WALKER-ARNOTT COLLECTION.

LECTURES

ON

HIST0L0GY,

DELIVERED AT THE

ROYAL COLLEGE OF SURGEONS OF ENGLAND, IN THE SESSION 1851-52.

BY JOHN QUEKET'I,

RESIDENT CONSERVATOR OF THE MUSEUM OF THE ROYAL COLLEGE OF SURGEONS OF ENGLAND,
AND PROFESSOR OF HISTOLOGY.

Vol. II.
STRUCTURE OF THE SKELETON OF PLANTS AND INVERTEBRATE ANIMALS.

ILLUSTRATED BY TWO UUNDRED AND SIXTY-FOUR WOODCUTS.

LONDON:
HIPPOLY'TE BAIILIERE, 219, REGENT STREET, AND 290, BROADWAY, NEW YORK, U.S.
PARIS: J. 13. BAILLIELE, IRUE IIAUTEFEUILLE.
MADRID: BALLLY BAILLIEIE, CALLE DEL PRINCIPE.
1854.

LONDON:
WILson fud OGilavy.
57, Skinner Street.

PREFACE.

So favourable a reception having been given to the First Volume of these Lectures, the Author is induced to bring a Second before the Public, and he hopes it will be found both instructive and interesting. The minute structure of the Skeleton of Plants and Invertebrate Animals is a study of the greatest interest, and one which will fully repay the most careful investigation. To the Zoologist, the Geologist, and even to the Amateur in Microscopic Science, a knowledge of this subject must prove of the highest value, not only on account of the great variety of beautiful structures embraced by it, but from the wellmarked characters that each part of the skeleton pre-sents-characters not wholly obliterated even in the fossil state, and by which alone the smallest fragments of particular structures can be satisfactorily recognised.

The great demand for information on Histological subjects is made evident, not only by the large number of first-rate instruments now being manufactured, but also by the fact that several skilful artists are entirely employed in the preparation of microscopic objects, many thousands of which are annually sold in this metropolis. In publishing these Lectures, the Author is most anxious to point out that collcctions of specimens are not only valuable for their beauty or their peculiarity of struc-
ture, but are eapable of an arrangement as systematic and eomplete as the parts from which the speeimens themselves were taken, the object of sueh colleetions, when rightly considered, being not simply that of affording amusement to the eurious, but of eontributing to the suecessful cultivation of Natural Seience.

The plan hitherto adopted in the choice of a subjeet for these Lectures has been, to follow the order laid down in the Table of Tissues, given in Vol. I. page 117. In that volume are described the principal tissues of vegetables, and three of those belonging to animals, viz., Simple Membrane, Fibrous Tissues, and Cellular Tissues. The Sclerous, or hard tissues, follow next in order: under this head the Rudimentary Skeleton of Invertebrate Animals is included, a subject to which the present work is almost entirely devoted.

In this volume upwards of six hundred preparations are described; of these, above four hundred were exhibited to the class during the course, the remainder having been alluded to more or less in detail.

In conclusion, the author would beg again to thank his friend Dr. P. B. Ayres, for his very kind assistanee during the progress of the work.

[^0]
CONTENTS.

STRUCTURE OF THE SKELETON OF PLANTS AND INVERTEBRATE ANIMALS.

LECTURE I.
 page

NATURE OF THE SKELETON 1
SKELETON OF VEGETABLES 6
" SPONGES 11

LECTURE II.
Skeleton of sponges 19

LECTURE III.
SKELETON OF SPONGES 37
" DESMIDIEA 42
" diatomacee 46

LECTURE IV.
skeleton of diatomacea
48

LECTURE V.

```
SKELETON OF DIATOMACEAE

CONTENTS.
LECTURE VI.
SKELETON OF NUMMULTTES, ORBITOIDES, AND ORBITOLITES ..... 86
STRUOTURE OF OOLITES ..... 92
skeleton of xanthidia ..... 94
LECTURE VII.
skeleton of polygastrica ..... 98
,, zOOPHYTES . ..... 112
is HYDROIDA ..... 115
LECTURE VIII.
SKELETON OF ZOOPHYTES-ASTEROIDA ..... 122
LECTURE IX.
SKERETON OF ZOOPHYTES-ASTEROIDA ..... 141
LECTURE X.
SKELETON OF ZOOPHYTES-hELTANTHOIDA ..... 154
SKELETON OF LITHOPHYTES
LECTURE XI.
skeleton of zoophytes-infundibulata ..... 177
hyppocrepia ..... 184
", " acalepere ..... 186
LECTURE XII.
115
SKETETON OF EOHINODERMATA- ominturid: ..... 206
astemiad ..... 208
CONTENTS. ..... vii
LECTURE XIII. page
SKELETON OF ECHINODERMATA-ECHINIDK ..... 213
LECTURE XIV.
SKELETON OF ECHinodernata-holothuriade ..... 236
" " discs of cirrhi ..... 244" ", MADREPORIFORI TUBERCLE AND
SAND CANAL ..... 248
" ," PEDICELLARIE ..... - 251
SIPUNCULIDE ..... 254
LECTURE XV.
SKELETON OF MOLLUSCA-bryozoa ..... 256
", TUNICATA ..... 260
" CONCHIFERA ..... 267
LECTURE XVI.
SKELETON OF MOLLUSCA- CONCHifera ..... 271
LECTURE XVII.
SKELETON OF MOLLUSCA-BRACHIOPODA ..... 284
" " Lamellibranchlata ..... 294
l.ECTURE XVIII.
skeleton of mollusca-dameilibranchiata ..... 299
1.ECTURE XIX.
SKELETON OE MOLLUSCA-GASTEROPODA ..... 311
viii
 CONTENTS.
LECTURE XXI.
skeleton of mollusca-cephalopoda ..... 342LECTURE XXII.
skeleion or mollusca-boring animals ..... \(35 \%\)
SKELE formation of fearls ..... 359 "
LECTURE XXIII.
371
skeleton of articulata-Entozoa ..... 373
rotifera ..... 377
annelida ..... 382
" ", MYRIAPODALECTURE XXIV.
385
sikeleton of articulata-insecta ..... 391
orustacea ..... 399
arachnida ..... 400
" ,. ..... or407
INDEX

\section*{HISTOLOGY OF ANIMALS.}

ON THE STRUCTURE OF THE SKELETON OF INVERTEBRATE ANIMALS.

\section*{LECTURE I.}

\section*{SKELETON OF SPONGES.}

Gentlemen,
The season has now arrived when it devolves upon me to resume my annual course of Histological Lectures, and I take this opportunity of assuring you of the pleasure it gives me, after a long recess, to meet you again in this theatre.

The first part of the preceding course was principally occupied by the examination of the different tissues entering into the composition of certain members of the vegetable kingdom; the second, by the consideration of a few of those employed in the formation of the bodies of animals : illustrated by the examples VOL. II.
enumerated in the four first classes of the table, already given in page 117 of the first volume of these Lectures. They will be found, on refcrence, to be: lst. Simple membrane ; 2nd. the fibrous tissues; and, lastly, those termed cellular, in which were included the cartilaginous, the adipose, and the pigmental tissues. The course concluded with a series of illustrations of the mode in which such substances as lime and silica, strictly belonging to the inorganic kingdom, may be taken up from surrounding media by plants and animals, through a vital action, and be deposited as a secretion in the interior of cells, so as to form an organized wholc.

In the present course, I shall commence the fourth class of tissucs enumerated in our table, viz.: the sclerous or hard tissues, which form the rudimentary skcletons of invertebrate animals, together with those occurring in the vertebrate class, in which the skeleton is wholly or partially composed of a material termed bone.

The first class of animals that we shall consider are the Poriphera, or Sponges, which have long formed a subject of controversy; being considered by some authorities to belong to the vegetable, and by others to the animal kingdom. Recent investigations, however, have shown that they possess certain organs appertaining almost exclusively to animals ; and these, with many other characters, to which I shall hereafter allude, seem to render their animal nature unquestionable. I shall then pass on through the other
invertebrate classes in succession, to the more highly organized skeleton of the vertebrata, and with it include the teeth, which although composed of a modified osseous structurc, belong more strictly to the organs of digestion than to the skcleton.

The term skeleton is applied to the solid framework, giving support to the digestive, locomotive, nervous, and other systems of all animals, and is as remarkable for its endless variety of form as they are themselves. The skeleton is not exclusively confined to animals, since many plants, such as the grasses, have a framework of silica, indestructible both by fire and acids, which may be strictly and appropriately viewed as a skeleton, while other organisms, claimed by the botanist as Algee, have also a siliceous skeleton. In all, the organic is so intimately blended with the inorganic material, that if the former be removed, the latter retains the peculiar forms and markings which existed prior to the destruction of the organic substance.

The skeleton may be composed of one or of many picces, and be either external or internal to the soft parts. In the first case, growth takes place by the addition of new matter, chiefly to the circumference, so that it may keep pace with the development of the soft parts, or it may be periodically shed and formed ancw. In these instances, it is generally said that the skeleton possesses no inherent power of repair ; but it will be hereafter shown that this opinion is incorrect. When the skeleton is internal to the soft
parts, as in the Vertebrata, it is provided with bloodvessels, and in process of growth, not only is there a deposition of new material, but an absorption of that which has become old and cffete: such skeletons, also, possess the means of self-reparation after injury or disease.

In the lowest animals, as in the Sponges and Infusoria, and also in vegetables, the skeleton is chiefly composed of siliea; in the Crustacea and Mollusca, of carbonate of lime; and in the Vertebrata, of a mixture of phosphate and carbonate; while in the Insecta, and certain of the Zoophytes, it is formed of a substance resembling horn.

Before commeneing the subject of the present course, I must again remind you that in the vegetable and animal kingdoms wherever inorganic matcrial, such as lime or silica, is employed to form the skeleton, it has been originally taken up from the surrounding media by a vital action, or deposited from the circulating fluid in the interior of cells. You may also recollect another fact of great importance, which was frequently alluded to in the former course of Lectures, viz., that in most instanees the carthy matter is deposited in a homogeneous form by the cell, although eases are not unfrequent in which the force of crystallization has overeome the modelling power of the cell-wall; and I adduced as examples the brown horny layer found in the Oyster, which is composed of minute cells, each containing a rhombohedral erystal of carbonate
of lime. In the cells of the rudimentary shell of the common Slug, erystallized earbonate of lime is frequently seen, and in the tooth of Mya arenaria, as was first shown by Dr. Carpenter, eaeh eell presents a radiated erystallized arrangement of its eontents; this, however, is not a eonstant, but rather an aeeidental occurrenee. I have made numerous seetions of the tooth in different shells, but I have only once met with the eontents in a erystalline state; and in this instanee, the erystals were less plainly marked than in the speeimens deseribed and figured by Dr. Carpenter.

Another point of great interest is, that after the earthy material composing the skeleton has been deposited within the eell, the eell-wall may be either wholly or partially absorbed in proeess of growth. There is a well-marked instanee of this in the nacreous substanee of shell, for the laminæ seen after deeal-

FIG. 1.


\footnotetext{
A veriieal section of a portion of tooth of Mya arenaria, showing partial absorption of cell-walls, and the production of laminic.
} eifying this structure, are due to the partial absorption of the walls of the eells in which the lime was deposited. Another example, whieh I have repeatedly notieed, oecurs also in the tooth of Mya arenaria, represented in Plate XVII, Fig. 16, Vol. I., of the Histologieal Catalogue, of which Fig. I is a eopy. In one part of the seetion per-
fect hexagonal cells are secn, but in another immediatcly contiguous to it, the cell-walls have becn absorbcd on two opposite sides, and parallcl lamine result.

In certain plants, cspecially in the grasses, canes and Equisetacece, the outer framework, which may be truly named the dermal skcleton, is composed of silica, intimatcly blended with the organic tissue; so that if we subject any of thesc plants to the action of heat, or boiling nitric acid, the original structure of the tissue remains undestroyed. Silica is most abundant in the canes, but it occurs also, in very large quantitics, in the husks of Rice and Wheat, in both of which it not only is met with in the epidermoid colls, but also in the spiral vessels and woody fibrcs. In the Equisetum (especially Equisetum hyemale), known in commerce as the Dutch Rush, the silica is so abundant, and imparts so great a roughness to its cxtcrior, that it is largcly cmployed by cabinet-makers and sculptors, as a substitute for sand-paper. In the stems of the common grasses of this country the silica is accumulated in the epidermis, and as the stems contain potass and lime, when hay- or corn-ricks are burned, masses of a brittle glassy substance, are often found among the ashes. It is indecd possible, by carefully burning a straw before the blow-pipe, to produce a bead of glass. It will be remembered that the presence of silica in plants was fully considered in the preceding course of Lectures, when it occupied our
attention as a eell-secretion; but I now alludc to it again as forming the skeleton of many plants.

Another part of a plant sometimes ealled the skeleton, is that met with in the leaves, whieh after maceration and eleansing exhibit a most beautiful lace-like strueture, being partieularly evident in most of the species of Magnolia and Fig. Many very beautiful specimens of this kind were to be seen in the Great Exhibition, and a large eollection of skeleton leaves, prepared in the same way, was purchased many years ago by the Council of this College from Dr. Buchan, the well-known author of "Domestie Medicine." These skeletons, however, are composed of bundles of woody fibres and vessels, and eontain no earthy ingredient.

In plants, as I have before stated,* inorganie salts oceur in a crystalline form, under the name of raphides; these, however abundant, may be regarded as aecidental deposits, sinee it has been shown that they ean


A portion of the euticle of tion of the Equisetum hyemale, Equisctum hyemale, after long boiling in nitric acid. be produeed by artifieial means. For the benefit of those who may not have been present on former oceasions, I will give a few examples of the dermal siliccous skeleton of plants.

The first specimen is a porFig. 2, which has been boiled

\footnotetext{
* Histological Lectures, Vol. I, p. 42.
}
for a long time in nitric acid, and not only exhibits the cells of the cuticle, with their serrated edges, but also longitudinal rows of oval bodies, which are the stomata.

Fig. 3.


A portion of the husk of a grain of Wheat.

FIG. 4.


Portions of woody filures from the husk of the Rice.

Another good example is a portion of the husk of the Wheat, Fig. 3, in which, in addition to the cells of the cuticle, the spiral vessels, recognized by the coiled-up fibre, also have a skeleton of silica. In the husk of the Rice the peculiar cells of the cuticlc are seen, with bundles of woody fibre and vesscls below them. The specimen is composed entirely of silica, and there may be noticed in one spot, where the cuticle has been torn, a series of clongated fusiform bodies, with serrated edges, Fig. 4, which are all that remain of the woody fibres, proving that in this plant the silica is not confined to the cuticle. All the fibres, however, are not thus serrated; some, as represented at \(b\), may be seen in bundles, which are both longer and thinner than the first mentioned, with perfectly smooth edges.

On the upper surfaee of the leaf of a plant common in our gardens-the Deutzia scabra-there are numerous stellate hairs, whieh mueh resemble Star-fishes in miniature, Fig. 5 ; these are eovered with little tubereles, each star being attached to the euticle by its centre. If the eutiele be


Siliceous cuticle from the under surface of the leaf of Deutzia scabra. removed, and boiled in nitrie acid, the stellate hairs may be as plainly seen as in the natural eondition of the leaf; the erenated lines found in all parts of the objeet representing the eell-walls of the eutiele. This speeimen will serve to show, which it does in a striking manner, that siliea is not confined to the cells of the euticle, but is equally abundant in the hairs and spines developed upon it.
Sueh, then, is a slight sketeh of the siliceous skeleton of vegetables; there are, however, some few plants in which lime is said to perform the same offiee as silica. One of these is our eommon Dianthus, in whieh the lime oeeupies the interior of eells. I cannot quit this subjeet without briefly noticing the Lithophytes, or Stone-plants, with whieh are ineluded our eommon Corallines and Nullipores. These plants are remarkable for the large quantity of caleareous material, arranged in a smooth and regular form upon their external surfaee. The Corallines were originally considered as animals, and polyp eells have been described by Ellis
and Lamarck as cxisting upon their outer surface ; such, however, is not the case, the calcareous material cxisting in the form of a coating of variable thickncss to a mass of cells, evidently of a vcgetable nature. If a transverse section of one of these plants be madc, the interior will be found composed of a series of cclls, some of which contain a green colouring matter, likc chlorophylle, analogous in character to starch.

In the Nullipores, which are the denscst form of Lithophytes, all the intercellular spaces arc fillcd with lime, so that it would appear that the cxternal surface of the ccll-wall posscsses the powcr of scparating lime from the sea-water, and arranging it in a certain dcfinitc form; in the Corallina officinalis every joint is uniformly coated, and we never meet with anything like an exostosis, or greater abundance of the limc in one part than another, ncither arc the joints consolidated, but always remain frec and flexible. This I consider to be a totally distinct process from that occurring in the common Chara, in which the lime is not unfrequently in a crystalline condition, and also from that termed petrifaction; because, in both these cases, the deposit is continuous, and often so extensive that all tracc of vegetable, or filamentous structure is entirely lost, and the mass bccomes as solid as stonc, whereas, in the Nullipores and Corallines, cach filament preserves its original character: the first being a vital, the second an accidental process. As the Corallines and Nullipores have been, and are even now, associated
with the Corals in works on marine zoology, and as they frequently occur in the samc situations, I have thought it best to defer giving an account of thcir minute structure till I take that of the Corals under considcration, as then the differences between them may be readily contrasted.

Concluding this brief and hasty aceount of the skeleton of vegetables, I pass on to the lowest order of the animal kingdom, the Poriphera, or Sponges. These are characterized by a member of our own profession, Dr. Johnston, of Berwick-upon-Tweed, in his work on British Sponges, as "organized bodies, growing in a variety of forms, pcrmanently rooted, unmoving and unirritablc, fleshy, fibro-reticular, or irregularly cellular, clastic and bibulous, composed of a fibro-carneous axis or skeleton, often interwoven with silieeous or calcarcous spicula, and containing an organie gelatine in the intcrsticcs and interior canals. They are reproduced by gelatinous granules called gemmules, which are generated in the interior, but in no special organ. All are aquatic, and with few exceptions, marine."

Sponges present a greater variety in their external form and consisteney, than is seen in any other class of animals; some are as soft as jelly, whilc others are hard and brittle as flint. On the table before you are many varicties, some soft and elastie, others hard and unyielding; the former are cxtensively employed for domestic purposes, the lattcr are preserved only in museums. Of these, one in particular is of large
size, and from its cup-like form has received the name of Neptune's Goblet. If the external surfaee of any sponge be cxamined, two sets of holes, of different sizes, will be seen, which are the mouths of eanals, the one set termed in-current, the other ex-current. Through these, in the living state, water is continually passing, entering by the small eanals, and eseaping in strong currents through the larger ones. This was first discovered by Professor Grant, to whom we are indebted for the earliest and most aecurate aeeount of these animals, published many years ago, in the Edinburgh Philosophieal Journal. The eirculation of water through the sponges has been, and is even now, doubted by many observers; but any resident at the sea-coast, where sponges of the genus Grantia, or Halichondria, are found, may easily reeognize the phenomenon by placing them in a vessel of sea-water with whieh small blaek partieles, such as powdered eoal or scaling-wax, have been mixed; these will plainly indicate any movement in the water, however feeble, eaused by the currents above deseribed. These eurrents have been ascertained to be produced by the action of eilia, whieh were first diseovered by Dr. Dobie. Mr. Bowerbank has sinee observed them in motion in a small sponge (Grantia compressa), as shown at \(g\), in Fig. 10. The presence of cilia in the eamals of sponges, which eanals may be regarded either as respiratory or digestive cavities, would appear to be another proof of the animal nature of these bodies.

I eommence with the examination of the skeleton of those sponges in daily use; and before you is a collection of the prineipal speeies, in the condition in which they are imported into this country, with the wholesale price of eaeh affixed, as a measure of their comparative value. They are all in the dry state, and a person who has never seen a sponge recently taken from the sea, ean form but little idea of its strueture from these specimens, for when living the elastie keratose, or horny skeleton, is enveloped in a mass of gelatinous substance, whieh has been destroyed by maeeration and drying. Sponges are principally imported from the Mediterranean and the West Indies. The former are generally known as Turkey Sponges, and are eonsidered the most valuable, being of the finest fibre and remarkable for their elasticity, whilst the latter are principally purchased by Jews, and sold in the strects. Some kinds are procured from the Bahama Islands, and are remarkable for the number of fragments of eorals and foraminiferous shells imbedded in them. One of these loses 75 per eent of its weight when deprived of its ealeareous matter, and sueh a sponge is worth only 7 d . per lb . in the market. A variety of other speeimens are nearly equally valueless for domestie use.

We will now proeeed to eonsider the minute strueture of the horny skeleton of some of these sponges, and shall take as a first example a portion of the fibre of one of the finest Turkey Sponges. It consists,
as shown in Fig. 6, of a series of deliente, solid, braneh-

FIG. 6.


A portion of the horny skeleton of a Turkey Sponge.

FIG. 7.


A portion of the horny skeleton of a sponge of the genus Veronyia, with tubular fibres.

FIG. 8.


Horny fibres of a sponge of the genus Halichondria, having spicula within them.
ing filaments, averaging \(\frac{1}{900}\) th of an ineh in diameter. In another speeimen the fibre is mueh eoarser, and of a browner tint; but in those sponges that are so stiff as to render them unfit for use the fibre is of larger size, and tubular; some are almost as stiff as wire, and belong to the genus Verongia, Fig. 7. It sometimes happens, however, that amongst the fibres of the finest Turkey sponge we meet here and there with a few fibres nearly double the size of the rest, which not unfrequently contain siliceous bodies, termed spieula; these may be eonsidered as the first indieation of the siliecous element of the skeleton. In many sponges of the genus Halichondria, as shown in Fig. 8, nearly every fibre is full of spieula; these are readily seen through the transparent horny matter. It may be readily demonstrated that the spieula, which are remarkable both for their peeuliar
forms, and for their cylindrical shape, are not mere masses of silica, but are composed of a mixture of that material and animal matter intimately blended, which renders it probable that they are developed originally in the interior of cells. Each spiculum exhibits more or less of a central cavity, and if a portion of sponge containing some of the larger kinds be subjected to the action of the blow-pipe flame, the external surface, as shown at A, Fig. 9, as well as the internal cavity, as seen at BCD, will exhibit traces of charred animal matter, when the heat has not been so intense, or longcontinued, as to destroy it by complete combustion.


ABCD, spicula of Sponye imperfectly decarbonized. E, portion of a large spiculum, showing its laminated arrangement. The spicula, represented by A B C D, are from a species of Tethea. I am not aware of any chemical means of dissolving the silica of the siliceous spicula and leaving the organic basis untouched; but in the genus Grantia the spicula being calcareous, the lime may be dissolved by dilute hydrochloric acid, and the organic basis, remaining will be found to retain, to a considerable extent, the original form of the spiculum. The concentric laminated arrangement of the large spicula, as shown in Fig. 9, e, will be noticed on a future occasion. As a general rule, the spicula are most abundint in those sponges in which the animal
matter is the softest. In our common fresh-water sponge, Spongilla fluviatilis, there is a framework of siliceous spicula, pointed at both extremities, and held together by a soft, transparent, gelatinous substance; these spicula occur in bundles of three or more, and their disposition is precisely that of the horny fibres in the Turkey sponge. In another specimen, probably belonging to the genus Halichondria, the whole fibrous framework, Fig. 10, a, is composed of a delicate horny
fig. 10.

\(a\), sponge fibres full of spicula; \(l\), detached spicula ; \(c\), tubereulated spicula projecting from the horny fibres; \(d\), detached spiculum; \(f\), portion of Grantia compressa; \(g\), cilia in an in-current caual.
substance, completely filled with minute spicula like those represented at \(b\); they are arranged in parallel lines, and always follow the direction of the fibres. In Hatichondria, a sponge of firm consistency, the skeleton is made
up of horny fibres, from the sides of whieh sharppointed, eonieal, and spinous spieula projeet into the eavities of the sponge ; these, as shown at \(c d\), Fig. 10, articulate with the fibre by a globular, expanded portion, or head. When sueh a sponge is dried, the spicula appear without any investment, but in the moist state they are eompletely covered with a corneous substanee. Their offiee appears to be, that of preventing the entranee of foreign bodies between the fibres eomposing the framework. Sometimes the framework is made up entirely of siliea, as in the siliceous sponge of Barbadoes, Dictyochalix pumiceus, speeimens of whieh are preserved in the British Museum, and in that of the Bristol Institution. In this speeies, the silica forms a coarse fibrous net-work, similar in arrangement to the horny fibre of some of the keratose sponges, as shown at \(a a\), Fig. 11, but many of the fibres are eovered with minute tubereles, and the silica itself is as transparent as the finest glass. The thick fibres represented by \(a\) a, form all the eoarser parts of the sponge, but there are other elongated spieulum-like bodies, \(b, c\) and \(d\), whieh are employed to eomplete the framework. Some of these spieula are of quadri-radiate figure, as shown at \(c\); a few, as represented at \(d d\), are mueh more minute, and form a framework of themselves.

In addition to these peeuliar spieula are others of still more remarkable figure, shown at \(e c\), eonsisting of a number of very minute equal-sized, pin-shaped bodies, VOL. II.
projecting from a central nucleus; these vary considerably in sizc, and occur in very great numbers on the
fig. 11.

a a coarse framework of a siliccous sponge, Dictyochalix pumiceus; \(b, c\), clongated spiculum-like bodies; \(d d\), portions of minute framework; \(c e\), peculiar compound pin-shaped spicula from the same sponge.
outcr surface of the sponge, occupying preciscly the same situation as the stellate spicula of many specics of Tethea. In the next Lecturc 1 shall demonstrate some of the most remarkable forms of spicula, detached from the animal mattcr, many of which arc characteristic of particular gencra and species, and shall also notice the reproductive bodics, or Gcmmules.

\section*{LECTURE II.}

\section*{SKELETON OF SP0NGES.}

In the preceding Lecture, after a cursory glance at the structure of the siliccous and calcareous skeletons of plants, I described the horny elcment of the skeleton of sponges, and the mode in which this is further strengthened by the addition of acicular bodies, composed of silica or lime, called spicula. I now proceed to consider some of the most remarkable of such spicula, which have bocn detached from their horny investment either by burning, or by the action of boiling nitric acid.

The first is of frequent occurrence in most of our fresh-watcr sponges, which, from being pointed at both extremitics, is termed, bi-acerate, and may be either straight or slightly curyed, as shown at E , in Fig. 12, and \(b\), in Fig. 10. Other spicula are very
common in which both extremitics are rounded, and the shaft is of equal size throughout, such specimens are termed cylindrical; the shaft is occasionally curved, as shown at F, Fig. 12. Another, and more peculiar

TIG. 12.


A, bi-spinulate spiculum. B, spiculum with a single-hooked cxtremity. c, curved conical spiculum. d, spinulate spiculum. e, bi-acerate spiculum. F, curved cylindrical spiculum. G, cxpando-ternate spiculum. II, dicho-tomo-expando-tcrnate spiculum. I, hooked or recurvate spiculum. J , hooked spiculum, with bifurcated extromities. к, peculiar expando-teruate spiculum.
form of spiculum, shown at D , is called spinulate, from its resemblance to a pin; one extremity being globular, like the head of a pin, the other pointed. Some sponges contain spicula having both extremities expanded into a knob, like that shown at \(A\), to which the term bi-spinulate has been given; these may cither be straight or slightly curved, as seen at \(d\), in Fig. 13.

Another form of spiculum is conical, and may also be either straight and smooth throughout, or slightly bent, as shown at c. Conical spicula, having minute spincs or tubercles, arranged with or without much order, are very common, such, for instance, as those represented at \(a\), in Fig. 13 ; others occur, as seen at \(b\), which are

FIG. 13.

\(a\), conical spicula with spines; \(b\), conical spicula with spincs arranged in parallel rows, and in the form of rings; \(c\), spinulate spicula; \(d\), curved bispinulate spiculum; \(e\), spiculum with hooks at both cxtremitics; \(f\), spiculum with stellate extremities; \(g, h\), tri-radiate siliceous spicula; \(i\), quadri-radiate spiculum.
surrounded by a series of rings of minute spines. In many sponges having conical spicula, as for instance, those shown at \(c\), \(d\), in Fig. 10, the extremity or base, by which they are attached to the firm horny framework of the sponge, is slightly expanded, the remaining portion projecting into the cavities or canals.

When perfeetly developed and dried, these spieula appear to be invested with little or no organie matter ; their office cannot be that of adding strength to the skeleton, but like the spines of plants, they are probably employed as a means of defence. Another form of spiculum is remarkable for its length, and for having one of its extremities pointed and the other divided into two or more branches, as shown at G and k , in Fig. 12 ; these are called either expando-binate or ternate, according to the number of branehes, those represented at \(G\) and к being both of the latter kind; it sometimes happens, however, as shown at H , that the expanded extremities again divide, to such spicula the term dichotomo-ex-pando-ternate is applied.

Some spieula, very mueh elongated, and of smaller diameter than the finest spun glass, are common in eertain speeies of Pachymatisma; these are pointed at one extremity, but have one, two, three, or even four reeurved hooks at the other, resembling the flukes of an anehor, as shown at B and I, Fig. 12: one very curious variety of this last spiculum is shown at J , each fluke being bifurcated. The spicula represented by G and I, were obtained from a sponge of the genus Tethea, and their office appears to be that of attaching. the erust to the central part of the sponge; they oceur in large bundles, and are visible to the naked eye as brilliant white radii.

All the long spieula above deseribed have one extremity pointed, but there are sponges in which shorter
spicula oeeasionally occur having the shaft of cylindrical figure, with one extremity rounded, and the other provided with six or more short hooks ; one of these is represented at \(f\), in Plate X , Fig. 11, of the first volume of the Histological Catalogue. A still more curious form of spiculum is that represented at \(e\), in Fig. 13 ; it is of small size, but is provided with spines upon the shaft, and recurved hooks at either extremity. In a sponge, probably of the genus Geodia, was found the peculiar spiculum represented at \(f\), in Fig. 13; it consists of a cylindrical shaft, having at both extremities a series of radiated spinous processes, somewhat resembling the petals of a flower.

Other spicula are very peculiar, consisting of a central portion, or shaft, the extremities of which are furnished with two or three branches, each of these again subdividing into two or three still smaller branches. These spicula interlace with each other, and produce a sort of coarse net-work; they are generally found in small sponges, attached to masses of coral; two specimens of the largest kind are shown at \(g g\), in Fig. 14. In the same sponge were others of smaller size, and with fewer branches, as represented by \(d, e\) and \(f\) : to such spicula the term branched may be well applied. Another sponge contains spieula of the form I have termed tuberculated; they are of large size, and eovered with rows of flattened tubercles, as shown at \(c\), in Fig. 14. The sponges to which they naturally belong I have never seen, but all my speci-
mens were obtained from the root of an Aleyonium, Alcyonium favosum, from Sumatra, and werc mixed with
fig. 14.

\(a\), bi-curvate spiculum; \(b\), curved spiculum ; \(c\), tubcrculated spiculum; \(d, e, f, g g\), branched spicula; \(h\), bi-curvate anchorate spicula; \(i\), stcllate spicula; \(k, l, m\), multi-radiate spicula.
grains of sand and spicula of various kinds, from other sponges. A similar species, from a different part of the world, in the possession of a friend, when boiled in nitric acid yielded spicula of precisely the same kind; so mueh so, that when a specimen was shown me, I pronounced from whence it came.

The siliceous remains of a small sponge, attached to the root of a Gorgonia, Isis ochracea, I found extremely rich in peculiar forms of spicula. The most striking was of a reticular figure, covered with minute spines, as shown at A, in Fig. 15. It forcibly reminded
mc of the siliceous skeleton of the Dictyochalix pumiceus, before alluded to, and probably may be a portion


Fig 15.


A, portion of the skelcton of a siliceous sponge. \(\mathbf{B}, \mathrm{C}, \mathrm{E}\), flattened spicula. D D, pin-shaped spicula. F, tri-radiate spieula in Grantia compressa. н, granules of sand imbedded in horny fibre of Dysidea.
of a siliceous sponge. Other spicula occur in the same specimen, the most remarkable of these are in the form of scales, as shown at B, C, E; they may be known by their flattened figure, and by having black dots in the centre. The edges of some of these spicula are smooth, but in most cases they are serrated. Another very singular form of spiculum, is also found in the same sponge : it is of small size, and pin-shaped at one extremity, and at the other is rounded, but in the centre of the rotundity there is a short conical spine; two of these spicula are shown at D D. Spicula of the shape termed curved, are occasionally mot with in certain sinall
sponges ; one of these, of peculiar figure, is represented at \(b\), in Fig. 14. In another sponge from the South Seas bi-curvate spieula, of the shape shown at \(a\), are very common. Mr. Shadbolt, however, has deteeted some still more curious spicula than these last; they are twice curved, like that shown at \(a\), but each extremity is expanded, so as to resemble the fluke of an anchor; to such form, the term bi-curvate anchorate has been given; two of these spieula are represented at \(h\). The sponge in whieh they oecurred, like that of the preceding, was of small size, and brought from the South Seas.

In sponges of the genus Grantia, the spieula are generally of tri-radiate figure, as shown at \(f\), in Fig. 10, and F , in Fig. 15 ; they are composed of carbonate of lime ; triradiate spicula of silica, however, are not uncommon: two of these are represented at \(g\) and \(h\), in Fig. 13. Another large spiculum, shown at \(i\), appears at first sight to belong to the tri-radiate variety; but it will be seen that there is a circular marking in the centre, where the three arms meet, whieh proves that there must have been another arm, or a shaft, projeeting from this situation. Minute spieula, having six or more arms, are very abundant in sponges of the genus Tethea; they are principally found in the erust; three varieties are represented at \(k, l, m\), in Fig. 14.

Having noticed some of the principal forms of spicula in the framework of sponges, I next proeeed to those occurring in the interspaces between the elon-
gated varicties, and which are generally of the stellate form, that is, consisting of a central spherical nuclcus, from which a large number of conical spincs radiatc. Those shown at \(h\), in Fig. 14, werc also found in a sponge of the genus Tethea, and it may be noticed that the nucleus is of large size, in proportion to the spincs, while in other specimens of this variety the spicula are of the same diamctcr, but the spines are much larger, and the nucleus hardly perceptible. In the sponges containing these spicula, most of which belong to the genus Tethea or Geodia, other stcllate forms occur in very great abundance, but they are principally confincd to the crust; they arc about onefourth the size of the two preccding, and not very unlike the representations given of stars of the first magnitude on our maps and globes.

I must now speak of a very remarkable sponge, first accurately described by Mr. Bowerbank, which selects minute, nearly equal-sized particles of sand, and envelopes them with horny mattcr, so as, with a few long spicula, to form the skelcton. This sponge was found at Brighton by Mr. Bowcrbank, and from its being cxcecdingly brittlc it has been named by him, Dysidea fragilis. Therc is another sponge of the same genus, in which a similar structure is found, and both have been described by Mr. Bowerbank, in the first volume of the Transactions of the Microscopical Socicty. This sclection of grains of sand differs from that of certain Annellides, which merely cement
together small portions of all kinds of forcign bodics, but do not entircly enclose them in animal matter. Parts of two of the horny fibres of this spongc, with the grains of sand contained within them, are represented at H, in Fig. 15.

There are other peculiar bodics found in spongesthe reproductive organs, or Gcmmules. If a portion of the fresh-water sponge, Spongilla fluviatilis, be shaken in a little water, a number of minute grains, of a ycllow colour, will be washed out from the tissuc composing the skeleton. When slightly acted on by nitric acid, and cxamined with a power of 200 diametcrs, the surface of the gemmulcs, as shown at A , in Fig. 16, or still better at D , is secn to be studded with minute stellæ, which are the outer extremities of a crust of spicula of a pcculiar form, termed bi-rotulate, from thcir resemblance to an axle and two wheels. They were first described by Ehrenberg, under the name of Amphidiscus rotula, he imagining them to be infusoria. It will be found, however, that they form a distinct coating to the gemmules, one wheel being imbedded in the crust, and the other projecting cxternally. Their true position may be distinctly scen by bringing a portion of the cdgc of the gemmulc into focus, as shown at b. When a sponge in which such gemmules are contained is boiled in nitric acid the animal matter is destroyed and the spicula detached. In a portion of the siliceous remains of one of these sponges a great number of the bi-rotulate spicula,
three of which are represented at \(c\), will be found intermixed with other slightly spinous ones, having pointed extremities. This sponge, Spongilla fluviatilis, is very common in large sheets of water, especially where there are piles driven into the ground in

FIG. 16.


A, gemmule of Spongilla fluviatilis. B, spieula on the surfaee (side view).
c, three spieula, magnified 600 diameters. \(\quad\), end view of same spieula.
E, gemmules of undeseribed sponge. F, portion of the surface of the same
highly magnified. G, oval gemmule. a, pore. H, oval gemmule, showing.
spieula and pore.
deep water. In the Commercial Docks, at Rotherhithe, where timber is kept, pieees that have remained undisturbed for a long time have generally speeimens adhering to them. Spicula from a small sponge found in a pond at Blackheath, and given to me by Mr. Hud-
son, of Greenwich, as in all probability those of a new species, I discovered, on eareful cxamination, to be malformed specimens of Spongilla fluviatilis. Some of the long spicula, as shown in Fig. 17, present a moniliform appearance, others have portions of spicula
fig. 17.


Malformed spicula of Spongilla fluviatilis; a a a, spicula of the gemmules.
projecting from them at a more or less acute angle. The spicula of the gemmules are present, they likewise are malformed, one or both of the wheels having its rays sometimes developed to a very great extent, but those shown at \(a a a\), are sufficient to prove that it belongs to the species to which I have referred it. In order to exhibit these spicula, a power of 250 diameters is required, consequently, only a few can be
seen in the field at one time, but by moving the stage adjustments, many, both perfeet and malformed speeimens are seen. Gemmules are found abundantly in other sponges, but their silieeous framework is more extensive, and oeeurs in the form of minute spicula.

In many species the gemmules are confined to the outer erust, in others they are situated in the interior. In some, as in Pachymatisma, they form a hard external eoating, whieh, when removed and boiled in nitrie aeid, is seen to be almost entirely composed of the beautiful objects represented in Fig. 18, some of


A, circular gemmule. b, c, D, gemmules, showing the radiated disposition of the spicula. E, F, G, oval gemmules, showing the ends of their spicula. н, gemmulc of Spongilla fluviatilis protected by spicula.
whieh are cireular, as shown at \(\mathrm{A}, \mathrm{B}, \mathrm{C}\), others oval,
as at E, F, G, and all have a central pore or depression, as shown at \(u\), in Fig. 16, g, and at C and F, Fig. 18, upon some part of their external surface. The smaller gemmules, as seen at D, Fig. 18, are covered with pointed spicula, which radiate from the centre; the larger ones, as shown at B and G , have the projecting extremities of the spicula more angular, but still their radiated disposition may be observed in all but the very opaque speeimens. The gemmules of a sponge of the genus Tethea, as shown at A and c , have the spicula exceedingly abundant, almost all are of an oval figure, and the central cireular spot, or pore, is very distinct; this, when carefully examined, will exhibit a dark or light appearanee, according as it is either in or out of focus.

In an undescribed species of the genus Pachymatisma the whole outer portion of the crust, which is extremely brittle, is almost entirely composed of gemmules, remarkable for the peculiarity of their figure, being somewhat fiddle-shaped, as seen at E, Fig. 16 ; they are flattened, and covered with minute tubercles, which are in reality the ends of the spicula. I could not at first discover what these were, but when, after prolonged cxamination, I saw the central pore, I was satisfied from this circumstanee, and from their position, that they must be gemmules: the surfaee, when viewed with a power of 600 diametcrs, presented the tuberculated appearance shown at F . If a minute portion of the crust of this sponge be suffi-
ciently magnified, it is secn to be almost entirely composed of gemmules. The sponge in which I first found the large tuberculated spicula, contained gemmules belonging to another specics, probably of the samc genus, but shorter, and more oval than the others; amongst them are a few imperfectly developed, as shown at H, Fig. 16, which, like those of the Tethea, exhibit radiating spicula. Gemmules of a somewhat similar shape to those last described were obtained from the crust of a sponge, probably of the genus Pachymatisma. They are of uniform size, but rather larger, and more decidedly oval than the last, and the pore, as shown at \(a\), Fig. 16, G, is more conspicuous than the extremities of the spicula, although the specimen from which they were obtained was not larger than a filbert.

The gemmules, or ova, as they are sometimes callcd, when in the living state are said to be provided with cilia, by the movements of which they escape from the parent, and each is capablc of devcloping an entire animal. I have never had an opportunity of seeing: the gemmules in a living state in any marine sponge, although I have often met with them in our common fresh-water species, Spongilla fluviatilis; but as yet I have paid little or no attention to their development. This has been very carefully done by Mr. Carter, an Assistant Surgeon in the East India Company's servicc, who discovered several species of Spongilla in great abundance in some of the water-tanks in the Island VOL. II.
of Bombay. He states that the fresh-water sponge is composed of a flcshy mass, supportcd by a fibrous reticulated horny skeleton. The gemmules, or seedlike bodics, occur in the basc or root of the sponge, and arc generally proteeted by a framcwork of spicula, as shown at H , in Fig. 18. They are of a ycllow colour, globular or ovoid, each presenting a single infundibular depression, or pore, on its surface, which communicates with the interior. Within the tough, coriaceous membranc and its coating of spicula are a multitudc of more or less transparent cells, which when presscd out under water are at first irregular in form and motionless, but soon swell out by endosmose, and burst in a few hours. Their visible contents, according to Mr. Carter, consisting of a mass of germs occupying about two-thirds of the cavity of the cell, subside, and gradually spread over the bottom of the vessel in which they are contained. They vary in diameter from the \(\frac{1}{300}\) th of an inch, and are cndowed with locomotive powers. Each germ consists of a discoid, cireular, well-dcfined, translucent cell, which is green or yel-lowish-green at the circumfercnce, pale and colourlcss towards the centrc, and this cell appcars to be surrounded by a colourless transparent capsule, the nature of which is unknown. Soon after the germs have escaped from the gemmule they collect into insulated groups, united by a scmi-transparent mucilage; the contents of the largest germs then undergo a change, and the germs themselves gradually disappear, their
place being occupied by a successive development of protean, or active polymorphic cells. These protean are of various forms, and their cell-walls assume the most fantastic figures-spheroidal, polygonal, asteroid, dendritic, \&c., as shown at \(b, c, d, e, f\), in Fig. 19.
fig. 19.

\(a\), sponge in an early stage of development; \(b, c, d, e, f\), protean cells ; \(g g\), cells developing into fibres; \(h\), spicula; \(j, k\), germ cols.

Shortly after the formation of the mucilage a series of threads are developed in its substance, which extend like a net-work from any thread already present, or from any germs or partieles contained in the water. The fleshy substance of the sponge is composed of cells, about the \(\frac{1}{7000}\) th of an inch in diameter, within which are a number of granules, and one or more
eontraeting protean vesiclcs. Thesc eclls are continually changing their form and position, likc those derived from the gemmules, with which they arc closcly allicd, if not identical. The horny skclcton is developed in the intercellular substance, probably from a series of elongatcd cells likc those I have deseribed when speaking of the structure of the Boleti and Mushrooms. Within the cells of this horny matter the spicula are secretcd, and in many of the fibres, when cxamincd by polarized light, transverse markings may be seen, which are doubtless the remains of the ccll-walls.

It would appear from Mr. Cartcr's observations that the growth of fresh-watcr sponges takes placc during the autumn, by a rapid development of the fleshy substanee; towards winter the gemmules arc formcd, and when these are sct frec their outer case is ruptured, and each of the numerous cells therein containcd is capable of produeing a new individual.

\section*{LECTURE III.}

\section*{SKELETON OF SPONGES, DESMIDIE A AND DIATOMACE Æ.}

In my last Lecture I described the structure of the skeleton of recent fresh-water and marine sponges, and some of the most remarkable forms of the calcareous and siliceous spicula imbedded in the horny substance; I now proceed to notice the position these spicula occupy in the body of the animal.

Almost all sponges are parasitic; they are attached by a broad portion, or base, to pebbles, corals, shells, and some few are even found upon active, moving: Crustaceans. In the extensive collection of Mr. Bowerbank, are many specimens in which the sponge has covered small Crabs to such an extent as almost to impede their movements. Other sponges assume a confervoid form, and make their way through the foramina of corals, and in more than one instance I
have found a sponge forming a coarse net-work between the outer and inner laminæ of the shells of large Pinnce. The fresh-water sponges will grow even upon light bodies, such as pieces of straw floating upon the surfaee of the water, as was first pointed out by Mr. Carter, in a species of Spongilla found by him in the Island of Bombay.

Sponges, it would appear, were more numerous in the seas of the later geological epochs than at present, for there is every reason to believe that most flints were originally sponges, those from the chalk even retain their original form, and are found in the beds or layers in which they formerly lived, whilst those occurring as pebbles on our sea-shores, owe their rounded shape to the rolling action of the water. Many of those, however, which are common on the shore at Brighton, exhibit the remains of sponge tissue even to the naked eye. I possess some flints from the chalk of Wiltshire, which have not only retained their original shape, but still plainly show their in-current and ex-current eanals. Recent sponges from the Sussex coast present forms preeisely similar to some chalk flints, but it is from sections made sufficiently thin to be transparent, and examined by the microscope, that we learn their true nature and origin.

It must not be imagined that sponges in their living state present the same appearance as those seen in museums ; these last must be regarded simply as skeletons. Every horny sponge, when living, was invested
with a coating of a jelly-like substance, which can only bc preserved by placing the sponge in spirit immediately after its removal from the watcr. This gelatinous substance is composed of cclls, probably proteïform, as in the fresh-water sponges alluded to in my last Lecture, and it is by it, and not by the horny skeleton, that the silica is attracted from the surrounding water. In sections of many flints the horny skeleton is frequently present, and in some cases the spicula are contained within its fibres.

Most of the sponges of the earlier geological periods had tubular fibres, but in all the existing species, with the exception of the Spongia fistularis of \(\mathrm{D}_{1}\). Grant, as shown at E, Fig. 20, and one other species, they arc solid. These tubular fibres arc very commonly filled with ferruginous mattcrs, which accounts for the colour of many of the remains in flint. The MossAgates, which arc so frequently cut and polished for brooches and other ornaments, are flints containing the fossilized remains of sponges; many of thesc arc found among the pebbles at Brighton, but the London market is chiefly supplied from Oberstein, in Germany, where they are cut and polished by water-power, and sold in large numbers from \(10 d\). to \(1 s\). per specimen. All the bcautiful moss-like figures shown at A, B, C, Fig. 20, are produced by the remains of the skelctons of spongcs, as was first pointed out by Mr. Bowcrbank, in a paper published in the Transactions of the Geological Socicty. The colourcd fibres seen in the Green

Jaspers of the East are of the same character. Scetions of Moss-Agates, in which the presence of the

FIG. 20.


A, B, c, remains of sponge-tissue found in Moss-Agates. D, a Mocha-Stone, showing a metallic crystallization. E, portion of the skeleton of a large sponge found in a Moss-Agate. F, section of a chert-flint, exlibiting spicula of sponge. G, Xanthidium spinosum. H, Xanthidium recurvatum. 1, Xanthidium tubiferum. k, Xanthidium ranosum, all found in sections of flintstones.
fibrous skelcton of sponges may be distinctly recognized, are very commonly of a bright-red colour, the surrounding flint being more or less transparent, and almost eolourless. In other rarer speeimens the sponge-fibres are of a beautiful green colour, and resemble those of a recent conferva, which has been viewed by some as a strong proof of the vegetable nature of sponges.

A bloek of flint of eonsiderable size, from Wiltshire, I found on examination to be made up of a silicified sponge, remarkable for the beauty of its skeleton, and composed of branehing fibres of a rieh red colour. In addition to the horny skeleton, the spieula, and even the gemmules of sponges are often present, and, as recent sponges eontain portions of sand, shells and eorals in their eavities, these remains also are oecasionally met with in flint. In a transparent kind, eommonly called chert-flint, as shown at F, in Fig. 20, there are large spieula, visible even to the naked eye, and amongst them a few of the tri-radiate form, whieh I have said before are peeuliar to sponges of the genus Grantia. In other sections of MossAgate, with numerous spieula and horny fibres, are gemmules, having minute spines projeeting from their outer surfaee.

In other sections of flint, fragments of minute corals, which may be known by their large size and reticulate arrangement, are easily seen, and I found a pieee of wood, about two inehes in length, imbedded in a rough flint from Gravesend. Fish-scales are very common in some kinds of flint, as well as the horny skeletons of various speeies of Xanthidium, four of which are represented by G, H, I, к, in Fig. 20. It must, however, be borne in mind that the mosslike appearanee, in the so-called Mocha-stones, as shown at D, in Fig. 20, is not due to spongetissue, but in all probability to some metallic crystal-
lization. Before lcaving the subject of sponges, I must notiee a portion of the shell of the Pinna-Oyster, in which a series of branching filaments, running betwecn the outer and inner layers of the shell, may be scen by the unassisted eye. When these are viewed with a power of 40 diameters, they are found to be composed of the fibrous skeleton of a sponge, of a species rcminding us again of a confervoid growth, but when exposed to a red heat the characteristie odour given off from the fibres is very perecptible, and indieative of their animal nature.

Our attention is next demanded by a class of organized beings, the true position of many of which in the kingdom of nature is still doubtful ; some authorities considering them to be Alga, whilst others regard them as Infusoria. According to botanists, the Alga-one of the lowest classes of vegetables-arc divided into five orders: viz., Diatomacece, Confervасес, Fисасес, Ceramiacea and Characece. The Diatomacere are eharacterized as angular fragmentary bodies, brittle, and multiplying by spontancous fission; they are divided into three sub-orders, Cymbellece, Hydrolinece and Desmidiec. The Cymbellece have a siliceous, the two others a membranous or horny skcleton, and the Desmidieca are further distinguished from the rest by containing starch, a substance peculiar to vegctables, and therefore excluding them from the animal kingdom. The Cymbellece, although possessing no starch, arc now classed with Algce ; but it is
of little importance for our present purpose whether they be animals or vegetables, as we have merely to consider the nature of their skeletons, which are interesting not only for the beauty of form and delicacy of marking, exhibited by their surfaces, but on account of the important part they have played in the formation of the crust of our planet.

I shall first notice the Desmidiec, and before considering their skeletons will briefly point out some of their principal characters. The Desmidiece have been accurately described by Mr. John Ralfs, a member of the medical profession, in his beautiful and elaborate work, from which I have gained the greater part of the information I shall be able to give on this subject. With the exception of the genus Closterium, which is sometimes brown, all are of a green colour, and inhabit fresh-water, whereas the Diatomacece are mostly marine. Each cell or frond of the Desmidiece consists of two symmetrical valves or segments, united by a central suture, between which the newly-formed portions are interposed. They are reproduced in two ways, cither by the escape of the granular contents of the mature frond, or by the formation of sporangia, the result of conjugation, as shown at \(G\) and by \(a a\) in I , K, L, Fig. 21. In most of the species, the frond divides spontaneously, which, however, is now considered as the growth, and not the reproduction of the plant, as all the cells arrive at maturity about the same time. The conjugation, or coupling of the confcrve, has been
described in the first volume of the Histological Lectures ; these, however, conjugate whilst the cells still form part of a filament, but the Desmidiex invariably separate into single joints before their conjugation and a communication bcing established between
fig. 21.






D


B


A

A, Pediastrum pertusum. B, Pediastrum granulatum. c, Scenedesmus quadricauda. D, Pediastrum tetras. E, F, Closteria. G, conjugation of Closterium acutum. H, Xanthidium cristatum. I, Staurastrum polymorplum in conjugation. k, Staurastrum spinosum in conjugation. u, Arthrodesmus incus in conjugation.
two cells, a seed-like mass, or sporangium, is the result. According to Mr. Ralfs, in most of the species, the valves of the shells become detached after they are emptied of their contents. The sporangia, in some
genera, continue smooth and unaltercd; in others they pass through a series of changes, and in consequence are liable to be mistaken for so many different specics. All the Desmidiece are more or less gelatinous, the gelatinous substance investing the fronds and binding them firmly to each other. In certain specimens of Closterium, there is a molecular movement of granules, and a circulation of fluid between the horny shcll and the endochrome ; a spontaneous motion of the entire organism is also often seen in the field of the microscopc.

The Desmidiece resist decomposition, and possess the power, like many of the Algce and the green parts of plants in general, of decomposing carbonic acid under the influence of light, appropriating the carbon to themselves and cxhaling oxygen. The Sphorozosma vertebratum affords a good example of the filamentous species of this tribe, and consists of a series of cclls, of an elongated oval figure, joined end to end, each cell being composed of a horny mombrane, containing within its cavity the green colouring matter, or cndochrome. In some species of the genus Closterium, Fig. 21, E, F, G, the horny skeleton is of a brown colour, and in these the circulation of fluid, and movement of minute molccules, was first noticed and accurately described by the late Mr. Dalrymple. The genera Pediastrum, Fig. 21, A, B, D, Xanthidium, H, Staurastrum, I, K, and Arthrodesmus, L, are remarkable for their beautiful stellate or cruciform shape, and a well-defined central division or fissure ; they suffi-
ciently illustrate the structure of the skeleton of this tribe of plants, the most durable part of which is composed of a transparent horny material.

The skeletons of the next sub-order of the Diatomacea, the Cymbellea, are composed of organic matter intimately blended with silica, and indestructible both by heat and acids. All the members of this sub-order, like those of the Desmidiece, are remarkable not only for the beauty of their form, but still more so for the extreme delicaey of their markings, some of which even defy the highest powers of the microscope to define, and on this aecount they are generally employed as testobjects. These are the minute bodies which constitute the Bacillaria, or stick-like animalcules of Ehrenberg, some of which inhabit fresh, others brackish water, but a few are exelusively marine. Many of the Diatomacea oeeur as single frustules, or cells, others are joined end to end, and form long, flattened ribbons; some are conneeted by their corners, so as to resemble zig-zag chains, others again are attached to foreign bodies by means of a simple or branching stem, whilst a few genera are invested with a gelatinous envelope.

The Navicula, so abundant in our ditches, ponds and marshes, are, as their name implies, more or less boat-shaped, and of a green hue, in consequenee of containing a number of granules of that colour. They possess the power of spontaneous mobility, and may be oecasionally seen to glide slowly across the field of the mieroscope. In the living state the markings on their
surfaccs are not very apparent, but after boiling in nitric acid, the green matter entirely disappears, and with the same magnifying power the surfaces are seen to be covered with delicate strix, which, under the highest powers, and with carcful management of the light, are readily resolved into cells, dots, or lines.

Since the employment of these objects as tests of the definition of microscopes, obscrvers have differed greatly as to the nature of their markings: the striæ were regarded at first as lincs, but recent investigation has shown that the lines arc clearly made up of dots, and it is now disputed whether these dots are causcd by elevations or depressions of the surface. In my opinion, all the coarser markings are of cellular form, and those having a dotted appearance, as shown at B , in Fig. 28, are due rather to pits, or depressions, than to elevations of the surface ; they arc not, however, foramina, there being a thin layer of silica bencath them. In order to satisfy myself of the true nature of the markings of many of the Diatomacea, I select a slide in which there are several species of the same genus, and examine carefully those specimens in which the markings are the coarscst, and therefore, most easily recognized; having madc up my mind as to their nature, I then pursuc the same mode of investigation with those having more delicate markings, but yet of the same character, and thus arrive at a definite conclusion.

\section*{LECTURE IV.}

\section*{SKELETON OF DIATOMACEA.}

Having in the last Lecture made a few remarks upon the Desmidiece and Diatomacea, and the probable nature of the markings on the surfaces of the latter, I now proceed to consider the mode in which the silica and organic matter in the individual specimens, or frustules as they are termed by the botanist, are disposed.

Each frustule may be regarded as a cell, in which, occasionally, a nuclcus and nucleolus are contained. By boiling in nitric acid, or by the action of fire, all the organic matter will be removed, and the silica left; but if hydrofluoric acid be employed instead of nitric, as was first done by Professor Baily, the silica will be dissolved, and a flexible internal mombrane, probably composed of the same horn-like material as the skelcton
of the Desmidiece, will remain, retaining the general form of the frustule, even to the delieate markings. It is this organic structure that selects the siliea from the water, and deposits it as a thin film upon its external surface. In the young state, eaeh furstule eonsists of two valves, investing a closed membranous sae or cell, within which are contained a mueilaginous fluid, and minute eoloured granules, constituting the endoehrome ; as the frustule inereases in age, the two valves are separated by the development of a third plate, which forms a band between the valves. Aeeording to the Rev. W. Smith,* no portion of the internal cell-membrane can be exposed to the action of the surrounding: water without seereting a eoating of siliea, and the moment the valves beeome separated in the proeess of self-division, the seeretion of a third plate of siliea in the form of a band, commences; this third plate has been termed by Mr . Smith the "connecting membrane." The water is admitted to the internal cellmembrane, in many species that are of eireular figure, along the line of suture between the valves; but in the elongated forms through perforations in the siliecous envelope, situated generally at the extremities: none of the other markings, however large, being perforations.

Some of the simplest of the Diatomacer are those which still retain the generic name of Diatoma; of these one, \(D\). flocculosum, represented at F , in

\footnotetext{
* British Diatomaceæ, p. 14.
}

VOL. 11.

Fig. 24, occurs in considerable abundance in the form of zig-zag chains : each frustule consisting of a quadrangular plate, having its middle and two outer edges thicker than the other parts, so that in scction, or when vicwed cnd-ways, it presents the appcarance shown at \(f\). Other specics of this genus vary considcrably in shape, one in particular has frustules much longer than

FIG. 22.


A, frustules of Meridion circulare seen edgeways. B c, frustules disposed in a circular form. D, five frustules more highly magnified. they are broad, and is consequently named \(D\). elongatum. A very interesting and beautiful species of Diatoma is the Meridion circulare, which in the fresh state consists of a series of wcdge-shaped frustules, as shown at D , Fig. 22, arranged in the form of circular bands, as at C ; these, however, are not flat, but when perfcct, as represented at B , have one end raised above the other; a better view, however, is obtained when the chains are thrown on one edge, they then present the flattcned screw-like form represcnted by a. This species is met with in tolerable abundance in England and, also, according to Profcssor Bailcy, " occurs in immense quantities in the mountain brooks around

West Point, the bottoms of which are litcrally covered in the first warm days of spring with a ferruginous coloured, mucous matter, about \(\frac{1}{4}\) of an inch thick, which, on examination by the microscope, proves to be filled with millions and millions of these exquisitely beautiful siliceous bodies. Every submerged stone, twig, and spear of grass is enveloped by them, and the waving plume-like appearance of a filamentous body covered in this way is often very elegant."

Some of the Diatomaceæ have a horny stem, by which they are attached to the weeds and other foreign bodies on which they are found. The Achnanthes longipes, A, Fig. 23, is one of these, having a stem of considerable length; the frustules exhibit striated markings on their outer surface, and contain granules of green colouring matter. If these specimens be boiled in nitric acid the horny stem disappears, and nothing is left but the silica, on which the markings of the loricæ or valves, are more plainly seen, proving that these markings are confined to the siliceous skeleton. Another specics provided with a horny branching stem, the Gomphonema geminatum, is represented at B, in Fig. 23; some of the frustules are there shown with the front of their valves towards the eye, whilst of the majority only a side view is exhibited. The siliceous skeletons of Diatomaceæ being indestructible, are very frequently found in the mud of ponds and rivers; that of the

Thames contains large quantitics of them, and amongst the number, a peculiar shell is oceasionally found, which, from having a horn-like process at each angle, has been named Triceratium favus. At c, in Fig. 23, is represented one of the valves,
fig. 23.


A, Achnanthes longipes. \(\mathbf{E}\), Gomphonema geminatum. c, a single valve of Triceralium favus. D, E, F, G, fossil Triceratia from Bermuda.
there being two sueh, whieh are separated from each other by an intermediate valve, this speeies of Triceratium is of triangular form, and appears to be made up of equal-sized hexagonal cells, like those of vegetable tissuc. A great variety of Triceratia oceur
in the infusorial earth from Bermuda, some of the principal forms of the valves of which, are represented at D, E, F, G, in Fig. 23, and a grcat number of others are described by Mr. Brightwell, in the first volume of the "Quarterly Journal of Microscopical Science," the true figure of each being correctly delineated.

The genus Isthmia is of vcry peculiar form, consisting of two apparently distinct bodies united by a narrow portion, whence the name. There are two species commonly met with on our coasts, the \(I\). enervis and I. obliquata, they are generally found attached to portions of sea-weed; some of the individuals being single, whilst others are connected by means of a short pedicle, coming off from one of the corners, so as to
fig. 24.


\footnotetext{
A, Amphilectras antediluviana. в, Biddulphia quinquelocularis. c, Isthmia enervis. D, Isthmia obliquata. E, Gal!imella sulcala; d, detached joint of the same. F, Diatoma flocculosum; \(f\), end view of frustule.
}
form a zig-zag chain, the surfaces of all the specimens of \(I\). enervis, are covered with hexagonal markings, and two transverse lines, or bands, divide each into three parts. They are propagated by the separation of the terminal portions from the body, each becoming a distinct individual, whilst the body forms the case in which they are contained, as shown at c, in Fig. 24. The other species of Isthmia, the I. obliquata, Fig. 24, D , is rather broader and larger than the preceding, and is also divided into three parts by two transverse bands, the terminal portions being strengthened by a row of parallel ribs, which are placed in the direction of the long axis of the specimen, and are somewhat raised above the general surface. The mode of increase is precisely similar to that of Isthmia enervis, and in the preparation before you there is one specimen larger than the rest, in which two individuals are enclosed in a common case.

In an allied genus, the Amphitetras antediluviana, found on the coast near Ilfracombe, each individual frustule, A, Fig. 25, is of a square figure, somewhat
fig. 25.


Amplitetras antediluviana entire. B, C, upper and under surface of the two lateral portions.
rescmbling a box, and like the Isthmia consisting of three portions, the terminal ones, \(\mathrm{B}, \mathrm{C}\), composing the top and bottom of the box, and having a triangular spot or hole, at each of the four corners. In the recent state, the frustules are connected by means of a pcdiclc developed from one of the corners, so that it is usual to find long chains of them, like those represented at A, in Fig. 24. In the interior of each frustule, in the living condition, a number of green granules are obscrved, but there is little or no trace of markings on their cxterior, if the specimen, howcver, be boiled in nitric acid the siliceous framcwork will be found entirely covered with hexagonal markings ; some of the frustules remain perfect, others arc separated into three parts, the top and bottom being alike, as shown at \(B, C\), and the central piece rescmbling a box without the ends.

In a genus allied to that just described, Biddulphia, each frustule consists of three portions, the central one bcing more or less squarc, and those at cach end, which may be termed lateral, having either one or thrce rounded projections between the angles, which do not cqual the lateral parts in length; from the sides of the central portion, large strix or ribs procecd as far as the margins of the projections, but in some cascs the striæ are divergent, in others united by anastomosing lines. The entirc surface of each spccimen is covercd with rounded projections or dots, which, as in Isthmia, are smaller in
the central than in the lateral portions. Two specimens
```

