Mr. Lister*, which, by their motion, cause eurrents in the water contained therein. When these are in full activity the effect upon the eye is that of delicately-toothed oval wheels, revolving continually in a direction ascending on the right, and descending on the left of each oval, as viewed from without; but the eilia themsclves are very much closer than the apparent teeth; and the illusion secms to be caused by a fanning motion given to them in regular and quick succession, which produccs the appcarance of waves ; and cach wave answers here to a tooth (§ 1131).
(1271.) Whatever little substanees, alive or inanimatc, the current of water brings into the branchial sac, if not rejected as unsuitable, lodge somewhere on the respiratory surface, along which each particle travels horizontally, with a steady, slow course to the front of the cavity, where it reaches a downward stream of similar matcrials ; and they proceed together, recciving accessions from both sides, and enter at last the œesophagus, placed at the bottom (fig. 386, g), which carries them, without any effort of swallowing, towards the stomach.
(1272.) The œsophagus (fig. 386, h) is short, and intcrnally gathered into longitudinal folds. The stomach (i) is simple, modcrately dilated, and has its walls perforated by several orifices, through which the biliary secretion enters its cavity. The liver is a glandular mass intimately adherent to the exterior of the stomach and the intestinal canal ($/ c$), of variable length, and, more or less convo-

Fig. 386.

Diagram of an Ascidian, showing the position of the viscera: a, the intrant orifice; b, tentacula guarding it; c, d, nervous ganglia; e, respiratory sac; f, longitudinal ressel ; h, i, k, stomach and intestine; l, heart; m, aorta; n, anus ; o, ovary : p, termination of oviduct; q, common cxeretory orifice. luted in different species (fig. 385, e e), after onc or two folds terminates in the rectum, which, cmerging from the peritoncal investment covering the intestine, has its extremity loosely floating in the cavity communicating with the second orifice (f) : into the latter a bristle is introdueed in the figure, having its extremity inserted into the anal extremity of * Phil. Trans. for 1834, p. 378.
the digestive tubc. Excrementitions matter, thercfore, when discharged from tho reetum, eseapes from the body through the common exeretory aperturo, generally situated upon the least elevated protuberance of the outer eovering*. The exeretory aperture (fig. $386, q$) is, in fact, the ontlet leading from a somewhat eapacious chamber (" atrium"), lined by a distinet membrane ("third tunic" or" "peritoneum"), whieh is refleeted over the exterior of the respiratory (pharyngeal) sac. Where tho atrial tunic is refleeted over tho sides of the respiratory sac, the walls of the two eavities become more or less closcly eonjoined, and the surfaee of contact perforated by numorous large aportures fringed with eilia, whereby a direct communication is kopt up between thom; so that a eurront producod by ciliary action which scts in at the oral aperture and out by tho atrial opening, may be readily observed in a living Ascidian. It would seem that the food of Aseidians consists of very minute particles of organized matter ; for although small Crustacea and other animal remains have been oceasionally met with in the branchial ehamber, nothing of this nature has been observed in the stomach itself; and, as must be obvious to the reader, the oral aperture seems but little adapted to tho doglutition of bulky substances.
(1273.) The roproductive system in the Ascidians presents the utmost simplicity of parts.
(1274.) The ovary is a whitish glandular mass, imbedded with the liver among the folds of the intestine; its position in fig. 385 is indicated by the lotter m; and at 0 , fig. 386 , it is seon separated from the surrounding structures. The oviduct, which is occasionally very tortuous, accompanics the rectum, and terminates near the anal aperture (fig. $385, m$; fig. $386, p$) ; so that the ova ultimately escape through the eommon excretory orific.
(1275.) Since the publication of the former editions of this work, important additions have boon made to our knowlodge relative to the generative system of the elass undor consideration, and a distinct male apparatus, the existence of which was formerly denied, has been satisfactorily described by many skilful observers. The arrangoment of those organs, as they exist in Cynthica ampulla, dissectod by Van Beneden, is shown in the aecompanying figure (fig. 387, A, B). In this speeies the sexual parts appoar at first sight to form but a single organ, imbodded in a fold of the alimentary eanal (a, b); but by the assistance of a microscope, this is readily seen to eonsist of two portions-ono male, and the other fomale. The testicle (c) surrounds tho base of the ovary, and is distinguishable by its milky-white colour ; its substance is entirely made up of innumerable short convoluted cæea, visible to the naked oye, and resembling the sominiferous tubes of many of the highor animals. Threc or four glandular prolongations (f) arise from the surface of this organ, which are hollow internally, and contain a milky fluid which is * Cuvier, Mémoire sur les Ascidics, p. 14.
poured into the eloaca, and which the microscope reveals to be almost entirely composed of spermatozoa with disciform heads and filamentary tails. The ovary is of a dark colour, and is imbedded, as it were, in the testes; its oviduct (e) opens into the cloaca by the side of the anus.
(1276.) In Ascidia grossularia, the eggs, as seen through the walls of the ovary, are of a fine red colour, and are contained in separate sacs; so that the ovary when distended resembles a bunch of grapes. By the side of the ovary is another series of sacculi (fig. 387, B, b), the

Generative system of Cythnia umpulla.
contents of which abound with spermatozoa, intimating their identity with the male apparatus above described.
(1277.) Deprived as these animals are of any of the higher organs of sensc, and almost cut off from all relation with the external world, we can look for no very great development of the nervous centres. There is one ganglion, however, lodged in the substance of the mantle, distinctly recognizable, situate in the space between the branchial and exeretory openings, from which large nerves are given off; but of other details connected with the nervous system of the Tunicata, little has been made out.
(1278.) Compound Ascidians.-If, when walking on the shore about low-water mark, the seaside visitor will be at the trouble of turning over the larger stones or look under projecting eaves of rock, he will be almost sure to sce translucent jelly-like expansions, exhibiting considerable variety of colour-orange, purple, ycllow, blue, grey, or grecn-sometimes nearly uniform in tint, sometimes beautifully variegated, and very frequently pencilled as if with stars of gorgeous device, now incrusting the surface of the rock, now depending from it in icicle-like projections. A tangle- or broad-leaved fucus torn from its stony bed or gathered on the sands where the waves have cast it, will frequently show us similar bodies, mostly star-figured, investing its stalks, winding among its roots, or clothing with a glairy coat the expanse of its foliated fronds. On placing some of thesc in a vessel of sea-water, they will at first seem to lie as apathetic as sponges, giving scarcely any indication of ritality. Closer and microscopic inspection, however, will soon detect currents in
the water surrounding them (streams ejected from minute apertures upon their surface, and water rushing in), indicating that, however torpid they may appear, all the machinery of life, respiratory wheels and circulatory 1 mmps , are lard at work in their interior-that every such

Pyrobomagiganteum.
mass, in fact, is made up of an aggregation of minute Ascidians conjoined in olegant kaleidoscopic groups, all constructed upon the same plan as that deseribod above, and all of them actively employed in taking in and pouring forth the currents that bring them nutriment.

AGGREGATED ISCIDIANS.

(1279.) The individual Ascidians of which these compound structures are composed are gencrally exceedingly minute ; and the manner of their association differs considorably in diffcrent families. They are arranged by Cuvier * in three principal groups, distinguished by the following characters. In the first (Botryllus \dagger), the little bodics of the individual animals are ovoid; but they fix themsclres upon the extcrior of sea-weed or other substances in regular bunches, consisting of ten or twelve, arranged like the rays of a star around a common centre. The branchial orifices in such are all placed around the circumference of the star, while the excretory apertures open into a common cavity in the centre. If the external orifice is irritated, the animal to which it belongs alone contracts ; but if the centre be touched, they all shrink at once.
(1280.) In Pyrosoma \ddagger, the second group, the animals are aggregated together in great numbers, so as to form a hollow cylinder, open at one end, but closed at the opposite, which swims in the sea by the combined contractions and dilatations of all the individuals composing it. The branehial sacs here open upon the exterior of the cylinder, while the anal orifices are in its internal carity. Thus a Pyrosoma might be described as consisting of a great number of stars of Botrylli piled one above the other, the whole mass remaining free and capable of locomotion. Many of these moving aggregations of Tunicata emit in the dark a most brilliant phosphorescent light, whence the derivation of the name by which they are distinguished.
(1281.) In other forms of these aggregated Ascidians (which are designated by the general name of Polyclinum §) (fig. 389) the anal and branchial orifices are approximated, and placed at the samc extremity of the body. They are all fixed-some spreading like fleshy crusts over submarine substanees, others forming conical or globular masses, or occasionally so grouped as to produce an expanded disk resembling a flower or an Actinia; but, whatever the arrangement of the common mass, it is composed of numerous associated individuals, every one of them corresponding more or less closely, as regards their internal structure, with the description above given of the organization of Ascidians in general. Still there are points of difference which it will be necessary to notice.
(1282.) The researches of Milne-Edwards\|, relative to the structure of Amaroucium Argus, one of the compound Ascidians, are partieularly intercsting. In this specics the male generative apparatus consists of a largely developed testicular gland, that occupies almost all the lower part of the postabdomen, and communicates with the common excretory cavity by means of a long filiform canal. This gland is made up of a multitude of whitish vesicles, which, at first sight, have much the appearance

[^168]of rudimentary eggs, bint which, in reality, are found to swarm with spermatozon, thens revealing the true nature of the organ. Λ similar arrangement has since been detected in memerous other genera; so that its existence thronghout the entire class is now no longer doubtful.

Fig. 38!.

Polyclinum constellatum. 1. Individual Ascidian extracted from the general mass, magnified. 2. One of the groups isolated and magnifled. 3. Mass, composed of numerous associated groups, represented of the natural size.
The ovarium is situated in close juxtaposition with the testes. In all the Polyclinian group it is lodged in the postabdomen, and posteriorly is hardly distinguishable from the male apparatns, but towards the upper part becomes easily rocognizable in consequence of the size and colour of the ova contained within it. The eggs, of which a few only are developed at a time, as they issue from the ovigerous organ pass immediately into the cloaca, or even become lodged in the lateral part of the thoracic chamber, between the proper tunic of this carity and the branchial sac, where they remain for some time exposed to the influence of the surrounding ac̈rated medium.
(1283.) Whilst the ova remain enclosed in the upper part of the postabdomen, they increase considerably in size and assume a spherical form ; the yelk acquires a deep-ycllow colour ; and the vesicle of Purkinje, which was distinctly visible during the commencoment of their development, disappears, and is replaced by a clondy spot, which appears
to be the blastoderm, or proligerous layer, from which procceds the cmbryo of the young Ascidian.
(12S4.) During incubation the egg acquires more of an oval form, tho vitelline mass seems to contract; and its surface, growing denser, appears to becomo organized into a membrane whieh is distinct from tho more decply seated substance of the jelk; and gradually the whole becomes moulded into something like the shape of a tadpole (fig. 390, 1), the anterior extremity of which is surmounted by a sort of tentacular apparatus; and on the bursting of the egg, this embryo, by means of its long tail, swims about in the water with considerable vivacity; after the lapse of a few hours, however, the little creature, in size not yet larger than the head of the smallost pin, fixes itself to some foreign object by means of one of the little suckers situated on the anterior extremity of its body, and permanently loses all capability of locomotion.
(1285.) Having thus fixed itself for life, the larval Ascidian soon begins to change its form (fig. 390, в). The anterior extremity of its body becomes expanded, the tentacular appendages disappear, the central portion of the tail bccomes retracted into the central mass, and, lastly, the tail itsclf, which was at first such an important locomotive agent, gradually withers away, until no traces remain of such an organ having existed (fig. 390, c, D).
(1286.) From the above description of the development of the young

Fig. 390.

Larva and progressive stages of metamorphosis in an Ascidian Mollusk: π, rudimentary tentacula; b, point of subsequent attachment; c, d, e, ineipient appearance of viscera; $f g$, outer tunic.
Ascidians, it appears that during the first part of their existence they are solitary and isolated animals, although at a later period they are found united into numerous colonies, cither connected together by means of a creeping common stem, or associated into a compact mass by a tegumentary tissue wherein the cntire colony is arranged after a cortain order, or regular pattern, which is constant in each spocies; and the manner in which this is effected thus presents itself as a problem possessing considerable interest.
(1287.) Savigny, whilo prosecuting his dissections of the Botrylli, had remarked, situated upon the borders of tho stcllate groups formed by tho association of individuals belonging to that genus, a multitude of membranous tubes, slightly dilated at their extremities, to which he gave the name of tho marginal tubes, at the same time pointing nut their existence in other familics, but without entering into any details concerning the relations cxisting between them and the associated Ascidians contained in tho tegumentary mass. Milne-Edwards, however, ascertained, by the examination of transparent groups of these creatures whilst in a living state, that each of thesc canals is at first a little tubercle, developed from the surface of the abdominal portion of the inner tunic of an adult Ascidian. This tubercle becomes elongated by growth into a tube, the extremity of which is closed, but free, while its internal cavity communicates freely by the opposite end with the abdominal cavity of the Ascidian from which it originally sprouted; so that the blood circulating in the latter casily penetrates into the cæcal appendage, wherein an active circulation is kept up. Generally speaking, in proportion as these marginal tubes advance into the common tegumentary tissue around them, they divide into several branches, and the extremity of each of them becomes inflated and claviform; soon there appears, towards the summit of cach terminal swelling, a small granular mass whercin the forms of an Ascidian gradually derelope themselves, and which in time becomes a new animal, resembling those already existing in the common mass, of which it is destined itself to become a new inhabitant. Ultimately the communication between the parent and the young individual becomes obliterated; but still the newly formed animals, thus derived from the same parent, remain for somo time united by their pedicle ; and, apparently, to this circumstance their mode of arranging themselves in groups is due.
(1288.) In these creatures, therefore, the egg may be said to give birth to a scolex, which, becoming attached and changing its shape, acquires well-marked reproductive organs, but at the same time produces, by means of buds, now beings as complete as itself. Here the scolex is converted directly into a proglottis, which in turn produces an entire generation of individuals endowed with the same capabilities. In other words, the egg of the butterfly gives birth to a caterpillar which arrives at its butterfly condition; then from the butterfly so derived other butterflies bud forth, of which that first formed is not the father or the mother but only the parent, inasmuch as no sexual impregnation is reqnired for their production.
(1289.) In the seas of tropical latitudes, many forms of Tunicated Mollusca aro met with abundantly which, althongh allied to A scidians in the main points of their economy, present certain peculiarities of structure that require notice. These, grouped by authors under the general name of Salpee, are many of them so transparent that their presence in
a quantity of sea-water is not easily detected ; and their visecra, if coloured, are readily distinguishable throngh their transluent integument, which in texture seems to be intermediate between eartilage and jelly. The body is oblong, and open at both extremities, the posterior opening being very wide, and furnished with a crescentic valve, so disposed that water is freely drawn into the interior through this aperture, but camot again be expelled by the same channel; so that, being foreed by the contractions of the body in powerful gushes from the opposite cud, it not only supplies the material for respiration, but impols the delicate animal through the water in a backward direction. The bran-

Fig. 391.

Sulpa muxima: a, mouth; b, anus; c, abdominal cavity; d, branchial organ; e, heart; f, rudimentary chain of concatenated embryos; g, g, prolongations of the integument.
chial chamber of the Ascidians is consequently in this case represented by a wide membranous canal, which traverses the body from end to end; but, instead of the network of ressels lining the respiratory sae of Ascidians, a singular kind of branchial organ is placed within it. This consists of a long vascular riband attached by both its extremities to the walls of the canal, through which the water rushes ; and of course, being freely exposed to the influence of the surrounding medium, the blood contained in this curious branchial apparatus is perpetually renovated, and afterwards distributed, by a heart resembling that met with in the genus last described, to all parts of the body.
(1290.) The viscera, which oceupy comparatively a very small space, are lodged in a distinct compartment between the membranous respiratory channel and the external gelatinous investment, or soft shell, as we might properly term it. The mouth is a simple aperture, situated near the upper extromity of the branchial organ ; and probably, as in the Ascidians, ciliary currents rushing over the respiratory surface bring into it a sufficient supply of nutritive molecules. The stomach is capacious, and covered with parallel rows of large white filaments, that seemingly represent the liver; and the alimentary canal, which is perfectly simple, runs to the posterior extremity of the animal, and terminates there by a wide opening*.

* For excellent drawings represonting the amamy of various Sielpere, the reader
(1291.) A very remarkable feature in the history of these animals is that many speeies are found swimming together in long chains, apparently adhering to each other by little suckers, but without organie connexion ; and, what is still more strange, it would appear, from the observations of M. de Chamisso *, that sueh aggregated animals give

Fig. 392.

Concatenated progeny of Salpo maxima.
birth to insulated individuals of very different appearance, which in their turn reproduce coneatenated forms resembling their progenitors; so that the alternate generations are quite dissimilar both in conformation and habits.
(1292.) The observations of Chamisso have in later times been substantiated and carricd out by the researehes of Krohn, Steenstrup, Eschrieht, Milne-Edwards, Huxley, and others ; and the phenomena conneeted with the proeess are so interesting that it will be necessary to lay before the reader a brief abstraet of the result of their labours.
is referred to the Deseriptive and Illustrated Catalogue of the Physiologieal Series of Comparative Anatomy contained in the Muscuin of the Royal College of Surgeons of England, vol. i. plates 6 \& 7.

* Dissert. de Salpâ, Berlin, 1830.
(1293.) The Selpee are all viviparons; and cach species is propagated by an alternate suceession of gencrations most dissimilar from cach other in their forms, habits, and mode of increase. The concatenated Salpæ produce but a singlo egg apiece, which is distinctly visible in the interior of their transparent bodies. But whilst the isolated Salpians are thins produced from eggs, their progeny are produced by a process of gemmation, springing like buds from the surface of a most remark-

Fig. 393.

Fig. 1. Anterior extremity of the body of Salpa muxima: a, beak-like projection; b, visceral chamber; c, mouth; d, transverse muscle for closing the lower lip; e, longitudinal muscles opening the mouth; f, frst pair of transverse thoracic museles; g, commeneement of branchial organ.

Fig. 2. Posterior extremity of solitary Salpa maxima enclosing a chain of concatenated embryos: a, posterior projection from outer tunic; b, abdominal cavity; d, branchial organ; e, stolon prolifer and embryonic chain ; f, ovary (?); g, anal aperturc. (After Milnc-Edwards.)
able organ, the stolon prolifer, the existence of which is to be detected in the isolated Salpre even while contained in the body of their concatenated parent; it then appears a slender filament, derived by one extremity immediately from the heart of the embryo Tunicary; after birth, however, its growth increases apace in proportion to the development of the continual sucecssion of progeny to which it gives origin. The reason of the immediate connexion between the stolon molifer and the maternal heart appears to be this, that, the newly formed offspring being entirely dependent for support upon the blood of the parent, it is
so situated in order to secure a free supply of the vital fluid, which is thus injected into its vessels immediately by the heart's action. 'Iwo ressels traverse it throughout its entire length-one derived from the anterior extremity of the maternal heart, and the other from its opposite end; so that the blood supplied to one of these vessels by the contraction of the heart is returned by the other; and when the contractions of the heart become xerersed, as we have seen is continually the case, by this arrangement the circulation in these resscls is readily adapted to the change. It is from the surface of the stolon* that the generation of eoncatenated Salpa sprout, in two parallel rows, appearing in rapid succession like so many little buds, which, as their growth advances, gradually assume a similar form and structure ; and as sucecssive groups become mature, detaching themsclves from the nidus where they had their birth, they swim away united in long ohains, the links of which are joined together after the fashion of the species. On examining one of these chains of concatenate Salpr, the iudividuals composing it are found to be united to each other not by any organic caalescence, but by special organs and facets of attachment, frequently, but improperly, described as suckers, the position of which varics in different species in accordance with their mode of aggregation. It would appear, from the observations of M. Krohn, that the concatenated Salpæ cannot spontanenusly detach themsclves from each other, and that, when individuals are met with swimming free, their separation from the chain is always to be ascribed to accidental violence; he even thinks that concatenation is so essential to the existence of the anmals that they soon perish if scparated from the rest.

CHAPTER XIX.

CONCHIFERA (Lamarck).
Acéphades testacés (Cuvier). Lamelliblanchiata (Huxley).
(1294.) The great majority of Mollusks which inhabit bivalve shells constitute a very numerous and extensive class, distinguished by certain characters possessed by them in common. Eneased in dense and massive coverings of such construction as to proclude the possibility of their maintaining more than a very imperfect intercouse with the external world, and deprived even of the means of communication with each other, we might naturally expect their organization to correspond in its

[^169]general feeblencss with the cireumscribed means of enjoyment and limited capabilities of locomotion allotted to them. Numerous specics, indeed, are from the period of their birth firmly fixed to the rock which gives them support, by a ealcarcous cxudation that cements their shells to its surface, as is familiarly exemplified in the ease of the common Oyster-or clse, as the Mussels, anchor thomselves securcly and immoveably by unyiclding cables of their own construction. The Scallop, unattaehed, but scarccly better adapted for changing its position, rudely flaps together the valves of its expanded shell, and thus by repeated jerks succeeds in effecting a retrogressive movement; while the Cockles, destined to burrow in the sand, are furnished with a tongue-like foot, by which they dig the holes wherein they lie concealed, and crawl, or even leap about, upon the shorc. Many, as the Pholades, penctrate the solid rocks and stones, and cxeavate thercin the caverns that they in-habit-or, in the case of the Teredo, with dangerous industry bore into the bottoms of ships or submerged wood of any description, and silently destroy by thcir insidious ravages the piers or dykes which human labour has orceted.
(1295.) Following our usual custom, we shall sclect for cxamination one of the most simply organized bivalves for the purpose of illustrating

Fig. 394.

Pecten Jacobaca: a, h, lobes of the mantle; b, g, branchial lamelle; l, mouth ; k, lips; c, adductor musele, which closes the shells; i, "foot;" $d e f$, visceral mass, principally flled with ova; $n, 0$. conrolutions of intestine, seen through the transparent tegumentary membrane; m, anal orifee.
the gencral structure which characterizes the class ; and in the common Scallop) (Pecten .Jecolicere) we have a species well adapted to exhibit the
principal features of their eeonomy. On separating the two valves of tho shell in the animal before us, we at once perceive that each is lined internally with a thin and semitransparent membrane (fig. 394, u, h), which, like the shells, cncloses the body of the mollusk in the sume way that the leaves of a book are contained between its covers. The circumferenee of these outer membranes, which form the mantle, is, in this casc, quite free and uneonnected, exeept in the immediate vicinity of the hinge that unites the two valves. The borders of the mantle are thiekened, and surrounded with a delicate fringe of retractile filaments ; they moreover present a decidedly glandular appearanee, and seerete colouring-matter of various tints, similar to those seen upon the exterior of the shell: the glandular margins of the mantle form, in fact, the apparatus by which the extension of the shell is effected; and by them its onter layer is secreted, and in many cases painted with gorgeous hues, as will be explained more at length hereafter.
(1296.) Between the lobes of the mantle are seen the branehiæ (b, g), always consisting of four delicate leaves, eomposed of radiating fibres of exquisite strueture, and generally attached to the circumference of the body by their fixed extremities, but elsewhere perfectly free, so as to float looscly in the water, which finds free admission to them. The mouth (l) is situated between the two inner laminæ of the branchiæ, in a kind of hood formed by the union of the gills at their origin; it is a simple orifice, without any kind of dental apparatus, but bordered by four thin and membranous lips (l_{c}) placed on each side of the aperture.
(1297.) The valves, whieh are opened by the elasticity of a compressible ligament interposed between them at the hinge, are closed by the eontraetion of a powerful muscle (c), which passes directly from one to the other; and around this adductor muscle the viscera of the body are disposed: the stomach, liver, and generative system are imbedded in the mass d e f; the convolutions of the intestine may be traced occasionally ($n, 0$) ; and the termination of the rectum (m) is visible externally, situated upon that side of the adductor muscle whieh is opposite to the mouth. In the neighbourhood of the oral aperture is placed a retractile fleshy organ (i), which, although in Pecten it exhibits very rudimentary dimensions, expands in other species to such a size as richly to merit the name of foot usually applied to it.
(1298.) Whoever for a moment reflects upon the arrangement of the branchial apparatus, and the position of the oral orifice, consisting, as it does, of a simple aperture unprovided with any prehensile organs, must perceive that there aro two circumstanees connected with the eeonomy of a Conchiferous Mollusk, and those not of secondary importance, by no means easily aecounted for. It is, in the first place, absolutely essential to the existence of these animals that the element in immediate contact with the respiratory surfaees should be renewed as rapidly as it becomes deterioratad ; for suffocation would inevitably be the speedy result of an
inadequate supply of fresh and aürated water-to secure which, especially when the valres of the shell are closed, no adequate provision seems to exist. Secondly, it is natural to inquire, how is food conveyed into the month? for in an animal itself fixed and motionless, and at the same time, as in the case of the creature we are now considering, quite deprived of ally apparent means of seizing prey, or even of protruding any part of its body beyond the margins of its abode in seareh of provision, it is not easy to imagine by what procedure a due supply of nutriment is secured. Wonderful, indced, is the claborate mechanism employed to effect the double purpose of renewing the respired fluid, and feeding the helpless inhabitant of these shells. Every filament of the branchial fringe, examined under a powerful microscope, is found to be corered with countless cilia in constant vibration, causing by their united efforts powerful and rapid currents, which, sweeping over the entire surface of the gills, hurry towards the mouth whatever floating animalcules or nutritious particles may be brought within the limits of their action, and thus bring streams of nutritive molecules to the very aperture through which they are conveyed into the stomach, - the lips and labial fringes acting as sentinels to admit or refuse entrance, as the matter supplied be of a wholesome or pernicious character. So energetic, indecd, is the ciliary movement over the entire extent of the branchial organs, that, if any portion of the gills be cut off with a pair of scissors, it immediately swims away, and continues to row itself in a given direction as long as the cilia upon its surface continue their mysterious movements.
(1299.) Our next investigations must be concerning the intermal anatomy of the Conchiferous Mollusca. In the Oyster, the general disposition of the body resembles that of the Pecten described above; and the mouth, enclosed between two pairs of delicate lips, occupies a similar position at the termination of the branchial lamellæ. In this well-known mollusk the œsophagus is extremely short, so that the mouth appears to open at once into the stomachal cavity (fig. 395, a), which is imbedded in the substance of the liver (d)-the biliary secretion being poured into the stomach itself through several large orifices, represented in the figure. A rery peculiar arrangement exists in the stomachs of many genera-the digestive cavity being prolonged in one dircction, so as to form a lengthened cæcum, or blind sacculus, wherein is lodged a cartilaginous styliform body, the use of which is not easy to conjecture, although its office is no doubt connected in some way or other with the preparation of the food. The liver is proportionally of large dimensions, and is at once recognized by its greenish or, in some cases, dark chocolate colour ; it is entirely scparable into masses of secerning follicles loosely connected together by a delicate cellulosity. The intestine varies considerably in extent, and, as a necessary consequence, in the arrangement and number of its convolutions. In the

Oyster it is comparatively short, bending twice upon itself, and winding around the stomach and abductor musele (l c $c d f$) -its termination (y) projecting between the folds of the mantle njon the opposite side of the body to that where the mouth is situated, and so disposed that excrementitious matter is cast out beyond the influence of the ciliary currents. In l'ecten we have already noticed that it performs sundry gyrations through the visecral mass, as well as about the muscle that closes the shell (fig. 394, c, n, m), while in the Cockle-tribes it even penetrates the base of the foot and winds extensively through its muscular substance (fig. 400). In the greater number of the Conchifera, but not in the

Fig. 39\%).

Alimentary canal of the Oyster (Ostren edulis): α, the stomach laid open; d, the liver; $b c d f$, convolutions of the intestine; g, anal aperture; n, o, auriele and rentriele of the heart; $l m$, adductor muscle ; h, l, lobes of the mantle, divided to show the large venous canals at the base of the branchire. Oyster-tribe, there is a very remarkable circumstance connceted with the course of the intestine, the object of which is involved in obscurity : the rectum, at some distance from its termination, passes right through the centre of the ventricle of the heart, its coats being tightly embraced by the muscular parietes of that viscus.
(1300.) The position of the branchix in the Ostreacean family has been already described; it therefore now remains to notice their intimate structure and the arrangement of the ressels connected with respiration and the circulation of the blood. The branchial fringes are, of comrse, essentially vascular in their composition, being, in fact, made up of innmmerable delicate parallel vessels enclosed in cellular tissue of extreme delicacy, and exposing a very extensive surface to the influence of the respired medium. The comutless branchial canals through which the blood is thus distributed terminate in large vessels enclosed in the stems to which the fixed extromities of the vascular fringe are attached (fig. $396, f, g, h, i$); these communieate exteusively with each other. and, ultimately muiting in two prineipal trunks (c, l), pour the purified hlood derived from the whole branchial apparatus into the amricle of the heart.
(1301.) The heart in the Oyster (fig. 395, $n o$) is situated in a cavity between the folds of the intestine and the adductor musele, in which position, from the dark-purple colour which it exhibits, it is at once distinguished. It consists, in the species we are more particularly deseribing, of two distinct chambers-an auricle and a ventricle. The auricular cavity (fig. 396, b), the walls of which are extremely thin, and composed of most delicate fasciculi of muscular fibres, receives the blood from the respiratory apparatus, and by its contraction transmits it through two intermediate canals (c) into the more muscular rentricle (d), whence it is propelled through the body by the ramifications of the arterial system (n, o, p).
(1302.) The above description of the circulatory apparatus as it exists in the Oyster is applicable in all essential points to every family of Conchiferous Mollusca; but there are important modifications in the structure of the heart and arrangement of the bloodressels, met with in diffcrent genera, which now demand

Heart and respiratory scstem of the Oyster : a, portion of the mantle ; b, auricle, and d, ventricle of the heart; m, n, i, f, veins bringing the blood from the body to the branchise ; e, g, h, principal trunks returning the blood from the branchix to the heart ; op l, aorta, giving off arteries to the viscera. our attention. Most generally, in consequence of the broad and dilated form of the animals, instead of a single auricle, such as the Oyster has, there are two auricular cavities, one appropriated to each pair of branchial lamellx, and placed symmetrically on the two sides of an elongated fusiform ventricle, into which both the auricles empty themselves; still the course of the blood is similar to what we have described above.
(1303.) A still greater modification is found to exist in those species most remarkable for their breadth. In Arca, for example, there are not only two auricles, but two ventrieles likewise, placed upon the opposite sides of the body ; that is, there is a distinct heart appropriated to each pair of gills-each receiving the blood from the branchix to which it belongs, and propelling it, through vessels common to both hearts, to all parts of the system.
(1304.) We must now, before entering upon the description of other families of Concirtersa, examine the character of the locomotive appa-
ratus with which those possessed of the power of moving about are furnished. The instrument employed for this purpose is a fleshy organ appended to the antcrior part of the body, called the foot: but of this apparatus, for obvious reasons, no vestige is met with in the fixed and immoveable Oyster ; and cven in the Scallop we have scen only a rudiment of such an appendage. When largely developed, as in Mactra (figs. $397 \& 398$), the foot forms a very important part of the animal, and becomes useful for various and widely different purposes. In structure it almost exactly rescmbles the tongue of a quadruped, being entirely made up of layers of museles crossing each other at various angles-the cxternal layers being circular or oblique in their disposition, while the internal strata are disposed longitudinally. In the Cockle-tribe (Cardium) this organ attains to a very great size ; and on inspecting the figure given in a subsequent page, representing a dissection of the foot of Carclium rusticum (fig. 401), the complexity of its muscular structure will be at once evident, and the disposition of the several layers composing it more easily understood than from the most elaborate verbal description.
(1305.) Diverse are the uses to which the foot may be turned. It is generally used for burrowing in the sand or soft mud; and, by its constant and worm-like action, those species in which it is largely developed can bury themselves with facility, and make their way beneath the sand with a dexterity not a little remarkable. Perhaps the most efficient burrowers met with upon our own shores are the Razor-shells (Solenidce), in which family the fleshy foot attains to enormous proportions; and the rapidity of their movements beneath the soil will be best appreciated by those who may have watched the manner in which the fishermen effect their capture.
(1306.) The Solen excavates for itself a very deep hole in the sand, boring its way by means of its foot to a depth of some feet, and remains concealed in this retreat, usually occupying a position within a few inches from the surface. The fisherman, armed with a slender iron rod furnished with a barbed head, resembling a harpoon, treads carefully backwards over the beach left bare by the retreating tide, and finds the hole in which a Solon lodges by watehing the little jet of water thrown out when, being alarmed by the shaking of the sand, it contracts its body. Guided by the orifice through which the water is thrown, he plunges his rod into the sand, and generally suceeeds in piercing the animal with the barbed extremity, and dragging it from its concealment; but should he fail in his first attempt, he well knows that to try again would be unavailing, for the creature instantly works its way down to such a distanee as to render pursuit hopeless.
(1307.) But, however efficient as a means of burrowing the foot may be, it ean be turned to other purposes. The Pholades, for example, by some means (either of a mechanical or chemical nature) not as yet pre-
eisely determined, excavate the solid rocks, and form therein chambers in which they pass their lives. In such genera, the foot, which would be uscless as a boring instrument, by being simply transformed into a broad and flat disk beeomes a powerful sueker, whereby the Plonlas fixes itself to the walls of its apartment in any eonvenient situation.
(1308.) In many of the Coekle-tribe we find the foot converted into an instrument of loeomotion of a very singular description, enabling them to leap by bounds we should seareely expeet animals so unwieldy to be capable of exeeuting. For this purpose the end of the foot is bent, and plaeed firmly against the plane of support, in the position represented in fig. 395 ; when thus fixed, a sudden spring-like aetion of the museles of the foot throws the cockle into the air ; and by a repetition of these exertions the ereature ean skip about with surprising agility.
(1309.) But the most extraordinary office assigned to the foot is the manufacture of horny threads, whereby, as by so many anehors, the Mollusea thus provided fix themselves seeurely to foreign bodies, and that so firmly that extraordinary violence is requisite to wreneh sueh animals from the plaee where they have fixed their eables. The marine Mussel is a well-known example of a byssiferous Mollusk; and from this speeies, therefore, we shall draw our deseription of the organs by which the tough filaments referred to are seereted.
(1310.) The foot in the Mussel is of small dimensions, being useless as an instrument of progression. By its inferior aspeet it gives attaehment to the horny threads of the byssus, which are individually about half an inch in length, or as long as the foot itself by whieh they are formed. The manner in which the manufaeture of the byssus is aecomplished is as follows:-A deep groove runs along the under surface of the foot, at the bottom of whieh thin horny filaments are formed by the exudation of a peeuliar substance, that soon hardens and assumes the requisite tenacity and firmness. While still soft, the Mussel, by means of its foot, applies the extremity of the filament, whieh is dilated into a kind of little sueker, to the foreign substance whereunto it wishes to adhere, and fastens it securely. Having aceomplished this, the foot is retracted; and the thread, of eourse being drawn out of the furrow where it was seereted, is added to the bundle of byssus previously existing, all of which owed its origin to a similar process.
(1311.) Sometimes, instead of the numerous thin filaments met with in the Mussel, the byssus eonsists of a single, thiek, horny stem; while in other eases, as, for example, in Pima, the threads are so numerous, soft, and delieate, that they are not unfrequently spun like silk, and manufaetured into gloves and other small artieles of dress not unfrequently met with in the eabinets of eonehologists.
(1312.) Taking a more general view of the Conehiferous Mollusca than we have hitherto done, wc shall now proceed to consider the mechanism for opening and closing the valves of the shell in whieh
they reside, -an operation effected in a very simple and elegant mauner.
(1313.) The shells are eonnected posteriorly by means of a hinge, differently eonstructed in different speeies. In the Oyster we have an instance of the most simple kind of junction. In these Mollusca, a mass of elastic ligament, composed of perpendicular and parallel fibres, is interposed between the postcrior edges of the shell, and so disposed that, by elosing the shell, the ligamentous mass is foreibly compressed, while at the same time its resilieney is such that, immediately the compressing power is withdrawn, it expands, and thus forms a simple spring caleulated to keep the valves apart and cause their separation to a greater or less extent.
(1314.) The antagonist to this elastic foree is the aduluctor muscle (fig. 394, c), a fleshy mass of very great strength, the fibres of which pass direetly from one valve to the opposite. The adduetor muscle, although in this casc single, eonsists of two portions of different texture (fig. $395, l, m$) ; so that it would appear to be formed by two muscles elosely approximated so as to eompose a single powerful mass adapted to keep the valves in contaet, with a foree proportioned to its massive size. All those speeies having a single museular mass, sueh as the Oyster and Peeten, have been grouped together bj eonehologists under the general name Monomyarla*; while another and more numerous division, Dimparla t, is eharacterized by having two adductor museles, distinet and widely removed from each other. The Mussel-tribe and many others are examples of this arrangement, whieh is represented in subsequent figures.
(1315.) Simple as the strueture of the hinge is in the Ostreacea, in other biralves it frequently exhibits far greater complexity, and the opposed valves present prominent elevations and deep fossæ whieh lock into each other, and thus form a very seeure articulation of great strength and solidity. In sueh eases the arrangement of the elastie ligament for opening the valves is slightly modified, being placed externally instead of within the shell, but its aetion in antagonizing the adduetor museles is still equally efficaeious.
(1316.) We uust, in the next place, solieit the attention of the reader to a very important subject conneeted with the eeonomy of this elass of Mollusks, viz. the growth and formation of their slells. Infinitely diversified are the forms presented by their testaeeous ralyes, and equally various the colours which not unfrequently adorn their extcrnal surfaces. Some exhibit a beauty and delieaey of sculpture of most exquisite eliaracter ; others, eovered with large spines, or festoons of ealcarcous plates, puzzle the beholder to eomprchend how the growth of sueh parts in the situations which they occupy, cau be effeeted with so

[^170]+ Sis, twice; μ is, a musole: $=$ haring $/$ wo mascles.
much regularity of arrangement. The shells themselves are permeated by 110 vessols, and are consequently as incapable of expansion by any internal power as the rocks to which they are not uncommonly attached; so that the young naturalist is necessarily at a loss to conceive cither the mode of their formation, or the origin of all the gaudy tints and exterial decorations that render them the ornaments of our cabinets.
(1317.) The simple apparatus by means of which shclls are constructed is the external membranous layer that invests the body of the mollusk-the mantle, as it has been termed; and whatever the form of the shell, it owes its origin entirely to this delieate organ.
(1318.) In order to simplify as much as possible our description of the proecss whereby the shell is formed, it will be necessary to consider it under two points of view:-first, as relates to the enlargement of the valres in length and breadth ; and secondly, as regards their increase in thickness, - very different parts of the mantle being omployed in the attainment of these two ends.
(1319.) It is the circumference, or thickened margin, of the mantle alone which provides for the increase of the shell in superficial extent. On examining this part (fig. 394, h; fig. $395, e$), it is found to be of a glandular character, and moreover not unfrequently provided with a delicate and highly sensitive fringe of minute tentacula. Considered more attentively, it is seen to contain in its substance patches of different colours, corresponding both in tint and relative position with those that decorate the exterior of the shell.
(1320.) When the animal is engaged in inereasing the dimensions of its abode, the margin of the mantle is protruded, and firmly adherent all round to the circumference of the valve with which it corresponds. Thus circumstanced, it secretes calcareous matter, and deposits it in a soft state upon the extreme edge of the shell, where the secretion hardens and becomes converted into a layer of solid testaccous substance. At intervals this process is repeated, and every newly formed layer enlarges the diameter of the valre. The concentric strata thus deposited remain distinguishable externally; and thus the lines of Irowth, marking the progressive increase of size, may easily be traced (fig. 397).
(1321.) It appears that at certain times the deposition of calcareous substance from the fringed cireumference of the mantle is much more abundant than at others: in this ease ridges are formed at distinet intervals ; or, if the border of the mantle at sueh periods shoots out beyond its usual position, broad plates of shell, or spines of different lengths, are secreted, which, remaining permanent, indicate, by the interspaces separating suceessively deposited growths of this description, the periodical stimulus to inereased action that caused their formation.
(1.322.) Whatevor thickness the slicll may subsequently attain, the external surface is thus exclusively composed of layers deposited in
succession by the margin of the mantle; and, secing that this is the case, nothing is more easy than to understand how the colours seen upon the exterior of the shell are deposited and assumo that definite arrangement characteristic of the species. We have already said that the border of the mantle contains, in its substance, coloured spots; these, when minutely examined, are found to be of a glandular character, and to owe their peculiar colours to a pigment secreted by themselves. The pigment so furnished being therefore mixed up with the calearcous matter at the time of its deposition, coloured lines are formed upon the exterior of the shell wherever these glandular organs exist. If the deposition of colour from the glands be kept up without remission during the enlargement of the shell, the lines upon its surface are continuous and unbroken ; but if the pigment be furnished only at intervals, spots or coloured patches of regular form, and gradually increasing in size with the growth of the mantle, recur in a longitudinal series wherever the paint-secreting glands are met with.
(1323.) The carbonate of lime (for such is the earth whereof the shells of bivalves are principally composed) is, at the moment of its deposition, imbedded in a viscid secretion that forms a kind of cement; and on dissolving the shell in a dilute acid, the animal material thus produced remains in the shape of a delicate cellulosity, in the interstices of which the chalky particles had been entangled. If the proportion of the above-mentioned secretion be abundant, it not unfrequently, by hardening on the exterior of the shell, constitutes what has been very inaptly termed its epidermis, representing a comparatively soft external skin of semicorneous texture. If exceedingly thick, the epidermic layer thus formed becomes loose and shaggy, giving the shell an hirsute appearance ; but, both in its structure and origin, such pilose investment has no claim to be considered analogous to the hair of animals possessing an epidermis properly so called.
(1324.) While the margin of the mantle is thus the sole agent in enlarging the circumference of the shell, its growth in thickness is accomplished by a secretion of a kind of calcareous varnish, derived from the external surface of the mantle generally, which, being deposited layer by layer over the whole interior of the previously existing shell, progressively adds to its weight and solidity. There is, moreover, a remarkable difference between the character of the material secreted by the marginal fringe, and that furnished by the general surface of the pallial membrane : the former we have found to be more or less coloured by glands appointed for the purpose, situated in the circumference of the mantle ; but as these glands do not exist elsewhere, no colouring-matter is ever mixed with the layers that increase the thickness of the shell; so that the latter always remain of a delicate white hue, and form the well-known iridescent material usually distinguished by the name of nacre, or mother-of-peail.
(1325.) Local intitation of various kinds is found to stimulate the mantle to increased action, so as to cause the pearly matter to be secreted more abundantly at the part irritated. Thus there are various minute boring Annelidans that, in the exereise of their usual habits, perforate the shells of oysters, and penetrate even to the soft parts of their bodies. Stimulated by the presence of these intruders, the mantle beneath the place attacked secretes nacre in inordinate quantities to repair the injured portion of the shell, and prominent nuclei are soon formed, which, enlarging by the addition of continually added layers of nacreous matter, become so many pearls adherent to the interior of the shelly valves.
(1326.) Or pearls may owe their origin to another eause. It not unfrequently happens that sharp angular substances, such as grains of sand or fragments of stone, are conveyed between the valves, and become imbedded in the delicate tissue of the mantle. Thus irritated, the mantle throws out copiously the peculiar iridescent material which it secretes, and with it coats over the eause of annoyance, wrapping it in uumerous concentric laminæ of nacre, and thus forming the detached and globular pearls so valuable in commerce.
(1327.) One other circumstance connected with the growth of bivalve shells requires explanation. From the earliest appearance of the shelly valves until the period when the ineluded mollusks arrive at their mature size, the adductor musele or muscles have been of necessity perpetually ehanging their position, advaneing gradually forward as the enlargement of the shells was accomplished, so as to maintain in the adult precisely the same relative situations they originally did in the young and as yet minute animal. Taking the Oyster for an example, it is quite obvious that the adductor musele, which at first was conneeted with the thin and minute lamellæ forming the earliest shell, has, during the entire growth of the animal, become further removed from the hinge, and transferred from layer to layer as the shell increased in thickness, till it has arrived at the position occupied by it in eonnexion with the last-formed stratum that lines the interior of the ponderous valves of the full-grown Oyster. The manner in which this progressive advance of the adductor musele is effected is not at first easily accounted for, seeing that it is always fixed and firmly adherent at all points of its attachment. In order to mederstand the cireumstances comeeted with its apparent removal, it is necessary to premise that a thin layer of the mantle itself is interposed between the extremities of the musele and the inner.surface of the shell, forming the bond of connexion between the two, and, like the rest of the pallial membrane, assisting in increasing the thiekness of the shell by adding layers of nacro to its inner surface. Particle after particle is laid on by a kind of insterstitial deposit between the shell and the extremity of the adductor muscle, but so gradually that the firm attachment between the muscle and the shell is not at all
interfered with ; and the transference of the minsele from layer to layer as the animal grows is thus slowly and imperceptibly effected.
(1328.) We have as yet limited ourselves almost exclusively to a deseription of the simplest forms of Concinfera, namely those belonging to the Ostreacean family, whieh, being generally incapable of locomotion, are deprived of a foot, and are reeognizable by having the two lobes of the mantle unconneeted with eaeh other around their entire circumference. On turning our attention to the organization of the mantle in other families, we find that in them it no longer offers the same simple arrangement, but, the two lobes becoming gradually more and more completely united along their edges, the bodies of the mollusks are by degrees enclosed by the pallial membranes, and seem, as it were, saeculated. Sometimes, moreover, the mautle is prolonged into membranous tubes of considerable length called siphons, through which the water is conveyed to the gills and excrementitious matters are expelled from the body. In the Mussels (Mytilacea) the edges of the mantle are partially joined, so as to present two apertures, through one of whieh the foot is protruded, while the other, the smaller of the two, gives issue to the exerement. A third family (Chumacea) has the circumfirence of the two divisions of the mantle still more intimately united, learing three distinet fissures-one for the passage of the foot, another for the cntrance of water to the branchire, and a third for the cjection of matter from the reetum. Of these, some are of gigantic dimensions, and fix themselves by a strong byssus. One species, indeed (Trictaene gigas), is so enormous in its size that its shells alone not unfrequently weigh upwards of two hundred pounds ; and hatchets are employed to chop its thick and teudinous cables from the rock to which it holds.
(1329.) The Cockle-family (Cardiucea) is recognized by having the mantle open anteriorly, but prolonged at one extremity into two tubes,

Fig. 397.

Mactra: a, foot; b, c, siphons formed by the mantle.
one of which admits the water for respiration, while the other diseharges effete matter. In the Coekle (Curdium) the tubes are short, and searcely
reach beyond the shell (fig. 399, a) ; but in other genera, as, for example, Mactra (fig. 397, b, c), they are of suel a length that, when extended, they protrude to a eonsiderable distance. We at onee perceive the use of the tubular arrangement of the mantle hore referred to, when we refloct upon the already mentioned habits of this extensive division of the Conchifera, and consider how, by means of their largely developed foot, they burrow into the sand or mud of the shore. Had their mantle been open, like that of the Oyster, respiration would have been impossible under the eireumstanecs in whieh they live; but, by the modifieation of strueture thus prorided, their tubes being prolonged to the mouth of the exearation whercin they reside, water is freely admitted to the branehire through one of the passages so formed, and exerement ejected through the other (fig. 398).
(1330.) Whoever watches these siphoniferous bivalves in a living state will readily appreciate the importanee of the pallial prolongations forming this tulbular apparatus ; espeeially if minute floating partieles are plaeed in the water wherein they are confined. It will then be perceived that powerful eurrents are perpetually rushing through the extremities of each siphon,

Fig. 398.

Mactru: a, b, siphons; e, hinge; c, d, addactor muscles; f, foot. caused by the rapid action of eilia plaeed within ; and the streams thus produeed not only form a provision for eonstantly elanging the water in which the branchiæ (fig. $398, g$) are immersed, but forcibly convey floating molecules to the aperture of the mouth, whieh is situated in the position indieated in the figure by the letter h, and thus supply abundanee of nutritive materials that eould, apparently, in animals so destitute of prehensile organs, have been procured by no other contrivance.
(1331.) The last family of this elass ineludes those species which.
like the Pholus and I'eredo, bore in stone or wood, or, like the Solen, penetrate deeply into the sand. In such, the mantle is prolonged into terminal tubes of great length, and their shells remuin always open at the extremitics : these constitute the division to which Cuvier has applied the name "Enfermés," on account of the very complete union of the two sides of the mantle; and from such forms of Concirifera the trausition to the Tunicata, described in the last chapter, is by no means difficult.
(1322.) In animals circumstanced as the Conchiferd, it would be vain to expect any high development of the nervous system, or senses of an elevated character ; nevertheless a few small ganglia are perceptible in different parts, and nervous threads of extreme tenuity are seen to arise from them and to be distributed in various directions.
(1333.) One pair of ganglia, in the Dimyaria, is easily distinguished, occupying the ordinary position of the brain, namely above the œesophagus. Hence is derived a supply of nerves to the sensitive labial appendages, to the oral orifice, and other neighbouring parts. Two other ganglionic masses, of larger size than the brains properly so called, are placed near the postcrior retractor muscle ; and a fifth small ganglion, in those speeies provided with siphons, is found in the vicinity of the breathing-tube, the muscular walls of which receive nerves from this source.
(1334.) In the Monomyaria the nervous centres are more feebly developed, and the posterior ganglia proportionately smaller than those found in species possessed of two adductor muscles.
(1335.) In the Scallops (Pecten) the edges of the mantle are studded with numerous pearl-like points, interspersed among the retractile tentacula placed around its circumference. These, which are represented in the figure of Pecten already given (fig. 394), are considered by Poli* to be so many distinct cyes thus singularly situated; and, from the circumstance of their being furnished with so many organs of vision, he applied the name of Argus to the mollusca possessing them. Should the brilliant specks in question be really ocelli, they certainly are placed in the only position where they can be effieient as instruments of sight, inasmuch as the margin of the mantle is, in such animals, the only portion of the body capable of being protruded beyond the boundaries of the shell to a sufficient distance to allow the creature to peep into the world around it.
(1336.) The elaborate researehes of M. Siebold have demonstrated the existence of another sense in the Conehiferous Mollusca, namely that of hearing-or at least have pointed out the presence of an organ which, from its structure, seems to be appropriated to the reception of sonorous impressions. This remarkable apparatus is situated in the

[^171]foot, and is thus deseribed* by its discoverer as it occurs in Cyclas corneu:-" Un compressing the extremity of the foot of this speeics between two plates of glass, we bring into viow a large central nervous ganglion ; and on eaeh side of this there is a minute round reservoir, composed of an elastie, opaque, and tenacious substance. In the centre of this is eontained a perfeetly transparent eireular and flattened nueleus, which floats disconneeted from the sides of the body that contains it, and has an oseillatory movement. This nueleus appears to eonsist of a erystalline salt."
(1337.) The ovary is generally a wide glandular saceulus,

Fig. 399.

Cockle (Cardium): a, oral oriflce; b, foot; c, branchise. oceupying a considerable portion of the viseeral mass. In the Oyster, when full of spawn, it is largely spread through the body; and if at such seasons its delicate walls are ruptured, countless ova of mieroscopic dimensions escape from the lacerated part. In Pecten the ovary is very eonspieuous, from the brilliant eolour of the eggs contained in its interior ; it constitutes the greater part of the bulk of that prominent tongue-like organ which projects between the branchix (fig. $394, f$) : or in genera where the foot is very largely developed, as in Cardium rusticum, a great part of the base of that organ is hollowed out into a eapacious cavity, enelosed by its muscular walls, wherein the delieate folds of the ovarium (fig. $400, a$) are partially imbedded, together with a portion of the intestinal eanal (c).
(1338.) In almost all the Lamellibranehiate Acephala there is situated on each side of the body, near the insertion of the branchis, between the abdomen, the posterior muscle of the valves, the heart, and the liver, a gland, of a brown colour, which, from its discoverer, has

[^172]receivod the name of the organ or sac of Bojanus*, the nature of whieh has long been a puzzle to comparative anatomists. It seems to bc intimately in relation with the reproductive apparatus, the exerctory eanals of whieh always open cither into its intcrior or in its immediate vicinity. This organ is always readily rccognizablc. On scparating the branchial lamellæ after placing the bivalve upon its back (that is to say, upon that part of its eireumfercnce in which the hinge is situated), the student will observe on each side of the viseeral mass an oblong body of variable tint, the shape of which depends more or less upon that of the animal.
(1339.) The structure of this gland is rather complicated, its interior being made up of numcrous cavities communicating with each other. Its relations with the generative system prescnt themselves under three aspects: sometimes the reproductive glands open immediatcly into its cavity ; sometimes the two open externally by a common orifice ; and somctimes two distinet orifices, more or less separated from each other, bolong to each of the

Cockle (Cardium rusticum), showing the foot divided longitudinally to exhibit its muscular structure and a glands. The circulation ${ }^{b}$, branchise. through this remarkable viscus is of a venous charaetcr, and represents * "Mém. sur l'Organe de Bojanus," par Dr. H. Lacaze-Duthiers (Ann, des Sc. Nat. 1855).
a portal system : hence it has been alternately regarded as a respiratory organ, a testicle, and a urinary apparatus; its real office, howover, is still problematical.
$(13+0$.$) On throwing injection into the genital orifices*, the sexual$ Fig. 401.

glands become tinged; and on examining fragments of such genital glands microscopically, the injected substance may be seen mixed with the ova and spermatozoa. These facts may be observed with special ease in the eommon Cockle (Cardium ectule).
(1341.) Sometimes the ova may be seen actually laid by living females of Modiolce and Mytili, one of the valves of whose shell has been removed, on irritation of the genital orifice; and in others, the ova or the spermatic fluid may be made to pass out of their orifices at the breedingseason by pressing gently upon the foot. In Spondylus gaderopus, the geuital orifice is situated in the sac of Bojanus, where the eggs may occasionally be seen issuing forth, in aspect like a thread of vermicelli, composed of reddish ora mixed with mucus.
(1342.) When we consider the position of the ovary in these bivalves, plaeed as it is in the substance of the body, and reflect upon the immense number of eggs to whieh they give birth (for thousands of ova are gencrated by every one of these prolific beings), we perceive that, without some special provision, the imprisoned animals would, when gravid, be seriously ineonvenienced and exposed to continual danger, as the inordinate enlargement of the ovary would preclude the possibility of bringing the ralves of the shell into contact with each other. In order to obviate the difficulty referred to, the ova are expelled from the ovarian nidus in an immature condition, and complete their growth in a sitnation where they are diffused over a larger surface, so that the shells can be closely

[^173]approximated; and, moreover, the eggs and their contained offspring are by this contrivance freely exposed to the inflnence of the medium around, so as to allow a kind of respiration to be enjoyed by the unhatched young. The situation chosen is the branchial fringes, over

Fig. 402.

1. Oyster (Ostrea edulis), showing the ramifications and excretory duct of the generative system: a, mantle ; b, branchiæ; c, vcins at the base of the gills; d, adductor muscle; e, ovary. 2. Sperm-cells. 3. Secerning culs-de-sac from an individual almost entircly male. 4. Spermatozoids, magnified. 5. Orum envelojed in its capsule.
which the imperfect spawn, or spat, as it is technically termed, is found widely spread towards the close of gestation, still retained beneath the shelter of the shell of the parent, and thus preserved from destruction ; but at the same time, being in such a position freely washed by the ciliary currents, the respiration of the included embryo is adequatel y provided for.
(1343.) In the large branchial laminæ of the freshwater Mussel, it is to be remarked that both pairs consist of an intertexture of ressels arranged in a rectangular lattice-work, and covered by a delicate membrane, whilst the two external are distinguished by a structure which merits particular description. Above each external lamina of the gills is a duct proceeding from the posterior part of the foot towards the anal tube, long ago described as an oviduct by Oken, and having, on its lower surface, a long row of openings placed transversely, and forming the entrances to the cells or compartments of the gills themselres. These compartments are all arranged vertically in the gill, and, separated from each other by partitions, they appear as though they originated from the mutual recession of the two membranous surfaces of the gill, which remain connected only by the vertically disposed ressels that give rise to the septa; they serve for the reception of the ora, which, eoming from the ovary placed within the foot, and not by any means in
the gill itself, are, however, lodged there, and there receive their further development as in a uterus.
(1344.) The marine Conchifera, after they are hatched, undergo a very decided metamorphosis. On leaving the egg they present themsclres under the appearance of a eiliated larva, which at first is quite shelless, but which at a later period is furnished with a bivalve shell, and acquires a eiliated apparatus, somewhat resembling that of a Rotifer. This apparatus can be protruded or retracted at the pleasure of the little animal, which is, moreover, possessed of a "foot," often very long and moveable, by the aid of which it can crawl upon a solid surfaee as well as swim freely in the water, although subsequently it becomes immoreably fixed to a rock, like the Oyster, or imprisoned at the bottom of a hole of its own excavation, as the Tercdo. In freshwater specics, such as the Anodon, this kind of locomotive machinery does not exist; as a compensation, however, it is provided with a very remarkable structure, by which it is enabled secmrely to close its shell and thus prevent the intrusion of disagreeable visitors. Each valve at this period is of a somewhat triangular shape, and presents at its summit a long flexible piece surmounted by strong denticulations arranged quincuncially. Special muscles acting upon these pieces bend them inwards, much as the blade of a pocket knife closes upon its haft; and the teeth, fitting in bctween each other, effectually defend the abode of the young bivalve. Presenting one or other of the above modifications, the young of the Conehifera, on leaving the egg, become lodged between the branchir or within the folds of the mantle of their mother, and thus protected await their metamorphosis. The period having arrived, they lose their transitory organs and assume the permanent charaeters of the species to which they belong, sometimes appearing to be raised a few degrees in the zoological series, sometimes to be debased to a lower station than they occupied at first. In the first of these categories we find the Anodons, which become provided with a foot; in the second. the Oysters and Teredos, which lose all capability of stirring from the same spot.

CHAPTER XX.

BRACIIIOPODA* (Cuvicr).

Pahiobranchiata \dagger (Owen).
(1345.) The next class of Mondusca which presents itself for our consideration was named by Cuvier on account of the remarkable character of the organs by meaus of which the animals composing it procure the food destined for their support. These instruments eonsist of two long spiral arms placed on each side of the month, that in many species can be unrolled to a considerable length, and protruded to some distance in search of aliment. The above character, however, taken by itself, would scarcely warrant us in regarding the ereatures before us as forming a separate elass of Mollusca ; but wheu, in addition to this remarkable feature in their organization, we find that they possess a respiratory apparatus peculiar to themselves, and differ widely from all other bivalves in almost every part of their structure, we feel little hesitation in continuing to regard them as distinct, and devoting the present ehapter to an investigation of their anatomy.
(1346.) The Braemropoda inhabit bivalve shells, and for the most part are suspended by a fleshy tubnlar pedicle, resembling that of the Cirripeds, to various submarine bodies. Such, at least, is the case in Lingula and Terebratula; but in the third genns belonging to this elass, namely Orbicula, the pediele is wanting, the lower valve of the shell being fixed immediately to the rock whereunto the animal is attached.
(1347.) The shells of the Brachiopoda are formed upon two plansone having the valves artienlated, the other having them unarticulated \ddagger. Those with articulated valves (Waldheimia) have the hinge generally furnished with teeth and corresponding sockets, which so lock the valves together that their movements are very limited. In the unartieulated forms (Lingula) the valves do not move upon each other, for when open no part of their margins are in contact. The two dirisions of the Brachiopods thus indicated will be found to be still more marked in their internal organization.
(1348.) The muscular system in the Braehiopods is vers complicated, and peculiar in its arrangement. Five or six pairs of muscles have been described in the Terebratulidæ, all of which have relation to the

[^174]movements of the valves upon each other, or to their attachment to, or movements upon, the pedicle. Thus the muscles naturally divide themselves into two groups, the ralvular, and those for adjusting the shell upon its pedicle. Of the former there are three pairs, which have been denominated respectively "adductors," " cardinals," and "accessory cardinals." Of the latter there are likewise three pairs, which have been designated the "dorsal pedicle-muscles," the "ventral pedicle-muscles," and the "capsular muscles;" the capsular muscles, however, are gencrally blended into onc.
(1349.) On separating the testaceous valves, the body of the Brachiopod is found to be enclosed betwcen two delicate membranes, which exactly line the shell ; and to these membranes, as in the case of other mollusks, the name of mantle has by common consent been appropriated. The mantle itself is thin and semitransparent; but its margins are thickened, and fringed with delicate setr.
(1350.) When the two lobes of the mantle are widely divaricated, as in Lingula (fig. 403), we perceive the prominent orifice of the mouth (b) placed deeply between them : on each side of the mouth are the two fleshy fringed arms, which in this case can be protruded to a distance out of the shell, and, as Cuvier * supposes, may act as oars, and thus enable the animal slightly to alter the position of its body; or else, as they are most probably delicate organs of touch, they may perform the office of highly sensitive tentacula.
(1351.) In T'erebratula psittacea the arms are cnormously developed, fringed upon their outer margins, and quite free, except at their origins: when completely con-

Lingula, with the ralves separated: a, the pallium or mantle; b, the mouth. (After Cuvier.) tracted, they are disposed in six or seven spiral folds; and when unfolded, they extend beyond the shell twice its longitudinal diameter. The mechanism by which they are unfolded is described by Professor $0 w e n \dagger$ as being simple and beautiful. The principal stem of each arm is hollow from one end to the other, and contains a fluid, which, being acted upon by the spirally disposed muscles forming the parietes of the canal, is forcibly injected towards the extremity of the arm, and the organ is thus expanded and protruded outwards.
(1352.) In Terebratula chilensis, on the contrary, the movements of the arms are extromely limited, and they can no longer be protruded from the shell as in the preceding species, being connceted throughout

[^175]their whole length with a peeuliar complex testaccous apparatus attached to tho internal surface of the imperforate valve of the shell (fig. 404, 13), the arrangemont and uscs of which are thus described in the memoir

Valves of Terebratula chilensis, showing the internal framework. (After Owen.)
above-mentioned:-The principal part of the internal framework alluded to consists of a slender flattencd calcareous loop $(f f)$, the extremities of which are attached to the lateral elerated ridges of the hinge : the

Fig. 405.

Lateral view of the viscera of Waldheimia australis: a, dorsal surface of the animal; b, its rentral surface; d, d^{\prime}, the arms or brachia, folded in a spiral; e, f, brachial sinuses; g, groored ridge of brachium; h, sheath of transverse portion of calcarcous loop; i, j, k, l, l, muscles for closing and opening the shcll; m, peduncle; n, peduncular eapsule; o, peduncular muscle; μ, csophagus; q, stomach, with terminations of biliary duets, exhibited by removing the left lobes of the liver; r, right lobes of the liver; s, intestine; t, u, mesenterie attachments of the riscera; v, the right oviduet ; w, the heart; x, y, pallial vessels; z, cesophagenl ganglion. (After Albany Hancock.)
crura of the loop diverge, but again approximate each other as they advance for a greater or less distance towards the opposite margin of the valve ; the loop then suddenly turns towards the imperforate valve,
and is bent back upon itself for a greater or less extent in different species. The loop, besides being fixed by its origins, or crura, is commonly attached to two processes ($d d$) going off at right angles from the sides, or formed by a bifurcation of the extremity of a central process (c), which is continued forwards from the hinge; but it is sometimes entirely free except at its origins. The arches of the loop are so sleuder that, notwithstanding their calcarcous nature, they possess a slight degree of elasticity, and yield a little to pressure. The interspace between the two folds of the calcareous loop is filled up by a strong but extensile membrane, which binds them together, and forms a protecting wall to the viscera; the space between the bifurcated processes in T. chilensis is also similarly occupied by a strong aponeurosis. In this species the muscular stem of each arm is attached to the outer side of the loop and the intervening membrane. They commence at the pointed processes at the origin of the loop, advance along the lower portion, turn round upon the upper one, are continued along it till they reach the transverse connecting bar, where they again advance forwards, and terminate by making a half-spiral twist in front of the mouth.
(1353.) The most obvious function attributable to the tentacular organs of the animals composing this class is connected with the procurement of food; for, being deprived of prehensile instruments, without some adequate contrivance these helpless creatures, imprisoned in their testaceous covering, and fixed immoveably in one locality, would be utterly unable to obtain the nourishment necessary for their support. The provision for this purpose is found in the arms, whether they be extensible or attached to calcareous loops ; for these organs, being covered by cilia, produce powerful currents in the surrounding medium, which, being directed towards the mouth as to a focus, hurry into the oral aperture whatever nutritive particles may chance to be in the vicinity. The mouth itself is a simple orifice with prominent fleshy lips (fig. 403, b), but unprovided with any dental apparatus. The alimentary canal in Lingula is a long and convoluted tube, but without a perceptible stomachal dilatation; in Terebratula, however, there is a large oval

Digestive apparatus of Terebratula. A: $a b d$ e f, the alimentary canal ; c, the hepatic crea. B: hepatio follicles, magnifled. stomach (fig. 406, s, d), into which numerous ducts derived from the hepatic follicles open by large orifices. The structure of the liver in these animals is displayed by Professor

Owen in the memoir from which the annexed figures are taken ; and the simplicity of its organization affords an interesting lesson to the physiologist. The hepatic organ (fig. 406, $1, c$) consists essentially of numerous secerning cwea (fig. 406, s), as yct casily separable from each othor ; over which the visceral blood-vesscls ramify, and bring to the scereting sacculi the circulating fluid from which the bile is elaborated.
(1354.) Minute animal and vegetable organisms appear to be the chicf food of all the Brachiopods, perhaps the only food of the articulated species. In the latter, siliceous cases of the Dictomacece are almost always found, and sometimes in abundance. Lingula, however, appears to be a more general feedcr, its intestinc frequently containing a great variety of matter.
(1355.) The greatest peculiarity observable in the structure of the Brachiopoda is seen in the arrangement of the respiratory system; for these animals, instead of possessing proper branchial organs, as is the case with all other Mollusca, have the mantle itsclf conrcreded into a respiratory surface, and traversed by the ramifications of large bloodvessels, which form an elaborate arborescence spreading through its texture, so that it is obviously well adapted to perform the office assigned to it, more especially as its circumference is thickly studded with vibratile cilia, disposed in such a manner that by their ceaseless movements they impel continued supplies of aërated watcr over the whole of this vascular membrane. The lobe of the mantle which lines the perforate valve of Terebratula chilensis (fig. 407, c) contains four large longitudinal venous trunks or sinuses (m, m) ; and two others of similar dimensions are seen in the opposite lobe (a). These sinuses take their origin by innumerable radicles from a circular canal of great delicacy which encompasses the entire circumference of the mantle (d).
(1356.) A heart is present in all the Brachiopoda;

Fig. 407.

Taseular system of Terebratula chilensis: a, c, the mantle; d, eireular eanal encompassing the margin of the mantle; f, g, h, muscles of attachment: k, brachial fringes ; m, m, m, m, large venous trunks in the mantle. and when in an expanded state, it is of considerable size. In the artienlated species, it is appended to the middle line of the stomach, and projects frecly into the perivisceral cavity, reaching down almost to tho anterior margin of the oriducts. Its walls, when expanded, though rather thin, are firm. and do not
collapse. They are composed of two layers, the inner of which is distinctly muscular, the fibres running in various directions, but principally radiating from centres: the outer layer is transparent and homogeneous ; the interior is devoid of columnæ carncæ, and perfectly smooth. When this organ is in a contracted state, its size is very much reduced, the surface is slightly wrinkled, and the walls are much thickened.
(1357.) This unilocular heart, in Waldleimia australis (fig. 405, w), receives a large blood-channel or vessel in front, which, running forward along the dorsal ridge of the stomach, within the membrane denominated mesentery, communicates on either side by several minute openings with the gastric lacunce, which will be more particularly noticed hereafter. The antcrior extremity of this channel passes down the dorsal surface of the osophagus, and, dividing into two lateral trunks, opens at cach side into a system of large lacunæ placed around the alimentary tube. This channel is the afferent cardiac channel or branchio-systemic vein.
(1358.) A little behind the point where the heart receives this channel, two aortic vesscls pass off laterally. The two orifices communicating with these vessels are guarded by sphincter valves, resulting apparently from the protrusion inwards of the lining membrane. From these vessels numerous branches are given off to.supply the different viscera. The peripheral portion of the circulation is composed of an extensive system of lacunæ or blood-channels, originally described by Professor Huxley, which, when the specimen is in good condition, are easily traceable, the channels or spaces being then, for the most part, filled with blood-corpuscles, which give to the lacunæ an opaque yollowish hue, rendering them as distinct and sharp as though they had been injected; and as the circular points of union between the layers of membrane forming their walls are transparent, and conscquently liable to appear of a darkish tint, they show like spots on a light ground, not altogether unlike the markings upon a leopard's skin. In other lights, the whole has a beautiful lace-like delicacy. These lacunæ occasionally assume a dendritic or branched character, particularly as they approach the margin of the mantle, where they become minute, and run almost parallel to each other, forming minute twigs, which pass on to the external circumference of the lobe.
(1359.) The inner lacunæ, or those of the inner wall or floor of the great pallial sinuses, have a very different character ; they resemble, however, the lacunæ in the anterior wall of the body, with which they are in communication. They are in the form of numcrous narrow channcls, which, anastomusing at various points, compose a network of very long transverse meshes; thus most of the channels cross the direction of the sinuses, and run parallel to each other. Hence it would seem that the walls of the body and the lamine of the pallial lubes present one great system of blood-channels or lacunx, the various parts of
which freely communicate with cach other, and surround all the viscera of the borly.
(1360.) The blood-system of the branchialapparatus nextelains attention. This is beautifully developed, and presents eonsiderable variety in the plexuses of which it is composed. The walls of the great canal, the ridge supporting tho cirri, the membranes that unite the upper and lower membranes of the loop, and that which connects the spirals, all have their systems of lacunæ, which intercommunicate and form the brachial system.
(1361.) Let us now procced to follow the course of the blood through this complicated vascular apparatus. It has been shown that the heart is a simple unilocular pyriform vesicle suspended from the dorsal aspect of the stomach, and projecting freely into the perivisceral chamber, that there is neither auricle nor pericardium (unless the membrane which elosely invests it can be so called), and that it is hardly more complex in structure than the pulsatile vessel of the Tunicata; nay, in Lingula it scarcely at all differs from the heart of those lowly organized mollusks. This vesicle or heart propels the blood through four arterial trunks or channels to the reproductive organs and mantle, and probably also to the alimentary tube, and is apparently assisted by four or more pulsatile vesicles in connexion with those prineipal trunks. The blcod thus eonveyed by the genital and pallial arteries will escape, by the lacunæ in the membranes suspending the genitalia, into the plexus in the floor of the great pallial sinuses. Thence it will find its way into the outer lacunary system of the pallial lobes, and into that of the dorsal and ventral walls of the body, as well as into the lacunæ of the anterior parietes.
(1362.) Having saturated all these parts of the peripheral system, it will divide itself into two currents, one of which will set backwards in the direction of the membranous bands connecting the alimentary tube to the parietes, and will flow through their channels into the system of visceral laeunæ, which encircle the alimentary canal, within its sheath, and which probably earry blood to the liver. This current will also supply the lacunæ nourishing the muscles. The blood thus directed will reach the branchio-systemic vein, either by the great osophageal lacunæ, or through the foramina which penetrate the sides of the channel as it runs along the dorsal ridge of the stomach.
(1363.) The other blood-current will set forward in the direction of the base of the arms, and some of it will pass into these organs through their general system of lacunæ; but the principal portion will be carried by the afferent brachial canal to the extensive plexus of lacunæ in those parts, and will circulate in the walls of the great brachial canal. The blood will then be drawn up one side of the eirri, through tho vessels (the afferent brachial arterics) originating in the great brachial plexus, and, returning down the other, will be poured into the efferent brachial canal, and thus reach the lateral efferent sinuses at the root of the oesophagus. Thence it will enter the great ossophagenl laeune,
and, there meeting with the other current of returuing blood from the visceral lacunæ, will be carried to the heart by the branchio-systemic vein along the dorsal aspeet of the stomach. Thus it will be seen that the blood finds its way back to the heart in a mixed condition. That which is conveyed by the gastro-parietal and other channels will be imperfectly aërated, having only flowed through the pallial membranes, which must be looked upon but as accessory oxygenating agents. The arms undoubtedly perform the office of gills, and are true respiratory organs. The blood which circulates tlrough them will consequently be returned in a perfectly aërated condition, to be mixed, however, with that in a less pure state from the viseeral lacunæ, before it enters the heart. This mixed state of the blood is not by any means peculiar to these animals ; for it obtains in many of even the higher Mollusks.
(1364.) As in all true Mollusks, the ganglionic centres are placed in comnexion with a nervous collar surrounding the œesophagus. In Waldheimia australis the collar is situated at the commencement of the alimentary tube ; and there are five nervous eentres, three of which, on account of their superior size, may be assumed to be the principal œsophageal ganglia, from which nerves are given off to supply the pallial apparatus, the muscles, and the various viscera of the body.
(1365.) No special organs of sense have yet been observed; indeed sight, hearing, or smell could be of little use to animals like the Braehiopods, deprived of locomotion, and firmly fixed during the whole period of their lives to one spot. Forbes and Hanley, in their ' British Mollusca,' regard as ocelli and otolitic capsules certain red spots perceptible, in some speeies, at the bases of the setigerous follicles; but these Mr. Haneoek thinks are nothing more than glandular matter in connexion with the growth of the setæ.
(1366.) The Reproductive system of the Brachiopoda has been minutely described by Mr. Albany Hancock in the memoir above quoted. In Waldheimia uustratis the generative organs consist of thick bands somewhat convoluted and ramified ; they are of a full yellow eolour, and are lodged in the trunks and main branches of the great pallial sinuses. There are four of these bands, two in each lobe: those in the dorsal lobe are single, and occupy the two outer or lateral sinuses, extending from behind the attachment of the occlusor muscles to within a short distance of the anterior margin of the mantle ; their posterior extremities reach to the perivisceral chamber. The ventral pair extend as far forward as the dorsal, and are double ; that is, each forms a loop, the free extremities of which pass into the outer and inner sinuses of the same side; the looped portions lie within the periviseeral chamber. These genital bands are attaehed to the inner lamina of the mantle throughout their whole extent by a membrane which, originating in this lamina, passes into a groove extending along the under surface of the genital band. The genital or pallial artery runs along the edge of this membrane, aud
has tho reprodutive organ developed around it. This is the most obvious disposition of the parts, as apparent on a general examination ; but on a closer inspeetion, there can be but little doubt that these organs are in reality developed between the two membranes which compose tho inner lamina of the mantle, and, eausing the interior of those to bulge out, beeome suspended, as it were, in the pallial siuus. Those in whieh ova are deficient are generally supposed to be the male secreting organ. The form, eolour, and general appearance of these eggless bands do not differ, however, from thoso charged with ova, and have very mueh the eharaeter of undeveloped ovaries. The generative organs are very pereeptibly composed of two elements :- the yellow ovigerous substance, whieh forms the chief mass; and a red material, which is distributed over the surface of the organ. When the organ is in a low state of development, this red matter forms a narrow irregular eord, which runs along the sides of the band, and is oceasionally spread over the surface in spots and blotches. When the ova are mature, this substance ean still be traced as small specks on the surface and throughout the mass. From what will shortly be stated in regard to Lingulc, it scems probable that this red matter may prove to be the testis.
(1367.) In Lingula the reproductive organs are withdrawn altogether from the mantle, and plaeed in the perivisceral cavity. They are very bulky, occupying a large portion of the chamber ; they lie for the most part behind the liver, and surround the alimentary tube ; they form four irregularly lobulated branched masses, two above and two below the tube; these pairs may be denominated the dorsal and ventral ovaries. When in a highly developed state, the lobes or branehes insinuate themselves between and around the muscles, so that it is almost impossible to trace the relation of these organs to other parts; but when immature it is very easy to do so. The dorsal ovaries are then found to be suspended by the ilio-parietal bands, the ventral by the continuation of these bands along the pseudo-hearts or oviducts. In both cases the attachment is along the margin of the bands, between the two layers of which they would seem to be developed. In Lingula the red substance alluded to above forms a dendritie or branched organ, spread over the external surface of the ovarian masses. On examining a portion of this branched organ under the mieroseope, it is found to be composed of large irregular cells, somewhat elliptical in form, and closely resembling those of the red substance in connexion with the ovaries in Waldheimiu. The eells, however, in Lingulu appeared to present different stages of development, varying mueh in size and form ; and some of them were filled with numerous delieate hair-like bodies resembling spermatozoa. From these facts it can scarcely be doubted that the dendritic organ is the testis, and that the fusiform cells are fully developed spermatophor:a containing spermatozoids. It would thus appear that Limyula is androgynous: and if the red matter in comexion with the generative organs
in the articulated Brachiopods should prove to be the samo as the dendritic organ in the former, then in them also the sexes are combined.
(1368.) Professor Owen supposed that the ova, when mature, escape by the dehiscence of the pallial membranes. So long as no passage was discovered leading externally from the perivisceral chamber, this could be the only possible conelusion, but ean now no longer be maintained ; for it has been ascertained that more than one such passage exists ; the natural inference would therefore seem to be that the eggs will find their way through these passages, which may consequently be looked upon as oviducts.
(1369.) These curious organs were originally described by Cuvier as hearts, in his well-known memoir on Lingula anatina, and subsequently by Professor Owen on the Brachiopoda generally; they open, however, externally, and therefore can have nothing to do with the vascular system.
(1370.) In Lingula the oviducts are rather peculiar in form, though essentially the same as in the articulated Brachiopods. They are two in number, and lie to a great extent between the two layers of the ilioparictal bands, stretching along the lateral walls of the perivisceral chamber from the front to behind the dorsal attachment of the adductor muscles, and are so concealed by the viscera and museles that very little of them can be seen until these parts are removed. The expanded portions open upwards and towards the lateral walls of the body, through the processes of the ilio-parictal bands, close to the side-walls of the chamber. They are of a yellowish colour, and terminate at the external surface in two small diagonal slits, one a short way on either side from the median line, a little below the mouth. The walls have a glandular appearance, the iuside being velvety from the numerous minute villi which crowd the surface.
(1371.) From the nature of these organs, it seems probable that the ova on their passage outwards may receive some external covering. In two instances, in which the ova were mature, Mr. Hancock found them in vast numbers strewed about the perivisceral chamber, and in one of the oviducts several had penetrated nearly to the external orifice.

CHAPTER XXI.

GASTEROPODA * (Cuvier).
(1372.) Extensively distributed over the surface of the land, or inhabiting the waters either fresh or salt, there exists a very numerous borly of Mollusea, differing widely among themselves in construction

[^176]and habits, but distinguished by a peculiar locomotive apparatus common to the entiro elass, by means of which they are able to fix themselves to plane surfaces, and to move from place to place by a slow and gliding motion. The Sluy, the Sncil, the Limpet, and the Whell afford familiar examples of their general form and external appearance; but species of different kinds are so common in every situation, that it would be wasting the time of the reader to dwell at any eonsiderable length upon their ordinary configuration and usual mode of progression.
(1373.) Many families of Gasteropoda (fig. 414) are absolutely deprived of any shelly defence, the investment of their bodies being entirely soft and contractile. In others, as the Slug (Limax), a thin calcareous plate is imbedded in the substance of their muscular corering. This little shell is contained in a cavity within the mantle, and is quite loose, and unattached to the walls of the coll wherein it is lodged. The mode of its formation and growth is exceedingly simple, and from its very simplicity is well calculated to illustrate the formation of shells of more complex character. The floor of the cavity containing the calcareous plate is vascular, and secretes cretaceous particles mixed up with a viscid animal secretion. The material thus furnished in a semifluid state is applied like a layer of varnish to the lower surface of the shell already formed by the same process; and the added layer, soon hardening, increases the thickness of the original plate, while at the same time, as a necessary consequence of the progressive extension of the secreting membrane, which enlarges with the growth of the Slug, each successive lamina of shell is larger than that which preceded it. Thus the extension of the shell in diameter, as well as its increase in thickness, is easily explained, In these internal shells, however, there is no colouring-matter ; so that they are uniformly white, and present the same texture throughout.
(1374.) As external shells are generally painted upon their outer surface with eolours of different kinds varionsly disposed, in such the process of growth is somewhat more complicated, and in every essential particular resombles that already described, whereby the shells of the Conchifera are extended in size and thickness.
(1375.) We ehoose, as an illustration of the manner in which the external shells of mivalves are construeted, one of the least complex forms, as being best adapted to elucidate this part of our subjeet. The Patella, or common Limpet, is covered with a simple eonieal shell that extends over the whole of the dorsal surface of the mollusk. The testaceous shield that thus protects these animals is generally variegated externally with sundry markings of diverse colours, while within it is lined with a smooth and white nacre.
(1376.) On making a perpendieular section of one of these Gasteropods, the entire mechanism by whieh sueh shells are constructed and painted is at once rendered intelligible. The whole of the baek of the
animal covered by the shell is invested by a membranous mantle, like that of the conchiferous mollusk; but different parts of this mantle are appointed to different offices. The extension of the shall is entirely effected by the margin of the mantlc (fig. $408, b$), which is thick, vascular, and studded with glands appointed to secrete the colouring material that paints the exterior. This thickened fringe of the mantle is firmly glued to the circumference of the opening of the shelly cone: the earthy

Fig. 408.

Scetion of Patella: a, mantle; b, its glandular margin ; c, branchial fringe ; f, internal nacreous layer of shell; g, its extcrnal laminated layer. matter produced by it is added, layer by layer, to the edge of the shell ; and wherever coloured glands are situated, this earthy sceretion is coloured with a corresponding pigment: in this manner is the sliell gradually enlarged, and every additional stratum of calcareous deposit is thus painted at the moment of its formation.
(1377.) The growth of the shell in thickness is a subsequent process. After the formation of the outer layer (g) by the edge of the mantle, the general surface of the pallial membrane (a) adds fresh laminæ of pearly matter (f) to the whole interior of the testaccous shield, and it is by the accumulation of such colourless depositions that the thickening of the entire fabric is provided for.

Fig. 409.

Helix pomatia, removed from its shell: a, mantle covering that portion of the body which is lodged within the spire of the shell; b, collar; c, oculiferous tentacles; d, anterior tentacles; e, aperture leading into the respiratory chamber; f, tocth detaohed.
(1378.) Wher the manner in which the Limpet construets its habitation is understood, the formation of a turbinated or spiral shell is
explained with the utmost facility. On extracting a Snail from its abode, all that portion of its body which was covered by the shell is seen to be invested with a thin mantle (fig. 409, a) precisely analogous to that of the Limpet: from this pallial membrane the nacreons lining of the shell cexudes. But around the aperture the mantle swells into a thick glandular collar (b), corrospondent in function with the margin of the mantle in Patella, and in like manner provided with glands adapted to furnish colouring-matter. From the collar, therefore, those layers are secreted by which the extension of the shell is accomplished; and as the deposit is in this case far more abundant in one direetion than in another, the shell, as it expands, assumes more or less completely a spiral shape. Wherever glands for secreting coloured pigmont exist, eorresponding bands or coloured patches are produced as the layers of growth are formed, and the exterior of the sholl is thus painted with the tints peculiar to the species.
(1379.) In many marine Gastoropods, spines and various external processes are found projecting from the outer surfaee of the shell, the production of which dopends upon the shape of the margin of the mantlo. Let the reader imagine one of these ornamented shclls to be transparent, so as to permit the contained animal to bo delineated in situ, as in the annexed sketch of Pterocerc (fig. 410); and the collar, whieh

Fig. 410.

Animal of Pterocera in situ: a, branchial chamber, showing the position of the branchial fringe; b, b, tentacula; d, d, shell in outline ; e, termination of intestine; f, siphon; g, operculum.
forms the layers of growth, will be found to exhibit fringes or processes precisely resembling those upon the shell itself. But it is only at intervals that, as the growth of the mollusk proceods, these pallial appendages oncase themselves in a calcareous covering, every such interval being distinctly indicated upon the exterior of the shell by the spaees between the successive rows of spinous projections that mark the terminations of so many distinct periods in its formation: so that the
number of ridges or rows of spines is, of course, correspondent with the age of the creature within.
(1380.) Several of the Pectinibranehiate genera are provided with a very eomplete defenee against the assaults of foes that might attack them while they are eoncealed in their habitations and, in sueh a posture, necessarily helpless and ineapable of resistance. The provision for their protection is suffieiently simple: attaehed to the posterior extremity of the body, which is the part last drawn into its abode, is a broad horny or ealeareous plate (fig. $410, g$), ealled the operculum ; this is of variable dimensions in different species, but always aeeurately eorresponding in shape with the eontour of the mouth of the shell. By this elegant eontrivance a door is closely fitted to the aperture of its retreat whenever the mollusk retracts itself within its eitadel ; and thus defended, it may safely defy external violence of any ordinary deseription.
(1381.) A most remarkable exception to the usual univalve eondition of the shells in the Gasteropoda is observable in one solitary genus belonging to the Cyclobranehiate order. In Chiton (fig. 411)

Fig. 411.

Chiton: A, ventral ; B, dorsal nspect: a, branchial fringe ; c, flexible margin surrounding the central plates of the shell.
we find, instead of a turbinated or shield-like covering formed of one piece, a kind of armour eomposed of several distinct plates, arranged in a longitudinal scries along the centre of the baek, and overlapping eaeh other like the tiles of a house.
(1382.) In theso curious animals the whole back is invested with a denso leathery mantle of an oval form, and considerably more extensive than tho earity containing the viscora. Where not covered by the ealearoous laminæ, the exterior of the mantle forms a broad edge variously seulptured in different species: but along its central part the shelly plates, generally cight in number, are partially imbedded in its substance ; being, no doubt, secreted by the surface whereunto they are attached. These mollusks, notwithstanding the singularity of their covering, which almost reminds us of the armour of many Articulata, in their internal anatomy conform exactly to the type of structure common to the Gasteropod order, and offer no peculiarities of organization worthy of special notice.
(1383.) Feeble and languid as are the sluggish movements of the Gasteropoda, they nevertheless present to the cye of the anatomist a type of organization considerably superior to any that we have had an opportumity of considering in such forms of the Heterogangliata as have been described in the preceding chapters. From the superiority of their mode of progression, it is evident that they are adapted to enjoy a less limited intereourse with external objects than even the most highly gifted of the burrowing Conchifera; and accordingly we find in them a nervous system exhibiting a more complete development, senses of a higher character, and, in the organization of their internal viscera, a complexity of parts such as has not heretofore fallen under our notice -every indication, in fact, that they are animals of a higher grade and more elaborate structure. For instance, they exhibit a distinct head, in which is lodged a supraœsophageal ganglion of large proportional size; and upon the head are found retractile instruments of sensation of peculiar structure, and not unfrequently perfectly formed organs of vision.
(1384.) Let us, however, select one species for particular description; and after having become acquainted with the details of its anatomy, we shall be better prepared to examine such modifieations of the rarious organs as are found in other orders destined to exist under different circumstances.
(1385.) The common Snails (Hetix) are well known as far as relates to their external appearance; and, insignificant as they might be thought by those unacquainted with their habits, they not unfrequently become formidable pests to the horticulturist, from the ravages caused by their voracity. On examining a Snail more attentively, we find its body partially enelosed in a thiek muscular envelope composed of transverse and longitudinal fibres, which, being unsupported by any skeleton, allows the shape of the animal to vary at pleasure, as it is shortened or elongated by the contractions of the muscles composing it. The foot, or ventral disk, is equally composed of an interlacement of muscular fibres: and not only does it form an extensive sucker, but by the successive
action of various portions of its substance a slow and gliding progressive motion is produced.
(1386.) From the head of the Snail when its body is expanded, as when in the act of secking food, four tentacula are protruded (fig. 409, c, ct), which, besides being exquisitely sensitive organs of touch, carry, at the extremities of the superior pair, two minuto but perfeet eyes. When the ereature is at rest, the tentacula as well as the eyes are retracted into the visceral eavity, by a mechanism hereafter to be noticed. A large proportion of the viscera is enclosed in a turbinated caleareons shell, of sufficient capacity to allow the whole body of the animal to be withdrawn from observation and lodged in its interior.
(1387.) The mouth is situated upon the under part of the head, and, when widely opened, exhibits a cutting instrument of singular contrivance. Attached to the upper part of the muscular cavity that contains the oral apparatus, there is a broad horny plate, the lower edge of whieh is free, very sharp, and slightly curved, forming, in fact, a knife (fig. $409, f$), admirably adapted to divide the leaves and soft parts of vegetables when they are pressed by the aetion of the lips against its cutting edge.
(1388.) The floor of the mouth is provided with a small cartilaginous tongue, covered with delieate transverse strix caused by the presence of innumerable microscopic teeth, and so disposed that by its movements it is well calculated to assist in propelling the food into the cesophagus. This remarkable organ, now generally denominated the "odontophore" *, eousists essentially of a cartilaginous cushion supporting an elastic strap, which bears a long series of transversely disposed teeth. The ends of the strap are conneeted with muscles that, by their alternate eontractions, eause the tooth-bearing strap to work backwards and forwards, as though over a pulley. The strap is thus made to act somewhat after the manner of a chain-saw upon any substance to which it is applied, the resulting wear and tear of its anterior teeth being continually made good by the incessant development of new teeth formed in a sort of sac in which the hinder end of the strap is lodged. In addition to the chail-saw-like motion, the odontophore would seem to be capable of a licking or scraping action, whereby substances submitted to the operation of this wonderful instrument are speedily abraded and devoured.
(1389.) The cosophagus (fig. 412, e e^{\prime}) is continued from the muscular eavity (c ') that eneloses the dental plate, and soon dilates into a wide stomachal receptacle (v, r), the posterior portion of which, when in situ, is imbedded among the viscera contained in the shell; but in the figure all these parts are unfolded and separated from each other. At the termination of the stomaeh, biliary vessels (c) are inserted, and the intestine commences,-the latter being a simplo tube (a, e), intervolved among the masses of the liver, nearly of equal diameter throughout,

[^177]and presenting internally neither valves nor any other remarkable appearance. Extemally the intestine is intimately connected with the lobes of the liver, among which it lies imbedded, by means of a delicate cellulosity and vascular twigs passing from one to the other. The anal aperture (0), when undisturbed by dissection, is placed upon the right side of the neck, in the immediate vicinity of the orifice (fig. 409, e) that leads into the respiratory cavity.
(1390.) Two sets of auxiliary glands are subservient to digestion, the salivary and the hepatic, both of which are of considerable size.
(1391.) The salivary glands are semitransparent, and of a whitish colour; they form two irregular broad ribands, which extend along the sides of the stomach (fig. 412, v), spreading out so as to embrace a considcrable portion of its extent, and they are oceasionally joined together by intcrcommunicating processes. Two ducts, one derived from each gland, run along the sides of the cesophagus, and open into that canal close to the mouth.
(1392.) The liver is of large proportionate dimensions, and is made up of four lobes (fig. 412, b, d) of a dark-brown colour, and composed of an infinite number of minute lobules, every one of which produces a biliary ressel ; and these, joining continually with each other, form four large hepatic ducts, one proper to every lobe of the liver. The four hepatic ducts ultimately unite into one great central vessel (c), that opens into the alimentary canal in the immediate vicinity of the pyloric extremity of the stomach.
(1393.) The Order of Gasteropoda to which the Snail belongs is composed of air-breathing animals ; and we must accordingly expect to find these mollusea provided with a respiratory system specially adapted to the mode of life to which they are destined. The mechanism adopted is as follows:-A capacious chamber, of a somewhat triangular form, is placed beneath the dorsal surface of the body, and separated from the visceral cavity by a broad muscular septum forming its floor. Into this chamber a wide orifice (fig. 409, e), situated upon the right side near the margin of the shell, allows the atmospheric air to enter. The roof of the respiratory eavity is covered with a most intricate arborescence of blood-vessels (rudely sketched in fig. 412, k), in which the blood is freely exposed to the air therein contained; while the muscular floor, performing alternate movements analogous to those of the human diaphragm, continually draws in and expels the air, so as to ensure its constant renewal. The manner in which respiration is effected, and the general disposition of the circulatory apparatus, are therefore briefly this:-The blood derived from all parts of the body is brought to the respiratory chamber by large veins provided for the purpose ; arrived there, it is dispersed through the countless ramifications of delicate vessels spread over the entire roof of the breathing-cavity, and thus beeomes exposed to the purifying influence of oxygen. The renovated blood is then re-
collueted by the large pulmonary rein (k); and being conveyed to the heart, whieh is composed of a single amriele (k) that communieates with a strong rentrieular eavity (g), it is propelled through the entire arterial system derived from the aorta (f).

Fig. 412.

Abstract

Anatomy of the Snail (Helix pomatia): a, intestine; $b d$, liver; c, bile-ducts; e, rectum ; f, aorta; g, ventricle of the heart; h, auricle; i, sac of viscosity; k, pulmonary vein ; l, margin of the collar of the mantle; m, duct of the sac of viscosity; n, groore in which it terminates; o, the anal orifice; p, thickened portion of the testicle; q, oviduct; r, terminal end of the stomach; s, ovary; t, spermatheca; u, oviduct; v, stomach; u, matrix or enlarged portion of the oviduct; x, alivary gland; y, slender portion of the testicle; z, whip-like part of the . penis ; a^{\prime}, sace of the dart; b^{\prime}, body of the penis ; c^{\prime}, muscular mass of the mouth; d^{\prime}, common generative sac; e^{\prime}, œsophagus; f^{\prime}, inverted tentacula.