FIG. 26.

```


Two frustules of Biddulphia pulchella enclosed in a common case. of Biddulphia pulchel\(l a\), enclosed in the same case, are represented in Fig. 26 ; when young, and in the recent state, the frustules are attached to each other by the angles, but occasionally they cohere by the alternate angles only, and thus form a zig-zag chain, as shown by Biddulphia quinquelocularis, Fig. 24, B.

All the specimens of Diatomaceæ described in this and the preceding Lecture have the frustules nakcd, that is, according to the Rev. W. Smith, not imbedded in gelatine, nor enclosed in membranaccous tubes; but for the sake of contrast, three species must be briefly noticed in which the frustules are invested with a gelatinous or membranous envelope, these being represented in Fig. 27. At A is shown a specimen of Schizonema rutilans, at в one of \(S\). Ehrenbergii, both having a transparent envelope, through which the individual frustules may be seen; the frustules, however, may be more plainly recognized in Encyonema paradoxum, figured at c .

The Diatomaceæ are the most widely distributed of any of the classes of organized beings, and although minute, contribute not a little to the formation of certain of the strata of our planct, generation succeeding generation, each in its turn adding its siliceous skeletons to the
common heap. They are very abundant on the weeds of our ponds and rivers, and especially in summer in the
fig. 27.


A, Schizonema rutilans. B, Sclizonema Ehrenbergri. c, Encyonema paradoxum.
marshes about Greenwich and Woolwich, where they form a slimy or muddy layor on the surface of the leaves and stems of aquatic plants. The mass on the table before you consists almost entirely of specimens of Pleurosigma, especially the species known as \(P\). hippocampus and angulatum, both of which are employed by opticians and amatcurs, as tests of the defining power of their object-glasses. In the fresh state very few of the beautiful markings that exist on their surfaces can be distinguished, but if they be dried, or subjected to the aetion of boiling nitric acid, the organic matter is removed, and the markings ean then be well brought
out by careful manipulation. In Fig. 28, three of the species of Pleurosigma, most commonly used as tests,
fig. 28.


A, Pleurosigma formosum. B, \(P\). angulatum. \(\mathbf{c}\), portion of the same magnified 1300 diameters. D, P. hippocampus. E, portion of \(P\). angulatum magnified 15,000 diameters, showing at \(E\) a part in focus, and at \(e\) a part out of focus. F, portion of \(P\). formosum magnified 5500 diameters.
are exhibited; that at A , being \(P\). formosum, at \(\mathrm{B}, P\). angulatum, and at \(\mathrm{D}, P\). hippocampus. A
representation of the markings of Pleurosigma angulatum, as seen with the \(\frac{1}{12}\) th of an inch object-glass by Mr . Wenham, is given at c ; in eertain states of the focus the valve appears eovered with oblique lines, but by eareful management of the light, Mr. Wenham has found that these ean be resolved into hexagons. In Pleurosigma hippocampus the same lined appearance is seen, the lines, however, are at right angles to eaeh other, and not as in \(P\). angulatum, arranged at an angle of \(60^{\circ}\), as represented at в. Mr. Wenham has proved beyond doubt the structure of \(P\). angulatum by means of photographs taken under a power of 15,000 diameters; all the parts aecurately in focus exhibit hexagons with a white eentre, as shown at E , but in those out of foeus, at \(e\), the centre is blaek.

Fig. 28, A, is a representation of Pleurosigma formosum, a marine speeies not uncommon in tidal harbours, and in ditehes filled with sea-water ; it is certainly one of the most beautiful of our British Diatomaceæ, and is large enough to be visible to the naked eye. The markings when seen under a power of 250 diameters, appear oblique, as in \(P\). angulatum, but when a very high power is employed, aceording to the Rev. Mr. Kingsley, of Cambridge, the lines are resolved into dots; a representation is given at \(F\), of a portion of one of the valves, as seen under a magnifying power of 5500 diameters, the markings being resolved into so many studs or beads; but notwithstanding the enormous power employed
on this occasion there are many observers who still regard these markings as depressions, and not as elevations. An American species of Pleurosigma, \(P\). Spencerii, a few years since was employed as a test object, it has been carefully examined by Mr. Warren de la Rue, and its markings were by him first resolved into dots; the representation given at G , in Fig. 29, is from that gentleman's drawing, a species allied to it is found in this country.


\footnotetext{
A, B, front and side view of Eunotia arcus. c, Navicula, from New Zealand. D, E, front and side view of Navicula striatula. F. Pimnularia Cardinalis. Navicula, now Pleurosigma Spencerii.
}

There are some Navicule, D, E and F, in Fig. 29, that have striæ in the form of ribs or costr, which cannot be resolved into dots; to one of these F the generic name of Pinnularia has been applied by the Rev. W. Smith, the species figured being named Cardinalis; other species of Navicula and Pleurosigma, sometimes occur, on which the markings are so delicate that they may almost be said to defy every objeet-glass hitherto construeted; but if opticians progress in the wonderful way they have done within the last five years, we may hope that at some future time the markings of even the most difficult speeies will be readily resolved.

From the skeletons of Diatomaceæ still found in a living state, I shall proeeed to describe a few of those which existed in ages long antecedent to the creation of man, and which from their abundance constitute no unimportant part of some of the strata of the crust of our globe. We are told by Professor Rogers that at and near the city of Richmond, in Virginia, there is a stratum twenty miles in length and several feet in depth, composed almost entirely of fossil Diatomaceæ. This earth, which was first sent to England by Professor Bailey, of West Point, New York, has been carefully examined by that gentleman, and an aecount of some of the interesting forms found in it has been published in the "American Journal of Science," Vol. XLII. Amongst these Diatomaceæ are several speeies of the genera Actinocyclus and Coscinodiscus,
both being cireular and remarkable for the beauty of their markings. Gallionella sulcata, also occurs abundantly in this earth; it has the form of a long jointed cylinder, Fig. 24, E, one of the joints bcing represented at \(d\). In other parts of America, as for instance, at Petersburg, in Virginia, and Piseataway, in Maryland, infusorial earths are met with in which Diatomaceæ of singular beauty abound; these also have bcen deseribed by Professor Bailey in the work quoted above. The Eunotia arcus, represented at A, B, in Fig. 29, is found in both these deposits.

Most of the fossil infusorial carths are employed in the arts for the polishing of metals, as for cxample, Tripoli, and the polishing-powder of Bilin, in Bohemia; this last occurs in a series of beds, averaging fourteen feet in thickness, and is almost entirely composed of the remains of Diatomaceæ, which are supposed to have becn subjected at some time to the action of a high temperature. The well-known Turkcy-stone, so eclebrated for the sharpening of the hardest edge tools, is partly made up of infusorial remains; the pavement of the quadrangle of the Royal Exchange is composed of this mineral. The Rotten-stonc of commerce, another polishing matcrial, consists principally of the remains of Diatornacex; and in Ircland, in the county of Down, on the banks of the River Upper Bann, there is a white deposit, formed almost entirely of the siliceous loriex of Bacillariæ, amongst which are joints of a small Gallionella, Fig. 42, F , and
peeuliar eireular lorieæ, exhibiting a radiated structure as represented at e. The berg-mehl, or mountain meal of Sweden and Lapland, washed down by the mountain torrents, and whieh from its lightness and resemblance to flour is employed in times of great searcity by the poor, mixed with that article of diet, is composed of little else than pure silica, existing in the form of skeletons of Diatomaceæ. A polishing slate is found in Jutland, in which a number of beautiful silieeous remains of Diatomaeeæ oeeur, amongst them may be distinguished a Triceratium, somewhat resembling in shape that met with in the mud of the Thames, and represented by F, in Fig. 41. The richest deposit, perhaps, is that from Bermuda, but in what part I have not yet been able to ascertain; it in some respects resembles that from Riehmond, in Virginia, ehiefly, however, in containing specimens of the discoid lorieæ of Actinocyclus and Coscinodiscus which in the recent state are composed of two valves, separated from each other by a thin rim. When a student of this Collcge, in 1841, I found many small species of these loricæ attaehed to Zoophytes, which had been brought home in spirit from Melville Island, in the Arctic regions, by Captain, now Sir Edward Parry. In the sediment at the bottom of the bottle, I diseovered no less than thirty-four varieties of Diatomaece, some of whieh are represented in Fig. 30 ; and amongst them were eertain species of Coscinodiscus, at that time only known as oceurring in the

Richmond earth. There were, also, some small pieces of sea-weed in the sediment, and on these were found some minute bivalve, circular dises, of a brown colour, and of the shape shown at A, Fig. 30 ; they were attached to the sea-weed by means of a thin horny stem, and when treated with nitric acid, were found to be covered with delicate markings. Coscinodiscus patina represented in front view by B , and in side-

FIG. 30.


A, portion of sea-weed with discoid loricæ attached. B, front view of small Coscinodiscus. c, end view of the same. D, Pyridicula entire. e, onc valve of the same. FG, front and end view of Actinocyclus undulatus.
view by c , was not unfrequent in this sediment; the still more remarkable speeimen probably of Pyxidicula, one valve of which is represented at E , and an entire one at D, also oecurred in tolerable abundance. Professcr Bailey has described this species as existing in the Riehmond earth, and it is curious to observe, as will be seen by a
paper of mine on this subject, published in the sccond volume of "The Microscopic Journal," how many species in this sediment are analogous to those found in a fossil state at Richmond, in Virginia. There is another stratum, discovered by Ehrenberg at Soos, near Eger in Bohemia, that consists almost entircly of the remarkable discoid forms, represented at в, с, Fig. 42, they are of an oval figure, curved twice in opposite directions, and from their resemblance to a shield, have been named by him Campylodiscus clypeus ; when the learned Professor visited this country in 1841, he brought with him the first specimens that had been seen of this earth. The dises in almost every instance are very perfect, and in addition to their curious shapes, have markings worthy of notice.

An Infusorial stratum, discovered by Mr. Walter Mantell, the son of the late Dr. Mantell, at Nciw Plymouth, in New Zealand, is remarkable for containing many species of Naviculce, one of which, as shown at C in Fig. 29, has a central marking in the shape of a cross. Dr. Mantell told me that his son could procure no more of this deposit; bcing very light, it has been swept away by strong currents of wind, and distributed through all parts of the country, in the same way as we hear that showers of pollen, red snow, sand and cven of shells and fish, have fallen in various parts of the globe, all having been taken up by currents of air, and carried in some instances many hundreds of miles, and then suddenly dropped as a VOL. 11.
shower. Many instances are on reeord, in which, vessels sailing on the Atlantic, several hundred miles from land, have had their decks covered with sand an inch or more deep. Ehrenberg has examined many specimens of this sand, and has diseovered that it is principally composed of the siliceous spicula of Sponges and of the skeletons of Diatomaeeæ. He has given beautiful figures of most of the specics in a paper entitled "Passat-Staub und Blut-Regen ein grosses organisches unsiehtbares Wirken und Leben in der Atmosphäre," published in "The Transactions of the Prussian Aeademy of Seicnces" for 1849.

Last, but not least in importance, is the substance known as Guano; it is composed principally of the exerement of sea-fowl, espeeially penguins, which return to roost in vast numbers upon the coast of Peru, as well as upon eertain small islands in the Pacific; during the lapse of year's, this substance has accumulated to so great an extent, that many thousand tons of it are annually importcd into this country as manure ; it contains a large quantity of ammonia, as may be readily known by the peculiar odour given off even from the smallest quantity.

The Guano obtained from the island of Iehaboe was examined mieroscopieally by my late brother, Mr. Edwin Quekett, and in it he detceted the silieeous remains of numerous Diatomaeex, principally those of the diseoid form. In a paper on this subject, read at onc of the Mectings of the Mieroseopical Soeicty, held in 1845,
and published in the sccond volume of their "Transactions," he gives an account of the differences in character betwecn the guano of Ichaboe and that of Peru, and how the former may be readily distinguished from the latter by the greater abundance of discoid skeletons. The mode of isolating these siliceous remains was only bricfly alluded to by my brother, but very soon after the fact of their occurrence was made known, the method of obtaining them was rendered tolerably easy by a process contrived by Mr. Deane of Clapham, and published in the sccond volume of the work last quoted; it is copied nearly verbation in my Treatise on the Microscope.
The probable cause of the presence of these remains in the Guano, appears to be that penguins feed chiefly on fish, and sometimes on shell-fish, these last it is well known, from the rescarches of the Rcv. J. B. Rcade, have always more or less sand in their stomachs, amongst which numcrous Diatomaceæ occur; fish and birds both eat the shell-fish, and as the silica is not capable of digestion by the latter, it is voided with their excrement, and hence the source of these beautiful discs. It is a remarkable fact, that the first specimens of guano imported were the richest; many persons have examined large quantities of that sold in the shops without finding any siliceous remains whatever-no doubt in consequence of adultcration. The best Pcruvian guano is, at present, imported by the house of Anthony Gibls and Co.,

Lime Strect, City, who have a contract for it with the Peruvian Government.

When we eonsider the vast amount of siliea that must be taken from the soil by the straw of grasses of various kinds, it is possible that, bosides the nitrogenous prineiples which guano contains, the silica in it, may also be of considerable serviee ; it is certain that the cereal plants must take it up from the soil, for the atmosphcre cannot supply it, and it could hardly be given to them in a more finely divided state: thus constituting another valuable quality of this material as a manure. The process of dissolving the siliea and taking it up to be deposited in the tissues, as is donc by the grasscs, is probably an electrical one; and in a recent visit to Somersetshire, I witnessed the following most striking expcriment in the laboratory of Mr . Crosse, a true philosopher, of whom doubtless you have heard as being so celebrated for his experiments in voltaic electrieity.

In a common tumbler filled with distilled water were plaeed, on opposite sides, a portion of silver-if I recolleet rightly, a sixpence-and a piece of slate; onc was conneeted with the positive, the other with the negative pole of a voltaie battery, consisting of a copper vessel containing a solution of sulphate of copper, in whieh was placed a porous tube and a zine rod, the tube being full of a solution of sugar ; by this means slow eleetrical aetion was kept up, and the silver on the one side was actually dissolved by
the water, carried across, and deposited in a crystalline form upon the slate on the opposite side of the tumbler ; had a piece of flint occupied the place of the silver, the same effect, in all probability, would have been produced. It occurred to me immediately that it might be by electrical agency that the silica, lime, and other inorganic materials were dissolved and assimilated by plants.

\section*{LECTUREV.}

\section*{SKELETON OF DIATOMACE AND FORAMINIFERA.}

In addition to the various loealities of fossil Diatomacea mentioned in my last Leeture, two others must be noticed; one of them is Springfield in the island of Barbadoes, the other Santa Fiora in Italy. The former is remarkable for the peeuliarity of its organie remains, which are totally unlike those found in any other stratum, as may be seen by referring to Fig. 40, in which are represented nine of the forms most eommonly met with. Some of these, as shown by A, D, E, are of spherical, others of oval figure, and are eomposed of a eoarse network of cells or silicified eell-walls, somewhat like those of the Eehinodermata; most of the speeimens having one or more sharp spines projecting from some part of their outer margins. One peculiar kind is
circular and flattened, or made up of a series of concentric zones of variable size, arranged one above

the other, as represented at \(H\), each zone being composed of a network of eells preeisely similar to those just mentioned, with spines projecting from the margins; others are met with of larger size, in which there is no traee or eoncentrie zones, but the retieulations or eells of the framework are disposed in radii. I have also found among these remains, a globular and an oval body eomposed of the same struetures as the preceding speeimens, eaeh having, as shown by \(D\) and E , a large conical spine protruding from two opposite sides of the cireumferenee.

The forms represented by \(C, G\) and \(F\) are more rare, but the two former are well provided with spines.

The earth containing these remarkable remains was brought to this country in 1849, by Prof. Ehrenberg, but, as far as I am aware, the true nature of the skeletons has not yet been correctly ascertained ; Ehrenberg himself, howevcr, has described many of them under the generic name of Polycystina. Others of these skeletons are dome-shaped, and have a short spine projecting from their summit, as shown at \(B\) and I , others again have two conical diverging spines from their base; both kinds have markings similar to those in the specimens first noticed.

The Infusorial carth from Santa Fiora in Italy is cxtremely rich in the genera Gallionella, Eunotia and Navicula, and among these a Navicula of large size, namcd on this account, Navicula grandis; it measures about \(\frac{1}{50}\) th of an inch in length, and the oblique markings on its surface are not capable of being resolved into dots, like those of many smaller spccies. This Navicula occurs in England both in the recent and fossil state; it has been called by Ehrenberg Pinnularia nobilis, and under this name is represented in the "British Diatomaceæ" of the Rev. W. Smith.

The circular discoid skcletons belonging to the genera Actinocyclus, Coscinodiscus, Arachnoidiscus, Tripodiscus and others remarkable for the beauty of their markings, are found both in the recent and fossil state ; in the former condition they were met with by Ehrenberg at Cuxhaven, and many of them have been described and figured in a paper in the
"Berlin Transaetions," which has been translated and published in the third volume of Taylor's "Scientifie Memoirs." They are all eharaeterized as being composed of two more or less flattened or convex loricce, separated from each other by a eentral part or rim.

In the genus Actinocyclus the loricæ are composed of alternate radii or segments, having different struetural markings, and not unfrequently arranged in different planes, so that in one focus, a set of rays on the same plane is brought into view, and by altering the focus, another set is rendered visible; both sets eannot be well seen at the same time, unless under a low magnifying power, and on this account the speeific name in most instances denotes the number of rays.

In the genus Coscinodiscus there are no rays, but the markings take the form of a hexagonal network. In some speeies a few cells in the centre are largest, all the rest being nearly of uniform sizc; in certain other speeies the cells are smallest near the centre, and inerease gradually in size towards the margin; they all abound in the earth from Bermuda and Riehmond, and in Guano, as shown by e in Fig. 41.

The generie name Arachnoidiscus is applied to eertain siliceous loricæ generally found attaehed to a sea-weed from Japan, which is employed by the Japanese in the manufaeture of soup, the tcrm Arachnoidiscus being derived from the resemblance of the markings
to the web of the spider. In the Riehmond earth Actinocyclus senarius, Fig. 41, A, is found, so named from its having six rays, every alternate one differently marked, three of the rays being on one, the remaining three on another plane; there are various other speeies in the same deposit, one in particular of large size, having as many as twenty rays. In this earth, in Guano, and even on our own eoasts, is found the Actinocyclus undulatus, represented by F in Fig. 30, being so named from the undulating eharacter of its valves, as seen in the lateral view given at \(G\).


\footnotetext{
A, recent specimen of Actinocyches semarins. \(n\), sliclet.on of the same. r., side-view of the same. D , segment of Coseinodiseus radiahus. se, segment of a dise from guano. Fe, Triceratium from Juthand slate.
}

Several species of Coscinodiscus are also found in the Riehmond earth; for instanee, C. lineatus, Fig. \(42, \mathrm{~A}\), and C. radiatus; the latter, a segment of which is shown at D in Fig. 41, is \(\frac{1}{250}\) th of an ineh in diameter ; its cells are of hexagonal figure, and gradually increase in size from the centre to the circumference. The Coscinodiscus oculus iridis of Ehrenberg, obtained


\footnotetext{
A, Coscinodiscus lineatus. в c, Campylodiscus clypeus. D, Segment of Coscinodiscus oculus iridis. e, dise found in earth from the river Upper Bann. F, joints of a Gallionella from the same earth.
}
from Iehaboe guano, attains the great size of \(\frac{1}{100}\) th of an inch in diameter, and will oecupy nearly the whole field of view when examined with a power of 250 diameters; the central cells are larger than the rest, and are arranged in the form of a star, the others being disposed in radiating lines, neither of the valves is flat, both being curved somewhat like a lunette wateh-glass.

The Arachnoidiscus Ehrenbergii, one valve of which is represented by в in Fig. 43, has been carefully examined by Mr. Shadbolt, and an account of its skeleton published in the third volume of the "Trans-


A, the siliceous framework of a disc of Arachnoidiscus Ehrenbergii. 13, dise of the same in its natural condition. c, portion of a disc magnifical 500 diameters. D , thin horny membranc composing the outer coating of a diseE, annular valve.
actions of the Microscopical Society." According to this gentleman, each perfect specimen consists of two discoid portions and two annular valves; the discs are each made up of a thin flexible horny membrane and of a siliceous framowork, the former is indestructible by boiling nitric acid, and has the peculiar spider's web-like markings situated upon it. This membrane is represented by D, the siliceous framework by A; the latter can occasionally be separated entire from the horny layer, but not without much difficulty. The annular valves arc seen at e, they consist of a ring of silica, within which, and extending a short distance towards the centre, is an annular membrane, and when the specimen is entirc it is by these two membranes that the discs are connected together so as to form a box; the markings of the discs are very beautiful, as may be seen by the portion represented at c , which has been drawn under a power of 500 diamcters. According to the Rev. W. Smith, this species has bcen found at Ilfracombe, it also occurs very abundantly on certain Alge from California and South Africa.

From the description of the skeleton of the various specics of Diatomacere found both in the recent and fossil state, I pass on to that of the Polythalamia or Foraminifera, a class of lowly organized beings occurring in the greatest abundance in many of the strata composing the crust of our planet; the first name being given from their consisting of a number of chambers, the second from the numerous foramina opening on the
external surface of the shell of the greater number of species. They are almost exclusively fossil, only two or three representatives of the class still cxisting, one of these however-Polystomella crispa-has been latcly described by Prof. Williamson of Manchester, in the sccond volume of the "Transactions of the Microscopical Society," as being found in great abundance upon a large Laminaria floating on the sca near Falmouth.

Through the kindness of Prof. Williamson, I am enabled to show you some of these recent specimens, they are of minute size, and when magnificd 40 diameters, appear as represented by A in Fig. 44; the
\[
\text { rig. } 44 .
\]


A, recent shell of Polystomella crispa. B, noimal of the same.
shell is calcareous, and when acted on by acid, the animal remains, as shown by B, retain to a considerable extent the perfect shape of the shell. The Foraminifera, as before stated, were very abundant in the earlicer periods of the carth's history, and some strata, such as the chalk and the limestone of the Eocene formation,
appear to be almost entirely composed of their minute ealeareous shells. They have been termed Rhizopoda by M. Dujardin, on aceount of the delieate root-like eharacter of their locomntive organs, which, aecord-
fig. 45.


Recent foraminiferous shell, Nonionina Germanica, with its pseudopodia. ing to Ehrenberg, as shown in Fig. 45, pass out through the foramina in the shell; these organs are called pseudopodia. The shape of the shell or skeleton is very peeuliar in the majority of species, bearing a strong resemblance to that of a minute Nautilus or Ammonite, but differing from these in having no siphuncle or tube of communieation between the chambers, although there are several small foramina in the septa dividing one chamber from another. Eaeh ehamber contains a single animal, from which, by a process of budding or gemmation, a seeond is formed, and as soon as it is perfected, it seeretes the caleareous shell, so that a single foraminiferous shell is, as we shall presently see, made up of a eolony of individuals.

The chambers are usually arranged in the form of a eontinuous spiral, but there are some kinds, as for instanee, the genus Clavulina, represented by a in Fig. 48, in which they are disposed almost in a straight line, like the ehambered shells of gigantie size ealled Orthoceratites. The shells, as before stated, exist in great abundanee in the ehalk, and in order to show
them to the greatest advantage in this deposit, it is necessary that the ehalk should be washed, and the larger partieles separated.

The mode adopted in the preparation of the Creta preparata of our Pharmaeopæia is a good one, but the best is that recommended by my friend Dr. Southby, which is a modification of the process employed to test the strength of bricks. A piece of the chalk is boiled in a saturated solution of sulphate of soda ; the subsequent crystallization of the sulphate, tears the ehalk to atoms without injuring the shells, which would inevitably oceur during the process of pulverization by the ordinary meehanical means. Dr. Southby onee resided at Bridgewater in Somersetshire, where brieks are made in great numbers, and he there learnt this plan, which he ingeniously applied to the extraction of these beautiful objeets from the chalk. The species, however, in this deposit alone, are so numerous that it would take me a great length of time to point out those oeeurring even in a single slide; I must therefore content myself with selecting for illustration a few of the most interesting specimens, and those who feel interested in the subjeet, and require more information than ean be given in a single leeture, I would refer to the splendid work of D'Orbigny, entitled "Foraminiferes fossiles," which will be found in the College Library.

The chalk from Gravesend contains many bodies of considerable size, of a conieal shape, as shown at A, B, C in Fig. 46, which appear to be composed of a series


A, B, c, Textilarice from the chalk of Gravesend. D, E, larger Foraminifera from the chalk.
of cireular cells ; these are Foraminifera, of the genus Textilaria, and the eells are the ehambers. In another speeimen, as shown by D E, the shells are suffieiently large to be seen by the unassisted eye; these have been pieked out from chalk, and mounted separately, they elosely resemble the Nautilus in shape, the ehambers are nearly of equal size, and the minute dots seen upon the surfaee of eaeh are the foramina.

The ehalk from Salisbury Plain eontains numerous Foraminifera, which are even larger than those last mentioned ; the foramina are equally numerous, but the shape of the shell is different. In the neighbourhood of Brighton-the harbour of Shoreham, I believe-these shells have been oeeasionally found lying on the sand quite free from admixture with other bodies, and remarkable for the beauty of their forms; they show the foramina extremely well, in consequence of all trace of the animal substanee having been removed from the interior of the ehambers, and there is every reason to believe that they have been washed out of the chalk by the sea-water. The sand from the sea-shore in various parts of the world is very rieh in ForamiVoL. II.
nifcrous remains ; that from the beach at Dover contains them in great abundance, but they are still more numerous in the sand from the shores of the Dead Sea, which, in fact, consists of little else than Polythalamia and the spicules of Gorgonice; some of the latter may even be recognized by the naked cyc, being of a pink colour, they can be casily detceted. The tertiary limestone formations of Bordeaux are also extromely rich in these remains ; two of the most common kinds arc shown by a B in Fig. 47.

FIG. 47.


A, B, Foraminifera from the tertiary limestone of Bordeaux. c, D, silieified Foraminifera. e, f, Foraminifera from Delos.

All the species of which I have spoken exhibit foramina of variable size on their surface; but, with the exception of the ridges produced by the projections of the septa of the chambers, the outer surface is comparatively smooth. There are, however, many speciesas, for instance, Polystomella crispa, represented by A, Fig. 44 -in which spines project from some part
of the external surface, more especially from the outer convex margin; I possess many examples of shells with spines, as shown by c, in Fig. 48, and in one of remarkable beauty the spines, which are prismatic, are arranged in a radiated manner: from this cause the specimen has received the name of the radiated Sideralite. At first sight the shell, which also exhibits the foramina very beautifully, appears as if covered with minute Diatomacece: like the preceding species, it was obtained from the Straits of Magellan.

The least troublesome plan of obtaining specimens of these foraminiferous shells is to procure from a dealer in sponge some of the sand out of the bins in which the sponges are kept; it will almost always be found to contain several species, and they can be easily picked out by sifting, or with a fine-pointed sable pencil. Some sponges have about 75 per cent of their weight made up of sand, these yield an abundance of Foraminifera.

Of all the sands I have mentioned, however, none can be compared, for richness in these shells, to that obtained from the shores of the classic island of Delos; in some specimens-as, for instance, that represented by B in Fig. 48-the last formed chambers are prolonged in a straight line like the beak of certain Ammonites from the Oxford clay. Two of the more common kinds are shown by e and f in Fig. 47 ; occasionally some of these are so fractured that the interior of the chambers may be well seen.

The specimens that I have hitherto described have the shell or skelcton composed of calcareous material ; it not unfrequently happens, however, that this has been replaced by silica. In sections of flints, Foraminifera of various kinds are commonly met with in which the shell has been converted into silica; but in Fig. 47, C D, are shown two perfect spccimens from the chalk in which the samc change in the chemical composition of the shell has taken place, they can be boiled in nitric acid without injury.

\author{
FIG. 48.
}


A, a foraminiferous shell of the genus Clavulina; b, beaked shell from Delos; c , shell with spines, from the Straits of Magellan; D , remains of Rolatia from the chalk; e, Rotalia found in flint (Mantell).

Not only do we find in the chalk and flint the shells of Foraminifcra, but even the soft parts of the animal also, as has been abundantly shown by

Mr. Deane of Clapham, and by the latc Dr. Mantell. The remains most common are those of the genus Rotalia, one of which is represcnted by e in Fig. 48, with the body of the animal almost entire, as found in a section of flint; a portion of another is shown at D, both being copied from Dr. Mantell's paper, in the "Philosophical Transactions" for 1846.

All the Foraminifera above alluded to, have been rendered transparent by being mounted in Canada balsam; but as it is frequently a difficult matter to get rid of the air from the chambers, which, when present, completely obscures all the minute markings, I will briefly point out the method by which this can be done with comparative certainty. The shclls having been eovered with rather fluid Canada balsam, must be placed under the exhausted receiver of an air-pump, and allowed to remain for some time. The best apparatus for this purpose is a strong eopper box, suffieiently large to hold two or three slides on its upper surface, this is to be filled with boiling water, and when the slides have been laid on the top, the box is placed under the receiver, and the air exhausted. The balsam being thus prescrved in a very fluid condition, and the air contained in the chambers being at the samc time expanded both by the heat, and by the removal of the atmospheric pressure, it cseapcs, and the balsam runs in, to occupy the vacuum.

\section*{LECTURE VI.}

\section*{SKELET0N 0 F NUMMULITES, ORBITOIDES AND ORBITOLTTES.}

From the Foraminifera I proceed to examine and describe the structure of a class of organized beings, of whieh few, if any, now exist in a living state, but whieh were so abundant in the earlier periods of the earth's history, as to contribute largely to the formation of some of its strata; these are the Nummulites, so named from their resemblance in form to pieees of money, or Nummi. Aceording to Sir Charles Lyell,* the nummulitic formation, with its eharaeteristic fossils, plays a far more eonspieuous part than any other tertiary group in the solid framework of the earth's crust, whether in Europe, Asia, or Africa, it often attains a
* Manual of Elementary Gcology, 3rd Edition, p. 234.
thickness of many thousand feet, and cxtends from the Alps to the Appeninnes. It is found in the Carpathians, and in full force in the North of Africa, as for example, in Algeria and Morocco. It has also been traced from Egypt into Aisa Minor, and across Pcrsia by Bagdad to the mouths of the Indus. I may mention, as an interesting fact, that the great pyramid of Egypt is built of Nummulitic limestone. Strabo alludes to these nummulites under the supposition that thcy were lentils which had been scattered about by the workmen and had become converted into stone. One species, Nummulites complanata, is exceedingly common in the London clay formation; and Bracklesham Bay is one of the localitics in which this spccies occurs in great abundance.

For a knowledge of the minute structure of Nummulites we are principally indebted to the labours of Dr. Carpenter,* M. D'Orbigny, and Prof. Williamson of Manchester. According to these authorities, they vary in diameter from the size of a penny picce to almost microscopical dimensions, they are flattened and circular, of a more or less discoid figure; as shown by A in Fig. 49, most of them are bi-convex, as represented by \(D\), their cxtcrnal surfaces are smooth like pebbles, and cxhibit few, if any, markings that arc visible to the naked cye. The skeletons of two other forms of organized beings have been con-

\footnotetext{
* Quart. Journ. of Gcol. Soc. Vol. VI, Feb. 1850.
}
founded with Nummulites, but they have been divided by Dr. Carpenter into the genera Orbitoides and
M.IG. 49.


A, Nummutites atacica, outer surface; B, Nummutites atacica divided vertically; c, Nummulite with its outer surfaec partly removed; D, the same divided horizontally ; E , the same species in a block of limestone, divided horizontally.

Orbitolites; the former is allied to the Foraminifera, whilst the latter is supposed to belong to an animal of the class Bryozoa, which class is now placed in the molluscous sub-kingdom.

A horizontal section of a Nummulite, as shown at D and E in Fig. 49, exhibits a scries of chambers arranged in a spiral form, resembling in some respects those of the foraminiferous shells, but much more numerous; the smallest of these chambers occupy the centre, but they inerease gradually in size towards the margin, here and there larger cells may occasionally be seen inter-
spersed among the smaller ones; these, however, are to be regarded as abnormal. Vertieal seetions of most Nummulites as shown by a in Fig. 50, present several layers of super-imposed chambers, those in the median line being largest; when viewed with a power of 100 diameters, as shown at в in Fig. 50, all the septa




A, vertical scction of Nummulina lavigata from the London clay ; \(\mathbf{B}\), portion of the same, more highly magnified; \(c\), portion of the extcrnal surface of the same showing the foramina. between the ehambers exhibit vertical striæ, whieh are minute tubes or foramina forming communieationsbetween the ehambers; in addition to these, there are larger tubes opening externally, through whieh it is supposed the rudimentary loeomotive organs, or pseudopodia protrude. The central chambers eommunicate with eaeh other either by means of a large eircular opening, or by other openings of smaller size, arranged in a radiating manner, which are plainly visible in the most eonvex parts of the septa of the largest ehambers. In another horizontal section of the same Nummulite, viewed by a power of 250 diameters, as shown at c , the minute tubuli of the septa being cut at right angles to their length,
appear as so many black dots, from being filled up with calcareous material.

Each chamber has its own proper walls, these, however, are not in close contact, a space, termed by Dr. Carpenter interseptal, existing between each of them; cvery septum is perforated by minute tubes, which form a communication between the contiguous chambers and the adjoining interseptal spaces, and the cavity of each chamber also communicates with those on cach side of it by the openings I have already described. Another vertical section of Nummulina levigata, under a power of 30 diameters, exhibits a row of large tubes somewhat of a conical figure, which proceed from the outer surface and pass down to the interseptal spaces of the chambers in the central plane. Although these tubuli open upon the external surface, they are not always visible, their mouths being coated over with limestone ; but if this be removed by means of an acid, they are rendcred apparent. The Pscudopodia pass through these large tubes, and by their means a direct communication is established between all the chambers and the surrounding water; the chambers are very well seen in all the specimens, but in the majority of instances they are filled with crystallinc carbonate of lime.

The skeleton of Nummulites, like that of the Foraminifcra is composed of carbonate of lime, secreted by the organic basis of the animal, the entire series of chambers being formed by a process of gemmation
like that of the polyp-cells of Zoophytes, and every successive whorl not only surrounding the preeeding. one, but completely investing it.

Seetions of two or more speeies of Orbitoides, aceording to Dr. Carpenter, exhibit certain charaeters which belong espeeially to Nummulites; but the genus Orbitolites, or Marginopora as it has been termed by Quoy and Gaimard, is considered by Dr. Carpenter not to belong to the Foraminifera, but to be formed by an animal, or collection of animals, of the Bryozoal type. A segment of a horizontal seetion of a reeent Orbitolite from the Australian seas is represented by a in Fig. 51, the cells are arranged in coneentrie rows; those near


\footnotetext{
A, segment of a horizontal section of a reeent Orbitolite from Ausiralia, magnified 10 diameters. B, portion of the same, showing the cells near the surfacc. \(c\), portion from the centre. D , vertical section magnified 60 diameters (after Carpenter).
}
the surface are of oval figure, as may be secn on the margin of the section, or morc highly magnified at \(B\); seetions taken from the centre, as shown at c , exhibit the eells of circular figurc. If a disc be divided vertieally, as shown at D , the oval eells of the surfaces are well displayed, the other parts of the section being occupied by eircular apertures arranged irrcgularly; all thesc last eommunicate with a scries of round passages which open on the margin, and, probably constitute the habitation of the animal. The discs, thereforc, aecording to this view, arc Corals; they are found on recfs, and also oceur abundantly in the fossil state.

Before I leave this part of my subject, I must say a few words on the Oolites, which were formcrly supposed to eonsist of the remains of organized beings of a globular figure, like the roc or cggs of fishes, but which are usually nothing more than grains of sand, each surrounded by a globular deposit of earbonate of lime and cemented together so as to form masses of limestonc roek. The Oolites make up no inconsiderable part of the strata of this island; according to Urc, * they form a zone 30 miles broad in England, and arc divided by gcologists into the upper, middle and lower Oolites. They furnish a most valuable material for architectural purposes; and are exceedingly rich in fossil remains, especially those of reptiles and corals.

\footnotetext{
* Dict. of Arts and Manufactures. Art. Oolitc.
}

The egg-like partieles vary considerably in size, being: in some cases almost invisible to the naked eye, whilst in others they are nearly as large as peas; this last form of Oolite has reeeived the name of Pisolite, differing, however, from the true Oolites only in the relative size of the globular coneretions. Bath stone, Portland stone, and the slate of Stonesfield, near Oxford, are all examples of Oolite. In Fig. 52, a, is represented


\footnotetext{
A, Portion of oolite termed Roe-stone or Pisolite. B, Granules from Britannia rock, magnified 40 diameters. c, Granule of Pisolite magnified 12 diameters. D, Granule of Oolite from Germany, magnified 20 diameters.
}
a portion of that form of Oolite termed Pisolite of its natural size; the granules are \(\frac{1}{6}\) th of an ineh in diameter, one of them, shown in section at c , is magnified 12 diameters, and the coneentrie laminæ of whieh it is eomposed are well displayed.

In Germany there is an Oolite in which the granules are nearly as large as they are in the Pisolite, but the
coneentric laminated arrangement, as shown at D , and the presence of a central nueleus, are more strongly marked; the rock supporting the Britannia bridge is a firm Oolite, in whieh the granules are remarkably small, those represented by в being magnified 40 diameters. The speeimens just deseribed are all very eompaet, the granules being firmly eemented together by the ealeareous material forming the matrix; it sometimes happens, however, in oolitie distriets, that the granules are separated from the matrix, and the soil will be seen to be in a great measure made up of them, this is especially the ease in the neighbourhood of Bath; the soil of High Barrow Hill, I found to be so rieh in oolitie granules, that when turned up by the plough, it appeared as if thiekly sown with minute yellow seeds.

Before I leave the subjeet of chalk and fint, I must say a few words on eertain remains of organized beings whieh have been met with in both the above substanees; they were first diseovered in flint by the Rev. J. B. Reade, in 1838, who published an aeeount of them in "The Annals of Natural History" for that year, and named them Xanthidia, from their resemblance, both in form and eolour, to some reeent animalcules deseribed by Ehrenberg under the genus Xanthidium. Many species were obtained by the Rev. J. B. Reade, whieh, with a number of new ones, were subsequently deseribed by Mr. Henry Hopley White in the first volume of "The Transaetions of the Mieroscopieal Society." They eonsist for the most part of a hollow spherieal body,
from whieh a number of spines or arms radiate, some of these arms terminating in a point, others more eommonly dividing into two or three branehes, whieh, like those of the spieula of eertain sponges, are expanded or hamular ; the spines, like the body, are hollow, and in the speeies termed by Mr. White, tubiferum, the extremity of eaeh spine is expanded like a sueking disc.

Xanthidia of the form represented by I in Fig. 20, were diseovered alive in the neighbourhood of West Point, New York, by Professor Bailey, and were sent to this eountry in a living state; living Xanthidia were subsequently diseovered in many pools in the vieinity of London. From their green colour and their mode of inerease by eonjugation, whieh has been so well deseribed and figured by Mr. Ralfs, there is every reason to believe that they belong to the Desmidiece, and in proof of this it ean be shown that their skeleton is composed of horn, and not of siliea, as was at first imagined.

In Xanthidium spinosum, Fig. 20, g, the arms, or tentaeula, as they have been termed by Mr. White, are sharp pointed, but in \(X\). ramosum, shown at K , they are mueh branehed at their free extremities, while in Xanthidium recurvatum, represented by H , the extremities of the spines, generally from four to six in number, are all bent baek like so many hooks. The Xanthidia, when first diseovered in flint, ereated a great sensation amongst mieroseopists; and sueh was the anxicty to obtain speeimens, that from first to
last, several tons of flints were broken up, or eut, in order to find them. Fossil Xanthidia are not eonfined FIG. 53.


A, B, C, D, Xanthidia discovered in the mud of the Thames at Greenhithe. \(\mathrm{E}, \mathrm{F}\), Xanthidia from the chalk.
to flints, they have been obtained by Mr. Deane from the ehalk between Folkstone and Dover, in which there were no flint nodules; two well-marked speeies are represented by E and F in Fig. 53. In one pieee of a greyish kind of chalk from this loeality, Mr. Deane diseovered no less than six speeies by treating the ehalk with hydrochlorie aeid; they were accompanied by Polythalamia and the remains of other organized bodies named Rotalia, as shown at D in Fig. 48, and he was enabled to prove elearly that the Xanthidia possess a horny skeleton.

A short time after the diseovery of Xanthidia in the ehalk, reeent speeimens were obtained by Mr. J. T. Norman from some mud adhering to one of the piles supporting the pier at Greenhithe, on the Thames, a
neighbourhood abounding in chalk. The skeleton of each is of a brown colour precisely like horn, and the arms are generally more or less bent.

An account of these Xanthidia is given in the second volume of "The Transactions of the Microscopical Society," by Mr. S. J. Wilkinson, and from the illustrations accompanying the paper, the four species represented by A B C D, in Fig. 53, have been copied. The slides containing the identical specimens, have been presented to me by Mr. Norman, and you will have an opportunity of noticing a large opening communicating with the interior in almost every individual. Each slide contains numerous spicula of sponge, of the bi-acuate form, and several species of Navicula; the mud was treated both with nitric and sulphuric acids, yet the skeletons of the Xanthidia were not destroyed. Mr. Norman has been very fortunate in finding Xanthidia in flints, and a slice of a small pebble picked up in the street at Islington, he has found to contain no less than thirty-two specimens of fossil Xanthidia.

\section*{LECTURE VII.}

\section*{SKELETON OF POLYGASTRICA, AND ZOOPHYTES.}

Before proceeding to deseribe the strueture of the skclcton of the Infusoria, or Polygastric animaleules, the most minute of the organized beings inhabiting the surface of the earth, I must be permittcd to digress somewhat, in order to demonstrate the great importanee of these atoms in the cconomy of Nature.

Prior to the invention of the mieroscope, no conccption could be entertained by naturalists of the vast world of animated nature contained even in a single drop of water after exposure to the atmosphcrc. It was found, by so early an observer as Lecuwenhock, that when leaves of hay, straw, or other vegetable matters werc left in contact with watcr for a few hours, or days, the water beeame erowded with an infinitude of microscopic forms, many of them possessed
of the highest aetivity of loeomotion; and that a similar train of events ensued when pure water was for a longer time exposed to the atmosphere, by which it beeomes charged with the minute partieles of organie matter and the germs of these infusorial animals, whieh subsequently are developed and live on the organie matters and on one another. If a vessel of water be left exposed to the open air, under the influence of the sun's rays and a sufficiently high temperature, it beeomes covered, after a few days, with a greenish film; this when examined by the mieroseope, is found to eonsist of the germs of minute Algæ, but after a longer interval, myriads of moving animalcules are developed, which feed on the vegetable matter, and in their turn become the food of the more highly organized Polygastrica.

During the early stages of this eolonization of the water, putrefaction goes on, and the fluid emits an offensive odour; but so soon as the free development of vegetable and animal life takes plaee, the signs of putrefaction disappear and the water beeomes pure and fit for use, and remains in this condition so long as the vegetation continues healthy. In this way the vessel of water on the table before you has remained pure and elear without ehange for four years, being tenanted during that time by growing plants and numerous species of animaleules, also by Hydræ and other zoophytes. Thus Nature employs these minute organisms in one of her most important operations-that of
preserving the water of ponds, lakes, rivers, and even the mighty oeean itself, free from putrefaetion and fitting it for the purposes of animal life-the exuvix and rejeetamenta of animals, whieh would otherwise prove most noxious, being absorbed, elaborated and rendered innoeuous by the process of vegetation. Mueh outery has been ignorantly raised, and mueh disgust aroused in the publie mind within the last two years, by representations of the plants and animals, to say nothing of the filth of all kinds, in the water supplied to our houses by the Metropolitan Water Companies. This outery, so far as the filth is eoneerned, is well and good, but that the presence of healthy animalcules or plants is injurious I am prepared to deny, sinee they aetually perform the offiee of seavengers to the water, removing all dead and putrefying organie matters, and rendering the water pure, bright and inodorous. Thus, the water of a diteh or pond, although not perhaps the most agreeable to the palate, is generally suffieiently pure to be innoeuous, in eonsequenee of the natural balanee between the animals and plants inhabiting it, and the destruetion of the lower forms of Algæ by the Infusoria which feed upon them.

So rapid is the growth of minute vegetation and the development of animaleules in water freely exposed to air and light, that it has been a question whether these atomie beings are not developed by spontancous generation out of the dead but organizable matter contained in the water. The notion of spontancous generation, how-
cver, has yiclded to the morc accuratc investigations of modern times, which have demonstrated that the germs of these minute beings arc derived from the atmosphere, and that they themselves are endowed with an astonishing faculty of reproduction, by which many genera are enabled to produce an immense progeny even in a few hours.

It is a well-known fact, that if animal and vegetablc substances be frced from air by boiling, and scaled up hermetically in vessels, as is done with soups and meats, they may be prcserved for any number of ycars; but the moment air is admittcd, putrefaction accompanicd by a rapid development of minute vegetable growths and animalcules, occurs. In order to put this to the test, Professor Schulze contrived the apparatus representcd in the accompanying figurc (Fig. 54). This consists of

FIG. 54.

a thin glass flask, fitted with a cork perforated by two tubes bent at right angles, with which are connected
two of the potass-tubes employed in the process of organic analysis. Each of these tubes has five bulbs blown upon it, and being bent in the form of a triangle, has one or more bulbs on each of its sides, so that when partially filled with fluid, bubbles of air propelled through the tube, pass from bulb to bulb, and are freely exposed to the fluid. Some fresh animal or vegetable matter being placed in the flask and covered with distilled water, the cork with its bent tubes is inserted and the contents boiled to destroy all germs of organic life both in the fluid and the air contained in the flask. While still hot, the two potass-tubes, one filled with concentrated sulphuric acid, the other with a solution of eaustic potass, are adapted, and the connections of the tubes and the cork well luted so as to prevent any access of the external air. By sucking gently at the extremity of the tube containing the solution of potass, air is slowly drawn, bubble by bubble, through the sulphuric acid, which dcstroys all germs of organic life contained in the air ; and this may be repeated at intervals so long as the experiment is continued, fresh oxygen being then brought into contact with the substances containcd in the flasks. After several months, no trace of organic growth can be observed in the flask by the aid of a pocket-lens; and when the flask is opened and the fluid carefully examined by the mieroscope, if the lutings have been perfect, no trace of animalcules or vegetable growths will be found in it; but if the cork be taken out and the flask exposed to the air
for a ferv hours, abundance of both will be discovered. As long, therefore, as the air admitted to the flask is cleared of the germs of the plants and animals existing in it, by means of the two corrosive fluids, no development of animal or vegetable life will take place, but as soon as free contact of the atmosphere is allowed, the work of destruction commences.

In a previous Lecture I described the skelctons of several species of organized beings, both recent and fossil, which Ehrenberg has classed with the Infusoria, although other high authorities view them as plants. They all possess a siliceous skeleton, are denizens of ponds and rivers, but they differ so greatly from the proper Polygastric animalcules in many of their characters, that they cannot be appropriately placed in the same order. While the Diatomaceæ possess very feeble powers of locomotion, have no distinct mouth or digestive system, the true Polygastrica are most active, and have not only a distinct mouth, but, as their name implies, several stomachs; I should therefore feel inelined to separate them from the Infusoria, and to restrict that term to the Polygastrica. The Polygastrica vary much in size, some species being so minute as to elude the highest powers of the microscope, whilst others attain so large a size as to be distinctly seen by the naked cyc. The greater number of them are free and in a state of continual motion, no rest being taken cither by day or night; while others are attached by a stalk to weeds and
other submcrged substances. They are much more abundant in the summer than in the winter, and from their restless habits are amongst the most difficult objccts to exhibit. The Volvox globator has always becn a great favouritc with microscopists, on account of its large sizc, pcculiar rolling motion, and the devclopment of several successivc gencrations within the adult animalcule. It occurs in the greatest abundancc in some of the small ponds on Hampstead Heath, in the spring and summer, but is not so common in winter. The Volvox is globular, and of a grcen colour, the colouring matter being situated in certain cclls of the tunic, and consisting of minute moleculcs of endochrome resembling those of chlorophylle in plants. Within each of the adult animalcules two or more smaller globes, also of green colour, are occasionally seen; these arc young individuals, and in some cases there arc no less than three gencrations one within the other. The continuous rolling motion of these curious beings is produced by minute cilia, which under favourable circumstances, as shown in Fig. 55, a, arc visible on the outer surface.

The Volvox was discovered by Leeuwenhock nearly two hundred ycars ago, and was regarded by him as a single animal. Ehrenberg, however, considered it as an association of similar individuals united so as to form a hollow spherc; but the more recent rescarches of Professor Williamson and Mr. Busk tend to prove that
in all probability this interesting organism belongs to the confervæ rather than to the polygastric animalculcs; the presencc of cilia, and the peculiar locomotion produccd by these organs, are nothing more than are possessed by the spores of many confervæ; the green colouring matter contained within the cells is also precisely similar to that of many fresh-water Algæ, and is rendered of a brown colour by the action of iodine. It matters not, however, for our present purposc, to which of the two kingdoms the Volvox may belong, the objcct of introducing it here, under the head of Polygastrica, is merely to furnish you with a good example of locomotion produced by cilia, and to state, on the authority of Professor Williamson, that its outer tunic is composed of a serics of cells of hexagonal figure.
fig. 55.


A, Volvox globator with young ones in the interior. B, Volvox enclosing
There is no mouth, or trace of digestive apparatus in
any of these creatures, yet animalcules, especially Rotifers, as represented at \(B\), are not unfrequently found within them. I once saw no less than four large Rotifers in the interior of a Volvox whieh did not seem to eause ineonvenience, for it rolled about as aetively as ever, although the Rotifers appeared to feed on the green granules. How these Rotifers obtained entrance into the body of the Volvox, although no opening or rent could be observed in the outer tunie, may perhaps be explained by the observations of Kölliker on the Actinophrys Sol, represented by A, in Fig. 56. The body of the

FIG. 56.


\footnotetext{
A, Actinophrys Sol. d, a portion of the same more highly magnified, showing the morle in which animaleules are taken into the interior of the body of the ereature.
}

Actinophrys is globular, like that of the Volvox, and
from its outcr surface a number of filiform rays are given off, amongst which other animaleules are sometimes entangled, as if they had been seized by them; being brought close to the body, this very soon becomes indented, as shown at D , and the animalcule is, as it were, firmly imbedded in it, the indentation becoming deeper and deeper, until finally the tunic entirely closes over the animalcule, and it is then fairly within the body of the Actinophrys. In one individual as many as three or four animaleules have been seen, all of whieh had gained admittance in this way; it is therefore probable that the Rotifers may enter the Volvox by the same means.

Another very remarkable animal of this order is the Amceba or Proteus, so named from the continual changc of figure it undergoes while in motion. In Fig. \(57, \mathrm{~A}, \mathrm{~B}, \mathrm{C}\), are shown three of the most common shapes of this curious creature, but the shape is hardly ever the same for two minutes together ; perhaps a globular form may be considered as the typical one. When seen for the first time, a Proteus might readily be mistaken for a mass of jelly, but by careful watching it will be found to undergo almost every variety of shape. These creatures are also remarkable for grasping and folding themselves around other animalculcs, but it is questionable whether the animalcules really become enelosed within the outcr tunic or not, as they certainly are in the Volvox and Actinophrys. I agrce in opinion with Dr. Carpenter, that they do not
enter the Proteus, but that nutritive absorption takes place by the outer surface in this animalcule.

An animalcule nearly allied to Amaba has lately been discovered and accurately described by Professor Bailey, in the "American Journal," vol. xv., under the name of Pamphagus mutabilis. It consists of a soft, transparent, extensible tunic or body, capable of assuming every variety of shape, those shown at \(G\) and \(I\), in Fig. 57, being the most common; around the mouth are a few branched tentacula, or

FIG. 57.


\footnotetext{
A, в, с, three very eommon shapes of the Amaba, or Proteus. d, Chilodon cucullulus. E, Paramecium aurelia. F, Leucophrys patula. G, н, i, к four different aspeets of Pamphagus mulabilis.
}
feclers, by means of which these animals pull themselves along very slowly. The most remarkable feature the Pamphagus possesses, is the utter want of discrimination it secms to have in the food it takes; for fibres of cotton, linen and wool, starch, crystals of quartz and Diatomaceæ without end are swallowed by it, these are retained for a short time, and are then ejected by the mouth, which is the only aperture for their reception and discharge.

These animals, like many Polygastrica, are multiplied by spontaneous fission, as shown at H ; occasionally, however, such masses as those represented by k are seen; these result from a swelling or distortion of the tunic produced by the quantity of ingesta combined with that of the partial spontaneous fission, or budding, of the animal.

We have here one of the simplest forms of animal life, consisting, it may be safely said, of little else than a stomach and certain organs for seizing food, its external framework, or rudimentary integument, being soft, colourless, highly elastic and extensible, and coloured yellow by tincture of iodine. In such creatures there is abundant evidence of the food being taken into the interior of the body, which was found not to be so satisfaetorily proved in the case of the Amaba.

In all rapidly deeomposing animal and vegetable substances, certain kinds of animalculcs very soon make their appearance ; one of the first-the Spirillum -is very minute and spirclly twisted, like a corkscrew,
it is readily recognized by its worm-like movements. Amongst these may occasionally be scen gliding rapidly across the field of view, by means of well devcloped cilia, certain large flat animalcules, belonging to the genera Chilodon, Paramecium and Leucophrys, all of which, as shown by \(\mathrm{D}, \mathrm{E}, \mathrm{F}\), exhibit, morc or less plainly, the complex nature, or rather the great subdivision of the stomach, by which thesc creatures arc distinguishcd and classified. The stomachs, of most Polygastric animalculcs, can be readily demonstrated by adding a small quantity of carmine or indigo to the water in which the animalcules are found ; the particles of colouring matter are swallowed, and the stomachs are then casily distinguished from any of the other viscera.

Vorticella nebulifera, or Bell Polype (Fig. 58), is,

FIG. 58.


A group of Vorticella nebulifera, showing the expanded and contracted state of the stem.
as its English namc implics, bell-shaped, with a large oral opening surmounted by active vibratile cilia, which produce currents in the surrounding water sufficiently powerful to form a sort of vortex or whirlpool, and draw other animalcules into its mouth. The polype is seated on an extensile and contractile filament, by which it is attached to submerged substances, and the filament extends and straightens when the cilia around the mouths are in active motion, but if another animalcule swims against it, or if a sudden shock be communicated to the microscope, the filament immediately coils up spirally, like a bell-spring, withdrawing the entire body from danger, while the cilia are retracted within the mouth of the animal. After a few seconds the filament is again gradually elongated, the cilia are extended, and their movements recommence with great activity. The addition of carmine to the water containing these animalcules, also causes a number of previously invisible stomachs to appear, and the small particles of the colouring matter in the surrounding water exhibit more strongly the action of the cilia. In this species of Vorticclla the filament is simple and single, but other species cxist, as, for instance, Charchesium polypinum (Fig. 59), in which the bodies are supported on branched filaments, each branch supporting a terminal body. The stem is highly contractile in \(V\). nebulifera, in this species it is much firmer, and appears to contain a central cavity.

Very little can be said of the structure of the skelcton of the Polygastrica; it is cither membranous or horny,
seldom, if ever, silieeous or ealcareous, and presenting little, if any, traees of structure ; the animalcules them-


Charchesium polypinum, or Arborescent vorticella.
selves forming the chief food of some insects and fishes. The wheel animalcules were formerly included in this class, but reecnt investigations having demonstrated in them a far grcater complexity of organization than belongs to the Polygastrica, they have been removed to the Artieulate sub-kingdom, under the designation of Rotifera.

From the Polygastrica we pass to a tribe of animals which, from their arboreseent forms, have obtained the name of animal-plants, or Zoophytes. These, on
account of their great diversity and beauty, have attracted the especial attention of naturalists from the earliest ages; neither have they escaped the penetrating eye of the artist, for we find Hogarth thus writing to his friend Ellis: "As for your pretty little seed-cups or vases, they are a sweet confirmation of the pleasure Nature seems to take in super-adding an elegance of form to most of her works, wherever you find them. How poor and bungling are all the imitations of Art! When I have the pleasure of seeing you next, we will sit down-nay, kneel down, if you will-and admire these things."

The word Zoophyte literally signifies animal-plant, and is a term very applicable to certain groups of species, but not to all that have, from time to time, been included in this order. According to Johnston,* "all Zoophytes are aquatic, soft, irritable, and contractile; many are asexual, and it is doubtful whether any species has distinct sexes. The individuals (Polypes) of a few families are separate and perfect in themselves, but the great majority of Zoophytes are compound animals-viz.: each Zoophyte consists of an indefinite number of individuals, or polypes, organically connected and placed in calcareous, horny, or membranous cases, or cells, forming by their aggregation, corals or plantlike Polypidoms." They are divided into two classes, termed Anthozoa and Polyzoa; the first of these is

\footnotetext{
* "History of British Zoophytes," 2nd Edition, 1847. VOL. II.
}
sub-divided into three orders, as follows: Hydroida, Asteroida and Helianthoida; the second, or Polyzoa, into two orders only, these being the Infundibulata and Hyppocrepia. The Hydroida, with the exeeption of the two genera Hydra and Cordylophora, are all marine, and vary in height from a few lines to a foot. A few of them are naked, but the remainder are invested with a transparent horny sheath, or skcleton, of a yellow eolour-the Polypidom-whieh is of a tubular eharacter, investing the soft parts of the animal, as shown in Fig. 62 c. The stem is frequently branched, and the sides or the extremities of these branches are expanded into little cups for polypes resembling the Hydra in form. At certain seasons of the year, other and largcr cells, or ovarian capsules, Fig. 62 A , are formed, within which a mass of gemmiform bodies are generated; these, instead of bccoming polypes, assume the form of Medusce, in some of which, sperm-cells, whilst in others, germ-cells, or ova, are developed. Each ovum produces a new individual, which, in process of growth or gemmation, forms a polypidom. The polypidom, however, is not formed by the polypes, but from the central fleshy substanee, and it is not until after the formation of the polypidom that the rudimentary polypes beeomc visible. The polypes are the aetive prehensile stomachs of the Zoophyte ; they consist of a stomach surmounted by an oral aperturc, and surrounded by a eirele of vibratile cilia, which, by their motion, crcate a vortex,
and bring the prey within the grasp of the tentacula, or eilia, by which it is embraced and conveyed to the stomaeh. The digested food is conveyed through the pedunele of the polype to the flesh, through which it eireulates and serves for the nutrition of the entire animal.

The Polypidom is not always in one piece; there are frequently transverse markings below the eells, as shown in Fig. 62, which act the part of joints. The polypes themselves die periodieally, and are cast off. This accounts for the eomparatively naked appearance of the stems of some speeimens; there is, however, every reason to suppose that in eertain speeies new cells and new polypes are developed upon an old stem.

The Hydra are the most interesting animals of the Hydroid tribe of Zoophytes, and have attraeted the universal attention and interest of naturalists, on account of their extraordinary powers of fissiparous reproduction. Two kinds, viz., \(H\). viridis and \(H\). vulgaris, are eommonly met with around London ; a third species, \(H\). fusca, Fig. 60, is more rare. The Hydra vulgaris, repesented by A B, in Fig. 61, was discovered by Lecuwenhoek in 1703, but its wonderful powers of digestion and of multiplication after division were first deseribed by Trembley in 1740 ; in 1743, our countryman, Baker, repeated the experiments of Trembley, and published a work entitled "An Attempt towards a Natural History of the Polype."

The other Hydra, also very common in our ponds,
viz., Hydra viridis-possesses the same powers of digestion and multiplication. Both species consist of an elongated cylindrical body, terminating at the posterior extremity by a sucking-disc, and at the antcrior by an oral opening surrounded by eight or ten tentacula, which are much longer in \(H\). fusca than in \(H\). viridis or vulgaris. The body is a hollow cylinder, or stomach, without any special organization for digestion, since the animal may be turned inside out, like the finger of a glove, so that the external surface becomes internal, and yet digcstion will proceed as vigorously as in the ordinary condition. They are continually changing their figure, being somctimes elongated and cylindrical, as shown at A, at others contracted and almost spheroidal, as at \(\mathbf{B}\).


Hydra fusca or long armed Polype.

The arms, or tentacula, are arranged in a circle around the mouth, as represented at B , in Fig. 61, and when examined with a power of 4 diameters, as shown at A , are seen to be covered with a series of tubercles arranged in whorls, some of these tubercles being provided with a central spine surrounded by a number of smaller spines. There can be little doubt that these spincs are furnished with some poisonous fluid which possesses the power of benumbing
the creatures that come within the grasp of the tentacula, since animals as large as Newts are often killed by them, and worms many times larger than the Hydra itself, fall easy victims. If you have a Hydra in a vessel of water, and carry within reach of its arms one of the small red worms, found in the mud on the banks of the Thames at low water, it will be instantly seized by the Hydra, as shown at e,
fig. 61.


\footnotetext{
A, Hydra vulyaris in its expanded state. b, the same contracted, both being magnified. c , a young individual. \(d, d, d\), three specimens of the natural size. E , a worm seized by the tentaeula.
and almost immediately deprived of life; in a few
}
minutes morc, the worm will be swallowed and the Hydra will then be ready to take another, and again another, until three or four have been eaten, and this in a eomparatively short spaee of time. The very remarkable eircumstanee before mentioned, as conneetcd with the Hydræ, viz., that they can turn themselves inside out, so that the part which was eutaneous and proteetive will take on the function of digestion, proves that the structure of the two surfaces is analogous.

The power possessed by the Hydra of destroying animals many times larger than itself, to whieh I have before alluded, I ean attest from my own observation of the habits of these zoophytes. About two years sinee I had a large number of Hydræ in a vessel of water, into whieh I introdueed some newts about a day old. The newts were found to avoid the sides and bottom of the vessel, in order to keep out of reaeh of the Hydræ; but when, as was seen on more than one oceasion, an unfortunate newt came in contaet with the arms of a Hydra, it was immediately thrown into a fit of convulsions. The newts after this, took refuge in a spout on one side of the vessel, but the Hydræ quickly followed them, and the whole were soon destroyed. Even a full-grown newt, that I afterwards placed in the same vessel, was killed by the Hydræ.

The Hydra is multiplied in two ways, by budding or gemmation, and by ova. Gemmation oceurs so rapidly in the summer months, that a Hydra ean scareely be under observation for two days without
the devclopment of a young Hydra from its side, as shown at \(a\); but in the winter, ova or sperm-cells are formed either by the same or different individuals, and the ova, after being fertilized by the sperm-cells, fall to the bottom of the vessel, and are hatched in the spring. Trembley found that not only were these animals capable of multiplication by gemmation and ovation, but that they were equally so by mechanical subdivision. Thus, when cut into a number of fragments, each fragment in a short time became a perfect animal, and this to so great an extent that thirty or forty new animals have bcen often procured from a single Hydra. It was of little importance whether the divisions were transverse, longitudinal, or irregular ; in either case, the fragments replaced what was wanting, and became perfect animals. The tubercles on the tentacula, as shown at D , are distinctly visible with a power of 40 diameters. The Hydra can scarcely be said to have any skeleton, the external membrane or skin, which presents a cellular structure, being the only representative of it.

In most of the Hydroid Zoophytes there is abundant evidence of a skeleton in the form of a horny sheath or casc, as before described. In the genera Tubularia, Sertularia, Plumularia, Antennularia, and Campanularia, names which, to a certain extent, explain the shape of the Polypidom; the polyp-cells are visible to the naked eye, but in most Zoophytes, at certain seasons of the year, larger cells, termed ovarian capsules, in
which the gemmæ are developed make their appearance, these are represented of their natural size in Sertularia pinaster, Fig. 62, A ; and are shown, slightly magnified, at \(b, b\), in Fig. 62, c.

FIG. 62.


A, Sertularia pinaster, showing the ovarian capsules. b, ovarian capsule of Campanularia gelatinosa, showing the gemmæ in various stages of development. \(a\), fleshy substance in the interior of the horny case. c, diagram of a Zoophyte, probably Campanularia gelatinosa (after Johnston); \(a, a\), polypes expanded; \(b, b\), ovarian capsules.

If a portion of the stem of a Campanularia which has been prescrved in a moist condition, be examined by a low power, it will be seen as represented in Fig. 62 , c , that the external horny ease is more or less transparent and struetureless, containing within the tube an opaque, fleshy pulp, which may be traced to
the base of the polype with which it is continuous, and the polype-eell is also seen to be continuous with the tubular horny sheath. When these horny polypidoms are examined with the highest powers of the microscope, no trace of cellular or other structure can be discerned, the horn appears to be simply a consolidation of the outer integument, the skeleton, therefore, is a dermal one. Portions of Sertularia, particularly S. abietina and operculata, when dried and mounted in Canada balsam, especially if they have been prepared in the manner recommended by Dr. Golding Bird,* are amongst some of the loveliest objects that can be viewed by polarized light; for, independent of the splendid colours, all the most minute parts of the skeleton are brought out in the greatest perfection.

Regarding the general structure of the skeleton of the Hydraform Zoophytes, there is then little further to remark ; but we shall see in a future Lecture, that the most beautiful forms and structures occur in the stony polypidoms of the Asteroida.

\footnotetext{
* "Quarterly Journal of Microscopical Science," vol. I, p. 85.
}

\section*{LECTURE VIII.}

\section*{SKELETON OF ZOOPHYTES.}

In the last Lecture the strueture of the skeleton of some of the Hydraform Zoophytes, whieh is entirely dermal and composed of a yellowish horny material, enclosing the fleshy pulp of the animal by whieh it is developed, was briefly described. This horny skeleton, as shown in Fig. 62, expands at certain regular distanees into cups or eells for the lodgment of the Polypes, whose offiee it is to seize and digest the food for the nutrition of the flesh. These Zoophytes, as the name of the class implies, have been compared by many naturalists to plants, for although undoubtedly animals, their mode of growth, nutrition, and organs present striking analogies to those of the flowering plants. These analogies have been placed by Dr. Carpenter in the subjoined tabular form:

PLANT.
Sced.
Stem and Lcaves.
Leaf-buds.
Flower-buds.

Egg.
Stem and Polypes.
New Polypes.
Medusx.

It is evident then that the individual Zoophyte, like the individual branch, is propagated by gemmation while the species is reproduced by ova.
The second order, Asteroida, is so named from the resemblance the polypes bear to a star. The polypes in this tribe have invariably cight tentacles, and the skeleton is composed cither of horn or calcareous matter, in the form of a central axis or shaft, surrounded by the external flesh of the animal. The order contains three families, the Gorgoniada, Pennatulida, and the Alcyonida. I commence with the Gorgoniada, bccause the structure of the skeleton of this family is easily understood, and forms a good key to the comprehension of that in the other two families. The Gorgoniadce are not only remarkablc for eleganco of shape, but somc of them for beauty of colour; when branchcd, as in Isis hippuris, Fig. 64, a, they are called Sea-shrubs; but when all the branches are joined together in a reticulated manner, as in Gorgonia Alabellum, they have received the name of Sea-fans. Whatever be the shape of the Polypidom, three parts require special notice-viz. : the central axis, the fleshy crust which surrounds \(i t\), and the polypes. As in this course of lectures our attention is confined to
the structure of the skelcton, the polypes demand and can rcceive only a passing notice. I may here mention that if any specimen still retaining the fleshy crust, be examined, a number of minute depressions will be observed, in which the polypes were located during the life of the animal; thesc polypes have eight tentacula, and at their base are a few tuberculated spicula, to which I shall advert when speaking of the Alcyonide. The central axis of most of the Gorgoniade is composed of horn, which in some species is of ycllow or brownish colour, in others black ; these last formerly received the generic name of Antipathes. In one species-G. Americana, Fig. 63, c-the axis consists of horny matter, in which spicula are imbedded in concentric circles ; in Gorgonia petechialis, Fig. 63, AB, it is principally composed of spicula so arranged fig. 63.


А в, segment of a transverse section of the axis of Gorgonia petechialis. \(b\), spicula from the centre. \(c\), spieula from the margin. c, segment of a transverse section of the axis of Gorgonia Americana. a, spicula from the erust of \(G\). Americana. \(d\), spieula from the axis of the same.
as to leave a number of large canals which run from one end of the specimen to the other, and the spicula near the surface are much larger than those in the centre. In the Red Coral, Fig. 67, a, as well as in the beautiful pink Oculina rosea, the axis, D, is composed of laminæ of dense calcareous matter, exhibiting occasionally traces of spicula and of the cells in which the carbonate of lime was secreted. In the genus Isis the axis is made up of alternate joints of horny and calcareous matter; this curious structure is well seen in the Isis hippuris, Fig. 64, \(a, b\), so named

a, portion of a branch of Isis hippuris, showing the crust with the aperturcs in which the polypes were lodged. \(U\), axis composed of alternate layers of horn and calcarcous matter. \(c\), transverse section of the calcareous part of the axis. \(d\), transverse section, through a joint at \(l\), that has been covered with calcareous mattcr. \(e, e, e\), spicula of the crust.
from its resemblance to the Equisetce, or Horse Tails. The axis in some of these Zoophytes is perfeetly smooth on its exterior surfaee, in others slightly grooved, as in the Red Coral, Fig. 67, a, whilst a few speeies show certain depressions whieh indieate the situation of the polypes, and some speeimens, are covered with minute spines.

There are considerable differences in the strueture of the horny axis of the Gorgonice ; some are eomposed simply of eoncentrie laminæ of brown horn, others as G. spiralis, Fig. 65, show not only eoneentrie
fig. 65.


Segment of a transverse section of the axis of Gorgonia spiralis, showing concentric laminæ and radii. laminæ of horn, but a number of large radiating lines whieh look like tubes, but are in reality eonneeted with the spines seen on the surface; in others, as Gorgonia Americana, Fig. 63, c, the axis is composed of horny matter having numerous short spieula of the shape represented by \(d\), imbedded in its substance, which are disposed in a somewhat concentrie manner. The axis of Melitcea ochracea, Fig. 66, a, is jointed like that of Isis hippuris, but the horny matter is so small in quantity as only to suffice to hold together the numerous spieula of whieh the ealeareous part of the axis is eomposed. These spieula are of a reddish colour in the more solid parts of the axis, those on the surface being larger and
darker than those in the eentre, as shown at B ; but those in the joints are of a yellow colour and smaller,


A, axis of Melitaa ochracea. \(a, a\), joints in the axis. B, portion of a transverse section of the axis made through the most solid part. c, transverse section of the axis made through a joint.
as shown at \(c\). The axis of the Corallium rubrum, or red coral, is very dense, and capable of taking a high polish; it is even manufactured into beads, bracelets, and other ornaments, although it every here and there exhibits traees of being formed of spieula; these, however, are shorter and more completely blended together than they are in M. ochracea, and there is in addition a eoncentrie laminated arrangenent, as shown in

Fig. 67, D. Notwithstanding this, however, there is abundant evidence to prove that even the most solid axis was originally composed of spicula.

Vertical and horizontal sections of the axis of Isis hippuris, to the general structure of which I have alrcady alluded, exhibit many points of interest. All the young branches, as shown in Fig. 64, a, are composed of horn and calcareous matter alternately, and the joints are well markcd; but when the axis has become old, as shown at \(b\), the joints are coated over with the calcareous matter, and a transverse section through such a joint will still exhibit horny matter in the centre, as rcpresented by \(d\), a section through any other part than the joint, as shown at \(c\), will exhibit no horn, but concentric laminæ of calcareous matter only. Vertical sections of the axis show the same points, therc is always a well-marked line between the two, the horn bcing of a brown colour contrasts strongly with the whiteness of the calcareous portion. There are, however, so very many points of intercst in the structure and mode of growth of the axis of the Gorgoniadce, that it will be neccssary to allude to the subject again, after the other parts of the animal have been briefly described.

We have now to turn our attention to the flcshy substance, or crust, investing the axis, which is the seat of the beautiful colours of many of the specimens. Some naturalists regard colour as a distinction of species; but I cannot coincide in this
opinion. I possess two elegant specimens of Gorgonia, the one of a rich yellow, the other of a brown colour, both are similarly branched, both have spicula alike, except in colour, and both are attached to Pinna-shells; I therefore regard them as identical. No person having seen Gorgonice in the dry state only, can form any idea of the nature of the crust in recent specimens; in the living state the axis is covered with a soft gelatinous substance with which the polypes are connected, as shown at \(\mathbf{b}\), in Fig. 67 ; but when the polypidom is dried, little more remains than the numerous tuberculated calcareous spicula imbedded in it, and which are generally of the same colour as the crust itself.

In Isis hippuris, as shown at \(a\), in Fig. 64, the crust is thick and massive, and readily crumbles, but it is not until this has been removed, that the jointed condition of the axis \(b\) can be seen. The crust completely invests the axis, but never enters into its substance, although the marks of the polypes are sometimes left on the surface of it ; these however are merely slight impressions which are easily erased. In the Red Coral, as shown by A and B , in Fig. 67 , the crust is exceedingly thin and of a lighter colour than the axis; that none of it has been removed from the specimen under consideration is evident, for the polypes are still present.

Another beautifully branched species-Gorgonica Americena-has a yellow crust quite as thin as that VOL. II.
of the Red Coral, being in some parts a mere film; but when removed, the black horny axis is brought


A, a branch of Red Coral, Corallium rubrum, with its polypes in situ. a, portion of the axis denuded of its erust. B, portion of a branch of the same, slightly magnified. \(c, c\), the eight-armed polypes. \(D\), transrerse section of the axis. e, spicula of the crust.
into vicw. In Melitea ochracea, the crust, which is of a yellow colour, is also very thin, and can scarcely be distinguished from the axis; but in Gorgonia flammea it is cven thicker than in Isis hippuris, and when detached, the black axis is found to be very small as compared with the mass of the crust. If a
portion of the crust of any Gorgonia be removed and examined under the microscope, it will be found to be principally composed of spieula imbedded in organic matter ; in order to ascertain their form, the organic matter cementing them must be removed, which is easily done by boiling in liquor potassæ. A small piece of the crust placed in a watch-glass eontaining liquor potassæ, and heated over a spiritlamp, will be observed to crumble to pieces as soon as the liquid approaches the boiling-point; care should now be taken to maintain this heat for a few minutes, or so long as there are any lumps remaining. The vessel may then be placed aside to allow the spicula to scttle, the liquid bcing poured off, distilled water should be added, and the heat again applied; after one or two washings of distilled water, they must bc dried, and are then ready for mounting in Canada balsam.

The spieula from the crust of Isis hippuris, as shown by eee, in Fig. 64, are of a whitish colour and of two principal shapes, the onc clavate, the other morc or less cruciform, the tubercles in both being covercd with minute spines. The spicula of the crust of Gorgonia umbraculum arc either of large size, stellatc figure, and rich brown colour, or much smaller and covercd with nodulated tubercles. In another species of the same genus, some of the spicula from certain parts of the crust are remarkable for their rieh lake eolour, whilst those from others
are colourless; all are large, either simple or of a tri or quadri-radiate figure, and covered with small tubercles; the eoloured spieula being easily seen by the unassisted cye. When deealeified by the aetion of an acid, the colouring matter of the spicula still remains attaehed to the organie basis.

One or two other varieties of spieula, which are extremely variable in form, here require a brief notiee. Some of these are flask-shaped, as shown at \(a b\), in Fig. 68, the greater part of their surface being covered
fig. 68.

a \(b\), flask-shaped spicula. \(c\), tuberculated spicula. \(d\), spicula of Gorgonia elongata. with minute spines; others, as seen at \(c\), have a row of tubercles on eaeh side, but those represented by \(d\), which were obtained from the crust of \(G\). elongata, have tubereles projecting from one side only. The spieula are not mere masses of inorganie material, but have an organie basis like that of shell and bone; this, however, will be spoken of in detail in a future Leeture.

In the Pennatulide, as in the Gorgoniada, the eentral axis, the crust, and the polypes, eaeh demand our attention. In the Pennatula, or Sea Pens, as shown by a, in Fig. 69, the polypidom consists of a central part, or shaft, of eylindrieal figure, and naked at one extremity, whilst the other is elothed with a series of pinme which bear the polypes
on their upper margin; this part corresponds to the plume of the pen. The axis consists of a long, more


A, Pennatula phosphorca. 13, spicula from the flesh of the stem of P. grisea. c, one of the spicula magnificel 250 diametcrs. D, e, portions of spicula from the plume magnified 20 diameters. F, transverse section of axis of P. grisea magnificil 20 diametcrs. G, Renilla Americana, or kidney-shaped sea-pen. H, spicula from the same.
or less eylindrical stem, tapering slightly to a point at each end; it is of a dirty-white colour, and does
not extend the entire length of the stalk, both ends being soft and curved slightly like a shepherd's crook. The Pennatulce are phosphoreseent, and were formerly thought to move rapidly through the water by means of the pinnæ, but it is now generally eonsidered that they have little, if any, power of loeomotion, and when in their native element are said to stand ereet, the eonieal naked extremity being buried in the mud. The fleshy matter of the stalk and of the pinnæ is largely supplied with ealeareous spieula; in the latter these are often half an inch in length, and of a white or red eolour, projecting upwards in the form of spines. When magnified 20 diameters, they present internally, a fibrous appearance as seen at D E. In the lower part of the stalk, as represented at \(B\), the spieula are smaller, but very abundant, and of nearly uniform diameter, with rounded extremities, as shown at c , under a power of 250 diameters; they are arranged in parallel lines, and their long axis is in the same direetion as that of the stalk, like the spieula of the plume, they also present internally a fibrous structure. In Britain we have only one species of Pennatula, the small, \(P\). phosphorea, all the larger speeies are exotic.

A very peeuliar form of the Pennatula is the Renilla Americana, represented by G , whieh eonsists of a small, short, brown stalk supporting an expanded reniform portion, one surface being of a beautiful purple, whilst the other is brown like the stalk; on the former
the polypes, which are large, are seated. From its shape this speeies is eommonly ealled the Kidney-shaped
fig. 70.
 Sea Pen. The skeleton of these Zoophytes eonsists of spieula whieh abound in all parts of the purple surface; but as far as I have examined they have no central axis. The Sea Rush-Virgularia mirabilis, Fig. 70, A--not unfrequently met with in the northern eoasts of this island, like the Pennatula phosphorea, probably stands erect in soft mud, for it is generally found where the bottom is slightly muddy, and rarely where sandy. When perfcet, the Virgulariæ are from six to tcn inehes in length, and eonsist of a central calcareous axis invested with a thin, soft, membranous fleshlikc substanee, the greater part of which is covered with lobes or pinnæ, eaeh bearing small eightarmed polypes: the disposition of these pinnæ, as shown at \(D\), is somewhat oblique, so that in some speeimens the entire serics appears to be arranged in a spiral direction. In this genus, the axis is very large in proportion to the pinnæ, and in perfcct specimens, as represented

A, Virgularia mirabilis (reduced in size). B, the base of the stalk. c, centre of the stalk (both of the natural size). D , portion showing the polypes (after Johnston). e, transverse section of the axis. F , longitudinal section of the same.
by A, the upper as well as the lower extremity of the stalk is without pinnæ. The axis is cylindrieal, and is the only trace of the skeleton, there being no spieula in any part of the soft membranous investment, as in the Pennatulæ.

A gigantie specimen of this elass is the rare and beautiful Pavonaria, Fig. 71, A, B, contained in the tall glass on the table. It was presented to the \({ }^{*}\) muscum of this College about four years since by Professor Edward Forbes, who, in company with Mr. MaeAndrew of Liverpool, dredged it up from a muddy bottom at a depth of from twelve to fifteen fathoms, near Oban, on the eoast of Argyllshire, where it is supposed to stand ereet in the mud, like the Pennatula and Virgularia, its lower extremity being slightly expanded and curved as if for the purpose of support. It has been named Pavonaria on aeeount of its general resemblanee to the feather of a peaeoek's tail, whilst the speeifie name quadranguiaris is expressive of the quadrangular shape of the axis; whieh as in the Virgularia, is large when eompared with the animal erust, and slightly flexible. All portions of its outer surfaee are eovered with a fleshy skin having a slimy feel, but the parts projeeting from the shaft or axis, as shown by B, C, D, are the polypes ; those at the lower extremity are small, and aecording to Professor Forbes, oceur in a single row on each side ; but they gradually inerease in size and become more numerous, till they form oblique transverse rows of four, five, or six
polypes, as shown at D , the most external being the largest. The back of the axis is yellow and smooth,


A, lower part of the stem of Pavonaria quadrangularis. B, upper part of the same (reduced in size). C D, portions of the stem showing the polypes. E , transverse section of the axis. F , lougitudinal section of the sane. G, spicula from the flesh of the lower part of the stem magnified 130 dia. meters. H, spicula from the sheath enelosing the polypes slightly magnificd.
and free from polypes ; but, when living, all the polypiferous part was of a pink or rose colour. In the account of this remarkable Zoophyte, given by Forbes and Johnston, no mention is made of the
structure of the skin. During my investigations preparatory to the publication of that part of the first volume of the "Histological Catalogue" relating to the structure of the skeleton of the Asteroid Zoophytes, knowing that spicula abounded in the skin of the Pennatula, I was desirous of ascertaining whether they were present in this animal, and after some search, was rewarded by finding them in the flesh at the lower part of the stem. Spicula of large size, however, are met with around the margin of the sheath into which the polypes retract themselves; they are very different from those in the flesh of the naked portion of the stem.

Having now described the general form and position of the skeleton in the family Pennatulidæ, I proceed to illustrate the minute structure of these parts. The transverse section of the bony axis of Pennatula grisea is of a cylindrical figure, and appears laminated to the naked eye, but when viewed with a power of 40 diametcrs, as shown by F, in Fig. 69, the outer margin or crust is found to be of a fibrous nature; the fibres taking a vertical direction, whilst the central portion, more dense than the rest, shows a cellular structure, the cells appearing to be filled with calcarcous matter. The spicula in the skin from the base of the stalk, as shown at B, C, are of cylindrical figure, and somewhat twisted so as to produce the appearance of a central eavity; the ends are hemispherical, but their surface is smootl and free from tubereles, and they average
about \(\frac{1}{100}\) th of an inch in length. The spicula from the pinnæ are fully half an inch long, they occur in bundles, some being pointed at both cxtremities, whilst others have onc extremity expanded like the fcather of an arrow, all bcing more or less striated internally; portions of two of these spicula showing striæ are reprcsented by D, E; a similar striated appearance is exhibited by the spicula from the flesh at the basc of the stalk, as shown at c. The spicula of the Renilla are precisely similar in shape to those of the Pennatula, but are of a rich purple colour, most of them average \(\frac{1}{20}\) th of an inch in length; all, as shown at \(H\), are twisted in the samc peculiar manner as those of the Pennatula before noticed.

Transverse sections of the calcareous axis of the Virgularia are of a circular figure, and exhibit a radiated structure, as shown by E , in Fig. 70, the true nature of the radii, howcver, is better seen in a vertical section, F, under a power of 130 diametcrs; they are then found to be produced by a series of minutc sinuous canals, opening on the free surface, and passing in curved lines towards the centre of the stem, which is apparently more dense and opaque than the outer portion. The tissuc between the tubes presents longitudinal striæ, and after the carbonatc of lime has been removed by an acid, the organic residuum exhibits a more or less fibrous appearancc. The transverse section of the bony axis of Pavonaria quadrangularis is of a squarc figure, with concave margins,
and, as represented by e, in Fig. 71, consists of a series of Jaminæ of fibro-calcareous matter arranged around a small central cross; the outer layer or crust is extremely hard and cannot easily be cut with a knife. The longitudinal section of the axis, as shown at F , exhibits a dark granular centre with vertical striæ on each side, and the organic basis of this structure appears to be of a fibrous nature. The spicula from the flesh in the neighbourhood of the polypes are of considerable length, and have both extremities pointed; they appear to be arranged in bundles, which project above the free surface in the form of bristles and alternate with the polypes, those represented by H being of the natural size. The spicula from the lower part of the stem are much more minute and of a flattened oval figure, most of them exhibiting traces of a striated structure, as shown at G ; the long diameter of the oval, however, is placed in the same direction as that of the axis, as in the Pennatulæ before described.

\section*{LECTURE IX.}

\section*{SKELETON OF ZOOPHYTES.}

In the proceding Lecture I described the structure of the skeleton of some of the Asteroid Zoophytcs, and I have now to make a fow further remarks upon the nature of the axis in two of the species to which I have already alluded.

The structure of the axis of the Gorgoniadæ has been the subject of controversy ever since the time of Ellis. Many authorities consider it to bc inorganic, there can, however, be no doubt that although the polypes do not form the axis, they are mainly concerncd in preserving its vitality, and as long as the polypes are alive, changes both in the intcrior and on the exterior of the axis are continually going on. In those axcs having a horny stem the increase takes place by the addition of concentric laminæ without much external
alteration; in the axis of Isis hippuris, however, the horny portion of the base, where no polypes exist, is gradually eonverted into ealeareous material. In Isis, now Melitea ochracea (Fig. 66, a), the ehanges are very remarkable; the axis, although jointed, has only a small portion of horny matter entering into its composition, it is almost wholly made up of spieula; the joints are easily eut with a knife, but the other parts are much harder. All the joints are eomposed of spieula of a yellow colour arranged in a peeuliar form of net-work, as shown at c ; the intermediate harder parts are made up of red-eoloured spieula, internally like those of the joint, but externally, as shown at B , these have eoalesced to form a solid mass; the same thing has taken plaee in the Red Coral, and spicula ean be recognized in some portion or other of its substanee, and although in all the hardest parts a erystalline strueture appears, there is always a traee of cells to be seen.

In one speeies of Red Coral the eells of the axis are disposed more or less eoncentrieally, the eells themselves being of small size, with their walls still visible; in another speeies the walls have disappeared, but the eoneentrie laminæ indieating the sueeessive stages of growth are very evident, and beautifully arranged in undulating lines. The organie basis of these axes was known to Hunter, and was more especially noticed by the late Mr. Hatehett, who so long ago as the year 1800 prepared a speeimen illustrative of this fact,
which is prescrved in the Muscum. I shall now mention the result of some investigations, which I believe to be new, regarding the development of these calcarcous axes, viz.: that the axis of certain of the Astcroid Zoophytes is at first composed of a mass of cells which secrete and deposit the carbonate of lime in their interior. In some species the cell-walls are persistent, in others they are absorbed and disappear, leaving a solid mass of carbonate of lime in which little or no traces of structure can be distinguished.

There is another point of great intcrest which has come under my notice whilst examining the horny and calcarcous skeleton of Zoophytes and still more highly organized beings-viz. : the power they possess of repairing accidental injuries. Mr. Busk, in his paper on the Anguinaria spatulata, publishcd in the second volume of "The Transactions of the Microscopical Society," threw out a hint that somc polyp-cells appeared as if they had undergonc repair, and this, no doubt, was the fact. The repair of a portion of the horny skelcton is plainly visible in a specimen of Gorgonia flabellum in the Museum of this Collcge ; there has been at some time or other an cxtensive fracture ncarly across the centre, and the line of it is indicated by the large, rough cicatrix. If one of the principal branches be examined it will be found that it has becn broken transversely, the fractured ends are not exactly in a linc, and the cicatrix, or callus, now fills up the space between them. As I
proeced I shall bring forward other striking examples in proof of the power of repair of non-vaseular tissues.

I now pass on to describe the strueture of the skeleton of the last and most highly-organized members of the asteroid group of Zoophytes-the Alcyonida; and many mention as a familiar example the Alcyonium digitatum, so common on our coasts. All the individuals


Alcyonium digitatum with retracted Polypes. of this family are more or less lobed, and on this aecount, and from the resemblance of the lobes to certain natural objeets, have reesived the names of Cow's Paps, Dead Man's Toes, Dead Man's Fingers, \&c. The species just notieed - Alcyonium digitatum, Fig. 72,-is met with in great abundance on our southern coast, especially on old oyster-shells in the oyster-beds of Newhaven and Shoreham harbours: indeed, so abundant are they, that seareely an oyster of any size, is dredged up from the bed newly diseovered about midway between the English and Freneh coasts, on which there are not one or more of these Zoophytes; and even at Billingsgate, where the oysters are sold, small speeimens may be obtaincd, but the polypes are gencrally dead before they arrive in London. The majority of the polypidoms are of a pinkish-white
colour, but some are ycllow or reddish-brown; they all, however, belong to the same speeies. When handled or pressed, they feel soft and pappy, and some of the polypes will make their appearanee; but if the outer
fig. 73.


A portion of Alcyonium digitatum with the polypes extruded (after Johnston). surfaee only of the polypidom be touched, it communieates a gritty sensation to the finger, leading one to suspeet that there must be some caleareous matter present. On a eareful examination of this surfaee, the situation of the polypes may be at once recognized by the stellate markings, and if the polypes should happen to be extruded, as shown in Fig. 73, they will be found to have eight short arms, or tentaeula, provided with cilia on their edges.

The body of the polype, aecording to Johnston, is enelosed in a thin, transparent, vesicular membrane, in whieh a great number of minute tuberculated ealcareous spicula are imbcdded; the body is also marked with eight white longitudinal lines, or scpta, whieh, stretching between the mombrane and the central stomaeh, divide the intermediate spaee into an equal number of eompartments; thesc lines not only extend to the base of VOL. II.
the tentacula, but run across the oral dise, and terminate in the central mouth. The stomach is not closed at its free extremity, but opens into ccrtain large canals, which ramify through the fleshy central part of the polypidom and the eight white lines are continued from the stomach down the canals, being at first strongly developed, but gradually disappearing near the base of the polypidom. If a vertical section of the polypidom be made, as shown at A, in Fig. 74, the large branching canals will be Fig. 74.


A, vertical section of a polypidom of Alcyonium digitatum. в, transverse section of the samc. c, portion of the fleshy matter containing spicula. D, spicula of the flesh magnified 250 diameters.
easily scen; they are largest at the base, and become gradually smaller near the surface. The termination of each is slightly dilated to form a cell for the polype, and the tissue between the tubes is composed of minute fibres containing a transparent gelatinous flesh within its meshes, in which numerous tuberculated spicula, as shown at c , are imbedded. If a transverse section of
the polypidom be made, as seen at B , the diameter and stellate form of the tubes produeed by the septa prolonged from the stomach may be distinetly seen. The polype removed from the polypidom presents to our notiee the eight tentaeula around the mouth, and an abundanee of tubereulated spieula whieh are present in the tissue supporting its body; many of these spicula are very long and thin, but still tuberculated. When the speeimens have been preserved in spirit for some months, the tentaeula are not so distinet as in a fresh polype. A thin slice of the outer gritty integument of the polypidom shows very elearly, under a power of 250 diameters, that the grittiness is due to the presence of myriads of tubereulated spieula, some of fusiform, others of eruciform figure. If a portion of this erust be deealeified by maceration in dilute aeid, it will be at onee seen that eavities are left in the organic basis corresponding exactly in form to the spicula previously lodged in this part of the animal.

When speaking of the strueture of the spicula in a previous Leeture, I mentioned that all these bodies, both in the Zoophytes and in the Sponges, are developed in cells, and that their shape is determined by the form of the cell in whieh each is, as it were, moulded. The spieula, when separated from the gelatinous tissue in whieh they are imbedded, are not composed solely of ealeareous material, but all have an organie basis ; for if a large spieulum which has been removed from the polypidom by boiling liquor potassx, be acted on
by dilute hydroehlorie aeid, an organie basis will be left which retains to some extent the shape of the original spieulum, proving that every portion of the ealeareous matter is in intimate eonneetion with the organie basis.

In Fig. 75, A, B, are shown two tuberculated spieula
fig. 75.


A, B, tuberculated spicula of a Gorgonia. c, three specimens of the same after decalcification. from a purple-eoloured Gorgonia whieh had been separated from the flesh by means of eaustie potash ; three of the same spieula having been treated with dilute hydrochlorie aeid to remove the lime, were found to retain the shape of the originals, as shown at \(c\), but instead of being hard and ealeareous, the organie basis was quite soft and flexible; when the lime was not wholly removed, the interior of the organie mass, or cell, always presented a more or less granular appearance. A vertieal seetion of a portion of the soft internal part of the polypidom, or that oeeupying the space between the eanals, shows that it is traversed by long tubes containing granular matter of a greenish eolour, the tubes themselves being surrounded by delieate interlaeing fibres, in the meshes of whieh are numbers of large tubereulated spieula, as shown at c, in Fig. 74, not so closely arranged but that their shape ean be distinetly seen. There being no trace of an internal ealcareous axis in the Alcyonium, as in
other Zoophytes of this order, the spicula of the crust, which are very numerous, must be viewed as forming an exo- rather than an endo-skeleton.

The Alcyonidæ are propagated by ova, which are globular and of a dark brown colour ; they are developed in the canals, and after fertilization are discharged through the mouth. Only three or four species of Alcyonium are found in the British seas, but many others have been discovered in various parts of the globe; some specimens brought to this country from the Navigator Islands by Sir Everard Home, although dry, will afford an idea of the quantity of calcareous material entering into the formation of their skeletons. The largest of these is of purple colour and somewhat like a cauliflower in appearance; in this, as in the others, the spicula are not only very abundant, but of large size, in some of the specimens they are white, but in that first described they are both purple and white. Certain Zoophytes of the genus Xenia are nearly allied to the Alcyonidæ; the specimens upon which my observations have been made, were brought from the Philippine Islands by Mr. Cumming. They so strongly resemble the inflorescence of umbelliferous plants that they might readily be taken for them; they are of various colours, some being bright purple, others rich yellow. The colour in all these animals depends on the presence of large spicula, which are very visible to the naked eye on every part of the stem, and project in the form of
sharp spines from those parts containing the polypes which represent the blossom of the plant. These creatures, even now, after having been in spirit for
\[
\text { rig. } 76 .
\]


A, Polypidom of Xenia showing the spicula of the crust and of the polypes.
\(\mathrm{B}, \mathrm{c}\), spicula of the crust magnified 20 diameters.
some years, arc sufficiently elegant to excite our admiration, but what they must have been when living, and with their polypes extruded, we can easily imagine, from the representations given in the splendid Atlas to "Dana's Zoophytes," being a part of the scrics published by the United States' Exploring Expedition, and a work that would do credit to any nation. The skeleton of all the species of Xenia which I have examined is strictly dermal, there being no spicula in the soft, gelatinous interior of the polypidom as in the Alcyonium; all being of large size and confined to the stem, the branches, and
the neighbourhood of the polypes. Those in the stem and branches are arranged for the most part in diagonal lines, as shown at A, in Fig. 76, whilst those in the neighbourhood of the polypes projeet outwards, like spines, or like the large spicula in the plumes of the Pennatulca. In addition to these, there are very minute spieula which form the skeleton of the outer framework of the polypes themselves.

If a portion of the outer skin of the stem of one of these specimens be viewed even with a power of 30 diameters, it will be found that the spieula are so long that only a portion of each ean be seen in the field of view at one time ; they are of a light brown colour, and covered with very minute tubereles, as shown at b. The spicula taken from the neighbourhood of the polypes are much smaller, as shown at c, but have tubercles like those oceurring in the same situation in the Alcyonium; their colour is a rich brown. The skeleton, therefore, of these beautiful ereatures, like that of Alcyonium digitatum, is dermal.

The last speeimen I shall deseribe as belonging to this order of Zoophytes is the Tubipora Musica, or Organ-pipe coral, Fig. 77, D, whieh is always of a brilliant red eolour, and easily recognized by being: made up of a series of tubes arranged in rows one above the other. Considering them as a whole, the tubes are disposed in a radiated manner, they are about half an ineh long, and as soon as they have arrived at the proper length, a frill or flange is, as it
were, seereted by the outer portion of the tube which joins similar ones developed from adjacent tubes on. either side, and the result is that a horizontal shelf or septum, as shown at c , is formed, from the upper surfaee of which, new tubes are given off ; the radiated disposition of those first formed allowing space for the new ones on the portions of the shelf between their mouths. When living, the entire mass of tubes is covered with gelatinous matter, or flẹsh as it is sometimes ealled, and each tube, as represented by A, B, .
fig. 77.

eontains a polype of a grass-green colour, so that a living eoral must be an elegant thing indeed. The outer portion of the polype is conneeted with the interior of the tube by means of a thin membranous lining, another portion of which is reflected over the lip of the tube, and is united to the gelatinous matter on the outside, whilst an intermediate portion seeretes calearcous matter, and forms the tube.

In a speeimen in the museum, prepared by Hunter, the polypes are seen in situ, and in the small speeimen represented by c, Hunter demonstrated the organie basis of the tubes, after removal of the calcareous material by acid. Thin sections of this eoral, which is very brittle, oceasionally exhibit a eellular structure, with the openings : of numerous foramina, and in a speeimen I possess, the fibres of a sponge have penetrated some of these foramina, as in the ease of the Pinna-shell mentioned in, a former Leeture, at page 37 . This is a very eommon cireumstanee in all eorals, and by acting

FIG. 78.


A section of Coral exhibiting confervoid growths. on thin seetions with hydroehlorie aeid, the ealeareous matter is removed and the true nature of the fibres easily made out; but being familiar with the sponge-fibres, I soon reeognized those in the Tubipora as old acquaintanees. Confervoid growths also are very frequently met with in the skeleton of eorals, as all these bodies possess animal matter, whieh, deeomposing after death, becomes a nidus for the development of confervæ, and hardly a seetion can be examined without exhibiting such an appearanee as that shown in Fig. 78.

\section*{LECTURE X.}

\section*{SKELETON OF ZOOPHYTES.}

In the last order of the elass Anthozoa, the Helianthoida, the polypes are single, free or permanently attaehed; fleshy, naked or enerusted with a ealeareous polypidom, the upper surfaee of whieh is erossed by radiating lamellæ. The most familiar examples of this order are the Actinice, familiarly known as Sea-Anemonies or Animal Flowers, some speeies of whieh are common on all parts of our eoasts. In certain states of the atmosphere, especially when the weather is stormy, the Aetinix appear as eonieal masses of fleshy substanee, but when the sea is calm and the sun bright, they expand themselves, and then they resemble beautiful flowers; their tentaeula disposed in one or more eireles and beautifully eoloured, are very like the petals of a flower. The Actinia mesem-
bryanthemum, in partieular, which is very eommon on the coast of Sussex, has a row of large tubercles of a most splendid blue colour, like lapis-lazuli, on the outside of the tentaeula. These animals live a very long time, and it is said that the late Sir John Dalyell kept some of them alive for upwards of twenty years by giving them fresh sea-watcr nearly evcry day. The external or euticular coating of the Aetinia is thin and eoloured, the inner or corium, thick, leathery, and more or less white; the inferior surface is flattened to form a discoid base, or foot. Some species are eovered with tubereles, others have numerous pigment spots seattered irregularly on their outer surface.

A vertieal section of the entire animal, as shown in Fig. 79, exhibits a cireular perforation, the mouth,

Fig. 79.


A, vertical scction of an Actinia showing its internal structure. \(u\), spicula from the tubereles magnified 250 diameters. \(\langle\), tentacula. \(c\), tubercles between the fentacula. surrounded by the coloured tentacula, \(b\), leading to a flask-shaped stomaeh, which, instead of oeeupying the entire eavity of the body, as in the Hydra, is suspended within that cavity by a number of vertieal septa, forming a eorresponding number of cavities, or ehambers, whieh contain the ovaries and testes. The eavities for the lodgment of the
ovaries are large, and situated near to the external tunic; those for the testes are smaller, and in immediate contact with the coats of the stomach. The upper part of all the scpta is perforated, so that each chamber communicates not only with those adjoining, but also with the interior of the tentacula, cach of which, as shown at \(b\), is tubular and perforated at its free extremity, so that watcr taken into the chambers is propelled, by the contraction of the walls of the chambers, into the tentacula, distending them, and by this means causing their protrusion and the expansion of the entire animal.

The microscope reveals to us no trace of calcareous or siliceous skeleton in these animals, with the exception of spicula in certain tubercles, \(c c\), which occur in some species between or external to the tentacula. These spicula, as shown at \(a\), are of nearly equal size, measuring on the average \(\frac{1}{200}\) th of an inch in length, and pointed at both extremities. Professor Bailey, of New York, who discovercd them, believed that they were composed of silica, like those of the sponges; but as they are destroyed by a red heat and not acted on by acids, it is more probable that thcy consist of horny matter. The Actiniæ subsist for the most part on small crabs and other crustacea that come within the reach of the tentacles; they do not appear to move to any extent in search of their prey, being gencrally fixed to the rock by the discoid sucker on their inferior surface. The soft parts of the food are rapidly digested,
while the indigestible portions are rejected by the mouth, there being but a single opening to the stomach, from which viscus the nutriment is directly absorbed. For the purpose of better securing the animals that they seize, the tentacula are said to be furnished with poison vesicles and spicula, somewhat similar to those in the Hydra; if the finger be placed in contact with the tentacula of most of the common species of our shores, a stinging sensation will be felt.

The Actiniæ are propagated by ova, whieh are developed in the lobulated glandular ovaries situated in the interseptal chambers, and impregnated by the sperm-cells of the twisted testieular tubuli also seated in the same chambers. The ova, after fertilization, are said to remain in the interseptal chambers, and the young Actiniæ escape by the mouth of the parent, but it is still uncertain how they find their way into the stomach. It is equally certain that the Actiniæ occasionally, although unfrequently, propagate by gemmation.

During a visit to Brighton last year, I had the opportunity of verifying this statement, having scen as many as five or six young Actiniæ adhering to the base of a full-grown animal, from which they subsequently separated, and attached themselves to the sides of the glass jar in which they were kept. Like the Hydræ, thcy possess the power of reproducing lost parts, and when one of them is divided into two or more pieces, each part is capable of becoming a perfect animal. The
spieula from the tubereles of Actinia mesembryanthemum, as shown at \(a\), are linear, elongated, pointed at both extremities, and might readily be taken for those of some sponges of the genus Halichondria, but, as I have already said, they probably eonsist of a horny material. In the thick, leathery corium which forms the external tunie of the animal, there is neither ealeareous matter nor any trace of spieula, but an abundanee of unstriped museular fibres.

The laminated or lamelliform Corals belonging to the same family as the Actinix, are provided with a hard caleareous skeleton. When of a cireular form, they are ealled Fungice, or Mushroom Corals, but when clongated and oval, have reeeived the name of Sea Slugs. The situation of the mouth in these solitary polypes is indieated by a deep fissure at the centre, as represented by A and B, in Fig. 80 ; all the other parts, as shown at A , are covered by the flesh which fig. 80.


A, Fungia agariciformis showing the soft parts of the animal. 1, slicleton of the same.
dips down between eaeh of the laminæ. The grooves between the laminæ are deep, extending to the base of the ealeareous skeleton which forms a thin solid layer eonnecting the laminæ like the pileus of a mushroom. The tentaeula are tolerably numerous, arising from the flesh, as shown at A. In the dried speeimens of these elegant skeletons, although all visible traces of the flesh have been removed, the organie basis by whieh the earbonate of lime was seereted and deposited, remains and may be readily demonstrated. In a specimen from the Museum, prepared long ago by Mr. Hatehett, the caleareous matter has been removed from a part of the skeleton by the aetion of an aeid, whieh retains the perfect form of the remainder of the eoral mass. Sections of the coral and the organie basis, when examined under the mieroscope, oecasionally show traees of the eells by which the ealeareous matter is assimilated and within which it is deposited.

The Fungiæ then are examples of the skeleton of a single animal, like an Actinia, and may be termed simple corals, but there are many speeies in whieh the polypes are exceedingly numerous; these, by way of distinetion, may be considered as eompound polype masses, or eorals; they are reeognized by clusters of cells of nearly uniform size, eaeh exhibiting a radiated laminated strueture, as shown by \(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\), in Fig. 81. The number of the arms of the polypes is indicated, as in the Alcyonidæ, by the number of the laminr. These eorals are ealled Madrepores; in many
species, as in Madrepora galaxea, c, there is little or no space between the cells, but in others there is an
\[
\text { FIG. } 81 .
\]


A, Astrcea viridis with its polypes. B, Astrcea purpurea showing the polypes. c, Madrepora galaxea. D, Madrepora ananas.
intermediate portion of the same stony material separating the cells, which may be on the same level as the cells, or, as in the arborescent corals, may take the form of a stem or axis, as in the Oculina ramea, Fig. 82, B. In some genera and species the cells are not circular or hexagonal, but elongated and wavy, with the laminæ still projecting inwards towards a central median furrow.

In those Madrepores commonly called brain-stones, (on account of the continuous wavy lines on their surface
resembling the convolutions of the brain, and their globular figure,) the polype-cells have coalesced, and fig. 82.


A, a portion of a Coral in which two branches have been repaired after fracture. B, a branch of Oculina ramea, the upper part being invested with the soft parts of the animal, the lower being denuded.
by these means the wavy superficial markings have been produced. Such is the nature of the very large and beautiful specimen contained in the Muscum of this College, and with which most of you no doubt are familiar. There are other corals, formed precisely in the same manner as the Madrepores, but the cells being exccedingly small, they have been termed Millepores, and the fine polypidom now before VOL. II.
you, from its resemblance to the horns of a stag, has been named Millepora alcicornis. Other genera being altogether destitute of polype-cells and pores, were called Nullipores ; but it is now satisfactorily aseertaincd that these are in reality plants having an external eoating or skeleton of carbonate of limc.

Corals are chicfly inhabitants of the tropical seas, where they form islands and reefs many hundreds of miles in extent, so much dreaded by the navigator, but of the greatest possible intercst to the geologist and naturalist ; the former looking upon these animals as mighty agents in elevating the crust of our planct, the latter having regard to their development and the variety and beauty of their forms.

Mr. Darwin, whose name is so familiar to all naturalists in connection with the voyage of the 'Beagle,' has paid the greatest attention to the structure of the rocks produced by these Zoophytes, and has distinguished them as Atolls, barrier-reefs, and fringing-reefs. The word Atoll is applied by the inhabitants of the Indian Arehipelago to eoral islands of cireular figure, with a pool or lake, termed a lagoon, in the centre, generally communicating at some point of its circumference with the surrounding ocean by a small channel. A barricrreef may be viewcd as an Atoll spread out in a straight line, running parallcl to a line of coast having deep water on the outside, while the channel between it and the main land, or, in other words, the lagoon, is broad, smooth, and decp. A fringing-recf has shallower water
on its outside, and a narrow and shallow lagoon between it and the coast. An Atoll is generally found where the water is decp, the outer side of the coral bank shelving down at an angle of 45 degrees to the depth of 200 or 300 fathoms, whilst the inner side gradually slopes so as to form a cavity somewhat like a saucer ; but this also is in great measure filled up by fragments of coral detached by the surf from the outcr part of the reef, so that even in the centre of a lagoon the water is rarely more than 50 feet deep. The outer surface is continually washed by a strong surf which renders the island difficult of approach, unless it should happen, as it not unfrequently does, that the force of the surf has been sufficient to make a breach in the coral; then, however rough may be the passage to the breach, the navigator will be amply repaid by the smooth water of the lagoon, and if he be a Zoologist, no spot that he could choose is more fertile in animal life. Here fishes swarm, here is found the gigantic Clam, with an endless variety of smaller shell-fish; here the coral animals and other Zoophytes revel in enjoyment, here sea-wecds grow in abundance, and turtles are not wanting to feed upon them.

Many of these Atolls are of large size, and the coral barrier is covered with a luxuriant vegetation. As the coral animals cannot live in more than 20 or 30 fathoms bclow the surface, it may be askcd, how can the recf be formed at a depth of 200 or 300 fathoms? Mr. Darwin holds the opinion that the Atolls are based
upon land which was once dry, but has since subsided, carrying with it the dead corals. He has found also that the surface of the coral is generally covered with Nullipores, sea-weeds and shells, and that the detritus of these, the dead coral, shells and sand together, form a soil fitted for the growth of stray sceds and fruits, such as the cocoa-nut, carricd to them by the occan currents. Somc idca may be formed of the bcauty of one of these Atolls by the diagram before you, which is a representation of Whitsunday Island in the Pacific; the vegetation is most luxuriant, and capable, as has been proved on more than one occasion, of supporting for a considerable period the shipwrecked mariner ; the cocoa-nut, the turtlcs, and shell-fish of the lagoon furnishing him with abundance of food, whilst fresh water was readily obtained by digging small wells in the sand, into which water from the sea gradually found its way, and having a large stratum to pass through, was deprived of nearly all its saline constituents. The largest barrier-reef, upwards of 1000 miles in length, occurs on the north-east coast of Australia, rendering the navigation of this part of the globe excecdingly dangerous. It has been described by Mr. Joseph B. Jukes,* who was employed during the years 1842-1846 as naturalist to the expedition under Captain Blackwood, of H.M.S. 'Fly', for the purpose of surveying Torres Straits, New Guinea, and * "Narrative of the Surveying Voyage of H.M.S. 'Fly,'" London, 1847.
other islands of the Eastern Archipelago. The upper and outer parts of the reef are composed of living species of the genera Porites and Millepora, the former being described by Darwin as forming masses from four to eight feet broad, and of similar thickness, and by the naturalists of the United States' Exploring Expedition as of a more or less nodulated figure, while the Millepore is composed of thick vertical plates, intersecting each other at various angles, forming an exceedingly strong honey-comb mass of a circular figure, the external plates alone retaining thcir vitality.

These corals are found near the surface, but lower down therc are other large stony species. Small fragments of Millepora alcicornis have been brought up from a depth of twelve fathoms; but so firmly are the corals bound together, even at this depth on the margins of the reef, that chains and anchors have been lost in the attempt to detach them. Shells of different species are also occasionally found forming a stratum of two or three fcet thick, within reach of the tide or spray of the water.

The remains of Madrepores and other corals abound and were mainly concerned, in the formation of many limestone rocks. The specimens constantly exposed for sale at Clifton are principally Madrepores and Oolites, and some of the former still clearly exhibit the large cells for the polypes and the radiated disposition of the septa, the cells being closely approximated, and the interscptal spaces filled with transparent calcareous matter.

In other specimens, the eells are more widely separated, and the intervening spaces oceupied by dark caleareous material, fraetured in sueh a manner as to produce a eellular appearancc, so that cven in the fossil state the indications of eoral strueture are very evident. As the cntire mass of the eoral is eomposed of cells filled with earbonate of lime, it follows that the vulgar opinion of its being built up by polypes is erroneous; indeed, the study of the development of these animals clearly proves that the cells are formed before the polypes, and that their function is that of colleeting and digesting food-in fact, that they eonstitute the digestive system for the nutrition of the flesh of the entire animal. This connection of the polypes with the flesh, and the conveyanee of the nutritious matter to the latter, is strikingly evident in the tubular keratophytes. The polypes then, perform the same funetion towards the eoral-mass as the oyster to its shell; for if the oyster dic the shell also dies, but so long as the oyster retains its vitality, every portion of the shell, however distant from the animal, is endowed with life; and in the same manner, so long as the polypes romain alive, the vitality of the entire eoral mass will be sustained. Colleetors of shells ean immediately distinguish those that have been taken out of the water alive, from dead shells; the former always retain their polish and colour ; the latter arc dull, opaque, and of little value.

Corals, like shells, possess the power of repairing injurics; this I had long suspected, although I had no
direct proof of the fact until, having occasion to examine an old collection belonging to the Museum of this College, I found some specimens in which fractures had occurred. In one of these, as shown at A in Fig. 82, several branches had been broken off and cemented to others in the position in which they had fallen; in another species-Millepora alcicornis-thcre arc several cxamples of a similar repair of fractures; whilst a third, of an extremely interesting character, shows that the broken extremities of the branches have been subsequently rounded off and covered by the flesh, in the same manner as a bone after amputation of a limb. These specimens all belonged to John Hunter, and were probably selected by him for the illustration of the process of repair after injury.

When speaking of lime as forming the skeleton of plants in my first Lecture, I made brief allusion to a class of organized beings termed Lithophytes; these
fig. 83.


Corallina officinalis. were considered by Lamarck and other high authorities to be animals ; modern investigation has proved that the Corallines, and even the harder Nullipores, arc cssentially plants more or less coated with calcarcous material.

One of the commonest of the Lithophytes found on our coasts is the Corallina officinalis, represented in Fig. 83; it consists, as you well know, of a scrics of minute joints; when acted on by dilutc hydrochloric acid, the coating of lime is removed, and it then becomes quite as flexible as any plant, and most of the terminal branches, which are of a round figure, will exhibit the organs of fruetification. Other specics of Corallines, such as C. monile, Fig. 84, a, and C. opuntia, b, are
fig. 84.

a, Corallina monile, (of Ellis). b, Corallina opuntia. c, Nullipora polymorpha. d, Nullipora ayariciformis.
both largely coated with lime, but their joints are more evident than those of \(C\). officinalis. The harder Lithophytes have reecived the name of Nullipores; one
of thesc, N. polymorpha, representcd by \(c\), is common on our coasts; it is found so abundantly in Falmouth Harbour, that it is dredged up to manure the land. It consists of a series of irregularly branched nodules, and is of stony hardness. Another species, N. agariciformis, represented by \(d\), is not so common; it grows in globular masses, varying from an inch to four inches in diameter, and is made up of a series of foliaceous laminæ; when acted on by dilute hydrochloric acid, this and the preccding species, like the two Corallines above mentioned, exhibit a soft, flexible mass, which retains the shapc of the original specimen, but which, on being burnt, gives off a decidedly vegetable odour.

As the Lithophytes occur in the greatcst abundancc upon coral-reefs, where it would appear that the water is highly charged with carbonate of lime, and, as in former times, they were considered to be Zoophytes, I have thought proper to speak of their minute structure at this time, in order that you may have an opportunity of comparing it with that of the stony axis of the Corallidæ, and I must therefore beg of you to bear in mind that the comparison is of the greatest interest; for in both instances we have a great abundance of calcareous material which has been separatcd from the water by a vital process, that in the one case being effected by a vcgetable, the other by an animal basis requiring the presence of digestive sacs, or polypes, to maintain its integrity. If a vertical section be made of any Corallinc, such for example as the C. officinalis,

Fig. 85, \(a\), we shall find that, on examination with the lowest powers, it will exhibit two kinds of structure, both of which are essentially cellular, that on the exterior being composed of small cells of hexagonal figure, whilst in the interior they are more elongated, and generally of a brownish colour; this is espeeially the case if a seetion should include a joint. In the fresh state the contents of the cells can be easily made out, and the central ones are not unfrequently full of greenish granules like Chlorophylle. The lime is not in the interior of the cells, but appears to be on the outside of the cell-walls, whieh are rendered opaque and thick in consequence. A portion of the vertical section, as seen under a power of 200 diameters, is represented at \(c\), the dark parts on the outside of the eells there shown, are the caleareous material ; the eells in the centre, as before notieed, are of an elongated figure, having little or no lime about them; these also are exhibited at \(c\), but the loose cells on the right side of the lower part of the figure, formed part of the articulation, and are entirely destitute of lime. A transverse section of one of the joints of the same Coralline, as shown at \(b\), is wholly made up of cells, those on the margin being rather larger than the central ones; both have an abundance of lime around them, as represented under a power of 200 diameters at \(d\). The eells seen upon the upper portion of this figure having been deprived of their lime, are in eonsequence rendered very apparent. All the Corallines exhibit nearly the same structure, the
outer portions being composed of eells of hexagonal figure, and the eentral of elongated ones; the former are
fig. 85.

\(a\), a vertical section of a joint of Corallina officinalis magnified 50 diameters. \(b\), a transverse section of the same. \(c\), a portion of the vertical section magnified 200 diameters. \(d\), a portion of the transverse section magnified 200 diameters.
always eoated with lime, whilst the latter are only partially so, and it is by the absenee of the lime from these cells, at partieular points, that the articulations are formed.

A very striking specimen for exhibiting the structure of the artieulations is Corallina incrassata; a vertical seetion of this plant is represented by A in Fig. 86. The joints, as there shown, are composed of elongated cells, and from having no lime about them, are soft and flexible, and even of a green colour. A magnified
portion of one of the joints is shown at B , and a transverse seetion at c , both are made up of eells, fig. 86.


A, a vertical section of Corallina incrassata, showing the joints. B, a portion of one of the joints. e, a transverse section of the same, both magnified 130 diameters.
of which the eentral ones are mueh elongated. That the ealeareous investment of the Lithophytes is not a mere precipitation from the water, as happens with many of the Characea, is, I think, very evident, for I have never yet seen any speeimen of Coralline in whieh the part forming the articulation was eoated over, nor has any seetion shown that the ealcareous matter is ever present exeept as a eoating to the eell-walls or the spaces between them. In the Nullipores whieh have no joints, the eellular strueture is of the same nature throughout; there are no elongated eells in the centre, as in the Corallines, consequently it would appear that the
articulation is the result of a vital action in some of these cells, whereby they are deprived of the power of selecting a calcareous coating from the surrounding water, their energies being entirely devoted to the function of growth.

I now proceed to describe the structure of some of those corals which consist of a series of branches like the Nullipores, but all of which exhibit cells for the lodgment of polypes. When divided transversely or longitudinally, a branch of coral will always present a porous character, the pores being continuous with the polype-cells ; but when examined microscopically, many of the parts which appear to be composed of solid lime will be found to exhibit traces of a cellular structure, as shown in Fig. 87. The cells, when present, will be found to differ very materially from those of any Nullipore, and all the calcareous material is
yig. 87 .


A vertical section of Coral, showing its cellular structure. contained within them. The presence of cells is not always so plainly discernible as is represented in Fig. 87, for changes are continually going on, both in the cell-walls and in the calcareous material which they enclose, the former, as before stated in page 5 , being absorbed, whilst the latter undergoes a species of crystallization. I have made a very great
number of sections of the stony skcletons of corals, and have repeatedly failed in detecting any trace of cellular structure in every specimen; those parts newly formed should be selected in order to see them to advantage. I have alrcady spoken of the devclopment of the stony axes of the Gorgoniada; these appear to diffcrif from the true Corals in having a spicular origin, which spicula, in process of growth, coalesce and bccome converted into a solid mass. Thus then, independently of the minute structural diffcrence between a Nullipore and a Coral, there is also this striking fact, that both are developed by an organic basis, the one having the calcareous material extcrnal to the basis, whilst in the other it is always internal to it.

\section*{LECTUREXI.}

\section*{SKELETON 0F ZOOPHYTES.}

Having now examined the structure of the skeleton in the orders Hydroida, Asteroida and Helianthoida of the class Anthozoa, I proceed to the class Polyzoa, which is divided by Dr. Johnston into two orders, the Infundibulata and Hyppocrepia. The Infundibulata (Cilio brachiata of Dr. A. Farre) are all marine animals with compound polypes, each of which has a mouth surrounded by filiform retractile tentacula provided with ciliated arms, by which they are distinguished from the Hydroida. The Hyppocrepia, on the contrary, are all lacustrine, or natives of fresh water ; but in them the mouth is also surrounded with ciliated retractile tentacula. In the Anthozoa the polype is either naked, as the Hydra, or enclosed in a horny skeleton formed by soft animal matter continuous
with the polypes, but not by the polypes themselves. In the Asteroida the skeleton, as in the Gorgoniæ, is also internal, whilst in the Helianthoida it is again external ; but in the present elass, Polyzoa, the skeleton forms a portion of the polype itself, hardened by the deposition either of horny tissue or ealeareous matter.

In the Anthozoa we found the polypes develuped from a common central mass, but in this elass each polype is distinet and enelosed in its own peeuliar eell. In the Anthozoa, as in the ease of the Hydræ and Actinix, the polypes oceur in a separate or naked form, but, aceording to Johnston, in the Polyzoa there is always some kind of ease or skeleton to proteet them; a tunie, whieh after investing the body of the polype as in a pouch, is refleeted over the aperture of the eell, the refleeted portion beeoming external and solidified either by ealcareous depositions in its texture, or by a mutation of its thin membranous tissue into a horny investment, better suited to the office it has to perform of proteeting the sentient body from too rough a eontaet with the medium in which the animals live, and from other aceidents.

When the polype retires within its eell, the mouth of the eell is elosed by that portion of the tunie whieh they push before them when they protrude themselves, and some speeies of Flustra, are provided with a tendinous apparatus for lengthening the body, which is doubled up in the interior of the eell, when they are at rest.

The order Infundibulata is divided by zoologists into seven families, viz.: Tubuliporida, Crisiada, Eucratiadce, Celleporide, Escharida, Vesiculariadce and Pedicellince. Of the two first of these I possess no speeimens, but of the third, or Eucratiada, I have one of great interest-the Anguinaria spatulata, or Snake's Head coralline of Ellis-which, from possessing a higher organization than the other members of the family, and from the presence of striped museular fibre, should be elassed with the Bryozoa among the Mollusea; but as its external form and the strueture of its skeleton somewhat resembles that of the Hydraform Zoophytes, I shall describe it here. This Zoophyte, shown at c in Fig. 88, attaches itself to pieees of sea-weed, along whieh it ereeps in a spiral manner, sending up here and there a curved tube, with its free extremity dilated into a polype-cell resembling the head of a snake, on which account the animal has reeeived the name of Snake's-head Coralline. The tubular proeesses eontaining the polypes, are composed of ealeareous matter ; the part eorresponding to the body of the snake is surrounded by a series of rings, whilst the dilated portion, or head, exhibits a minutely hexagonal or granular structure, as if made up of cells of that figure. When aeted on by dilute aeid, the ealeareous matter is removed, and a very transparent horny membrane is left, which retains much of the original strueture.

The best deseription of this Zoophyte is that given by Mr. Busk in the second volume of the "Transaetions VOL. 1 .
of the Mieroscopieal Soeiety," who states, that in the creeping or radien portion, the ealeareous matter is deposited in the form of minute angular or rounded partieles, presenting faint traees of a lincar arrangement; but in the main body of the polype-cell, or the tubular proeess, as I have before described it, the ealcareous element takes an annular form; this must be dissolved beforc the polype ean be well seen. We have here then a good instanee of a true skeleton, strengthened by a deposit of earthy material. Mr. Busk has deseribed the polype, and the transversely striated character of its muscular fibres; but I merely mention these in passing, being now chiefly oecupied with the strueture of the skeleton.

Of the Celleporide I possess but one example, a speeies of the genus Lepralia, eonsisting of a series of egg-shaped cells, of a shining-white or grey colour, arranged in a single layer, forming a coating over shells, sca-weeds, corals and other submarine bodies. Eaeh eell has a more or less oval aperture, as shown at D, in Fig. 88, out of which the polype is protruded ; the eells are disposed in regular rows, those in one row, aceording to Johnston, being a little in advance or behind those in other rows; that is to say, the aperturcs in the eells of one row, are in a line with thosc in the third row from it. The structure of the cell is granular, and it contains so large an amount of ealeareous matter as to render the entire mass exccedingly brittle. I possess
a portion of a shell entirely covered with Lepratia Ballii, Fig. 88, D, the apcrtures of the cells of which
fig. 88.


A, Flustra foliacea. B, portion of the same magnified in order to show the cells. c, Anguinaria spatulata. D, Lepralia Ballii. E, Cellularia ciliata.
are visible to the naked eye. In the next family, Escharida, the Flustra foliacea, Fig. 88, A, resembles foliacenus sca-wecds in appearance, is of a brown colour, and composed of a number of polype-cclls arranged in a singlc or double layer; each cell is of a more or lcss square figurc, being a littlc broader and more rounded at its distal, than at its proximal extremity. The aperturc from which the polype is protruded is of a semi-circular figure, and surrounding it, as well as the wall of the cell, are some short
spines. When mounted as an opaque preparation, the cells and their apertures are distinctly visible ; but when examined in the fresh state, or after having been placed in spirit or some other preservative solution, the polypes may be seen in their cells in some cases with the tentacles extended; in almost every cell the tendinous apparatus for lengthening the body, which is of an opaque brown colour, and bent upon itself ncarly at a right angle, may also be recognized.

Another small frondose species of Flustra is the F. cartacea, which is never more than two inches high; in the mass, the cells always present a glistening aspect, as if they had been eoated with varnish; it is not uneommon on the Sussex coast. The skeleton of the foliaecous Flustrce is composed of horn, but the incrusting species, Flustra coriacea and lineata, have more or less calearcous matter in their skelctons, like the Lepralice; these, however, do not form distinct fronds like F. foliacea, being found chiefly upon shells and sea-wceds. All the incrusting species, especially \(F\). truncata, when prepared and mounted in Canada balsam aceording to the plan recommended by Dr. Golding Bird in the first volume of "The Quarterly Journal of Mieroscopical Science," page 85, exhibit the most splendid tints under polarized light. The polypidom appears to be covered with a series of minute spherical masses or concretions of earbonate of lime, the eentre of each being occupied by a
black cross with tinted quadrants, and the whole circumscribed by a black circle. When acted on by dilute hydrochloric acid, the spherules are dissolved with effervescence, and the beautiful tints disappear.

In the genus Cellularia, as for instance, C. ciliata, Fig. 88, e, the polypidom is composed of a mixture of horny and calcareous matter ; the cells are of an oblong figure, and each has a spine on its superior outer angle. This specimen is remarkable for the expansion of the polypes, which are all protruded, the cilia being still visible on some of the tentacula, and also for the manner in which the skeleton is strengthened by calcareous matter distributed through the horny texture. When the polypidom is mounted in Canada balsam and viewed by polarized light, the plates of carbonate of lime with which the cells are covered, exhibit most splendid colours, like those of the Flustra truncata above described.

The structure of the polypidom of the Cellularia plumosa very much resembles that of the preceding species, but about the middle of most of the polype-cells there is a peculiar moveable process like the beak of a bird, which has on this account been called the Bird's-head process. It consists of a globular head having a projecting part corresponding to the upper mandible, which is met by a smallcr mandible below, and upon the head a fan-shaped muscle is spread, composed of striated or voluntary muscular fibre; during life, not only are these mandibles constantly
in motion and ready to scize any objects that may come within their grasp, but the head itself is capable of being moved. A few days sincc I saw a specimen of this Zoophytc in which a worm had been scizcd and was still held fast between the mandibles, and they seemed to me to pcrform a function analogous to that of the Pedicellariæ of the Echinodermata, which I shall hereafter describe.

The Notamia bursaria, or Shepherd's Purse corallinc,
fig. 89.


B, Nolamia bursaria, Shepherd's Purse coralline. c, a portion of the same magnified. D , one of the triangular eells magnified 250 diameters, showing the polype and the "bird'shead" process with its striped museular fibres (after Busk). Fig. 89, в, said by Johnston to be very rarc, but dredged in considerablc abundanee by Mr. Busk on the coast of Dorset, and described by him in the sccond volume of the "Transactions of the Microscopical Society," consists of a series of cells of triangular figure, occurring in pairs, as shown at c , the base of the triangle being uppermost. Upon this basc, in cach coll, is a bird's-head process supplied with voluntary muscular fibres, kecping the mandibles eontinually in aetion while the Zoophyte is living. These bird's-head processes have been
minutely described by the latc Dr. John Reid and M. Van Benéden; they are of three or four kinds, like the Pedicellariæ, and have received various names from their fancied rescmblance to certain instruments in common usc. Their skeleton is like that of the polypidom, and for the best account of their structure, as well as for everything else relating to British Zoophytes, I would refer you to the excellent work of Dr. Johnston, to which I have so often alluded.

We have only a few specimens of Zoophytes in the British seas, that have sufficient calcarcous matter in their composition to entitle them to the name of Corals, as commonly understood; those, however, which approach most nearly to this character, are specics of the genera Eschara and Retepora; of the lattcr, the R. Beaniana, rcpresented of its natural size at A, in
fig. 90 .


A, Retepora Beaniana of the natural size. \(B\), portion of the same magnified. Fig. 90, and a portion of which, when magnified, is shown at \(B\), is so nearly allied to the Lace Coral of the Meditcrranean - Retepora cellulosa - that Dr. Johnston and others at onc time considcred them to be identical. The polypidom is about an inch high, and is attached to rocks by a short, broad stalk; when dried, the calcarcous matter is
quite white, and when portions are aeted on by dilute hydrochlorie acid, an organic basis is left, which retains the perfect shape of the original specimens. The large oval apertures, represented at B , give to the specimen its laee-like appearance; the smaller holcs are for the lodgment of the polypes, whieh are provided with eiliated arms, like those of the Flustra. With this coral, I must conelude the strueture of the skeleton of the first order of the Polyzoa, viz.: Infundibulata, and proeced to that of the second, or Hyppocrepia.

All the members of the order Hyppocrepia are inhabitants of fresh water, and are generally found attached to timber, or upon the under side of the large leaves of aquatic plants; one of the most common speeics, and that whieh first attraeted the attention of naturalists, is the Alcyonella stagnorum, said to have been discovered by Trembley as long ago as the year 1741 ; it occurs in the greatest abundanee on floating logs of timber in the West India Doeks, and when first taken out of the water, is of a lobulated figure and brown eolour, and its surface, as shown of the natural size at a, in Fig. 91, or magnified at B , exhibits a retieulated strueture; these are the mouths of the polype-eclls, in eaeh of which, a polype with ciliated filiform tentacula, as shown at c , resides. The polypidom is soft and - elastic, and fcels very much like a sponge; when divided vertically, as represented at D , or horizontally
at e, it is found to be prineipally made up of tubes, in the sides of which, numerous dark-coloured ova,


A, polypidom of Alcyonella stagnorum of the natural size. B, portion of the surface magnificd. \(c\), one of the polypes. \(D\), vertical section of the polypidom, e, horizontal section of the same. F, ova (after Johnston).
as shown at \(F\), are developed. The tubes themselves are composed of a transparent horny material, having a peculiar smell when the polypidom is alive, but which, after death, rapidly becomes black and putrid, and very oftensive. No calcareous matter enters into the composition of the skeleton of this animal; my principal object in selecting it for description, is to point out to you the commonest, as well as the largest of the fresh-water Zoophytes, and one which will repay any investigator by the beauty of its polypes.

Another Zoophyte, also remarkable for the beauty of its polypes, is the Cristatella mucedo occasionally met with in ponds, in the neighbourhood of this metropolis; unlike the last described, the polypidom is a loeomotive one. I rather think the ova are more eommonly found than the Zoophyte itself, and when onee seen are not easily forgotten, being of a globular figure, and surrounded with spines having reeurved hooked extremities, as shown in Fig. 92; they might readily be mistaken for Xanthidia, and the

FIG. 92.
 speeimen which you will have the opportunity of seeing, was brought to me as such. These ova are sometimes met with in searching for Infusoria; they should be kept earefully, and watched, as the young Zoophyte is one of the most beautiful objects imaginable. When
Ovum of Cristatella mucedo. collecting the Alcyonella from logs of timber in the doeks, you can hardly fail in obtaining another Zoophyte, viz.: Cordylophora lacustris, which is often parasitic on the former. Its polypidom is horny, branched and tubular, each branch bearing a non-ciliated polype at its extremity; it was first diseovered by Professor Allman, of Dublin, and elassed by him with the Tubularidæ.

The next primary division of the Radiata to which I shall direet attention is that of the Acalephe. From
their soft and fragile texture, they are eommonly called "jelly-fish," or "sea-blubber," and from their stinging propensities, "sea-nettles." They are all inhabitants of the sea or of brackish water; many of them are phosphoreseent, and oceur in vast shoals in the open sea, to which they give most splendid rainbow tints when the sun shines brightly on them, and almost every species is more or less remarkable for the beauty of its colours. In the Aealephæ we have a very slight rudiment of a skeleton, for the solid matter, which in external appearance more resembles eartilage than any other tissue, is so small in quantity, that a Medusa weighing ten or twenty pounds, when dried, will perhaps hardly weigh as many grains.

The only genera of this elass that ean be said to possess a true skeleton, are the Porpita and Velella, and in these it is composed of horn. The Aealephæ are divided by modern zoologists into four orders, the Pulmograda, Ciliograda, Physograda and Cirrhigrada, aeeording to the mode of progression. The Pulmograda are sub-divided by Professor Edward Forbes into the Steganopthalmata, or hooded-eyed, and the Gymnopthalmata, or naked-eyed. In the first the rudimentary eye, whieh is situated at the margin of the disc, is covered by a hood-like projeetion, whilst in the second the oeelli are exposed and unproteeted.

To the order Pulmograda belong all those soft,
floating animals called Medusæ; eaeh animal has an expanded dise, bearing a strong resemblance to the head of a mushroom, by the alternate contraction and expansion of whieh, it progresses rapidly through the water. The superior surface of the disc is generally convex, the inferior more or less coneave, and in some speeies, as the Cyanca aurita, Fig. 93, A B, four long


A, under surface of the disc of Cyanea aurita. B, vertical section of the disc showing two of the tentacles. fleshy tentacula, which are provided with prehensile stinging organs on their inner surfaees, projeet from the centre of the inferior surface of the dise; they surround a small mouth which leads into a quadrangular stomaeh, from each angle of which a ramified tubular prolongation passes towards the margin of the dise, where some of the extreme ramifieations terminate in oval orifiees. The margin of the dise, as shown at A, is provided with cirrhi, which are coneerned rather in the funetion of locomotion, than in the prehension of food. The opaque parts seen in the centre of the dise near the attachment of the tentacula are the ovaries, these like the stomach, are quadripartite.

Among the original preparations of John Hunter in the Museum of the College of Surgeons, are several Medusæ in which he had sueeceded in filling the digestive cavities with coloured injeetion, and in one of them the injection has not only passed down into the tentacula, but also through the ramified prolongations of the stomach into a rich nctwork of vesscls distributed on the margin of the dise, bearing a strong resemblanee to the structure of the lung; he consequently plaeed it among the lowest of the series of preparations illustrative of the respiratory function, but the general opinion of modern physiologists is, that they represent a rudimentary vascular, rather than a respiratory apparatus. Under the microscope, a thin seetion of the substance of the disc of a Mcdusa is seen to consist of minute granular cells, like those of eartilage, imbedded in a homogeneous matrix ; and in a slice removed from the outer surface, not only are there a multitude of these cells, but also numerous minute radiating fibres, which are probably the rudimentary eondition of the museular fibres said by Wagner to exist in the discs of Oceania and Pelagia. The outer integument of this specimen, however, is studded with a number of stellate crystalline masses somewhat like raphides in shapc, but whether thesc arc aeeidental or not I am unable to detcrmine.

All the large Medusæ, sueh as those I have deseribed, belong to the family Steganopthalmata of Forbes, but almost all the smaller species are included in that
of Gymnopthalmata; for detailcd descriptions of the British species, I must refer to the splendid monograph of Professor Forbes, published by the Royal Society. The most familiar example of the order Ciliograda, is the Cydippe or Beroe pileus, Fig. 94, which is found in great abundance in the Thames about Grecnhithe


Cydippe, or Beroe pileus. and Gravesend in the summer season when the tide is flowing. It is very interesting to observe the movements of this animal when placed in a glass vessel of water; it will then be seen to consist of a transparent globular body, on the outer surface of which are eight bands of cilia, these by their rapid vibration, carry the animal through the water, and in direct sunlight each band presents all the colours of the rainbow. When undisturbed, two long, branched, filiform processes are protruded from cavities situated on the posterior part of the body, which may probably be concerned in the prehension of food. The stomach of the Cydippe occupies the centre of the globe, and from it a scries of branches extend to all parts of the surface, as in the Medusæ. To this order also belongs the elongated Cestum Veneris, or Venus' Girdlc, a ribbon-shaped animal provided with cilia on
its margins and remarkable for the brillianey of its colours as it progresses through the water. In these animals there is nothing that can strictly be called a skeleton; the parts supporting the cilia in Cydippe are firmer than the others, but even these exhibit little or no structure.

As an example of the Physograda we have the well-known Physalia pelagica, or Portuguese man-of-war, Fig. 95, which, like the Medusæ, is remarkable
\[
\text { FIG. } 95 .
\]


Physalia pelagica, or Portuguese man-of-war. for the beauty of its colours and its stinging propensities. This animal consists of a membranous sac, or bag, very like a stomach filled with air, whieh forms a float, one extremity being prolonged in the shape of a beak or snout, and provided with an opening through whieh the air may escape. Above the air-sac is a membranous crest, serving the purpose of a sail, and below it the digestive cavity from which depend two sets of organs, the tentacula and eirrhi ; the former prehensile and stinging, the latter tubular and provided with a suctorial extremity or mouth, through which the food is conveyed to the stomaeh. The tentacula are eapable of being drawn up nearly close to the air-bladder and then suddenly
shot out to the distanee of several fect, and by these, small fishes or other prey are rapidly seized and conveyed to the suctorial cirrhi.

There being scareely any rudiment of a skelcton in these animals, I shall pass on to the last order, the Cirrhigrada, of which we may take the Porpite and Velellce as types. The form of the Porpita, Fig. 96, c, is that of a flat circular disc, having a small mouth in the centre of its under surface, rig. 96.


> A, Velella limbosa. b, horny skeleton of the same. c, Purpila gigantea. d, horny dise or skeleton of Porpita.
to whieh numerous dependent eirrhi are attached. Within the disc is a flat circular horny plate, D, oecupying the greater part of its interior ; this, which may be considered as the skelcton, presents radiating and eireular strix, and is eomposed of horny tissue so folded as to form radiating lamine,
and from its inferior surface, in some specics, small tubular processes, like hairs, project. The alimentary and generative organs are so small in these crcatures, as compared with the bulk of the horny skeleton, that the soft parts of the entire animal, when placed in spirit, can scarcely be distinguished from it.

When the horny skeleton is examined with a power of 40 diameters, its upper surface is seen to be covered with radiating furrows having interposed ridges, on each of which are seated two rows of small projecting spines. The under surface, or that to which the greater portion of the soft parts of the animal are attached, is morc deeply furrowed, and plicæ, or folds of the mantle, fit accurately into the furrows, from which they can easily be removed by the application of a gentle force. The concentric markings have in all cases small scalloped edges, they occur at regular intervals, and arc so many indications of the lines of growth; in the centre therc is a circular depression, and between its circumference and that of the first concentric marking, there arc eight flattened radii. If the under surface be examined with a power of 100 diametcrs, the ridges will all be found to have small jointed tubular processes, like hairs, projecting from them, which are the cirrhi; but in no part of the horny tissue is there any trace of a ccllular or reticular structurc. In the Velella, Fig. 97, A, the skcleton, B, is formed of an oval horizontal and of a vertical horny plate attached to the former at a right angle. The vertieal plate, clear and tramsparent, is VOL. 11 .
covered with a thin film of membranc, but it is to the horizontal plate that the organs of digestion and generation are attached, and in the centre of the under surface of this plate is the probosciform mouth, surrounded with a series of cirrhi, some of which arc tubular, like those of the Physalia. The stomach, as in the Medusæ, is ramified, and extends to the margin of the dise; and as the animal floats on the surface of the sea, the vertical plate performs the office of a sail. When the horny skeleton is examined microscopically with a power of 100 diamcters no traec of cellular structure can be discovered; it is nothing more than a mass of structureless horn, with concentric laminæ indicating the successive stages of growth.

\section*{LECTURE XII.}

\section*{SKELETON OF ECHINODERMATA.}

The Echinodermata, so named from the circumstance of the bodies of these animals being covered with spines, form the third and last primary group of the Radiata. They are subdivided by Professor E. Forbes, the greatest British authority on this subject, into six orders, the division being founded on the mode of progression, or rather on the organs employed in locomotion.

These orders are the following:
1. Pinnigrada . . . . . . Crinoideæ.
2. Spinigrada . . . . . . Ophiuridæ.
3. Cirrhigrada . . . . . Asteriadæ.
4. Cirrhi Spinigrada . . . . Echinidæ.
5. Cirrhi Vermigrada . . . . Holothuriadæ.
6. Vermigrada . . . . . . Sipunculidx.

Of the first order, Crinoidea, very few living representatives remain, and only one is found in the British seas; but in the earlier gcological cpochs the scas tecmed with these animals, and they played a most important part in submarine lifc. Professor Forbes has so eloquently touched on this subject, that I eannot forbear citing a quotation from his work on British Star-fishes.
"One of the most remarkable phenomena displaycd to us by the researches of the geologist, is the evidenec of the existence, in primeval times, of animals and plants, the analogies of whieh are now rare or wanting on our lands and in our seas. Among those tribes which have beeome all but extinct, but which once presented numerous generic modifications of form and structurc, the order of Crinoid Star-fishes is most prominent. Now searcely a dozen kinds of these beautiful animals live in the seas of our globe, and individuals of these kinds are comparatively rarely to be met with : formerly they were among the most numerous of the oecan's inhabitants-so numerous that the remains of their skelctons constitutc great tracts of the dry land as it now appears. For miles and miles we may walk over the stony fragments of the Crinoider, fragments which were once built up in animated forms, cneased in living flesh, and obcying the will of the creatures among the loveliest of the inhabitants of the occan. Eren in their present disjointed and petrified state, they excite the admiration, not only of the naturalist, but of the
common gazer, and the name of Stone-lily popularly applied to them, indieates a popular appreeiation of their beauty. To the philosopher they have long been subjcets of contemplation as well as of admiration. In him they raise up a vision of an early world, a world the potentates of whieh were not men, but animalsof seas on whose tranquil surfaces myriads of eonvoluted Nautili sported, and in whose depths millions of Lilystars waved wilfully on their slender stems. Now the Lily-stars and the Nautili are almost gone; a few lovely stragglers of these onee abounding tribes remain to evidence the wondrous forms and struetures of their eomrades. Other beings, not less wonderful, and scarcely less graeeful, have replaeed them, while the seas in whieh they flourished have beeome lands, whereon man, in his columned eathedrals and mazy palaces, emulates the beauty and symmetry of their fluted stems and chambered shells."


Comatula rosacea.

The only Crinoid animal that now inhabits the British seas is the Comatula rosacea, and I am happy to have the npportunity, through the kindness of my friend Dr. Aeland, of showing you an undoubted British specimen. I have here also a foreign speeics
of Comatula, the Comatula or Alecto glacialis. According to Forbes the British species, Fig. 98, consists of a central portion, or disc, from which five short arms radiate, each of these very soon bifurcatcs and has a single row of small processes termed pinnæ attached to its sides. The arms arc morc or less solid, and composed of a series of joints which arc made up principally of calcareous matter. The British Comatula is much smaller than the one I have just shown you, and as there is a curious history attached to this animal. I shall briefly relate it.

In the year 1823, Mr. J. V. Thomson discovered
fig. 99.


\footnotetext{
A BC, enlarged view of Pentacrinus Europreus in various stages of development (after Forbes).
}
in the Cove of Cork a very minutc Crinoid animal which he named Pentacrinus Europaus, Fig. 99 ; it was attached by a jointed stem to various sea-weeds, and measured not more than three-fourths of an inch in height. The stellate part of the animal was like a Comatula, but the stem was flexibic and composed of about twenty-four joints, the lowest joint being expanded for the purpose of support. The discovery excited great interest in
the zoological world, as this was the first Encrinite that had been seen in the living state. Mr. Thompson subsequently discovered that the Pentacrinus Europaus was only the young, or larval condition of the Comatula, which, commencing life as an Encrinite and subsequently becoming a Star-fish, was then capable of swimming rapidly through the water.

A few specimens of a living Pentacrinite have been found in the West Indian seas, similar to this one from the Muscum, but these are so extremely rare that only four or five individuals have ever been


The body and upper part of the stem of a recent Pentacrinite, Pentacrinus caput Merlusce, from Barbadoes.
brought to Europe. The recent Pentacrinite, represented in Fig. 100, rescmbles a Comatula mounted upon a long jointed stem, from which, at certain regular distances, five small rudimentary arms arise without any latcral pinnæ devcloped from them. The upper part of the stem is dilated, and on this, the dise of the animal is seated, from which, five ra- diating arms, resembling those of the Comatula in shape,
arc given off, and in the speeimen represented by Fig. 100, are very gracefully eurved. The stem is about fourteen or fifteen inches long, and is eomposed of narrow equal-sized pentagonal dises, as shown at A, in Fig. 103. The arms also are composed of joints, or dises, but the lower part of the stem by whieh the animal was attaehed to the submarine roeks is lost. The dises are so numerous in some speeies of Pentacrinites, that they have been computed to exceed one hundred and fifty thousand.

Although so rare in the living state, fossil Crinoidece are so exceedingly abundant in the lias and other limestones of this country, that some of these roeks seem to be almost wholly composed of their remains. The fossil speeies have been divided by naturalists into two genera-the Pentacrinites, in which the stem is composed of pentagonal discs, and the Encrinites proper, in whieh these discs are circular. The heads, or rather bodies of the Encrinites, especially when their arms are eontraetcd, as shown at \(\mathrm{A} B\), in Fig. 101, so resemble the flower of the lily in form, that they are eommonly ealled "stone-lilies," and the joints of the stem, whieh are frequently perforated, are ealled "wheel-stones," but in the north of England, from having been used as rosarics, are termed "St. Cuthbert's beads." The eavity of the stem in some species is very peculiar, and in the ironstone of Derbyshire, specimens are met with in which the joints have disappeared, and nothing morc is left than the ironstonc which filled the cavity in the
centre of the stem, and from this resembling the thread fig. 101.


A, restored specimen of an Encrinite Actinocrinites. b, head of Cyathocrinites pyriformis (after Mantell).
of a serew, as shown at E , in Fig. 102, these stones are called "screw-stones." The body of a Pentacrinite
fig. 102.


A, portion of the stalk of an Encrinite. B, c, articulating surfaces of joints of an Encrinite. D, portion of the stalk of a Pentacrinite. E, screw-stonc of Derbyshire, being the east of the hollow of an Encrinital stalk.
is more like a star-fish than that of the Enerinite, as will be seen by comparing Fig. 100 with 4 , in Fig. 101.

The general strueture of the ealeareous skeleton of the Eehinodermata is well illustrated by seetions of the shell of the Comatula, whieh is composed of a retieulated or areolar tissue, thiekened by the deposition of ealeareous matter; in some parts of the speeimen an hexagonal network is visible, in others it has disappeared, and the ealeareous matter of all the hexagons has become blended together, so that nothing but the areolæ are apparent, and these, from having no deposit, resemble so many holes.

I am so fortunate as to possess a portion of the stem of a reeent Pentaerinite which will elueidate the true strueture of the fossil speeies. Viewing the entire horizontal seetion of a joint of any Pentaerinite by a low power so as to bring the whole seetion into the field of view, it is seen to be composed of a central spot or eavity, from which radiate five leaf-shaped, figured portions, whieh are not arms, but only eomposed of hexagonal eells of smaller size than those in the other parts ; on this aceount they are easily recognized by the naked eye, being always more eonspieuous than the other portions of the joint, as shown at D, in Fig. 102, or A, in Fig. 103. In the reeent speeimen the margins of the figured portions are eomparatively smooth, but in the seetion of a joint of a fossil Pentaerinite, represented by D, in Fig. 102, the margin of the figured portion is more or less indented. When a seetion of a joint of a Pentacrinite is examined with a power of 18 diameters, as shown at \(B\), it is seen to be composed of an
areolar structure, like that of cells having their walls thickened with calcareous material, a tissue identical with
fig. 103.


A, the articulating surface of a joint of a Pentacrinite. B, portion of the same magnified 18 diameters. c, articulating surface of a joint of an Encrinite. D, portion of the same magnified 18 diameters.
that forming the shell of the Echini and other Echinodermata. If, as frequently happens, portions of every part of a Crinoid animal occur in sections of limestone, as shown in Fig. 104, they are readily detected, but an observer familiar with their minute structure can FIG. 104.


A seetion of Derbyshire marble full of the remains of Encrinites.
reeognize with the mieroseope even the smallest fragments.

Sections of the joints of Encrinites have a large eentral eavity, which is often partially filled with crystalline deposit not present in the living animal, but the original areolar strueture is still visible throughout the substanee of the joint. The artieular surfaees of the joints are sometimes very beautifully marked, as shown at B and c, in Fig. 102, but the five-leaf-shaped figures charaeteristie of the Pentaerinite are rarely present; as a general rule, the seetions exhibit little else than eoncentric and radiating striæ.

I have met with one speeimen, as shown in Plate XV, Fig. 4, of the "Histologieal Catalogue," in whieh there is a faint traee of the outline of a series of small leaf-shaped figures, but this is not a constant eharaeter, although it was very evident in the speeimen from which the drawing was made. When viewed with a power of 18 diameters, as shown at D, in Fig. 103, very little differenee is diseernible between the minute strueture of the joints of Enerinites and Pentaerinites, except that the areolæ are of uniform size, and more square in the former than the latter. In consequenee of there being a hole in the eentre of each of the joints of the Enerinite, they were employed in former times as rosarics, the joints, from this eireumstanee, having been ealled beads; and in the north of England, as before mentioned, whether first used by St. Cuthbert or not, they have reeeived his name.

In the shops at the east end of this metropolis, where objects of natural history and curiosities of all kinds are sold, nccklaees may be met with consisting of a serics of flattened discs quite white, each having a hole in its centre, through which a string is passcd; in some eascs pieces of leather are placed between the dises, but more eommonly nothing of the kind is employed. These necklaecs are said to be brought from Ncw Zealand, or from the islands in the Pacific, but they in all probability come from some part of the coast of Africa, and are supposed to be joints of Encrinites.

About twelve months sinee I had a section madc of one of these discs, and its structure turncd out to be very peeuliar; it eertainly was not Encrinital, and I eoneluded that it was a portion of somc shell; but about two months after this, I was shown a section of the egg-shell of an Ostrieh whieh precisely corresponded in strueture with the beads of the neeklace, so that, in faet, these necklaees are not composed of the joints of Enerinites, but of portions of the egg-shell of the Ostrich, which have been rounded and drillcd-a work of no small labour, especially if the necklace be of the length of the one I possess, which is upwards of threc yards. A portion of this necklace is represented of the actual size at A, in Fig. 105, and one of the discs at b. When magnificd 50 diameters, after being redueed sufficiently thin to be transparent, it presents the appearanec shown at c.

From the strueture of the beads then, there is every reason to believe that these necklaces are brought from

\section*{fig. 105.}

B


A, portion of the necklace of the natural size. B, a single disc of the same. c, portion of a dise magnified 50 diameters. the eoast of Africa, and not from New Zealand; but if from the lattcr plaee, the shell must be that of the Dinornis, although this differs in structure from that of the Ostrich, with which these beads agree in every particular. A section from the upper surface of one of these beads, exhibits a series of more or less triangular erystals, corresponding precisely with the structure of the outer part of the shell of the Ostrich, which is made up of crystallized earbonate of lime.

The second order of Echinodcrmata, the Spinigrada is composed of the Ophiurida, or Brittle Stars. Thesc animals consist of a central portion, or disc, containing the organs of digestion, from which, as shown at \(a\) and \(b\), in Fig. 106, radiatc five or morc solid jointed arms; in some species the arms are smooth, but more commonly, thickly covercd with spines, and in the genus Euryale, the arms arc divided into a number of branches. All the animals composing this order are brittlc, whence their vulgar appcllation; so that it is rare to find a perfect specimen, for unless some quick mode of killing them be adopted, the
arms are sure to break. The plan usually recommended is to immerse them while living into a vessel of fresh water. These animals possess the power of reproducing

a, Ophiura texturata, or common Sand Star. \(b\), under surface of the disc of the same (after Forbes). the arms if broken off, and it is even stated that when a portion of the disc is left attached to an arm, the entire animal may be reproduced. The shelly covering of the Ophiura exhibits under the microscope a reticulated or arcolar structure ; the openings or areolæ in the reticulations are circular, and average about \(\frac{1}{2000}\) th of an inch in diameter; they are generally arranged in parallel lines, following the direction of the arms. The spines of this animal, as will be hereafter shown, are composed of the same reticulated structure; they are of conical figure, and their edges slightly serrated. The arms of the Ophiuridæ are covered with a contractile integument, which, acting on the joints, renders them capable of moving through the water with some rapidity. Within the disc is the stomach, which, like that of the Actinic, has but one orifice, as shown at \(b\), in Fig. 106, and around the mouth is a series of small tentacula,
probably employed in the prehension of food. If the under surface of the disc, after having been well cleaned and dried, be examined as an opaque object with a power of 20 diameters, it will be seen that those five portions of the skeleton which form the aperture of the mouth are provided with strong, sharp-pointed moveable spines, so arranged as to give the idea of their serving the office of teeth.

The third order of the Echinodermata, the Cirrihgrada, in which are included the Asteriade, or Star-fishes, differs from the Ophiuridee in this essential particular, that whilst in the latter the arms are solid and attached to the central disc, in the former the rays are prolongations of the central portion; moreover, the rays of the Star-fish are tubular, and contain very important organs auxiliary to digestion and locomotion. In some families, as the Urasterice, the rays are five in number, in the Solasterice twelve or morc, and in the Goniasterice and the Asterice they scarcely exist at all. The skeleton in our common Asterias rubens, is composed of a series of joints somewhat like vertebræ; these are arranged in the form of a triangle, and over them, as shown in Fig. 107, is a series of shorter and thicker pieces forming an arch; the whole is covered by a horny membranc, in which there is a distinct hexagonal network of calcareous matter. The outer surface of this horny covering is gencrally provided with spines, which in the great Asterias echinites, are as large as those of any British species of Echinus.

The largest segments of calcarcous matter forming the skeleton are arranged around the mouth in an annular


A vertical section of the skeleton of one of the rays of Asterias rubens (after Sharpey).
form ; there is also in the Asteriadæ a small tubercle of calcareous matter called the "madreporeform tubercle," Figs. 135 and 136, with which is connected a canal to be noticed hereafter. The digestive system of the Asteriadæ consists of a stomach, occupying the centre of the body, which communicates with, or is prolonged by, a series of cœea, extending the whole length of the rays or arms; but on this I shall not now enlarge, as our attention is for the present confined to the structure of the skeleton.

Thin sections of the outer crust or shell of a common Star-fish, the Asterias rubens, are seen to be composed of a series of laycrs of calcareous matter of the usual characteristic reticulated tissuc, as shown in Fig. 108, the meshes or areolæ being either round or oblong, and the walls exceedingly thick; indecd, all the parts of the skeleton, however massive, exhibit VOL. II.
more or less of this same structure ; a precisely similar appearance is found in sections of the madreporeform rig. 108. tubercle. Star-fish and Ophiuræ
 occur abundantly in the fossil state; the remains of Ophiuridæ are found in the lias limestone, and Asteriadæ are frequent in the chalk. Separate joints of the Pentagonaster are A portion of the skele- common in the latter, they consist of ton of a Star-fish, \(A \mathrm{~s}\) terias rubens. reticulations with a square outline, and a circular, or rather globular cavity. In these fossil specimens the square outline is not so decided as in the recent animal, and the cavities are filled with a granular matter, which forms the usual contents of cells in fossilized specimens.

On the external surface of the shell of Asterias rubens, as shown in Fig. 109, are numerous club-shaped
```