(1394.) The whole of that part of the body of the Snail whieh is not permanently eovered by the shell is defended by a thiek skin, the surface of which is irregularly furrowed, and continually moistened by
a viscid secretion that exudes from glands apparently imbedded in the substance of the integument ; and the trnacious slime so furnished, if the creature be irritated, is poured forth in astonishing abundance.
(1395.) Neverthelcss, besides the slimy material thus copiously supplied by the tegumentary glands, there is in the interior of the animal a special apparatus apparently destined to furuish a viscid fluid of a similar character. The gland alluded to, called by Cuvier*, par excellence, "the seccrning organ of the viscosity," is in the Suail a triangular sac (fig. $412, i$) placed in immodiate contiguity to the pericardium. On opening it, it is found to be filled with an infinite number of very thin laminæ that adhere to the walls of its cavity by one of their cdges, and become joined to cach other as if by communicating branches. The exerctory duct of this slime-sccretor, which, we may obscrve, is found to exist in many other genera of Gasteropods, accompanies the rectum to its termination, where it opens extcrnally in the immediate vicinity of the orificc leading into the respiratory chamber.
(1396.) An organ, named by Swammerdam the "sacculus calcarcus," has recently been supposed by Mr. Jacobson to perform the office of a kidney. Chemical analysis of the matter sccreted by this viscus has lod him to the discovery in it of uric acid, ammonia, or calcarcous salt, and water. He was unable to detect any trace of urie acid in any other part of the animal; and as, in the superior animals, the kidneys are the only organs which, in a state of health, secrete uric acid, and as the calcareons sac of the Snails has many other anatomical relations with the kidneys, Mr. Jacobson concludes that this sac represents the kidneys, and must be so considered in all the Mollusca whieh possess it \dagger.
(1397.) Bcfore we enter upon a description of the somewhat complex generative system of the Snail, it will be proper to advert to one or two remarkable circumstances connected with the procreation of these singular animals. We must first premise that every individual is hermaphrodite, and moreover presents a kind of hermaphroditism of the most complete description, possessing elaborately construeted malc and female organs, which are distinct and separate from eaeh other ; but, nevertheless, the cooperation of two individuals is esscntial to the mutual impregnation of both. The manner in which they copulate is not a little curious, their union being aeeompanicd by preparatory blandishments of a vcry extraordinary kind, that to a speetator would seem rather like a combat betwecn mortal foes than the tender adrances of two lovers. After sundry caresses between the parties, during whieh they exhibit an animation quite forcign to them at other times, one of the smails unfolds from the right side of its nock, where the generative orifice is situated, a wide sacculns, which, by becoming everted, displays a sharp dagger-like spiculum or clurt attached to its walls. Haring

* Histoire des Mollusques-Mémoire sur la Limane el le Colimaçon.
\dagger Edinb. Journ. of Nat. and Geogr. Scicnce, iii. 1. 3:25.
bared this singular weapon, it endcavours, if possible, to strike it into some exposed part of the body of its paramour, who, on the other hand, uses cvery precaution to avoid the blow, by speedily retreating into its shcll. But, at length having received the love-inspiring wound, the smitten snail prepares to retaliate, and in turn uses every effort to puncture its assailant in a similar manner. The darts are generally broken off in this encounter, and either fall to the ground, or else remain fixed in the wounds they have inflicted. After these preparatory stimulations, the snails proceed to more effective advances. The sac of the dart is withdrawn into the body, and another sacculus is by a like process protruded from the common generative aperture. Upon the last-named organ two orifices are seen, one of which leads to the female generative system, while from the other a long and whip-like penis is slowly unfolded, being gradually everted like the finger of a glove, until it attains the length of an inch or more ; and then each of the two snails, by inserting its penis into the female aperture of the other, impregnates its partner, and is itself impregnated at the same time. Such is the peculiar manner in which the amours of snails are conducted. Let us now examine the internal viscera connected with the process.
(1398.) The sac of the dart first requires our attention. This viscus, when uninverted (for it must be turned inside out in order to expose the weapon within it), is a thick muscular bag (fig. 412, a^{\prime}) ; and on opening it, it is found to contain the dart, attached to a nipple-like protuberance at the bottom of the sac. The dart itself is four-sided; and as it grows by the constant addition of calcareous particles deposited at its base from the surface of the vascular protuberance to which it is fixed, so, if broken off, it is speedily reproduced in a similar manner.
(1399.) The male part of the gencrative system is composed of a testicle, vas deferens, and the whip-like penis above described.
(1400.) The testicle is considered by Cuvier* to consist of two distinct portions :-one, a soft whitish oval mass (fig. 412, p); while the other is elongated, thin, and granular (y), being imbedded among the convolutions of the oriduct (w). The vas deferens forms the excretory duct of both these portions, and terminates in the side of the penis, its orifice becoming, of course, external when that organ is protruded by evolution. The intromittent organ itself, as seen when lodged within the body of the snail, consists of two parts, a muscular bag which forms its body (b^{\prime}), and a long whip-like portion (z) ; the latter is hollow, but not perforated. The reader will now have littlo difficulty in understanding how this remarkable apparatus is protruded. The gencrative sac, common to both the male and female organs, first becomes inverted; the body of the penis ($b b^{\prime}$) then undergoes inversion in a similar manner, so that the orifice of the vas deferens appears extcrually; and lastly the long Loc. cit.
appendage to the penis (z), being likowise turned inside out by the action of tho muscles that composo its walls, eompletes this strangely constructed instrument. Its subsequent retraction into the viseeral eavity is effected partly by tho assistanec of a speeial retractor muscle, whieh acts upon tho body of the penis, but prineipally by the same eontractility that accomplished its evolution.
(1401.) The female system next demands our notice; and this will be found to present for our investigation an ovary and lengthy oviduct, to whieh are appended eertain auxiliary organs, namely the spermuthece and the multificl vesicles.
(1402.) The ovary (fig. $412, s$) is found situated in the inmost recesses of the shell, and partially imbedded in the substanee of one of the lobes of the liver. From the ovary a long oviduct (q) is derived, whieh is at first thin and slender; but, soon bceoming wider and more eapaeious (u), it gradually expands into an extremely convoluted intestiniform viscus, to whieh the name of uterus has been improperly given, and ultimately terminates in a canal derived from the spermatheea, to be described hercafter. It is during their passage through this enormous oviduct that the eggs attain their full growth preparatory to their expulsion from the body.
(1403.) Another viseus, called by Cuvier simply " the bladder," is, from the constaney of its oecurrenec, evidently an organ of importanee; and there seems to be little room to doubt that it is intended to be a reeeptacle for the seminal fluid, analogous in funetion to the eopulatory pouehes we have already met with in Insects and some Crustacea. The rescrvoir in question, whieh we have ealled the spermatheca (fig. 412, t), is in the Snail placed above the stomach; and the eanal derived from it aceompanies the saeeulated oviduet, whieh it ultimately joins near its termination, in such a manner that the ova must pass the orifice of its duct as they are expelled from the body. It must nevertheless be eonfessed that the office here assigned to the " bladder" is rather probable than positively established ; for in the Slug, so nearly allied to the Suail in its general organization, tho exeretory duet of this organ opens into tho eommon generative sae by an aperture distinet from that which leads into the oviduet, although even here the two are elosely approximated. Cuvier suggests that perhaps it may furnish some material useful in forming an envelope for the ova; but experiments are still wanting upon this subjcet.
(1404.) There is still another set of organs comnected with the eanal by which the eggs eseape from the oviduct of the Snail: and these, although peeuliar to the genus wo are examining, no doubt furnish a seeretion of importanco to their coonomy. They are ealled the multificl vesictes (fig. 412, y), and are eomposed of a serics of branehed eacea derived from two exeretory duets, by whieh a milky fluid, scereted by the cæea, is poured into the egg-passage prior to its termination.
(1405.) Although it will be convenient to speak in more general terms concerning the nervous system of the Gasteropoda than the examination of a particular species would permit, we deem it necessary, before closing our description of the Snail, to describe with some minuteness the senses possessed by these terrestrial mollusks, and more especially the extraordinary mechanism provided for withdrawing the most important instruments of sensation into the interior of the body when they are not in actual employment.
(1406.) The sense of taste, judging from the structure of their tongue, must be extremely obtuse; and although these creatures are evidently possessed of smell, it is not easy to point out where their olfactory apparatus is placed. The eyes, however, are now found to present a perfection of structure correspondent with the enlarged brain, and occupy a singular position, being situated at the extremities of the two superior tentacula appended to the head; while the inferior pair, adapted, as it would seem, more exclusively to the perception of tactile impressions, are deprived of visual organs. Both the upper and lower tentacula are retractile, and can be completely inverted, so as to be withdrawn into the interior of the bods. To effect the inversion by which this end is attained, the plan represented in the accompanying figure is had recourse to. Each tentacle is a hollow flexible eylinder, the walls of which are muscular, and composed of circular fibres. When partially retracted, as in the tentacle marked (c) in the figure (fig. 413), the extremity of the organ is drawn inwards, and two cylinders are thus formed, one within the other : if the outer cylinder is elongated, as in protruding the tentacle, it is at the expense of the inner one; and, on the contrary, the inner eylinder, when the organ is retracted, is lengthened as the other becomes shorter. To

Fig. 413.

Structure of the tentacles of the Snail: a, right inferior tentacle retracted within the body; b, right superior tentacle fully protruded; c, left superior tentacle partially inverted; d, left inferior tentacle; e, cavity of partially inverted tentacle; f, optic nerre fully extended; g, retractor muscle; h, optic nerve thrown into loose folds; i, retractor museles of the head; k, nerve and muscle of left inferior tentacle; $l m$, nervous collar. evert the tentacle the contraetion of the circular muscles that form its walls is sufficient, as they can gradually unroll the whole by squeezing out, as it were, the inner portion; but to effect its inversion a special retractor muscle is required. This
muscle (g) arises from the general muscular mass composing the font and retractile apparatus provided for drawing the Snail into its shell : the long slip of muscular fibres so derived, accompanied by the optic nerve (f), traverses the interior of the cylindrical tentacle quite to its extremity, where it is attached, and thus, as the reader will Gasily coneeive, is quite competent to cause its inversion. The lower feeler (d) is represented in the figure as partly retracted by the action of its appropriate muscle (7^{\prime}) ; while the corresponding one (() , bcing complctely turned inside out, is fully withdrawn and securely packed among the viscera.
(1407). Onc circumstance eonnected with the contrivance above described cannot but exeite attention; and this is, the peculiar arrangcment of the tentacular nerves, whercby they are adapted to changes of position so extensive : the optic nerve (f), for example, must not be stretched even when the eyc-bearing tentacula are protruded to the uttermost; and in order to provide for this, when the feelers are not extended, the nerves become thrown into close folds (h), and lodged within the cavity of the body.
(1408.) From the above somewhat lengthened account of the anatomy of the Snail, the reader will at least have been able to become acquainted with the general features of an organization which is more or less common to all the members of the cxtensive class under consideration. We must now, however, enter upon a more enlarged survey of the Gasteropoda, and divide them into such groups as will facilitate our further investigations concerning their structure and habits. The most convenient character by which the diffcrent ordcrs composing the class are distinguished has been found to be derived from the nature and arrangement of the respiratory apparatus, which of course varies, both in construction and position, according to the circumstances under which particular tribes or families are destined to exist.
(1409.) We have alrcady found that terrestrial species, such as the Snail, breathe air, which is alternately drawn into and expelled from a cavity lined with a vascular network; and these, from the resemblance between such a mode of breathing and that of animals possessed of proper lungs, have been formed into an order distinguished by the name of Pulmobrancilata. Neverthcless all the pulmobranehiate Gasteropoda are not terrestrial ; our fresh waters abound with various specics that respirc air by a similar contrivance, and are eonsequently obliged, in order to breathe, to eome continually to the surface of the shallow pools wherein they are found. The Planorbis and Limneers are examples of this mode of respiration, and are met with in every diteh, where they voraciously devour the subaquatic vegetables upon which they feed.
(1410.) It is at once evident that in marinc Gasteropods, another mode of aërating the blood must be resorted to, and branchix, of some description or other, substituted for a pulmonary cavity.
(1411.) The branchire given for this purpose are variously constructed -sometimes appearing as extensively branched and arborescent appendages to the skin, or clse they form broad and thin lamello attached to the extcrior of the body ; but more frequently the respiratory apparatus consists of rascular filaments arranged in a pectinated manner along a fleshy stem. Whatever their form, however, their office is the same, namely to present a sufficient surface to the surrounding medium, in order adequately to expose the blood that circulates abundantly through them to the influence of oxygen.
(1412.) It is from the position and arrangement of the branchial organs that the branchiferous Gasteropoda have bcen classified by zoologists. Thus, in the sccond order, called from this circumstance Nudrbrancitata, they are naked, and placed upon some part of the back; sometimes, as in Tritonia, extending along its entire length ; but in others, as for example in Doris (fig. 414), they are confincd to its posterior part, and form a circle around the anal orifice, of exquisite bcauty, not inaptly comparable to a flower in appearance and disposition.
(1413.) In the Inferobranchiata the branchiæ resemble two long rows of lcaflets, placed on the two sides of the body, under a projecting. edge formed by the mantle.
(1414.) The Tectibranchiata have respiratory organs upon onc side of the body only, and conccaled by
 a flap derived from the mantlc. Such, for instance, is the case with Pleurobranchus and Aplysia, in the former of which the clegant branchial fringe is situated in a deep sulcus between the edge of the mantle and the prominent margin of the foot (fig. 415, d).
(1415.) But by far the most numerous order of the marine Gasteropoda (Pectinibraneitita), which iucludes all the inhabitants of spiral univalve sea-shells, have their branchire placed internally, in a capacions eavity, into which the water is freely admitted (fig. 410, a). This
cavity is situated in the last or widest turn of the shell, and communicates with the exterior of the body by a very wide slit, to which in some gencra a loug siphon (fig. $410, f$), formed by a fold of the mantle or Fig. 415.

Pleurobranchus: a, proboscidiform mouth; b, generative orißce; c, anal orifice; d, branchiæ. general covering of the animal, conducts the respired fluid. The branchix themselvcs, as the name of the order indicates, are pectinated, and form a single, double, or triple series of gills suspended from the roof of the branchial chamber, answering the same intention as the pulmonary network of the Snail, but deriving their supply of air from the water in which they are perpetually immersed. In the figure referred to, representing a species of Pterocera, the position of the branchial chamber is seeu through the shell and mantle, which the reader must suppose to be transparent; and the branchial organ (a), in this case single, is likewise represented in situ, suspended from the roof of the cavity that contains it.
(1416.) In fig. 423, the roof of the respiratory cavity (x) has

Fig. 416.
 been reflected, and the three rows of branchial fringes (n) suspended therefrom are well scen.
(1417.) A sixth order of Gasteropods has been formed by Curier under the name of Tubulibranchiata, remarkable for the shape of their shells, which are long and irregular tubes, usually fixed to foreign bodies; but still they have the earliest-formed portion twisted into a few spiral curves. To this order belongs Vermetus (fig. 416), the shells of
which, agglomerated into masses, might be taken for those of certain Serpulce. As locomotion is here out of the question, owing to the immoreable condition of the habitations of such genera, the foot would seem at first to be altogether deficient, but upon close inspection it is found to be converted into a fleshy organ that bends forward and projects beyond the head, where its extremity expands into a disk furnished with a small operculum ; so that, wheu the animal retires into its abode, a lid is formed adapted to close the aperture, and thus prevent intrusion and annoyance from without. Nevertheless even in these the branchix are pectiniform, forming a single row attached to the roof of a branchial chamber.
(1418.) The Scutibravcmata likewise have pectinated gills disposed in a special cavity; but their shells are very wide, and searcely ever turbinated-a circumstance which, combined with other features of their economy, renders it convenient to regard them as forming an order by themselves. An example of this group is found in the Sea-ear (Haliotis) (fig. 419).
(1419.) An eighth division of this extensive class takes the name of Cyclobrancitata, because the branchio form a fringe around the body of the animal, between the edge of the body and the foot (fig. 408, c; fig. 411, a).
(1420.) Lastly, a distinct order has been established to embrace certain families in which the foot is so much compressed ns to constitute a vertical muscular lamella, that presents merely a remnant of the

Fig. 417.

Pterotrachea: a, natatory foot; b, probossidiform mouth; c, tentaeuln; d, branchix; e, heart: f, alimentary eanal; 9 , uterus; h i, nervous system; k, glandular sace; m, museular bands : p, ovary; n, o, sexual orifece; t, male generative apparatue.
ventral sucker so characteristic of the entire class, and which can only be serviceable in performing the office of a fin used in swimming; hence
thoso mollusks have been called Heteropoda. Their branchix are placed upon tho back (fig. $417, d$), and resumble small detached tufts. The form of these heteropod Gasteropoda the reader will gather from an inspection of the accompanying figure representing a species of Pterotrachea; but the details conncted with their anatomy, therein delineated, will be explained hereafter.
(1421.) It would be useless to weary the student by describing the course of the blood-vessels in all the orders we have just enumerated; their distribution necessarily varies with the changes observable in the position of the branchix ; still, whatever the situation of the respiratory organs, the general course of the circulation is the same, and essentially similar to what has been already described in the Snail: one or two examples will therefore answer our purpose. In the Pectinibranchiata, as for instance in Buccinum (fig. 423), the heart ($r s$), enveloped in a distinet pericarditm, is placed at the posterior extremity of the branchial chamber, and consists, as in all the Gasteropoda, of two cavities-a thin membranous auricle, and a more muscular and powerful ventricle. It receives the blood from the organs of respiration by a large branchial vein (fig. $423, q$), that communicates with the auricle (s). The contraction of the auricle forces the circulating fluid into the ventricle (r), which in turn drives it into the aortic or arterial system of vessels. The aorta, in the case before us, divides into two principal trunks, of which one (m) is directed forwards to supply the foot and anterior part of the body, while the other (t) winds among the mass of viscera contained in the shell, to which it distributes its ramifications. The blood thus dispersed through the system is taken up by the commencements of the veins, to be reconveyed to the branchir, there to begin again the circuit we have described.
(1422.) When the branchix are external, and largely distributed over the surface of the body, as for instance in Tritonia, the purified blood is brought from the branchiæ to the heart by capacious veins which run beneath each branchial fringe and collect it from the numerous respiratory tufts ; or if, as in Doris (fig. 414), the branchiæ encircle tho anus, a large circular vein placed at the base of the branchial apparatus receives the blood and pours it into the auricle. In all cases, however, the course of the blood is essentially the same, and the heart is systemic.
(1423.) In Aplysia, one of the tectibranchiate Gasteropods, the branchiæ (fig. $418, a, b$) consist of delicate lamellæ minutely subdivided; and the vessel (c) which brings the blood derived from all parts of the body to be distributed over the extensive surface thus formed, presents a structure of no ordinary interest to the physiologist*. At some distance before it arrives at the respiratory organs it divides into two main branches; and tho coats of each vessel so formed appear to be

[^178]made up of transverse and oblique muscular bands that cross each other in all directions, so as to leave between them very perceptible apertures, through which injections of any kind readily escape into the abdominal cavity ; and, of course, fluids derived from tho abdomen as casily penctrate into the interior of the veins. At some points, indecd, these veins scem absolutely confounded with the visceral cavity-a ferw muscular bands widely separated from each other, and not at all interrupting a free communication, being alone interposed. The result of Cuvier's anxious researehes concerning this remarkable feature in the organization of these Mollnsca led him to the following important conclusions, which are no doubt extensively applicable to the Gasteropoda generally :-1. That in Aplysia there are no other vessels appointed to convey the blood to the branchix than the two above described. 2. That all the veins of the body terminate in these two canals. Now, as their communication with the abdominal cavity is evident and palpable, whether we call them vence cavce, or cavities analogous to a right ventricle, or branchial arteries (for it is manifest that they fulfil the functions of these three organs), the inevitable conclusion is, that fluids poured into the abdominal cavity can become directly mixed with the mass of the blood and thus conveyed to the branchir, and that the veins perform the office of absorbent vessels.
(1424.) This extensive communication is undoubtedly a first step towards the establishment of that, still more complete, which nature has established in Insects, where, as we have seen, there are not even distinct vessels of any kind appointed for taking up the nutritive fluid. From these facts Cuvier concludes that no proper absorbent system exists in the Mollusca, still less in animals inferior to them in the scale of creation.
(1425.) The vein appointed to convey the renovated blood from the branchiæ to the heart, when slit open (fig. 418, dl), exhibits the orifices of the smaller vessels derived from the respiratory laminæ arranged in circles. 'The auricle of the heart is made up of reticulated fibres (e); and when laid open it is seen to be be separated from the more museular ventricle (g) by a valve (f), whereby any retrograde movement of the blood is prevented.
(1426.) In Aplysia, the arterial blood, having been distributed throughout the body by means of the heart and aortic vessels, is received into a capillary system, which forms a rich network composed of minnte vessels, the walls of which are perfectly distiuct; but these capillaries are found not to be continuous with any system of recurrent vessels, but gradually resolve themselves into little lacunæ formed amongst the interstices which occur between the bands of cellular membranc and the fibres of various tissucs. These vacuoles communicato in their turn with larger lacunæ, situated beneath the common integuments, or occupying the interspaces between the muscular fasciculi of tho foot, of the
mantlo, and of other parts of the body. The result of this arrangement is tho formation of a vast system of venous cavitics, dispersed throughout the abdominal parictes. In the foot and in the lobes of the mantle these lacunx are very dilatable, and afford space for a considerable accumulation of fluid ; in the dorsal region, on the contrary, they are

Fig. 418.

Structure of the branchial vein in Aplysia: a, superior branchiæ; b, inferior branchix; c, root of branchial tufts; d, great branchial rein laid open, showing the orifices of smaller veins; e, auricle of the heart, laid open; f, auriculo-ventricular valve; g, interior of tentricle.
small, and more densely congregated. It is this structure which constitutes the aquiferous system of Delle Chiajc ; but it has no commnnication with the exterior of the body. The membrane which imperfoctly lines the abdominal cavity separates this structure from the visceral chamber, but does not cut off the communication that exists between them; on the contrary, the peritoneal tunic is itself of a spongy texture, and is perforated with numerous apertures, whereby a free passage is established between the subcutaneous lacunæ and the interior of the abdomen. In this way it happens that, when a coloured fluid is injected into the visceral cavity, the whole lacunary system becomes filled; and on throwing injections, even of coarse materials, into the muscular insterstices of the foot or mantle, they are at once seen to diffuse themselves through the abdominal cavity.
(1427.) From the above and similar facts, Milne-Edwards has satisfactorily established the following important conclusions:-

1st. That no complete vascular system exists in any of the Mollusea. 2nd. That throughout a greater or less extent of the circulatory circle veins are cntircly wanting, their functions being performed through the medium of lacunx, or by the great cavities of the body.

3rd. That frequently the veins are wanting altogether, and that in such cases the blood distributed through the body by the arterial system can only retrurn to the respiratory surface by the intervention of the interstitial lacunx above described.
(1428.) Professor Huxley, iu a letter addressed to Professor MilneEdwards*, relative to the circulation of the blood, expresses himself very decidedly upon this important point in the anatomy of the Mollusea. In Firola, one of the Heteropod division, he observes that, owing to the perfect transpareney of the body of this mollusk whilst alive, nothing is more easy than to obscrve the circulation of the blood throughout its entire course. In this creature no veins whatever are observuble. The globules of the blood may be seen to issue in crowds from the open termination of the arteries of the foot, through the substance of which they inmediately become diffused, and may likewise be observed to pass from the mass of the mouth, in which the aorta terminates, directly into the periintestinal eavity, in which they may be scen to return gently, frequently stopping in their course towards the heart. Occasionally some of them may be traced direetly into the auricle, passing through the interspaces between the network of muscular fibres composing its walls \dagger, in the meshes of which they may sometimes be observed to stop for a short period. When the animal begins to grow weak, and the circulation becomes enfecbled, it is even possible to follow with the cye any given globule during its passage through the periintestinal eavity, and through the heart into the aorta.
(1429.) In studying the anatomy of Hatiotis, Milne-Edwards \ddagger observed that, although injeetions thrown into the heart werc easily made to fill the general arterial system, so as to exhibit the arteries supplied to the liver, to the stomach, and internal viseera gencrally, and also to render visible even the capillary vessels, in the head he invariably found the injection extravasated so as to fill a great cavity, in which were lodged the brain, the salivary glands, the pharynx, and all the muscles belonging to the oral apparatus. At first it was supposed that this extensive extravasation was caused by some rupture of the vascular parietes; but after many unsuccessful attempts it was at last discovered that, on attempting to follow the course of the aorta into the head, it was impossible to find any trace of that vessel beyond the point where this extravasation invariably began to show itself: at this place, indecd, the walls of the great artery entirely disappeared, or, rather, became confounded with the membranous septum that here separates the abdomen from the cephalic cavity : neither could any continuity be traced between the arterial trunk, after its entrance into this extensive cavity, and the arteries proceeding from it to ramify in the fleshy portion of the foot, although these latter were invariably well filled with the

[^179]coloured injection omployed; and it soon became evident, from numerous observations, that in this Gasteropod a free enmmunication is normally established between the great arterial trunk of the body and the cephalic cavity, wherein are lodged the principal nervous centres and the whole antorior portion of the digestive apparatus, and that this cavity, in the living animal, is filled with arterial blood. In fact, the aorta having reached the spot where the digestive caual curves downwards to descend from the upper aspect of the pharyngeal bulb into the abdominal cavity, it plunges directly into a wide space or lacuna which surrounds the pharynx and occupies all the front part of the head, taking the place of the cephalic portion of the aorta; and the arterial blood poured by that vessel into this space directly bathes the brain, the muscles of the proboscis, and all the auterior part of the alimentary canal, after which it goes to supply the muscles of the foot and the cephalic appendages.
(1430.) But there is one circumstance connected with this arrangement which appears even still more strange, namely that, while a portion of the general cavity of the body thus completes the vascular apparatus, the aorta to a certain extent acts as an abdominal cavity; for in its interior there is lodged a part of the digestive apparatus.
(1431.) To ascertain this fact it is only necessary to slit open the aorta, the calibre of which is in this part as wide as a goose-quill; it is then seen that the large snbeylindrical basis of the tongue, which projects from the postcrior margin of the pharyngeal mass, is entirely enclosed within it. This organ, indeed, protrudes to a considerable distance into the interior of the arterial tube; and it is from the portion of the aorta which thus forms a sheath for the lingual apparatus that several arteries take their origin, the branches of which are distributed to the intestine and abdominal parietes, the orifices of which are discoverable when the tongue is withdrawn from its aortic sheath.
(1432.) The inferior condition of the circulatory system in the Haliotis, however, is not indicated only by the singular arrangements described above. In that portion of the mantle which is adherent to the shell, and which forms a sort of border to the posterior and lateral parts of the body, arterial ressels seem to be altogether wanting, the whole circulation being apparently carried on by vessels which receive venous blood, derived immediately from the abdominal carity, to which they partially return it, but at the same time convey a portion thereof into the branchio-cardiac vessels in the immediate vicinity of the heart. The fibrous tissue wherein these vessels are enclosed seems but little calculated to perform the functions of an accessory respiratory apparatus; so that it would appear, from this anatomical arrangement, that all the blood in progress towards the heart is not submitted to the influence of the air, and that it is a mixture of venous and arterial blood that is distributed by the heart throughout the arterial system.
(1433.) Lastly, it may be noticed that in the eephalic region, where
the different organs are in immediato contact with the arterial blood, no traces are discernible either of veins or of lacunæ serving to return

Circulation of Haliotis (after Milne-Edwards). A, the head; B, the foot; C, C, the two lobes of the mantle; D, mucus-scereting organ: E, E, the two branchix; F, the anus. Beneath the rectum, that terminates at this outlet, is seen the oriflee of the urinary apparatus; and a little further back, situated abore the intestine, is the orifice of the generative apparatus. G, fold of intestine, which is lodged in a special compartment of the abdominal cavity, separatcd from that containing the stomach by a fibrous septum. H, the stomach, of which the anterior portion has been in a great measure removed. I, pharyngcal cavity laid open. J, abdomen.
a, aortic ventricle surrounding the rectum.
b, the left auricle, into which opens the etferent vessel of the corresponding branchia, a portion of which is shown at E. The right auricle is seen immediately beneath the ventricle; and the corresponding branchia has been raised in order to show throughout its entire length the branchial vein or efferent canal, E, which runs along the adherent margin of the branchia, and brings arterialized blood from that organ to the heart.
c, the great aorta, which arises from the posterior extremity of the ventricle and runs forward between the stomach and the intestine to discharge itself into the ceplalic cavity.
d, the abdominal artery, or posterior aorta, which arises from the commencement of the aorta and follows the convolutions of the intestine, to which, as well as to the liver, it furnishes branches.
e, arterial sinus, into which the aorta empties itself. This is a great cephalic lacuna, limited above by the parietcs of the pharyux, in front by the intcguments and muscles of the head, and posteriorly by fibro-cellular bands. On injecting the animal by this cephalic chamber, the whole arterial system is imınediately filled.
f, the great artcry of the foot, which ariscs from the cephalic sinus, and soon divides into four branches, which extend towards the hinder part of the foot. g, one of its lateral branches.
h, affcrent vessel of the left branchia. A little in front of the heart is seen the transverse canal, or common venous reservoir of the branchic, which unites this vessel with its fellow, and which receives the veins from the rectum.
i, i, veins of the two lobes of the mantle, in communication with a capillary network that extends along the base of the branchir, and is proceeding to anastomose with the branchio-cardiac vessels.
k, efferent vesscls from the urinary gland, opening into the common venous reservoir of the branchiæ.
l, venons canal of the shell-membrane or partition that extends fiom the walls of the abdomen to the margin of the shell.
m, hepatic veins proceeding to open dircetly into the freo space which surronnds the intestinc, and which is continuous with the rest of the abdominal cavity. On the posterior part of the foot are seen veins which open into a system of lacunx situated upon the medinn line, and communicating with the abdominal cavity.
the blood thus effused to the respiratory apparatus, whereas in other parts of the body venous eanals aro met with, the disposition of which is very remarkable: these all communicate freely with the abdominal earity, as is tho ease in other Gasteropod Mollusea; but in the liver, tho generative glands, and, more especially, in the urinary apparatus they nevertheless form truo vessels, the ramifications of which are extremely numerous.
(1434.) In Patella, or the Limpet, the size of the eephalic sinus that receives blood from the aorta is even more remarkable than in the Hatiotis: in tho Patella, indeed, the tongue is not itself lodged in the aorta, as in tho former ease, but is enclosed in a membranous sheath; the sheath, however, in its turn becomes part of an arterial chamber, into whieh the aorta empties itself. The aorta itself gives off very few branches, while from the lingual sheath arise all the prineipal arteries of the body.
(1435.) The arterial blood not only fills the sheath of the tonguc, but is likewise diffused throughout the whole eephalie carity, where it bathes the museles and nerves in the same mauner as in Haliotis; but the extent of the sanguiferous sinus is much more considerable than in that mollusk. If, indeed, the eapaeity of these sinuses be estimated, they will be found to contain more blood than all the rest of the arterial system put together.
(1436.) We have already described (§1393) the construetion of the heart met with in the great majority of the Gasteropoda; but in a few of the lowest orders, namely those most nearly allied to the Conchifera, slight modifieations present themselves. Thus in Chiton (fig. 411), so remarkable from the singularity of its shelly eovering, the heart is situated in the middle of the posterior region of the back, and is furnished with two auricles, one appropriated to eaeh lateral series of branchix ; and, what is still more remarkable, eaeh auricle would seem to communieate with the ventriele by two distinct orifices. In Haliotis, Fissurella, and others of the Scutibranchiate and Cyclobranchiate orders, the resemblance to the arrangement generally met with among the Coneniferd is even more striking; for in sueh genera not only are there two distinct auricles, but the ventriele embraces the rectum, so that, when superfieially examined, it seems to be perforated for the passage of the intestine.
(1437.) In Pterotiachea (fig. 417), the branchiæ (d) are placed upon the baek, and the blood derived from the tufts composing the branchial apparatus is received into a two-ehambered heart (e), whence it is distributed to the body through the aorta, whieh is at first double; but, after surrounding the visceral sae and supplying the viscera, the two ressels unite to form ono large trunk (m) , whieh traverses the body' as far as the head.
(1438.) The digestive system of the Gasteroboda, as we might be led
to expect from the numerons and widely different forms of the animals belonging to the class under consideration, presents endless diversity of structure; and did wo not strictly refrain from noticing any but the most important modifications, it would be easy to overwhelm the most patient reader with accumulated details.
(1439.) The month we shall consider as exhibiting four distinct types of organization ; one of which, namely that met with in the Snail and the gencrality of pulmonated Gasteropoda, has been already described (§ 1387).
(1440.) The second form of mouth-that, for instance, of Pleurobranchus (fig. 415, a) and of Pterotrachea (fig. 417, b)-consists of a simple muscular proboscis, or fleshy tube, which is capable of considerable elongation and contraction : such an oral apparatus is entirely devoid of teeth or any cutting instrument, but is nevertheless fully able to seize and force into the stomach such materials as are used for food.
(1441.) A third kind of mouth, by no means so frequently met with as the last, is not a little extraordinary, and forms a more efficient cutting instrument than even that of the Snail. We shall offer, as an example of this remarkable organ, that of the Tritonia Hombergii, represented in the annexed figure (fig. 420), whereof Cuvier gives the following graphic description *. In this animal the mouth forms a large oval and fleshy mass enclosing the jaws and their muscles, as well as a tonguc covered with spines; and its opening is guarded by two fleshy lips. The jaws form the basis of all this apparatus : their Mouth of Tritonia Hombergii. substance is horny; their colour a yellowish brown; and their form (very extraordinary for an organ of this kind) cannot be better described than by comparing them to the shears used in shearing sheep. They differ, however, in the following particulars: instead of playing upon a common spring, the two blades are found to work upon a joint; and instcad of being flat, they are slightly curved.
(1442.) These two blades are very sharp, and there is nothing that has life that they cannot cut when the animal causes the cutting edges to glide over each other. For this purpose muscles of great strength are provided, the fibres of which are transverse ; and their office is to approximate the two blades, that are again separated by the natural clasticity of the articulation whereby they are united at one extremity.
(1443.) The aliment, once cut by the jaws, is immediately seized by the teeth upon the tongue (odontophore), which, being sharp and directed backwards, continually drag, by a kind of peristaltic movement, the alimentary materials into the œesophagus.

[^180](1444.) The fourth and most complicated form of mouth is found in tho Pectinibranchiato Gasteropods; and with its assistance these animals can boro through the hardest shells in seareh of food, making a hole as rouud and smooth as if it had been mado by a drill of human eontrivance. It is from Cuvier we again borrow the subjoined description of this unique apparatus *.
(1445.) The proboscis of Buccinum is organized with marvellous artifice. It is not simply provided, like that of the elephant, with the means of flexion and extension, joincd with a limited power of contraction and elongation, but it can be entirely retracted into the body by drawing itself into itself in such a manner that the half of it whieh forms its base contains and encloses the half nearest its point; and it ean protrude itself from its sheath thus formed, by unrolling itself like the finger of a glove, or like the horns of the garden snail: only it is never completely retracted, but always remains more or less folded upon itself.

(1446.) It may be represented as being composed of two flexible cylinders, one contained within the other, as shown in the amnexed figure (fig. 421), the upper edges (i i) of the two cylinders being continuous in such a manner that by drawing out the inner cylinder. $\left(\begin{array}{ll}b & b\end{array}\right)$ it becomes elongated at the expense of the other, and on pushing it in again it beeomes shorter, while the outer eylinder (7c) is lengthened by adding to its upper margin.
(1447.) The reader must now imagine a multitude of longitudinal muscles $(d d)$, all very much divided at both their extremities, and attached by one end to the parietes of the body, whilst by the opposite they are fixed to the interior of the inner eylinder of the proboscis (b) along its entire length and as far as its extremity. It is evident that the aetion of these muscles will retraet this eylinder, and eonsequently the entiro proboseis, into the body.
(1448.) When thus retraeted, a great part of the inner surfaee of the internal cylinder (b) will necessarily beeome a portion of the external surface of tho outer eylinder (c), and the

Fig. 421.

Proboscis of Buccinum, laid open to showits internal structure: c, mouth, showing the infundibular commencement of the cesophagus ; b, b, museular walls of inner cylinder; k, outer cylinder, continuous with b at the point i; $e c$, body of the tongue; d, d, retractor muscles; $g g$, œsophagus. eontrary when the proboscis is protruded. It is in consequence of this that the insertions of the muscles $(d d)$ vary in position.
(1449.) The protrusion of this proboscis is effeeted by the aetion of the eireular muscles that form its walls.

* "Mémoirc sur le grand Buccin (Buccinum undatum), ct sur son Annomie."
(1450.) When the proboseis is extended, the retractor muscles (fig. 421, d d), if they do not aet all together, servo to bend it in any direction, thus becoming tho antagonists to each other.
(1451.) In the internal eylinder are eontained the tonguc, with all its apparatus $(e e)$, the salivary duets (f), and the greater part of tho œsophagus (g) ; but the prineipal use of the proboseis is to apply the end of the tongue to the surface of bodies that the Buccinum wishes to erode and suek. The tonguo itself (odontophore) (e) is a cartilaginous nembrane, armed with hooked and very sharp spines. It is sustainod by two long cartilages, tho extremities of whieh form two lips (c), that ean be separated or approximated; or the cartilages can be made to move upon each other by the mass of museles in which they are imbedded. When these cartilages move, tho spines that eover the tongue are alternately depressed and elevated ; and by a repetition of similar movements, aided perhaps by some solvent quality in the saliva, the hardest shells are soon perforated by this singular file.
(1452.) The salivary glands are lodged in the visceral eavity, and are eomposed of numerous seeerning eæea enclosed in a membranous eapsule (fig. $422,7,7$) : their duets (g e), which are neeessarily as long as the proboscis when extended to the utmost, open by two apertures plaeed at the sides of the spinous tongue (b). The œsophagus (fig. 421, g g) runs along the eentre of the proboseis throughout its entiro length, and, when that organ is protruded, beeomes nearly straight; but when the proboscis is drawn in, the œesophagus is folded upon itself among the viscera.
(1453.) Just at the eommoncement of the stomaeh there is a small erop (fig. 422.f) ; and the

Fig. 422.

Alimentary canal of Buccinum: h, salivary gland; k, salivary gland with its eapsule laid open; e, salivary duct; $a b$, dental apparatus of the proboscis; c, œsophagus; i, l, m, alimentary canal; $p p$, liver; $n o, n o$, biliary ducts. stomach itself is single, without ally thing in its texture requiring special notice-its lining membrane being soft, and gathered into longitudinal folds (i).
(1454.) Equally simple is the alimentary apparatus of the Hetero-
podu. In these tho stomaeh (fig. $417, f$) is a mero dilatation of an intestiniform tube. The intestine is not lodged in the general cavity of the body, but, with tho mass of the liver, is contained in a kind of bay attaehed to tho baek of these singularly formed animals, and in some genera, as for oxamplo Carinaria, is dofended by a delicate transparent shell, which in appearance offers a miniature resemblanee to that of the Argonaut. It is in this viseeral sac that the heart and generative apparatus are likewise generally enelosed; but in many forms of tho Heteropoda both the appended saeculus and shell are wanting, in which case the viscera are, of eourse, lodged in the general eavity of the body.
(1455.) But although in Buccinum, Pterotrachea, and kindred genera the stomach is thus devoid of complieation, it is by no means unfrequently found to be provided with a powerful crushing-apparatus, that forms a strong gizzard, adapted to bruise, eut, or toar the food introduced into it. In Scyllca, for oxample, this gizzard, situated at the entrance to the stomach, contains twolve horny cutting blados, disposed around its interior, arranged in a longitudinal direction; their sharp edges therefore, meeting in the eentre, effieiently divido whatever passes between them towards the proper digestive stomach. In Aplysia there is first a capacious crop, then a strong gizzard studded internally with pyramidal blunt teeth; and to this succeeds a third cavity, armed with sharp-pointed hooks attached to one side of its walls, and so disposed as to form a kind of carding-machine, by which the food is still more effectually torn to pieces.
(1456.) Various modifications in the form and structure of these stomachal teeth are met with in the different genera of the Gasteropoda that possess such an apparatus ; but whatever thoir shape, size, number, or position, the office assigned to them is the same.
(145\%.) The liver is proportionally of very large size in the Mollusca we are now describing. Its composition is similar in all, being made up of bunchos of secreting follicles unitod by tho branches of their excretory ducts, and kept together by means of a delicate cellulosity and the ramifieations of blood-vessels. We have already described the hepatic risecra of the Snail; and the liver of Buccinum, unravelled so as to show its intimato strueture, is reprosented in the preeoding figure (fig. 422, $n, 0, p$), which requires no additional explanation.
(1458.) But if the structure of the liver is similar in all the Gasteropod Mollusca, the manner in which the bile is poured into the intestinc varies remarkably. The most ordinary position of the orifices of the hepatic ducts is at the termination of the stomach, in the ricinity of the pylorus, as is the case in the majority of other animals; but many excoptions to this rule are met with in the class before us.
(1459.) In Scyllece tho bile is poured into the œesophagus just before it terminates in the gizzard ; in many genera tho biliary eanals open into the stomach itself; and in one remarkable genus, Onchidium, there
are three distinct livers, each provided with its proper excretory duct, and, what is still more anomalous, these three glands, which in every particular strietly resemble each other, unless perhaps in size, pour the secretion that they furnish into three different situations--the first into the œsophagus, the second into the œsophagus likewise, and the third into the gizzard, which forms the first of three stomachal cavities.
(1460.) In Doris a still more extraordinary arrangement is met with. One set of ducts derived from the liver penetrate the stomach, and pour the bile into that cavity, while another large canal, equally given off from the liver, terminates at the exterior of the body, by an orifice situated in the vicinity of the anus (fig. 414); and thus a part of the bile secreted would seem to be expelled from the system as excrementitious matter-a fact of no ordinary importance to the physiologist, as it would itself go far to prove that the function of the liver is not merely limited to the supply of a secretion of importance in the digestion of food, but also powerfully cooperates with the respiratory system in purifying the circulating fluids by decarbonizing the blood.
(1461.) Other secretions, apparently of an excrementitious character, are furnished by many Gasteropods. Thus in Aplysia a glandular mass is imbedded in the opercular flap that protects the gills, from which, at the pleasure of the animal, a reddish liquor is made to exude in sufficient abundance to obscure the water around it, and thus conceal it from pursuit. Another gland furnishes an acrid limpid fluid, that distils from an orifice near the oviduct ; but the use of this last secretion is as yet unknown.
(1462.) The scattered condition of the nervous ganglia, characteristic of the Heterogangliata, is well exhibited in the Pectinibranchiate Gasteropods, more especially as it not unfrequently happens that the ganglionie eentres themselves are of an orange or reddish colour, while the nerves derived from them present their usual appearance.
(1463.) In Buccinum the brain still occupies its usual position above the œesophagus (fig. $423, d$), and gives off nerves to the organs of sensation, and large twigs (cc) to the eminently sensitive proboscis. A large nervous mass placed beneath the œsophagus (i) is connected with the former by several eommunicating nerves that embrace the œsophageal tube. Other ganglia, of smaller size (k, l, n), are distributed in distant parts of the body, and supply the viseera to which they are contiguous, whilst they are connected among themselves, and with the brain, by nervous cords passing from one to another.
(1464.) In Pterotrachea the same dispersion of the central ganglia of the nervous system is equally evident. The brain and nervous collar around the cesophagus occupy their usual situation, and give nerves to the tentacles, eycs, and parts around the mouth; while four smaller ganglia (fig. $417, i$) are placed in the immediate vicinity of the foot, to which and to the neighbouring viscera they distribute their branches.
(1465.) But in the most elevated Gastoropods the ganglia assume greater concontration, and tho brain exhibits much larger dimensions as compared with the size of the body. Thus, in the Snail (fig. 413) we find only two great nervous masses-the brain (1) (a large ganglion placed above the oesophagus, and supplying the nerves connceted with sensation), and an equally large suboesophageal mass (m), whence proceed nerves to all the visecra and locomotive organs. Here, there-

Fig. 423.

Anatomy of Buccinum: d, brain, or supracosophageal ganglion; i, subossophageal ganglion: e, eorls of communieation, forming a collar round the œesophagus; c, c, nerves of the proboseis; k, l, n, nervous ganglia, irregulnrly distributed; f, f, the tentales; g, male organ: $r \&$, the heart; q, branchial vein; m, anterior arterial trunk; t, posterior large artery, surpplying the viseera; u, branchix; v, rectum.
fore, we have another example of the great law that we have alrendy so often illustrated-the diminution in number and the increase in size of the nervous centres as we rise from lower to more exalted types of animal organization.
(1466.) The tentacula (fig. 423, f f) in the marino Gasteropodia are
generally not retractile; and the cyes are frequently situated at the outer side of the base of each tentacle, instead of at their apex as in the figure referred to.
(1467.) The organ of hearing is now universally admitted to exist in all the Gasteropod Mollusca, and, according to Siebold*, is invariably situated in the immediate vicinity of the two most voluminous cerebral masses. Like the other organs of sense, the organ is always double. It is formed \rightarrow by two hyaline ovate or orbicular capsules, situated on the head or neck at the bases of the tentacula, and is supplied with its spccifically endowed nerve from the cerebral ganglions. In the capsule there are enclosed one or several (and sometimes they are numerous) oval or round crystalline bodies (otoliths) ; and it is observable that the number varies not only in neighbouring genera, but even in nearly allied species. Siebold says that a concentric depression is evident in these otoliths; and there may be seen, in the greater number of them, a shaded spot, or, rather, a minute aperture, which penetrates through the concretion from the one flattcned surface to the other. Subjected to a strong pressure, the otoliths crack in radiating lines, separating often into four pyramidal picces. This separation also ensues when the otoliths are immersed in diluted nitric acid; and if we touch them with the concentrated acid, they suddenly dissolve, with the disengagement of a gas, whence Siebold concludes them to be composed of carbonate of lime. The size of the otoliths is not equal; and in the same capsule there are always some which are smaller than others. Within the capsule they have, during lifc, a very remarkable, and in some respects peculiar, lively oscillatory morement, being driven about as particles of any light insoluble powder might be in boiling water. The otoliths in the centrc have the appcarance of being pressed together, so as to form a sort of solid nucleus; and towards this centre the otoliths seem cver to be violently urged, their centripetal rush being invariably repulsed, and themselves driven back again in a centrifugal direction. Removed from the capsulc, the motions of the otoliths instantly ccasc. The cause of these curious oscillations remains undiscovered. Siebold could detect no vibratile cilia on the surfaces of the capsules \ddagger; and the cessation of the motion when the otoliths are remored proves them to be unciliated themselves, and at the same time distinguishes the motion from that of inorganic molecules, described by Mr. Brown.
(1468.) Dr. Nordmann, in an elaborate memoir on the anatomy of the Tergipes Edwardsii, minutcly describes the structure of the auditory

[^181]eapsules of that species, in which they are found situated immediately behind the oyes, upon the posterior portion of the two anterior ganglia, and are at once recognizablo by their sharp outline and very considerable size, which surpasses that of the eyes themselves. The proper auditory nerves arc wanting, the vesicles of hearing being lodged in littlo excarations in the ganglia themselves. These vesicles, which are of a round or oval shape, consist of a thin vitreous-looking membrane (but which is sufficiently tough to resist considerable pressure), and contain a fluid in which is suspended a minute rounded otolith.
(1469.) We now approach an inquiry of much interest as concerns the economy of the animals before us-namely the varicd forms of their organs of reproduction, and the charaeter of the generatire system bclonging to each order. This investigation, however, is one of no ordinary difficulty; for so numerous are the modifications of structure observable in almost every genus, that, were we not strictly to confine ourselves to the study of the most prominent and important features of this portion of their history, the patience of the student would be severely put to the test in following us through the details connected with so extensive a subject.
(1470.) The three lowest orders of the Gasteropoda are still, in many particulars, more or less allied to the Conchnersa ; but more especially is this the case in the organization of their generative apparatus. The Cyclobranchiata, Scutibranchiata, and I'ubulibranchiata, like the inhabitants of bivalve shells, are all hermaphrodite and self-impregnating*. A large granular ovary is in all these orders imbedded in the mass of the liver; and from this a duct leads to an external orifice situated in the vicinity of the anus: if impregnation is in such animals essential to fecundity, the fertilizing secretion must be furnished by the glandular walls of the oviduct, as no male organs have as yet been discovered.
(1471.) The Pectinibranchiata, on the contrary, are all diœcious-the sexes being distinct, and intercourse between the male and female necessary for the impregnation of the latter.
(1472.) The male is generally at once distinguished by the penis, appended to the right side of the neck (fig. $423, g$), an organ which is frequently of enormous proportions-so large, indeed, that, it being impossible that it should be retracted into the body, it is generally simply folded back into the branchial chamber. The testicle is imbedded in the mass of the liver, and lodged in the inmost recesses of the shell. It gives origin to a long and very tortuous vas deferens, which is at first. extremely slender, but on emerging from the mass of the viscera becomes thicker, running along tho right side of the body until it euters

[^182]the penis, and, having made many rigzag folds, reaches the extremity of that organ, whero it terminates by a small orifice.
(1473.) Equally simplo is the structure of the gencrative system in the females of the Pectinibranchiate Gasteropods. A large ovary occupies the same position as tho testis of the male, and sharcs with the liver the interior of the windings of the shell. The oviduct generally follows the same course as the vas deferens of the other sex, and is provided with thick and glandular walls. The eggs, which are very numerous, are arranged in long gelatinous ribands, and, after extrusion, are glued in various ways to the surface of rocks, seaweed, or even to the shells of other Mollusca. Somctimes, in the siphoniferous tribes, as for example in the common Whelk (Buccinum), the ova are enclosed in tough coriaceous capsules secreted by a glandular organ in the vicinity of the oviduct. Those capsules contain several eggs apiece, and are joined together in large bunches, such as the waves continually cast up upon every beach.
(1474.) The Heteropod Gasteropoda are hermaphrodite. In Pterotrachea the female organs consist of a distinet ovary, uterus, spermatheca, and an auxiliary gland, all lodged in the visccral sacculus appended to the back. The ovary (fig. 417, p) is of considerable size, and gives origin to a slender oviduct, which, near its termination, communicates with the receptacle for the ova, called the uterus (g). The spermatheca joins the canal leading from the uterine cavity to the exterior of the body, which likewise receives the secretion of two small glandular sacs (c) apparently destined to furnish some investment to the egrs prior to their expulsion.
(1475.) The male parts are situated in the general cavity of the body, quite apart from the female apparatus. The testicles seem to be rcpresented by two wavy ceca (fig. 41 \bar{T}, t), which terminate at the root of a small intromittent organ (s) placed at a short distance behind the opening of the vulva.
(1476.) All the Tectibranchiata, Inferobranchiata, Nuudibranchiata, and the Pulmonated Gusteropods are hermaphrodite, having both a male and female generative apparatus arranged upon the same principles as those of tho Snail, which bave already been deseribed at length; and to enumerate the variations which occur in the relative position and organization of different parts of the reproductive system in all the genera composing these extensive orders would scareely answer any useful purpose, even were it practicable within the limits of this work.
(1477.) In the male Patella, the testicle is situated upon the right side of the body, between the visceral mass and the external envelope. It is of a pale-yellow colour, with a slight pinkish tint, and seems to be entirely made up of minute tubes, many times folded upon themselves, and imbedded in a granular-looking substance. On cutting into the substance of the testicle, there flows out a milky fluid, which the micro-
scope roveals to contain innumerable spermatozoa, whose moverments are vory active as long as the seminal secretion is fresh.
(1478.) Tho ovary of tho female occupies nearly the same situation as the male testis ; but all attempts to trace tho excretory duct of cither have as yet proved futile.
(1479.) When the ova of the Nudibranchiate Mollusea are placed under the microscope soon after the extrusion of the spawn, each is seen to consist of a thin transparent case-membrane*, with a round smooth and opaquo body in its centro (the ovum proper), which is chiefly composed of minute cells enclosed in a vitelline membrane. These ova vary in size from $\frac{1}{2} \frac{1}{50}$ to $\frac{1}{2} \frac{1}{80}$ of an inch in diameter. A few hours after the extrusion of the spawn the yelk divides by progressiro segmentation until the ond of the fifth day, when the division of the cells appears to have reachod its utnost limit and the vitelline mass has changed its shape, having become broader at one end, narrower at the other (fig. 424, 2). At the end of the sixth day no additional change

Fig. 424.

Development of the embryo of a Nudibranehiate Mollusk. 1. Gelatinous eoil, in whieh the ova are imbedded. 2. A portiou of the same, magnifled. 3. Firat appearance of the embryo. 4,5. Embryos in different stages of growih. 6. Mature cmbryo when newly hatched, enclosed in a minute nautiloid shell.
takes place in the external form of the ovum ; but the cells into which it has divided continuc to coalesce, and minute cilia become apparent on the upper surface of the broad oxtremity. On the cighth day it assumes the form represonted at fig. 424,3 , its circumfcrence becomes more or

[^183]less translucent, and the extermal layer of cells seem to separate from the rest to form tho commencement of the shall (fig. 424, 4), the cilia on the broad extremity become larger and moro active in their movements, and traces are observed in the division of this end into ciliated disks: it is now entitled to the namo of embryo.
(1480.) From the ninth to the eleventh day the ciliated disks become more developed, more separated from each other, and more moveable; the largest of tho forr lobes of the body has arranged itself into stomach and intestine, in which occasional contractile movements may be seen.
(14S1.) The case-membrane previously to the cscape of tho embryo becomes gradually thinner, and at last either entirely disappears or is redueed to shreds, probably by the incessant strokes upon its inner surface of the long cilia of the ciliated disks during the active revolutions of the embryo round its interior. The embryo at the time of its liberation is provided with a shell somewhat resembling that of the Nautilus, from which it can protrude the anterior part of its body and retract it at pleasure (fig. 424,6), swimming about actively in the surrounding water by means of its ciliated disks.
(1482.) The spawn of other Gasteropods is deposited under diverse forms. In the marine species, it is usually found attached to the surface of stones, shells, or scaweed, the ova being connected with cach other in long ribands or delicate festoons, which are sometimes extremely beautiful and curious. The Doris and Tritonia deposit their ova in long gelatinous bands, rescmbling beautiful frills of rieh lace. In Aplysia the spawn resembles long strings of jelly, in which the ova are seen, varying in tint, so as to give different colours to different parts of the thread. In Helix and Bulimus the eggs are protected by a hard shell; whilst in Buccinum, Voluta, Murex, and other marinc spccies the ova are enveloped in membranous capsules, agglomerated together in large bunches. These capsules have been sometimes erroneously regarded as the eggs themselves; they are, however, merely coriaceous envelopes, answering the purpose of the gclatinous coating that encloses the eggs of other specics. Many of the Gasteropoda are exceedingly prolific: a single Doris will lay 50,000 eggs at a birth ; and when we take into account that all the individuals are prolific (the sexes being combined), and that cach will produce spawn two or three times in a season, it is evident how vast must be the number of their progeny.

CHAPTER XXII.

PTEROPOD ${ }^{*}$ (Cuvier).

(1483.) Nearly allied to the Gasteropods in their internal organization, but differing from them remarkably in the character and position of their locomotive apparatus, are tho Preropoda-a class of mollusks of small dimensions, but met with in astonishing quantitics, at certain seasons, in various parts of the ocean. So numberless, indeed, are these little beings in those regions where they are common, that the surface of the sea secms litcrally alive with their gamblings; and thus the store of provisions necessary to render the waters of the occan habitable to animals of higher grade in the scale of life is still further increased. The great character that distinguishes the members of the class upon the investigation of which we are now entering is derived from the structure of their organs of locomotion. These are only adapted for swimming, and consist of two broad and fleshy expansions, attached like a pair of wings to the sides of the neck, and forming moreable fins-enabling the little beings to dance merrily among the foamy waves, now sinking, and again rising to the sulface, until some passing whale, opening its enormous jaws, engulfs multitudes of such tiny victims, and hence derives the matcrial for its subsistence.
(1484.) Several distinct genera of Pteropoda have been established by zoologists, and some important modifications have bcen detected in their organization, although in all of them the lateral alæ form the instruments of progression.
(1485.) The Clio borealis, anatomized by Cuvier \uparrow, and more recently and completcly investigated by Professor Esehricht of Copenhagen $\dot{\mp}$, is one of the spocies best known, as well as most abundantly met with; it is thercfore by a description of this Pteropod that we shall procced to introduce the reader to the general facts connected with the history of the animals under cousideration.
(1486.) The body of the Clio is about an inch in length, of an oblong shape, and terminating posteriorly in a point; while at the opposite extremity there is a little head supported upon a short neck, and furnished with delicate retractile tentacles, apparently instruments of touch. The locomotive organs, as the name of the elass imports, consist of two delieate wing-like-appendages (fig. 425, a a) attached to the two sides of the neck, by means of which, as by a pair of broad fins, the Pteropod rows itself about with facility. But the two aliform membrancs, although extcrnally they appear separate instruments, are, as we are assured by the observations of Professor Eschricht, but one

[^184]+ Mémoire sur le Clio lorealis.
\ddagger Anatomischo Untersuehungen über dio Clione borealis, ron J. F. Eschrieht. Kopenhagen, $1838,410$.
organ, being made up entirely of muscular fasciculi, which pass right through the neek and spread out on each side in the substance of the wing, forming an apparatus exactly comparable to the double-bladed oar with which the Greenlander so dexterously stecrs his kajac, or canoe, through the rery seas inhabited by tho little Clio we are describing.
(1457.) The head of one of these animals is surmounted by various organs, appropriated to different offices, and some of them not a little remarkable from the amazing complication of structure which they exhibit. On each side of the oral opening are three conical appendages (fig. $425, \mathrm{c}, \mathrm{s}$), that to a superficial examiner might appear to be mere

Fig. 425.

A

B

Clio borealis ; represented at A in a state of repose, while B, C exhibit the various extexnal appendages fully protruded: $a a$, wing-like oars; b, hood, retracted; g, bladder-like organ; h, penis; k, tentacle; 0 , globular protuberances; s, s, conical appendages.
fleshy tentacula; but in reality they are instruments of prehension, of unparalleled beauty and astonishing construction. Each of these six appendages, when examined attentively, is scen to be of a reddish tint; and this colour, under the microscope, is found to be depeudent upon the presence of numerous minute isolated red points distributed over its surface. When still further magnified, these detached points are evidently distinct organs, placed with great regularity, so as to give a speckled appearance to the whole of the conical appendage; and their number, at a rough gucss, may be estimated at about threc thousand. Every one of these minute specks is, in fact, when more closely examined, found to be a transparent cylinder, resembling the cell of a polyp, and containing within its eavity about twenty pedunculated disks, which may be protruded from the orifice of their sheath (fig. 426, c), and form so many prohensile suckers adapted to scize and hold minute prey. Thus, therefore, there will be $3000 \times 20 \times 6=360,000$ of these microscopic suckers upon the head of one Clio-an apparatus for preliension perhaps unparalleled in the creation.
(1488.) When not in use, the appendages referred to are withdrawn, and concealed by two hood-like fleshy expansions, which, mecting cach
other in the mesind line, completely cover and protect the whole of this delicate mechunism, as represented in (fig. 42\%, A).
(1489.) Still, however, oven when the hoods are drawn over the parts they aro intended to defend, the Clio is not left without tactile organs wherewith to examine extermal objects; for each valve of the hood is perforated near its eentre : and through the apertures so formed, two slender filiform tentacula (fig. 425, c, k), somewhat resembling the feelers of a Snail, are protruded at the will of the animal; and by means of these it is informed of the presence of food, and instructed when to uncover the claborately organized suctorial apparatus destined to seize it and convey it into the mouth.
(1490.) The mouth itself is described by Cuvier as being a simple triangular opening, resembling the wound inflicted by a trocar; and in the solitary specimen at his disposal he did not suceeed in deteeting any dental structures. Eschricht, however, with supcrior opportunities, was more suceessful in displaying the oral organs, and found the Clio to possess jaws of very singular conformation, and a tongue covered, as in many other Mollusea, with sharp horny spines.
(1491.) Ono of tho jaws removed from the body, and magnified twenty-eight diamcters, is represented in the subjoined figure (fig. 426, A). It consists of a series of sharp horny tecth of unequal length,

Fig. 426.

fixed to the sides of a lateral pedicle in such a manner that their prints are all nearly at the same level. The teeth themselves have a golden motallie lustre, and, when examined in the sumshine muder water ly mouns of a lens, aro especially beautiful objects. The basis to which they are fixed is apparently of a fleshy charactor, and if smashed by
being squeczed between two plates of glass, and then placed under tho microscope, appears to be made up of a multitude of regularly disposed fibres that cross each other in two principal directions.
(1492.) The jaws thus constructed are placed on each side of the mouth, contained in two hollow curved cylinders, the walls of which are muscular ; and if one of these muscular capsules be snipped by means of a pair of very fine scissors, the strangely formed jaw, with its tecth, is found lodged within it.
(1493.) The manner in which the Clio uses these dental organs is obvious from their anatomical position. The curved muscular cylinders by the contraction of their walls force out tho teeth, so that they then project from the mouth, and are ready to seize and drag into the oral orifice whatever food presents itself.
(1494.) Once conveyed by the jaws into the interior of the mouth, the prey scized is taken hold of by the tongue ; the free extremity and upper surface of which is scen, when highly magnified, to be eovered with regular rows of spiny hooklets, all directed backwards, and evidently intended to assist in deglutition (fig. 426, B).
(1495.) The structure of the alimentary canal is extremely simple. The œesophagus (fig. $427, t$) gradually dilates into a wide stomachal cavity that is surrounded on all sides by the mass of the liver (i); while the intestine (v), in which the stomach terminates, mounting towards the left side of the neck, ends by an external anal orifice. Two long and slender salivary glands (w) are placed at cach side of the osophagus, and furnish a secretion that is poured into the mouth. The precise eharacter of the bile-ducts has not been satisfactorily determined in Clio; but in Pneumodermon, another Pteropod very nearly allied to the genus we are describing, the stomach itself, which is enveloped on all sides by tho liver, receives the biliary secretion through a multitude of minute pores.
(1496.) With respect to the real nature of the respiratory apparatus in Clio much doubt exists. Cuvier regarded the aliform fins as being subservient to respiration, as well as forming locomotive organs, and observes that the surfaces of these appendages, seen with the microscope, present a network of vessels so regular, so close, and so delicate, that it is not possible to doubt that they aro intended to perform the functions of a respiratory apparatus, adding, moreover, that their connexion with the internal vessels and the heart confirms this view of the nature of these membranes.
(1497.) Eschricht, on the contrary, denies altogether the existence of any such vascular ramifications as Cuvier describes, asserting that the appearance alluded to is entirely produced by the spreading out of the muscular fibres above-mentioned, and that the only vessels visible in the alar processes are a few arterial branches derived from the aorta.
(1498.) We are still, therefore, in ignorauce as to the respiratory
organs of Clio: the heart, however, is very apparent (fig. $427, m$) ; it is composed of a single auriclo and ventricle, enclosed in a pericardium, and gives off at one extremity a large vessel (m), which Cuvier regarded as a pulmonary vein, but which lischricht has proved to be the aorta, inasmuch as he has traced its branches to the liver and the other internal viscera of the body.
(1499.) The nervous system of this mollusk is easily distinguished, not only on account of the large proportional size of the ganglia, but from the circumstance of the nerves being of a pale-red colour. The ganglia form a ring placed round the cesophagus near the middle of the neck. There are eight large and two smaller ganglionie masses closely aggregated in this situation ; and from these sources all the nerves of the body are given off.
(1500.) From the large dimensions of the nervous eentres, we may be prepared to expect senses of correspondent perfection of structure. We have already mentioned the sensitive tentacula protruded from the hood-like covers that protect the oral apparatus; but, in addition to these, organs of vision are provided, apparently of a very complete character. These eyes are two in number, and are placed on the back of the neck. Each eyo has the form of a somewhat bent cylinder, haring its two extremities rounded off. The anterior end of the cylinder is the transparent cornea; and when the eye is removed from the body of the animal and examinod under the microscope by transmitted light, sundry parts may be detected in its interior-sufficient, indeed, to indicate the existence of a choroid membrane, a vitreous humour, and a distinct lens, occupying the ordinary positions of these parts of the visual apparatus.
(1501.) The generative system of Clio resembles in all essential particulars

Fig. 427.

Viscera of Clio borealis: f, g, tegumentary membranes; $m \mathrm{~m}$, the heart, giving off a large vessel ; t, esophagus; i, liver; v, intestine; u, sulivary glands: n, orary: o, oviduct; k, testicle; p, its exeretory eanal: q, bladder-like organ; d, wing-like appendages. that of the most highly organized Gasteropoda, and, as in them, is composed of a complete set of male organs as well as of ovigerous viscera. According to the riews

Which Curior was led to entertain from the dissection of a single specimen, he supposed that the ovary (fig. 427,n) gave off a slender oriduct (0) terminating in a thick glandular canal, the testicle (k), which, beginning by a cecal prolongation, and gradually diminishing in diameter until it became attenuated into a slender vas cleferens (p), ultimately emptied itself into a small round $\operatorname{sac}(q)$ situated in one side of the neek, where it communicated with tho exterior. Close to the sac, q, the illustrious French anatomist pointed out another vesicle (r), which he compared to the bladeler (spermatheca) of Gasteropod Mollusks. The more complete researches of Professor Eschricht, however, have rendered considerable modifications of the above description requisite, inasmuch as that gentleman has succeeded not only in detecting a testis quite distinct from the ovigerous canal, but also a very complete intromittent apparatus. The testis, in fact, in a fresh specimen is so large as to occupy a great portion of the visceral cavity ; and, no doubt, in the individual examined by Cuvier, which had been kept in spirits of wine, it formed a large portion of the mass (fig. 427, i) which he thought to be entirely made up of the liver. The duct from this testis communicates with the receptacle (q); so that the glandular canal ($\%$) must be regarded as a part of the oviduct, analogous to what has been called the uterus in the Snail.
(1502.) Another important discovery for which science is indebted to the Danish Professor is that the Clio possesses a long and singularly formed penis ($425, c, 7$), lodged, when retracted, in the interior of the head of the Pteropod, but which, together with the bladder (g), in which it was contained, can be extruded from the right side of the neck to such an extent that it ncarly equals in length the whole body of the little creature.
(1503.) The mass formed by the visccra occupies but a small space in the gencral cavity of the body. The external investment of the risceral sac is a thin semitransparent skin (fig. 427, f) of soft texture : and within this is a second covering (g), thicker than the first, and exhibiting very distinct muscular fibres, principally distributed in a longitudinal direction, so that their action would seem to shorten the animal and make its shape more spherical.
(1504.) What fills up the space that intervenes between the muscular tumic and the viscera is as yet undetermined ; but Cuvier, in the memoir above referred to, suggests that it may possibly contain air, which, as it should be compressed or allowed to expand, would form a kind of swimming-bladder, and allow the animal to mount to the surface, or sink into the recesses of the sea, with little effort or excrtion of muscular power.
(1505.) The other genera included in this class agree in their general form, and in the arrangement of their digestive and reproductive organs, with C'lio aboro described, but present a fow important modi-
feations in the disposition of their branchice, and other minor cireumstanees.
(1506.) In Ifyalcect the mantle contains a shell, composed of two unequal plates, one of whieh is dorsal, and the other ventral ; and the branchix, which are here distinctly recognizable, form a circle of vascular leaflets enclosed in a cavity of tho mantle situated between the divisions of the shell, and so disposed that the water has free admission to them through the two lateral fissures of its testaceous defenc.
(1507.) In Pneumodermon the branchir oceupy a totally different situation, the branchial loaflets being arranged in semicireular lines upon the postcrior extremity of the animal ; but such modifications of a gencral type of strueture are of more interest to the zoologist than to the physiological reader, and our space warns us that we have yet to eneounter forms of life widcly different from any that have hitherto fallen under our notice.

CHAPTER XXIII.

CEPHALOPODA * (Cuvier).
(1508.) We now arrive at the highest order of Mollusca, composed of animals distinguished by most strange and paradoxical charaeters, and exhibiting forms so uneouth, that the young zoologist who for the first time encounters one of these ereatures may well be startled at the anomalous appearance presented by being so remote in their external eonstruction from every thing with which he has been familiar.
(1509.) Let him conceive an animal whose body is a closed bag, containing the viscera connected with digestion, eirculation, and reproduction, furnished with a head and stariug eyes-that upon the head are supported numerous and complex organs of locomotion, used as feet or instruments of prehension-moreover, that in the centre of the locomotive apparatus, thus singularly situated, is a strong and sharp horny beak resembling that of a parrot-and he will rudely pieture to himself a Cephalopod, such as we are now about to deseribe.
(1510.) The Octopus vulgaris, or common Poulpe, represented in the next figure, will serve as an example ealculated to prove, we apprehend. that the above is no exaggerated statement; and should the student. uncxpeetedly observe an animal of this kind walking towards him upon the beach in the position there delineated, his euriosity would doubtless be excited to learn something of its habits and ceonomy.
(1511.) Yet not only ean the Poulpe walk in the manner exhibiterd

* кeqpedi, the heall; $\pi 0 \tilde{s} s, \pi o \delta i o s$, the foot.
in the subjoined figmre (fig. 428), but it is well able to swim, if occasion require, - the broad fleshy expansion that connects the bases of its cight legs being fully adequate to enable it to adopt such a mode of progression; for, by vigorous flappings of this extensive organ, the animal actively impels itself through the water in a backward direction and shoots along with wonderful facility.
(1512.) The feet or tentacula appended to the head are not, however, exclusively destined to effect locomotion: they are used, if required, as agents in scizing prey, and are of so terrible a character, that, armed with

The Poulpe (Octopus vulgaris).
these formidable organs, the Poulpe becomes one of the most destructive inhabitants of the sea; for neither superior strength nor activity, nor even defonsive armour is sufficient to save its victims from the ruthless ferocity of such a foe. A hundred and twenty pairs of snekers, more perfect and efficacious than the cupping-glasses of human contrivance, crowd the lower surface of every one of the cight flexible arms. If the Poulpe but toueh its prey, it is enough : once a few of these tenacious suckers get firm hold, the swiftness of the fish is unavailing, as it is soon trammelled on all sides hy the firmly holding tentacula and dragged to
tho mouth of its destroyer. The shell of the Lobster or of the Crab is a vain protection ; for the hard and crooked beak of the Cephalopod easily breaks to picces the frail armour ; and even man himself, while bathing, has beco entwined by the strong arms of gigantic species, and struggled in vain against a grasp so pertinacious.
(1513.) In the genus Octopus the arms are only cight in number, and nearly of equal length ; but to the Calamaries (Loligo) and other genera an additional pair is given, which, being prolonged considerably beyond the rest, are not merely useful for seizing prey at a distance, but become convertible to other purposes, and may be employed as eables whereby the Cephalopods so furnished ride securcly at anchor in a tempestuous sea,-the suckers being placed upou an expanded disk, situater (fig. 430) at the extremity of the elongated tentacula, and thus rendercd capable of taking firm hold of the surface of a rock or other fit support. The posterior extremity of the body is, in such forms, gencrally provided with two broad muscular and fin-like expansions (fig. 430), evidently adapted to assist in sculling the animal along.
(1514.) Wonderful as are the provisions above described for ensuring food and safety to these formidable inhabitants of the sea, it is ouly by an attentive examination of the individual suckers, so numerously distributed over the tentacula, that the reader will fully appreciate the mechanism we are so inadequately describing. Machines of human construction admit of being variously estimated, as they are found to be more or less adapted to accomplish the object of the contriver ; but in estimating the works of the Deity all degrees of comparison are merged in the superlative; every thing is best, completest, perfect.
(1515.) Examine any one of thesc thousand suckers. It is an admirably arranged pneumatic apparatus-an airpump. The adhesive disk (fig. 429, ^)

Structure of the tentacular suckers in the Cephalopodr. 1. Detached sucker, viewed obliquely. B. Portion of tentacle, with suckers in situ, one of the latter seen in section: a, its fleshy margin; b, internal chamber; c, piston ; d, cut surface of divided tentacle. is composed of a muscular membrane, its circumference being thick and fleshy, and in many species supported by a eartilaginous circlet, so that it can be applied most aceurately to any foreign body. In the centre of the fleshy membrane is an aperture
leading into a deep cavity (B, b), at the bottom of which is placed a prominent piston (c), that may be retracted by muscular fibres provided for the purpose. No sooner therefore is the circumference of the disk placed in close and air-tight contact with the surface of an object, than the uuscular piston is strongly drawn inwards, and, a vacuum being Fig. 430.

thus produced, the adluesion of the sucker is rendered as firm as mechanism could make it.
(1516.) Yet eren in this elaborate and wonderful system of prehensile organs would seem, in some cases, to be insufficient for the purposes of nature. In the powerful and rapacions Onychoteuthis (fig. 430), the
cupping-glasses which arm the extremities of their long pair of muscular arms are rendered still more formidable; for from the centre of cach sucking-cup projects a strong and sharp hook, which is plunged by the action of the sucker decply into the flesh of struggling or slippery prey, and thus a firm and most efficient hold upon the seized victim is secured. Nor is this all that claims our admiration in the organization of the arms of Onychoteuthis: at the base of cach fleshy expansion that

Fig. 431.

Argonaut (Argoneuta argo). (After Poli.)
supports the tenacious and fanged suckers above described is a small group of simple adhesive disks, by the assistance of which the two arms can be locked together (fig. 430,1), and thus be made to cooperate in dragging to the mouth such powerful or refractory prey as, singly, the arms might be unable to subdue-an arrangement which has been rudely imitated in the construction of the obstetric forceps *.

* Cyclopedia of Anntomy and Physiology, art. Crimaiorona.
(1517.) The Argoncut constitutes tho type of another family of the Cerhalorodi, and is remarkablo as being the inhabitant of a shell of exquisite beauty, familiarly known as that of the Paper-Nautilus-a shell which, from remoto antiquity, has been decorated with all the ornaments of fiction, and celebrated alike by Poetry and her sister Arts.
(1518.) It was, indeed, to this Cephalopod that the aucients assigned the honour of having first suggested to mankind the possibility of traversing tho sea in ships; and nothing could be more elcgant than the little barque in which the Argonaut was supposed to skim over the waves, hoisting a pair of sails to the breeze, and stcoring its course by the assistance of oars provided for the purpose.
(1519.) The figure annexed (fig. 431), given by Poli in his magnificent work already referred to ${ }^{*}$, was in perfect accordance with the generally received opinion; and on such respectable authority we are not surprised to find Cuvier assenting to and sanctioning the statement that, when the sea is calm, fleets of these little sailors might be seen navigating its surface, employing six of their tentacula or arms instead of oars, and at the same time spreading out two, which are broadly expanded for the purpose, instead of sails. Should the waves become agitated, or danger threaten, the Argonaut, as we are told, draws in his arms, lowers his sail, and, settling to the bottom of his shell, disappears beneath the waters.
(1520.) It is a thankless office to dispel the pleasant dreams of imagination; Jet such becomes our disagrceable duty upon this occasion. MI. Sander Rang, in a recently published momoir upon this subject \dagger, has, from actual observation, apparently established the following facts : -1 st, that the belicf, more or less generally entertained sinco the time of Aristotle, respecting the skilful manœuvres of the Poulpe of the Argonaut in progressing by the help of sails and oars on the surface of the water, is erroncous. 2nd. The arms which are expanded into membranes have no other function than that of enveloping the shell in which the animal lives, and that for a determinate object to be explained hercafter. 3rd. The Poulpe, with its shell, progresses in the open sea in the same manner as other Cephalopods. And lastly, that when at the bottom of the occan, the Argonaut, covered with its shell, crecps upon an infundibuliform disk, formed by the junetion of the arms at their base, and presenting (alas!) the appearanco of a Gasteropod mollusk.
(1521.) It is not a little remarkable that the same animal should, even in these days, be the subject of the extremes of credulity and scepticism; yct such has been the ease with the Argonaut. While zoologists werc contented to allow the creature in question the reputa-

[^185]tion of being an activo and skilful mavigator, it has been very generally stigmatized as a pirate, which, having forcibly possessed itself of the shell of another animal, lived therein, and mado use of it for its own pmposes. It was in vain to urge, in opposition to this calunny, that the Argonant was never fomed in any other shell than the beantiful one represented in the preceding figure, that no other creature had been pointed out as the real fabricator of its very remarkable abode, that, whatever the size of the Poulpe, it oecupied a residence precisely eorresponding in dimensions with those of the possessor. The apparent want of resemblance between the outward form of the animal (fig. 433) and that of its fragile eovering, together with the absence of any museular eonnexion between the two, were looked upon as furnishing sufficient cvidence of its parasitical habits. The eareful obscrvations of Madame Jeannette Power, however, to be noticed more at length hereafter, and those of M. Sander Rang, above alluded to, have eompletely

Fig. 432.

> Animal of the Nuutilus Pompilius. (After Owen.) s, s, ehambers of shell ; $h . h$, siphuncle; a, a, mantle; b, fold of the mantle on the exterior of the shell; $;,$, lateral musele ; u, hoor ; i, infundibulum ; o, o, tentaeles; m, cye ; p, tactile processes; r, isolated tentacle.
settled the so long agatated question ; and, the Argonaut haring been watched earefully from the state in whieh it leaves the egg until it, arrives at naturity, the manner in which it forms and repairs its frail shell is now satisfactorily understood.
(1522.) A still more interesting group of Cepilalopons, and one which in former periods of the world has been extensively disseminated, in-
habited chambered shells. But of all the varicd forms of these creatures, whose remains are so abundantly met with in a fossil state, and known by the names of Ammonites, Belemnites, Nummulites, \&c., two species only hare been found to be at present in existence-the Spirula, an animal as yct impcrfectly known, and the Nautilus Pompilius, of which the only specimen obtained in modcrn times* has been the subject of a monograph by Profcssor Owen, who has most complctely inrestigated its general organization and relations with other families of the Cephalopoda. The shell of the Pearly Nautilus (N. Pompilius) is extremely common, and may be met with in every conchological collcetion, notwithstanding the rarity of the creature that inhabits ita circumstance, perhaps, to be explained by the fact that the living animal dwells in deep water, and when it comes to the surface is so vigilant against surprise that at the slightest alarm it sinks to the bottom. On making a section of the shell, its cavity is found to be partitioned off by numerous shelly septa into various chambers (fig. $432, s s$), in the last of whieh the body of the mollusk is situatcd. A long tube or siphuncle ($/ \hbar$), partly calcareous and partly membranous, passes through all the compartments quite to the end of the series. The membranous siphuncle is continued into the animal, and terminates in a eavity contained within its body, hereafter to be described, which is in free communication with the exterior.
(1523.) Various conjcctures have been indulged in concerning the end answered by the camerated condition of the shell in these Mollusca. Dr. Hooke \uparrow suggested the idea that the chambers might be filled with air generated by the Nautilus, and thus made so buoyant that the specific gravity of the animal and its shell should corrcspond with that of the surrounding medium, and that, acting in the same manner as the swimming-bladder of a fish, the creature would float or sink, as the air thus imprisoned was alternatcly compressed or rarcfied. Should this supposition be correct, it would secm probable, as Dr. Buckland has pointed out, that the simple retraction of the head, by injecting water from the chamber within its body (pericardium) into the membranous siphuncle, would cause the necdful condensation of the air contained in this singular float, and allow the Nautilus to sink to the bottom; while the protrusion of its arms, by taking off the pressure, and thus allowing of the expansion of the confined air, would give every necdful degree of

[^186]buoyancy, even sufficient to permit the mollusk to rise like a balloon to tho top of the sea.
(1524.) The body of this Cephalopod is covered with a thin mantle (a a), of which a large fold (b) is reflected on the exterior of the shell. It is securely fixed to its residence by two lateral muscles, the insertion of one of which is seen at g. A large coriaccous hood (n) covers the head, and, when tho creature retreats into its habitation, closes the entrance like a door, while through tho infundibulum (i) the ova and excrementitious matters are expelled from the body. The mast remarkable feature, however, exhibited in the external conformation of Nautitus is the conversion of tho sucker-bearing arms of other Cephalopods into an elaborate apparatus of tentacular organs appended to the head (00) ; but these, as well as the eye (m), will be more minutely described as we proceed.
(1525.) Turning our attention to the anatomical structure of the Cephalopoda, we find that in all of them the exterior of the body is entirely formed by an intricate interlacement of muscular fibres. The sac that contains the viscera, itself muscular, is united to the head by strong and largely developed fasciculi; the funnel (fig. 433, a), through which, as through a fleshy pipe, the products of excretion, as well as the eggs or seminal fluid, are ejected, is formed of a tissue similarly endowed with contractility; while the arms are composed externally of muscles disposed in various direetions, and moreover have their central portion occupied by strong bands, which traverse them longitudinally from end to end, so that they are thus gifted with all needful powers of motion, and may be shortened, elongated, or bent in any direction at pleasure.
(1526.) In those natatory species which, like Loligopsis, or Onychoteuthis (fig. 430), have fins appended to the sides of the risceral sac, these organs likewise are made up of muscular substance; and, being thus converted into broad moveable paddles, they also form efficient locomotive agents.
(1527.) One important circumstance observable in the class before us must not be forgotten in connexion with this portion of the history of the Cephalopods. We may remind the student that, in the vertebrate division of animated nature, to which these creatures immediately lead ns, the locomotive system is supported by an internal vascular and living skeleton, composed either of cartilage, as is the case in the most imperfeet vertebrated genera, or, in the more highly organized forms, of bones articulated with each other, and possessing within themselves the means of growth and renovation derived from the blood whiels permeates them in every part. The reader will remember that, in all the classes that have offered themselves to our notice, we have not hitherto obscrved any thing at all comparable to an internal osscous framework such as Man possesses - dead, extravascular shells, formed
by suecessive dopositions of layors of ealcareous material, or jointed cuticular armour equally ineapable of growth, having as yet represented the skeleton, and formed the only levers upon whieh the museular system could aet in produeing the movements eonneeted with loeomotion.
(1528.) Having, however, already had frequent opportunities of secing how gradually nature proceeds in effecting the development of a new series of organs, we might naturally be led to expect in the creatures before us some faint indications, at least, of our approach to animals possessed of an internal bony framework; and our expectations in this particular will be found on investigation to be well grounded. It is, in fact, in the Cephaloroda, the highest of the molluscous classes, that the rudiments of an osseous system for the first time make their appearanee, -not, indeen, as yet composed of perfect bone, but formed of cartilaginous pieces-some being so disposed as to protect the ganglionic mass above the cesophagus, which now from its size well deserves the name of brain, whilst others serve to afford bases of attachment to the muscular system in different regions of the body.
(1529.) The most important piece met with in the eartilaginous skeleton of the Cuttlefish encloses and defends the brain, and therefore is most appropriately called the cranial cartilage, bcing correspondent, both in position and office, with the cranium of a vertebrate animal. This rudimentary eranium embraces the œesophagus with a cartilaginous ring, encases the brain, affords passage to the optic nerves, and gives off orbital plates for the protection of the eyes. The cranial eartilage likewise gives a firm origin to the muscles of the locomotive tentacula appended to the head, and, moreover, contains within its substance an auditory apparatus, presenting the earliest condition of an organ of hearing such as is met with in the vertebrate division of the animal kingdom; in every respect, therefore, it claims to be regarded as the first appearance of a sluull. Another broad eartilage is imbedded among the muscles at the base of the fumel ; and two distinct plates, situated in the lateral fins of such species as possess appendages of that deseription, offer, undoubtedly, the rudiments of those portions of the skeleton that sustain the locomotive limbs of quadrupeds.
(1530.) But while we thus see in the Cepinalopoda the earliest form of an internal osseous skeleton, we eannot be surprised to find these mollusks still retaining, at the same time, the tegumentary ealcareons sholl or epidermic skeleton of inferior animals.
(1531.) On slitting up the mantle of a Calamary (Loligo) along the mesial line of the back, it is found to contain a large cavity, wherein is lorged a long plate of horn, called the gladius, which in shape is not inaptly compared to the blade of a Romansword. This enelosed horny substance, notwithstanding the dissimilarity of texture, is, in fact, strictly analogous to the enclosed shell of the Slug, deseribed in a
former page ; and its growth is offocted in the same manner, namely by an cxudation of corneons matcrial from the floor of the chamber that contains it; and this hormy sceretion, hardening as it is deposited layerby layer, adds to the dimensions of the gladius as the growth of the animal procceds. Several of these plates may be produced in succession ; and in old individuals it is not uncommon to find two or three enclosed in the same cavity, and placed onc behind the other-that nearest the visceral aspect of tho chamber being the most recently formed. These rudimentary shells have no connexion whatever with the soft parts of the Calamary, to which, indeed, they are so little adherent that they fall out as soon as the sac wherein they are secreted is laid open.
(1532.) In tho Cuttlefish (Sepia officinalis) the dorsal plate (os Sepice) is found in the same situation as the gladius of the Calarnary, from which, however, it differs remarkably both in texturc and composition. The "cuttle-bone," with the appearance of which cvery one is familiar, is principally composed of calcareous substance, and, were we to judge of its weight from its bulk, would seem calculated materially to interferc with the movements of an aquatic animal destined to swim about, and consequently needing whatever assistance might be derived from lightness and buoyancy. Did a creature so apparently destitute of natatory organs possess a swimming-bladder like that of a fish, to assist in supporting it in the water, we should conceive such an apparatus to be far more adapted to its predatory habits than a shell so bulky as that which it is destined to carry.
(1533.) We have, however, already seen, in the casc of the Nautilus, that it would be by no means impracticable to convert a shell iuto a float nearly equalling a swimming-bladder in efficiency; and on more accurate examination it becomes obvious that in the bone of the Cuttle we have a provision of a similar nature, though the end arrived at is obtained in a very different manner. On making a section of a cuttlebone, it will be found to be composed of numerous stages of very thin calcareous plates, placed at some distance above each other, and kept apart by the interposition of vertical laminæ of the same substance, having, from the tortuosity of their meanderings, the appcarance of millions of microscopic pillars. Thus organized, the shell in question becomes sufficiently light to float in water, and consequently, from its buoyancy, no doubt assists, instead of impeding, the movements of the mollusk. This admirable float, like the horny gladius of Loligo, is lodged in a membranous capsule and enclosed in the back of the Sepia, haring no connexion whatever with the sidos of the carity wherein it is placed, being so loosely adherent that it readily falls out on opening the sac.
(1534.) The "cutle-bone" is formod in the same mamner as other shells, by the continued addition of calcareous lamina secreted by that

CUTTLE-BONE.

side of the containing capsule which is interposed between the shell and the abdominal viscera; and these layers, being suecessively added to the ventral surface of the shell, thus gradually increase its bulk as the Cuttlefish advances to maturity. Neither in the mode of its growth nor in its texture, therefore, does the os Sepice resemble bone, properly so called; it receives neither vessels nor nerves, but is in all respeets

Fig. 433.

Animal of the Argonaut out of its shell: a, the siphon; b, the so-called vela; c, the head ; d, the body; e, f, locomotive tentacula. (After Poli.)
a dermal secretion, imbedded in the mantle, and formed in the same manner as the dorsal plate of the Slug.
(1535.) We now come to consider the long-disputed question relative to the nature of the shell of the Argonaut. The Poulpe that inhabits the clegant abode represented in a preceding figure (fig. 431), when removed from its testacoous covering, has the general form of an Oc-
topus. Its body (fig. 43:3) is enclosed in an ovoid museular sae (l) ; and the head is surmounted by eight long sucker-bearing arms, of ${ }^{\prime}$ which $\operatorname{six}(e, f)$ taper gradually from their origins to their extremities, while the other two, formerly regarded as sails, and which we shall continue to designate by their ordinary name, vela, expand into broad membranes (b).
(1536.) M. Sander Rang, who, during a residenee at Algiers, had ample opportunity of studying the living Argonaut, aseertained that in the figure eopied from Poli, whieh we have given in a preeeding page, the animal is placed in its shell in a reversed position, and that, when alive, the ereature is always found with its veliferons arms turned towards the spire of its abode, instead of in the opposite direction, as represented in the drawing referred to. Moreover the vela, instead of forming sails, are invariably tightly spread out over the external surface of the shell (fig. 434), whieh they cover and entirely eoneeal from view.

Fig. 434.

With its veliferous arms thus firmly embracing its abode, the Argonaut has two modes of progression. It ean raise itself from the bottom, and sport about at the surfaee of the water; but this is simply effeeted by the ordinary means used by Calamaries and Cephalopods in general, namely by admitting the sea-water into its body and then ejeeting it in foreible streams from its funnel, so as to produce a retrograde motion, whieh is sometimes very rapid. Its usual movements, howerer, are confined to erawling at the bottom with its head downwards; and in this way it creeps, earrying its shell upon its baek.
(1537.) The reader will obtain a better idea of the real appearanee of the Argonaut in its shell by inspeeting the ammexed eopy of M. lang's figure than from any verbal deseription ; and we borrow that gentle-
man's own account of its general appearance*. The membranous portions of the expanded arms, dilated beyond any thing we could have pictured to ourselves whilo knowing the animal merely by specimens prescrved in spirits of wine, are spread over the two lateral surfaces of the shell in such a manner as to cover it completely. The application of these membranes is direct, and without any puckering or irregularity whatever-the lower part of the two large arms being stretched, so as to form a kind of bridge over the cavity left between the back of the mollusk and the retreating portion of the spire. When the mollusk contracts, it frequently draws in more or less completely its large arms and their membranes, so as partially to uncover the shell in front, as is represented in the figure (fig. 434).
(1538.) There is little doubt that the vela of the Argonaut, which thus envelope its abode, are the organs employed in constructing the brittle fabric, and the agents whereby fracture and wounds in the shell are repaired and filled up.
(1539.) The positive experiments of Madame Power \dagger leave no doubt upon the subject; for not only did that lady, by rearing young Argonauts from the egg, watch the first appearance and earliest growth of the shell, but, by breaking the testaceous covering of adult specimens, she found that they could readily repair the damage inflicted. Being desirous of observing the manner in which this operation was accomplished, the lady to whom science is indebted for these interesting researches examined an individual on the day after its shell had been intentionally broken, and found that the aperture was already covered by a thin glutinous lamella, which, although as jet as delicate as a eobweb, united the margins of the fracture. The next day the lamella had become thickened to a certain degree and more opaque; till at length, at the end of ten or twelve days, the new piece had become quite calcareous. Madame Power is likewise certain that, while in the act of mending the fractures, the Argonaut applied its vela to the exterior of the shell, and wrinkled them upon it; whence they may naturally be regarded as being the sourco from which the glutinous secretion that finally became hardened into shell proceeded.
(1540.) In order to understand the manner in which the remarkably constructed camerated shells, such as those of Nautilus, are produced, it is not necessary to imagine any deviation from the simple mode of procedure adopted in all the eases we have as yet considered. The eontinual elongation of the spiral cone is, as is evident from the lines of growth visible upon its outer surface, effected by the addition of suc-

[^187]cessive layers to the margin of the aperture of the last-formed chamber, wheroin the creaturo resides; and as the production of the caleareous secretion whereby the shell is enlarged is most rapidly cffeeted upon that side of tho body where the funnel (fig. $432, i$) is situated, the gradually expanding shell naturally revolves around an excentric axis. While the growth of the shell continues, the animal is eonstantly advancing forwards, and thus leaves the first-formed portions of the shell unoceupied. At intervals, as the Nautilus thus removes itself further and further from the bottom of its abode, that portion of its mantle which covers the general surfaee of its visceral sae (fig. 432, a) secretes at distant intervals floors of shelly substanee behind it; and thus the septa ($s s$) are formed, whereby the shell is separated into chambers, every ehamber having in turn been oecupied by the body of the Nantilus. The gradual prolongation of the fleshy siphon (7) is easily understood, because it naturally increases in length with the growth of the animal ; but how the two muscles (fig. 432, 9), that fix the body to the shell, progressively advance their points of attachment as the shell enlarges, is not so readily explained; neither are we prepared to account satisfactorily for the accomplishment of this part of the proeess.
(1541.) It has been already stated that in all Cephalopods the aperture of the mouth is situated in the centre of the disk formed by the union of the origins of the feet (figs. 430, 437). The oral orifice is generally surrounded by a broad circular lip (fig. $435, ~$, a), which being not unfrequently fringed or papillose, there is little doubt of its possessing sufficient sensibility to render it of material assistance in manducation.
(1542.) The eircular lip partially conceals a pair of strong horly mandibles, not unlike the beak of a parrot, but differing in this parti-

Fig. 435.

Jaws of the Cuttlefish. A: a, fleshy oriflee of the mouth; b, museular mass of the mouth; c, mandibles; π, arophagus. B, horny beak of the Cuttlefish, in outline. eular, that in the Cephalopod the upper mandible is the shorter of the two, and is overlapped by the lower jaw. Tho mandibles detached from the soft part are represented
in fig. 435, B, a, b. There is likewise another important difference between the structure of the beak of the Cuttlefish and that of the Bird, inasmueh as in the former there is no bony support to the horny jaws, and eonsequently some other means of sustaining them must be had recourse to. We accordingly find the place of the jaw-bones supplied by a fibrocartilaginous substance (fig. $436, c$) that fills the interior of each mandible, and thus gives it sufficient solidity for all required purposes. Externally the jaws are imbedded to a considerable depth in a strong mass of musele (fig. 435, b), eomposed of several layers of fibres variously disposed, so as to open or close the jaws with a degree of foree proportioned to their large size. Here, therefore, is an apparatus fully adequate to eooperate with the elaborately eonstrueted prehensile arms Whereby these predatory animals seize their prey ; and a victim once involved in the tenaeious grasp of the tentacula, and dragged to this powerful beak, ean have but little ehance of resisting means of destruction so formidable as those granted to the Cephalopod.
(1543.) The mandibles of Nautitus Pompitius, instead of being entirely eomposed of horn (as is invariably the ease in those genera that, being provided with tentaeula armed with suckers, are thus capable of seizing active and slippery animals), would seem to be rather ealculated to break to pieces the testaeeous coverings of Mollusca or the armour of the Crustacea. They possess, indced, the shape of the jaws already described, but are blunt at their extremities (fig. 437, $n, 0$), and thickened by a covering of a dense calcareous substance; so that they appear manifestly adapted to erush hard substanees rather than to cut or lacerate the tender bodies of fishes*. The jaws of the Nautilus, like those of the Octopus above described, are imbedded in a powerful mass of muscles (p) whereby they are opened and shut with great foree, and are also provided with a distinet muscular apparatus destined to protrude them when in use, and again to retract the whole mass of the mouth deeply into the body when unemployed. The meehanism provided for the protrusion of the mandibles is a strong semieircular muscle ($r r$), which firmly embraees the base of the oral apparatus, and by its contraction pushes it outwards among the labial tentaenla (h, k); while, on the other haud, four retractor museles, the upper pair of which are represented in the figure reforred to $(q q)$, arise from the extremities of the eranial cartilage, and, running forwards to be inserted into the oral mass, are the agents whereby the whole is again withdrawn and thus concealed from view.
(1544.) The tongue of the Cefinaloroda, as in the Mollusea deseribed in the last two chapters, is an exceedingly important instrument, and from its construetion would here seem to be an organ of taste as well as a necessary assistant in deglutition. In the annexed figure, representing a vertieal seetion of the beak of a very large Onychoteuthis, the * Owen, 'Memoir on the Pearly Nautilus.' London, 1832, 4 to.
shape and disposition of the different parts of the tongue are well scen. The substance of the tongue itself is fleshy (fig. 4336, e i); and its movements are principally performed by the action of its own intrinsio

Fig. 436.

Section of the oral apparatus of Onychoterthis: a, circular lip surrounding the mouth; b, d, horny beak; c, eartilaginous substance forming the bulk of the mandible; $e i$, museular tongue; f, g, h, lobes upon its surface; k, salivary glands; l, cesophagus.
museular fibres: its surface is divided into several lobes (f, g, h), partially invested with a delicate and papillose membrane; but a large portion of the organ is covered with sharp recurved horny hooklets, so disposed that with their assistance the morsels of food taken into the mouth are scized and dragged backwards, by a lind of peristaltic motion, to the commencement of the œesophagus (l). The neecssity of the provision thus made for enabling the Cephalopods to swallow the substances upon which they feed must be at once apparent; for, seeing that the walls of the mouth are formed entirely by the hard and inflexible horny beak, it is difficult to conceive how deglutition could have been accomplished by any other contrivance.
(1545.) Four salivary glands pour a copious supply of saliva into the oral chamber: of these, two, situated on the sides of the root of the tongue, give off distinet duets, which terminate near the commencement of the cesophagus; while the other pair, generally larger than the superior, are lodged in the visecral sae, on each side of the upper part of the crop. The inferior salivary glands cach furnish an exeretory canal ; but their two ducts soon unite into a single tube which, with the osophagus,
passes through the ring formed by the cranial eartilage, and, piereing the fleshy mass of the month, opens in the neighbourhood of the spiny portion of the tongue, so that the sceretion furnished at this point serves

Fig. 437.