fig. 109.

```


Portion of the integument of Asterias rubens. a a, Pedicellaria. spines, each surrounded by a ring of smaller ones, the interspaces betwcen the spines being occupied by small bodies resembling minute mussel-shells mounted on a stalk, as shown at \(a, a\); these arc Pedicellarice, which have been supposed to be parasites, but when carcfully examined, are found to have a calcarcous skeleton
exhibiting the structure characteristic of the skeleton of the Asterias, and must be viewed as parts of that animal. They will be again alluded to when describing the Echini, in which they also exist. The spines of this Asterias are short and tuberculated, but those of the large A. echinites, as shown by \(a, a, b\), in Fig. 110, are


A, Asterias echinites one-fourth of the natural size. \(a, a, b\), spines 0 A. echinites of the natural size. \(c\), a segment of a transverse section of a spine of a Star-fish of the genus Astropeeten. \(\quad d\), a corresponding scgment of a spinc of \(A\) sterias echinites.
conical, and of sufficient size to be cut transversely. A segment of a transverse scction, as shown at \(d\) in Fig. 110,
exhibits a series of arcolæ, or meshes, surrounded by thick walls of calcareous material remarkable for their rounded figure. In sections of spincs of a species of Astropecten, shown at \(c\), the reticulated structurc is firmer, and the areolæ arc arranged in radii, their size increasing gradually from the centre to the circumference ; but the structure of these spines is very different from that of the Echini, which will be noticed in a future Lecture.

\section*{LECTURE XIII.}

\section*{SKELETON OF ECHINODERMATA.}

In my last Lecture I described the structure of the skeleton in the three first orders of the Echinodermata, viz. : the Crinoidece, Ophiuride, and Asteriada, and I now proceed with the fourth order, the Echinida, the British species of which are divided by Professor Forbes into three families, the Cidarites, Clypeasterice, and Spatangacece. In the Cidarites, the skeleton, as shown in Fig. 111, A, is more or less globular, containing within it the organs of digestion and generation, while the external surface (Figs. 113 and 115 ) is covered with spines of variable form and size. The shell is composed of plates, usually of a square or oblong figure, some of them having smooth edges, others more or less indented. There are two sets of these plates, the ambulacral, u, a, Fig. 111, B,
perforated with small openings through whieh the tubular feet project, and the interambulaeral, \(b, b\),

FIG. 111.


A, shell of Echinus lividus. в, portion of the shell Echinus Fleminyii. a, a, ambulacral plates. \(b, b\), interambulacral plates (after Forbes). whieh are not perforated, and they are all covered externally with tubereles to which the spines are artieulated. The spines, however, as shown in Fig. 113, are generally so elose together as to obseure the arrangement on the outer surface, but when the shell is divided vertieally and viewed from the interior, the two sets of plates are seen to be disposed in alternate perpendieular eolumns, diminishing gradually in size from the oral to the anal pole of the spherieal skeleton. Each plate being of a polygonal figure, elongated transversely, as shown at B, in Fig. 111 ; the margins of the eolumns present a serrated appearance, and form, when united, a very strong suture.

In the Echinus there are five double eolumns of ambulacral and the same number of interambulacral plates; the number of columns being detcrminate throughout this tribe, while the number of plates composing eaeh eolumn is extremely variable, aceording to the age of the animal. The interambulacral plates are mueh larger, but proportionally less numerous, than the ambulacral plates, and their whole surface is covered
with tubercles for the support of the spines, while half of each ambulaeral plate is piereed by oblique perforations for the passage of the ambulaeral feet or suckers. The lateral edges of each of the plates form obtuse angles, which, by their apposition with the similar angles of the plates of the adjoining eolumn, eonstitute a very regular serrated suture which greatly contributes to the strength of the entire skeleton. The adjoining edges of the ambulaeral with the interambulaeral plates are straight and minutely indented or serrated, and form a much finer suture than that between the two columns of similar plates, whether ambulacral or interambulacral. The plates around the oral and anal orifiees differ from those in other situations; the genital plates around the anus-five in number-being heartshaped and perforated for the five ducts of the genital saes, while those around the oral, or inferior orifiee, are large, and send inwards and upwards broad arched processes serving to give attaehment to the museles of the jaws.

In the Spatangi, the shell is always more or less flattened, and the plates of whieh it is eomposed are very variable in shape; the perforations of the ambulaeral plates are generally arranged in the form of a star upon the upper surfaee of the shell, and in the eentre of the star are seen the openings of the genital apparatus; but in the Spatangus purpureus, the position of the mouth is on the under surfaee of the shell, whilst the anus is on one side. The oral outlet is the largest,
it is always situated on the under surface of the shell; with this, in most of the Cidarites, is connceted a very complicated and bcautiful dental apparatus, which was first accuratcly described by Aristotle, and by him compared to a lantern, hence this part of the shcll is commonly called the "Lantern of Aristotlc." It is composed of a series of pieces, all of which give attachment to muscles employed in the movement of five sharp-pointed teeth; some species have no teeth, the Spatangus purpureus, for example, is not provided with these organs.

The outer portion of the shell, as before stated, is corered with tubercles to which the spines are articulated ; they are always of a convex figure, and in some genera-for instance, Cidaris and Diadema -the largest tubercles, as shown at A, in Fig. 112, have a depression in the centre, to which is attached one extremity of a round ligament like that of the


A, shell of Cidaris papillata. B, spine of the same (after Forbes). hip-joint in the human subject, for the better sccurity of the large spines. In the Spatangi the tubcrcles arc very small, giving the surfacc a minutcly granular appearancc. The Cidarites are exccedingly numcrous in a fossil state, especially in the chalk strata; " it is more common, however, to find the siliccous casts of
the internal cavity of the shell among the flints of the chalk, than the shcll itself, the lattcr having usually disappearcd. The occurrence of these casts may be traced to the habits of these animals; thcir whole intestinal canal being generally filled with sand, and this attracting the silica contained in the water which filtrates through the strata, the whole internal cavity of the shell becomes gradually filled with solid flint, whilc the calcareous shell itself is slowly dissolved and disappears, lcaving only the siliceous cast of its interior.

The minute structure of the shells of this order of Echinodermata, is precisely similar to that in the preceding orders. Horizontal sections of the interambulacral plates of the Echini, for example, are composed of an areolar or reticulated tissue of hexagonal figure, but the size of the areolæ is not uniform : in some parts they are very large, in others vcry minute, and the framework much broader than the spaces it encloses. The differences in size of the reticulations are radily explained by other sections at right angles to the preceding, in which three kinds of reticulated structure may be readily recognized, so arranged as to give a great amount of strength and support to the tubercles. The first of these occupies nearly the cntirc thickness of the shell, forming a curved band extending from one side of the scction to the other; cxternal to this, in the middle line, is another curved band of very coarse network, formed
by branching vertical eolumns, which support a very dense tissue eomposed of minute rctieulations, and upon this the tuberele is situated. This external band is composed of the same tissue as the portion supporting it, but a dark line of separation is very perceptiblc between them. On either side of the dense tissue supporting the tuberele may be seen a band of fine retieular strueture, having its meshes arranged in a longitudinal direction; above this is a similar tissue, with its meshes disposed at right angles to the former, presenting a eonvex margin, and forming the semi-eireular prominenee upon whieh the tuberelc is situated. The external, or artieulating surface of the tuberele, is surrounded by a narrow band, or zone, differing somewhat in structure from that of any other portion of the tubercle.

Horizontal sections of the shell of the Spatangus exhibit a retieulated structure somewhat like that of the Echinus, but all the openings or areolæ are circular, and nearly uniform in size; the framework of the rcticulations, or the eell-walls as they may be termed, are exeeedingly strong, and in some eases as broad as the arcolæ themselves. Some parts of the shell appear to be composed of laminæ, separated from each other by a series of minute pillars. The spines in this tribe of animals, as I have already stated, are extremely variable, and are by no moans proportionate cither in size or number to that of the shell. In one specics, Echinus csculentus, the shell is fully
five inches in diameter, and the spines are not half an inch in length; other species, as, for instanee, Echinus lividus, Fig. 113, are so thiekly covered with spines FIG. 113.


A, Echinus lividus. B, one of the spines magnified (after Forbes).
that no portion of the shell ean be seen between them, while in others again the spines are longer than the rig. 114. diameter of the shell. In some Eehini
 the spines are as mueh as five inches in length, and thin in proportion, while in certain fossil speeies of Cidaris, as in C. glandifera, Fig. 114, they are so short and thick as to assume an oval figure, and have, on more than one oeeasion, been taken for fossil fruits. The spines of most Eehinoderms are longitudinally grooved, as shown at B , in Fig. 113 , others, as represented by \(B\), in Fig. 112, have transverse grooves as well, so that the surfaee presents a beaded appearanee. In the Echini, as shown in Fig. 113, the spines on the greater part of the shell are tolerably uniform in size; but in the
genus Cidaris there are two kinds, as shown in Fig. 115; all those of large size having a series of smaller
fig. 115.


Cidaris papillata (after Forbes).
ones arranged in a radiated manner around their bases; other small spines are disposed in oblique rows on either side of the avenues for the
fig. 116.


A, vertical scetion of a spine of an Echinus. B, vertical scetion of the spine of a Cidaris. \(\mathbf{c}\), transverse seetion of the spine of an Echinus. D, transverse section of the spine of a Cirlaris.
a at A, in Fig. 116, is composed of a series of cones arranged concentrically; a corresponding section of the spine of a Cidaris, as shown at \(B\), cxhibits no trace of cones, but
mercly a reticulated strueture throughout, coated on its external surface with a thick layer of ealeareous matter, generally more or less eoloured, and penetrated by a scries of tubes, to whieh I shall presently advert. Transverse sections of the spines of the Echini differ in strueture according to their distance from the base of the spine; thus, a seetion taken near the apex will show only one cone divided transversely, whilst one taken near the eentre will show four or five, and in one near the base, as represented by c, ten or twelve will be exhibited. In the Cidarites, on the eontrary, there are no eones, and a transverse seetion, as shown at D , will present nearly the same appearance from whatever part of the spine it may have been taken. The densest part of the spine, is that which forms the soeket for the reeeption of the tubercle, and seetions made through this, differ considerably from those taken from any other part of the spine. A vertical section of a large spine of an Echinus, E. mammillatus, which has on its outer surfaee, near the top, two whitc lines or markings, shows that when the spine eonsisted of only one cone the white marks were then present, and the same will be seen in every sueceeding eone. If a vertieal section of one of these spines, made suffieiently thin to be transparent, be examined, and if that part whieh contains the greatest number of eones be plaeed in the centre of the field of view, it will be seen that the tissue of the base is much closer than that of any other part. The entire spine is made up of seven
cones fitted, as it were, one over the other, each being indieated by a white struetureless line, having on its inner side a purple streak; running up through the middle is a diverging column of retieulated tissue of a different structure from that composing the series of cones; the reticulations of the cones being so much smaller than those in the centre, and their direction being principally radiated, they are readily distinguished.

The cones in transverse seetions are all represented by transparent, struetureless annular bands, as shown at \(a a a\), in Figs. 117 and 118 ; these are equal in
fig. 117.


Segment of a transverse seetion of Echinus lucunter. a, a, a, divided cones with scalloperl cdges. \(\delta\), reticulated strueture in the eentre.
number to the cones included in the scetion. Each cone has its outer edge slightly undulated, and in many specimens, as shown at \(b\), in Fig. 117, the centre is occupied by a diverging column of reticulated structure differing from that composing the cones, the reticulations of which are smallcr than those of the central column, and radiated.

The spines of some Echini, as, for instance, E. lucunter, Fig. 117, whieh are of large size, have a
considerable space between the cones, and the centre, \(b\), is occupied by the coarse reticulated tissue before noticed. In another species, E. trigonarius, the spines are very long, generally of triangular figure, and the cones very numcrous. A segment of a section taken near the base is represented in Fig. 118; no less than
\[
\text { FIG. } 118 .
\]


Segment of a transverse section of Echinus trigonarius. \(a, a, a\), divided cones (after Carpenter). nine cones have been divided, and it will be noticed that those near the margin are very close together. In order to understand the disposition of the cones, a spine should be selected, and sections taken at equal distances from the apcx to the base; such has been done in the case of a spinc of Echinus miliaris, a small species, and a section made just above the base, exhibits ncar the centre, a coarse reticulated tissue surrounded by a thin band with smaller meshes ; this is again encircled by a zone of transparent structureless tissue indicating the innermost conc, then another zone of reticulated tissuc, followed by another cone, and this structure is repeated according to the number of cones included in the section, until we arrive at the external part, which has little or no
structure, except that of the concs. In another scction taken from the middle of the spinc, the central reticulated arrangement occupies fully two-thirds of the breadth of the entire scction, and on the margin therc are thrce rows of cones having a slight trace of reticulated structure betwcen them. In a third section, taken from near the apex of the same spine, the coarse reticulated structure is present in the contre, but the band surrounding it cxtends as far as the margin ; this band, however, is composed of a row of transparent spots indicating the several parts forming the outer cone. The external surfacc of all the spines is more or less grooved, and thercfore in making these transverse sections, although the margin is preserved entirc, it will always present a scries of indentations caused by the grooves, as shown at \(a\) a \(a\), in Figs. 117 and 118.

A transverse section of a small brown spine of an Echinus taken from the base, was found to be made up of little clse than concentric rings formed by the cones, exccpt the margin, which was composed of a broad zonc of very close tissue, like that of the vertical section already described; this arises from the scction having been made through that part of the spinc to which the ligament was attached.

Some species of Echini have hollow spines; in these the reticulated structure is very small in quantity, as shown at B , in Fig. 119, but scctions may be made in which none of this structure is present, as represented
at A. All the hollow spines examined by me have been very long and thin, and deeply furrowed on the fig. 119.


A, a transverse section of a hollow spine of an Echinus. B, a segment of a
corresponding scction of another hollow spine, exhibiting a small amomnt of reticulated structure.
external surface, and the base of eaeh mueh larger than any other portion.

A vertieal seetion of a spine of a Ciduris, as shown at b, in Fig. 116, exhibits no traee of eones; the base is eomposed of fine retieulated tissue disposed in a radiated form, the direction of the radii being from the eentre towards the base. This fine strueture ends abruptly in the centre of the spine, and forms a curved line from whieh numerous parallel eolumns of retieulated tissue arise, each being eonneeted with its neighbour by broad transverse bands, the eolumns in the eentre being stronger and differently marked from those near the

\footnotetext{
VOL. II.
}
eireumference. On the margin, whieh is slightly undulated, is a coating of ealeareous matter into which large tubuli pass, some of them projeeting beyond the ealeareous coating, in the form of spines.

In a transverse section of a small spine of a Cidaris of a beautiful brown eolour, the eentral portion, as shown in Fig. 120, is composed of large retieulations,


Segment of a transverse section of a spine of a small Cidaris. while the external part is made up of smaller ones, which are very minute near the eentre, and gradually inerease in size towards the margin, where they are disposed in a radiated manner. The marginal crustshows the tubuli before deseribed; the edge is indented, and many large perforations oceur at tolerably regular distances, midway between the margin and the retieulated strueture. In a seetion of the spine of another speeies of Cidaris, the centre is eomposed of reticulated structure, but the marginal erust is very broad and transparent under a low power ; being viewed with a higher power, the tubes are plainly seen running through it, and it is evident that they are continuations of what appear to be radii, passing from the centre towards the margin. Many of these tubes bifureate within the erust, and a portion of
the same spine, from whieh the calcareous matter of the crust has been removed, exhibits the tubes projeeting like so many spines, as shown at c, in Fig. 121; they are connected with the last row of reticulations, and are evidently tubular, but what their precise offiee is, it would be difficult to determine.

Not only is the crust of some of these spines traversed by tubes, but the eentral shaft also: in Fig. 121, A, is shown a portion of the crust of a Cidaris spine, in

fig. 121.


A, a portion of the erust of a spine of a Ciiduris showing the tubes. B , part of the interior of a spine exhibiting tubes divided transversely. c , a portion of the margin of a deealeified spine showing the tubes of the crust.
which there are numerous tubes of large size, and at B , a vertieal section of another spine in which the tubes are divided transversely. Such an appearance as here represented, is very eommon in the spines of the Cidarites, but I have never yet seen anything at all like it in those of the Echini. There is also another eurious point in connection with these spines that here
requires mention, viz.: the faet of their being sometimes eovered with shells during the living state. I have met with very many speeimens of Cidaris in whieh some of the spines have had small shells attached to them, as represented by c, in Fig. 122, but I have never diseovered a shell upon a spine of an Eehinus; it would appear, therefore, that the ealeareous erust already notieed as being present in greater or less abundanee upon all Cidaris spines, performs the part of an insensible euticle, and is in consequence favourable to the attachment of shells and other marine animals.

In most works on the anatomy of the Echinodermata, it is stated that all parts of the shell, as well as the spines, are eovered with a soft organie membrane, and that from this the ealeareous material is seereted; this tissue dips down between the edges of the plates of which the shell is formed, and it is supposed that the deposit of new matter and the formation of new plates during the growth of the animal, first commence in this membrane. The shell is eertainly eovered with an organie investment, but I eannot find any trace of it in the spines. I have taken spines that have never been dried, and have subjected them to the action of aeid, but have never yet sueeceded in detaching anything like a euticle or periosteum.

If an Eehinus spine be partially deealeified by acid, the eones of whieh it is built up may be distinctly traeed, and it is seen that the organic matter is very small in quantity, exeept at the base, where it is
mueh more abundant; I am of opinion, therefore, that the vitality of the spine is ehiefly sustained by this part, which is intimately eonneeted with the organie investment of the shell. I have aseertained that these spines, like eorals and shells, possess within themselves the powers of repair, as is exemplified by many speeimens in the Museum of this College. The Eehini, like most other ereatures inhabiting the sea, have their natural enemies, whieh I believe to be prineipally fish, and I have lately found no less than eleven speeimens of a small Eehinus, E. miliaris, in the stomaeh of a Wolffish, Anarrhicas Lupus. In this instanee the spines had all disappeared, but I have seen various speeimens taken from the stomach of other fishes in whieh the spines were present, but detaehed and broken.

In a large speeies of Eehinus, E. lucunter, from the Museum, many of the spines are broken, having the lower part still attached to the shell. This eould only be effeeted by some cutting instrument, sueh as the strong teeth of fishes, for if the attempt were made to break the spine in any other manner, it would be detaehed from the shell rather than break, and on the attaehed extremities of some of these spines the marks of teeth ean be plainly distinguished. Fraetured spines, such as that shown at A, in Fig. 122, as well as others in various stages of the proeess of repair, are found on many Echini ; some of these, as represented by b, are terminated by a blunt eone differing altogether in strueture from the other parts of the spine, and
indieating a new growth. These eones are of a brown colour, and entirely destitute of the striæ and markings

Fig. 122.


A


1


C

A, a fractured spine of Echinus trigonarius. \(\quad\), а spine of the samc Echinus in process of repair after fracture. c, a spine taken from a Cidaris having small shells attached to it. observed in the normal strueture of the spines. After I first noticed this peeuliarity, I proceeded to make a vertical section of one of these spines, when the distinetion between the old and new parts beeame very apparent-the old portion showing the eones and ordinary minute structure, while in the new part they were altogether absent and the line of fraeture could be seen by the naked eye. When viewed with a power of 40 diameters, as shown at c, in Fig. 123, the distinetion between the old and new struetures is still more evident; the cones of the former, \(a, a, a\), are green, while the new part, which is of a darker shade than the old, has no cones, and the line of fracture is, therefore, well defined.

Soon after I gave a deseription of these fraetured spines in the first volume of the "Histologieal Catalogue," I was favoured by my friend Mr. Benjamin Tueker with two speeimens, one of which, as represented by \(\Lambda\), in Fig. 123, had been fraetured and completely
repaired. The new portion is an inch and a half in length, and of the same colour as the original spine,

FIG. 123.


A, a spine of an Echinus showing a fracture repaired. B, vertical section of another spine indicating four successive reparations of fractures. \(\mathbf{c}, \mathbf{a}\) section of a spine made in the line of fracture. \(a, a, a\), portions of cones of the original spine; the part to the left of these is new matter, and shows no trace of cones. but the line of fraeture remains distinetly visible. The other speeimen on vertical seetion, as represented by в, clearly shows that four sueeessive fractures have been repaired, one of these being transverse, the others more or less oblique. It is evident then, that although these spines are unprovided with vessels, they possess within themselves the power of repair, as long as the animal is alive and the ligamentous matter entire. In the transverse seetions of some fossil spines of the Cidaris, the retieulated structure can still be distinetly recognized, but in others, all traces of it are lost, in eonsequence of the carbonate of lime having assumed a crystalline arrangement; the latter being the most eommon condition in speeimens from the ehalk strata.

There yet remains a part of the skeleton of an Eehinus demanding examination. This is the Lantern of Aristotle, whieh 1 briefly alluded to in the first part of the present Lecture ; it consists of a series of bones, all of which are connected with muscles destined to move five symmetrical teeth. Some of these picees
are attaehed to the shell, whilst others ean be readily separated from it when the soft parts have beeome dry. The pieees attaehed to the shell are five in number, they are generally perforated in the eentre, and arehed in form; they give origin to ten pairs of museles, five of which are for the purpose of protruding the teeth, the other five for retraeting them and enlarging the aperture of the mouth and œesophagus. The teeth are sharp-pointed and eurved, as shown at A, B, in Fig. 124, eaeh being composed of a dorsal
fig. 124.
 plate having a fin-like proeess attaelied, for the purpose of strengthening it, so that a transverse seetion somewhat resembles in outline the letter \(T\), as represented at c. Eaeh of the teeth is enelosed in a triangular piece of bone, named the alveolus, or jaw, as shown in Fig. 125, two surfaces of whieh, as there represented, are eomposed of laminæ of caleareous matter; the thin edges of the laminæ project towards the œesophagus, so that it is by no means improbable that they may aet as grinding surfaces. The eurved levers seen on the upper part of this figure, are acted on by museles arising from the arched processes attaehed to the shell. When the entire number of jaws-viz: five-are present, the so-ealled Lantern of Aristotle is complete,
but this apparently complicated apparatus is very simple when dissected in the recent state, the combined action


Three of the five jaws of an Echinus, enclosing a corresponding number of teeth. of all the muscles being to approximate the entire mouth to the oral aperture of the shell, as well as to cause the points of the teeth to protrude cxternally ; or if the muscles act separatcly, as stated by Professor Rymer Jones, they can cither draw the base of the lantern in any direction, or cause the laminated grinding surfaces of the jaws to work against each other.

The intestine of the Echini is of great size, and forms a spiral of two turns and a half, within the shell. When opened, it is found to contain a large quantity of sand, consisting chicfly of minute fragments of shell, which have been swallowed by the animal, and from which it extracts the organic matter for its nourishment. The Spatangus has no teeth, but the intestine is of very large size, and is always more or less full of sand. In the sand taken from the intestine of Spatangus purpureus I found a considerable number of specimens of Echinocyamus pusillus, or Green Pea Urchin, Fig. 126, which have been mistaken for young Spatangi, but as in these the anal pore is near the mouth, they must
be a distinct species, and not the young of the Spatangus.

The structure of the teeth of the Echini is most fig. \(126 . \quad\) intcresting; in external appearance


Echinocyamus pusillus, or Green Pea Urchin. A, ventral, B, dorsal surface.
 other parts, except the base, are softer, and contain numerous branching tubuli very like those of dentine, as shown at A, in Fig. 127; many of the tubuli are so much dilated at certain points as to form lacunæ,

FIG. 127.


\footnotetext{
A, a portion of a tooth of an Echinus magnified 250 diameters, showing a tubular structure like that of dentinc. b, the hasal portion of the same tooth magnified 130 diameters.
}
or bone cells, but in others the branches are exceedingly minute, and run in parallel lines precisely like the tubuli of dentine. The base of the tooth is covered by a membrane, it is exceedingly soft, and always presents a fibrous appearanee; the fibres are white and silky, and have not been unaptly compared to those of asbestos; they may be readily separated from eaeh other, as shown at B. The teeth of certain Echini do not exhibit the tubular structure so well as the one represented at a; the distribution of the minute tubuli is not usually so apparent, and that of the coarser ones more nearly resembles the reticulated structure seen in the centre of many of the larger spines of these animals, so much so, indeed, that I have often doubted whether the structure is really tubular or not; but whatever may be its nature in other teeth, it is quite certain that the tubular structure existed in the tooth from which Fig. 127 was drawn.

The teeth of the Eehini have been well deseribed and ably illustrated by Valentin in a monograph forming one of the "Monographies d'Echinodermes" of Professor Agassiz, but there is no representation there given of the tubular structure, although all the other parts are well figured. I deem the presence of tubuli, and cspecially of lacunæ in the teeth of an invertebrate animal, a point of great interest, and one which, as far as I am aware of, has ncver bcfore been deseribed.

\section*{LECTURE XIV.}

\section*{SKELETON OF ECHINODERMATA.}

Having in the last Lecture coneluded the deseription of the strueture of the skcleton in four of the five orders of the Echinodermata, I now proceed to the fifth, or Cirrhi vermigrada, which is composed of a large tribe of animals-viz. : the Holothuriada, or Sea Cueumbers; aceording to Forbes, fifteen species at least are British. These animals, with few exceptions, possess only a mere trace of a caleareous skeleton, whieh is eonfined to the discs on the extremities of the suekers, or eirrhi, and to a framework supporting the dental apparatus. The skin is for the most part thiek, leathery, and covered on the outside with tubcreles, or spines; but in one spceies, termed Holothuria squamata, Fig. 128, the greater part of the body is enelosed in a bony case, the under surface is flattened, soft, and perforated by
foramina through which the cirrhi are protruded, and on the dorsal surface the tentacula project from rounded orifices.

When I first saw this specimen, I took it for a species of Doris, one of the Gasteropodous Mollusca;


Holothuria squamata. but on examining a portion of the calcareous covering, I immediatcly recognized the reticulated tissuc so characteristic of the Echinodermata, and I subsequently found, on referring to the "Règne Animal," that it was a true Holothuria of the species above named. This animal has cirrhi on the dorsal and abdominal surface, but therc arc some other Holothuriæ which have the cirrhi confined to one surfacc, generally speaking, however, they are eithcr in five rows, or are scattcred irregularly over the outer surface of the body. The cirrhi are like those of the Star-fishes and Echini, and I shall presently notice them more in detail. The Holothuria progress by means of their cirrhi and by the clongation of their bodies, like worms, and from this mode of progression the name of the order under which they are classed is derived. The largest animal of the kind found in the British seas is capablc of elongating itself to as much as three fect. It was discovered by Profcssors Forbes and Goodsir, and the account of its capture, given by the former of thesc gentlemen in his work on

Star-fishes, is so intcresting that I am tempted to quote it.
"The great Sea-cucumber, Cucumaria frondosa, Fig. 129, b, is the largest of all the known European
fig. 129.


A, Sea Girkin, Ocnus brunneus. B, Great Sea Cucumber, Cucumaria frondosa (after Forbes). species, and probably one of the largest Cucumaria in the world, measuring, when at rest, fully onc foot, and capable of extending itself to the length of thrcc. Hc is the king of the Sea-cucumbers, and secms to have gathered the greater number of his subjects around him in the Shetland seas, where his majesty was first recognizcd as a native of Britain by Mr. Goodsir and myself in June, 1839. When he first camc up in the hooks of the dreg-an instrument used by the Shetlanders as a means of procuring horsc-mussels, Modiola vulgaris, called by them Yoags, for bait-he astonished us with his monstrous appearance."

The smallest of the Holothurix are termed Scagirkins; one of these, Ocnus brunneus, Fig. 129, A, not more than three quarters of an inch in length, is not uncommon at Brighton. Around the mouth of these creatures the tentacula are arranged; they are
either five or a multiple of that number, and are capable of being retracted within the mouth, and when this is done, both extromities of the body arc nearly alike. The dissection of Cucumaria frondosa by Mr. Goadby in our Museum, displays these organs and the dental apparatus in situ. When caught, these animals, if not carefully managed, will eject all their viscera; but these, like the rays of the Star-fish and spines of the Echini, may be reproduced. A specimen in the Museum has been mounted expressly to illustrate the ejection of the viscera. The alimentary canal consists of a stomach and a long intestine, which is held in situ by a delicate mosentery; the intestine ends in a welldeveloped cloaca, and the mesentery is largely supplicd with blood-vessels which communicate with a pulsatory vesscl, or heart. The respiratory organs consist of beautiful ramified tubes opening into the muscular cloaca, from which water is forced into them. The ovary is composed of straight cœecal tubes, and in one of Mr. Goadby's beautiful preparations, these are admirably displayed.

John Hunter was well acquainted with the anatomy of more than one species of Holothuria, and he even succeeded in injecting the rich vascular system, as may be seen in Prcps. 437 and 438 of the Physiological series of the Museum. The Holothuriadæ cxist in great abundance in the Eastern seas, where they are called Trepang; they are collected with great eagerness by the Malays, for sale in the markets of China, where
they feteh a good price. The Chinese employ them, says Mr. F. D. Bennett, in his "Account of a Whaling Voyage round the Globe," in the preparation of nutritious soups, in eommon with an eseulent sea-weed, sharks' fins, edible birds'-nests, and other gelatinous substances.

The integument of Holothuria squamata, Fig. 128, which I have before stated was made up prineipally of ealeareous material, when examined mieroseopieally, is found to be eomposed of small angular plates exhibiting
fig. 130.


Portion of the bony framework of the mouth of Cucumaria frondosa magnified 250 diameters. very beautifully the eharaeteristic reticulated structure, interspersed with rows of larger plates of a eircular figure and stellate margin, having the appearance of short spines. The strueture of the calcareous framework of the dental apparatus of Cucumaria frondosa is precisely similar to that of an Echinus shell, the retieulations, as shown in Fig. 130, being well marked, although the framework itself is but sparingly developed even in the largest individuals.

In some speeies of Holothuria there are numerous flattened spicula, either imbedded in the leathery tunic, or forming a coating to it; these vary eonsiderably in shape; generally speaking, they are quite flat and fiddle-shaped, as shown at c, in Fig. 135, but oeeasionally, as represented at \(b\), in Fig. 131, they are cireular, and have a spinous proecss, \(c\), projecting from
the centre ; but whatever their shape, the characteristic reticulated tissue is always present, and its diversity of arrangement, renders these spicula exceedingly interesting as objects for microscopic observation. Spicula of the shapes represented by \(a\), in Fig. 131,
fig. 131.


A, Synapta, or Chirodota digitata (after Forbes). a, á, á, spicula from oral tentacles of a Holothuria. \(b\), flattened spicula from skin of a Holothuria. \(c\), one of the same showing a spine. \(d, e\), anchor-shaped spiculum and plate from skin of a Synapta. \(f, g\), larger spiculum and plate from the skin of another species of Synapta. \(h, h\), oval bodies from the same skin.
are sometimes found in the oral tentacula of Holothurix; in the specimen from which the drawing was made, there are several varieties, the greater number being more or less curved and having tubercles on the convex surface ; amongst them were some fcw Vol. it.
small ones, represented by \(a\), , \(u\), in whieh the reticulated structure is well scen.

Allied to the Holuthuriæ are certain animals termed Synapta, the one represented by A, in Fig. 131, was diseovered by Montagu on the coast of Devon, a fcw species occur in other parts of the globe; my reason, however, for introducing it here, is to point out the very pceuliar shape of the calcareous plates and spicula composing its rudimentary skeleton. My attention was first directed to this subject by secing two specimens, one of the skin, the other of the spicula, which had been mounted in Magdeburg, and formed part of a series of microseopic objects, said to be prepared for sale by an association of German savants.

A portion of the skin of a Synapta exhibits the peculiar compound spicula represented by \(d, e\), in Fig. 131; one part is like an anchor, the other is in the form of an oval plate. The flukes of the anchor are serrated on the convex edge, and the opposite extremity is recurved, and appears to be connected in some pcculiar way with the oval plate which lies upon it. This plate shows the ordinary characteristic reticulated structure, the inner margin of the reticulations being oceasionally serrated. The plates and spicula can be casily scparated; this, however, is better scen in the sccond specimen, in which the spieula have been detached from the skin. The spicula in this preparation are so different, both in size and shape, from those in the preceding, that it is
probable the species from which they wcre taken was a different one; the flukes of the anchor are smooth, there being only a few very minute spines where they are connected to the shaft, as shown at \(f\), the opposite extremity is recurved, and has a tuberculated convex cdge. The plates are generally larger than those in the first specimen, and the inner edges of the seven large reticulations, as represented by \(g\), are serrated. In addition to the peculiar spicula above described, there are in this preparation an immense number of the minute oval bodies shown at \(h\), but in what part of the tunic they are situated I cannot say. From the great correspondence in structure between the oval plates of the Synapta and the flattened spicula of Holothurice, there is every reason to belicve that the former are true Echinodermatous animals, and must be nearly allied to the latter.

The only other portion of the body of the Holothuriæ in which calcareous matter exists, is at the extremitics of the tubular feet, or cirrhi, of some species. If the free extremity of one of these cirrhi- of Holothuria papillosa, for example-be removed and laid flat, it will then be perceived that a circular plate or disc of calcareous material gives the shape to this part. This disc, as shown in Plate XIV, Fig. 12, of the first volume of the "Histological Catalogue," is composed of reticulated structure, and its margin is surrounded by a narrow zone or framework of spicula with dilated extremitics, which are themselves built up of reticulated structure.

In somc specimens the zone is complete, and exhibits the same structure as the disc, but in others the zone is imperfect, the remaining portion of the circle being formed by spicula with dilated extremities. If one of these discs be macerated in liquor potassæ so as to remove all the organic tissue, and afterwards dried and mounted in Canada balsam, the characteristic structure will be very plainly scen, and the disc itself will bear a very strong rosemblance to a transverse section of the spine of an Echinus.

I have now described everything in the Echinodermata that can be properly designated a skeleton, but I cannot leave this part of my subject without alluding to certain other organs connected with the shell in these animals. When speaking of the skeleton of Star-fishes and Echini, I remarked that the ambulacral foramina, served for the passage of the Cirrhi or tubular feet, and that I should take another opportunity of describing these organs. The present is a fitting occasion, as I happen to have a living specimen of Echinus, in which both the Cirrhi and the Pedicellarix are visible in active movement. The Cirrhi of the Star-fishes have been much studied, and as the mechanism connected with their motions is exceedingly beautiful, I must trespass on your patience a few moments whilst I describe it.

If a vertical section be made of an entire ray of a Star-fish through one of the rows of cirrhi, as shown at \(\Lambda\), in Fig. 132, it will be found that these organs consist of two parts, onc, b, contained within the ray,
the other, \(c\), external to it. The latter is tubular, lined with ciliatcd epithclium, and in some species fig. 132. tipped with a calcareous disc, and


A, a vertical section of one of the rays of a Star-fish showing the Cirrhi. в, vesicular portion of one of the cirrhi. c, external portion of the same. attached to the outer surface of the calcareous framework of the skeleton, while the former or internal portion of the cirrhus, is situated within the body, and consists of a bladder-like vcsicle filled with fluid, which protrudes through the ambulacral hole in the shell, and extends into the tubular foot. When the vesicle contracts, it expels the fluid into the foot and protrudes it, but when the muscular end of the foot contracts, the fluid is forced back into the vesicle. The vesicles are supplied, not, as has generally been supposed, by a fluid secreted by them, but from a system of tubes carrying sea-water.

In the Star-fishes the cirrhi are confined to the under surface of the body, and are not capable of being protruded very far beyond the shcll, but in most of the Echini, as shown at \(a a\), in Fig. 133, they are situated upon the outer convex surface, and can be stretched beyond the spines, so that they are important instruments in progression. In Echinus atratus, the spines on the upper convex surface of the shell are more flattened plates, as shown in Fig. 134, and are so
close together that little or no interspace is left between
fig. 133.


A, a portion of an Echinues showing rows of cirrli between the spines. \(a, a\), cirrhi. \(b, b\), spines. them; there are no cirrhi on this part of the shell, but if we turn it so as to bring the mouth uppermost, we shall find them in great numbers. The spines around the outcr margin are longer than the rest, and thesc creatures, when progressing-as they probably do very rapidly-must look not unlike small tortoises. Each of the cirrhi is tipped with a thin disc of calcareous matter, rather more like a section of onc of the spines of the animal, than those I have already noticed as oecurring on the tubular feet of the Holothuriæ. In Echinus atratus, each disc, as shown at A, in Fig. 135, has a central aperture, and is composed of five symmetrical
fig. 134.


A, Echinus atratus showing the flattened spines on its courex surface. pieces, the margin being slightly indented or scalloped. Somctimes a few bicurvate spicula are met with, scattered through the tissue in the neighbourhood of the disc, and may often be seen within the central aperture in some
specimens. In a preceding Lecture I spoke of my inability to detect anything like a cuticlc or membrane


A, calcareous disc from extremity of one of the cirrhi of Echinus atratus.
b, portion of the same more highly magnified. c, spicula from the skin of
Holothuria papillosa.
investing the outer surfaee of the spines of the Echini, but, much to my surprise, I find it stated by Professor Forbes that Ehrcnberg had discovered ciliated epithelium upon them. I have never been able to detect it, but during my stay at Brighton in the autumn I noticed on more than one oceasion-when examining the surfaee of Echinus miliaris with a power of 40 diameters-a slight agitation in the water in the neighbourhood of the spines; but I subsequently found that this movement was owing to the presence of ciliated epithclium upon some of the neighbouring cirrhi. It was not, however, invariably present on all these organs, for many that I removed and examined with care presented no trace of cilia. The
cirrhi, like the Pediccllarix which I shall presently describe, may occasionally bc useful in preventing foreign bodies from settling amongst the spines. You may remember that I have before mentioned the interesting fact of my never having seen any Serpulæ or other shelly parasites attached to the spines of living Echini, but on those of the genus Cidaris, as shown at c, in Fig. 122, they are not uncommon.

I shall next dircet attention to a peculiar organ found in certain of the Asteriadce, and called by Tiedemann a "Sand Canal." It may be recollected that when describing the skeleton of these animals, I noticed a small calcareous mass termed the "Madreporiform tubercle," always situated on the dorsal surface, at a littlc distance from the centre of the body. Connected with this tubercle is a column of the same material, which cxtends obliquely from its under surfacc downwards to the calcareous framework surrounding the mouth. This is termed the "Sand Canal," although no sand is ever found in it, its gritty fcel depending entirely upon the calcareous framework of which it is chiefly composed. The madreporiform tubcrcle is very evident in Asterias rubens, and also in Goniaster Templetoni and Solaster endeca, reprcsented by \(A\), B, in Fig. 136. Under a power of 20 diameters, as shown in Fig. 137, the upper surface of this tubercle is very like that of a cerebriform madrepore, or "brain-stone;" but if a section be
made sufficiently thin to be transparent, its structure will be found to be the same as that of other parts of hig. 136.


> A, Goniaster Templetoni. b, Solaster endeca showing the madreporiforn tubercle (after Forbes).
the shell. Tiedemann supposed that the canal secreted calcareous matter for the growth of the skeleton, while


Madreporiform tubercle of a Star-fish magnified 20 diameters. Dr. Sharpey, on the contrary, says it opens by a narrow orifice into the larger circular vessel surrounding the mouth, and which conveys fluid to all parts of the body, especially to the feet; but the more probable explanation of the nature of this canal, is that suggested by Dr. Coldstream of Leith, who believes it to be the rudiment or analogue of the stalk of the Crinoid Starfishes. It is found in some of the Eehini as well as the Star-fishes, but not in the Ophiuridee or Crinoideca; these may have possessed a stalk in their young state,
but the Asteriada and Echinide are always free. The eolumn is eomposed of ineomplete rings of the eharaeteristie retieulated tissue, and if eut open and spread out, it will be seen that one edge is provided with a bundle of straight fibres of large size, like those of musele. The eanal itself somewhat resembles a traeheal tube, as shown at \(a\), in Fig. 138, surrounded
fig. 138.

a, "Sand Canal" of Asterias rubens. \(b\), the same magnified (after Sharpey).
by ineomplete rings. Dr. Sharpey says that the two ends of the rings are bent inwards, so that on a transverse seetion there is in some parts a trace of two eanals in the interior, as represented at \(b\). The outer surfaee, aeeording to the same author, is invested with a strong membrane eovered with a layer of eiliated epithelium. If a portion of the eanal be treated with eaustie potash to remove the animal matter, the ealearcous framework, as shown in Fig. 139, will
fig. 139.


A portion of three of the rings of the "Sand Camal" of Asterias rubens maguified 50 diameters. then be seen to have preeiscly the same structure as that of the other part of the skeleton.

We now eome to other organs found upon the external surfaee of some of the Echinodermata, and
thesc arc the curious bodies termed Pedicellarice. They were first deseribed by Muller the Danish naturalist, and have been sinee investigated by Sars, a Norwegian clcrgyman. Muller believed them to be parasites, whilst Dr. Sharpey and others, regard them as parts of the animal, which they undoubtedly are. On most Echini there are three kinds of Pedicellarix; being eonsidered as distinet animals, they have been termed Pedicellaria tridens, Pedicellaria triphylla, and Pedicellaria globifera, according to their form; but whatever this may be, each eonsists of a solid part, or skcleton, and a soft transparent flesh. The skeleton, as shown in Fig. 140, is eomposed of three ealeareous jaws, having a sharp recurved tooth at the apex and an internal serrated edge, while the tissue surrounding the jaws is strengthened by minute bicurvate spieula; it is seated on a cylindrieal stalk placed in the eentre of the fleshy stem.

All these parts, when highly magnified, present the charaeteristic strueture of the shell of the animal ; the soft tissue, on the contrary, is transparent, contractile, and, like that of the eirrhi, is eapable of considcrablc elongation and flexion. While the Eehinus is living, the Pedicellariæ are always in active movement from side to side, the jaws are eontinually opening and shutting, and if a small body be plaeed within them, it is held with tolcrable foree. They are attached to the soft fleshy eovering of the shell by a dilated base, and are not confined to any partieular part of the shell,
but many may be scen on the thin membrane elosing the oral aperture. The part which I have ealled the stalk, is somewhat dilated at eaeh cxtremity; its structure resembles that of a small spinc, and it is stated by Sars that eaeh stalk, like a spine, is artieulated to a minute tuberele, but of the truth of this I have never yet been able to satisfy myself, as in all eases after their removal the soft stem has been found to eompletely invest the whole of the ealeareous matter.

If the Pedicellariæ be removed from the Echinus, they will continue in active movement for some time, and if one of them be touehed with a needle or pin, those in the neighbourhood will all bend towards the one that has been irritated. In the Asteriadæ the Pediecllariæ are of a different form to those in the Eehini, in the Asterias rubens, for example, in whieh they are very abundant, as shown at \(a a\), in Fig. 109, the calcareous jaws are like the two valves of a mussel, as represented at \(b\), in Fig. 140, two of the edges being serrated, whilst the other two, which are not elosely approximated, have a semi-circular noteh, leaving an opening between them when in apposition, and the stem is short and flexible, but not provided with a ealeareous axis as in the Eehinidæ. When magnified 130 diameters, as shown at \(c\), the eharacteristic retieulated structure is exhibited. Mounted speeimens taken from the outer surface of the shell of Echinus miliaris, as represented at \(a\), in Fig. 140, show very distinetly the threc jaws and the axis or stalk, but being in a
state of contraction, the soft parts appear very short and puckered up, so that a species of neck is formed between

a, Pedicellaria of Echinus miliaris. \(b\), skeleton of one of the Pedicellarice of \(A s\) terias rubens. \(c\), portion of the skeleton of the same magnified 130 diameters. the jaws and the axis; this, however, is not the case in living specimens. All the parts composing the skeleton of the Pedicellariæ exhibit the characteristic reticulated structure of the Echinodermata. The jaws are thin, flattened below, sharp above, and bent nearly at right angles, so \(c\) as to form a tooth; the axis is about \(\frac{1}{6}\) th of an inch in length and dilated at both extremities, and in shape and structure is very like the spine of an Echinus. On either side of the jaws may be seen a row of small bicurvate spicula, somcwhat resembling those in the disc of the cirrhi of the Echinidæ, but differing from them, as represented at \(d\), in Plate XIV, Fig. 19, of the first volume of the "Histological Catalogue," in having morc than onc hooked process extending outwards from the point where the curved portion commences. Under a power of 40 diameters, as shown at \(a\), in Fig. 109, numerous Pedicellarix are distinctly visible on the upper dermal surface of Asterius rubens, even after having becn dried, but as the soft fleshy stalk is very short and has no calcareous axis, little can be seen except the jaws. Pedicellarie also exist in the Spatangi, but they are
not so evident as in the Eehini ; the prineipal varicties found in S. purpureus, aecording to Forbes, are represented in Fig. 141.

The Pedicellariæ then, without doubt, belong to the animal on which they are found; they are not parasites,
fig. 141.


Pedicellarice of Spatangus purpureus. but it is diffieult to determine their true offiee; they are probably useful in keeping the shell free from all intruders of a parasitic nature, and may be supposed to perform an analogous funetion to that of the so-ealled " Bird's-head processes" of the Bryozoa.

Little remains to be said on the structure of the skeleton of the last elass of the Eehinodermata, the Vermigradla, whieh eontains
\[
\text { FIG. } 142 .
\]


Syrinx or Sipunculus nudus (after Forbes). the order Sipunculide; these animals, exeept in their internal anatomy, more nearly resemble worms than Eehinoderms; they have no eirrhi or tentacula, and no rudiment of a calcareous skelcton, their outer integument being either fibrous or eovered with spines or hooks. The British speeies, aceording to Forbes, are grouped under
three distinct families, viz.: Sipunculacece, Priapulacee, and Thalassemacea ; in the former of these is included the Syrinx, represented in Fig. 142. The length of the body is stated to be six or cight inches, and the outer rough integument is composed of a tough leather-like substance, having both longitudinal and transverse rugæ. Many of the foreign species have the anterior portion of the body covered with brown nodulated tubercles, or spines, probably of a horny nature. I have examined very many species of Sipunculi, but have as yet entirely failed in making out any trace of a calcareous skeleton, which I believe to be almost universally present in the Echinodermata.

\section*{LECTURE XV.}

\section*{SKELETON OF MOLLUSCA-BRYOZOA AND TUNICATA.}

Having in my last Lecture finished the description of the structure of the skeleton in the Echinodermata, I next proceed to that of the Mollusca. This subkingdom is now divided into the following classes:Bryozoa, Tunicata, Conchifera, Gasteropoda, Pteropoda and Cephalopoda, the members of each class differing widcly from those of the other classes. In the first, or Bryozoa, the individual animals approximate in character to the Zoophytcs, and have until latcly been classified with them, all being of microscopic minuteness, whercas among the Cephalopoda, some species arc several fect in length; in fact, no one could classify these animals from thcir external characters alonc, but so soon as the investing. tunic is removed, traces of high organization are
perceptible. In the first class, the Bryozoa, we may have animals either perfectly distinet, or connected by an investing tissue so as to form a colony.

When describing the Hydroid Zoophytes, I remarked that the polypes are continuations or developments from the soft animal matter occupying the centre of the horny tubular skeleton, and that the cell in which the polype is contained, is not a part of the body of that polype, but developed bofore the polype itself. Each polype was also stated to be provided with a series of arms, or tentacula, like the common fresh-water Hydra, for the prehension of food, which is conveyed by them to a globular stomach. Here, on the contrary, the horny or caleareous skeleton is a part of the body of the polype, and although the polype may be injured, the coll will be found to possess the powers of repair. The polype may be solitary, as in Bowerbankia, or several may be collected together in one polypidom, as in Flustra, Lepralia, or in clusters, as in Laguncula, but whatever the shape of the skelcton, the polype contained within it, differs in very many points from that of the true Zoophytes. Thus, for instance, the tentacula are provided with cilia, and are not employed in the prehension of food, this being brought to the mouth by the strong current produced by the vibratile movements of the cilia; the stomach is well developed, and immediately above it, is situated a muscular gizzard, and traces of a liver are also discernible. In Bowerbankia, as shown in Fig. 143, VOL. II.
the skeleton is composed of horny matter, but in most of the others this tissue is consolidated by pif. 143 . carbonate of lime. It may be re-


Bowerbankia densa (after Farre). membered that when describing the skeleton of the polypes of the Polyzoa, I adverted to the Anguinaria spatulata, and mentioned that these animals were now removed from the Zoophytes to the Bryozoa in consequence of their having both a mouth and anus; but as some of them have striped muscular fibre, they properly belong to the Articulata. The Bowerbankia, as shown in Fig. 143, is of an elongated form, with ciliated arms protruding a long distance from the case, and under a power of 250 diameters the sheath or case which forms the skeleton is seen to be composed of a transparent material, like horn. The Bowerbankia has been accurately described by Dr. Arthur Farre in the "Philosophical Transactions" for 1837, and although considered by him as a distinet species, it is now generally believed to be the first stage of growth of Valkeria imbricata, or in that eondition when it spreads over a plain surface, whereas, in the second stage, it rises up so as to form a distinct polypidom. The generic name, Bowerbankia, I need not tell you, was given in honour of one who has done
so much to promote the science of microscopical observation.

In the Anguinaria spatulata, represented at c, in Fig. 88, both the serpentine stalk and the tube supporting the polypes contain a large amount of calcareous matter, and in the Notamia bursaria, or Shepherd's-purse coralline of Ellis, shown in Fig. 89, the cells containing the polypes consist of transparent horn. Of this animal, as before stated in page 182, an excellent description is given by Mr. Busk in the second volume of the "Microscopical Transactions." The cells occur in pairs, they are of a somewhat triangular figure, and on the upper margin of each may be observed two projections-the "bird's-head" processes-which have been already alluded to as being in all probability the analogues of the Pedicellariæ of the Echinodermata. The polypes, as shown at D , in Fig. 89, are readily seen within the case, and at the lower and outer part of each cell some minute fibres pass inwards towards the polype, these are muscular, and if very carefully examined, transverse markings may be observed. Each of these fibres corresponds to one of the fibrillæ, or smallest filaments, into which the fasciculi or bundles of fibres of which the muscles of the higher animals are composed, is capable of being divided. This condition of the muscular tissue occurs in many of the Articulata, and it becomes a question whether the Notamia should not be removed to that sub-kingdom.

Some of the Bryozoa, as, for example, the Eschara cervicornis, represented at A, in Fig. 144, have a calcarcous skeleton. This species is branched like a coral, the polypes reside in cells, some of which are well seen in the highly magnified portion \(B\), and as soon as a polype dies, the cavity or cell which it occupied


A, Eschara cervicornis of the natural size. b, portion of the surface magnified to show the cells for the polypes (from the "Règne Animal.")
is filled up by the inherent power of growth possessed by the skeleton. This animal is not considered to be a native of the British seas, but a species of Cellepora has often been mistaken for it; this last is not uncommon on the south coast of Devon.

The skeleton of the next class, Tunicata, so called from their possessing an outer tegument, or tunic, is
in some species thin and transparent as glass, but in others thick, opaque, and tough as leather. Therc are many varieties of these animals in the Museum, but the most remarkable specimens for exhibiting the transparency of the tunic are those of the first order, termed Salpe, which, like the Medusæ, are always floating near the surface and producing phosphorescent light. Some occur singly, as the Salpa maxima, Fig. 145, whilst others are aggregated together in chains many feet in length, as the Pyrosoma atlanticum, which is composed of upwards of a hundred individuals.

In the next family, Ascidiadee, the individuals are solitary and attached to rocks by an expandcd portion, or base, or mounted on a thin stem, as the Boltenia, Fig. 147, both being sessile or solitary. No one, at first sight, would imagine that these creatures belong to the animal kingdom, but if we examine their outer surface we shall find two large holes, as shown at A and B, in Fig. 146, the former being the oral, the latter the anal opening, and when divided vertically, the interior of the leathcry tunic will be found to be inlabited by a highly organizcd animal, D , possessing a mouth, an œsophagus, a stomach, liver, and distinct circulating apparatus and a ncrvous system, which are investcd with a well-developed muscular coating, as shown at \(\mathrm{A}, \mathrm{B}, \mathrm{C}\), in Fig. 146. Thase thick-skinned animals are termed solitary, or single Ascidians, but there are others which occur in colonics, and are known as compound Ascidians, or Botryllide, Fig. 150, and their skeleton is composed
principally of calcarcous matter in the form of stcllate spicula. The animals arc very minute, the colony forming a thin incrustation upon shclls and sca-wecds, and they are commonly found on the cxpanded bascs of many Gorgonias, and on the fractured edges of specimens removed from the Gorgonias the littlc cavities in which the animals were lodged may be distinctly seen. In all the individuals of this class the skcleton is a dermal one, and in Salpa maxima, Fig. 145, one of the largest specics, it appears to


Salpa maxima; the dark circular mass on the right hand of the figure is the nucleus (from the "Règne Animal.")
be almost structureless, but according to the researches of Löwig and Kölliker, a number of peculiar star-shaped siliceous concretions composed of minute granulcs are present in the inncrmost layer of the tunic of this animal. One fact, howevcr, I must not forget to mention, that Dr. Schmidt has discovered that the transparent tunic of Salpa contains Cellulose, an element hitherto supposed to be confined to members of the vegetable kingdom. The tunic is moved by muscles, and the stomach and liver are contained within
the dark circular mass on the right hand of the figure, which is generally known as the nucleus.

In the Ascidians, as shown at c, in Fig. 146, the tunic is so tough, that unless the knife cuts excec dingly
fig. 146.


Ascidia microcosmus. A, mouth. B, vent. c, leathery tunic (in this figure the muscular coat is shown). \(D\), visceral mass as seen after the removal of the muscular coat (from the "Règne Animal.")
well it is almost impossible to obtain a thin slice ; but when obtained it is seen to be composed of exceedingly delicate, closely interwoven fibres. Huntcr was well aware of the high position in the scale of creation occupied by these animals, for he called them soft-shcllcd Mollusca, and most of the specimens in the Museum of the College were prepared by him. In all the works on Comparative Anatomy, cxcept those recently published, it is stated that there is no trace of a calcareous skeleton in these Tunicated animals, but this is incorrect, for when engaged in examining the structure of the skeleton of the invertebrata during the preparation of the first volume of the "Histological Catalogue," I investigated the structure of the coating
of a sessile Aseidian, a speeies of Boltenia, Fig. 147, and diseovered in the stem of this animal multitudes of fig. 147.
 minute caleareous spieula. These spicula, as shown in Fig. 148, eonsist of a central portion, or shaft, with trifid extremities, and are imbedded in the dense leathery tissue; they are most abundant in the stem, but some few may bo met with in the dilated portions. They are partially dissolved by cold dilute hydrochloric acid, but if the specimen be boiled in the acid, they entirely disappear, and cavities are left in the horny tissue preeisely corresponding to of Bollenia. A, the oral. в, the anal outlet. the spieula. If a seetion be treated with eaustic potash, the horny matter is partially removed, and the spicula are rendered more apparent.


Spicula from the stem of Boltenia reniformis.

We next come to those Aseidians which, from being made up of masses of similar individuals, have been named Compound Tunicata, of which the Botryllidec are an important family. As a good example, I might mention the compound mass termed Amaroucium proliferum, represented in Fig. 149; they are generally of the consistence of wetted
leather, and so tough as to be torn with diffieulty. Another animal of this elass is the Alcyonium
fig. 149.


Amaroucium proliferum (after
Milne Edwards). Schlosseri of Ellis, Fig. 150; like the preeeding, it is found upon sea-weeds and portions of rock ; its entire surface is covered with stellate figures, which indieate the presence of a number of individuals surrounding a common cloacal outlet. It is a remarkable faet that some of the smallest of the Compound Tunicata have the greatest number of caleareous stellate spicula. An animal of FIG. 150.


Botryllus Schlosseri (Alcyonium, of Ellis) on a Fucus.
this kind, of very small size, found upon a Pinna-shell, was almost entirely composed of calcarcous stellate spicula of the form represented by Fig. 152. Such animals are far from being uncommon upon Corals
and shells, and when dried, look very mueh like a mass of amorphous lime. The tunie of the eompound
fig. 151.


A, a small compound tunicated animal. в, segment of the same magnified 12 diameters. c, calcareous stellate spicula. Ascidian, represented in Fig. 151, which was brought from the China seas, at first sight I imagincd was a sponge, it contains a large number of the calcareous stellate spicula shown at C , and is composed of a series of eells for the animals, each of whieh is surrounded by a number of black spots, these bcing the spicula in question; when isolated by boiling in caustic potash, they are found to be of stellate figure, and somewhat resemble those of the sponges of the genus Tethea, but the latter are always composed of silica, whilst these are
fig. 152.
 ealcareous, and dissolve in dilute acid with effervescence, leaving behind them an organic basis in the shape of a cell-wall. I am not aware that ealeareous Calcareous stcllate spicula stellatc spicula have ever bcen of a compound tunicatcd animal magnified 250 diamcters. und the indeed to be charaeteristie of the rudimentary skeleton of the Compound Tunicata. Upon eareful examination, scarcely a Tunieated animal, not even the transparent Salpa, is to be found without possessing
some rudiment of a skelcton in the form of stellate or acicular spicula. When we remember that Cellulose, an clement belonging, as it was supposed, cxclusively to vegetables, has been detected in the tunics of these animals, and that the spicula are mostly, if not all, contained in cells, the analogy between these bodies and raphides becomes very striking.

The third class of Mollusca, the Conchifera, are animals surrounded by a dense calcareous dermal skeleton, commonly designated Shell. Throughout this class the shell is formed of two more or less equal valves, which, with few exceptions, are external, and enclose the soft parts of the animal. The Conchifcra are divided into the Brachiopoda and Lamellibranchiata; but before I enter upon the structure of the skeleton of these two divisions, I will give a brief description of Shell in general. For our knowledge of the minute structure of Shell, we are principally indebted to the labours of Mr. Bowerbank and Dr. Carpenter, the latter gentleman having published an claborate paper on this subject in the "Transactions of the British Association." He divides it into two kinds, the cellular and the membranous, or in other words, into shell which retains its cellular charactcr throughout life, and that which speedily loses it and becomes nearly homogencous. When the first is decalcificd, a cellular structure is left behind; but when the latter is subjected to the same treatment,
the animal basis is in the form of a membrane either smooth or more or less lamellated.

The most simple form of Shell is that met with in the common Slug, Limax rufus, Fig. 153, a; it occurs


A, Limax rufus. \(a, b, c\), the shcll seen in various positions. \(d\), shield on the back in which the shell is enclosed.
as a thin oval plate, imbedded in the shield \(d\), situated on the back of this animal. When perfectly developed,
fig. 154.


A portion of the rudimentary shell of a Slug, Limax rufus. as shown in \(a, b, c\), it consists of a series of more or less concentric laminæ with a slight. trace of cellular structure ; but when examined in an earlier stage of growth, as represented in Fig. 154, it is found to be made up of cells which, from pressure, have become hexagonal in form, some of them being filled with transparent calcareous matter, whilst in others, as shown at \(c\), in Fig. 167, this has assumed a crystalline appearance, the
latter affording an example of the crystallizing force overcoming the modelling power of the cell-wall. If the edge of the specimen be examined, cells may be seen in a state of formation ; they are of small size, and imbeddcd in an intercellular substance, being developed in a plasma or blastema exuded either from the edge of the shell or mantle. On the outer surface the cells are small and distinct, but towards the centre of the specimen they become larger, and the intercellular tissue between them less and less, until they form a connected tissue, without any trace of intercellular substance.

Soon after their development the cells begin to secrete carbonate of lime; many of them have a nucleus, or nuclei, which most frequently disappears soon after the deposition of the carbonate of lime, but not invariably,
fig. 155.


A vertical section of a Pinna shell after decalcification, showing the mode in which the prisms will split up into layers of ccils. for in a transparent layer of the shell of an Oyster, as will hereafter be shown in Fig. 157, the nucleus is still present, although the cell is filled with calcareous deposit, and in this instance the carbonate of lime appears to have bcen deposited in concentric layers. The shell of all the Oystcrs of the genus Pinna is composed of a series of hexagonal cells filled with transparent calcarcous matter as shown in Fig. 158. The greatcr part of the thickness of such a shell is made up of super-
imposed layers of thesc cells, and it happens that in some instances, as represented in Fig. 155, the animal basis of the shell, after decalcification, will break up rig. 156. into laminæ, each composed of one or more layers of cells; occasionally, however, the outer layer of these shells will split up into prisms or columns, each of which, as shown at \(b, c\), in Fig. 156, will be found to exhibit transverse markings, these being the indieations of the thickness and number of the layers of cells eomposing such columns. This breaking up into prisms is certainly more rare than the division into laminæ, but in some old shells the prisms are very numerous in the outer layer, or crust, and the transverse markings indicating the cells of which the prism is built up, are very plainly visible.

\section*{LECTURE XVI.}

\section*{SKELETON OF MOLLUSCA-CONCHIFERA.}

In the preceding Lecture I described the simplest form of shell as consisting for the most part of hexagonal cells. These cells are always nucleated in the earlier stages of development, and the nucleus, as shown at A, in Fig. 157, is sometimes persistent even after the cells are filled with calcareous deposit. In a thin layer of the shell of a small species of Oyster, some of the cells, as represented at B, in Fig. 157, exhibit a

FIG. 157.


\footnotetext{
A, a portion of a thin laycr of shell of a Pinna exhibiting cells, each containing a mucleus. B, nucleated cells from a thin transparent, Oyster-
shell.
}
transparent nuclcus in the centre, around which there is a faint trace of a concentric laminated arrangement; these colls are full of lime, and if the section werc decalcified, nothing would be left but the cell-walls, which are very strong and almost horny. When a thin section of shell composed of two or more layers of cells is decalcified by acid, nothing remains but the cell-walls; these are composed of a brownish horny material, and very much resemble a thin slice of vcgetable cellular tissuc.