Anatomy of Nautilus Pompilius (after Owen) : $a b c d$ e f, scction of the mantle: g, large circular flap surrounding the mouth, supporting h, a scries of retractile tentacula; i, smaller lobes, also provided with retractile tentacula; $k k$, l, presumed olfactory apparatus; m, circular lip; n, o, horny mandibles; p, q, r, muscular apparatus of the montli; ε, esophagus; t, crop; v, gizzard; $u w$, intestine; x, anus; y, pancreatic organ; z, z, lobes of the liver.
to moisten the aliment as it is taken up by the lingual hooks to be swallowerl. In Onychoteuthis two salivary glands (fig. 436, \%) are situated at the root of the tongue; and their ducts are pointed out in the drawing by pins introduced into their orifices.
(1549.) The alimentary cimal presents the same general structure in
all the Cephalopod families. The oesophagus (fig. 435, \wedge, d; fig. 437, s), derived from the posterior part of the flesliy mass of the mouth, passes through a ring formed in the cranial cartilage, or else, as in Noutilus, is partially embraeed by processes derived therefrom. It soon dilates into a eapaeious crop (fig. $437, t$), the walls of which are glandular; and being lined with a mucous membrane that is gathered into longitudinal pliex, this organ readily admits of eonsiderable dilatation.
(1547.) From the erop, a short passage (fig. 437, u) loads into a strong museular gizzard (v) resembling that of a granivorous bird, and lined in the same manner by a thiek corinecous euticular layer: in this gizzard, therefore, the food is gradually bruised and redueed to a pultaceous magma.
(1548.) At a little distance from the gizzard there is, in the Nautilus, appended to the side of the intestine, a globular viscus (y), whicl is hollow ; and its eavity communicates freely with the intestinal canal. The interior of this organ Professor Owen found to be oeeupied by broad parallel laminæ, puckered transversely, so as to offer a great extent of surface ; and when examined under a lens, their structure was seen to be follicular, and evidently fitted for secretion. The bile is poured into this cavity, at the extremity furthest from the intestine, by a duct large enough to admit a common probe.
(1549.) In other genera this laminated viseus is represented by a eæeal appendage to the intestine, placed precisely in the same situation; and on opening it, its internal surface is found to be increased by a spiral lamella that winds closely upon itself from one end to the other. In such cases it is near the apex of the spire that the bile is received from the liver ; so that in all essential particulars this spiriform viscus is preeisely analogous to the laminated cavity of the Nautilus. There can be little doubt that this apparatus represents a capaeious duodenum, and that it is by the extensive surface afforded in its interior that the nutritious portions of the food are separated, as neither the gizzard nor the intestine itself presents an organization adapted to such a purpose. With respeet to its other uses Professor Owen remarks that its reeeption of the biliary seeretion renders it in some measure analogous to a gall-bladder ; but most probably its chief office is to pour into the commeneement of the intestinal canal a fluid which is neecssary for the completion of digestion; so that, like the pyloric appendages of fishes, it might be considered to be tho representative of a pancreas.
(1550.) The remainder of the intestine is a simple tube, which, after one or two turus upon itself, mounts up to the base of the funnel, into which it opens, and thus allows the excrement to be ejected to a distance from the body.
(1551.) The liver (fig. $437, z$) is of very great bulk when eompared with the rest of the digestive apparatus. In Nautilus it is divided into four distinct lobes, whieh are themselves made up of numerous lobules
of au angular form, each being invested with a very delicate capsule. On removing the capsule crery lobule is seen to be composed of numerous acini, which with a noedle may be readily separated into clusters connected by the ramifications of their excretory duct. In other genera, such as Octopus, wherein these acini have been minutely examined, they have proved to de delicate cells or secerning ceca wherein the bile is claborated. The excretory canals derived from all the lobules of the liver unite by repeated anastomoses, and thus form two main trunks, which ultimately join, and pour the biliary secretion into the laminated or pancreatic cavity (y).
(1552.) In the Cephalopods, as in all the Mollusca, the bile is separated from artorial blood supplied by large vessels dorived immediatcly from the aorta-no system of veins analogous to the vena portoe of higher animals being as yet dcreloped.
(1553.) In the Dibranchiate genera the liver is either undivided or presents only two lobes; but in other respects its composition and minute structure are similar to those of the Nautilus.
(1554.) In all the Cephalopoda, with the exception of the Nautilus Pompilius, there is an orifice in the immediate vicinity of the anus, through which a coloured secretion, generally of a deep-brown or in-tense-black colour, can bo poured in astonishing abundance; and this bocoming rapidly diffused through the surrounding water, a means of defence is thus provided; for no sooner does danger threaten, or a foe appear in the vicinity of the Cuttlefish, than this ink is copiously ejected, and the element around rendered so opaque and cloudy that the Cephalopod remains completcly concealed from its pursuer, and not unfrequently ensures its escape by this simple artifice. The organ wherein the inky secretion is elaboratod is a capacious pouch, variously situated in different genera. In Octopus it is enclosed in the mass of the liver ; in Loligo it is located in the immediate vicinity of the anus; and in Sepia (fig. 438, q) the ink-bag is lodged near the bottom of the visceral sac. On opening it, and carcfully washing away by copious ablution the ink within, the cavity of the ink-bag is scen to be filled up with a spongy cellulosity, wherein the blacking material had been entangled; and from this cellular chamber a duct leads to the outward orifice, throngh which the dark sceretion is ejected at the will of the animal, and squirted from the extremity of the funnel.
(1555.) The Cephalopoda breathe by means of branchix, and possess a complex and elaborate circulatory system, organized upon very extraordinary principles, to the consideration of which we now invite the attention of the reader.
(1556 .) The branchix (fig. $438, g, g$) in all the genera now known to exist, with the exception of the Nautilus, are two in uumber, ono situated on each side of the body; but in the Nautitus Pompitius there are four branchial organs, two on each side ; and hence Professor Owen
has divided the class into two great orders, under the names of Dibranchicata and Tetrabranchiutu,-the former embracing all the ordinary genera, while the latter is, as far as we know, only represented in modern times by the Pearly Nautilus, depicted in a preceding figure.

Fig. 438.

Anatomy of the Cuttlefish (after Hunter): $a a$, section of the manle; b, c, rene cava; d, spongoid appendages of ditlo; c, e, branchial hearts; m, m, their lateral appendages: f, f, ligaments of branchire; g, branchial organs: h, branchial rein; i, i, systemic auricles; k, systemic ventricle; o, the stomach ; p, the ovarin; q, the ink-bag.
(1557.) In both the Dibranchiate and Tetrabrenchiate orders, each branchia consists of a broad central stem, to which is appended a series
of vascular lamelle (scen in figure $438, g$) : by this arrangement a very extensive surface is obtained, over which the blood is diffused for the purpose of respiration. The respiratory apparatus is lodged within the visccral sac, but separated from the other viscera by a membranous scptum (fig. 438, t) ; so that a distinct chamber is formed to contain the branchia, into which the water is frecly admitted-the surrounding clement being alternately drawn into the brauchial cavity, by the action of its muscular walls, through a valvular aperture provided for the purpose, and again expelled in powerful streams through the orifice of the funncl. Such, indeed, is the force with which the water is ejaculated through the funncl, that it not only serves to expel from the body excrementitious matter derived from the termination of the rectum (fig. $438, s$), which opens into the respiratory cavity, but becomes one of the ordinary agents in locomotion. This mode of progression, although in fact common to most of the Cephalopod tribes, is remarkably exemplified in the Argonaut, which, instead of navigating the surface of the sea, (as has been already stated) simply darts itself from place to place by sudden and oft-repeated jets thus violently spouted forth, while with its arms stretched out and closely approximated, and its vola tightly expanded over the outward surface of its delicate shell, it shoots backwards like an arrow through the water.
(1558.) Separated from the chamber in which the branchiæ are lodged, by the membranous partition already mentioned (fig. 438, t), and likewise distinct from the peritoneum containing the viscera, is a considerable cavity, divided by a membranous partition into two compartments, wherein are placed the great trunks of the renous system (d, d). These chambers, named by Cuvier* the "great venous cavitics," are very remarkable, inasmuch as, although they contain the vence cavce, which here present a tiruly anomalous structure, they are lined with a mucous membrane derived from the branchial chamber, with which they are in free communication, and whence the external element has frec admission to their interior.
(1559.) It is in this "great venous cavity," called by Profcssor Owen the "pericardium," that, in the Pearly Nautilus, the siphon which traverses the partitions of its camerated shell (fig. 432) terminates; and the reader will now perceive by what mechanism water reccived from the branchial chamber may, in that animal, be injected into its partitioned shell for the purpose already reforred to (\$ 1523).
(1560.) In the " great venous cavity," or "pericardium," thus formed, are lodged the principal venous trunks (fig. 438 , d d), into which the blood derived from all parts of the body is brought by capacious vessels ($b, c c$) that may be called the vence cavce. The great central receptacles of the venous blood ($d \mathrm{l} d$), whilst they are contained in the pericardium (or, rather, project into its interior, being partially covered with the

[^188]mucous membrane that lines its walls), are enveloped by a mass of spongy appendages of a most remarkable and peculiar description. These spongy masses are of a yellow colour, and, when squeczed, they givo out an opake yellowish mucosity* ; but the most interesting circumstance connected with these bodies is, that they communicate by large and patulous apertures with the interior of the veins to which they are adherent. The short canals derived from these apertures are themselves pierced by very uumerous orifices, and so on successively, until each of the spongy bodies referred to is permeated internally by a multitude of short vessels leading one into another, and ultimately into the vein itself. Cuvier supposes that, secing it is impossible that these vessels should not be filled with blood, they might themselves be considered to be veins; but then their extent, when compared with the very small arteries of the spongy bodies, forbids us to belicve that they have no other office than that of bringing back into the gencral current of the venous circulation blood derived from the arterial ramifications. He suggests, therefore, that they more probably form divorticula in which the venous blood may become diffused, in order to reccive, through the intervention of their spongy walls, the influence of the surrounding medium; so that in this way they may be subservient to respiration; or else it is possible that the orifices in the reins are the openings of excretory canals derived from these appendages, through which they may pour into the vein some substance derived from the wator in which they float. Lastly, it is conjectured that they may be cmunctories, through which some principle separated from the blood is discharged from the body through the pores upon their surface-a supposition rendered more probable, secing the abundant mucous sccretion that may be extracted from them by pressure. "However this may be," observes Cuvier, "it is certain that the communication between these bodies and the exterior is very open; for on blowing into or injecting the vein, the air or injection passes very readily into the cavity that the vein traverses; and, on the other hand, on inflating the cavity from the branchial chamber, it often happens that the vein bocomes filled with air."
(1561.) Mayer* not only adopts the last of the above-mentioned suggestions relative to the nature of these spongy appendages to the great veins of the Cepinalopoda, but ventures to bring forward an opinion that they perform the office of the kidneys of higher animals, and separate from the blood a fluid analogous to the urinary secretion; so that, according to this view, the anatomist reforred to docs not soruple to designate the chamber called by Professor Owen the "pericardium" as a urinary bladder; and to the two orifices leading thence to the eavity in which tho branchix are lodged he would assign the name of

[^189]wethre. Professor Owen has suggested that, in addition to their subserviency to secretion, those appendages to the veins of Cophalopods may be provisions for enabling their sanguiferous system to accommodate itself to those vicissitudos of pressure to which it must be constantly subjected, and that they bear a relation to the power possessed by those animals of doscending to great depths in the ocean-thus answering the same purpose as the eapacious auriele and the large venous sinuses that terminate in the heart of fishes. According to this view, these follicles relievo the vascular system by affording a temporary receptacle for the blood whenever it accumulates in the vessels, owing to a partial impediment to its course through the respiratory organs, serving in this manner to regulate the quantity of blood sent to the branchir*.
(1562.) In Nautilus Professor Owen found, in addition to the spongoid appendages connected with the veins, lodged in what he denominates the "pericardium," that the great trunk of the vena cava itself presents a structure precisely analogous to what has been already described when speaking of the venous system of Aplysia among the Gastrropoda (§ 1423), namely a free communication between the interior of the vein and the cavity of the peritoneum ψ. The vein is of a flattened form, being included between a strong membrane on the lower or ventral aspect, and a layer of transverse muscular fibres which decussate each other on the upper or dorsal aspect. The adhesion of the coats of the vein to the muscular fibres is very strong; and these fibres form in consequence part of the parietes of the vein itself throughout its whole course. But there are several small intervals left between the muscular fasciculi and corresponding round apertures both in the vein and in the peritoneum ; so that the latter membrane at these points seems to be continuous with the lining membrane of the vena cava. The distinguished anatomist referred to counted as many as fifteen of these openings; and most of them were suffieiently large to admit the head of an eye-probe. Here, therefore, as in Aplysia, there are direct communications between the interior of the vena cava and the great serous cavity of the abdomen; and moreover, in both instances, from the peculiar muscular structure of the rein at the part where these orifices occur, their use appears to depend on, or to be in connexion with, a power of regulating their diameters \ddagger.
(1563.) The blood derived from the great venous receptacles (fig. $438, c, c$) is at onco conveyed to the branchix, and distributed through all the lamellx ($g g$ g) which enter into the composition of tho respiratory apparatus. Two distinct hearts, one placed on each side of the body, are interposed between tho branchix and the great trunks of the venous system, serving by their action forcibly to drive the blood through the

* Memoir on Nautilus Pompilius, p. 34.
+ Op. rit.
\ddagger Op. cit. p. 30 .
ramifications of the branchial arteries. These lateral hearts (fig. 438, e e) wro of a blackish colour, and their walls moderately thick: internally their cavities are filled with intercommunicating cells; and moreover a strong mitral valve is placed at tho orifice through which they reccive blood from the veins, as well as smaller valvules at the origin of the branchial arteries; the latter enter the principal stem of the branchice, and, running beneath the ligament (f), divide and subdivide, so as to be dispersed over all the branchial leaflets.
(1564.) In Sepia there is appended to each lateral heart a fleshy appendage (m, m), which, however, is not met with in the generality of Dibranchiate Cephalopods. These bodies are attached to the hearts by narrow pedicles; and Professor Owen considers them to be rudiments of the additional pair of branchiæ met with in the Pearly Nautilus.
(1565.) In Nautilus Pompilius the hearts just mentioned do not exist, doubtless because the greater extent of surface afforded by the four branchir of this Cephalopod renders the presence of extraordinary agents for impelling the blood through them, in order to ensure efficient respiration, umnecessary.
(1566.) After undergoing exposure to the surrounding medium in the extensive ramifications of the branchial arteries, the purified blood is returned to the organs belonging to the systemic circulation. In Sepia it is first reccived from the branchir by two dilated sinuses (fig. 438, i, i), which might almost be regarded as systemic auricles; and from these it passes into a strong muscular cavity (k), which corresponds in function with the left ventricle of the human heart, and by its pulsations forcibly propels the blood through all the arterial ramifications of the vascular system. Two aorte, one derived from each of its extremities, arise from the systemic ventricle, the commencement of each being guarded by strong valves so disposed as to prevent all reflux towards this central heart; and thus the circuit of the blood, accomplished in this complicated system of blood-vessels, is completed. In Nautilus the latoral sinuses are wanting, and the systomic ventricle is of a square shape; but in other respects the course of the circulation is the same as is above described.
(1567.) In the Poulpe (Octopus vulgaris)*, the blood thus distributed through all parts of the body by the artorial ressels returns towards the branchix through a systom of venous canals composed partly of vessels furnished with distinct parietes, partly of a serics of lacunæ or spaces only circumscribed by the circumjacent parts.
(1568.) The veins derived from the anus and the cephalic region, in conjunction with those of the siphuncle and the great visceral reins, at length unite and form by their union the two venx carx (fig. $438, c, c$). through the intervention of which the greater part of the blood is conducted to tho preliminary hearts (fig. $438, e c$). So far these renous

[^190]trunks offer no very striking peculiarity; but in tho vicinity of the gizzard they present a very remarkable arrangement: instead of being formed by the junction of other smaller veins, they become uninterruptedly continuous, with an immense venous reservoir which oecupies all tho dorsal aspeet of the abdomen; indeed they seem to be a contimuation of this membranous reservoir. It is to M. Dello Chiaje* that the merit belongs of having first indieated tho existenee of this curious arrangement; but while the illustrious Neapolitan naturalist regards it as being simply a large venous sinus, Milne-Edwards looks upon it as being the visecral cavity itself, lined with peritoncum, as in the higher animals, into which the blood is recoived, and whercin it bathes directly the pharyngeal mass, the salivary glands, the stomachs, and the other prineipal viscera. In the Cuttlefish (Sepia) and in the Calamary (Lotigo), the above peculiarities met with in the "Poulpe" do not exist, so that there is a remarkable accordânce between the internal structure of these Cephalopods and the zoological eharacters furuished by the number of their cephalic appendages. In those genera furnished with only four pairs of arms the venous system is semilacunose in its character, whilst in the ten-armed races it is entirely vascular throughout the abdomen, although it still presents a lacunose character in the eephalic region.
(1569.) In the nervous system of the Cephalopoda we may naturally expect to find not only a superiority in the development of the nervous centres, as compared with the eondition of these important masses in the lower Mollusca, but some indications at least of an approximation to that arrangement so eminently eharaeteristie of the vertebrate division of the animal world, to the confines of which we are now gradually approaehing-more especially as, in the activity of the movements of these creatures, and in the increased perfcetion of their senses, we have abundant evidenee of the elevated position assigned to them when eontrasted with other mollusks of less carnivorous and rapacious habits.
(1570.) The nervous ganglia from which the museles and viscera derive their supply are still numorous and widely seattercd; but their size is eonsiderable, and proportioned to the importance of the organs over which they preside. It is to the cncephalie portions of the nervous system, however, that we must principally turn our attention if we would rightly estimate this part of their eeonomy ; and these, we at onee perceive, have in the class before us attained to sueh magnitude and importance that they emulate, no longer dubiously, the brain of a fish, with which it is not diffieult to compare them.
(1571.) In a Cephalopod the encephaton (for so we now may truly eall it) is enelosed, as has been already noticed, in a distinet eartilaginous skull, which embraces it on all sides and defends it from injury.

[^191]Tho eapaeity of the eranial eavity, however, is more than snfficient to contain the brain; and, as is the ease in tishes, the interspace is filled up with a semigelatinous substanee. The brain, moreover, still forms a ring, through whieh the cosophagus passes; so that we might with proprioty preserve the terms supraœsophageal and infraœesophageal granglia, were those parts not now beeome so intimately united to each other that they seem fused into a single mass (fig. 442, a b), from different portions of whieh, nerves serving very different offices take their origin.
(1572.) In Neutilus the nervous system has been most minutely and eritieally examined; and the important deductions to whieh the researches of Professor Owen point, relative to the analogies that may be traced between the eneephalon of these ereatures and the brain of higher animals, have served to attach an interest to the study of this part of the eeonomy of the Cephatopoda whieh has seareely as yet been suffieiently appreciated by physiologists.
(1573.) In the Nautilus Pompilius, the supraœsophageal ganglion of the Gasteropoda is represented by a thiek round eord of nervous matter (fig. 439, 1), whieh is in eommunieation with two nervous collars (3 3, 4) that surrome the œesophagus, and likewise with two large ganglin (2) from whieh the optie nerves take their origin; but in the Cuttlefish the same portion of the nervous system (fig. $442, a$) is mueh more largely developed, and presents a ganglionie mass of eonsiderable size. If we inquire the reason of this want of eorrespondenee in magnitude presented by the same organ in these two eases, we must necessarily examine the relations in which this part of the brain stands to other cireumstanees in the eeonomy of the two animals in question; and we pereeive, as Professor Owen has most satisfactorily demonstrated *, that the orain is here developed in aceordanee with the relative eomplexity of the organ of vision, and also with tho perfection of the loeomotive facultios possessed by the Cephalopods under consideration. With the exeeption of sundry small twigs given off to the mouth and pharynx, the optie nerves (fig. 439, 2 ; fig. $442, e$) are the only ones derived from this part of the encephalon; and, as we shall afterwards sec, both the simply eonstrueted eye of the Nautilus and the eomplieated visual organs of the Sepia aro eorrespondent with the development of the supraosophageal brain; so that eonsequently the latter may, with every show of reason, be looked upon as the representative of the optie lobes found in the eneephalon of fishes \dagger, and the analogue of the bigeminal bodies in the brains of tho higher Vertebrata.
(1574.) The ganglia eonnoeted with the inferior aspeet of the supra-

[^192]cosophageal mass form two distinct eollars embracing the cesophagus,an arrangement of which we have already met with an example in Clio borealis among the Pteropod Mollusea. In Nautilus, the anterior ring of nervous substance, whieh no doubt ought rather to be eonsidered an agglomeration of ganglia than a simple gauglionic mass, gives off nerres, 1st, to the ophthalmic tentacles (fig. 439, s) ; 2ndly, to the digital tentacles (6); 3rdly, there arises, from near the ventral aspect of the ganglionic collar, a pair of nerves (7), each of which soon dilates into a large ganglion (s), whence are derived the nerves of the internal labial tentacles (9) and also other gangliform nerves (10), distributed to what Professor Owell regards as the olfactory apparatus; lastly, the anterior collar gives off ncrves (11) which penetrate the muscular integument and supply the infundibulum.
(1575.) In the Dibrinnchiate Cephalopods, the nerves derived from that portion of the brain that may be regarded as analogous to the anterior collar of Nautilus supply the locomotive sucker-bearing arms, the labial apparatus, and also the auditory organs (fig. 442, c, d) ; but the latter have not been found to cxist in Nautilus Pompilius.
(1576.) There is no possibility of doubting that the above nerves, distributed as they are to the complex sensitive tentacula connected with the head and parts of the mouth, represent the fifth pair in the Vertebrata-their general distribution and semiganglionie charaeter being, ceteris paribus, precisely similar ; so that those portions of the brain of vertebrate animals from which the trifacial and auditory nerves originate may reasonably be compared to the anterior subesophageal collar of the Cephalopoda.
(1577.) The posterior subœesophageal ganglionic ring (fig. 439, 4) may be compared to the medulla oblongata of quadrupeds. In Neutilus it gives origin, 1st, to numerous nerves (13) whieh, after a short eourse, plunge into the muscular parietes of the body, to which they are distributed; 2ndly, to two large cords (14) which terminate by becoming gangliform (16), and supply the branchial apparatus and the viscera-thus representing the par vagum in their distribution, and in like manner commumicating with branches apparently corresponding to the sympathetic nerves, that are spread out over the heart and ramifieations of the vascular system; lastly, slender nerres, allicd to the sympathetic, accompany the vena eava into the abdomen.
(1578.) Such being the arrangement of the principal nervous ganglia and the general distribution of the nerves, we must now turn our attention to the instruments of sensation possessed by these comparatively highly gifted animals; and these, as we shall soon perceive, aro in all respects eorrespondent, in the perfection of their structure, with the exalted condition of the brain, and, from their peeuliar organization, highly interesting to the plysiologist.
(1579.) The sense of toueh, as might naturally be expected, resides
prineipally in the tentacula, or feet, as they are generally termed, placed around the mouth, and forming, as we havo already seen, instruments of locomotion as well as prehensile organs. In the Dibranchiate Cophalopods these tentacula are armed with the tenacious suckers deseribed in a former page; but in the Nautilus they are so peculiar, both in structure and office, that a more claborate description of them becomes requisite, for which, of course, we are indebted to the same source from which we have derived all our information relative to this extraordinary animal.
(1580.) The head of Nuutilus (fig. 432) is of a conical form, and of a much denser texture than the analogous part in the Dibranchiate Cephalopods: it is excavated in such a manner as to form a rcceptacle or sheath, into which the mouth and its more immediate appendages can be wholly retracted and so completely concealed as to require the aid of dissection before they can be submitted to examination. The orifice of this great oral sheath is anterior, its superior parietes being formed by a thick triangular hood (fig. $432, n$) with a wrinkled and papillose exterior, while the sides give off numerous conical and trihedral processes (000): the inferior portion of the cone is thin, smooth, and concave, and rests upon the funncl (i). From the disposition of the hood, and the tough coriaceous texture of its substance, it is evident that this part is calculated to perform the office of an opercutum by closing the aperture of the shell when the body of the animal is retracted.
(1581.) The lateral processes (000) are thirty-eight in number, nincteen on either side, irregularly disposed one upon another, and all converging towards the oral sheath; but as the hood itself consists apparently of two very broad digitations conjoined along the mesial line, twenty pairs of these lateral appendages may be enumerated. There is not the slightest appearance of acctabula, or suckers, upon any of these cephalic appendages; but their exterior surface is more or less rugose: each is traversed longitudinally by a canal, in which is lodged an annulated cirrus or tentacle (figs. 432, 439), which is about a line in diamcter, and from 2 inches to $2 \frac{1}{2}$ inches in length. In the specimen examinod, a few of the cirri were protruded from their sheaths to the extent of half an inch, but the rest were completely retracted, so as not to be visible externally; and on laying open some of the canals, the extremities of several were found as far as a quarter of an inch from the aperture; so that they appear to possess cousidcrable projectile and retractile powers.
(1582.) To the above forty tentacula must be added four others of a different construction, which project immediately bencath the margin of the hood, like antennæ, one before and one bchind each eye (fig. 432, r). Theso tentacles would seem at first sight to be constructed upon the same principles as tho last; but on examining them attentively, they are found to be composed of a number of flattened circular disks appended to a lateral stom. Yet even all these organs of touch form but
a small part of the tactile apparatus of the Nautilus Pompilius; for the mouth, lodged within the oral sheath, is surrounded by a series of tentacula even more numerous than those appended to the exterior of

Fig. 439.

Nerrous system of Naulilus Pompilius (after Owen): $a a, b b$, cut edges of the mantle; d, e, f, g, retractile tentacula; h, presumed olfactory organ; l, the supracesophageal ganglion; 22 , optic ganglin; 33,44, subœosophageal ganglia; 5, 6, 7, 8, 8, norves supplying the retractile tentacula; 10 , nerves supplying olfactory organ; $11,12,13$, nerves supplying the museular integument; $14,15,16$, nerves representing the sympa Chetic system.
the hearl. Around the eircular lip (fig. $437, m$) which encloses the beak $(n, 0)$ are situated four labial processes $(\%, \%, i, i)$: each of these pro-
cesses is piereed by twolve canals, the orifices of which are disposed in a single but rather irregular series along their anterior margin; and every one of these canals contains a cirrus or tentacle rather smaller. than those of the external digitations, although their structure is preciscly similar ($h / h, h_{c}$). These cirri, like the former, receive large nerves,-those supplying the external labial tentacles being derived immediately from the brain (fig. 439, 66), while those distributed to the internal labial tentacles procced from a large ganglion (8) that is in communication with the œesophageal ring through the intervention of a considerable nervous trunk (7).
(1583.) In the Dibranchiate Cephalopods none of the above-described cirriferous processes are found to exist; but there is cevery evidence that the prehensile arms, and most probably the individual suckers appended to them, are highly sensitive to tactile impressions. Every one of the arms receives a large nerve, derived from the same portion of the œsophageal collar as that which gives origin to the tentacular nerves of Nautilus, which traverses its whole length, lodged in the same canal as the great artery of the limb. During this course the nerve becomes slightly dilated at short distances, and gives off from cach enlargement numerous small nervous twigs which penctrate into the fleshy substance of the foot. Immediatcly after entering the arm and undergoing the dilatation above alluded to, every nerve furnishes two large branches, one from each side, which traverses the fleshy substance connceting the bases of the arms, to unite with the nerves of the two contiguous arms, so that all the nerves of the fcet are connccted near their origins by a nervous zone*, -an arrangement intended, no doubt, to associate the movements of the organs to which these nerves are appropriated.
(1584.) There is little doubt, from the character of the soft and papillose membrane which forms a considerable portion of the surface of the tongue, that both in the Nautilus and in the Dibranchiate Cephatlopods the sense of taste is sufficiently acute-far superior, indced, to what is enjoyed by any of the Gastcropod Mollusca, and possibly even excelling that conforred upon fishos and others of the lowest Vertebrata that obtain their food under circumstances such as render mastication impossible, and the perception of savours a superfluous boon.
(1585.) That the Cepicilopoda are provided with a delicate sense of smell, and attracted by odorous substances, is a fact established by the concurrent testimony of many authors, although in the most highly organized genera nothing analogous to an olfactory apparatus has as yet been pointed ont: neverthcless in Nautitus Professor Owen discoverod a structure which he regards, with every show of probability, as being a distinct organ of passive smell, exhibiting the same type of structure that is met with in the nose of fishes, and, from the circumstance of its

[^193]being the first appearance of an organ specially appropriated to the pereeption of odours, well deserving the attention of the physiologist. We may hore premise that the exercise of this function in creatures eontinually immersed in water must depend upon conditions widely differing from those which eoufer the power of smolling upon air-breathing. animals. In the latter, the odorant particles, wafted by the breeze to a distance and drawn in by the breath, are mado to pass, by the aet of inspiration, along the nasal passages, and, being thus examined with a minuteness of appreciation proportionate to the extent of the olfactory membrane, give intimations of the existence of distant bodies scareely inferior to those obtained from sight and sound. But, in an aquatic medium, information derived from this sense must be restricted within far narrower limits, inasmuch as the dissemination of odoriferons partieles must necessarily be extremely slow, and the power of perceiving their presence comparatively of little importance, seeing that the extent to whieh it can be excreised is so materially cireumscribed. Smell, in aquatic animals, is therefore apparently reduced to a mere perception of the casual qualities of the surrounding element, without any power of inhaling odours from a distance. Simple contact between a sufficiently extensive sentient surface and the water in which it is immediately immersed is all that is requisite in the ease before us ; and if an organ can be pointed out, coustructed in such a manner as to adapt it to fulfil the above intention, there can be little hesitation in assigning to it the office of an olfactory apparatus.
(1586.) In Nautilus, the part indicated by Professor Owen* as appropriated to the sense of smell consists of a series of soft membranous laminæ (fig. $437, l$; fig. $439, h$) compactly arranged in a longitudinal direction, and situated at the entry of the mouth, between the internal labial processes. These laminæ are twenty in uumber, and are from one to two lines in breadth, and from four to five in length; but they diminish in this respect towards the sides. They are supplied by nerves (fig. 439,10) from the small ganglia (8) which are conneeted with the ventral extremities of the antorior subosophageal ganglia, and from which the nerves of the internal labial tentacula are likewise given off.
(1587.) The structure of the eyes in the two divisions of the Cepiralopoda differs remarkably, and in both is so entirely dissimilar to the usual organization met with in other classes of animals, that we must invite the special attention of the reader to this portion of their economy.
(1588.) In the Temrabrancitiata, of which the Nautilus is the only example hitherto satisfaetorily invostigated, according to Professor Owou's observations \dagger the eye appears to be reduced to the simplest condition that an organ of vision ean assume without departing altogether from the type which prevails throughout tho higher classes; for

[^194]although the light is admitted by a single orifice into a globular cavity, or camera obscura, and a nerve of ample size is appropriated to receive the impression, yet the parts whiel regulate the admission and modify the dircction of the impinging rays were, in the specimen examinerl, entirely deficient. In this structure of the eye, nbserves Professor Owen *, the Nautilus approximates to the Gasteropods, numerous gencra of which, and especially the Pectinibranchiata of Cuvicr, present cxamples analogous in simplicity of structure, and in a pedicellate mode of support and attachment to the head. Moreover, as the Pearly Nautilus, like the latter group of mollusks, is also attached to a heavy shell, and participates with them in the deprivation of the ordinary locomotive instruments of the Cephalopods, the anatomist whose remarks we quote hence deduees the more immediate principle of their reciprocal inferiority with respect to their visual organ, observing that it would little avail an animal to discern distant objects when it could neither overtake them if necessary for food, nor avoid them if inimical to its existence.
(1589.) The eyes of Nautitus (fig. $432, m$) are not contained in orbits, but are attached each by a pediele to the side of the head, immediately below the posterior lobes of the hood. The ball of the eye is about eight lines in diameter ; and although contraeted and wrinkled in the specimen examined, it appeared to have been naturally of a globular form, rather flattened anteriorly. The pupil was a circular aperture, less than a line in diameter, situated in the centre of the anterior surface of the eye. This small size of the pupil in Nautitus, which eontrasts so remarkably with the magnitude of that aperture in the Dibranchiate Cephalopods, Professor Owen suggests is most probably dependent on the great degree of mobility conferred upon the eye of the Nautilus in consequence of its attachment to a muscular pediele, which enables it to be brought to bear with ease in a variety of directions; whilst in the higher Cephalopoda, corresponding motions of the head and body, on aceount of the more fixed condition of the eye in them, would have been perpetually required, had not the range of vision been extended to the utmost by enlarging the pupillary aperture.
(1590.) The principal tunic of the eye is a tough exterior membrane or sclerotic (fig. 439), thickest posteriorly, where it is eontinued from the pedicle, and becoming gradually thinner to the margins of the pupil. The optic nerves, after leaving the optie ganglions (2), traverse the contre of the ocular pedicles, and, entering the eje, spread out into a tough pulpy mass whieh extends as far forwards as the semidiameter of the globe. This nervous tissue, as well as the whole interior of the cavity, is covered with a blaek pigment, which is apparently interposed between the impinging rays of light and the sentient membrane. The contents of the eyeball, of whatever nature ther had been, had escapert

[^195]by the pupil. If the cye had ever contained a crystalline lens, that body must have been very small; as otherwise, from the well-known effects of ardent spirits in coagulating it, it would have been readily perceived. What adds, however, to the probability of this eyc being destitute of a crystalline humour is the total absence of ciliary plicæ, or any structure analogous to them. In some parts of the cavity a membrane could be distinguished which had enveloped the fluid contents of the eye; but it had entirely disappeared at the pupil, which had in consequence freely admitted the prescrving liquid into the interior of the globe.
(1591.) However much is still left to be ascertained by future obscrations, we learn from the above able exposition of the appearances detected on examining the solitary cxample of a visual organ of this description hitherto met with, that the eye of the Nautilus exhibits cerery indication of inferiority of construction when compared with that of the Dibranchiate tribes. Encased in no orbital cavity, and consequently unprovided with any other muscular apparatus than the fleshy pedicle whereby it is connected with the head-unprotccted by eyelids and deroid of lacrymal appendages-without either transparent cornca, aqueous humour, iris, or crystalline lens-and, moreover, coated internally with a dark pigment, apparently situated in front of the nervous expansion which represents the retina, instead of behind it in the usual position of the choroid tunic-all these are facts calculated to arrest the attention of the physiologist, and excite the surprise of every observer who studies on a large scale this part of the animal economy.
(1592.) The cyes of the Dibranchiate Cephalopoda are not less remarkable in their construction than those of the Nautilus, and from their greater complexity will require a more elaborate description. In order to simplify the details connected with this portion of our subject as much as possible, we shall describe scparately, as forming distinct parts of the ocular apparatus met with in the Common Cuttlefish (Sepia officinalis) :-first, the orbit; sccondly, the globe of the eye; thirdly, the chamber of the optic ganglion; and, fourthly, the muscles of the visual organ.
(1593.) The orbit differs from that of all other classes of animals, inasmuch as it is a cavity circumscribed on all sides and covering even the front of the cye*. The bottom of the orbital cavity is cartilaginous, being partially formed by a process derived from the cranial cartilage; but clsemhere it is made up of the common floshy integument of the body (fig. 440, $d d, e$) : becoming gradually attenuated, the skin (b) passes over the antcrior portion of the eye, where, being transparent (f), it represents the cornca, although it has no connexion with the cyeball

[^196]itself. Bencath the cornca the integment agoin becomes opake, and forms a thickened fold (a), which might be regarded as the rudiment of an under eyelid. Tho orbit therefore forms a complete capsule, enelosing the whole of the apparatus of vision.
(1594.) The globe of the eye fills up the antcrior part of the orbital chamber, and is remarkable from having no cornea properly so ealled; so that, on raising the transparent skin (f) which forms the exterior wall of the orbit and supplies the plaee of the cornea, the prominent surface of the crystalline lens (0) is found quite naked bencath it, neither an aqueous humour, nor au iris properly so called, being presont. Tho outcr eoat of the eye ($g g i$) represents the sclerotic tunic in Man : it is tough, fibrous, and of a silvery lustre, perforated antcriorly by a large round aperture representing that which contains the cornea in the human cye, and pierced posteriorly by numerous foramina through which the multitudinous branches derived from the optie ganglion (k) enter.

Fig. 440.

Anatomy of the eye of the Cuttlefish. (After Hunter.) a, the external shin, which terminates before the eye in a loose edge, resembling an under eyelid; b, the skin above the eye, terminating below in the cornea $f ; d$, eut edge of the integument of the head, which forms the upper and outer wall of the orbit; e, eut edge of the lower part of the orbit; q, selerotic coat of the eye, which is perforated anteriorly; k, gangliform enlargement of the optie nerve, from whieh flaments go to form the retina; l, internal layer of the selerotic; m, part of the choroid, whieh forms a sort of iris implanted by its inner margin in a circular groove of the lens; n, the eut edge of the choroid eoat, deseribed by John Hunter as "an expansion of the optie graglion or retina, eovered anteriorly or internally with a layer of blaek pigment;" 0 , anterior segment of the erystalline lens; 0^{\prime}, posterior or larger segment of the same ; p, part of the brain; q, optie nerve; r, csoplagus; s, aorta.
(1595.) The sccond tunic is usually regarded as the retina, occupying a singular situation and presenting a very anomalous structure. No choroid intervenes between this retina and the sclerotie, as is the case in the cye of Man ; but numerous nervous branches given off from the optie ganglion (k), having penctrated into the interior of the eye through the cribriform selerotic, immediately expand into a thick nervons membrane which lines the selcrotic tunic, and is continued forward to a
deep groove in the substance of the erystalline lens, wherein it is implanted, so as to form a kind of ciliary zone (m), which is slightly plicated and obvionsly assists in kecping the lens in situ.
(1596.) Between the retina and the vitreous humour is interposed a thick layer of black pigment, which, being thus strangely situated, has very naturally puzzled all physiological inquirers, inasmuch as it would apparently form an insurmountable barricr between the rays of light and the retinal membrane. The rescarches of Professor Owen would seem, however, to have removed the difficulty presented by this hitherto incomprehensible and anomalous arrangemeut, as he has succecded in discovering, in addition to the thick postpigmental nervous expansion, a delicate lamella in front of the pigmentum nigrum, correspondent, in position at least, with the retina of vertebrate animals. "In the eyes of different Sepice which we had immersed in alcohol preparatory to dissection, we have, however, invariably found, between the pigment and the hyaloid coat, a distinct layer of opaque white pulpy matter, of sufficient consistence to be detached in large flakes and easily preserved and demonstrated in preparations. We confess, however, that we can discover no connexion between this layer and the thick nervous expansion behind the pigment; but nevertheless we cannot but regard it as being composed of the fine pulpy matter of the optive nerve, and as constituting a true præpigmental retina "*.
(1597.) It has been already stated that there are no chambers of aqueous humour ; and we are but little surprised that, in animals destincd to see objects contained in water, the existence of a refracting medium searecly at all differing in density from the surrounding element should be dispensed with. To compensatc, however, for this deficiency, the crystalline, as is the case in all the aquatic Vertebrata, is of short focus and great power, being, in fact, not mercly, as it is generally described, a double convex lens, which is the usual shape of this important picee of the optic apparatus, but exhibiting that form of a simple magnificr most approved of by opticians as being best adapted to ensure a large ficld of view. Whocver is conversant with the principles npon which the well-known "Coddington lens" is constructed, will have little difficulty in appreciating the advantages derived by tho introduction of a precisely similar instrument in the cye of the Cuttlefish. The Coddington lens is a sphere of glass divided into two portions by a deeply cut circular groove, which is filled up with opaque matter. The lens of the Cuttlefish is in like manner divided into two parts of unequal size (fig. $440,0,0$) by a circular indentation, wherein the postpigmental retina, with its coat of dark varnish (m), is fixed, and thus a picture of the most perfect character is ensured. The crystalline penetrates deeply into the vitreous humour : the latter, enclosed in a delicate hyaloid incmbranc, fills up, as in Man, the posterior part of the eyeball:

[^197]While tho small space that intervenes between the posterior surface of the crystalline and the back of the ocular chamber sufficiently attests the shortness of the foeus of so powerful a lens.
(1598.) The postcrior portion of the orbital eapsule is occupicd by a large cavity quite distinet from the globe of the cye, although its walls

Fig. 441.

Loligopsis Verani
are derivations from the selerotic tunic, wherein is lodged the great ganglion of the optie nerve (k), imbedded in a mass of soft white substance. This supplementary chamber is formed by a separation of the selerotic into two layers, of which one, already described (i), forms the
postcrior boundary of the eyeball, while the other (h), passing baekwards, cireumseribes the eavity in question. On entering the eompartment thus formed, the optic nerve (q) dilates into a large reniform ganglion (k) almost equal in size to the brain itself ; and from the periphery of the optic ganglion arise the numerous nervous filaments which, after perforating the posterior parts of the globe of the eye, expand into the postpigmental retina.
(1599.) Between the globe of the eye (g) and the cornea (f) is a capacious serous eavity, which extends to a eonsiderable distance towards the posterior part of the orbital chamber, and holds the same relation to the visual apparatus, and the cavity in which it is lodged, as the serous lining of the human pericardium does to the heart, and the fibrous capsule in which that viscus is lodged-evidently forming an arrangement for facilitating the movements of the eye. The serous membrane which lines this cavity, after investing the inner surface of the cornea and the interior of the orbit, is reflected upon the outer surface of the sclerotie tunic of the eye, which it likewise covers, and moreover, at the front of the eyeball, enters the aperture whieh in the eje of a vertebrate animal would be occupied by the cornea, lines the chamber corresponding with that of the aqueous humour, and even passes over the anterior surface of the crystallinc. This serous membrane Cavier, very improperly, named the "conjunctiva;" but, as Professor Owen has snggested*, it is evidently rather analogous to the membrane of the aqueous humour, here excessively developed in consequence of the want of a cornea in the sclerotie apcrture. This serous cavity, however, is not a completely closed sac, but, as is frequently the case with the serous membranes of fishes and reptiles, is in communication with the surrounding medium, through the intervention of a minute orifice visible in the transparent tegumentary cornea.
(1600.) Four muscular slips are appropriated to the movements of this remarkable eye, and serve to direct the axis of the organ so as to ensure distinct vision ; they arise principally from the orbital prolongations of the cranial cartilage, and are inserted into the sclerotie tunic.
(1601.) It is always interesting to the physiologist to observe the carliest appearance of a new system of organs, and witness the gradual development of additional parts, becoming more and more complieated as we advance from humbler to more elevated grades of the animal creation. The progressive steps by whieh the auditory apparatus of the Vertebrata attains to that elaborate organization met with in the structure of the human ear are not a little curious. In the simplest aquatic forms the central portion of the internal car alone exists, imbedded in the as yet cartilaginous cranium. Gradually, as in fishes, semicircular canals, prolonged from the central part, increase the auditory surfaee, but still have no communication with the exterior of the body. In

* Cyclopædia of Anatomy and Physiology, loc, cit. p. 5in.
reptiles and birds, destined to pereeive sonorous impressions in an aërial medium, a tympanic cavity and drum are superadded ; and lastly, in the Mammiferous orders, external appendages, for eollecting and eonveying sound to the parts within, eompleto the most eomplex and perfect forms of the acoustie instrument.
(1602.) As far as is yet known, the Tetrabranehiate Cephalopods have no distinet organ of hearing; but in the Dibranchiata, an ear, lodged in an internal cranium, for the first time presents itself to our notice, and at the same time exhibits the lowest possible condition of a localized apparatus adapted to receive sounds.
(1603.) In the anterior and broadest parts of the eartilaginous cranium*, where its walls are thickest and most dense, are exeavated two nearly spherical cavities (fig. $442, d$) which in themselves represent the osseous labyrinth of the ears. A vesiele or membranous

Fig. 442.

Brain and nuditory apparatus of the Cuttlefish ; a b, brain; c, nuditory apparatus; d, enrity in which it is lodged; efg, the eye. $1,2,3$, otolith.
sacculus (c), likewise nearly of a spherical form, is suspended in the centre of each of these cartilaginous cells by a great number of filaments, that are probably minute vessels. The two auditory nerves derived from the eneephalon enter these cavitics through special canals ; and each, dividing into two or three branches, spreads out over the vesiele to which it is destined. The auditory vesiele itself is filled with a transparent glairy fluid, and contains, attached to its posterior part, a minute otolith $(1,2,3)$, of variable shape in different genera, the oscillations of which doubtless increase the impulses whereupon the production of sound depends.
(1604.) Such is the simplest form of an ear ; and if the reader will eompare the organ above described with that possessed by the highest Articulata, as, for example, the Lobster ($\$ \S 1045,1048$), the similarity of the arrangement will be at onee manifest.

[^198](1605.) All the Cepinlopoda are diœcious; and the structure of the sexual organs both of the males and females is remarkable, inasmuch as it is pcculiar to tho class.
(1606.) In the fcmales, the ovarian receptacle is lodged at the bottom of the visceral sac (fig. 438, p), enclosed in a distinct peritoneal pouch. The ovary itself is a large bag, the walls of which are tolerably thick; and on opening it, it is found to contain a bunch of vesicular bodies, attached by short vascular pedicles to a circumscribed portion of its internal surface (fig. $443, a)$. These vesicles, the ovisacs or calyces, as they are called by comparative anatomists, are, in fact, the nidi wherein the ova are sccreted; and if examined shortly before oriposition commences, every one of them is seen to contain an orum in a more or less advanced stago of development. In this condition the walls of the ovisacs are thick and spongy ; and thcir lining membrane, which constitutes the vascular surface that really secretes the ego, presents a beautiful reticulate appearance.
(1607.) If the contained ova be examined when nearly ripe for

Fig. 443.

Generative organs of the female Cuttlefish. (After Cuvier.) a, Ovarian ovisacs; b, capsule of the ovary ; c, its outlet; d, e, oviducts ; f, laminated gland-folds of mucous membrane in the terminal portion of the opened oriduct. exclusion, each is found to be composed of a yelk or vitellus enclosed in a delicate vitelline membrane, and covered externally by a thicker investment, the chorion. When the ovum has attained complete maturity, the ovisac enclosing it becomes gradually thinned by absorption, and ultimately bursts, allowing tho egg, now complete with tho exception of its shell, to escape into the general cavity of the ovarium (c). The oviduct (e) communicates immediately with the interior of the ovarium by a wide orifice, the dimensions of which are proportioned to the size of the mature ova. It is generally single : but in some genera, as Loligo and
tho Octopoda, the eanal derived from the ovary soon divides into two (d, e). Tho walls of the ovigerous duct aro thin and membranous until near the external outlet, where they suddenly become thick and glandular and, in many genera, surrounded with a very large laminated gland (f), through the centre of which the eggs have to pass before they issuc from the body. It is the gland last mentioned that secretes the external horny corering of the egg-a defence which seems to be deposited in successive layers upon the outer surface of the previously existing chorion, and, when completed, forms a thick flexible case made up of concentric lamellæ of a dark-coloured corncous substance.
(1608.) After extrusion, the ova of the different families of Ceritalopoda are found agglutinated and fastened together into masses of very diverse appearance. The eggs of the common Cuttlefish, frequently found upon the shore, are not inaptly compared by those ignorant of their real nature to a bunch of black grapes, to which, indeed, they bear no very distant resemblance, being gencrally aggregated in large clusters, and fastened by long pedieles cither to each other or to some foreign body (fig. 444). The Argonaut carries its cegs, which are comparatively of small size, securcly lodged in the recesses of, its

Fig. 444.

A. Gencrative organs of the femalc Cuttlelsh: $a a$, terminal portion of the intestinal canal ; d, orary fllled with eggs, scen through its transparent walls; c, oviduct; $f f$, laminated gland snrrounding the termination of the oviduct; c, c, accessory glands resembling in their structure the terminal gland $f ; b, b$, other accessory glands, made n p of convoluted tubes.
B. A small buneh of aggs enclosed in their horny capsulcs and attached by a pediele to a central stem (2). shell; while the ova of the Calamary, eneased in numerous long gelatinons cylinders that conjointly contain many hundreds of eggs, are fixed to various submarine substances, and thus protected from casmaltics. The form and arrangement of thesc bunches are no doubt dependent upon the peculiar character of the terminal gland found in the oriduct of the parent, whereby the last covering to the ora is furnished.
(1609.) Cuvier remarks that tho malo Poulpes must be less numerously met with than tho female, as among tho numerous speeimens dissected by hin seareely one-fifth were of the former sex.
(1610.) Tho various parts of tho malo generative apparatus are remarkably similar, both in structure and arrangoment, to the corresponding portions of the sexual organs of the female. The testiele strikingly rosembles the ovary both in its outward form and internal arrangement: like that viseus, it consists of a eapacious membranous sae (fig. 446, b) ; and on opening this there is found, attaehed to a small portion of its inner surface, a large bundle of branehed eæea (a), in which no doubt the seminal fluid is elaborated. These strangely disposed seminigerous croa have apparently no proper excretory ducts; but the impregnating fluid seereted by them is, as it would seem, poured into the general cavity of the sac, exactly in the same manner as the ova in the other sex; and being allowed to eseape from this reservoir through a wide orifice (c), it enters the vas deferens. The eanal last mentioned (d) is long, slender, and very tortuous, but after many convolutions it enters a wider eanal (e) called by Cuvier vesicula seminalis, the interior of which is divided by imperfect septa ; and its texture being apparently museular, this part of the excretory apparatus may possibly, by its contractions,

Fig. 445.

1. Male organs of the Cuttlefsh (Sepia offinalis), seen from before: a, tunic enveloping the testis; b, body of the testicle; c, convolutions of the vas deferens; c, commencement of the Needhamian canal; d, pouch of Needham. In fig. 4 the same parts arc represented as scen from behind, the testicle being removed in order to show the commencement of the vas deferens. 2 and 3 represent the spermatophores of the same animal, much magnifled: a, the external sheath; b, inner cylinder containing the spermatic fluid; c, the cjaculatory apparatus. In fig. 3 the spermatophore is shown in the act of discharging its contents. expel the spermatie fluid from the body. On issuing from the sominal vesiole, the semen passes the extremity of an oblong gland (f), which Cuvior denominates the prostate : its strueturo is compaet and granular: and it seems to be destined to furnish some aecossory fluid subservient
to impreguatiou. Having passed tho prostatc, the ejaculatory duct communicates with a large muscular sacculus (g), the contents of which aro very extraordinary. This sacculus is, in fact, filled with innumerablo whito filaments, each about half an inch in length, arranged parallel to each other, and disposed with much regularity. There arc three or four rows of them, one above another, entirely filling the sac; and they are maintained in situ by a delicate spiral membranc, but are quite unconnected with the sac itself. The filamonts when taken out, even long after the death of the Cephalopod, exhibit, when moistened, various contortions, and by some have been regarded as Entozoa.
(1611.) These remarkable spermatic filaments (the famous "filament machines" of Necdham) present, in fact, a very complicated structure. Their form varies in different species; but in their essential composition they are all found to consist of a long tubular sheath (fig. 445, 2, 3), composed of two membranes, and enclosing a long tube, convoluted upon itself like an intestine, which is filled with an opaque white fluid, in which are con-

Fig. 446.

Generativo organs of the male Cuttlefish. (After Curier.) a, testiole, composed of a conglomeration of branched tubes; b, its proper tunic or capsule, in which is a wide orifice, $c_{\text {. }}$ leading to d, the vas deferena, which terminates in a sort of vesicula scminalis, $e ; f$, glandular cecum, called by Curier "the prostate;" g, pouch of Necdham; h, penis. tained millions of zoosperms ; and the apparatus to which it is attached anteriorly constitutes an ejaculatory instrument by the aid of which the spermatic secretion is forcibly ejocted. These "spermatophores," as they have been named by Milnc-Edwards, serve as vehicles for the conveyance of the scminal fluid into the generativo system of the other sex, notwithstanding the absence of any copulatory apparatus.
(1612.) A most extraordinary modification of the male sexual organs is met with in the males of the Argoncuut, Tremoctopus, and probably of other kindred genera, in which one of the arms is so strangely modified,
both in its shape and structure, that Cuvicr mistook it for a parasite, deseribing it, under the nimmo of Hectocotylus, as "a long, paronchymatous worm, compressed at the anterior extremity, whore the mouth is situated, having its inferior surface furnished with suckers, from sixty to a hundred in number, arranged in pairs, and furnished with a sacculus, situated at the posterior extromity of its body, which is filled with the folds of tho oviduct."
(1613.) The Hectocotylus Argonautex*, as this strange appendage is still callod, is, in faet, a portion of the Argonaut itself, developed in a remarkable sac, which supplies the place of the left arm of the third pair. The male Argonaut (fig. 447, 1,2), is of very small sizo as compared with the femalc, being not more than an inch in length, and has no shell; moreover the upper pair of arms are not, as in the female (fig. 433), expanded into vela,

Fig. 447.

1, 2. Male Argonaut, of the natural size, represented in front and in profle, showing the sacculus in which the Hectocotylus is contained; from a specimen preserved in spirit. 3. Sacculus, in which the Hectocotylus may be distinguished through its transparent walls. The speeimen from which this figure was taken having been preserved in spirit, is, of coursc, contracted in all its dimensions. but are pointed. The sac above alluded to, on being opened, is invariably found to contain a solitary Hectocotylus, the dilated portion of which is attached at its

1. Sacculus of Argonaut laid open, showing the abnormal arm (Hectocotylus) folded up in its interior; magnificd two diameters. 2. A portion of the Hectocotyliform arm, still further magniffed: a, the sacculus laid open; b, the arm, showing the commencement of the "lash," and also the suckers, nervous ganglia, \&ce.
base, whilst the rest of this remarkable organ is free and rolled up towards that side upon which the suckers aro situated; but as soon as the sac is opened, or when it is ruptured by the movements of the contained Hectocotylus, tho latter unfolds itsolf (fig. 449 a), assu-

[^199]ming so exactly the appoaranco of a parasitio animal that the mistake committed by Cuvior is by $n o$ means surprising. The Argonaut itself possesses a well-developed testis, according in its structure with that of ordinary Cuttlefishes, and which contains spermatozoids in different stages of development ; but its excretory duct terminates in the Hecto-

Fig. 449.

Tremoctopus carina (male), showing the Hectocotylus (a) in its ordinary position,

Fig. 450.

A male Tremoctopus, seen from the rentral aspect. The risceral sac has been laid open and the left half of the mantle turned aside, to show the branchia and the opening of the generative apparatns during the expulsion of the spermatophore. a, sacculus containing the Hectocotylus; b, branchia of the left side, with its branchial heart, c; d, the " bottle," from which the spermatophore (c) is in progress of expulsion ; $f f$, the mantle.
cotylus, which is evidently nothing more than one of the arms of the Argonaut, thus strangely developed. But, what is stranger still, this arm, arrived at maturity, detaches itself from the Argonant, and from that moment enjoys an independent existence. It lives adherent to a female Argonant, which it impregnatos by a real coitus; so that in this respeet, as well as by its movements, and by the length of its life after its detachment, it might be mistaken for a complete male animal. Still it cannot be regardod as an independent boing, seoing that it has no alimentary apparatus; neither is it the organ whereby the seminal fluid is produced, but simply a vehicle wherely the male secretion is transported. Well indeed does it deserve the epithet bestowed upon it by

Cuvier, who, ignorant of its real nature, pronounced it "un ver bien extrcordinaire!"
(1614.) From the pouch of Needham a short canal leads to the penis (fig. 446,7), a short, hollow, muscular tube, through which the fecundating fluid is expelled.
(1615.) Although we mean to defer any miuute account of the developmont of the embryo in ovo until an examination of the egrs of oviparous Vertebrata shall afford more ample materials for clucidating this important subject, it will be as woll in this place briefly to notice the conditiou of the young Cephalopods previously to their escape from the egg, wherein the first part of their growth is accomplished. Bofore the egg is hatched, the fotal Cuttlefish already presents all the organs essential to its support and preservation: the tentacula upon the head, the eyes, the respiratory apparatus, and even the ink-bag, which in the earlier stages of growth were quite undistinguishable in the germ of the future being (fig. 451, 1), slowly make their appearance; so that before birth the little creature presents most of the peculiarities which characterizo the species to which it belongs. But the most prominent feature that strikes the attention of the physiologist is the remarkable position of the duct commuuicating between the yelk of the egg (the great reservoir of nourishment provided by nature for the support of the fœetus whilst retained in the cgg) and the alimentary caual of the as yet imporfect Sepia. This communication, which in vertebrate animals is invariably effected through an opening in the walls of the abdomen,

Fig. 451.

whercby the vitelline duct penetrates to the alimentary canal, here occupies a very unusual situation, being inserted into the head, through which it penetrates, by an aperturo situated in tho frout of the mouth, to the œesophagus, where it terminates (fig. 451, 3).
(1616.) Among the many interesting phenomena presented by the Cfifialopoda, few aro more remarkable than the extraordinary power which these animals possess of continually changing their colour in conformity with the varying tints of surrounding objects, affording a mcans of defence almost as efficient for concoalment as the ejaculation of their inky fluid. It is indeed an extremely beautiful sight to witness the flickering hucs of one of these animals, that seom to succeed each other
with astonishing rapidity. In order to explain the cause of this very curious faculty, it is only necessary to examine with the microscopo a portion of integument removed from the living animal, when it becomes at once apparent that the coloured layer of the skin is studded with imumerable pigment-cells (chromatophores), filled with colours that exactly correspond with the hues of the creature's body, and which in-

Fig. 452.

1. Animal of Spirula, exhibiting the shell in situ. 2. Transverse section, and 3 , lateral view of the shell removed from the body.

Fig. 453.

Belemnite restored : a, cephalie tentacles; b, siphon; c, ink-bag; d, e, seetion of shell. The outline exhibits the fin-like expansions of the integument.
dividually possess a remarkable power of changing their shape and size, and thus modifying, by their contraction and expansion, the coloration of the integument*.
(1617.) Interesting as the subject is, our space will permit us to ad-

* This wonderful faculty of changing thoir colours, dependent on a similar organization of tho rete mucosum, is possessed by fishes, frogs, and many other animals, as may be demonstrated by simply placing a fow small trouts, gudgeons, or minnows in difforently coloured earthen pans filled with cloar water; tho phonomenon is rendered still moro conspicuous by suddenly transforring thom from tho lighter- io the darkor-coloured vessels, and vice versi.
vert but very briefly to tho important light whieh our comparatively reeently aequired knowledge of the anatomy of the Cephalopod Mollusea has thrown upon tho history of innumerable races of similarly eonstructed beings long extinet, the remains of which are extensively distributed through a variety of geological strata. The fossil Ammonites, for example, the nature of which was previously inexplieable, were at onee rendered intelligible by the discovery and deseription of the Nautilus Pompilius, to which in their structure they were evidently nearly related. The countless petrified remains known by the names of Hamites, Lituites, Orthoeeratites, Cyrtoceratites, and other allied forms are still represented by the existing Spirula (fig. 452), which, although its structure even at the present day is but imperfectly understood, is manifestly a Cuttlefish provided with a camerated shell constructed mueh after the samc plan as that of the Nautilus; and even the Belemite, so long a puzzle and a mystery to gcologists, when restored by the labours of Professor Owen, as represented in fig. 453, unmistakably eonfesses its relationship to the Cuttlefishes we have been deseribing.
(1618.) Leaving the Cephalopod Mollusea, we must bid adieu to the fourth grand division of the animal kingdom, and proceed in the next ehapter to introduce the reader to beings organized aecording to a different type, embraeing the most highly gifted and intelligent oceupants of the planet to whieh we belong.

CHAPTER XXIV.

VERTEBRATA.

(1619.) The fifth division of the animal kingdom is composed of four great classes of animals, closely allied to each other in the grand features of their organization, and possessing in common a general type of strueture clearly recognizable in every member of the extensive series, although, of eourse, modified in accordance with the endless diversity of circumstances under whieh partieular races are destined to exist. The immeasurable realms of the ocean, the rivers, lakcs, and streams, the fens and marshy places of the earth, the frozen precincts of the poles, and the torrid regions of the equator, have all appropriate oecupants, more favoured as regards their eapacities for enjoyment, and more largely endowed with strength and intelligenee, than ny whieh have hitherto oceupied our attention, and gradually rising higher and higher in their attributes, until they conduct us at last to Man himsolf. Fismes, restrieted by their organization to an aquatie lifo, are connected by
amphibious beings, that present almost imperceptible gradations of dovelopment, with terrestrial aud air-breathing Reptiles: these, progressively attaining greater perfcetion of structure and increased powers, slowly conduct us to the activo, hot-blooded Brans, fitted by their strength, and by the rigour of their movements, to an aërial existence. From the feathered tribes of Vortcbrata, tho transition to the still more intelligent and highly cndowed Mammalia is cffected with cqual facility; so that the anatomist finds, to his atonishment, that throughout this division of animated nature, composed of creatures widcly diffcring among themselves in forms and habits, an uubroken scrics of beings is distinctly traceablc.
(1620.) The first great character that distinguishes the vertebrate classes is the possession of an internal jointed skelcton, which is not, as in the proceding classes, extravascular and incapable of increase except by the successive dcposition of calcareous laminæ applicd to its extcrnal surfacc, but endowed with vitality, nourished by blood-vessels and supplicd with nerves, capable of growth, and undergoiog a perpetual renovatiou by the removal and replacement of the substances that cnter into its composition.
(1621.) In the lowest tribes of aquatic Vertebrata the texture of the internal framework of the body is permanently cartilaginous, and it continucs through life in a flexible and consequently fceble condition; but as greater strength becomes needful, in order to sustain more active and forcible movements, calcareous particles are found to be depositcd in tho interstices of the cartilaginous substance; and in proportion as theso accumulate, additional firmness is bestowed upon the skeleton, until at length it assumes hardness and solidity proportioned to the quantity of the contained earthy matter, and becomes converted into perfect bonc.
(1622.) Phenomena precisely similar are obscrvable in tracing the formation and development of the osseous system, cren in thoso genera possessed, when arrived at maturity, of the most completely organized skeletons.
(1623.) In the very young animal the bones consist exclusively of cartilage; but as growth proceeds earth becomes depositcd by the blood-vcsscls in the as yet soft and flexible pieces of the skelcton, until by degrecs they acquire density and strength as the animal advances towards its adult condition.
(1624.) The complete skeleton of a vertebrate animal may be considered as being composed of scveral sets of bones employed for very different purposes,-consistiug of a central portion, the basis and support of the rest, and of various appendages derived from or connected with the central part. The centre of the whole osscous fabric is gencrally made up of a serics of distinct picces arranged along the axis of the body; and this part of the skcleton is invariably present; but the
superadded appendages, being omployed in different animals for various and distinct purposes, present the greatest possible diversity of form, and are many of them wanting in any given genus; so that a really complete skeleton, that is, a skeleton made up of all the pieees or elements whieh might, philosophieally speaking, enter into its composition, does not exist in nature, inasmuch as it is owing to the deficiency of some portions and the development of others in particular raees that we must ascribe all the endless diversity of form and meehanism so conspicuously met with in this division of the animal world.
(1625.) Nevertheless, although there is no such a thing in ereation as a fully developed skeleton, it will be neeessary, in order to prepare the student for the contemplation of the numerous modifieations met with in this portion of the animal eeonomy, hereafter to be described, briefly to enumerate the eomponent parts which might theoretically be supposed to enter into the eonstruction of the framework of an animal; and thus by eomparison he will be enabled, as we proceed, to appreciate more readily the variations from a general type apparent throughout the vertebrate elasses. It may likewise be as well thus early to caution the anatomist who has confined his studies to the contemplation of the human body, against taking the skeleton of Man as a standard whereby to direct his judgment ; for Man, so highly raised by his intelligence and mental powers above all other beings, is, so to speak, a monstrosity in the ereation; aud, so far from finding in the human frame the means of elucidating the laws of animal organization, it is found to have been constructed upon principles the most aberrant and remote from those which an extensive investigation of the lower animals has revealed to the physiologist.
(1626.) A skeleton, deseribed generally, is made up of the following portions : first, of a ehain of bones, placed in a longitudinal series along. the mesial line of the baek, and more or less firmly articulated with each other, so as to permit certain degrees of flexure. These bones, examined individually, present various additional parts destined to very different ends : some defend the central axis of the nervous system from external violence; others, when present, guard and enclose the main blood-vessels; and the rest, acting as prominent levers, cither serve to give insertion to the muscles which move tho spine, or afford additional security to the articulations between the vertebral pieces. Those vertebre which defend the posterior portions of the nervous axis, usually called the spinal cord, constitute the spine; while those enclosing the anterior extremity of the nervous axis, whieh for reasons hereafter to be explained, becomes dilated into large masses forming eolleetively the brain, are by the human anatomist distinguished as tho cranium or slcull.
(1627.) Secondly, we find appended to the eranial or cephatic portion of the spine a set of boncs disposed symmetrically, and forming the
framework of the face: these bones, it is true, have by mauy Contineutal writers been regarded as constituting additional vertebre, the parts of which are still recognizable, although amazingly modified in shape, so as to enclose the different cavities wherein the senses of vision and smell, as well as the organs of mastication, are situated. We shall not, howcver, waste the time of the student by considering in this place the as yet unsettled and vague opinions of transcendental anatomists upon this subject; it is sufficient for our purpose merely to indicate the facial bones as appendages to the cranial vertebræ, avoiding for the preseut further discussion conccrning them.
(1628.) Another most important addition to the central axis of the skelcton is obtained by the provision of lateral prolongations, derived from the transverse processes of the vertebre, which form a serics of arches largely developed at certain points, so as more or less completely to embrace tho principal viscera, and give extensive attachment to muscles serving for the movements of the body.
(1629.) The first set of arches is appended to the lateral portions of the cranial vertebræ; and the bones thus derived enter largely into the composition of the respiratory apparatus. In Man, this important portion of the skeleton is reduced to a mere rudiment, distinguished by the name of the os hyoides; and in the human subject its relations and connexions with the surrounding parts are so obscurely visible, that the student is scarcely prepared to witness the magnitude and importance of the hyoid framowork in other classes, or the amazing metamorphoses which, as we shall afterwards see, it undergoes.
(1630.) Behind the hyoid apparatus, other arches are attached to the transverse processes of the spinal vertebre, called ribs; and the study of these appendages to the spine is one of the most interesting ${ }_{5}^{7}$ points in the whole range of osteology. In Fishes, wherein respiration is effected entirely by the movements of largely developed hyoid bones, the ribs are mere immoveable derivations from the transverse processes of the vertebræ, and serve exclusively for the attachment of muscles. In Reptiles respiration is still accomplished by the os hyoides, and the ribs, thus performing a secondary office, bccome convertible to different uses, ald assume various forms and proportions. In the Amphibious Reptiles the most nearly approximated to Fishes, they either do not exist at all, as being needed neither for respiration nor locomotion, or they are represented by minute and almost imperceptible rudiments appended to the extremitics of the transverse processes of the vertebre. In Serpents tho ribs are wanted for locomotion, and are accordingly developed from the head nearly to the tail, forming a series of strong arches, articulated at onc extremity with the vertebral column by a very complete joint, but at tho opposito extremity they are looso and unconnected. In proportion, however, as the hyoid bones, with the laryux, of which they form an important part, become converted into a vocal
apparatus (as they gradually do), the ribs, assuming more complete development in a certain region of the spino, and being augmented by the addition of a sterual apparatus, form a complete thoracic cavity, and thus becomo the basis of those movements of the body which in hotblooded animals are subservient to respiration.
(1631.) The next additions required to complete the skeleton are two pairs of locomotivo limbs, representing tho logs and arms of Man. Infinitely diversified as are these members both in form and office, they are, when philosophically considered, found to be constructed after the same type. Both the anterior and posterior limbs, when fully organized, consist of similar parts, most of which aro met with in the limbs of the human skelcton. Three bones constitute the shoulder, called respectively the scapula, the clavicle, and the coracoid bone. Three bones in like manner sustain the hinder extremity-the ilium, the ischium, and the pubis; and these evidently represent individually the corresponding pieces found in the shoulder, but differently named. The formation of the limbs is likewise strictly parallel: a single bone articulates with the osseous framework of the shoulder, or of the hip, called in one case the humerus, in the other the femur; two bones form the arm-the radius and ulua; and two likewise enter into the composition of the leg-the tibia and fibula. The hand and foot are each supported by a double series of small bones, forming the carpus of the one, and the tarsus of the other-and in like manner consist of similar pieces, five in number, called the metacarpal or metatarsal bones, and of the phalanges, or joints of the fingers and toes.
(1632.) A perfect or typical skelcton must therefore be supposed to consist of all the before-named portions, namely :-1, the cranial and spinal vertebræ ; 2, the face; 3, an elaborately formed hyoid framework ; 4, the ribs; 5 , a sternal system of bones, constituting, in conjunction with some of the ribs, a thoras ; and, 6 , four locomotive extremities, made up of the parts ahove enumerated as entering into their composition. Seldom, indced, is it that the student will find even the majority of these portions of the osseous apparatus coexistent in the same sizeleton; but, whatever forms of animals may hereafter present themselves for investigation, let the above description be taken as a general standard of comparison, and let all variations from it be considered as modifications of one grand and gencral type.
(1633.) We must, however, proceed one step further in this our preparatory analysis of the skelcton, and, instead of regarding the individual pieces of the osscous framework of an adult animal as so many simple bones, be prepared to find them resolvablo into several distinet parts or elements, all or only a part of which may be developed in any given portion of the osscous system.
(1.634.) In order to simplify as much as possible this important subject, wo will select, first, what is generally regarded as a single bone
-one of the most complex vertelre of a Fish for instance-and cxamine its real composition.
(1635.) This bone (fig. $454, ~ 1$) is found to consist of a central portion (a), and of sundry processes derived therefrom, some of which the youngerstudent of human anatomy would at once be able to call by their appropriate names. To the body of the bone (a) he finds appended the arch (b) which encloses the spinal cord, surmounted by its spinous process (c), and with equal facility he recognizes in the lateral processes ($d d$)

Fig. 454.

Elements of a vertebra. the analogues of the transverse processes of the human spine; but here his knowledge fails him, inasmuch as he finds another arch (e) formed beneath the body of the bone, and moreover an inferior spinous process (g), neither of which has any representative in the human body.
(1636.) It is evident, therefore, that the human vertebræ are imperfectly developed bones, and do not possess all the parts or elements met with in the corresponding portion of the skeleton of a Fish.
(1637.) The question, therefore, to be solved is this-how many elements exist in the most perfect vertebra known? and this being once satisfactorily settled, it is easy to detect the deficiencies of such as are less completely developed.
(1638.) Taking the example above given as a specimen of a fully formed vertebra, it has been found to be divisible into the following pieces, all or only a part of which may be present in other vertebræ even belonging to the same skeleton; and these parts are represented detached from each other in the diagram which accompanies the figure (fig. 454, в). They are:-1st, the centre or body of the bone ; 2 ndly , two elements ($b b$), which embrace the spinal marrow; 3rdly, the superior process (c); 4thly, the two transversc processes (d); 5thly, two elements forming the inferior arch, and enclosing the principal bloodvessels (e) ; and 6thly, an inferior spinous process (g).
(1639.) With this key before us, we are able with the utmost ease to comprehend the structure of any form of vertebra that may offer itsclf. Thus, in different regions of the back of the same Fish, the composition of the vertebræ is totally different: near the tail the rertebro consist of the body (a), the superior arch (b) and spinous process (c), and the inferior arch (e) and spinous process (g). In the neighbourhood of the
head, however, neither the inferior arch nor spinous proeess is at all developed ; but tho transvurse proeesses, whieh wero deficient in the former ease, are here of great sizo and strength. It is obvious, thereforo, that the form of a vertebra may bo modified to any extent by the simple arrest of the development of eertain elements and the disproportionate expansion of others, until at length it beeomes seareely recognizable as eonstituting the same piece of the skeleton.
(1640.) Who would be prepared to expeet, for example, that the oeeipital bone of the human head was merely a modifieation of a few of the elements of the Fish's vertebra above deseribed enormously expanded, in order to beeome adapted to altered eireumstances? And yet, how simple is the transition! By romoving the inferior arch (e) and spinous process (g), and slightly redueing the proportionate length of the transverse proeesses (d), we arrive at the form of a human vertebra, which exhibits preeisely similar elements. Enlarge the arehes ($b b$) that surround the spinal axis of the nervous system, inerease the size of the superior spinous element (c), and we have the oeeipital bone of a Fish; and henee, through a few intermediate links, we arrive almost impereeptibly at the oceipital bone of the human eranium, - the main differenees being that the body is in Man divided into two lateral halves, While the superior arch (b) beeomes spread out so as adequately to defend the prodigiously developed masses of the brain, to which in the human body it corresponds.
(1641.) One other illustration of this interesting subjeet. What bones eompose a completely formed thorax? In Man we find, as every tyro knows, 1st, the dorsal vertebree; 2 ndly , the ribs, with their eartilages ; and 3rdly, the sternum. But it is not in Man that we must expeet a perfeetly developed thoraeic framework; it is in the Birds, which are destined to rise in the air by the assistanee of their proportionately powerful thoracie extremities. If, therefore, we examine the thorax of a Bird, we find it composed of pieees whieh in Man are absolutely wanting: we see, 1st, the vertebrce; 2ndly, the dorsal ribs, firmly artieulated on eaeh side both with their bodies and transverse proeesses; 3rdly, the sternal ribs, extending from the ribs last mentioned to the sternum ; and lastly, the sternum, eomposed, as we shall afterwards see, of various elements not found in the human body. If we proseeute our survey a little further, we shall find this portion of the skeleton offcring the greatest possible variety as regards the presenee or absence of the elements above enumerated: thus in the Frog we have vertebræ and sternum, but no ribs; in the Serpent, vertebre and dorsal ribs, but no sternum or sternal ribs; in Man the sternal ribs are represented by the eostal eartilages : and thus a thorax of every required deseription is eonstrueted by adding or taking away, expanding or eontraeting ecrtain elements, all of whieh a typieal skeleton might be supposed to eontain developed in a medium condition.
(1642.) Comparison of the skeleton of a Fish with those of the higher animals demonstrates that the natural arrangement of the parts of the endoskeleton is in a series of segments succeeding each other in the axis of the body. These segments are not, indeed, composed of the same number of bones in any elass, or throughout any individual animal; but certain parts of each segment do maintain such constancy in their existence, relation, position, and offices as to enforce the conviction that they are homologous parts, both in the constituent series of the same individual skeleton, and throughout the series of vertebrate animals. Each of these primary segments of the skeleton is designated a "vertebra," but with as little reference to the primary signification of the word as when the comparative anatomist speaks of a sacral vertebra. A vertebra is defined by Professor Owen as " one of those segments of the endoskeleton which constitute the axis of the body and the protecting canals of the nervous and vascutar trunks;" such a segment may also support diverging appendages.
(1643.) A vertebra consists, in its typical completeness, of the elements or parts represented in the following diagram :-

Fig. 455.

(1644.) The names in the above diagram printed in Roman type signify those parts which, being usually developed from distinct and independent centres, have been named autogenous clements. The italics denote the parts more properly called processes, which shoot out as continuations from some of the preceding elements, and are termed exogenous.
(1645.) The autogenous elements generally circumscribe holes about the centrum, which in the chain of vertebre form canals. The most eonstant and extensive canal is that formed above the centrum (fig. 455), for the lodgment of the main trunk of the nervous system (neural axis), by the elements thence termed neurapophyses. The second canal, below the contrum (fig. 455), is in its entire extent more irregular and interrupted; it lodges the central organ and large trunks of the rascular
system (hæmal axis), and is usually formed by the Tamince which are therefore called hamapophyses. At the sides of the centrum, most commonly in the cerrical region, a canal is circumscribed by the pleurctpophysis, or costal process, by the parapophysis or lower transverse process, aud by the diapophysis, or upper transverso process, which canal includes a vossel, and often also a nerve.
(1646.) Thus a typical or perfect vertcbra, with all its elements, presents four canals or perforations around a common centre; such a vertebra we find in the thorax of Man, and most of the higher classes of rertebrates, also in the neck of many birds. In the tails of most reptiles and mammals the inferior are articulated or anchylosed to the under part of the central elements, space being needed thero only for the caudal artery and vein. But where the central organ of the circulation has to be lodged, an expansion of the hæmal arch takes place, constituting a thorax. Accordingly, in order to construct the thoracic cavity, the pleurapophyses (fig. 455) are much elongated, and the hæmapophyses (fig. 455) are removed from the centrum, and are articulated to the distal ends of the plcurapophyses, the bony hoop being completed by the intercalation of the hromal spine (fig. 455) between the ends of the hæmapophyses. And this spine is here sometimes as widely expanded (in the thorax of Birds and Chelonians for example) as is the ncural spine (parietal bone or boncs) of the middle cranial vertebra of Mammals. In both cases also it may be developed from two lateral halves; and a bony intermuscular crest may be extended from the mid line, as in the skull of the Hycna and the breast-bone of Birds.
(1647.) The ossificd parts of the abdominal vertebre of osscous Fishes answer to the centrum, the neurapophyses, the ncural spine, the parapophyses, the pleurapophyses, and certain appendages to bo hereafter noticed.
(1648.) In the air-breathing Vertebrata, in which the heart and breathing-organs are transferred backwards to the trunk, the corresponding osseous segments of the skelcton are in most instances developed in their typical completeness, in order to encompass and protect those organs. The thoracic hrmapophyses in the Crocodiles aro partially ossified, and in Birds completely so, in which class the hæmal spines of the thorax coalesec together, become much expanded laterally, and usually devclope a median crest downwards, to increaso the surface of attachment for the great muscles of flight. This speciality is indicated by the name "sternum," applied to the confluent elements in question.
(1649.) The typical thoracic vertebre in Birds support civerging appendages, cither anchylosed, as in most, or articulated, as in the J'enguin. and Apteryx, to the posterior border of the pleurapophysis. The function of such appendages in this form of typical vertebra is to connect one hemal arch with the next in succession, so as to associate the
two in action, and to give firmuess and strength to the whole thoracic frame.
(1650.) The diverging appendages are, as might be expected, of all the clemonts of the vertebral segment, the least constant in regard to their existence, and the subjects of the greatest amount and varicty of modification. Simplo slender spines or stylcs in Fishes (fig. 459, 13)simple plates retaining long their cartilaginous condition in Crocodiles -short, flat, slightly curved pieces in most Birds,-such, with one exception, is the range of the variety of form to which these parts are subject in the segment of the trunk. But that exception is a remarkablc one, inasmuch as we are enabled to trace the diverging appendage of that vertcbral segment of the body which from its form and character constitutes the pelvic arch, through various progressive phases of develop-ment-from that of a simple, articulated, solitary ray, such as exists in the Lepidosiren, through innumerable modifications, whercby it is adapted for swimming, steering, balancing, and anchoring-for exploration, for burrowing, creeping, walking, and running-for leaping, scizing, climbing, or sustaining erect the entire frame of the animal-under the general appellation of the postcrior or pelvic limb.
(1651.) Any given appendage, however, as Profcssor Owen * justly observes, might have been the seat of such developments as convert that of the pelvic arch into a locomotive limb; and the true insight into the general homology of limbs enables us to point out many potential pairs in the typical cudoskeleton. The possible and conceivable modifications of the vertebrate archetype are far from having been exhausted in the forms that have hitherto been rccognized, from the primæval fishes of the palrozoic ocean of this planet up to the prescut time; or, in other words, it would be by no means contrary to the general laws of osteogenic development, however different from the ordinary course of nature, were vertebrate animals to occur possessed of more than the two pairs of locomotive extremitics usually conferred; so that such beings as hippogriffs and other winged quadrupeds, however fabulous, would be by no means monstrous productions.
(1652.) As the segments approach the tail in the air-breathing vertebrates, they are usually progressively simplified, first by the diminution, coalescence, and final loss of the pleurapophysis, next by the similar diminution and final removal of the hæmal and neural arches, and sometimes also by the coalescence of the remaining central clements, cither into a long osseous style, as in the Frogs (fig. 481), or into a shorter flattencd disk, as in many Birds. In Fishes, however, the seat of the terminal degradation of the vertebral column is first and chiefly in the contral clements-which in the Homocercals, i. e. in those genera which (like the Perch, fig. 459) have a symmetrical bilobed tail, are commonly

* "On the Arehelype and Iomologies of the Vertobrato Skelcton." London : John Van Voorst.
blended together, and shortened by absorption, whilst both neural and hæmal arches remain with increasod vertical extent, and indieate the number of the metanorphosed or obliterated centrums.
(1653.) The anterior vertebre of the spinal series are modificd in their form and dimensions in proportion to the increased development of the anterior part of the cerobro-spinal axis, and that to such an extent, more especially in the mammiferous races, that their real nature and character are completcly masked from ordinary obscrvation, nevertheless guided by the principles above laid down-that the bones of the cranial portion of the spinal column conform in their essential arrangement to what has been observed in the rest of the vertebral series, and that the skull is in reality made up of the same elemental parts, modified, it is true, to a very remarkable cxtent, yet still recognizable, in accordance with just principles of philosophical induction, as the homologues of those described above.
(1654.) The cranial boncs, when examined by any unprejudiced obscrver, readily resolve themselves into four distinct vertebre, which may be named, reckoning them from behind forwards, the

> Occipital, or Epencephalic;
> Parietal, or Mescncephalie;
> Frontal, or Prosencephalic;
> Nasal, or Rhinencephalic.
(1655.) The Occipital Vertebra, in the higher vertebrates, is represented by the oceipital bone, in which all the vertcbral elements are consolidated into one piece ; in the Reptilia, however, it is by no means difficult to identify the scveral parts which enter into its composition. They are as follows :-

Centrum Basioccipital . . . 5*
Neurapophyses . . . Exoccipital 9
Spinc.
Supraoccipital . . . 8
Plcurapophyses . . . Paroccipital 10
The composition of the Parietal Vertebra is :-
Parictal centrum . . Basisphenoid 6
Neurapophyses . . . Alisphenoid.
Spinc Parictal 7
Pleurapophyses . . . Mastoid 12
The Frontal Vertebra consists of :-

| Frontal centrum | . | $\left\{\begin{array}{l}\text { Prosphenoid and } \\ \text { Entosphenoid. }\end{array}\right.$ |
| :--- | :--- | :--- | :--- |
| Ncurapophyses . . . Orbitosphenoid . . . | | |

* These numbers correspond with those that indicate the inclividual bones of the cranium in subsequent figures.

The Nasal Veithebra is composed of:-

| Nasal centrum | . | Vomer | 16 | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Neurapophyscs Prefontal | . | . | . | 2 |
| Spine Nasal | 20 | | | |

(1656.) Thus far wo aro enabled to identify the cranial boncs as bcing modified represcntatives of the spinal column, by allowing for that increased development of the ncural elements here rendered necessary by the inordinate magnitude of the ganglionic centres of the cerebrospinal axis ; but when we come to turn our attention to the constitution of the other portions of tho chain, representing the lateral and inferior arehes, or, in other words, tho parapophysial and the hæmapophysial elements, together with the diverging appendages derived therefrom, the task becomes much more diffieult. The labours of Professor Owen upon this intoresting subject, unparalleled for depth of researeh, and exhibiting a grasp of philosophical argument rarely to be met with, have, however, satisfactorily revcaled their real nature, and established beyond a doubt the alliances whieh exist between the elaborate struetures in question, and the arehes whieh exist under simpler conditions appended to the vertebral segments of the trunk.
(1657.) From an extended survey of the organization of the skeleton throughout the vertebrate series, it is easy to pereeive that, however diversified in adaptation to external eireumstanees, there is a general agreement between the various parts of the osseous framework, sufficient to convinee us that all have been construeted in accordanee with an ideal plan or archetype, from which iò́e, as Plato expresses it, the Creator has not deviated since the earliest appearance of the palæozoie races of Vertebrata up to the present period; and this "arehetspe" Professor Owen has illustrated by the diagram in the following page.
(1658.) The nervous system of the Vertebrata is by far more complex and elaborately organized than that of any of the four preeeding dirisions of the animal world, and consists, in fact, of several distinct systems, differently disposed, and appropriated to different offiees. Certain largely developed ganglia, situated in the cavity of the cranium, generally considered by themselves on account of their disproportionate size when compared with the other nervous eentres, are commonly grouped together under onc eommon desiguation, and form what is ealled the brain, or encephaton: these masses, however, as we shall hcreafter see, presido over various and widely different funetions; and with them perception, volition, and intelligence aro essentially eonneeted.
(1659.) Continued from the brain, and lodged in a canal formed by the superior arehes of the vertebral column, is a long chain of ganglionie eentres, so intimately united that they appear confused into a long medullary eord, usually denominated tho spinal marrow (medulla spinalis). (1660.) The spinal medulla in reality consists of two double serics or
 culars-composing together the hæmal arch of the frontal rertebra with its diverthe first and second segments, its place being indicated by an arrow; 38 , stylohyal; 39, epihyal ; 40, ceratohyal ; 41, basihyal ; 42, glossohyal ; 43, urohyal; 44, branchio-stegal-constitutiug the hæmal arch of the parietal vertebra with its diverging appendages; 50 , suprascapula; 51 , scapula; 52 , coracoid; 52^{\prime}, episternum ; 53 , anterior limb-completing the hæmal arch of the occipital vertebra with its diverging appendages; 58 , clavicle, the hæmapophysis of the postoccipital vertebra; 62 , ilium; 63, ischium; 65-69, posterior extremity-constituting the hæmal arch of the sacral vertcbra (s), with its diverging appendages;
the lumbar (P) vertebre. Outlines of the chief developments of the dermo-skeleton in different vertebrates which are usually more or less ossified are added to the endoskeletal archetype, as e. g. the median horn supported by the nasal spine (15) in the Rhinoccros, the pair of lateral horns developed from the frontal spine (11) in most Ruminants, the median folds (D 1, D 11) abore the neural spines, one or more in number, constituting the "dorsal" fin or fins in Fishes and Cetaceans. c, and beneath the hæmal spines constituting the "anal " fin or fins, A, of Fishes, and other analogous developments.
a Elements composing the typical vertebrate skeleton (after Owen).-The different elements of the primary segments are distinguished by peculiar markings: the neurapophyses by diagonal lines (n); the diapophyses by vertical horizontal and ertical lines (c); the pleurapophyses by diagonal lines ($p l$); the hæmapophyses by dots (h); the diverging appendages by interrnpted lines (a); the ncural spines and hæmal spines are left blank.

The elements entering into the composition of the "archetype" are as follows:1, basioccipital, or basilar 2, exoccipital ; 3, snpraoccipital; 4, paroccipital-chese constitute the occipital, or encephalic vertebra of the cranium, 5 , basisphencial 6 , alisphenoid; 7 , parietal ; 8 , mastoid-completing the $; 12$, postfroutal-forming the prosencephalic, or frontal vertebra; 13 , romer ; 14 , prefontal ; 15 , nasal-composing the rhinencephalic, or nasal vertebra; 16 , the petrosal, or acoustic sensecapsale, interposed between the occipital and parictal vertebræ; 17 , the sclerotic, or phthalmic sense-capsule, lodged in a cavity or orbit between the frontal and nasal rertebræ; 18,19 , ethmo-turbinal, or olfactory sense-capsule, situated immediately in advance of its proper segment, which becomes variously modified to enclose and protect it; 20 , palatine ; 21 , maxillary ; 22 , premaxillary; $23,24,25$, pterygoid;
26 , malar ; 2π, squamous-constituting the hæmal arch of the nasal vertebra with its
columns, composed of symmetrical and parallel ganglia,-one pair of columns, the anterior, presiding over those museular movements which are under the control of the will, while the posterior are destined to receive impressions derived from the exterior of the body ; these columns, therefore, are denominated respectively the motor and sensitive tracts of the spinal cord.
(1661.) From the lateral aspects of the medulla spinalis are derired, at intervals, symmetrical pairs of nerves, which escape from the spinal canal by appropriate orifices situated between the difforent bones of the vertebral column, and are distributed to the voluntary muscles and integument of the two sides of the body.
(1662.) The spinal nerves, however, are not so simple in thoir composition as they were considered to be by the older anatomists : each of them has, in fact, been found to arise from the spinal cord by two distinct roots, one derived from the anterior, the other from the posterior column of the corresponding side; so that each nerve is evidently made up of two distinct sets of filaments, one set communicating with the motor, the other with the sensitive tracts; and thus cvery nerve derived from the spinal cord is a compound structure, being composed of filaments distinct in office, althongh enclosed in the same shcath, some being connected with the muscular movements, the others with sensation. But in addition to the cerebro-spinal ganglia and the symmetrically arranged nerves emanating thercfrom, that are distributed to the organs of sensation and movement, there exists in the Vertebrata a distinct system of nervous centres lodged among the viscera, appropriated to the performance of the automatic functions, and presiding over those involuntary movements of the body upon which depend the operations connected with nutrition. These ganglia are variously distributod, being situated in the head, the ncek, the thorax, and the abdomen; and from them arise large plexuses of nerves, destincd to supply the organs belonging to digestion, circulation, and secretion,- thus forming extensive ramifications, formerly distinguished by the name of the sympathetic nerve, but now more properly considered a distinct system presiding огет organic life, as the former is connected with the phenomena of animal life.
(1663.) With the increased development of the nerrous system in the vertebrate classes we find the organs of the senses assume a proportionate perfection of structure and regularity of arrangement. The auditory apparatus, of which we have scen only rudiments in the lower animals, gradually becomes more and more elaboratcly organized. The cyes, now invariably two in number, are lodged in cavitios formed for their reception by the osseons framework of the face, and exhibit, in the simplicity of their structure, a higher type of organization than any we have hitherto examined. Organs of smell, also double, but of rery variable construction, are likewise constantly present. The tongue be-
comes slowly adapted to appreciate and discriminate savours ; and the sense of touch, tho most geverally diffused of all, is especially confcrred upon organs of differont kinds peculiarly adapted to excrecise this faculty. Thus with increased intelligence ligher capabilitics of enjoyment are allotted, and sagacity developes itself in proportion as the norvous centres expand. But there are minor points, characteristic of the vertcbrate division of the animal world, which must not be omitted in this preparatory survey of their organization. Their organs of digestion and mutrition aro constructed according to a diffcrent type, and upon a more enlarged plan than in any of the classes enumerated in the preceding chapters; and parts are superadded to the digestive apparatus which in lower tribes have no existence. In addition to the usual subsidiary glands, namely the salivary and the hepatic, a third secretion is pourcd into the intestine along with the bile, derived from the pancreas, a viscus which we have not as yet met with. Throughout all the Mollusca we have found the bile secreted by tho liver to be separated from artcrial blood, as are the other secretions of the body; but in the Verterrata it is from venous blood that the bile is formed, and in consequence an claborate system of vessels is provided, distinct from the general circulation, by which a large supply of deoxygenized blood is conveyed to and distributed through the liver, constituting what is termed by anatomists the system of the vena portce: nay, more, in connexion with this arrangement we find another remarkable viscus make its appearance, the spleen, from which venous blood is copiously supplied to the portal vein, and added to that derived from other sources.
(1664.) A still more important and interesting circumstance, which strikes the anatomist on comparing the Vertebrata with lower forms of existence, is the sudden appearance of an entirely new system of vessels, destined to absorb from the intestines the mutritious products of the digestive process, and to convey them, as well as fluids dcrived from other parts of the body, directly into the veins, there to be mixed with the mass of the circulating blood. These vessels, of which no traces have been detected in any of the Invertebrata, are called lymphatics and lacteals; but their structure and distribution will occupy our attention hereafter.
(1665.) The blood of all the Veltebrata is red, and is composed of microscopic globules of variable form and dimensions in different animals. In the class of Fishes, owing to the as yet imperfect condition of the respiratory apparatus, the tomperature of the body is scarcoly higher than that of tho surrounding medium ; and even in Reptiles such is the languid condition of the circulation, and the incomplete nanner in which the blood is exposed to the renovating influence of the oxygen derived from the atmosphere, that the standard of animal heat is still extremely low. But in the higher classes, tho Birds and Mammalia, orving to the total scparation of the systemic and pulmonary circulation,
the eflect of respiration is increased to the utmost ; and, pure arterial blood being thus abundantly distributed through all parts, heat is more rapidly generated, tho warmth of tho body becomes eonsiderably inercascd, and such animals are permanently maintained at an invariable temperature, considerably higher than that of the medium in which they livo. Henee the distinction generally made between the hot-blooded and cold-blooded Vertebrata.
(1666.) The variations in the temperature of the blood, above alluded to, are, moreover, the cause of other important differences obscrvable in the clothing, habits, and instincts of these ereatures. To retain a high degree of animal heat neeessarily requires a warm and thiek eovering of some non-conducting material ; and eonsequently in the hair, wool, and feathers of the warm-blooded tribes we at once rceognize the provision made by Nature for preventing an undue cxpenditure of the ealorie generated in the body. Such investments, however, would be ill adapted to the inhabitants of a watery medium; and eonsequently the fish, destined to an aquatie life, and the amphibious reptile, doomed to frequent the mud and slime upon the shores, are deprived of such ineumbrances, and elothed in a scaly or slippery eovering more fitted to their habits, and equally in accordance with the diminished temperature of their blood.
(1667.) Still more remarkable is the effect of a mere exaltation of animal heat upon the instincts and affections of tho different raees of the Vertebrata. The fishes, absolutcly unablo to assist in the maturation of their offspring, are content to cast their spawn into the water, and remain utterly eareless of tho progeny to bo derived from it. The reptile, equally ineapable of appreeiating the pleasures connected with maternal eare, is content to leave her eggs exposed to the genial warmth of the sun until the included young escape. But no sooner does the vital heat of the parent become sufficient for the purposes designed by Nature, than all the sympathies of parental fondness beeome developed, all the delights conneeted with paternity and maternity are superadded to other enjoyments ; and the bird, as she patiently performs the business of ineubation, or tenderly watehes over her newly hatched brood, derives a pleasure from the performanee of the duties imposed upon her, second only to that enjoyed by the mammiferous mother, who from her own breast supplies the nutriment prepared for the support of her infant progeny.

CIIAPTER XXV.

PISCES (FISHES).