The carbonate of lime contained in the cells of shell, possesses all the properties of the crystallized calcareous salt, it readily polarizes light; but in order to exhibit the colours to the greatcst advantage, the shell should bc mounted on a thin plate of selenite, as this adds very much to their brilliancy. The calcarcous matter contained in the cells is generally of a pink hue, and is for the most part perfectly

Fig. 158.


A horizontal section of the shell of Pinna ingens showing the so-called " black cclls." homogeneous; in somc shells it presents a granular appearancc. Certain shells of the genus Pinna have been described, both by Dr. Carpenter and myself, as having cells of an intense black colour ; a section of Pinna ingens exhibiting this structure is represented in Fig. 158. It has been since ascertained that this blackness is not of uniform tint in all stages of adjustment of the focus, and as
the cells having this appearance arc generally smaller than the others in the neighbourhood, it is probable that the dark colour is due to the section having crossed one of the prisms near its pointed extremity, so that the conical part reflects most of the light, and a black appearance is produced. Dr. Carpenter believes that the blackness is owing to the presence of air in the upper part of the prism, the air occupying a portion of the cell, no lime being as yct secreted therc. The black cclls are almost always found in the superficial layers of the shell, and not in the deeper ones; but when a vertical section of such a shell is made, all trace of dark cells is lost.

In a vertical section of the shell of a Pinna, as shown in Fig. 159, the layers of cells are seen to be arranged
fig. 159.


\footnotetext{
A vertical section of the shell of Pinna showing the prismatic
} one over the other to form prisms, and, howevcr thick such a section may be, the prisms rarely extend from onc surface of the shell to the other; thcy are generally pointcd at one or both extremities, and every here and there may be seen a group of them in which the contents are more or less granular and coloured. It is in such cells as these, when cut transversely, that the granular condition of the lime, I have already mentioned, is observed. The prisms exhibit VOL. II.
faint traces of transverse strix, but these will be better seen in the outer layer of a Pinna of great thickness, remarkable as splitting up into prisms and not into laminæ, in consequence of the partial, if not total destruction of the organic cell-walls and the separation of the prisms from each other, like so many basaltic columns, as shown in Fig. 160. Some of the prisms exhibit very beautifully
fig. 160.


Separa:e:l prisms from outer layer of a Pinna (aitter Carpenter). their pointed extremities, and all of them, more or less distinctly, the transverse striæ. Under very high magnifying powers the prisms appear indented, at points corresponding to the striæ; this is readily explained by the parts so indented being those occupied by the thickness of the cell-wall, which has probablybeen removed by decomposition previous to fossilization. The internal layer of the shell of the Pinna is not composed of hexagonal cells, but of a tissue somewhat resembling nacre, which possesses little or no brilliancy, but is always more or less coloured. It is this form of shell-tissue that Dr. Carpenter has named the subnacreous variety; the greater part of the thickness of the shell of the

Oyster is composed of this tissuc, it rarcly exhibits any trace of development from cells, and when dccalcified, the organic basis is found in a membranous form, hence it also has received the name of membranous shellsubstance. In very many shells this layer is traversed by large tubes which take a sinuous course.

Although as a general rule the organic basis of the internal layer of shells exhibits no trace of cells, yet there are many in which such traces are very evident. A section of the shell of Pholas cristata shows a series of hexagonal cells, each having a nucleus in its centre ; in some parts of the section, however, the only indications of the cell-walls are dark granular lincs, but the nucleus is still perceptible. In a vertical section of the tooth of Mya arenaria, as shown in Fig. 161,
fig. 161.


A vertical section of a portion of the tooth of Mya arenaria showing partial absorption of cell-walls and the production of laminæ.
hexagonal cells are visible on one part, but in others the cell-walls are partially absorbed, and a series of sinuous parallel lines result. It is in this way that the wavy lines found in shells are formed, a fact that must be borne in mind, as I shall again have occasion to allude to it. This subnacreous structure rarely possesses any brilliancy, but neverthcless there is a gradual transition from it to nacre, as for instance, many species of Mytilus have a subnacreous internal layer, whilst in others it is brilliant and nacreous.

I shall now speak of the subnacreous variety of shell exhibiting a tubular structure; this is very common in shells of the genera Anomia, Lima and Arca. The tubes sometimes run in a vertical direction, but more frequently horizontally, between or upon the laminæ of which the shell is composed ; they are almost always of uniform diameter, and very frequently branched, so that some of them present very much the appcarance of confervæ. That they are tubular and possess distinct walls may be readily seen by dccalcifying a portion of shell containing them, as shown in Fig. 162, when they

FIG. 162.


A portion of the shell of Anomia ephippium decalcified on one edge to show the tubular structure. remain as distinct tubes, pervading the membranous organic residuum. Some of these tubes present a beaded appearance, indicating that they are made up of cells like the tubular fibres of many fungi. In a horizontal section of the shell of Lima scabra, Fig. 183, which is of the subnacreous variety, it will be found, as I have alrcady stated, that the tubes are nearly all of uniform diameter and frequently branched. The tubes generally open upon the inncr surface of the sholl, as is beautifully seen in a small white sholl, commonly called the Rice Shell, from its resemblance to a grain of that plant; these shells no doubt are familiar to most persons, as they are employed in
the manufacture of brooches and ornaments for the hair. In a transverse section of one of these little shells, as shown at a, in Fig. 163, a number of the tubes, a a, may be scen to commence on the inner
fig. 163.


A, a transverse section of a Rice-shell showing the three component layers magnified 12 diameters; \(a a\), tubes perforating the inner and outer layers. b, a portion of the same section magnified 130 diameters; \(a a\), small tubes occurring in the inner layer; \(b b\), larger tubes or perforations commencing in the inner layer and passing nearly through the shell.
surface of the first whorl, and pass nearly through it; others will be found in the outcr layer, as represented in the thick part near the centre of the section.

The nature and function of these tubes is but imperfectly understood; Mr. Bowerbank imagines them to be vessels, Dr. Carpenter believes that they are connected in some way with the nutrition of the shell; they may indeed perform a similar office to that of the tubuli of dentine.

In many shells there are two kinds of tubes, one much larger than the other; both are met with in some
of the sections of the Riee Shell above alluded to, but the larger kind is not constantly present. On the inner edge of the section, shown at B, in Fig. 163, where the shell is thiekest there are a number of tubes, or tubular cavities, \(b b\), much larger than those seen at \(a a\), on the inner edge of the same, these, I believe, are either confervoid sponges, or the work of minute boring animals. It may be remembered that when speaking of the caleareous axis of corals in page 152 , I mentioned the faet that sponge-fibres and growths like confervæ are not uncommon in the polypidoms of these animals, and in Fig. 78 is shown a section in which, tubes similar to those oecurring in shell, are very abundant.

I shall now illustrate the strueture of the beautiful material termed Nacre, or "Mother-of-pearl," which lines the interior of all shells that exhibit an iridescent appearance. In some it forms but a thin internal layer, while in others-the Pearl Oyster, Avicula margaritifera, for example-it eonstitutes the largest portion of its thickness, that being the shell which furnishes us with the greater part of the Mother-of-pearl of eommeree. In the Haliotis, or Ear-shell, it is remarkable for the beauty of its colours, which are to a certain extent produeed by the development of a coloured horny substanee between the layers of naere. Like the other varieties of shell-tissuc, this is evidently devcloped from cells, but in most instances a rapid partial absorption of the cell-walls has taken place, as in the ease of the

Mya before alluded to, so that nothing but wavy laminæ remain. These wavy laminæ were described by Sir


A portion of the Nacre of Haliotis splendens magnified 500 diameters. David Brewster and Sir John Herschell as grooves upon the surface of Mother-of-pearl which produce the brilliant colours by decomposing the rays of light incident upon them. The iridescent colours of the shell of the Nautilus are well known, the epithct " pearly" being applied to the animal from this circumstance; horizontal sections of the shell, present in some parts a cellular, in others a lamellar structure. In a section of the nacreous layer of the Pearl Oyster viewed under the same power, nothing but fine lines are to be seen, which are either straight or more or less sinuous, in consequence of the parts completing the cellular structure having disappeared. The colours are still produced after the carbonate of limc has been removed by an acid; demonstrating that the decomposition of light depends, not on the calcareous matter, but on the arrangement of the organic basis which retains the striæ, and here and there gives evidence of cell structure.

In the shell of Haliotis splendens, there are plates of coloured horny material occurring between the laminæ, which, likc the laminæ themselves, are arranged in curves following the direction of those of the shell. When a portion of this shell is decalcified
it splits up into laminæ, and the layers of horn, which gencrally communicate a greenish tinge to the aeid solution, may be scparated from the nacreous portion. The horny layers cxhibit little or no strueture, but the nacreous laminæ present the same gorgeous hues as in the natural eondition. When examined with a power of 100 diameters, the membranous residuum, as shown in Fig. 165, exhibits a plaited or folded appearance, and if
rig. 165.


A portion of the Nacre of Haliotis splendens decalcified; showing the plicated arrangement of the membranous residuum. stretched by needles, the colours immediately disappear ; proving, as was first pointed out by Dr. Carpenter, that the lines of mother-of-pearl are not attributable, as was supposed by Sir David Brewster and Sir John Herschell, to grooves in the substanee, but to the plieation of the organie membrane, which, as we shall presently find, is originally developed from cells, for even now traces of them may be seen in some parts of the shell.

The same laminæ, corresponding to the supposed grooved structure, arc seen in a horizontal seetion of the shell of Haliotis, as a series of undulating lines, but in some parts large pigmental eells are visible, which must form only a thin layer, as the undulating lines of the naere may be readily recognized bencath them ; eaeh pigment cell has a stellate nuclear spot in its centre. If a similar section be cxamnined with a power of 500 diameters, a
cellular structure is very evident in certain parts, as scen in Fig. 166 ; a portion of the same shell decalcified
fig. 166.


Nacre of Haliotis splendens exhibiting a cellular structure. shows, even to the naked eye, that the organic basis is gorgeously coloured. A prcparation in the Museum of the College, made long ago by the late Mr. Hatchett, which consists of large flakes of the organic basis of shell, exhibits these colours even better than microscopic specimens. A very thin decalcified section, under a power of 250 diameters, proves that the plicæ of the laminæ are more numerous when the colours are most intense.

The nacreous, like the sub-nacreous variety of shell, is sometimes traversed by tubes, but this is not general; these tubes, howevcr, are abundant in some specimens of Haliotis, and are best shown in vertical sections through the thickest part of the shell. In such a section, thin laminæ of horny matter are distinguishable by the naked eye lying between the layers of nacre, and when viewed with a power of 250 diameters, as shown in Fig. 197, dark lines may be secn passing across the layers of nacre at right angles to their length. Thesc dark lines are tubcs of uniform diameter throughout, and rarely branched; they might be mistaken for scratches, but are not confined to the surface of the section.

There is a very peculiar condition of the internal
layer of the shell somctimes met with in the common Oyster, in which, instead of a subnacreous layer lining the whole interior of the shell, part of it is occupied by a thin lamina of brown horny material. This horny matter is not uncommon between the layers of prismatic structure on the outer surface of the shell, but I have never, until lately, seen more than three specimens in which it was situated on the inner surface. It is soft and flexible, and when examined with a power of 250 diameters, is found to consist of a thin layer of brown horn, which is thickly covered with, or has numerous minute rhombohedral crystals of carbonate of lime imbedded in its substance, as shown at \(a\), in Fig. 167.
fig. \(16 \%\).

a, crystals seen in the brown horny layer of the Common Oyster. \(Z\), crystals surrounded by a cell-wall. \(c\), cells from the rudimentary shell of the common Slug in which the lime has crystallized. \(d\), cells with crystalline deposit from the tooth of Mya arenaria. When placed in dilute acid there is a copious effervescence, and if examined after all effervescence has ceased, the crystals are seen almost as plainly as before, but the parts which look like them would appear to be only the cavities in the horn which the crystals previously occupied. In some specimens, I have noticed whilst decalcification was going on, that each crystal seemed to be surrounded by a faint circlc like a cell-wall, as shown at \(b\), and such an appcarance, if constant, would induce the belief that this layer was onc in which the cells were not capable of
moulding the lime in a homogeneous form, but that the crystalline force had overcome the usual mode of deposition; the absence of the cellular character in all parts of the horn being a consequence of the speedy coalescence of the cell-walls, whereby a thin layer of structureless membranous substance is produced.

The inner or nacreous layer of shell is generally supposed to be formed upon the external surface of the mantle, whilst the outer layer is developed in connection with its margin. On many shells there is an outer brown coating or epidermis of horny material ; this is met with in our common Mussel, and exhibits a cellular structure, but it is more abundant, and therefore more evident, in some of the univalves, as, for instance, certain species of Triton and Conus, where it forms a layer \(\frac{1}{16}\) th of an inch in thickness. This layer is termed periostracum by Conchologists, and our attention will be again directed to it when we consider the structure of those shells in which it is most abundant.

I have now described the general structure and the chief varicties of shell in the Conchifera; in the ncxt Lecture I shall enter more minutcly into the varieties peculiar to the orders into which this extensive class of animals is divided by Zoologists.

\section*{LECTURE XVII.}

\section*{SKELETON OF MOLLUSCA-BRACHIOPODA.}

In the present Lecture I shall apply our general knowledge of the structure of Shell, to the two primary divisions of the Conchifera, the Brachiopoda, or Palliobranchiata and the Lamellibranchiata That the Brachiopoda-so named from two arms said to protrude from the shell-were very numerous in our seas in the early geologieal periods, is made evident by the faet that upwards of six hundred species have been deseribed as British; but at the present time we can enumerate only four living representatives of the order.

One speeies of Terebratula has been dredged up within the last few years on the coast of Ireland. I do not possess a British specimen; all that I have are from Australia and the Navigator's Islands, and
were presented to the College by Captain Sir E. Home. They are of two species, the onc a large white shell, the T. Australis, the other red, and named T. rubicunda; the former generally inhabit very deep water, being not unfrequently found at a depth of seventy or eighty fathoms; they are attached to each other, or to the rocks, by a short pedicle, which is capable of being protruded through a circular foramen in the larger valve of the shell; strong muscles are connected with this pedicle, the tendinous fibres of which arc remarkable for their brilliancy. In the interior of the shell, and attached to the smaller valve, is a very beautiful framework composed of thin plates of shell substance, as shown at B , in Fig. 168, which, from its resemblance
\[
\text { fig. } 168 .
\]


> A, Terelratula (Alrypa) psillacea showing the arms, as formerly and erroneously represented. B, smaller valve of T. Ausiralis exhibiting the earriage-spring framework.
to a coach-spring, has becn called the " coach-spring" apparatus, and the shells themselves are commonly known as Coach-spring shells. This framework seems,
at least in some species, to serve two purposes, the prineipal one being the support of the long spiral arms, as shown at a, the other probably, like that of the elastic ligament of the oyster, to keep open the valves of the shell. But, however beautiful this framework may be in the Terebratula, it is far surpassed by a similar apparatus in certain fossil Brachiopods of the genus Spirifer, which are very abundant in the Oolite, especially that of Ilminster in the county of Somerset. Here the framework occupies the greater portion of the shell, each spring, as it were, rescmbling a conical screw, and having as many as twelve spiral turns composed of flattened shelly matter fringed with minute spines along the lower margin, as shown in Fig. 169 ; this apparatus


A magnified view of Spirifer rostratus showing the carriage-spring framework occupying the greater portion of the shell. no doubt performed a similar office to that of the framework in the recent specimens... The arms, which we should suppose to be instruments of progression, are certainly not so, because the shells arc firmly anchored by the short tendinous pedicle; they arc clothed with cilia, and there ean be no doubt that these produce eurrents in the water, by which food is brought towards the animal.

The arms in the Terebratula are said to be eapable of being protruded from the shell, but in the Braehiopods existing in the earlier periods of the earth's history, the arms were attaehed to the earriage-spring framework, and were therefore ineapable of being extended; in all probability such was the ease in the Spirifers before notieed. A beautiful series of disseetions of Terebratula Australis by Mr. Goadby, in which the entire anatomy of these interesting animals is displayed, may be seen in the Museum of the College. The mantle is shown lining the shell, and the arms folded upon the carFig. 170. riage-spring framework; the respiratory
 and digestive systems form only a small part of the animal, being eonfined to the minute space within the earriage framework; the shining fibres seen in one of the specimens are those of the tendons of the pediele.

Another existing Braehiopod I shall briefly notice is the Lingula anatina, Fig. 170. In this animal the shell is exceedingly thin, and of a green eolour, whilst the pediele is much larger than the shell itself, and not protruded through a hole in one valve of the shell, but attaehed to both equally. The Lingula is not found at such great depths as the Terebratula, Sluell of Lin- being confined to parts nearer the surfaee; it
unla anatina
 being provided with an extended arm on eaeh side, but
these arms have no carriage-spring framework for their support. There is another existing species of Braehiopod, the Orbicula, whieh has a horny shell, but of. this I possess no specimen.

We will now proceed to examine the minute strueture of the shell of the Terebratulce, all of which will be found to exhibit one character so peculiar, as to enable a praetised microscopist to determine the true nature of even the smallest fragment. This character, as shown in Fig. 171, is produced by a number of oval spots, or openings, of equal size, occurring in oblique rows equi-distant from each other, the tissue between the openings being sometimes fibrous or faintly cel-
fjg. 171.
 lular. When investigating the structure of the shells of Terebratula, during the preparation of the first volume of the " Histological Catalogue," I detected a A portion of the outer surface of the slell series of radii around
of Terecratula rubicunda showing the perfo- these openings which
rations.
had evidently escaped the attention of Dr. Car-
penter, as no mention is made of them in his
"Report on the Structure of Shells," whieh con-
tains almost all that is known on the shells of
the Terebratulæ. The point to which I allude,
is that each opening is surrounded by a series of
radiating lines, which are very evident in the shell of Terebratula Australis, as shown at A, in Fig. 172,

\section*{FIG. 172.}


A, a portion of the outer surface of the shell of T'erebratula Australis showing the radiated structure around the perforations. в, a portion of the outer surface of T. rubicunda showing the same structure. and in that of T. rubicinda, represented by в. Thc entire thickness of vertical sections of these shells is traversed by large, more or less parallel, tubes or perforations, as shown in Fig. 173; the oval openings seen on the surface of horizontal sections are the mouths of these tubes, and it will be noticed that they are slightly dilated at both extremities, but as a general rule the openings upon the inner surface of the shell are smaller than those upon the outer surface. The tubes run
fig. 173.


Vertical section of a portion of the shell of Terebratula rubicunda slinwing the tubes or perforations. either vertically or obliquely through the shell, and are very rarely branched; in some species of Terebratule, as for instance, T. lenticularis, Fig. 174, they are so much dilated on the outer surface of the shell as to be almost trumpet-shaped. In the living animal, long cecca containing granular matter occupy the tubes ; these are readily
seen in deealeified portions of the shells that have been preserved in spirit with the animal entire. The upper or outer part of the cœcal tube is attached to a rim, or dise, in eonnection with the epidermis of the shell, whilst the inner opens upon the internal surface, but is quite distinct from the mantle; when highly magnified,
fig. 174.


Vertical section of a portion of the shell of \(T\). lenticularis showing tubes much dilated on the outer surface of the shell. the granular matter occurring in thesc cœeal tubes is well seen. In the decaleified shell of T. Australis, as shown at A, in Fig. 175, the cœcal tubes are attached to a structureless membrane, which is in all probability the epidermis, but this is not the case in all Terebratulæ, for in a small undescribed spccies, I succeeded in detaehing an epidermis to which no cœca werc adherent, nor was there any trace of them cither upon the upper or under surface; but if portions of the decalcified shell-membrane were examined, the cœeal tubes were very abundant.

In a large specimen of \(T\). Australis, I succeeded in separating the cuticle with the discs of the tubes attached, and I remarked that these had on their outcr surfaces radiating filaments preeisely corrcsponding to the strueture just deseribed as being visible around the mouths of the tubes upon the outer
surface of the shell, and which resemble cilia, as shown
fig. 175.


A, a portion of decalcified shell of Terebratula Australis showing the coecal tubes. \(\quad\), radiated or ciliated discs detached from the tubes. \(c\), termination of the tubes on inner surface of the shell. at B. A radiated structurc is very evident around the margin of the perforations in most, if not in all, the Terebratulæ, and was first noticcd by me when investigating the structure of the shells of those Brachiopoda published in the first volume of the "Histological Catalogue." I imagined that the radii were tubular, but having once found that the discs could be detached from the tubes in the decalcified shells, I was induced to believe that they might be cilia, and if so, may not their office be that of driving currents of water or of secreted fluid through the coecal tubes? This point, however, must be reserved for future investigation.

The internal surface of the shell of Terebratula, as shown in Fig. 176, also exhibits the openings of the perforations, but the intermediate shell-substance presents a cellular appearance; towards the outer margin, the cells are clongated, and assume the prismatic form, If, in making a section of the shell of a Tcrebratula, both the inner and outer surfaces be ground away, no other structurc remains than elongated parallel flattened fibres, or cells, which are arranged in the same
plane as the shell; the perforations arc seen as oval holes, about \(\frac{1}{4 m}\) th of an inch in the long, by \(\frac{1}{1000}\) th in the short diameter, and the margins of these pcrforations arc formed by a curvature in the flattened fibres.

The shell of \(T\). rubicunda, which is so readily recognized by its red colour, cxhibits the perforations
fig. 176. as well as the long parallel prismatic


Inner surface of the shell of Terebratula rubicunda showing the cellularstructure between the perforations. fibres, all of which are curved oppositc the perforations. This curving of the fibres, however, is better seen in fragments broken from the shell, some of which, as represented in Fig. 177, not only show the flattened fibres lying in a detached state, but the curvature of the parts forming the boundaries of the perforations. It is still a matter of doubt with microscopists, whether they are flattened fibres or elongated cclls; it is true that they might be regarded as plications, but if the shell be decalcified, all traces of them disappear, and I am inelined to regard them as having a cellular origin. All the structures above indicated arc seen in the carriage-spring framework, with the exception of the perforations.

The Terebratulce, as I have alrcady said, arc very numerous in the fossil state, and all the species of this genus, whether reecnt or fossil, are perforated with tubes, but the allied genus Atrypa presents all the other charaeters exeept the perforations. One species,
A. psittacea, was formerly placed in the genus Terebraiula, but no perforations being discoverable by

FIG. 177.


Elongated eells or fibres of the shell of Terebratula rulicunda, which are so eurved as to form the margins of the perforations. microscopic examination of the shell, it is now removed to the genus Atrypa. The prismatic or fibrous structure is very evident in the shell of this animal, as shown at A, in Fig. 178; it is also plainly seen in a fossil species, \(T\). inconstans, represented at b. Some of the fossil Terebratule are covered with delicate spines; these are very minute, and exhibit none of the characteristic structure of the shell, but are more like the large spicula found in the rachis of the Pennatulce. The shell of another recent Brachiopod, the Lingula anatina, is also perforated by tubes of smaller size than those of the Terebratulæ. The shell is of a horny
fig. 178.


A, a portion of the shell of Atrypa psillacea. в, a ehipping from the shell of a fossil Tereloratula, 'T. inconstans, looth lueing non-perforated.
character, and presents two kinds of striæ, or tubuli, the one very minute - much more so indeed than those of dentine-which run in lines either parallel or nearly at right angles to the surface, the other much larger and less numerous, which
are probably the analogues of the tubuli in the Terebratula ; these take a sinuous coursc, and when divided transversely, appear as numerous round dots. The Lingula has been dissected by Mr. Goadby, and a. scries of beautiful preparations, mounted in the same way as those of the Terebratulæ, may be studied in the Museum.

In the second great division of the Conchifera, the Lamellibranchiata, the shells are all bivalve, the
fig. 179.


A portion of the shell of Lingula anatina showing the minute tubuli and the larger tubes divided transversely. branehial organs well developed, consisting of four lamellæ, whieh are enelosed within the mantle. Aceording to Dr. Carpenter, those of the Lamellibranchiata in which the lobes of the mantle are disunited, inhabit shells eomposed of prismatic cellular tissue, whilst those with the lobes either partially or eompletely unitcd, consist of other kinds of strueture, and their animal basis, instead of exhibiting a eellular appearance, is small in quantity, and made up of laminæ of delicate membrane. The Oysters and Pinnæ are examples of the former ; the Cockles and Clam-shells, of the latter. The structure of the Pinna-shell has been already described in pages 269 and 272, and with the execption of the thin internal layer, all parts of any shell of this genus are composed entirely of the prismatic cellular tissue, the calcarcous mattcr oceupying the interior of
the cells being generally more or less pink and homogeneous. A horizontal section of the shell, as shown in Fig. 158, presents a scrics of hexagonal cells, averaging about \(\frac{1}{500}\) th of an inch in diameter; in a vertieal seetion, on the contrary, these cells are arranged in vertieal columns, or prisms, with one or both extremities pointcd, and having a series of transverse markings indicating the individual cells of which each prism is composed, as represented in Fig. 159. In addition to the transverse lines on each prism, there are others much more evident, which run across the entire section, and indicate in all probability the suecessive stages of growth. The internal layer associated with this form of tissue is nacreous, or sub-nacreous, and when ground very thin, exhibits little or no structure, being composed of the membranous variety of shell-tissue.

The shell of our common cdible Oyster, like that of the Pinna, is composed of two kinds of strueturc, the prismatic and the subnacreous, the former, more or less laminatcd, is external, while the latter forms the white intcrnal layer. The distinction between these layers is very striking in old Oysters, and many spccimens have been obtained from an Oyster-bod discovered some fcw years ago in the Channel, whieh on seetion, as shown in Fig. 180, exhibit this distinction in a very marked manner. In some of thesc, an imperfect formation of the prismatic laycr, or the removal of this softer portion of the shall by boring animals, renders the distinction more evident;
sueh shells consist of a series of the internal, or nacreous layers separated by eavities from each other. The brown outer layer of the shell of the Oyster is eomposed of prismatie eellular tissue, which in the horizontal section, or when the prisms are divided transversely, appears to be made up of more or less regular hexagonal eells of uniform size, whilst the internal or subnacreous layer is almost structureless or minutely granular, exhibiting no traee of eells; but in some speeimens this layer elosely resembles nacre, the structure then being more or less sinuous, and in
\[
\text { fig. } 180 .
\]


A vertical section of a shell of an old Oyster showing the course of the inner subnacrcous layers and the destruction of a greater portion of the prismatic structure by boring animals.
eertain oysters will be found traversed by tubes. In a horizontal seetion of Perna ephippium, the eellular structure is distinet, but the eells are mueh more minute, averaging \(\frac{1}{1200}\) th of an inch in diameter, whilst in most of the Pinnæ they are \(\frac{1}{500}\) th of an ineh, and the internal layer of this shell is eomposed of true naere.

The horizontal seetion of the shell of the Hammer Oyster, Malleus albus, shown in Fig. 181, evidently.
contains three kinds of structure ; on the margin where the large hexagons are seen, the cells are about \(\frac{1}{300}\) th of an inch in diameter ; beneath these there are other cells,

FIG. 181.


A horizontal section of the shell of Malleus albus, a, coarse prismatic structure. \(l\), minute prismatic structurc. \(c\), nacreous layer with tubuli. forming a distinct layer so minute as \(\frac{1}{2000}\) th of an inch, whilst on the upper edge is seen the nacreous layer, in which not only wary lines occur, but the greater part of its surface is traversed by numerous large branching tubes. If the shell be small and very convex, then, by grinding the horizontal section flat, the centre will be found occupied by the nacreous or subnacreous layer, whilst the margin is composed of hexagonal cells; such is the case in sections of the shell of a Crenatula, the centre of which exhibit the wavy lines characteristic of the nacre, whilst the margin is composed of hexagonal cells.

In vertical sections of the Pearl Oyster, as shown in Fig. 182, two distinct structures are evident, even to the naked eye; the outer is more or less brown, the lower truly nacreous; the former is composed of a series of short prisms, all of which show transverse markings, while the nacreous layer presents prismatic colnurs and distinct sinuous lines. The nacreous layer
is very thick in this species, from which the prineipal
fig. 182.


A vertical section of the shell of the Pearl Oyster, Avicula margaritifera, showing the prismatic and nacreous layers.
the tubes are still fig. 183.


Portion of the subuacreous tissue of Lima scabra traversed by tubes. part of the Mother-of-pearl of commeree is proeured. Horizontal seetions of the shell of Lima scabra are ehiefly composed of the subnacreous tissue, traversed by large branching tubuli not arranged in any definite order, but erossing and re-erossing each other in every direetion, as shown in Fig. 183. When the shell is decaleified, perfectly apparent, together with the rest of the organic matter. The office these tubes perform is still uneertain, most of them commenee upon the inner surface of the shell, which must have been in eontact with the mantle, and then pass towards the outer surface, their function, as I have said before, may probably be analogous to that of the tules of dentine; they are generally found only in the subnaereous substance, but the beautiful nacre of the Haliotis is traversed by them, as shown in Fig. 197.

\section*{LECTURE XVIII.}

\section*{SKELETON OF MOLLUSCA-CONCHIFERA.}

In a perfeetly-formed Oyster-shell there is always a very perceptible difference between the structure of the outer and inner laminæ; the one is comparatively thiek and soft, the other exceedingly thin and hard. In an old and thiek shell which has been divided vertically, the two portions, as shown in Fig. 180, are very evident, the former being more or less caleareous, the other very thin. The calearcous portion is soft, containing seareely a trace of animal matter, and is to a considerable extent destroyed by boring animals; but they have left the thin, internal layers untouehed, probably in consequence of their hardness. In some parts of such a seetion, nearly the whole of the ealcareous external layer has been removed, and the laminæ eomposing the inner layer alone remain, so
that the shell in these parts has a caneellated appearance. A distinet eanecllated structure is present in most of the shells of the genus Spondylus, the office of the cancelli being to render the shell lighter; the shell of Spondylus gigus is in some parts three inches thick, and if solid, would be very weighty, but if all the laminr forming the cancelli were in close apposition they would form a stratum not much more than half an inch in thickness. It may be questioned whether the part corresponding to the outer layer, or that which in the Oyster filled up the spaees between the laminæ, ever exists in the Spondylus, or whether the laminæ; as we now see them, are really composed of two distinct kinds of shell-strueture ; this I shall endeavour to elucidate on another oeeasion.

The outer or calcareous laminæ of one of these thick oyster-shells, when ground as thin as possible, is still very opaque, exeept in some parts where the remains of prismatic strueture may still be discovcred. In the Pearl Oyster, Avicula margaritifera, the outer laycr is generally very thin and coloured, the inner, thick and naereous, and the flat valve is the upper one, as in the common Oyster. In a vertical seetion of this shell, shown in Fig. 182, the outer layer, which is of a greenish-brown colour, is composed of rows of prisms, whilst the whole of the inner layer is traversed by lines of growth; but when a portion of the same nacre is viewed under a much higher power, the sinuous structure is very apparent, and it is by such an arrangement
that the colours of this beautiful substance are produced. When the whole of the calcareous matter of the nacreous lamina of the same shell is removed by an acid, the organic tissue is found to he a closely plicated membrane ; these folds are closer and more numerous whcre the colours are most brilliant, but, on the other hand, wherc no folds exist, the colours are entirely absent. The inner layer of the common Oystershell exhibits no such colours, and when decalcified, the membranous residuum is so small in quantity as hardly to hold together. Many of the Mussels, as the Iridina elongata, have a nacreous internal layer, perhaps more brilliant than that of the Oysters, but these are all foreign species; the only British spccimen at all resembling them is the Unio margaritiferus found in the rivers of Scotland, Ireland and Wales, which will be alluded to in a future lecture.

When Nacre or Mother-of-pearl was first examined, many years ago, by Sir David Brewster, he discovered on its surface a series of sinuous lines, which he imagined to be grooves, and they were compared by Sir John Herschell to the lines obscrved on a smoothlyplaned piece of deal; they are not grooves, however, but plications of the animal basis of the shell. The same effect is producible by grooves, as was first shown by Sir John Barton on the principle of uncqual reflection of light; but I shall reserve the consideration of this subject for a future occasion.

In all the shells I have now described of the Lamelli-
branchiate order, the lobes of the mantle are scparate, and we have seen that the outer laycr of the shell presents the prismatic eellular tissue, and the inner the nacreous or subnaereous. We have ncxt to eonsider the strueture of those shells in which the lobes of the mantle are either partially or completely united. In these shells the prismatic cellular tissue is very uncommon and the internal layer is generally subnaereous, sometimes presenting almost a erystalline appearance, and when decaleified, the organic basis is so small in quantity, that a fragment of the section will hardly retain its shape when deprived of its caleareous matter.

Many of the shells we are about to cxamine are provided with a horny cpidcrmis, whieh is sometimes
fig. 184. composed of cells like those of cutiele.


A portion of the horny epidermis of the Common Mussel, Mytilus edulis. The epidermis of our common edible Mussel contains traces of cellular tissue; Dr. Carpenter, however, believes that the epidermis of this shell is structureless, and that a layer immediately below it, whieh is cellular, is sometimes removed with it. In the specimen represented by Fig. 184, some of the eells had dark walls, others were black in the centre with transparent walls; these last were probably filled with air, the preparation being mounted in balsam. The periostracum of another shell, Trigonia Lamarckii, is undoubtedly ecllular, each cell bcing hexagonal, with
very thick walls, and containing a large central nucleus. The cells are not uniform in size, being smallest near the hinge and gradually increasing from this point to the margin of the valve. The beautiful


A portion of the periostracum of Trigonia Lamarckii. periostracum, a portion of which is represcnted in Fig. 185, was first described by Mr. Bowerbank in a paper on the Structure of Shell published in the first volume of the "Transactions of the Microscopical Society."

In a vertical section of onc of the valves of the common edible mussel, three distinct kinds of structure are disccrnible; one is prismatic, another more or less of a bluc colour, whilst the third, which forms the inner laycr of the shell, is white or greyish-white. In a horizontal section of the same shell, on account of the convexity of the shcll and the process of grinding, these layers are all seen at one timc in the field of view, but the blue-coloured layer predominates. On the margin of such a scction there are faint traces of prismatic structurc, towards the centre, where the bluc colour prevails, there are no cells, but subnacreous tissue only, and in the very centre therc is an almost colourless spot, which shows a slight indication of a nacreous laycr. If this mussel had been onc posscssing a nacreous internal layer, the sinuous condition of the intcrnal laminæ would have been more evident.

In Mussel-shells in which the internal layer is very brilliant-as, for example, the Pcarl Mussel, Mytilus margaritaceus, Fig. 186 -the nacreous layer, very thick and in some parts of a beautiful purple or violet colour, is covered
pig. 186.


A vertical section of the shell of Mytilus margaritaceus. by a thin prismatic layer with a still thinner cuticle. The horizontal section of the inner layer of the same shell presents the peculiar sinuous structure of nacre, differing entirely from that of the edible Mussel. The nacreous layer of shell occasionally exhibits a trace of tubular structure, and in the Haliotis long tubes are sometimes observed. Our common Cockle and Scallop-shells are principally made up of white subnacreous tissue, but the projecting ribs or ridges of the shell generally exhibit the prismatic cellular structure. In the Cockle, Cardium cardissa, the ridges are composed of prismatic structure, whilst the other parts are more or less fibrous; both layers, however, are traversed by small tubuli.

The shell of Mya arenaria is principally formed of subnacreous tissue, but the horizontal section of this shell shows that all parts of the outer surface are distinctly cellular; the cells are very evident on the margin, but on tracing them towards the centre, the cell-walls bccome less and less cvident, until at last, in the very centre of the ficld, nothing remains of them
but the dark granular matter which oceupied their interior. Immediately beneath this layer is the subnacreous tissue which is oceasionally traversed by tubuli. One of the valves of this shell has a remarkable process near the hinge, called the tooth, which projects at right angles to the valve, and is generally half an inch in length ; it is composed of short, broad prisms, which, in some speeimens, are filled with calcareous matter in a radiating crystalline state. Dr. Carpenter possesses a specimen in which the carbonate of lime is in the form of radiating crystals, as shown in Fig. 187, and the section has

Fig. 187.


A horizontal section of a portion of the Tooth of Mya arenaria showing a radiated crystalline arrangement in the interior of each cell. not been unaptly compared to a specimen of the mineral Arragonite. A vertical seetion of the hinge of the same shell shows the length of the prisms in which the carbonate of lime is partially erystalline, and the direction of the crystals at an angle of \(45^{\circ}\) with the sides of the prisms. Other horizontal seetions of the hinge of Mya arenaria, as shown in Fig. 161, beautifully illustrate the transition from a truly cellular to a perfectly membranous strueture, by the partial absorption and coalescence of the cell-walls, for in these specimens we see the cell-walls very clearly in one portion, while in others they gradually lose the hexagonal outline, vol. 11.
and merge into mere sinuous lines or folds. If the longitudinal lines were connected by transverse ones, the original cellular structure would reappear. These gradual transitions are the key to the formation of the sinuous lines in the nacre, but in true nacre the original cells are much more minute.

In the hinge-tooth of Pholas crispata, as represented in Plate XVI, Fig. 17, of the first volume of the " Histological Catalogue," a somewhat similar structure exists ; the tissue is cellular, and the centre of each cell is occupied by dark granular matter; in some parts the cell-walls have disappeared, but the separate masses of granular matter indicate very clearly the position of the cells. In all the large shells, as the Tridacna and Chama, the tissue is prismatic and subnacreous; such shells are usually traversed by tubes which commence on the inner, and extend as far as the outer surface, and if this surface present any spines or ridges, the tubes are generally directed towards them.
in Cleidotherus chamoides, the outer layer of the shell is composed of prismatic cellular structure, while the internal is more or less nacreous, with numerous tubuli, which, as Dr. Carpenter has shown, form an irregular network parallel to the internal surface of the shell. From this network a series of straight tubes arise, which pass at right angles to the nacreous layer, at a considerable distance from each other, extending to the prismatic cellular layer, but termi-
nating abruptly without entering it. In a section of this shell, for which I am indebted to Dr. Carpenter, the cellular structure is very evident, and occurs in all parts of the section appearing opaque to the naked eye; the transparent parts are nacreous, and exhibit the tubuli very plainly. Near the centre of the section is a triangular hole, and many of the tubuli commence on its margin, some of them are divided transversely, others ramify in the nacreous substance.

Before leaving the structure of the skeleton of the Lamellibranchiate Mollusca, I must notice a few points of interest in connection with the growth of shell. In some species of Spondylus the external surface is covered with large spines, usually of the same colour and minute character as those of the exterior of the shell, increasing in size with its growth. A series of hooks are developed on the external surface of the convex valve of the young shell of the Tree Oyster, Ostrea folium-so called from its adhering to the stems of trees, Gorgonias, \&c.-by which the animal retains its position. These hamular processes increase by fresh deposits on their external surface, so that with the growth of the stem of the Gorgonia, their hold on it is strengthened.

An interesting example of the change of form in shells is afforded by an Anomia for which I am indebted to Mr. Baker of Bridgewater, who has kindly sent me several specimens illustrating the same fact. In these specimens the Anomia has attached itself to the upper
strongly-ribbed valve of the common Scallop; and the lower valve of the parasite, instead of being flat and thin as usual, is as much fluted as the Seallop itself.

The shells of this order gencrally consist of two valves connected by a hinge, either simple or composed of two or morc teeth which interlock; within the hingc, or external to it, wc find an elastic ligament, serving the purpose of opening the shcll, and acting as an antagonist to the adductor musele. While the animal is at rest and undisturbcd, the adductor muscle ceases to act and the shell remains open, freely admitting food and watcr ; but on the approach of danger, disturbance or removal from the water, the adductor musele contracts with such force as not only to overcome the elasticity of the ligament, but to render it difficult to force apart the valves of the shell.

Shells of a rounded form, like the common oyster, have only one adductor muscle, and are termed Monomyaria, whilst those of an elongatcd form possess two adductor muscles, and are thence called Dimyaria. It is evident that a simple elastic tissue would suffice to open the shell, and that a picce of India-rubber might be substituted for the ligament, when this is internal to the hinge, but it would be inefficaeious when the ligament is external to the hinge, because in the latter case the ligament must nccessarily possess a truc contractile power. The minute structure of this ligament was first investigated by my late brother,
whose researches were published in the second volume of the "Transactions of the Microscopical Society." The ligament placed within the hinge he found to be composed of two different kinds of tissue, the external being nearly structureless, whilst the internal is fibrous, sometimes presenting a brilliant play of colours; the fibres take a vertical direction, they are crossed by transverse striæ, as in Fig. 188, and bear a perfect resemblance to the prismatic cellular structure

FIG. 188.


A portion of the elastic material from the hinge of Cyrena purpurea. of the shell deprived of its calcareous deposit; that this is its true character, is evident, and in some shells I have detected calcareous matter in the hinge ligament.

Whatever be the nature of this tissue, it must evidently be contractile, like muscle, and so powerful is its action and so extended its range, that in some of the Lamellibranchiate animals, as the Scallop, after division of the adductor muscle, the valves gape to the extent of three inches. This ligament must assist in the progression of the animal, for we are told that the Scallop is capable of moving rather quickly, by the rapid opening and shutting of its shell, and the Cockle can do more, for by means of its foot, aided I should imagine by the opening and shutting of its shell, it can perform a series of small leaps.

In many bivalve shells there is a peculiar collection of silken filaments called the byssus, extending from the extremity of the foot, by means of which the shells are firmly anchored to rocks or stones. A familiar example of the byssus is afforded by the common edible Mussel, and a still more striking one is that of the Pinne, which is often several inches in length. In Tridacna, when young, the byssus is so strong as to be cut with difficulty by a knife; but when the shell is older and heavier, no byssus is secreted. Examined microscopically, the byssus of the Pinnæ is found to be composed of filaments of a brown colour, without any trace of structure; in some species they are so long and silky as to be manufactured into gloves.

\section*{LECTURE XIX.}

\section*{SKELETON OF MOLLUSCA-GASTEROPODA.}

The animals comprising the class Gasteropoda are not only the most numerous, but the most typical of all the Mollusca; they have one remarkable peculiarity by which they can readily be distinguished ; this consists in their being provided with a fleshy disc serving as a foot, upon which they creep. The foot is present in all the true Gasteropoda, as shown in Fig. 153, but there is a small class in which this organ is so modified as to form a vertical flattened fin, enabling the animal to swim rapidly through the water ; to this class the term Heteropoda has been applied, and the Carinaria, represented in Fig. 207, is one of the best known examples. The back of a Gasteropod is covered with a cloak or mantle, in or upon which the Shell is secreted; the shell is usually spiral and univalve, but in the genus

Chiton, it is multivalve. In certain of the Nudibranchiate order it is either absent or represented by small calcareous spicula.

The shape of the shell of the Gasteropoda is more or less conical; in many genera, as in Patella, it is a simple flattened cone, in others the cone is elongated, and may be either straight, as in Dentalium, or in one plane, as in Planorbis, or forming a true helix, as in the common Snail. In many aquatic species the extremity of the foot is covered by a plate of horn, or of calcareous matter called the Operculum, which is considered by Mr. Gray as the rudiment of the second valve; its principal use appears to be that of closing the shell when the animal has retired within it. Most of you no doubt are familiar with the delicate membranous film by which the mouth of the common garden Snail is closed during the period of hybernation; this is a rudimentary operculum, but under certain conditions, as I shall hereafter show, it may become thickened and very opaque by a deposit of carbonate of lime in a granular form. Some of the shells are smooth, others are covered with long. spines formed upon prolongations of the mantle; these are not constant either in size or number in the same species of shell, as the animal is not only capable of removing them when they have become old, but of forming new ones in other situations.

All the shells of this class of animals are remarkable for the small amount of the organic, compared with
the inorganic element, so that they are not only extremely brittle, but their fractured surfaees have more or less of a crystallinc appearance; and to these shells the term porcellanous was applied by the late Mr. Hatchett in conscquence of the organic element being so small in quantity as only to be reeognized by its beeoming black when heated.

For our knowledge of the intimate strueturc of the shells of Gasteropoda, we are principally indebted to the labours of Mr. Bowerbank, whose researches are published in the first volume of the "Transaetions of the Microscopical Society." As we proeecd with our examination of sections of shells of various genera, the strongest evidenee will bc afforded of the cellular origin of all the laminæ, however erystalline some of them may at first sight appear.

The order Nudibranchiata, so named from the exposed condition of the respiratory organs, as shown at A, in Fig. 189, in which the shell is either absent
fig. 189.


Doris Jolinstoni. A, arborescent branchix. B, dorsal tentacles (after Alder and Hancock).
or only rudimentary in the adult animal, must first claim our attention. The very important fact must
however be borne in mind, that in the carly stage of growth-the larval condition of the animal-a shell really existed, which was shed at an carly age, and never reproduced execpt in the form of spicula. Our knowledge of the Nudibranchiate Mollusca has been of late greatly increascd by the researches of Messrs. Aldcr and Hancock, and the splendid Monograph published by the Ray Society has been the result of their labours. In many of the species some rudiment of a skeleton in the form of spicula has been discovered; these spicula may be pointed at both extremities and nearly smooth, as in Fig. 190,
rig. 190.


Spicula from the epidermis of a species of Doris. or covercd with tubercles like those of the Gorgonice. According to Messrs. Alder and Hancock, in Doris flammea the cloak is fully developed and is covered with rather small, unequal, rounded, spiculose tubercles, which are large in the centre, and become less towards the margin. In Doris Johnstoni they are similar in shape to those represented in Fig. 190, but arc so small as scarcely to be visible to the naked eye, although they occur in such numbers as to give the cloak a granular appearance. The spicula are situated in the cpidermis; they arc composed chicfly of earbonate of lime; but, like the inorganic element of shell in gencral, they contain a minute
proportion of phosphate of lime. They may be separated from the soft tissue in which they are imbedded by means of caustic potash, and when treated with acids they dissolve with effervescence, and leave an organic basis, retaining to a certain extent the shape of the original spiculum.

The next order of Gasteropods, the Pulmonata of Cuvier, embraces our common Slugs and Snails, in the former of which, the shell is either absent in the adult state, or represented by a conical plate protecting the breathing organ. The shell of the Slug has been already described at page 268 as consisting, in its earliest stage, of a series of cells, which, in progress of growth, become filled with calcareous material. In Limax rufus, as shown in Fig. 153, the rudimentary shell is situated in the shield close to the head of the animal; but in Testacella the branchial apparatus is removed to the opposite extremity of the body, near the anus, and in this situation is found a small ear-shaped shell, but whatever be the shape of the shell, the cellular character is always more or less plainly visible on microscopic examination, especially in the newly formed parts. The garden Snail, Helix pomatia, belongs to the same family as the Slugs, but this animal is provided with a well-developed shell; when, however, it retreats to its winter quarters, it closes its shell with a transparent membranous operculum. Should it so happen that it be often disturbed, or
be eognizant of the intrusion of foreign bodies, the thin membrane becomes thickened and cellular, and at length calcareous material is deposited in the cells, as will hereafter be shown.

The shells of all the Gasteropoda provided with a true shell, within which the animal can be wholly or partially withdrawn, almost always present a strong similarity in their minute structure, the most marked feature being the small amount of animal matter, owing to which, the original cellular structure is so very indistinet as to have led many Conchologists to suppose that the appearances presented on section are due to crystallization. Most of the shells, especially those of the Pectinibranchiate order, are composed of three layers, each consisting of innumerable plates, made up of prismatic cellular tissue disposed alternately in contrary directions, so that the row of cells in one layer intersects that below it, nearly at right angles. Mr. Bowerbank examined the structure of many univalve shells, and found them to agree so nearly that he was induced to select the Cypraa mauritiana as the type of the whole, there being in this shell so large an amount of eolouring matter intermixed with its structures, as to render it the best for the examination of its fractured surfaces, when illuminated by means of the Lieberkuhn.

A section of a Cyprea is represented in Fig. 191; the coloured layers are well seen in the thick parts of
the section, but all the other portions, however thin, exhibit three distinct layers. The section represented


Vertical section of a Cowrie Cyprcea. a, the portion from which Fig. 192 was drawn.
in Fig. 191 has been made sufficiently thin to be transparent in every part, and when one of the
fig. 192.


A portion of the shell of a C'yprea marked \(a\), in Fig. 191, magnified 40 diameters. narrowest of the spiral portions, \(a\), is examined with a power of 40 diameters, the structure shown in Fig. 192 is plainly exhibited; such sections, however, give but a faint idea of the remarkable arrangement of the cells of the middle layer. This layer, as pointed out by Mr. Bowerbank, is best seen in portions fractured in the vertical direction, or at right angles to the lines of growth in which the peculiar arrangement of the
prismatic cells so faintly indicated in Fig. 192 is brought out in the manner represented in Fig. 193. The intimate
fig. 193.


Portion of the fractured surface of the middle layer of Cyprea mauritiana exhibiting laminæ of prismatic cells crossing each other at right angles (after Bowerbank). structure of the three layers of the shell is the same, but the disposition of the laminæ is different in any two adjoining ones; in all cases, however, the rows of cells have the same direction in the inner and outer layers of the shell, and this may be either at right angles or parallel to the lines of growth, while in the middle layer they are always arranged so as to be at right angles to the other two layers. The disposition of the cells in the three layers is very well seen in transverse sections of the shells of some of the smaller Gasteropoda, as the Rice Shell before alluded to at page 277 . The section exhibited in Fig. 163, A, is about \(\frac{1}{4}\) th of an inch in diameter, and when slightly magnified, the structure of the three layers is distinctly visible; the arrangement of the cells is perhaps still better seen at B, which is a portion of the same section more highly magnified. These little shells almost always exhibit two kinds of tubular structure, one very minute, like that shown in Malleus albus, Fig. 181, the other much larger
and probably due to boring animals, as in Fig. I 63, bb; a faint indication of these tubes is shown at \(a\), in the transverse section above mentioned. The elongated shells of the Gasteropoda, such as Dentalium and Magilus, exhibit nearly the same structure as those I have already described, the animal matter is very small in quantity, and the fractured surfaces have a crystalline appearance; the latter of these shells merits a brief notice in consequence of the peculiar manner in which its growth keeps pace with that of the coral mass in which it is imbedded.

In the young state of the Magilus the shell is thin, differing very little in shape from that of the common fig. 194. Whelk, and of a spiral form. It is


Elongated shell of Mayilus antiquorum (after Woodward). fixed amongst corals and madrepores, and were it to continue to grow in the spiral direction, the corals would soon cover it; to prevent this, it takes the form of a perpendicular tube, and the growth is sufficiently rapid to keep pace with that of the coral. The animal only occupies the upper portion of the shell, and as the new matter is added to the mouth, the cavity of the tube is solidified by the deposition of a glassy substance.

Some of the Gasteropoda have very species of the genus Trochus, which live amongst rocks, and in order to resist the shocks to which
they are eonstantly liable, strengthen the exterior surface of their shell by eementing to it, fragments of stone, or eoral, and even valves of other shells. A speeimen of Troehus, T. agglutinans, is represented at Fig. 195; the foreign bodies, it will be seen, have all been attached elose to the mouth, and as


Trochus agglutinans having its shell strengthened by the addition of foreign bodies.
the growth has proeeeded, they are left in a spiral form eorresponding with the convolutions of the shell. Some Trochi appear to make a eareful seleetion of the foreign bodies, and arrange them in a regular spiral; these have been ealled Masons, while others seem to be indifferent as to the size and symmetrieal arrangement of the strengthening materials, and these have been named Carriers.

Certain genera of univalve shells, like some of the bivalves before noticed, have a very brilliant naereous layer; of these, none is more beautiful than the Haliotis, all the speeies of which have more or less of a brown horny substance situated between the laminæ of calcareous material. A horizontal section of the shell of \(H a-\) liotis splendens is seen to consist of alternate sinuous layers of a brown horny material, and Nacre; the latter may be readily distinguished from the former, not
only by its colour, but by the pcculiar undulating lines seen on the surface, as shown at \(a\), in Fig. 196. In
fig. 196.


Vertical section of shell of Haliotis splendens. a, nacreous layer. \(\quad b\), horny layer covered with large hexagonal eells.
immediate connection with this nacreous layer may be seen the horny material, having its surfacc covered with hcxagonal cells of various sizes, cach being provided with a coloured spot of a stellate form in its centre, as shown at \(b\). These cclls form so thin a layer, that the nacre can be scen immediately beneath them. A vertical section of the same shell exhibits altcrnate bands of horny matter and of nacre, the former being on an

FIG. 197.


Vertical section of shell of Haliotis splendens exhibiting thrce dark bands of horny material and two of naere, the latter being traversed by tubes. avcrage \(\frac{1}{40}\) th, whilst the latter is frequently \(\frac{1}{10}\) th of an inch in thickness. All the nacreous bands are traversed by minute tubes, as shown in Fig. 197, their direction bcing ncarly at right angles to that of the striæ. When vicwed with a power of 500 diameters, the nacreous laycr of this shell exhibits a distinctly cellular structure, as before shown in Fig. 166, and when the same layer is VOL. II.
decalcificd, the beautiful iridescent hucs will be found to depend upon the plications of the membranous basis, as first pointed out by Dr. Carpentcr, and alrcady described in page 301.

The most remarkable genus of Gasteropods is the Chiton, in which the shell is madc up of several jointed plates so arranged as to bend like the skeleton of an articulated animal ; in short, this animal would appear to connect the Mollusca and Articulata more closely than any other. The shell, as shown at A, in Fig. 198,

FIG. 198.


A, Chiton squamosus. в, Chitonellus fasciatus (after Chenu). consists of eight overlapping plates, firmly imbedded in a tough horny mantle, having its margins smooth or covered with minute plates, hairs, or spines. In the sub-genus Chitonellus, B, the shell is in a very rudimentary condition, but it will be noticed that it still consists of eight segments; the mantlc is soft and velvety, and quitc free from plates or spines. The structure of the shell of Chiton is very peculiar; the external layer is of a green colour, and is composed of a coarse fibrous material generally traversed by large canals. A vertical scction of one of the plates A, Fig. 199; when magnificd 40 diameters, exhibits large canals running
through the entire thickness of the seetion sometimes presenting the moniliform appearanee represented by в;

FIG. 199.


A, vertical section of one of the plates of the shell of a Chiton. B, a portion of the apex of the same exhibiting the branched and moniliform appearance of the canals. c, a portion of the base of the same section in which the canals are secn running in oblique lines.
but if the fibres are very strongly marked, the canals run between them in parallel lines, as shown at c ; this is the eommon appearance at the base of the section. When one of the plates is divided horizontally, the fibrous structure of the outer layer is very plainly displayed, and the eanals are then seen divided more or less transversely, as in Fig. 200; they are generally full of dark granular matter, but this is probably in great measure derived from the material employed in making the section. The eanals do not always run through the entire thiekness of the shell, but are generally confined to the superficial portion of the outer layer ; while the deeper portion of this same layer presents a minutely cellular or prismatic strueture. In the seetion represented by A, in Fig. 199, the coloured layer was absent in the centre, the entire thickness being formed by the inner layer. It was in this seetion that the branched and monilifirm tubes represented at в occurred, extending completely through the shell, even threugh the outer
layer wherever that was present. The inner layer of some of these shells is eomposed of naereous material
fig. 200.


Horizontal section of outer layer of shell of a Chiton exhibiting a fibrous structure, and the canals divided more or less obliquely. in whieh many small tubuli, like those of the Haliotis, frequently oecur, and when this layer is very thick, a trace of prismatie strueture is seen on the inner edge.

Many speeies of Gasteropoda, as beforc notieed, devclope an Operculum, or lid, on a particular lobe of the foot; it may be eomposed either of layers of horn, or of dense shell-substance, the prineipal office of whieh is to elose the mouth of the shell when the animal retires within it. Mr. Gray eonsiders the Opereulum to be the analogue of the dextral valve of the Conehifera. It is developed in the embryo whilst within the egg and its starting-point is termed the nueleus; it always exhibits more or less of a spiral development, and in some eases the spirals are numerous and ncarly eoneentric, as shown at A, in Fig. 201. In other eases, and these are the most eommon, the new matter is added prineipally on one sidc, and the nucleus, as shown at \(B\) and \(E\), is then very excentrie. The surfaee attached to the foot in all the shelly varieties of Opereulum exhibits no traee of spirals, and is of eonvex figure, being generally smooth or eovered with
a series of convex tubercles, Fig. 201, D and F. According to the Rev. H. Moseley, the number of FIG. 201.


A, B, C, D, E, F, various forms of Operculum (after Chenu).
turns which the operculum makes is not determined by the number of whorls in the shell, but by the curvature of the opening and the necessity that the operculum should be developed with sufficient rapidity to completely close the enlarging mouth of the shell. The spirals of the operculum are invariably sinistral in dextral shells.

The most rudimentary form of operculum is that of the common Snail, which, generally speaking, consists of a thin membranous film formed during winter ; occasionally, however, as in the present instance, observed by Mr. Warington, the thin transparent layer is rendered thick and opaque by a deposit of calcareous matter. When examined under a power of 130 diameters, as shown at \(a\), in Fig. 202, the structure was found to be hexagonal, each hexagon exhibiting a
minutcly granular appearance from the deposit of carbonate of lime. When a portion of the same
rig. 202.

\(a\), a portion of the thickened Operculum of a common Snail. \(b\), the same decalcified. opereulum was deealeified, as \(a\) shown at \(b\), the eellular strueture could be easily reeognized, but there was in some eases an indieation that the larger hexagons represented at \(a\) were made up of several smaller ones. In the common Whelk the opereulum is eomposed of horny material, and exhibits no structure ; in most shells, however, it is made up entircly of shelly matter, and in certain species of Turbo it is nearly three inches in diameter. When rendered suffieiently thin to be transparent, all the sections have eharaeters eommon to that of the shell to which they belonged, and like the shells of Gasteropoda generally, are remarkable for the small quantity of animal matter present, and for an almost total absence of the original cellular strueture.

A horizontal section of an Operculum of a large Turbo exhibits a prismatie strueture, the eontents of the prisms having a crystalline appearanec; in some parts of the section the prisms are erossed by a series of eurved lines, whieh are probably the lines of growth;
in others, especially on one edge, the prismsFig. 203, A, are arranged in a scries of cones, cach
fig. 203.


A, horizontal section of the Opercuhum of a large Turbo. в, a vertical section of the same.
cone exhibiting a crystalline structure. In a vertical scction of the same operculum, two curved rows of small foramina may be observed by the naked eye; one of these situated near the upper surface of the section, the other near the middle, as shown at в. The curved lines of growth are very evident in this section, and the shelly substance, especially in the neighbourhood of the foramina, cxhibits traces of prismatic cellular structure agrecing in all these characters with those of corrcsponding scctions of the shell.

\section*{LECTURE XX.}

\section*{SKELETON OF MOLLUSCA-GASTEROPODA, HETEROPODA, PTEROPODA, AND CEPHALOPODA.}

The shells of most of the Gasteropoda are covered
fig. 204.


Portions of periostracum of a species of Buccinum. a, lamine showing the ridges. \(b\), lamina seen edgeways. c, lamina magnified 250 diameters. with an outer coat of animal matter, the epidermis or periostracum, which is sometimes the seat of the colour of the shell. In the Whelk it is brown and horny, and in one species of Triton it has been compared by Mr. S. P. Woodward to coarsc cloth. A portion of the periostracum of a spccies of Buccinum is represcnted in Fig. 204 ; it consists of a serics of horny laminæ, \(a\), which preciscly correspond to certain linear
markings on the shell ; cach lamina is dilatcd at intcrvals, as at \(b\); these dilatations lie over the spiral convolutions of the shell; and when viewcd under a power of 130 diameters, as at \(c\), each of the laminæ prcsents a minutely fibrous appearance. In the Cowries there is no epidermis, but the shell, from being always covered by the mantlc when the animal is expanded, acquircs a fine polished surface, and as the lobes of the mantle deposit the shellsubstance, it often happens that when a small Barnacle or other parasite fixes itsclf upon the Cowrie, it is soon covered over with a layer of shcll, as in the specimen represented in Fig. 205; this is a section of the shell of


A vertical section of the shell of a Cowrie, the outer layer of which, \(a\), has invested the shell of a parasitic Barnacle. a Cowrie, Cyprea Tigris, on which a Barnacle has attached itself, but in revenge for this act of aggression, the Cowrie has enveloped all parts of its shell cxccpt the holc through which the cirrhi arc protruded.

The Gasteropoda present all the leading characters of organization of the Mollusca in one or other of the genera, so that they are usually tcrmed the types of the Mollusca. I have already made you acquainted with many of these characters; but there is one other to which I wish to allude bcfore I pass to the next division of our subject, and this is the high state of perfection at which the dental apparatus lias arrived in some of thesc animals. The destructive habits of the
eommon Snail and Slug are universally known, but there are marine animals of this order whose boring operations even the hardest roeks and shells cannot withstand. I could not bring forward a better example of a boring Gasteropod than the common edible Whelk, Buccinum undatum; this animal is provided with a proboseis-like organ capable of extension, and having within it a museular tongue armed on its free surface with a series of spines of peeuliar form and arrangement, whieh have been termed lingual teeth. There are upwards of a hundred rows of these teeth (Fig. 206), each row eom-
```