(1668). To whatever portion of the animal world we turn our attention, we find the lowest and least-perfectly organized tribes to be inhabitants of the water. To dwell upon the land necessarily demands no inconsiderable share of strength and activity-limbs sufficiently strong to support the weight of the body, muscles possessed of great power and energy of action, acute and rigilant organs of sense, and, moreover, intelligence and cumning proportioned to the dangers or necessities connected with a terrestrial existence.
(1669.) The inhabitant of the waters on the contrary, although less highly gifted, may be fully competent to enjoy the position it is destined to occupy. Being constantly buoyed up on all sides by a dense element, it is easily supported at any required altitude without much muscular effort; but feeble limbs are needed to guide its path through the water, and slight impulses suffice to impel it forward. Thus, therefore, in Fishes we are prepared to expect, \grave{d} priori, that, as far as strength and compactness of structure are concerned, they will be found inferior to other Vertebrata.
(1670.) We are likewise justified in anticipating that, in intelligence, and in the rclative perfection of their senses, Fishes should be less highly endowed than the other vertebrate classes. Plunged in the immeasurable depth of the ocean, whereunto no sound can ever penetratedwellers in the realms of eternal silence, where even the roar of the storm is lost, vivid and distinct perceptions of sound can be little needed. Surrounded by a turbid element, through which the rays of light with difficulty make their way, the sphere of vision must necessarily be extremely limited. Immersed in a fluid but little adapted to distribute odorous particles, a refined sense of smell would be a useless provision. Taste, if it exists at all, must be blunted to the utmost, from the circumstances under which fishes seize and swallow prey; and even the sense of touch, in animals encased in seales and deprived of prehensile limbs, can only be exercised in a vague and imperfect manner.
(1671.) With such inferiority in their power of communication with the external world, and with faculties so circumscribed, we might justly infer that, as relates to their intelleetual powers, Fishes hold a position equally debased and degraded. Destitute of the means of social intercourse, deprived of all sympathy even with individuals of their own species, friendless and matcless, the fish is denied even the privileges of sexual attachment; the female for the most part ejects her countless eggs into the sea, as heedless of the male that blindly fecundates them as she is careless of the progeny to which they give birth. Thus, to
pursuc and destroy their prey constitutes their chicf enjoyment during life, and to be devoured at last is the great cnd of their existence.
(1672.) We shall commence our account of the anatomy of Fisurs by an examination of the internal skcleton whieh forms the framework of their bodics. The reader has already seen, in the Cephalopoda, the first appearanee of an osseous system in the cartilaginous picees described in the last chapter, and will necessarily expeet that, between the rudimental condition which eharacterizes the cephalic ring of the Cuttlefish, and the complcte and perfcet skeleton of the Fish, various gradations of development will occur as wc advance progressively from lower to more elevated forms of the finny racc. Nor in this will he be deccived. The lowest tribes of Fishes possess a skeleton but little supcrior in its organization to that of the Cephalopod: in the Myxine and Lamprey the cranium is still eartilaginous; and even the spinal column, not yet divided into vertcbræ, rescmbles a cartilaginous cord extending from the head to the tail. Even in the Sturgeon, the Skate, and the Sharle the skcleton is but very partially ossified; and thus we are gradually and almost imperceptibly conducted to the strong and bony framework of the typical Fishes.
(1673.) But the most curious instanec of gradation betwcen the true Fishes and the Mollusca is met with in the Amphioxus. The Amphioxus is met with in all the Europcan seas, but is morc especially abundant in the Mediterranean. Its usual residence is upon banks of sand, where it finds both shelter and abundance of nourishment. Tike the Ascidians, it seems to fced entircly upon infusorial organisms, eithor animal or vegctable, which abound in the localities that it frequents, and whieh it swallows, just as the Ascidians do, by the instrumentality of the vibratile cilia with which its mouth and branchial chamber arc richly provided. Such is the activity of its movements, that, when dug up from its hidingplaee in the sand, if left loose for a single instant, it buries itself again with astonishing rapidity, and thus almost instantancously eludes the grasp of those who attempt its eapture. Although deeidedly a member of the vertebrate scries of animals, the Amphioxus can hardly be said to possess a skelcton, so soft is the condition of those tissues which, from their arrangement, evidently represent this structure; still it is not difficult to point out the arches of the lower jaw (fig. 457, a) and of the branchial apparatus (d), as well as the structure and position of the spinal column.
(1674.) Onc of the most interesting features in the anatomy of the Amphiowus is, that the canal which encloses the medulla spinalis presents anteriorly no cranial expansion, but the dorsal cord representing the spinc extends quite from one cxtremity of the body to the other, projecting both behind and before considcrably beyond the lateral museles of the body, and extending anteriorly considerably further formard than the oral apparatus (a), or the anterior termination of the spinal cord.
(1675.) The mouth (fig. 457) is surrounded by a cartilaginous ring,
composed of several piocos, each of which gives off a prolongation to support the eirri that surromed the oral orifice. The bucoal carity is lined with mucous mombrane, and is densely ciliated -tho ciliary action forcing continuous ourrents of wator towards tho brauchial ehamber (d), or the branchial canal, as it is oalled by Miiller, which, being continuod baokwards, terminatos in the commencoment of the alimentary canal (e).
(1676.) The branchial chamber is supported by a very singular sort of framework, first desoribod by Rotzius aud Goodsir, and subsequently moro in dotail by Professor Müllor. It consists of a considerablo uumber (variablo according to the ago of tho auimal) of thin rib-like processes, which are united together superiorly, but quite free below, so that they constitute a serics of semieircular archos, united together by transverse cartilaginous bands, so as to roof-over the branchial vault. This solid framework is lined intornally with a kind of mucous mombrane, which, howevor, is not continuous from rib to rib, and consequently does not fill up the intercostal spaces, but loavos a fissure betwoen cach pair of the cartilaginous arches, so that in adult specimens there are as many as a hundrod of theso branchial fissures, or more; novertheless, as the whole branehial chamber, as woll as the margins of these fissuros, which are oxtremely narrow, are closely sot with vibratile cilia, it is very difficult to perccive their oxistenco, which, indeed, was doniod both by Rathke and Goodsir.
(1677.) On placing a living Amphioxus in wator colourod with indigo, and observing it with a microscope, it is apparont that the colonred particles that ontor the branchial chamber aro drivon by the ciliary action, partly towards tho alimontary canal, and ontor the intostine, while anothor part traverse the branchial

Amphionvs: a, mouth; d, branchirl chamber ; c, commencement of alimentary canal ; c, abdominal pore; f, exeal appendage to the intestinc; $l l$ arterial heart; 1 , venn eara; m, bulbs of branchial arteries; k, duetus arteriosus; o, heart of the vena portre; n, heart of the vena enva; g, intestine: b, annl oriflee. fissures, and thus enter the abdominal cavity, whore there is no longer
any ciliary movoment, but the water which flows into it unceasingly through the brauchial apparatus forms a continuous current, which finds an exit through tho abdominal pore (c), the margins of which exhibits ceaseless movemeuts of contraction and dilatation. Behind tho abdominal pore, the cavity of the abdomen is impermeable to water, and closely embraces the terminal portiou of the intestinc.
(1678.) Tho cavity in which the branchial apparatus above described is lodged contains likewise the greater portion of the alimentary tube, as well as tho liver, the generative apparatus, and the kidneys; so that, in fact, it performs the functions both of a respiratory and abdominal cavity.
(1679.) The digestivo system of this singularly organized being presents, in many respects, a very degraded type of structure. The branchial chamber above described terminates posteriorly in a short and narrow canal, which is the œesophagus. This opens into a wider intestine, which is always easily distinguishable, owing to the green colour of its parietes. A little beyond the termination of the œsophagus, there is appended to the intestine a long cæcum (f), almost as capacious as the intestino itself, which is supposed by some to represent the liver, here reduced to its simplest possible condition. Miiller, however, adds that the whole of tho intestinal walls, which are lined with a greenish glandular structure, may be regarded as performing the functions of an hepatic organ.
(1680.) The whole track of the intestinal tubo, as well as the (socalled) hepatic viscus, is covered internally with vibratile cilia. The ciliary action, however, is more especially conspicuous in that part of the intestine which lies beyond the green-coloured portion ; and it is here that excrementitious matter begins to be formed, which may be observed turning round and round with velocity in consequence of the surrounding ciliary movement.
(1681.) At the posterior part of the respiratory chamber, and close to the abdominal pore, the microscope displays some small detached glandular bodies, which Müller thinks may be the kidncys; he, however, remarks that he could never discover them by dissection.
(1682.) The ovaria consist of lax cellular tissue, surrounded with a delicate but strong membrane, which is closed on all sides. They are adherent by one side to tho walls of tho abdominal or, rather, thoracoventral cavity; elsewhere they are covercd by the peritoneum. Costa, who first recognized theso organs, observed that in the males the testes occupied tho same situation as the ovaria in the femalcs. There are neither oviducts nor vasa deferentia; so that the products of the generative organs must necossarily pass through the abdominal carity and escape through tho abdominal pore, as is tho case among the cyelostomous cartilaginous fishes.
(1683.) The description given by Minller of the circulation of the
blood in the Amphioxus is oxtremely interesting. The circulatory apparatus, while presenting a considerablo resemblance to tho normal arrangement met with in other fishes, exhibits an equally strong analogy to that of some of tho Annclida in its division and distribution.
(16St.) Mïllor enumerates*, as belonging to tho circulatory apparatus of Amphiowus, tho following parts:-1. the artcrial heart (clas Arterienkeri) ; 2. the bulbs of tho branchial arteries (die Bulbillen der Kiemenarterien) ; 3. the aortic arch, which discharges the functions of a systemic heart (der herzartige Aortenbogen); 4. the heart of the vena portre (das Pfortaderherz); 5. the heart of the vena cava (das Hohlevenenherz), -the duties assignable to each being as follows:-The arterial heart (fig. $457, l l$) is a thick vessel of uniform calibro throughout, situated in the median line, and running immediately beneath the branchial chamber, between the arches forming the framework of that carity; postcriorly this vessel is continuous with the heart of the vena cava (n). Before the moment of contraction, the arterial heart is seen to be filled with perfectly colourless blood; but when fully contracted, it is completely emptied (the interval between its contractions is about a minute). From its sides are given off the bulls of the branchicl arteries (fig. $457, \mathrm{~m} \mathrm{~m}$), which arc little contractile cavities situated at the commencement of each branchial vessel, forming so many little hearts accessory to the preceding. Their number varies with that of the branchial arches, from five-and-twenty to fifty on each side, their office obviously being to distribute unrespired blood through the branchial apparatus. No branchial veins can be distinguished in the living animal ; but by carefully detaching the branchial chamber and laying it on a strip of glass, it becomes apparent that the aorta, situated upon the dorsal aspect of the respiratory cavity, receives the veins supplied from each branchial arch.
(1685.) Aortic arch performing the functions of a heart.-The blood of the Amphioxus is not, as in fishes, ontirely supplied to the aorta through the medium of the branchir, but is partly conveyed immodiately into that vessel through two large trunks, the representatives of the cluctus arteriosus (fig. $457, \%$), which directly unite the median arterial heart with the aorta, and are, to a cortain extent, continuations of the heart itsclf. They arc, however, themselves contractile organs, and are actively employed in the propulsion of the blood, as is the aorta itself (fig. $457, i$), which, doubtluss, performs the functions of a heart.
(1686.) The heart of the vena portce (fig. 457, o) is a long vessel, which runs along the under surface of the intestine as far as the hepatic excum; its contractions are readily obscrvable in the living animal, the intervals between each being exactly the same as in the other hearts above mentioned.

[^200](1687.) The heart of the vena cava (fig. $457, n$) is placed opposite to the preceding-that is to say, on the dorsal aspect of the hepatic coccum; it is at first of small size, but, gradually becoming larger, ultimately emptics itself into the arterial heart (7), which it supplies with blood.
(1688.) The contractions of the vessels, or hearts, above described succeed each other in such a manner that each in turn becomes gradually filled, while others contract. The systole of the arterial heart does not commence before the act of contraction has been completed in all the rest of the system. Moreover each trunk contraets in succession with so much energy that it seems to empty itself eutirely, and remains for some little time undistinguishable, from whieh cireumstance it necessarily results that any given portion of the blood will liave passed through the entire round of the circulation in the time which elapses between the consecntive contractions of the same portion of the vascular system - a space of time which observation shows to be in Branchiostoma about a minute.
(1689.) But, perhaps, the most remarkable feature in the anatomy of this singularly organized being is the apparently complete absence of a brain. The medulla spinalis, slightly thickened towards the eentral part of the body, tapers off posteriorly as it approaches the tail, where it terminates in a point ; and towards the anterior port of the body, as appeared to MM. Rathke* and Goodsir \dagger, a similar disposition was observable: hence they conceived that the central axis of the nervous system in this fish was reduced entirely to the parts representing the spinal cord in other Vertebrata. Subsequent researches, howerer, have shown that this is not strictly the case, but that, although there is no cerebral enlargement corresponding to the encephalon of ordinary fishes, the anterior extremity, inasmuch as there exist distinct olfactory \ddagger and optic organs, must be regarded as essentially encephalic in its nature.
(1690.) In tracing the modifications observable in the construction of the vertebral column of fishes, we have a beautifulillustration of the progressive advances of ossification in this the central portion of the osseous system. The spine of the Lamprey, although at first sight apparently entirely soft and cartilaginous, presents already, in the arehes which compose the spinal canal, and in the soft cord that represents the bodies of the vertebræ, slight indications of an incipient division into distiuct pieces : rings of ossific matter are distinguishable, encircling at intervals the soft spinal cartilage, mpon which they perceptibly encroaeh; so that, on making a longitudinal section of the cord, it offers the appearance sketched in the adjoining figure (fig. 458,1). In a more advanced form of a fish's skeleton, as for example in the Sturgeon, these

[^201]ossified rings are found to havo enlarged considerably, and penetrate still more deeply into the cartilaginous mass (fig. 458, 1). As the bony rings thus developed approximate the centre, it becomes more and more crident that they represent the bodies of so many vertebrex ; but even in the majority of fishes the central part remains permanently unossificd, so that a cartilaginous axis traverses the vertebral column from onc end to the other (fig. 458, c) : and it is not unusual to find the central aperture perfectly obliterated, as delineatcd in the fourth sketch (D).
(1691.) Fishes, being continually resident in an clemont nearly of the same specific gravity as their own bodies, require little firmness or so-

Fig. 458.
A.

B

C

D

Development of rertebral column. lidity in the construction of their spinal column : a free and unfettered power of flexion in certain directions, so as to permit an ample sweep of their expanded tail, which forms the principal agent in propelling them forwards, is far more cssential to their habits. Thus the cartilaginous spine of the feeble Lamprey is sufficient for all needful purposes ; and even in the most perfectly ossified fishes, from the manner in which the vertebræ are united to each other, the greatest possible flexibility is cnsured. The body of cach vertebra presents two conical cups, the apices of which are nearly or quite continuous; the margin of each cup-like depression is united by elastic ligament to the corresponding margin of the contiguons vertebra, and thus between the bodies of each pair of vertebræ a wide cavity is formed (fig. 458, D), which is filled up with a semigelatinous substance ; so that, by this beautiful contrivance, tho mobility of the whole chain is abundantly provided for.
(1692.) There are only two kinds of vertebre recognizable in the skeleton of a Fish, viz. the abdominal and the caudal. The abdominal vertebræ support the ribs (for in these animals the ribs do not constitute a thorax, or contain any of the viscera called thoracic in the human body) ; they extend from the head to the commencement of the tail, and are at once recognizoble by the naturo of the elements which enter into their composition, each vertebra being provided with a superior arch (fig. 454, b), through whieh passes the spinal cord, a superior spinous process (c), and two transverse processes (d), to the extremities of which the ribs are generally attached. Tho caudal vertebre are composed, as we have already scen, of different clements: the transverso processes either do not exist, or are very fecbly doveloped; but beneath the body
an inferior arch is formed, and from this an inferior spinous process, equalling the suporior in length, is prolonged in the opposite direction (fig. 459, b).
(1693.) As the vertebre approach the tail, they become somewhat modified in structure to support the eaudal fin: their spines become shorter and thiekor, the canals formed by their superior and inferior arches smaller or ncarly obliterated, and at length the spines become, as it were, soldered to each other and to the interspinous bonos hereafter to be notiecd ; so that they form a broad vertical plate, to the posterior margin of which the rays of the tail-fin aro articulated (fig. 459, 70).
(1694.) The ribs of Fishes are slender bones, appended either to the extremities of each transverse process of the abdominal vertebre, or else to tho body of the vertebra itself ; every rib is connceted with but one vertebra, and that only at a single point. They do not, as wo have already said, form a thoraeic cavity, but enelose the abdomen, and are imbedded among the lateral muscles of the trunk, to whieh they give support. From each rib arises a long styliform process (73), which, inclining backwards, is likewise plunged among the muscular faseieuli; and in some fishes, such as the Herring and Carp tribes, similar appendages are derived from the bodies of the vertebre themselves, so that the bones of sueh fishes appear to be extraordinarily numerous. On the other hand, many tribes have but the rudiments of ribs; and in some, as, for example, in the Skate, they are altogether wanting.
(1695.) No sternum, properly so ealled, exists in Fishes; but the extremities of the ribs are sometimes eonnceted with ossified plates belonging to the tegumentary system, which eover the abdomen, and whieh by some authors have beon regarded as a sternal apparatus.
(1696.) We have now to request the attention of the reader to eertain supplementary orgaus whieh are peculiar to the class before us. These consist in sundry appendages to both the superior and inferior spinous processes of the vertebre, which arc generally prolonged into fins situated along the mesial line of the body. Those single fins, whieh must by no means be confounded with the pairs of fins that represeut the arms and legs, are very variable in their position, and in many cases are altogether wanting. When fully devcloped, one of thom is situated along the mesial line of the back ; and in the Perch (fig. 459) this dorsal $f i n$ is separated into two distinet portions (75). Another, denominated the caudal fin, forms the tail; and a third, likewise situated in the median line, at a short distanee bohind the anal orifice, is ealled the anal fin from that eircumstanee.
(1697.) These fins present two sets of bones-the interspinous bones, which form the basis to which they are affixed, and the fin-rays.
(1698.) The interspinous bones (fig. 459, 7i) form a series of strong dagger-like bones, deeply implanted in the flesh along the mesial line of the body, between the two great masses of lateral muscles: their
points generally penetrate to a little distanee between the spinous pro-

Skeleton of the Perch (Perca Auviutilis). (After Cuvier.):
cesses of the vertebre, to which they are connected by a liganentous
attachment ; whilst to their opposite extremity, which may be compared to the hilt of the dagger, the corresponding fin-rays are affixed by a beautiful articulation. There is generally only one interspinous boue affixed to a vertebral spinous process; but in the Flat-fishes (Pleuronectidee) there are two ; and morcover, in that remarkable fumily, the inferior spinous process of the first caudal vertebra (which, as we have already seen, is of enormous size) frequently has not fower than six or scven interspinous bones appended to its extremity.
(1699.) Each interspinous bono consists of two picces, united by a suture,- one portion representing the blade, the other the handle of the dagger to which we have compared it.
(1700.) The fin-rays of Fishes are of two kinds, being either solid, and apparently composed of one strong piece, like those which support the anterior half of the dorsal fin of the Perch (75), in which case they are called spinous rays, or else they are composed of several slender stems derived from one common root, every one of which is made up of numerous pieces: these, which bear the name of soft rays, are found in the posterior portions both of the dorsal and anal fin of the Perch, and aro invariably met with in the tail of all fishes possessed of a caudal fin. This difference in the structure of the fin-rays, trivial as it might appear, is a circumstance to which much importance is attached br ichthyologists, who hence derive the means of separating osscous fishes into two great groups-the Acanthopterygii, or such as possess spinous rays in the composition of their dorsal fin, and the Malacopterygii, in which all the fin-rays are soft. Every fin-ray, whether spinous or soft, is in reality made up of two lateral halves placed side by side: in the soft rays these are easily scparable; but in the spinous rays they aro firmly united along the median line, so as to represent but one bonc.
(1701.) The articulation between every fin-ray and the corresponding: interspinous bone forms a hinge-joint, so as to allow of the elevation or depression of the fin. The structure of this joint is very beautiful: the two lateral halves of the ray separate, so as to form two branches, which firmly embrace the sides of the head of the interspinous bone, and terminate in little prominent tubercles which are received into corresponding lateral depressions in the bone to which the ray is attached. Sometimes, indeed, the head of the interspinous bone is completely perforated; and then the two branches of the fin-ray passing through the opening become firmly united with each other, forming a kind of joint which is peculiar to Fishes, and exactly resembles the mode of union between two links of a chain. This structure is beantifully exhibited in the articulation of the elongated rays attached to the head of Lophius piscatorius*.
(1702.) The composition of the skull of Fishes is one of the most difficult studies connected with their history; nerertheless it is a sub-

[^202]ject of very considerable importance, and has recently oceupicd the attention of the most celebrated Continental anatomists. It is not by any meaus our intention to engage our readers in discussing all the conflicting, and sometimes visionary, opinions entertained by different. authors relative to the exact homology of the individual boncs forming this part of the skeleton; and we shall therefore content ourselves with placing before them, divested as far as possible of superfluous argumentation, Cuvier's * masterly analysis of the labours of the principal inquirers conceruing this intricate picce of anatomy, taking the Perch as a standard of comparison \dagger.
(1703.) The head of a Fish may be conveniently divided, for the purpose of description, into several distinct regions, each of which will require separate notice.
(1704.) The cranium, which forms the central portion of the skull, contains the brain and auditory apparatus, and constitutes the basis whereunto the other parts are connected. It is remarkable for the number of distinct pieces of which it consists, inasmuch as in Fishes the elements, or ossific centres, of which the cranial bones of higher animals are composed remain here permanently separated, overlapping each other, so as to form squamous sutures, but never becoming fused together, as the elements of tho human skull invariably do at a very early period.
(1705.) No fewer than twenty-six bones enter into the composition of the cranium we are considering; to which, as is now generally allowed, the following names are applicable.
(1706.) The frontal bones are each divided into three portions, called respectively the principal frontal (1) \ddagger, the anterior frontal (2), and the posterior frontal (4).
(1707.) Between the antcrior frontal bones is the ethmoid, a simple vertical lamella, which is often mercly a cartilaginous plate.
(1708.) The middle of the base of the cranium is made up of two bones:-the basitar (fig. 460,5), a portion of the occipital, forming the body of the occipital vertebra; and the body of the sphenoid (6), a distinct bonc, which is prolonged anteriorly into a lengthened process, which serves as the base of the membranous septum between the orbits.
(1709.) The parictal bones (7) are placed behind the postcrior frontal; but they do not generally touch each other, being separated by an interposed bone called the interparietal (8).
(1710.) The occipital bone is made up of five portions-namcly, two

* Cuvicr of Valenciennes, Histoiro des Poissons, vol, i. 4to.
+ Those who would enter more fully into the discussions relative to tho essential composition of the skull are referred to the works of Geoffroy St.-Hilairc, Spix, Rosenthal, Meekel, Bakker, Bojanus, Oken, Owen, and Huxley, the great disputants upon this subject.
\ddagger In order to simplify the subject as much as possiblo and provent unneecssary repetition, the reader will observe that, throughout all the figures connceted with the osteology of the Vertebrata, corresponding bones are indicated by the same aumbers.
external occipitals (9), two lateral occipitals (10), and the basilar bone (5), already noticed, by which the head is articulated with the first vertebra of the spine.
(1711.) Two detached bones, which represent the great or temporal alee of the sphenoid, fill up the space between the body of the sphenoid and the posterior frontal.
(1712.) Two other pairs of bones, which are elements of the temporal bone in Man, likewise assist in forming the cranium : these are called the mastoid bones (12) and the petrous bones (13).
(1713.) A single bone, analogous to the anterior portion of the body of the human sphenoid, and which, as will be fully evident hereafter, is essentially distinet from the posterior portion, bears the name of the anterior sphenoid, while the orbital alce of the sphenoil are found in the two bones marked 14.
(1714.) These, therefore, together with the representative of the vomer (16), complete the cranial portion of the skull; no fewer than six azygos and tweuty pairs of bones entering into its composition.
(1715.) Bones composing the upper jav.-The upper jaw consists Fig. 460.

Cranial and faeial bones of the Perch: basilar view. (After Cuvier.)
of two pairs of bones, which, from the looseness of their connexion with the other bones of the face, are endowed with considerable mobility.
(1716.) The intermaxillary bones (17) form the greater part of the margin of the jaw, and are attached by a moveable articulation to the anterior extremity of the romer. These bones aro armed with numerous sharp teeth.
(1717.) The maxillary bones (18) are moveably articilated with the
last, and generally are in like manner furnished with tecth. In some cases they are divided into two or three pieees.
(1718.) Bones of the fuce. -The bones of tho face in Fishes are very numerous; but, as they are of little importanee to the osteologist, a bare enumeration of them will answer our present purpose, and enable the student to recognize them with facility. We have first the nasal bones (20) ; then a chain of bones of variable size and number (19), so disposed as to form the lower boundary of the orbit, and henee named suborbital bones. Behind these, again, a similar chain of ossieles is not unfrequently met with, arching over the temporal fossa; and these, which are apparently peeuliar to Fishes, are named the supratemporal (21).
(1719.) Pterygo-palatine and temporal system of bones.-Upon eaeh side of the head is situated a somewhat eomplex apparatus, connceted on the one hand with the articulation of the lower jaw, and on the other with the opereula, or gill-covers. These bones are seven in number on each side.
(1720.) The palatines (22) are easily recognizable, forming part of the roof of the mouth, and generally armed with teeth.
(1721.) Two bones are conneeted with the posterior edge of each palate bone: one, situated externally, becomes, in Reptiles, a very important element ; it is called the transverse bone (24); the sccond (25) is named the internal pterygoid.
(1722.) The other pieees belonging to this part of the skeleton are not a little interesting on aeeount of their remarkable arrangement; and perhaps tho anatomieal student will be somewhat startled at the position which some of them occupy. In the first plaee, the squamous portions of the temporal, instead of entering into the formation of the cranium, are here slightly displaced, and, although still called the temporal bones (23), are artieulated by a hinge-joint with the posterior frontal and mastoid bones, and thus form a moveable basis to which the opereular apparatus is attaehed.
(1723.) Conneeted with the temporal we have the broad and flat piece, 27 , whieh is the tympanic bone ; and to these the pieces forming the opereula are appended.
(1724.) Lastly, supporting the lower jaw we find the jugal bones; and connecting these with the rest of the temporal apparatus are two small ossieles (31), which complete this portion of the skeleton.
(1725.) The seven bones above enumerated are almost immoveably eonneeted with each other by the interposition of eartilage between their edges-a mode of artieulation distinguished by the name of synchondrosis; but the whole apparatus moves readily upon two hinges, one formed by the artieulation of the palate bone with the maxillary and vomer, and the other by the joint which unites the temporal bone to the posterior frontal. This movement, by opening the gill-covers, enlarges the eavity of the mouth when the fish wishes to take in the
wator nocessary for respiration, or else, by acting in a contrary direction, again expels it.
(1726.) Opercular bones.-Tho great flap which in osscous fishes closes the gill-openings externally, is composed of four pieces, to which the following names have been given. The proooperculum (30) is attached to the posterior edge or angle of the palato-temporal apparatus last described; and its borders often present spines and indentations, which, being visible externally, are of much importance to the ichthyologist, as they afford a good character of distinction betweon allied genera. The second piece (28), which from its size is called par excellence the operculum, together with the suboperculum (32) and the interoperculum (33), form a flap which covers the gill-opening liko a great valve, opening and shutting continually to give exit to the water used in respiration.
(1727.) Lower jaw.-The lower jaw of Fishes consists of two lateral halves united by a symphysis in the mesial line, each branch being articulated with the jugal bone of its corresponding side. Each division is separable by maceration into four or even five pieces, viz. :- the dental. (34), which supports the teeth; the articular (35), bearing the articulating facet; the angular (36), forming the angle of the jaw; and a fourth, placed upon the inner surface of the articular, ealled the opercular, because it corresponds to a bone met with in the lower jaw of reptiles, to which the same name has been applied. The fifth, when present, is very small and unimportant.
(1728.) Os hyoides and branchiostegous rays. -The os hyoides of a fish is situater as in other vertebrate animals ; it is composed of two branches, each made up of several pieces (fig. 461, 37, 38, 39, 40), and is always suspended from the temporal by means of two small ossicles (59), which, as they represent the styloid process of Man, are called the styloid bones.
(1729.) Between the two branches of the os hyoides is placed a single central piece (42), which becomes of great importance in Reptiles and Birds; and upon this is the bone which supports the tongue, or the lingual bone (41).
(1730.) The great fissure that exists on each side between the head and shoulder of an osscous fish, wherein the gills are situated, is not closed merely by the opercular bones, but likewise by a broad membranous expansion called the branchiostegous membrane, which is adherent to the os hyoides, and assists in forming the great valre of the operculum. This membrane is supported by a series of slender bones derived from the external margin of each branch of the os hyoides: and these are named, from their office, the branchiostegous rays (43).
(1731.) Branchical apparatus.-Fishes breatho by taking water into their mouths, and forcing it out again through tho apertures situated upon each side of the neek; it is thus made to pass between their gills, which form a scries of pectiniform vascular fringes supported upon a
system of bones ealled the branchicel rathes. The branchial arches, which are generally four in number on each side, are attached by one extremity to an intermediate chain of bones $(53,54,55)$ situated in the mesial line behind the os hyoides, whilst by their opposite extremity they are connected by ligaments to the under surface of the eranium.
(1732.) Every branchial arch consists of several pieces (57, 58, 59, 60, ${ }^{61)}$, so joined together by ligaments that the whole is perfectly flexible; and their edges are studded with little osseous plates, generally armed

$$
\text { Fig. } 461 .
$$

Os hyoides and branchial bones of the Perch. (After Cuvier.)
with teeth, and so disposed as to prevent food taken into the mouth from being foreed out through the branchial fissures with the issuing streams of water ; so that, in reality, these pieces fulfil in their way the same office as the epiglottis of Mammalia.
(1773.) Pharyngeal bones.-The last parts found to enter into the composition of this portion of a fish's skeleton are called, from their position, the phargngeal bones. They are placed immediately behind the branchial apparatus, and form a sccond set of mastieatory organs, generally even more efficient than the jaws themselves, being for the most part provided with very strong teeth.
(1734.) In the Perch there are eight of these bones, situated just at the entrance to the oesophagus,-iwo inferior (56), and six abore (62):
their offiee and efficiency as organs of mastication must be obvious to the most superficial observer.
(1735.) Upon reviewing the general disposition of the skeleton in one of the osscous fishos, it is at once apparent that the great instrument of locomotion is the tail, which by extensive and vigorous lateral movements sculls the body rapidly along through the yielding element in which these creatures live. In the construction of the caudal extremity of the skeleton, every preeaution has evidently been taken to eonvert this part of the body into a broad and expanded oar, possessed of the utmost possible flexibility in the lateral direction. No pelvis, therefore, trammels the movements of the spine, neither do any transverse proeesses limit the extent of flexion from side to side; while, on the contrary, the extraordinary development of the spinous processes, both above and below, and more especially the vertical eaudal fin, give an extent of surfaee proportionate to the wants of the animal.
(1736.) The dorsal and anal fins, situated upon the mesial plane, steady, and perhaps, in some measure, direet the movements of the body; while the arms and legs, or, rather, the pectoral and ventral fins, which are in this ease of seeondary importance as loeomotive instruments, exhibit a very rudimentary eondition, and are but feeble agents in progression.
(1737.) The posterior extremities, or ventral fins, are even less effieient than the peetoral in this respect; and their position is found to vary remarkably in different orders. In the Pereh these organs are, as we have seen, attaehed to the bony framework of the shoulders; in the Carp tribe (Cyprinidx) they are removed far baek towards the eommeneement of the tail, and the bones supporting them are merely imbedded in the muscles of the abdomen; in the Cod (Gadidæ) the legs are absolutely in front of the arms, being suspended under the throat ; and in the Anguilliform fishes, the Eel for instanee, the ventral extremities are altogether wanting.
(1738.) Sueh being the imperfeet development of the usual loeomotive organs, we are quite prepared to expeet a corresponding modifieation in the disposition and efficieney of different parts of the muscular system. When we eompare the museles of a fish with those of any of the higher Vertebrata, the contrast is indeed very striking.
(1739.) Delicate museles (fig. 462) are provided for the ereetion or depression of the diffcrent rays sustaining the dorsal and ventral fins, and thus the fins themselves are expanded or folded up at pleasure. Similar fasciculi spread out or approximate the rays of the tail, increasing or contracting at will the cxtent of surfaee presented by that organ. The muscles of the peetoral and ventral limbs are small in proportion to the fcebleness of these extremities; the muscles of the trunk alone constitute the great bulk of the body, and form the efficient agents in progression.
(1140 .) These great lateral masses commence at the back of the head, where they take an extensive attachment to the largely developed cranium : from this point backwards they fill up the entire space interrening between the skin and the vertebral column, with both of which

Fig. 462.

Myology of the Perch. (After Cuvier.)
they are intimately connected, reaching even to the origin of the tail fin. The whole force of thesc powerful muscles is evidently excrted in bending the spine from side to side, and in effecting those vigorous lateral movements of the tail whereby the fish is propelled through its liquid element. We need, therefore, feel little surprise at the strength with which this part of the body of fishes is not unfrequently endowed, or at the velocity of their movement-at seeing how easily their speed outstrips our fleetest ships-how the Flying Fish (Exoccetus), urged on by fear, darts like an arrow to a distance through the air-or how the Salmon, in obedience to an imperious instinct, defies even the thundering cataract to stop its course towards the locality where it is instructed by Nature to deposit its eggs.
(1741.) There are sundry tribes of Fishes which, being destined to remain at the bottom of the sea, present certain peculiarities of structure, whereby they are not only distinguished from all others of the class, but form most remarkable exceptions to the general law in accordance with which the Vertebrata are organized.
(1742.) The animals presenting this anomalous configuration are the Pleuronecticce*, or Flat-fishes, as they are generally termed, which when at rest lie quietly upon the ground, where, from the colour of the upper part of their bodies, they are scarcely distinguishable. To an ordinary observer the Pleuroncetidæ would seem to have their bodies flattened and spread out horizontally, so that, while resting upon their broad and

[^203]expanded bollies, their eyes, situated upon the back of the head, are thus disposed for the purpose of watching what passes in the water above them ; and this, the vulgarly-received opinion, is considerably strongthened by the faet that what is usually called the belly is white and colourless, while the back is darkly eoloured and sometimes even

richly variegated, so as to harmonize with the prevailing tints of the sea-bottom. Hence the appearance of these fishes is deceptive, and few imagino that, in applying the term back and belly to the upper and under surfaces of a Plaice or a Turbot, they are adopting a phrascology quito inadmissible in an anatomical point of view.
(1743.) On examining the skelcton of a Flat-fish, we at once see
that what we suppose to be the dorsal and ventral regions are in reality the two sides, which are thus strangely different in colour, and that the great peculiarity of their structure is the want of symmetry between the lateral halves of tho body, arising from the anomalous circumstanco that both the eyes are placed upon the same side of tho head. Their cranium, indeed, is composed of the samo bones as that of an ordinary fish; but the two lateral halves are not equally doveloped, and the result is such a distortion of the whole framework of the face that both the orbits aro transferred to the samo side of the mesial line of the back.
(1744.) Tho position of the pectoral and ventral fins slightly participates in this waut of symmetry; but in other respects the skeleton (fig. 463) precisely corresponds with that of the generality of osseous fishes. The superior and inferior spinous processes of the vertebre are amazingly developed, and the interspinous bones (74) of inordinate length ; so that the vertical diameter of the body is disproportionately increased, and the animal is obliged to swim and rest upon one side. The dorsal fin (75) runs along the whole length of the back; the anal fin (a) reaches from the large spines that form the posterior boundary of the abdomen to the tail, which latter holds the same position as in other tribes: so that the reader will have little difficulty in comparing the different pieces of the skeleton of the Flounder (Pleuronectes flesus) with the corresponding bones of the Perch already described.
(1745.) The skeletons of the cartilaginous fishes (Chondropterygii *) will require a distinct notice, inasmuch as they present very remarkable peculiarities of no inconsiderable interest. In the Sharks, Skates, and other genera belonging to this important division of the great class we are now considering, the interior of the bones remains permanently cartilaginous ; but the skeleton is in some regions incrusted, as it were, with osseous granules. No centres of ossification from which radiating fibres of bony matter progressively extend themselves, as is the case in the osseous fishes, are cver dereloped; and consequently the skull, although it presents externally the same regions, eminences, and apertures that are usually met with, is never divided into separate bones, but is formed of a single mass of eartilage, in which no sutures or lines of division are ever distinguishable.
(1746.) The face is likewise much more simple in its structure; for, instead of the numerous picces composing the palato-temporal region of the Perch (§ 1719), two bones only are met with, one of which, the palatine, performs the office of an upper jaw and supports the teeth, while the other connects the lower jaw with the cranium. The lower jaw itself, moreover, consists of but one pieee on each side, to which the teeth are attached.
(1747.) From the peculiar conformation of the respiratory apparatus, which will be explained horeafter, there is no oceasion for any oper-

[^204]cular thap ; this, therefore, is not present: nevertheless the hyoid and branchial arches resemble pretty much those of osseous fishes; only the

Fig. 464.
Cartilaginous skeleton of the Skate.

latter are situated further backwards, being placed quitc behind the skull, under the commencement of the spine.
(1748.) The bones of the shoulder are represented by a strong eartilaginous zone, which in Sharks is quite unconnected with tho vertebral column ; but in the Skate (Raiu) it is fixed to two large latcral apophyses derived from the spine (fig. 464). The zone representing the seapulary apparatus consists of a
single piece, which surrounds the body, and on each side supports the bones of the forearm. The enormously developed pectoral fin is composed of the carpus, amazingly augmented in size, and of the no less remarkable hand, which in the Sliate is made up of an immense number of fingers or rays, and forms by itself nearly half the eircumference of the body.
(1749.) The pelvis, or cartilaginous fromework that supports
the hinder extremitics, i. e. the ventral fins, is a single trausverse piece of cartilage quite detached from tho rest of the skeleton ; it expands on each side into a broad plate, to which tho fin, the representative of the foot of higher animals, is appended; and likewiso in the male it gives attachment to additional organs called claspers, the use of which will be explained in another place.
(1750.) The anterior portion of the spine in the Skate is not as yct divided into distinct pieees; and even in the posterior part, the number of vertebral arches is twice as great as that of the separate bodics of the vertcbræ.
(1751.) In all the Chondropterygii the ribs are mere rudiments, and in some cases ean scarcely be said to exist at all.
(1752.) The Sturgeons (Sturionidce) form a kind of connceting link between the osscous and cartilaginous fishes; and in them a large swimming-bladder cxists, from which is obtained the valuable material called isinglass: but in the Sharks and Rays this organ is not found; consequently, especially in the tribe last mentioned, it is only by means of the vigorous flappings of their enormous hands that these groundfishes are able to raise themselves from the bottom. The disposition and relative importance of diffcrent parts of the museular system is therefore necessarily ehanged to mcet these altered circumstances : the muscles of the trunk, which in osseous fishes formed the great agents in locomotion, become now of seeondary importance; while those of the pectoral fins, so feebly developed in the Pereh, are massive and powerful in proportion to the unwicldy size of the anterior extremities. Another peeuliarity in the skeleton of the Chondropterygii is observable in the construetion of the caudal fin, which, even in the Sturgeon and the Shark, notwithstanding the importance whieh this organ still maintains in those gencra as an instrument of locomotion, begins to differ very remarkably from the tail of an osscous fish. It is true that it still exhibits great expansion in a vertical direction, and to a superficial observer, if examined without dissection, might seem to be constructed on the same principles; but on examining a skeleton of one of these cartilaginous fishes, it will be found that the vertebral column is continued uninterruptedly into the upper half of the generally furcate tail, whilst the lower division of the caudal fin is entirely made up of supplementary rays, appended to the inferior aspeet of the caudal vertebræ. Possessing this form of the tail, the transition is by no means abrupt from these highly organized fishes to the Saurian reptiles, with which, as wo shall afterwards see, they exhibit many remarkable affinities.
(1753.) If in the highest Heterogangliata we found that, in addition to the tegumentary skcleton, or shelly covering, so extensively met with among the Mollusca, the first appearanees of an internal osseous systcm became recognizable, we are not on that account to imagine that, as soon as bones become developed internally, the cuticular secretions
hitherto donominatod shell at once disappear, but, on the contrary, must be prepared to expect that, in some form or other, calcarcous urmour depositod by the skin will still be met with. In Fishes the coexistence of an internal and of an external skelcton is undeniable; and having already described the former, which has been aptly enougin called tho endoslicteton, it remains for us in the next place to examine the latter or exosketeton, whieh, as we shall soon perceive, forms no unimportant part of the anatomy of the class under consideration.
(1754.) The most usual form of the cuticular covering of Fishes is that of imbricated scales, with which the whole exterior of the body is compactly encased, as in a suit of armour. Such an investment is admirably adapted to their habits and economy. The dense and corneous texture of the scales, impermeable to water, defends their soft bodies from maceration, while, from their smooth, polished exterior and beautiful arrangement, they ensure the least possible resistance from the surrounding medium as the fish glides along.
(1755.) Examined separately, each scale is found to be partially imbedded in a minute fold of the living and vascular cutis, to which its under surface is adherent. Every scale is, in fact, made up of superimposed laminæ of horny mattor secreted by the cutis, precisely in the same way as the shelly covering of a mollusk; and by maceration the different layers may be readily separated,-the smallest and most sujerficial being of course the first formed, while the largest and most recent are thoso nearest to the surface of the living skin: as far as relates to the mode of growth, therefore, there is the strictest analogy between tho scale of a fish and shell. Various are the forms under which these scales present themselves to the ichthyologist: sometimes, as in the Eel, they are thinly scattered over the surface of a thick and slimy cutis; more generally they form a close and compact imbricated mail; in the Pipe-fishes (Syngnathidce) the whole body is covered with a strong: armour composed of broad and thick calcareous plates; and in the Coffinfishes (Ostracionidce) the integument is converted into a strong box made up of polygonal pieces anchylosed together, so that the tail and fins alone remain moveable.
(1756.) The Sturgeon is covered with broad shield-like plates. The skin of the Shark is clensely studded with minute sharp spines of almost crystalline hardness ; and in many Skates, as in the Thormback, similar cuticular appendages, but of more considerable dimensions, are distributed over the back and tail, forming very efficient defensive weapons.
(1757.) But cutancous spines, although while in a rudimentary eoudition they aro obviously mere extraordinary developments of scalcs, may occasionally becomo of sufficient sizo and importance to make then convertible to various unexpected usos; and when thus exaggerated in their dimensions and appropriated to distinct offices, they assume so much of the eharacter of true bone that it is no longer casy to demon-
strate thoir real nature, more especially as they then become in many cases really articulated by means of very perfect joints with different pieces of the endoskeleton properly so called.
(1758.) Let us cxamine this important subjeet with a little attention, and we shall soon perceive how elosely the endoslecteton and the exoskeleton may become conneeted, not to say interchangeable, with each other. There is no possibility of mistaking the spines and tubercles upon the baek of a common Skate for any thing but cuticular appendages, seereted in the same manner as seales from the surface of a vascular pulp; but in the Fireflare (Trygon pastinaca), where, instead of the scattered hooks of the former species, we find a single sharp and serrated spine projecting like a bayonet from the upper surface of the root of the tail, the analogy between this formidable and bone-like organ and an epidermic structure becomes apparently more remote, and, did we not know that the fish possessing such a weapon had no ossified bones internally, we might be tempted to regard this appendage as a process derived from the endoslceleton.
(1759.) The spines of the common Stickleback (Gasterosters) are indubitable derivations from the cuticle; but they are fastened by moveable articulations to the sides of the body, and are raised or dcpressed by means of muscles inserted into their bases. Advancing one step further, we find in Silurus the first ray of the pectoral fins enormously developed and forming a strong serratcd weapon of a very formidable deseription, which although both in shape and strueture exactly comparable to the spine upon the tail of the Fireflare, is nevertheless connected by a most beautiful and perfect joint with the bones of the shoulder, so that it might easily be regarded as forming part of the encloskeleton, did not its peculiar structure indicate its real nature.
(1760.) We thus arrive at the important conelusion that different portions of tho exoskelcton become approximated in charaeter to those of the endoskeleton, or, in truth, really eonvertible into true bone; and with this fact before us it becomes easy to understand the nature of various parts of the skeleton of a fish, which, upon any other supposition, would be not a little puzzling to the comparative osteologist.
(1761.) The nature of the rays of the dorsal and anal fin of the Perch, for example, together with the interspinous bones upon which they are sustained, is quite unintelligible if they are regarded as belonging to the endosleleton ; and no dismemberments of the osseous system as yet imagined, or supposed subdivisions of the vertebræ into a greater number of elemental pieces than we have cnumerated, have been able to solve the difficulty ; but if they are regarded as ossified derivations from the exoskeleton, all difficulties at oneo vanish.
(1762.) Again, the opercular bones (fig. 460, 28, 30, 32, 33) forming the gill-covers of an osscous fish have been a fruitful source of discussion ;
and M. Geoffroy St.-Hilaire* was redueed to the necessity of recognizing in theso broad plates the ossicles of the human ear, which, after dwindling to a rudiment in the desecnding seale of vertebrate animals, suddenly reappeared in a new and exaggerated form. "J'ai peu ru dans la sćrio des êtres do ces résurrections d'organcs se remontrant, subitement dans uno elasse après avoir disparu dans une ou deux de celles qui la précède dans l'échelle," are the impressive words of Cuvier upon a similar occasion ; and it is certainly far more simple to imagine tho epidermic plates of the Sturgeon ossified and eonverted into bone, than to be compclled to have recourse to the bold speculations of the French anatomist regarding the real nature of these opercular portions of a fish's skeleton \dagger.
(1763.) In conncxion with the locomovive organs we must here notice onc of the most elcgant contrivances met with in the whole range of animated nature, by which the generality of fishes are enabled to ascend towards the surface, or to sink to any required depth, without exertion.
(1764.) The apparatus given for this purpose is called the swimmingbladder, and consists of a reservoir of air (fig. $465, p$) placed beneath the spine, in whieh position it is firmly bound down by the peritoneum. The outer coat of this bladder is very strong, and composed of a peculiar fibrous substance from whieh isinglass is obtained; but it is lined internally with a thin and delicate membrane. The shape of the swimmingbladder varies considerably in different tribes. In the Pereh it is a simple eylinder elosed at both extremities; sometimes it gives off branched appendages; sometimes, as in the Cyprinidæ, it is divided into two portions, one anterior and the other posterior, by a dcep celltral constrietion ; but, whatcrer its shape, its office is the samc-namely, to alter tho specifie gravity of the fish, and thus to cause it to rise or sink in the medium it inhabits. By simply compressing this bladder

* Philosophie Anatomique des Pièees osseuses des Organes respiratoires. 8ro. Paris, 1818.
\dagger The different opinions on the nature or homology of the opereular bones may be redueed to two prineiples:-first, that they are modifications of parts of the ordinnry skeleton; seeondly, that they are suporadded bones peeuliar to Fishes: the latter riew is that taken by Cuvier. Aeeording to the former, whieh is the more philosophieal mode of eonsidering them, three opinions have been offered. The first by Spix and Geoffroy, that they are gigantie representatives of the ossieles of tho ear, otherwise absent in the skeleton of Fishes: this view has been adopted by Professor Grant. Seeondly, that they are dismemberments of the lower jaw, whieh by the detaehment of the opereular bones from the ramus is rendered more simple in its eomposition than in Reptiles, - a riew proposed by M. de Blainville and temporarily adopted by Bojanus and Oken, but refuted by the eomplieated strueturo of the lower jaw in certain sauroid fishes, as the Lepidnsteus, whieh likewise possesses the opereular bones. Thirdly, that they are parts of the dermal skelcton-in short, scales modified in subservieney to tho breathing-funetion,-an opinion first proposed by Professor Owen, in his Lectures on Comparative Anatomy at St. Bartholomew's Iospital in 1835, and which is the view here adopted.
by approximating the walls of the abdomen, or occasionally by means of a muscular apparatus provided for the purposo, upon a principle with which overy ono is familiar, the fish sinks in proportion to tho degree of pressuro to which the contained air is subjected; and as tho compressed air is again permitted to expand, tho creature, becoming more buoyant, rises towards the surfaco.
(1765.) In tho Perch, and many othor fishes, this organ is entirely closed, so that there is no escape for the contained air; and in such it has been found that if they are suddenly brought up by means of a line from any great depth, the gas, being no longer compressed by the weight of the column of water above, and having no exit, bursts the swimmingbladder, and sometimes distonds the abdomen to such an extent, that it pushes tho stomach and œesophagus into the fish's mouth.
(1766.) In other cases, however, a provision is made apparently with the view of obviating such an accident, and a kind of safety-valvo prorided through which the air may be permitted to escape: thus in the Carp a tube communicates betreen the interior of the air-bladder and the œesophagus ; and in the Herring a similar communication is met with between this organ and the stomach.
(1767.) The gas which fills the air-bladder has been found in many eases to be nearly pure nitrogen ; but in fishes that live at a great depth, MM. Configliacchi* and Biot ascertained that oxygen was substituted, whence it has been presumed that this apparatus was in some way or other an auxiliary in respiration; and some authors have even gone so far as to see in the swimming-bladder the representative of the lungs of aërial Vertebrata. But, however this may be, the gas enclosed is indubitably a product of secretion, being derived either from the lining. membrane of the viscus, or from a glandular structure which may frequently be distinctly pointed out in its interior.
(1768.) Curicr justly observes that, whatever opinions may be entertained relative to the uzse of the air-bladder, it is difficult to explain how so considerable an organ has bcen refused to so many fishes-not only to those which ordinarily remain quiet at the bottom of the water, as Skates and Flat-fishes, but to many others that apparently yield to none either in the rapidity or facility of their movements, such as the Mackerel for instance; yet even while the common Mackerel (Scomber scomber) has no air-bladder, a very nearly allied species (Scomber meumatophorus) is provided with one ; and of this many other instances might be adduced.
(1769.) From the circumstances under which fishes seize and swallow their prey, it must be evident that they aro incapable of enjoying any very refined sense of taste. Those species which are earnivorous are of necessity compelled to catch with their tecth, and thus retain a firm hold

[^205]of the aetivo and slippery food they aro destined to devour. To divide or masticate their alimont would be impracticable; and even were they permitted so to do, tho water which perpetually washes firough the interior of thoir mouths would obviously preclude the possibility of appreciating savours. In the construction of the mouth of a fish we therefore find, generally speaking, that every part has been made subservicnt to prehension : tceth, sometimes in the form of delicate spines, or else presenting the appearance of sharp recurved hooks, have been fixed in every possible situation where they could be made available as prehensile organs : not only are the jaws densely studded with these penetrating points, but they are occasionally placed on every bone which surrounds the oral cavity or supports the entrance of the pharynx. The intermaxillary, the maxillary, and the palatine bones, the vomer, the branehial arehes, the pharyngeal bones, and even the tongue itself, may all support a dental apparatus, either of the same description or composed of teeth of different shapes; gencrally, however, some of these bones are unarmed; and oceasionally teeth of any kind are altogether wanting.
(1770.) But if sueli is the most usual arrangement of the dental apparatus in fishes, we must be prepared to find in a class so extensive as that we are now investigating, various modifications both in the form and arrangement of the teeth, adapting them to the diverse habits and necessities of individual species; and a few of these we must not omit to notice in this place.
(1771.) The Myaine, or Hag-fish, one of the lowest of the entire class, posscesses no osseous framework to which teeth could be attached; and yet, from the parasitical life which this ereature leads, it has need of dental organs of eonsiderable efficiency. The Myxine, fecble and helpless as the easual observer might suppose it, is in reality one of the most formidable assailants with which the larger fishes have to eontend, since neither strength nor activity avail aught in defending them against a foe apparently so despicable. Fixing its mouth firmly to the skin of its comparatively gigantic victim, the Myxine bores its way into its flesh by means of a dental apparatus of a very extraordinary description. A single fang-like tooth is fixed to the median line of the palate, and the tongue is armed on each side with two horny plates deeply serrated: thus provided, the Myxine, when it attacks its prey, plunges its palatine hook into its flesh; and thus securing a firm hold, the lingual saws, aided by the suctorial aetion of the mouth, tear their way to its rery vitals*。
(1772.) In the Lamprey the whole interior of the mouth is studded with horny teeth, not morely fixed to the palate and tongue, but to the

[^206]cartilaginous representative of the inferior maxilla and to the inner surface of the lips.
(1773.) In the Carp tribe (Cyprinides) the jaws are destitute of teeth; but in the throat there is a singular apparatus serving for the mastication of their food. The basilar bone at the base of the skull supports a broad three-sided dental plate, whieh might be compared to an anvil ; while the two inferior pharyngeal bones are each armed with four or five large teeth, so disposed that, by working upon the picee first mentioned, they bruise and triturate the aliment before it is permitted to pass into the digestive eavity.
(1774.) In Skates (Raidce) the internal surface both of the upper and lower jaws is so covered with teeth, that they have the appearance of a tessellated pavement: these tceth are sometimes flat and smooth, so as to be merely useful in crushing prey; but in many speeies they are prolonged into sharp hooks adapted to prehension.
(1775.) In Sharks a beautiful provision is met with. Several rows of teeth placed one behind the other are found laid flat, and eoncealed behind the jaw. One row only, composed of triangular cutting teeth, stands erect and ready for use ; but when these fall off, blunted and unfit for serviee, the next row rises to take their place; and thus a succession of efficient weapons are given to these terrific monsters of the oeean.
(1776.) We will not enlarge further upon this portion of our subject; enough has been said for our present purpose, and the reader will find elsewhere abundant information*.
(1777.) The teeth of osseous fishes are generally firmly anchylosed to the bones that support them, although in a few instances they are found fixed in sockets, as in the rostral teeth of the Saw-fish (Pristis), and in the mouth of Sphyrcena, Acanthurus, Dictyodus, \&e. \uparrow But there are other modes of attachment only met with among fishes, some of whieh are not a little eurious ; and Professor Owen, in his truly splendid work above referred to, thus describes the most important:-
"In the Codfish, Wolf-fish, and some other species, in proportion as the ossification of the tooth advances towards its base and along the connecting ligamentous substancc, the subjaeent portion of the jaw-bone receives a stimulus, and developes a process corrcsponding in size and form with the solidified base of the tooth. In this case the inequalities of the opposed surfaecs of the tooth and maxillary dental process fit into each other, and for some time they are firmly attached together by a thin layer of ligamentous substance; but in general anchylosis takes place to a greater or less extent before the tooth is shed. The small anterior teeth of the Angler (Lophius) are thus attached to the jaw; but the large posterior oncs remain always moveably connected by highly elastie, glistening ligaments, which pass from the inner side of the base of the tooth to the jaw-bone. These ligaments do not permit the tooth

[^207]to be bent outwards beyond the vertical position, when the hollow base of tho tooth rests upon a eireular ridge growing from the alveolar margin of the jaw ; but the ligaments yield to pressure upon the tooth in the contrary direction, and its point may thus be directed towards the baek of the mouth ; the instant, however, that the pressure is remitted, the tooth flies baek, as by the aetion of a spring, into its usual erect position. The deglutition of the prey of this voracious fish is thus facilitated and its eseape prevented.
"The broad and generally bifureate osseous base of the teeth of Sharks is attaehed by ligaments to tho ossified or semiossified erust of the eartilaginous jaws. The teeth of the Salarias and eertain Mugiloids are simply attached to the gum. The small and elosely erowded teeth of the Rays are also eonneeted by ligaments to the subjacent maxillary membrane. The broad tessellated teeth of the Eagle-Rays have their attaeled surfaee longitudinally grooved to afford them better holdfast; and the sides of the eontiguous teeth are articulated together by true serrated or finely undulating sutures, whieh mode of fixation of the dental apparatus is unique in the animal kingdom.
"If the engineer would study the model of a dome of unusual strengh, and so supported as to reliese from its pressure the floor of a vaulted ehamber beneath, let him make a longitudinal seetion of one of the pharyngeal teeth of a Wrasse (Labrus). The base of this tooth is slightly eontracted, and is implanted in a shallow circular eavity, the rounded margin of whieh is adapted to a eireular groove in the eontraeted part of the base ; the margin of the tooth, whieh immediately transmits the pressure to the bone, is strengthened by an inwardly projecting convex ridge. The masonry of this internal buttress and of the dome itself is composed of hollow eolumns, every one of whiel is plaeed so as to transmit in the due direetion the superineumbent pressure.
"In another case, in whieh long and powerful piereing and laecrating teeth were evidently destined, from the strength of the jaws, to master the death-struggles of a resisting prey, we find the broad base of the tooth divided into a number of long and slender processes, whieh are implanted like piles in the eoarse osseous substanee of the jaw; they diverge as they deseend ; and their extremities bend and subdivide like the roots of a tree, and are ultimately lost in the bony tissue. This mode of implantation, whieh I have deteeted in a large extinet Sauroid fish (Rhizodus), is perhaps the most complieated which has yet been observed in the animal kingdom."
(1778.) For a full aceount of the growth and development of the teeth of Fishes, we must refer the reader to the same souree from which we have extraeted the preeeding paragraphs; nevertheless the following is a brief abstraet of Professor Owen's views upon this subject.
(1779.) In all fishes, the first step in the formation of a tooth is the production of a simple papilla from the surfaee either of the soft external
integument, as in the formation of tho rostral teeth of the Saw-fish (Pristis), or of the mucous membrane of the mouth, as in the rest of the class. Tn these primitive papillo there can bo very early distinguished a cavity coutaining fluid, and a dense membrane (membrana propria) surrounding the carity (and itself covered by the thin buccal mueous membrane), which gradually becomes more and more attenuated as the papilla increases in size. The pulp-substance, or contents of the memIncence propria, remains for somo period in a fluid or semifluid condition; granules are ultimately developed in it, which at first float loosely, or in small aggregated groups, in the sanguineo-serous contents of the pulp. These granules soon attaeh themselves to the inner surface of the membrana propria, if they bo not originally developed from that surface. The whole of the contents of the growing pulp beeomes soon after condensed by the 1 umerons additional granules which are rapidly developed in it after it has become permeated by the capillary vessels and nerves. The particles become arranged into lincar scries or fibres-an appearance which is first apparent at the superficics of the pulp, to which the fibres are vertical. At this period ossification commences in the dense and smooth membrance propria of the pulp, and is thenee continued centripetally in the course of the above-mentioned lines towards the base of the pulp. Lastly, around the capillaries of the pulp the granules become condensed into concentric layers, which then form the walls of minute tubes, visible on a microscopic examination of the substauce of the tooth.
(1780.) In some genera, as Batistes and Chrysophrys, an enamel-pulp is developed from the inner surface of the capsulo which surround the bone-pulp; and by this organ the surface of the teeth of such fishes is coated with enamel in a mauner to be described more at large hercafter.
(1781.) In most osseous fishes, in addition to the lips (which, even when fleshy, being destitute of proper muscles, would be unable to retain food in the mouth), there is generally, behind the front teeth in each jaw, a valve formed by a fold of the lining membrane of the mouth, and directed backwards, so as efficiently to prevent the aliment, and more especially the water swallowed for the purpose of respiration, escaping again from the oral orifice*.
(1782.) Fishes have no salivary glands, as saliva to them would be entirely useless : their œsophagus (fig. 465, g; fig. 475, cl) is capacious and, from the circumstance of their having neither neck nor thorax, extremely short; so that the food when seized is conveyed at onee into the stomach.
(1783.) The stomach itself is generally a wide cul-de-sac (fig. 465, 7), the shape and proportionate size of which vary of course in different species. Its walls are most frequently thin, and the lining membrane gathered into large longitudinal folds (fig. $475, \mathrm{e}$), so as to admit of con-

* Curier et Valenciennes, IIistoire Naturello des Poissons, p. 367.
siderable distontion ; but occasionally, as for example in the Mullets, its muscular walls are so thick that it might almost descrve the name of gizzard ; and in such fishes its power of crushing the food is no doubt considerable.
(1784.) The intestinal canal in tho osseous fishes is a simple tubo (fig. $465, i$), folded in sundry gyrations proportioned to its length; but Fig. 465.

Plan of the general arrangement of the viscera in a Fish: a, brain; b, cavity of the mouth; d, branchial fissures; g, cosophagus; h, stomach; $i i$, intestine; k, anus; l, liver; c, gallbladder ; n, n, pyloric cæea; m, pancreas; e, kidney ; f, ureter; o, heart; p, swimming-bladder; q, ovary or roe; r, termination of oviduct; s, termination of ureter.
in the cartilaginous families, such as the Sharks, the Rays, and the Sturgeons, it presents internally a very remarkable arrangement, evidently intended to increase the extent of surface over which the digested aliment may bo spread, for the purpose of absorbing its nutritive portions. In these tribes a spiral valve (fig. 475,7) winds in close turns from the pyloric to the anal extromity of the capaeious intestine; so that, although externally the intestino appears short in proportion to the size of the animal, its mucous lining is exceedingly extensive.
(1785.) In addition to the biliary secretion which we have met with in the lower animals, another system of chylopoietie glands for the first time makes its appearance in the class before us, from which a fluid tormed the pancreatic is poured into the intestine. In the osscous fishes this viscus presents the simplest condition of a gland, consisting of simple cæer (fig. 465,nn)-somotimes, as in the Perch, only three in number, at others, as for instance in tho Salmonidx, extromely numerous. From these appendages a glairy fluid, resembling salira in com-
position, is abundantly secreted, and becomes mixed with the bile immediately upon its entrance into the intestine.
(1786.) In the cartilaginous fishes, such as Sharks and Rays, the pancreas exhibits a more perfoct development, and already presents the appearanco of a conglomorato gland (fig. $475, f$), from which the pancreatic fluid is conveyed into tho intestine through a common duct.
(1787.) The liver of fishes is proportionally very large, and generally contains abundance of oil. Tho bile derived from it is received into a gall-bladder (fig. $465, \mathrm{c}$), from which a duct of variable length in different species conveys it into the intestine, in the immediate vicinity of the pylorus.
(1788.) It is in these animals that we for the first time find the biliary secretion separated from venous blood; and consequently they are provided with a new arrangement of the blood-vessels of the abdomen, which they possess in common with the other Vertebrata, forming what is termed by anatomists the system of the vena portce. The veins derived from the stomach, the intestines, and the spleen, which last viscus now makes its appearance, instead of conveying their contents to the heart, plunge into the substance of the liver and there again subdivide into capillary tubes, thus furnishing to the liver abundance of venous blood, from which the hepatic secretion is elaborated.
(1789.) The spleen, now for the first time met with in the animal creation, is a highly vascular organ, gencrally enclosed in the mesentery between two folds of the intestine (fig. $465, m$), and evidently, in position, presenting no precise relations with the stomach. It receives a large supply of arterial blood, which becomes converted into venous as it circulates through this organ, and in that state is transmitted to the liver through the portal system of veins.
(1790.) Another important addition to the animal economy, peculiar to the Vertebrate division of animals, is tho lymphatic or absorbent system of vessels, which in Fishes are abundantly distributed through the body, and ramify like a rich nctwork over the walls of the intestine. These pour the materials absorbed from the body, and the products of digestion, into the principal venous trunks, to be mixed up with the circulating blood *.
(1791.) The circulation of the blood in Fishes is carried on by the assistanco of a heart composed of two cavities only, which receives the vitiated blood after it has circulated through the system, and propels it through tho branchir, whero it is exposed to the influence of the oxygen contained in the surrounding medium. After being thus purified, the blood is collected from the respiratory organs by the radicles of the

[^208]branchial veins; and theso latter vessels, by their union, form the aorta. There is, thereforo, no systemic heart in Fishes, the aorta itself serving to propel tho slow-moving blood in its course through the arterial system.
(1792.) Tho heart (fig. 465, o) is enclosed in a pcricardium, and situated between the pharyngeal bones and branchial apparatus, the cavity in which it is lodged being soparated from the peritoneum by a kind of tendinous diaphragm, and also by a capacious sinus, in which the venous blood dcrived from all parts of the body is collected preparatory to its admission into the heart.
(1793.) Tho auricle of the heart (fig. $466, B, b$) is contained within

A

Fig. 466.
B

1. Heart of Lophius piscatorius. B. Ordinary strueture of a Fish's heart. Iu both drawings, a, represents the vena eava; b, the auricle; c, the ventriele; d, the bulbous arteriosus; and e, the valvular apparatus guarding its commeneement.
the pericardium: it varies greatly in form in different fishes; but its capacity is gencrally considerably greater than that of the ventricle; and its walls are thin, but, nevertheless, present distinct fleshy columns.
(1794.) The blood derived from the great sinus before mentioned enters the posterior part of the auricle of the heart by a large orifice, which is guarded by two membranous valves so disposed as to prevent the reflux of the blood during the contraction of the auricular chamber. The ventricle is strong and fleshy; and at its communication with the auricle there is a strong mitral valve. The commencement of the branchial artcry (fig. $466, \Delta, d$) is so muscular and capacious that it might almost be regarded as forming a sccond ventricular chamber: this portion, which has been distinguished by the name of the bulb (bulbus arteriosus), is separated from the ventricle by strong valres; and in the cartilaginous fishes, as, for instance, in the Shark, there are sereral rows of semilunar valves (fig. $466, \mathrm{~B}, \mathrm{e}$) so disposed as most officiently to prevent tho blood from being drivon back again into tho rentricle. In the heart of Tophius (fig. 466, A), the conformation of the cavities is
very peculiar: the auricle (b) is large and pyriform, and tho ventricle (c) of a globular shapo. But the most singular feature in its structuro is the ralre between the ventriclo and the bulb (l l): this is a soft fleshy protuberance (e), perforated in the centre, which projects into the cavity of the bulb, and allows the blood to pass freely in one dircetion; but the sides of the canal collapse, and close the orifice, if the blood is foreed back from the bulb towards tho ventriclc.
(1795.) Issuing from the pericardium, the branchial artery runs beneath the centre of the branchial apparatus, dividing into as many trunks as there are branchial arches, to each of which a vessel is given off.
(1796.) To cach branchial arch are attached a great number of vascular lamellie placed parallel to each other, like the teeth of a comb. The branchial artery, which runs in a groove situated upon the convexity of the corresponding arch, sends off a twig to every one of these laminæ; and this vessel, after twice bifurcating, divides into an infinite number of little ramuscules, which run across both surfaces of the branchial fringe, and terminate by becoming converted into capillary veins.
(1797.) Tho radicles of the branchial veins all open into a venous canal which runs along the internal margin of each lamella, and theso last terminate in a great vein of tho corresponding branchial arch, which runs in the samo groove as the artery, but is more deeply situated, and moreover runs in the opposite direction : that is to say, the branchial artery, derived from the heart, and coming from the ventral aspect of the body, diminishes in size as it mounts towards the back, and gives off twigs to the branchial fringe; whereas the branchial vein, on the contrary, receiving blood from the lamellæ of the branchia, increases in diameter as it approaches the dorsal region.
(1798.) On leaving the gills, the branchial veins assume the appearance and perform the function of arteries. The anterior, even before escaping from tho branchial arch, gives off ramifications to different parts of the head; and the heart and parts adjacent likewise receive their supply of arterial blood from a branchial vein.
(1799.) The veins derived from all the branchial arches ultimately unite and form the aorta, which evidently corresponds to the aorta of Mammalia, although it has neither auricle nor ventricle at its commencement.
(1800.) The aorta, while in the abdomen, runs beneath the spine, and gives arteries to the viscera in the usual manner ; but at the commencement of the tail it becomes enclosed in the inferior vertebral arches, by which it is defended to its termination.
(1801.) There is yet another set of organs, which, as we ascend from inferior to higher forms of animal lifc, we encounter for the first time in the class before us-an apparatus for elaborating tho urinary secretion, which is peculiar to the Vertebrate classes.
(1802.) The kidneys in Fishes are vory voluminous : they are situated
on each side of the mesial line, immediately bencath the bodies of the vertebre, and extend along the whole length of the abdomen, not unfrequently reaching to the base of the skull, where their anterior portion (fig. 465, e) lies above the branchial apparatus. The ureters (fig. $465, f$) generally terminate in a kind of bladder-like dilatation, the orifice of which is found behind that of the vulva (s).
(1803.) Examined minutely, the substance of the kidney is found to be entirely composed of microscopic tubules, which terminate in the ureters : these uriniferous tubes are variously contorted, but of equable diameter throughout; and they end, towards the periphcry of the kiduey, in blind extremities.
(1804.) The skin of these aquatic animals is perpetually lubricated by an abundant mucous secretion furnished by muciparous follicles, or secreted in long tubular organs placed beneath the skin. In the Skate the vessels last mentioned are remarkably large, and their distribution very extensive.
(1805.) The brain of an adult fish occupies but a small portion of the cranial cavity,-the space between the pia mater, which invests the brain, and the dura mater, which lines the skull, being occupied by a loose cellular tissue filled with fluid: there is consequently no serous or arachnoid cavity, such as exists in Man. It has been remarked that the interval between the cranium and the brain is considerably less in young

Fig. 467.

Brain and cerelbral nerves of the Pereh (after Cuvier): a, tho eerebellum; b, cercbrum ; c, olfactory ganglia; i, bulbous commencement of the olfactory nerve; 00 , olfactory nerve, terminating in the nasal eapsule; n, optio nerve; p, q, third, fourth, and sixth pairs of nerves, appropriated, as in Man, to the museles of the eyeball; α, ophthalmio branch of the fifth pair: β, superior maxillary branel of ditto; θ, inferior maxillary braneh of ditto; μ, opercular branch; ξ, braneh of the fifth pair, mounting upwards tojoin Θ, a branch from the eighth pair, running to supply the dorsal region of the body ; $s s$, auditory nerre; f, f^{\prime}, nerves helonging in the cighth pair; $u ; z$, nerres answering to the spinnl recurrent.
than in mature fishes-a fact which sufficicutly proves that in them the brain does not grow in the same proportion as the rest of the body; and, indeed, the size of the brain is nearly equal in individuals of the same species, even although the body of one be twice as large as that of the other*.
(1806.) In these, the lowest forms of Vertebrata, the brain consists of several masses placed one behind the other, either in pairs or singly ; these masses, in fact, may be regarded as so many distinct ganglia, the eomplexity and perfection of which we must expect to beeome gradually inereased as we proceed upwards towards mammiferous quadrupeds.
(1807.) The anterior pair of ganglia (figs. 467, $c ; 468 ; 470, a$) invariably give origin to the olfactory nerves, and eonsequently may be justly looked upon as presiding over the sense of smell. These ganglia are, in fact, the representatives of those masses which in Man are erroneously called the " olfactory nerves;" for even in the humarr subject, although their real nature is obscured by the enormous development of other parts of the encephalon, the so-called nerves are not nerves at all, but really lobes of the brain from which the true nerves emanate.
(1808.) The olfactory nerves of Fishes, derived from the lobes alluded to, vary greatly in compositiou and proportional size: sometimes they are quite capillary; sometimes thick, though still simple ; oceasionally they are double or triple, and in some eases are composed of numerous fibres bound up in fasciculi.
(1809.) The organs of smell to which these nerves are destined are of very simple structure :-Two excavations are found near tho anterior part of the snout, lined with a delicate pituitary membrane, which is variously folded, in order to increase the extent of the sentient surface (fig. 468) ; and it may be presumed that, from the number of plice, which varies amazingly, some estimate may be formed of the relative perfection of the sense of smell in different genera. Into each olfactory ehamber the water is freely admitted by two distinet orifices, while behind the pituitary membrane the olfactory nerve swalls out into a ganglion (fig. 470, 1), from which

Fig. 468.

Organ of smoll in the Skate.
nervous fibrils radiate, to be distributed over the plicated lining of the nose (k).
(1810.) The second pair of ganglin met with in the brain of the Fish (fig. 470,6) give origin to the optic nerves (2), and may therefore very properly be regarded as representing the tubercula quadrigemina of the mammiferous brain. The nerves of vision derived therefrom have no commissure, and present in many species a peeuliar structure which is not a littlo remarkable, each nerve being composed of a broad band of nervous substance, folded up like a fan, and enclosed in a dense membrane, so that when unfolded it presents the appearance delineated at fig. 469, a.
(1811.) The eye itself differs in many points of structure from that of terrestrial Vertebrata, its organization being of course adapted to bring the rays of light to a focus upon the retina in the denser clement in which the fish resides ; the power of the crystalline lens is therefore increased to the utmost extent, and the antero-posterior diameter of the eyeball neeessarily contracted in the same ratio, in order that the retina may be placed exactly in the extremely short foeus of the powerful lens.
(1812.) The eyes of all the Vertebrata are constructed upon principles essentially similar, and present the same tunics and lenses as are met with in the human eye, and, generally speaking, arranged in the same manner as in Man. It is not our intention, therefore, in the following pages minutely to describe the anatomy of the eye in every class which will come under our notiee ; but taking the human eye, with the construction of whieh we presume our readers to be intimately aequainted, as a standard of eomparison, point out those modifications of the general type of strueture common to this division of animated nature.
(1813.) Tho first thing which strikes the attention of the anatomist, when examining the eye of a fish, is the size of the crystalline lens, and its spherical form. This shape, and the extreme density of texture which tho lens exhibits, are, indeed, perfectly indispensable. The aqueous humour, being nearly of the same density as the external element, would have no power in deflecting the rays of light towards a foeus, and consequently the aqueous fluid in fishes is barely sufficient in quantity to allow the free suspension of the iris : the vitreous humour, for the same rcason, would be seareely more efficient than the aqueous in changing the course of rays entering the eye, and hence the nceessity for that extraordinary magnifying power conferred upon the lens.
(1814.) But tho focus of the erystalline will be short in proportion as its porver is increased : every arrangement has therefore been made to approximate the retina to the posterior surface of the lens: the eyeball is flattened, by diminishing the relative quantity of the vitreous humour ; and a section of the eye (fig. 469, в, с) shows that its shape is very far from that of a perfect sphere. This flattened form eould not, howerer, have been maintained in fishes, had not speeial provision becu mado for
the purposo in the construction of the selerotic ; the outer tunie of the eye, therefore, generally contains two cartilaginous plates imbedded in its tissue, which aro sufficiontly firm in their texture to prevent any alteration in the shape of the eyeball; and in some of the large fishes the sclerotic is retually converted into a eup of bone presenting orifices at the opposed extremities-one for the insertion of the transparent cornea, the other for the admission of the optie nerve.
(1815.) The vitreous humour and crystalline lens in many fishes are kept in situ by a ligament placed for the purpose. This is a delieate faleiform membrane derived from the retina (fig. $469, \mathrm{~B}, \mathrm{c}$), whieh plunges

into the vitreous humour, and, being continued along the internal eoneavity of the eye, is fixed to the eapsule of the lens. In some fishes, as the Salmon, this ligament is of a dark eolour ; and in the Conger there are two such bands, by which the erystalline is suspended as by its opposite poles.
(1816.) Another peeuliarity in the structure of the visual apparatus of osseous fishes is the existence of a rascular organ plaeed at the back of the eyeball, and interposed between the ehoroid tunie and a brilliant metallie-coloured membrane whieh invests the choroid externally. This organ, generally ealled the "ehoroid gland" by the older anatomists (fig. 469, $\mathrm{A}, \mathrm{g} 9$), is of a crescentic form, and always of a deep red colour. It is principally made up of blood-vessels, which run parallel to caeh other ; and from it issue other vessels, frequently very tortuous, and always mueh ramified, which form a vascular network in the choroid. The nature of this organ it is not very easy to determine. Some hare believed it to be muscular ; but the strix perceptible in it aro vascular, and not fibrous : others have thought it to be glandular ; but it has no ex-
crotory duct. Most probably it is an erectile tissue analogous to that of tho corpus cavernosum, and has somo influence in accommodating the form of the eye to distances, or to the density of tho surrounding medium *.
(1817.) The pupil of the cyc in the animals we are describing is very large, so as to take in as much light as possible, but generally motionless. In some genera the shape of the aperture is curious: thus in the Rays a broad palmate veil liangs in front of the pupillary aperture; and in one case, the Ancableps, there are two pupils to each eye.
(1818.) The eyes of osseous fishes are lodged in the bony orbits of the face, imbedded in a soft glairy cellulosity ; but in many of the eartilaginous tribes, such as the Sharks and Rays, each eyeball is moveably articulated to the extremity of a cartilaginous pedicle fixed to the bottom of the orbital cavity (figs. $470, i, \& 469$, c).
(1819.) Six muscles serve to turn the eye in different dircetions:

Fig. 470.

Brain and cerebral nerves of the Skate: a, olfactory ganglion; δ, c, cerebrum; d, cercbellum: e, medulla spinalis; y, the eyeball; i, its cartilaginous pedicle; k, olfactory sac; 1 , distribution of the olfactory nerve.
namely :-four recti, arising, as in Man, from the margin of the optic foramen ; and two oblique muscles, derived from the anterior part of the * Cur. et Val. op. cit. p. 338.
orbit, and inserted transversely into the globe. These museles are well represented in fig. 470, wherein the reader will observe that the superior oblique does not pass through a pulley, as is the ease in the human subject.
(1820.) It is extremely remarkable that even in fishes the museles of the eye have special nerves appropriated to them, and those preeisely the same as in the highest Mammalia. The third pair of nerves animates them all, except the external rectus and the superior oblique, and also sends off filaments to be distributed to the choroid, although no ophthalmic ganglion has jet been discovered. The fourth pair is exclusively appropriated to the superior oblique ; and the external rectus, or abductor muscle, invariably receives its supply from the sixth pair.
(1821.) To animals whose eyes are constantly washed by the water in which they live, any lacrymal apparatus would obviously be superfluous; and consequently, in the class before us, neither lacrymal gland nor lacrymal puncta, nor even cyelids, properly so called, are ever met with.
(1822.) Behind the optic lobes of a fish's brain the ganglia from which the other cerebral nerves emanate beeome confused into one mass, so that they are no longer distinguishable from each other. The nerves themselves, however, are casily recognized, and, with the exception of the ninth pair (the lingual or hypoglossal nerres), whieh are not met with in fishes, both in their distribution and number precisely accord with those with which the human anatomist is familiar. We have already traced the third, fourth, and sixth pairs to the muscles of the eye. The fifth issues through the great ala of the sphenoid, and divides, as in Man, into :-an ophthalmic branch (fig. $467, a$), which runs through the orbit to be distributed to the parts about the nose ; a superior maxillary branch (β), that supplies the parts about the upper jaw ; and an inferior maxillary branch (θ), destined to the lower jaw: the general distribution of the nerve, as far as regards the face, is in fact exactly similar to that of the same nerve in Man; but in fishes it is found to give off other branches not met with in the human subjeet, one of which $(;, l)$ is destined to the operculum. Another (ξ) takes a very remarkable course ; it mounts up to the top of the skull, joins a large branch of the eighth pair (Θ), and, issuing from the cranium through a hole in the parietal and interparietal bones, passes along the whole length of the back on each side of the dorsal fin, receiving twigs from all the intercostal nerves, and supplying the muscles of the fin and the fin-rays themselves.
(1823.) This branch is superficial until it reaches the little museles that move the fin. It has sometimes other branches equally superficial, which deseend to the anterior parts of the muscles of the trunk abore the pectoral fins, and others which run as far as the anal fin, where they form a longitudinal nerve similar th that of the back.
(1824.) The seventh pair of cerebral nerves (fig. 467, $s s$), in fishes
as in all other Vertobrata, is devoted to the organ of hearing and brings to the sensorium the impressions of sound.
(1825.) The sense of hearing in these creatures must necessarily be very imperfect: they have neither an external car nor a tympanic cavity, and consequently are eutirely destitute of a membrana tympani and of the ossicles of hearing; they have neither Eustachian tube nor fenestra ovalis; tho labyrinth alouc, and that more simple in its composition than the labyrinth of tho human car, is all that the anatomist meets with in this first appearance of an auditory apparatus among the Vertebrate classes.
(1826.) The accompanying figure (fig. 471) represents the car of a very large fish, the Lophius piscutorius; and the student will have little difficulty in at once recognizing all the parts of which it consists. The soft parts of this simple car are not enclosed in bony canals, as in the human subject, but the membranous labyrinth is lodged in a wide

Fig. 471.

Auditory apparatus of the Lophius.
eavity on cach side of the cranium ; so that little dissection is necessary to expose the entire orgau, which is surrounded ou all sides with the same kind of oily or mucilaginous fluid which fills up the wide interspace that exists between the braiu and the dura mater lining the iuner surface of the skull.
(1827.) As in all other Vertebrata, there are three somicircular canals, disposed noarly as in the human ear, and each dilated in liko manner into an ampulla which receives the filaments of the acoustic nerve. Two of the semicircular canals coalesce before they open into the vestibule, so that there are only five orifices whereby the three semicircular canals communicate with the vestibular cavity.
(1.828.) The membranous vestibule (supported in the figure by two pins) is of variable shape, and its walls are very delicate. Its carity, as well as the interior of the semicircular canals, is filled with a trans-
parent glairy fluid; and it moreover encloses certain hard bodies (otoliths), generally three in number, suspended by delicate filaments in its interior.
(1829.) The otoliths of osscous fishes are of stony hardncss, resembling shell, and their structure is nothing at all like that of bone.
(1830.) Their shape varies in different species, but, nevertheless, is so constantly the same in fishes of the same kind, that the forms of these pieces might be employed as an important zoologieal character.
(1831.) In the cartilaginous fishes the otoliths are quite soft, resembling starch: in both classes they are composed principally of chalk, and effervesce strongly when dissolved in acids.
(1832.) The auditory nerve gives a filament to each of the semicircular canals, which penetrates into the ampulla of the canal to which it is destined, and there spreads ont; but the larger portion of the nerve is distributed over the vestibular sacculus, where it forms a beautiful network.
(1833.) There is no cochlect, although some writers imagine that they ean distinguish a rudiment of this part of the ear in a slight projection from the walls of the vestibule.
(1834.) The ears of fishes, therefore, are much less perfect than those of other Vertebrata * : deprived of tympanum, of ossicles, and of Eustachian tube, they can scarcely reccive the impressions produced by the vibrations of the ambient element, except by those vibrations being communicated through the cranium ; and, moreover, the membranous labyrinth not being enclosed in bone, the skull can only transmit these movements in a very feeble and imperfect manner. The absence of a cochlea would go far to prove that the car of fishes cannot appreciate the differences of tones. All that it offers to the physiologist is a membranous apparatus endowed with great sensibility, in which the nervous filaments distributed in the ampullæ of the semicircular canals must necessarily partake of all the movements of the fluid in which they are plunged, and where those appropriated to the vestibule must be still more strongly agitated by the shocks that these movements give to the otoliths contained in its cavities.
(1835.) It is probable, therefore, that fishes hear, that noise produces in them a powerful sensation, but that they cannot distinguish or appreciate differences of tone as the higher animals are enabled to do.
(1836.) The nerves composing the eighth pair preside over the same functions in all the Vertebrata. The glosso-pharyngeal sends twigs to the first branchial arch, the fauces, and the tongue. The nervus vagus (fig. $467, t$) supplies the three posterior branchix and the lower part of the pharynx; it is then continued along the œesophagus to the stomach, where it terminates: it thus presides over the same functions in all the Vertebrate classes ; and it is not a little interesting to see it

[^209]even in fishes distributed to tho organs of respiration, notwithstanding the peculiarity of their structure and position. In these creatures, however, it likewiso furnishes nerves to other partis of the body, especially a long branch, which generally runs in the substance of the lateral muscles of the trunk, communicating with the spinal nerves and giving off filaments to the skin-an arrangement the physiology of which is not as yot understood. The next pair of ccrebral nerves in the animals under consideration would seem to represent the spinal recurrent of the human subject; it supplics tho swimming-bladder and the muscles of the shoulder.
(1837.) All the above nerves posterior to the optic arise from a chain of ganglia constituting the medulla oblongata; but above these are situated other important masses entering into the composition of the encephalon, from which no nerves tako their origin, viz. the cerebral hemispheres and the cerebellum.
(1838.) The cerebral hemispheres in all the Vertebrata are undoubtedly the seat of the mental powers; and as this portion of the brain becomes developed and perfected, brutality and stupidity give place to sagacity and intelligence.
(1839.) In the higher quadrupeds, and more especially in Man, the proportionate size of the hemispheres of the brain is so enormous that they overlap and conceal all the parts we have been describing; but as we descend to lower forms their relative dimensions become gradually smaller, and their structure less complicated, until in fishes, the least intelligent of all the creatures belonging to this great division of the animal kingdom, they are found in such a rudimentary condition that they are frequently far inferior in size even to the olfactory or optic ganglia (fig. 470, c).
(1840.) The lobes representing the hemispheres in fishes (fig. 472, b) are quite smooth externally, and within are hollowed to a large ventricle, in the floor of which is seen the upper surface of the optic ganglia (fig. 472, в, d). They present none of that complication of parts met with in the brains of higher orders: their inner surface is lined with transverse fibres (h) ; and a simple commissure passes across the anterior part of the ventricle, bringing the two sides into communication with each othcr; behind the commissure a passage leads to the third ventricle, the infundibulum, and the pituitary gland.
(1841.) The cercbellum (fig. 472, a) is at once rccognizable from its position and singleness. In the Perch its form is that of a blunted cone, with the summit directed slightly backward; but the shape and relative dimensions of this part of the brain are extremly variable. It consists, in fishes, only of the central portion (processus vermiformis), so that there are neither lateral lobes nor pons Varolii: its surface is composed of cincritious substanco ; and in its centre is a ramified medullary axis containing a ventriele.
(1842.) One very romarkable feature in the structure of the encephalon of fishes is the existence of supplementary lobes (fig. 472, g), placed behind the cerobollum, which aro sometimes united by a commissure : occasionally, as in Trigla, there are as many as five pairs of such supplementary masses; but probably, instead of regarding these as belonging to the brain, it would be more proper to consider them to be merely the first ganglia composing the spinal cord, enormously dereloped in proportion to the importance of the nerves which they give off to the pectoral fins.
(1843.) The spinal nerves of fishes arise by double roots from the

Fig. 472.

Brain of the Perch (after Cuvier): a, cerebellum; b, cerebrum; c, olfactory ganglia; i, olfactory nerves; d, optic ganglia; g, supplementary lobe; h, transverse fibres in the walls of the cerebral ventricle; n, commissure of the optic nerves; p, q, r, s, t, u, the third, fourth, ffth, sixth, seventh, and eighth pairs of cercbral nerves.
sides of the merdulla spinalis, which generally extends from one end of the canal formed by the superior vertebral arches to the other. The posterior roots are dilated into ganglia soon after their origin ; but the ganglia are extremely minute. The spinal cord of the Moon-fish (Orthagoriscus mola), however, is an exception to the usual conformation : in this remarkable fish the spinal ganglia are all collected into a stunted mass placed immediately behind the brain; and from this all the spinal nerves are given off, in the same manner as those forming the caula equina in the human subject.
(1844.) The sympathetic system in the creatures we are now examining is of very small size when compared with that met with in the higher Vertebrata ; nevertheless it occupies the usual position, and communicates, as in Man, with the commencements of the spinal nerves.
(1845.) There are few subjects more calculated to arrest the attention of the physiologist than the progressive development of the generative system in the Vertebrate classes ; and it is not a little interesting to watch the gradual appearance of additional organs, both in the male and female, as we advance upwards in the series of animated beings from
the cold-blooded and apathetic fishes. In its simplest condition, the whole generative apparatus, even of a vertebrate animal, is in both sexes merely a capacious gland provided with an excretory duct, wherein, in the female, ova are secreted, and in the male a fecundating fluid is elaborated from the blood. The eggs of the female, when mature, are expolled from the nidus in which they were formed, and cast out into the surrounding water. The male, urged apparently rather by the necessity of getting rid of a troublesome burden than by any other feeling, cjects the seminal secretion in the same manner; and the fccundating fluid, becoming diffused through the waves, vivifies the eggs with which it is casually brought into contact. Such is the whole process of reproduction in the osscous fishes.
(1846.) In the females of such fishes, the ovary, or roe, as it is genoralls called, consists of a wide membranous bag, ordinarily divided into two lobes, but sometimes, as in the Perch, single (fig. 465, q). This extensive organ, when distended with ova, fills a large proportion of the abdominal cavity; and its lining membrane is folded into broad festoons, wherein the ova are formed, and lodged until sufficiently mature for expulsion. When ripe, the eggs escape into the cavity of the ovary, and are expelled in countless thousands into the surrounding element through the orifice of the ovarian sac (fig. 465, r), which is situated immediately behind the anus (k) and in front of the urinary canal (s).
(1847.) Generally, as has been already stated, the ova of fishes are fecundated after their expulsion ; but there are a few instances, as for example the Viviparous Blenny (Zoarcus viviparus) of our own shores, in which the young are hatched in the ovary, and grow to a considerable size before they are born : in such cases impregnation must take place internally ; and the males in these species have, in fact, a nipplelike prolongation of the orifice of the duct through which the semen eseapes, probably for the purpose of introducing the seminal floid into the interior of the ovary of the females. Nevertheless even in these the ovaria present the same structure as in ordinary fishes-the only difference being that their eggs are retaincd until the embryo is far advanced in its development, instead of being promaturely extruded.
(1848.) The testicle in the males of osscous fishes, generally named "the milt," equals in bulk the ovary of the other sox ; and the quantity of the secretion furnished by it must be exceedingly great. The entire organ is composed of slender and very delicate eonvoluted cerca, in which the semen is claborated. These tubes towards the circumference of the testis all terminate in blind extremitics; but by their opposite ends they communicate with the general excretory duct, so that by blowing air into the latter the entire organ becomes amazingly distended. In some eascs the seminiferous tubules run parallel to each other, and become fureate as they approach the exterior of the testis: in others, after dividing and sublividing to some extent as they diverge from the common
duct, they become converted into innumerable anastomosing ramifieations; so that the whole substanee of the testis appears to be made up of reticulate tubes, which during the spawning-season, when they are filled with the creamy fluid that they secrete, aro visible even to the nalked eye *.
(1849.) It will be observed by the anatomieal reader, that while in the Osseous Fisires the ova escape into the interior of the ovary, and are expelled through an excretory orifice resembling the duct of an ordinary gland, in the Cartilaginous Fishes and in all other Vertebrata the germs burst from the exterior of the ovarium, where they are gencrally seized by Fallopian tubes, and either conveyed out of the body as eggs, or, being hatched internally, the offspring are nourished in receptacles provided for the purpose, until they arrive at a considerably advanced state of development.
(1850.) But it is only by degrees that these more perfect ovigerous organs makc their appearance ; and we would particularly solicit the attention of the student to the different gradations of structure met with in this part of the animal economy.
(1851.) In the Eel and the Lamprey we have the first appearance of an ovary such as is common in the higher Vertobrata. It consists of a very extensive vascular membrane eovered by the peritoneum, and attached in broad folds beneath the spine, extending nearly from one end of the abdomen to the other (fig. 473). This viscus is not hollow, neither has it any excretory duet ; so that naturalists were long at a

Fig. 473.

Reproductive organs of the Lamprey (Petromyzon marinus). loss to explain how the ova of these creatures were expelled.
(1852.) The extensive membrane above alluded to, as is now sufficiently well determined, produces in its substance the germs of the future progeny; and these, as they become mature, break loose from the nidus wherein they were generated in the interior of the peritoneal cavity of the Eel, and float loosely in the abdomen. There is no Fal-

[^210]lopian tubo as yet developed; but two simple orifices, plaeed on each side of the anal opening, serve to give exit to the eountless eggs, which thus escape into the surrounding water.
(1853.) The male organs of the Lamprey and Eol, together with the ovaria of the fomalo, and the kidneys and uretors, were aeeurately deseribed by Hunter in the Catalogue of his Colloction; and their form and strueture are illustrated by the preparations and drawings still preserved in tho College of Surgeons*; but in such fishes the testis of the male so exactly resembles the fomale ovary, that it was imagined evon by Sir E. Home that no males existed, or that the fomales were themsolves hermaphrodito. Aceording to Rathkot, howover, tho tostes of the male are composed of solid granules, precisoly like the fomale ova; and the secretion derived from them is in like manner allowed to eseapo into the abdomen, from which it is expelled through similar openings in the peritoneum.
(1854.) In the Sharks and Rays we meet with a very important addition to the female sexual apparatus, namely, an oviduct, by whieh the germ is seized on its escapo from the ovarium, and furnished with the additional covering neoessary in such fishes for the security of the fœetus.
(1855.) In these genera the folds of the ovarian membrane become less extensively spread out, and, from the sizo of the yellks of the eggs formed therein, the organ assumes a raeemose appearanec. The ovaries now form two large bunches plaeed

Fig. 474.

Egg of the Shark. on each side of the spine; and the ova whon mature would nocossarily eseape into the abdominal eavity, as thoso of the Lamprey and Eol do, wero they not scized by the patulous orifices of the two long and mombranous oviducts whereby they are conveyed out of the body.
(1856.) There is, moreover, in tho Chondropterygian Fisies, a necossity for defonding the young, during the earlior stages of their growth, by means whieh it would have been quite foreign to the purposes of Nature to have adopted in the other division of this extensive

* Sco Physiological Catalogue, vol. iv. pp. 48, 129, pls. 59 \& 60.
+ Neueste Schriften der naturforschenden Gesellschaft zu Danzig. Malle, 1824.
class. The earth is peopled only at its surface, and the vegetable banquet there spread is abundantly sufficiont for the support of torrestrial beings. The ocean, however, being donsely populated at every assignable depth, could never have supplied vegetable food to any thing like the extent required to satisfy her progeny ; hence therefore the necessity for that astonishing fertility so remarkable in the osscous fishes. Nine millions of ova have been calculated to bo spawned at a birth by a single Cod-fish : such spawn, being naked and unprotected, is eagerly devoured by thousands of hungry mouths, or the feeble young soon fall a prey to eountless voracious persecutors. If, however, it was obviously requisite that the progeny of osseons fishes should be thus multitudinous in order to provide a sufficiency of necdful food, it is cqually elcar that it would have been incompatible with the design of the Creator that the ravenous Sharks should be endowed with equal fecundity: their eggs are consequently few in number ; and, in proportion to their scarcity, jealous procaution must be taken to ensure the safety of the included young, in order to prevent the complete extinction of the race.
(1857.) The means cmployed for this end are simple and beautiful. About the middle of the oviduct of the female there is a thick glandular mass, destined to secrete a horny sholl, in which tho yelk and white of the egg bocome eneased. The egg when complete has somewhat the shape of a pillow-case, with the four corners lengthened out into long tendril-like cords (fig. 474), whercby the cgg is entangled amongst the seaweed at the bottom of the occan. A brittle egg-shell would soon be destroyed by the beating of the waves; hence the necessity for the corneous nature of the cnvelope: and yet, how is the fceble embryo to escape from sueh a tough and leather-like cradle? This likewise has been provided for: the egg remains permanently open at one extremity; or, to carry out our humble simile, one end of the pillow-case is left unsewn; the slightest pressure from within, therofore, separates the valvular lip of the opening; and no sooner has the little Shark thus extricated itself from its confinement than the two sides close again so accurately that tho fissure is not at all perceptible *.
(1858.) The sexual organs of the male Chondropterygii aro very remarkable, and their real charactor is not properly understood. The testicle (fig. $475, n$) is large, and occupies the same position as the ovary of the fomale ; but tho singularity of this tostis consists in its being mado up of two portions, one of which has an exerctory duct, while the other, although equally bulky, has none.
(1859.) The former portion, when minutely examined, is found to bo composed of an immense assemblage of flexuous sccorning vessels, that pour their secretion into a long and tortuons vas deferens (0), which, after
* According to Cuvier, in those Sharks which are viviparous (that is, whose young are hatehed in the oviduct prior to thoir expulsion) this egg-shell is never formed, and the investments of the foetus romain permanently membranous (loc. cit. p. 397).
running in a zigzag course nearly the whole length of the abdomen, dilates into a capacious reservoir of semen (p), and ultimately terminates with Fig. 475.

Viscera of the Shark, in situ: a, the heart; b, gill-openings; c, c, c, lobes of the liver: d, e, f, h, alimentary canal; i, appendage to the intestine; g, biliary duct; n, the testis: o, p, vas deferens; k, intromittent organ; s, openings communicating with the pritoneal cavity; l, claspers.
its fellow of the opposite side in a conical fleshy organ (l i), which may be presumed to answer the purpose of an intromittent appuratus.
(1860.) The second portion of the testis appears to consist of globular hodics having no excretory duct whatever ; and it is not impossible that this is an organ analogous to the testis of the Lamprey, and that its sceretion escapes into the abdominal cavity, to be expelled through two orifices (s) situated one on cach side of the anus, whercby a free communication exists between the interior of the peritoncal sac and the extcrnal surface of the body.
(1S61.) In these highly organized genera impregnation takes place internally, and the male is furnished with two strong prehensile organs called claspers (l), by means of which he seizes and sccurcly holds the female during copulation.

CHAPTER XXVI.

REPTILIA.

(1862.) The globe that we inhabit is usually said to be made up of land and water ; and perhaps, for the purposes of the geographer, such a division of the surface of our planct is all that is requisite. A slight investigation of the subject, however, is sufficient to convince the naturalist that a very considerable proportion of the world around us can searcely be strictly referred to cither onc or the other of the geographical sections alluded to-that there are extensive marshes, for instance, equally ill-adapted to be the habitation of aquatic animals and of creatures organized for a purely terrestrial existence-that some localities may be alternately deluged with water and parched with drought-that the margins of our lakes, the banks of our rivers, and the shallow ponds and streamlets of warm climates could only be adequatcly populated by beings of an amphibious character, alike capable of living in an aquatic or in an aërial medium, and combining in their structure the conditions necessary for enabling them to reside in either element.
(1.863.) Aquatic animals, strictly so called, breathe by means of gills. For a vertebrate animal to respire air, it must be provided with lungs ; but if a creature is destined to live both in air and water, it must obviously have both gills and lungs eocxistent, either of which may be employed, in conformity with the changing necessitics and altered circumstances. We therefore cannot be surprised to find that in the lowest Reptiles this is literally the arrangement adopted-that they respire, like fishes, by means of branchir while in the watcr, whereas on emorging into the air they have lungs ready for use.
(1864.) The Λ mpinbia (Batrachia, Cuv.) are to the anatomist amongst the most interesting animals in the whole range of zoology, as we trust:
will be made sufficiently evident when wo come to investigate their internal economy ; but it is to their outward forms and labits that we must first introduce the reader, leaving the details of their organization to be discussed in the sequel.
(1865.) From whatever form or race of animals the zoologist advances towards the next succeeding it in the great scalo of Nature, he will find himself insensibly led on by sueh gentle gradations that the transition from any one class to another is almost imporeeptible. Nihil per saltum is one of the most obvious laws in ercation; and of this, perhaps, we eould not select a more striking illustration than is afforded by the Lepidosiren (fig. 476).
(1866.) Two distinet species of this most remarkable animal have been met with-onc, the Lepidosiren paradoxa, discovered by Dr. Natterer in the river Amazon; the other, Lepidosiren annectens, was found by T. C. B. Weir, Esq., and is a native of the Afriean eontinent, inhabiting tho river Gambia. An individual of the speeies last mentioned las been minutely anatomized by Professor Owen *, and both in its outward form and internal organization is so precisely intermediate between a Reptilo and a Fish, that, while Dr. Natterer regards it as an Amphibian, Professor Owen eonsiders that, notwithstanding that it possesses lungs, tho iehthyie charaeters predominate and it ought rather to be ranked among the Fishes.
(1867.) The body of the Lepidosiren annectens (fig. 476) is about

Lepidosiren annectens,
a foot long; and eovered with seales, resembling those of the eyeloid fishes; the tail gradually tapers to a point, but is fringed above and below with a membranous fin supported by numerous soft, elastic, transparent rays, articulated to the superior and inforior spines of the eaudal vertebre : the gills aro covered by opereula-not being exposed, as in the proper Amphibia; and, moreover, it has four rudimentary fins or legs, as the reader may choose to call them. These rudimental extromities are round, filiform, and gradually attenuated to an undivided point, being supported internally by a single-jointed soft or cartilaginous ray. The nostrils of the Lepidosiren, however, are merely two blind saes, as in fishes, and do not communicate with the mouth or faucesa character whieh Professor Owen regards as the only decided evi-

[^211]dence that the animal ought in preforence to be ranked among the class Pisces.
(1868.) The Siren lacertina, a ereature which inhabits the marshes of Carolina, is another amphibious animal, scarcely further removed from the Fishes than the last. This Siren attains the length of two or three feet; it has a body very nearly resembling that of an eel; but instead of pectoral fins it has two rudimentary fect, each provided with four fingers, -its hind feet, the representatives of the rentral fins, being entircly wanting; it is morcover furnished with gills placed on each side of the neck, while internally it possesses two capacious membranous lungs adapted to aërial respiration.
(1869.) In the Proteus anguinus, an animal only met with in the subterranean water of Carniola, the body, of which a figure is given in a subsequent page (fig. 488), is equally anguilliform ; but the legs are now four in number, although still very imperfectly developed. Its gills are fringes of blood-vessels placed externally upon the sides of the neek; and its thin and delicate lungs (t, z) extend nearly the whole length of the abdomen.
(1870.) The Amphibia above-mentioned, as well as the Menobranchus and the Axolotl, both animals of very similar construction, preserve their branchix through the whole period of their lives, and are for this reason denominated Amplitia perennibranchiata. But there are other genera which, although in the early part of their existence they are equally provided with both gills and lungs, ultimately become sufficiently perfect in their organization to cuable them to enjoy a more or less complete terrestrial existence; and consequently their branchix become obliterated as the lungs grow more efficient, until at length no vestiges of the former remain perceptible. These are called A. cuducibrancliata.
(1871.) The most remarkable examples of the Caducibrancilite Amphibia are the Frogs, the Toads, and the Newts, so common in our own country ; and the metamorphosis of these creatures from the tad-pole- or fish-condition under which they leave the egg, to their perfect air-breathing and four-footed state, is a matter of common observation. We select the Newt (Triton cristatus) as an example of the changes which these amphibians undergo as they advance towards maturity.
(1872.) Immediately before leaving the egg, the tadpole of the Salamander, or Water-Newt (fig. 477, A), presents both the outward form and internal structure of a fish. The flattened and vertical tail fringed with a broad dorsal and anal fin, the shape of the body, and the gills appended to the sides of the neck are all apparent; so that, were the creature to preserve this form throughout its life, the naturalist would scarcely hesitate in classing it with fishes properly so called.
(1873.) When first hatched (fig. 477, в)*, it presents the same fish-

[^212]like body, and rows itself through the water by the lateral movements of the caudal fin. The only appearance of legs as yet visible consists in two miuute tubercles, which scem to be sprouting out from the skin immediately bohind the branchial tufts, and which are, in fact, the first buddings of anterior extremities. Nevertheless, to compersate to a

Larve of Triton. A. Condition before learing the egg. B. Tadpole shortly after it is hatehed. C. Tadpole about twelve days old.
certain oxtent for this total want of those prehensile limbs which afterwards become developed, two superuumerary organs are provisionally furnished, in the shape of two minute claspers, seen in the figure, situated on each side of the mouth; by means of these the little being holds on to the subaquatic leaves, and thus prevents itself from being washed away by the slightest current.
(1874.) Twelve days after issuing from the egg, the two fore legs, which at first resembled two little nipples, have become much elongated, and are divided at their extremity into two or three rudiments of fingers (fig. 477, e). The oyes, which were before scarcely visible, and covered by a membranc, distinctly appear. The branchire, at first simple, are divided into fringes, wheroin rod blood now circulates; the mouth has grown very large ; and the whole body is so transparent as to reveal the position of the viscera within. Its activity is likewise much increased; it swims with rapidity, and darts upon minute aquatic insects, which it seizes and devours.
(1875.) About the twenty-second day (fig. 478, D) the Tadpole, for the first time, begins to omit air from its mouth, showing that the lungs have begun to be developed. The brauchire are still large. The fingers upon the fore legs are completely formed; the hind logs begin to sprout beneath the skin; and the creature presents, in a transitory condition, the same exterual form as that which the Siren lacertinu permanently exhibits.
(1876.) By the thirty-sixth day the young Salamander (fig. 478, w)
has arrived at the development of the Proteus anguinus; its hind leg's are nearly completed, its lungs have become half as long as the trunk of its body, and its branchix more eomplicated in structure.
(1877.) At about the forty-second day the Tadpole begins to assume the form of an adult Triton (fig. 478, F) : the whole body becomes shorter ; the fringes of the branchix are rapidly obliterated, so that in five days they are reduced to simple prominences covercd by the skin of the head; and the gill-openings at the sides of the ncek, which, as in fishes, allowed the water to escape from the mouth, and were in like manner covered with an operculum formed by a fold of the integument, are gradually elosed; the membranous fin of the tail contracts, the skin becomes thieker and more deeply coloured, and the creature ultimately assumes the form and habits of the perfect Newt, no longer possessing branehix at all, but breathing air, and in every particular completely eonverted into a reptile.