rig. 206.

```


A portion of the tongue of a Whelk, Buccinum undatum. \(a, b, b\), one row of teeth. posed of three pieces, the two lateral, \(b, b\), having four teeth, all more or less curved, whilst in the eentral piece, \(a\), they are smaller, straight, like incisors, and generally five in number. When the proboseis is opened in order to remove the tongue, the anterior extremity of this organ will be found curved upon itself, and to be of a brown colour for about the space of half an ineh; the posterior extremity is soft, and its margins are brought nearly together, so as to form a tube. The curved anterior portion is plaeed in eontaet with the shell about to be bored, and by means of the curve, the points of the teeth are first brought into aetion. The teeth themselves are eomposed of siliea, and are consequently admirably fitted for eutting the hardest shells.

The small holes not unfrequently seen in the shells of Oysters are bored by the Whelk, and instinct leads the animal to seleet that part of the shell to which the adduetor muscle is attached. This is the case in several shells in my possession, and in a valve of a large Pearl Oyster I have lately met with, there are no less than four holes all in this situation, one of which has eompletely penetrated the shell, the other three nearly so. The object of the Whelk in seleeting this part of the shell is evident; when once the adductor muscle is wounded, the shell readily opens, and the fish then falls an easy prey to the voracious Gasteropod. In the Limpet the tongue is nearly three inehes long; the teeth all of a brown colour, and more or less bent, but not being siliceous, they are only adapted for rasping a softer material than shell.

The Cowries are carnivorous, they generally inhabit shallow water near the shore, and Zoophytes constitute their principal article of food. They are provided with a long tongue, eovered with several rows of teeth which, aecording to Löven, take the form represented in Fig. 207. The central one is single, but on eaeh


A single row of lingual teetlı,
of a Cowric, Cypraca Europaea,
(after Lovèn). side there are three, one of which is provided with serrated edges, the other two taking the form of reeurved spines. The upper jaw of the common Snail is provided with a horny cutting instrument, opposed by a flattened
tongue covered with a pavement of minute teeth; and the same form of dental apparatus occurs in all our land Snails; but in the most highly organized Mollusca, as will hereafter be shown, there are two horny mandibles, moving vertically like those of a bird, in addition to a tongue covered with recurved spines.

The next division of the Mollusca, the Heteropoda, is one which, although usually included in the Gasteropods, should, I think for many reasons, be separated from them, and form a distinct Class. As stated before, the foot of these creatures is placed upon the upper surface of the body in the position usually taken by the animal in swimming, and is converted into a fin-like organ. There are, however, a few species in which a rudiment of a foot is found in the form of a small sucking disc placed upon the upper edge of the fin, by means of which it is said they adhere to floating seaweed. One of the most striking representatives of the class, is the Carinaria cymbium, Fig. 208, an inhabitant of the fig. 208.


Carinaria cymbium. \(a\), shell cuclosing the branchit, liver, \&c. b, finlike foot. \(c\), tentacula.

Mediterranean. The body is of elongated form, having the mouth at one extremity and a fin at the other ; it is composed of a jelly-like material, as transparent as the finest glass, which is almost wholly invested by a muscular tunic sufficiently transparent to allow of the alimentary canal being seen through it. The mouth, as in the Gasteropoda generally, is furnished with a horny tongue upwards of half an inch in length, having three rows of brown teeth, used for rasping the harder kind of seaweed upon which it is said to feed. The alimentary canal runs from the mouth to the centre of the lower part of the body, where all the other important organs are collected into a mass very like that of the nueleus of the Salpa, page 262. In the species under consideration this mass is protected by a thin, delicate, boat-like shell, \(a\), very much resembling that of the Arganaut. Within this shell the branchial organs, the heart, liver, and generative apparatus are contained, and from this circumstance the order Nucleobranchiata has been founded by certain modern authorities. The shell is the undoubted skeleton of the Carinaria, and as such, requires our more immediate attention; its shape is exceedingly elegant, being somewhat like that of a helmet, and when dried, it presents an opaline appearance, but is thin and brittle, like the finest glass. Under the highest powers of the microscope, the shell of Carinaria vitrea presents no trace of cellular structure ; it is not, however, clear and transparent like glass, but in every part exhibits a
minutcly granular appearance. When the inner surface of the shell is examined, rertain circular markings may be observed which occur in parallel rows, and at nearly equal distanees; they are very small, not more than \(\frac{1}{4000}\) th of an inch in diameter; and at first sight they may be mistaken for foramina, but on morc careful examination, they are found to projeet slightly from the surface of the shell. Thcir office is probably to assist in attaching the delicate skeleton to the soft parts of the animal.

The next class of Mollusea, the Pteropoda, includes only a few genera, and of these, the species most commonly known is the Clio borealis, which is said to form the principal food of the great Whalebone Whale. The peculiar sieve-like apparatus formed by the plates of whalebone and their fringed inncr margins serve the purpose of detaining the small Mollusca, while the water taken into the mouth with them is ejeeted.

FIG. 209.


Clio (after Chenu). The term Ptcropod is derived from two wing-like appendages attached to the side of the neck, as shown in Fig. 209; by mcans of which the animal swims rapidly through the water. There arc two spccies of Clio deseribed, the one found in the northern regions being termed C. borealis, whilst the other, confined to the south seas, is known as C. Australis. Both speeics occur in the greatest abundancc, and
voyagers have stated that, in very fine weather and towards evening, ships often sail through shoals of them extending for several miles.

The Clio has no rudiment of a shell, but there are other genera in which this protective exo-skeleton is sufficiently large to contain nearly the whole of the soft parts of the animal. The most remarkable of these is the Hyalea, represented of its natural size, with the fins extended, at \(c\), in Fig. 210. The shell is

a, Hyalaa globulosa, side view of the shell. \(b\), front view of the same. \(c\), animal with fins expanded. exeeedingly thin, delieate, and somewhat boat-shaped; it looks at first sight like a bivalve, but the parts between which the hinge might be supposed to exist are firmly joined together. The soft parts of the animal are protruded from two fissures, one in front of the shell, as shown at \(b\), the other at the side, as seen at \(a\). In the genus Cleodora the shell takes the shape of a flattened funnel, is very transparent, and marked with curved lines. In Criseis it is elongated and conical, but in Limucina the cone is convoluted. I have examined the structure of the shell of one or more species of the genera Hyalca, Cavolina, Clione, Creseis and Triptera ; in most of them it is as
transparent as glass, and almost structurcless; but in a large species of Creseis it was found to be composed of two layers, the outer opaque and minutely granular, the inner somewhat fibrous, the fractured edges in most cases exhibiting portions of fibres which extend beyond the outer granular layer. Most of the shells, especially those of Hyalcea, have the curved lines of growth very strongly marked, but I have never been able to detect the least trace of prismatic cellular structure in any specimen.


Common Cuttle Fish, Sepia officinalis, (after Woodwarl).

The highest class of the Mollusca, from the disposition of their principal locomotive organs around the head, as shown in Fig. 211, have received the name of Cephalopoda. They are not only the most highly organized of the Mollusca, but many species resemble the lowest of the Vertebrata-the Myxinoid Fishes, for example-in having a cartilaginous internal skeleton, supporting and protecting the nervous centre and the organs of vision and mastication. In addition to this cartilaginous skcleton,
many of the Cephalopoda, as for instance, the Nautilus and Argonaut have a perfectly developed shell ; in others, as the Cuttle-fish, the shell is reduced to a calcareous plate termed the "cuttle-bone," but in the Calamary the shell is represented by a horny pen, or gladius, and in the Oetopus, or Poulpe, it exists in its most rudimentary form as a cylinder of horny matter termod a style; in other species it is altogether absent. It will thus be seen that the skeleton of this elass as a whole does not present a single constant character; therefore our description must be confined to eaeh form separately.

The Cephalopoda have been divided by Professor Owen into two prineipal orders-viz. : Di-branchiata and Tetra-branchiata, aecording to the number of the branchial organs: the animals included in the order Di-branchiata have no external, ehambered shell, their bodies being soft and naked, and as a compensation for this seeming deficieney, they are provided with an "Ink-bag," from which a black pigment termed Sepia can be diseharged so as quickly to render the surrounding water opaque and enable them to escape from their enemies. In this order are ineluded the Cuttle-fishes, Calamaries, the Argonaut, Spirula and Belemnite, all being provided with feet, or tentaeula, eight or ten in number, whieh arc arranged in a radiating manner around the mouth; the speeies are very numerous, but in the order Tetra-branchiata, on the contrary, only thrce specimens, and these of one VOL. II.
genus-viz.: Nautilus, remain, although in the earlier periods of the earth's history they were most abundant -more so perhaps than any other family of the elass Mollusea.

The structure of the internal eartilaginous skeleton of one of the commonest members of the Di-branehiate order, the Cuttlc-fish, Sepia officinalis, has already
fig. 212.


Cartilage from the cranium of Sepia officinalis. been deseribed in the first volume of these Leetures; I shall therefore only briefly allude to it again, as exhibiting cells of a peculiar figure, somewhat like the bone cells of many fishes: they are imbedded in a semitransparent matrix, as shown in Fig. 212; the same structure exists in the eartilage of most of the soft Cephalopods, but in some speeies a fibrous tissue is mixed up with the eartilage.

I shall now proeeed to deseribe the strueture of the rudimentary shell in some of these animals, and will first take that of the Octopus, or Poulpe, in which it exists simply as a horny Style. When this is divided transversely, it is found to consist of coneentrie laminæ of brown horny material ; in some specimens the centre of the section is much more consolidated and of a darker eolour than the outside. The Pen or Gladius of the Calamary, Loligo vulgaris, as shown in Fig. 213, is very like a quill in shape; when divided transversely it also exhibits a laminated strueture like that of the Octopus, but when that
part which corresponds to the plume of the quill is carefully examined, a very faint trace of hexagonal fig. 213. cells, like those shown in Fig. 214, has


The Hornypen or Gladius of a Calamary, Loligo vulgaris. been observed; from these markings not being noticed in the transverse sections, I am induced to believe that they belong to a cuticular layer, and do not enter further into the structure of the horny gladius.

In the Cuttle-fish, Sepia officinalis, the "bone," or Sepiostaire, as shown in Fig. 215 , is usually considered as a rudiment of a chambered shell, one chamber of which, and this the last or outer one, has been developed unilatcrally. The "bone" is usually as long and as wide as the mantle in which it is imbedded; the outer surface is convex and shelly, the inner concave and chalky; on the edges is a brown horny substance which is very broad at the lower portion of the bone, and in the median line terminates in a pointed process termed the mucro. In former times this rudimentary shell was employed in medicine as an "antacid," but its principal use now, is either for tooth-powder or for "pounce." The outer shelly portion of the Sepiostaire, when rendered sufficiently thin to be transparent, cxhibits a coarse hexagonal structure, as shown at F in Fig. 216; each hexagon has an oval nuclcus in the centre, from
which a serics of radii proceed towards the margin; in many parts of the section the radii very much

\section*{fig. 214.}


A portion of the Gladius of a Calamary exhibiting a cellular external layer. resemble the crystals before described as occurring in the tooth of Mya arenaria, Fig. 187. The soft internal portion of the same specimen exhibits a totally different structure. On transverse section, as shown at D, in Fig. 216, it will be found to be composed of a series of curved laminæ, \(a a\), separated from each other by thin wavy partitions, or pillars, of transparent calcareous material, each of which, when
highly magnified, as shown at E , exhibits a series of fine transverse markings, somewhat like those secn in the prisms of the Pinnce. In consequence of the laminæ being curved, those portions of the pillars which are attached to the concave side of each, are much broader than those attached to the convex side, as may be readily scen on refcrring to Fig. 216, D. When a portion of the Scpiostaire is divided longitudinally, the pillars will be found to project from the laminx, and being viewcd cdgeways, or cuttle-hone of Sepia officinalis.


The Sepiostaire, their true naturc can be easily ascertained; they may
therefore be described as consisting of a thin laycr of calcareous material foldcd or bent upon itself like a
fig. 216.


\begin{abstract}
D, a portion of a transverse section of Cuttle-bone; a a, laminæ between the pillars. e, one of the pillars magnified 95 diameters. \(F\), portion of the outer shelly substance of the Cuttle-bone. G, concave inner surface of one of the laminæ.
\end{abstract}
frill. When separated from the laminæ, they leave an imprcssion of their exact shape upon them, as shown at \(G\), which is a representation of one of the laminr having its concave surface uppermost. It will thus be seen that there must be a considerable part of cach lamina not occupied by the pillars; all these spaces therefore may be considered as so many cavities in, and as diminishing considerably the weight of, the mass. The structure of the laminæ is minutcly granular, and the calcareous material of which it is composed is far more opaque than that composing the pillars.

\section*{LECTURE XXI.}

\section*{SKELETON OF MOLLUSCA-CEPHALOPODA.}

The Argonaut, or Paper-sailor, belongs to the same order as the Cuttle-fish. The animal very much resembles the Octopus in shape; it has eight arms, two of which are provided with expanded extremities, and perform the function of a mantle in secreting and protecting the delicate shell. The Argonaut was formerly described as having the power of coming to the surface of the sea in fine weather, and spreading its thin sail to catch the breeze, but I need hardly tell you that this is not the case; it progresses as the Octopus does, by ejecting the water from its funnel; it also is able to crawl over rocks and stones by means of its arms, the shell being reversed like that of the Snail. The attachment of the animal to the shell is very slight, and when preserved in spirit, unless
care have been taken to keep its expanded arms in contaet with the shell, it will drop out, if the shell be turned with its mouth downwards. There is a specimen in the Museum, presented by Madame Power, a lady who has paid very great attention to the habits of these beautiful ereatures, exemplifying the manner in whieh two of the expanded arms eompletely invest the delicate shell; two other speeimens, presented by the same lady, have been prepared by Mr. Goadby in order to show how the animal is able to erawl with its shell reversed like that of the Snail. The Argonauts provided with a shell are invariably females, and one of the principal uses of this skeleton is to proteet the ova, whieh are very numerous and oeeupy the hollow portion of the spire. The males are very minute and shell-less, that of the eommon Argonaut, Argonauta Argo, not being more than seven lines in length; it has often been found attaehed to the female by its suekers, and was at first eonsidered as a parasitie worm; the researehes of Costa and of Kölliker prove that it is undoubtedly the male of this speeies.

Of the minute structure of the shell of the Argonaut I have little to say; it is very brittle, and exhibits no trace of cellular or prismatie tissue; under the highest powers, every part presents a minutely granular appearance.

The next example of the order Di-branchiata I shall notiee, is the remarkable animal denominated Spirula;
the shell has been long known, bcing found in abundance on the shores of Ncw Zcaland and of the Atlantie; not a few specimens, according to Woodward, "are yearly picked up on the coasts of Devon and Cornwall, supposed to have been brought thither by the gulf stream." The animal belonging to this shell was originally described by Péron and Lesueur, and more reeently by De Blainville; but a perfect speeimen, obtained by Mr. Percy Earl on the eoast of Ncw Zealand, was dissected by Professor Owen, and its anatomy given by him in the "Zoology of the Voyage of the 'Samarang.'" By some authorities the shell was supposed to belong to an animal like the Nautilus, fig. 217. and to be external to the soft parts; but
 the researehes of Péron and others indieated that it was an internal one, and that the soft parts resembled those of the Cuttlefish, as represented in Fig. 217. Professor Owen has shown that the animal possesses eight short arms eovered with suckers and two elongated tentaeles, and is also provided with that peculiar apparatus termed the ink-bag. The shell, whieh is of a spiral form, as shown in Fig. 218, is situatcd at the Animal of Syi- lower part of the body, and enclosed rula (after Wood-
ward.) consists of a scrics of chambers whieh arc formed by transverse scpta, eaeh being pcrforated by a small ealearcous syphonic tube on the inner or concave
margin of the shell. The septa are like a watch-glass. in shape, the concave surface being situated towards Fig. 218. the mouth of the shell; in full-grown


Shell of Spirula Australis natural size. specimens they are upwards of twenty in number. The outer surface of the shell is rough and opaque, and when examined microscopically, exhibits a coarse reticulated tissue, as shown in Fig. 219, the reticulations being slightly raised above the general surface, the interspaces being usually of a brown colour, and presenting a granular appearance. The internal

FIG. 219.


A portion of the outer surface of the shell of Spirula Australis magnified 50 diameters. surface of the shell is much smoother than the external, and under a power of 250 diameters exhibits a minutely hexagonal structure, as secn in Fig. 220 ; the septa are coated with nacre, both on their anterior and posterior surfaces, and on microscopic examination, present all the wavy markings characteristic of that beautiful material.

We now arrive at the last family of the Di-branchiate order, the Belemnitide, animals which formerly existed in the greatest abundance in the secondary strata of the earth's surface, so much so that ncarly a hundred species have been found in a fossil state. Nothing very certain was known of the soft parts of these animals, until the year 1842, about which time, cuttings being made through the Oxford clay in the ncighbourhood of

Chippenham, Wilts, by the Great Western Railway Company, a great variety of Belemnites were discovered. rig. 220. These were found to consist of two principal


Portion of the internal surface of the shell of Spirula Australis magnified 250 diameters. genera, one termed Belemnites, the other Belemnoteuthis; of the former genus very few remains of the soft parts occurred, but those of the latter werc in so perfect a state of preservation that a very good idea could be formed of the shape of the animal. Most persons are familiar with a conical dart-shaped fossil found in the sccondary deposits formerly termed thunderbolts or Belemnites by Geologists ; the larger end having a conical cavity occasionally occupied either by sand or the remains of a chambered shell. This was all that for many years was known of the Belemnite, and Zoologists were induced to classify it with the Ammonites. Mr. Miller was the first to attempt a restoration of the animal; he conceived that the fusiform fossil, or guard above described, was an intcrnal skeleton, and placed it in the body of a Calamary; a few years afterwards Drs. Buckland and Agassiz examined specimens in which the fossil ink-bag was preserved in the last chamber of the shell occupying the conical cavity of the guard, and confirmed to a certain extent Mr. Miller's idcal restoration. About the ycar 1842, the wonderful specimens discovered in the Oxford clay set the question at rest; in that formation, the perfect animal, represented in Fig. 221, and named
by the late Mr. Channing Pearce of Bath, Belemnoteuthis antiquus, was found. The soft parts of the
fig. 221.


Belemnoteuthis antiquus from Oxford clay, Christian Malford, Wilts, \(\frac{1}{3}\) rd the natural size (after Mantell). Belemnite proper have not yet been discovered, the most perfect specimen being that represented in Fig. 222, which was collected by Mr. Buy, of Chippenham, and described by the late Dr. Mantell in the "Philosophical Transactions" for 1849, and is now to be seen in the British Museum. It consists of theguard, \(a\), into the upper conical cavity of which was inserted the siphunculated internal chambered shell, \(b\), termed the phragmacone; this last was provided with a pointed process on each side, like that shown at c. According to Dr. Mantell, all these parts were invested by a horny coating or integument, so as to form a receptacle for the viscera of the animal. At the time I am now speaking, no other portion of the soft parts of the true Belemnite, such as the arms, fins, \&c., have I believe been discovered, but of the Belemnoteuthis, on the contrary, every portion of the animal, even to the muscular fibres of the arms, has been wonderfully preserved in
the Oxford elay, as may be shown by the specimens now before you. The greater part of these were presented to the Museum by the late Marquis of Northampton, for others the College is indebted to Mr. S. P. Pratt; they have all been described by Professor Owen in the "Philosophical Transactions" for 1844 . The most perfect of these specimens is the Belemnoteuthis of Pearce, the Belemnites Owenii of Pratt; the arms are eight in number, and each provided with a double series of (what were once, no doubt) horny hooks similar to those found in existing Calamaries of the genus Onychoteuthis; there were also two long tentacles, but it is generally supposed that the animal was not provided with a horny beak, like our common Cephalopods, as no trace of them has yet been discovered; but there is undoubted evidence of the preservation of such remains in other Cephalopods, by fossils termed Rhyncholites, which are nothing more than the beaks of these animals.

The skeleton of a Belemnoteuthis eonsists of a short blunt "guard," the interior of which is oceupied by a chambered shell termed the phragmacone; it is provided with a siphuncular tube, not situated in the eentre, but on onc edge; above this is the ink-bag. The part known as the Belemnite or guard, therefore, is very rudimentary, or may be said hardly to exist in this animal, the shelly skeleton consisting essentially of the phragmaeone; there is, however,
abundant evidence to prove that this was covered by a thin eoating of shelly matter.

The skeleton of the Belemnite, however, is very different; it consists of the long spathose guard, a, fic. 222. surmounted by the conical chambered


Belemnites Puzosianus from the Oxford clay, Christian Malford, Wilts, (after Mantell). phragmacone, \(b\), from the upper sides of which two sword-like processes, like that seen at \(c\), proeeed. An external eapsule, probably of a horny nature, invested the whole of these parts, and as it extended upwards, it formed a receptaele for the principal portions of the viseera of the animal. The phragmaeone is composed of a series of shallow coneave cells of a nacreous material, having a siphuncular tube passing through them : the cells are frequently found of very large size in the lias; some specimens I have seen have measured nearly two inches in diameter.
The shelly covering of the "guard" and of the phragmaeone is too opaque to enable the microscopist to make out mueh of its minute strueture; it appears to resemble naere more nearly than any other substanee. The "guard," however, is sufficiently firm to allow of sections being made in every direetion; when divided transversely, as shown at A in Fig. 223, a concentric laminated arrangement is visible under a power of 10 diameters, some of the laminæ being more strongly marked than others; but when a higher power is
employed, and if the section be a favourable one, a fig. 223.


A segment of a transverse section of the guard of a Belemnite. в, portion of the same magnified 95 diameters. c, vertical section (nat. size.)
radiated prismatie strueture, like that of many of the larger shells, as exhibited at B , will be faintly observed. When divided vertieally, as shown at c , the strong lines of growth, consisting of a series of eones one within the other, are very visible to the naked eye, but when examined with a power of 100 diameters, an intermediate faintly cellular structure may be observed. Many "guards" exhibit little or no structure, the animal basis having been destroyed, and a erystalline homogeneous mass occurring in its place.

In Fig. 226 is given a representation of the Belemnite aceording to Professor Owen, from whieh it will be seen that the animal was provided with cight arms, two tentaeles, an ink-bag, a funnel, and two lateral fins. Sinec the publication of Mr. Owen's paper in 1844, many


Palœontologists have been induced to believe that none of the soft parts of a true Bclemnite-that is, an animal possessing a long conical guard, such as that shown at \(a\), in Fig. 222 - have ever been discovered, and that all the specimens described in the paper above mentioned under the head of Belemnites Owenii really belong to the genus Belemnoteuthis of Pearce ; it matters not, however, for our prcsent purpose to which of the two genera the specimens are referred, our principal concern having been that of directing attention to the minute structure of the most durable part of the skeleton-viz. : the " guard."
So perfectly preserved have been some of these rig. 225. specimens, that even the muscular


Fossil muscular fibres of Belemniles Owenii. fibres of the arms are visible to the nakcd cye; the minute structure of these fibres, as seen under a power of 500 diameters, is shown in Fig. 225 ; those of a recent Onychoteuthis have been described with them by Professor Owen, in the paper above alluded to. To the second order of the Cephalopoda, the Tetra-branchiata, belongs
the Pearly Nautilus, Nautilus pompilius, which is onc of thrce existing representatives of a long-lost tribe of Cephalopods having a chambered siphunculated shell by which the greater portion of the animal was protected. Upwards of 1000 fossil species belonging to this order are now known by their shells, but of the existing genus Nautilus, only three species have been found; the shell of \(N\). pompilius is exceedingly common in collections, but of the animal inhabitant very few specimens have ever been brought to Europe. This Collcge is fortunate in possessing two of these; the first was captured off the Now Hebrides by Mr. G. Bennett, and is the subject of the splendid Monograph by Profcssor Owen, for the second the College is indebted to Sir Edward Belcher ; a specimen has also been acquired lately by the British Museum.

The animal inhabits the last chamber of the shell as shown in Fig. 227; it has no connection with the other chambers, except by means of the siphuncle \(a\) a, through which a tubular portion of the mantle passes, and is protected in part. by a short tube of shell, arising from each septum; according to Professor Owen, a small artery and vein accompany this prolongation of the mantle, the object being to nourish the chambered portion of the shell, as the septa and walls are each lined by a delicatc membranc, the vitality of which no doubt is maintained by such a direct connection with the vascular system of the animal. The use of the siphuncle in chambered shells has been said to be that
of enabling the animal either to sink or float at pleasure ; the common opinion, even now, is that the

FIG. 226.


Vertical section of the shell of Nautilus pompilius, showing the siphuncle, \(a\), and the situation of the animal in the last chamber. animal has the power of injecting water into the siphuncular tubc, by which the specific gravity of the shell is increased, and it gradually sinks to the bottom; at the will of the animal, the water can be forced out of the siphuncle by the compressed air of the chambers, as in the philosophical toy named the Hydrostatic paradox, and the shell, being thus rendered lighter than the water, again comes to the surface. If such a theory as this were applicable to the Nautilus, it certainly could not be to other shells found in the fossil state-as for instance, that shown in Fig. 228, the siphuncle of which is entirely composed of shelly matter; hence the idea entertained by Professor Owen of the use of the siphuncle, is, no doubt, the correct one.

We now procced to the examination of the skeleton of the Nautilus pompilius, which we shall find well deserves the epithet pearly. The shell itself is so well known that I only think it necessary to point out that there arc three distinct varicties of colour on its outer VOL. II.
surface, each forming a very thin layer, the greater part being of an opaque whitc, the others of a reddishbrown and black. When divided vertically, as shown in Fig. 227, the greater portion of the section, as seen

Vertical section of shell of Nautilus pompilius. a, nacreous layer. \(b\), superficial layer. \(c\), portion of superficial layer magnified 500 diameters.
 at \(a\), consists of nacreous beautiful material is made up of cells.

Of the structure of the remaining members of the Tetrabranchiate order I have vcry little to say, as they are only known to us by their fossil remains. They were, however, so numerous in the palæozoic and secondary strata, that they appear to have been the principal representations of the carnivorous Mollusca at that period of the earth's history.

The type of the shell in all the fossil species is that of a cone, and this may be either straight or more or less convolutcd, as in the Ammonite; between thesc two forms a.great many varicties occur, and the shclls in consequence have becn named, Orthoceratites, Baculites, Turrulites, Hamites, \&c., but whatcver the
shape, every variety is characterized by possessing a series of septa, by which the shell is divided into a number of chambers, and the last is occupied by the animal. The outer shell is most frequently absent, and the curious zig-zag markings observable on the exterior of Ammonites, are the edges of the septa. In the Nautilus pompilius, as shown in Fig. 226, the septa are concave; this is their condition also in the Orthoceratite represented in Fig. 228. During life,
fig. 228.


Orthoceras gigantum, carboniferouslimestone of Britain (after Woorlward). the chambers, like those of the Nautilus, are empty, but in most fossil specimens, as may be scen in horizontal sections of Ammonites, they are filled with sparry crystals. Of the structure of the shell of these remarkable fossils I have little to say; the nacreous layer of the Ammonite, which I frequently find to be the only one left, exhibits precisely the same characters as that in the recent Nautilus, but the Ammonites are intercsting in another point of view, as wc have abundant evidence to prove that the mouth of the shell was more or less closed by an operculum eithcr composed of horn or of shelly material. According to Woodward, in one group (Arietes) the operculum consists of a single piece, and is horny and flexible, but in others it is shelly and divided into two plates by a median suture, the external
surface being smooth, the internal showing the lines of growth. These bodies were called Trigonellites by Parkinson in 1811, they have since been described by Mcyer as bivalve shells under the generic name of Aptychus. M. Deshayes believes them to be calcarcous plates belonging to the gizzard of the animal, but the prevailing opinion in this country is that they are opercula. I am indebted to Mr. Woodward for the specimen I now show you. When sections are cxamined microscopically, the shell-structure is very evident. The Aptychi are found either in the last chamber of the Ammonite, or in the matrix near to it. Mr. Moore of Ilminster has a very large collection of them, and to a paper of his, lately published in the "Transactions of the Somersetshire Archæological and Natural History Society" I would beg to refer you for much valuable information concerning thern.

\section*{LECTURE XXII.}

\section*{SKELETON OF MOLLUSCA-PEARLS.}

Before leaving the structure of the skeleton of the Mollusca, there are a few species which offer such peculiarities either in their habits or their internal anatomy as to require a brief notice. Many of the bivalve Mollusca are "boring" animals-of these the most remarkable are the Pholas and Teredo; the first, Fig. 229, bores in wood or clay, and two principal
fig. 229.


Pholas crispata. theories have been started by naturalists to explain the modus operandi; the one that the shell is employed in the process, the other that an acid liquid is excreted which acts as a solvent. The view
now, however, generally entertained, is that a fleshy organ, either the foot or mantle of the animal, is solcly engaged in the work of destruction. The Teredo navalis, or "ship-worm," Fig. 230, is known to most fig. 230.


Teredo navalis. \(a\), valves covering the foot. \(b, b\), valves magnified.
persons; it bores into wood always in the direction of the grain, unless diverted from its course by the presence of a knot, or the tube of a neighbour, for they never bore into eaeh other's tubes. The shelly portion of this animal eonsists principally of two valves, \(a\), which eover the foot, and two dart-like processes termed palettes, situated at the opposite extremity; the body is soft and fleshy, nearly destitute of shell ; but the wood through which the animal has bored is lined with shell as it progresses. The valves, as shown under a magnifying power at \(b, b\), are covcred with rows of small spiny projections, like those of the shell of Pholas, and it was until lately believed that by means of these the boring was effeeted; but on examination, I find them invested with a soft horny cuticle totally unfit for the purpose ; the end of the foot is said to be the instrument employed, being provided with strong muscles
and its free surfacc covered with sharp gritty particles probably composed of lime or silica.

Many of the Mollusca not having a lingual dental apparatus, possess, like the lobsters, a gizzard armed with spines or plates of shell. In the Aplysice there are several rows of horny plates, but in the Bulle, especially \(B\). aperta, which I now show you, there are in the gizzard two calcareous plates nearly \(\frac{3}{4}\) ths of an inch square ; these serve the purpose of crushing the shells of other Mollusca. Dr. Carpenter has shown that these plates exhibit a cellular structure ; those of Bulla aperta, as represented in Fig. 231, do so in a
fig. 231.


Horizontal section of shelly matter from the gizzard of Bulla aperta. remarkable degree, but the cells are not constant in all parts of the section, the cell-walls having disappeared, the dark spot which is commonly found in the centre of each cell alone remaining to indicate its position.

I cannot leave the skeleton of the Mollusca without briefly noticing certain oval or globular masses, cither wholly or partially composed of nacreous material, which are commonly known as Pearls. They occur in the soft parts of Mussels and Oysters, cither in connection with the mantle or firmly attached to somc portion of the internal surface of the shell, and arc more common in shells from certain localitics than from
others; the finest specimens are said to be obtained from the fishcrics of Ceylon and of Olmutz, on the Persian Gulf. Next to diamonds, Pearls are perhaps the most highly prized as objects of adornment, and from the earliest times have bcen eagerly sought after. Those of the Oyster, Meleagrina margaritifera, are by far the largest and most brilliant, and this is the species fished for, in the localities above noticed. Our own rivers are not devoid of Mollusca in which Pearls of considerable value are frequently found; the Conway in Wales, and the Tay in Scotland, may be mentioned as examples; in the former river a fishery exists to this day. Some idea may be formed of the number and value of Scottish Pearls from a statement in the recent work on Conchology by Dr. Johnston of Berwick-uponTweed, who informs us that "between the years 1761 and 1799 , pearls to the amount of \(£ 10,000\) were sent from the Tay and Ila to London." The British Pearls are found in the fresh-water Mussel, Mytilus margaritaceus; similar bodies are also occasionally met with, in our edible Mussels and Oysters, but are entirely valueless as ornaments, although their structure, as will hereafter be shown, is very interesting.

Before entering upon the growth of these bodies, I must give you a brief account of the mode of formation of shclls generally. It is a well-known fact that the shell of a molluse is developed within the egg, and appears to commence with the earlicst stages of growth of the embryo, as may be readily scen in the eggs of
many of our smaller fresh-water species. There are three parts of the animal more or less concerned in the development of shell; the first is the edge of the mantle, which is always more or less thickened, and, according to Dr. Carpenter, forms the outer layer; the second, the broad surface of the mantle upon which the inner layers are formed; and the third, the foot, which I believe with Dr. Johnston (who appears to have been the first to notice the fact) is an important organ of secretion, as may be evidenced by the development of the operculum in many species. The formation of shell has been most carefully studied by Mr. Bowerbank in the young cartilaginous lips of the common garden Snail, Helix aspersa, and in the thin edge of the shell of a half-grown Oyster; I myself have studied the growth of the rudimentary shell of the common Slug. The earliest stage of the process appears to consist in the exudation from the surface of the mantle of a plasma, within which cells are developed; these, when first formed, are transparent and nucleated, but very soon carbonate of lime is secreted from their inner surfaces. In their isolated condition the cells are of globular figure, but by pressure during growth they generally assume the form represented by \(a\), in Fig. 232. In most shells the lime is clear and transparent, but occasionally, as in Fig. 202, it is granular; in a few instances, as shown at \(b\), in Fig. 232, it is in the form of radiating crystals. The walls of the cells may either remain or they may coalesce and form
laminx. In the thin edge of the shell of the Oyster, fig. 232.


Shell of Slug in process of growth. \(a\), cell becoming hexagonal by pressure. \(b\), cells filled with radiating crystals.

Fig. 233, the cells are well seen; they are nucleated, and very much resemble those of cartilage, being im-
fig. 233.


Cells seen on the thin edge of the shell of a young Oyster (after Bowerbank). bedded in a horny matrix generally of a brown colour. The growth I have now described as taking place upon the edge of the shell, according toDr.Carpentcr, is due to the margin of the mantle, and produces the outer layer of shell, but at the same time the whole inner surface of the mantle is exuding a plasma or epithelium from which the inner layer is formed.

The above remarks will apply to the growth of shell generally; but as Pearls are most commonly developed
in Oysters and Mussels, what I shall have further to say on this subject will relate principally to the shells of these animals. In the ova of many of our fresh-water Snails the hexagonal structure of the rudimentary shell may be seen investing the soft parts. In Oysters during the months of June and July, I have frequently found the young fry provided with a thin transparent bi-valve shell, as represented in Fig. 234. About the


Young fry of the oyster, nearly ready to escape from the shell of the parent. \(a\), cilia attached to the shell. middle of July the young fry may be observed in an active state of movement produced by large cilia attached to a portion of the margin of the shell, as shown at \(a\). The movement of the shell by means of the powerful cilia can be seen by the naked eye; and as they soon disappear, I regard them as organs of locomotion, their use being that of enabling the young to make their escape from the shell of the parent.

If a vertical section of the lip of the shell of the Pearl Oyster be cxamined, as shown in Fig. 235, two distinct kinds of structure will be evident; the upper, a, corresponding to the outer layer of the shell, will exhibit a prismatic cellular arrangement, whilst the
lower, \(b\), is nacreous; both, it will be obscrved, are traversed by dark lines indicating the successive


Vertical section of the lip of shell of the Pearl Oyster.
stages of growth; it will also be seen that every layer of nacre has its free extremity covered with one of prismatic cellular tissue. According to Dr. Carpenter, "every now production of shell consists of an entire lamina of nacre, which lines the whole interior of the old valve, and of a border or margin of the prismatic layer which thickens its edge. So long as the animal continues to increase in dimensions, each new interior laycr of shell projects so far beyond the preceding, that the new border, composed of the outer layer, is simply joined on to the margin of the formcr one; so that the successive formations of the outer layer scarcely underlie each othcr. But when the animal has arrived at its full growth, the new laminæ ccase to project bcyond the old; and as each is still composed of a marginal band of the external substance attached to the cdge of an entire lamina of the inner, these bands must now underlic each other, being cither quite free, as in

Ostrece, or closely united to each other, as in Unio and most other bi-valves."

Having now given a brief account of the formation and growth of shell, I will in the next place point out how a knowledge of these facts may lead to the understanding of the development of Pearls. In the first volume of the "Histological Catalogue" you will find that I have classed Pearls under four heads, as follows :-lst, Pearls exhibiting prismatic cellular structure ; 2 nd, those in which there is no trace of prismatic structure, being wholly composed of subnacreous tissue; 3rd, those composed entirely of naere (true Pearls) ; and 4th, those composed of nacre and prismatic cellular structure. The first kind, it is evident, must be formed on the edge of the shell, where the prismatic cellular strueture is being developed-as, for instance, at \(a\), in Fig. 235 - and no doubt owes its origin either to the presence of a foreign body or to some injury to this part of the shell. The second kind is developed in the soft parts of the animal, and within the shell of such Mussels or Oysters as have no true nacreous lining, whilst the third variety is developed in corresponding situations in Mussels and Oysters in which the nacreous layer is most brilliant. The fourth variety is a compound one; such Pearls, there is every reason to believe, commence growth on the edge of the shell, and when they have arrived at a certain size, eneroaeh more or less upon the mantle, and from it receive a partial coating of nacre.

Pearls of the first variety, when divided horizontally, as shown at A, in Fig. 236, exhibit a series of laminæ

FIG. 236.


A, a horizontal section of a Pearl. B, segment of the same, exhibiting prismatic cellnlar structurc. c, portion magnified 250 diameters. arranged concentrically around a nucleus, which in the present instance is a mass of brown horny material, like that found upon the edge of the valve of a mussel from which the specimen was probably developed. Under a power of 50 diameters, a segment, as shown at B , exhibits a prismatic cellular structure, the striated character of the prisms being better shown under a higher power at c. In this Pearl two bands of horny matter occur between the prisms, as indicated by the white lines in the segment B ; these would tend to prove that for a short space of time the formation of shell-structure must have ceased, and the Pearl was more or less coated with horny matter. Pearls exhibiting the prismatic cellular structure are always of a dark-brown colour, and may be readily recognized; they are of no commercial value. The second variety includes all those Pearls which are composed of subnacreous tissuc, being developed in the soft parts of our common edible Mussels and Oysters, their colour and brilliancy being derived from the same source as that of the internal layer of the shell; all such Pearls vary in colour from purple to dull white, and when
divided horizontally and rendered sufficiently thin to be examined microscopically, always exhibit a minute laminated arrangement, but no trace whatever of prismatic cellular tissue; such Pearls, like those of true nacre next to be described, are generally formed upon a nucleus, but if attached to the shell, it has been said that they are developed in order to resist the attacks of boring animals.

To the third class belong all Pearls that are valuable as ornaments ; they are formed most probably in the same way as those last described, but always in shells having a true nacreous interior. The quality of a Pearl depends upon its size, roundness, and brilliancy; in order to possess all these qualifications it must be developed in the soft parts of the animal ; those attached to the shell are always more or less irregular in figure, whilst those formed upon the edge are rarely entirely coated with nacre. When thin, transparent, horizontal sections of true Pearls are examined microscopically, they always exhibit more or less of the iridescence common to the shell, and should the section traverse the centre, the nucleus will probably be seen.

The last class I shall speak of, is that in which both prismatic cellular tissue and nacre occur; such Pearls appear to be first formed on the edge of the shell, and as they increase in size, they project between the valves, and become coatcd with nacre. I have cvery reason to believe that these Pearls may become detached from the edge of the shell and be wholly or partially covered with
nacre, and if of small sizc are capable of forming the nuclei of true Pearls. A segment of one of thesc compound Pearls is shown in Fig. 237; at a is represented the prismatic cellular structure, and at B

FIG. 237.


A segment of a horizontal section of a Pearl exhibiting at \(A\) the prismatic cellular structure, and at в nacre. c, cellular structure occurring in a band of horny material. the nacre ; this last is traversed by two or three brown horny bands in which traces of cellular structure, as shown at c , are very evident. This section would tend to prove, that aftcr a portion of the surface had received a coating of nacre, there was a disposition to cover this again with a layer of prismatic cellular structure.

I have now to say a few words upon the nucleus of Pcarls. Sir Everard Home was of opinion that the nucleus consisted of a blighted ovum, but I have examined numerous sections of Pearls exhibiting nuclci, and have never yet scen any trace of an ovum ; the substance found is generally something foreign to the animal. Some of the nuclei that have been discovered in my investigations arc so very pcculiar as to merit a slight noticc. In Fig. 238, a, is shown a scction of a large and brilliant Pearl, the nuclcus of which consisted of a black granular substance, like a mass of clay. A Pearl from an Oyster, represented of its natural size at B , has a small particle of flint as a nucleus, but the most remarkable specimen of all is
that shown at c , also from the oyster, and the nucleus is


A, a section of a true Pearl, showing a nucleus, probably of clay. B, section of a Pearl having a particle of flint as a nucleus. c, section of an Oysicr-Pearl, having as a nuclens a piece of steel. a piece of steel looking like the end of a knife or chisel, which no doubt was employed at sea to open the oyster, but was broken in the attempt, and the oyster again committed to the deep; in process of time the steel has received a coating of shelly matter, and a pearl has been the result.

Pearls may be formed artificially, a fact that was well known to the ancients, and the immortal Linnæus, we are told, suggested a way of


B
A, a portion of a valve of a Mussel, in which five pearls have been formerl arlificially. B, section of one of the perrls, showing the thin coating of nacre and the hole through which the wirc passed. making them at will by puncturing the shell with a pointed wire. A more perfect plan of forming pearls has been adopted by the Chinese, who introduce into the shell certain anchor-shaped pieces of silver wire, upon each of which a rounded mass of mother-ofpearl, said to be turned in a lathe, is fixed; the animal gives these masses a coating of nacre, and so a pearl is formed. In the Museum you will find a valve of a Mussel in which five nearly equal-sized pearls as VOL. II.
shown at A in Fig. 239, have been developed in this manner. A section of one of the pearls is shown at в; the thin layer is nacreous, and in the eentre of the mass of mother-of-pearl is scen the hole through whieh the wire passed. Pearls formed in this way could never be drilled and strung as beads, and therefore their value must be much less than those developed in the ordinary manner.

When speaking of the structure of the skeleton of Zoophytes and Echinoderms I brought forward instanees in which fractured portions had undergone the process of repair : if sueh power were possessed by the tissues of animals so low in the scale of organization as these, we should naturally expeet that it would be greater in animals having a special organ for the development of shell. Hunter was fully aware of the reparative power of the Mollusca: the valve of a common fresh-water Anodon whieh has been fractured and repaired is placed in the Pathological series under this head. Nothing is more common than to find shells of the common gardensnail which have been repaired after injury: the researches of Madame Power have proved that the Argonaut is not only the true inhabitant of the shell in whieh it is found, but that it is eapable of repairing its frail tenement with the same material, and after the same pattern as that composing the other parts of the shell.

\section*{LECTURE XXIII.}

\section*{SKELETON OF ARTICULATAENTOZOA, ROTIFERA, ANNELIDA, AND MYRIAPODA.}

The animals composing the sub-kingdom Articulata are characterized by having the body enclosed in a tunic or integument consisting of a series of rings, segments, or joints "articulated" together by a flexible membranc. The segments are disposed in longitudinal rows, and, in some of the orders presently to be described, are ncarly of the same form throughout the body, whilst in others every segment is dissimilar to the one preceding it. In some of the animals classed with the Articulata, as for instance the Cystic Entozoa, the firmest portion of the body, or that which might be termed the skclcton, is nothing more than a pellucid membrane: in the Insects howcyer, it is composed of a horny matcrial, whilst in the higher forms of Crustacea and the Cirrhipeds, it is made up of shelly tissue very like that before described as
characteristic of the Conchiferous Mollusca. In modern times the articulate sub-kingdom has received two or more accessions to the number of the classes of which it was formerly composed, there now being eight, which by Dr. Carpenter are arranged as follows: Entozoa, Rotifera, Annelida, Myriapoda, Insecta, Crustacea, Cirrhipoda, and Arachnida. At first sight you will no doubt wonder how animals differing so much in external form and structure could be classified together, but when you take the Entozoa, which certainly includes a great number of species exhibiting no trace of articulations, you will find, nevertheless, that the highest members of this class really are "articulated" animals, and it is on this account that they are placed in so elevated a position.

The Entozoa are divided into four orders, viz.: Cystica, Cestoidea, Trematoda, and Nematoidea ; and the skeleton, if such can be said to exist, certainly belongs to the dermal class. In the Cystic order the structure of the tegument or wall of the cyst is minutely granular, but in its highest state of development, as in Cysticercus, it consists of fibrous tissue.

In the genus Comurus the cyst is granular, but in Echinococcus, the young frequently found within the cyst or body of the parent are each provided with a crown of hooks of peculiar figure: the same kind of hooks, but on a larger scale, are met with in adult individuals of the genus Cysticercus and Cocmurus.

In the Cestoid order, which includes the "Tape
worms," the body consists of a series of joints, each of which is composed of a fibrous tissue, and encloses a distinct vascular, digestive, and generative apparatus. The head of the Tenia solium, or common Tape worm, is surrounded with a crown of hooks, but, although larger, they are not so numerous as those of the young of the Echinococcus.

In the order Trematoda, which may be represented by the Fluke inhabiting the ducts of the liver, the external tegument is principally composed of a soft fibrous structure sufficiently transparent to allow of some of the viscera being seen within. In the Planarice, which resemble the Distoma in external form, the integument is capable of considerable elongation.

In the last order Nematoidea, in which the "articulated" character arrives at its highest state of perfection, we have also a well-developed dermal skeleton: in sume of the large round worms, such as the Ascaris lumbricoides, the integument is of a horny nature, and when viewed under a power of 250 diameters, is found to consist of a series of rings or bands of transparent elastic material, exhibiting short fibres crossing each other at various angles; so elastic is it, that when every trace of muscular tissue is removed, there is an evident tendency in it to resume the cylindrical form it originally occupied.

In the next class, the Rotifera, the skeleton is also a dermal one. The common Wheel Animalcule, Rotifer. vulgaris, Fig. 240, F, (so named from the ciliated ap-
paratus around its mouth being disposed in the form of two wheels), has a jointed tail and a body or case composed of a transparent flexible material, through which the movements of the gastric teeth are readily perceived. The structure of these teeth, as shown at G , is very peculiar; they are partly composed of a hard substance like silica, and are by far the most durable part of the creature. In some of the more highly organized Rotifera, as the Stephanoceros, the skeleton is in the form of a shield or case, which is separated from the body, and is composed of a transparent horny substance: the greater part of the body of the animal can be withdrawn within it. In other genera, as for instance that of Melicerta, the case or dermal skeleton is made up of rounded masses of foreign substances, which are generally of equal size and disposed in parallel rows.

One species of Melicerta, M. ringens, Fig. 240, a, has been described by Ehrenberg, who supposed that the rounded particles by which the case was strengthened were composed of excrementitious matter, he having noticed that they first cscaped from some part of the body of the creature, and were subsequently employed to strengthen the case. Within the last few years much attention has been paid to the structure and habits of many of the more highly organized Rotifera by Mr. P. H. Gosse, and the specics now under consideration has formed the subject of a very interesting communication to the 3rd volume of the "Transactions of the Microscopical Society." After alluding to the description
of the animal given by Ehrenberg, and his notion that the case was strengthened by particles of a gummy substance


A, Melicerta ringens, showing the ciliated hood and part of the dermal skeleton or "case." в, a young individual, the "case" only partly formed. c, D, portion of the "case" in different species of Melicerta. E, gastric teeth. \(\mathbf{y}\), Rotifer vulgaris. G, gastric teeth of the same. H, gastric teeth of another Rotifer.
separated from the intestine, Mr. Gosse observes that the animal was known to Leeuwenhoek, and that he even discovered the fact of the augmenting its case by the deposition of rounded particles. Mr. Gosse, however, noticed a peculiar rotating organ seen at \(a\), in Fig. 240, which he compares to one of the circular rotating ventilators commonly placed in kitchen windows to cure a smoky chimney. When the animal was fed with carminc, Mr. Gosse found that the larger particles passed into this rotating organ, and
were there made into a round pellet. When eompleted the head of the animal was bent forward, the pellet eseaped from the rotating organ, and was speedily deposited upon the edge of the ease. The time oceupied in making and depositing a pellet, was found by Mr. Gosse to be from two and a half to three and a half minutes; the pellets made of earmine being readily distinguished from the others by their red colour.

The development of the young of Melicerta has been carefully studied by Professor Williamson of Manchester, and he has notieed the mode in which the case is formed. The pellets are first arranged in a ring round the middle of the body, as shown at B, in Fig. 240, and new ones are added both to the upper and lower layers. After a time the ease is, as it were, pushed down, and eemented to the plant to which the animal has attaehed itself, and, lastly, new pellets are added to the free surfaee only as already noticed. The shape of the pellets, aecording to Professor Williamson, is hexagonal at the base of the ease, as shown at c , but at the free extremity they are spherical, as represented at D . The gastric teeth of Melicerta which form the splanchnoskeleton of the animal, have also been deseribed by Professor Williamson, and are shown at e. They consist of two principal portions, viz., two plates acting as erushers, and a series of levers or transverse bars whieh serve the purpose of transmitting the muscular power to the erushers.

Some of the higher forms of Rotifera, as for in-
stance Noteus quadricornis and Amurca Testudo of Ehrenberg, the former of which is represented in Fig. 241, have the entire body invested with a shell-like envelope very much resembling that of certain Entomostraca: the dorsal surface \(A, B\), is convex and exhibits
        FIG. 241.
        FIG. 241.

Noteus quadricornis. a, dor'sal view. B, side view. (after Carpenter). coarse hexagonal markings, the ventral is flattened and the hexagonalmarkings are absent. The shell itself is entirely covered with minute rounded tubercles.
The next great division of the Articulata is that known as the Annelida, or worm-like animals, having a body made up of a series of rings. They have red blood and a wcll-developed respiratory apparatus. The class is usually divided into three orders, viz.: Tubicola, Dorsi-branchiata, and Abranchiala, the first name being derived from the circumstance of most of the species being inhabitants of tubes; the second from the position occupied by the respiratory organs; whilst the third have no apparent branchiæ.