Fig. 478.

Larræ of Triton. D. Condition of Tadpole at about the twenty-second day. E. The same at about the thirty-sixth day. F. The same at about the forty-second day.
(1878.) But however curious the phenomena attending the development of the tadpoles of the amphibious Reptiles may be to the observer who merely watches the changes perceptible from day to day in their external form, they acquire a tenfold iuterest to the physiologist, who traces the progressive evolution of their internal viscera-more especially when he finds that in these creatures he has an opportunity afforded him of contemplating (displayed before his eycs, as it were, upon an enlarged seale) those phases of development through which the embryo of every air-breathing vertebrate animal must pass while concealed within the egg. The division, therefore, of Reptiles into such
as undergo a metamorphosis, and such as do not, is by no means philosophical, although convenient to the zoologist: all reptiles undergo a metamorpliosis, though not to the same extent. In the Perennibrancirsta the change from the aquatic to the air-breathing animal is never fully completed; in the Caducibranciitata the change is accomplished after the embryo has escaped from the ovum; and in the Reprilia proper, as well as in Birds and Mammars, which are gencrally said to undergo no metamorphosis, the changes reforred to are accomplished in ovo during the earliest periods of the formation of the fæetus.
(1879.) The second order of Reptiles (OpHidra) includes the Serpent tribes, animals entirely deprived of external locomotive extremities, and nevertheless endowed with attributes at once formidable and surprising. Absolutely without limbs or any apparent means of progression, the scale-elad serpent makes its way in either clement with equal facility, and walks or leaps, or climbs or swims, at will. Destitute of any prehensile members, it seizes and devours the strongest and most active prey: it binds its victim in a living rope ; or, with a single scratch inflicted by its venomod fangs, specdily destroys the stoutest assailant.
(1880.) The transition from the Ophidia to the Lizards (SAURIa), composing the third order of Reptiles, is very gradually accomplished by several intermediate forms, in which the first buddings of legs make their appearance; and these locomotive organs, becoming more and more completely developed in other genera, at length conduct us from the floxible and apodous Serpents to the strong and four-footed Reptiles which are the types of the Saurian division. Tho progressive development of the locomotive extremities is not a little curious : even among some of the Serpents properly so called, as, for example, in the Anguis fragitis of our own country, the rudiments of these limbs may be dctocted beneath the skin ; more especially those of the hinder extremity, wherein a little pelvis and fenur may be distintly recognized, while a minute sternum, clavicle, and scapula indicate the first appearance of the thoracic legs.
(1881.) In Bimanes, the lowest of the Saurian genera, two little feet, each provided with four toes, are appended to the framework of the shoulder ; and in Seps, which equally possesses the body of a serpent, all four extremities first make their appearanee externally. As the legs become increased in their relative size and importance, the trunk is proportionately shortened and its flexibility diminished, until at length we are conducted, almost by imporceptible gradations, to the strong and voracious Crocodiles, the most perfect of the Reptile families.
(1882.) The fourth order of Reptiles (Chrlonia) comprises a series of animals of most anomalous conformation, in which the greater part of the skeleton is brought quite to the exterior of the body, and the limbs are absolutely enclosed within the cavity formed by the ribs. Such are the Tortoises and the Turtlos; but as we shall describe the
anatomy of these animals more at length hereafter, wo need only in this place point out to tho reader their outward form and general appearance.
(1883.) Commencing our rescarches concerning the internal organization of this extensive class by examining the osteology of the Reptilia, we shall, as we have hitherto done, select one skeleton for special examination, and afterwards, taking that as a standard of eomparison, observe the most conspieuous modifications of structuro met with in the different divisions of this important group.
(1884.) The skeleton we choose for particular description is that of the Crocodile, one of the most interesting that can possibly be offered to the contemplation of the comparative anatomist, inasmuch as it exhibits, developed to a medium extent, a greater number of the clements which we have supposed to enter into the composition of a perfect or typical sketeton than any other with which we are acquainted: we therefore beg the attention of the student while we investigate this important piece of ostoology.
(1885.) A glance at the skeleton of the Crocodile (fig. 479) at once shows us that, in consequence of the addition of a thorax, and the connexion which now necessarily exists between the pelvis and the spino, the vertebral column becomes divisible into distinct regions, viz. :- the cervical, containing seven vertebræ; the dorsal, formed by those vertebræ which support the thoracic ribs; and the lumbar vertebræ, intervening between these and the sacrum. The number of bones entering into the composition of the sacrum, that is, which are connected with the ossa ilii of the pelvis, are in

Fig. 479.
 this case two in number ; while, bchind these, six-and-thirty vertebre enter into the composition of the tail.
(1886.) In the cervical, dorsal, lumbar, and sacral regions, no inferior spinous processes exist ; but in the caudal portion of the vertebral
column these elements are found greatly developed, as in fishes, and obviously with the same intention, namely to incruase as much as possible the vertical extent of the tail, and thus convert this part of the body, which is here of extraordinary length and great flexibility, into a powerful instrument of propulsion.
(1887.) The transverse processes of the corvical vertebre are remarkably large, and so extended that they materially intorfere with the lateral movements of the neck, -an arrangement evidently designed to afford a sufficient extent of insertion for the powerful muscles of the cervical region.
(1888.) The thorax is composed of a sternum and two sets of ribs,one set being articulated with the transverse processes of the dorsal vertebræ, and hence called dorsal ribs, while the others, being fixed to the sides of the sternum, are named sternal ribs: the contiguous extremities of the dorsal and sternal ribs are, moreover, united by intervening cartilages, which, as they are generally more or less perfectly ossified in the adult Crocodile, might almost be regarded as additional elements of the thorax.
(1889.) The posterior dorsal ribs are far less perfectly developed than those situated more anteriorly; and it is not a little interesting to observe how gradually, oven in the same skeleton, the transition is effected from the simple condition already noticed in the ribs of fishes, in which each rib is merely appended to the extremity of the transverse process of a vertebra, to ribs perfectly adapted to enter into the composition of a true thoracic cavity, and united by a donble articulation both to the transverse processes and the bodies of the vertebræ. The head of the last rib of the Crocodile is, in fact, simple, and morely articulated with the apex of the transverse process of the corresponding vertebra; the next is slightly bifid at its origin, but both the divisions are still connected with the transverse process; as we advance still further forwards, the division of the origin of the rib becomes more and more decided, until at lerigth, at about the fifth rib, we have two distinct hoads, one firmly articulated to the body of the vertcbra, the other to the transverse process-presenting an arrangement precisely similar to that met with in the structure of the thorax of a bird.
(1890.) The sternal apparatus is not loss interesting to the osteologist. The anterior extremity of the sternum is osseous, and considerably prolonged forwards, to be articulated to the clavicles, and thus afford a support to the anterior extremity. Behind this it becomes cartilaginous, and affords attachment to the sternal ribs, which enter into the composition of the thorax: it does not, however, terminate at the posterior margin of the thoracic cavity, but is continued along the mesial line of the abdomen quite to the pubis, and gives off eight abdominal slernal ribs, to which no dorsal correspondents are met with. These abdominal ribs serve to support the muscles of the abdomen, and
here present their maximum of development: rudiments of them are, howerer, still met with in the higher animals ; and even in the human subject we find, in the transverse tendinous bands whieh intersect the substanee of the rectus muscle of the abdomen, the last remains of these appendages to the stermal portion of the skeleton.
(1891.) In the anterior extremity of the Croeodile we have most of the parts cuumerated as entering into the eomposition of a perfeet or typical skeleton : the shoulder, howerer, is composed of only two picees, the scapulu and the clavicle, the last of whieh articulates with the sternum ; the bones of the arm, forearm, and hand are eompletely dereloped.
(1892.) The postcrior extremities are fully formed, the pelvis being: eonneeted by means of the ossa ilii to the transverse proeesses of two vertebræ, which therefore, as we have seen, constitute the sacrum.
(1893.) In examining the bones which enter into the composition of the head of the Crocodile, or indeed of most Reptiles, the anatomist finds

Fig. 480.

Skull of the Crocodile.
his studies much facilitated by the circumstance that the sutures separating the individual bones never beeome obliterated, so that the elements of this portion of their skeleton remain permanently detached and separate ; and for this reason we shall take the present opportunity of going a little into detail coneerning the composition of the skull of
tho Crocodile, as it is well calculated to illustrate the real structure of the cranium in the Vertebrata gencrally.
(1894.) The bones belouging to the face are easily recognized: the intermaxillary (17), the maxillary (18), and the nasal (20), the zygomatic (b), and the lacrymal (c), all occupy their usual relative positions. The roof of the mouth is formed, as in Man, anteriorly by an elongated process of the upper jaw (18), and posteriorly by the palate-bone (22).
(1895.) The frontal consists of five pieccs, viz. the principal frontal (1), which probably, in the fotus, consisted of two latcral halves, the anterior frontal $(2,2)$ and the posterior frontal $(4,4)$.
(1896.) The parietal (7) is, as is generally the case in Reptiles, represented by a single bone.
(1897.) The occipital consists of four pieces, which remain permanently detached-namely, the basilar (5), the two lateral occipital (10), and the superior occipital, placed above the foramon magnum.
(1898.) The sphenoid, which in Man is regarded as a single bonc, is here represented by several distinct parts. The body is divided into two portions (6), called respectively the anterior and the posterior sphenoids. The great or temporal alce (11) are also separate boncs, as also are the internal pterygoids (25).
(1899.) A bone (24), which is not met with either in Mammalia or Birds, passes from the internal pterygoid to the point of junction between the zygomatic, the maxillary, and the posterior frontal: this has been named by Cuvier the transverse bone.
(1900.) The ethmoid and the vomer (16) are but very imperfectly ossified, so that in the skeleton the septum between the nostrils is extremely incomplete ; and the sense of smell is, of course, proportionately obtuse.
(1901.) But the most interesting of the cranial bones is the temporal, which, although considered one bone by the human osteologist, is in Reptiles evidently composed of at least four distinct and separate parts. These aro :-1st, the petrous bone (fig. 480, A, e), which partially encloses the organ of hearing; 2ndly, the tympanic bone (a), which supports the membrana tympani; 3rdly, the mastoil bone (12), which is the homologue of the mastoid process of Man ; and 4 thly, the temporal bone, properly so called (23), which represents the squamous portion of the human temporal bone.
(1902.) Each lateral division of the inferior maxilla of Reptiles is separable into at least five, and generally six, pieces, which are united together by suture ; these are named the clental (31), whieh supports the teeth, the angular (36), the opercular (37), the articular (35), and two small pieces seen upon the inner surface of the jaw.
(1903.) Having thus deseribed at some length the composition of the skeleton in the Crocodile, which we have chosen for minuto analysis as being the type of the Saurian Reptiles, we shall now proceed to
examinc the osteology of tho other orders, so as to appreciate more correctly the peculiaritics of structure that they individually exhibit.
(1904.) In tho Ampinibia, as for example in the Frog, one of the most striking circumstances connceted with their history is the extraordinary change which takes place in the condition of every part of the framework of the body during the evolution of the tadpole and its metamorphosis into the perfect frog.
(1905.) The skeleton of a Tadpole is, in every particular, that of a fish: its texturo is soft and cartilaginous, the caudal portion of the spine prolonged and flexible : neither are there any external limbs connected with the vertebral column, so as to trammel the lateral movements of the tail; and yet in tho mature Frog (fig. 481) let the reader observe the amazingdifference. The hcad, it is true, still preserves somewhat of the character of that of the fish, especially in the disproportionate development

Fig. 481.

Skeleton of the Frog. of the face when compared with the size of the cranial cavity; but all the bones of the spine have become consolidated into ten vertebræ, firmly connected together by strong articulations, while the flexible tail of the tadpole has become converted into a strong and immoveable os coccygis, composed of a single piece.
(1906.) No ribs whatever arc met with in the Frog ; and even in those Amphibia which are possessed of these elements of the skeleton, they are mere rudiments appended to the extremities of the transverse processes of the vertebræ. The sternum, however, is largely developed, and gives extensive attachment to the muscles of the abdomen. The anterior extremities are supported by a semicartilaginous zone, in which the three elements of the shoulder (the scapula, the clavicle, and the coracoid bone) are distinctly recognizable; and the bones of the arm, forearm, and hand are very perfectly formed.
(1907.) The pelvis is large and firmly ossified, in correspondence with the strength and magnitude of the hinder extremity, the ossa ilii being articulated to the ends of the transverse processes of the last vertebra, which from this circumstanco may bo called the sacrum. The tibia and fibula are consolidated into one bone; whilo two of the bones of the
larsus (the astragalus and the os calcis) are so exeessively elongated that they might almost be taken for a sceond tibia and fibula, did not their position indicate their real nature.
(1908.) One cireumstance is remarkable in the construction of the shoulder-joint of these reptiles, whieh are found to have a strong ligament passing between the head of the humerus and the scapula, exactly in the same manner as the ligamentum teres of the human hip-joint. The use of such a deviation from the ordinary structure of the artieulation is obvious: the Frog, as it alights from those long and vigorous leaps. which form its ordinary mode of progression, reecives the whole shock of its fall upon its fore legs, and thus this ligamont becomes needful as an additional security to the artieulation in question.
(1909.) The skeleton of an Ophidian Reptile presents a strange contrast to that of the Batraehian last deseribed. Taking the Boa constrictor as an example of this order, we find the spine of this enormous serpent eomposed of three hundred and four distinet vertebre, of which two hundred and fifty-two support ribs: flexibility is therefore abundantly provided for in the construetion of these lithe and elegant beings, inasmuch as the division of their spinal column into so many pieees

Fig. 482.

Vertebre and Ribs of Boa.
allows the utmost plianey in any required direction. Flexibility, however, is not the only condition requisite in this ease ; strength and preeision of morement are equally indispensable : and the question is, how are these apparently opposite qualities to be so combined and assoeiated as not in the slightest degree to interfere with eaeh other? The mechanism conspieuous in the construction of the spine of a Serpent is in this respect truly admirable. The anterior extremity of the body of every rertebra is rounded into a smooth and polished ball (fig. 482, c), which exactly fits into a hemispherical eup exeavated in the substance of the vertebra next preceding; a perfect ball-and-soeket joint is thus formed between every vertebra and that which precedes or follows it; and thus the spine is rendered eapable of the utmost latitude of movement, and offers at the same time a firm purehase to the museles activg upon the vertebral column. To provide, however, against undue extent of motion in certain directions, we now meet with other processes derived from the vertebral arehes, in addition to those given merely as
levers for the attachment of muscles: sceondary apophyses, ealled oblique or articulating processes, beeome developed; and eontiguous vertebre. being likewise moveably eomneted together, by means of these appendages unneeessary flexure is not allowed, and all danger of dislocation is prevented.
(1910.) Serpents, being entirely deprived of external limbs, have neither shoulder nor pelvis, their ribs alone affording them the means of progression. These extend on each side in an uninterrupted series from the first vetrebra behind the head to the origin of the tail, so that the division of the spine into regions is here out of the question. Every rib is attaehed at its origin by a kind of ball-and-soeket joint (fig. 482, a, b), to the extremity of the corresponding transverse proeess of a vertebra, and is therefore freely moveable. There is no sternum here; neither are there sternal ribs; but the dorsal ribs, wielded as they are by innumerable and powerful mnseles conneeted with them, literally perform the offiec of internal legs, and materially assist the ereature in progression.
(1911.) Having already enumerated the bones which enter into the composition of the eranium of a Sanrian Reptile, it would be superfluous again to mention in detail those met with in the skull of a Serpent, more espeeially as they will be easily reeognized by a glanee at the anuexed figure, in whieh the eorresponding bones are all indieated by

Fig. 483.

Skull of Boa.
the same references. One peculiarity only requires special notiee, uamely the extreme mobility of the principal bones of the faee, and more particularly of the pieees composing the lower jaw, by which provision these reptiles are enabled to swallow entire animals of astonishingly large dimensions when compared with the size of their mouth.
(1912.) In order to allow of this, the bones eomposing the superior mixilla (fig. $483,17,18$), are only loosely joined together by ligamentous:
bands, and oven the arches of the palate are moveable. The two halves of the lower jaw $(34,34)$ are connected together at the symphysis by a ligament so loose and clastic that separation to a great extent is easily allowed ; and, morcover, those two elements of the temporal, the mastoid (12) and tho tympanic (a), which form the bond of connexion between the inferior maxilla and the cranium are here lengthened out into long pedicles, so that by their mobility tho entrance to the throat can be dilated in a surprising manner, and prey of apparently very disproportionate bulk thus introduced into the stomach.
(1913.) The most extriordinary skeleton met with among Reptiles, and, indeed, among the Vertebrata generally, is that of the Chelonta, in which the ribs and sternum are both placed quite at the exterior of the body, so as to form a broad dorsal shield (called the carapax) and an equally strong ventral plate (named the plastron), between which the limbs and the head can be more or less completely retracted.
(1914.) Yet notwithstanding this apparent total inversion of the osseous system in the creatures before us, it is interesting to observe by what slight modifications in the arrangement of the elements of the skeleton such prodigious changes are accomplished. This is well exemplified in the construction of the carapax of the common Tortoise (Emys europra). In this well-known animal (fig. 484) the vertcbræ of the neck and of the tail present nothing particularly remarkable in their structure, but, being connected together in the ordinary manner, the neck and caudal region of the spine present their usual flexibility. The dorsal vertebræ, however, are strangely distorted, the elements of the upper arch being disproportionately developed, while the bodies remain almost in a rudimentary condition. The superior spinous processes of these vertebre are flattened and converted into broad osseous plates, which form a longitudinal series along the centre of the back, and are connected together by sutures resembling those of the human cranium. The ribs are changed into broad flat bones, firmly united by suture to each other and also to the latcral margins of the spinous processes of the vertebræ, so that they all form, as it were, a single broad plate: the heads of the ribs are very feebly developed, and the interrals between them and the bodies of the vertebræ filled up with ligament. The margin of the shield thus formed by the dorsal ribs is further enlarged by a third set of flat bones, apparently representing the sternal ribs of the Crocodile, fixed by suture around the whole circumference of the carapax, which they assist in completing.
(1915.) The plastron, or sternum, is made up of nine pieces, which have been proved by M. Geoffroy St.-Hilaire to be the elements of this portion of the skeleton in the most complete state of derelopment in which they are met with. Of these nine elements, eight are disposed in pairs ; but the ninth, which is always placed between the four pieces composing the two anterior pairs, is single, and occupies the mesial
line. In birds we shall afterwards find this clement of the stemum performing a very important office.
(1916.) Tho bones of the shoulder and of the hip, in the Tortoise (fig. 484), are absolutcly placed within the thorax, and articulated to

Fig. 484.

Skeleton of Tortoise.
the sides of the vertebral column. The precise homology of the scapular apparatus has not been as yet decidedly pointed out; thero are, however, three branches, probably representing the scapula, the clansicle, and the coracoid bone: but in the construction of the pelvis, the ilium, the isclium, and the pubis are identified with facility.
(1917.) The muscular movements of Reptiles are ordinarily slow and languid, a circumstance which no doubt depends upon the impurity of their blood, consequent on the imperfect manner in which the circulating
fluid is exposed to the influences of respiration. The muscles of these animals, however, are peculiurly tenacious of life, and preserve their irritability and power of contraction for an astonishing length of time after they have even been separated from the body. The muscles of a Turtle will continue to live for days after the creature has been decajpitated; and the heart will still contract, when irritated, even many hours after its removal.
(1918.) But perhaps the most interesting phenomenon connected with the muscular system of the Reptilia is the progressive development of entirely different sets of muscles as the metamorphosis goes on by which they are converted from their earliest, fish-condition, to their mature and perfect state. This scrics of changes, which doubtless takes place in all the higher Vertebrata, is well exemplified in the tadpole of the Frog or Toad; and the different phases of development are in such creatures easily investigated. At first the Tadpole presents the muscular structure of a fish, both in the muscles of the expanded and vertical tail and in those of the branchial apparatus. As growth proceeds, the broad muscles of the abdomen become developed; and ultimately those of the limbs are superadded as those members successively make their appearance, the muscles of the shoulder and pelvic region being first recognizable, and subsequently those of the legs and feet. In the meantime, as the abdominal muscles and those of the extremities become gradually perfected, those peculiar to the fish-state are rapidly removed : the broad tail becomes atrophied and absorbed, diminishing in length nearly at the rate of a line a day; the flaky lateral muscles of the caudal region disappear altogether ; and, moreover, the entire muscular apparatus of the branchial and hyoid systems is altered as the character of the respiratory organs becomes changed (in a manner to be explained hereafter) from the aquatic to the aerrial condition.
(1919.) As Reptiles, for the most part, must from necossity swallow their prey entire, organs of taste would be scarcely more useful to them than to the fishes described in the last chapter; and we are therefore not at all surprised to find the tongue in almost every family appropriated to a totally different use, and not unfrequently converted into an apparatus of prehension, whereby the food is seized and conveyed into the mouth.
(1920.) In the Batrachoid Amphibia, for instance, we have a remarkable example of this provision. The Frog and the Toad, notwithstanding their slow and clumsy movements, are destined to feed upon insects, and consequently must be provided with some instrument by which such active prey may be caught. The organ provided for this purpose is the tongue, which, by a slight modification in its structure, becomes changed into a prehensile forceps admirably adapted to such an office. The tongue of the Frog, instead of presenting the usual arrangement, is found to be fixed to the symphysis of tho lower jaw, and folded hack
upon itself, so that its point, which is free and bifid, is lodged in the throat. Thus provided, the Frog. is enabled to scize its victim with the greatest ease. No sooner docs a fly approach sufficiently near, than this living forceps is rapidly overted; and the insect, being seized by its furcate extremity, is as speedily brought between the jaws of its destroyer. The teeth of the Batrachia very much resemble those of the generality of fishes, being simple points soldered to the surface of the jaws, but not implanted in sockets-sufficient to give a secure hold of their food, but quite unadapted to mastication.
(1921.) The Chameleon is another curious example of a reptile obliged to employ its tongue in securing insect prey. The Chameleon is arborcal in its habits; its feet, cleft as it were into two portions, firmly grasp the boughs upon which it climbs; while its well-known power of changing the colour of its skin, so as to imitate that of the branches around it, efficiently conceals it from observation. The tongue of this creature, when extended, is as long as its whole body, and is terminated by a clubshaped extremity smeared over with a viscid secretion: when an insect comes within a distance of five or six inches from the Chameleon, the end of this tongue is first slowly protruded to the distance of about an inch, and then, with the rapidity of lightning, launched out with unerring aim ; the fly, glucd to its extremity, is with equal velocity conreyed into the mouth.
(1922.) The jaws of the Chelonian Reptiles are not armed with tecth, but cased in horny coverings, so as to resemble the beak of a bird, with which they crop the vegetable aliment upon which they generally subsist.
(1923.) Serpents, as regards their means of destroying prey, may be divided into two great groups-the first including those which are not venomous, the second embracing such as are armed with poisonteeth.
(1924.) In the non-venomous Serpents, as for example in the Boa constrictor, the upper jaws and the palate-bones are all lined with sharp teeth, so that there are four rows of dental organs, two placed along the margins of the maxilla, and two projecting from the roof of the month: all these tecth are simple, very sharp, and point backwards. Each division of the lower jaw is likewise armed with a single row, which are also directed towards the back of the mouth. It must be evident, from a mere inspection of these teeth, that they can be of little use in holding, much less in destroying, such strong and large animals as the Boa devours ; and upon a little consideration we shall find that they are intended for a very different office. These serpents kill their rictims by coiling their lengthy bodics round the chest, and then, by strong muscular contraction, compressing the thorax of their prey so firmly that, its movements being completely prevented, respiration is put a stop to, and the animal so scized speedily perishes from suffocation. But, having
succeeded in extinguishing life, the most difficult task still remains to be accomplished: how is the serpent, utterly destitute as it is of all external limbs, to force down its throat the carcass of a creature many times thicker than its own body? The mode adopted is as follows. Once more winding itself around the slain animal, it commences at the head, which by main force it thrusts into its mouth ; the elastic ligament at the symphysis of its lower jaw gives way, and the branches of the inferior maxilla become widely soparated, so that the mouth is stretehed cnormously as the food is thus foreed into it. Deglutition is here a very lengthy and laborious process; and were there not some special contrivance to guard against such an accident, so sooner were the efforts of the snake relaxed in the slightest degree than the muscles of the throat and jaws, being in a state of extreme tension, would force out of the mouth what had already been partially swallowed. To provide against this, the teeth are in this case converted into a sort of valve : pointing backwards, as they all do, they permit the bulky food to pass into the fauces; but at the same time their sharp points, being directed towards the throat, efficiently prevent it from being pushed back again in the opposite direction*.

Fig. 48.).

Strueture of the poison-teeth of the Rattlesnake: b, poison-gland enelosed in its capsule; c, duct conveying its secretion to the root of the poison-fang; a, poison-fangs; d, slip derived from the temporal muscle, which compresses the poison-gland; e, central aponeurosis; s, skin covering the gums.
(1925.) In the venomous serpents, those teeth which are fixed to the margin of the superior maxillary bone of the innoxious genera are generally deficient ; and instead of them there is found an apparatus of poison-fangs, constituting perhaps the most terrible weapons of attack met with in the animal creation. The poison-tecth (fig. 485, a) are tro

[^213]in number, one fixed to each superior maxillary bone : when not in use, they are laid flat upon the roof of the mouth, and eovered by a kind of sheath formed by the mucous membrane of the palate; but when the animal is irritated, or about to strike its prey, they are plucked up from their coneealment by muscles inserted into the upper maxillary bone, and stand out like two long lancets attached to tho upper jaw. Each fang is traversed by a canal-not, as it is generally described, excavated in the substance of the tooth, but formed by bending, as it vere, the tooth upon itself, so as to enclose a narrow ehannel through which the poison flows. The canal so formed opens towards the base of the tooth by a large triangular orifice ; but at the opposite extremity it terminates near the point of the fang by a narrow longitudinal fissure. The gland wherein the poison is elaborated occupies the greater part of the temporal fossa, and is enclosed in a white and tendinous capsule (fig. 485, b) ; the substance of the organ is spongy, and composed of cells communieating with its excretory duct (c), by whieh the venom is conveyed to the opening at the base of the fang*. The poison-gland is eovered by a strong process of the temporal musele (d), which is attached to a thin aponeurotic line (e). The greater portion of the fibres of this muscle take their origin from the capsule of the secreting apparatus, which they partially envelope; and then winding round all the posterior part of the gland, and passing behind the commissure of the lips, the lower part of the muscle is firmly implanted into the lower jaw very far anterior to the angle of the mouth. The process of the temporal muscle which thus surrounds the gland is very thick and strong, so that it is easy to imagine with what force the poison will by this mechanism be injected into the wounds inflicted by the fangs, seeing that the same muscles which close the jaw at the same time compress the bag of venom with proportionate energy.
(1926.) Behind the large poison-fang in use, the capsule that encloses it generally eontains the germs of several others, ready to supply its plaee should the former be broken off; and in the event of such an accident, one of these supplementary teeth soon becomes eonsolidated with the superior maxilla, and adapted in all respeets to take upon itself the terrible office of its predecessor.
(1927.) Dreadful as are the means of offence thus conferred upon the poisonous serpents, it is impossible to avoid uoticing in this place that admirable provision of Nature, which, in ono genus at least, serves to give timely warning of the vicinity of such dangerous assailants. We need merely mention the rattle of the Rattlesnakes (Crotalus)—an organ the intention of whieh is so obvious that the most obtuse eannot contemplate it without at once appreciating the beauty of the eontrivance. This singular rattle is formed of numerous horny rings that

[^214]are in fact merely modifications of the general scaly covering of the reptile, so loosely articulated together that the slightest novement of their formidable possessor is betrayed by the startling noise produced by the collision of the different picees composing the organ : even when at rest, the creature amomecs by rapid vibrations of the tail the place of its concealment, apparently to cantion the inadvertent intruder against too near an approach.
(1928.) In the grand police of Nature, the scavengers are by no means the least important agents. In hot climates especially, where putrefaetion advances with so mnch rapidity, were there not efficient and active officers continually employed in speedily removing all dead earcasses and earrion, the air would be perpetually contaminated with pestilential cffluvia, and, by the accumulation of putrcfying fiesh, entire regions rendered uninhabitable. Perhaps, however, no localities could be pointed out more obnoxious to such a frightful cause of pestilence than the banks of the tropieal rivers-those gigantie streams whieh, pouring their waters from realm to realm, daily roll down towards the sea the bloated remains of thousands of creatures, which taint the atmosphere by their decomposition.
(1929.) Such are preeisely the situations inhabited by Crocodiles and Alligators, the largest of the Saurian reptiles now in existence, animals in every way designed by Nature to feed upon putrefying materials. Their tongue (fig. $486, d$) scarcely projects from the lining membrane of

Fig. 486.

Mouth of the Crocodile: d, tongue; ", ghands ; f initione and y superior sulve separating the cavity of the mouth from h, the thront.
the mouth; and its surface (e) is studded with large glands: the whole interior of the mouth is, in fact, from its construction, little adapted to gustation.
(1930.) The Croeodile, nevertheless, likewise kills living prey, which, from the structure of its teeth, it is obliged to effect by dragging its rictim into the water and there drowning it. This mode of proeceding, however, simple as it might appear, involves many difficultics. As the reptile has no other instruments of prohension besides its mouth, and is obliged to hold its struggling proy submersed by the strength of its formidable jaws, it is manifest that, without some special contrivance, the water rushing into the throat of the Crocodile would prevent it from breathing, quite as effectually as the animal it endeavours to drown ; it might therefore become a question which of the two would survive immersion longest. The meehanism employed under these circumstances to give the Crocodile the advantage over its prey is very complete. A broad eartilaginous plate (fig. 486, f) stands vertioally from the os hyoides, and projects npwards into the baok part of the mouth; a similar valve (g) hangs down from the back of the palate, so that the two together form a kind of flood-gate, which, when the mouth is widely opened, offocts a completo partition between the cavity of the mouth and the fauces, where the aperture of the larynx (h) is situated. The nostrils, moreover, are placed quite at the extremity of the snont, and the nasal passages leading from them are prolonged through the whole length of the upper jaw until thoy communieate with the fauces, behiud the velum of the palate (g). Such being the arrangement, it is immediately obvious that, when the communication between the mouth and the fances is cut off by means of the two valves (g, f), the Crocodile, by meroly keeping the tip of its snout above the water, breathes with the utmost facility, and it is thus enabled to keep its prey submerged for any length of time that may be requisite to extinguish life.
(1931.) The tecth of the Crooodile and of the higher Saurians are not meroly consolidated with the bones of the skull to which they are appended, but are implanted in sockets formed in the bones composing the upper and lower jaws. Each tooth is a simple hollow cone, and encloses a vascular pulp, from the surfaec of which the bony matter of the tooth was formed. When a tooth becomes old and worn, a second is seereted by the same pulp within the cavity of the first, and the original one is shed, so that a suecession of teeth thus make their appearance.
(1932.) The alimentary canal of Reptiles offers little that requires special description. The œesophagus (fig. 491, $f f$) is generally extremely capacious, and the stomach of very variable shape and capacity. The latter viscus is for the most part pyriform, taporing gradually towards the pylorus; sueh is the case in the Cnelonia and in the Batrachoid Amphibia : in Serpents it resembles a long bowel, and is capable of extraordinary dilatation; and in the Perennibranchitita Ampirbia, as in the Proters (fig. 488, i) and the Menopoma (fig. 491, g), it looks like a mere dilatation of the intestine.
(1933.) The stomach of the Crocodile is remarkable as affording another among the innumerable instances that might be adduced of that gradual transition everywhere observablo as wo pass from ono class of animals to that which next succeeds it in the series of oreation. The Crocodile is tho connecting link between Reprielss and Bieds, and in almost every part of its body it presents a type of structure almost in termediate between the two.
(1934.) Tho stomach of this creature (fig. 487) might, in fact, bo

Fig. 487.

Stomach of the Crocodile : c, œesophagus; b, oentral tendon; a, radiating muscular fibres : d, commencement of duodenum; g, g, biliary ducts; i, intestine.
almost mistaken for the gizzard of a rapacious bird. The œesophagus (c) terminates in a globular reccptacle, the walls of which are very muscular ; and the muscular fibres (a) radiate from a contral tendon (b) precisely in the same manner as those of a bird. The pyloric orifice is closely approximated to the termination of the œsophagus, and the commencement of the duodenum dilated into a round cavity (d), 一an arrangement which, as we shall sco in the next chaptcr, exactly resembles that met with in the feathorod tribes.
(1935.) In the neighbourhood of the pylorus, the walls of the stomach in all the Reptilia become perceptibly thickened; tho intestine is gencrally short, and usually divided into two portions, representing the small intestines and tho colon, the division between the two being marked by a prominent valve analogous in function and position to the ilio-colic valve in the human subject; and somotimes, moroover, as for
instance in the Iguana, there is a distinet ceecum developed at the commencement of the large intestine.
(1936.) The auxiliary secretions subservient to digestion in the class before us are the sativary, the hepatic, and the pancreatic.
(1937.) The salivary glands aro of very peculiar construction*. In the Chelonian, the Saurian, and the Batrachin orders, the substance of the tongue seems to be principally made up of a thick glandular mass, formed by a multitude of little tubos united at their bases; but becoming separate towards the surface of the tongue, they give the whole organ a papillose or velvety appearance. This glandular apparatus rests immediately on the muscles of the tongue; and upon its sides a multitude of pores are visible, through which the salivary secretion exudes.
(1938.) In the Ophidian Reptiles, from the manner in which they swallow their prey, the bullk of the tonguc is neeessarily reduced to the utmost extent; the whole organ seems converted into a slender bifid instrument of touch, and is covered with a delicate membrane. Instead of the salivary apparatus described in the last paragraph, two glandular organs (fig. $485, s$), placed immediately beneath the skin of the gums, surround the margins both of the upper and lower jaws; and from these an abundant salivary secretion is poured into the mouth, through orifices situated externally to the bases of the teeth.
(1939.) The liver of Reptiles (fig. 488, h) requires no particular description : its sceretion, as well as that of the pancreas (fig. 488, 0), is poured into the intestine in the usual manner, at a litile distance from the pylorus.
(1940.) The spleen and systom of the vena portce are disposed in the same manner as in other Vertebrata. The spleen (fig. $488, l$) is generally more or less closely connected with the stomach; and the large rein derived from it, being joined by those proceeding from the other viscera of the abdomen, forms the trunk of the portal vein (m), which soon divides again into numerous branches that ramify in the substance of the liver.
(1941.) The lymphatic and lacteal systems are very important parts of the economy of these ereatures; and, front the large size of the absorbent vessels, their disposition is more easily traced in the class before us than in any other. The prineipal trunks surround the aorta and other large blood-vessels, and eommunieate very extensively with the veins in different parts of the body. From the imperfect condition of the valves in their interior, the lacteals of many tribes may be readily injected from trunk to branch, and when thus filled with mercury, they are found to spread out between the coats of the intestines like a dense network of silver.
(1942.) But the most remarkable circunstance connceted with the absorbents of this class of animals is the discovery, made by Professor

[^215]Miiller of Berlin *, of a system of lymphatic hearts destined to propel the produets of absorption from the ehief lymphatic trunks into the veins. In the Frog, four of theso pulsating eavities are easily displayed by simply raising the skin covering the regions of the body where they are situated. The posterior pair of hearts are appendages to the lymphatic trunks whieh eonvey the absorbed fluids derived from the hinder extremities into the isehiadie veins ; they are situated on each side midway between the extremity of the long bone whieh represents the os cocoygis and the hip-joint, and are placed immediately beneath the integument. They eonsist each of a single eellular eavity, and pulsate regularly; but their pulsations are quite independent of those of the heart, neither are the contraetions of the two lymph-hearts synchronous with eaeh other.
(1943.) Another pair of these contractile eavities is situated beneath the posterior margin of the seapula, elose to the transverse proeess of the third vertebra: this pair forees the eontents of the lymphaties of the anterior portions of the body into the jugular veins.
(1944.) Fishes respire water by means of gills. Reptiles, breathing a lighter medium, are provided with lungs-membranous bags, into which the external element is freely admitted, and again expelled in a vitiated eondition, its oxygen having been employed in renovating the blood, whieh eireulates in an exquisite network of delieate vessels that ramify in rieh profusion over the walls of the pulmonary ehamber.
(1945.) This important differenee between Fishes and Reptiles, as relates to their mode of respiration, would seem, at first sight, to draw sueh a distinet line of

* Vide Berlin Annals for 1832; and also Panizza, sopra il Sistema Linfatico dei Rettili. fol. Pav. 1833.

Fig. 488.

Anatomy of Protere anguinus.
demarcation between these two great classes of Vertebrata that it would be impossible for the most superficial zoologist to confound one with the other, or to be for a single moment at a loss in attempting to assign to any creature belonging to either of these divisions of the animal world its proper position.
(1946.) We have, however, again and again had opportunities of obscrving how nearly animals of neighbouring classes approximate each other, not only in their outward form, but in their anatomical construction ; and in considering this portion of our subject we shall have another most striking illustration of this great law in zoology.
(1947.) The perfect and typical Reptile, as the Lizard, the Tortoise, and the Serpent, breathes air, and air only, and is therefore only provided with lungs adapted to this kind of respiration ; but the Perennibranchiate Amphibia, possessing both lungs and gills, participate to a greater or less degree in the characters of Fishes, so that in some, as, for example, in the Lepidosiren (fig. 477), so near is the approximation that it becomes almost impracticable for the most accomplished anatomist precisely to determine whether the animal ought rather to be called a reptile or a fish ; and, lastly, in the Batrachian Amphibia, as we have already seen, we have the same animal gradually changed from a fish into a complete and perfect reptile.
(1948.) In considering the apparatus provided for circulation and respiration in the animals comprised in the class before us, we shall therefore first describe the organization of these viscera in Reptiles furnished with lungs only ; secondly, of those having permanent gills as well as lungs ; and thirdly, tho metamorphoses that take place in the construction of the breathing-organs during the development of the lungs, and the obliteration of the branchir in those forms in which the branchiæ are not persistent.
(1949.) The lungs of Reptiles are two capacious membranous sacs occupying a considerable portion of the visceral cavity, which, as there is no diaphragm as yet developed, cannot properly be divided into thorax and abdomen, as it is in Mammalia. From the internal surface of the walls of each lung membranous septa project inwards, so as partially to divide the interior of the organ into numerous polygonal cells, which are themselves subdivided into smaller compartments in a similar manner. This structure is well seen in the lung of the Tortoise (fig. 489).
(1950.) The pulmonary cells are most numerous and complete towards the anterior extremity of the lung, and it is here that the pulmonary vessels principally ramify: towards the hinder part of the viscus the cells become larger, and the breathing-surface proportionately less extensive, until in some cases, as in Serpents, the cells being quite obliterated, the lung terminates posteriorly in a simple membranous bladder.
(1951.) The air is brought into the lungs through a long trachea, composed, as in other Vertebrata, of a series of cartilaginous rings : but
there is this peculiarity in the construction of the Reptile lung; the trachea never divides into bronchial ramifications, but terminates abruptly by one or more orifices which open at once into the general pulmonary cavity.
(1952.) It must be evident, from the whole construction of a lung of this description, that, owing to the comparatively limited surface that it presents internally, it is far less adapted efficiently to exposo the circu-

Fig. 489.

Lung of the Tortoise : a, trachea.
lating fluid to the influence of the atmosphere than the more complex apparatus of Birds and Mammalia : the respiration of Reptiles is consequently proportionately imperfect; and hence that coldness of their blood and fecbleness of muscular movement which are so characteristic of the entire class.
(1953.) The air required for purifying the blood is, of course, continually changed, being alternately taken into the lungs, and again cx-
polled in a deteriorated condition, by a meehanism which will be found to vary in different roptiles in accordanco with the peculiarities of their organization. No reptile possosses a diaphragm ; and being destitute of this important muscle, the movements whereby inspiration and expiration are accomplished are, in such genera as are furnished with moveable ribs, entirely dependent upon the mobility of tho framework of the chest-the dilatations and contractions of the thorax, consequent upon the alternate elevation and depression of the ribs, being sufficient to ensure the inhalation and expulsion of air : such is the case in the Serpent and the Lizard.
(1954.) In the Ampiribia, however, there are not even ribs developed, or, if they exist at all, they are such mere rudiments as to be quite useless as instruments of respiration ; and on the other hand, in the Chelontan Reptiles, the large and expanded bones of the thorax are so consolidated together, and so immoveably fixed to the broad and osseous sternum, that respiration in the ordinary manner would be altogether impracticablc. Under these circumstances, as a compensation for the want of mobility in the chest, the os hyoides and the muscles of the throat are converted into a kind of bellows, by which the air is forced mechanically into the lungs, and they are thus distended at pleasuro.
(1955.) Any one who watches a Frog or a Tortoise with a little attention will at once understand the mechanism by which this is effected. The mouth is kept closely shut; and the nostrils, which open immediately into its cavity, are each provided with a muscular valve, so disposed as freely to permit the entrance of air into the mouth, but also effectually preventing its return by the same channel. By this arrangement the descent of the hyoid apparatus fills the mouth with air; and the subsequent contraction of the broad muscles of the throat, the nostrils and the pharynx being of course both closed, forces the air into the opening of the larynx, and distends the lungs, from which it is again expelled by the pressuro of the abdominal muscles.
(1956.) The structure of the heart and the course of the circulation in Reptiles afford interesting subjects for investigation. The heart consists of three cavities, namely, a strong and muscular ventricle (fig. 490, a), and two membranous and very capacious auricles, both of which communicate by valvular openings with the ventricular cavity. The right auricle (b) receives the venous blood from all parts of the body through the venæ cavæ (n, o, p), the terminations of which are guarded by strong valves; the left auricle (c) is appropriated exclusively to the lungs, from which it receives arterial blood through the pulmonary veins $(m \mathrm{~m})$. It is obvious, therefore, that the ventricle reccives two kinds of blood from the two auricles-venous blood from the systemic auricle, and arterial blood from the pulmonic auricle; and as the interior of the ventricular cavity is crossed by innumerable columne carnece, giving it almost a spongoid appearance, the vitiated and purified blood
derived from these two sourees are more or less completely mixed together, and blood only partially arterialized is distributed to the system.
(1957.) Two sets of vessels take their origin from the single ventricle, viz. the pulmonary and aortic. The pulmonary artery soon divides into two trunks ($f f$), one destined to each lung; so that a part of the impure blood expelled from the ventricle is at once driven to the organs of respiration to be further oxygenized. The coorta, immediately after its origin, likewise separates into two trunks (d, e), the right and the left, whieh, winding backwards, ultimatcly join to form one great vessel

Fig. 490.

Heart of the Tortoise: b, right auricle; n, o, p, venæ caræ; c, left auricle; m, m, pulmonary veins; f, f, pulmonary arteries; d, e, the two aortæ, which subsequently unite to form a single trunk, $l ; i, k$, risceral arterics; g, g, arteriæ innominatæ; h, h, carotid arteries.
(l), from which the arterics of the viscera (i, k) and those destined to the posterior parts of the body are given off. From the commencement of the right aortic trunk a very large vessel is furnished, which bifureates to form two arterice innominatex $(g g)$, from whieh the carotid and subclavian arterics take their origin.
(1958.) Although the above deseription refers more immediately to the construction of the heart of the Tortoise, in all essential particulars
it is equally applicable to all Reptiles of the Saurian, Chelonian, and Ophidian orders; and when we thus see that, in addition to the comparatively imperfect condition of their lungs, the blood which circulates through the body is in these creatures a mixed and scmivenous fluid, we need not be surprised at the contrast which they offer when compared with the hot-blooded and vigorous animals to be described in the subsequent chapters of this work.
(1959.) Cuvier committed a serious crror in describing the Batrachian reptiles as having a heart composed of but two cavities: our illnstrious countryman John Hunter had already ascertained that in Frogs, Toads, and Salamanders the heart possessed a pulmonary as well as a systemic auricle ; and his observations have since been abundantly confirmed by Dr. Dary, Dr. Martin St.-Ange, and Professor Owen. The pulmonic auricle in these creatures, indeed, is comparatively of small size ; but it exists as a perfcctly distinct chamber, and rcceives the blood from the lungs preparatory to its admission into the common ventricle.
(1960.) With regard to the use of the additional auricle in the Reptilia, Professor Owen has well remarked* that, from the impediments which frequently occur to a free and regular circulation of blood in these cold-blooded and slow-breathing creatures, the venous side of the heart is subject to great distention ; hence the large size of the auricles, and of the sinus which reccives the systemic reins, and also the perfect devclopment of the valves intervening between the venæ cavæ and the auricle, of which the Eustachian valve of the Mammiferous heart still presents a rudiment. Had the pulmonary veins terminated along with the systemic in the same cavity, their orifices would have been subjected to the pressure of the accumulated contents of that cavity, and there would have been a disproportionate obstacle to the passage of the aërated blood into the ventricle. This is obviated by providing the pulmonary veins with a distinct receptacle, which is equally ready with the right auricle to render its contents into the ventricle during the diastole of that cavity.
(1961.) Passing from the consideration of the more perfect Reptile circulation as it exists in those genera which in their adult condition possess lungs only, to those which may properly be called Amphibious, and are provided with both lungs and gills throughout the whole period of their lives, we must still pause to notice one or two intermediate forms, which, notwithstanding that they lose their branchix at an carly stage of their growth, are evidently elosely related to the Perennibranchiata, as may be gathered from the arrangement which their blood-vessels permanently exhibit. Such is the Menopoma, or Great South-American Salamander, an animal met with in the rivers and lakes of the South-American continent. In the annexed figure, taken from the Catalogue of the Hunterian Collection, the principal vessels of

[^216]this creature aro delinoated as seen from the dorsal asject. The lower jaw (fig. 491, a) has benn removed from the head, so that in the drawing are exposed the cut edge of the masseter muscle (b), the tonguo (c), and tho opening of the larynx, into which a bristle (d) has been introduced, one end of which is seen passing into the cavity of tho right lung: tho bag of the pharynx ($f f$) has been left entire; and upon this tho main vascular trunks are supported. From the heart, situated upon the opposite side of the œesophagus, is given off a large vessel representing the bulbus arteriosus of fishes, which terminates by dividing into four branchial arteries; but as in the adult Menopoma there are no branchir, these vessels ($\left.\begin{array}{lll}0 & 0\end{array}\right)$ wind round each side of the neck, and again mite into two trunks $\left(\begin{array}{rl}r & r\end{array}\right)$ which by their union form the aorta ($t t$). It will easily be perceived that this arrangement is preciscly that met with in fishes ; only that, as there are here no gills intervening between the terminations of the branchial arteries and the commencements of the branchial veins, these vessels are immediately continuous with each other. Moreover, from the lowest branchial $\operatorname{arch}(0)$ a pulmonary artery is given off, which ramifies over the surface of the as yet rudimentary lung (e), and thus gives risc to a distinct pulmonary circulation.
(1962.) Having earefully considered the disposition of the ressels in the Menopoma above described, the reader will be able to appreciate the arrangement of the vascular system in those Amphibia which, being provided with both gills and lungs through the wholo of their lives,
literally combine the blood-vessels of a fish with those of an air-breathing reptile.
(1963.) In the Perennibrincuitata, as, for example, in the Proteus, instead of the bulbus arteriosus being immediately continuous with the worta (as it is in the Menopoma) through the interposition of the vessels 000 (fig. 491), tho blood derived from the heart is obliged to pass more or less completely through gills appended to the sides of the neek before it arrives in the vessels $(r r)$ which may be said to represent the branchial veins of fishes.
(1964.) The branchiæ are either vascular tufts or pectiniform organs (fig. 492, b b), essentially analogous in structure to those of a fish. The blood, however, which is propelled from the heart is not here entirely venous, but consists of a mixed fluid, partially derived from the systemic and partially from the pulmonary auricle, the two having, of course, been mingled together in the common ven-

Branchia of Proteus anguinus: a, branchial artery b, b, branchial fringes; c, branchial vein, which returns the arterialized blood from the gills. tricle of the tripartite heart. The contraction of the heart forces the blood into the bullus arteriosus, from which it is in great part driven into the branehix: arrired there, it passes along the great branchial artery (fig. 492, a), is made to circulate over the branchial fringes (b); and being again collected into the branchial vein (c), in a purified condition, it is poured into those large trunks, the representatives of the vessels $r r$ (fig. 491), which form the aorta.
(1965.) But, besides the branchial eireulation, these creatures likewise possess lungs (fig. 488, z, t), and a pulmonary circulation of greater or less importance in different genera. Nevertheless the pulmonary artery is merely a small twig given off from the aortic system of vesscls, through whieh semiarterialized blood passes to the lungs, to be returned in a still purer condition to the left auricle of the heart.
(1966.) If the student has fully comprehended the permanent eondition of the blood-vessels as it exists in the perfect Reptile and in the Perennibranchiate Amphibian, he will have little difficnlty in understanding the ehanges which occur in the distribution of the vascular system during the metamorphosis of the Caducibranchiata.
(1967.) In the Salamander, when the lungs begin to be developed and are coexistent with the branchial apparatus, the arrangement of the circulating system is precisely similar to that described as being permanent in the Perennibranchiata; as may be scen by a reference to the appended diagram (fig. 493), which would equally illustrate the distribution of the blood-ressels in both cases.
(1968.) [n this early stago of the tadpole's life, the contraction of tho heart and bulbus arteriosus drives the greater part of the blood through tho branchial arteries (fig. 493, a a a) to the gills, from which it is returned in a purified eondition by the branehial veins ($f f f$), whieh, by their union, at length form the corta, as in fishes. At this period tho pulmonary artery (b), whieh is very small, in eorrespondence with tho as yet rudimentary condition of the lungs, is merely a branch derived from the aortie system, and reinforced by a vessel (c) given off from tho bulbus arteriosus. The greater proportion of the blood therefore evidently goes to the branchiæ, and a very small part to the lungs.
(1969.) The reader, liowever, must here remark that there are small anatomosing vessels (fig. 493, e ee) uniting the branchial aiteries with the trunks of the branehial veins, and that these are situated just at the roots of the gills, since these vessels beeome of the utmost importanee during the subsequent stages of the metamorphosis.
(1970.) The branchir gradually beeome diminished in size, and a smaller quantity of blood passes through them; and as this goes on, the vessels (a a a, fff) shrink in the same proportion. Meauwhile the lungs are progressively more and more developed, and the pulmonary artery (b) expands in an equal ratio. As the blood forces its way with more difficulty through the branchix, the anastomosing vessels (e e e) dilate, and a freer supply of blood is poured into the pulmonary system, until at last, when

Fig. 493.

Course of the cireulation in Protens anguinus. (After Rusconi.) a, a, a, branchial arteries; f, f, f, branchial veins; b, pulmonary artery; c, branch derived from the bulbus arteriosus, which assists in forming the pulmonary artery; e, e, e, anastomosing ressels between the branchial arteries and the branchial reins. tho lungs are fully formed, and the branehial arteries ($a<a$) and veins ($f f f$) quite obliterated, all the blood necessarily passes immediately through the anastomotic trunks (e e e), which of eourse then represent the vessels ($\begin{array}{lll}0 & 0 & 0 \text {) of the Meno- }\end{array}$ noma (fig. 491), and the mode of respiration is thus completely converted from that of a Fish into that of a true Reptile.
(1971.) But during the progress of these changes in the disposition of the vascular system, others not less wonderful take place in the form and uses of the entire hyoid apparatus, and in those muscles of the throat which are connected with tho function of respiration.
(1972.) The hyoid apparatus of the tadpole is, in fact, a rery com-
plicated structure *, and, like that of the fish, supports tho branchix, and facilitates the entrance and expulsion of tho water ; moreover, by opening or closing the communication which exists through the branchial apertures betweon tho mouth and the exterior of the body, it thus allows air to be taken into tho lungs at pleasure.
(1973.) The os hyoides of the tadpole, at an early period of its derelopment, supports four branchial arches (fig. $494, \Lambda, 1,2,3,4$), which bound three branchial fissures, through which, as in a fish, the water escapes from the mouth. The branchial arehes 2 and 3 are studded on each side with cartilaginous points ; and the arches 1 and 4 have similar points on one side only; so that when the arches are approximated, as they can be by an elaborate temporary set of muscles provided for the purpose, the eartilaginous teeth lock into each other so accurately that the branchial fissures are completely and firmly closed-a provision which is evidently indispensable in order to allow the tadpole to fill its lungs with air.
(1974.) The above is the condition of the branchial portion of the Fig. 494.

hyoid apparatus before the metamorphosis of the tadpole has made much progress ; and from this time a series of changes begins of a most curious and interesting description.
(1975.) When the metamorphosis has commenced, the os hyoides and branchial arches assume the appearance represented at fig. 494, в. The pieces 8 and 9 are no longer both cartilaginous, the latter having. become entirely ossified. The branchial arch 1 is likewise converted into bone; and its upper surface, being considerably enlarged, is now connected with both the pieces marked 10 and 11. The three carti-

[^217]laginous pieees $5,0,7$, in fig. 494, A, are consolidated into one, while the branchial arehes 2, 3, 4 become much reduced in size, the branchix approach each othcr, and the cartilaginous points with which they are provided adhere together, so that from hour to hour, so to speak, the mass $(2,3,4)$ composed of the threc united branehial arches becomes insensibly obliterated, and in a rery fcw days is entirely alsorbed. While this absorption is going on, the branchial arch (1) assumes greater consisteney, its inferior extremity bccomes direeted outwards, and it loses the little cartilaginous tecth previously appended to it; the os hyoides thus assumes the simple form represented in fig. 494 , c. Lastly, the cartilage 6 disappears, and the eomplex branchial apparatus of the tadpole becomes converted into the permanent and eomparatively simple os hyoides of the Salamander, depicted in fig. 494, \mathbf{D}.
(1976.) The branehial arches 2, 3, 4, Dr. St.-Ange remarks, are absorbed in proportion as the eireulation becomes modified, their atrophy depending upon the ehange which takes place in the course of the blood, owing to the dilatation of the anastomotic vessels (fig. 493, e e e) and the enlargement of the pulmonary artery (b). It is, therefore, owing to a kind of revulsion produced by the afflux of the blood towards the pulmonary organ instead of towards the branehir, that the atrophy of the branchial capillaries, and subsequently of the whole branchial apparatus, is produced.
(1977.) We must in the last place, before leaving the consideration of the

Fig. 495.

Course of the cireulation in Lepidosiren. (After Owen.) a, auricle of the heart; b, ventricle; c, bulbus arteriosus; e, vena cava; f, pulmonary vein; m, the lungs: $1,2,3,4,5,6$, branchial arteries; l, m, pulmonary arteries. cireulating system of the Reptilia, describe that of the Lepidosiren, a ereature so exactly intermediate between the two elasses, that it is really difficult to determine whether it ought most properly to be called a fish provided with lungs, or a reptile with the eirculatory organs of a fish.
(1978.) The heart resembles that of a fish, and eonsists of a single auricle (fig. 495, a), a ventriele (b), and bulbus arteriosus (c). The vena cava (e), bringing the vitiated blood from the system, terminates at onco in the auriele, which is represented in the figure as laid open ;
but the pulmonary vein (f), whereby the aerrated blood is brought from tho lungs (m), passes along as far as the auriculo-ventricular opening, where it empties its contents into the ventricle by a distinct orifice, protected by a cartilaginous valvulder tubercle.
(1979.) It is therefore only necessary in this case to dilate the pulmonary vein previous to its termination, to make a heart with two auricles ; but, as Professor Owen observes, the same advantage is secured to the Lepidosiren in a different mauncr ; for, while it still retains the diœcious type of tho heart of the fish, the continuation of the pulmonary vein prevents the admixture of the respired with the venous blood until both have arrived in the ventricle.
(1980.) The aorta, or, rather, the bulbus arteriosus (c), in this interesting creature, fulfils at once the office of a systemic, a branchial, and a pulmonary artery. It gives off on each side six vessels, which correspond to the six cartilaginous branchial arches; of these arches four, namely the 1 st, 4 th, 5 th, and 6th, support gills, so that the artcries belonging to them ($1,4,5,6$) are, as in fishes, distributed over the branchial fringes, and are thus true or functional branchial vessels. But the 2 nd and 3 rd arches have no gills appended to them; so that the arteries $(2,3)$ belonging to these arches do not divide, but are continued round to the dorsal region, where they unite to form an aorta, as in Menopoma (fig. 491) ; moreover, before their union to form the systemic trunk, they give off the pulmonary arteries (l, m) by which the pulmonary circulation is supplied. Thus each contraction of the ventricle of the heart drives the mixed blood derived from the venæ caræ and pulmonary veins to the gills, to the aorta (through the vascular trunks 2, 3), and to the lungs (through the pulmonary artery, $l \mathrm{~m}$); so that from this arrangement, whether the creature be placed in water or in air, respiration is carried on efficaciously either by the pulmonary or branchial apparatus vicariously.
(1981.) Tho principal difference observable between the brain of Reptiles and of Fishes is the increased proportional size of the cerebral hemispheres (fig. $496, b$) ; but they are still extremely small when compared with the bulk of the body. The appended figure (fig. 496), which represents the brain of the Tortoise in threo different aspects, may easily be compared with that of the fish already given. The olfactory lobes (c) might now be mistaken for prolongations of the anterior extremity of the hemispheres ; they contain distinct ventricles, and of course give origin to the olfactory nerves (00). The hemispheres (b) are much more devcloped than in the last class: their surface is always smooth and without convolutions ; and they are hollowed out into capacious ventricular chambers, in which aro contained the corpus striatum and choroid plexus (fig. 496, e); the two sides are moreover brought into communication by an anterior and a postcrior commissure.
(1982.) The optic lobes (e) are as yet uncovered by the extension of
the homisphere baekwards, and each, when laid open, is found to enclose a ventriele (fig. 496 , c). The eerebellum (a) is still small, and consists but of the median portion: behind it is a supplementary lobe (g), extending over tho fourth ventriele, as in Fishes. The student will easily recognizo the pituitary body (f); but neither this nor the origin of the nerves presents any peeuliarity worthy of more partieular deseription.
(1983.) Taking the ecrebral nerves in the order in whieh they arise, we will now proeeed briefly to traee their general distribution ; and this we shall find to eorrespond most exaetly in all essential points throughout the different classes of Vertebrata.

Fig. 496.

Brain of the Tortoise: o, olfactory nerves; c, olfactory lobes of the brain; b, cerebral hemisplhercs; e, optic lobes; a, cerebellum; g, supplementary lobe; f, pituitary gland.
(1984.) The olfactory nerves leave the olfactory lobes of the brain as single round cords, and are not, ns in the Mammalia, divided iuto numerous filaments; consequently there is no eribriform plate to the ethmoid bone, but the nerve of each side (fig. 498 e) is reecived into a simple canal, partly osseous and partly eartilaginous, through which it is condueted to the cavity of the nose.
(1985.) The nasal apparatus of Reptiles differs from that of Fishes in one important partieular. Breathing air as these ereatures do, the sense of smell now beeomes connected with the respiratory function: and a communieation being established between the nasal caritios and
the larynx, the air which passes through this channel into the lungs must necossarily come into contact with tho scntient surface formed by those portions of the lining membrane of the nose to which the nerves of smell are distributcd; and in proportion as the extent of that surface becomes dereloped, the power of appreciating tho presence of odorous partieles in the atmosphere will necessarily be increased. The physiologist is thus enabled to estimate with great exactness the relative perfeetion of tho sense of smell in different classes, or even in different families of the air-breathing Vertebrata, simply by observing the complication and extent of surface prescnted by the lining membrane of the olfactory organ.
(1986.) Taking this as as our guide, we must suppose that in all reptiles the sense in question is extremcly obtuse, since in these creaturcs there are neither turbinated bones nor cthmoidal plates as yet distin-guishable,-a few folds of the membrane lining the nose, even in those spccies which are most highly gifted in this particular, being the only provision for extending the olfactory surface; and in many cases, as for example in the Amphibia, the nose seems merely a simple canal leading into the mouth.
(1987.) On reaching the nasal cavity, the olfactory nerve spreads out into delicate filaments (fig. 498, d), which are distributed to the Schneiderian membrane covering the septum and upper part of the nose.
(1988.) The optic nerves of Reptiles (fig. 496, n), soon after their origin, become confounded together by a commissure, in the same way as in the human subject; and again separating, they are continued through the optic foramina to the eyes.
(1989.) The eyeball itself presents few peculiarities in its structure. In the Tortoise, and many Lizards, the sclerotic contains a circle of bony plates imbedded in its substance, and surrounding its anterior margin : these are obviously the rudiments of that osseous zone which in the class of Birds, as we shall find, performs a very important office. The eiliary processes of the choroid are generally very feebly developed. The pupil is frequently round; but it is sometimes of a rhomboidal figure, as for example in the Gecko ; and in the Crocodile and some Serpents the pupillary aperture is a vertical fissure like that of a Cat.
(1990.) The optic nerve enters the eye in the same way as in quadrupeds, and, having passed the choroid, it torminates in a round papilla, from the margin of which the retina spreads out. As to the rest, the eye of a reptile differs so little in any essontial circumstance from that of Man as to render any more elaborate description superfluous.
(1991.) The eyeball is moved by six muscles, disposed as in Fishos, -the four recti arising from the margin of the optic foramen, while the two obliqui are derived from the anterior margin of the orbit.
(1992.) In Fishes, from the circumstances under which they live,
thore is no oceasion for the preseneo of any lacrymal apparatus, or for oyelids adaptod to defend and moisten the surfacc of the cornea; but in the elass before us, espeeially in the more elevated tribes, these appendages to the oye make their appearance, and gradually assume a complexity of strueture even greater than that which they present in the human subject.
(1993.) In Serpents, and in some of those Lizards whieh are most nearly allied to the Ophidians, there are still no eyelids; and consequently in such genera there can be neither any laerymal apparatus nor a conjunctiva, properly so ealled; the skin of the head merely passes like a delicate film over the transparent cornea, offering no fold worthy of the name of an eyelid.
(1994.) In ordinary Lizards* the skin forms a kind of reil stretched over the orbit, and piereed by a horizontal fissure, whieh is closed by a sphineter muscle. The lower eyelid is the most moveablc, and encloses a small cartilaginous plate ; and there is, besides, generally a fold of the eonjunetiva at the inner eanthus of the eye, which is the first appearance of a third eyelid or membrana nictitans.
(1995.) In the Chelonian Reptiles and in the Crocodiles, the upper and lower eyelids are sufficiently perfeet accurately to close the cye; but there are no eyelashes as yet present. Moreover these animals possess an additional eyelid or nietitating membrane, similar to that of Birds, which ean be drawn at pleasure over the front of the eye, so as entirely to eonecal it. This is effected by a special musele provided for the purpose, which arises from the posterior part of the globe of the eye, and, after winding round the optic nerve, passes beneath the eyeball, to be inscrted into the free margin of the membrana nietitans. In Frogs and Toads the upper and lower eyelids are nearly motionless; but the third is largely developed, and moved in the same way as that of the Crocodile.
(1996.) In the higher Reptilia a distinet lacrymal gland and puncta lacrymatia are met with, occupying the same positions as those of the human subject.
(1997.) The third, fourth, and sixth pairs of the ecrebral nerves have the same distribution in all the Vertebrata, and represent respectively the oculo muscular, the $\hat{p} a t h e t i c i$, and the abducentes of Man.
(1998.) The nerves belonging to the fifth pair likewise correspond both in their distribution and office with the trifaeial nerves of mammiferous Vertebrata.
(1999.) The facial nerve, or portio dura of the seventh pair, is small, in proportion to the limited development of the soft parts of the face, but-it is eonstantly present.
(2000.) The auditory nerve, of course, is destined to the ear, and its distribution is almost the same as in Fishes; nevertheless, in the general * Cuvier, Teçons d'Anat. Comp. tom. ii. p. 433.
eonstruetion of the organ of hearing, Reptiles present very important and interesting advanees towards a higher form of the acoustic apparatus, which we must proeeed to notiee.
(2001.) The ear of Fishes, being only adapted to hear sounds conveycd through a watery medium, was found to consist only of the mom-p. 704 branous labyrinth, enclosed in the cavity of the skull, and without any eommunication with the exterior of the body. Reptiles, on the contrary, living in air, must be enabled to appreeiate the sonorous vibrations of the atmosphere, and are consequently provided with an auditory apparatus capable of responding to pulsations of sound of far greater delieacy than those transmitted through the denser element.
(2002.) The first great improvement, therefore, whieh the anatomist notiees in the composition of the ear of a Reptile, is the addition of a tympanic cavity, and of a tense and delieate membranous drum, the vibrations of whieh are communicated to the labyrinth or internal ear through the intervention of an ossiele that represents the stapes of Mammalia.
(2003.) The drum of the ear is situated immediately beneath the skin, the parts eomposing the external ear of quadrupeds being as yet entirely defieient. The membrana tympani, that now for the first time makes its appearance in the series of animals, is tensely stretehed aeross the tympanic aperture, being eovered externally by the integument of the head. In the Turtle (fig. 497) the tympanic membrane is represented by a cartilaginous plate (a). The ossicle, or columnella as it is here ealled, is single and trumpet-shaped; it passes quite across the

Fig. 497.

Ear of the Tortoise ; a, membrana tympani ; b, cavity of the tympanum; c, columnella. tympanie eavity (b), its external extremity being inserted into the drum, while at its opposite end it expands into a disk (c), whieh closes an aperture (foramen ovale) that communieates with the membranous vestibule of the internal ear. It is obvious, therefore, that every tremor impressed upon the membrana tympani will be conveyed by the columnella to the foramen ovale, and thus communieated to the fluid contained in the labyrinth, upon which, as in fishes, the auditory nerve is distributed.
(2004.) The eavity of the tympanum eommunicates with the interior
of the mouth by a wide opening, that represents the Eustachian tube, a eirenmstaneo evidently intended to prevent air or fluid from being pent up in the tympanie chamber and thus interfering with the free vibration of the drum.
(2005.) In Serpents, on account of the peculiar disposition of the picees of the temporal bone, before deseribed ($\$ 1912$), there is 110 tympanic eavity, and the columnella (fig. $483, v$) is absolutely imbedded in the flesh; the arrangement, however, in other respects is the same as in the gencrality of reptiles.
(2006.) The lower tribes of Amphibia, as we might be led to expect from their close approximation to Fishes, have neither tympanum nor columnella, and thus, like Fishes, ean only hear in an aquatic medium.
(2007.) The membranons labyrinth of Reptiles (fig. 498, abc) corresponds in its gencral conformation with that of Fishes, presenting the same semicircular canal, ampullæ, and vestibular eavity; and more-

Fig. 498.

Auditory and olfactory apparatus of the Turtle: a, auditory nerve; b, vestibule ; c, semicircular canals; e, olfactory lobe of the brain; d, expansion of the olfactory nerve over the walls of the nasal cavity.
over the sacculus eontains cretaceous concretions or otoliths of a similar character; but in this class the membranous canals become cnelosed in a bony sheath, moulded as it were upon the outer surface, which is another very important step towards perfecting the auditory apparatus.
(2008.) Neither must we omit to mention that in the highest of the Reptilia, as for example in the Crocodile, the first rudiment of a cochlea makes its appearance, although as yct in a form of extreme simplicity. This portion of the organ of hearing, which, from the claborate structure that it presents in the higher Vertebrata, must be regarded as being importantly eonnected with eorrect audition, is seen in this the earliest stage of its development to bo a simple conical appendage to the sac of the vestibule; and on opening it, it is found to be dirided by a
central cartilaginous septum into two eompartments, which, however, are continuous with eaeh other at the apox of the cone. One of these eompartments or eanals opens at one extremity into the vestibule, while the other communieates with the tympanie eavity by a very small aperture closed with a thin membrane. Thus, therefore, although the cutire organ resembles a simple eanal bent upon itself, the representatives of the scala vestibuli, of the scala tympani, and of the fenestra rotunda of the human ear ean be distinetly identified.
(2009.) The glosso-pharyngeal and pneumogastric nerves in Reptiles supply the same organs to whieh they are distributed in the human subjeet, the former being destined to the base of the tongue and the museles of the pharynx, while the latter, assuming a plexiform arrangement, are appropriated to the lungs and heart, as well as to the œesophagus and stomaeh.
(2010.) The hypoglossal pair of the eerebral nerves, which were not met with in fishes, now beeome distinctly apparent, and, as in the higher Vertebrata, may be traced in the museles of the tongue.
(2011.) The spinal system of nerves offers no peeuliarity worthy of speeial deseription. In figure 499, taken from Bojanus, the nerves derived from the mectulla spinatis are seen to issue in the usual manner from the intervertebral foramina ; and they evidently essentially correspond with the grand type of structure common to the vertebrate classes. In the apodous Reptilia, as for example in the Serpents, to attempt to divide them into the usual regions is elearly absurd; but in quadrupedal forms, as for instance in the Tortoise, the eervieal nerves, the brachial plexus, from whieh are derived the nerves of the anterior extremity, the intereostal nerves, and those forming the lumbar and sacral plexuses are at onee distinguishable, and the eorrespondence between their distribution in the reptile and in the human subject must foreibly strike the student who makes the comparison.
(2012.) Neither does the sympathetic system of the Reptilia offer any important aberration from that arrangement with which the human anatomist is familiar. The ganglia are smaller in their proportional size ; those, indeed, of the neek and face are scareely perceptible ; but the thoracic ganglia are found in their usual positions, communieating on the one hand with the spinal nerves, and on the other giving off filaments whieh form plexuses around the artorial trunks, and ramify extensively to be distributed to the viscera.
(2013.) The sense of toueh in all the members of the class under eonsideration must, from the nature of their integument, be extremely imperfeet: many of them, in faet, as for example the Serpent tribes, are absolutely deprived of any limbs which ean be regarded as taetile organs; and even in those forms which are provided with effieient locomotive extremities, these are but ill adapted to exercise the functions of an apparatus of toueh.
(2014.) The euticular investments of the body are formed of dense and unyielding materials, consisting, in the higher Reptiles, of broad horny plates or of imbricated seales. In the Amphibia, indeed, the skin is smooth, and the epidermis only forms a delicato corneous film; yet evon in those the cuticle is thrown off at certain soasons of the year, as the old coat becomes too small for the increasing size of the animal, -a phenomenon which in the Lizard and Serpont tribes is still more remarkably witnessed; for these animals strip themselves of their old seales as the hand would bo drawn out of a glove, and cast away in one piece the entire epidermic integument, even to the film which covers the transparent cornca of the eye.
(2015.) The urinary excretion in Reptiles becomes of very considerable importance, and the structure of the kidneys and excretory ducts proportionatcly elaborate. The kidncys (fig. 501, o) are generally situated very far baok, even within the eavity of the pelvis where a sacrum exists, as in the Chelonian and Saurian orders; and in these tribes they are very partially covered by the peritoneum, being firmly imbedded in the sacral region. But in

Fig. 499.
 the Serpents, in consequence of the elongated form of the body and the complete flexibility of ercry portion of the spine, the kidneys are peculiar both in their position and general structure. Instead of being placed upon the same lerel as in other Vertebrata, the right kidney of an Ophidian is situated much
more antcriorly than the left,-a circumstanco whieh mueh facilitates the packing of the abdominal viseera, and contributes greatly to ensure the free morements of the vertebral column at this place. For the same reason, the kidncys of a Scrpent are divided into numerous lobes, plaeed in a longitudinal scries upon the outer side of the eommeneement of the ureter, and loosely connected to each other and to tho spine by cellular tissue and a fold of the peritoneum.
(2016.) With regard to the minute structure of the kidneys in the Reptilia, these viscera are invariably composed of convoluted tubes, whieh pour their sceretion into the commeneement of the corresponding ureter. The ureters, of course, vary in length according to the position of the renal organs; they ultimately terminate in the cloaca (fig. 501, u) -a carity or general outlet through which, in the female, the ova, tho fæces, and the urine are diseharged, and which in the male gives passage to the contents of the rectum, the seeretion of the kidneys, and the semen.
(2017.) In connexion with the urinary apparatus of Reptiles, it will be convenient to mention a bladder that exists in Chelonian and Amphibious reptiles, and is also found in some Saurian tribes, to whieh the name "urinary bladder" has been erroneously applied. This bladder, in the Tortoise (fig. 501, a) and Proteus (fig. 488, q), is of considerable size, and in the Frog forms a very capaeious reeeptaele, having its upper part divided into two cornua. It is generally filled with a clear limpid fluid, which in the case of the Frog is forcibly ejected if the animal be alarmed; but that this fluid is not urine is obvious from the fact already stated, that the ureters open into the eloaea (fig. 501, u), and not into the bag referred to; the latter, in fact, is the unobliterated remains of the allantois of the embryo, concerning which further partieulars will be given in the next chapter ; and the fluid eontained in it is most probably the product of cutaneous absorption*.
(2018.) In tracing the development of the generative apparatus through the different orders of Reptiles, the student will not fail to observe many beautiful illustrations of progressive improvement.
(2019.) The finny tribes, incapable of social intercourse, were content with the simple extrusion of their eggs into the sea, learing them to be impregnated by the easual approaeh of a male of the same speeies; but even in the Amphibious reptiles some steps are gained in associating the sexes with each other; and although the eggs are still impregnated out of the body of the mother, in the Frog this is accomplished in exitu, and not subsequent to their expulsion.
(2020.) Frogs, during the breeding-season, are found to pair; and the male having selected his mate mounts upon her baek, clinging to her with unwearying pertinaeity during the whole period of oviposition,

[^218] Bell, p. 104.
and vivifying her egss by the aspersion of the seminal secretion as they are succossively expelled in long gelatinous chains. During ihis protracted embrace tho male Frog is assisted in retaining his hold by the development of a peculiar papillose structure upon the first toes of the fore feet, which disappear at the end of the time appropriated to reproduction. Of courso no intromittent apparatus is as yet required, and we may naturally expect to find the male organs still exhibiting great simplicity of construction.
(2021.) The testes and their excretory ducts, in fact, are the only parts as yet met with ; but the anatomy of these parts, although most accurately investigated by Swammerdam upwards of a century ago, is still very generally misunderstood. The testicles are situated in the loins, surrounded by several tongue-like masses of fat presenting a peculiar granulated appearance. Each testis is invested by a delicate capsule ; and on removing this very carefully, the entire viscus is seen to be made up of short cæca, the blind extremities of which alone appearing at the periphery of the organ caused Cuvier to describe it as being " an agglomeration of little whitish grains interwoven with bloodvessels." The semen elaborated by these ceca is taken up by several small excretory ducts, that pierce the kidney (in the immediate vicinity of which the testis lies) and open into the ureter, that here forms the common excretory duct whereby the urine and the seminal fluid are discharged, both escaping into the cloaca at a little distance from the orifice of the allantoid bladder, to be ultimately ejected through the vent.
(2022.) Neither is the generative system of the female Frog less worthy of notice. The ovaria resemble in their essential structure those of the Lamprey (§ 1851) ; only they are much less extensive, consisting of a few festoons of the highly vaseular membrane wherein the ora are secreted, fixed at the pelvic extremity of the abdominal cavity. On each side of the body is a long and very tortuous oviduct, which when unravelled is found to be many times the length of the animal. The fimbriated commencement of this oviduct is firmly bound down by folds of peritoneum in the immediate vicinity of the pericardium, and, of course, as remotc as possible from the ovary; it therefore becomes a question of no inconsiderable interest to determine the manner in which the ova are conveyed from the ovarian nidus to the orifice of the oviduct. It is obvious that they must first break loose into the abdominal cavity, as we found them to do in the Lamprey and the Eel, and that at length, having made their way into the neighbourhood of the pericardium, they are scized by the patulous extremity of the Fallopian tube, and thus conveyed out of the body. As the ova make their transit through the oviduct they become imbedded in a tenacious albuminous sceretion, and at length lodged in a dilated portion of the tube, to which the name of uterus has been very improperly given, preparatory to their expulsion
through the eloaea. After the eggs liave been discharged into the surrounding water, the albuminous mass in whieh they are imbedded swells eonsiderably; and when the young tadpoles are hatched, this material no doubt serves to nourish them during the earlier period of their existence.
(2023.) In the Newt (Triton) impregnation takes place inter-wally-although the male is still without any rudiment of an intromittent apparatus, so that we are eompelled to believe that in the ease of these Amphibia the simple ejection of the male fluid into the water in the vieinity of the female is suffieient to ensure its admission to the ova while still in the oviduet. An improvement is likewise visible in the construetion of the internal viseera subservient to generation; and a vas deferens, quite distinet from the ureter, makes its appearance. In the male Salamander (Triton cristatus) the testis during the breeding-season eonsists of two pyriform masses, from whieh the seminal duets (fig. 500, c, c) are derived. These soon unite to form a single eonvoluted tube (d) through whieh the semen is conveyed into the eloaea. The kidneys (n) and their exeretory duets (i) are here placed considerably further baek ; but the ureters terminate in the cloaea at the same point (m) as the vasa deferentia. T'wo other large glands (0) are

Fig. 500.

Generative organs of the male Salamander: a, lung; b, œesophagus; $c c$, testis; d, vas deferens; m, termination of the vas deferens in the clonea; n, allantoid bladder; o, kidneys; e f, intestine; $g h$, liver; $i i$, abdominal cavity. apparently eonneeted with the generative funetions; and their exeretory ducts likewise open into the eloaeal outlet.
(2024.) In the fcmale Triton, as also in the Proteus and Siren, the ovaria and oviduets offor preeisely the same arrangement as that met with in the Frog, already deseribed*.
(2025.) In the Ophidian, Chelonian, and Saurian orders, the testes

[^219]of the male sex are situated in the loins; and in fact they oceupy the same position throughout the oviparous Vertebrata: they offer no peculiarity of strueture, only differing from those of the Frog in the inereased length of the now contorted seminal exea of which they are essentially composed. From each testis a long and flexuous vas deferens eonduets the semen into the eloaea. Here, however, in these more elevated forms of the Reptilia, we have another important addition to the male sexual apparatus-instruments being given to faeilitate the impregnation of the female during that union of the sexes which now beeomes essential to feeundity. The earliest appearanee of the eopulatory organ is seen in Serpents and in the Lizard tribes; and in sueh reptiles it will be observed that the penis is rather a provision for securing the juxtaposition of the sexual apertures of the male and female than an iustrument of intromission. The two lateral halves of the penis (or corpora cavernosa, as we shall have to call them hereafter, when they beeome eonjointed in the mesial line) are as yet quite separate, and plaeed at each side of the cloaeal fissure, from which they protrude when in a state of erection, so that there appear to be two distinet organs of exeitement, or, more properly speaking, of prehension; for each division, being of eourse imperforate, is eovered with sharp spines, and is obviously rather adapted to talze firm hold of the eloaea of the female than to form a channel for the introduction of the seminal fluid.
(2026.) In the Chelonian Reptiles the penis is mueh more perfectly developed, and really constitutes a very effieient intromittent instrument. The two eorpora eavernosa, after eommeneing separately, approach each other, and become united along the mesial line so as to form a single organ of considerable size, terminated at its extremity by a glanslike dilatation. There is, however, no corpus spongiosum, nor urethral eanal properly so ealled; the latter is represented by a deep groove, which runs along the upper surface of the penis from the eloaea to the extremity of the organ; and it is along this groove that the spermatie fluid is eonveyed during coitus.
(2027.) On making a section of this strange apparatus, two eanals are diseovered, running one on each side of the central furrow, along the whole length of the organ as far as the glans, where they terminate without at all communieating with the exterior ; but on traeing them in the opposite direction, they are found to be derived from the peritoneal eavity, into which they open by distinet orifiees *.
(2028.) Two retraetor museles, derived from the pelvis, and extending along the under surfaee of the penis quite to its extremity, fold the whole organ back into the eloaea, where it lies conecaled when not in use.
(2029.) In the Croeodiles and higher Saurians the penis in its strueture resentbles that of the Tortoise ; and instead of a urethra, there is

[^220]merely a deep groove traversing the upper surface of the organ, along which tho semen trickles out of the cloaca.
(2030.) Throughout all the Reptile families the organization of the female gencrative system is so extremely similar, that one example will be abundantly sufficient for our purpose, tho same description, in fact, being equally applicable to the Saurian, the Chelonian, and the Ophidian orders. The ovaries occupy their ordinary position in the lumbar region of the abdomen, where they are attached on each side of the vertebral column by a broad fold of peritoneum : their structure is in all essential points precisely similar to those of the Amphibia; but, owing to the increased proportional size of the individual ova formed by their vascular membrane, they resemble a string of beads, or assume somewhat of a racemose appearance. The oviducts are long and flexuous ; they commence by a wide orifice (fig. $501, b$), by which the germs are taken up from the ruptured ovisacs of the ovaria in the same way as those of Mammalia are seized by the fimbriated extremities of the Fallopian tubes. The first portion of tho oviduct is thin and intestiniform ; but lower down, where

Fig. 501.

Oviduct and ovum of female Tortoise. (After Bojanus.) b, Infundibular commeucement of the oviduct; $n \circ p$, interior of the oviduct; $q r \& t$, egg; a, terminal portion; u, aperture whereby the canal of the oviduct opens into the cloaca; m, termination of the right oviduct, showing at e its commuuication with the cloacal cavity; A, bladder; 0 , kidney; P, ureter. the investments of the egg are formed, its walls become thicker, and assume a glandular character ($n \circ p$) ; they finally open into the cloaca; and the mode of their termination in the Tortoise is exhibited in the accompanying figure, where $m e$ indicates the terminal portion of tho right oviduct laid open, the left (ab) being shown through its entiro length.
(2031.) The formation of the egg and the development of the embryo are similar in all tho oviparous Vertebrata; it will therefore be more convenient, and prevent unnccessary repetition, if we defer the consideration of this important subject to the next chapter, - the reader
bearing in mind that in all essential particulars tho details which will be givon there, when we come to consider the growth of the Bird in ovo, are equally applicable to the Chelonian, Oplidian, and Saurian Reptiles.

CHAPTER XXVII.

AVES (BIRDS).

(2032.) The class of Vertebrate animals which now offers itself to our notice contrasts remarkably with the cold-blooded and apathetic inhabitants of the water, and even with the slow-moving Reptile, that languidly crawls upon the surface of the ground, or drags on an amphibious existence in the marsh or on the shore. The Bird, ordained to soar into the regions of the air, and not only to sustain itself in that thin medium, but to skim from place to place with astonishing rapidity, needs a strength of muscle and activity of limb oven greater than that conferred upon the mammiferous quadruped. Senses of the utmost acuteness are now requisite, combined with instinct and intelligence of a high order ; and accordingly, both as regards their faculties and enjoyments, the feathered tribes far surpass the other oviparous Vertebrata.
(2033.) Next to that improvement in the condition of the nervous system, which we have all along been able to trace advancing pari passu with the increase of sagacity and the expansion of the bodily faculties, the most remarkable circumstance observable in the economy of Birds is the elevated temperature of their bodies and the heat of their circulating fluids. In the reptile an impure and semioxygenized blood was slowly propelled through the system from the undivided ventricle of their trilocular heart; and we found their energies, their instincts, and their affections proportionately feeble and obtuse ; but now, not ouly does the heart become divided into four cavities (one ventricle being appropriated to transmit venous blood to the lungs, while the other drives a pure and highly arterialized fluid in copious gushes to the remotest regions of the body), but as though even this was not sufficient to meet the necessities of the case, the whole interior of the Bird is permeated by the atmospheric air, which penetrates even into the bones; and the respiratory function being thus rendered as complete as possible, all parts of the muscular system are abundantly supplied with blood arterialized to the utmost, and every fibre, quivering with life intense, is ready to exert that vigorous activity which brings down the falcon upon his quarry like a thunderbolt from the clouds, or sustains the migratory bird through long and perilous journeyings.
(2034.) But increase of muscular onergy is by no means the only consequence resulting from moro perfect respiration and a consequently increased temperature of the blood: the clothing of the body must now be changed for a warmer covering than scales or horny plates; feathers are therefore at onco provided, as the lightest, warmest blanket that could be given: maternal care, which to the cold-blooded Ovipara would haro been a uscless boon, ean now be beneficially exerciscd; the eggs, no longer left to chance, are cherished by tho vital heat of the parent; and the callow brood, during the first period of their lives, are dependent for support upon the watchful attentions of the bcings from whom they derived their existence.
(2035.) The skeleton of a vertebrate animal formed for flight must obviously be constructed upon mechanical principles widely different from any that have yet come under our notice. The utmost lightness is indispensable; but still, in a framework which has to sustain the action of muscles so vigorous, strength and firmness are equally essential: it is in combining these two opposite qualities that the human mechanician displays the highest efforts of ingenuity, and by the scientific disposition of his materials exhibits the extent of his resources and the accuracy of his knowledge; but let the best-informed and most ingenious mechanic carefully and rigidly investigate the skeleton of a bird, and we doubt not that in it he will find all his art surpassed, and derive not a little instruction from the survey.
(2036.) In the spinal column of a bird we find three prineipal regions, each of which will merit distinet notice.
(2037.) The anterior or cervical region is exceedingly variable in its proportional length, and forms the only flexible portion of the spine: it performs, indced, the office of an arm, at the extremity of which the beak, the chief instrument of prehension, is situated. The number of vertebræ entering into the composition of this part of the spinal column is very variable: in the Swan there are as many as twenty-thrce; in tho Crane nineteen ; while in the little Sparrow nine only are met with : their bodies are joined together by articulating facets enclosed in synovial capsules, and not by the intcrposition of intervertebral substance; an intcrarticular cartilage, however, is generally met with, by which the movements of the chain are facilitated. The spinous and transverse processes are short; while the oblique processes, united by articulating surfaces, limit the mobility of the neek.
(2038.) Although this portion of the spino is very properly designated the "corvical region," we are not on that account to imagine that the rertebre composing it are unprovided with ribs: on the contrary, rudimentary costal appendages are generally found connected with their transverse processes, which in the young bird are obviously separate elements, although they aftorwards become united by anchylosis.
(2039.) But if flexibility is thus abundantly provided for in the
eervieal portion of the vertebral column, it is quite evident that in the thoraeic portion of the skeleton, which has to support the framework of the wings, and sustain the efforts of the museles connected with flight, firmness and rigidity become essential requisites ; and accordingly every thing has been done to prevent those movements whieh in the neek were so advantageously permitted. The bodies and spinous processes of the contiguous vertebræ are therefore here firmly consolidated together by anehylosis; and, moreover, splints of bone, derived from the transverse processes, overlap eaeh other and still further add to the stability and strength of the back.
(2040.) The ribs appended to the dorsal vertebræ may be called the true ribs ; these enter into the composition of the thorax, and materially assist in strengthening that region. Each rib, as in the Crocodile, presents a dorsal and a sternal portion, conneeted together by a joint: the former are attaehed to the vertebræ by a double artieulation, their spinal extremity being fureate; while the latter are artieulated to the sides of the sternum. A thorax is thus formed possessing suffieient mobility to perform the movements connected with respiration, but still affording a strong base to support museular action; and in order to give the greatest possible strength, from the posterior margin of each dorsal rib a broad flat proeess is prolonged backwards and upwards to overlap the rib next behind, so as in this manner to bind the whole together into one strong framework.
(2041.) The stermum itself is developed in proportion to the enormous size of the three peetoral museles which constitute the great agents in Hight: it is prineipally composed of the central azygos element before notieed in the Tortoise, which is here remarkably dilated, and in birds of flight prolonged inferiorly into a deep keel-like process, so as to increase materially the extent of surface from whieh the museles of the breast take their origin; but in the eursorial genera, sueh as the Ostrich, the Emu, \&e., where the wings are not available for flying, the keel is entirely wanting, and the sternum forms merely a kind of osseous shield, eovering eomparatively a very small portion of the breast.
(2042.) Whoever considers the position of the hip-joint in the feathered tribes, and reflects how far it is neeessarily removed behind the centre of gravity when the bird walks, carrying its body in a horizontal position, will at onee perceive that the pelvie portion of the spine, having to sustain the whole weight of the trunk under the most unfarourable cireumstances, and at the same time to give origin to the strong and massive muscles wielding the thigh, must be eonsolidated and strengthened in every possible manner, and that even the slight degree of movement permitted in the dorsal region would here be inadmissible. The lumbar and the saeral vertebre, and the entire pelvis, are therefore at an carly period solidly united together by anchylosis into one bone, and the number of vertebre eomposing this part of the
skeleton is only distinguishable from the situation of the intervertebral foramina through which the spinal nerves are given off. In very soung birds the pelvis is evidently formed by the three elements that usually enter into its composition; and the ilium, the ischium, and the pubis, as well as the ischicalic notch and obturator foramen, will all be at once recognized by the anatomist, occupying. their usual relative positions, although he will not fail to notice one remarkable circumstance, uamely that, except in one instance (the Ostrich), the ossa pubis do not meet in front, so that

Fig. 502.
 there is no pubic arch or symphysis.
(2043.) The anterior extremity of a bird, although an instrument of flight, is found, when stripped of those feathers and long quills that

Fig. 503.

Wing of Bird; b, the scapula; d, furculum formed by the conjoined clavieles; f, humerus; g, ulna; h, radius; p, olecranon; i, carpus; $k l$, metacarpus; m, o, phalanges of the largest finger; n, single phalanx forming the second linger.
form the extensive surface presented by this member during life, still clusely to adhere to the general type in accordance with which this part of the skeleton is invariably constructed. The framework of the
shoulder exhibits the scapula (fig. $503, b$), the clavicle (d), and the coracoid element (c), notwithstanding that these bones, forming, as they do, tho basis of a limb so vigorous, and wielded by such powerful musoles, are necessarily modified in their form and general arrangement, so as to constituto strong buttrosses adapted to keep the shouldorjoint firm and steady during flight. The scapula (b) is a long and slender bone placed upon the ribs, and lying parallel to the spine along the dorsal region of the thorax, imbedded in the muscles to which it gives attachment, whilo at its fixed extremity it assists in forming the cavity of the shouldor-joint. The coracoid bone (c) is the great support of the shoulder; for while at one extremity it sustains the wing, at the opposite it is firmly and scourely united to the sternum by a broad articulation. But the most peculiar element of this apparatus is the furculum, or forked bono (d), composed of the conjoined clavicles, which, being anchylosed together in the mesial line, and also strongly connected with the shoulder-joint, materially add to the stability of the whole.
(2044.) In the wing itsclf, the humerus (f) is at once recognized, as also the ulna (g) and the radius (h). But in some birds, as in the Penguin, the student might be at a loss to identify one or two small bones (p), forming a kind of patella to the elbow-joint; those appear to be the representatives of the olecranon process, detached from the ulna. The carpus (i) consists of only two small bones. The metacarpus is formed of two pieces (k, l), anchylosed together at their two extremities ; and these, with two, or in some oases three rudimental fingers, complete the wing. The largest finger consists of two, or sometimes three phalanges $(m, 0)$; a second (n) offers but a single joint; and the third, which is a mere rudiment when present, is an appendage to the radial side of the carpus.
(2045.) In the pelvic extremity (fig. 502) the femur is a short and strong bone; to this succeeds the tibia, upon tho outer side of which is fixed a rudimental fibula. The tarsus can soarcely be said to exist, being at a very carly age confused with the metatarsus-the whole forming a single tarso-metatarsal bone, which, in the Wading Birds especially, is of great longth. At its distal extremity are three articular surfacos that support the throe anterior toes, while a fourth too, the hallux, directed backwards, is attached to it posteriorly by the intervention of a small accessory piece; and in Gallinaccous Birds an osseous spur, consolidated with the posterior face of the tarso-metatarsal bone, is generally regardod as a fifth toe.
(2046.) The number of toos varies in different tribes of birds. Thus in the Ostrich there are only two: in many genera there are three; in by far the greater number, four ; and in the Gallinucece, five. But whatever the number of toes may be, the number of phalanges peculiar to each is remarkably constant : thus the outermost toe always consists of
five phalanges, the fourth toc invariably of four, the third as eonstantly of three ; the second, when it exists, has only two ; and, lastly, in the spuer or imnermost toe there is but a single pieee.
(2047.) So rapidly is the process of ossifieation aecomplished in the skeleton of a bird, that it is only in very young animals that the individual bones or elements composing the cranium ean be identificd, as the sutures specdily become obliterated: when, however, they are examined under very favourable circumstanees, as for example in the skull of a young Ostrich, it is by no means difficult to distinguish them, and, by comparing them with those of other Vertebrata, to observe the modifieations they have undergone both in form and position. In the annexed figure the prineipal pieces, both of the cranium and face, have been indicated by the same figures as were used to point out the eorrespondent bones in the skulls of the Crocodile (fig. 480) and the Serpent (fig. 483); so that it would be needless again to cnumerate them in this place.

Fig. 504.

(2048.) The muscular system of the feathered tribes, as far as activity and energy of motion is concerned, contrasts strikingly with that of the Vertebrata we have as yet considered; for, with the exception of Insects, no animals in ereation are comparable to Birds, either in the rigour or velocity of their movements.
(2049.) This perfection of museular power, which is obviously essential to enable the bird to sustain itself in the air and there perform the varied ovolutions connceted with flight, is no doubt mainly comneeted with the highly arterialized condition of the blood and the eompleteness of the respiratory apparatus. Neither is it uninteresting to observe that, while respiration was effected in the Insect by the admission of air to cvery part of the system by means of tracheal tubes, in Birds likewise the air freely penetrates to the interior of the body, and, as we shall afterwards find, is there most extensively diffused.
(2050.) In the construction of the alimentary system, there are many interesting peeuliarities to invite our notiec. Their mouth eonstitutes the apparatus whereby the prehension of food is aeeomplished: it is in no instance provided with teeth, or adapted to mastieate food, but forms a beak eneased in a dense, horny sheath, whieh, from the varieties of form that it assumes in different genera, beeomes adapted to very various purposes.
(2051.) In the Rapacious tribes, for instanee, the bill is a strong and formidable hook, ealeulated to tear in pieces the animals devoured. In Granivorous birds, it is a simple foreeps for pieking up the seeds of vegetables. In the Snipe and the Curlew it forms a probe, whereby inseets are extracted from the soft and marshy ground. In the Parrot it is partially an assistant in elimbing, as well as an organ for seizing food; and, not to mention innumerable other modifieations, in the Flamingo and Duek tribes it eonstitutes a shovel, by the aid of whieh alimentary matters are obtained.
(2052.) The sense of taste, even in these highly gifted animals, is as yet but very imperfeetly developed; and their tongue, instead of being soft and flexible, as in the Mammalia, is supported by one or trro bony pieees, derived from the os hyoides (fig. 505), and covered with a horny

Fig. 505.