Many of the Tubicole, as for instance, Serpula contorluplicata represented in Fig. 242, inhabit calcarcous tubes, whieh differ in no respeet in their mode of formation and minute strueture from the shclls of somc of the Mollusca, being made up of calcareous material exuded from the external surface of the body of the creature. These tubes are always more or less rough
fig. 242.


Serpula contortuplicata. externally, but very smooth internally; the animals are readily taken out of the tubes, there being no muscular attachment to them. When thin sections of the tubc of a Serpula are examined mieroscopically, they exhibit all the eharaeters of the shell of many of the Gasteropoda. The transverse section generally eonsists of a series of eoncentric laminæ, made up of radiated prisms : occasionally the prisms of the inner layer cross eaeh other, as in the Cyprea mauritiana, represented in Fig. 193; vertical scctions exhibit the prismatie strueture more plainly, and very frequently branching tubuli occur in great abundance amongst the prisms.

Many Tubicole inhabit tubes composed of horny material, others render the horny matter more solid and durable by cementing to it particles of mud, clay, and sand, fragments of shell, and a variety of other foreign substances; and it is wonderful to see in some cases how beautifully uniform in size all the particles are. In Fig. 243 is shown a portion of the tube of an Annelide,


A portion of the tube of an Annelide composed of graius of sand firmly cemented together. which is composed of grains of transparent silex firmly cemented together: the size of the grains in some parts of the case is so uniform that the specimen very much resembles a transverse section of the prismatic structure of shell.
In the order Dorsi-branchiata, the skeleton is also a dermal one; it is always more or less soft, and occurs either in the form of distinct segments, or of transverse folds of the integument. Each segment is provided with a series of iridescent bristles or seto upon the sides, which answer the purpose of feet, and enable the animals either to crawl on the ground, or to progress rapidly through the water. A few species burrow in the sand, and most of you, no doubt, are familiar with the common sand worm, Lumbricus marinus. The sea-mouse, Aphrodita aculeata, also belongs to this order, and is remarkable for the splendid hues of its hairs ; the back of this creature has two rows of broad plates or scales,
not always very plainly seen, being eovered by a hairy substanee very mueh resembling tow; these seales form the dermal skeleton, and eonsist of a semi-transparent horny material exhibiting a minutely granular strueture. The integument of the Nereides eonsists of a thin strong irideseent membrane, whieh eompletely invests the segments, and, no doubt, eommunieates the gorgeous hues to the jointed eirrhi as well as to the tufts of setæ; it is eomposed of a finely striated fibrous strueture, and, when viewed with a power of 250 diameters, is always more or less coloured.

To the order Abranchiata belong the earth worms and the leeches ; the former have a thin eutieular investment, provided with a series of small spines or setce, which are employed in loeomotion; they have no external respiratory apparatus, that funetion being probably performed by the entire surfaee of the skin. The Leeehes have an internal respiratory apparatus but no setæ, the dermal skeleton eonsisting of a very thin fibrous strueture, which is eovered by a transparent eutieular layer, exhibiting in some eases distinet traces of the epithelial eells of which it was originally formed. But the most durable part of the Leeeh is the peeuliar dental apparatus, which, as we well know, is employed so sueeessfully by them in piereing the skin.

When the anterior or oral sueking dise of the Medicinal Leeeh is laid open, as shown at A, in Fig. 244, three semieireular jaws \(a a, a\), are brought into view : they are composed of a horny tissue, and eath has its free eonvex
edge provided with eighty or ninety inverted V-shaped teeth. When the jaw is seen sideways, as shown at B , the teeth appear as so many incisors, but if viewed from above, their shape will resemble that represented by c and D , the latter having been detaehed from the jaw.
fig. 244.


A, Mouth of the Medicinal Leeeh, \(a, a, a\) jaws. B, side-view of one of the jaws, showing the teeth. c, portion of a jaw seen from above. \(D\), teeth removed from the jaw. e, jaw of the Horse Leceh seen from above. F , teeth detached from the same jaw.

The food of the Medicinal Lecch is blood, but the eommon Horse Leeeh is a much more voracious ereature, being capable of swallowing individuals of its own species with great ease: the dental apparatus, as might be expeeted, differs from that of the medicinal varieties in the shape and number of the teeth, there rarely being more than fifteen in each jaw. They are more like molars than incisors, and are larger than those of the medicinal species, as may be seen by comparing E and F with C and D in Fig. 244, both being magnificd precisely to the same extent. The teeth are eomposed of ealcareous material, and by maeeration can be easily separated from the jaw to which they were attached.

The animals composing the next class of the Articulata, the Myriapoda, werc formerly considered as Insects, but although they resemble them in many points they differ from all true Insects in having more than six legs. The body of a Myriapod consists of a number of joints or segments, each of which generally bears two pairs of feet: the joints increase in number with the age of the animal, and in some species they even exceed fifty. The Myriapoda are commonly divided into Millepedes and Centipedes: the dermal skeleton or skin of both is of a horny nature, and in many species is strengthened by a slight admixture of calcareous material. In most Millepedes the skin is frequently shed, and with it the cuticular lining of some parts of the alimentary canal, as in the Crustacea; at each moult one or more joints and feet are added. The animals composing the genus Iulus, Fig. 245, have a rounded body, and all the
fig. 245.


Iulus, or Gally-worm.
larger species are of a dark brown colour; when at rest they roll themsclves up into a spiral form. The Scolopendre or Centipedes have a flattencd body with a single pair of legs to cach scgment; the dorsal and abdominal portions of the segments are more dense than the
connecting pieces at the sides, whereby a free movement of the body is obtained.

The structure of the dermal skeleton of Iulus fuscus, one of the largest of the Millepedes, has been carefully examined: it consists of upwards of fifty segments of a dark brown horny-looking material, which, when divided transversely, or at right angles to the length of the body of the creature, exhibits a fibrous structure, the fibres being arranged in the direction of the section, and occasionally traversed by short tubuli. A section made in the direction of the long axis of the body presents a minutely granular appearance, the granules being the divided extremities of the fibres noticed in the preceding


A vertical scetion of the integument of Scolopendra gigas, magnified 250 diameters. a, tube with dilated extremitics; \(b\), swall tube. section. The sections, in order to be transparent, must be made exceedingly thin, more so, indeed, than if they consisted of horny material only; on this account I was led to treat them with acetic acid : a copious effervescence then took place, proving the presence of some carbonate: when this was removed a better view of the arrangement of the entire section was obtained, and a distinct cuticular layer composed of minute hexagonal cells was brought into view; the tubuli were few in number, and always presented more or less of a brown colour.

Sections of the horny skeleton of a large Centipede, Scolopendra gigas, present better-marked characters; the brown external layer is composed of a series of hexagons, on an average \(\frac{1}{2000}\) of an inch in diameter; occurring amongst them, at certain regular distances, are two kinds of cireular spots, which I find are the mouths of tubes. A vertical section of the same segment, as shown in Fig. 246, exhibits the depth of the coloured cellular layer, the principal thickness, which is about \(\frac{1}{20}\) of an inch, being due to a white fibrous structure, traversed at tolerably regular distances by two sets of straight tubuli, one set \(b\) being of the same diameter throughout, the other \(a\) large at the base, and becoming less almost abruptly; both kinds end upon the free surface of the hexagonal layer in the same way. In some specimens the tubes seem more solid than in others, so much so that I am almost induced to consider them as hairs, which have never grown beyond the free surface.

\section*{LECTURE XXIV.}

\section*{SKELETON OFARTICULATAINSECTA, CRUSTACEA, CIRRIIPEDIA, AND ARACHNIDA.}

The class Insecta is not only far more extensive than any other included in the animal lingdom, but is said to contain nearly as many species as all the other classes put together. The whole tribe of Insects are now usually divided into eleven orders, among which the Myriapods were formerly included, but as these have more than six legs, and the body is not divided into head, thorax, and abdomen, they have been placed in a separate class.

The orders are: Thysamura, Parasita, Suctoria, Colcoptera, Orthoptera, Hemiptera, Neuroptera, Hymenoptera, Lepidoplera, Rhipiptera, and Diptera. Of these the Colcoplera, or Beetles, not only contain by far: the greatest number of species, but the skeleton vol. II.
in this order, arrives at its maximum of devclopment; it is stricitly a dermal one, and said to be composed of a peculiar animal principle, tcrmed chitine, which is of a horn-like appearance, but differs from horn, nails, and all other cuticular appendages, in very many points; principally, however, in being insoluble in boiling caustic potash. In some Insects the skeleton is soft and membranous, as is the case in many of the Diptera; in the parasitic Insects, and in almost all larvæ, it is also very thin and soft. In changing from the pupa to the imago state, the skeleton of an Insect very soon becomes hardened, especially if exposed to solar light: in an hour or two it is sufficiently firm for the insect to move about, but in the course of a day it is perfectly rigid.

Entomologists are now in the habit of describing the skin of an Insect as consisting of thrce layers, viz. : an epidermis, rete mucosum, and corium; the first two are exceedingly thin, the bulk of the skeleton being formed by the corium or third layer. The epidermis is described as being thin and structureless; the rete mucosum as consisting of two layers, onc smooth, attached to the epidermis, and variously colourcd, and superimposed on the second, which is always black or brown. The corium is said to be composed of screral laycrs of fibrous structure, crossing each other at various angles : it is occasionally traversed by tubes, and in it the bulbs of the hairs are imbedded. It must not be imagined, however, that all these laycrs, nor cven the principal ones, can be distinguished in every insect; the
examples are far from numerous in which the three layers are not, to all appearance, blended into one.

The intimate structure of the skeleton is cellular ; in most insects this is retained as a permanent character, but in many others the cells have become so fused together that all appearance of them is lost. The hexagonal structure is well seen in the small parasitic


Purtion of the body of a Red Ant,
Mryrmica domestica, exhilniting a cellular structure. insects, in the skins of larvæ, and in the thinner parts of Beetles. In the Red Ant, Myrinica domestica, the entire body exhibits the structure represented in Fig. 247; it is hexagonal, the average diameter of the cells being \(\frac{1}{2000}\) of an inch; the tissue itself has no other
fig. 248.


\footnotetext{
A portion of the skin of the larva of Fidröus piccus. \(a\), cells with tubercles; \(b\), cells with a central nncleus.
} trace of markings, and is of a rich brown colour. The cast skins of Myriapodous insects, and in fact the articular layer of the Centipede, as before noticed, all exhibit a similar hexagonal structure. The larva of a large Water Beetle, Hidröus piccus, appears to be entirely made up of a series of thick-walled hexagonal cells, on an average \(\frac{1}{800}\) of an inch in diameter: each, as shown at \(u\), in Fig. 248, has a tuberculated structure internally. Amongst
thesc cells are others in whieh the tuberculated character is absent, but a nueleus of circular figure, as seen at \(b\), occupics the centre of each. A trace of this nueleus is visible in the tuberculated cells, but in most cases is obscured by the tubercles.

The antennæ of the Male Coekehafer, Melolontha vulgaris, are interesting to the microscopieal observer, for, independent of their beautiful leaf-like shape, their intimate structure is very remarkablc. Each antenna consists of a jointed pedicle, from whieh, seven, thin, oval leaflets are given off: the leaflets are very transparent when mounted in Canada balsam, and under a power of 250 diameters exhibit a cellular structure; but the cells, instead of being of hcxagonal figure and so close together as to form a confluent network, are more or less oval, and situated at a slight distanec from each

FIG. 249.


A portion of mon of the leaflets of an antemana of Mefolont hat mulyaris. other, as shown in Fig. 249. The wall of the cells is sometimes very faintly seen, but the nucleus, with its eontained nucleolus, which reminds one of a small projecting spine, is always very evident. Each leaflet is composed of two layers of preeisely the same strueturc, but it generally happens that the cells in one layer are not placed cxactly over those in the other, so that when eursorily examined under a low power, the entire leaflet may
be supposed to be wholly made up of a series of cells of hexagonal figure.

The skeleton attains its maximum of development in the order Colcoptera, or Beetles, and in proportion to the thiekness of the horny matter, the hexagonal strueture either entirely disappears, or only occurs as a thin euticular layer. In Fig. 250 is shown a segment of a transverse section of the upper mandible of the great Hereules Beetle, Dynastes Hercules: it eonsists

FIG. 250.


A scyment of a transverse section of the upper mandible of Dynastes Hercules. a a tubes passing throngh the laminac. \(b b b\), concentric horny laminæ. of a series of concentric bands of various widths as shown at \(b b b\); these are traversed at right angles by large radiating tubuli, seen at \(a \quad a\); the band forming the cireumferenee of the section is the thickest; some of the others exhibit a minutely striated strueture, as if made up of prisms, whilst a few are, comparatively speaking, structureless. Other sections of the skeleton of the same beetle sometimes exhibit traces of hexagonal structure, the cells being on an average less than \(\frac{1}{2000}\) of an ineh in diameter: some of the cells contain a number of granules, which are probably eomposed of earthy material, the phosphates both of lime and magnesia having been described as hardening clements of the insect skeleton.

Scetions taken from the cranial portions of other Coleoptera exhibit nothing more than a scries of parallel laminæ, and whenever large tubereles are developed from the inner surfacc, the laminæ always follow the direction of the outline of the tuberele. Sections of the elytra of beetlcs present channels or eavities through some of whieh large traeheæ pass; others are said to be reservoirs of nutritious juiees: all such sections elearly show, that an elytron, whieh is nothing more nor less than a modified wing, is made up of two principal layers, separatcd from eaeh other by vertical pillars, and by this arrangement channels for traeheæ and other purposes are left.

When spincs, hairs, scales, \&e., are found on the external surface of insects, they must be eonsidered as developments from the eutieular layer, as in the higher animals. The varied hues displayed in the eovering of the Lepidoptera are not all produced by pigment, but many of them are the result of light, deeomposed by falling upon grooved surfaces at partieular angles. However thin the wings of flies and the sealy eovering of moths may appear to be, they are nevertheless all eomposed of two layers of membrane, between whieh the ribs or nervures and the pigment are cnelosed; such delieate structures are even preserved in the fossil state. At Aix, in Provenee, a marl is found in whieh the romains of insects abound; many of them are as perfcet as if they had but recently becn cntombed. In the Oolite and Lias of this eountry, inseets are also found in great quantities; in the Lias from the neigh-
bourhood of Warwick, oceurred the wing of the Dragonfly, represented in Fig. 251, which is said by some of rig. 251.


Fossil Wing of Dragon-fly; from the Lias of Warwickshire (after Mautell).
the highest authorities to resemble closely that of a recent speeies of Ashinc. Large collections of fossil insects from the Lias and Oolite have been formed by the Rev. Mr. Brodie, by Mr. Binfield, and Mr. Moore, and there is hardly a strueture or tissue, however delicate, that has not bcen deteeted by these gentlemen. To Mr. Moore I am indebted for the beautiful speeimens I now have the opportunity of showing you.

The next class of the Articulata, and one in which the skeleton, bcing strietly dermal, arrives at its greatest stage of density, is that known as Crustacea. Nearly all the members of this elass are aquatic, and provided with well-developed organs for aquatic respiration; it is divided into two principal sections, viz.: Entomostraca, and Malacostraca, both being named from the structure of the integument-the first, from its resemblance to that of Insects; the second, beeause the shell is considered softer than that of the Mollusca. The Entomostraca are very abundant in
our fresh waters, and most of them arc of microscopic minutencss: the Monoculus, Cyclops, Daplinia, are amongst the commonest examples. The grcater number of the species have a bivalve shell, composed of very transparent horny matcrial, and, when examined microscopically, generally exhibits an hexagonal structure. This condition of shell is well seen in Daphnia pulex, which is so abundant in some seasons as to communicate a reddish tinge to the watcr, when they come to the surface towards evening. The hexagonal structurc of the skeleton or shell is also present in some of the larger Entomostraca, as, for instance, in Branchipus stagnalis, which is occasionally met with in the littlc pools of water in the neighbourhood of Blackheath. A few years sincc, only a small number of Entomostraca were described, and these principally by writers on the microscope; the British species are exceedingly numerous, and a valuable monograph of them, by Dr . Baird, of the British Museum, has lately appearcd, as one of the serics of volumes published by the Ray Socicty.

The skeleton of the Malacostraca varics considerably in density; in some of the small Crabs it is almost as thin as it is in the Entomostraca, but in the chcle of the large cdible crab it is nearly half an inch in thickness. Dr. Carpenter, M. Lavalle, and others, have described the skcleton of the higher forms of Crustacca as consisting of threc layers; first, an outer onc composed of horny matcrial, quite structurcless; sccond, a thin, cellular
layer, to which the pigment is exclusively eonfined; third, a thick calcareous corium, exhibiting a tubular structure like that of dentinc. Thesc layers are said to vary in thickness not only in different animals, but frequently in different parts of the same animal. My investigations, however, have led me to belicve that in the higher Crustacea the outer layer is essentially composed of hexagonal cells, as in Inseets, and that there is rarely sueh a layer as a distinetly pigmental one, exhibiting eellular strueture; the colouring material bcing diffuscd throughout a eertain thiekness of the outer surface of the shell.

In the Glass Crabs, Phyllosome, the skeleton is eomposed of horny material, exhibiting no traee of structure; in some species the segments bearing the legs have minute tubercles developed from their upper surface. Most of the small British Crabs, of the genus

FIG. 252.


Hexagonal structure exhibited by the Carapace of a Crab of the genus Porluna. Portuna, are execedingly transparent, but the entire thiekness of the Carapace is made up of hexagonal eells, having thick walls, as shown in Fig. 252. Other Crabs exhibit the hexagonal strueture very plainly, but it is prineipally confined to the surface, for all the thick parts, as shown in Fig. 253 , prcsent a granular appcaranec in addition to the cellular layer. When tubercles are present, the cells do not always cover them, but extend
as far as the base, and there terminate in a well-defined rig. 253. line. If the earapace be coloured, the colouring matter is usually spread uniformly over the surface, and in many of these small Crabs, the first trace of the thick, calcareous corium of the larger Crustacea is the granular structure above mentioned. In the Shrimp tribe, the hexagonal cuticle is rarely present, but the ealcareous clement of the skeleton is generally arranged in the form of eoncentric rings. In the Prawns large stellate pigment cells occur ; their skeleton is frequently shed, and

Portion of the Carapace of a small Crab, showing the granules co-cxisting with the cellular layer.
 the exuvix are interesting subjects for examination. In the Cray-fish and Lobsters, a distinct hexagonal layer, as shown at \(a\) in Fig. 254, is found; beneath


Horizontal section of the Carapace of a Lobster. a, large hexagonal cells of cuticle. b, smaller hexagons, probably calcarcous. this, there is frequently a much smaller hexagonal net-work, not uniformly diffused, but occurring in patches: some of the hexagons are so opaque as to appear like rhombohedral erystals, as seen at \(b\). If the section be taken from an unboiled lobster, a tolerably uniform blue tint will be notiecd in cvery part; but if the section be exposed to heat, the colour will change to red ; occasionally, howevcr, patches of cells, probably of
pigment, may be noticed bencath the euticular layer: When vertieal seetions of the same shell are made, the hexagonal layer may be seen at the surface, and below this, the thiek corium, exhibiting a series of parallel laminæ, crossed by vertieal strix or tubes, somewhat like those described in the eorresponding layer of Insects. The upper edge of the section always exhibits either a red or a blue structure, but in no other respect do the two layers differ. When the ealcareous matter is removed by acid, the organic basis retains all the characters of the original seetion. The shell of the large Cray-fish, Palinurus, and of the edible Crabs, prescnts somewhat similar characters ; when divided vertically, the hexagonal cutiele is found in every part, and the thiek calcareous corium is always more or less coloured on its upper surface.
A vertieal section of the shell of a large Cray-fish is represented in Fig. 255 : the upper margin is red for
fig. 255.


Vertical section of the Shell of a large Cray-fish, P'alinurus vulgaris. about the space of \(\frac{1}{40}\) of an ineh, the remainder is either transparent or of an opaque white eolour, and exhibits both vertieal and horizontal strix, with herc and there the appearanee of a large column or tube passing through all the layers; the vertieal striæ are considered to be tubes, the horizontal ones lines of growth; the pigmental layer differs very slightly except in colour from the deeper portion of the section, and not unfrequently is the thieker of the two. Horizontal sections of the
shell of the edible Crab, Cancer pagurus, when rendered sufficiently thin to be transparent by grinding away the under layer only, always exhibit a series of white tubercles, slightly elevated above an hexagonal groundwork of a pink colour. The tubercles are composed of a semi-opaque granular substance, and are evidently raised portions of the corium : they exhibit two or more concentric bands having both circular and radiating markings like those of vertical sections of the Cray-fish. On the circumfercnce of the tubercles there are elongated cells arranged in the form of radii, whilst all the spaces between the tubercles exhibit hexagonal cells of equal size, as shown in Fig. 256; they arc similar to those forming the cuticular layer in the Cray-fish and Lobster, but their walls are rather thịcker. Beneath


Horizontal section of Shell of the common Crab. a, portion of tuberelc. \(b\), sadiated cells on margin of the tubercle. \(c\), hexayonal cells of cuticular layer. the hexagonal cells, and in some cases appearing within them, there are in certain situations a series of granules arranged somewhat in a hexagonal form without any cellwall around them, as shown at B , Fig. 257, but in other parts, where the granules are less diffused, the ccll-walls are apparent. A uniform red tint will be found to pervade every part of the section except the tubercles, upon which there are no hexagonal cells. The ends of the chelac, or large claws of the Crab, are quite
black: upon these, few tubereles oceur; the eolouring matter is extensively diffused throughout the upper layers of the cortum, and is of a dark brown colour,

\section*{fig. 257.}

A


A, portion of the cuticular layer of the common crab magnified 250 diameters. 13, grannles arranged in hexagons magnified 500 diameters. being blaeker around the base of the tubercles than in any other parts. Horizontal seetions of the large elaws of Crabs and Lobsters exhibit the charaeters of the shell better than any other parts: in them a distinetly tubular structure is evident; the tubes measure on an average \(\frac{1}{12000}\) of an inch in diameter, and run from the inner to the outer surfaee of the shell; they are erossed by eoncentric lines, whieh, like those of the shell, probably indicate suecessive stages of growth; and in some specimens, as shown in Fig. 258, there is an appearance as if some of them gave off transverse branehes. When eut at right angles to their length, as shown in Fig. 259, they present a eentral cavity precisely like tubes of dentine, to which they were compared by Dr. Carpenter, who was the first to deseribe them : the prineipal points of difference between these and dentinal tubes are, that in the former the size of the tube diminishes as it proceeds from the eentre towards the circumference of the tooth, and terminates in a series
of branehes; whereas in the latter they are of the same size throughout. Tubuli, as before stated, exist in nearly all parts of the shell of the higher Crustacea, but in no


Branching of Tubulisseen in a transverse sectiou of a large Claw of a Crab.
fig. 259.


Tubes of the Claw of a Crab divided transversely. situation can they be so well seen as in the black portion of the large Claws, as in them the intertubular tissue is more transparent than in the shell itself.

The claws of the King Crab, Limulus Polypliemus, when divided transversely, exhibit a structure very like that of a Lobster or Cray-fish deprived of its earthy matter; the colouring material, which is brown, is eonfined to an outer layer, as shown in Fig. 260, but the entire thickness of the seetion is traversed by large tubes, some of which occur at eertain regular distances; others, near the pointed extremity, are more abundant, and, as shown at \(a a\), hang loose in the cavity oecupied by the museular substance of the animal: a similar tubular strueture may be observed in the horny extremity of the large claws of the Cray-fish, and of the Land Crab of the West Indies, but they bear no relation whatever to the smaller tubes oecurring in the ealeareous portions of the shell : some of them appear like hairs.

The shells of Crustaeea, unlike those of the Mollusca, do not keep pace with the growth of the animal, but are
oecasionally shed: this happens generally once a year in the Crabs and Lobsters, and also in the little freshwater Cray-fish. The old shell splits down the back, and with it all the euticular parts, even of the stomach, are cast off: but prior to the removal of the old shell, a

FIG. 260.


Transverse section of a Claw of a King Crab, Limulus Polypheimus. a a, tubuli passing through both layers of the section. new one has been developed, as may be seen in a series of preparations of the Cray-fish in the Museum. In Crabs, there are oeeasional exceptions to this annual shedding of shell: upon a Crab lately sent to the Museum, are several oysters, whieh from their size must be at least . three years old, whieh prove that during their habitation upon the shell, it could not have been changed. In the first volume of the Histological Catalogue, I have deseribed the strueture of the new shell of the Cray-fish, and to that work I would refer those who may be further interested in the

The next great class of Artieulated animals is the Cirrhipedia, which eonsists of those remarkable animals termed Barnucles, formerly regarded as Mollusea. The class is divided into two principal groups, viz. : Pedunculate and Sessilia, names derived from their mode of attaching themselves to forcign bodies; the first are usually termed Lepadid \(x\), and are provided with a long
fleshy peduncle or foot-stalk for this purpose, whilst the second, or Balanida, are attached at once by an expanded shelly basis.

The animals themselves are imperfectly divided into segments, and from every segment a pair of short fect arises, from each of which, two, long, jointed, flabelliform appendages or cirrli are given off. The eirrhi are furnished with eilia, and by their motion, both food and fresh water are brought to the animal. The skeleton is a strictly dermal one, and is eomposed of many pieees or valves; in the Pedunculated tribes or Lepadida, which attach themselves generally to floating bodies, such as ships' bottoms and logs of timber, the shell, in most speeies, consists essentially of two valves, somewhat like those of a Mussel, and of certain aecessory pieces. In the eommon Goose Barnaele, Lepas anatifera, there are five valves in the capitulum, or that part supported by the pedunele; the two largest being named by Mr. Darwin, Scuta, the next two Terga, and the fifth, a single one, termed the Carina, or "keel valve." The pedunele in this species is soft and naked, and is oceasionally two feet in length; it is, however, eapable of being shortened by muscular contraction.

In the genus Pollicipes, according to Mr. Darwin, the valves vary from eighteen to a hundred in number, as shown in Fig. 261, and the peduncle, whieh is short, is covered with calcified scales, varying slightly in shape and arrangement in the different species. The valves of the Pedunculata are always more or less strongly
marked with curved lines, indicating the successive
fig. 261.
 stages of growth; but when sections are examined microscopically, no trace of prismatic or cellular structure is evident. The most remarkable character exhibited by every specimen I have yet examined, is the presence of wavy tubuli, which generally occur at certain regular distances apart. In a horizontal section of a valve of a Pollicipes, given to me as \(P\). villosus, they present the appearance shown in Fig. 262. They are about \(\frac{1}{25}\) th of an inch distant from each other, and the shelly matter surrounding them is more transparent than it is in other parts. The direction of the tubuli is always opposite or at right angles to that of the lines pig. 262. of growth; but it is very difficult to


Horizontal seetion of valve of Pollicipes villosus, showing tubuli. trace them through their entire course.

In the Balanide, or sessile group, the shell is sufficiently large to contain the entire animal; it is composed of twelve conical plates, or valves, six of which, as shown at \(a\), in Fig. 263, are thicker than the rest, and placed with their bases below and apices above; the other six are thinner, and their bases form the principal part of the mouth,
whilst their apiees reaeh nearly to the eommon base of the shell. All these plates are erossed by transverse markings, whieh indicate the sueeessive stages of growth, and are most evident in the valves forming the principal part of the base of the shell. Some Barnacles have the base of the shell covered by shelly matter; to these the generic name Balanus has been given; they generally attach themselves to wood and stone, whilst others have no solid base, and are most eommonly found on living animals, especially the Whale; to such the name Coronula has been applied. The mouth of the shell is closed by an opereulum, consisting of two or four triangular plates attached to the soft parts of the animal. The plates are moveable one upon the other, and readily
fig. 263.

a, entire shell of a Balanus, showing the two sets of plates; \(b\), portion of the base of a Coronula, exhibiting the eaneellated structure. admit the cirrhi to pass out through a slit-like orifiee between them; although when brought together, they eompletely elose the shell.

When divided transversely, the shell is found to be composed of two layers between which a eancellated structure, as shown at \(b\), in Fig. 263, exists; the solid parts never exhibit the least trace of prismatie or of cellular tissue, but always present more or less of a granular appearance ;
and, however much the shelly matter may be involuted to form the cancellated structure, I have always been able, in some part or other, to detect a series of tubuli passing through it. The tubuli are well seen in a horizontal section of the base of one of the large valves of Balanus tintinnabulum, as shown in
fig. 264.


Horizontal section of the base of a large valve of Balanus tintinnabulum, exhibiting branching tubuli passing through the eancellated structure. Fig. 264. One margin of this section exhibits a laminated arrangement of the shell tissue, but on the other, there are a series of small involutions of the laminæ, and through the centre of each, a branching tube passes; four of these tubes are represented in Fig. 264. They all commence on the outer surface of the valves, and pass inwards; the shell tissue around them is very often as transparent as that shown in the figure: in this particular the tubes correspond with those of Pollicipes, before described.
Several species of Barnacles attach themselves to the skin of Whales ; they are principally Coromula, and they sometimes attain a diameter of three or four inches: the shell is always flattened, and has a cancellated base : imbedded in the skin of the whalc is also frequently found another Cirrhiped, termed Tubicinella: it is of cylindrical form, and, as it increases in length, it descends lower and lower into the skin: its entire
surfacc is strongly ribbed and marked with transverse lines of growth. In the genus Otion, the shell is rudimentary, consisting of two small valves, the remainder of the tegument being composed of a material resembling horn or cartilage, or like that which joins the different valves in some of the Pedunculata.

The last and most highly organized class of the Articulata is known as Arachenida; in it are included the Spiders, Scorpions, and Mites, which differ from Insects in having eight legs; and instead of the body being dividcd into three parts, viz.: head, thorax, and abdomen, as in Insects, the two first, in the Arachnida, are joincd together, and have received the name of ceplalo-thorax: to it, the legs are articulated.

The Arachnida are divided into two orders: Trachearia and Pulmonaria, so named from the structurc of their organs of eirculation and respiration : in the first, which includes the Mites, there are trachce, as in Insects, but no distinct vascular apparatus; in the second, on the contrary, there are pulmonary cavities, and a wcll-developed cireulating system. The skeleton of the Trachearia requires only a brief notiec ; it rarely exhibits any tracc of the hexagonal structurc so common in Insects, but appears to be composed prineipally of a fibrous tissue: such is its condition in the Sarcoptes scabiei, or Itch insect; and in the Demodex folliculorum, a parasite infesting the sebaccous follieles of the human skin.

In the Pllmomaria, on the contrary, the skeleton is
in some spccies very dense. In the Scorpions, and in the cephalic portions of the larger Spiders, it is as thick and horny as in Beetles, but in the abdomen of the latter it is comparatively soft. When the cephalothorax of a Spider is divided vertically, it will be found to consist of a series of laminæ, the superficial layer being of a darker colour than the rest: these layers in some species are traversed by stout hairs. The free surfacc exhibits every here and there a hexagonal structure, but the hairs are often so numerous as to obscure the view : horizontal sections, under a power of 250 diameters, show that the horny matter has a minutely granular appearance. The abdomen is composed of a beautiful wavy fibrous structure, with short stout hairs projecting from them; in some of the large Bird-catching spiders the form of these hairs is extremely beautiful, as has been shown by Mr. Shadbolt.

Thc Skeleton of the Scorpions is very dense, and is said to be composed of chitine, as in Insects : vertical sections of the mandibles exhibit a series of laminæ of a brown colour; these are traversed by tubes precisely in the same way as the corresponding parts of the Centipede, Fig. 246; some of the tubes resemble abortive hairs, they never appear above the surface. All the other parts of the body are made up of a thinner and softer matcrial, and an outer colourcd layer can be readily separatcd from a decper one; the former exhibits the hexagonal structure as in insects, but it is not so well-marked as in the Centipedes, whilst
the latter is white and minutely granular. By the employment of reagents I have failed to detect any trace of a calcareous strengthening ingredient, as occurs in some of the Iulidæ.

I have now, Gentlemen, in conclusion, to thank you for the kind and patient attention with which these Lectures have been honoured. The minute structure of the skeleton of Invertebrate Animals is a new subject, and one which has never before, I believe, occupied an entire course of Lectures; I must therefore crave your indulgence if I have failed in making it as intelligible as I could have wished. I can only assure you, that I have learnt more of the secret workings of Nature from its investigation than from any other subject which has engaged my attention. In the hope, therefore, that you also may have derived at least some interest, if not instruction, from the numerous facts that have been, not only orally, but visually, brought forward, I bid you farewell.

\section*{I N D E X .}

\section*{A.}

Abranchiata, 380.
Acalephæ, skeleton of, 186.
Acarus folliculorum, 404.
Achnanthes, 51.
Actinia, skeleton of, \(154,155\).
--, spicula of, 156 .
Actinocyclus, 61, 73.
Actinophrys, 106.
Agates Moss, 39.
Alcyonella staguorum, 184.
Aleyonidæ, 144.
Alcyonium digitatum, 144.
-, spicula of, 146
Alecto, 198.
Algæ, classification of, 42.
Amœba, 107.
Ammonites, 355.
Amphitetras, 54.
Anguinaria spatulata, 143, 177, 259.

Annelida, skeleton of, 377.
Anomia, shell of, 307.
Autennæ of Melolontha, 388.
Anthozoa, skeleton of, 113.
Autipathes, 124.
Aphrodita, 379.
Aptychus, 355.
Arachnida, skeleton of, 404.
Arachnoidiscus, 73, 76.
Argonaut, skeleton of, 343, 370.
Aristotle, lantern of, 216, 231.
Articulata, skcleton of, 371.
Ascidians, 263.
Asterias rubens, 208.

Asteroida, skeleton of, 123.
Atolls, 166.
Atrypa, 293.
Avicula margaritifera, 300.

\section*{B.}

Baculites, 354 .
Balanidæ, shell of, 401.
Barnacles, shell of, 402.
Barbadoes earth, 70.
Belemnite, guard of, 349 .
—, muscular fibres of, 351.
, skeleton of, 345.
Belemnoteuthis, 346.
Berg-mehl, 63.
Bermuda earth, 63
Beroe, 190.
Biddulphia, 55.
Bird's-head processes, 181.
Boring shells, 357.
Botryllidæ, 261, 264.
Bowerbankia, 257.
Brachiopoda, skeleton of, 284.
Bryozoa, skeleton of, 257.
Buccinum, tongue of, 330.
Bulla, gizzard of, 359.
Byssus of shells, 310 .

\section*{C.}

Calamary, skeleton of, 338.
Campanularia, 120.
Campylodiscus, 65.
Carinaria, shell of, 332.
Celloporidæ, skeletou of, 178 .

Cellularia ciliata, 131.
Cellulose, 252, 267.
Cephalopoda, skeleton of, 336.
Cestum veneris, 190.
Chalk flints, 38.
——, structure of, 80.
Chara, skeleton of, 172.
Chitine, 386, 405.
Chiton, shell of, 322.
Cidaris, shell of, 216.
-, spines of, 219, 225.
Cilia in sponges, 12 .
Cilio-brachiata, 175.
Cilio-grada, 190.
Circulation in sponges, 12.
Cirrli of Echinoderms, 243.
Cirrhi-grada, 192.
, of Star-fishes, 244.
Cirrhipedia, skeleton of, 399.
Cleidotherus chamoides, 306.
Clio borealis, 384.
Coach-spring shell, 285.
Coleoptera, skeleton of, 387, 389.
Comatula, 197.
Compound Tunicata, 264.
Conchifera, shell of, 207.
Conjugation of Desmidieæ, 44
Coral, cellular structure of, 173.
——reefs, 162.
—, repair of, 166.
——, skeleton of, 158. tubes in, 153.
Corallines, skeleton of, 9, 168.
Corallium rubrum, 127, 129.
Cordylophora, 186.
Coronula, shell of, 402.
Coscinodiscus, 61, 75.
Crabs, shell of, 396.
Cray-fish, shell of, 394.
Crenatula, 297.
Crinoidex, skeleton of, 196.
Crust of Gorgoniæ, 128.
Crustacea, skeleton of, 391.
Crystalline structure of shell, 304.
Cucumaria, 238.
Cuticle of Deutzia, 9.
- Equisetum, 7.
- Rice-husk, 8.
- Wheat, 8

Cuttle-fish bone, 339.
——, skeleton of, 338 .

Cyanæa, skeleton of, 188.
Cydippe, 190.
Cypræa, shell of, 316, 329.
-, tongue of, 331.

\section*{D.}

Daphnia pulex, 392.
Delos sand, 83.
Desmidieæ, skeleton of, 43.
-, conjugation of, 44.
Diatoma, 49.
Diatomaceæ, fossil, 61.
-, recent, 46.
——, skelcton of, 40.
Dibranchiata, skeleton of, 337 .
Dictyochalix pumiceus, 17.
Dimyaria, 308.
Doris, skeleton of, 313.
Dorsibranchiata, 373.
Dragon-fly, fossil, 391.
Dysidea, 27.

\section*{E.}

Earths, infusorial, 62.
Echinidæ, 213.
Echinocyamus, shell of, 234.
Echinodermata, 195.
Echinus, cirrhi of, 245.
-, repair of spines, 228.
- , spines of, 220.
——, teeth of, 232, 234.
Egg shell of ostrich, 205.
Encrinites, 200.
Encrinital marble, 203.
Entomostraca, skeleton of, 391.
Entozoa, skeleton of, 372.
Epidermis of Mussel, 302.
-_, structure of, 328.
- Trigonia, 303.

Equisetum, cuticle of, 7.
Eschara cervicornis, 260.

\section*{F.}

Flints, chalk, 38.
Flustra, skeleton of, 179.
Foraminifera, 77.
-, method of mounting, 85 .

Fossil inscets, 390.
- sponges, 38.
rivactures, repair of, 143.
Fresh-water Zoophytes, 184.
Fungiæ, skeleton of, 185.

\section*{G.}

Gasteropoda, shell of, 311.
Gemmules of Pachymatisina, 31.
- Sponges, 28.
- Spongilla, 28.
- Tethea, 32.

Gizzard of Bulla, 359.
Goose Barnacle, 400.
Gorgonia Americana, 124.
-_, axis of, 141.
- , crust of, 128.
- elongata, 132.
-_, flabellum, 123.
- petechialis, 124.
-, spicula of, 131.
- spiralis, 126.
- umbraculum, 131.

Gorgoniad \(x\), skeleton of, 123.
Grantia, spicula of, \(15,26\).
Growth of sponges, 33 .
Guano, 66.
Guard of Belemnite, 349 .

\section*{H.}

Halichondria, skeleton of, 14 .
- , spicula of, 16 .

Haliotis, shell of, 279, 320.
Hamites, 354.
Helianthoida, skeleton of, 154.
Hercules Bectle, 389.
Hidröus, skeleton of, 387.
Holothuria, cirrhi of, 243 ,
-, skeleton of, 240.
Holothuriadæ, 236.
Horny skeleton of Sponge, 14.
Hyalæa, shell of, 335.
Hydra, 115.
Hydraform Zoophytes, 114.
Hydroida, 114.
Hyppocrepia, skelston of, 175, 18.1.

\section*{I.}

Infusoria, development of, 100 .
\(\longrightarrow\), skeleton of, 98,111 .
Infusorial earth, Barbadoes, 70.
——, Santa Fiora, 72.
Insects, classification of, 385 .
-_, fossil, 390.
-, skeleton of, 385.
Iridescence of shell, 280.
Isis hippuris, 123, 128.
Istlımia, 53.
Itch insect, 404.
Iulus, skeleton of, 382 .
\[
\mathrm{J}
\]

Jutland slate, 63.

\section*{K.}

King Crab, shell of, 398.

\section*{L.}

Lagoon, 162.
Lamellibranchiata, shell of, 294.
Lantern of Aristotle, 216, 231.
Leech, teeth of, 380 .
Lepas, shell of, 400.
Lepralia, 178.
Ligament of shell, 309.
Lima scabra, 298.
Lingula, shell of, 287, 293.
Lithophyta, skeleton of, 167 .
Lobster, shell of, 394.
Loligo, skeleton of, 338.

\section*{M.}

Madreporiform tubercle, 248.
Malacostraca, skeleton of, 392.
Malleus albus, 297 .
Marginopora, 91.
Molicerta, skeleton of, 374 .
Melitæa ocracca, 126.
Mericion circulare, 50.
Method of mounting Foraminifera, 85.

Millepora, 165.
Mites, skcleton of, 404.
Mocha stones, 41.
Mollusca, skeleton of, 256 .
Monomyaria, 308.
Moss agate, 39.
Mother-of-pearl, 278, 30 l.
Mushroom Coral, 158.
Mnssel, epidermis of, 302.
-, pearls of, 360,365 .
——, shell of, 301, 304
Mya arenaria, shell of, 304.
Myriapoda, skeleton of, 382.

\section*{N.}

Nacre, 301, 320.
——, tubular structure of, 321. , structure of, 278.
Nautilus, shell of, 352.
Naviculio, 46.
Nematoidea, 373.
Nereides, 380.
Notamia Bursaria, 182, 259.
Noteus quadricornis, 376.
Nucleo-branchiata, 333.
Nudibranchiata, skeleton of, 310 , 313.

Nullipores, 168.
——, skeleton of, 9 .
Nummulites, skeleton of, 86.

\section*{0.}

Oculina rosea, 125.
Octopus, style of, 338.
Onychoteuthis, 35 l .
Oolites, structure of, 92.
Orthoceratites, 354
Operculum of Snail, 325.
- of shell, 312,
——of 'Turbo, 326.
Ophiuridæ, skeleton of, 206.
Orbitoides, 88.
Orbitolites, 88
Organ-pipe Coral, 151.
Organic basis of spicula, 147.
Otion, shell of, 404.
Ovum of Cristatella, 186.
Oyster, pearls of, 362 .
—, sholl of, 295, 299.
——, young of, 363 .

\section*{P.}

Pachymatisma, gemmules of, 31 .
Pamphagus, 108.
Parasitic syonges, 37.
Pavonaria, skeleton of, 136.
_-, spicula of, 139.
Pearl Oyster, 297, 300, 364.
Pearls, artificial, 369.
- brilliant, 567.
-_, classification of, 365 .
-, mucleus of, 368.
- , structure of, 359 .

Pedicellariæ of Asterias, 210.
——Echini, 253.
——, structure of, 251.
Pennatulidæ, 132.
Pennatula grisea, 138.
——phosphorea, 134.
——, spicula of, 138.
Pentacrinus Europæus, 198.
Pentacrinite, 199.
Pentagonaster, 210.
Perforation of Terebratula, 288.
Periostracum, 328.
——of shell, 283.
Perna ephippium, 296.
Pholas, shell of, 357.
- crispata, shell of, 306.

Phyllosomæ, 393.
Physalia pelagica, 191.
Physograda, skeleton of, 191.
Pinna, shell of, 269, 271.
Pisolite, 93.
Plants, silica in, 6.
—, skeleton of, 6 .
Pleurosigma, 58.
Pollicipes, 400.
Polygastrica, development of, 100.
\(\longrightarrow\), skeleton of, \(98,111\).
Polype, fresh-water, 115.
Polystomella, 77.
Polythalamia, skcleton of, 77.
Polyzoa, 113.
- skeleton of, 175.

Poriphera, skeleton of, 11.
Porpita, 187, 192.
Portuna, carapaco of, 393.
Prisms of sliell, 273.
Protcus, 107.
Pteropoda, skelcton of, 33.4.
Pulmograda, 187.

\section*{R.}

Red coral, spicula of, 130.
Reefs, nature of, 162.
Renilla Americana, 134.
Repair of Corals, 161, 166.
Retepora Beaniana, 183.
Rhizopoda, 79.
Rice shell, 276.
Richmond earth, (il.
Rotalia, skeleton of, 85 .
Rotifera, skeleton of, 373 .
Rotten stone, 62.

\section*{S.}

Salpæ, 261.
Sand-canal of Star-fishes, 248.
Sand, Delos, 83.
Schulze, apparatus of, 101.
Scolopendra, 382.
——, skeleton of, 383.
Sea-nettles, 186.
Sea-pens, skeleton of, 132.
Sea-rush, 145.
Sepia officinalis, 339.
Sepiostaire, 339.
Serpula, shell of, 378.
Sertularia, 121.
Shell, Brachiopoda, 284.
—_, cellular structure of, 269 , 271.
-, Chiton, 324.
——Conchifera, 267.
——, Crabs, 393.
-, Crayfish, 395.
——, Cypræa, 316.
——, Echinidæ, 217.
——, Gasteropoda, 311.
——, growth of, 360 .
—, Haliotis, 279.
——, iridescence of, 280.
-, Lepadidæ, 400.
-, ligament of, 309.
——, Lingula, 287.
-, Lobster, 384.
-, Magilus, 319.
-_, Mussel, 301, 304.
\(\longrightarrow\), byssus of, 310 .
-, nacre of, 278, 301, 320 .
——, Nudibranchiata, 313.

Shell, operculum of, 312,324.
——of Oyster, 295, 299 .
——, Pearl Oyster, 297, 300, 364.
—, periostracum of, 283.
——, Pinna, 269, 271.
-, Pollicipes, 400.
—, prisms of, 273.
-, repair of, 370.
-, Rice, 276.
\(\longrightarrow\) Shrimp, 394.
——, Slug, 268.
——, Snail, 315.
—, Spirifer, 280.
——, Spirula, 343.
——, Terebratulæ, 284.
-, Trochus, 319.
_, tubular structure of, 271.
Shepherd's Purse coralline, \(18 \%\).
Silica in Plants, 6.
Siliceous Sponge, 17.
Sipunculæ, 254.
Skeleton of A branchiata, 380.
- Acalephæ, 186.
- Actiniæ, 154.
- Alcyonella stagnorum, 184.
- Alcyouium, 144.
- Ammonites, 355.
- Annelida, 377.
- Arachnida, 404.
- Articulata, 371.
- Asteriadæ, 208.
- Belemnites, 345.
- Brachiopoda, 284.
- Bryozoa, 257.
- Celleporidæ, 178.
- Cephalopoda, 336.
- Chara, 10, 172.
- Cirrhipedia, 399.
- Coleoptera, 385, 389.
- components of, 4 .
- Corallines, 168.
- Corals, 158.
- Crinoideæ, 196.
- Crustacea, 391.
- Cuttle-fish, 338.
, definition of, 3.
- Dosmidieæ, 43.
- Diatomaceæ, 46.
- Echinidx, 213.
- Echinodermata, 195
- Entomostraca, 391.

\section*{412}

Skeleton of Entozon, 372.
- Equisetum, 7.
- Fungiæ, 158.
- Gorgoniadæ, 123.
- Heteropoda, 332.
- Holothuriadæ, 236.
- Infusoria, 98.
—— Insecta, 385.
- Lithophytes, 9, 187.
- Loligo, 338.
- Malacostraca, 392.
- Melicerta, 374.
- Mollusca, 256.
- Myriapoda, 382.
- Nautilus, 352.
- Nudibranchiata, 313.
- Nummulites, 86.
- Octopus, 338.
- Ophiuxidæ, 206.
- Orthoceratite, 354.
- Pavonaria, 136.

Pedunculata, 400.
Physograda, 191.
Plants, 6.
- Polygastrica, 98.
- Polyzoa, 175.
- Porpita, 192.
- Pteropoda, 334.
- Pulmonata, 315.
- Rotalia, 85.
- Rotifera, 373.
- Scorpion, 405.
- Sea-pens, 132.
- Sea-rush, 145.
- Sessilia, 401.
- Slug, 268, 315.
- Snail, 315, 325, 361.
- Spiders, 404.
- Spirula, 343.
- Sponges, 11.
—— Tubicolæ, 377.
- Tunicata, 260.
- Xenia, 149.

Slug, shell of, 268, 315.
Snail, shell of, 315 .
-, operculum of, 325.
Spatangus, 215.
Spicula of Actinia, 150.
- Alcyonium, 146.
-, bi-acerate, 19.
—, bi-curvate, 26.

Spicula, bi-rotulate, 28
- Boltenia, 204.
- branched, 23.
- conical, 21.
- curved, 25.
- cyliudrical, 20.
- Dictyochalix, 17.
- expando-binate, 22.
- Gorgoniæ, 131.
- Grantia, 15.
- Holoth urim, 240.
- Pavonaria, 139.
- Pennatulæ, 138.
- Red Coral, 130.
- spinulate, 20.
- Sponges, 14.
- stellate, 27.
- Synapta, 242.
- tri-radiate, 20.
- tuberculated, 23. Tunicata, 264.
Spines of Cidaris, 225, 219.
- Echinus, 220.
——, repair of, 228.
- Star-fishes, 211.

Spirifer, shell of, 280.
Spirula, shell of, 343 .
Sponges, canals of, 12.
, cilia in, 12.
- fossil, 38.
- , gemmules of, 28.
-, growth of, 33.
——, horny skeleton of, 14.
-- parasitic, 37.
——, skeleton of, 11.
- , spicula of, 14.

Spougia fistularis, 39.
Spongilla fluviatilis, 16. gemmules of, 28.
variety of, 30 .
St. Cuthbert's beads, 200.
Style of Octopus, 338.

\section*{T.}

Tceth of Echini, 232, 234.
- Lecches, 380.

Tercbratula, arms of, 285.
——, shell of, 284.
——, tubular structure of, 288.

Teredo, shell of, 358.
Test objects, 58.
Tethea, gemmules of, 32.
Tetrabranchiata, skeleton of, 337, 351.

Tree Oyster, 307.
Trematoda, 373.
Trepang, 239.
Triceratium, 52.
Trochus, 320.
Tongue of Buccinum, 330 .
- Carinaria, 333.

Cypræa, 331.
Tubes in Coral, 153.
——Shell, 276, 298, 321.
Tubicinella, shell of, 403.
Tubicolæ, skeleton of, 378.
Tubipora musica, 151.
Tubular structure of shell, 276, 298, 321.
Tunicata, 260.
—, compound, 264.
——, skeleton of, 264.
, spicula of, 264.
Turbo, operculum of, 326.
Turrulites, 354.

\section*{V.}

Valkeria, 258.
Velella, 193.
Verongia, fibres of, 13.
Virgularia, axis of, 139.
-_mirabile, 135.
Volvox globator, 104.
Vorticella, 110.

\section*{W.}

Whelk, tongue of, 330.

\section*{X.}

Xanthidium, 41, 94.
-, skeleton of, 6,9 .
Xenia, spicula of, 149 .

\section*{Z.}

Zoophytes, definition of, 112.
__, firesh-water, 184.
——, hydraform, 114.
__, skeleton of, 112 .

THE END.

London:
Wilson and Ooidiv, Skimer Street.

\section*{CATALOGUE}

OF

\section*{SCIENTIFIC BOOKS.}

> MEDICINE, NATURAL HISTORY, CHEMISTRY AND MATHEMATICS.

\section*{AMERICAN, FRENCH AND GERMAN.}

\section*{HIPPOLYTE BAILLIEARE,} 219, REGENTSTREET, LONDON;
and
\(290, B R O A D W A Y, N E W Y O R K, \quad\) U.S.

Mr. Bailliere having lately opened a house at 290, Broadway, New York, for the sale of Scientifie
Works, begs respectfuly to state that he shall now be enabled to supply any American Books on Seience and General Literature, immediatcily after Publication, at the rate of Five Shillings the Dollar on the New York Prices.
H. B. makes up a ease for New York cvery fortnight, and laving Correspondence with most of the Scientific Men in the United States, would be glad to receive any communications for them at a small eharge.
H. B. continucs to receive a wreekly parcel from France, containing the newest Works on Science and Gemeral Literature. He hegs to aequaint his Friends and the Patrons of Gcrman Scientific Works, that he is able to furnisll German Works and Periodicals cvery Montl.
J. B. B A ILLI立RE,

HIIRAIIE, RUEHAUTEFEUIELE, PAIESS,

> C. BAILLY BAILLIÈRE,

\section*{MEDICINE.}

AUBER, Traité de la seicnee médieale (Histoire et Dogmes) eomprenant un préeis de méthodologie, ou de médecine préparatoire; nn résumé de l'lhistoire de la médeeinc ; un exposé des prineipes généraux de la seience médieale, \&e. Svo. Paris, 1853

BARITHEZ ET RLLLIET, Traité elinique et pratique des maladies des enfants. 2nd Edition, Sro. 3 vols. Paris, 1853
BAZIN, Reeherehes sur la nature et le traitement des Teigues. Svo. 3 plates, Paris, 1853

030
BAUMES, Préeis théoriqne et pratiqne sur lies Diathèses. Svo. Paris, \(1853^{\circ}\)
BECLARD, Elémens d'anatomie générale, deseription de tous les tissus, ou systèmes organiques qui eomposent le eorps humain. 3rd Edition, 8vo. Paris, 1852
BECK, Elements of Medieal Jnrisprudence. 10th Edition, 8vo. 2 vols. Albany, 1850
\(0 \quad 80\)
440
BECQUEREL, Des elimats et de l'inflnenee qn'exereent les sols boisés et non-boisés. Svo. 2 plates, Paris, 1853

070
BERAUD, Manuel de physiologie de l'homme et des principaux vertèbres. Revu par M. Ch. Robin. 12mo. Paris, 1853

080
BERNARD (ClaUDE), Nouvelle fonetion du foie, considéré eomine organe produetenr de matière snerée, chez l'homme et les animaux. 4to. Paris, 1853
BIGELOW, Reeherehes sur les ealeuls de la vessie et sur leur analyse mierochimique. 4to. and atlas folio of 8 plates, Paris, 1852.
BONNET, Traité de thérapeutique des maladies artieulaires. 8 vo . with 97 woodents. Paris, 1853

036
\(0 \quad 70\)

BROWN-SEQUARD, Experimental researehes applied to physiology and pathology. Svo. New York, 1853

090

BRUNS, Handbueh der praktisehen Chirmrgie für Aerzte und Wundärzte. Sro. Iste Abtheilung (Lief. 1-2), Tïbingen, 1853

To be divided under two heads: Handbneh der praktisehen Chirurgie and, Specielle Chirurgie. To be eompleted in 16 parts or 8 vols. The text ean be had without the atlas.
——Chingiseher Atlas, Bildliehe Darstellung der ehirurgisehen Krankheiten und der zu ihrer Heilung erforderliehen Instrumente, Baudagen und Operationen. Fol., part 1, 8 plates, Tübingen, 1853

To be completed in 16 parts.
BULLETIN de la Société de ehirurgie de Paris 1852-53. Vol. 3. Sro.
CANSTATT, Die specielle Pathologie und Therapie vom klinisehen Standpunete aus bearbeitet. 8vo. Vol. I-III., 1841-16

070
0 \& 0

CHATLLY-HONORE, Traité pratique de l'art des aeconchements. Svo. 3rd Edition, with 275 illustrations, Paris, 1853

0100
COMFORT, The practice of medeeine on Thompsonian prineiples. 4th Edition, 8vo. Philadelphia, 1853 .
COMPTES RENDUS des séanees et mémoires de la Société de biologie. Ie serie. Svo. Vols. I.-IV. Paris, 184.9-53

0150

CREDE, Klinisehe Vorträge über Geburtshülfe. Sro. Vol. 1, Berlin. 1853 (Vol. II. To be paid for in advanee)

1120

CROCQ, Traité des tumeurs blanehes des artieulations. Svo. avee 10 planehes, Brnxelles, 1853

0140

DEBOUTTEVILLE ET PARCHAPPE, Notiee statistique sur l'asile des aliénés de la Seine-Inféricure (Maison de Saint-Ponde Ronen) pour la période eomprise entre le 11 juillet, 1825 , et le 31 déeembre, 1 sti3. Svo. Ronen, 1845

DUGAT', Etudes sur le traité de médecine d'Abou-Djafar-Ah'mad. Svo. Paris, 1853
£ s
DUNGLISON, Medieal Lexieon, a dietionary of Medieal Science. Svo. 9th Edition, Philadelphia, 1552
DVORJAK, Mémoire sur le développement, les eauses et le traitement du choléra. 8vo. St. Petersburg, 184.8
\(0 \quad 26\)
140
020
EDOUARD-ROBIN, Mode d'action des anesthésiques par inspiration. Svo. Paris, 1852

020
FEIGEL, Chirurgische Bilder zur Instrumenten- und Operationslehre auf dreiundaehtzig Steintafeln gezeiehnet, und mit erklärendem Texte versehen. Svo. and atlas fol. Würzburg
FILHOL, Eaux minérales des Pyrénées. Reeherehes sur leur action thérapeutique, \&e. 12 mo . Paris, 1853.

3120
FORSTER, Lehrbueh der pathologischen Anatomic. 8vo. 2nd Edition with 4 plates, Jena, 1852
FUCHS, Medizinische Geographic. Svo. 11 plates, Berlin, \(185 \dot{3}^{\circ}\)
GALE, Rapport sur le traitement de la, addressé au ministre de la guerre
par le conseil de santé des armées. Svo. Paris, 1852 . par le eonseil de santé des armées. Svo. Paris, 1852.

050
070
066
GARDNER, Report of a Committee appointed by the Aeademy of Medicine upon the comparative value of milk, formed from the slop of distilleries and other food, with eliemieal and microseopical analyses. Svo. New
\(0 \quad 16\)

010
- A History of the art of Midwifery: a lecture introductory to a course eieney and present natural incapacity of females in the practice of obstetries. 8vo. New York, 1852
GINTRAC, Cours théorique et elinique de pathologie interne et thérapic
médieale. 3 vols. Svo. Paris médicale. 3 vols. Svo. Paris, \(185{ }^{3}\)
GLUGE, Atlas of Pathologieal Histology. Translated from the German by leidy. 4to. 12 plates, containing 320 figures, plain and coloured. Philadelphia, 1853
GREEN, A treatise on discases of the air passages : eomprising an inquiry into the history. \&e., of Bronchitis, elironic Laryngitis, \&e. 3rd Edition, 8vo. 7 coloured plates, New York, 1852
GROSS, Practieal treatise on the diseases and injuries of the urinary bladder, the prostate gland, and the urethra. With 100 illustrations. Svo. Philadelphia, 185]
GUILLOT, La lesion la maladie. Svo. Paris, 1851
100
GURLT, 1)ie Anatomic des Pferdes. 8vo, and atlas fol. of 70 plates.
HAYWARD, Some account of the first use of sulphuric ether by inhalation in surgieal practice. 8vo. Boston, 1847
MENLE, Treatise on general pathology. Trauslated by Preston. 8vo.
HEUSINGER, Die sogenainte Geophagie oder Tropische (besser : Malaria)
Chlorose, als Krankheit aller Länder und Klimate. Svo. Cassell, 1852
Recherehes de pathologie comparéc. 2 vols. 4to. Cassell, 1853
HERPIN, Du pronostie et du traitement envatif de l'épilepsie, ouvrage couronné par l'Institut. Svo. Paris, 1852 eutatif de P'épilepsie, ouvrage
HIRSCHWELD ET LEVEILLEE, La nevrologie, ou description et iconographie du système nerverx et des organes des sens de l'homme, avee leurs modes de préparations. 4to. with 92 finely eoloured plates, bound,
Paris, 853
The

The same with plain plates
HUNTER, Traité de la maladie vénérienne. Traduit par Riehelot, avecdes notes et additions par Rieord. 8vo. with 9 plates. Paris, 1852\(0 \quad 90\)
JARJAVAY, Traité d'anatomie ehirurgieale, ou de l'anatomie dans sesrapports avee la pathologie externe et la médecine opératoire. 8vo.Vol. I. and II., Part 1. Paris, 18530140KOELLIKER, Handbuch der Gewebelelıe des Mensehen. Für ^erzteund Studirende. 8vo. 313 euts, Leipzig, 18520136KOCH, Ein Bliek auf die wissensehaftlienen Riehtungen in der heutigenMedizin. 8vo. St. Petersburg, 1849\(\begin{array}{ll}0 & 4\end{array} 0\)
LACAUCHIE, Traité d'hydrotomie, ou des injections d'eau coutinués dans les reeherehes anatomiques. 8vo. 6 plates, 1853 ..... 040
LECOQ, REY, \&e. Dietionnaire général de médeeine et de ehirurgie vétérinaires, et des séauees qui s'y rattaehent. 8vo. Lyou, 1850 ..... 0190
LEHMANN, Lehrbueh der physiologisehen Chemie. Svo. 2nd Edition,vols. 1, 2 and 3 part 1120
LEREBOULLETT, Mémoire sur la strueture intime du foie, et sur la naturede l'altération eonnue sous le nom de foie gras, with 4 eoloured plates,4to. Paris, 1853070
LOUIS, Pathologieal Researehes on Phthisis. Translated from the Freneh by C. Cowan, Svo. 1836 ..... 0 \& 0
LOEWIG, Principles of Organie and Physiologieal Chemistry. Translated by Breed. 8vo. Philadelphia, 1853 ..... 0176LUDWIG, Seriptores Neurologiei Minores Selecti sive opera Minora adAnatomiam Physiologiam et Pathologiam Nervoruñ speetantia. 4to. 4.vols. 27 plates, Lipsæ, 1791-953100
—— Lehrbuch der Physiologie des Mensehen. 8vo. Vol. 1, part I (Phy- siologie der Atome, der Aggregatzustände der Nerven und Muskeln), Heidelberg, 1852 ..... 0100
LUSCHKA, Der Nervus Phrenieus des Mensehen. Eine Monographie. 4to. 3 plates, Tübingen, 1853 ..... 070MATTEUCCI, Traité des phénomènes eleetro-physiologiques des amimaux,suivi d'études anatomiques sur le système nerveux et sur l'organeéleetrique de la 'Torpille. Svo. 6 plates, Paris, 18440 \& 0
MAZONN, Zur Pathologie der Bright'sehen Krankheit. Svo. figures, Kiew, 1851 ..... \(0 \quad 50\)
MEYER (Dr. Ignaz), Compendium der Augenheilkunde. 8vo. Wien, 1852.MOREL, Etudes eliniques-Traité théorique et pratique des maladiesmentales eonsidérées dans leur traitement et dans leur rapport avee lamédeeine légale des aliénés. 8vo. Vols. 1 and 2, with plates, Paris,1852-530160
MORISON, Cases of Mental Disease, with praetieal observations on the medieal treatmeut. Svo. 2 plates, London, 1828 ..... 060
OESTERLEN, Medeeinisehe Logik. Svo. T'übingen, 1852 ..... 0100
PARCHAPPE, Des prineipes à suivre dans la fondatiou et la eonstruetion des asiles d'aliénés. 8vo. 5 parts, with 4 plates, Paris, 1852-53 ..... 0150
PIGNE, On Inflammation and its ennsequences. 8vo. New York, 1849 ..... 010QUISSAC, De l'abus des bains de mer, de leur danger, des eas où ilseonviennent. Svo. Paris, 1853\(0 \quad 26\)RICORD, Illustrations of Syphilitie Disease. Translated from the Frenehby Betton. 4to, with 50 finely eoloured plates, Philadelphia, 1851\(5 \quad 50\)
RITGGEN, Das Alterswidrig gebaute Frauenbeeken, nebst einer ständigeuBuehstabenbezeichnung der Beekennaaasse. Svo. Giessen, 1853
ROBIN, Histoire naturelle des végétaux parasites qui eroissent sur l'hommeet sur les animaux vivants. 8vo. and atlas of 15 plates, some coloured,
\(\mathfrak{f} s d\)
ROBIN ex VERDEIL, Traité de chinie anatomique et physiologiquenormale et pathologique, ou des prineipes immédiats normaux et morbidesqui constituent le corps de l'homme et des mammifères. 3 vols. 8vo. andatlas of 49 plates, Paris, 18531160RODENBERG, Mémoire et observations sur l'accouehement prématureartificiel. Svo. Paris, 1852\(0 \quad 16\)
ROTHAMEL, Die Erethisien. 8vo. Cassel, 1852 ..... 0140SAUREL, Chirurgie navale ou études cliniques sur les maladies ehirurgiealesque l'on observe le plus communément à bord des bâtiments de guerre.8vo. Paris, 1853046
SCHIEFERDECKER, Short essay on the invariably successful treatmentof Cholera with Water. 8vo. Philadelphia, 1849010SERRE (D'Uzes), Essai sur les phosphènes ou anneaux lumineux de laretine, eonsidérés dans leurs rapports avec la physiologie et la pathologiede la vision, with 34 engravings. 8vo. Paris, 1853076
SICHEL, Ieonographie ophthalmologique, ou description avec figurescoloriées, des maladies de l'organe de la vue, eomprenant l'anatomiepathologique, la pathologie et, la thérapeutique médico-chirurgicale. Large4to. Parts 1 to 7, Paris, 1853 , eael partThe above work will be published in 20 livraisons, composed each of28 pages of text and 4 coloured plates, a livraison to appear every sixweeks.
- Spectaeles, their uses and abuses in long and short-sightedness,and the pathological condition resulting from their irrational employment.8vo. Boston, 18500100
SMITH, A System of Operative Surgery. 8vo. with 80 coloured platesshowing nearly 800 operations. Philadelphia, 1852
500
STAEGER, Die Cholera als Krankheit der Haut. 8vo. Mitau, 1850 ..... 036
STEVENS, On the Health of Man. Annual Address delivered before the New York State Medical Society. 8ro. Albany, 1850 ..... 010
TALMA, Mémoires sur quelques points fondamentaux de la médecinedentaire considérée dans ses applications à l'lhygiène et à la théra-peutique. 8vo. Bruxelles, 1852\(0 \quad 50\)
VALLELX, Guide du médcein practicien, ou résumé général de pathologieinterne et de thérapeutique appliquées. \(3^{\text {e édition revue, corrigée et }}\)augmentée. 5 vols. 8vo. 1853
250
VIDAL (de Cassis), Traité des maladies vénériennes. 8 vo. with 6 coloured plates. Paris, 1853
VIMONT, Traité de phrénologie, humaine et comparée. 2 vols. 4to. and atlas folio of 120 plates. Paris, 1836 (very searee)
VROLLK, Tabulæ ad illustrandam embryogenesin hominis et mammalium tam naturalem quam abnormen. 4to. with 100 plates. Ansterdam, 1844-49
800
WARREN, Surgieal Observations on Tumours with Cases and Operations. 8vo. plate. Boston, 1839
0160
WARRINGTON, The Obstetric Catcchism, containing 2347 questions and answers on obstetries proper. 12 mo . 150 illustrations, Philadelphia, 1853
WY'THES, The Physician's Pocket Dose and Symptom-Book; eontaining the doses and uses of all the prineipal articles of the Materia Mediea and ehief offieinal preparations. 12 mo . Philadelphia, 1853
YVONNEAU, De l'emploi du ehloroforme et de ses différentes applications. 8vo. Paris, 1853
\(0 \quad 4 \quad 0\)
ZEIDLER, Geburtshillieher Hand-Atlas nebst beselireibender Erklärung. sinall 4to. 6 parts (eomplete) 58 plates, Münehen, 1852026
110

\section*{NATURAL HISTORY。}

ADAMS, Contributions to Conehology. 8vo. 7849-52. New York e \& a
AGASSIZ, Fistoire naturelle des poissons d'eau donee de l'Europe Centrale. Vol. I.-Embryologie des salmones, par C. Vogt. Royal Svo. and atlas folio, Neufchatel, 1842
AMIERICAN Ethnologieal Socicty Transactions. Svo. 2 vols. New York, 1844-48
-Geologists' and Naturalists' Association 1st, 2nd, and 3rd meetings at Philadelphia, in 1840 and 1841, and Boston, 1842. Svo. with 21 plates, Boston, 1843
ANNALEN der Gesellschaft Naturforseliender Freunde. 3 vols. 4to. 1807-1812.
AUDEBERT et VIEILLOT, Histoire naturelle et générale des oiscaux dorés ou à reflets métalliques. 4to. 2 vols. 189 spleudidly coloured plates, Paris, 1802
BARKOW (J. C. L.) Monstra animalium duplicia per anatomen indagata, habito respectu ad physiologiam, medieinam forensem, ad artem obstetriciam deseripsit et iconibus illustravit cum tabulis XV. 2 vols. 4to. Lipsiæ, 1828-1835
BARTON, Compendium Floræ Philadelphieæ: containing a description of the indigenous and naturalized plants. 12mo. 2 vols. Philadelphia, 1818
BLANCHARD (Emile), Organisation du règne aumal, publiée par livraisous grand in-4, eoutenant chacune deux planches magnifiquement gravées et une feuille et demie de texte. Prix de ehaque livraison.

Six Livraisons are published.
BLAINVILLE, Manuel de Malacologie. 2 vols. Svo. avee 100 planehes, fig. noires. Paris, 1825
- Manuel d'actinologie ou de zoophytologie. 8vo. avee 100 planehes, fig. noires. Paris, 1834

200
BELANGER, Voyage aux Indes Orientales--Partie botanique, par Bory de St. Vincent. Svo. avee planehes 4to. Paris,
BRONN, Lethæa Geoguostiea, oder Abbildung und Beselıeibung der für: dic Gebirgs-Formationen bezeiehnendsten Versteinerungen. 3rd Edition, 4 vols. Svo. With 47 plates, 4to. Stuttgart, 1846

200

300
- Supplement. Part 1. 4to. 1852

070
BORN, Testacea musei Cæsarei vindebonensis. Fol. 18 plates. Vindebon, 1780

200
BONAPARTE, Conspeetus genera avium. 2 vols. royal 8vo. Lugduni Batavorum, 1850

200
BRONGNTART, Histoire de végétaux fossiles, ou recherehes botaniques et géologiques sur les végétaux reufermés dans les diverses eouelies du globe. Vol. 1. aud II. Parts 1 and 2. 4to plates, Paris, 1828

3140
BURMEIS'IER, Reise naeh Brasilien dureh die Provinzen yon Rio de Janeiro und Minas Geraes. Svo. with map and atlas fol. Berlin, 1553.
BOTANISCHE ZEITUNG, von Hugo Mohl and Schlechtendal. 1843 to 184.8. 6 vols. 4to. plates

140

CASSIN, Illustrations of the Birds of California, Texas, Oregon, British and Russian America, forming a supplement to Audubon's Birds of Ameriea. Part I. with 6 coloured plates. Pliliadelphia, 1853

050
To be empleted in 30 parts.
CALIFORNIA. Information in relation to the Geology and Topography of Califoruia. Goverument Report. 8 vo. 9 mips, Washington, \(18.50^{\circ}\)
440

COURS ELEMENTAIRE D'HISTOIRE NATURELLE, \&ec.
EDWARDS (Milne) Cours Elémentaire de Zoologie. 6th Edition, 12 mo . with 465 illustrations, Paris, 1852

060
JUSSIEU ( \(\Lambda\). de), Cours Elémentaire de Botavique. 5th Edition. 12 mo. with 812 illustrations, Paris, 1852

060
beudant, Cours Elémentaire de Minéralogie et de Géologie. 12 mo . with 392 illustrations and numerous diagrams, Paris, 1851

060
D'ORBIGNY, Cours Elémentaire de Paléontologie et de Géologie Stratigraphiques. 12mo. 2 vols. in 3, with 1046 illustrations, and an atlas of 17 tables

0150
- Prodrome de Paléontologie Stratégraphique universelle, faisant suite an Cours Elémentaire de Paléontologie. 3 vols. 12 mo . Paris, 1852

DUBREUIL, Cours Elémentaire, théorique et pratique d'Aboriculture. 12 mo . illustrated by 5 plates and 692 fig. Paris, 1851 .

REGNAULT, Cours Elémentaire de Chimie. 3rd Edition. 12 mo. 4 vols. with 2 plates and 689 fig. Paris, 1851

1 4: 0
\(0 \quad 90\)
COMTE (Achille), Strueture et physiologic animales, démontrées à l'aide de figures coloriées, déeoupées et superposées. Ouvrage rédigé sur le nouveau programme, pour la elasse de rhétorique. Paris, 1853, 12 mo . avee \(S\) planehes et figures interlacées dans le texte

100

COQUEBERT, Illustratio ieonographia inseetorum quæ in musæis Parisinis observavit et in lueem edidit J. Ch. Fabricius, præmissis ejusdem deseriptionibus aecedent speeies plurimæ, vel minus aut nondum cognitæ. Parisiis, an. viii. 1 vol. 4to. 30 eoloured plates.

60

300
COZZENS, A Geologieal History of Manhattan or New York Island. 8ro. map and coloured plates. New York, 1843
\(0 \quad 50\)
CUVIER, Ieonographie du règne animal de G. Cuvier, ou représentation d'après nature de l'une des espèees les plus remarquables, et souvent non encore figurée, de ehaque genre d'animaux, ouvrage pouvant servir d'atlas à tous les traités de zoologie; par F. E. Guérin-Méneville, avee un texte descriptif mis au courant de la seienee. 7 parties grand Svo. eomprenant 450 pl. griavées et coloriécs, avee texte descriptif, reliés en 3 vols. Paris, 1830-1844

Le même, avce planehes noires
Chacune des sept divisions qui eomposent ee bel ouvrage comprend :
1. Mammifêres, avee le portrait de G. Cuvier 53 planches
2. Oiseaux

70 "
3. Reptiles
- 30 "
4. Poissons \(\quad . \quad . \quad 70\) "
5. Mollusques et zoophytes

63 "
6. Annélides, erustreeés et araehnides : . 53 "
7. Inseetes, avee le portrait de Latreilc . . 111 ",

Dans le rapport que le Baron Cuvier a fait à l'Académie royale des Seiences, eet ouvrage est signalé comme l'un des plus utiles que l'on ait eonçus en faveur des personnes qui veulent se familiariser avec les innombrables formes de la nature vivante qui eomposent le règne animal.
DANA (J.), Crustacex (United States' expedition). 2 vols. 4to. Philadelphia, 1852-53
On Coral Reefs and Islands. Svo. euts. New York, 1853.
Sce Silliman's Journal.
D'ARCHIAC, Histoire des progrès de la géologie de 183.亡 à 1850, publiée par la Société géologique de liranee. Vols. I-1V. Svo.
Making an appendix to the "Histoire de la Céologie." Svo. Paris, 1853

DE CANDOLLE, Prodromus systematis nataralis regni vegetabilis. Vols. I-XIII. 8vo. Paris, 1824-53
DESHAYES, Traité élémentaire de eonchyliologie, avee l'applieation de eette science à la géognosie. Avec environ 100 planelıes, qui seront publiées in 20 livraisons, formant 2 vols. 8vo. Paris, 1839-52. Prix de ehaque livraison, fig. noires

15 livraisons sont en vente.
DICTIONNAIRE universel d'histoire naturelle, publié sous la direction de M. Charles d'Orbigny, par une rénnion de naturalistes.
(Le dictionnaire universel d'histoire naturelle forme 13 tomes, publiés in 25 volumes grand in-8, à deax eolonnes. 288 belles planehes, gravées sur aeier par les plus habiles artistes de Paris, représentant plus de 1,200 sujets, et destinées surtout à faciliter l'intelligenee des artieles généraux, aecompagnent les volumes. L'ouvrage est eomplet. On vend séparément le texte et les planehes.)

Prix : Texte seul, eomprenant 25 vols.

D'ORBIGNY, Paléontologie française : deseription zoologique et géologique de tous les animarux mollusques et rayonnés fossiles de Franee, eomprenant leur application à la reconnaissanee des couches, avee des figures de toutes les espèees, lithographićes d'après nature par J. Delarue. Svo. ehaque livraison

208 livraisons of the Terrains erétacés are published.
86 (to be completed in 150) livraisons of the Terrains jurassiques are published.

Il paraît, chaque mois, deax livraisons de Terrains crétacés et une livraison des Terrains jurassiques. Lorsque les Terrains erétaeés seront terminés, il paraîtra par mois trois livraisons des Terrains jurassiques. La livraison eomprend quatre planehes du texte correspondant.
DRAPIER, Dietionnaire elassique des seienees naturelles, présentant la définition, l'analyse, et l'histoire de tous les êtres qui eomposent les trois règues, leur application aux arts, \&e. 10 vols. and atlas of 200 coloured
plates. rayal Svo.

800
DUTROCHET', De la déviation deseendante et aseendante de l'aeeroissement des arbres en diamètre. 4to. 2 plates, Paris, 1835
- Mémoires pour servir à l'histoire anatomique et physiologique des végétaux et des animaux. 2 vols. Svo. aecompagnés d'un atlas de 30 planehes gravées. Paris, 1837

140
DUPONCHEL et GODART, Ieonographie et histoire naturelle des ehenilles, pour servir de complément à l'listoire naturelle des lépidoptères ou papillons de Franee, de MM. Godart et Duponehel. 2 vols. Svo. avee 92 planehes coloriées. Paris, 1846. Published at £. 4 . s . ; now redueed to
- Catalogue méthodique des lépidoptères d'Europe, distribués en familles, tribus, et genres, avee l'exposé des caractères sur lesquels ees divisions sont fondées, et l'indieation des lieux et des époques où l'on trouve elhaque espèee, pour servir de eomplément et de reetifieation à l'histoire naturelle des lépidoptères de Franee, devenue eelle des lépidoptères d'Europe par les suppléments qu'on y a ajoutés. 8vo. Paris, 18th
EASTMAN, The Ameriean Aboriginal Portfolio, illustrative of the eustoms of the Ameriean Indians. 4to. handsomely bound in eloth, with 27 fincly engraved plates, Philadelphia, 1853
SSPRR, Die Europäisehen Sehmetterlinge in Abbildnugen naeh der Natur. Mit Besehreibung. 5 Theil. in 7 Bden. Leipzig, 1829-39
£ s d
ESPER, Die ausländischen (Ausserenrop.) Schmetterlingc. I Thicil. 4to.Mit 63 Kupfertafeln, Erlangen, 1801
4. 00
4. 00

4to 4to. coloured plates, Erlangen, 1830
ERNST et ENGRAMELLE, Papillons de l'Europe, pcints d'après natnre. 8 vols. 4 to. half bound, with 250 coloured plates, Paris, 1768-91
EDWARDS, QUATREFAGES ET BLANCHARD, Recherches anatomiqnes et zoologiqnes, faites pendaut un voyage sur les côtes de la Sicile et sur divers poiuts du littoral de la France 3 vols. 4.to. avec 96 planches, dont 50 sont coloriées, Paris, 1850

1500

500
EICHWALD, Lethæa Rossica ou le monde primitif de la Russie. Liv. 1, 8vo. and atlas of 14 plates fol. Stuttgart, 1.852

0140
1160 St. Petersburg, 1852


FERUSSAC (M DE), Histoire naturelle, générale ct particulière, des mollusques, tant des espèccs qu'on tronve aujonrd'hui vivantes que des dépouilles fossiles de celles qui n'existent plus, classés d'après les caractères esseutiels que présentent ces animanx et lcurs coquilles. Par M. de Férussac, continué depuis la 29 ème livraison, par G. P. Deshaycs. Completc in 42 Parts, folio, coloured, original price £63, now reduced to ——Plain, original price, \(£ 1810 s\)., now reduced to
\[
24100
\]

FERUSSAC ET D'ORBIGNY, Histoire naturalle, générale, et particnlière des cephalopodes acétabnlifères vivants et fossiles. 2 vols. folio, coloured plates, Paris, 1835-48
FAUNE FRANCAISE, ou histoire géuéralc et particulière des animaux qui sc tronvent en France, coustamment ou passagèrement à la surface du sol, dans les eanx qui le baignent, et dans le littoral des mers qui le bornent, par MM. de Blainville, Vieillot, Desmarcst, Audiuet-Serville, Lcpelletier dc Saiut-Fargeau, Walkenacr. 29 livraisons, 8vo. 290 plates, coloured. Reduced from \(£ 1410 s\), to
FEE, Etudes philosophiques snr l'instinct et l'intelligence des animaux. 12 mo . Paris, 1853

1000

400
\(6 \quad 0 \quad 0\)
030
\(7 \quad 50\)

050
056
500
1150
1100
1150
0150
200
200
\(0 \quad 56\)

GRAVENHORST, Ichucumonologia Europœea. 3 vols. Svo. 2 plates,
Vratislivia, 1529
f \(s d\)
200

180
To be completed in 4 vols.
HARVEY, Nereis-Boreali-Americana, or Contributions to a IIstory of the Marinc Algæ of North America. 4to. 2 vols. with 36 coloured plates, Washington, 1852-53
HAXO, Fécondation artificiclle el éclosion des cufs de poissons suivi de réflcxions sur l'ichthyogénic. Svo. Epinal, 1S53

200
030
2100
15100
200

020
300

180
0140
100

110

500
060
1 100
300
JABLONSKY UND HERBST, Natur-System aller bekannten In-mud Ansländischen Insecten, Schnetterlinge uud Käfcr. 21 vols. Svo. half-bomnd, and 3 atlases containing 539 plates, 4to. bcantifully colourcd, Berlin, 1783-1801.
MLIGER, Magazin für Inscktenkunde. 4 vols. bound in 2, Braunschweig, 1801.5

1800
110
060
graphicis ntriusque classis Svo. Berolini, 1811

300
KUN'TH, Flora Berolinensis. 2 vols. Svo. Berlin, 1838 ..... ※ sil
familias naturales disposita, adicetis characteribus, differentis ct synonymis 5 vols. Svo. supplement and plates. Stuttgardix, 1833-43 ..... 500
KROMBHOLZ, Naturgetrcue Abbildungen und Beschreibungen der schäd-lichen, essbaren und verdächtigen Schwämme. Folio and atlas of 76coloured plates, Prag, 184610100
KUECHEMELSTER, Ueber Cestoden im Allgemeinen und die des Men- sehen iusbesoudere. 8vo. with 3 plates, Zittau, 1853 ..... 070
KUTZING, Grundzüge der philosophischen Botanik. 8vo. 2 vols. 38 platcs, Lcipzig, 1851-52 ..... 120
LAMARCK (J. B. P.), Histoirc maturclle des animaux sans vertèbres,présentant les caractères généraux et particuliers de ces aninaux, lemrdistribution, leurs classes, leurs familles, leurs genres, et la citationsynonymique des principales espèces qui s'y rapportent. Deuxième édition,revue et augmentéc des faits nouvenux dont la science s'est enrichic jusqu'àce jour, par M. G. P. Deshtryes et H. Milne Edwards. 11 vols. Svo.Paris, 18364. 80
LAVALLE, Traité pratique des champignons comestibles contenant leur organisation, \&c. 8vo. 12 coloured plates, Paris, 1852 ..... 070
LECLERC, Les vignes malades. Svo. 4 plates. Paris, 1853 ..... 036 ..... 036
LE CONTE, General Remarks upon the Colcoptera of Lake Superior. 8vo. New York, 1852 ..... \(0 \quad 20\)
- Descriptions of some New and Interesting Insects inhabiting theUnited States. Svo. plate, New York, 1844\(0 \quad 10\)
On the Pselaphidæ of the United States. Svo. New York, 1848 ..... 020
020
States. 8vo. New York, 1852 ..... \(0 \quad 36\) York, 1851
LESSON, Histoire naturelle dcs Colibris, suivie d'un supplément à l'histoire naturelle des Oiseaux-Mouches. Svo. with 64. coloured plates, Paris ..... 2100
- Histoire naturelle des Oiseaux de Paradis et des Epimaques. Svo. with 40 coloured plates, Paris2100
- Histoire naturelle des Oiseaux-Monches. 8vo. with 85 eoloured plates, Paris ..... 2100
- Histoire naturclle des Troclilidées, ou les Colibris et los Oiseaux-Mouches. Svo. with 66 coloured plates, ParisLEUCKARD, Zoologische Untersuchungen. Siphonophoren. 4to. with \(\dot{3}\)2100
plates, Gicssen, 1853
LONGWORTH, The Cultivation of the Grape, and Manufacturc of Wine;also, Character and Habits of the Stravberry-plant. Svo. Cincinnati, 1846LINNAEA, Ein Journal für die Botanik in ihrem ganzen Umfange. Heraus-gegeben von Schlechtendal. From the commencement, 1826-39. 13
vols. 8vo. boardsvols. 8vo. boards010
LOWE, Description d'mi nouveau genre de poisson de la fanille desMurénoides. 4to. plates, St. Petershurg, 1851
LYONE'I', Recherches smr l'anatomic, et les métamorphoses de différentes espèces d'insectes; par L. L. Lyonet, pribliées par M. W. de Haan, con-servateur du Muséum d’Histoirc Naturelle de Leyde. 2 vols. 4to.accompagnés de 54 planches gravées, Paris, 1832 Lcydc. 2 vols. 4to.
plates, La Haye, 1762220
MARTIUS et SPIX, Iconcs plantarun, eryptogamicarum, cur. C. F. P Nartius, cum 76 tab. col. Ito. Monachii, 1827-34600

MEMOIRES DE LA SOCIETE GEOLOGIQUE DE FRANCE, \(\mathrm{Xl}^{\mathrm{e}}\) séric, Tome IV.-Ce volnme et les volumes suivants scront publiés en deux parties. Prix de chaque partie

> La première partic du tome IV est en vente.

MENONVILLE (F. De), Truité de la cultnre dn Nopal, ct de l'édncation de la Cochenille dans les colonies françaiscs de l'Amériqne; précédé 1787 d'un voyage à Guaxaca. 8vo. 2 vols. 2 coloured plates, Cap-Françasas,
MEYER, Ueber die Reptilicn und Säugethiere der verschicdenen Zciten der Erde. Svo. Frankfurt, 1852

0100
MILLER, A Natural History of the Crinoidea, or Lily-shaped Animals, with obscrvations on the genera Asteria, Euryale, Comatula aud Marsnpites. 4 to. with 50 coloured plates, Bristol, 1821

036

1180
MOLINA, Essai snr l'listoire naturelle du Chili ; tradnit de l'İtalien, par Gruvel, et enrichi de notes. 8vo. Paris, 1789 .
MORTON, Letter to the Rev. J. Bachman on the question of Hybridity in Animals considered in refcrence to the Unity of the Hnman Species. 8vo. Also additional observations and on some collateral subjects, being a reply to the objections of the Rev. J. Bachman. 2 parts, 8vo. Charlestou, 1850

060
\(0 \quad 30\)
MOUGEOT, Essai d'une Flore du nouvcau Grès Rouge des Vosges, ou descriptiou des végétaux silicifiés qui s'y rencontrent. Svo. 5 plates, Epinal, 1852
NAUMANN (Dr. C. F.), Elemente der Mineralogic. 3tc Auflage, mit \(385^{\circ}\) Figuren. 8vo. Lcipzig, 1852
\(0 \quad 30\)

NEW YORK Geological Surver of Sta o 0106
\begin{tabular}{ll} 
\\
\hline Statc Cabinct of Natnral History. Svo. Plates, 1850. & 0 \\
\hline
\end{tabular}
OWIEN, Odontography; or, a Treatise on the Comparative Anatomy of the Teeth, their Plysiological Relations, Mode of Development, and Microscopical Strncture in the Vertebrate Animals. By Richard Owen, F.R.S., 2 vols. royal Svo. containing 168 plates, half-bound rnssia

0106
- A few copies of the plates have bcen printed on India paper, 2 vols. 4to.

OWEN (D. D.), Report of a Geological Survey of Wisconsin, Iowa, and Minnesota ; aud incidentally of a portion of Nebraska Tcritory. 4to. with engravings, and an atlas of 27 plates and 20 large maps, Philadelphia, 1852
(EDER, MULLER, WAHL, ET HORNEMANN, Icones plantarum sponte nascentium in regnis Danix et Norvegiæ, Floræ Danicce, nominc inscriptum. 7 vols. folio, coloured plates, Hafnix, 1766-92

10100
POEY, Memorias sobre la Historia Natural de la Isla de Cuba. Sro. Parts I-IV, 30 coloured plates, Habana, 1851-53

2100
To be completed in 24 parts, forming 4 vols; a part to be pnblished evcry six wecks.
PERCIVAL, Report on the Geology of the State of Connecticut. Svo. map, New Haven, 1842
PHILIPPI, Handbuch der Conclyyliogie und Malacozoologic. Svo. Halle, 1853
PICTET, Traité de paléontologic, ou histoire naturelle des animaux fossiles considérées dans leurs rapports zoologiques et géologiques. Sro. Vol. I, aud 4 to atlas of 28 plates, Paris, 1853

To be completed in 4 parts. A part to appear every six months.
PLEEE, Types de chaque fanille, et des principanx genres des plantes croissant spontanćment en France: l'cxposition détaillćc et complète de lcurs caracteres et de l'embryologic. 4to. with coloured plates. Parts I-LIXX. Paris, 184:3-53. Eacli part
QUENSTEDT, Handbuch der Pctrefactenkunde. 8vo. with atlas of 62
£ s d
plates, Tübingen, 1852
RAMDOHR, Abhandlung über dic Verdauungs-Werkzeuge der Inseeten.110
4to. and atlas of 30 plates, Halle, 1811 ..... 1100
RaNG er SOULEYETT, Monographic des Ptérépodes. 4to. avec 16 planches ..... 150RANG (Sander), Histoire naturello des Aplysicns. 4to. containing 23plates, Paris, 18280150
RAVENEL, Fungi Caroliniani Exsicati. Fungi of Carolina, illustrated by natural specimens of the species. 4to. Fasc. I, Charleston, 1852 ..... 1100
REICHENBACH (Fr. G.), De Pollinis orchidearum genesi ac structura et de orchideis, in Artem ac systema redigendis. 4to. Leipzic, 1852 ..... 036
RENDU, De la maladie de la vigne dans le midi de la France et le nord de l'Italie. 8vo. 2 plates. Paris, 1853 ..... 036
ROEMER, Die Kreidcbildungen von Texas und ihre organischen Einschlüsse. 4 to. 11 plates, Bonn, 1852 . ..... 0140
RUDOLPH (C. A.), Entozoorum sive vermium intestinalium. 2 vols. 8 vo . 2 plates, Amsterdam, 1808 ..... 1150
RUEPPELL, Systematische Uebersicht der Vögel Nord-Ost-Afrika's. 8vo. with 50 coloured plates, Frankfurt, 1845 . ..... 1160
ROSEL von ROSENHOF, Die monatlich-hcrausgegebene Insecten- Belustigung. 4 vols. sq. 8vo. several hundred coloured plates, Nürnberg, 1755-61 ..... 500
ROUSSEAU (L.) ET A. DEVERTA, Photographie zoologique, ou repré-sentation des animaux rares des collcctions du muséum d'histoire naturclle.L'ouvrage se composera de soixante planches qui paraîtront on dixlivraisons. Des tables méthodiques seront domnées avec la dernièrelivraison.Prix de chaque livraison de six planches petit in-folio\(0 \quad 90\)
Chaque planche sera vendue séparément ..... 020
RUMPHILS, D'Amboinschc Rareitkamer, Behelzende eine Beschryvinge van allerhande zoo wecke als harde Schaalvisschen, to wecten raare Krabben, Kreeften, Hoorntjos en Schulpen, Mincraalen, Gesteenterr, \&c. Folio, 60 plates, Amsterdam, 1705SALM-DYCK, Cactex in horto Dyckensi cultæ anno 1849. 8vo. Bonnæ,1850080- (le Privce), Monographia generum alocs et mescmbryanthemi iconibusillustrata, Düsseldorf, 1835-51 Publiée en 12 livraisons, fig. col. Prixde la livraison
Cinq Livraisous sont en vente.
SCHLEGEL (H.), Essai sur la physionomie des scrpents. 2 vols. Svo., et atlas de 5 tabl. et 21 pl . fol. Amsterdam, 1837 ..... 1150
SCHACHT, Der Baum. Studien über Bau und Leben der höherenGewächsc. 8vo. fig. Berlin, 18530140
SCH NFFEER, Iconcs insectorum Ratisboncsium methode systematica illus- tratæ ct Indicæ systematico, auctæ G. G. W. Panzer. 4. vols. 4to. with 280 coloured platcs. Editio Nova, 1804 ..... 5100
SCHROTER, Journal für dic Liebhaber des Steinreichs und Konchyliologic. 12 mo. 6 vols. 9 plates, Wcimar, 1773-80
0150
0150
SILLLMAN'S JOURNAL, The American Journal of Science and Arts, conducted by Silliman and Dana. Illustrated by plates and cuts. Svo. No. XLVII, for Scptember, 1853 ..... \(0 \quad 50\)
The above magazine is published cvery two months. Previous parts are still on hand.

\title{
SIIITILSONIAN Contributions to Knowledgc. Vols. 1 to 5, with plates, Washington, 1848-53
}

Utah; including a description of its Gcography, Natural History, and Minerals, and an Analysis of its watcr, with an authentic account of tho

Mormon Settlement. Svo. 45 plates and atlas of maps, Philadelphia, \(] 552\) STIMPSON, Shells of New England. A revision of the 'I'cstaccous Mollusks of New England, with notes on their structure auld their Gcographical and Bathymetrical distribution. Sro. 2 plates, Boston, 1851

12 ;

500
To be complcted in four parts.

TEMMINCK et LAUGLER, Nouveau reccuil de planches coloriécs d'oiseaux, pour servir de suitc et de complément aux planches cnluminées de Buffon. Par C. J. Temminck.

L’ouvrare sc compose de 5 volumes publié cı 102 livraisons, arec 600 planches folio, dessinécs d'après naturc, par Prêtre et Huct, gravées et coloriécs.

Prix de la livraison, folio, figures coloriécs, au licu de I5s., réduit à . Grand 4to. fig. coloriécs, au licu de \(10 s\). \(6 d\)., réduit à

0100
TEMMINCK (C. J.), Histoire naturelle généralc des Pigcons et des Gallinacés. 3 vols. Svo. with I2 plates, Amsterdam, 1813
-- Manuel d'Ornithologie, ou Tablcau systématique des oiseaux qui se trouvent en Europe, précéclé du système général d'ornithologie. Dcuxièmc édit. 4 vols. Svo. Paris, 1839

250

1100

\section*{- Atlas de 530 planches coloriées, 2 vols. g̣rand 8vo. Paris, 184.0}
manımifères dont les espèces ont été observécs dans les différcus musécs de l'Eiuropc. 2 vols. 4to. fig.

2150
UNGER, Versuch ciner Geschichte der Pflanzenwelt. Svo. Wicn, I852 : 0100
VERHANDELINGEN over de Naturulijkc Geschiedenis der Nederlandsche oversecsche Bezittingen dur de Leden der Naturkundige commissie in Indië cn anderc Schrijvers. Zoological portion, large 4to. with 95 coloured plates, Leiden, IS30-44
VOGT, Bilder aus dem Thicrleben. Svo. I20 cuts, Frankfurt-am-Main, 1852

0 T 0
WEBB, Otia Hispanica seu delectus plantarum rariorum aut nondum rite notarum per IIispanias sponte nascentium. 4to. 46 plates, Paris, 1853.
WIGAND, Intercellularsubstanz und Cuticula. Fine Untersuchung über das Wachsthum und dic Mctamorphose der Vegetabilisehen Zellenmembram. Svo. 2 coloured plates, Braunschivcig, 1850
WILLKOM, Iconcs et descriptiones Plantarnm critiearum et rariormm Europæ Austro-occidentalis preeipme Hispanie. 4to. part I, 7 eolourcd plates, Lipsix, 1852.

1100
\(0 \quad 60\)

0 To

\title{
CHEMISTRY, PHYSICS, ENGINEERING, \&c.
}
ANERICAN Ephemeris and Nautical Almanack for the Ycar 1855. 8vo.Washington, 1852\(0 \quad 80\)
ANNUAIRE du Bureau des Longitudes pour l'an 1853. Augmenté de notices scientifiques, par M. Arago. 12 mo , Paris ..... 010
APPLETON'S Meehanies' Magazine and Engineers' Journal. Svo. Vol. I,January to December, 1851, with 600 woodeuts, New York . Vo. ,
-Vol. II, 4to. with plates and woodcuts, New York, 1852 ..... 0176ASTRONOMICAL Observatious at the National Observatory, Washington.Vols. I and II, for the years 1845-46. 4to. Washington, 1846-51220
BERZELIUS, Traité de elicmie organique. Suite par Charles Gerhardt,1853. Livr. I et II, 8vo. price each030
To be completed in 4 volumes.
COOPER, Identities of Light and Heat, of Caloric and Electricity. 8vo.Philadelphia, 1848040
D'AUBUISSON de VOISINS, A Treatise on Hydraulics for the use ofEngineers. Translated into English by Joseph Bemnet. 5 plates, Svo.Boston, 18520170
DOVE, Die Verbreitung der Wärme auf dcr Oberfläche der Erde, erläutcrtdurch Isothermen, Thermisehe Isanomalen und Temperaturcurven. 4to. 9folio plates, folded, Berlin, 1852
FALCOT, Traité eneyelopédique et méthodique de la fabrication des tissus.Second Edition, 4to. and atlas 4to. accompanied by another atlas, "desplanehes d'armures." 3 vols. Elbeuf, 1852 desFAURE, Analyse chimique des eaux du département de la Gironde. 8vo.Bordeaux, 1853100030GANO'T, Traité élémentaire de physique expérimentale et appliquée. 12 mo .
420 engravings, Paris, 1853GRIFFITH, Treatisc on Marine and Naval Architecture ; or, theory andpractice blended in Ship Building. 3rd Edition, 4to. with 50 plates,
New York, 1853070
GROS, Quelques notes sur la photographie sur plaques métalliques. Svo.
2 plates, Paris, 1850
GUYOT, Meteorological Tables. 8vo. Washington, 1853
HAUPT, Original Theory of Bridge Construction, containing demonstrations2150of the principles of the Art and their application to practice. Svo. 16 plates,New York, 1851
HUMPHREY, American Hand-book of the Daguerreotype, giving the mostapproved and convenient methods for preparing the chemicals, de. 12 mo .
New York, 1853030060
IIUSSON, Report on the Magnetical Experiments made by the Commission ..... \(0 \quad 50\)of the Royal Acadcmy of Medecine of Paris, on June 21 and 28, 1831.12 mo . Boston, 1836 .
JEFFERS, \(\Lambda\) Concise Treatise on the Theory and Practice of Naval030
Gunnery. 8 vo. 7 plates, New York, 1850
LAME, Leçons sur la théorie mathématique de l'élasticité des corps solides. ..... 0126Svo. plate, Paris, 1852
LAWSON, Meteorological Register for twelve years, from 1831-1842\(0 \quad 50\)inclusive, compiled from observations made by the offieers of the MedicalDepartment of the Army at the military post of the United States. Svo.Washington, 18510150
LEGROS, Plotographic sur Collodion. Svo. Paris, 1852060\(0 \quad 3 \quad 0\)
LIEBER, The Analytical Chemist's Assistant, a Manual of Chemical Analysis,both qualitative and quantitative. 12 mo . Philadelphia, 1852 .LIEBIG, Uutersuchungen über cinige Ursachen der Säftebewegung imthicrischeu Organismus. 8vo. I4 cuts, Braunschweig, 1848 ,LIEBIG UND KOPP, Jahresbericht und dic Fortschritte der reinenpharmaccutischen und technischen Chemie, Physik, Miueralogie undGeologic. Svo. 1851, 2 parts ; 1852, 2 parts, Giessen, 1852-53080036
MARTIN, Photographic nouvelle. Procédée pour obtenir des épreuvespositives dircetes sur glace. 8vo. Paris, 18521140Sugar and Hydrometers, made under the superinteudauce of ProfessorA. D. Bachc. 8 vo. 9 plates, Washingtou, 1848
NTNET, Méthode pratique pour apprendre saus maître le photographie sur Collodion, pour obtenir sur papier, des portraits et des vues sans retouches. 8vo. Paris, 1852Braunschweig, 1851 .
OGER, Traité Elémentaire de la Filature du Coton. 8vo. aud atlas, Mulhause, 1839méthodes employées pour l'arrachemeut et l'extractiou des minérauxcombustibles. Vols. I., M., III., royal 8vo. with atlases fol., Liège1852-530160
PONCELET, Examen historique ct critique des principales théories cou-cernant l'équilibre des voûtes. 4to. Paris, 1852lated from the Freuch by Bettou, and edited by Booth aud Faber. 8vo.2 vols. illustrated by 700 cuts, Philadelphia, 1852cuts. 8 vo. Leipzig, 1852accompagné d'un exposé des améliorations dout cot industrie est sus-ceptible principalement eu Belgique. 8vo. aud atlas of 32 plates folio,Leipzig, 1851
WOEHLER, Practische Uebuugeu in der Chemischen Analyse. 8vo. fig.Göttingen, 1853

\section*{MISCELLANE0US.}ALLEMAND, Traité du mariage ct de ses effcts. Svo. 2 vols. Paris,1846-4.7.0160ALLIER, Etudes sur le système pénitcutière et les sociétés de patronage.8vo. Paris, 1842040
AMADOS (J.), Obras de Don Inigo Lopez de Mcndoza. 4to. Madrid, 1852 ..... 1100AMERICAN \(\triangle\) UTHORS (Homes of), comprisiug aucedotical, persoual,and descriptive sketches. 8 vo. 19 cngravings. 16 fac similes of MS.and 15 beautifully tinted cuts. New York, 1853150
£ \(\delta \quad l\)
AMERICAN Almanack and Repository of useful knowledgc. First series, Vols. I-X. 1830-39. 2nd series. Vols. XI-XX. 1840-41. (complete.) 12 mo . ..... 4.40
_— Years 1850, 51, 52, 53, each ..... \(0 \quad 50\) ..... \(0 \quad 50\)
—— GOVERNMENT. An inquiry into the moral and religious eharacterof the American Governments. New York, 1838055
- Uniform and dross of the Army of the United States. 4to. with 25coloured plates and descriptions. Philadelphia, 1851200
- Uniform and dress of the Navy of the United States. 4.to. with 15colonred plates. Philadelphia, 1852150
ARKANSAS, Rio del Norte and Rio Gila, Maps of. Being a military reconnaissance by W. H. Emory, Lieut. Top. Eng, fol. 3 sheets, 1847 ..... 076BALBI, Essai statistique sur les bibliothèques de Vieme. 8vo. Vicmne,
1835060
BARON, Le code des étrangers, ou rcceuil des lois ct de la jurisprudenceanglaise, concernant los étrangers dans la Grande Bretagne, Irlande.8vo. London and Paris, 1849
BARANTE, Histoire do la Convention nationalc. Svo. 6 vols. Paris, 18511160BARNI, Philosophie de Kant. Examen des fondements de la méta-physique des mœurs et de la critique de la raison pratique. 8vo, Paris,1851040
BENSON, A memoir on the names of places in the vicinity of New York,embraeing those portions formerly known as New Netherland, also on thenames of persons. 8vo. New York, 184.8généraliser. Paris, 1836
BLBLIOGRAPHICAL CATALOGUE OF BOOKS, Transactions of thescriptures, and other publications in the Indian tongues of the UnitedStates, with bricf critical notices. Svo. Washington, 1849016
BLANC, (Louis), Histoire de dix ans 1830-40. 8vo. 4th edition, Paris,1844Bruxelles, 1842de recherehes arehéologiques. 2 vols. 4to. avee planches. Paris, 1826BRUYERES, La phrénologie, le geste, ct la physionomie, démontré par120 portraits, sujets et compositions. royal svo. Paris, 1847
CALHOUN'S (John C.), Works, cdited by R. K. Cralle. Vol. I. and II.Svo. cloth. Charleston, 1851-53
1100adjeeit ; in usum scholarum. 8vo. Part I. Madrid, 18521160
\(0 \quad 26\)CARINE, Des intérêts nouveaux en Europe depuis la révolution de \(1830^{\circ}\).
8vo. 2 vols. Paris, 1838
CANALS, Report of the seleet committee of the Assembly of jS46, upon ..... 0100the investigation of frauds in the expenditures of the publie moneys uponthe canals of the State of New York. 8vo. Albany, 1847
- Laws of the State of New York in relation to the Erie and Champlani eanals, together with the annual reports of the canal commissioncrs. Maps and plates, 2 vols. 8 vo. Albany, 18250100
CASTREN, Elementa Grammatices Syrjonæ. 8vo. Helsingforsix, 184.4. ..... 1100
CENSUS of the United States. Aggregate amount of each description ofpersons within the United States of Ameriea in the year 1810. fol.CHAMPOLLION, Précis du systènc hićroglyphique des auciens Egyptiens.8vo. 20 plates, and an atlas of 36 plates, Paris, 1828

CHAMPOLLION, Lettre à M. Dacier, relative à l'alphabet des hiéroglyphes phonétiques, employés par les Egypticns pour inscrirc sur leurs monumens, les titres, les noms, et les surnoms des sonverains grees et romains. 8 vo. 4 plates. Paris, 1822
CHASLES, Notabilities in France and England. With an autobiograpliy.
12 mo . New York, 1853
COAST SURVEY OF THE UNITED STATES. Reports of the superintendent, showing the progress of that work during the year 1850 . Svo. 26 large maps, \&e. Washington, 1850
COMTE, Système de politique positive. 3 vols. 8 vo. 1851-53
040
040

080
CONDORCET, Esquisse d'un tableau historique des progrès de l'esprit humain. Svo. Paris, 1821
COUSIN, De l'iustruction publique en Autriche. 8vo. Paris, is4.1 :
- Sur le fondement des idécs absolucs du rrai, du bean et du bien. 8vo. Paris, 1836
D'ALEMBERERT, LEurres philosophiques, \&cc., par Condorcet. \(12 \mathrm{mo}. \mathrm{Paris}\),
1853
D'ALEMBBERT, LEuvres philosophiques, \&cc., par Condorcet. \(12 \mathrm{mo}. \mathrm{Paris}\),
\(\quad 1853\) DE BOW, The industrial resources, \&c., of the Southern and Western
States; cmbracing a view of their commerce, agriculture, manufactures,
internal improvements ; slave and frec labour, slavery institutions,
products, \&ce, of the south. Svo. 3 vols. New Orleans, l 852 DE BOW, The industrial resources, \&c., of the Southern and Western
States; cmbracing a view of their commerce, agriculture, manufactures,
internal improvements ; slave and frec labour, slavery institutions,
products, \&ce, of the south. Svo. 3 vols. New Orleans, l 852 DE BOW, The industrial resources, \&c., of the Southern and Western
States; cmbracing a view of their commerce, agriculture, manufactures,
internal improvements ; slave and frec labour, slavery institutions,
products, \&ce, of the south. Svo. 3 vols. New Orleans, l 852 DE BOW, The industrial resources, \&e., of the Southern and Western
States; cmbracing a vicw of their commerce, agricultnre, manufactures,
internal improvements; slave and frec labour, slavery institutions,
products, \&cc., of the sonth. Svo. 3 vols. Ncw Orleans, lS52
DEBT OF THE UNITED STATES. Statements in relation to the forcigu and domestic debt of the United States, and the funds appropriated for its reduction; prepared at the Treasury. fol. Jan., 1794
DECHAMBRE, Caractères des figures d'Alexandre lo Grand et de Zenou le Stoïcien, éclairés par la médccinc. Svo. Paris, 1852

030
\(0 \quad 40\)

250

080
026
DESCAMPS, La vic des peintres Flamauds, Allemands, et Hollandais, avec 168 portraits, une indication de leurs principaux ouvrages, \&c., et Voyage pittorcsque de la Flandre et du Brabant. 5 vols. plates, Paris, 1753-69
DE SAULCY, Voyage antour de la mer morte, et dans les terres bibliques, exécuté de décembrc 1850 à avril 1851. Text 2 vol. 8 vo.

300
0150
- Atlas 26 livr. 4to. Paris, 1853

9120
DOWNING, Rural essays. Svo. New York, 1853 . \(\quad . \quad 1120\)
DOZY, Rccherches sur l'histoire politique et littéraire de l'Espagne pondant le moyen âge. Svo. Vol. l. Leyde, 1849

100
DU CAMP, Egypte, Nubic, Palcstine et Syrie. Desscins photographiques reccuillis pendant les années 1849, 1850, et 1851. Fol. 25 parts. (Each part containing 5 plates). complete

2500
DUCHESNE, De la prostitution de la ville d'Alger depnis la conquêtc. 8vo. Paris, 1853 .
DUMONT, Théoric des peines et des récompenses, extrait des manuserits de M. Jérémie Bentham. 8vo. 2 vols. bound. Paris, 1818

040

DUMONT D'URV1LLE, Voyage au pole sud ct dans l'Océnnie sur les corvettes l'Astrolabe et la Zélée. Relation du voyage. Svo. 10 vols and 10 maps

0140

2100
- Rapport à l'Tustitut sur la marche et les opérations du voyage de déconvertes de la corvette l'Astrolabe en 1826,27, 28, et 29. Svo. Paris, 1829

010
DUPUIS, Analyse raisomée de l'origine de tous les cultes. Svo. Paris, 180.i
LVERE'T' (A. H.), New ideas on population, with remarks on the theories of Malthus and Godwin. Svo. Boston, 1823
FISQUE'C, Histoire de l'Algéric depuis les temps ameicns jusqu'à nos jours. 8vo. 25 plates and woodeuts. Paris, 1842
FLORGY, Les antiquités de Rome, ou deseription des prineipaux monuments de l'histoire et des arts de la eapitale du monde eatholique. Svo. Francfort 1836
\[
076
\]
FRENCH, Historical eolleetions of Lousiana, embraeing translations of many rare and valuable doenments, relating to the natural, eivil and politieal history of that state. 8vo. Vols. I-V. New York, 1846-1853
GAILHABAUD, L'arelitecture du \(\mathrm{V}^{e}\) an \(\mathrm{XIII}^{e}\) sièele et les arts qui en dépendent, la seulpture, la peinture murale, la peinture sur verre, la mosaïque, la ferrounerie, \&e. 4to. Parts 1-80. Paris, 1853, eaeh part The above work will be published in from 150 to 200 parts, appearing onee a fortmight. Each part contains two plates.
GANILH, Des systèmes d'éeonomie politique, de la valeur eomparative, de leurs doctrines, et de cellé qui paraît la plus favorable aux progrès de la riehesse. 8 vo. 2 vols. 1821
200
019
GIOBERTI, Considerazioni sopra le dottrine religiose di V. Cousin, per servire di appendiee alla introduzione alla studio della filosofia. Svo. Brusselle, 1840
GIRAULTT-DUVIVIER, Eneyclopédie élémentaire de l'antiquité, ou origine, progrès, état de perfection des arts et des seienecs chez les anciens, d'après les meilleurs auteurs. 8 vo. 4 vols. Paris, 1830
GOUGE, The fiseal history of Texas, embraeing an aecount of its revemues, debts and eurreney from the eommeneement of the revolution in 1834 to 1851-52; with remarks on Ameriean debts. 8vo. Philadelphia, 1852
GUIZOT, Corneille et son temps. Etude littéraire. Svo. Paris, 1852
- Histoire de la révolution d'Angleterre depuis l'avènement de Charles I. jusqu'à sa mort. Svo. 2 vols. Paris, 1850
100
0 \& 0
060
GURLEY (Rey. R. R.), On the state of Liberia. Government Report. 8vo. Map and 6 plates. Washington, 1850
0120
HALLEZ, Mémoires seerets pour servir à l'histoire de la cour de Russie sous les règnes de Pierre le Grand et de Cathérine I. Svo. Paris, 1853
HAMILTON, History of the national flag of the United States of America. 12 mo. 3 eoloured plates. Philadelphia, 1852
\(0 \quad 26\)
\(0 \quad 60\)
LUTHER, Sir E. Bulwer Lytton and Homcopathy. Svo. London, 1853
HARDT eT THEIS, Metaglottéon, on cours progressif des versions de Français en Allemand. 8vo. Bruxelles, 1840
050
0 I 0
\(0 \quad 50\)
- Thuiseon, ou eours de la langue allemande, proeédant du plus simple au plus diffieile. Svo. 2nd Edition, Brussels, 1840
\(0 \quad 50\)
HARRIS, A paper upon Califormia. Svo. Baltimore, 1849
HAWTHORN, Wonder book for girls and boys. 12 mo . plates. Boston, 1852
056
HEEREN, De la politique et du commeree des peuples de l'antiquité, traduit de l'Allemand, par' Suekau. 8vo. 6 vols. plans, eharts, \&e. Paris, 1830
1100
HEGEWISCH, Essai sur l'époque de l'histoire romaine la plus heureuse pour le genre humain; traduit de l'Allemand par Polvet. Svo. Paris,

1834
HEINEKE, Idée générale d'une eollection complète d'estampes. Avee une dissertation sur l'origine de la gravure et sur les premiers livres d'images. 8vo. 28 plates, Leipsie, 1771 very rare

046

150
HISIORICAL SOCIE'IY of New Himpshire, Colleetious of. 2 series. Ist series: 2 vols. 8vo. Coneord, 1822-23, 2nd series. Vols. I-IV. Coneord, 1824-50. 7 vols. 8 vo.

2100
HOLLARD, De l'homme et des raees humaines. 12mo. Paris, 1853 . \(0 \quad 30\)
IZARD, Correspondenee of. lirom the year \(1774-1804\). 8vo. New York, 1844
JANSEN, Essai sur l'origine de la gravure en bois et en taillc-douce, et sur la counaissance des estampes des \(\mathrm{XV}^{\mathrm{e}}\) et \(\mathrm{XVI}^{\mathrm{e}}\) sièeles; où il est parlé aussi de l'origine des cartes à jouer et des cartes géographiqucs. 8vo. 2 vols. 20 plates, Paris, 1808
JEWETT, Notices of public libraries in the United States of America.
8vo. Washington, 1851
JEFFERSON (Thomas), Notes on the State of Virginia. 12mo. Boston, \(1829^{\circ}\) - (H.), Manual of parliamentary practice; composed originally for the use of the Scnate of the United States. 12mo. Philadelphia, 1850 - (H.), Memoirs, Correspondence and Miscellanies, from the papers of Thomas Jefferson. 8vo. 2nd Edition. 4. vols. Boston, 1830
KANT, Metaphysische Anfangsgründe der Jugendlehre. 8vo. 2nd Edition. Königsberg, 1803gebäudes, nach Newtonischen Grundsätzen abgchandelt. Svo. 4thEdition. Zeitz, 1801du cinquième siècle jusque vers le milieu du dix-huitième. 8vo. 2ndEdition. 18 vols. Paris, 1833
LACHARRIERE, De l'affranchissement des Esclaves dans les colowies françaises. Svo. Paris, 1836
LACOUR, Essai sur les hiéroglyphes égyptiens. 8vo. 14 plates and mumerous woodeuts. Bordcaux, 1821
LAMARTINE, Histoire de la révolution de 1848. 8vo. 2 vols. Paris, \(1849^{\circ}\)
—— Histoire de la Restauration. 8 vols. Svo. Paris, 1851-52.
LANGLOIS, Essai sur les énervés de Jumièges et sur quelques décorations singulières des églises de cette abayc. Svo. 5 plates. Rouen, 1838
LANZI, Histoire de la peinture en Italie, depuis la renaissance des beauxarts, jusque vers la fin du XVIIIe siecle; traduite de l'Italien par Dieudé. 8vo. 5 vols. Paris, 1824
LAWS of the State of New York, passed at the 72nd session of the Legislative, begun the 2nd day of January, and cnded the 11th day of April, 1849, at the city of Albany. 8vo. Troy, 1849
100
0120
LAROCHEFOUCAULD-LIANCOURT, Documents relatifs au système pénitentiaire, extraits du joumal de la société de la moralc chrétienne. 8 vo. Paris, 1844
050
LAYA, Etudes historiques sur la vie privée, politique et littéraire de M. Thicrs. (Histoire de 15 ans, 1830-46.) 8vo. 2 vols. Paris, 1846
LEBER, Des cérémonies du Sacre, ou recherches historiques et critiques sur les mours, les contumes, les institutions, \&c. 8vo. 38 plates. Paris, 1825
LERMINIER, Cours d'histoire des législations comparées. Droit international. Epoque romaine depuis Auguste jusqu'à la fin du règuc de Commode. Période de 193 ans. Svo. Paris
- De l'inflnence de la philosophic du XVIII siècle sur la législation et la socialité du XIX́. Svo. Leipsic, 1833
LETT"S California illustrated. Including a description of the Panama and

LIEBERS. Constitution and plan of cdueation for Girard College for orphans. Svo. Philadelphia, 1834
\& s d

LONG, The ancient architecture in America, its historical value and parallelism of development with the architcetures of the Old World. 8vo. 11 plates. New York, 1849

036
MACLURE (Wm.), Mcmoir of, by Samuel G. Morton. 8vo. portrait. 2nd Edition. Philadelphia, 1844

010
MALASPINA, Delle Leggi del Bello applicate alla pittura ed architettura. Svo. 2nd Edition. Milano, 1828
\(0 \quad 56\)
MANNERT, Géographie ancienne des états Barbaresques. Traduit de l'Allemand, par MM. Marcus et Duesberg. Svo. Paris, 1842

0100
MAP OF THE UNITED STATES AND CANADA. Coloured and folded in case. New York, 1850

0100
MAPS made by order of the Senate. Oregon and Upper California, from the surveys of J. C. Fremont. fol. Washington, 1848
\(0 \quad 50\)
- Arkansas, Rio del Norte and Rio Gila, from the survey of W. H. Emory, Lieut, being a military reconnaissance under the command of Brig.-General S. W. Kearny. 3 sheets. fol. 1847

076
MARMIER, Lettrcs sur l'Islande. 8vo. Paris, 1837
\(0 \quad 40\)
MASSELIN, Dictionnaire universcl des géograplies physique, politique, historique, \&e. Svo. 2 vols. Paris, 1845

100
MAURY, Paper on the Gulf Stream and currents of the sea. 8vo. Richmond, Va. 1844

010
MICHEL, Chronique des abbés de Saint-Ouen; publiée pour la première fois d'après un M.S. du XIVe sièclc. Svo. plate. Rouen, 1840

070
MICHELET, Histoire de la révolution française. Svo. 5 vols. Paris, 1847-51

1100
MICHELET et QUINET, Dcs Jésuites. 8vo. Paris, 1843
046 2 vols. Bruxelles 1845 peinture Flamande et Hollandaise. 8vo.
MITCHELL ET REMAK, Die vereinigten Staaten und die andern Länder Amerika's. 8vo. numerous illustrations, Philadelphia, 1849

0150
MOREAU-CHRISTOPHE, Du problème de la misère et de sa solution chez les peuples anciens et modernes. 8vo. 3 vols. Paris, 1851

0106
126
100
0130

0120
MORGAN, League of the Ho-de-no-sau-nee or Iroquois. 8vo. plates. Rochester, 185 I
Mins. The papers of Lewis Morris, Governor of the provinee of New Jersey, from 1738-1746. 8vo. portrait. 1852
earliest period to the elose of President Taylor's administration. 8vo. numerous illustrations. Buffalo, 1851
MUSSMANN, Darf auf Gymnasium ertheilt werden, oder nieht? 8vo. Berlin, 1827

010
0120
NICOLLET, Map of the Hydrographieal Basin of the Mississippi River, from Astronomical aud Barometrical Obscrvations, Surveys and Informa-
tion. Government Report. Folio, 2 sheets, Washington, 1843
in the Southern Preshyterian Review, revicwing his Reply to an Article
nection betwecn the Biblical and Physical History of Man. Svo. Charleston, 1850
NOTT, Two Lectures on the Connection between the Biblical and Physieal
History of Man. 8vo. curious map, New York, 1849 .
—— The Physical History of the Jewish Raee. 8vo. New York, 1850 :

NOUVELIE BIOGRAPHIE UNIVERSELLE depuis les temps les plus
reeulés jusqu'à nos jours avee les renseignements bibliographiques et l'indieation des sourees à eonsulter sous la direetion du Dr. Hoefer. Svo. Vols. I-VII, Paris, 1852. Each vol.

036
To be completed in 30-32 volumes.
OREGON AND UPPER CALITORNIA, Map of, made by order of the Senate, from the Surveys by J. C. Fremont. Tolio, eoloured, Washington, 1848
OTT'AVI. L'Urne, Reeeuil des travaux, Philosophie, Politique, Histoire, Biographie, Littérature, Critiqne littéraire, Beaux Arts, Instruetion publique, Eeonomie politique, Variétés. Svo. Paris. 1843

060
OUDINOT, De l'Italie et de ses Forces Militaires. Svo. Map, Paris, \(1835^{\circ}\)
PAPER MONEY, History of the issues of Paper Money in the American Colonies anterior to the Revolution, explanatory of the Historieal Chart of the paper money of that period. 8vo. with large plate, St. Louis, 2851
PARIS. Reeherehes Statistiques sur la Ville de Paris et le département de la Seine. Svo. Paris, 1821

060
PERPIGNA, Manuel des inventeurs et des brevetés. 8vo. 2nd Edition, Paris, 1837

046

PERRIN, Etats Pontifieaux de Franee au seizième siècle. Svo. map, Paris, 1847
PEIIT, Droit publie ou gouvernement des colonies Françaises, d'après les loix faites pour ees pays. Svo. 2 vols. Paris, 1771

060

PATENTS for 1849, Report of the Ewbank Commissioners of. Svo. euts, New York, 1849

030
036
0100

PFEIFFER ET OTTO, Figures des eaetées en fleurs, peintes et lithographiées d'après nature avee un texte explieatif. 2 vols. 4to. with 60 eoloured plates. Cassel, 1843-51

300
POPE, Report of an Exploration of the Territory of Minnesota. Government Report of the U.S. Svo. Map, Washington, 1850

020
PRINCE de MONACO, Du paupérisme en Franee et des moyens de le détruire. 8vo. Paris, 1829
RAILROAD Corporations in the Commonwealth of Massaehusetts, 1850. Annual Report to the Senate. Boston, 1851
REMBRANDT, Guvre reproduit par la photographie, deerit et commenté, par M. Charles Blane,* Paris, 1853. Livr. I and II, each containing 4 plates, folio
\[
\text { The first series will eonsist of } 10 \text { livraisons. }
\]

REPORT of Naval Committee on establishing a line of Mail Steamships to the Western Coast of Afriea, and thenee, viầ the Mediterranean, to London. 8vo. Washington, 1850

016
RINGGOLD, A Series of Charts with sailing direetions for the State of California. 4th Edition, royal Svo. 6 maps, Washington, 1852
ROGRON, Code du Commeree expliqué par ses motifs, par des exemples, et par la jurisprudenee; suivi d'un formulaire des aetes de Commeree. 8 vo. Paris, 1850

0100
SAIN'T-MARC GIRARDIN, De l'instrnetion intermédiaire et de ses rapports avee l'instruetion secondaire. Svo. Paris, \(154 \%\)
SANDERSON, Biograply of the Signers to the Deelaration of Independanee. 8vo. with portraits, Pliladelphia, 1852.

200
SCHOOLCROF'L', Information respeeting the history, eondition and prospeets of the Thdian tribes of the United States. Colleeted and preprared under the direetion of the Bureau of Indian Aliairs, per aet ol Congress. 3 vols. 4to. with plates. Philadelplia, 1851-53

SCHOOLS. Common Statutes of the State of New York relating to Common Sehools. Svo. Albany, 1841 . . . .
SENEULL, Traité théorique ct pratique des opérations de Banque. Svo.
Paris, 1853
SIGOURNEY'S Pocms, Bcautifully illustrated by Darley. \(\dot{\text { Evo. Phila- }}\) delphia, 1849
£ s d

S'TORCH, Cours d'Eeonomic politique, on exposition des prineipes qui détcrminent la prospérité des nations, avec des notes par Say. Svo. 4 vols. Paris, 1823

026
076
0150

1100
STRAUSS-DURCKHEIM, Théologie de la nature. 8 vo .3 vols. Paris,
120
070
TAYLOR (ZACHARY), Obituary Addresses delivered in the Senate and House of Representatives on the oecasion of the death of. Svo. plate,
Washington 1550 Washington, 1850 .
THEINER, Reeherehes sur plnsieurs collections inédites de Décrétales dn
moyen âge. 8vo. Paris, 1832 .
THIERS, Histoire dn Consulat et de l'Empire faisant suite à l'histoire de la révolution française. Svo. Vols. I-X, Paris, 1845-52. Each vol.
TRIERS, Einleitung zu der Wappenaise. 8vo. 4vols. Bruxelles, 1838 dureh deutliche Rg zu der Wappen-Kunst, darimen diese Wissensehaft Vorbericht von der gesammten Heroldswissensehaft. 12 mo. 126 plates and mumerous euts, Leipzig, 1729
UNIENVILLE (Baron De), Statistique de l'lle Manriee et ses dépendanees, suivie d'une notiee historiqne sur eette Colonie et d'nn essai surl'lle de Madagasear. 8 vo. 3 vols. Paris, 1838
UNION (The), Past and Futnre, how it Works and how to Save it. 4th
Edition, Svo. 1850 .
VALACHIE (LA), Sa situation sous l'administration d'Alexandre Ghika, suivi de l'adresse de l'assemblée générale de Valaehie. Svo. 2nd Edition,
Bruxelles, 1842
VEDER, Historia philosophix juris apud Veteres. 8vo. Lngduni Batavorum, VIARDOT, Essai sur l'histoire des Arabes et des Mores d'T . 2 vols. Paris, 1833 .
VIVIEN, Etna, 1838
026
020
\(0 \quad 50\)
1100

0100

0150
0 I 0

010
070
0120
WACHLER, Vorlesungen über die Gesehiehte der 'Teutsehen NationalLitteratur. Svo. 2 vols. Frankfurt-am-Main, 1834 Teutsehen National-
WASIIINGTON'S LETTERS, Reprint of the Original Letters from Washington to Joscph Reed during the Ameriean Revolntion, by W. B. Rced. 12 mo . Philadelplia, 1852
WANGENHEIM, Obscrvations sur le diseours du président de la Diète et sur les mesures adoptées pour le maintien de l'ordre. Svo. Paris, 1832 portrait and platc, Boston, 1853
WHEELER, Historieal sketehes of North Carolina from 1584 to 1851. Illustrated with engraving̣s. 8vo. Philadelphia, 1551 1584. to 1851.
ZIEGLER, Etudes Céramiqucs, reeherches des prineipes du beau dans l'Arehitecture, l'Art Céramique et la forme en général, Théoric de la coloration des reliefs. Svo. and atlas folio of 14 plates eolourcd, Parris, Théric de la
1840
mit ciner kurwen mit ciner kurzon historischen Boschrcibung von Grönland, Island, Spitz-

\section*{Just Published. 8vo. Cloth. Price 21s. Vol. XI. of the harary or illustrated}

\section*{STANDABD SEIENTIFIC WORHS.}

I.

Professor Minlle's Principles of l'hysics and Meteorology.
WIth 530 woodcuts and two coloured engravings. 8vo. 18 s .
II. AND V.

Professor Weishach's Mechanics of Machinciy and Engincering.
2 vols. WITH 900 woodcuts. £l 19s.
III. IV. AND X .

Professor Knapp's Tcehnology; or,
Chemistry Applied to the Arts and Manufactnres.
EDITED BY DR. RONALDS, AND DR. T. RICHARDSON.
3 vols. splendidly illustrated, price \(£ 3\) 7s.
Vol. I. New Edition, containing:
Finel and its Application thoronghy Linstrated.
VI.

Qnekett's (John) Practical Treatise on the Use of the Microscopc. SECOND EDITION, WITH 12 steel AND Numerous wood engravings. 8vo. £l 2 s . VII.

Professor Fau's Anatomy of the External Forms of Man. FOR ARTISTS.
EDITED BY R. KNOX, M.D.
8vo. and an atlas of 28 plates 4to. plain £l 4s. coloured £2 2s. VIII.

Professor Graham's clements of Chemistry, with Its Application in the Arts.
SECOND EDITION, WITH NUMEROUS WOODCUTS. VOL. I. £l ls. Vol. II. in the Press.
IX.

Professor Nichol's Architectnie of the Heavens.
ninth edition, with 23 steel plates and many woodcuts. london, 1851. 16 s.
XI.

Mitchcil's (J.) Mannal of Practical Assaying,
FOR THE USE OF METALLURGISTS, CAPTAINS OF MINES, AND ASSAYERS IN GENERAL. second edition, much enlarged, with illostrations, \&c. £lls.

\title{
BAILLIERE'S \\ ETHMOGRAPHICAL LIBBARY \\ CONDUCTED BY EDWIN NORRIS, ESQ., \\ of the royal asiatic society.
}

Now Ready, Vol. I. post Svo., in cloth boards, price 10 s. \(6 d\). ,
NATIVE RACES OF THE INDIAN ARCHIPELAGO:

\section*{paprians.}

BY GEORGE WINDSOR EARL.
rllustrated by five coloured plates and two maps.

\title{
MEDICAL AND SCIENTIFIC WORKS
}

\author{
PUBLISHED BY
}

\section*{MACLACHLAN \& STEWART, EDINBURGH.}

THE PRACTICAL NATURALIST'S GUIDE, contraining Instructions for Collecting, Preparing, and Preserving Specimens in all Departments of Zoology. Intended for the use of Students, Amateurs, and Travellers. By James Boyd Davies, Assistant Conservator in the Natural History Museum, Edinburgh. Foolscap 8vo, cloth, limp, price Rs.

PATHOLOGICAL AND PRACTICAL RESEARCHES CORD. By disease n of the brain and the spinal cloth, 6 s.
 PRACTICAL TREATISE ON AUSCULTATION. digging, M.D., F.R.C.S. Roger. Translated, with Notes, by P. Newbugging, M.D., F.R.C.S. 12 mo , cloth, Gs. 6 d .

0BSERVATIONS ON THE SITE AND CONSTRUCF.R.S.E. Plates, 4 to, sewed, 2s. bd.

тTREATISE ON THE OLEUM JECORIS ASELLI, or COD LIVER OIL, as a Therapeutic Agent in Certain Forms of Gout, Rheumatism, and Scrofula. By Professor Bennett. 8 vo , cloth, 4 s .

CRETINS AND CRETINISM : A Prize Thesis of the University of Edinburgh. By George S. Blacisie, M.D., Professor of Botany in the University of Nashville, U.S. Sro, sewed, 2 s.

TIE MECHANISM OF THE GUBERNACULUM TESTIS, with an Introductory Sketch of tho Devolopment of the Testes, and an Appondix on tho Purpose of their Descent from the Abdomen: A Prize Thesis of tho University of Edinburgh. By JoHn Clelland, M.D. Bro, cloth, 3s. Gd.

Medical and Scientific Worls-continued.

\section*{A} N INQUIRY INTO THE PHYSIOLOGICAL AND MEDICINAL PROPERTIES OF THE ACONITUM NAPELLUUS; to which are added Observations on Several other Specics of Aconitum. A Prize Thesis. By Alex. Fleming, M.D. 8vo, cloth, 3s. 6d.

ELEMENTS OF PHYSICAL SCIENCE ; or, Natural Philosophy, in the form of a Narrative. By Robert W. Fraser, M.A. Third Edition. 12mo, 3s. 6 d .

ALGÆ BRITANNICA; or, Descriptions of the Marine and other Inarticulated Plants of the British Islands, belonging to the Order Algce. With Plates illustrative of the Genera. By Robert Kaye Grevilie, LLL.D., \&e. 8vo, 31s. 6 d .

MEDICINES: THEIR USES AND MODE OF ADMINISTRATION: including a Complete Conspectus of the three British Pharmacopeeias, an Account of all the New Remedies, and an Appendix of Formulæ. By J. M. Neligan, M.D. Fifth Edition. \(8 \mathrm{vo}, 15 \mathrm{~s}\).

MNTAL HYGIENE; or, An Examination of the Intellect and Passions ; designed to Illustrate their Influence on Health and the Duration of Life. By William Sweetser, M.D. Royal 8ro, sewed, 1 s.

TTHE PHILOSOPHY OF THE SENSES; or, Man in Connection with a Material World. By Robert S. Wyld. Illustrated by Forty-four Engravings on Wood. 12mo, cloth (published at 7s.), 3s. 6 d .

ELEMENTS OF CHEMISTRY, Theoretical and Practical. By D. B. Reid, M.D., F.R.S.E. Third Edition. 8vo, cloth, published at 18 s. , reduced to 7 s . 6 d.

TIEXT-BOOK FOR STUDENTS OF CHEMISTRY, containing a Condensed View of the Facts and Principles of the Science. By Dr D. B. Reld. Third Edition. 8ro, sewed, published at 6 s., reduced to 3 s.

CHHEMISTRY OF SCIENCE AND ART ; or, Elements of Chemistry, adapted for Reading along with a Course of Lectures for Self-instruction, for Use in Schools, and as a Guide to T'achers. By ILugo Reid. 12 mo , cloth, 3s. 6d.

\section*{Medical and Scientific Worles-continued.}

0UTLINES OF MEDICAL BOTANY, comprising Vegetable Anatomy and Physiology, the Characters and Proparties of the Natural Orders of Plants, an Explanation of the Linnæan System of Classification, Tables of Medicinal Plants arranged in their Linnæan and Natural Orders, and a Glossary of Terms. By Hugo Rem. Second Edition. Post vo, cloth, 9s., reduced to 4 s .

THE WORKS OF THOMAS REID, D.D., now fully Collected, with Selections from his Unpublished Letters, Preface, Notes, and Supplementary Dissertations. By Sir William Hamilton, Bart., Professor of Logic and Metaphysics in the University of Edinburgh. Prefixed: Stewart's Account of the Life and Writings of Reid; with Notes by the Editor. Fifth Edition. 8 vo , cloth, \(2 \mathrm{5s}\).

\(\mathrm{R}^{\mathrm{F}}\)EID'S ESSAYS ON THE INTELLECTUAL POWERS OF MAN, from his Collected Writings. By Sir William Hamilton, Bart., and with the Foot-notes of the Editor. 8vo, cloth, Gs.

INDEX RERUM ; or, Index of Subjects. Intended as a Manual to Aid the Student and the Professional man in Preparing himself for Usefulness; with an Introduction, illustrating its Utility and Method of Use. By the Rev. John TodD, Pastor of the Edward's Church, Northampton, Massachusetts. to, half-bound morocco, large paper, 6 s . ; small paper, 5s. Gd.
aSSAY ON THE PHYSIOGNOMY OF SERPENTS. M.D., F.R.S.E. Pro, cloth, Gs. Gd., reduced to 3 s .

TTHE DISEASES OF THE HEART AND THE aORta. By William Stokes, Regius Professor of Physic in the University of Dublin. 8vo, cloth, 18s.

RUDIMENTS OF PHYSIOLOGY, in Three Parts. Irritation. Part Organism. Part II. On Life as Manifested in Irritation. Part III. On Life as Manifested in Sensation and in Thought. By John Fletcher, M.J. Published at 19s., reduced to
10 s .6 d .

\section*{11 LEMENTS OF GENERAL PATHOLOGY. By Post Sro. Published at Edos. Gd., reduced to bs.}

\(D^{1}\)R GREGORY'S CONSPECTUS MEDICIN A THEORETICA, carefully revised, and compared with the Edition last corrected by the Author ; with the Punctuation improved, 80 as greatly to facilitate Translation. Tho Eleventh Edition, Com-
plate. 12mo, 7 s .
```


[^0]: 39, Lincoln's Inn Fielids,
 April 5th, 185.4.