Hyoid apparatus of a bird.
sheath, obviously ill adapted to gustation, but simply assisting in the deglutition of food. We must not be at all surprised, therefore, if even in birds the tongue is convertible into various instruments assisting in the apprehension or preparation of nourishment: thus in the Parrot it is a thumb, opposable to the upper mandible, and eminently serviecable in holding and turning nuts or morsels of fruit; in the honey-eating tribes the tongue is armed at its extremity with a tuft of horny filaments resembling a eamel-hair peneil, whieh, being plunged into the bell of a flower, sucks up the nectar from the bottom; and in the Woodpeeker it is absolutely converted into a harpoon, whereby the inseet is speared in its lurking-plaee and dragged into the mouth.
(2053.) In most birds, in eonsequenee of the very small size of the
carity of the stomach, or gizzard, as it is generally called, some other reccptacle for tho aliment bccomes indisponsable; and accordingly various provisions have been mado for lodging food in sufficicnt quantities in situations where it may be retained until the gizzard is ready to reccive it. In birds that catch insects on the wing, this is most conreniently effected by dilating the fauces and upper part of the throat into a capacious chamber, wherein the inscets as they are seized accumulate : this is remarkably the case in the Swifts. In the Pelican a very peculiar plan is adopted: the beak is amazingly prolonged, and beneath tho lower jaw is suspended a wide pouch, formed by the skin of the throat, whercin large quantities of fish may be contained and carried about. In other fishing-birds the whole œsophagus is extraordinarily capacious, and will hold a considerable supply ; but the most usual arrangement in birds requiring such a reservoir is the existence of a crop, or dilatation of some part of the gullet into a wide bag (ingluvies), whercin grain or other substances hastily picked up may be stored preparatory to digestion. After expanding into the crop in those birds that possess this carity, the œsophagus again contracts to its former dimensions (fig. 506, a) ; but just before terminating in the gizzard, it again dilates to form a second but smaller cavity (b), called the proventriculus, or bulbus glandulosus, in which the food undergoes further preparation. The walls of the proventriculus are thickly studded with large glandular follicles, variously disposed, from which a copious sccretion of "gastric juice," as it is called, is poured out and mixed

Fig. 506.

Gizzard of a bird : a, csophagus; b, proventriculus; c d, muscular walls of the gizzard; e, intestinc. with the aliment. Having, therefore, undergone maceration in the juices of the crop, and become subsequently saturated with the gastric which that constitutes so important an agent in digestion, alimentary substances are at length received into the gizzard (c), whero further preparation is necessary.
(2054.) The gizzard in such birds as feed upon vegetable substances is an organ possessing immense strength, and constitutes, in fact, a crushing-mill, wherein nutritive materials are bruised and triturated.

Its cavity is very small, and lined with a dense coriaceous cuticular stratum ; and its substance is almost entirely made up of two dense and enormonsly powerful masses of muscle, the fibres of which radiate from two central tendons (fig. 506, c), situated upon the opposite sides of the viscus. The action of these lateral muscles will obviously grind and crush with great force whatever is placed in the central cavity,-a process that is materially expedited by the presence of hard and angular pebbles, swallowed for the purpose, by the assistance of which the contained food is speedily comminuted.
(2055.) Another and much feebler set of muscles (d) bound the cavity of the gizzard in the intervals between the great lateral masses, and, receiving the food from the proventriculus, perpetually feed this living mill, and retain the material to be ground within the influence of the crushers until it is properly prepared, when other fibres, acting the part of a pylorus, allow it to pass on into the duodenum (e).
(2056.) The intestinal canal of Birds is, as in other classes, very variable in its length as compared with that of the body; its calibre is pretty equal throughout, and the division into large and small intestines can scarcely be said to exist. Commencing from the pylorus, the duodenum (fig. 507, $d h$) is always found to make a long and rery characteristic loop, embracing the lobes of the pancreas ($e \circ$); and then, after sundry convolutions, the intestine is continued to its termination in the cloaca. The division between the large and small intestines is indicated by the presence of one, or more generally two, cæcal appendages, which communicate with the cavity of the gut at no great distance from its cloacal extremity.
(2057.) In Birds, the auxiliary secretions subservient to the digestive process are the salivary, the gastric, the hepatic, and the pancreatic.
(2058.) The salivary apparatus varies much in structure and disposition in different tribes. In its simplest form it eousists of distinct secerning follicles, placed immediately beneath the mucous membrane of the mouth, into which the secretion is poured by numerous orifices. In the Gallinaceous birds the glands assume a conglomerate character. In the Turkey there are two pairs*: the first pair forms a cone, having its apex directed towards the extremity of the beak; and the two glands of the opposite sidcs touch each other along the mesial line through almost their entire length, filling up anteriorly the angle of the lower jaw. These glands are situated immediately beneath the skin, but in front they touch the mucous membrane of the mouth; and their secretion is poured into the buccal cavity by several orifices. The second pair of glands is smaller, of an elongated form, and is placed above the posterior third of the former ; this is immediately in contact with the mucous lining of the mouth.
(2059.) In the Woodpeckers the glands that secrete the fluid whereby * Cuvier, Leçons d'Anat. Comp. tom. iii. 1. 221.
the tongue is lubricated are of very considerable size. They pass further back than the angle of the lower jaw, extending even to boneath the occiput ; and their secretion, which is viscid and tenacious, enters the mouth by a single orifice situated under the point of the tonguc.
(2060.) In the generality of birds, however, there is only one pair of salivary glands; and these, in many cases, seem to be united into a single mass, separated posteriorly into two lobes, and situated beneath the palatine membrane, behind the angle of the rami of the lower jaw. From these glands a thick, white and viscid fluid is poured into the mouth through numerous orifices, principally disposed along the mesial line which separates the two glands.
(2061.) We have already spoken of the gastric glands which densely stud the coats of the proventriculus and furnish the "gastric juice," and therefore pass on to notice the other subsidiary chylopoietic viscera, namely the liver, the pancreas, and the spleen.
(2062.) The liver is a viscus of considerable magnitude, consisting of two principal lobes, and firmly suspended in situ by broad ligaments and membranous processes. The vena portce, supplying that venous blood from which the bile is elaborated, is formed by vessels derived from numerous sources, receiving not only the veins of the stomach, spleen, and intestines, as in Mammalia, but likewise the renal and sacral veins,another proof, if any were wanting, that no arrangement by which the decarbonization of the blood can be facilitated has been omitted in the organization of the class before us. The hcpatic arteries and the hepatic veins present nothing remarkable in their disposition; but the courso of the bile from the liver into the intestine merits our notico. Two sets of ducts are provided for this purpose : the first (fig. 507, i) carrics the bile from the liver into the gall-bladder (g), from which another duct conveys the bilious fluid into the duodenum ; but the second set of bile-vessels conduct the secretion of the liver at once into the intestine, by a wide canal (0) that has no communication whatever with the gall-bladder. There is, therefore, no arrangement like that of the "ductus communis choleclochus" of Mammals : if the bile is wanted immediately, it passes at once into the intestine through the duct o; but if digestion is not going on, it is conveyed into the gall-bladder through the duct i, to be there retained until needed.
(2063.) The pancreas (fig. 507, e e) is a conglomerate gland of considerable size, situated in the elongated loop formed by the duodenum : it generally consists of two portions more or less intimately connected; and from each portion an excretory duct (n) is given off; these two ducts terminate separately in the intestine, in the immediate vicinity of the openings of tho biliary canals. In some birds oven three pancreatic ducts are met with, as is tho case in the common Fowl ; but under such circumstances tho third cluct, instead of opening into the intestine at
the same point as the other two, issues from the opposite extremity of tho pancrens, and enters the middle of the dnodenmm, at the place where the gut turns upon itself.

Fig. 507.

Digestive apparatus of a Fowl: n, cesophagus; b, prorentriculus; c, gizzard; d, duodenum ; $e e$, panereas; f, spleen; g, gall-bladder; i, bile-duct opening into the gall-bladder; o, second bile-duet opening dircetly into the intestine; n, pancreatic duct; h, intestine.
(2064.) The spleen (fig. $507, f$) is of very small size in all birds; it is situated near the anterior extremity of the pancreas, and is loosely connected to the side of the proventriculus (b). The distribution of its vessels and its general structure are the same as in Mammalia.
(2065.) The lymphatic system is well developed; and the course of the lymphatic vessols has been investigated with great care by various anatomists. The vessels themselves are thin, and have but few valves; they principally accompany the largor blood-vessels from all parts of the body to the aorta, around which they form a ploxus, and ultimately join to give rise to two principal trunks, or thoracic ducts; theso terminate severally in the right and left jugular veins; and into theso ressels the greater proportion of the lymph and chyle absorbed is of course poured, to be mixed with the circulating blood.
(2066.) Before describing the cireulatory apparatus of Birds, it will
be advisable in the next place to consider the nature and disposition of their organs of respiration, which, from what has been already stated concerning the heat and purity of the blood in those creatures, wo aro prepared to find presenting the highost possible condition of development. Birds, in fact, breathe not only with their lungs, but the vital element penctrates evory part of the interior of thoir bodics, bathing the surfaces of their viscora and entering the very cavities of their bones; so that the blood is most extensively subjected to its influence. The lungs, in fact, are no longer closed bags as those of Reptiles are, but rather resomble spongy masses, of cxtreme vascularity, firmly bound down in contact with the dorsal aspect of the thorax-their posterior surface being fixed to the ribs on each side of the vertebral column, and entering decply into the intercostal spacos. Such lungs are obviously incapablc of alternate dilatation and contraction; so that inspiration and

Fig. 50 .

Inferior larynx and lungs of a bird.
expiration must be provided for by a mechanism specially adapted to the emergency. From an cxamination of fig. 508 , the arrangement adopted will casily be understood. The bronchi derived from the bifur-
catod inferior extremity of tho trachea plunge into the anterior face of the lungs (c, c), and by innumerable canals distribute air throughout their spongoid substance ; but the main trunks of the bronchial tubes, passing right through the pulmonary organs, open by wide mouths, represented in the figure, into the cavity of the thorax, into which the air likewiso freely penetrates. The whole thoracico-abdominal carily is moreover divided by septa of serous membrane into mmerous intereommunicating cells, all of which are freely permeated by the atmospheric fluid, which in most instances is admitted into the very bones themselves, and even penctrates to the interspaces betwecn the muscles of the neck and limbs, thus, in some birds of powerful flight, gaining free access to almost every part of the system.
(2067.) The mechanism by which the air is drawn into, and then expelled from, this extended series of respiratory cells is sufficicntly simple, the wholo being accomplished by the movements of the expanded sternum, assisted slightly by the abdominal muscles. The descent of the sternum from the vertebral column necessarily enlarges the capacity of the chest, and, acting like a great bellows, sucks in air through the trachea, which not only fills all the spongy substance of the lungs, but penetrates to all parts whereunto air is admitted; while the ascent of the sternum, and consequent contraction of the thoracicoabdominal space, alternately effects its expulsion.
(2068.) The results obtained by this unusual arrangement are of great importance in the economy of tho feathered races. In the first place, the perfect oxygenization of the blood is abundantly secured. Secondly, from the high temperature of the blood, the air drawn in becomes greatly rarefied, and thus materially diminishes the specific gravity of the bird. Thirdly, from the inflation of the whole body, the muscles, more especially those of flight, act with better leverage and firmer purchase; so that their efforts are materially favoured. And, lastly, it is owing to the eapacity of the air-cells that the Singing Birds arc enabled to prolong their notes to that extent which renders them preeminent among the vocalists of creation.
(2069.) In connexion, therefore, with the respiratory systcm of the feathered races, it will be advisable, in the next place, to consider the construction of the air-passages whereby the atmospheric fluid passes into and out of the body, and more especially of the organs of voice connected with them.
(2070.) The trachea is of very great proportional length, in corrcspondence with the elongated neck-commencing at the root of the tongue, and extending into the thoracic cavity, where it divides into two bronchial tubes, one appropriated to each lung (fig. 508, 7, 7). The trachea of Birds is composed of cartilaginous rings, which are very gencrally ossified-each ring, with tho exception of two or threo immediately bencath the upper larynx, forming a complete circle (fig. 509, 1)
surrounding tho traeheal tubo : these rings are enelosed between the soft membranes of the traehea, and thus keep the air-passages eonstantly permeable to the atmosphere.
(2071.) In many birds, espeeially among tho wob-footed tribes, the trachea suddenly dilates into wido ehambers or eavities of different forms and dimensions-a cireumstanee the objoet of which has not as yet been satisfaetorily explained ; and, what is still more inexplieable, in some genera, and those, too, with the longest neeks, as, for example, tho Wild Swan and many of the Wading birds, the lower part of the traehea is lengthened out and variously eontorted before it terminates in the ehest. This long traehea is provided with museles whereby the rings may be approximated; and thus the length of the tube is eonsiderably modified: these museles (fig. 508, A, B, h) arise from the sternum, and sometimes also from the fureula, and are eontinued along the sides of the windpipe throughout its whole length.
(2072.) The upper larynx, or vima glottidis, is in Birds but of seeondary importanee in the produetion of roeal sounds : it is a simple fissure bounded by two osseous pieees (fig. 509, A, B, f), eorresponding to the arytenoid cartilages of Mammalia; these, however, in the Bird are not eonnected with chordce vocales, but simply, as they are soparated or approximated, open or elose the fissure of the glottis. When, therefore, we eompare the framework of this organ with the eartilaginous picees found in the larynx of Mammalia, eonsiderable differeneo is pereeptible, insomueh that it is not easy positively to recognize the analogous portions, more especially as in the Bird the eartilages are more or less eompletely ossified. If the broad anterior plate (fig. 509, b) be regarded as the thyroid earti-

Cartilages of the superior Iarynx of a bird : a, cartilaginous rings of the trachea; b, thyroid cartilage; c, c, e, pieces corresponding to the cricoid cartilage; f, f, arytenoid bones, with which are connected the long processca g, g. lage, we must suppose the erieoid to be represented by three distinct ossieles, two of whieh (c, c) are lateral, while the third or eentral portion (e) supports the arytenoid bones (f, f), which are moveably artieulated with its anterior margin. The arytenoid bones themselves are of an elongated form ; and eaeh presents a long process (g, g) for the insertion of the museles that aet upon them. These arytenoid bones are moved by two pairs of museles -the superficial pair (thyro-arytenoidei (fig. 510, в) serving to pull assumder, while the more decply-seated (constrictores glottidis, fig. 510, a) bring together the lips of the glottis.
(2073.) It is in tho lower larynx, situated at the opposite extremity of tho trachen, at the point where that tube gives off the bronchi, that the real vocal apparatus of birds is situated ; and in the nore perfect Singing Birds a very impertaut set of muscles is appropriated to perform those delicato movements that regulate the condition of tho air-passages at this part, and thus give rise to all the varieties of tone of which the voice is eapable.
(2074.) In the Insesscrial Birds, by far the most aeeomplished songsters, five pairs of muscles are connected with the inferior larynx, and so disposed as to influeneo both the diameter and length of the bronehial tubes (fig. 508) $\mathrm{A}, \mathrm{B}, n, 0, z, s, h)$. In the Parrots, three pairs only are met with*; some of the Natatores have two ; other Natatorial birds, as well as the Rasores and Grallatores, only one ; and in a few, as the King of the Vultures and the Conder, the voeal muscles are quite deficient.

Fig. 510.

(2075.) Not ouly is the respiration of these highly gifted Vertebrata thus abundantly provided for, but, as an immediate consequence of the necessity for supplying the system with pure and highly oxjgenized blood, the heart, hitherto but imperfectly divided, becomes now separated into two distinct sets of cavities, each eomposed of an auricle and of a strong ventricular chamber. The right side of the heart receives the vitiated blood from all parts of the system, which is poured into the eorresponding auricle by three large veins, viz. one inferior and two superior vence cavce. The contrantion of this auricle drives the blood into the right ventricle,- the auriculoventrieular opeuing being guarded by a broad fleshy valve, formed by the muscular substance of the heart itself; and hence the venous blood is forced through all the ramifieations of the pulmonary arteries.
(2076.) The aerrated blood is then returned from the lungs by two veins, whieh pour it into the left auriele ; and the left ventricle, now entirely appropriated to the systemic circulation, diffuses it throngh the body: thus, all mixture of the venous and arterial fluids being prevented, the system is supplied by the left side of the heart with pure and highly vitalized blood.
(2077.) In the nervous system of Birds there is a very perceptible improvement when compared with that of Reptiles, more especially in * Fide Yarroll on the Organs of Voice in Birds (Limn. Trans. vol. xri.).
the increased proportional development of the cerebral hemisphores: still, however, thero are no convolutions seen upon the surfaco of the corobrum, noither aro those oxtensive communications between the lateral halves as yet devoloped which in tho higher Mammalia assume such sizo and importance; the corpus callosum and fornix are both wanting, a simplo commissure being still sufficiont. Noither has the cerebellum in theso animals assumed its complete development, presenting only the central portion; so that the pons Varolii, or the great commissuro which in Man unites the lateral cerebellic lobos, is of courso deficient. The olfactory and optic lobes aro even here recognizablo as distinct elements of the cerobral mass; and the origins of the norves strictly conform to the arrangement already described in tho brain of Reptiles. The rest of the cerebro-spinal axis presents no peculiarity worthy of special notice ; and tho general distribution of the cerebral and spinal nerves is so similar in all the Vertebrata, that it would be useless again to describe them in this place.
(2078.) The sympathetic system in Birds is well developed, and its arrangement differs in no essential particular from what is seen in the humán body : the situation of the cervical ganglia, however, is peculiar, inasmuch as they are lodged in the bony canal formed by the transverse processes of the vertebræ of the neck for the reception of the vertebral artery, and are thus securely protected, in spite of the unusual length and slenderness which the neck not unfrequently exhibits.
(2079.) But if in the general arrangement of the nervous system of the feathered races there is little to arrest our notice, we shall find in the construction of the organs of their senses many circumstances of considerable interest to the physiological reader ; and consequently these will require a more extended deseription.
(2080.) The sense of touch must obviously be extremely imperfect in these animals: their body, enveloped in feathers, can be little sensible to impressions produced by the contact of external objeets; and their limbs, covered as they are with plumes, or cased in horny scales, are but little adapted to exercise the sense in question. The beak alone offers itself as calculated to be a taetile instrument; but even this, enelosed as it is in the generality of birds by a dense corncous ease, must be very inefficient in evestigating the outward surfaces of substances; nevertheless in some tribes the beak is undoubtedly extremely sensitire, and is used to search for food in marshy soils, or to find it in the mud at the bottom of shallow waters. This is the case, for instance, in many of the long-billed Wading Birds, and also in the flat-billed aquatic families, such as the Goose and Swan; in those, in fact, the covering of the beak is comparatively soft, and the nerves that supply it, derived from the fifth pair, are of very considcrable size.
(2081.) As we advance from the lower to the moro highly gifted races of the animal creation, taste is evidently one of the last indulgences
granted ; and oven in Birds it is only necessary to inspect the strueture of the tongue in order to be convinced that they can derive but small enjoyment from this source. The skin of the tongue in these creatures is totally devoid of gustatory papillæ, and frequently, indeed, enveloped in a horny sheath ; so that, if the sense of taste exists at all, it must be to the last degree limited and obtuse.
(2082.) In return, howover, for the imperfection of the above senses, the olfactory apparatus in this elass of animals begins to assume far greater importance than in the cold-blooded Vertebrata; and the nasal

Fig. 511.

Olfactory apparatus in a Goose: a, turbinated bone ; b, olfactory nerve; c, passage leading from the nose to the throat (posterion nures).
eavity indicates, by its extent, that it is now well adapted to investigate the odorous properties of the air taken in for respiration. The septum narium eompletely divides the nose into two lateral chambers of considerable extent, whieh individually eommunieate with the pharynx (fig. $511, c)$; and, upon the outer wall of each eompartment, three eonvoluted laminæ, eovered with a most delieate Sehneiderian membrane, represent the turbinated bones of Mammalia, and inerease the olfactory surface. Of these, the middle turbinated bone (fig. 511, a) is the largest; but the superior appears to be the most important, as it is upon this that the olfaetory nerve is prineipally distributed, insomueh that Scarpa eonsidered that the eomparative powers of smell possessed by different birds might be estimated by the development of this portion of the olfactory organ. The olfaetory nerves (fig. 511, b), as in Reptiles, still enter the nose without dividing; so that there is no cribriform plate to the ethmoid bone. The nostrils are simple apertures, perforating some part of the horny beak eovering the upper mandible, and are never provided with moveable eartilages or museles, as those of Mammalia will be found to be.
(2083.) The eye of a Bird is an optical instrument of such admirable eonstruetion that, did not the nature of this work eompel us to adopt the strietest brevity in our deseriptions, it might well tempt us to indulge in lengthened details relative to the adaptation and uses of its various parts. If we contrast the Bird with tho Reptile, or more espe-
cially with tho Fish, and considor the totally different circumstances under which these animals exercise the senso of vision, we may well oxpect extraordinary modifications in the structure of their organs of sight. The Fish, immersed in a dense medium, can sco but to a very limited distance around it; and tho sphoricity of the crystalline lens, with the consequent contraeted antero-posterior diameter of the cyeball, at once testifies how small is the sphere of vision commanded by the finny tribes. The Bird, on the contrary, dwelling in the thin air, and not unfrequently soaring into regions where that air is still further rarefied, must survey an horizon even more extensive than that enjoyed by the terrestrial Mammal; while, from the rapid movements of the feathered races, it becomes absolutely requisite that the focus of the cye shall continually vary between the extremes of long- and shortsighted vision. The birds of prey, as they fan the air at an altitude which places them almost beyond the reach of human sight, or sail in broad gyrations through the sky, are scanning from that height the surface of the ground, and looking out for mice or other little animals on which to feed: but when the prey is seen, and the bird, shooting down with the rapidity of a thunderbolt, stoops upon the quarry, it must obviously be indispensable that it should see with as much clearness and distinctness when close to its rietim as it did when far remote; and to enable it to do this, special provisions have been made in the strueture of the eyeball.
(2084.) A glance at fig. 513, exhibiting a section of the cye of an Owl, will show tho anatomist that, in its general composition, the organ is similar to that of Man. The sclerotic and the choroid tunics present the same arraugement, the trausparent humours of the eye oecupy the same relative positions, and the iris and ciliary folds exist, as in the human subject. Descending from generalitics, however, he will find many points in the organization of a bird's cye eminently descrving separate examination ; and it is to these we would speeially invite his

Fig. 512.

Eye of the Owl. notice. First, the shape of the eycball is peculiar : it is not spherical, as in Man, nor flattened anteriorly, as in Fishes and aquatic Reptiles; but, on the contrary, the cornea is rendered extremely prominent, and the antero-posterior axis of the cye considorably lengthened. This is remarkably excmplified in the Owl, in which bird, as Dr. Mac-
artnoy * pointod out, such is the disproportion between the anterior and posterior spheres of the eyo, that the axis of the anterior portion is twico as great as that of tho other. The obrious consequence of this figure of tho globe of tho oyo is to allow room for a greater proportion of aqueous fluid, and for tho removal of the erystallino lens from the seat of sensation, and thus produco a greater convergence of the rays of light, by which the animal is onabled to discorn tho objects placed near' it, and to seo with a weaker light; and heneo Owls, which require this sort of vision so much, possess the structure fitted to effect it in so remarkablo a degree.
(2085.) But it is evident that, in order to retain this conical shape of the eyeball, some further mechanical arrangements aro nceessary, which in the spherical form of tho human eye aro not requisite. In Fishes, where the eycball is constructed upon entirely opposite principles, bcing compressed anteriorly, cartilaginous supports are found imbedded in the sclerotic tunic, which in somo cascs is absolutely ossified into a bony cup. In many Reptiles the same end is obtained by placing a circle of bony plates around the cornea; and this latter plan is again adopted in Birds, to maintain their eyes in a shapo precisely the converse of the former. In the 0 wls theso ossicles are most largcly developed; in such birds they form a broad zone (fig. 512), extending from the margin of the cormea, embracing the anterior conical portion of the eye, and imbodded between two fibrous layers of the sclerotic. The figure whieh is thus given to the eye, from the increased space obtaincd, is evidently calculated to allow the humours, forming the rcfracting media whereby the rays of light are brought to a focus upon the retina, to become materially changed in shape; and both the convexity of the cornea and the position of the lens may thus be altered so as to adjust them in correspondence with the distance at which an object is viewed. The cornca is rendered more convex, and the shape of the aqucous humour conscquently adapted to examine objects close at hand, by the simple action of the muscles that move the eyeball: for thesc, sceing that the edges of the picces composing the bony circle overlap each other so as to be slightly moveable, as they compress the globe of the eyc, cause the protrusion of the aqueous lumour, and the cornca becomes prominent; or if the bird surveys things that are remote, the cornea recedes and becomes flattened-an effect caused by the recession of the aqueous humour, and, as some authors assert t, by muscular fibres disposcd around the circumference of the cornea, and attached to its inner layer, which draw back the cornea in a manner analogous to the action of the muscles of the diaphragm upon its tendinous ecutre.
(2086.) But the most bcautiful picce of mechanism, if we may be pardoned the expression, met with in the eye of a Bird is destined to
regulate the foeal distanee between the erystalline lens and the sentiont surface of the retina, in order to ensure the elearest possible delineation cither of noar or distant objeets. The provision for this purpose is peeuliar to the class under our notiec, and consists of a vaseular organ, ealled the marsupium or pecten, whieh is lodged in the posterior part of the vitreous humour (fig. 513, a). This organ is composed of folds of a membrano resembling the ehoroid coat of the eyc, and, being in liko manner covered with pigmont, might easily bo mistaken for a process derived from that tunic, with which, in faet, it has no eonnexion, being attached to the optic nervo just at the point where it expands into the retina. Its substance seems to be made up of creetile tissue, and it is most eopiously supplied with blood derived from an arterial plexus formed by the arteria centralis re-

Fig. 513.

Section of the eye of an Owl : a, the marsupium or pecten. tince *; so that there is little doubt that, being like the iris cndowed with an involuntary power of dilatatiou and eontraetion, as it enlarges from the injection of blood, it distends the chamber of the vitroous humour, and pushes forward the lens, while, as it again eollapses, the crystalline is allowed to approach nearer to the retina; and thus the focus of the eye is adjusted upon the same prineiple as that of a teleseope. Four recti and two obliqui museles preside over the movements of the eyeball ; but, as in the Reptilia, the superior oblique arises from the anterior part of the orbit, as well as the obliquus inferior, and its tendon is not refloeted over a trochlea.
(2087.) Birds have three eyelids : an upper and a lower, resembling those of Mammalia; and a third, which, when unemployed, is coneealed in the inner eanthus of the cye, but ean be drawn down vertieally by muscles espeeially appropriated to its motions, so as to sweep over the ontire eornea, whieh it then eovers like a eurtain.
(2088.) The upper and the lower cyelids differ but little in their structure from those of Man; nevertheless a few trivial partieulars are worthy of the notiee of the student. In the first place, there are seldom any cyelashos attaehed to the palpebral margins ; and secondly, the lower eyclid is the most moveable of the two, and not only contains a distinet arsal cartilage, but is prorided with a speeial depressor musele, which arises from the bottom of the orbit, like the levator palpebres superioris of the human subjeet: the elevator of the upper eyelid and orbicularis palpebrarum are likewise woll developod.
(2089.) The third eyelid, or nictituting membrane, is represented in

[^221]fig． $514, A, e$（the upper and lower eyelids have been divided through the middle，and turned back to display it）：it is neeessarily，to a eer－ tain extent，transparent；for birds somotimus look through it，as for instanee when tho Eagle looks at the sun⿻丷木：：it is thereforo of a mem－ branous texture；and a most admirable and peeuliar muscular appa－ ratus is given，by whieh its movements are effeeted．This is placed at the baek of the eyeball，and may easily be displayed by turning aside tho recti and obliqui muscles，as in fig．514，b．Two museles are then pereeived arising from the globe of the eye，taking their origin from the outside of the selerotie eoat：one of these（c），named the quadratus membrance nictitantis，arising from near the upper aspeet of the eye，de－ seends towards the optie nerve ；but instead of being inserted into any thing，as museles usually are，it ter－ minates in a most remark－ able manner，ending in a tendinous sheath or pulley， through whieh the tendon of the next musele passes as it winds round the op－ tie nerve．The seeond mus－ ele (d) ，ealled the pyra－ midalis memb．nictitantis， arises from tho inner aspeet of the eyeball；and its fibres aro colleeted into a long slender tendon，whieh，as it turns round the optic nerve，passes through the tendinous sheath formed by tho quadratus，as a rope through a pulley，and then is continued in a cellular sheath formed by the selero－ tie，underneath the eye，to the lower angle of the third eyelid，into which it is in－ serted．The reader will at

Fig． 514.

Muscles of the nictitating membrane．A．a，the upper eyelid slit vertically；δ ，the under eyelid simi－ larly divided；e，the membrana nictitans；c ，puncta lacrymalia．

B．c，quadratus muscle of the nictitating membrane， cxhibiting the beautiful tendinons pulley through which runs the tendun of the pyramidalis，d ． onee pereeive how beautifully these two museles，aeting simultaneously， eause the nietitating membrane to sweep over the eornea，whieh returns again into the imner canthus of the eye by its own elastieity．
（2090．）Being thus provided with moveable ejelids，a laerymal appa－ ratus is，of course，indispensable ；and，aeeordingly，birds are supplicd
＊Cuvier，Leçons d＇Auat．Comp．tom．ii．p． 431.
with two distinet glands, ono being appropriated to the secretion of tears, while tho other furnishes a lubrieating fluid, apparently destined to faeilitate the movements of the membrana nictitans.
(2091.) The lacrymal gland is situated, as in Man, at the outer angle of the eye, and its duet pours the laerymal secretion upon the eyeball near the external canthus. The laciymal canal, whereby the tears, after moistening the cornea, are diseharged into the nose, commenees by two orifiees (fig. 514, a, c) situated just behind the internal commissure of the eyelids, and is continued into the nasal eavity, where it terminates in front of the represeutative of the middle turbinated bone.
(2092.) The seeoud gland, the glandula Harderi, seems to supply the place of the Mcibomian glands of the human eyelids: it forms a considerable glandular mass, situated behind the conjunctiva, at the nasal angle of the eyelids; aud through its excretory duct, whieh opens behiud the nietitatiug membrane, the lubrieating secretiou that it furnishes is poured out.
(2093.) Besides the secreting organs above described, a third, very large gland is found, geuerally lodged in a depression beneath the vault of the orbit, although in some genera it is situated external to that eavity : the seeretion of this gland, however, is poured into the nose by one or more duets, aud thus serves copiously to moisten the Sehneiderian membrane.
(2094.) The auditory apparatus of a Bird is almost precisely similar in its strueture to that of one of the more perfect reptiles, sueh as the Crocodile. There

Fig. 515.

Organ of hearing in the Owl: a, membrana tympani: b, semicircular canals; c, vestibule ; d, Eustachian tube; e, rudimentary cochlea. is still no external ear, or osseous eanal worthy of being ealled an external meatus: yet in a few rare instanees, such as the Bustard, the feathers around the ear are so disposed as to eolleet faint impressions of sound; and in the 0 mls , besides possessing a broad opercular flap, that forms a kind of external ear, there are sinuosities, external to the membrana tympani, whieh resemble, not very distantly, those fouud in the ear of Man.
(2095.) Entering into the eomposition of the organ of hearing in the elass before us, we havo the membrana tympani (fig. 515, a), and tympanic eavity, from whieh a wido Eustachian tubo (d) leads to the posterior nares. The labyrinth presents the vestibule (c), the somicircular canals (b), and the rudimentary cochlea (e); all of whieh so exaetly
correspond in structure with what has already been described when speaking of the ear of Reptiles ($\$ 2002$ et segg.) , as to render repetition needless. A single trumpet-shaped bone, the representative of the stapes, communicates immediatcly between the membrana tympani and the fenestra ovalis; but two or threc minute cartilaginous appendages, connceted with the membranous drum of the car, are regarded as being tho rudiments of the mallere, incus, and os orbiculare net with in the next class.
(2096.) The kidneys in the Bird (fig. 516, e, e) are very large ; they are lodged in deep depressions, situated on each side of the spine, in the lumbar and pelvic regions, their posterior aspects being moulded into all the carities formed by the bones in that situation. In their essential structure each kidney is madc up of innumerable microscopic flexuous tubes, which, joining again and again into larger and still larger trunks, ultimately terminate in the ureter, without the intcrposition of any infundibular cavity analogous to the pelvis of the human kidney.
(2097.) From the manner in which the kidneys are imbedded, the uretcrs are necessarily derived from thoir antcrior aspect. After recciving all the tcrminations of the urinary tubules, they pass bchind the rectum to the cloaca, into which they discharge the urinary sccretion. The cloaca, therefore, receives the terminations of the roctum, of the ureters, and also, as we shall immediately see, of the scxual passages : no urinary bladder is as jet developed, nevertheless vestiges of its appearance begin to become visible. The cloaca is, in fact, in some birds divided into two compartments, distinct hoth in their appearance and in their office; thesc, moreover, are separated by a constriction, more or less well-defined in different specics. It is into one of these compartments that the rectum opens, while the other (fig. $516, \mathrm{~mm}$) contains the orifices of the urcters and generative canals; the latter is therefore gencrally distinguished by the name of the wrethro-sexual portion of the cloaca-and is in truth a remnant of the allantois, and a rudiment of a bladder for the accumulation of the urine.
(2098.) An unctuous secretion, peculiar to the class under consideration, has been provided for the purpose of oiling the feathers; and in water-birds the fluid alluded to bccomes of very great importance to their welfare, as it causes thcir plumy covcring to repel moisture so efficiently that it is never wet. The gland given for this purpose is called the "wropygium," and is situated upon the back of the os coccygis; from this source the bird distributes the oily material thus afforded to all parts of its plumage.
(2099.) The male generative organs in Birds are fully as simple in their structure as those of the Reptilia. The testes are two oval bodies (fig. 516,9), invariably situated in the lumbar region, lying upon the anterior portion of the kidneys. In their intimate structure they consist of contorted and extremely slender tubes, wherein the scmen is
elaborated, contained in a strong eapsule. The sperm-secreting tubules of each tostis terminate in a slightly floxuous vas deferens (h, i), that opens into the cloaca by a simplo orifice (m, m). In most birds it can searcely bo said that a penis exists at all, two simple rudimentary vascular papille at the termination of the vasa deferentia constituting the

Fig. 516.

Generative organs of the Cock: $a b c$, abdominal parietes; e, e, kidneys; f, f, ureters; g, testicle of the left side; h, i, vasa deferentia: k, eloaeal eavity; m, m, terminal orifices of the vasa defcrentia; l, terminations of the ureters; n, termination of the reetum; d, posterior margin of the anus.
entire intromittent apparatus ; so that copulation between the male and fomale must, in the generality of species, be effected by a simplo juxtaposition of the sexual orifices : novertheloss in the web-footed tribes, which copulate in the wator, and in the Ostrich, tho ponis of the male is
much moro perfectly organized, as will be seen by the following description extracted from Curier *.
(2100.) The structure of the penis is far from being the same in all birds provided with such an organ ; it offers, in fact, two types extremely different from each other, whereof the Ostrich and Drake may be taken as examples. The penis of tho Ostrich is of a size proportioned to that of the bird. Its form is conical ; and a deep, narrow groove runs along its upper surface from the base to the point. The vasa deferentia oper into the cloaca opposite to the commencement of the groove; so that the semen flows directly into this furrow. This penis consists, first, of two solid conical bodies, entirely composed of fibrous substance, supported at their base within the sphincter of the cloaca upon its inferior wall (the fibrous cones are placed side by side, but not confounded together ; and the right is smaller than the left-no doubt to allow this organ, which never becomes soft as that of quadrupeds, to be more easily folded back into the cloaca) ; secondly, of a fibro-vascular body, which constitutes the bulk of the inferior aspect of the penis, and is continued to its extremity; thirdly, of a cellular portion, capable of erection, placed boneath the skin lining the urethral groove. This last is doubtless the first appearance of the corpus spongiosum, which in Mammifers completely encloses the canal of the urethra, while the two others represent the corpus cavernosum. The whole apparatus, when not in use, is drawn into the cloaca by two pairs of retractor muscles.
(2101.) In Geese, Ducks, and many wading birds, such as the Stork, the structure of the male intromittent organ is totally different. When in a state of repose, it is lodged in a pouch under the extremity of the rectum, and curved so as to describe three parts of a circle. When the penis is opened in this condition, it is found to be made up of two portions, each composing half of its substance. The parietes of one half are thick, elastic, and slightly glandular. The other presents internally a great number of transverse grooves and folds. This latter portion during erection unrolls itself outward like a glove; and at the same time, the half first mentioned, introducing itself into the hollow cylinder formed by the second, fills it up, and constitutes the firmest part of the organ. Most of the grooves and folds visible during non-erection become much less apparent when tho penis is protruded; and their direction being oblique, they prevent it from stretching out in a straight line, but oblige it to assume a corkscrevs appearance. A deep groove runs along tho wholc length of this singular organ ; and it is into the commencement of this groovo that the vasa deferentia pour the seminal secretion.
(2102.) The females of species whoso male possess a large penis are provided with a rudimentary clitoris of similar construction.
(2103.) The female generative system in the feathered tribes offers a remarkable exception to what we have as yet seen in the vertebrato

[^222]Ovipara. Instead of being symmetrically doveloped upon the two sides of tho body, the right oviduct and most frequently the corresponding ovarium remain permanently atrophied, and, although they do exist in a rudimentary condition, they never arrive at such dimensions as to allow them to assist in the reproductive process.
(2103.) Tho fertile ovarium presents in all essential circumstances the same organization as those of the Reptilia, and is in the same way attached by folds of peritoneum in the vicinity of the spline (fig. 517, f^{\prime}). The contained ova are found in all stages of maturity; and being comected together by narrow pedieles, the viscus assumes a distinctly racemose appearance.
(2104.) The oviduct (fig. $517, d e)$ commences by a wide funncl-shaped aperture, and soon assumes the appearance of a convoluted intestinc. Its lining membrane varies in texture in different parts: near the infundibular orifice it is thin and smooth; further down it becomes thicker and corrugated ; and at last, near the termination of the canal, where the egg is completed by the calcification of its outward covering (g), it presents a villous texture. The oviduct ultimately opens into the corresponding side of the urethroscxual compartment of the cloaca.
(2105.) We must in the next place procced to describe, with as much brevity as is consistent with the im-

Generative apparatus of the Hen: a, ingluvies or crop; b, liver; c, intestinal convolutions; $d e$, oviduct; g, a portion of the wall of the dilated oviduct raised to show the shell of an egg contained in its interior.
portance of the subject:-first, the nidus, or ovisac, in which the rudiment of the future being is produced; sccondly, the structure of the germ (ovulum) when it escapes from the ovary ; thirdly, the additions made to the ovulum as it passes through the oviduct; and, lastly, the phenomena that take place during the development of the embryo by incubation.
(2106.) If the ovarium of a bird be examined whilst in functional
activity, such of the pedunculated ovisacs (crelyces, fig. 517,f) as have within them ovula ripe for exelusion will bo found to eonsist of two membranes *. Of these, the exterior is very vascular, and is surrounded by a pale zone (stigma), occupying the eentre of the calyx. The lining membrane of the ovisac, on the contrary, is thin and pellucid, but studded with minute corpuseles, which are probably glandular, or perhaps little plexuses of vessels. Within this ovisac the basis of the future egg (ovrulum) is formed.
(2107.) The ovulum produced in the ovisac, when mature, is made up of the following parts. The bulk of it consists of an orange-coloured oleaginous material, enclosed in a most delicate and pellucid membrane (membranc vitelli): this is the yelk of the future egg. Upon the surface of the yelk there is visible a slightly elevated opaque spot (cicatricula), wherein is lodged the reproductive germ: this last, which is apparently the most important part of the ovulum, is a minute pellucid globule, and has been named, after its discoverer, the "vesicle of Purkinje," or the germinal vesicle.
(2108.) The phenomena attending conception are therefore simply these :-The membranes of the ovisac are gradually thinned by absorption ; and being embraced and squeezed by the infundibular commencement of the oviduct, the transparent zone or stigma gives way, allowing the ovulum, covered only by its membrana vitelli, to escape into the oviductus. The rentovisae is soon removed by absorption; and the ovulum, with its cicatricula, is left to be clothed with other investments: but the germinal vesicle is now no longer to be seen; its delicate covering having been, as Purkinje supposes, ruptured by the violence to which it has been subjected.
(2109.) It is during the passage of the ovulum through the canal of the oviduet that it beeomes enclosed in the other parts entering into the composition of the egg: these are, the albumen, the chataze, the membrana putaminis, and the calcareous shell.
(2110.) The albumen, or glairy fluid forming the white of the egg, is secreted by the mucous membrane that lines the commencement of the oviduct; and being laid on, layer upon layer, gradually coats the membrana vitelli. Some of the albumen meanwhile becomes inspissated, so as to form an almost invisible membrane, the chalaze, which, being twisted by the revolutions of the yelk, as it is pushed forward in the oviduct, is gathered into two delieate and spiral cords (fig. 519, c c), whereby the yelk is retained in situ after the egg is completed.
(2111.) The ovulum, now covered with a thick eoating of albumen, and furnished with the ehalaze, at length approaches the terminal extremity of the oviduet, where a more tenacious material is poured out: it is here that the whole becomes encased in a dense membrane resem-

* Vide Purkinjo, Symbolre ad ori Avium historiam ante incubationem. fto. Lipsix, 1830.
bling very thin parchment, called "mombruna puttaminis;" and ultimately, on arriving in the last, dilated portion of the canal (fig. 517, g), the lining membrane of which secretes cretaceous matter, the shell is formed by the gradual accumulation of extremely minute polygonal cileareous particles, so disposed upon the surface of the cgg that imperceptible interstices are left between them for the purpose of transpiration.
(2112.) Thus, as the oviduct is traced from its infundibular commencement, the different portions of it are seen successively to discharge the following functions: the orifice of the infundibulum receives the ovulum from the ovisac ; the succeeding portion, extending nearly threefourths of its entire length, secretes the albumen and the chalazæ; in the next tract it furnishes the membrana putaminis; and in the last place, the shell ; after which, the complete egg is expelled through the cloaca.
(2113.) The anatomy of the egg prior to the commencement of incubation is therefore sufficiently simple. Immediately beneath the shell is the membrana puttaminis; which, however, we must here remark, consists of two layers; and at the larger end of the egg these layers separate, leaving a space (fig. 518, a b), called the vesicuta uëris; we

Fig. 518.

Anatomy of the egr: $a b$, air-vesicle; b, arrow indicating the position of the central axis of the c.gg ; c, the yelk; f, Purkinjean vesicle: g, cicatricula; h, thickening of the vitelline membrane; e, canal leading to d, the central chamber of the yelk.
may further notiee that the ehamber so formed is filled with air containing an unusual proportion of oxygen, destined to serve for the respiration of the future embryo. Euclosed in the membrana putaminis the student next finds the albumen and chalazie (fig. 519, c), and, lastly, the yelk, enclosed in its proper membrane (fig. 518, c), the membrana vitelli.
(2114.) We must dwell a little more at length, however, upon the composition of the yclk. The cicatricula (fig. 518, $!$) is made up of a thin membrane, which originally enclosed the vesicle of Iurkinge (f) ;
but this latter, although introduced into the diagram for the purpose of illustration, is in reality, as we have already seen, no longer visible; and we must now change the word cicatriculn for that of blastoderm, which may be presumed to consist of the original cicatricula and the ruptured vesicle of Purkinje : it is from this blastoderm, or germinal membrane, as it is sometimes called, that the future being is developerl.
(2115.) Immediately over the blastoderm the membrana vitelli is slightly thickened (fig. 518, h) ; and beneath it is a canal (e), which leads to a chamber (d) placed in the centre of the yelk; this cavity is filled with a whitish granular substance.
(2116.) Such is the composition of the complete egg of a Fowl, and, with the exception of trifling circumstances hereafter to be noticed, of that of vertebrate animals in general. The development of the embryo is accomplished in the following manner.
(2117.) No sooner has incubation* commenced, than the blastoderm becomes distinctly separate from the yelk and the membrance vitelli, and, as it begins to spread, assumes the form of a central pellucid spot, surrounded by a broad dark ring (fig. $519, g h$); it at the same time

Fig. 519.

Egg at commencement of incubation: a, egg-shell; b, air-vcsicle betwecn the layers of the membrana putaminis; c, c, chalaza; f, yelk; $g h$, blastoderm.
becomes thickened and prominent, and is soon scparable into three laycrs ; of these, the exterior (fig. 520, c) is a serous layer ; the internal, or that next the yelk (A), a mucous layer; and between the two is situated a vascular layer (B), in which vessels soon become apparent. These three layers arc of the utmost importance, as from the firstmentioned all the serous structures, from the second all the mucous structure, and from the third the entire vascular system of the embryo originatc.
(2118.) Towards the close of the first day of incubation the blastoderm has already begun to change its appearance, and two white fila-

* Dr. Karl Ernst v. Baer, über Entwickelungsgeschichte der Thicre. Beobachtung und Reflexion. 4to. 1837.
ments are apparent in the middle of the eentral pellucid eirele. Supposing a longitudinal scetion of it at this period, the membrana vitelli will be found to have become more prominent where it passes over the germinal space (fig. $520,1, \mathrm{D}$). The outer layer of the blastoderm (c) has become thickened at e into the first rudiment of the dorsal portion of the embryo ; but the mucous layer (A) and the vaseular layer (B) have as yet undergono little alteration.
(2119.) At the commencement of the scoond day (fig. 520, 2), the

Fig. 520.

Earliest appearnnce of embryo. A, mucous laycr; B, vascular layer; C, serous layer; D, membrana vitelli: e, rudimentrry embryo; h, punctum saiiens.
anterior portion of the embryo is dilated, and bent down so as to inflect the three membranes of the blastoderm at this point.
(2120.) At the conolusion of the second day this inflection is carried still further, and from the vascular layer a single pulsating cavity (fig. 520, 3, h), the punctum saliens (the first appearance of a heart), has become developed ; so that considerable advance is already made towards that disposition of the foetus and its membranous investments represented in the next figure, to which we now beg the reader's attention.

Fig. 521.

Embryo in a more advanced stage. Λ, B, c, n, ns in the preceding figure: a, b, auricle and rentricle of the heart; c, branchial arteries, which by their junction form the aorta (m): p, the allantois.
(2121.) The serous membrane $(520,0)$ has at the third day become refleeted to a considerable distanee over the haek of the foctus; at one extremity investing the head with a serous eovering, while at the opposite it in like manner covers the tail : it is this reflection of the scrous layer whieh forms the amnion, as will be observed in fig. 521, where the amniotie sac (c) is eompleted.
(2122.) The mueous layer (A) is now seen to line the as yet open spaee whieh is to form the abdominal eavity, and by its inflections gives birth to the rudiments of the abdominal viscera.
(2123.) From the vaseular layer (в) has been developed the heart, now composed of two ehambers (a, b), and the branehial arteries (c), whieh join to form the aorta (m), exactly as in the Menopomu (fig. 491). The allantois $\left(p^{\prime}\right)$, the uses of whieh will be deseribed hereafter, likewise begins to make its appearance *.
(2124.) At the fifth day (fig, 522) the lineaments of the viseera

Fig. 522.

Embryo about the fifth day of incubation. A, B, C, D, as in the preceding figures; a, heart; b, bulbus arteriosus; c, branchial arches; m, dorsal vessel, representing the uorta of fshes; n, umbilicus; p, allantois.
beeome tolerably distinet. The sae of the amnion (c) is completed; the liver (i) and the lungs (e) begin to show themselves; and the bag of the allantois (p) is largely developed: still, however, the heart ($a b$) is that of a fish, and the aorta (m) formed by the union of the branehial arches (c) ; so we have yet to trace how, as the lungs inerease in size, the eireulatory apparatus beeomes ehanged and tho branchial organs obliterated.
(2125.) On the third day of ineubation there exist four vaseular arches (fig. 521, c) on eaeh side, having a eommon origin from the bulb (b), which obviously represents the bulbus arteriosus of Fishes and Reptiles, before described ; these eneirele tho neek, and join on arriving in the dorsal region to form the aorta, which commenees by two roots, eaeh mado up of the union of tho four branchial vessels of the eorre-

[^223]sponding side. The vascular arches are developed one after the other, the most anterior being visible even on the second day; shortly a second appears behind the first, the former in the meantine becoming considerably larger; and at length the third and the fourth are formed, the fourth being still very small at the commencement of the third day.
(2126.) At this period three fissures are pereeptible between the branchial arches, and in front of the first pair is the first appearance of the oral orifiee-which, however, is not, properly speaking, the aperture of the mouth, since at this epoch the jaws and buccal cavity are not as yet formed, but, physiologieally considered, it rather represents the pharynx.
(2127.) At the close of the third day this branchial apparatus is already slightly changed: the branchial fissures are wider, and the fourth vascular arch is become nearly as large as the others. On the fourth day the first vascular areh is almost imperceptible, and that for two reasons: in the first place, it becomes covered up with cellular tissue; and secondly, it is so much diminished in size towards the second half of the fourth day, that it merely gives passage to a most slender stream of nearly colourless blood. By the close of the fourth day it is no longer recognizable, but, before its disappearance, it is seen to have given off from its most convex point a vessel, which becomes the carotid artery; so that, when the arch itself is atrophied, that portion of it which was connected with the bulb of the aorta becomes the trunk of the carotic.
(2128.) The second arch then becomes diminished in size, insomuch that the third and fourth receive the greater part of the blood, while in the meantime a fifth arch makes its appearance behind the fourth; so that in this way there are still four permeable arches.
(2129.) While these ehanges are going on in the vascular canals, the first branchial fissure gradually closes; and to make up for this, a new one is formed between the arch which originally was the fourth and that last developed.
(2130.) At the commencement of the fifth day there are consequently again four vascular arehes and three branchial fissures on each side-but not the same as those of the third day, since one arch and one fissure have disappeared, and have been replaced by similar parts. During the fifth day, the vascular arch which at first was the second is obliterated, and the two succeeding ones become increased in size ; but at the end of the fifth day all the branchial fissures are effaced, being filled up with cellular tissue, and no trace of them is left. The remainder of the metamorphosis seems to depend principally upon changes that occur in the bulbus arteriosus (fig. 522, b), which is by degrees converted into the bulb of the aorta. This part of the arterial system, from being a single cavity, about the fifth day divides into two canals, which become gradually more and more separated and bent upon themselves. The separation of the bullus arteriosus into two vessels is, in the opinion of Pro-
fessor Baer, owing to tho circumstance that the ventricles gradually beeomo separated by a septum, which, as it grows more complete, canses two distinct currents of blood to be propelled from the heart. The current coming from the right ventricle arrives sooner than the other at the vascular arches, and rushes through the two posterior and throngh the middle arch of the left side, while the gush of blood from the left ventricle fills the two anterior arches and the middle arch of the right side, -a circumstance depending on the course impressed upon the currents derived from the two ventricles. Fach current becomes more and more distinct ; and at last each is provided with a proper channel, forming the trunks of the future pulmonary artery and of the future aorta.
(2131.) It will be seen that as yet the real aorta does not exist; for at this period of the metamorphosis all the blood passes through the vascular arches that remain into the dorsal vessel (fig. 522, m), which is formed in the same manner as the aorta of Fishes, by the union of the branchial vessels.
(2132.) While the branchial fissures penetrated into the pharyngeal cavity, the branchial vessels were contained in the corresponding branchial arches ; but as soon as these fissures disappear, the vascular trunks abandon the neighbourhood of the pharynx and begin to assume the character they afterwards present.
(2133.) The most posterior arch of the left side gradually disappears, and on the seventh day of incubation is no longer recognizable ; whilst in the meantime the current of blood from the right ventricle is directed in such a manner as to pass in front of this arch, and enters the posterior arch of the right side, and the last but one on the left.
(2134.) As, moreover, the two arches that were formerly the most anterior have become obliterated, whilst the third and fourth, on the contrary, are increased in size, the blood, passing backwards through these arches into the roots of the aorta, enters also the carotid artery, which now resembles a prolongation of the commencement of the aorta towards the head. Thus, one part of the primitive root of the aorta becomes the trunk of the carotid artery.
(2135.) There exist consequently, on the eighth day, three vascular arches on the right side, and only two on the left; and these five arches are derired from the heart, as are also two small vascular trunks, now quite distinet, which have been formed from the bulb.
(2136.) The anterior arch of both sides and the middle arch of the right side proeecd from the left ventricle; the posterior arches issue from the right; but all of them as yet unite to form the two roots of the aorta, which are still of pretty equal size; and each root gives off a carotid artery. At tho point where the anterior arches join the roots of the aorta, they are now seen to give off newly formed trunks, whieh go to the anterior extremity of their respective sides; and as these limbs and the hoad inerease in size and require more blood, the anterior arch
propels a greater proportion of blood in that direction, and insensibly less and less into the aorta. The eonsequence is that the anterior arch beeomes more and more decidedly the brachio-cephalie trunk; and, in short, on the thirteenth day it only communieates with the dorsal aorta by a small vessel, and ultimately becomes quite detached, forming the arteria innominata of the corresponding side.
(2137.) Meanwhile the posterior arches on both sides send out branches destined to the eontiguous lungs. On the eighth day these vessels are still very small, and difficult to find ; but they soon grow larger ; and during the last half of the period of incubation, they show themselves as the immediate continuations of the arches from which thoy are derived-their junctions with the aorta beeoming more and more imperfoct, and constituting the two ductus arteriosi. These canals are of very unequal size : that of the right side is much shorter than that of the left, which is now the only remnant of the original root of the aorta on that side, and considerably narrower than the root of the aorta on the right side. On the right side, in fact, the middle areh now becomes of great importance, and really constitutes the commeneement of the desconding aorta, receiving the other eommunieations as subordinate parts.
(2138.) The bird having eseaped from the ogg, and having breathed for some time, all the blood from the right rentricle passes into tho lungs, the duetus arteriosi become totally imperforate, and two distinct circulations are thus established-one proceeding from the right side of

Fig. 523.

Membranes of the orum : a, embryo ; b, yelk; c, allantois; $d d$, membrtuna putaminis.
the heart through the lungs into the left side of the heart, the other from tho left side of the heart through the system into the right side of the heart.
(2139.) We see, therefore, that of the five pairs of vaseular branchial arches which at first by their union formed the aorta as in Fishes, those of the first pair on both sides and of the fifth on the left side speedily disappear. The third on eaeh side becomes the brachio-eephalic trunk, the fourth of the right side beeomes the deseending aorta, while the fifth of the right side and the fourth of the left side are eonverted into the pulmonary arteries. The very short trunk common to the two pulmonary arterics, as well as the equally short trunk of the aorta, properly so called, are produecd by the transformation of the single cavity of the original " bulbus arteriosus" into two distinet canals; and thus this wonderful metamorphosis is aecomplished.
(2140.) About the one hundred-and-twentienth hour from the eommeneement of ineubation, the vaseular layer of the blastoderm has spread extensively over the yelk (fig. $523, b$) ; and as the vessels formed by it beeome perfected, they are found to converge to the navel of the embryo, and to constitute a distinet system of arteries and veins (omphalo-mesenteric), communicating with the aorta and with the heart of the foetus, and forming a vaseular cirele surrounding the jelk. The omphalo-mesenteric arteries (fig. 523, b, c), which thus ramify over the vitelline sac, are derived from the mesenteric arteries; and the blood distributed through them is returned, by the omphalomesenteric veins, to the superior vena cava of the young chick.

Fig. 524.

> Membranes of the ovum in situ: a, b, omphalomesenterie arterial and venous trunks; c, membrana putaminis.
(2141.) As soon as the intestinal system of the embryo bird is distinetly formed, the membrane enelosing the yelk (vitellicle) is scen to eommunieate with the intestine by a wide duct (ductus vitello-intestinalis), whereby the mutritire substance of the yelk enters the alimentary canal to serve as food, and the mucous membranc lining the vitelliele becomes thrown into close wary folds, so as to present a very extensive surface. Gradually, as growth advances, the yelk diminishes in size ; and at length, before the young bird is hatchod, the remains of it are entirely withdrawn into the abdominal cavity (figs. 526,527), where its absorption is completed: but
evon in the adult bird, a little ereal appondage, or diverticulum, still indicates the place formerly oceupied by tho ductus vitello-intestinalis.
(2142.) While the above phenomena are in progress, another important system of vessels, provided for the respiration of the bird in ovo, is developed, and obliterated before the egg is hatehed.
(2143.) At about the periord represented in fig. 522, the sides of the abdominal cavity, which is still open anteriorly, are oceupied by transitory secreting organs, named corpora Wolfictua : these, apparently, are the rudiments of the genito-urinary system ; and, to receive their secretion, a bladder is developed, called the allantoid sac-a viseus which is moreover destined to play au important part in the coonomy of the embryo, and soon becomes its prineipal respiratory organ. The allantois first makes its appoaranee as a delicate bag (fig. $522, p$), derived from the anterior surface of the reetum ; but it expands rapidly, and soon occupies a very considerable portion of the interior of the egg (fig. 523, c), until at last it lines nearly the whole extent of the membrana putuminis; and beooming thus extensively exposed to the influenee of the air that penctrates the egg-shell, it ultimately takes upon itself the respiratory function. When fully developed (fig. 524), it is coverod with a rich not-

Fig. 525.

Vesscls of the allantois: a, allantoic sac; b, membrane of the yelk; c, omphalo-mesenteric ressels. work of arteries and veins (a, b) spread upon its surface. The arteries (fig. 525, a) are derived from the common iliac trunks of tho embryo, and of course represent the umbilical arteries of the human foetus; the vein enters the umbilicus, and, passing through tho fissure of the liver, pours the blood, which it returns from the allantois in an arterialized condition, into the inferior cava, as does the umbilical vein of Mammalia.
(2144.) About the nineteenth day of incubation, the air-vessel at the

Fig. $52(6$

Position of the chick in ovo: a, horny appendage to the beak, whereby the chick is eanabled to break through the egg-shell; b, yell almost entirely withdrawn into the visceral cavity.

Fig. 527.

Viscera of mature chick: a, gizzard; c, liver: b, lnst remnant of the allantoic ame.
large extremity of the egg (fig. $524, c$) is ruptured, and the lungs begin to assumo their functiou, by breathing the air that this vesicle contains. The circulation through the allantois then gradually diminishes, and it is slowly obliterated until merely a ligamentous remnant, called the w.achus, is left. In Reptiles, however, as we have already seen, a portion of the allantoid bag remains cven in the adult creature (fig. 488, q); and in Birds, in that compartment of the cloaca in which the genital and urinary passages terminate, are vestiges of the same organ.
(2145.) Although the above description is intended to give a general riew of the process of oviparous generation in its most perfeet and conscquently most complex form, the reader, in applying it to the development of the ovum in the inferior Ovipara, must bear in mind the following important differences:-lst, That in the air-breathing Repilita the white of the egg is almost, if not entirely, wanting ; but the other phenomena are similar to those wituessed in the Bird. 2ndly, That in Fishes not only is there no white formed, but, for obvious reasons, the allantoid apparatus is not developed. The egg in these lower tribes contains ouly the yelk and the cieatricula; it swells from absorbing the surrounding water; and the fotus is devcloped upon the surface of the yelk-the latter, which, as in Birds, eommunieates with the intestine, being slowly received into the abdominal cavity.
(2146.) The subsequent chang'es that occur in the circulatory system of a bird, namely the obliteration of the foramen ovale and of the cluctus arteriosi, whereby the pulmonary and systemic circulations become quite distinet, are similar to those which take place in the Mammiferous fœetus, and will be described in the next chapter.

CHAPTER XXVIII.

manmalia.

(2147.) 'Her highost boon eonferred upon the lowest animals, "Heaven's last, best gift," is parental affection. The eold-blooded Ovipara, nnable in any manner to assist in the maturation of their offspring, were necessarily compelled to leave their cggs to be hatched by the agency of external circumstances; and their progeny, even from the moment of their birth, were abandoned to chance and to their own resources for a supply of nourishment. In Birds, the duties and the pleasures inseparable from the necessity of incubating their ova, and of providing nutriment for their callow brood, are indeed manifested to an extent unparalleled in the preceding orders of Vertebrata ; but it is to the Mammalia alone, the most sagacious and intelligent of all the inha-
bitants of this world, that the Creator has permitted the full enjoyment of paternal and maternal love, has thrown the offspring absolutely helpless and dependent upon a mother's care and solicitude, and thus confers upou the parent the joys and comforts that a mother only knows-the dearest, purest, sweetest bestowed mpon the animal creation.
(2148.) The grand circumstance whereby the entire class of beings gencrally designated under the name of Quadropens may be distinguished. from all other members of the animal kingdom is, that the females of every species are furnished with mammary glands-secerning organs appointed to supply a secretion called milk, whereby the young are nourished from the moment of their birth until they have reached a sufficient age to enable them to live upon such animal or vegetable substances as are adapted to their maturer condition. The possession of these lactiferous glands would indeed be in itself a sufficiently decisive characteristic of the whole group; and if to this we add that their visceral cavity is separated into a thorax and abdomen by a muscular diaphoragm, and that they breathe by means of lungs precisely similar to our own, we need not in this place dwell upon any more minnte definition of the Mammiferous Vertebrata.
(2149.) The Mamadia, as we might be prepared to anticipate from their importance, are extensively distributed. The generality of them are terrestrial in their habits, either browsing the herbage from the ground, or, if of carnivourous propensities, leading a life of rapine by carrying on a bloodthirsty warfare against animals inferior to themselves in strength or ferocity. Many inhabit the trees ; some burrow beneath the surface of the soil; a few can raise themselves into the air and flit about in search of inscet prey ; the Otter and the Seal persecute the fishes even in their own element; and the gigantic Whales, wallowing upon the surface of the sca, "tempest the ocean" in their fury.
(2150.) With habits so diverse, we may well expect corresponding diversity in their forms, or in the structure of their limbs; and, in fact, did we not compress our description of these particulars into reasonable limits, we might easily test the perseverance of the most patient reader in following us through the mass of details connected with this part of our subject. We shall therefore, commencing as we have hitherto done, with the ostcology of the class, first describe, in general terms, the characters of a Mammiferous skeleton, and then, as we arrange the Mammalia under the varions orders into which they have been distributed, speak of the most important aberrations from the given type.
(2151.) The vertebral column of all Mammals, with the remarkable exception of the Cetacea, is divisible into the same regions as in the human skeleton, viz. the cervical, dorsal, lumbar, sacral, and coccegeal or caudal portions.
(2152.) The cervical vertebre are invariably seven in number. 'the Sloth (Brudypus tridactylus) was, until recently, regarded as forming
a solitary exception, it having been supposed to possess nine cervical vertebre; tho researches of Professor Bell, however, show that cver this animal conforms to the general law. The distinguished naturalist referred to has demonstrated*, "that the posterior two of these vertebre have attached to them the rudiments of two pairs of ribs, in the form of small elongated bones articulated to their transverse processes; they must therefore be regarded as truly dorsal vertebræ, modified into a cerrical form and function suited to the peculiar wants of the animal." Professor Bell further observes that "the object of the increased mumber of vertebre in the neck of the Sloth is evidently to allow of a more extensive rotation of the head; for, as each of the bones turns to a small extent upon the succceding one, it is clear that the degree of rotation of the extreme point will be in proportion to the number of pieces in the whole series. When the habits of this extraordinary animal are considered, hanging as it does from the under surface of boughs, with the back downwards, it is obvious that the only means by which it conld look towards the gronnd must be by rotation of the neck; and it was necessary, to effect this without diminishing the firmness of the cervical portion of the vertebral column, to add certain moveable points to the number possessed by the rest of the class; the additional motion was acquired by modifying the two superior dorsal vertebre, and giving them the office of cervical, rather than by infringing on a rule which is thus preserved entire without a single known exception."
(2153.) The occipital bone articulates with the atlas by two lateral condyles, instead of by a single central articulating surface-a circumstance which depends upon the greatly increased development of the encephalon, and the consequent expansion of the cranium.
(2154.) The number of dorsal vertebre depends upon that of the ribs: thus in the Bat tribe there are only eleven; while in some of the Pachydermata (as, for example, in the Elcphant and Tapir) as many as twenty dorsal vertebræ may be counted. The lumbar and sacral vertebræ will likewise be more or less numerous in different genera; and in the number of pieces composing the coccyx, or tail, there is every variety, from four to five-and-forty.
(2155.) The thorax is enclosed by ribs, which in structure, and in their mode of comexion with the dorsal vertebre, resemble those of Man. At its dorsal extremity each rib is articnlated by its head to the bodies of the vertebræ, and to the intervertebral substance ; while its tubercle, or the representative of the second head of the rib of a Bird, is moveably connceted with the corresponding vertebral transverse process. There are no sternal ribs; but these are represented by cartilaginous picces, whereby, towards the antcrier part of the thorax, each rib is attached to the side of the sternum : posteriorly, however, this con-

* Cyclop. of Anat. and Plyss. arl Cinentata.
nexion doos not exist. The anterior ribs are therefore ealled true ribs, and the posterior, false, or flouting ribs, preeisely as in the haman skoleton.
(2156.) The sternum is composed of soveral narrow pieces, placed in a line behind each other along the middle of the breast. These pieces are generally consolidated : by their lateral margins they give attachment anteriorly to the elavieles, if these bones be present, and behind these to the costal cartilages of the true ribs.
(2157.) From the whole arrangement of the thorax, it is ovident that the ribs are eapable of extensive movements of elevation and depression, whereby the capacity of the whole thoracic cavity may be increased or diminished-movements which, aided by those of the diaphragm, draw in and expel the air used for respiration.
(2158.) To the anterior extromity is appended a broad seapula, gencrally unconnected with the rest of the skeleton, exeept by muscular attachments. In quadrupeds that use this extremity as an instrument of prehension or of flight, a claviele is interposed between the seapula and the sternum ; but most frequently this element of the shoulder is deficient; and even the coracoid bone, if a vestige of it remains at all, is reduced to a mere appendage to the seapula, known to the human anatomist as the coracoid process. The rest of the limb prosents the arm, the forearm, the carpus, metaearpus, and phalanges ; but these are so altered in appearance in different orders, that no general description will suffice, and we must therefore defer this part of our inquiry for the present.
(2159.) In the posterior extremity there is equal dissimilarity in the construction of the distal portions of the limb; but the pelvis, although much modified in form, consists of the same pieces as in the hnman subjeet, and in like manner has the pubic arch and foramina fully completed.
(2160.) The cranium and face are made up of numerous bones, easily recognizable, as they correspond in their general arrangement with those composing this part of the skeleton in the lower Vertebrata. Their development in the facial region is large, in proportion to the strength of the museles moving the lower jaw; and they are so disposed as to form buttresses to resist the powerful pressure of the teeth, as well as to enelose cavities wherein are lodged the organs connected with the senses of smell and of vision. One example will answer our present purpose; and we have selected tho skull of the Pig as one calculated to show a medium development of the whole series.
(2161.) In the face we find on each side two bones entering into the composition of the upper jaw, into which tecth are implanted; these are the superior maxillary (fig. 528, 18), and the intermaxillary (15). These bones, moreover, bound extensively the eavity of the nosc, and, toget ther with the palatine process of the palate bone (fig. 529,22), constitute the
bony palate or roof of the mouth. The nasal bones (fig. 528, 20, 20) complete the upper part of the face ; and, bcing in contact along the mesial line, arch over the nasal ehamber.

Fig. 528.

(2162.) The orbit is bounded anteriorly by the lacrymal bone (c), and the jugal or malar bone (b). Its posterior boundary is generally wanting, as the external angular processes of the jugal and frontal bones do not meet.
(2163.) The orbital cavity is principally formed by processes derived from the os frontis, the sphenoid, the lacrymal, and the malar bonethe ethmoid and the palatine rarely entering into its composition.
(2164.) The os ethmoides, the vomer, and the turbinated bones will be described minutely when we speak of the olfactory apparatus, which they contribute to form.
(2165.) The inferior maxilla in Mammals is characterized by two circumstances, which distinguish it from that of other Vertebrata. It consists, in the first place, of only two lateral pieces, exactly similar to each other, joincd together at the chin by a symphysis in many orders ; but in others even this symphysis is obliterated at an early age, and in the adult the two lateral halves would seem to form but one piece.
(2166.) Another character peculiar to the lower jaw of a Mammal is, that it is moveably articulated to the temporal bone by means of a convex and undivded condyle.
(2167.) These marks, identifying the mammiferous lower jaw, ought to be well remembered by the palæontologist.
(2168.) We shall hereafter have oceasion to describe the teeth that arm the jaws of the different tribes of quadrupeds; and therefore we
now proceed to examine their eranial cavity, and the bones that enter into its formation.
(2169.) The frontal bones (1, figs. 528,529) are generally two in number ; and even when, as in Man, they seem to form but one bone, the two lateral halves are produced from scparate points of ossifieation, and only coalesce as age advanecs: sometimes, indeed, even in the adult, they remain permanently separated by suturc.

Fig. 529.

Section of the skull of the Pig.
(2170.) The parietal bones (7, figs. 528,529) oeeupy their usual position ; and although generally double, as in the human skeleton, they are not unfrequently consolidated together, even at an early age, so as to represent but a single bone.
(2171.) The occipital bone consists primarily of the same pieees as in the Reptile ; but in the Mammifer these are at an early period eonsolidated into one mass, situated at the back of the eranium. Its basilar portion (5) artieulates with the atlas by two eondyles; while the lateral wings (10) and the superior areh (8) surround the foramen magnum, and proteet the cercbellie regions of the encephalon.
(2172.) The sphenoid (6), although eomposed of fewer separate picees than in the Reptilia, and even regarded by the human anatomist as a single bone, is still distinetly divisible, espeeially in young animals, into two very important portions-one anterior, and the other posterioreaeh, as we shall soon see, forming the body of a distinet eranial vertebra. The postcrior half (6) eonsists of the body, ineluding the posterior clinoid processes, and of the greater alæ and pterygoid processes (fig. 529, 25). The anterior half is formed by the anterior elinoid processes and alæ minores (fig. 529, 11). These two halves may therefore be called, respeetively, the anterior and posterior sphenoids.
(2173.) Lastly, we have the temporal bone, exhibiting but one piece, although made $u p$ of all the parts which in the Reptile were so obvionsly distinet elements. The petrous portion, wedged into the base
of the cranium, still encloses the internal car. The tympanic element (fig. 528, a) supports the membrana tympani. The mastoid process (fig. 529,12) is the homologue of the mastoid bone of the Crocodile; and, lastly, the squamous clement, with which the lower jaw is articulated (fig 528,23), in the Reptilia was visibly a distinct bonc. Even to these may be added the zygomatic process, which Professor Owen regards as an independant elemental part.
(2174.) Reviewing, therefore, all that has been said relative to the composition of the skull in the different classes of Vertebrata, the following deductions may be arrived at*:-

1. That as we advance from lower to higher forms, the proportional size of the cranium relative to that of the face bccomes greater.
2. That the number of bones met with upon the inferior and latcral aspects of the head gradually diminishes; for in Mammalia the pterygoid and tympanic bones, which even in Birds are scparate picces, become ver's generally confounded with the sphenoid and the temporal; and also the petrous and squamous portions of the temporal bccome blended together.
3. The number of bones normally entering into the composition of the cranium of adult Mammalia varics considerably. When most numerous, there are twenty-eight-elcven in the cranium, and seventeen in the face. In this case the cranial bones are the following :-one occipital, one sphenoid, the two squamous portions of the temporal, the two tympano-petrous portions of the temporal, the two parietal, the two frontal, and the ethmoid.
(2175.) The boncs of the face are :-two supcrior maxillary, two intermaxillary, two nasal, two lacrymal, the vomer, two inferior turbinated bones, two palate bones, two jugal boncs, and, lastly, the two halves of the lower jaw.
(2176.) It is true that some slight exceptions occur: thus, for example, in the Cetacca the pterygoid bones remain detached; in the Rodentia the occipital is divided into a superior and inferior portion ; but in the latter the two frontal and the two parietal bccome consolidated into one bone.
(2177.) In Man the boncs of the cranium become much less numerous, inasmuch as all the elements of the occipital, of the temporal, of the frontal, the intermaxillary and the maxillary, composing the upper jaw, and the two halves of the lower jaw, respectively coalcsce ; and the skull consists of but one-and-twenty bones-seven in the cranium, and fourteen in the face.
(2178.) Even this number is not the smallest; for in some Monkeys the nasal bones unite and become consolidated into one piece.
(2179.) Having thus ennmerated the different osseous pieces forming the crania of all classes of vertebrate animals, we must next consider

* Meckel, Traité Cénéral d'Anatomic Comparée, tom. iii. $2^{\text {de }}$ partie, p. 195.
them in another point of view, namely, as being a continuation of the spinal chain of bones, or real vertebre morlified in form and proportions in conformity with the increased volume of the nervous masses they are destined to encloso. We must premisc, however, that it is by no means our intention to adopt unrescrvedly the theoretical opinions of those Continental writers who find vertebral clements in the bones of the face, and even in the nasal cartilages; still, without overstraining the facts, it is easy to demonstrate very satisfactorily that the cranial pieces that immediately enclose the ccrebral masses are strictly vertcbro, and present the same essential structure as those of the spinal region.
(2180.) That this is the case in the skull of a Reptile, no one, indecd, who examines the subject can hesitate to admit; buteven in the Mammiferous cranium, where, from the enormous proportionate size of the encephalon, the cranium is most distorted, it is not difficult to perceive the rclationship.
(2181.) The cranial vertebre are three in number-the occipital, the parietal, and the frontal ; these are exhibited in the subjoined diagram, after Carus, representing those of the Sheep.
(2182.) The occipital vertebra (fig. 530, a) has for its body the basilar portion; the arehes bound the foramen magnum laterally; and above, the spinous process, flattened out and expanded in proportion to the size of those lobes of the brain and cerebellum whieh it defends, forms the posterior portion of the skull.
(2183.) The body of the second or parietal vertebra (B) is the body of the sphenoid-that is, more properly speaking, the posterior sphenoid bone, whose large alr, curving upwards, meet the parietal, and thus an arch is formed of sufficient span to cover the middle lobes of the cerebrum.
(2184.) The anterior or frontal vertebra (c) has for its body the anterior

Fig. 530.

Cranial vertebre. sphenoid (alce minores)-its arch being completed by the cavity of the os frontis, which encloses anteriorly the cribriform plate of the ethmoid bone.
(2185.) From this analysis of the composition of the cranium, it is
apparent that the temporal bones, although in Man they assist so materially in completing the cranial cavity, are only intercalated between the real vertebral elements-as indeed might almost have been anticipated, seeing how differently the pieces belonging to this bone are arranged in different classes of Vertebrata.
(2186.) Such is the general organization of the Mammiferous skeleton. Let us now proceed to consider the osteology of the different orders into which the Mammalia have been distributed, and observe in what respeets they individually differ from each other.
(2187.) The transition from Birds to Quadrupeds, remotely separated as they might appear to be, is effected by gentlo gradations of structure ; and the Monotremata, notwithstanding their quadrupedal form and hairy covering, are so nearly allied to the feathered Ovipara in many points of their organization, that they evidently form a connecting link between these two great classes of animals.
(2188.) It is true that they have mammary glands, and must therefore be supposed to give suck to their offspring; but it is not even yet satisfaetorily determined whether they lay eggs, or produce living young. The structure of their generative apparatus would seem, in fact, to be rather allied to the Oviparous than the Mammiferous type; and, as in Birds, the rectum, the urinary passages, and the sexual organs, all discharge themselves into a common cloacal chamber; so that there is still but a single vent-a circumstance from which the name of the order is derived.
(2189.) Even their skeleton, in many points, presents a very close affinity to that of a Bird, as will be evident on cxamining the osseous system of the Ornithorhynchus paradoxus (fig. 531).

Fig. 531.

Skeleton of Ornithorhynchus paradoxus.
(2190.) The mouth of the quadruped, indeed, resembles that of a Duck, whence the name of "Duck-bill," whereby it is usually distinguished. It has, moreover, a distinct furcular bone in addition to what would seem to be the ordinary clavicles; but in reality these are the coracoid bones still largely developed. Morcover the anterior or stemal ribs are ossified; and a spur is attached to the hind foot of the male, not
remotely resembling that of a Cock: this last appendage is perforated by a duct, and has a gland eonneeted with it, situated on the inner side of the thigh, by which a poisonous secretion was formerly supposed to bo elaborated.
(2191.) The Marsurialia, it will be afterwards oxplained, as regards the eonformation of their gencrative system, are organized in aecordanee with a type intermediate between that common to Birds and that which eharacterizes Mammalia properly so called.
(2192.) The Marsupial quadrupeds bring forth their young alive, but in sueh an imperfect condition that at the period of their birth searcely the rudiments of their limbs have beeome apparent; and in this state they are eonveycd into a poueh formed by the skin of the female's abdomen, where they fix themselves by their mouths to the nipples of their mother, and, sueking milk, derive from this souree the materials for their growth. These animals are peeuliar to the Australian and Ameriean continents ; nay, in Australia, so anomalous in all its productions, with one or two exceptions, and those perhaps brought there by aeeidental importation, all the quadrupeds are eonstructed after the Marsupial type. The great eharaeteristic whereby to distinguish the skeleton of a Marsupial Mammifer is, the existenec of two peculiar bones attaehed to the anterior margin of the pubis, which in the living animal are imbedded in the museular walls of the abdomen, and thus support the pouch of the female. The marsupial bones, however, exist in the male likewise ; and even in the Monotremata, that are evidently noarly allied to the proper Marsupialia, although no poueh is met with even in the female scx, the bones alluded to are found eonnceted with the pubis.
(2193.) This great section of the Vertcbrate ereation, which perhaps ought rather to be regarded as a elass by itself, is eomposed of numerous families, of diverse forms and very opposite habits. The Opossums (Didelphys) of the Ameriean continent live in trees, and devour birds, insects, or even fruits: in these, the thumb of the hind foot is opposable to the other fingers, and adapted for grasping the boughs, whence they are called Pedimanes; their tail is likewise prehensile. Others are terrestrial in their habits, wanting the prehensile thumb.
(2194.) The Kangaroo Rat, or Potoroo (Hypsiprymmus), of whose skeleton we have given a drawing (fig. 532), is remarkable for the disproportionate size of its hind legs : these, moreover, have no thumb, and the two innermost toes are joined together as far as the nails; so that there appear to be but three toes, the inner one being furnished with two elaws. Such logs are well adapted to make strong and vigorous leaps over a level plain; and in the Kangaroos (Hacropus) the extraordinary development of the posterior extremities is even yet more wonderful. In other respeets, the skeletons of the Marsupialia conform to the gencral deseription already given.
(2195.) All other Mammiferous Vertebrata produce their young alive, and not until they have attained a considerably advanced stage of development during their intra-uterine existeneo. The eonnexion between the maternal and foetal systoms in these orders is maintainod during

Skeleton of the Kangaroo Rat.
the latter periods of gestation by the development of a peeuliar viscus, ealled the placenta; nevertheless, after birth, the young animals are still dependent upon the mother for support, and live upon the milk supplied by her mammary organs.
(2196.) The lowest order of Placental Manmalia eomprises those forms whieh, although they breathe air by means of lungs, and have hot blood like ourselves, are appointed to inhabit the waters of the oecan, wherein they pass their lives, and even bring forth and suekle their young. In order to live under sueh eircumstances as these, the Cetacea must ncecssarily, in many points of their strueture, be organized after the model of fishes; and we eannot be surprised if, in their outward form, and even in the disposition of their limbs, they strikingly resemble the finuy tribes. Their head is large-frequently, indeed, of enormous proportions; there is no neek apparent externally-the head and trunk, as in fishes, appearing continuous. The anterior extremities are eonverted into broad fins, or paddles; whilst the pelvic extremities are absolutcly wanting: postcriorly, the body tapers off towards the tail, and terminates in a broad, horizontal fin, whieh latter, however, is not supported by bony rays as in the fish, but is entirely of a cartilaginous and fleshy structure. Frequently there is even a vertical dorsal fin:
but this, too, is entirely soft and cartilaginous, so that in the skeleton no vestiges of it are apparent**.
(2197.) In the Whalebone-Whale (Baliena mysticetus) the peculiaritics of the Cetaceous skelcton are well cxhibited. In this gigantic animal (fig. 533), which sometimes measures upwards of a hundred feet from tho snout to the tail, the head forms nearly a fourth part of the entire length of its stupendous carcass; so enormously developed are the bones of the face that form the upper and the lower jaws. The cranial carity, wherein the brain is lodged, of course does not participate in this excessive dilatation, but corresponds to the size of the brain lodged within it. It, however, presents one point of physiological interest, serving to prove still more demonstratively that the temporal bone is merely an adjunct to, and not essentially a constituent part of, the cranium ; for here the petrous portion of the temporal bone, wherein is lodged the organ of hearing, is entirely detached from the skull, to which it is only fastened by a ligamentous connexion. This remarkablo arrangement is, no doubt, intended to prevent the stunning noises that would else be conveyed from every side to the ear, by cutting off all immediate communication between the auditory apparatus and the osseous framework of the head.
(2198.) The cervical vertebræ, in conformity with the shortness of the neck, are exceedingly thin; and some of them are not unfrequently anchylosed into one picce.
(2199.) The thorax is composed in the ordinary manner ; but the posterior ribs are only fixed to the transverse processes of the corresponding vertebræ. Behind the thorax the whole spine is flexible, its move-

* It is interesting to see those fins still formed by the skin (exoskeleton), where the osseous system could not enter into their composition without deviating altogether from the Mammiferous type.

Fig. 533.

Skeleton of the Whalebone Whale.
ments being untrammelled by any pelvic framework or posterior extremity ; so that, as in fishes, the broadly expanded tail is the great agent in locomotion ; and from the horizontal position of this mighty oar it is better adapted to enable the animal to plunge beadlong into the depth, and to rise again to the surface, with all expedition, than if it had been placed vertically, as it is in fishes.
(2200.) The only vestiges of a pelvis met with in the Whale are, the rudimentary ossa pubis represented in the figure. These are imbedded in the abdominal muscles, and serve to support the external organs of gencration : the caudal vertebræ, however, are distinguishable by the inferior spinous processes developed from their under surfaces. As to the construction of the anterior extremity, the shoulder is composed of the scapula alone. The arm and forcarm are much stunted, and are not moveable at the elbow ; therefore the muscles for pronating and supinating the arm do not exist, but are represented by aponeurotic expansions spread over the surfaces of the bones. The bones of the carpus are flattcned, and more or less consolidated together. The fingers, likewise, are flat; and the whole limb so covered with tendinous bands, and enceloped in skin, as to form mercly a fin whereby the creature guides its course through the water.
(2201.) In the Herbivorous Cctacea, as the Manatus and Dugong, the head is smaller in proportion to the size of the body, and the hands better developed, so as to be useful in crecping on land, or in carrying their joung. These gencra inhabit the mouths of tropical rivers.
(2202.) The relationship between the Cctacea and the next order that offers itself to our notice is too evident not to be immediately appreciated. The thick and maked skin, the gigantic body, the massive bones, the bulky head, and even the variable and irregular tecth that arm the ponderous jaws are all again conspicuous in the Pachydermata; and the river and the marsh, the localities frequented by the latter, as obviously indicate the intermediate position which these animals occupy between the aquatic and the terrestrial Mammalia.
(2203.) The skeleton of the Hippopotamus (fig. 534) offers a good example of the general disposition of the osseous system in the Pachydermata. The spinous processes of the last cervical and anterior dorsal vertebræ are necessarily of prodigious strength, giving origin as they do to the muscles that support the weighty skull. The ribs are numerous, broad, and flat; they extend nearly along the entire length of the trunk, and thus assist in sustaining the bulky viscera of the abdomen. The pelvis is massive, in proportion to the weight of the body; and both the thoracic and pelvic extremities, short, thick and strong, form, as it were, pillars upon which the trunk is raised.
(2204.) The most important differences observable between the sarious genera of Pachydermatous Mammalia are found in the structure
of their feet, and in the numbor and disposition of their tors. In the Elephant there are fivo to caeh foot; but in the living state they are so oneased in the callous skin which forms a sort of hoof to the foot of this monstrous animal, that they are searcely perceptible externally. In

Fig. 534.

Skeleton of Hippopotamus.
the Hippopotamns, above delineated, there are four, and also in the Hog tribes; but in the latter the two middle toes are disproportionately large. The Rhinoeeros has only three toes to each foot; and other varieties in this respeet might easily be pointed out.
(2205.) In the Solidungula, or Solipeds, regarded by Cuvier as a family belonging to the order last mentioned, we have a tribe of animals quite peeuliar as relates to the eonstruction of their loeomotive extremities.
(2206.) In the Horse, for example (a ereature obviously formed to be an assistant to the human race), so completely has every other eousideration been saerifieed in order to ensure the utmost possible strength and solidity in the strueture of the foot, that all the toes appear externally to have been solidified into one bony mass, which, being eneased in a single dense and horny hoof, is not only strong enough to support the weight of the quadruped, and to sustain the shoek produced by its most aetive and vigorous leaps, but beeomes abundautly effieient to earry additional burdens, or to draw heavy loads in the serviee of mankind.
(2207.) In the anterior extremity of a Soliped (fig. 535) the shoulder consists only of the seapula, there being no elaviele to eonneet it with the sternum. The humerus is short and very strong: the radius and ulna are partially eonsolidated together, so that all movements of pronation and supination are impossible. The carpus is eomposed of seren
short bones disposed in two rows. The metacarpus is a single bone (the camon bone), which, from its length and size, is commonly called the "fore leg" of the horse, the earpo-metacarpal articulation being looked upon as the "knee." Lastly, the foot consists of three great phalanges; whereof the proximal is named the "pastern," the second the "coronary," and the distal phalanx the "coffin bone." In the macerated skelcton, however, the vestiges of two other toes are visible; but they are merely rudiments resembling osseous splints attached to each side of the metacarpus or cannon bone.
(2208.) In the posterior limbs of the Horse the same peculiarities are observable, in the construction both of the leg and foot.
(2209.) The Ruaitivantia constitute auother order of quadrupeds of very great importance to mankind, distiuguisbed by their remarkable habit of chewing the cudthat is, of bringing up the food again from the stomach into the mouth, for the purpose of undergoing a second process of mastication. They all have well-developed ineisor teeth in the lower jaw, but none in the upper. The patient and thirst-enduring: Camel, the stately Giraffo, the $0 x$, the Sheep, the Goat, the nimble Antelope, and the fleet and elegant Stag are all examples of this extensive order ; but it is the skeleton of the last-mentioned alone that we shall select for delineation (fig. 536).
(2210.) The most remarkable feature observable in the Ruminant order of quadrupeds is, that, with the execption of the Camel tribe and the Musk-deer, the males, and sometimes the females, are pro-

Fig. 535.

Fore leg of the Horse. vided with two horns attached to the os frontis, appendages not met with in any other Vertebrata. In some, as the Giraffe, these horns consist merely of a bony protuberance developed from each frontal bone, which is coated with a hairy skin derived from the common integument of the head. In others, as in the Ox, Goat, Antelope, Ace., the bony nucleus of the hom is covered over with a sheath of corneous matter, giving it a hard and smooth surfaee.
(2211.) Both the above kinds of horns are persistent; but in the Deer tribe the defences of the head, which are large and brauched, are deciduous, being formed every year from a vascular skin that covers them externally during the period of their growth, but shrivels up and dries when they are completed. These horns fall off after a certain time, to be renewed again the following scason. The mode of their formation, however, will be examined in another place.
(2212.) In consequence of the weight of the horns in such species as possess weapons of this description, the head is necessarily extremely heary; and in genera where the horns are wanting or fecbly devcloped, as in the Camel or Giraffe, such is the length of the neck, that even with a disproportionatelysmall head attached to the extremity of so long a lever, incessant and

Fig. 536.

Skeleton of the Stag. violent muscular exertion would be needed to sustain or to raise it from the ground. This difficulty is obviated by a very simple and elegant contrivance : a broad band of ligament, composed of the same elastic tissue as that composing the ligamenta subflava of the human spine, is extended from the tips of the elongated spinous processes of the back, and sometimes even as far backwards as the lumbar and sacral regions. This ligament, strengthened by additions derived from most of the vertebral processes over which it passes, runs forward to be fixed antcriorly to the crest of the oceipital bone, and to the most anterior of the cervical vertebræ. The whole weight of the cranium and ncek being thercfore fully counterbalanced by the clasticity of this suspensory ligament, the muscles of the nock act with every possible advantage, and all the morements of the head are effected with the utmost grace - and facility.
(2213.) The Reminanta are generally distinguished as having ". cloven feet;" and in fact, both the hind and fore feet present a very characteristic formation. The bones of tho forcarm, as well as the tibia and fibula, are more or less completely consolidated, especially towards their distal extremitics. The earpal and tarsal bones resemble those of the Horse, and are similarly situated. The metacarpal and metatarsal or cannon bones are respectively composed of two lateral halves united along the mesial line ; and to each of these halves is attached a toc composed of threc phalanges, the last phalanx of each being eneased in a strong hoof. In some genera two rudimentary lateral toes are also distinctly recoguizable; but these are too small to be used in locomotion.
(2214.) The Edentata, forming the next order of quadrupeds, are so called from the deficiency of teeth observable in the fore part of their Fig. 537.

Skeleton of Armadillo.
mouth. In the most perfect tribes, as, for example, in the Armadillo (fig. 537), the skeleton is well developed in all its parts, and presents nothing to attract our special notice, except, perhaps, the large proportional size of the distal joints and claws that arm the toes; but in the Sloths (Bradypus) so unusual is the conformation of the limbs, that it had at one time become quite the fashion for naturalists to bestow a passing expression of sympathy in alluding to thesc so-callcd miserable and imperfect members of the animal creation.
(2215.) "The Sloths," says Cuvicr *, "derive their name from their excessive slowness, the result of a structure truly heteroclite, where Nature seems to have wished to amuse herself by producing something imperfect and grotesque. Theso animals have their fingers joined together by the skin, and only indicated externally by enormous compressed and hooked claws, which are bent when in reposo towards the palms of the hands or the soles of the fect. The hind feet aro articulated obliquely to the leg, and only rest upon their external edge; the phalanges of the fingers are articulated by tight hinge-joints, and

[^224]the proximal ones become consolidated at a certain age with the bones of tho metacarpus or metatarsus; even thesc last become anchylosed with each other for want of usc. 'Io this inconvenience in the organization of the extremitics may be added one equally great, consequent upon their proportions: the arms and the forcarms are much longer than the thighs and the legs; so that, when these creatures waik, they arc obliged to drag themsclves upon their elbows ; their pelvis, too, is so wide, so much inclined laterally, that they cannot approximate thir knecs. Their deportment is the natural conseyuence of such disproportionato structurc. They remain upon trees, and never quit one till they have stripped it of its leaves, so difficult is it for them to get to another ; nay, it is even asserted that they let themsclves fall from their branch, to avoid the trouble of crawling down."
(2216.) Well may humanity pause before it ventures to accusc Nature of having " wishod to amuse herself by producing something. imperfect and grotesque ;" and we should not have inflicted upon ourselves the task of quoting so painful a passage, did it not emanate from such a source, and had not ample opportunities of observation shown that the very structure so accuratcly described by Cuvicr is better adapted than any other to the arboreal life for which the Sloth is destined. It is not upon the ground, but in the tree, that this animal must be criticised ; and there, as we lcarn, among its native branches, hanging securely by means of its hooked tocs and peculiarly organized hind legs, it feeds in situations which otherwise would be left unoecupied ; or, using its long arms, it swings from bough to bough, with a facility little to be expected from its appearance.
(2217.) The herbage that covers the plain, or the foliage of the trees, arc not, however, the only vegetable materials that have been made available for the support of Mammiferous quadrupeds. The Rodentra are furnished with teeth adapted to gnaw even the wood and the bark, or to craek nuts and other hard fruits, from whieh they derive nourishment.

Fig. 538.

Incisor teeth of the Mare.
(2218.) This order of Mammals, therefore, is distinguished by the possession of two incisor tecth in each jaw, so constructed as to erode hard substances, and which, moreover, by a peculiar mechanism, to be described in another place, are always kept sharp and trenchant: such are the incisor teeth of tho Beaver or of the Hare (fig. 538).
(2219). The skelotons of the Ronevita are slight and fcoble, adapted to the bird-like activity of their habits. Their fingers and toes are well developed, and tho bones of the leg and forearm free throughout their whole length, although the movements of pronation and supination are as yet much limited. In many genera, more especially in such as climb trees like the Squirrels, the elavicles are very perfectly formed, so that the fore legs can be eniployed to a certain extent as hands, for conveying food to the mouth.
(2220.) Very generally the hind \log s of the Rodentia are considerably longer than their antcrior extremities: hence such genera mon by

Fig. 539.

Skeleton of the Jerbon.
bounds or leaps, and their course is extremely rapid. In the Jerboa (Dipus) (fig. 539) this disproportionato size of tho hind legs is excessive, insomneh that tho ereaturo moves by leaps, like a Kangaroo ; and the metatarsal boncs of the threo middle tocs being consolidated into one bone, the whole limb resembles more that of a bird than of a quadruped.
(2221.) Among all the countlcss races of the animal kingdom, Man alone is permitted, in a state of nature, to arrive at old age-that is to say, at such an age as to allow feebleness and deerepitude to usurp the plaee of strength and aetivity. Man only is eapable of sueh a privilege, because he alone possesscs that foresight which cnables him to prepare in youth against the deeline of his faeulties, and is endowed with sympathies and affections direeting the strong and the vigorous to maintain the aged and the infirm.
(2222.) Among the lower animals, siekness and deeay are not permitted to exist. Activity and health alone are eonspicuous throughout the broad creation: disease and deelinc are banished from the world. Does any ereature lack but for a brief period its aecustomed powers of eseape, the destroyer is at hand instantly to remove it from its appointed sphere of aetion. Butehers are placed on all sides, ready to perform their offiee; and nothing is permitted to live but what possesses its faeulties and its strength unimpaired and unenfeebled.
(2223.) The great eharaeter that distinguishes the Carnivorous quadrupeds is the high degree of intelligenee and aetivity for whieh they are so remarkable. The perfection of their limbs and the acuteness of their senses at onee indieate their superiority over the Herbivorous races; and their jaws, armed with powerful fangs, usually distinguished by the name of canine teeth, show at a glanee the nature of their appointed food and their murderous propensities.
(2224.) The distribution of these tyrants of the animal creation we shall find to be coextensive with that of the victims they are appointed to destroy.
(2225.) The aquatic tribes of the Carnivora (Amphibia, Cuv.) are obviously eonstrueted for swimming. Their bodies, covered over with short, elose, and polished hair, taper off towards eaeh extremity, resembling in form those of the Cemaceans. The cervieal, thoraeie, and lumbar regions of the spine are light and flexible; and the pelvis is contracted, and placed as far back as possible. Both the anterior and posterior extremities, although eompletely formed, are short, and in the living animal are only free externally as far as the earpal and tarsal joints. The feet, moreover, are broadly webbed, and thus beeome converted into most efficient paddles, by the aid of which these ereatures swim with astonishing ease and eleganee, the hinder pair performing at once the funetions of oars and rudder. Upon land, however, their movements arc, as might be supposed, extremely elumsy : it is true that they not unfrequently scramble on to tho beach, there to bask in the
sun, or to suckle their little ones; but if danger threatens, they mmediately take to the water, and fall easy victims if their retreat towards the sea be intercepted.
(2226.) Such being the helplessness of the Seals when they quit the water for the shore, it is not surprising that, in some of the larger and more unwieldy forms, assistant locomotive organs have been given, derived from unlooked-for sources. Thus in the Walrus (Trichechus rosmarus), which apparently obtains nourishment from the fuci of the shore, as well as by destroying living prey, even the canine teeth of the upper jaw are converted into instruments of progression, and serve as crutches to drag the animal along. In these creatures the upper jaw is extremely dilated and massive, and the canine teeth implanted in it

Fig. 540.

Skeleton of the Seal.
not unfrequently project downwards to a distance of from one to two feet from the mouth. The strength of the tusks so formed is propertionate to the bulk of this gigantic Seal; and by their aid the Walrus is enabled to climb on to the rock in order to repose after its labours in the ocean.
(2227). The Terrestrial Carnivora, that live upon flesh, are naturally divisible into two great sections. Of these, the most cruel and

Fig. 541.

Slieleton of the Weasel.
bloodthirsty, that walk only upon their toes, and are called from this cireumstance "Digitigrada," bound along with an elasticity and swiftness that are abundantly provided for in the construction of every part of their osseous system. In this section are elassed the extensive tribes of Weasels (fig. 541), Civets, Hyenas, and the race of Cats, the most formidable and ravenous of quadrupeds.
(2228.) In the Feline Carnivora, indeed, to which belong the Lion and the Tiger, so justly celebrated for their strength and feroeity, a peeuliar and beautiful provision is visible in the construetion of tho foot, whereby the elaws that arm the last phalanges of the toes are kept eonstantly sharp, their points never being allowed to beeome worn by touehing the ground; henee they are in these creatures terrific instruments of attack. Tho mechanism provided for effeeting this is as follows :-Three elastie ligaments, dcrived from the penultimate joint of the toe, are inserted into the last phalanx in sueh a manner that, by their elastieity, under ordinary eireumstances, they leep the elaw laid back upon the upper aspect of the foot; so that, the soft cushions beneath the toes being the only parts brought into eontact with the ground, these creatures always walk with a stealthy and noiseless cread. But when the Tiger springs upon his prey, the tendons of the flexor musele of the toes, implanted into the opposite surface of the phalanx, overeoming the elastieity of the retractile ligaments, pluek forward the curved elaws, and burying them deeply in the flesh of the vietim, the strongest animals struggle vainly to shake off a gripe so tenaeious.
(2229.) But, among the Digitigrade Carnivora, none are of so mueh importance as the Dog-an animal specially provided for the use of man, to be his eompanion in the field and his assistant at the chase. Nor has Nature, in the ease of the Dog, merely given to man a servant endowed with sagaeity and zeal : man has need of help in various ways, and under very different eireumstanees. In bodily strength he is unable to eope with ferocious enemies that surround him on all sides; his senses are imperfect, when compared with those of some of the lower animals; in speed he is outstripped by the very ereatures appointed to be his food: how then are all these deficiencies to be eompensated? The Dog has been plaeed at man's disposal: its instincts, its size, its form, its senses, and its corporeal attributes are all subjugated to his control; and thus whatever aid he may require is to be obtained by the eultivation of its faeulties.
(2230.) The Plantigrade Carnivora, as their name indieates, in walking apply the entire sole of foot to the ground, as far baek as the end of the os calcis : sueh are the Bear (Ursus), the Glutton (Gulo), the Badger (Meles), and others of similar organization. These tribes are less exelusively earnivorous in their habits than the preceding; and their nails are not retraetile, so that their points are blunted by dragging upon the ground.
(2231.) The Insectivora form another section of these destructive quadrupeds, distinguished by their molar toeth being studded with sharp points, and thus calculated to devour insect prey: the Hodgohog (Erinaceus), the Shrew (Sorex), and tho Mole (Talpa) are well-known examples of this division; and their habits are known to all. We need scarcely mention tho peeuliar eireumstanees under which the Mole passes its subterranean existence, or the extraordinary conformation of its anterior extremities, whereby they are converted into most efficient instruments for digging beneath the soil. The extended scapula, the strong and well-developed clavicle, the square and massive humerus, and, moreover, the broad and rake-like hand, all proclaim the office of this strange limb; while the long and carinated sternum indicates with equal plainness the size and power of those muscles by which the apparatus is wielded*.
(2232.) The Cheiroptera, or family of Bats, present a striking contrast to the Mole both in form and habits: neither would it be easy to conceive that a skeleton, consisting almost of precisely the same elements, could be converted to uses so diametrically opposite.

Fig. 542.

Skeleton of the Bat.
(2233.) In these Mammalia the anterior extremities are converted into wings, enabling them to imitate the very birds in their powers of flight and in the velocity of their movements when upon the wing pursuing inseet prey. In ereatures destined to such a life, the whole skeleton must of course be lightened, and the bones attenuated to the utmost. The skull, the spine, the thorax, the pelvis, and the hind extremities, all testify, by tho delicacy of their structure, that no unnecessary weight is here permitted. It is, however, in the construction of the anterior limbs that the Cheiroptera present the most remarkable peeuliarities. The scapulæ are broad and expanded, covering a con-

[^225]siderable portion of tho back of the thorax, thus giving a firm basis to tho wing. The clavicles aro large and perfectly formed, in order to resist the powerful action of the pectoral mnscles used in depressing the wings during flight; and in order to give thoso muscles a suffieient extent of origin, the sternmm, although exhibiting the general characters of that of a quadruped, is deeply carinated along the mesial line. The humerus is of moderato length, but the forearm prolonged and slender ; it consists, in fact, of but ono bone, so that all movements of pronation and supination are necessarily impracticable. The carpal bones present their usual structure and arrangement at the base of the hand; but those of the metacarpus, excepting that of the thumb, are so extraordinarily lengthened that they themselves form a considerable portion of the framework of the wing, which is completed by the phalanges of the fingers appended to their extremities. All these wirelike fingers are connected together by a broad duplicature of skin, derived from the sides of the body, which is continued along the whole length of the hind legs, and even fills up the interspace between these last and the tail: this membrane forms an expansion sufficiently extensive to become converted into an organ of flight. The íngers composing this strange hand are obviously incapable of closing towards the palm, as ours do when grasping an object: their only morements are such as fold up the wing against the side of the body, by laying the fingers close along the side of the forearm, as in closing a fan. The thumb alone is left free; and this being short, and armed with a strong nail, is employed in enabling the creature to cling to some elevated object in those gloomy lurking-places wherein it hides during the day.
(2234.) The Quadrumana, next to mankind the most elevated members of the animal creation, are, as is evident from every point of their organization, the destined inhabitants of the trees; neither will it appear astonishing, when we consider the extensive provision that has been made for the support of animal life amid the dense and pathless forests of tropical climates, that animals so intelligent, and capable of enjoyment, should have been widely disseminated throngh extensive regions of our globe.
(2235.) The great distinction characteristic of the Quadrumana is found in the organization of their feet, all of which are converted into prehensile instruments, whereby they can seize the boughs of the trees wherein they reside, and thus seeurely swing themselves from branch to branch, or even leap from ono tree to another, with wonderful aetivity and precision. Their hands are constructed upon tho same principle as those of Man,-their thumbs, although less perfectly formed than our own, being opposable to tho other fingers, and thus securing a firm and steady grasp. Tho boncs of the forearm are free, and accurately artieulated with each other ; the pronation and supination of tho hand are therefore accomplished with facility. In the eonstruetion of the feet
the same provisious have been made to enable them to take a firm grasp : the toes, like tho fingers of the hand, aro long and flexible, and the representativo of the great toe is converted into a very perfect thumb, easily opposable to the rest; the foot, or posterior hand, therefore equals, or even surpasses, in its powers of prehension, the hand which terminates tho anterior limb. For many of tho Ameriean monkeys a fifth hand has been provided, formed by their long and museular tail, which, from its extremo flexibility, ean be forcibly twisted around any foreign object, and holds it with a tenacious grasp. Thus abundantly furnished with prehensilo instruments, the Quadrumana are obviously most exeellent and aceomplished elimbers, springing fearlessly through the forest by long and vigorous leaps, or chasing their prey even to the topmost branches of the trees wherein they live.
(2236.) But however some of the more anthropoid Quadrumana grotesquely resemble the human race, the approximation, even in their outward form, is at best exceedingly remote. The lower tribes, such as the Lemurs of Madagascar, walk on all-fours like eats, and are remarkable for their long and fox-like muzzle. The brutal and ferocious Baboons are scarcely more human in their appearance; and even in the most elevated species, called by the vulgar "Wild men of the woods," the interval that separates them from humanity is wido indeed!
(2337.) Taking the skeleton of the Orang-Outang (Simia satyrus) as one of the most perfect examples met with in the class under consideration, it is at once evident that sueh an animal is by no means adapted to walk in an erect position, although well fitted to maintain a semiupright attitude, such as is best ealculated for climbing. The skull, whose very outline indicates brutal ferocity, is armed with canine teeth scareely less formidable than those of the Tiger; and the massive jaws of this creature are moved by muscles almost equally powerful. It is true that the protuberanco of the face is considerably diminished, and the facial angle thus matcrially enlarged; but to mako up for the feebleness of the upper jaw, eonsequent upon this reduced size of the bones composing it, additional strength is needed to resist the strong pressure of the enormous temporal muscles. This is given by adding strong buttresses to the outer angle of the orbit, formed by the union of the frontal and the jugal bones; and thus the whole outline of the face becomes more humanized.
(2238.) Another advance towards tho condition of the human skull is apparent in the position of the foramen magnum, and of the eondyles of the oceipital bone, whieh are considerably advanced forwards beneath the base of the cranium, thus allowing the head to be articulated to the atlas at a very considerable angle with a line diawn through the axis of the spine,-a condition evidently favourable to the ereet posture.
(2239.) The thorax is well formed and capacious, giving great freedom of respiration : but the spinal column is short and elumsy; neither
does it present those graceful sigmoid curves that convert the human spine into a perfect spring, upon the top of which the head is carried.
(2240.) Tho arms are of inordinato length and extremely powerful, the joints porfect, and the clavicle well formed. But in the construction of tho pelvic extremities the differences between this and the human skeleton become strikingly apparent. The pelvis is long, and the ossa ilii narrow ; the thighs and legs so short that, when the creature stands erect, the tips of the fingers almost touch the ground. The protuberance of the os calcis is very slight; and thus the posterior hands, although well adapted for taking hold of any object, are but ill calculated to sustain the weight of the body in an upright posture. Upon the ground, indeed, the living animal puts the spectator in mind of a human being crippled in the lower extremities; but in its native trees, these members, like those of the Sloth, are admirably suited to the circumstances under which the Orang is ordained to live.
(2241.) Having thus introduced the reader to the different

Fig. 543.

Skeleton of Orang-Outang. orders of Mammalia, as well as to the principal differences observable in the arrangement of their osseous system, we must briefly glance at some few points connected with their myology, selecting those that seem most worthy of being specially pointed out to the notice of the anatomical student.
(2242.) To enumerate all the varieties that occur in the disposition of the muscular system in vertebrate animals would, of course, be incompatible with the extent of this work; and perhaps, even were it practicable, the details would scarcely possess much interest to the beginner in comparative anatomy. Considered generally, indeed, the muscular system of quadrupeds conforms rery accurately in its arrange-
ment to that of the human subject; and for the most part the same names are applieable to the individual muscles, allowance being made for such modifications in the manner of their origins and insertions as are rendered necessary by the disposition of the skeleton, or in order to accommodate them to the performance of special functions. To enumerate, therefore, tho muscles of the jatrs, of the neck, of the spine, of the chest, of the abdomen, or even of the extremities, in such gencra as have the members last mentioned completely developed, would only be to repeat circumstances with which the human anatomist is already familiar; nevertheless there are some points of practical importance eonnected with this part of our subject that must not be altogether passed over in silence.
(2243.) The diaphragm is a muscle only met with in the class before us, and in all Mammalia it forms the great agent in rospiration, dividing. the thoracic from the abdominal cavity by a broad musculo-tendinous septum, and presenting a disposition in all essential particulars similar to that of Man.
(2244.) Another muscle of considerable anatomical interest is the cutaneous muscle provided for the movements of the integument. In many tribcs, more especially those which, like the Hedgehog, the Echidna, and the Porcupine, have the skin covered with spines, this muscle is extremely developed, investing the greater part of the body with a thick layer of muscular fibres, called not improperly the panniculus carnosus. In Man, too, this muscle exists, but under a very different aspect, being only found in certain regions of the body, where it forms numerous cutaneous muscles adapted to different offices. In the neck, where it is principally developod, it is called the platysma myoides: in the facial region it is likewise of great importance,-the occipito-frontatis, the corrugator supercilii, and other muscles connccted with the expression of the countenance, being indubitably but portions of the fleshy pannicle. In the palm of the hand it is slightly visible, forming the palmaris brevis; and even the little muscles connected with the external ear may be referred to the same series.
(2245.) In Whales, no pelvis or posterior extremities cxist; it is needless, therefore, to remark that the whole of the muscular system appropriatod to those parts in higher animals must be totally wanting ; but, in return, the muscles connected with the caudal portion of the spine are amazingly powerful, so as to render the horizontally expanded tail an instrument of propulsion adequate to the necessities of these unwieldy animals. A large triangular muscle is found in the Ceracea (apparently replacing the quadratuslumborum, the psous, and the itiacus), which ariscs from the lower surface of the last rib, from the last dorsal rectebra, and also from those of the loins and sacrum : from this powerful assemblage of muscular fasciculi, tendons are given off to be inserted into the lower surface of the bones that support the tail, converting this
organ into a mighty oar, adapted by its position to bring the creature with all specel to the top of the occan in scarch of air. It is, as might be supposed, in tho muscles of the limbs that the mest important differences exist. In tho anterior extremitics, for example, the presence or absence of a clavicle will materially affect the disposition of the muscles of the shoulder, as will alse the existence of a coraeoid proeess to the scapula; nevertheless in their general arrangement they conform to those of Man. Tho rhomboid muscles, which to ereatures walking on all-fours must be important agents, are generally found in quadrupeds to take thcir origin as far forward as the head : the serrati magni, likewise, whereby in the prone position the weight of the body is as it were suspended from the scapula, must be immensely strong.
(2246.) The muscles acting upon the arm are similar in all the Mammalia; but in the forearm, as might be expected from the very variable condition of this part of the skeleton, the disposition of the muscular system varies too, and even the existence of many muscles could not be expeeted : thus as the movements of pronation and supination are, from the immoveable condition of the bones of the forearm, impracticable in the Cetaceans, the Ruminants, the Solipens, and others, the pronators and supinators are deuied; or, if their representatives exist, they beeome simply assistants in flexion and extension. The flexors and extensors of the wrist are pretty constant; but the museles devoted to the hand and fingers vary in almost every order. The palmaris longus, although generally present where the hand is flexible, is wanting where its action upon the palmar faseia would be useless, as for example in the Ungulate tribes.
(2247.) In quadrupeds there are two extensor tendons appropriated to each of the fingers that correspond to the four outer fingers of the human hand, whilst in Man the index and little fingers only have auxiliary extensors.
(2248.) The abduetor and extensor muscles of the thumb are not so perfectly developed in any animals as they are in the human hand. The short extensor, in fact, is wanting even in Monkeys; and in the lower orders of quadrupeds even the extensor longus and abductor are blended together, or totally wanting.
(2249.) The deep and superficial flexors of the fingers are very genorally met with, the number of tendons furnished by caeh corresponding of course to that of the fingers themselves; but in the Solipeds the two muscles are almost blended together. Even in the Ruminants, although these museles remain separate, their tendons become confounded together, and divide again, to be inserted into the phalanges to which they are appropriated. In these Ungulata, too, as we need scarecly say, the lumbricules and interossei are quite deficient; and the short museles of the thumb are eompletely developed only in Man and in tho Quadrumana.
(2250.) It is in the human species only that the lower extremitics are
organized so as to maintain the body in the erect position ; and in consequence the glutei muscles in tho human body aro enormously developed when compared with those of the lower animals; but the other museles derivod from tho pelvis and thigh present but slight differences throughout the whole class under consideration. In the leg and foot likewise it is not diffieult to identify tho museles that correspond to those found in tho human subject, but, as in the anterior extremity, modified in their disposition and mode of insertion in accordanco with the construction of the skcleton.
(2251.) The articulations whereby the different pieces composing the Mammiferous skelcton are conneeted to each other are constructed upon the same principles as in the human body, insomuch that to describe them even in general terms would be useless.
(2252.) The bones of the cranium and face, as in Man, are joincd together by harmony or by suture. The artieulations of the lower jaw are double, each presenting an interarticular cartilage, exeept in the Cetacea, where, instead of such a structure, a very thick, matted, ligamentous substance, having its interstices filled with oil, passes directly from the condyles of the jaw to the temporal bones.
(2253.) The joints of the spine, thorax, and pelvis are all constructed upon the same principles as the corresponding articulations in the human subject; and the same may, with slight exceptions, be said of those of the extremities. The chief diffcrences will be found in the connexion between the radius and ulnc, the movements of rotation becoming gradually less manifest as wo descend from Man: the tibia and fibula, too, ultimatcly becomo completely anchylosed to each other. The hip-joint eontains an internal ligamentum teres; but in a few instances, e. g. the Ornithorhynchus, the Echidna, the Sloths, the Elcphant, the Seals, and the Orang-Outang, this round ligament is deficient. The arrangement of the other articulations will be at once apparent on reference to the figures of the different skeletons already given.
(2254.) Turning to the digestive system of Mammiferous animals, their teeth first invito our attention. We have already, when deseribing the osseous framework of these elevated beings, exposed their general arrangement in the jaws of the different orders; but it still remains for us to explain tho varietics of their strueture and the mode of their formation.
(2255.) The most remarkable form of teeth, one indeed that is unique, is met with in the Whalebone-Whale (Balcena mysticetus). The tecth in this Cetacean, indeed, are not instruments of mastication, but form a very curious apparatus, adapted to strain the waves of the sca as through a sicve, and thus obtain from the ocean a sufficiency of food for the sustenance of its monstrous body.
(2256.) The whalcbonc (as it is improperly called) is attached to the gums of the upper jaw, being arranged in thin flat plates of some
breadth, and varying in length aecording to the size of the Whale*. These plates are placed in several rows, similar to teeth in other animals; they stand parallel to eaeh other, having one edge direeted towards the eircumference of the mouth. The outer row is emposed of the longest

Fig. 544.

Mouth of the Whalebone Whale.
plates : and these are in proportion to the varying distanees between the two jaws, some being fourteen or fifteen feet long, and twelve or fifteen inehes broad ; but towards the anterior and posterior part of the mouth they are very short.
(2257.) Inferiorly eaeh plate of whalebone is terminated by a broad fringe of horny fibres resembling hair ; and, seeing that in some whales there are about three hundred plates composing the outer row on eaeh side of the mouth, the reader may form some idea of the extent of this enormous strainer, whereby the little Clio boreatis, and other small Mollusea that swarm so abundantly in the Northern ocean, are caught by shoals preparatory to their being swallowed.
(2258.) For what is known eoneerning the growth of whalebone, we are indebted to John Hunter ; and as it would be difficult to eurtail his elear and eoneise deseription of the proeess, it is here given in his own words $\dagger:-$
(2259.) "The formation of whalebone is extremely eurious, being in

* J. Hunter, on the Structure and Ceconomy of Whales (Phil. Trans. 1787).
+ Vide suprà.
oue respeet similar to that of hair, horns, spurs, \&c.; but it has besides another mode of growth and deeay, equally singular.
(2260.) "These plates form upon a thin vascular substanee, not immediately adhering to the jaw-bone, but having a more dense substanee between, whieh is also vaseular. This substance, which may be ealled the nidus of the whalebone, sends out thin, broad proeesses answering to eaeh plate, on whieh the plate is formed, as the eock's spur or the bull's horn on the boul eore, or a tooth on its pulp; so that each plate is neeessarily hollow at its growing end, the first part of the growth taking place on the inside of this hollow.
(2261.) "Besides this mode of growth, which is common to all sueh substances, it reeeives additional layers on the outside, formed from the above-mentioned vaseular substanee, extended along the surfaee of the jaw. This part also forms upon it a semi-horny substanee between each plate, whieh is very white, rises with the whalebone, and beeomes even with the outer edge of the jaw. This intermediate substanee fills up the spaces betwecn the plates as high as the jaw, aets as abutments to the whalebone, or is similar to the alveolar proeesses of the teeth, keeping them firm in their places.
(2262.) "As both the whalebone and intermediate substance are eoustantly growing, and as we must suppose a determined length neeessary, a regular mode of decay must be established, not depending entirely on ehanee, or the use it is put to. In its growth, three parts appear to be formed:-one from the rising cone, whieh is the eentre ; a seeond on the outside; and a third, being the intermediate substance. These appear to have three stages of duration; for that whieh forms on the cone, I believe, makes the hair, and that on the outside makes prineipally the plate of whalebone: this, when got a eertain length, breaks off, leaving the hair projecting, beeoming at the termination very brittle : and the third, or intermediate * substanee, by the time it rises as high as the edge of the skin of the jaw, deeays and softens away like the old eutiele of the sole of the foot when steeped in water."
(2263.) Other kinds of teeth met with among Mammals are composed of ealeareous earths deposited in a nidus of animal matter, and eonsequently resemble bones in the hardness of their texture. In their simplest form these teeth consist of but one kind of material, ealled ivory ; and in such cases there is no distinction into elasses as in the

Fig. 545.

Teeth of the Porpoise.

[^226]human subject, cvery tooth being conical, and formed upon a simple pulp. Such are the teeth of the Porpoises (Delphinidce) and of the Cachalot Whales (Plyseter). The example sclected to illustrate their structure and mode of growth is a preparation of a portion of the jaw of the Bottle-nose Whalc (Delphinus tursio), containcd in the Hunterian collection*. From this it is scen (fig. 545) that each tooth of the Cctaccans in question is a hollow conc of ivory (a, b, c, d), which, on being split longitudinally, is found to contaiu a vascular pulp exactly filling up its internal cavity. It is upon the surface of this pulp that the ivory matter is produced and deposited, stratum intra stratum, within the tooth, thus gradually adding to its substance as growth procceds. In animals posscssing a dental apparatus of this description, Mr. Hunter obscrved that the tecth are not at first developed in the jaw, but appear to form in the gum upon the edge of the maxillary bones, and that they either sink into the jaw as they lengthen, or, as is more probably the ease, the alveoli rise to enclose their roots as growth advances. It would moreover appear that these creaturcs do not shed their tceth, but that, as tho jaw enlarges, new tecth arc constantly produced from behind, while those towards the symphysis fall off, aud their sockets become absorbed: thus the size of the teeth is made to kcep pace with the increasing dimensions of the jaw \uparrow. The exact number of tecth met with in any specics of these Whales will evidently be uncertain.
(2264.) In the Malc Narwal (Monodon) there are no teeth implanted along the margins of the jaws; but from the intermaxillary bone of the left side of the face thero projects a single tusk of great strength, whieh sometimes attains the length of eight or ten feet. This formidable weapon is fully developed only upon onc side of the body; nevertheless the corresponding tooth exists in a rudimentary condition, enclosed in the opposite intermaxillary bonc.
(2265.) In the Elcphant (a creature which so obviously forms a connecting link between the gigantic Cetacea and terrestrial quadrupeds) tusks, more ponderous even than that of the Narwal, project from both intermaxillary bones: but these, as well as the tusks of other Pachyderifata, grow upon a simple pulp such as that which forms the teeth of the Bottle-nose Whale, are composed of ivory, without any enamel, and their growth is only limited by the abrasion to which they are subject.
(2266.) In by far the greater number of quadrupeds the teeth present a more eomplex strueture, and consist of two distinet substanecs of very different texture-the one analogous to the ivory of the simple teeth described in the last paragraph, the other, called cnamel, of crystalline texture and sueh extreme density as to withstand being worn

[^227]away by acting upon tho hardest materials used as food. Teeth of this description may bo advantageously divided into two principal groups:first, those whose growth is continuous during the whole lifetime of the animal ; and, sceond, those which are completed at an early period, and then cease to grow.
(2267.) The first division includes the incisor teeth of the Rodentia, or dentes scalprarii, as they have been termed. Such teetli are, in fact, chisels of most admirable construction, destined to gnaw the hardest kinds of food, and yet, to all appearance, never wearing away or becoming blunted by use.
(226S.) The annexed figure (fig.546) represents a scetion of the incisor

Growth of incisor tooth in the Porcupine : $a a$, posterior portion of the incisor tooth, composed of ivory; b, its anterior layer, formed of enamel; c, ivory-forming pulp; enamel-forming membrane.
tooth and of the left ramus of the lower jaw of a Porcupine (Hystrix cristata) ; and from this example the structure of such teeth will be readily understood. The bulk of the tooth consists of solid ivory (a), which in its texture and mode of growth resembles that of a simple tusk, being continually growing from behind by the addition of new matter produced from the vascular pulp (c); so that, were such a tooth not worn away constantly at the point, it would curl up over the face like the tusk of the Babiroussa : and if by accident the opposing tooth in the upper jaw should be broken off, this circumstance in fact really takes place.
(2269.) But, besides the ivory-forming pulp (c), there is a vascular membrane which exists only upon the anterior surface of the socket, its limits on each side being distinctly marked by a defined line. This membrane secretes enamel, and coats the convex surface of the tooth with a thin layer (b) of that dense substance. From this beautiful arrangement it results that, while the anterior end of the tooth is perpetually worn away by attrition against hard substances, the ivory is abraded more rapidly than the enamel that coats it in front: thus, therefore, the tooth constantly preserves its chisel-like shape, and presents the sharp cutting-edge formed by the cnamel.
(2270.) The second kind of teeth, composed of bone and enamel, are
limitod in their growth; and the entire crown or projecting portion is invested with enamol covering its surface. The teeth of all tho Carnivora, of tho Quadrumana, and also of Man, are of this description. From marked differences in their form in different regions of the mouth, such teeth are conveniently divisible into different groups, called respectively incisores, laniares or canine teeth, pseudo-molares or false grinders, and molares or grinding-teeth.
(2271.) Whatever may be the shape of tecth of this class, their mode of growth is similar to that observed in those of our own species. We

Fig. 547.

Growing teeth of a young Lion: a, ivory-forming pulp; b, ivory; c, enamel-forming capsule; d, d, milk-teeth about to be shed.
have chosen, in order to illustrate this, the growing permanent teeth of a young Lion, wherein the different organs employed in their formation are easily distinguishable. The ivory that forms the bulk of the tooth (fig. $547, b$) is formed by the surface of an internal pulp (a); and as it slowly acoumulates, encroaching upon the central cavity, and penetrating more deeply into the socket, the fang is gradually formed, and the central pulp shrinks until, in the fully formed tooth, it becomes reduced to a thin membrane richly supplied with vessels and nerves, which lines the small central cavity that remains.
(2272.) Before the progressively advancing tooth issues from the nidus wherein it is produced, the enamel is deposited upou the surface of the ivory by the lining membrane of the capsule (c), and becomes arranged in crystalline fibres placed perpendicularly to the surface of the ivory, until the whole crown of the tooth is adequately coated with this important additional substance. Meanwhile the growth of the tooth still proceeds by the lengthening of its root, until at last the crown issues from the jar, and the enamel-secreting membrane (c) becomes obliterated.
(2273.) The most complex condition of the dental organs is that found in the molar teeth of herbivorous quadrupeds, which, being destined to act the part of millstones in grinding down and comminuting vegetable substances, must necessarily, like the millstones of human
contrivance, have a grinding surface, presenting prominent edges and dcep sulci, not liable to become worn even by tho continual abrasion to which they are subjected. In order to attain this end, the ivory and enamel interdigitato, as it were, in the substanco of the tooth, and are, moreover, imbedded in a third material, not met with in the simpler forms, called the cementum or crusta petrosa. In consequence of this arrangement, secing that the plates of ivory, of cnancl, and of cement are all of different degrecs of hardness, the softer substances are most easily worn away, and thus these compound tecth always offer an efficient grinding surface.
(2274.) By inspccting the accompanying figure (fig. 548) represent-

Fig. 548.

Structure of the molar teeth of the Elephant.
ing a section of the tooth of an Elephant, the disposition referred to will be better understood: the layers of enamel are seen to alternate with plates of ivory, while all the interstices are filled up by the circumfused cementum.
(2275.) During the growth of a compound tooth of this description, the enamel-secreting membranes derived from the capsule of the tooth, of course, interdigitate with the ivory-forming pulps that arise from the bottom of the sockets, and thus the hard materials formed by them take the same arrangement. After thesc structures have been completed, one or other of the sets of pulps, most probably the enamel-pulps, changing their action, fill up all the intervening spaces with the crusta petrosa.
(2276.) As during the growth of a quadruped the size of the jaws is continually increasing, a necessity exists for changing the teeth once or oftener during the life of the animal, in order to adapt these organs to the altered conditions required : hence the necessity for shedding the teeth of young animals, and replacing thom with others of larger dimensions or more numcrous than the first set.
(2277.) This is cffected in two different ways, each of which demands our separate notice.
(2278.) In most quadrupeds, as, for example, in the Carnirora, the

Quadrumana, and the greater number of herbivorous genera, the sueeession of the teeth is provided for preeisely in the same way as in our own speeics-namely, by the formation of a new tooth below each of the deciduons ones (fig. $547, d d$) ; so that when the latter falls out in eonscquenee of the absorption of its fangs, the former is ready to take its plaee. The germ of the seeond tooth is at first found imbedded in the jaw-bone, in the immediate vieinity of the roots of the one which it is destined to replaec ; and as its growth advances, the old and used tooth is gradually removed to make way for the new eomer. The steps of this proeess are exaetly similar to those by which the milk-tceth of a ehild are ehanged; and the details connected with it are familiar to every anatomist.
(2279.) But in the Elephant, and some other genera of Pacifyermata, the suecession of the tecth is effeeted in a different manner, the place of the first-formed being supplied by others that advanee from behind as the former become used. Animals cxhibiting this mode of dentition have the grinding-surfaces of their molar teeth plaeed obliquely*; so that if they were to issue altogether from the gum, the anterior portion would be mueh more prominent than the posterior, notwithstanding that the opposed teeth aet upon eaeh other in a horizontal plane. The eonsequence of this arrangement is, that the anterior portion of these teeth is ground down to the roots, and worn away sooner than the posterior portion. Moreover the postcrior part of the tooth is eonsiderably wider than the anterior; so that, as the suceceding tooth advanecs from behind, there is always sufficient room to receive it; and in this way, by the time that the first tooth is quite destroyed and falls out, a new one from behind has already taken its offiee. There is therefore no absorption of the roots of these teeth, but they are ground down from the erown to the stump.
(2280.) The new tooth that thus advances from behind is always of larger dimensions than that to which it sueeeeds, because the animal itself has grown in the intcrval, and the jaws have become proportionately developed.
(2281.) The Elephant in this way may have a suceession of seven or eight teeth on eaeh side in both jaws, or from twenty-eight to thirtytwo in all; and nevertheless, seeing that the anterior ones successively fall out, there are never more than two visible at onee above the gums on eaeh side, or eight in all ; generally, indeed, there is only one risible at a time. Every sueeessive tooth is composed of more laminæ than that which immediately preceded it, and a longer time is required to perfeet its growth.
(2282.) Nearly the same account of this process was found in the manuseripts of John Hunter \dagger, who lucidly aceounts for such an aberra-

* Cuvier, Leçons d'Anat. Comp. iii. p. 122.
† Deseriptive and Illustrated Catalogue of the Physiological Serics of Comparative Anatomy in the Museum of the Roynl College of Surgeons of London, Part i.p. 100.
tion from the ordinary eourse. "These creatures," says that distinguished obscrver of Nature, "do not shed their tecth as other animals do that have more than one; for those that have more than one tooth can afford to be for some time without some of their tecth: therefore the young tooth eomes up in many nearly in the same place with its predecessor, and some exaetly underncath; so that the shedding tooth falls sometimes before the succeeding tooth ean supply its uses. But this would not have answered in the Elephant ; for if tho succeeding: tooth had formed in the same situation with respeet to the first, the animal would have been for some time entircly deprived of a tooth on one side ; or at least, if it had one on the same side in the opposite jaw, that one eould have been of no use ; and if this proecss took place in both sides of the same jaw, and in either jaw, the animal would have been entirely deprived of any use of the two remaining."
(2283.) The tecth of Mammalia being thus adapted to so many various offices, and serving, under different cireumstances, to hold, to bruise, to eut, to tear, or to grind alimentary substances, we must naturally expect the movements of whieh the lower jaw is capable to be in correspondence with the nature of the dental apparatus.
(2284.) In Mav, as the student well knows, in consequence of the laxity of the ligaments that connect the inferior maxilla with the temporal bone, and the thickness of the articular eartilage that is interposed between the convex surface of the condyle and the shallow glenoid cavity, cvery kind of motion is permitted, in conformity with the omnivorous habits of the human race; and the temporo-maxillary articulation is no longer a mere hinge, but the teeth can be made to act upon each other by rubbing their grinding-surfaces in all needful directions. In the Herbivorous quadrupeds these triturating motions are likewise extensive. In the Rodentra the movements of the lower jaw are principally backwards and forwards, thus giving free play to their chiscl-like teeth whilst employed in eroding hard substances ; and in the Carnivora, where there is no neeessity for any grinding motion, the condyle is so loeked into a deep and transverse glenoid eavity, that the movements of a hinge only are permitted.
(2285.) But whatever the degree of motion eonferred upon the lower jaw, the museles that act upon it are exactly eomparable to those of the human subject. The masseter is strengthened in proportion to the hardness of the substanees used for food; the temporal eovers a greater or less extent of the cranium as the jaws are stronger or more feeble; and even the pterygoid muscles differ only in relative size and form from those of Man.
(2286.) The cligastric muscle, however, which is an important agent in depressing the lower maxilla, does not prescrve the same arrangement in the lower quadrupeds that it presents in the human species. In Monkcys, indecd, it still exhibits two fleshy bellies, and a central
tendon that traversos the stylo-lyoideus ; but in general it is a single fleshy musele, arising from the neighbourhood of the mastoid proeess, and inserted near the angle of the jaw.
(2287.) The tongue, in nearly all the Mammifera, is composed of the samo museles as in Man; and their disposition is so similar as to render any detailed enumeration of them quite unnecessary. The ouly execptions worthy of notice are found in tho Ant-eater (Myrmecophaga) and in the Echidna, animals possessing tongues of remarkable length and slenderness, by means of which they secure their insect prey.
(2288.) In both these animals the tongue suddenly beeomes much eontracted at the place where it begins to be free from the surrounding parts. In then appears to be made up of two very long and slender muscular cones, laid one upon the back of the other, their apices being at the end of the tongue*. Each of these cones consists of two musclesone external, eomposed of a multitude of distinct fasciculi investing the internal musele in a cireular manner, and forming around it numerous little rings resembling the annelli of an earthworm. The internal muscle, on the contrary, is of great length; it arises from the middle and upper part of the sternum, runs forward along the neck, passes between two layers of the mylo-glossus, and afterwards beeomes surrounded by the annular muscle; it is eomposed of distinct fascieuli, rolled upon themselves in an elongated spiral ; the external fibres terminate at the first rings; those beneath attain the rings that sueceed, and so on until the innermost fibres reach quite to the extremity of the tongue. It is easy to perceive that, by its action, this muscle will shorten the tongue until it lies in a very small compass, or bend it in any direction; whilst the annular muscle will lengthen it, exactly in the same way as the body of a leech is extended or eontracted.
(2289.) In the Ant-eater the annular muscle does not appear so distinctly double as it does in the Eehidna; but it forms by itself almost all the substance of the tongue, which is thus eapable of being elongated to a wonderful extent.
(2290.) Regarding the tongue with reference to the sense of taste, the Mammalia may be looked upon as the only animals capable of receiving much enjoyment from this source, since in them alone the lingual mucous lining seems to be perfectly adapted to gustation. Even among these highly endowed creatures, it is only in Man, and those Herbivorous orders that prepare their food in the mouth by a prolonged mastication, that the sense in question exhibits much delicaey of perception; for Carnivorous quadrupeds, seeing that they tear to pieces and swallow their food in large morsels, can searcely be supposed to pay much attention to its sapid qualities.
(2291.) In the Cat tribe (Felidc), indeed, all the middle portion of the surface of the tongue is covered over with sharp, recurved, and hormy. * Cuvier, Leçons d'Anat. Comp. iii. p. 264.
spines, adapted, as it were, to file off remnants of soft flesh from the bones of their rietims; and the gustatory papillæ are clsewhere of small dimensions. The tongue of the Porcupinc, likervise, is armed on each side near its extremity with broad, horny and sharp scales; but, with these exceptions, the mucous covering of the tongue, the various kinds of papillæ upon different parts of its surface, and, moreover, the distribution of the nerves supplied to it, differ in no important circumstance from what is observed in the human organ of taste.
(2292.) Importantly connected with the perfection of the sense of taste, and materially assisting in the mastication of food, is the salivary apparatus, which, throughout all the Mammalia, is made up of glands that offer the same general arrangement as in Man.
(2293.) The parotids vary principally in their proportionate size ; and their ducts always perforate the lining membrane of the mouth in the vicinity of the molar tecth.
(2294.) The submaxillary and the sublingual glands are also very generally present: and, as in the human subject, the saliva that they furnish enters the mouth beneath the under surface of the tongue.
(2295.) The mucous lining of the lips and cheeks is likewise studded with muciparous follicles, called from their situation, buccal, molar, or labial glands; these likewise serve to lubrieate the oral cavity.
(2296.) In the Seals (Phocidee) there are no parotids, neither are these glands found in the Echidna hystrix, or in the Ant-eater (Myrmecophaga) ; but in the last-named genus their place is supplied by two other seereting organs, of which Cuvier gives the following description". One is in contact inferiorly with the upper edge of the masseter musele, and fills up a great part of the space that represents the temporal, zygomatic, and orbital fossæ, where it partially embraces the globe of the eye: the excretory duct derived from this gland opens into the mouth behind the superior maxillary bone. The other, which is probably destined to furnish the viscid secretion that coats the worm-like tongue of this animal, is oval and flat, lying in front of the tendon of the masseter, behind the angle of the lips, and then running along the edge of the lower lip as far as its middle. Its canal opens externally in a groove at the commissure of the lips; and a white, thick and tenacious fluid may be pressed out from the cells of which the gland seems to be made up.
(2297.) In a few species, in addition to the salivary glands met with in Mant, there is a group, apparently a continuation of the molar, which mounts up along the superior maxillary bone, beneath the zygoma, even to behind the globe of the cye. The exeretory ducts derived from this group pierce the mucous membrane near the posterior margin of the superior alveolar ridge. Such an arrangement is met with in the Ox, the Sheep, and the Horse.

[^228]3 п 2
(2298.) In the Ampimbious Mammala the salivary system is rery feebly developed; and in the Cetacea, as might be expected from their habits, no salivary glands whatever are to be detected.
(2299.) Before considering the mechanism of deglutition in the Mammalia, we must, in the next place, briefly describe their hyoid appa-ratus-more especially as this remarkable system of bones, which in the lower Vertebrata was so importantly connected with the respiratory function, is now reduced to an extremely simple condition, and, although it is still intimately connected with the larynx, is more particularly remarkable as forming a centre of attachment for almost all the muscles of the throat.
(2300.) Perhaps there is no part of the bony framework of the body that exemplifies more strongly than the os hyoides the impossibility of attaining correct physiological vicws relative to the composition of the skeleton by the mere cxamination of the human subject. Let the student, for instance, compare for a moment the os hyoicles of Man with that of the Fish, or of the Amphibious Reptile, and endearour, in the simple segment of a circle presented by the one, to find the analogues of the body and complicated arches of the others; then, doubtless, he will find that, without some intermediate gradations of form, it is not easy to trace the slightest relationship between them.
(2301.) The human os hyoides consists of a central portion and tro cornua; but these are generally so completely consolidated as to form but one bone, which is connected by the interposition of a broad ligament with the upper margin of the thyroid cartilage; moreover two smaller appendages, called the lesser cornua, are articulated to the upper surface of the hyoid bone, close to the point of junction between the cornua majora and the body, whence ligaments, called the stylohyoid, pass upwards and backwards to the styloid proccsses of the temporal bone.
(2302.) All the apparatus of hyoid arches passing between the body of the bone and the base of the cranium, which were so largely developed in the lower Vertebrata, have therefore totally disappeared; and the question to be solved is, how we may identify the remaining portions with any of the elements of the more complex structures that have come under our notice.
(2303.) Difficult as this would be to the student who had confined his attention to the human body, on referring to the os hyoides of a quadruped, one of the Carnivora for instance, the analogies become at once perceptible. The body (fig. 549) is evidently the representative of the central portion of the hyoid apparatus in Fishes, in Reptiles, and in Birds, which have been described in preceding pages. The lingual clements, found even in Birds, are quite obliterated; but two arehes still remain. The posterior of these (fig. 549), which represent the larger cornua of the human os hyoides, do not reach the cranium,
but, as in Man, are attached by musele and ligament to the thyroid eartilage; while the anterior cormua, so small in Man, are in quadrupeds by far the largest, each consisting of two pieces, of which the second are articulated with the extremities of the styloid bones; and these last are in turn joined to the tomporal bones by means of articulating surfaces. In Man the styloid bones become anchylosed with the temporal, giving rise to the "s styloid processes;" and the intermediate pieces of the anterior cornua hare their places supplied by ligaments (the stylo-hyoid) : in this way, therefore, the hyoid apparatus attains the form that it exhibits in the human skeleton.
(2304.) The muscles connected with the os hyoides in quadrupeds correspond with those met with in the human body ; and their action in effecting the

Os hyoides. deglutition of food is well known to the anatomical reader.
(2305.) The passage of the fauces in the Mammalia presents an organization peculiar to the class, and exhibits structures adapted to prevent alimentary materials from entering the air-passages during the operation of swallowing. The most remarkable of these is the epiglottis, forming a valvular fibro-cartilaginous lid, that accurately closes the opening of the larynx during the transit of food into the throat. The communication between the posterior nares and the faucial cavity is likewise protected by a musculo-membranous valve, called the vetum pendulum palati ; but as, with the exception of the Cetacea, hereafter to be noticed, the arrangement of these parts exactly resembles what is scen in the human subject, it would be superfluous to describe them more minutely in this place.
(2306.) The bag of the pharynx in all the Mammalia is similar in its structure to that of Man; and its muscles, namely the stylo-pharyngeus and the three constrictors, although stronger than in our own species, offer no differences worthy of more particular notice.
(2307.) The œosophagus, leading from the termination of the pharynx into the stomach, is a long museular tube that traverses the chest in front of the bodies of the dorsal vertebro, and, having pierced the diaphragm, reaches the abdominal eavity. Its lining membrane is loose and much plicated, so as to allow of considerable dilatation ; but externally its walls are very muscular, the surrounding museles being. arranged in two distinet layers. In Man the outer stratum of muscular fibres is disposed longitudinally, while the inner layer consists of circular fibres ; but in most other Mammalia both these layers assume
a spiral courso, and cross each other obliquoly as they embrace the cosophageal tube.
(2308.) The stomaeh itself presents such endless diversity of form, that merely to enumerate all tho details that have been amassed relative to this part of our subject would fill many volumes, without perhaps at all advancing our real knowledge coneerning the progress of digestion; we must therefore eontent ourselves with a very general view of the organization of this important viseus, and regard the Mammalia as possessing either simple, complex, or compound stomachs, each of whieh will deserve a distinct notiee.
(2309.) In the simple form of stomach the organ consists of a single eavity, as is the case in the human species. Let the shape of the viscus be elongated, pyriform, or globular (for in this respect there is every possible variety), whatever its form, or the relative positions of the cardiae and pyloric orifiecs, its strueture corresponds with that of Man in all essential particulars. This kind of stomaeh exists in by far the greater number of Mammals.
(2310.) In the complex stomach the viseus is made up of several eompartments communicating with eaeh other, but without presenting any differences of organization sueh as in the present state of physiological knowledge would lead us to suppose them to possess different functions: neither are we at all able to find anj connexion between such an arrangement and the nature of the substance used as food. The Kangaroo (Macropus major), the Kangaroo Rat (Hypsiprymnus), the Porcupine (Hystrix), and the Hyraxare amongst the most striking examples.
(2311.) The compound stomach is that possessed by the Rominantia, or animals that chew the cud, and consists of four distinet cavitics, differing very materially both in their size and in the arrangement of their lining membranes. The first and by far the largest ea-

Fig. 550.

Stomach of the Sheep: $\dot{a} b$, œsophagus, termiuating in two channcls, one leading to the sumen or paunch $d_{\text {, }}$ the other opening into the reliculum, $c ; e$, the third stomach or poallerium. leading to the fourth or abomasus, $f ; g$, the pylorns. vity (fig. $550, d$) is ealled the pauneh (rumen), and is of rely great
size, occupying a considerable portion of the abdominal cavity and forming the great receptacle into which the crude vegetable aliment is received when first swallowed : this chamber is lined with shaggy villi. The second cavity (reticulum) (c) is much smaller ; and its walls are covered with numerous polygonal cells, whence it derives the name it bears. The third chamber (e), called the psalterium, has its lining membrane disposed so as to form decp lamellæ, arranged longitudinally in alternating large and small layers, and thus presenting a most extensive surface. The fourth stomach (abomasus) (f) also exhibits very numerous folds of mucous membrane: it is of a pyriform shape, and by its smaller end terminates at the pylorus (g). The first three stomachs are lined internally with a thin cuticular investment ; but the last, apparcntly the representative of the single stomach of those quadrupeds that have but one stomachal cavity, is coated with a soft membrane that furnishes abundantly the ordinary gastric sccretions, and appears to be more especially the digestive stomach.
(2312.) The passage of the food through these different chambers will be easily understood on referring to the preceding figure, in which the course of the aliment before and after rumination is indieated by the direction of the probes a, b. The œesophagus, it will be observed, communicates on the one hand with the paunch (d), and on the other with the cavities $c e, f$; and moreover, by means of a muscular fold formed by the walls of the second cavity, a passage may be formed leading directly into the third stomach (e) without communicating with the second (c). The process of rumination, therefore, would seem to be effected in the following manner:-The herbage when first swallowed in an unmasticated condition passes into the capacious paunch (d), where it accumulates, and undergoes, no doubt, a kind of preliminary maceration. When the Ruminant has done grazing, and is at leisure, the food is again regurgitated into the mouth, to undergo more careful and complete mastication: for this purpose, a part of it is admitted into the reticulum (c), and there formed into a smooth and lubricated bolus, which, being expelled into the œsophagus, is immediately seized by the spiral muscles surrounding that canal and forced forwards into the mouth. After undergoing a thorough trituration, the aliment is onco more swallowod, and it then enters into the third stomach (e), passing along the muscular fold that leads from the œesophagus into that compartment. Here it is spread out over the extensive surface formed by the laminated walls of the psalterium, and is propared for admission into the last cavity (f), which, as has bcen said, is the true digestive stomaeh.
(2313.) While the young Ruminant continues to be nourished by its mother's milk, the first three cavitics are undeveloped and comparatively very small-so that the milk passes on immediately into the fourth stomach, to be at once appropriated as aliment.
(2314.) In the Camol, the Dromedary, and the Llama, the walls of the roticulum and of a portion of the paunch are excavated into deep cells or reservoirs bounded by muscular fusciculi, wherein water may be retained in considcrable abundance, unmixed with the contents of the stomach: it is in consequeuco of this arrangement that these animals are able to subsist for many days without needing a fresh supply of water, even during long journeys in a tropical climate.
(2315.) In the Cetacea the stomach consists of several bags that communicato with each other. These bags vary from five to seven in number; but in the present state of our knowledge conccrning the physiology of digestion it is difficult to divine what is the purpose of such an arrangement, more especially as rumination is here out of the question. The firststomach of the Whale, however, is no longer morely a reservoir*, as the food undergoes a considerable change in it. The flesh of its prey is entirely scparated from the bones, which proves that the secretion of this cavity has a solvent power. This was found to be the case in the Bottle-nose Porpoise and in the large Bottle-nose Whale, in both of which several handfuls of bones were contained in the first cavity, without the smallest remains of the fish to which they had belonged. In others the earth had been dissolved, so that only the soft parts remained; and, indeed, it is only partially digested materials that can be conveyed into the second and third cavities, the orifices being too small to permit the bones to pass.
(2316.) The rest of the alimentary canal in most quadrupeds, like that of Man, is divisible into the small and the large intestines,- the division between the two being marked by one or cven two appendages, called respectively the coccum and the appendix vermiformis.
(2317.) The small intestines require no particular description, as in all minor circumstances, such as their proportional length and diameter, or the number and arrangement of the valvulce conniventes, they do not differ from the human. The large intestines, however, offer very great variations of structure, and will therefore merit our more attentive consideration; we shall accordingly lay before the reader the following. résumé of the principal facts connected with the subject, as given by the indefatigable Cuvier *.
(2318.) In Man, the Orang (Simia), and the Wombat (Phascolomys), both cæcum and vermiform appendage are met with.
(2319.) In the other Quadrumana, the Digitigrade Carnifoba, the Marsupialia, the Rodentia, the Pachydermata, the Ruminantla, the Solipeds, and tho Amphibious Mammals, there is a cæcum without any vermiform appendage.
(2320.) Neither cccom nor appendix vermiformis is found in tho Edentata, the Plantigrade Carnifora, or the Cetacea.

[^229](2321.) Numcrous exceptions, of course, occur to tho above summary; but it would be usoless to notice them in a survey so general as the present.
(2322.) Even where $n 0$ cæcum exists, the separation botween the largo and small intestines is generally indicated by a valve (ilio-colic) formed by the lining membrane of the bowel: this, for example, is the ease in the Sloths and Armadillos.
(2323.) In all the Mammalia that possess a cæcum, this organ appears to be a prolongation of the colon beyond the point at which the small intestine enters its cavity. The cæcum thus formed varies materially, both as relates to its size, shape, and structure: in animals that live upon vegetables, and even in some that are omnivorous, it is generally very large, gathered into sacculi, and often distinctly glandular; but in such as live upon flesh it is always small, and its carity smooth, resembling a small intestine.
(2324.) The assistant chylopoietic viscera, namely the liver, the pancreas, and the spleen, are constructed upon the same principles as in the human subject, and, except in a few minor circumstances, offer little to arrest our particular notice.
(2325.) The liver occupies the same position as in Man, being principally situated in the right hypoehondrium, where it is securely suspended by broad folds of peritoneum connecting it to the abdominal surface of the diaphragm and to the circumjacent parts. It is most frequently, especially in the more active carnivorous families, divided by deep fissures into several lobes-a disposition whereby the free movement of this part of the body is evidently facilitated. The gall-bladder, when present, which is not invariably the case, receives the bile indirectly through a cystic duct derived from the hepatic ; so that the biliary fluid, poured into the duodenum through a ductus communis choledochus, is derived either immediately from the liver, or is regurgitated from the gall-bladder as occasion requires.
(2326.) The pancreas resembles the human in every particular; and its secretion enters the duodenum at the same point as that of the liver.
(2327.) The spleen is always attached to the stomach by a duplicature of the peritoneal lining of the abdomen, and is organized in the same manner as that of Man, except in the Cetacea, where this viscus is divided into soveral small portions quite distinet from each other.
(2328.) The system of the vena porte is made up of the venous trunks derived from the spleen, the stomaeh, the pancreas, and the intestinal canal : these all unite to form one large central trunk, which, after entering the liver, again divides and subdivides minutely in that viscus, and furnishes the venous blood from which the bile is principally, if not entirely, elaborated.
(2329.) The peritoneum, or the serous membranc lining the abdomi-
nal cavity, forms in the Mammalia a shut sac, and by its numerous inflexious invests all tho chylopoietic viscera, forming broad mesenteric folds to support the intestines; it thus encluses between its laminx the entire system of mescnteric vessels, and also the lacteals derived from the alimentary canal: as to the rest, its structure and disposition, even to the formation of the omental sacs, differ in no important respect from what is found in the human body.
(2330.) The chyle, the result of the digestive process, is taken up from the mucous lining of the intestinal canal by innumerable microscopic orifices that form the commencement of the lacteal system, which in the Mammalia seems to assume its most perfect development. This important system of absorbent vessels consists of slender canals encloscd between the two layers of the mesentery, to the root of which they converge from all the tract of the intestine. The valves formed by the lining membrane of these tubes are in Mammals so numerous and perfect that it is no longer possible to inject them from trunk to branch. Before terminating in the thoracic dact, thesc vessels permeate numerous "mesenteric glands," as they are called, by means whereof they appear to communicate freely with the venous system; but the builk of the matter absorbed enters a kind of reservoir called the "receptaculum chyli," whence, by means of the thoracic duct, the chyle is conveyed to be mixed up with the mass of cireulating fluid, and is ultimately poured into the vena innominata at the junction of the jugular and subclavian veins on the left side of the body.
(2331.) The lymphatic system of Mammals, as far as it has been studied, conforms in its arrangement to that of Man.
(2332.) Neither will it be at all necessary to describe at any length the construction of the respiratory and circulatory organs in the class now under consideration, seeing that the structure of the lungs, the mechanism of respiration, the arrangement of the pulmonary vessels, the cavities of the heart, and the general disposition of the arteries and veins of the systemic circulation differ in no material circumstance from what is met with in the human subject.
(2333.) The lungs, occupying the two sides of the chest, are each contained in a distinct chamber, formed by the ribs and diaphragm, without in any part adhering to its walls. Each lung is enclosed in a serous cavity formed by the pleura, which, aftcr lining the ribs, the intercostal muscles, and the thoracie surface of the diaphragm, is reflected on to the lung itself at the point occupied by the roots of the pulmonic vessels, and invests the entire surface of the viseus ; it moreover passes deeply into those fissures that separate the lung into several distinct lobes.
(2334.) In the interspace between the two pleure, called the mediustina, is lodged the heart, contained in a fibro-serous envelope (the pericardium) ; and behind this the osophagus, accompanied by the
principal trunks of the vascular system, passes through the thorax into the abdomen.
(2335.) Eaeh lung is a elosed bag, eomposed of innumerable eells that communicate with the terminations of the bronehial tubes, and eolleetively present an immense surfaee, over whieh the blood eontained in the eapillaries of the pulmonary vessels is made to eirculate.
(2336.) The inspiration and expiration of air are effected by the alternate movements of the diaphragm and of the walls of the thoraeie eavity, whereby the atmospherie fluid is drawn into and expelled from the pulmonary eellules, and is thus eonstantly renewed as it becomes deteriorated by the abstraction of the oxygen eonsumed during the process of converting the venous into arterial blood.
(2337.) The purified blood, after passing through the pulmonary capillaries, is eollected in an arterialized condition by the pulmonary veins, and eonveyed to the systemic side of the heart, whieh offers the same arrangement throughout the entire class, consisting of an aurieular ehamber (fig. $551, c$) and of a very museular ventricle (a), the auriculoventrieular opening being guarded by mitral valves and columnce carnece, similar to those found in the human heart. From the left ventriele the blood is driven into the aorta (d), the commeneement of whieh is guarded by three semilunar valves; and thus it passes through the entire system.
(2338.) When again collected from the periphery of the body, the now vitiated fluid is returned to the heart by the venous system, and poured through the vence cavce into the right or pulmonie auricle; and hence it passes into the right ventriele (fig. 551 b), to be again returned through the pulmonary artery to the lungs, thus eompleting the circulation.
(2339.) But although the general arrangement of the circulatory and respiratory organs in all Mammals thus in every respeet resembles that whieh exists in the human body, there are of neeessity variations in the distribution of certain parts of the sanguiforous system, adapted to the peculiarities of organization presented by the different orders and even by the different families of this great elass, which must not be wholly passed over in silence.
(2340.) In the Cetacea, for instance, many interesting cireumstanees are observable in the arrangement of the vaseular system.
(2341.) In the herbivorous genera, as for example in the Dugong, the two sides of the heart are separated to a considerable extent by a deep fissure (fig. $551, a, b$), so that the pulmonary and systemic hearts are mueh more evidently distinet viseera than they appear to be in the quadrupedal forms ; nevertheless in the Whalebone and Spermaceti Whales the heart assumes the usual appearance, and is only remarkable for its amazing size ; this, indeed, may have attraeted the notice of Hunter*

[^230]while investigating such gigantic boings. "In our examination of particular parts," says that eminent anatomist, " the size of which is generally regulated by that of the whole animal, if we have only been aceustomed to see them in those which are small or middle-sized, we behold them with astonishment in animals so far execeding the common bulk as the Whale. Thus the heart and aorta of the Spermaceti Whale appoared prodigious, being too large to be eontained in a wide tub, the aorta measuring a foot in diameter. When we consider these as applied to the circulation, and figure to ourselves that probably ten or fifteen gallons of blood are thrown out at one stroke, and moved with an immense velocity through a tube a foot in diameter, the whole idea fills the mind with wonder."
(2342.) In the arrangement of the blood-vessels

Heart of the Dugong, seen from behind (reversed): a, left ventricle laid open; b, right ventricle laid open; c, left auricle; d, aorta; e, pulmonary artery. of the Cetacea, many interesting peeuliarities are met with*. The general structure of the arteries, indeed, resembles that of other Mammals ; and where parts are nearly similar, their distribution is somewhat similar. But these animals have a greater proportion of blood than any others known; and there are many arteries apparently intended as reservoirs, wherein a large quantity of arterial blood may accumulate, apparently for important purposes, where vascularity could not be the only object. Thus the intercostal arteries divide into a vast number of branehes, which run in a serpentine eourse between the pleura and the ribs, and penetrate the intercostal muscles, everywhere lining the walls of the thorax. These plexiform vessels, moreover, pass in between the ribs near their articulation, and anastomose extensively with each other. The mectulla spinalis is likewise surrounded by a network of arteries in the same manner, more espeeially as it comes out from the brain, where a thick substanee is formed by their ramifications and convolutions; and these vessels most probably anastomose with those of the thorax. The precise function assigned to this extensive plexus of arteries has not been as yet satisfactorily determined, although it is donbtless a receptaele wherein arterial blood is stored up during the long-continued snbmersion to whieh these animals are so freqnently subjected.

[^231](2343.) As the Cetacea have no pelvic extremities, the aorta, instead of bifurcating into iliac arterics, is entirely appropriated to supply the enormous tail, beneath which it is continued, enclosed in a canal formed by the roots of the inferior spinons processes of the caudal vertebre, that aro here again developed as in fishes.
(2344.) The venons system in the Cetaccan order is equally remarkable for the plexuses formed by it in different parts of the body; of these, the most important communicates with the abdominal cava, and is of immense extent. The veins of these creatures, moreover, are almost entirely deprived of valves; so that every possible arrangement has been made to delay the courso of the circulating blood during the temporary suspension of respiration that occurs whenever the animal plunges beneath the surface of the water.
(2345.) In other aquatic Mammals that dive, and are thus subjected to prolonged immersion, large dilatations are found connected with the principal trunks of the venous system in the neighbourhood of the heart, in order to prevent a dangerous distention of these veins while the circulation is impeded and respiration put a stop to. This is particularly remarkable in the Scal tribe; and in these Carnivora we are assured by good authorities that it is not uncommon to find the foramen ovale of the heart, and the ductus arteriosus, which in the fœtus allows blood to pass from the pulmonary artery directly to the aorta, still open even in the adult animal ; but this arrangement, as we are well satisfied, is by no means to be regarded as the normal structure of the heart of a Seal.
(2346.) In many of the long-necked herbivorous quadrupeds a peculiar provision has been made in the disposition of the internal carotid arteries, apparently intended to equalize the force of the blood supplied to the brain in different positions of the head: for this purpose the arteries referred to, just as they enter the skull, divide into several branches, which again unite, so as to assume a kind of plexiform arrangement, forming what is called the rete mirabile of old authors. The effect of this subdivision of the main trunk into so many smaller channels will evidently be to moderate the rapidity with which the blood would otherwise enter the cranium, and thus preserve the brain from those sudden influxions to which it would otherwise be constantly liable.
(2347.) We must likewise notice a structure, in some respects similar to the above, that exists in the arteries both of the anterior and posterior extromities of the Sloth (Bradypus). In these slow-moving animals, the axillary and iliac arteries, just before entering the limbs to which they are respectively destined, suddenly divide into numerous small channcls, which again unite into one trunk before the arteries of the momber are given off. No doubt such an arrangement will very materially retard the course of the blood as it flows through these multi-
plied canals, and perhaps is elosely comected with the long-enduring strength of muscle that enables these creatures to cling without fatigue to the branehes whereby they suspend themselves.
(2348.) Innumerable other minor differences in the course and distribution of the blood-vessels might of course be pointed out, a few of which may require notico elsewhere; but, gencrally speaking, the arrangement of the vascular system in all quadrupeds is so similar, that the anatomical student who may push his researches thus far will never be at a loss in identifying the different vessels and comparing them with those found in the human body.
(2349.) Although the respiration of Mammalia is inferior, as regards the extent to which their blood is exposed to the influence of the atmosphere, to the perfection of this process in Birds, nevertheless sueh is the elevated temperature of the body in these hot-blooded animals that a warm covering of some non-conducting material is here absolutely requisite, to retain the vital warmth, and defend them against the thormometrical changes of the element they inhabit. Their skin is generally, therefore, clothed with a warm covering of hair, a cuticular structure the nature and growth of which it behoves us now to examine. We must first, however, notice the organization of the skin itself; and then the nature of the various structures employed to defend it will be readily understood.
(2350.) The skin of all Mammals, like that of the human body, consists of the cutis or vascular true skin, of the epidermis or cuticle, and of a thin layer of pigment interposed between the two, which is a diversely coloured secretion deposited, like the cuticle, upon the surface of the cutis.
(2351.) The hairs that cover the quadruped, whatever be their form or thickness, are cylinders of horny or cuticular substance, that grow upon so many minute vascular pulps, from the surface of which the corneous material is perpetually secreted. Some kinds of hair are permanent, and, if constantly cut, will continue to grow during the whole life of the animal; such is the hair of Man, and that which forms the mane and tail of the Horse : but generally the hair is shed at stated periods, to be replaced by a fresh growth. For the most part these structures are so minute that the apparatus employed in forming them escapes observation; but in very large hairs, such as those that compose the whiskers of the Seal, or of the Lion, it is not difficult to display the organs by which they are secreted. The appended figure, taken from one of the drawings in the Huntcrian collection, represents a section of the lip of a young Tion; and in it all the parts connected with the growth of the larger hairs are beautifully displayed. A bulb or sacculus, formed by an inward reflexion of the cutis (fig. 552, B, C), and lined by a similar inflexion of the cutiele (f), contains in its fundus a vascular pulp (g, g, g), well supplied with large vessels and nerres (h).

It is from the surface of the pulps (g), exhibited upon a magnificd scale at A, that the horny stem of the hair is gradually seereted ; and its leugth of course inereases in proportion to the accumulation of corneous matter continually added to the root.
(2352.) Various are the appearances of epidermic appendages in every way analogous to hair both as relates to their composition and mode of growth, and widely different the uses to which they may be converted: the wool of the Sheep, the fur of the Rabbit, the spines of the Hedgehog, the quills of the Porcupine, the sealy covering of the Manis, and even the armour that defonds the back of the Armadillo are all of them but modifications of the same structures, adapted to the altered conditionsunder which the ereatures live. Even the horn upon the snout of the Rhinoceros is but an agglomeration of hairy filaments, formed upon a broad and compound pulp. The nails that arm our fingers and toes, the corneous sheath that invests the horns of the Ox and Antelope, nay, the hoofs of herbivorous quadrupeds are all epidermic secretions from the vascular cutis-or, in other words, are hairs, altered in their form and extent according to the exigencies of the case.
(2353.) Widelydifferent, however, are the so-called horns of the Deer tribe, which in reality

Fig. 552.

Section of the lip of a young Lion. (After Hunter.) A. Base of one of the vibrisse or long hairs of the whiskers, showing the vascular pulp. B. Bulbs of the vibrissæ seen in section: e, cutis; f, cuticle; g, vascular pulp; h, nerves and vessels supplying the pulp; i, stem of the hair; k, its internal cavity; a, short hairs of the general surface of the skin. consist of bone, and, being deciduous, have to be reproduced from year to year by a most peculiar and interesting process. No sooner does the return of genial weather again eall forth the dormant reproductive energies of the system, than the budding antlers begin to sprout from the forehead of the Stag, and rapidly expand in their dimensions from day to day. On making a longitudinal section of the young horn, it is found to be continuous with the os frontis, having its outer surface covered with a vascular periosteal membrane derived from the pericranium, which in turn is protected by a fine velvety skin. Moreover, when a growing antler is injected
minutely, and its carthy matter removed by means of an acid, vessels derived from the periosteum arc found to traverse it in all directions, proving its identity with real bonc. As growth goes on, the external carotid arteries, thus called upon rapidly to furnish a prodigious supply of materials, dilate in a remarkable manner, and soon the palm and the antlers of the horn have acquired their full dimensions. No sooner is this accomplished than a prominent ring or bur is formed around the basc, which, projecting outwards, compresses and soon obliteratcs the vessels that have hitherto supplied the growing defences. The circulation being thus put a stop to, the soft teguments and periosteum peel off in strips ; and the bone, denuded of its covering, becomes a formidable weapon.
(2354.) At the close of the brecding-season the removal of the horns is speedily effected: the connexion between their bases and the os frontis is gradually weakened by interstitial absorption, until at length a slight effort is sufficient to detach the branching honours of the Stag, and they fall off, leaving a broad cicatrix: this soon skins over; and the succeeding year calls forth a repetition of the process*.
(2355.) The Cetacea form a very remarkable group among the hotblooded Mammifers as relates to the external covering of their bodies. No covering of hair or wool would have been efficient in retaining the vital heat under the circumstances in which these creatures live; and even if such clothing could have been made available, it would have seriously impeded their progress through the water. Another kind of blanket has therefore been adopted: the cuticle is left perfectly smooth and polished, without any vestige of hair upon its surface ; but, beneath the skin, fat has been accumulated in prodigious quantities; and, enveloped in this non-conducting material, the Whales are fully prepared to inhabit an aquatic medium, and to maintain their temperature even in the Polar Seas.
(2356.) The skin of all quadrupeds contains innumerable secerning follicles, whereby lubricating fluids are continually furnished for the purpose of maintaining the surface in a moist or supple condition ; but not unfrequently these glandular follicles are aggregated together in considerable numbers, so as to form secreting pouches. In many species of Stags and Antelopes, for example, largc pouches of this description are found below the margin of the orbit, that furnish a secretion rulgarly regarded as the Stag's "tears." In most instances some of the cutaneous glands secrete a highly odorous material, especially in the vicinity of the parts of gencration ; and their secretion being most abundant during the rutting-season, it is not without reason that these

[^232]organs are looked upon as destined to attract the sexes, and perhaps to stimulate the scxual passions. The preputial glends, so called because they furnish an odoriferous fluid that lubricates the prepuce and glans of the penis in the male, and of the clitoris in the female, are of this kind*. For the most part, thesc are simple scbaccous follicles contained in the thickness of the prepuce; but occasionally they are replaced by true conglomerate glands, formed of lobes and lobules, and haring but a single excretory duct, that opens upon the sides of the glans penis (or clitoridis) bencath the prepuce. Many of the Rodentia are furnished with glands of this description ; and they are situated on each side of the penis, immediately boneath the skin that covers the pubic region.
(2357.) It is with the preputial glands that we must notice the still more elaborately developed secreting-organs of the Bcaver, that furnish the drug called "castor." These organs, represented in the anncxed figure (fig. 553), consist of large glandular pouches ($g, 7$), that discharge

Fig. 553.

Sexual organs of male Beaver a, a, prostates; b, sheath enclosing the penis, slit open; c, rectum ; g, h, glandular pouches in which the castor is secreted; those on the left side are only partially seen; bristles are insorted into their ducts.
their contents in the vicinity of the anal and preputial apertures; but of what importance the material thus abundantly scereted may be in the cconomy of the animals so provided, it is not easy to conjecture. (2358.) The secreting-apparatus of the Musk-deer (Mosehus moschi-

[^233]ferus), which producos musk, is of analogous conformution. This is an oval pouch situated bencath the skin of the lower part of the belly : its walls aro thin, and apparently membranous; but tho membranc that lines them is rugose and plicated. Tho orifico leading to this pouch is small, and opens in front of the prepucc.
(2359.) Lastly, in connexion with these odoriferous glands we may mention tho "tomporal glands" of the Elephant, from the duct of which, situated on each side midway between the cye and the car, there flows a viscid and fetid liquid-and likewise the "anal glands," met with in most Carnivora. The ducts of the glands last mentioned open noar tho margin of the allus; and in some genera, as the Skunk and the Polecat, the stench produced by the fluid poured from these sourcos is so intolerable as to bccome a most efficiont dofence against a foreign enemy.
(2360.) Wo now come to consider the nervous system of the Mammalia, and aro of course prepared to anticipatc that in proportion as they surpass all other animais in intolligence, so will the oncophalic masses assume a complexity and perfection of structure such as we have not hithorto witnessed in the whole sories of the animal creation. Their senses likewise may be presumed to have attajined the utmost delicacy of organization, in correspondence with the exalted attributes conferred upon this important class, and consequently to exhibit appendages and accessory parts adapting them most accurately to repeat to the sensorium impressions derived from without.
(2361.) Abstruse as the study of the brain has boen rendered by the chaotic asscmblage of names appliod by the earlier anatomists, in their bewilderment, to every definable portion of its substance, we have little doubt that, when the grand laws that have hitherto guided us in investigating the nervous system of the lower animals are had recourse to, the student will soon perceivo how little difficulty there is in comparing even the brain of Man with the encephalon of the humbler Vertebrata examined in proceding pages, and thus tracing the progressive advances from simple to more complex organization.
(2362.) The great lessons deducible from all that we have as yet seen relative to the essential organization of the nervous system are obrious cnough :-First, that all nerves, whether connected with sensation or the movements of the body, emanate from or are in communication with nervous massos called ganglia, which are, in fact, so many brains presiding over the functions attributable to the individual norves. Secondly, that in the lower animals, where theso ganglia exist, they are comparatively small and more or less completely detached from cach other ; but that in the Vertobrata, such is the increased development of the central masses of the nerrous system, that they coalesce, as it were, into one great organ called the cerobro-spinal axis; and thus that the encephaton and medulla spinalis are both made up of symmetrieal pairs
of ganglia appointed to different functions, but so intimately blended together that they are no longer distinguishable, except from the pairs of nerves with whieh they are eouneeted.
(2363.) Taking the above for axioms (and they are ineontrovertible), let us proceed to analyze the eerebro-spinal axis of the Mammalia, and to eomparo it in simple terms with those of Birds, Reptiles, and Fishes, already examined.
(2364.) Commeneing at the anterior extremity of the series, the first eneephalic masses that present themselves are tho "olfactory nerves," as the human anatomist has been pleased to eall them, although in every one of the details eonnected with their anatomieal structure and relations they eonfessedly differ from every nerve in the body. They are, in truth, not nerves at all, but brains-the ganglia or brains of smell, from which the olfaetory nerves, properly so ealled, invariably emanate. In Fishes (§ 1807) they were found to equal or even to surpass in size the hemispheres themselves. In Reptiles and Birds they beeame gradually coneealed by the development of the hemispherical masses; and in the Mammalia sueh is their diminutive appearance, when compared with the cerebrum, that they are seareely reeognized as elements of the eneephalon at all.
(2365.) In all the oviparous Vertebrata the nerves of smell were two simple eords, one derived from eaeh of the olfactory ganglia, from which they proceeded through osseous canals to the nose. But in the Mammifers these nerves are extremely numerous, in proportion to the extent

Fig. 554.

Olfactory apparatus of the Lion: a, ethmoidal plates; b, inferior turbinated bone c, posterior nares.
of the surface to be supplied, and escape from the skull through the eranial plate of the ethmoid bone, which, from the number of apertures that it offurs for their passage into the nose, richly merits the name of
"cribriform "-more especially in the carnivorous quadrupeds, possessed of the most acute smell.
(2366.) The intcrior of the nasal cavity is divided by a median scptum into chambers, in cach of which a very large surface is produced by the complicated convolutions of the thin nasal plates of the ethmoid (fig. 554, a), and of the inferior turbinated bone (b), over which the air is made to pass in its progress to the lungs before it arrives at the postcrior nares (c). The whole of this complication of bony lamellx is eovered with a delicate and highly lubricated mucous membranc, wherein the olfactory nerves terminate ; and from the figure given, representing the left nasal cavity of a Lion, some idea may be formed of the acutencss of the sense in question conferred upon the predaceous Carnivora.
(2367.) With this perfection of the olfactory scuse a corresponding mobility of the outer nostrils is permitted to the Mammifcrous races. In the Reptiles and Birds the external aperturcs lcading to the nose were merely immoveable perforations in the horny or sealy corcring of the upper mandible; but now the nostrils become surrounded with moveable cartilages and appropriate muscles, adapted to dilatc or eontract the passages leading to the nose, or even to perform more important and unexpected duties, as, for example, in the proboscis of the Elephant.
(2368.) The Cetaced, as regards the conformation of their nostrils, and indeed of the whole of their nasal apparatus, form a remarkable exception to the above description. Inhabiting the watcr as these creatures do, they arc compelled to breathe atmospberic air. Are they, then, to smell through the intervention of an aquatic or aërial medium? To smell in watcr would require the nose of a fish, whieh could not be granted without infringing upon the laws that regulate the progression of animal organization. To smcll in air would be useless to the Whale; and moreover its nasal passages are required for another function, with which the excrcise of smell would apparently be incompatible.
(2369.) Thus circumstanced, we find the whole nasal apparatus eompletely metamorphosed, and so disposed as to answer two important purposes, viz. :-first, to allow the Cetacean to breathe air whilst its mouth is immersed in water; and, sccond, to provide an outlet whereby the water that is necessarily taken into the mouth may escape without being swallowed.
(2370.) The arrangement adopted to attain both these ends is very beautiful. The nostrils, instead of occupying their usual position, are situated quite upon the top of the head (fig. 555, a) ; so that as soon as the vertex reaches the surface, air is frecly obtained. But another difficulty remains to be ovcrcome : how is the Cctacean to breathe air while its mouth is full of water?
(2371.) To allow this, the upper extremity of the larynx is prolonged so as to form a thick cartilaginous plug (c). When the creature breathes, this elongated lorynx is introduced into the posterior mares, as repre-
sented in the figure ; and, being firmly embraced by a sphincter musele whilst in that situation, tho air is admittod into tho trachea through the passages ($a b$), without ever entering tho oral cavity.
(2372.) It only remains to be seen how the Cetacean gets rid of the water taken into the mouth, without being obliged to swallow it; and the same figure, representing a vertical scetion of the head of a Porpoise, will enable us to undorstand the mechanism whercby this is accom-

Fig. 555.

Blowing-apparatus of the Porpoise : a, nostrils situated on the back of the head; b, posterior nares ; c, plug formed by the larynx.
plished. The two canals forming the posterior nares (b) are defended superiorly by a fleshy valve*, which is closed by means of a very strong muscle placed above the intermaxillary bones. To open this valve the force must be applied from below ; and when the valve is shut, all communication is cut off between the posterior nares and the capacious cavities placed above them.
(2373.) These cavities are two large membranous pouches lined with a black skin, which, when they are cmpty, as represented in the figure, falls into deep folds; but, when full, the walls are distended so as to form capacious oval receptacles. Externally these chambers are enveloped by a very strong expansion of muscular fibres, by which they can be violently compressed.
(2374.) Let us now suppose that the Cctacean has taken into its mouth a quantity of water that it wishos to expel : it moves its tongue and its jaws as though it would swallow; but, at the same time, closing its pharynx, the water is foreed upwards through the posterior nares (b), till it opens the intcrposed valve and distends the pouches placed above. Once in these reservoirs, the water may remain there until the creature

[^234]chooses to expel it, or, in other words, "to blow." In order to do this, tho valvo between tho pouehes and the posterior nares being firmly elosed, tho saes are forcibly eompressed by the muscles that embrace them, and the water is then spouted up through the "blow-holes," or nostrils, to a height corresponding to the violence of the pressure.
(2375.) It must be evident that it would be impossible that a nose through which salt water is thus eontinually and violently forcod, could bo lined with a Schneiderian membrane of suffieient delieaey to be capablo of reeciving odorous impressions. In the Ceraeeans, thereforc, the nerves of smell, and even the olfactory lobes of the brain, are totally deficient.
(2376.) The second pair of ganglia entering into the composition of the eneephalon, and giving origin to nerves, are the optie lobes, from which are derived the nerves of vision. In the Fish and in the Reptile these were at onee recognizable as primary elements of the brain; but in the Mammifer, owing to the excessive development of the surrounding parts, they are quite overlapped and concealed by the hemisphercs. Nevertheless the tubercula quadrigemina ($556, d d$) occupy the same relative position as in the Tortoise (vicle fig. 496, в \& e, e), and in like manner still give origin to the nerves appropriated to the instruments of sight, of which they are the proper ganglia.
(2377.) The two optic nerves, before passing to their final destination, partially decussate each other, as in the human subject ; they then proceed

Fig. 556.

Brain of the Rabbit. forward into the orbit, and, penetrating the globe of the eye, expand into the retinæ.
(2378.) Minutely to describe the construction of the eyeball in the Mammalia would be quite superfluous, seeing that in every essential particular it exaetly corresponds with that of Man. The disposition of the sclerotic and choroid eoats, the structure of the cornes, the arrangement of the humours and of the retince, the organization of the iris-in short, the whole economy of the cye is the same throughout the entire class. Nevertheless there are a few points of scoondary importance deserving our attention, whereby the organ is adapted to peculiarities of the cireumstanees in which difforent tribes are placed.
(2379.) In the Cetacea, and also in tho amphibions Camivora that eatch their prey in the water, the shape of the lens is nearly spherical
as in Fishes ; and the antero-posterior diameter of the eyc is in eonsequenco considerably diminished by the extraordinary thiekness of the sclerotie at the posterior aspect of the cyeball,-an arrangement approaching very nearly to that already described ($\$ 1814$).
(2380.) Instead of the dark-brown paint which lines the ehoroid of the human cye, in many Mammals the Ruysehian tunic sceretes a pigmentum, of various brilliant hues, that shines with metallic splendour. This membrane, called tho "tapetum," partially lines the bottom of the eyeball; but its use has not as yet becn satisfaetorily pointed out.
(2381.) The shape of the pupil likewise varics in different quadrupeds: for the most part, indced, tho pupillary aperture is round, as it is in Man ; but in Ruminants, and many other Herbivora, it is transversely oblong. In the Cats (Felidce), that hunt in the gloom, and consequently require every ray of light that can be made available, the pupil is a long vertieal fissure: but this only obtains among the smaller genera; for in those Feline Carnivora that surpass the Oeelot in size, such as the Leopard, the Lion, and the Tiger, the pupil again assumes a round form. (2382.) The eyes of Mammalia are lodged in bony orbits, as in the oriparous Vertebrata, and in like manner are supported in thcir movements by a quantity of semifluid fat: with which the orbital eavities are filled up. In Man, as in Birds, Reptiles, and Fishes, six muscles are appropriated to the movements of each eyeball, viz. four recti and two obliqui. The four recti muscles have the same disposition in Mammalia as iu Birds ; that is, they arise from the margin of the optic foramen,

$$
\text { Fig. } 557 .
$$

Structure of the eye. and run forward to be inserted opposite to each other upon the superior, inferior, and lateral surfaces of the sclerotie eoat. The inferior oblique likewise offers a similar arrangement in all the Vertebrata, arising from the margin of the interual wall of the orbit, and running outwards to be attached to the external surface of the globe of the eye. But the superior oblique, in the class before us, takes a very peculiar course. Arising like the rest, it passes forward to the upper and inner margin of the orbit, where its tendon is reflected over a little cartilaginous pulley (fig. 558, c), and turns baek again to be inserted into the external and posterior aspect of the eycball.
(2383.) In addition to the six muselcs appointed for the movements of the eye in Man and the Quadrumana, other Mammalia have a seventh, called the choanoid or funnel-shaped musele. This likewise arises from the borders of the optic foramon, and, gradually expanding,
forms a hollow cone interposed between tho recti muscles and the optic nerve, the base of the eone being attached to the sclerotie behind the insortion of tho recti. Frequently, indeed, this choanoid or suspensory muscle is divided into four portions, in which ease thic animals so provided would scem to have cight reeti museles.
(2384.) The eyelids of Mammalia resemble the human in every Fig. 558.

Muscles of the eyeball.
respect, excepting that in the lower orders a remuant of the nictitating membrane is still met with ; but it is of small dimensions, and unprovided with muscles.
(2385.) The lacrymal apparatus exists in all quadrupeds; and the lacrymal gland occupies the same situation as in Man, the tears being poured on to the conjunetiva near the external eanthus of the eyelids. The lacrymal ducts, likewise, whereby the tears are convejed into the nose, so nearly resemble the human as to require no particular description. The carunculce lacrymales are also met with at the inner eanthus of the eyelids. In some quadrupeds, indeed, an additional gland cxists, called the glandula Harderi; this is situated behind the internal angle of the cye, and secretes a lubricating fluid that is discharged beneath the rudiment of the third or nietitating cyelid.
(2386.) In Whales, as might be expected from their aquatic habits, no restige of a lacrymal apparatus is to be seen.
(2387.) Behind the optic lobes of the eneephalon the nerrous centres, from which the other eerebral nerves take their origin, are so intimately blended together that the anatomist is no longer able to distinguish them from each other. They form, in fact, the " mectulle obInngata," and are the commencement of that long scrics of sentient and of motor ganglin that form the spinal eord.
(2388.) All the nerves dorived from the medulla oblongata and from the spinal cord are throughont the Mammiferous class exactly comparable to those met with in our own species, and will therefore require but brief notice.
(2389.) The third, fourth, and siath pairs are destined to the muscles of the cye, and their distribution is the same as in Man.
(2390.) The fifth pair, or trigeminal nerves, consist of both motor and sentiont fasciculi, both of which are distributed to the different parts of the face exactly as in the human subject, allowance being of course made for the varying form of the jaws, and for the proportional size of the different organs connected with mastication.
(2391.) The seventh, or facial nerve, as also the glosso-pharyngeal, the preumogastric, and the lingual, have the same origin and general distribution throughout the whole class.
(2392.) The eighth pair of nerves are here, as in all the Vertebrata, devoted to the sense of hearing, which in the Mammifera attains its highest development and perfection. The sensitive portion of the auditory apparatus, or the internal ear, is now enclosed in the petrous portion of the temporal bone, and imbedded in osseous substance of such stony hardness that, except in very young subjects, it is by no means easy to display its different parts.
(2393.) As in Fishes and Reptiles, it consists of several membranous chambers or canals, filled with a limpid fluid, over which the filaments of the auditory nerve spread out. The whole apparatus, indeed, except in its proportional size, very accurately resembles the auditory organ of the lower Vertebrata. The semicircular canals exhibit nearly the same arrangement, and in like manner communicate with the vestibule by five orifices. The vestibule itself is small, and no longer contains any chalky concretions: it communicates on the one hand with the cavity of the tympanum, by means of the foramen ovale ; and on the other sends off a caual (scala) to form the cochlea, an organ which in the Mammifer assumes its full development and perfection.
(2394.) In Reptiles and Birds, as the reader will remember, the cochlea was a simple canal bent upon itself (fig. 515, e), one end of which (scala vestibuli) opened into the vestibule, while the other (scala tympani) terminated at the tympanic carity, from which it was separated by the membrane of the fenestra rotunda; but in the Mammalia the two scale of the cochlea are considerably elongated, and wind in a spiral direction around a central axis (modiolus), so as very accurately to resemble the whorls in the shcll of a snail, whence the name of the organ is derived ${ }^{*}$.
(2395.) It is in the increased complexity of the cochlea, therefore

[^235]that the chief charaeter of the labyrinth of the Manmal consists. But in the tympanie envity the differences between the Mammiferous car and that of the Bird are still more striking and decided.
(2396.) The cavity of the tympanum in the class before us is very extensive, and not unfrequently its extent is considerably enlarged by the addition of capaeious mastoid cells. By means of the Eustachian tube it communieates frecly with the throat. Upon its inner wall it offers the fenestra ovalis and the fenestra rotunda, closed by their respective membranes; and externally is the membrana tympani, the vibrations of which are to be conveyed to the labyrinth.
(2397.) In Reptiles and Birds the communieation between the drum of the car and the membrane of the fonestra ovalis was effected by the interposition of a single ossicle, called the "columnella ; " but in Mammals a chain of four ossicles, named respectively the malleus, the incus, the os orbiculare, and the stapes, intervenes betwcen the labyrinth and the membrana tympani : thesc ossicles, both in their disposition and connexions, are precisely similar to those of Man, and, morcover, are acted upon by little museles in every respeet comparable to those of the human subjcet.
(2398.) However remote the strueture of the tympanic chain of ossieles in the Mammal may appear to be from that of the simple columnella of the Bird, it is interesting to see how gradually the transition is effected from one class to another even in this particular of their economy ; for in the Ornithorhynchus, the Echidna, and the Kangaroo, so bird-like is the form of the stapes, that it might easily be mistaken for the ossicle of one of the feathored tribes *, and cvery intermediate shape is mot with as we advance from this point towards the stirrupshaped bone of the most perfect quadrupeds.
(2399.) It is in the class under consideration that for the first time an external car properly so called makes its appearance ; for the feathercd appendages of the OWl or of the Bustard (§ 2094) are searcoly entitled to such an appellation. In the Mammifcra, however, with a very few exceptions, such as the Cetacea, Molcs, and the Seal tribe, a moveable eartilaginous concha is appended to the exterior of the head, adapted by its form and mobility to collcet the pulses of sound and convey them inwards towards the drum of the ear. The basis of this external auricle is composed of fibro-cartilage covered with a delicate skin; and its cavity is moulded into various sinuositics, so disposed, no doubt, as to concentrate sonorous impressions. In Man, as the anatomist is aware, numcrous small muscles act upon the aurienlar cartilages; but in quadrupeds possessed of moveable ears the number and size of these muscles are prodigiously increased, and the cars are thus direeted with facility in any required direction.
(2400.) More minutely to describe the structure of the auditory

[^236]apparatus in the Mammifcrous elass would be foreign to our present purpose ; nevertheless we must not omit to notieo one most remarkable procision whereby the Whales, strangely eireumstanced as those creatures are, are permitted to hear either throngh the medium of the air they breathe, or of the water in whieh they pass their lives. The reader will at onee appreciate tho difficulties of the ease: the ear of a fish, without any external eommunieation, although best adapted to receive the stunning eoneussions eonveyed through the denser element, eould never appreciato the more delicato vibrations of the air; and the ordinary Mammiferous ear would be perpetually deafcned by the thundering of the water. How is the Whale to hear what is going on in either the sea or tho atmosphere?
(2401.) The plan adopted is simple and effieacious:-The external meatus of the ear is redueed to the smallest possible diameter, the eanal being barely wide enough to admit a small probe: this is the hydrophonie apparatus, and is all that is exposed for the reeeption of aquatie somnds. The Eustaehian tube, on the contrary, is very large, and opens into the blow-hole through whieh the Whale respires atmospherie air: if, therefore, the Cetaeean eomes to the top of the water to breathe, it is the Eustaehian tube that eonveys aërial sounds to the ear. And thus it hears suffieiently under both conditions.
(2402.) So far, as the student will have perceived, the different portions of the eneephalon to which we have adverted eorrespond most exaetly to similar parts met with even in the brain of a reptile. Where, then, are we to look for those grand differences whereby the Mammiferous brain is peeuliarly eharaeterized? The peculiarities of the brain of a Mammal are entirely due, first, to the inereased proportional development of the eerebral hemispheres, and, seeondly, to the existenee of lateral eercbellie lobes, in connexion with both of whieh additional structures become requisite.
(2403.) In those Marsupial tribes that form the eonnecting links between the Oriparous and Plaeental Vertebrata, the brain still exhibits a conformation nearly allied to that of the Bird, and the great eommissures required in the more perfeet eneephalon are even yet defieient; but in the simplest brain of a Plaeental Nammifer the eharaeteristie differenees are at onee apparent.
(2404.) In the Rabbit, for example (fig. 556), the cerebral hemispheres (b) are found very materially to have increased in their proportional dimensions; and although, even yet, convolutions upon the surfaee of the ecrebrum are seareely indieated, additional means of intereommunieation between the hemispheric masses beeome indispensable. The corpus callosum, therefore, or great transverse commissure of the hemispheres (fig. $556, c$), is now superadded to those previously in existenee; while other medullary layers, called by various ridiculous names, bring into unison remote portions of the ecrebral lobes.
(2405.) In proportion as intelligence advances, the surface of the cerebral hemispheres, becoming more extensive, is thrown into numerous convolutions separated by deep sulci, until at length in the Carnivora, as, for instance, in the Lion (fig. 559), the cercbrum (e e) attains such enormous dimensions that the other elements of the enceplialon are, as it were, hidden among its folds.
(2406.) But in addition to this increased complexity of the cerebrum, the cerebellum likewise has assumed a proportionate importance. In the Oviparous races this important clement of the brain consisted only of the mesial portion, so that no cercbcllic commissure was requisite: but in the Mammal it exhibits in addition two large lateral lobes (fig. 559, c, c); and coexistent with these the pons Varolii (d) makes its appearance, embracing the medulla oblongata and uniting the opposite sides of the cercbellum.
(2407.) The structure of the spinal cord and the origins of the spinal nerves throughout all the Mammalia are precisely similar, and exactly correspond with what occurs in the human body; neither docs the anatomical distribution of the individual nerves derived from this source require any special notice, since, generally speak-

Fig. 559.

Brain of the Lion: a, olfactory bulbs; b, optic commissure; c, cerebellum; d, pons Varolii; e, e, convolutions of cerebral hemispheres. ing, it differs in no important particular from the arrangement with which every anatomist is familiar.
(2408.) The sense of touch in Mammalia is diffused over the whole surface of the body,-its perfection in diffcrent parts being of course influenced by the nature of the integument, and the number of sentient nerves appropriated to any given region. All the nerves derived from the sensitive tract of the spinal medulla, and the three divisions of the fifth pair of encephalic nerves, are equally susceptible of tactile impressions; so that, in a class so extensively distributed as that before us, we need not be surprised to find a special apparatus of touch developed in very different and remoto parts adapted to particular exigencies. Thus the whiskers of the Seal and of nocturnal Carnivora, the lips of the Horse, the trunk of the Elephant, the hands of Man, the hind feet of the Quadrumana, and even the extremity of the tail where
that organ is prehensile, are all in turn made available as tactile instruments, and exerciso the senso in question with the utmost delieacy.
(2409.) In the Bats, where the sense of vision becomes inadequate to guide them through the dark recesses where they lurk, that of touch assumes its utmost development, and every part of the body that could by possibility be furnished with it has bcen abundantly provided for in this respect. Not only is the broad expanse of the wing acutely sensible, but the very cars have been converted into delicate feelers; nay, from the tip of the nose in some species, membranes of equal sensibility have been largely developed; so that the Bats, as was aseertained by Spallanzani, even when deprived of sight and hearing, will fly fearlessly along, and avoid every obstacle with wonderful precision, guided apparently by the sense of touch alone.
(2410.) The sympathetic system of the Mammifera differs in no important particular from the human, the arrangement of the ganglia and the distribution of the plexuses being in all respects the same.
(2411.) In the conformation of the genito-urinary apparatus in Mammalia the physiologist will find many cireumstances of extreme interest.
(2412.) Even in Birds, as the reader will remember, the secretions of the testes and of the kidncys were both poured into the common cavity of the cloaca, and discharged through the anal orifice. No bladder was provided for the reception of the urine; and a simple, grooved, but imperforate penis, even where that organ was most fully developed, was sufficient for the purpose of impregnation.
(2413.) Widely different, however, is the arrangement of the male genito-urinary system in the class we are now considering. The eloacal carity is no longer met with, the terminations of the reetum and of the sexual ducts being now remotely separated; the penis is traversed by a complete urethral canal, through which the seminal fluid is forcibly ejaculated; and, moreover, subsidiary glands not met with in any of the preceding classes add their secretions to that of the testes, and thus facilitate the intromission of the fecundating fluid. A urinary bladder is now superadded to the renal apparatus, wherein the urine is permitted to accumulate in considerable quantities, prior to its expulsion through the urethra-the excretory duct common to both the urinary and generative organs.
(2414.) Not less remarkable are the eorresponding changes observable in the disposition of the femalc reproductivo organs. The Mammifers are appointed to bring forth living young; a uterine receptacle is therefore nccessarily provided for the reception of the fotus, and mammary glands are given to support the tender offspring during the earlier portion of its existence. But the history of these organs camot be laid before the reader at a glance, and we must therefore patiently trace out their
development stcp by step, and gradually ascend from the Oviparous type up to the most complete forms of the genito-urinary system.
(2415.) Commencing with the urinary apparatus, the first parts that offer themselves to our notice are the kidncys, the ureters, and the bladder, in describing which the same remarks will be found applicable to both sexes.
(2416.) The kidneys in all the Mammiferous orders occupy a similar position, boing situated in the loins, on each sido of tho aorta, from which they reccive a eopious supply of arterial blood by the renal arteries, which, after having supplied the urinary scoretion, is returned to tho circulation by the emulgent veins that empty themsclves into the inferior cava.
(2417.) As relates to their intimate structure, the kidneys of all quadrupeds are essentially similar to those of our own specics, each of these organs being composed of uriniferous tubules of extrome tenuity, that terminate in central papillæ from which the urine flows. These tubulos, as they advance into the medullary substance of the kidney, bifurcate again and again, until they arrive at the cortical or external portion, where they spread out on all sides, and, becoming exccedingly flexuous, arc inextricably intcrvolved among each othcr, so that the entire cortex is composed of their gyrations. At last all the uriniferous vessels terminate in blind extremities, and, according to Müllor , have no immediate communication with the rascular system.
(2418.) In form the kidneys of Mammals more or less resemble the human; but there is one important circumstanec observable in many tribes, which is well calculated to show that these organs, even when they appear most simple, are in reality formed by the coalescence of several distinet glands. In the human foetus the kidneys present a lobulated appearance; that is to say, they are evidently composed of numerous divisions, each having the same structure ; but in the adult the lines of demarcation between these lobes become entirely obliterated. In many genera, however, this division into lobes remains permanent during the whole lifetime of the creature : such, for example, is remarkably the ease in amphibious Carnivora, as the Otter and the Seal tribcs, and still more strikingly in the Cetaceans, where the kidneys are not inaptly comparable to large bunches of grapes. But whatever the form of the organ, or the number of lobules entering into its composition, the urine secreted by each kidney is received into a common excretory duet called the ureter, and is thus conveyed into the bladder. prepared for its reception.
(2419.) The urinary bladder exists in all the Mammalia, and reeeives the uretcrs by valvular orifices in preeisely the same manner as in the human subject. In the male its cxeretory duct, the urethra, is common to the urinary and generative systems, and terminates at the extremity

* De Glandularum Structurit, p. 102.
of the penis; but in tho female the urethral canal is of much simpler strueture, opening by a distinet orifiee into the vulva*.
(2420.) We have preforred laying bofore the reader the above general riew of tho urinary system of Mammalia to notieing in detail those varieties that oecur in the disposition of the bladder and urethra of some of the lower tribes, in conformity with tho different types of organization presented by their sexual organs ; these, however, must not bo lost sight of in following out tho development of the reproduetive apparatus, from the oviparous raees to the most perfect and highly gifted nembers of the animal ereation. It is to this important subject that we must now invite the attention of the reader.
(2421.) The oviparous Vertebrata lay eggs, and their young are perfected without further nourishment derived from the maternal system than is eontained within the egg itself. In our own speeies, and throughout all the races of Mammalia found on the European eontinent, the females produce their young alive and fully formed, capable of independent existence, but nevertheless nourished for a considerable period by milk derived from the breast of the mother. The distinetion, therefore, between an oviparous and a viviparous creature would appear to be sufficiently broad, and the physiological relations between them as remote as possible.
(2422.) The student, however, who has followed us thus far through the long series of living beings that have sueeessively presented themselves to our notiee must naturally expeet that, between animals so dissimilar in their eeonomy as the Bird and the Mammal, intermediate types of organization must oceur, and that the trausition from one to the other is here, as elsewhere, gradually accomplished.
(2423.) In this respeet his expectations will be by no means disappointed. The Oirnithorhynchus puradoxus and the Echidna, animals met with only in the continent of New Holland, are most obriously eonuceting links between these two grand classes; and therefore it is with the history of these strange animals that we must eommenee our examination of the Mammiferous generative system.
(2424.) The Ornithorhynchus paradorus well deserves the speeifie epithet applied to it by zoologists. It has, indeed, the form of a quadruped, and its body is eovered with hair, and not with feathers; but its mouth is the beak of a duck; and upon its hind fect, which are broadly webbed, the male carries a spur not unlike that of a barn-door fowl. Having the beak of a bird, how is the ereature to suck? Nervertheless the females have mammary glands well developed, but destitute of prominent nipples ; so that the mode in whieh the young animal obtains the milk provided for it is even yet a puzzling question. Docs the Ornithorlynehus lay eggs? or produce living young ones? This is a

[^237]query that has not been satisfactorily answered ; and its generative apparatus is so nearly related to that of an oviparous animal that even anatomy throws but little light upon the suloject.
(2425.) Both in the male and female there is, in fact, but one rent that leads to a cloacal chamber rescmbling that of a bird; and the entire organization of the sexual organs is rather that of an egg-laying than of a viviparous creature, as will be evident from the following details respecting them.
(2426.) Tho penis of the male Ornithorhynchus is perforated by a wrethral canal, through which the semen passes, but not the urine; its extremity, moreover, is terminated by two tubercles, giving it almost a bifid appearance. This penis, when in a relaxed state, is lodged in a little pouch in the floor of the cloaca, from which it projects when erected.
(2427.) The cloacal cavity, as in birds, gives passage to the fæces and to the urine. The testes (fig. $560, a$) and the vasa deferentia (b) resemble those of an oviparous animal; but, on the other hand, there is a complete urinary bladder (c), and moreover a pair of auxiliary (Cowper's) glands ($d d$), organs never met with except in the Mammiferous class.
(2428.) The anatomy of the female orgrans is not less singular. The oraria (fig. 562, a a) are large and racemose, like those of a bird; while the two oviducts or uteri, (fig. 561, a a), as the reader may choose to call them, open into the cloaca by two distinct orifices ($c c$) situated on cach side

Fig. 560.

Male generative organs of Ornithurhynchus paradoxus: a, testes; b, b, vasa deferentia; c, bladder; d, d, Cowvasa deferent
per's glands. of the urethra, derived from the bladder (b).
(2429.) It is to Professor Owen that science is indebted for all that is known relative to the anatomy of the female Ornithorhynchus when in a gravid state; and his researehes upon this subject appear to establish the following interesting particu-lars:-First, that the ovaria, notwithstanding their racemose appearance, exhibit all the essential characters of the Mammiferous type of structure; and corpora lutea were found where the reproductive germs had escaped from them. Secondly, that the eggs contained in the uterine cavities (fig. $562, c, c$) had no connexion whatever with the walls of the uterus. Thirdly, that each ovum exhibited the usual parts
of an egg, viz. the cortical membrane, the albumen, and the yolk; and that upon tho latter a membrana vitelli and the blastoderm or germinative membrane were plainly perceptible. Fourthly, that the uterine walls assume an increased thickness when in an impregnated state, but that not the slightest trace of a decidual or adventitious membrane is apparent in the carity of the womb. From all these eircumstances, the distinguished author of the paper referred to * was led to adopt the subjoined train of reasoning as to the probability of the Ornithorhynchus being a viviparous mammal. The form, the structure, and the detached condition of tho ora, observes Professor Owen, may still be regarded as compatible with, and perhaps favourable to, the opinion that they are excluded as such, and that the embryo is developed out of the parent's body. But the following objections present themselves to this con-clusion:-The only part of the efferent tube of the gene-

Fig. 561.

Generative organs of Ornithorhynchus: a, a, oviducts; b, urinary bladder ; c, c, openings of the oviducts or uteri into the ragina, d. rative apparatus which can be compared in structure or relative position to the shell-secreting uterus of the Fowl is the dilated terminal cavity in which, in all the specimens examined, the ova were situated : and upon the oviparous theory it must be supposed either that the parietes of this cavity, after having seereted the requisite quantity of soft material, suddenly assume a new function, and complete the ovum by providing it with the calcareous covering necessary to enable it to sustain the superincumbent weight of the mother duriag incubation, or that this is effected by a rapid deposition from the cuticular surface of the external passages, or, lastly, according to a more recent but still more improbable supposition, by a calcareous sccretion of the abdominal glands poured out upon the ovum after its exclusion.
(2430.) But granting that the egg is provided in any of these ways with the necessary external covering, yet, from the evidence afforded

* "On the Ova of the Ornithorhynchus paradoxus," by Richard Owen, Esq.. Phil. Trans. pt. ii. for 1834, p. 563.
by tho speeimons oxamined, tho ovum is defieient in those parts of its organization which appear to be essential to successful incubation, viz. a voluminous yelk to support the germinal mombrane, and tho mechanism for bringing the cieatricula into contiguity with the body of the parent. Add to this that such a mode of development of the foctus requires that all the necessary nutritive material be accumulated in the ovum prior to its exelusion. Now the bony pelvis of the Bird is expressly modified to allow of the escape of an egg both large from the quantity of its contents and unyiclding from its nceessary defensive covering: but, whatever affinities of structure may exist in other parts of the Ornitho-

$$
\text { Fig. } 562 \text { *. }
$$

Ovaria of Ornilhorhynchus paradoxus: a b, racemose ovarin; c, utcrine cavity containing ora e, uterine carity of the opposite side, in which there are no ova; f, urinary bladder.
rhynchus, it is most important to the question of its generation to bear in mind that it manifests no resemblance to the Bird in the disposition of its pubic bones.
(2431.) From the above considerations it is therefore probable that the young Ornithorhynchi are produced alive ; yet still the reader will perceive, by the closeness of the reasoning brought to bear upon the subject, how nearly the oviparous and mammiferous modes of generation are approximated by the interposition of thesc connecting forms of Vertebrata.
(2432.) But if from these arguments, derived from the anatomical construction of the female parts, it is allowable to conjecture that the

* Owing to an error on the part of the draughtsman, who has neglected to reverso the drawing, the left uterus in the above figure is represonted on the right side, and vice versâ.

Ornithorhynchus is ovoriviparous (using that term in a strictly philosophical sense), the difficulties of the caso are by no means removed; and granting that the contonts of the ovum are barely sufficient to nourish the embryo during the very earliest stages of its development, we have yet to learn how the foctus is matured after the exhaustion of this supply. There is no reason whatever to suppose that a placenta exists at any period of uterine gestation ; neither is there a marsupial pouch in which the prematurely born young can be earried about and supplied with milk; so that, whether the young Monotreme be developed in the uterus or out of the uterus, we are equally at a loss to understand how its nutrition is provided for.
(2433.) In this state of uncertainty, the anatomy of the young Ornithorhynchus, examined at as early a period as possible, becomes a subjeet of extreme interest; and fortunately Professor Owen has been enabled to add observations upon this subject to his other

Fig. 563.
 valuable researches relative to the generation of these creatures *. The annexed figure (fig. 563) is a portrait of one of the specimens dissected; and from every appearance it could not have been more than a few days old-that is, supposing it to have been born at an advanced period of its development. It was as yet blind; and the situation of the eyes was only indieated by tho convergence of a few wrinkles to one point; but when these were put upon the stretch, the integument was found entire, and completely shrouding or covering the eyeball anteriorly : its skeleton, moreover, was quite in a cartilaginous condition; and it was obviously in every respect helpless, and still dependent upon its mother for sustenance.
(2434.) The stomach was found filled with milk-a sufficient proof that at that period, at least, it was nourished by the lacteal secretion; but with regard to its previous fœetal condition, the difficulties that have been above alluded to remained in their full force. No trace of an umbilical cicatrix was visible upon the ventral surface of the body, even when examined with a lens,-a sure proof that no placenta had existed. The ilium was carefully examined, but there was no appearance of the pedicle of the vitelline vesicle; nevertheless the other vestiges of footal organization were more obvious than in the ordinary marsupial or ovoviviparous Mammalia. The umbilical vein was seen extending from a linear cicatrix of the peritoneum, opposite tho middle of the abdomen,

[^238]along the antcrior margin of the suspensory ligament to the liver. It was reducod to a merc filamentary tube filled with coagulum. From the samo cicatrix the remains of the umbilical arteries extended downwards, and near the urinary bladder were contained within a duplicature of peritoneum, having betweon them a small flat oval vesicle, the remains of an allantois, which was attached by a contracted pedicle to the fundus of the bladder ; but still, as both the embryo of the Bird and that of the ovoviviparous Reptile have an allantois and umbilical vessels developed, no certain inference can be drawn from tho above appearances as to the oviparous or viviparous nature of the gencration of the Ornithorhynchus.
(2435.) Such is the present state of our knowledge relative to the first type of Mammifcrous generation, viz. that met with among the Monotremata. In the second, or Marsupial type, the phenomena, although equally strange, are better understood; and to these we must now beg the attention of the student.
(2436.) The Marsupialta, from the variety of their forms and cxtensive distribution, constitute a most important section of Mammiferous quadrupeds, distinguished by the peculiarities that occur in the organization of their generative apparatus and by the singular mode in which they produce and suckle their joung. Animals of this kind are only met with in the American and Australian regions of our globe; and so widely do they differ, as far as their reproduction is eoncerned, from all the Mammiferous inhabitants of the Old World, that they might eren be regarded as forming quite a distinct and scparato group in the animal creation, serving to accomplish another step in that grand transition by which the physiologist is conducted from the oviparous to the placental Vertebrata.
(2437.) The Marstrialia are, strictly speaking, ovoviviparous; that is to say, the utcrine ovum never forms any vascular conncxion with the maternal system, but after a very brief intra-uterine gestation the embryo is expolled in a very rudimentary and imperfect condition, cren its extremities being as yet but partially developed; and in this helpless state the fortus is conveyed from the utcrus into a pouch or marsupium, formed by the integument of the abdomen, there to be nourished by milk sucked from the mammary glands, until it arrives at such a state of maturity as enables it to assume an independent existence.
(2438.) We may naturally expect, thereforc, that, with habits so remarkablo, the structure of the generativo apparatus, both in the male and femalc Marsupial, will offer important peculiarities; and these accordingly first present themselves for description.
(2439.) We select the Kangaroo as an example of the entire group, beginning, as wo have hitherto done, with the organization of the male organs of generation.
(2440.) The first circumstance that strikes the attention of the
anatomist in a male Marsupial is the extrnordinary position of the testes, which, instead of being situated behind tho penis, as in most placental Mammals, aro placed in front of that organ, in a kind of scrotum that occupies tho same placo as tho pouch of the female, and is in like mamer supported by two marsupial bones derived from tho pubes, around which the cremaster musele winds in such a manner as to onablo it powerfully to compress tho testicles during the congress of the sexes. Tho vasa deferentia derived from the testes open into the commencement of the urethra, which now, for tho first time, forms a complete canal leading from the bladder to the extremity of the penis. The auxiliary glands, that pour additional secrotions into the urethra, are of great size, and more numerous than those met with in the human subject. In the first place, the commencement of the urethral tube is embraced by a bulky and conical prostate, to which succeed three pairs of large secreting organs (Couper's glunds), each onveloped in a musculo-membranous sheath, apparently intended to compress their substance, and thus efficiently discharge their secretion into the canal of the urethra, there to be mixed up with the sominal fluid.
(2441.) But perhaps the most decided peculiarities that characterize the male of Marsupial quadrupeds are met with in the construction of the penis itself. The two roots or crura of the corpora cavernosa are not, as in the higher Mammals, attached to the branches of the ischium by ligamentous bands, but each swells into a large bulb enclosed in a powerful muscular envelope. The bulbous portion of the urethra is likewise double, and embraced by powerful muscles. In the Kangaroo, moreover, the spongy erectile tissue that encloses the urethra passes with that canal through the centre of the body of the penis, formed by the corpora cavernosa, so that a glans can scarcely be said to exist ; but in other Marsupials, as, for example, in the Opossums (Didelphys), the extremity of the intromittent organ is bifid, thus forming another approximation to the oviparous type.
(2442.) In the female Kangaroo, and other Marsupials, there are still two distinct uteri, opening into the vagina by distinct orifices; and even the vagina itself is double, exhibiting a very peculiar and interesting arrangement, represented in the subjoined figure (fig. 564). The ovaria (a, a) are now reducod to comparatively small dimonsions when compared with those of the Ovipara-a circumstance that depends upon the reduced size of the ovarian ovules, which no longer present the bulky yolks peculiar to oviparous generation, the necessity for the existence of such a large store of food being now superseded by tho provision of another kind of nourishment, derived from the mammary glands. The Fallopian tubes commenco by wide fimbricated apertures ; and each leads into a soparate uterine canal (b, c), in which the first part of gestation is accomplished. The two uteri open by two orifioes (e, f) into the two vagine ($g g$), which remain quite distinct from each other from their
eommeneement to their termination in the urethro-sexual canal (7)a kind of eloaea into which both the vagine and the urethra empty themselves.
(2443.) Such being the arrangement of the generative apparatus of the fomale Kangaroo, we aro prepared, in the next place, to eonsider the strueture of the Marsupial ovum, and to trace its progress from the

Generative organs of the female Kangaroo: a, a, ovaria and fimbriated extremities of the Fallopian tubes; b, c, uterine cavities; e, f, their openings into g, g, the bifurented ragina: h, urethro-sexual eanal.
ovary, where it is first formed, into the Marsupial poueh, where the development of the fœtus is ultimately completed.
(2444.) The ovary of a Marsupial animal, as has been already observed, resembles that of ordinary Mammalia, and presents the same dense structure. But the ovarian ovules, although characterized by the paucity of yelk as eompared with the oviparous classes, yet have a larger proportion than exists in the placental Nammalia. When impregnation is effeeted in the Marsupial animal, the Gracfian vesicle or ovisac is
ruptured, and the little ovulum eseapes into the Fallopian tube, whereby it passes into the uterine cavity, whenee, of eourse, it must absorb the materials destined to support the future embryo, in the same manner as the egg is furnished in the oviduct with the albumen thatinvests the yelk. The development of the ombryo from the blastoderm or germinal membrane is, no doubt, aceomplished in the same manner in all Mammalia as it is in Birds, up to a certain stage of maturity ; but at that stage of growth when, in the case of the Bird, the yelk is required to contribute to the nourishment of the newly formed being, in the Mammifera, where no adequate supply of yells exists, other means must be resorted to ; and aecordingly the Marsupial embryo is born prematurely in order to supply it with milk; and in the ordinary Mammal a plaeenta is developed, forming a means of vaseular communication between the mother and the fœotus.
(2445.) The important investigations of Professor Owon upon this subject * eannot be too highly appreciated. In the gravid uterus of a Kangaroo, examined by this indefatigable labourer in the eause of science, a foetus was met with that had apparently arrived very nearly at the term of its intra-uterine existence; and the following is a summary of its anatomy at this period.
(2446.) The ovum (fig. 564, c) was lodged in one of the uterine eavities, and the foetus was about an inch and four lines in length. The walls of the gravid uterus were obviously dilated ; and its parictes varied in thiekness from one to two lines, being in the unimpregnated state about half a line; but this inerease was not in the museular coat, but in the lining membrane, whieh was thrown into irregular folds and wrinkles. There was, however, not the slightest traec of any vascular connexion between the uterus and the orumneither plaeenta nor villi, nor any determination of

Embryo of Kangaroo: a, the chorion; b, the ammios; $c d$, vascular membrane ; e, e, omphalo-mesenteric vessels vessels to a given point on either of the opposed surfaces of the chorion or utcrus: on the eontrary, the external membrane of the ovum (chorion) exhibited not the * "On the Generation of Marsupial Animals, with a Deseription of the Impregnated Uterus of the Kangaroo," by Kichard Owen, Esq., Phil. Trans. 1834.
slightest traco of vascularity, even under the microscope, and seemed in every respoct to resemblo tho membrana pulaminis that lines the ogg-shell.
(2447.) The body of tho fœetus itself was immediately enclosed in a transparent mombrane (fig. $565, b$), the amnios.
(2448.) Between tho chorion (a) and the amnios (b) was an extensive vascular membrane ($c, d d, e e$): its figure scemed to have been that of a cone, of which the apex was at the umbilicus of the fotus.
(2449.) Three vessels could be distinguished diverging from the umbilical cord, and ramifying over it. Two of these trunks contained coagulated blood; while the third was smaller, empty, and evidently the arterial trunk. No trace of any other membrane could be seen extending from the foetus, besides the three above mentioned-the chorion (a), the amnios (b), and the interposed vascular membrane, the nature of which becomes the next subject of inquiry.
(2450.) On tracing the three vessels above alluded to as ramifying over the vascular membrane through the umbilicus into the abdomen, the two larger ones, filled with coagulated blood, were found to unite, and, after being joined by the mesenteric vein, penetrated the liver: these, consequently, were the representatives of the omphalo-mesenteric or vitelline vein of the embryo Bird (§2140). The third vessel passed between the convolutions of the small intestine along the mescutery to the abdominal aorta, corresponding to an omphalo-mesenteric or vitelline artery. The mombrane, therefore, upon which they ramified answers to the vascular layer of the germinal membrane which spreads over the yelk in the oviparous animals, or to the vitelline vesicle of the embryo of ordinary Mammalia.
(2451.) A filamentary pedicle connected this membrane to the intestine near the termination of the ilium, thus completing the resemblance between this apparatus and the vitclline system of Birds. But here we must caution the student not to be misled on one important point: the contents of the vitelline sac in the Marsupials, although doubtless intended to afford nourishment to the embryo animal, and thus representing the yclk of the Bird's egg, differ from it in oue very essential circumstance. The yelk of the oviparous ovum is ready formed in the ovary and exists prior to conception ; but in the Mammal, where the ovarian yelk is met with in extremely small quantities, the contents of the vitellicle must obviously be derived from some other source, most probably by absorption from the uterine cavity.
(2452.) In the Marsupial ovum the vascular membrane of the vitcllicle is doubtless sufficient for the respiration of the little creature up to the time of its birth ; and accordingly the allantoic system (\$ 2143) is but very partially developed. In the ovum delineated in the last figure, there was as yet no percoptible trace either of an allantois or of a urinary bladder; but, as has been proved by another dissection, during the later weeks of uterine gestation the minary bladder is pro-
longed beyond tho umbilicus so as to form a small allantois destined to receive tho renal sccretion, which becomes more abundant as tho little foetus increases in size and completencss *.
(2453.) In the mammary foetus of a Kangaroo a fortnight old, Professor Owen detected both a urachus and umbilical arteries; but these only extended from the bladder and iliac vessels as far as the umbilicus; neither could any umbilical vein be found penetrating the liver. It is in tho placental Mammals that we shall find theso vessels assuming their full importance, and devcloping themselves into a new system, whercby the communication between the mother and her offspring is still more effectually provided for.
(2454.) When we consider the very carly period at which the young Kangaroo is born (namely, at about the thirty-ninth day after conception), it is only reasonable to suppose that the organs most immediatcly connected with the vital actions are precociously matured; and accordingly, even in the cmbryo above delineated (fig. 565), the intestines, the liver, the kidneys, and the testes were all conspicuous, and the diaphragm, the heart, and the lungs were in such an advanced condition as to show that they would soon be capable of prematurely taking upon themselves the exercise of the circulatory and respiratory functions.
(2455.) This rapid development of the visccra connected with circulation and respiration is, in truth, essentially requisite ; for no soonor has the embryo arrived at tho size represented in the next figure (fig. 566, a), the limbs being still in a most rudimontary condition, than the em-

Fig. 566.

Fcetal Kangaroo. A. Young Kangaroo: a, b, teats of the mother. B. Section of the heal of young Kangaroo, showing:- a, the coneshaped larynx imbedded in the posterior nares ; b, the tougue. bryo is transferred from the utcrus into the marsupial pouch, whero it is found attached by its mouth to one of the nipples, from which the matcrials of its support are to be obtained until it has acquircd sufficient strength and size to leave the strange portable nest in which its foetal growth is accomplished and procure food adapted to a maturer condition.
(2456.) A very beautiful provision is met with in the construction of the respiratory passages of the young Marsupial, intended to obviate the possibility of suffocation consequent upon the admission of milk into the trachea - a circumstance that, without some peculiar arrangement, might easily happen; but of this we must quoto the original description,

[^239]extracted from the paper already referred to *. "The new-born Kangraroo," observes Professor Owen, "possesses greater powers of action than the same-sized embryo of a Shecp, and approximates more nearly in this respeet to the new-borm young of the Rat; yet it is evidently inferior to the latter. For although it is enabled by the museular power of its lips to grasp and adhere firmly to the nipple, it seems to be unable to draw sustenanee thercfrom by its own unaided cfforts. The mother, as Professor Geoffroy \dagger and Mr. Morgan \ddagger have shown, is therefore provided with a peculiar adaptation of a musele (analogous to the eremaster) to the mammary gland, for the evident purpose of injeeting the milk from the nipple into the mouth of the adhcrent foetus. Now it can scareely be supposed that the foetal efforts of suetion should always be coincident with the maternal act of injection ; and if at any time this should not be the case, a fatal aeeident might happen from the milk being foreibly injected into the larynx. Professor Geoffror first deseribed the modification by which this purpose is effeeted; and Mr. Hunter appears to have foreseen the necessity for such a structurc, for he has disseeted two small foetuses of the Kangaroo for the especial purpose of showing the relation of the larynx to the posterior nares \S. The epiglottis and arytcnoid cartilages aro elongated and approximated, so that the rima glottidis is thus situated at the apex of a cone-shaped larynx (fig. 566, b, a), which projects, as in tho Cetacea, into the posterior nares, where it is closely embraced by the muscles of the soft palate. The air-passage is thus eompletely separated frem the fauecs, and the injeeted milk passes in a divided stream, on either side of the larynx, into the œsophagus."
"Thus aided and protectcd by modifieations of structure, both in the system of the mother and in its own, designed with especial reference to eaeh other's peeuliar condition, and affording therefore the most irrcfragable evidence of Creativo foresight, tho feeblo offspring eontinues to inerease from sustenance exclusively derived from the mother for a period of about eight months. The young Kangaroo may then be seen frequently to protrude its head from the mouth of the pouch, and to crop tho grass at tho same time that the mother is browsing. Haring. thus aequired additional strength, it quits the poueh, and hops at first with a feeblo and vacillating gait; but eontinues to returu to the pouch for oecasional shelter and supplies of food, till it has attained the weight of ten pounds. After this it will oecasionally insert its head for the purpose of sucking, notwithstanding another footus may have been de-

[^240]posited in the pouch; for tho latter, as we havo seen, attaches itself to a differcint nipple from the one which had previously been in use."
(2457.) Thus therefore are we conducted by the Ovovivipara, as tho Marsupialia aro properly called, to the most perfect or placental type of the generative system.
(2458.) Commencing our account of the reproductive organs of VIVIparous Mammalia by examining those of the male scx, we have another striking example of the insufficiency of the nomenclature employed by the anatomist who confines his studies to the human body, when it bccomes necessary to describe corresponding organs even in animals organized after the same type.
(2459.) True it is that there is the same gencral arrangement of the generative apparatus ; and it is convenient, as far as possible, to apply the same names to structures that apparently represent each other: but a very superficial examination of the facts will serve to show that great differences exist between them: and, accordingly, we are not surprised to find the utmost perplexity and confusion in the descriptions of these parts, arising from the indiscriminate application of the terms employed in human anatomy to totally dissimilar structures.
(2460.) It is not, however, our business here to criticiso the labours of authors upon this subject; we must content ourselves with selecting an example of ono of the more complex forms under which the male genitals present themselves, and leave the reader to contrast the various organs with those met with in the human subject.
(2461.) The annexed figure (fig. 567, a) represents the generative viscera of the male Hedgehog. The rectum (a) and the neck of the bladder (h) remain in situ; but the rest of the latter viscus has been removed, and the first portion of the urethra (e) slit open, in order to show the relations of the surrounding parts.
(2462.) The testes (b, b) present the same structure in all the class, and consist essentially of an immense assemblage of extremely delicate tubuti seminiferi enclosed in a dense albugineous tunic, from which septa pass internally, whereby the seminiferous tubes are divided into several fasciculi : after piercing the proper fibrous tunic of the testes, tho sperm-secreting tubes are collected into an extremely tortuous duct, that by its convolutions forms the epididymis, as in Mau, and is then continued, under the name of vas cleferens, to the commencement of the urethra, into which the two ducts open ($B, b b$). In the Horse, and many Ruminants, the vas deferens presents a remarkable structure: before its termination it suddenly swells to a considerable diameter, depending upon the increased thickuess of the walls of the canal, which at the same time become cellular, and secrete a gelatinous fluid that cscapes into the cavity of the duct.
(2463.) In their situation the testes of placental Mammals are found to offer very striking differences. In the Cetacea, the Elephant, and
the Seal they remain permanently in the abdomen, bound down by it process of tho peritoncum. In Man, and most quadrupeds, on the contrary, thoy pass out of tho abdominal cavity through the inguinal rings, and aro suspended in a scrotal pouch, formed by the skin and a cremaster musclo, and lined by a serous prolongation of the peritoneal sac. The spermatic cords, therefore, formed by the vessels and excretory canal of the testes, will take a different course, in conformity with the variable position of these organs, and, where a scrotum exists, must enter the abdomen through an inguinal canal. Still, from their horizontal posture, quadrupeds are but little liable to hernia, even where the inguinal passages are much more open than in the human subject.

Fig. 567.

Male gencrative apparatus of the Hedgehog. A: α, reetum; h, neck of the urinary bladder; the rest of that viscus having been removed; e, commencement of urethra, slit open; b, b, testes; c, c, succenturiate glands; d, l, prostates; f, one of Cowper's glands; g, its duet, leading into the canal of the urethra; i, i, ejaculatory musele: h, orifeces of the seminal and prostatic duets; k, eommencement of corpus spongiosum; l, l, crura penis.
B : a, cjaculatory portion of the canal of the urethra, slit open to show the oriflees of the numerous ducts (b, c, e, g, h, i) that open into its carity.
(2464.) Tho quantity of the seminal fluid furnished by the testes is very small, as must be evident from the extreme narrowness of the duet through which it passes into the urethra. Nevertheless, as the impregnation of the female now requires the forcible injection of this fluid, it is absolutely requisite to increase the bulk of the vivifying secretion, in order to enable the museles that embrace the urethral tube efficiently to expel it. For this purpose additional glands are given, whereby dif-
ferent fluids are poured into the urethral carity, apparently for the sole purpose of diluting the spermatic liquor, and thus forming a vehicle for its expulsion. These succenturiate glands, as they aro named, are not found in any oviparous animal; but in the Mammal such is their size and importanee that there may be just reason for supposing them to exercise a more important offieo than that usually assigned to them by physiologists; and this supposition secms to obtain additional weight when we eonsider the great diversity of structure that they exhibit in different quadrupeds.
(2465.) The vesiculce seminales are tho first of these accessory seereting organs that require our notiee. In Man, the seminal vesieles, as they are erroneously termed, resemble two membranous reservoirs, situated beneath the neck of the bladder, and were once supposed to be receptacles for containing the semen. When opened, however, they are found to be composed of the windings of a very sinuous secreting surface ; and as their exeretory ducts open into the urethra in common with the vasa deferentia, they obviously add the fluid that they elaborate to the secretion of the testes.
(2466.) But notwithstanding their apparent importance in the human speeies, these organs do not exist at all in by far the greater number of Carnivora; neither are they found in the Ruminants, nor in the cetaceous Mammals.
(2467.) In other quadrupeds, on the contrary, they are found, and their proportional size is extremely remarkable. This is specially the case in the Rodent tribes and among the Insectivora. In the Hedgehog, for example, their bulk is enormous. In this creature they form two large masses (fig. 567, A, ce), each composed of four or five bundles of long and tortuous secerning vessels folded upon themselves in all direetions, and pouring the product of their secretion into the urethra by two ducts (fig. 567, в, с c), quite distinct from the vasa deferentia.
(2468.) The prostates are the next succenturiate glands superadded to the essential generative organs of the placental Mammals; and so diverse is their structure in different tribes, that it is not always easy to recognizo them under the varied forms that they assume.
(2469.) In Man the prostate is a solid glandular mass that embraces the commencement of the urethra, into which it discharges its secretion by numerous small ducts ; and this is the most common arrangement throughout tho Mammiferous orders.
(2470.) In Ruminants, Solipeds, and in the Elephant, there aro two or cren four prostates, of a very different kind, each gland having a central cavity, into which smaller cavities open by wide orifices. In theso creatures, therefore, the prostatic secretion accumulates in the interior of the gland, from which it is conveyed into the urethra by appropriate excretory canals.
(2471.) In most of the Rodentia, in the Mole, and in the Hedgehog,
the strueturo of tho prostate is so peculiar that many distinguished eomparative anatomists refuso to apply the samo name to organs that obviously represent the gland we aro describing, preferring, with Cuvier, to eall thom " accessory vesicles."
(2472.) In the Hedgehog, the prostate is replaced by two large masses (fig. 567, $1, d$ d), each eomposed of parallel flexmous and branched tubes, all of whieh unite into duets common to the whole group, whereby the fluid elaborated is conveyed into tho urethra through minute orifices (fig. 567, в, e e)
(2473.) A third set of auxiliary secreting bodies, very generally met with, are called by the name of "Cowper"s glands." These in our own species are very small, not execeding the size of a pea; but in many quadrupeds they are much more largely developed. In the Hedgehog (fig. 567, a,f) they are obviously eomposed of convoluted tubes, and their ducts open by distinct apertures $(B, g g)$ into the floor of the urethra.
(2474.) The canal of the urethra, through whieh the urine as well as the generative seeretions is expelled from the body of the male Mammal, is a complete tube, and no longer a mere furrow as we have seen it to be iu all the Ovipara possessed of an intromittent apparatus. It extends from the neek of the bladder to the extremity of the penis; but in this course, owing to its relations with the surrounding parts, it will be neeessary to consider it as divisible into two or three distinet portions, each of whieh offers peeuliarities worthy of remark. The first part of the urethral tube is not unfrequently, as in the human subjeet, more or less completely surrounded by the prostate gland, and in such cases merits the name of "prostatic portion;" but where, as in the Hedgehog, the prostates do not enclose the eommeneement of the eanal, this division of the urethra does not exist.
(2475.) The second is the " museular portion," extending from the prostate to the root of the penis; and it is into this part that all the generative seeretions are poured from their respective duets (fig. 567, в, b, c, $e, g, h)$. Externally this division of the urethra is enelosed by strong museles (fig. $567, \pm, i i$), whieh by their eonvulsive eontractions foreibly ejaeulate the different fluids coneerned in impregnation, and thus seeure an efficient intromission of the seminal liquor into the female organs.
(2476.) The third portion of the urethra is enelosed in the body of the penis, and surrounded by the erectile tissue, of whieh that organ essentially consists; but in all quadrupeds this part of the canal is not so deeidedly continuous with the museular portion as it appears to be in Man and tho generality of Mammalia. In many Ruminants, and in some of the Hog tribe, the muscular division of the eanal opens into tho upper part of tho third or vascular division, in sueh a manner that a cul de sac oeeupies the eommencement of tho vaseular butb of the urethro, as it is called by anatomists, into whieh the secretion of Cowpers glands
is poured withont having been previously mixed with the seminal or prostatie fluids. In somo Rodents, as, for examplo, in the Squirrel and tho Marmot, the arrangement is still moro eurious; for tho cul de sac of the bulb of tho mrethra in these ereatures, whieh receives the secretion of Cowper's glands, is lengthened out into a long tube that runs for some distance beneath tho proper urethra, and only joins that canal near the extromity of the penis.
(2477.) The body of the penis in the Mammalia, as in all other Vertebrata possessed of such an organ, is composed of vascular erectile tissue ; but now, besides the corpora cavermosct, which in Reptiles and Birds formed the entire organ, another portion is superadded, destined to enelose the canal of the urethra in a thick crectile sheath, and, moreover, to form the glans, or most sensitive part of the intromittent apparatus.
(2478.) The corpora cavernosa are now securely fixed to the bones of the pelvis by two roots, or crurc: and even in the Cetacea, where no pelvis is met with, the ossa ischii exist, apparently, only for the purpose of giving firm support to the origin of the parts in question. The size of the corpora cavernosa in Man, and many other animals, is of itself sufficient to give the needful rigidity to the parts during sexual excitement ; but in some tribes an additional provision is required to ensure adequate firmness. Thus in Monkeys, Bats, the Carnivora, the Rodentia, and the Bulcenidce among Cetaceans, a bone is imbedded in the substance of the male organ, of which it forms a eonsiderable part. Where this bone exists, the corpora cavernosa are proportionately small, and the fibrous walls of the penis are confounded with its periosteal covering.
(2479.) The corpus spongiosum, likewise composed of erectile tissue, is quite distinct from the cavernous bodies, and, as we have said before, is only found in the Mammifera. It commences by a bulbous origin that embraces the urethra, and it accompanies that canal quite to the extremity of the penis, where it dilates into the glans.
(2480.) The size and shape of the male organ varies, of course, in every genus of quadrupeds, as does the form and texture of the glans. To describe these would lead us into details of too little importanee to be noticed in a survey so general as that we are now taking; nevertheless we cannot entirely omit to notice the strange and unaccountable structure met with in some of the Rodent tribes, whereby the penis is rendered a most formidable-looking apparatus, the object of which it is not easy to conjecture, although, as an instrument of excitement, no one will be disposed to deny its efficiency.
(2381.) Thus in the Guineapig tribe (Cavia, Illig.) tho penis is strengthened by a flat bone that reaches forward as far as the extremity of the glans, benoath which is the tormination of the urethra; but behind and below the orifice of this canal is the opening of a poneh
whorein aro lodgod two long hormy spikes. When the member is ereeted, the pouelt alluded to beeones overted, and the spikes (fig. $568, d$) are protrudod externally to a considerable length. Both the erected pouch (b) and tho entire surface of the glans are, morcover, covered densely with sharp spines or hooklets; and as though evon all this were not sufficient to produce the reedful irritation, still further baek there are, in somo species, two sharp and strong horny saws (c, c) appended to the sides of tho organ. From this terrible armature of the male Cavies, it would bo only natural to expeet some eorresponding peeuliarity in the female parts ; but, however inexplieable it may appear, the female vagina offers no uneommon structure.
(2482.) We have, in the last plaee, to examine the generative system of the female placental Mammalia, and thus to traee the development of this im-

Fig. 568.

Penis of the Agouti : a, body of the penis; c, b, d, saws, spines, and spikes, constituting the formidable armature of the free portion of that organ. portant system to its most eomplete and highest form.
(2483.) In the Marsupialia, as the reader will remember, there were still two distinet uteri, that were obviously the representatives of the oviduets of the Oviparous elasses. In the Human female, on the eontrary, the uterus is a single eentral viseus, into whieh the germs derired from the ovaria are introdueed through the two "Fallopian tubes," as the oviducts are now designated; but we shall soon see that the viviparous Mammals offer in the anatomical strueture of the generative system of the female so many intermediate gradations of form, that we are almost insensibly condueted even from the divided uteri of the Ornithorhynchus up to the most elevated and eoncentrated condition that the uterine apparatus ultimately attains in our own speeies.
(2484.) In the femalc Rabbit, for example, we have a placental Mammal that in every part of the organization of its reproduetive organs testifies its near affinity to the Marsupial type. The ovaria (fig. 569, k, l), although widely different as regards the size of tho eontained orules from thoso of oviparous animals, still retain faint traces of a botryoidal or racemoso appearanec.
(2485.) The oviducts ($n, 0$), or the Fallopian tubes as we must now eall them, are reduced in their diameter to very small dimensions, and testify by their tenuity how minute must be the orule to which they
give passage. To theso succeed the uteri (e, f), still entirely distinct from cach other throughout their whole extent, and even opening into the vigina (!) by separate orifices, into which the probes (i, h) have been introduced. As far as its anatomy is concerned, such a uterine apparatus might belong to a marsupial Mammifer ; and even in the rest of the sexual parts, obvious relations may be traced between the rodent we are describing and the ovoviviparous quadrupeds.
(2486.) It is true there are no longer two vagine terminating in a single cloacal cavity; but let the reader observe how nearly the vagina of the Rabbit (fig. $569, a b$) approximates to the condition of a cloacal

Fig. 569.

Abstract

Uterus of theRabbit: n, o, oviducts or Fallopian tubes; e, f, uteri opening separately, at g, into the commencement of the vagina; i, h, two probes introduced into the two ores tincer ; $a b$, the interior of the vagina; m, the urinary bladder; $d c$, meatus urinarius, tied; r, anal nperture; s, reetum ; p, integument.

chamber. Anteriorly it receives the contents of the bladder $(d \mathrm{~m})$; while the rectum (s) terminates by an anal orifice (r) so closely conjoined with the aperture of the vulva, that the anatomist is almost in doubt whether the external opening might not be described as common both to the vagina and intestine. Advancing from this lowest form of a placental uterine system, it is found that the two utcri before their termination become united so as to form a central portion common to both, called the body of tho uterus, through the intervention of which they communicate with the vagina by a single passage, mamed the os tince; still, however, the cornua uteri, especially in those tribes that are most remarkable for their fecundity, become during gestation far more capacious than the mesial portion of which they appear to be prolongations. It is, in fact, in the cornua that the numerous progeny of such animals are lodged during the whole time of their retention in
the nterns; and conseqnently such an arrangement is absolutely requisite, as must be evident from simply inspecting the gravid uterus of a Sow (fig. 570), where the cormue uteri (ce) are of semarkable dimensions.
(2487.) As we ascend from the more prolific inferior races to the Quadrumana and the Human species, the proportional size of the body of the uterus becomes materially increased, and that of the cornua diminishes in the same ratio, until in the Monkeys and in Woman the latter become quite lost, and the now pyriform central part appears to compose the entire viscus, into the cavity of which the Fallopian tubes seem immediately to discharge themselves. Thus gradually, therefore,

Fig. 570.

Gravid uterus of the Sow: a, ovary; b, Fallopian tube; c, c, cornua of the uterus, -that on the right side being laid open to show four fotal young contained in its interior: e, vagina: d, urinary bladder; f, rectum.
does the oviparous sexual apparatus assume the viviparous type; and then, passing through numerous intermediate forms, ultimatcly attains its most concentrated condition in the uterus of the Human femalc.
(2488.) In every other part of the gencrative system we shall likewise find the characters of the type at longth completely established. The ovaria (fig. 570, a) entircly lose all traces of their original racemose condition; for now the quantity of granular matter enclosed along with
the germ in each Graafian vesiele, tho last remnant of the yelk, has become almost inappreciable, and the little ovarian ovnles are enclosed in a dense parenchymatous substance enveloped by a smooth albugineons tmic. The Fallopian tubes (b) correspond, in the smallness of their diameter, with tho minuteness of the globules they are destined to convey from tho ovaries into the uterine receptacle; and, lastly, the excretory canal of the bladder (d) becomes quite separated from the vagina (e), and the anal and generative apertures are found completely distinct from each other.
(2489.) After the above brief sketch of the anatomy of the organs of generation in the higher Mammalia, it now remains for us to trace the development of the germ from the moment of impregnation to the birth of the foetus, and observe in what particulars placental generation differs from the oviparous and ovoviviparous types already described. In the viviparous or placental Mammifer the effect of impregnation is the bursting of one or more of the Gracuficn vesicles, and the escape of the contained germs from the ovisacs wherein they were formed. In the Ovipara, owing to the dclicacy of the ovisacs, the vascular membranes composing them, when once ruptured, are speedily removed by absorption ; but in the Mammal this is not the case, and a cicatrix remains permanently visible upon the surface of the ovary, indieating where the rupture has occurred: such cicatrices are known by the name of corpora lutea.
(2490.) On the rupture of the ovarian ovisac, the vesicle of Purkinje, or the essential germ, accompanicd only by a most minute quantity of granular fluid, or yelk, is taken up by the fimbriated extremity of the Fallopian tube, and conveyed into the interior of the uterus, where its development commences. Observations are wanting to teach us precisely what are the first appearances of the embryo; but there is not the least doubt that the materials for its earlicst growth are absorbed in the cavity of the womb, and that its formation from a blastoclerm, of germinal membrane, is exactly comparable to what occurs in the egg of the Bird, already minutely described in the last chapter (§ 2114 et seqq.), and that, in every particular, as relates to the growth and functions of the vitelline or omphalo-mesenteric as well as of the amniotic system, the phenomena are the same as in the marsupial Mammal up to the period when the young Marsupian is prematurely born, to be afterwards nourished in the pouch of its mother from materials derived from the breast.
(2491.) But precisely at that point of development whore the Marsupial embryo is expelled from the uterus of its parent (namely, when the functions both of the vitcllicle and of the allantoid apparatus become no longer efficient either for nutrition or respiration) a third system of organs is developed in the placental Mammifer, whereby a vascular intercommunication is established between the foetus and the uterinus
ressels of the mother, forming what has been named by human embryologists the plucentu.
(2492.) In the ovnm of a Sheep, at that period of the growth of the foetus which nearly corresponds to the end of uterogestation in the prematurely born Kangaroo, all the three systems alluded to are eoexistent and easily distinguishable, as will be seen in the accompanying figure (fig. 571). The fotus (a), cnclosed in its amniotic memlirane (b), has its limbs as yet but very imperfectly formed, exhibiting pretty nearly the condition of a nascent Marsupial (vide fig. 566); but here it will be seen that the umbilical systems exhibit very striking differences in the two races. The vitellicle (f), with its podicle (e), are of very small dimensions; the allantoid sac (g), on the contrary, is of eonsiderable bulk, and, having ceased to act as a respiratory orgañ, becomes adapted to receive the urinary secretion through the eanal of the

Fig. 571.

Embryo of the Sheep: a, foetus; l, amniotic membrane; f, vitellicle, with its pedicle, $e ; q$, allantoid sac; d, d, umbilical vessels; h, chorion; i, i, dispersed masses of placenta.
uruchus. The most important fcature, however, is the rapid extension of the umbilical vessels (d), which in Birds and Marsupials were distributed only to the allantois; but in the placental Mammals these vessels rapidly spread over the chorion (h), and, coming into contact with the vascular surfaee of the womb, they soon form a new bond of communieation between the mother and the fœotus, constitutiug the placenta ; and thus the offspring is nourished until, its intra-utcrine growth being reeomplished, it is born in an advnneed eondition of development, and becomes the object of maternal care during that poriod in which it is dependent upon the breast of its mother for support.
(2493.) The appearance of the placenta varies much in differcnt. tribes: thus in the Sheep and other Ruminants it consists of numerous detaehed masses of villi (fig. 571, i, i), that interdigitate with eorresponding processes derived from the maternal womb ; in the Mare it eovers the whole surface of the ehorion; but in the greater number of Mammals,
and in the Human female, it forms a single vascular calee, whence is derised the name appropriatod by anatomists to this important viscus.
(2494.) After the development of tho placental system, it is obvious that the artories derived from tho common iliac trunks of the foetus, which at first were distributed only to the allantois, as in tho case of the Bird ($\$ 2143$), on the development of the placenta become transferred to the latter riscus, and form the umbilical arteries of the navelstring. Tho vein, likewise, notwithstanding its prodigiously increased extent of origin after the placenta has been formed, takes the same course on entering the umbilicus of the foetus as it did when it was derived only from the allantois; so that, although the placenta completely usurps the place of the allantois, both the allantoic and placental circulations are carried on through the same umbilical arteries and veins.
(2495.) In order to complete our history of foetal development up to the full establishment of the permanent double circulation that characterizes all the hot-blooded Vertebrata after birth, it only remaius for us to notice the changes that occur in the vessels of the fotus, whereby, on the cossation of the functions of the placenta, the pulmonary circulation is at length brought into action.
(2496.) U_{p} to the period of birth the arrangement of the footal circulation romains essentially that of a Reptile, inasmuch as both the venous blood derived from the system and the arterialized blood that comes from the placenta are mixed together in the as yet imperfectly separated chambers of the heart. Under these circumstances the arrangement of the vascular system is as follows:-Pure blood, supplied from the placenta, is brought into the body by the umbilical vein, which passes partly into the portal system of the liver, but principally through the ductus venosus into the inferior cava, and thence into the heart. From the construction of the heart during this portion of foctal existence it is obvious that in that viscus all the blood derived from the placenta, from the venous system of the footus, and also from the as yet inactive lungs, is mingled together prior to its distribution through the arterial system. The two auricles communicate freely with each other through the foramen ovale; and, by means of the ductus arteriosus, tho greater portion of the blood driven from the right ventricle during the systole of that cavity passes into the aorta, a very small proportion only finding its way into the pulmonary arteries. Such a heart, therefore, supplies to the foetal sytem a mixed fluid, of which a portion, having passed through the arterial trunks, finds its way back to the placenta through the two umbilical arterics, there to recommence the same circle.
(2497.) Immediately after birth, howerer, the whole arrangement is altered, and the adult condition fully established. The lungs assumo their functions, and the pulmonary arteries attain their full proportions,
while the placenta at once ceases from its office, and all the umbilical vessels bocome obliterated. The ductus venosus is 110 longer permeable, so that tho portal system and that of the vence cuve are quite separated: the forumen ovale elosos, thus completely separating the right from the left auricle: the cluctus arteriosus is reduced to a mere ligament; all tho blood, thorefore, driven from the right side of the heart must now pass into the oxpanded lungs, and be returned through the pulnonary veins to the left sido of tho licart. Thus, the pulmonary and systemic circulations being rendered tatally distinet, arterialized blood alone enters the arterial system, to be distributed through the body, and, the . umbilical arteries disappearing, the highest form of the circulatory apparatus is fully established.
(2498.) After birth the mammary glands supply the first natriment to the still helpless offspring. These vary in number and position in different species of placental Mammifers, their number being of course greatest in the most prolific raees. Where the arms or anterior limbs ean bo used for supporting or elasping tho feeble young, as in the Quadrumana, the Bats, and the females of our own species, it is upon the breast that these nutrient founts are placed; but in less gifted tribes the mammce are situated bencath the abdomen or in the inguinal region. Their structure, however, is similar throughout the entire classeach gland consisting of innumerable minute secreting cells, grouped together in lobules and in lobes. Delicate exeretory ducts, derived from all these ultimate cells, unite together again and again until they form capacious ducts, or rather reservoirs for milk. In the Human female the laetiferous canals terminate by numerous orifices upon the extremity of the nipple; but where the nipples are of large size, they generally contain a wide eavity wherein the milk aecumulates in considerable quantities, to be discharged through one or two orifices only. Such are the modes by which Supreme Benefieence has provided for the infant progeny of Mammiferous beings, and conferred tho endearments of maternity where He has bestowed intelligence to appreciate affeetion. But even this is not all: from the superabundance of the store provided there may be yet to spare; and Man is privileged to bid his lowing herds yield him their milk for food, and thus obtains no slight addition to the bounteous table spread for his enjoyment.

THE END.

[^0]: * Uistoria Animalium.

[^1]: * Systema Nature. Vindobonæ, 1767. 13th edition.
 \dagger Descriptive and Illustrated Catalogue of the Physiological Series of Comparative Anatomy contained in the Museum of the Royal College of Surgeons in London, vol. iii. part i. 1835.

[^2]: * For the important discovery that the heart of the Amphibia is dividod into threo eavities, instead of being composed of a single auriclo and ventriele, we are indebted to Professol Owen (vide Zool. Trans. vol. i.).

[^3]: * $\pi \rho \bar{\omega} \tau \sigma s$, first ; そ̄̄ov, animal.
 \dagger jíha, a root; π oús, π oóós, a foot: = root-footed, so callod because the pseudoprodia spread out like roots. Vide:-D'Orbigny, Diet. Univers. d'Hist. Nat. 1845, v., and Foraminifères Fossiles, 18t6: Ehrenberg, Berlin Trans. 1838 and 1839, or Weaver's abstract, Ann. Nat. Hist. 1841, vii. pp. 290, 374 : Dujardin, Ann. Sc. Nat. 1835, iv. \& v. : Clark, Anır. Nat. Mist. 1849 , iii. $380 ; 1850$, v. 161 : Williamson, Trans. Micr. Soc. ii. and Mice. Jommal, i. : Carpenter, Trans. Gcol. Soc. 1849, and Phil. Trans. LSofi: Cirler, Ann. Nat. Hist. Lsiò, x.

[^4]: * Foramen, a holo; fero, to bear or carry:=having their shells perforated by numerous small holes.
 + Whence the group has also received the mame of Powmamama, i. e. mimychambered.

[^5]: * Miller's Archir, 1856, p. 163.

[^6]: * The following table indicates the proportions of gencra and species of Foraminiferous shells which have been met with in various geological epochs:-
 Carboniferous scries 1 gemms, 1 species;
 Jurassic scrics 4 genera, 20
 Cretaceous scries 30 " 250
 Tertiary serics 55 ", 460 ,

 Now existing........................ 68 , 000 ,
 so that 1631 species of these minute organisms hare already been distinguished by classical naturalists.
 $\dagger \pi o \lambda$ и́s, many ; кúatts, a bladder: = having shells resembling transparent resicles.
 \ddagger Vide Mïller", "Ueber die Thalassicollen, Polycystineen und Aemthometren des Mittelnecres," in Monatsbericht der königl. Akudemie der Wissenschaften zu Berlin, 13 Nov. 1856.

[^7]: * Cikrir, a my or spoke of a whecel ; ípeis, an cyebrow: = covered with madiating processes resembling hais.
 + Siebold med Kölliker's Zeitachr. wol. i. p. ISR.

[^8]: * Quarterly Journal of Microscopical Science, vol. iv. p. 116.

[^9]: * Norte, by night; luceo, to shine $:=$ shining in the dark, phosphoresemt.
 \dagger M. de Quatrefages, Observations sim lea Noctiluguns. Amm des Néc. Nat. 1siot.

[^10]: * Quarterly Journal of Microscopical Scionco, vol. v. p. 186.
 † Microscopical Joumal, vol. iii. p. 203.
 \ddagger Rambles on the Devonshire Coast, p. 257.

[^11]: * Ann. \& Mag. Nat. IIist. 2nd ser. vol. xx. 1. 37 .

[^12]: * Savigny (Jules César). Zuologic d'Egypte: gre in-ful. Paris, 180!).

[^13]: * Dr. Grant, in tho New Widinburgh Mhilosophicald Jommal, 18.27.

[^14]: * Quarfarly Jourmal of Mieroneopionl Sumen, vol, vi. p. 78.

[^15]: * Ann. rles Sc. Nat. tom. x. 1838.
 + Lit. "sea-llush."
 \ddagger On the lireshwater Sponeres of Bombay, Ann. Nut. Hist. 1849.

[^16]: * Besides the seed-like bodies above described, other reproductive bodies are mot with in Spongilla:-1, some which, from their rosemblance to the motile spores or zoospores of many plants, have also beon tomed swarming-spores (Schaciirmsporen) ; and, 2 , others which, from thoir resemblance to the spermatic filaments elsowhere mot with, are denominated zoosporms.

[^17]: the microscope to modern obscrvers ${ }^{1}$. From these rescarches it would appear that the origin of the Spermatozoa is invariably to be traced to nueleated cells, in the interior of which they are individually doveloped. These developing-cells, or vesicles, as they are termed, arc found at certain scasons crowding the semniniferous tubes of the testes in immense numbers. Taken from the body after death they are seen to be perfectly transparent and filled with a fluid which on coagulating becomes somewhat granular. Most of these developing-cells (fig. 19, a, b,e) are found freely floating in the minute seminal canals, but frequently they aro onelosed in another cell-like envelope, either singly (d) or in numbers of three, four, six, or seren in each; the existence, however, of a morc eonsidcrablo number (e, f) in one common cyst is unusual. Whether single or more numerous, howover, it is in the derelopingcells that the Spermatozoa are formed by a kind of cndogenous growth, at first appearing liko dim shadows lying amongst the contained granules, but gradually assuming a sharper outline as tho body and, subsequently, tho tail aro perfected. The entire Spermatozoon at length becomes visible coiled up in the interior of tho cell, which, when the dovelopment is completed, bursts and discharges its contents.

 * Professor Grant.
 ${ }^{1}$ Iride:-Von Sicbold, in Müller's Archiv, 1836 and 1837: R. Wagner, Fragmente zur Pliyssologio der Zougung, \& Beilräge zur Clesehichto dor Zougning nud Entwickelung, in tho Abhandlung. der königl. bayorisch. Akad., Munich, 1832: Fö̈lliker, Beiläigo zur Kemntniss der Geschlectsvenhailtnisso mud Samentliassigkeit wirbellower Thicre, Berlin, 1841; Die Jibdung der Sanoufiden in Bliisehen, Nuremberg, 1846.

[^18]:
 \dagger V'ide Aun. and Mag. of Nat. 1list. ser 2. vol, viii. 1. 433.

[^19]: * Vide:-Müller, 1786 : Ehrenberg, Infusionsthierchen, 1837: Dujardin, Hist. Nat. des Zoophytes: Pineau, Ann. Sc. Nat. 3^{e} sér. tomcs iii. v. ix. : Stein, Wiegm. Archiv, 1849 ; id. Sieb. und Köl. Z. iii. : id. Die Infusionsthierchen, Leipzig, 1854: Peltier, l'Institut, 1836 : Fockc, Isis, 1836, and Physiolog. Studien: Kutorga, Naturgesch. d. Infusionsthierchen: Meyon, Müller's Archiv, 1839: Pritchard, Infus. Anim.: R. Jones, Ann. Nat. Hist. 1839: Werneck, Ber. d. Akad. Berl. 1841: Erdl, Müll. Archiv, 1841 : Griffith, Ann. Nat. Hist. 1843, xii.: Siebold, Lchrbuch vergl. Anat.: Colnn, Sicb. und Köl. Z. iii. 260: Kölliker, Sicb. und Köl. Z. i. 198: Claparède, Wiegm. Arch. Dcc. 1854, translated in Ann. Nat. Hist. 2 ser. xv. 211 : Schmeider, ibid. p. 191, translated ibid. xiv. p. 322: Carter, Noles on the Infusoria of Bombay, Ann. Nat. Jist. for 1856 and 1857: A memoir by Dr. N. Licberkühn in Müller's Areliv for 185ff, translated in Ann. Nat. Hist. for Oct. 1856.

[^20]: ${ }^{1}$ The colouring-matter of plants is distinguished by botanists into chlorophyll, Frythrophyll, Dhycoehrom, and Diatomin. The Chlorophyll is of a grass- or rellow-

[^21]: * Pcrhaps somo of our roaders may think the above strictures upon the opinions of Professor Ehrenberg, which appeared in the first edition of this work, and hare been writton upwards of thirty years, havo now become rather nntiquated. It is, however, tho wish of the author to combine some account of the progressivo adrance-

[^22]: ment of our knowledgo rclative to interesting or disputod points of mieroseopical researeh with an exposition of tho views gencrally adopted by physiologists of the present day; and as the above were the first arguments advaneed against the then universally reeeived opinions of the distinguished author of the 'Infusionsthicrehen,' it has been deemed expedient to retain them in their original words. It may bo proper to state that the mieroseope used in these and similar researches to which allusion will be mado, is a eompound achromatie, made by Ross of London; and the powers employod, of $\frac{9}{10}, \frac{1}{2}$, $\frac{1}{4}$, and $\frac{1}{8}$ of an ineh focus.

 * Sinco the abovo was written, Professor Ehrenborg has been kind enough personally to exhibit to tho author his preparations of the contral tubo in sevcral species of animaleules. Tho nuthor's viows, however, relutive to the nature of the so-ealled
 stomachs remain unchanged. stomachs remain unehangerl.

[^23]: * "Recherches sur les Organismos inférieurs," Ann. des Sc. Nnt. 1835.

[^24]: * "Quelques Observations sur les Org. digest. des Infus.," Ann. des Sc. Nat. 1839.

[^25]: * M. J. d'Udelem, "On the Motamorphoses of the Vorticelle," Amm. Nat. Hist. for July 1859.

[^26]: * Vide an claborato papor by Dr. II. Cienkowski, in the 'Bulletin de la Classo Physico-Mathómatiquo do l'Acad. Imp. des Sciences de St. Pétersbourg' for Janunry 1855.

[^27]: * roî̀os, hollow ; ধ̈vtepov, intestine: = having a hollow digestivo cavily.

[^28]: * èrrós, outside; ঠ́́p μa, skin: $=$ outer skin.
 \dagger '̈v $\nu o \nu$, within; $\delta^{e} \rho \mu a$, skin: $=$ internal skin. For a condensed account of the morphological structure of the Coelenterata the reader is referred to Professor Joseph Reay Greene's 'Manual of the Subkingdom Coelenterata,' a work from which we have adopted the nomenclature used in the following pagcs.
 $\ddagger \nu \hat{\eta} \mu a$, a thread ; ки́бтts, a bladder: = thrend-vesicles.
 §кvion a a nettle; from their power of stinging.

[^29]: general habits.

[^30]: * The life of every animal presents the alternate pcrformanee of two distinct series of aets-the one of reproduction, the other of development.

 Each aet of reproduetion eonsists cssentially in this, that two dissimilar bodies, an ovum and a spermatozoon, are brought into mutual eontat. In some cases the spermatozoon penetrates the eoats of the ovum, or even enters it by a proper aperture, known as the "mieropyle." Thus clefined the process of reproduetion is the same in all animals.
 No sooner has reproduction been thus effected than developinent begins. The fertilized ovum gives rise to an embryo, whieh in proeess of time beeomes erolved into the likeness of its parent. This embryo, together with all the struetures subse-

[^31]: * кopín n, a cluth, so-called from their elnb-shaped stem.
 + Sortula, a little garland.

[^32]: * The varions kinds of reproduction described in following pages are, all of them, with the exception of truo generation from ova, merely modifications of the process of gemmation or multiplieation by buds; and inasmuch ns gemmation is simply an act of growth, all the various forms of agamic multiplieation are like-

[^33]: Anatomy of Cyanea aurifa. b, b, b, b, central stomachal cavity, from which diverge the ramifled nutrient canals (d, d, d, d, d, d, d, d) and the straight tubes terminating in excrementitious oriflces situated upon the margin of the disk. The letters a, a, a, a, a, a, a, a indicate the position of the supposed visunl organs.

[^34]: * Systom der Acalephen, Berlin, 1822.-Annales des Sciences Naturclles, rol.xxriii. p. 251 .

 1 Ablandl. der Königl. Akad. der Wissenselaften zu Berlin, 1835.

[^35]: * Monograph on the British Naked-eyed Medusa.

[^36]: * A Mistory of the British Hydroid Zoophytes, by the Rev. Thomas Inineks, B.A.

[^37]: * Rer. Thomas Hincts, British Modern Zoophytes, 1848. Iublished by Tan Voorst.

[^38]: * ϕ ūनc, a blarlder ; 中; po, to carry: = provided with swimming-bladders or floats.

[^39]: * кú $\lambda \nu \xi$, a cup; ф'́ ω, to carry:=furnished with contractile cups or swimmingbells.

[^40]: * кreis, kteyòs, a comb ; ф'́po, to carry ; so called from the comb-like disposition of the locomotive cilin.

[^41]: * Milnc-Edwards, Am. des S'ci. Nat. tom. xvi., $18+1$.

[^42]: * Dr. Grant's figuro of the nervous system as ho supposed it to be arranged in Cydippe pileus, is given in a precceding pago, fig. 70, 2.
 + Mem. sulla storia o notomia degli Animali senza Vertobre, tom. iv. p. 12.
 \ddagger IIore Tergest. p. 38, tab. 1. figs. 22, 23.

[^43]: * Dollo Chiajo, Memorio por servire alla storia degli Animali sonza Vortobre del regno di Napoli. 4to, 1823-1825.

[^44]: * Professor Grant, Leetures on Comparative Anatomy. Lancet for 1833-34, vol. ii. p. 261.

[^45]: * An old namo for polyps with a horny axis (אépas, horn ; фutòv, a stem), as distinguishing them from tho stony polyps-Lithopllyta ($\lambda i \theta$ os, a stone; 申итir).

[^46]: * "Observations on the Anatomy of Actinie," by T. Spencer Cobbold, M.D., Anmals of Nat. IIist. Feb. 1853.

[^47]:
 \dagger モ́vrós, within ; ఢ̄̄ov, an animal: parasites living in the interior of other animals.

[^48]: * Not fewer than fourtcon distinct species of theso parasites are onumerated as specially residont in the human body.
 + Gregarius, from grex, gregis, a flock, so called bocauso thoy occur in numbers crowded togothor.

[^49]: * кígres, a bladder; кépros, tail: having their hindor part expanded into a bladeler.
 + кearis, a girdle or hand; eiōos, slape: riband-shaped.

[^50]: * Professor Van Beneden denios the existence of the central aperture or mouth, and that the two lateral longitudinal canals with their intercommunicating trunks constitute an alimontary system ; on the contrary, he regards these tubes as secerning organs, the secretion of which is discharged from the torminal segmont of the body through a foramen caudale.
 + It is represented in the figure upon one side only, to aroid emfusion.

[^51]: * Vide "Reeherches sur los vers Cestoïdes, par P. J. Van Beneden," Nouveaux Mém. de l' Λ eadúmie de Braxelles for 1850.

[^52]: * Ann. des Sc. Nat. 3e sér. x. p. 15.

[^53]: * In this condensed account of the development of the Tænia, the results of the researches of Van Bencden ("Notiee sur lc Ténia dispar et sur la maniòre dont les embryons de cestoïdes penètrent à travers los tissus," Bulletin de l'Acad. Royale do Belgique, 1854) are combined with those of Kuiehenmeister. See "Rapport sur le grand prix des Sc. Physiques pour 1853," par A. Quntrefages.
 + For further information upon this important subject the reader may consult:the works of Siebold, and more particularly two momoirs by that distinguishod physiologist in the 'Aunales des Seionces Naturelles' for 1851 and 1852 ; the remarkable memoir of Wagener, entitled "Dio Entwicklung der Costoden," published in

[^54]: * 'Ueber den Generationsweehsel in den niedoren Thierklassen,' translated by the late Mr. Ienfrey, in the publientions of tho Ray Soeicty, 1842.

[^55]: * Beitrag zur Infusorienkundo, oder Naturbeschreibung der Zerearien und Bacillarien. Halle, 1817.

[^56]: * That the Cercarie are actually developed in the above-mentioned yellow worms, any one may be easily convineed who will take a dozen large specimens of Limneus stagnulis from small stagnant pools that have been exposed to the sun; the worms will be very readily found. They are situnted not so much in the viseera thomselres (the liver and reproduetive organs) ns in the mombranes covering them; and their long bodies will be found half-floating as it were in the fluid whieh oecupies the space between the organs.

[^57]: * Vide Wirgmann's Areliv fuir Naturgeschichte, 18:36.

[^58]: * These muscles are seen of their natumal sizo in fig. 112, 1, at. e. e.

[^59]: * From turba, a clisturbance ; from the commotion produced by their cilia.

[^60]: * Dugès, Arm, cles Sc. Nat, 1828.
 r Sur l'Organisation des Vers, Am, des S'e. Nut. 18.17.

[^61]: * Ann. dos Sc. Nat. 1845.

[^62]: * Owon, Procecdings of the Zoologien Socicty, Nov. 1836.
 \uparrow Preparation No. 420 A, Mus. Coll. Surg., Phys. Catalogue, p. 121.
 \ddagger Anatomic des Vors intestimaux. Paris, 1824.

[^63]: * éxìos, a hedgehog; סép μa, the ekin.

[^64]: * Thompson (J. V.), Memoir concerning the Pentacrinus europceus. Cork, 1827. 4to

[^65]: * For a detailed account of the fossil Enerinites, tho reader is referred to ' A Naturnl Iistory of the Crinoidea, or Lily-shaped Animals,' by J. S. Miller. 4to, Bristol, 1821.

[^66]: * kpívov, a lily ; cijos, likeness.
 \dagger Tho name of this family and of its typical genus are derived from dotijp, a star.

[^67]: * Dello Chiaja.

[^68]: * This may be gathored from Aldrovandus, who writos as follows: "Alii ostrcarum hostes sunt Stellx marinæ molli crustâ intocto, verò tam crudeliter (ut Ælianus, lib. ix. cap. 22, ait) inimicæ ut he ipsas exedant ct conficiunt. Ratio insidiarum quas cis moliuntur ojusmodi cst. Cùm testacea suas patofaciant conchns, cùm rel rofrigorationo egent, vel ut aliquid pertinons ad victum incidat ; ex, uno do suis sire cruribus sive radiis intra testas ostreæ hiantis insito eas claudi prohibente, carne implontur" (Tostae. lib. iii. p. 487). Thus likewise Oppian :-
 " Sic struit insidias, sic subclola fraudes Stella marina parat, sed nullo ndjuta lapillo Nititur, ct pedibus scabris disjungit hiantes."
 + Bulletin des Sciencos do M. lo Baron Ferussac, vol. x. p. 296.

[^69]: * Cyclopecdia of Anatomy and Physiology, art. "Ecinnodermata."
 + See the article "Cilis," by Dr. Sharpey, in the "Cyclopardia of Anatomy and Physiology.'

[^70]: * Mémoire sur le Développement des Astéries, par M. Sars, Amı. dos Sc. Nat. 1844.

[^71]: * Uebor dio Larven und Metamorphoso der Ophiuron und Scoigel. Berlin Truns. 1846.

[^72]: * Cyclopredia of Anatomy and Pliysiology, art. "Echinodermata."

[^73]: * M. de Quatrefages remarks that the above facts, simplified and denuded of all extraneous detail, may be stated as follows. From the ovum of the Echinus is produced a kind of Infusory animalcule, which is changed by metamorphosis into a Pluteus; and from the interior of the latter organism is produced a creature of totally different character. We have here two generations, very distinct from each other, produced by two different processes, although both are derived from the same germ. But the peculiar circumstance in this mode of procedure is, that the product of tho second generation borrows largely from the first; the bud formed by gemmation, as it enlarges, cncircles organs already formed, and appropriates them to its own usc. As a whole, the animal cxhibits geneagenesis; but the stomach in Echinus and Ophiurus, the whole digestive apparatus and other organs in the Holothuride, only have to undergo a simple metamorphosis.

[^74]: * ojuòs, similar ; γ á $\gamma \gamma \lambda$ ıov, a norvous centro $:=$ having the ganglionic centres of the nervous system arrangod in symmotrical serics.

[^75]: * Vide Brandt, Bemorkungen übor die Mund-, Magen- oder Eingoweidenerven der Evertebraton. Loipzig, 1835.

[^76]: * Vide Dr. Williams's Report on the British Amelida, in the Reports of the British Assoeiation for tho Advancement of Science for 1851.

[^77]: * Ann. des Sci. Nat. vol. xv.

[^78]: * Dello Chiaje, op. cit. Moquin-Tandon, Monographio sur la famille des Hirudinées: 4to, Montpellier, 1827.
 \dagger Dr. Williams affirms that spormatozoa ean always be detected in the interior of these saes, and regards them as "true vesieulre seminales." The looped glands are deseribed by the same gentleman as ovaria, "ovarian utrieles." Unfortunately for Dr. Williams's theory, no observers have hitherto been able to confirm his statements upon this subjeet, and they are now looked upon as being altogether fanciful.

[^79]: * Seo Lrandt und Ratzeburg, Med. Zool. Lab. 29. $\quad+$ Ann. d. Sci. Nat. vol. xxii.

[^80]: * Tho moniliform character which these vessels exhibit is produced by the process of dissection. If, in the ordinary way, a longitudinal dorsal incision is mado, and the two halves be then separated and pinned down, tho vessels under such tension are sure to assumo a moniliform outline; that is, one part will dilato and tho other contract, and so on sucecssively throughout tho wholo length of tho vessels: the dilated portion will be filled with blood, and tho contracted will bo ompty, and tho beaded figuro will bo perfect. If, however, a moro careful modo of opening the worm bo odopted, dividing, by means of fino scissors, the membranous segmental partitions, and laying gently open the integuments, theso vessels will prosent a perfectly smooth outline: if now one of them be scizod with the foreeps and slightly pulled, it will become irregularly knotted, or moniliform. Muscular fibres, ehiefly circular, aro present in their parietes; and it is to tho uneven action of theso cloments that tho beaded form is attributable.-Dr. Williams.

[^81]: * Lectures on Comp. Anat. vol. iii.
 \dagger Ann. des Sci. Nat. vol. xv.

[^82]: * Descriptive and Illustrated Cataloguc of the Physiological Scries of Comparative Anatomy in the Mus. Roy. Coll. Surg. of England, rol. ii. pl. 14.

[^83]: * The parts indicatod in the drawing by letters not referred to in the text are the following:- $a a$, the vontral surface of the segments of tho body; c, c, the vontral oars, or packets of bristles ; f, f, the ventral cirri, or feclers; g, the anal cirri; h, the amus; $i i, k k$, the bases of the dorsul and ventral ours, with thoir surrounding museles; l, l, the dorsal longitudinal muscular bands $; m, m$, tho vontral longitudinal inuscular bands.

[^84]: * The following axioms may be laid down relative to the circulation of the blood:-

 1st. In all Annolids, the blood flows in the great dorsal trunk from the tail towards the hcad.
 2nd. In all Annelids, the blood flows in the great ventral trunk from the head towards the tail.

 3rd. In the whole integumentary system of vessels, the blood moves from the great ventral towards the great dorsal trunk: this movement constitutes the amular or transverse circulation. The main current of the blood in the ventral trunk pursues a longitudinal coursc until exhausted by successive lateral deviations.

 4th. In Annolids the intestinal system of vessels consists of four lougitudinal trunks :-one dorsal, which may be called dorso-intestinal ; one reutral, which may be distinguished as the subintestinal ; and two latcral. These sevcral trunks are joined together by circularly disposed branches connceted by a dense capillary system.

[^85]: * The phenomena of fissiparous generation in these Annelidans will be better understood by reference to Mr. Newport's important discoveries relative to the growth of the Myrioporla. - Vide post, § 732.

[^86]: * Comptes Rendus, xvi. 1843.
 \dagger Mïller's Archiv, 1840.

[^87]: " 7 . They may be confined to a certain number of segments placed towards the middle of the body (Arenicola, Hermella).
 "8. They may all be placed at the extremity of the body, so as to form a double tuft."
 "The breathing is accomplished," says Dr. Williams, " in every spccies, the Earthworm not cxcepted, in strict conformity with the aquatic principle. No known Annclid respires on the atmospheric model. In every Annclid the blood, though variable in colour, is non-corpusculated. The converse is truc of the chylaqueous fluid, which in every instance abounds in regularly and detcrminately organized floating colls."
 "In the Annelida the function of respiration is discharged under two remarkably distinct conditions. Under the first, the chylaquenus fluid alone is submitted to this process; under the sccond, the blood proper fulfils the offico. The mechanical organs subservient to this function undor the former are constructed on a plan diametrically differont from that of those provided under the lattor circumstances. In the Annelid, the truo blood and chylaqueous fluid, though coexistent in the same organism, constitute two perfectly distinct and indopendent fluid-systems. There is between them no direct communication of any sort ; they are, physically, very dissimilar fluids. An order of branchial organs must therefore be rocognized, in which, in equal or unequal proportions, the chylaqueous fluid and the blood proper, oither in the same or in distinct appondages, participato in the process of respiration."Ann. \& Mag. Nat. Hist. 18in3, vol, xii. p. 393.

[^88]: * Dr. Williams, loc. cit. p. 194.

[^89]: * Mémoiro sur les Hermelliens," Ann. des Sci. Nnt. 3 " sér. 1848.

[^90]: * "Sur le Sang des Annélides," Ann. dos Sei. Nat. 1846.
 + Wiegm. Arehiv, 1845, part 1.

[^91]: * "Recherehes Zoologiques faites pendant un Voyago sur les Côtos do la Sicile, par M. Miluc-Edwards," Ann. des Sei. Nat, for 184.

[^92]: * Ann. des Sci. Nat. 1850.

[^93]: * Ann. dos Sci. Nat. t. xxii.
 \dagger Teones Physiulogicer, pl. 28.
 \ddagger Do Bopyro et Nercido, pl. 2. figs. 4 \& 5.
 § Lehrbuch der vergleichenden Anatomio, p. 200.
 if Lehrbuch dor vorgleichenden Anatomie, von Siobold und Slamius, p. 201.

[^94]: * See his Memoirs on the Annelida of La Manehe, in Ann. des Sei. Nat. sér. 2. t. xix. and sér. 3. t. xiv.
 + μ vpiot, ten thousand, i. e. many ; mō̄s, a font.

[^95]: * Mémoires pour servir à l'Histoire des Inscetes. 7 vols. 4to. Stockholm, 1778.
 + Osservazioni per servire alla storia di una specio di Julus comunissima. Bologna, 1817.

[^96]: * Tho word Insect, derived from tho Latin word Insecte, simply means divided into segmonts.

[^97]: * So called, by Linnæus, bocause in this condition the perfect form of the insect is conccalcel as it were undor a mask. Larva, Lat., a mask.
 + The first two of these names are purely fanciful: the last is dorived from pupa, a balyy wrapped up in swaddling bands.

[^98]: * ó $\rho \theta \dot{s}$, straight; $\pi \tau \in \rho \dot{\nu} \nu$, a wing.
 \dagger סıктvwiòs, reticulated; $\pi \tau \epsilon \rho \dot{\nu} \nu$, a wing.
 $\ddagger \epsilon \bar{v}$, prettily; $\pi \lambda \epsilon \in \kappa \omega$, to fold; $\pi \tau \epsilon \rho \dot{\partial} \mu$, a wing: = having their hinder wings beautifully folded.
 § $\nu \in \bar{u} \rho о \nu$, a nervuro; $\pi \tau \epsilon \rho \dot{\nu} \nu$, a wing.
 $\| O_{\rho i} \xi, \tau \rho \iota \chi o ̀ s$, hair ; $\pi \tau \epsilon \rho \dot{v} v, n$ wing : = having hairy wings.

[^99]: Mitumorphosis of Cuddis-flies ($P h r y g u n e a$) : e, f, g, h, larvx inhabiling cases constructed of Farious materals; a, the jupe withdrawn from its case; b, c, d, winged insects.

[^100]: * ar ε é ψ es, a twisting ; $\pi \tau \epsilon \rho \dot{\nu} \nu, n$ wing,-from the appearance of the winge when

[^101]: * Kirby and Spence, Introduction to Entomology, 4 rols. Svo.

[^102]: * Epist. 6, Mart. 1717.
 \dagger Kirby and Spence, op, cit. rol. ii. p. 351.

[^103]: * Kirby and Spence, op. cit. vol. ii. p. 358 .

[^104]: * Considérations générales sur l'Anatomie comparée des Animaux articulés, aux-

[^105]: * Mémoires sur les Animaux sans Vertébres. 8ro. Paris, 1816.
 \dagger Kirby and Spence, vol. iii. p. 463.

[^106]: * Head of the Flea, as represented by the Solar microscope in Canada balsam ; dedicated by permission to the President and Members of the Entomological Society, by W. Lens Aldous.

[^107]: * Physiologisehe Untersuchungen über dio thierischo Iaushaltung dor Insokten. 8vo. 1817.

[^108]: * Loc. cit.

[^109]: * Biblia Nature.

[^110]: * Home's Lectures on Comp. Anat. vol. iii. p. 370.
 + It is now gencrally supposed, in aecordanee with the obserrations of Dzierzon and Von Siebold, that the working bees, which are undeveloped females, originate from ova fecundated by means of the semon stored up in the spermatheca of the queen bee, whilst the male hees, or drones issue from non-impregnated ova.

[^111]: * Owen, Parthenogenesis, p. 24.

[^112]: * Loc. cit. p. 61.
 + For further information on this interesting subject, the rcader is refcrred to :Professor Owen's Essay 'On Parthenogenesis;' to an elaborate paper by Leuckart, entitled "Zur Kenntniss des Generationswechsels und der Parthenogencsis bei den Insckten," Moleschote's Untersuchungen, 1858; and a valuable paper by Professor Huxley "On the Agamic Reproduction and Morphology of Λ phis," Trans. Linn. Soc. 1858.
 \ddagger Wahre Parthenogencsis boi Schmetterlingen und Bienen, 1856.

[^113]: * Zur Kenntniss des Generationsweehsels und der Parthenogenesis bei den Insekten, 1858.
 + "On the Ova and Pseudova of Inseets," Phil. Trans. 1858.
 \ddagger For ample details eoncerning the habits of these interesting ereatures, the reader is referred to Dr. Bevan's work 'On the Money-bee; its Natural Mistory, Physiology, and Management.' 1 vol. 12 mo . London.

[^114]: * Firle Smeathman, Phil. Trans, vol. 1xri. 1781.

[^115]: * Introd. to Entom. vol. iii. p. 126.

[^116]: * Entwickolungsgeschichto der Schmetterlinge. 1815, 4to.

[^117]: * 'Apcixuy, a spider.

[^118]: * Loc. cit. p. 17.

[^119]: * Pes, a foot; pulpurs, a feeler.

[^120]: * Audouin, Cyclop. of Anat. and Phys., art. "Arachnida."

[^121]: * Nowport, Phil. Trams. 1843.

[^122]: * Ann. des Sci. Nat. tom. xvii.

[^123]: * Ten-footed, so called from the eireumstanee of their having five pairs of limbs so largely developed as to beeome ambulatory or prehensile organs.
 † μ rapós, long; oúpá, a tnil: = having long tails.

[^124]: * ü»opos, anomalous ; oupci, a tail: = qucor-tails.

[^125]: * $\beta \rho a \chi$ v̀s, short ; oủpà, a tail: = having short tails.

[^126]: * Mém. de l'Acad. des Sciences, 1718.

[^127]: * "Reeherehes Anatomiques ct Physiologiques sur la Circulation dans los Crustacés," Ann. des Sci. Nat. tom. ii.

[^128]: * Catalogue of the Physiological Series of Comparative Anatomy contained in the Muscum of the Royal College of Surgeons of England, vol. ii.

[^129]: * Milne-Edwards, loc, cit.

[^130]: * Phil. Trans. 1834.

[^131]: * Microscopic Journal.

[^132]: * Mr. Spence Bate gives the following aecount of this remarkable process :"When a limb is injured, all Crustaceans have the power of rejecting it, except the wound be below the last joint. This is done by a violent muscular contraction, finishing with a blow from another limb, or against some foreign body. The amputation is the work of a few seconds, except when they have but recontly cast their exuvia; at such times the wounded limb will sometimes remain for half an hour or longer hefore it is rejected.
 "The new limb is formed within the shell, where it lios folded up until the next moult, when it appears as a part of the new skeleton, the sac-like membrane which protected it being east off with the old shell ; and the restored member is larger or smaller, in aceordanee with the length of time which may cxist between the anputation of the limb and the shedding of the skin. The ennclition in which the limb is at that time remains permanent until the next moult, when the whole ereature again advances in size, but the new limb more rapidly than the remainder of tho animal, until it attains its full rolative proportions."-dinn. and Mag. Nat. Hist. 1851, vol. vii. p. 300.

[^133]: * Vide Owon on Parthenogenesis, p. 48.

[^134]: * "On the Organ of Hearing in Crustaceans," by Dr. Arthur Farre, Phil. Trans.

[^135]: * Cyclop. of Anat. and Phys., art. "Crustacea."
 + "Notes on Crustacca," by C. Spence Bate, Amn. \& Mag. Nat. IIist. 2 ser. vi. p. 109.

[^136]: * Sulla Generazione dei Pesci e dei Granehi. 4to. Naples, 1787.

[^137]: * Phil. Trans. 1848.
 $\dagger \sigma \tau i \mu a$, moull ${ }^{\prime} ; \pi o$ is, $\pi o i o j s$, foot.

[^138]: * í $\mu \phi$, of two soris; $\pi 0 \dot{v}$, $\pi 0 \delta \dot{o}$, foot.
 throat.

[^139]:
 \dagger 入óфupos, feet furnished with a tuft of hair.
 \ddagger Histoire des Monocles. 1 vol. 4 to. Genève, 1820.
 § Matériaux pour l'IIstoire de quelques Monocles allemands. 4to. 1805.

[^140]: * Latreillo, Règno Aninnal, vol. iv.
 \dagger фи́д入 \quad ov, a leaf.

[^141]: * The members of this group were until a recont period regarded as forming a distinct class, and were tormed EpizoA, a namo which it is still convoniont to retain.

[^142]: * Mikrographische Beiträge zur Naturgeschichte der wirbellosen Thiere. Berlin, 1832.

[^143]: * Straus-Dïrckheim, "Mém. sur le Daphnin," Mém. du Mus. 1820.

[^144]: * $\pi u \kappa \nu$ òs, thick ; γ on, the knee: $=$ having thick knees.

[^145]: * Fide M. de Quntrefages, Ann. des Sci. Nnt. 1844, ir. p. 72.

[^146]: * Abhandlungen der Königliehen Akademio der Wissensehafton zu Berlin for 1893.
 \dagger Phil, Trans. for 1837.

[^147]: * To render intclligible the production of this wheel-like appearance by ciliary movement, we annex M. Dujardin's figure representing the position of a row of cilia at a given moment. In this, it is to be supposed that the straight cilia, which are parallel and equidistant from each other, are susceptible of successive oscillations, like the cilium $A \quad$, the first of the serics,-cach capable of describing by a uniform movement the angle BA c, of which the apex is at the point of attachment, by changing its position from the perpendicular, A B, till it attains the position $\mathrm{A} c$, and then returning with the same rapidity of motion to its first condition, $A \mathrm{~B}$, repeating continually similar movements in both directions. Now, as the other cilia of the scries only commence this movement one after the other, each being in advance of the preceding one on the left hand by a fourtecnth part of the space occupicd by the

[^148]: entire wave, and the same distance from that which succeeds it on the right hand, at evcry fourteenth interval the cilia present themselves in the samo state of flexurc, and a row of cilia in motion presents, for the instant, the appearance represented in the figure, in which, at spaces of from fourtecn to fiftecn cilia, there is a sladed intersection, which advances with a uniform movement from left to right as each cilium successively assumes the position of that which follows it on the right-hand side.
 Suppose, now, the duration of each oscillation divided into fourteen instants, a
 $\wedge h, \wedge c$, in the space $\boldsymbol{B} \AA c$, during the first half of the oscillation, the movement taking place from left to right. The other positions during the second half of the oscillation, the movement being from right to left, are, $\wedge g, \wedge f, \wedge e, \wedge d, A c, \wedge b, \wedge a$, -the position $\mathrm{A} a^{\prime}$ being the same as A B, or $\operatorname{A} 0$, constituting the limit of the sceond half of that oscillation and the commoncement of a new onc.

 In this manner the intersections, having the appearance of the tecth of a saw, will appear to advance with a uniform motion in the direction of the movement of oscillation, giving the appearance of a chain or row of pearls in motion in the case of a rectilinoar row of cilia, or of a toothed wheel if the cilia are disposed in a circleVide Dujardin, ITist. Nat. des Infusoiros.

[^149]: * Sce a Paper by the Rev. the Lord Sidncy Godolphin Osborne, read before the Manchester Lit. and Philos. Soe., 'Monthly Mieroscopical Journal' for May 1869, p. 32!.

[^150]: * Quarterly Journal of Microscopical Science, no. 1. p. 9.

[^151]: * Williamson, loc. cit.

[^152]: * Diet. des Sci. Nat., art. "Rotiffra."

[^153]: * Quarterly Journal of Microscopical Science, no. 1. p. G.

[^154]: * Quarterly Journal of Microscopical Science.
 + Tride Phil. Trans. for 1849, pls. 33 \& itt.

[^155]: * Vide Ann. of Nat. Hist. for Sopt. 1848.

[^156]: * Cuvier, Mémoire sur les Animaux des Anatifes of des Balanes, et sur leur Anatomic, p. 6.

[^157]: * Cuvier, loc. cit.

[^158]: * Proccedings of the Acadomy of Natural Sciences of Philadelphia, Jan. 18.48.
 + Monograph on the Subeluss Cirripedia, by Charles Darwin, F.R.S., 1841.

[^159]: * Descriptive and Illustrated Catalogue of the Physical Series of Comparative Anatomy in the Muscum of the Royal College of Surgeons of England, rol. i. p. 259.

[^160]: * Phil. Trans, for 1835, p. 356.

[^161]: * Zoological Researches, 4th Memoir, 1830.
 + Phil. Trans. for 1835, p. 355.

[^162]: * Darwin, loc. cit.

 1 Rev. R. L. King, Ammal Report of the R. Inst. of Cornmall, 1848.

[^163]: * érepos, dissimilar; γ á $\gamma \gamma \lambda \iota 0 \nu$, a ganglion.

[^164]:
 † β ри́or, sea-moss ; $\zeta \bar{\omega} o \nu$, an animal.
 \ddagger Ann. des Sci. Nat. for Sept. 1828 and July $1830 . \quad$ S Symbolie Plysicre.
 | Zoological Rescarches and Illustrations, Mcmoir 5. Cork, 1830.

 - Phil. Trans., Part 2. for 1837.

[^165]: * Van Bencden, "Recherches sur l'Anatomie, la Physiologic, et le Dóveloppement des Bryozoaires qui habitent la Côto d'Ostende" (Bullotin de l'Acad. Roy. do Bruxelles, tom. xix.).

[^166]: * "Rochorehes sur les Bryozoaires fluviatilos de Belgiquo," par" P. J. Van Boneden (Nouv. Mém. de l'Aead. de Bruxelles, 1847).

[^167]: * Tunicatus, clad in a tunic.
 \dagger árkòs, a leathern bag.

[^168]: * Règne Animal, vol. iii. p. $168 . \quad+$ Bórpvs, a buncl of grapes.
 $\ddagger \pi i \bar{i} \rho$ ($\pi v \rho o ̀ s$), fire ; $\sigma \hat{\omega} \mu a$, a body. $\quad \pi o \lambda \dot{v} s$, many ; к $\kappa \lambda i \nu \eta$, a bed.
 \#" Observations sur les Ascidies composécs," Mém. de l'Acad. tom. xviii.

[^169]: * This stolon must be regarded as the Strobile produced by a process of internal gemmation, which remains concealed in the Scolex (the isolated Salpian).

[^170]: * μ óvos, single ; μ ūs, a muscle.

[^171]: * Testacen utriusque Siciliæ, eorumque Historia et Anatome: 3 vols. fol.

[^172]: * Ann. des Sci. Nat. n. s. Lom. ix.

[^173]: * Vide memoir by Dr. H. Lacaze-Duthiers, Ann. cles Sei. Nat. 4r sér. t. ii.

[^174]: * Beaxíuv, an arm ; $\pi 0 \bar{v} s, \pi o \delta o s$, a foot.
 + pallium, a mantle ; branchie, gills. This name, originally proposed br M. de Blainville notwithstanding his belicf that the spiral arms were the organs of respiration, has since been proved by the researches of Professor Owen to be strictly appropriate to the class.
 \ddagger "On the Organization of the Brachiopoda," by Albany Mancock, F.R.S. (Plit. Trans. 1858).

[^175]: * "Mémoire sur l'Animal de la Lingule."
 + Transaetions of the Zoological Soeietv, vol. i.

[^176]: * үaarijp, the belly ; roves, a foot.

[^177]: * ójovis, ódóvjos, a looth ; pópos, a bearer: = looth-bearer.

[^178]: * Cuvier, Mémoire sur lo Genro Aplysia.

[^179]: * Ann. des Sci. Nat. 1850.
 + In Firola, Professor Huxley assures us, the walls of the auricle of the heart are composed of a kind of lacework made up of striated and ramified muscular fibres, between which large open spaces are observable.
 \ddagger "Obscrvations sur la Circulation chez les Mollusqucs," par M. Milne-Edwards (Ann. des Sci. Nat. 1847).

[^180]: * Mémoire sur le Tritonia.

[^181]: * Ann. des Sci. Nat. 1843, xix. p. 198.
 \dagger Introduction to Conchology; or, Elements of the Natural History of Molluscous Animals, by George Johnston, M.D., LL.D., to which the student is refcrred, as being by far the best treatise upon the subject in the English language, for fuller details concerning the habits and organization of the Mollusca.
 \ddagger Kölliker has observed that the motion of the otoliths in the Mollusca is dependent upon cilia, with which the internal surface of the auditory cyst is covercd.

[^182]: * The announeemont of the discovery of spermatozoa in inclividuals belonging to these orders will, perhaps, materinlly modify tho opinions of physiologists upon this point.

[^183]: * This case-membrane is not tho homologuo of the ordinary egg-shell, sceing that it sometimes encloses two, throe, four, or cven fire ora.

[^184]: * $\pi \tau \epsilon \rho \dot{v}$, a wing ; $\pi 0$ ùs, $\pi 0 \delta \dot{\delta} s$, the foot.

[^185]: * Testacea utriusque Siciliæ.
 † Guérin's 'Magasin de Zoologie.' Translated in the Magnzine of Natural Fistory, rol. iii. new scrics, p. 521.

[^186]: * For this invaluable addition to zoological knowledge, science is indebtod to George Bennett, Esq., who obtained the living animal near the island of Erromanga, New Hebrides. "It was found in Marekini Bay, floating on the surface of the water" not far distant from the ship, and resembling, as tho sailors oxpressed it, a dead tortoiseshell eat in the water. It was captured, but not before tho upper part of the shell had been broken by the boat-hook in the eagerness to take it, as We animal was sinking when caught." (Dr. Bennetl's Journal.)
 + Philosophical Experiments and Obsurvations. Svo, 1726.

[^187]: * For more ample details upon this subject, the reader is referred to an cxcellent translation of M. Rang's paper contained in Mr. Charlesworth's Magazine of Natural History, new series, vol. iii.
 + Magazine of Natural History, April 1839, "Observations on the Poulpe of the Argonaut," by Madame Jeannette Power.

[^188]: * Mémoire sur la Poulpe.

[^189]: * Mémoire sur la Poulpe.
 + Analecten für vergleichendo Anatomic. 4to, 1835.

[^190]: * Milne-Edwards, Aun. des Ści. Nat. 1845, tom. iii. p. 346.

[^191]: * Tstituzioni di Anatomia e Fisiologia Comparala, parte 1^{n}, Animnli senza Vertebre del Regno di Napoli, tom. i.

[^192]: * Descriptive and Illustrated Catalogue of the Physiological Series of Comparative Anatomy contained in the Museum of the Royal College of Surgeons of England, vol. iii. part 1. p. 187.
 + Cyclopredia of Anatomy and Plysiology, art. Ceriatorona.

[^193]: * C'uvier, Ménoire sur la Poulpe, 1 . 36.

[^194]: * Mem. on Nautilus, p. 41.
 + Loc. cil. p. 30 et seqq.

[^195]: * Op. cit. p. 51 .

[^196]: * Descriptive and Illustrated Catalogue of tho Physiological Scrics of Comparative Anatomy contained in the Museum of the Rojal College of Surgeons of England. rol. iii. part 1. pl. 52.

[^197]: * Cyclopardia of Anatomy and Physiology, art. Cepinaopona.

[^198]: * Cuvier, Memoire sur la Poulpe, p. 41.

[^199]: * Henri Müller, Ann. des Sc. Nat. 1851.

[^200]: * "Ueber den Bau und dic Lobonserscheinungon dos Amphioxus lanccolutus," Berlin 'Jrans. 1842.

[^201]: * "Bemerkung uibor don Bau des Amphioxus lanceolatus," Monatsberichte der Akad. der Wissenschaften, 1841.
 \dagger 'Iransactions of' the Royal Society of Edinburgh, vol. x'.
 \ddagger Vide Kölliker, Müllen's Arehiv, 1843 .

[^202]: * Vide Yarrell's History of British Lishes, vol. i. p. 271. Sro.

[^203]: * $\pi \lambda c u \rho c i$, tho side ; $\nu \eta \kappa \tau \eta$ 它, a swimmer.

[^204]:

[^205]: * "Sull' analisi dell' aria contenuta nella vescica natatoria dei Pesei." Pavia, 1800, 4 to.

[^206]: * Professor Owen, 'Odontography ; or a Treatise on the Comparative Anatomy of the Teeth, their Physiological Relations, Mode of Derclopment, and Mieroscopie Structure,' \&c. 4io. Bailliero, 1840.

[^207]: * I'ide Yarrell's British Fishes. 8vo. 2 vols. + Owen, Odontography, p. fi.

[^208]: * For a detailed reeount of the lymphatie system of Fishes, the reader is referred to the following authors:-Monro, 'Anat. and Physiol. of Fishes,' fol.; Hewson, Phil. 'Trans. 1769 ; Fohmann, 'Histoire générale des Lyınphatiquos des Vertébrés,' fol., IIeidelberg and Leipzig, 1827.

[^209]: * Cur of Val. op. cit. p. 347.

[^210]: * Müller, De Glandularum Structurâ penitiori. Lipsix, fol. 1830.

[^211]: * Transactions of the Limean Society for 1840.

[^212]: * Ville Rusconi, Amours des Salamandres aquatiques, et Développement du 'I'ètard de ces Salamandres depuis l'œuf jnsqu'a l'animal parfait. 4to. Milan, $18 \because 1$.

[^213]: * In the collection of Professor Bell there is a small snake which, haring by mishap attempted to swallow a mouse of too large size, and being quite umable, in consequence of the mechanism referred to, to disgorge it, was found dead, and the skin and museles of its neck absolutely rent from excessire stretching.

[^214]: * Mémoire sur les caractères tirés de l'Anatomie pour distinguer les Serpens venimeux des Serpens non-venimeux ; par M. Duvernoy (Ann. des Sc. Nat. xxvi.).

[^215]: * Cuvier, Leçons d’Anatomie Comparéc, iii. p. 223.

[^216]: * 'Iransactions of the Zoologieal Sociely of London, vol. i. p. 217.

[^217]: * Recherches anatomiques et plyysiologiques sur les organes transitoires et la métamorphose des Batraciens, par J. G. Martin St.-Ange (Amalos des Sciences Naturelles, xxiv.).

[^218]: * Vide Cyclopsedia of Anatomy and Physiology, art. Ampiibia, by Professor

[^219]: * Vide Ruseoni, Obscrvations anatomiqucs sur la Sirène, misc on parallèle avec le Protéc et le Teètard de la Salamandre aquatique. Pavic, 1837.

[^220]: * Cuvier, Anat. Comp. tom. v. p. 115.

[^221]: * Tide Barkow, in Meckel's Arechiv, Band xii.

[^222]: * Leçons d'Anat. Comp. tom. v. p. 108.

[^223]: * Des Branchies et des Yaisseaux branehiaux daus les Embrons des Animaux vertébrés, par Prof. Ch. Ernst v. Baer (Amm. des Sei. Nat. tom. xr.).

[^224]: * Règno Animal, vol. i. p. 223 et seq.

[^225]: * For an admirable history of the habits of the Mole, the reader is referred to Bell's British Quadrupeds, page 85.

[^226]: * Mr. Hunter means, by "intermediate," interposed between the contiguous plates. not between the "hair" and the laminated whalebone.

[^227]: * Preps. Nos. $327 \& 328$.
 + 'The Animal Ceconomy,' by John Hunter, with Notes by Richard Owen. Esq. F.R.S., p. 353. London, 1837.

[^228]: * Leçons d'Anat. Comp. iii. p. 215.
 - Leçons d'Anat. Comp. iii. p. 210.

[^229]: * Sir E. Home, Leetures on Comparative Anatomy, vol. i. p. 2£5̄.
 \dagger Leçons d'Anat. Comp. iii. p. 465.

[^230]: * The Animal CEconomy, by J. Hunter, with Notes by Professor Owen, p. 366.

[^231]: * Hinter, ut supra, p. 3io.

[^232]: * In a physiologioal point of view this rapid production of osseous matter is truly wonderful. Tho horns of the Wapiti Deer, thus annually reproduced, will weigh upwards of thirty pounds ; and in the fossil Trish Elk the weight of these deciduous defences must have been greater than that of the entire skeleton.

[^233]: * C'uvier, Leçons d'Auat. Comp. v. p. 252 et seq.

[^234]: * Cuvier, Leçons d'Anat. Comp. ii. p. G7?.

[^235]: * In Man, and by far the greater number of Mammals, the scala of the cochlen makes two turns and a half around the modiolus; but in a few Rodent Quadrupeds, as for example in the Guineapig, the Cavy, and the Porcupine, there are as many as three turns and a half.

[^236]: * Vide Sir Anthony Carlisle "On the Physiology of the Stapes." Phil. Trans. for 1805.

[^237]: * The Lemur and the Molo form romarkable exceptions; for in these creatures the female wrethra traverses the clitoris prectisely as in tho other sex.

[^238]: * "On the Young of the Ornithorhynchus paradonus," Trans. Zool. Soc. vol. i.

[^239]: * Sec Proceedings of the Zuological Socicty for August 1837.

[^240]: * P. Z. S. August 1837, p. $348 . \quad$ † Mémoires du Muséum, tom. xxv. p. 48.
 \ddagger Trans. Linn. Soc. vol. xvi. p. 61.
 § "Sce Nos. $3731,3734,3735$, in the Physiological Scrics of the IIunterian Muscum, in which there are evidences that Mr. ILunter had anticipated most of the anatomical discoveries which have subsequently becn made upon the embryo of the Kangaroo."

